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Abstract This chapter presents a theoretical basis of the anisotropic magneto-
electric (ME) effect in tri-layers of metglas and piezoelectric (PE) single crystals.
The properties of various common PE and magnetostrictive substances are dis-
cussed, and arguments for the choice of the most appropriate materials are made.
A linear description of the ME effects in terms of electric, magnetic and elastic
material fields and material constants is presented. An averaging quasi-static
method is used to illustrate the relation between the material constants, their ani-
sotropy and the transversal direct ME voltage and charge coefficients.
Subsequently, the aforementioned model is employed in the calculation of the
maximum expected direct ME voltage coefficient for a series of tri-layered
Metglas/Piezocrystal/Metglas composites as a function of the PE crystal orientation.
The ME effects are shown to be strongly dependent on the crystal orientation,
which supports the possibility of inducing large ME voltage coefficients in com-
posites comprising lead-free PE single crystals such as LiNbO3, LiTaO3, α-GaPO4,
α-quartz, langatate and langasite through the optimization of the crystal orientation.
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6.1 Introduction

6.1.1 The Magnetoelectric Effect

The linear magnetoelectric effect (ME), according to the original definition outlined
by Debye in 1924–1926 [1], is described as the linear induction of a polarization, P,
in a material, in response to an applied magnetic field, H. This is called the direct
ME effect also designated by the acronym MEH. In the same way, the converse ME
effect (MEE) is defined as the induction of a magnetization, M, in a material as a
result of an applied electric field, E. These two relations can be expressed to the first
order in the following way (in SI units) [2–5]:

Pi ¼ aijHj; ð6:1Þ

l0Mi ¼ ajiEj; ð6:2Þ

where a indicates the linear ME susceptibility tensor (rank-2 tensor expressed in
units of s/m), and l0 is the magnetic permeability of empty space. We note that the
summation of the repeated index variables (i and j) over all of their integer values in
tridimensional space is implicit in the above equations following the Einstein
notation. Symbols in bold, on the other hand, represent vector or tensor fields.

The ME effect has given rise to a lot of interest in the scientific community over
the past two decades, driven by the possibility of new and promising multifunc-
tional device paradigms and also by the demand for a greater understanding of the
fundamental physics associated with solid materials. This interest is evidenced by
the large number of review articles related to developments in the field of the ME
effect published in recent times [4–26].

Theoretical physical models are highly important because they allow us to draw
valuable conclusions and predictions about the nature of the ME effect. Since early
times, an important inequality for the ME single-phase materials has been drawn
from a thermodynamic treatment. It states that [27, 28]:

aij\ evii
mvjj

� �1
2 ð6:3Þ

where evii and
mvjj are the electric and magnetic susceptibility tensor coefficients,

respectively. The inequality (1.3) indicates the existence of a well-defined upper
bound for all components of the a tensor. Although this limit is much higher than
the experimentally measured values for all known ME materials [29], it still rep-
resents a severe limitation on the magnitude of the linear ME response in
single-phase materials (i.e., multiferroics) [30, 31]. This is due to a chemical
contraindication to the simultaneous occurrence of a high permittivity and perme-
ability in the same material and results in part from a large intrinsic difficulty in
electrically polarizing magnetic ions [32]. Furthermore, by arguments from the
group theory, it can also be shown that the static linear ME effect may only be
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observed in media that are neither symmetrical with respect to the space inversion
operation (i.e., systems without a center of symmetry) nor with respect to the time
reversal (i.e. systems with a magnetic ordering) [30–33]. Therefore, the ME effect is
allowed only in 58 out of the 122 magnetic point groups [34]. A more general
approach to the ME coupling may include higher-order contributions (describing
the so-called secondary ferroics), parameterized by tensors such as b (ME effect
induced by the H field) or c (ME effect induced by the E field), both of rank-3, as
can be seen by the general electromagnetic free energy expansion of a material
[5, 35]:

F E;Hð Þ ¼ F0 � PSi Ei �MS
i Hi � 1

2
e0eijEiEj � 1

2
l0lijHiHj � aijEiHj � 1

2
bijkEiHjHk

� 1
2
cijkHiEjEk � � � �

ð6:4Þ

However, the linear term aij is generally the dominant contribution to the ME
effect, and thus much of the current research in this area is directed towards the
study of this linear effect.

Up to date, the ME effect has already been observed in several different types of
materials [6, 7]. Two major classes of ME compounds can, however, be distin-
guished: single-phase ME materials (ME multiferroics) and ME composite mate-
rials which incorporate both piezoelectric (PE) and magnetostrictive (MS) materials
in some manner. These composites may also integrate non-electric and
non-magnetic compounds such as organic polymers and even multiferroic materi-
als. Only the magnetoelectric composites will be explored in detail in this chapter,
with the multiferroic compounds standing outside of its scope.

6.1.2 Magnetoelectric Composites

The bulk ME composite materials constitute a class of structures that incorporate
both ferroelectric and ferri/ferromagnetic compounds [5, 6, 30]. The demand for
these types of materials is essentially guided by the prospect of being able to control
their internal charge distribution through the action of an applied magnetic field or,
alternatively, their spin distribution by an electric field, thus allowing the devel-
opment of new forms of multifunctional devices [8]. A ME coupling of large
magnitude is therefore essential in order for them to be useful in efficient practical
applications. Some of their most promising future applications may include [6, 7,
12, 23]: DC and AC magnetic field sensors, electric current sensors, multiple-state
memories, RAM-like magnetic memories, micro-sensors in read-heads, trans-
formers, spinners, diodes, optical devices that generate spin waves and electrically
tunable microwave devices.
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For the particular case of single-phase multiferroic compounds it has been
known that the ME coupling constitutes a very rare phenomenon, usually being
only observable at very low temperatures (low Curie and/or Néel temperatures for
the electric and magnetic ordering) [6, 7, 19]. Furthermore, the single phase
materials are commonly characterized by low values of the ME coupling coefficient
(aE ≈ 0.4 – 20 mV/(cm·Oe)) [16, 17], in part due to the limits imposed by
inequality (1.3). On the other hand, composite materials generally exhibit ME
responses orders of magnitude stronger even at room temperature and, therefore, are
currently much closer to commercial applications in new devices [6, 12]. Another
major advantage of this configuration is associated with its enlarged manufacture
flexibility. In fact, in order to manipulate the ME behavior of a composite, several
parameters may be individually tuned including [6, 7, 12, 36]: (i) the properties of
the constituent phases (e.g. PE and piezomagnetic coefficients, permittivity, per-
meability, elastic constants, electric resistivity, loss tangents, etc.); (ii) the volume
and geometrical arrangement of the various phases (e.g. particulate or laminate
structures, volume fraction between phases, layer thickness, grain size, rod diam-
eter, etc.); (iii) the quality of the coupling between interfaces (e.g., structural
compatibility between materials; synthesis techniques employed such as sintering,
sol-gel method, hot-pressing, tape-casting, solid-state reaction or other
physical/chemical deposition techniques; binding substances used such as epoxy,
polymeric matrix, cyanoacrylate glue, etc.); (iv) the modes of operation (i.e. relative
orientation between the applied/measured electric and magnetic fields, static or
dynamic fields, charge, i.e. short-circuit, or voltage, i.e. open-circuit, measurements,
frequency of the magnetic or electric modulation fields, etc.); (v) the processing
techniques (e.g., pre-poling, pre-magnetizing, heat treatments, etc.); and (vi) the use
of bulk phases or nanostructures such as thin films (which can give rise to new
exotic effects).

To better understand the origin of the ME effect in PE/MS composite systems,
we first take a look at the concept of physical properties resulting from the com-
bination of distinct single-phase compounds. Here, it is known that composite
systems may exhibit properties similar to those of their constituent phases but also
give rise to completely new ones, absent in the parent compounds. The sum and
scaling properties are part of the first class, while the product properties are asso-
ciated with the former [7, 17, 37]. Thus, the ME effect in composite materials is in
fact an extrinsic product property resulting from the interaction between PE and MS
constituent phases [13, 17, 38]. The mechanism of the direct ME (MEH) effect is as
follows: the MS material is initially deformed as a result of the application of an
external magnetic field (H). Part of this elongation/contraction (quadratic in the
field) is then transferred to the PE phase leading to an elastic straining (S) and
subsequently to the induction of a macroscopic electric polarization (P) due to the
stress (T) driven PE effect. It is obvious that the reciprocal effect may also take
place (converse ME effect or MEE effect). In this case, an external electric field (E)
induces a deformation of the PE component elongating or contracting it. This strain
is then transmitted to the MS phase through a mechanical coupling between
components. Thus, the magnetic phase experiences a magnetization (M) change
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induced by the electric field. In summary, we just saw how a composite material can
be characterized by a new property, the ME coupling, which is manifested by the
appearance of a polarization (magnetization) in response to an externally applied
magnetic (electric) field. Roughly speaking, the direct and converse ME effects may
then be written under the form of the products [39]:

MEH effect ¼ Electrical
Mechanical

�Mechanical
Magnetic

; MEE effect

¼ Magnetic
Mechanical

�Mechanical
Electrical

;

where Electrical=Mechanical and Mechanical=Magnetic represent, respectively,
the generation of PE charge (dij ¼ @Di=@Tj) and the MS deformation
(qij ¼ @Sj=@Hi), while Magnetic=Mechanical and Mechanical=Electrical represent
the piezomagnetic induction (qij = @Bi/@Tj) and the PE deformation
(dij ¼ @Sj=@Ei). With this concept of product properties in mind, the effective
short-circuit (Ei ¼ 0) ME coefficient can then be approximately expressed as [6,
40]:

aQij ¼ @Di=@Hj ¼ @Di=@Tkð Þ @Tk=@Slð Þð@Sl=@HjÞ ¼ kcdiks�1
kl qjl ð6:5Þ

where kc is a coupling factor (0� kcj j � 1) that quantifies the efficiency of the
transference of strain between phases (i.e. the ratio between the strain transferred to
the PE/MS phase and the strain generated in the MS/PE phase by the external field)
and depends on the fraction and connectivity between phases [41]. This expression
indicates that the ME coupling should be favored by large PE coefficients (dij),
piezomagnetic coefficients (qij), the inverse of averaged effective elastic compli-
ances (s�1

ij ) and coupling factors (kc). Consequently, the ME effect in composite
materials is a coupling between electrical and magnetic fields mediated by an elastic
interaction, and is therefore an extrinsic property generated from separate com-
pounds which do not exhibit any ME behavior by themselves.

Since the ME interaction between different phases is a complex process, the ME
response observed in composite materials will not simply be linear as in the case of
most multiferroic compounds [7, 12]. In composites, the ME effect is actually a
dynamic effect, and a large linear response can only be observed with an AC field
(electric or magnetic) oscillating in the presence of a given DC field. In addition to
the nonlinear response due to the quadratic effect of magnetostriction, generally the
ME coupling in composites also displays a hysteretic nature [17]. Therefore, under
open-circuit conditions, a dynamic direct ME voltage coefficient aEij ¼ @Ei=@Hj is
used as a figure of merit. For a traction-free composite the relation aik ¼ �e0erijaEjk
can be proven [40, 42, 43], where aij represents its effective dynamic ME sus-
ceptibility, erij the effective relative dielectric permittivity and e0 the permittivity of
empty space. aEij is typically specified in technical units of V/(cm·Oe) which can be
converted to SI units (V/m)/(A/m) through a multiplication by a factor of 4π/10.
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This coefficient is usually defined for a magnetic AC modulated field
(dHi tð Þ ¼ dHi � sinðxtÞ) with small amplitude (dH up to approximately 1 Oe) and
with a frequency (f ¼ x=2p) of up to about 1 MHz, superimposed on a larger (up
to, say, 20 kOe) magnetic DC bias field (H) [7]. The amplitude of the ME induced
AC voltage (dVi) measured between two electrodes in the sample should then be
proportional to the amplitude of the AC magnetic field in any detection circuit, thus
establishing an analogy with the linear ME response observed in single-phase
compounds. Finally, in order to quantify the dynamic ME coefficients, one mea-
sures the ME voltage induced in a sample by the magnetic field and then uses the
relation aEij ¼ dVi=ðt � dHjÞ, which is valid for small enough dHj [44] and where t
is the effective distance between electrodes generally equal to the thickness of the
PE. In practice, two particular cases of this coefficient are commonly studied in the
literature [6, 7, 12, 28]: (i) the longitudinal T-T ME voltage coefficient (aE33), and
(ii) the transversal L-T ME voltage coefficient (aE31 or aE32). Additionally to aE,
another ME coefficient can be used to describe the direct ME effect in composites
under distinct operation conditions. This is the so called charge ME coefficient (aQ),
usually measured under short-circuit conditions, and it quantifies the amount of
charge generated as a function of the applied magnetic field i.e.
aQij ¼ @Di=@Hj / �CaEij, where C is the low-frequency capacitance of the com-
posite [45–47]. This coefficient can be measured directly by an electrometer or
ammeter or indirectly as a voltage from the output of a charge amplifier and is
particularly important for applications in low-noise (<5 pT/Hz1/2) and
low-frequency (<1 Hz) magnetic field sensors [46, 48, 49]. Alternatively, a less
common converse ME coefficient, aBij ¼ @Bi=@Ej, can also be quantified by
measuring the magnetic response of a sample when an electric field is applied to it
(e.g., through a change in the amplitude of the magnetization induced by an applied
voltage, a variation in hysteretic magnetization curves, a change in the magnetic
anisotropy or a shift of ferromagnetic resonance absorption peaks) [20]. The
analysis of this parameter can be important, e.g., for applications in inductances and
electrically controlled microwave devices [23].

Composite materials can be manufactured with a variety of geometries and
compositions. Here, a certain phase may take the shape of particles, fibers/rods,
layers or three-dimensional arrays which, in the Newnham notation, can be denoted
by the indices 0, 1, 2 and 3, respectively [50]. In this way, the notation 2-2, for
example, indicates a two-phase composite consisting of alternating layers of dif-
ferent materials. As for its composition, bi-phasic composites contain a ferroelectric
phase, usually BiFeO3 (BFO), BaTiO3 (BTO), PbTiO3 (PTO), Pb(Zr,Ti)O3 (PZT),
(1–x)[PbMg1/3Nb2/3O3]–x[PbTiO3] (PMN-PT) or (1–x)[PbZn1/3Nb2/3O3]–x
[PbTiO3] (PZN-PT), and a ferromagnetic phase, generally consisting of ferrites or
magnetic alloys such as NiFe2O4 (NFO), CoFe2O4 (CFO), Fe3O4, La1–xSrxMnO3

(LSMO), Y3Fe5O12 (YIG), TbxDy1–xFe2 (Terfenol-D), Metglas (Fe–Ni–Co–B–Si–
Mo), Permendur (Fe–Co–V) or Galfenol (Fe–Ga) [6, 14]. Table 6.1 summarizes
some of the most important properties from the point of view of the ME coupling,
of some of the most thoroughly investigated PE materials. PE ceramics, PZT in
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particular, have been extensively studied and shown to provide a strong ME cou-
pling thanks to their relatively large PE and electromechanical coupling coefficients
[51–53]. Other compounds commonly used as the PE phase in ME composite
materials are PMN-PT and PZN-PT [14, 22, 53]. These materials have PE and
electromechanical characteristics superior to those of PZT but, on the other hand,
are associated with low Curie temperatures and low fracture toughness, which
severely limits their practical applications [14]. The polymer PVDF is another
common material, less attractive from the point of view of the PE accumulation of
charge (though it has a relatively large PE strain coefficient), but which has the
advantages of being elastically soft and having a high electrical resistivity and
resistance to solvents [14]. Some early research also has pointed out to the possi-
bility of using single-crystalline PE materials exhibiting considerably better per-
formances [22]. Nevertheless, the PE ceramics based on PZT, PMN-PT and
PZN-PT still possess the best known dielectric and PE properties and thus are in the
prime position for future applications in actuators, sensors and resonators [14, 22,
51–53]. However, lead (Pb) featured in these compounds represents a serious
environmental problem, and therefore a great deal of current research is focused on
identifying lead-free PE compounds which could serve as alternatives to the former
[24]. In recent times, many developments have been made in this direction with the
appearance of a series of new “clean” piezoelectrics. Among these, ceramics based
on the compound (Na,K)NbO3 (NKN) (e.g., solid solutions of NKN-LiNbO3,

Table 6.1 Main physical properties, relevant to the ME effect, of some common Z-cut
piezoelectrics

BaTiO3 LiNbO3 GaPO4 PZT–5 PZT–4 PZN-PT PMN-PT PVDF NKN

d31 (pC/N) –33 –0.85 –1.58
(d14)

–175 –109 –1280 ≈700 16.5 –

d33 (pC/N) 94 6 4.37
(d11)

400 300 2000–
2500

2000 –33 158

eTr33 132 85.2 5.38
(eTr11)

1750 1350 7200 5000 10 –

Tc (°C) 152 1210 900 360 320 163 80 129 415

q (g/cm3) 6 4.63 3.57 7.7 7.6 8.2 7.8 1.78 –

Qm – – – 80 500 – – 4 234

kl33 0.63 0.17 0.15
(kl11)

0.72 0.68 0.94 ≈0.9–
0.94

0.19 0.46

References [55,
56]

[57] [58, 59] [14] [14] [14, 60,
61]

[14, 62] [14] [24]

Here, d31 and d33 represent the PE strain coefficients,eTr33 is the dielectric relative permittivity, Tc the Curie
temperature, p the mass density, Qm the mechanical quality factor (i.e. 2π times the energy stored divided by the

energy dissipated per cycle for a given fundamental resonance mode expressed as
ffiffiffiffiffiffiffiffiffiffiffiffiffi
L1=C1

p
=R1, where L1, C1

and R1 are respectively the series inductance, capacitance and resistance of the equivalent electrical circuit of
the PE vibrator [54]) and kl33 the electromechanical coupling factor for a longitudinal oscillation (i.e. the
square-root of the ratio between delivered mechanical or electrical energy and total absorbed energy in this case

given by d33=
ffiffiffiffiffiffiffiffiffiffiffiffi
sE33e

T
33

p
[54])
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NKN-LiTaO3, NKN-LiSbO3, NKN-Li(Nb,Ta,Sb)O3, NKN-BaTiO3, NKN-SrTiO3

or NKN-CaTiO3) have received considerable attention for two main reasons [24]:
(i) their PE properties stay unchanged over a wide temperature range and (ii) there
are numerous possibilities of chemical substitution in the compounds.

Similarly, the main properties of the most attractive MS materials are summa-
rized in Table 6.2. Here, one can identify the greatest advantage of ferrites with
respect to metallic alloys when employed in particulate ME composites, viz., its
high electrical resistivity. This is critical when one seeks to obtain MS phases
capable of withstanding an electric displacement field on 0–3 particulate or 1–3
fiber/rod composites because, otherwise, there would be a large leakage of current
through the compound thus nullifying the charge built-up. NiFe2O4, in particular, is
the ferrite with the largest saturation magnetostriction (ks) currently known, while
also possessing good mechanical properties. Despite its small magnetostriction in
relation to alloys, NiFe2O4 is still widely used in ME composites and could find
applications, e.g., in microwave devices [14]. However, in 2-2 laminate composites,
layers of the MS phase tend to be interspersed by layers of the PE phase, commonly
associated with a large electrical resistivity. In this case the leakage of current
trough the thickness of the composite is minimized, so that the MS phases are no
longer required to have high resistivities. Therefore, the research on ME composites
in the last decade has been strongly focused on composite laminates containing the
MS alloy Terfenol-D (Tb0.3Dy0.7Fe1.92/Pb(Zr0.52Ti0.48)O3) [12, 63–67]. Among all
known magnetic materials, Terfenol-D is still the one with the highest saturation
magnetostriction [6]. On the other hand, this compound is very expensive and
brittle, as well as exhibiting high losses at high frequencies (≳100 kHz) caused by
eddy currents. As in all alloys, it also has a low electrical resistivity and cannot be
co-sintered with ferroelectric oxides [14]. Also, its low magnetic permeability
(lr � 3�10) and large saturation field require high magnetic fields (typically above
1 kOe) in order to maximize the ME coupling coefficients, making it unsuitable for
low-field applications [6, 23]. Consequently, the study of other lower-cost magnetic
alloys such as Permendur (Fe–Co–V), Galfenol (Fe–Ga) or Metglas (Fe–Ni–Co–B)
is of great interest [51, 68–70]. Currently, one of the most promising MS alloys is

Table 6.2 Main physical properties, relevant to the ME effect, of some important MS materials

NiFe2O4 Terfenol-D Permendur Galfenol Metglas 2605

ks (ppm) 27 1400 70 200 40

q33 (ppm/Oe) ≈0.18 ≈1–2 ≈1 ≈1.5 ≈4.0

lTr33 20 ≈6–10 2300 20 >40 000

TC (°C) 535 380 940 670 395

q (g/cm3) 5.37 7.8 8.2 7.7 7.18

r (S/m) 1.00 × 10−6 1.72 × 106 2.38 × 106 1.67 × 106 7.69 × 105

References [14, 74] [14, 52, 72, 75] [76–78] [14, 79, 80] [14, 68, 72]

Here, ks is the saturation magnetostriction, q33 the piezomagnetic coefficient, lTr33 the relative
magnetic permeability, q the mass density, r the electrical conductivity and TC the Curie
temperature
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Metglas, mainly because of its huge relative magnetic permeability (lr [ 10 000),
large piezomagnetic coefficient (q33 � 4:0 ppm=Oe) and reasonable saturation
magnetostriction (ks ¼ 40 ppm) [14]. Different types of this compound consist of
soft Fe-, Co- or Fe–Ni-based amorphous alloys, also containing small quantities of
B and in some cases Si and Mo, fabricated by a rapid solidification process [71].
This process provides it with unique magnetic properties such as a very high
permeability and a very low coercivity and magnetic anisotropy. Despite its smaller
saturation magnetostriction when compared to Terfenol-D, ME composites of
Metglas can still display very large ME couplings. This is because, as will be shown
later, the ME dynamic coefficients are proportional to the linear piezomagnetic
constants (qij ¼ @Sj=@Hi ¼ @kj=@Hi) and not to the saturation magnetostriction
(ks). In fact, Metglas constitutes the material with the largest known piezomagnetic
coefficient, q33 � 4 ppm/Oe (in the case of the 2605SA1 alloy) [68, 72], being
approximately twice the one observed for Terfenol-D [52]. It also has a high
transversal coefficient of q11 þ q12 � 1:5 ppm/Oe [73]. Additionally, its very high
permeability ensures a high concentration of magnetic flux and, therefore, a satu-
ration of the magnetization and magnetostriction at very low magnetic fields of ca.
10 Oe. Consequently, its piezomagnetic and ME coefficients, when incorporated
into a ME composite, generally attain maximum values at low magnetic fields.

Since the initial research and until this day, the ME laminate composites have
attracted a particularly large interest because of their large ME coefficients, due to
large PE and MS coefficients and an absence of current leakage, which have paved
the way to several promising applications. Thus, a wide variety of laminar
geometries [66, 67, 81–83], synthesis/binding techniques [82–84] and operation
modes [63–66, 85, 86] have already been studied in detail. With regard to their
geometry, the most frequently employed laminate composites are based on simple
structures of only two or three rectangular or disk shaped layers (i.e. sandwich
structures) [6]. These structures are the most investigated primarily for their ease of
manufacture and for exhibiting, in general, very intense ME effects with coefficients
usually in the range from 0.05 to 45 V/(cm·Oe) in the quasi-static regime (i.e. under
off-resonance conditions) [16, 18, 22, 23, 26].

When an oscillating AC magnetic field is applied to a ME composite, its ME
response oscillates with the fundamental frequency and higher harmonics of this
field. In particular, a large increase in the magnitude of the ME effect is expected
whenever the frequency matches one of the natural electrical, magnetic or
mechanical modes of resonance of the structure [20, 87–89]. Both phases of the
composite can exhibit these phenomena. These are known as electromechanical
resonance (EMR), for the case of the PE phase, and ferromagnetic resonance
(FMR), for the case of the magnetic phase.

The EMR occurs when a characteristic mechanical eigenmode of the PE phase is
indirectly excited by the varying magnetic field [88]. This field produces a periodic
strain in the MS phase which is then transferred to the PE phase. A conventional
mechanical resonance of the PE can then be observed when the elastic vibration
frequency coincides with a natural frequency (or one of its harmonics) of the
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system. This frequency depends on the effective material parameters and geometry
of the PE. Thus, a large oscillation amplitude of the standing wave in this layer will
also give rise to a large polarization/voltage through the PE effect. Theoretical
models based on equivalent circuits for the composites have shown that the ME
coefficient at resonance is approximately Qm times larger than that observed off
resonance, where Qm is the effective mechanical quality factor of the composite
[22]. It is also possible to show that the extensional length-resonance frequencies of
a traction-free laminate composite with the shape of a long bar (i.e., with a length
much larger than its width and thickness) can be given by fln ¼ ð2n� 1Þ=2‘ ffiffiffiffiffiffiffiffiffi

qs11
p

[90], where n 2 N is the harmonic number, ‘ the length of the PE bar, q its mass
density and s11 the longitudinal elastic compliance along the length direction (here
assumed to be X as in Fig. 6.1a) [14]. For laminate composites with lengths of about
1 cm and thicknesses of about 1 mm, fundamental in-plane extensional EMRs are
generally observed in the range from 200–400 kHz, while fundamental thickness
extensional EMRs are commonly found in the range from 2–4 MHz [91–93]. For
the case of a PE with a more complex geometry, however, additional types of EM
modes are expected to be found including shear and flexural modes, mainly in the
case of symmetrical laminate composites, and bending modes, mainly in the case of
asymmetrical laminate composites. As in the extensional case, for a traction-free
long-bar shaped PE the n first bending resonant modes should be observed at
fbn ¼ b2nt=2p‘

2 ffiffiffiffiffiffiffiffiffiffiffiffiffi
12qs11

p
(with b1 � 4:730; b2 � 7:853; b3 � 10:996; b4 � 14:137;

etc.) [90], where t is the thickness of the PE. The fundamental bending modes are
typically observed in the range from 40–80 kHz in PE plates with lengths of
approximately 1 cm and thicknesses of about 1 mm. Under bending EMR condi-
tions, ME voltage coefficients as large as 737 V/(cm·Oe) have thus been detected at
low frequencies in ME thin film layered composites [94] and up to 16 kV/(cm·Oe)
in specially designed ME ferromagnetic-elastic-PE cantilever structured composites
[95–97].

The FMR phenomenon involves the resonant absorption of a microwave by the
ferromagnetic component of the composite when subjected to some magnetic bias
field. An electric field (Ej) applied to the composite thus straining the ferromagnetic

Fig. 6.1 a Representation of a tri-layered ME composite operating in the transversal L-T mode
(i.e. longitudinal or in-plane magnetization, M, of the MS layers and transversal or out-of-plane
polarization, P, of the PE layer). b Euler angles scheme used in the rotation of the crystallographic
frame of a single crystal to the laminate frame of figure a [111]
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phase may consequently shift this resonant magnetic field [88, 98]. A very large
ME coupling has additionally been predicted for a superposition of EMR and FMR,
in which case it is called magnetoacoustic resonance (MAR) [88]. In general, one
expects to observe EMR for frequencies of the order of 100 kHz, FMR of the order
of 10 GHz and antiferromagnetic resonances of the order of 100 GHz [6, 7, 12, 26].
The latter two make the ME laminates very promising from the point of view of
microwave devices.

6.2 Theory of the Magnetoelectric Effect

6.2.1 Piezoelectricity and Magnetostriction

The phenomena of piezoelectricity and magnetostriction can be mathematically
described by a model derived from thermodynamics, electrodynamics and contin-
uum mechanics. The set of equations obtained including Maxwell’s equations,
conservation of linear momentum, angular momentum, energy and mass (in the
non-relativistic approximation) thus depend on the choice of the thermodynamic
potential. Starting with a PE system and considering isothermal and adiabatic
conditions and ignoring higher-order effects, the system’s Gibbs free energy may be
described by [54, 99–101]:

G E;Tð Þ ¼ � 1
2
psEijkl

pTij
pTkl � dkij

pEk
pTij �

1
2
ðeTkl � e0dklÞpEk

pEl; ð6:6Þ

where the Einstein summation convention is used. Here, psEijkl is an element of the
elastic compliance tensor (a rank-4 tensor), dkij the PE strain coefficient (a rank-3
tensor), eTkl the dielectric permittivity (a rank-2 tensor), pTij the elastic stress (a
rank-2 tensor), and pEk the electric field (a vector). The superscripts E and T in the
material constants indicate that those are defined under the conditions of a constant
electric field or stress, respectively. Throughout the rest of this chapter, the sub-
scripts i; j; k and l will range over the integers 1, 2 and 3, whereas the subscripts
a; b; c and d over just 1 and 2. The superscript p on the constants and variables is
meant to remind us that we are dealing with a PE medium. Through the partial
differentiation of the G potential, the linear constitutive equations of piezoelectricity
are obtained as [54, 99–101]:

pDk ¼ e0
pEk � @G

@pEk
¼ eTkl

pEl þ dkij
pTij; ð6:7Þ

pSij ¼ � @G
@pTij

¼ psEijkl
pTkl þ dkij

pEk; ð6:8Þ
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where pDk is the electric displacement (a vector) and pSij is the elastic strain (a
rank-2 tensor).

All of the tensor parameters for a given property of the material mentioned so far
are mathematical objects that change with the coordinate system in a predictable
way and obey certain symmetry relations, which considerably reduces the number
of their independent components. Those symmetry relations have three basic
sources [102]: the symmetry of the partial differential equation (PDE) that defines
the property, the symmetry of the tensor variables which determine the property,
and the symmetry of the material that exhibits the property (i.e., its point group).
The first kind of symmetry limits the number of independent elements of the tensor
properties which are defined by repeated differentiation. An example of this is the
PE coefficient, where dkij ¼ dEkij ¼ @Dk=@Tij

� �
E¼ �@2G=@Tij@Ek ¼ �@2G=

@Ek@Tij ¼ @Sij=@Ek
� �

T¼ dTkij, the dielectric permittivity eTkl ¼ @Dk=@Elð ÞT¼
e0dlk � @2G=@El@Ek ¼ e0dkl � @2G=@Ek@El ¼ @Dl=@Ekð ÞT¼ eTlk, and the compli-
ance sEijkl ¼ @Sij=@Tkl

� �
E¼ �@2G=@Tij@Tkl ¼ �@2G=@Tkl@Tij ¼ sEklij. The theory of

linear elasticity yields Sij ¼ ð1=2Þð@ui=@xj þ @uj=@xiÞ, where ui are the displace-
ment vectors along the xi Cartesian directions, so that Sij ¼ Sji, thus reducing the
number of independent variables to 6. Furthermore, the conservation of angular
momentum also implies that Tij ¼ Tji. Consequently, taking into account this
symmetry of the tensor variables that determine the properties dkij ¼ @Dk=@Tij

� �
E

and sEijkl ¼ @Sij=@Tkl
� �

E, one further identifies the following symmetry relations:
dkij ¼ dkji and sEijkl ¼ sEjikl ¼ sEijlk ¼ sEjilk. In summary, it follows from these two
sources of intrinsic symmetry that the dielectric permittivity has a maximum of 6
independent constants, whereas the dielectric coefficient and compliance have a
maximum of 18 and 21, respectively. To simplify the manipulation of these
expressions, a special notation known as Voigt’s notation is commonly used in
literature. Here, the eT , d and sE tensors are represented as 3 × 3, 3 × 6 and 6 × 6
matrices, where the ij subscripts are reduced to a single subscript (m or n) using the
substitutions ij ¼ 11 ! 1, ij ¼ 22 ! 2, ij ¼ 33 ! 3, ij ¼ 23; 32 ! 4,
ij ¼ 13; 31 ! 5, ij ¼ 12; 21 ! 6. Other rules of conversion into this matrix nota-
tion, which must be taken into account, are [54, 103]: Sm ¼ Sij, when m ¼ 1; 2 or 3;
Sm ¼ 2Sij, when m ¼ 4; 5 or 6; sEmn ¼ sEijkl, when both m and n are = 1, 2 or 3;

sEmn ¼ 2sEijkl, when m or n are = 4, 5 or 6; sEmn ¼ 4sEijkl, when both m and n are = 4, 5
or 6; dkm ¼ dkij, when m ¼ 1; 2 or 3; and dkm ¼ 2dkij, when m = 4, 5 or 6. The
values of these coefficients are frequently presented in literature in this notation.
Taking all these symmetry considerations into account, the constitutive equations
(6.7) and (6.8) can be written in the general matrix form [54, 99]:

Sm
Di

� �
¼

psEmn dtmj
din eTij

� �
Tn
Ej

� �
ð6:9Þ
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where the superscript t indicates the transpose of the d Voigt matrix. Finally, it has
to be noted that the symmetry of the material is also an important source of
additional constrains on its tensor properties. From the symmetry of a system we
know that there are a set of symmetry operations which will not change the material
in any observable way, so that the material properties will be invariant under such
operations. These operations are the ones that define the point group of the system.
Thus, one sees that the material properties are in part governed by the point group
symmetry of the material. More precisely, the Neumann principle states that [104]
The symmetry elements of any physical property of a crystal must include all the
symmetry elements of the point group of the crystal. In other words, the components
of a tensor representing a property must remain invariant under any transformation
of coordinates governed by a symmetry operation valid for the point group of the
crystal. This also implies that a given physical property may only possess a higher
or equal symmetry than that of the crystal. Therefore, a physical property must have
a symmetry at least as high as one of the 32 conventional point groups or one of the
122 magnetic points groups to which the crystal belongs. Taking, e.g., the PE
LiNbO3 crystal corresponding to the point group 3m, it is possible to show that it
will be associated with at most 2 independent dielectric constants (eT11 and e

T
33), 4 PE

constants (d31, d33, d22 and d15) and 6 compliance constants (sE11, s
E
12, s

E
13, s

E
14, s

E
33

and sE44) [57]. A listing of all the 32 point groups and associated tensor properties
can be found, e.g., in [104–106].

Most of the discussion mentioned above for PE materials can also be applied to
piezomagnetic materials. The difference resides in the fact that, because magnetic
fields are pseudovectors generated by currents and change sign under time inver-
sion, magnetic properties will necessarily have more complex symmetries [102]. In
fact, there is a whole set of additional point group symmetries for the magnetic
properties as a consequence of current reversal. Therefore, while the simplest
magnetic properties, such as the magnetic permeability and susceptibility, have the
forms that are required by the basic crystallographic point group of the material,
more complex properties, such as the ferromagnetic moment and the MS coeffi-
cients, do not. Those will instead have the form required by one of the 122 magnetic
point groups. Assuming the same conditions as in the case of the PE material, the
elastic Gibbs function for the MS material can also be derived. From it, the linear
piezomagnetic constitutive relations follow [43, 107]:

mBk ¼ l0
mHk � @G

@mHk
¼ mB0k H0ð Þþ lTklðH0ÞmHl þ qkijðH0ÞmTij ð6:10Þ

mSij ¼ � @G
@mTij

¼ mS0ij H0ð Þþ msEijkl
mTkl þ qkijðH0ÞmHk; ð6:11Þ

where mBk is the magnetic induction (a vector) and mHk the magnetic field strength
(a vector). Also, mB0k H0ð Þ ¼ mBk H0ð Þ � lTkl H0ð ÞmH0l and mS0ij H0ð Þ ¼ kij H0ð Þ �
qkij H0ð ÞmH0k where lTklðH0Þ is the magnetic permittivity (a rank-2 tensor), qkijðH0Þ
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the piezomagnetic coefficient (a rank-3 tensor), mBk H0ð Þ the magnetic induction
and kij H0ð Þ the magnetostriction all measured at a bias H0 magnetic field. The
superscript m indicates the MS nature of the material to which (6.10) and (6.11)
apply. It should be noted that, when obtaining these equations, the
pseudo-piezomagnetic approximation was taken. This is because magnetostriction
is approximately a quadratic effect (mSij ¼ bijklMkMl, where b is the 6 × 6 mag-
netoelastic tensor), whereas piezomagnetism is a linear effect (mSij ¼ qkijHk).
However, for small variations of the applied H field close to a bias field H0, the
slope @Smij =@HkðHÞ of the magnetostriction curve is approximately constant in a
small interval around H0. Therefore the Taylor expansion of the magnetostriction
curve around H0 may be truncated to first order as follows: mSijðT ¼ 0;HÞ ¼
kij Hð Þ ¼ kij H0ð Þþ @kij=@HkðH0Þ � ðHk � Hk0Þþ ð1=2Þ@2kij=@Hk@HlðH0Þ � ðHk �
Hk0ÞðHl �Hl0Þþ � � � � kij H0ð Þþ @kij=@HkðH0Þ � ðHk � Hk0Þ, and thus the mag-
netostriction can be approximated in this region as a piezomagnetic effect with
qkijðH0Þ ¼ @kij=@HkðH0Þ [28, 108]. In practical applications, the magnetostriction
is often used in this linear piezomagnetic regime with small applied AC magnetic
fields. Similarly, a pseudo-paramagnetic approximation, where
lTklðH0Þ ¼ @Bk=@HlðH0Þ, is also assumed for the ferromagnetic material. Having
taken this into consideration, one can therefore assume the validity of (6.10) and
(6.11). Before advancing any further, one has to note that the assumption that the
material coefficients in the constitutive equations are constants dependent only on
the spatial coordinates and magnetic fields produces a very idealized model. In a
more accurate description these coefficients should be complex functions of space,
material fields, frequency, time and temperature thus taking into account the
non-linearities, dispersion, losses, current state (e.g. remanent
polarization/magnetization of the PE/MS phase, aging effects, etc.) and temperature
dependence of the material’s properties. A listing of all the linear dielectric, PE and
elastic constants of the different piezoelectrics, measured under standard ambient
conditions, can generally be easily found in literature.

6.2.2 Presentation of the Averaging Quasi-Static Method

In this Section we are going to estimate the maximum expected magnitude of the
ME voltage coefficient for a series of tri-layered geometries of the type
Metglas/PE/Metglas, where different single crystals are employed as the PE phase.
To do this, a standard averaging low-frequency model (i.e., in the quasi-static
regime), based on the constitutive equations, will be used. Being quasi-static it will
naturally neglect high frequency effects such as electromechanical resonances,
material dispersion and losses as well as eddy currents generated in the conductive
phases.

The simultaneous resolution of the constitutive equations (6.7)–(6.8) and (6.10)–
(6.11), taking into account the boundary conditions for the material interfaces,
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allows one to obtain the ME voltage coefficient of the composite depending on its
composition, microstructure, operating mode, etc. Currently, a number of analytical
and numerical techniques are known which may be employed in solving these
equations. In general, they allow estimations in terms of mean fields and are based
on the formalism of Green’s function [39] (multiple-scattering approach in the
many-body theory) or on micromechanical methods [109]. More sophisticated
models may include the quadratic effect of magnetostriction [110] and pyroelectric
or pyromagnetic phenomena [109] in the constitutive equations.

In the quasi-static model, a square shaped tri-layered structure like the one shown
in Fig. 6.1a is considered. Its constitutive elastostatic and electrostatic equations are
solved assuming that all of the material fields are averaged constants in each layer up
to the leading order. This limits the model to the study of purely extensional
deformations thus excluding any kind of bending deformations which, however, are
only significant for the case of asymmetrical composites such as bilayers. As we see,
this composite is designed to operate in its L-T mode, i.e., with a magnetic field
(dHjðtÞ) applied along its longitudinal length direction (L) and with the voltage
(dV3ðtÞ) measured across its transversal thickness direction (T). This L-T mode is
generally associated with larger ME coefficients than the transversally magnetized
and transversally poled (T-T) mode mainly because of the absence of the demag-
netization effect (for thin enough layers) and also because the piezomagnetic coef-
ficients tend to be larger for parallel magnetic and strain fields (qii), so that the
in-plane strain component, which is transmitted to the PE phase, will be larger.

To set the boundary conditions, we start by assuming that there is no external
traction applied to the system. Thus, the average tractions on the top and bottom
surfaces of both phases (mT3i), as well as the average tractions on the lateral surfaces
(pTabpmþ mTabmm), are null. These two relations are expressed as [43, 107]:

mT3i ¼ pT3i ¼ 0; ð6:12Þ
pTab

pmþ mTab
mm ¼ 0; ð6:13Þ

where pm and mm are the volume fractions of the PE and MS phases, respectively.
Taking into account that all layers have a square shaped surface with the same area
(A), these fractions are given by pm ¼ pt=ðptþ 2mtÞ and mm ¼ 2mt=ðptþ 2mtÞ, where
pt is the thickness of the PE crystal and mt is the thickness of each one of the two
magnetic layers. The continuity conditions at the interfaces between layers guar-
antee that mT3i ¼ pT3i. Furthermore, a parameter known as the coupling coefficient,
kc ¼ pSab � pS0ab

� �
= mSab � pS0ab
� �

, is introduced [42]. This parameter describes
the coupling quality at the interface between the PE and MS materials. In the
expression of kc, pS0ab indicates the component of the strain tensor in the PE phase
that appears when the friction between layers is null (i.e. pTab ¼ 0, so that pS0ab ¼
dkabpEk by (6.8)), and pSab and mSab are the strains in the PE and MS phases,
respectively. The coupling parameter consequently defines the ratio between the
induced strains in the PE and MS layers. For an ideal interface we then have kc = 1,
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whereas for an interface without any friction between layers (i.e. without
mechanical coupling between them) we get kc = 0. The boundary conditions for the
strain components on the lateral surfaces of the composite are therefore [72]:

pSab ¼ kc
mSab þð1� kcÞpSa0 : ð6:14Þ

It is further assumed that the interface is perfectly electromechanically bound.
Consequently, the in-plane electric and magnetic fields will be continuous along the
composite, the change in the normal displacement fields across the interfaces will
be equal to the surface charge density (r) and the normal magnetic induction will be
continuous [43, 107]:

pE1 ¼ mE1;
pE2 ¼ mE2;

pD3 � mD3 ¼ r; ð6:15Þ
pH1 ¼ mH1;

pH2 ¼ mH2;
pB3 ¼ mB3 : ð6:16Þ

We now seek to find the expression for the direct ME voltage coefficient given
by aEij ¼ @pEi=@

mHj, or the electric field induced in the PE when the MS layers are
subjected to an external magnetic field. By substitution of the constitutive equations
(6.8) and (6.11) into (6.14) we get:

psEabkl
pTkl þ kcdkm

pEk ¼ kc
msEabkl

mTkl þ kcðmS0ab H0ð Þþ qkab H0ð ÞmHkÞ ð6:17Þ

Now adding the stress boundary conditions (6.12) and (6.13) to this expression
and converting its parameters to the Voigt notation yields:

smn
pTn þ kcdkm

pEk ¼ kcðmS0m H0ð Þþ qkm H0ð ÞmHkÞ; form; n ¼ 1; 2 and 6; ð6:18Þ

where smn ¼ psEmn þ kcf msEmn is an effective compliance and f is the ratio between
the volume fractions of the PE and MS phases (pm=mm). The rank-three square smn
matrix in this expression can thus be inverted in order to write the PE stress pTn
explicitly as a function of the electric and magnetic fields. Subsequently, substi-
tuting this stress in the PE constitutive equation (6.7) and taking into account the
elastic boundary conditions (6.12) we arrive at (in Voigt’s notation):

pDk ¼ ðeTkl � kcdkms
�1
mndlnÞpEl þ kcdkms

�1
mnðmS0n H0ð Þþ qjn H0ð ÞmHjÞ; form; n

¼ 1; 2 and 6;

ð6:19Þ

where s�1
mn is the inverse of the smn effective compliance matrix. Taking now into

account that the magnetic layers consist of the electrically conductive Metglas
alloy, the electric and displacement fields (mDi ¼ e0mEi) in this layer should be
approximately null and its top and bottom surfaces equipotential. Therefore one has
[43, 107]:
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mE1 ¼ mE2 ¼ mD3 ¼ 0 ð6:20Þ

By a substitution of the above relations in (6.15) one gets the additional
conditions:

pE1 ¼ pE2 ¼ 0; pD3 ¼ r : ð6:21Þ

Replacing this conditions in (6.19) one can finally write the pD3 component of
the dielectric displacement as a function of the pE3 electric field and the magnetic
fields in the MS layer:

pD3 ¼ ðeT33 � kcd3ms
�1
mnd3nÞpE3 þ kcd3ms

�1
mnðmS0n H0ð Þþ qjn H0ð ÞmHjÞ; form; n

¼ 1; 2 and 6:

ð6:22Þ

Supposing a magnetic field mHk is applied to the composite along one of the
three possible directions k ¼ 1; 2 or 3, one can therefore rearrange the expression
above in order to obtain the variable pE3 explicitly as a linear function of this field
as well as the pD3 field. Starting by considering an open circuit situation
(I ¼ R

Area

p _D3dA ¼ 0; where I is the current in the Z direction), in which pD3 equals

an initial constant surface charge r, as shown in (6.16), which we assume to be null
(pD3 ¼ 0), and differentiating pE3 with respect to mHk, one finally arrives at the
desired direct ME voltage coefficient. From this it follows that for H ! H0 the
general ME voltage coefficient can be written as a function of this field by the
compact expression:

aE3kðHÞ ¼ @pE3

@mHk
ðHÞ ¼ �kcd3ms�1

mnqknðHÞ
eT33 � kcd3ms�1

mnd3n
: ð6:23Þ

In the special case of a uniaxial PE (such as PZT ceramic with 1m symmetry)
which has only 2, 3 and 5 independent dielectric, PE and elastic constants,
respectively, and a MS material, such as Metglas, with a normal orientation (1m
symmetry), this yields the result [36, 43]:

ðHÞ ¼ @pE3

@mHk
ðHÞ ¼ �kcd31ðqk1 Hð Þþ qk1 Hð ÞÞ

eT33 ðpsE11 þ psE12Þþ kcf ðmsE11 þ msE12Þ
	 
� 2kcd231

; ð6:24Þ

which shows the tendency of the direct ME effect to be larger in composites
containing PE phases with a large transverse piezocoefficient (d31), small
out-of-plane dielectric permittivity (eT33) and small longitudinal and transverse
compliance or flexibility (psE11 þ psE12). Additionally, the MS phase should have
large longitudinal and transverse piezomagnetic coefficients (qk1ðHÞþ qk2ðHÞ) and
small compliances (msE11 þ msE12). The curves of this ME coefficient as a function of
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the external magnetic field are known to follow those of the piezomagnetic coef-
ficients [108]. The ME coefficient is thus proportional to the first derivative of the
magnetostriction curve, increasing with the H field up to a given point, where the
derivative of the magnetostriction is maximum, and decreasing progressively to
zero afterwards, because the strain of the magnetic phase eventually saturates.
Consequently, the piezomagnetic coefficients presented in literature often corre-
spond to their maximum values for a given magnetic field, and the ME coefficients
estimated by solving (6.23) will then correspond to the maximal expected coeffi-
cients for this field. Expression (6.24) additionally shows that, in order to maximize
the ME effect, it is extremely important to obtain a good mechanical coupling
between phases (i.e. a large kc), thus guarantying an efficient transference of strain
between them. Also, the thickness ratio between the PE and the MS layers should
be as small as possible (i.e. small f ), thus maximizing the in-plane tensile stress pTn
applied to the PE phase by the MS phase in the direction of the applied magnetic
field, as seen by (6.18), while at the same time nullifying the compressive stress mTn
felt by the MS phase, as seen by (6.13). However, since the voltage measured in any
real detection circuit associated with some input noise is proportional to the
thickness of the PE layer, the maximal signal-to-noise ratio should be observed for a
finite PE thickness. On the other hand, minimizing f by infinitely increasing the
thickness of the MS layers would lead to unpractically large samples, so that some
compromise has to achieved for any given application.

The model shown in this part also permits the estimation of the quasi-static
charge ME coefficient through a simple change in the electrical boundary condi-
tions. For this case we consider a short-circuited composite (V ¼ � R

pt
pE3dZ ¼ 0,

where V is the voltage developed across the PE) in such a way that we have
pE3 ¼ 0 instead of pD3 ¼ 0 in (6.21). Subsequently (6.22) is differentiated in
relation to mHk thus yielding:

aQ3kðHÞ ¼ @pD3

@mHk
ðHÞ ¼ kcd3ms

�1
mnqkn Hð Þ: ð6:25Þ

Comparing the general (6.23) and (6.25), one notes that both the charge and
voltage coefficients can be directly related by the expression
aQ3k Hð Þ ¼ �ðeT33 � kcd3ms�1

mnd3nÞaE3k Hð Þ, where C ¼ eT33 � kcd3ms�1
mnd3n

� �
A=pt

represents the low frequency capacitance of the composite as it will be shown later.
This capacitance tends therefore to decrease with increasing kc (better coupling
between layers) and decreasing f (thicker MS layers). For the case of uniaxial PE
and MS materials, expression (6.25) is simplified to:

aQ3kðHÞ ¼ @pD3

@mHk
ðHÞ ¼ kcd31ðqk1 Hð Þþ qk2 Hð ÞÞ

ðpsE11 þ psE12Þþ kcf ðmsE11 þ msE12Þ
ð6:26Þ

which shows that, when compared to the aE3k coefficient in (6.24), the charge
coefficient is generally associated with a change of sign and no longer depends on
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the dielectric permittivity eT33 of the PE. For the rest, all of the observations made
before remain valid.

As mentioned before, up to this point the demagnetization effects on the MS
layers have been neglected. For the special case of uniformly magnetized ellipsoids
(with magnetization Mj) subjected to an uniform external magnetic field H

0
k , the

uniform field developed inside the material Hk can be given by Hk ¼ H
0
k � NkjMj,

where Nkj is a demagnetization factor which depends on the shape of the ellipsoid
[112]. In the case of an infinite plane with a normal pointing in the Z direction this
demagnetization factor is given by N33 ¼ 1 and Nkj ¼ 0 otherwise [112]. Therefore,
for thin enough MS layers the demagnetization fields can be neglected for H

0
k

applied in the X or Y directions (i.e. H
0
k ¼ Hk). However, in the case of thick MS

phases, such that Naa 6¼ 0, or the ME longitudinal effect where H3 6¼ 0, this effect
can become quite substantial. The ME coefficients given by (6.23)–(6.26) can be
corrected to take into account this effect. To do this, one starts by writing the
external magnetic field H

0
k as a function of the internal magnetic field Hk . Taking

the demagnetization equation for some Nkj and making the substitution
mMj ¼ mBj=l0 � mHj, one obtains mH

0
k as a function of mHj and the magnetic

induction mBj given by (6.10). Subsequently, through a series of substitutions
involving (6.12), (6.13) and (6.18) one arrives at the final result:

mH
0
k ¼ H0k H0ð Þþ lkl H0ð ÞmHl þ aQk3 H0ð ÞpE3; ð6:27Þ

where H0k H0ð Þ ¼ ðNkj=l0ÞðmB0j H0ð Þ � kcfqjm H0ð Þs�1
mn

mS0n H0ð ÞÞ, aQk3 H0ð Þ ¼
ðNkj=l0Þkcfqjm Hð Þs�1

mnd3n, lkl H0ð Þ ¼ dkl � Nkl þ lkl H0ð Þ � kcfqkm H0ð Þs�1
mnqln H0ð Þ

and pE3 is related to mHj and pD3 through (6.22). The corrected ME voltage
coefficients written as a function of the known external magnetic fields H

0 ! H
0
0

can therefore be given as a
0
E3k H

0� � ¼ @pE3=@
mH

0
k H

0� � ¼ @pE3=@
mHj HðH 0 Þ� ��

@mHj=@
mH

0
k H

0� �
, which reduces to:

a
0
E3k H

0
� �

¼ aE3jðHðH 0 ÞÞ ljl
�1 HðH0 Þ
� �

dlk � aQl3 HðH 0 Þ
� �

aE3k HðH0 Þ
� �h ih i

ð6:28Þ

where ljl
�1 HðH 0 Þ� �

is the inverse of the lkl H0ð Þ function, aE3jðHðH 0 ÞÞ is given by

(6.23) and HðH0 Þ is determined by solving the implicit expression (6.27). In
summary, the maximum ME effects of composites subjected to demagnetization
effects tend to be smaller and appear at larger applied magnetic fields [6].

The aforementioned ME coefficients were defined for ideal open-circuit or
short-circuit conditions. However, in experimentation the ME composites are
operated under non-ideal conditions in which case the parameters of the external
measuring circuits have to be taken into account. Therefore it is useful to model the
composites as equivalent electrical circuits. In this regard, assuming harmonic fields
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of the type mHk ¼ mH0k þ dHkejxt, where mH0k is a bias field, dHk a complex
amplitude, j the imaginary unit, x the angular frequency and t the time, and dif-
ferentiating (6.22) with respect to time and integrating it over the volume of the
composite (i.e. R

pt

R
Area

p _D3dAdZ) we can derive the relation:

dV3 ¼ ð�aE3kðmH0kÞptÞdHk � ð1=jxCÞdI3; ð6:29Þ

where dV3 ¼ � R
pt
dpE3dZ is the AC voltage measured between the top and bottom

of the composite and dI3 ¼ jx
R
Area d

pD3dA is the AC current flowing through it in
the Z direction. This expression thus shows that the composite can be modeled as a
Thévenin equivalent circuit consisting of an equivalent voltage source of
dVThðHÞ ¼ ð�aE3kðmH0kÞptÞdHk connected in series with an equivalent impedance
given by ZTh ¼ 1=jxC which represents a capacitor with capacitance
C ¼ eT33 � kcd3ms�1

mnd3n
� �

A=pt. Equivalently, the composite can also be modeled as
a Norton equivalent circuit composed of a current source of dINoðHÞ ¼
ðjxaQ3k mH0k

� �
AÞdHk connected in parallel with the same impedance. More pre-

cisely, by taking into account the important effects of dielectric dispersion (eT33 xð Þ),
dielectric losses (eT

00
33 xð Þ) and conductivity (r) of the PE through the introduction of

the complex dielectric coefficient eT33 xð Þ ¼ eT
0

33 xð Þ � jeT
00

33 xð Þþ r=jx ¼
eT

0
33 xð Þ � jeT

0
33 xð ÞtanðdÞ, where xeT 0

33 xð ÞtanðdÞ is the so called dissipation factor, the
equivalent impedance of the composite can be given by ZTh ¼ 1=ð1=R0 þ jxC0Þ
which corresponds to a capacitor with C0 ¼ eT

0

33ðxÞ � kcd3ms�1
mnd3n

� �
A=pt con-

nected in parallel with a resistor with R0 ¼ pt=AxeT
0

33 xð ÞtanðdÞ. In conclusion, when
measuring for example the ME voltage coefficient, the finite input impedance of the
measuring circuit should always be taken into account. Assuming e.g. an input
impedance of Zin ¼ 1=ð1=Rin þ jxCinÞ as in the case of a lock-in amplifier, the
measured voltage in such a device as a function of the magnetic fields will be given
by dVin ¼ ðZin=ðZTh þ ZinÞÞdVThðHÞ. Thus, the circuit will generally behave as a
high-pass filter with a small input amplitude dVinj j ¼ ðRin=ðR0 þRinÞÞ dVThðHÞj j
being measured at zero frequency (because R

0
usually takes a much larger value

than Rin in a lock-in amplifier) and a larger input amplitude dVinj j ¼
ðC0=ðC0 þCinÞÞ dVThðHÞj j measured at large frequencies (because Cin is normally
much smaller than C

0
). Another important application of this circuit model is in the

development of sensitive low-noise magnetic field sensors based on the ME effect
[47, 49].

ME composites comprising PE single crystals have been the subject of a few
recent studies including PMN-PT [48, 113–115], PZN-PT [116], barium titanate
(BaTiO3) [117], lithium niobate (LiNbO3) [113, 118], gallium phosphate (GaPO4)
[119], quartz (SiO2) [120], aluminum nitride (AlN) [94], zinc oxide (ZnO) [121],
langatate (La3Ga5.5Ta0.5O14, LGT) [122, 123] and langasite (La3Ga5.5SiO14, LGS)
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[123]. These have promised further enhancement of the ME coupling. Since single
crystals are highly anisotropic, their electric and elastic properties sensitively
depend on their crystallographic orientation. Therefore, the optimization of the
orientation could lead to greatly enhanced ME coefficients in composites. To study
this dependency of the ME coupling on the crystal orientation, we have to subject
the material tensors to a passive transformation of coordinates. Equations (6.6)–
(6.29) contain the material coefficients and fields defined in the laminate XYZ frame
of Fig. 6.1a. However, the material properties are usually described in the crys-
tallographic xyz frame, and that is why we have to transform them to the laminate
frame before applying the equations. To do so, the rotation matrix aij is introduced,
where the Euler angles Z1X2Z3 scheme (see Fig. 6.1b) is employed [111]:

a ¼
cos cð Þ cos að Þ � cos bð Þ sin að ÞsinðcÞ cos cð Þ sin að Þþ cos bð Þ cos að ÞsinðcÞ sinðcÞ sin bð Þ
� sin cð Þ cos að Þ � cos bð Þ sin að ÞcosðcÞ � sin cð Þ sin að Þþ cos bð Þ cos að ÞcosðcÞ cosðcÞ sin bð Þ

sinðbÞ sin að Þ �sinðbÞ cos að Þ cos bð Þ

2
4

3
5

ð6:30Þ

This matrix describes a sequence of three elemental rotations, the first about the Z
axis by an angle a, the second about the X axis by an angle b, and the third again
about the Z axis by an angle c. In this case, after applying the rotation matrix to the
crystal, the angles a and b will identify the vector normal to the plane of the lam-
inate, and the angle c will determine the orientation of the side faces of the laminate
in this plane (and consequently the direction of the applied in-plane magnetic
fields). Upon changing the frame of reference, the material parameters follow the
specific tensor transformation rules which also define the second-, third- and
fourth-rank tensors [104]:

eij ¼ aimajne
0
mn; dijk ¼ aimajnakod

0
mno; sijkl ¼ aimajnakoalps

0
mnop ð6:31Þ

where the constants with an apostrophe denote the material properties in the initial
crystallographic frame, and those without apostrophe—the properties in the new
frame of reference described by the transformation a.

6.2.3 Estimation of the Quasi-Static Transversal
ME Voltage Coefficients in Magnetostrictive/
Piezocrystalline/Magnetostrictive Tri-Layers

We are now in possession of all the tools we need in order to estimate and optimize
the transversal ME response (aE3i, with i ¼ 1 or 2) in a series of tri-layered com-
posites containing two layers of Metglas bonded to a PE single crystal of some sort.
To do so, we create a fine grid of Euler angles in steps of 1° and subsequently
analyze the estimations for these angles. The composites we investigated had the
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shape of a square plate like the one shown in Fig. 6.1a, where we considered
10 × 10 mm2 sheets of Metglas with 29 μm of thickness bonded to opposite sides of
a 10 × 10 mm2 PE crystal with a thickness of 0.5 mm. A perfect coupling between
interfaces was assumed (kc ¼ 1). In a traction-free Metglas layer a maximum q11
value of ca. 4 ppm/Oe and q12 of ca. –1.7 ppm/Oe are attained at a bias field of ca.
10 Oe [124–127]. These were therefore taken as our piezomagnetic coefficients. All
of the dielectric, piezoelectric, piezomagnetic (for Metglas [124–127]) and elastic
material parameters needed for these calculations where obtained from the litera-
ture. The lead-free piezoelectrics studied here thus have included: LiNbO3 [57,
128], α-GaPO4 [58, 59], α-quartz [129, 130], langatate [131, 132], langasite [133,
134], AlN [135, 136], LiTaO3 [137–139] and BaTiO3 [55, 56], and also the
lead-based ones, viz., PZT-2 [140], PMN-33 %PT ([111] poled) [141], PMN-30 %
PT ([011] poled) [62], PMN-33 %PT ([001] poled) [142], PZN-9 %PT ([011]
poled) [143] and PZN-8 %PT ([001] poled) [144].

The results obtained by solving (6.23) are summarized in Table 6.3 which shows
the maximum expected direct ME coefficients for each composite and respective
optimal crystallographic orientations of the PE phase. From these estimations we
confirmed the possibility of generating large quasi-static ME effects in ME com-
posites comprising lead-free PE single crystals. Here, coefficients as large as
35.6 V/(cm·Oe) are expected. These ME effects are particularly attractive for the
tri-layers comprising LiNbO3, GaPO4, quartz, PMN–33 %PT ([111] poled) and
PZN–9 %PT ([011] poled) originating from a particularly good combination of
relatively large PE coefficients and low dielectric constants. Also, because the
maximum expected ME effects are of the same order of magnitude in both
lead-based and lead-free PEs, such exclusive features as chemical stability, linear
piezoelectricity and high Curie temperature (in the range of 570–1475 °C) open up
a real perspective to use these lead-free PE-based magnetoelectric tri-layers in
practical applications.

The selection of crystals with an appropriate cut is a very important step in the
development of ME composites. The engineering of these cuts should in principle
allow one to develop materials with specific anisotropic properties desired for each type
of practical application. Large ME effects are particularly important in applications
requiring enhanced efficiencies and sensitivities. Figure 6.2 thus shows the maximum
absolute transversal ME coefficients (in the range of all spanned c angles) estimated as
a function of the a and b angles for all considered tri-layers. In the figures we notice
the great sensitivity of the ME effect to the orientation of the piezocrystal. The
shape of the figures depends on the point group symmetry of the PE mainly through
the term g31 � g32j j which indicates the difference between PE voltage coefficients
(gij ¼ �@Ei=@Tj ¼ e�1

ik dkj) for stresses directed along both lateral surfaces of the
crystal, since the elastic term varies much less with the orientation of the crystal.

We note at this point that, alongside the dispersion and losses of the material’s
properties not taken into account, a much more important limitation of the model is
the fact that the piezomagnetic coefficients of Metglas are also strongly dependent
on the bias magnetic fields and stress tensors. A more complex model for the soft
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Fig. 6.2 Contour plots and |αE3i| representation surfaces depicting the maximum estimated absolute
values of the transversal ME voltage coefficient αE3i (across 0 < γ < 180°) as a function of the crystal
orientation (a and b angles) for the tri-layered ME composites of Metglas/PE/Metglas, where the
PE phase is a single crystal of: a LiNbO3; b LiTaO3; c BaTiO3; d AlN; e α-quartz; f α-GaPO4;
g langatate; h langasite; i PZT-2; j PMN-33 %PT ([111] poled); k PMN-30 %PT ([011] poled);
l PMN-33 %PT ([001] poled); m PZN-9 %PT ([011] poled) and n PZN-8 %PT ([001] poled)
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Fig. 6.2 (continued)
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Fig. 6.2 (continued)
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MS phase shows for example that the large compressive pre-stress produced by the
PE substrate in the MS sheets tends to decrease the maximum value of qkn and at
the same time increase the bias field at which it is attained [145]. Therefore, the
maximum ME coefficients predicted in this part should be somewhat overestimated.
Nonetheless, the relation between ME coefficients obtained for the composites with
different PE crystals still remains valid. Furthermore, we point out that the thickness
ratio between the MS and PE layers in the composites was not optimized for a
maximum ME response. Thicker MS layers are expected to produce a larger
effective strain on the PE crystal and thus increase the amplitude of the ME effect by
up to one order of magnitude. In this calculations, 29 μm thick layers of Metglas
were used because, in practice, some peculiarities associated with the fabrication of
these alloys (i.e. a melt spinning rapid solidification process) restricts their thickness
to just a few of tens of μm. Also, commercial PE crystals are generally found with
thicknesses no smaller than 0.2 mm.

In the next paragraphs we are going to discuss the results of the calculations in
greater detail. Starting with the case of the LiNbO3 crystal, which belongs to the
trigonal 3m symmetry point group, we see that the estimated ME coefficient could

Fig. 6.2 (continued)
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be as large as 27.24 V/(cm·Oe) for a crystal with a (ZXl) 39°-cut (a ¼ 0�; b ¼ 39�

and c ¼ 90�), commercially commonly referred to as 129ºY-cut, and five other cuts
equivalent by symmetry. We also see that this effect stays within 90 % of its
maximum value for cut deviations, in relation to its optimal orientation, of
approximately Da ¼ �20� and Db ¼ �10�. LiTaO3 has the same symmetry as
LiNbO3, but we calculated in this case an expected coefficient of 11.40 V/(cm·Oe),
being about 3 times smaller than that in the former material. This is mainly because
of its characteristically smaller PE coefficients (especially its d15 and d22 compo-
nents), as well as comparable dielectric constants. The maximum effect should be
observed in a (ZXl) 45°-cut crystal (a ¼ 0�; b ¼ 45� and c ¼ 90�) and also other
five equivalent cuts. This coefficient decreases by less than 10 % for cut deviations
of about Da ¼ �25� and Db ¼ �10�: BaTiO3 single crystals belong to the
tetragonal 4mm point group and have much larger PE and dielectric coefficients
than LiNbO3. The largest expected ME coefficient here is just of 10.74 V/(cm·Oe)
and is only observed in the Z-cut crystal, decaying very rapidly as we move away
from this optimal orientation. AlN piezocrystals exhibit a hexagonal 6mm sym-
metry and relatively small dielectric and PE coefficients. The maximum coefficient
for a composite containing this phase was calculated as 13.06 V/(cm·Oe) for the
(ZXl) 60°-cut (0� � a\360�; b ¼ 60� and c ¼ 90�) and (ZXl) 120°-cut crystals. As
in BaTiO3, this effect is axially symmetric and stays within 90 % of its maximum
value for cut deviations of approximately Db ¼ �10�.

The α-quartz and α-GaPO4 PE crystals are another class of lead-free piezo-
electrics which, like LiNbO3, exhibit relatively large ratios between PE and
dielectric constants. They both belong to the trigonal 32 point group. The most
noticeable differences between them are related to the PE coefficients, which are
approximately twice as large for the case of GaPO4, as well as the dielectric
coefficients which are about 20 % larger in GaPO4 as compared to quartz. Even
though they have some of the smallest piezoconstants among the piezocrystals
studied in this chapter, their dielectric permittivities are also comparatively small,
which therefore gives rise to large PE/dielectric ratios and consequently opens the
possibility for large ME responses in the composites. Indeed, following the model
described above we calculated maximum ME coefficients of 35.62 and 23.77 V/
(cm·Oe) for the GaPO4 and quartz crystals, respectively. These values are quite
high and may be observed in (XYt) 12°-cut (a = 90°, b = 90° and c = 12°) crystals of
GaPO4 and in (XYt) 11°-cut (a = 90°, b = 90° and c = 11°) crystals of quartz, as well
as in other five cut directions equivalent by symmetry. We also note that these cuts
are quite near the X-cut direction. In this case, the ME coefficient decreases by less
than 10 % for cut deviations from the maximum direction of about Da = ±10° and
Db = ±25°.

Langatate and langasite are other two piezoelectrics belonging to the trigonal 32
point group. They are characterized by PE coefficients comparable to the ones of
GaPO4, but also exhibit considerably larger dielectric coefficients. Their maximum
expected ME coefficients where calculated as 16.68 V/(cm·Oe) for an (XYt) 24°-cut
crystal (a = 90°, b = 90° and c = 24°), in the case of langatate, and 16.59 V/(cm·Oe)
for an (XYt) 20°-cut crystal (a = 90°, b = 90° and c = 20°), in the case of langasite.
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Furthermore, the maximum ME effect is more sensitive to the cut angle in these two
crystals. We observe that the effect stays within 90 % of its maximum value for cut
deviations of just about Da = ±10° and Db = ±10°.

In the class of the lead-based piezoelectrics we start by looking at the PZT-2
uniaxial ceramic having an 1mm symmetry. As we know, its PE and dielectric
properties are quite distinguished. Still, the maximum direct ME coefficient of just
about 7.47 V/(cm·Oe) was calculated for the (ZXl) 37°-cut direction (0° ≤ a < 360°,
b = 37° and c = 90°) and another equivalent direction. Even though this compound
constitutes one of the piezoelectrics most commonly employed in practice, we note
that its maximum expected ME response is the smallest among all piezo-crystals
studied in this chapter. This fact underlines the importance of the dielectric prop-
erties of the materials employed in ME composites. Thus, we see that compounds
with merely large PE coefficients do not necessarily yield large direct ME effects.
We also observe that for this PZT-2 ceramic the maximum ME coefficient changes
little for cut angles in the range 0° ≤ b < 60° and 120° ≤ b < 180°. Therefore,
common commercially available Z-cut ceramics still could exhibit a maximum
5.41 V/(cm·Oe) ME response.

PMN-PT crystals are a family of lead-based macrosymmetric multidomain
engineered piezoelectrics. Here we studied the ME effect in composites featuring
the following compositions: [111] poled PMN-33 %PT, [011] poled PMN-30 %PT
and [001] poled PMN-33 %PT. The first compound has a trigonal 3m symmetry,
while the second and third have an orthorhombic mm2 and tetragonal 4mm
macrosymmetry, respectively. From a general point of view, the [011] poled crystal
exhibits the largest dielectric coefficients, followed by the [001] poled and the [111]
poled ones. The largest piezocoefficients in each crystal are d15 = 4100 pC/N,
d15 = 3262 pC/N and d33 = 2820 pC/N in the [111], [011] and [001] poled com-
pounds, respectively. In the calculations we identified a relatively large maximum
direct ME coefficient of 27.11 V/(cm·Oe) in the [111] poled and (ZXl) 42°-cut
PMN-PT crystal (a = 0°, b = 42° and c = 90°), and five other equivalent directions,
although this is just of 5.78 V/(cm·Oe) in the Z-cut crystal. The maximum coef-
ficient decays by more than 10 % of its highest value for angle deviations larger
than Da = ±10° and Db = ±10° from the optimal orientation. In the [011] poled
crystal, the largest expected value is of 12.50 V/(cm·Oe), and it is observed in the
Z-cut crystal. This coefficient changes only slightly for Db = ±10°. In the [001]
poled PMN-PT crystal the maximum is of 10.80 V/(cm·Oe) and should be attained
in the crystal with a (ZXtl) 45°/64° complex cut (a = 45°, b = 64° and c = 90°), and
seven other directions. The most common Z-cut could exhibit a ME response of up
to 6.29 V/(cm·Oe). By symmetry considerations, an almost maximized ME effect
could, nonetheless, be observed in the range of 60° ≤ b < 70° and 110° ≤
b < 120°, for any a angle.

Finally, we also studied PZN-PT piezocrystals with engineered domain struc-
tures. Those where the [011] poled PZN-9 %PT, with an orthorhombic mm2
macrosymmetry, and the [001] poled PZN-8 %PT, with a tetragonal 4mm
macrosymmetry. The first crystal has a large difference between transversal PE
coefficients d31 � d32j j = 2181 pC/N, which therefore explains its large calculated
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maximum direct ME coefficient of 23.04 V/(cm·Oe) in the Z-cut crystal. As in the
[011] poled PMN-PT, this coefficient changes only slightly for b = ±10°. In the
[001] poled PZN-8 %PT, the maximum effect was estimated as 8.30 V/(cm·Oe) for
the (ZXtl) 45°/38°-cut (a = 45°, b = 38° and c = 0°), and seven other directions. In
the Z-cut crystal, this decays just to 7.66 V/(cm·Oe). Mainly, the maximum coef-
ficient decreases by less than 10 % of its largest value for cut deviations of
approximately Da = ±10° and Db = ±10°.

In summary, using an averaging model based on the constitutive equations, we
have predicted the possibility of producing large ME responses in tri-layered
composites employing suitably cut PE crystals. Especially strong ME effects are
expected for single crystals of LiNbO3, α-GaPO4, α-quartz, [111] poled PMN-33 %
PT and [011] poled PZN-9 %PT. Even so, in practice the use of the first three in ME
composites still remains largely unexplored.

6.3 Conclusions

A theoretical model of the anisotropic quasi-static direct ME effect in tri-layered
composites of metglas and PE single crystals has been used in the quantitative
estimation of the ME coupling as a function of the crystallographic orientation (i.e.
PE cut plane). First, a description of the PE and linear MS (in the
pseudo-piezomagnetic approximation) effects in terms of electric, magnetic and
elastic material fields and constants has been given. An averaging quasi-static
method was subsequently used together with specific boundary conditions in order
to derivate the relation between the material constants and the transversal (T-L)
direct ME voltage (αE3a) and charge coefficients (αQ3a). The method consisted of the
solution of the elastostatic and electrostatic equations taking into account the linear
constitutive relations of the two phases. The properties of some common PE and
MS materials (the latter with emphasis on the metglas alloy exhibiting giant MS)
have been discussed, and their influence on the ME coupling has been explored. It
has been demonstrated that large ME voltage coefficients tend to be favored by
large transversal PE coefficients, transversal and longitudinal piezomagnetic coef-
ficients and coupling constants as well as small out-of-plane dielectric and com-
pliance constants and the volume ratio between the PE and MS phases. On the other
hand, it has also been shown that the ME charge coefficients do not depend on the
dielectric constants of the PEs and thus tend to be much larger in lead-based crystals
with very large piezoelectric constants such as PMN-PT and PZN-PT. The effects
of the demagnetization fields on the attenuation of the ME coefficients were briefly
explored. A description of the ME composites as equivalent Thévenin/Norton
circuits composed of a magnetically driven voltage/current source in series/parallel
with a characteristic impedance of the composite has also been exposed.

After that, we used the quasi-static model for the calculation of the maximum
expected direct transversal ME voltage coefficients in a series of tri-layered com-
posites of the type Metglas/Piezocrystal/Metglas, as a function of the PE crystal
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orientation. The PE single crystals studied in this chapter included lead-free lithium
niobate, α-galium phosphate, α-quartz, langatate, langasite, aluminum nitride,
lithium tantalate and barium titanate, as well as the lead-based PZT-2, PMN-33 %
PT ([111] poled), PMN-30 %PT ([011] poled), PMN-33 %PT ([001] poled),
PZN-9 %PT ([011] poled) and PZN-8 %PT ([001] poled). The estimations revealed
a strong dependence of the ME effects on the crystal orientation. They also sup-
ported the possibility of generating large quasi-static ME voltage coefficients in
composites comprising lead-free PE single crystals through the optimization of the
crystal orientation. These ME effects were found to be particularly attractive for the
case of lithium niobate, α-galium phosphate, quartz, [111]-poled PMN-33 %PT and
[011]-poled PZN-9 %PT. The enhanced effects were found to originate from a
particularly good combination of relatively large PE coefficients and low dielectric
constants. We thus have revealed that the choice of crystals with an appropriate cut
is a vital step in the development of ME composites valuable for practical
applications.
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