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Abstract In nature, filamentous fungi are potent degraders of cellulose as they are
able to produce a high number and broad variety of cellulases with complementary
catalytic activities. These enzymes include notably classical glycoside hydrolase
activities, i.e., endoglucanases, cellobiohydrolases, and b-glucosidases. Oxidative
enzymes are also involved in cellulose deconstruction, such as the newly discov-
ered lytic polysaccharide monooxygenases (LPMOs), and auxiliary nonenzymatic
proteins are involved in substrate targeting and loosening. In this chapter, the
actions of the enzymatic partners are described, as well as their kinetics and the
interactions between cellulases and with non cellulase enzymes (i.e., synergism).
Because recalcitrant cellulose is still a challenge to date, strategies to discover new
efficient biocatalysts from fungal biodiversity are also presented here.
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1 Introduction

Lignocellulosic biomass is the largest renewable source of carbohydrates on Earth
and cellulose is its main component. Cellulose is a homopolymer of b-1,4 linked
glucose, organized in linear microfibrils that form very recalcitrant crystalline-like
structures. In the plant cell wall, cellulose is tightly intermeshed with the other
components, hemicellulose, lignin and pectin, making the whole structure extre-
mely recalcitrant to microbial attack.

In the past decades, the deconstruction of the plant cell wall has become a major
challenge for many industrial applications, including production of biofuels, bio-
materials, and high value products. In particular, the access to cellulose and its
hydrolysis into monomers and oligomers is still a bottleneck that has been mobi-
lizing research efforts.

In nature, microorganisms are potent degraders of lignocellulose which they use
as energy source. In particular, filamentous fungi play a key role in recycling
nutrients in forest ecosystems. They are extremely well adapted for the degradation
of biomass and as such are able to produce a high number and broad variety of
enzymes with complementary catalytic activities to degrade cellulose-rich
materials (Couturier et al. 2012; Sigoillot et al. 2012). Such enzymes include the
classical glycoside hydrolases, namely, endoglucanases, cellobiohydrolases, and
b-glucosidases, as well as oxidative enzymes, among which cellobiodehydrogenases
and the newly discovered lytic polysaccharide monooxygenases (LPMOs).
Filamentous fungi have adopted different strategies to perform efficient degradation
of cellulosic biomass.

2 Enzymes Involved in Cellulose Degradation

2.1 The CAZy Classification

Enzymes involved in carbohydrate deconstruction are grouped in the
carbohydrate-active enzyme (CAZy) classification based on comparison of their
amino acid sequence, three-dimensional structure and catalytic mechanism [www.
cazy.org; www.cazypedia.org; (Lombard et al. 2014)]. The CAZy database gathers
the enzymes involved in the modification of carbohydrates into several groups,
Glycoside Hydrolases (GH) that cleave glycosidic bonds, Glycosyl Transferases
(GT) which form new glycosidic bonds, Polysaccharide Lyases (PL) which cleave
uronic acid-containing polysaccharide chains, Carbohydrate Esterases (CE) that
allow deacylation of polysaccharide chains (Henrissat et al. 1991). Auxiliary
Activity (AA) enzymes have been added more recently (Levasseur et al. 2013).
Most of AA enzymes are oxidoreductases acting on lignin and carbohydrates and
among them four families have been recently described as LPMOs. Finally,
Carbohydrate-Binding Modules (CBM) are noncatalytic modules appended to
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enzymes which are involved in substrate targeting. In October 2015, the CAZy
database included 135 GH families, 16 CE families, 13 AA families, and 71 CBM
families.

2.2 The Classical Cellulose-Acting Enzymes

Historically, a system of three complementary enzymatic activities has been
described as being in charge of cellulose degradation: endoglucanases, cellobio-
hydrolases, and b-glucosidases (For a review see Payne et al. 2015; Fig. 1). They
are able to hydrolyze the b-1,4 covalent bonds that connect glucose units in the
cellulose chains and act synergistically with different specificities. Accordingly,
their structural organization and catalytic mechanisms allow for the accommodation
of corresponding substrates.

Endoglucanases (EG, endo-1,4 b D-glucanases, EC 3.2.1.4) randomly cleave
b-1,4 bonds in amorphous areas of cellulose chains and generate new reducing and
nonreducing ends. They are classified in several CAZy families, namely, GH5,
GH6, GH7, GH9, GH12, GH44, GH45, and GH74. Endoglucanases display a
variety of structures, such as b jelly roll as Aspergillus niger family GH12 AnEglA
(1KS4, Khademi et al. 2002) or (b/a)8 barrel as Trichoderma reesei TrCel5A
(3QR3, Lee et al. 2011) as well as two possible catalytic mechanisms with retention
of configuration or with inversion of configuration (Davies and Henrissat 1995).
However, to accommodate cellulose chains, endo-acting cellulase structures have in
common a large cleft containing the catalytic amino acids (Davies and Henrissat
1995).

Cellobiohydrolases (CBHs, cellulose 1,4-b-cellobiosidases, EC 3.2.1.91), are
processive enzymes which release cellobiose from either reducing (GH7 CBHs) or
nonreducing ends (GH6 CBHs) of cellulose fragments released by endoglucanases.
GH6 CBHs display an inverting catalytic mechanism, whereas GH7 CBHs use a

Fig. 1 Illustration depicting the hydrolysis of cellulosic materials using endoglucanases,
exoglucanases, and b-glucosidases
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retaining mechanism. Three-dimensional structure examples include the
Basidiomycetes Coprinopsis cinerea Cel6A and Cel6C CBHs (3VOG and 3A64,
respectively, Tamura et al. 2012) and Phanerochaete chrysosporium PcCel7D
(1GPI, Munoz et al. 2001). CBHs harbor cleft- or tunnel-bearing structures which
allow the enzyme to slide on cellulose chain for the next cleavage while the product
is being released.

b-glucosidases are the third partner of the cellulase system and catalyze the
cleavage of cellobiose or cello-oligomers into glucose. They are characterized by a
pocket-containing topology that allows optimal detection of the nonreducing
extremity and leads to the cleavage of a single sugar unit. Because of this topology,
b-glucosidases are nonprocessive enzymes, since the substrate has to be released
after each cleavage event to allow the new glucose unit to exit the pocket. In the
CAZy database, b-glucosidases are grouped in families GH1 and GH3. A few
fungal b-glucosidase structures have been solved, among which the ones of T.
reesei, the family GH1 TrBgl2 (3AHY) and family GH3 HjCel3A (3ZYZ), the
latter being the most abundant b-glucosidase in T. reesei enzyme cocktails (Jeng
et al. 2011; Karkehabadi et al. 2014). Both exoglucanases and b-glucosidases are
strongly inhibited by their reaction products cellobiose and glucose, respectively
(Teugjas and Väljamäe 2013).

2.3 Oxidative Enzymes Involved
in Cellulose Deconstruction

Complementary to their typical hydrolytic cellulases, fungi have developed oxida-
tive degradation enzymes. These enzymes have been recently identified and
described as LPMO enzymes (Quinlan et al. 2011; Vaaje-Kolstad et al. 2010; Harris
et al. 2010). LPMOs are classified into four auxiliary activity (AA) families, AA9
(formerly GH61), AA10 (formerly CBM33), AA11, and AA13 of the Carbohydrate-
Active enZyme database (CAZy; http://www.cazy.org; Levasseur et al. 2013). The
AA10 family contains mainly enzymes of bacterial and viral origin that cleave
cellulose and chitin mostly at the C1 position (Forsberg et al. 2011; Hemsworth et al.
2013). The LPMOs classified in the AA11 and AA13 families, respectively, cleave
chitin and starch and share important structural features with the two previously
characterized families (Vu et al. 2014a; Leggio et al. 2015; Hemsworth et al. 2014).
This section will focus mainly on the AA9 family containing only fungal LPMOs
active on lignocellulose although much of what is known about the fungal cellu-
lolytic LPMOs is likely applicable across the LPMO superfamily.

In fungi, these enzymes have first been classified into the GH61 family after one
member of the family, T. reesei EGL4, was reported displaying a weak endoglu-
canase activity (Saloheimo et al. 1997; Karlsson et al. 2001). However, there was
described as “weak endoglucanases” as the activity was several orders of magnitude
lower than what had been observed in other endoglucanases. In 2008, the first
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reported structure of the T. reseei Cel61B (Karkehabadi et al. 2008) suggested
another activity for those enzymes. Its structure closely resembles to the CBP21
protein (AA10 formerly CBM33), a chitin-binding protein from the bacterium
Serratia marcescens. This enzyme was obtained few years earlier and had been
proposed to enhance chitin degradation through a non-catalytic mechanism (Vaaje-
Kolstad et al. 2005).

In the last few years, GH61 have drawn increasing attention because of their
«stimulating» effect on cellulase cocktails for biomass conversion (Harris et al.
2010). Other structure and biochemical study have revealed their oxidative mech-
anism, described their active site and highlighted some important structural features
(Quinlan et al. 2011; Harris et al. 2010; Vu et al. 2014b; Kittl et al. 2012; Beeson
et al. 2012; Li et al. 2012; Phillips et al. 2011). In August 2015, family AA9
includes 301 members among which 7 members have had their three-dimensional
structure solved (Karkehabadi et al. 2008; Wu et al. 2013; Quinlan et al. 2011;
Harris et al. 2010; Borisova et al. 2015; Li et al. 2012). These analyses revealed a
structural b-sandwich fold of typically 8–10 b-strands with a flat surface where
binding with the substrate occurs mostly via stacking interactions with planar
aromatic residues. A type II copper ion exposed at the surface is coordinated a
“histidine brace” formed by two highly conserved histidine residues, one of which
corresponds to the N-terminal histidine, and one tyrosine (Langston et al. 2011; Li
et al. 2012). Fungal AA9 LPMOs are secreted enzymes and can contain
post-translational modifications. One of the most unusual is the methylation of the
N-terminal histidine at the imidazole Ne. This modification is found only in fungal
LPMOs and its role is unclear and still under debate.

The oxidation of glucose units has been described mostly at the C1 or C4
position (Beeson et al. 2012; Phillips et al. 2011; Bennati-Granier et al. 2015; Li
et al. 2012; Vu et al. 2014b), but a few studies suggested oxidation of the C6
position as well (Bey et al. 2013; Quinlan et al. 2011). AA9 LPMOs are classified
into three groups, depending on their regioselective mode of action: type 1 LPMOs
will oxidize at C1 and release soluble oligosaccharides with an aldonic acid at their
reducing end; type 2 LPMOs will oxidize at C4 and release ketoaldose at the
nonreducing end; and type 3 will oxidize at both C1 and C4 and release a mixture
of alodnic acid and ketoaldose. AA9 LPMOs require a reducing cofactor for
activity, such as ascorbic acid (Forsberg et al. 2011; Quinlan et al. 2011), fragment
of lignins (Dimarogona et al. 2012), or enzymes like the cellobiose dehydrogenase
(CDH) (Langston et al. 2011; Bey et al. 2013; Phillips et al. 2011). CDHs and AA9
LPMOs are often cosecreted in fungal cultures (Poidevin et al. 2014; Navarro et al.
2014). A clear indication of the synergy was obtained when it was shown that the
combination of Thermoascus auranticus AA9 and Humicola isolens CDH greatly
enhanced cellulose degradation (Langston et al. 2011).

Although no structural complex with their substrates is available, binding of the
substrate may occur via aromatic-carbohydrate interactions. Indeed, some aromatic
residues on the substrate-binding surface are conserved and the spacing matches the
spacing between glucose subunits in cellulose (Harris et al. 2010; Li et al. 2012; Wu
et al. 2013). Some structural differences have been observed among the different
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AA9 LPMOs characterized. More AA9 LPMO members need to be characterized in
order to identify the molecular determinants involved in their substrate specificity.
For instance, two AA9 LPMOs have been recently shown to act on soluble
cello-oligosaccharides, i.e., NcLPMO9c and PaLPMO9H (Isaksen et al. 2014;
Bennati-Granier et al. 2015).

2.4 Ancillary Proteins

2.4.1 Carbohydrate-Binding Modules

Cellulolytic enzymes can be associated with non-catalytic modules among which
the CBM are an important group (for an extensive review, see Várnai et al. 2014).
CBMs play a role for substrate targeting and binding and often increase the overall
catalytic activity of the enzyme especially on crystalline substrates. Based on their
topology, CBMs have been grouped in three structural and functional groups by
Boraston et al. (2004): type-A or surface-binding CBMs, type-B or glycan-chain
binding CBMs, and type-C, or small sugar binding CBMs. Cellulose-acting
enzymes are typically associated with type-A CBMs, which present a flat surface
exposing aromatic residues allowing the interaction with cellulose chains. Another
classification of CBMs is found in the CAZy database, in which CBMs are clas-
sified based on structure and binding specificity (www.cazy.org; Lombard et al.
2014). Among the 71 CBM families, three families gather CBMs identified in
fungal cellulases that show binding to cellulose: CBM1, CBM6, and CBM63.
CBM1 family comprises most of the modules associated with fungal cellulose-
acting enzymes. These CBMs are approximately 40 residues long, and can be
located either at the N- or C-terminus of the catalytic module, alone or in a mul-
timodular organization (Guillén et al. 2010).

In fungal genomes, the number of identified CBM1 modules varies, from none
in some brown-rot fungi such as Postia placenta and Fomitopsis pinicola to more
than 30 in some white-rot species such as Phanerochaete chrysosporium and
Bjerkandera adusta. In white-rot fungi, the distribution of CBM1s among the
different families of cellulases is heterogeneous, with some families such as
GH7 CBH and AA9 LPMOs being often found as single modules, whereas GH5
endoglucanase and GH6 CBH are associated with CBM1s. In brown-rot fungi, the
cellulose degradation system does not rely on cellulases and accordingly the
number of associated CBM1s is also smaller, with most GH5 endoglucanases and
AA9 LPMOs being found as single domains.

2.4.2 Expansins

Expansins are another type of non-catalytic proteins that can play a role in cellulose
degradation (For a recent review, see Liu et al. 2015). The presumed mechanism is
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a disruption of hydrogen bonding between cellulose microfibrils or between cel-
lulose and other cell wall polysaccharides leading to an enhanced accessibility of
cellulases to cellulose chains (Saloheimo et al. 2002; McQueen-Mason and
Cosgrove 1994). The expansin-like protein from T. reesei, TrSwo1, revealed a
capability for disruption of cellulose fibers in cotton or filter paper without yielding
any detectable reducing sugars (Saloheimo et al. 2002). The resolution of its
structure revealed that TrSwo1 has a CBM1 N-terminal, a linker region, and an
expansin-like C-terminal domain (20 % identity), which in expansins are similar in
structure and sequence to the catalytic site of family GH45 (Saloheimo et al. 2002).
More recently, Andberg et al. (2015) proved the hydrolytic activity of TrSwo1. The
mode of action of this enzyme is similar to both endo- and exoglucanases. Hence,
TrSwo1 could reduce the viscosity of reaction environments containing barley
b-glucan, hydroxyethyl cellulose, and carboxymethyl cellulose (or typical
endoglucanases substrates) at a consistency of 1 %. On the other hand, when the
composition of barley b-glucan hydrolysates were investigated, cellobiose was the
main reaction product with no evidence for intermediates, while for a typical
endoglucanase (Cel5A), cellopentaose and cellohexaose were predominantly
released. TrSwo1 presented a limited activity on barley b-glucan, since only 1.2 %
of dry mass was solubilized in either 15 s or 24 h of hydrolysis. It was suggested
that the TrSwo1 mode of action involved an initial attack in the middle of cellulose
chain and a subsequent processive action along the chain releasing cellobiose.
Hydrolysis of barley b-glucan was probably stopped when TrSwo1 came across a
b-(1!3) glycosidic bond and possibly stayed permanently bound at this substrate
site. Expansin-related proteins have been identified in both Basidiomycetes and
Ascomycetes and a few have been characterized from Aspergillus fumigatus (Chen
et al. 2010), B. adusta (Quiroz-Castañeda et al. 2011), Schizophyllum commune
(Tovar-Herrera et al. 2015). Studies have investigated the activity of expansins and
expansin-like proteins in cellulase cocktails and they revealed that expansins
enhance cellulose degradation. For instance, Gourlay et al. (2013) observed that the
SWOI addition on a steam pretreated corn stover promoted cellulose and hemi-
cellulose solubilisation primarily to their corresponding oligomers. The authors
attributed this nonhydrolytic effect to the release of preexisting oligomers that were
bound to the substrate surface, but small concentrations of glucose and xylose were
also released in the substrate hydrolysate.

3 Strategies to Improve Cellulose Degradation

3.1 Combination and Synergism of Cellulolytic Enzymes

Although the combination of enzymes from the different families (glycoside
hydrolases and oxidases) is theoretically enough to carry out complete conversion
of cellulose into monomers, complex kinetics, cellulose crystallinity as well as
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product inhibition leads to a limited degradation efficiency in practice. The kinetics
of cellulose degradation by the different enzymatic partners are complex and many
models have been proposed to understand the activity of cellulases on cellulose
over the course of degradation. Bansal et al. (2009), have summarized in a review
the sequence of steps involved in cellulose degradation from the adsorption of
endoglucanase and cellobiohydrolase onto their substrate to detachment from the
chain and hydrolysis of cellobiose into glucose by beta-glucosidases. In this
sequence of events, many factors impact kinetics, causing an overall decreasing rate
of reaction over time. Nonproductive binding of cellulases on other components of
lignocellulosic substrates has been extensively studied, by FPLC (Gao et al. 2014),
colorimetric quantification (Guo et al. 2014), or quartz crystal microbalance
(Rahikainen et al. 2013) such as nonproductive cellulase binding, enzyme deacti-
vation, and mostly substrate depletion, and product inhibition. Substrate cristallinity
is also cited as a factor for decreasing reaction rate, since amorphous regions are
hydrolysed first and the more crystalline regions remain as recalcitrant, resulting in
an increase of crystalline fraction of cellulose over time (Chen et al. 2007). This
model is called the two-phase substrate model and reflects the physical complexity
of the cellulose, which affect both accessibility and reactivity. For an extensive
review of models and parameters involved in cellulose degradation kinetics, see
Bansal et al. (2009).

Cellulolytic enzymes with different specificities exhibit synergistic action on
fibers, simultaneous action of multiple enzyme components resulting in a signifi-
cantly higher hydrolysis yield than the sum of the hydrolysis yields of the indi-
vidual enzyme components. This phenomenon called synergism has been described
more than twenty years ago. Endo–exo and exo-exo synergisms have been dis-
tinguished. An example of endo-exo synergy in fungal cellulases occurs between T.
reesei endoglucanase TrCel5A (EGII) and its cellobiohydrolase partner TrCel7A
(CBHI) (Medve et al. 1998). Different types of CBHs working together can also
lead to a synergetic degradation of cellulose, such as TrCel7A (CBHI) working on
the reducing end of cellulose chains and TrCel6A (CBHII) which acts on nonre-
ducing ends. Real-time visualization of crystalline cellulose degradation by T.
reesei CBHs was performed using high-speed atomic force microscopy (Igarashi
et al. 2011). TrCel7A molecules were observed to slide unidirectionally along the
crystalline cellulose surface but at one point exhibited collective halting analogous
to a traffic jam. Changing the crystalline polymorphic form of cellulose by means of
an ammonia treatment increased the apparent number of accessible lanes on the
crystalline surface and consequently the number of moving cellulase molecules.
Treatment of this bulky crystalline cellulose simultaneously or separately with
TrCel6A resulted in a remarkable increase in the proportion of mobile enzyme
molecules on the surface.

While endoglucanases increase the available sites for exoglucanases,
b-glucosidases decrease the exoglucanase inhibition by converting cellobiose into
glucose (Wood 1985). Multiple factors affect the synergy between cellulases. These
include the specific activity of the enzymes, the ratio between them, the enzyme
loading and the chemical composition and structure of cellulosic substrates.
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Cellulolytic glycoside hydrolases also exhibit strong synergism with their
oxidative counterparts, LPMOs. This synergy was first described in 2010, when the
actual effect of LPMO was still under question (Harris et al. 2010), but their
addition to a cellulase cocktail allowed to significantly decrease enzyme loadings to
hydrolyse cellulosic biomass. AA9 LPMOs seem to exhibit activity on both
amorphous and crystalline cellulose, whereas endoglucanases presents no activity
against the latter. This might be the reason why AA9 LPMOs display a high
synergy with cellulases and may provide half of the enzymatic loading required for
hydrolysis (Harris et al. 2010, 2014).

3.2 Fungal Accessory Enzymes

Another type of synergy involving cellulases and noncellulolytic enzymes can
increase fungal degradation of cellulose: because of the complex structure of lig-
nocellulose, efficient cellulose degradation also depends on accessory activities to
allow access for cellulases to cellulosic fibers.

Cellulose microfibrils are associated with some hemicelluloses which hampers
access for cellulolytic enzymes. In particular, whereas arabinoxylan and (1,3)(1,4)-
b-glucan do not interact strongly with cellulose (Mikkelsen et al. 2015), other
components of the cell wall such as softwood mannan has been suggested being
tightly associated with cellulose fibrils (Åkerholm and Salmén 2001). Accordingly,
addition of mannanases to T. reesei cellulolytic cocktails led to a synergistic effect
and an increase of glucose release from nonpretreated softwood in saccharification
assays (Couturier et al. 2011). Such synergies have also been described between
pectinases and cellulases (Zhang et al. 2013) for the hydrolysis of steam-exploded
hemp and confirms the spatial contacts between pectin and cellulose that have been
described in primary cell wall in several studies (Cosgrove 2014; Wang et al. 2015).
Xylanases (Hu et al. 2011) and a xyloglucanase (Benko et al. 2008) have
demonstrated a synergistic effect when employed in combination with cellulases on
specific substrates, leading to improved conversion of cellulose compared to cel-
lulases alone. Gao et al. (2011) demonstrated that, by adding endoxylanases to a
cellulolytic enzyme system, the glucose release from AFEX (ammonia fiber
expansion) pretreated corn stover increased from 56 to 83 % after 24 h hydrolysis.
Selig et al. (2008) achieved an 84 % improvement in the enzymatic hydrolysis of
hot water pretreated corn stover by adding an endoxylanase, a ferulic acid esterase
and an acetyl xylan esterase to a the cellobiohydrolase Cel7A. These authors also
observed that the resulting synergistic effect is more evident when low Cel7A
loadings are used.

Tabka et al. (2006) studied the effects of adding xylanases, feruloyl esterases,
and laccases on the hydrolysis of dilute sulphuric acid impregnated steam-exploded
wheat straw. The addition of hemicellulases caused an enhancement in the substrate
glucose yield. On the other hand, the addition of laccase promoted the cleavage of
covalent bonds in lignin, showing a negative effect that was associated to the
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inhibition of cellulases by the accumulation of phenolic compounds in the substrate
hydrolysates.

4 Perspectives in Cellulose Hydrolysis Through
the Exploration of Fungal Biodiversity

The most studied cellulolytic system to date is probably that of the ascomycete
fungus T. reesei, largely used in industry and engineered for decades to be used in
biomass hydrolysis applications. T. reesei genome was sequenced in 2008
(Martinez et al. 2008) and revealed a relatively reduced set of GHs in general and of
cellulases in particular, with 5 endoglucanase genes, 2 cellobiohydrolase genes, and
15 b-glucosidase genes. Only 3 LPMO genes of family AA9 are also encoded by T.
reesei genome. Despite the presence of all types of cellulase activities, T. reesei
enzyme cocktails are not able to achieve a complete degradation of cellulose. In the
past few years, the search for novel CAZymes has been expanded to the exploration
of fungal strains from tropical forests (Berrin et al. 2012), marine environment (Arfi
et al. 2013) and pathogens (Couturier et al. 2012). For example, the maize pathogen
Ustilago maydis was identified as a good source of enzymes for improvement of T.
reesei cellulolytic capabilities. U. maydis genome revealed one of the smallest sets
of genes that encode for CAZymes with only 95 glycoside hydrolases (Kämper
et al. 2006), but investigation of its secretome highlighted a significant fraction of
putative oxidoreductases that are potentially involved in the depolymerisation of
lignocellulose. The authors suggested that U. maydis oxidoreductases could par-
ticipate in the depolymerisation of lignocellulose via the formation of highly
reactive oxidants.

Classically, cellulolytic systems of white-rot and brown-rot fungi have been
opposed. Cellulose degradation of white-rot mostly rely on GH6, GH7, LPMOs,
and numerous CBM1s allowing anchoring of catalytic modules on crystalline
cellulose. On the other hand, brown-rot fungi system barely contains cellulases and
mostly use nonenzymatic processes based on hydroxyl radical produced by Fenton
reaction (Martinez et al. 2009). However, recent work suggests that the separation
of brown-rot and white-rot fungi in two distinct groups might have been an over-
simplification and that some fungi display intermediate modes of action (Floudas
et al. 2012, 2015; Riley et al. 2014).

A wealth of fungal genomics and postgenomics (transcriptomics and secre-
tomics) information has been generated in the last few years. More than 265 fungal
genomes (more than 90 corresponding to basidiomycetes) are publically available.
These studies constitute a solid basis to identify the main players involved in the
degradation of cellulosic biomass through comparative–omic studies. Complex
portfolios of fungal enzymes are secreted in response to environment and growth
substrates. The study of fungal secretomes from the scope of their different ligno-
cellulosic biomass degradation strategies and lifestyles would facilitate their use in
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the treatment of lignocellulose as carbon feedstock for biofuel production and
further biorefinery processes (Alfaro et al. 2014).
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