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3.1 Introduction

Traditionally, models that use origin-destination flow data to explain variation in the
level of flows between origin and destination locations of interaction across some
relevant geographic space are called gravity models,1 in analogy with Newton’s
concept of gravity. Locations may be either regions or point units, and spatial
interactions relate to movements of various kinds. Examples include not only
migration, journey-to-work, traffic, commodity or trade flows, but also flows of less
tangible entities such as capital, information and knowledge. By adopting a spatial

This paper has been previously published in the Journal of Geographical Systems. Special Issue on
“Advances in the Statistical Modelling of Spatial Interaction Data”, Vol. 15, Number 3/July 2013,
©Springer-Verlag Berlin Heidelberg, pp. 291–317.
1The terms gravity model and spatial interaction model are often used interchangeably. But they are
not the same. Spatial interaction models not only include gravity models, but also similar models
that have been derived using powerful methods of entropy maximisation from statistical mechanics
(Wilson 1967), or utility maximization from economic theory (Niedercorn and Bechdolt 1969), and
those based on intervening opportunities which can be derived heuristically.
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interaction perspective, attention is focused on interaction patterns at the aggregate
rather than the individual level.

Gravity models2 typically rely on three types of factors to explain mean inter-
action frequencies: Origin specific variables that characterise the ability of origin
locations to produce or generate flows; destination specific variables that attempt
to capture the attractiveness of destination locations; and, a separation function
that reflects the way spatial separation of origins from destinations constrains or
impedes the interaction (Fischer and Wang 2011). At larger scales of geographical
inquiry spatial separation might be simply measured in terms of the great circle
distance separating an origin from a destination location. In other cases, it might
be transportation cost, perceived travel time or any other sensible measure such
as political distance, language distance and cultural distance measured in terms
of nominal or categorical attributes. One popular example of a separation or
deterrence function is the exponential function that leads to gravity models known
as exponential gravity models.

Alternative forms of the gravity model can be specified by imposing (exogenous)
constraints on the mean interaction frequencies. These model variants include origin
and/or destination specific balancing (normalising) factors that act as constraints
to ensure that the origin and destination totals for spatial interactions are exactly
predicted (see Wilson 1971). The model is said to be doubly constrained if both
origin and destination constraints hold for each location. If either the origin
or the destination constraints hold the model is singly constrained; otherwise it
is unconstrained. It is worth noting that the doubly constrained gravity model
has also become known as the trip distribution stage in the four-step transport
planning approach.3 One more recently recognized role of these constraints is
their accounting for spatial autocorrelation effects in the geographic distribution
attributes across origins and destinations.

The focus in this paper is on singly and doubly constrained exponential gravity
model variants for situations involving flows taking the form of counts; for example,
counts of persons commuting from home to work locations, or as in the example

2For a discussion of problems that plague empirical implementation of regression-based gravity
models, and econometric extensions that have recently appeared in the literature, see LeSage
and Fischer (2010). These new models replace the conventional assumption of independence
among origin-destination flows with formal approaches that allow for spatial dependence in flow
magnitudes. The econometric extensions are based on the assumption of a linear relation between
the dependent and the independent variables, and this assumes the dependent variable to be
normally distributed.
3Trip making is viewed as consisting of four components (see, for example, Fischer 2000): trip
generation and attraction (the decision to make a trip and how often); trip distribution in a system
of traffic zones; modal split (choice of mode of transport); and, trip assignment (choice of route
through network). The gravity model is used for trip distribution, but is preceded by trip generation
and attraction models that provide independent estimates of locational (zonal) trip origins and
attractions that subsequently become the “mass” terms of the gravity model. Thus, the definition
of the row and column sums of the predicted trip matrix coincides exactly with the definitions of
the respective mass terms.
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considered in this paper, the number of patent citations from one region to another.
In such cases, current practice is to model origin-destination flow data with Poisson
gravity model specifications. Under the assumption that the flows are independently
distributed Poisson variables the constrained gravity model variants can be treated
as particular cases of a generalised linear model (GLM) with fixed (or random)
effects, employing a logarithmic link function and a Poisson mean flow. Maximum
likelihood estimates of the model parameters can be achieved using an iterative re-
weighted least squares algorithm, as implemented in statistical software packages
such as GLIM (Generalised Linear Iterative Modelling).

Flows, however, are not strictly independent. Spatial (or network) dependence4

is more likely than spatial independence when considering origin-destination flows.
Spatial dependence in a flow setting refers to a situation where flows from nearby
locations (either origins or destinations) are similar in magnitude. A failure to
incorporate spatial dependence in model specifications leads to biased parameter
estimates and incorrect conclusions. Eigenvector spatial filtering—described in
Griffith (2003) for conventional regression models—offers an approach to dealing
with spatial dependence in constrained gravity model variants. This approach relies
on the decomposition of a spatial weight matrix into eigenvalues and eigenvectors
and then uses a subset of the eigenvectors as additional explanatory variables in the
singly and doubly constrained gravity model specifications to reduce potential bias
in parameter estimates. A virtue of this approach is that existing software can be
applied for the case of spatial dependence in constrained model variants involving
flows taking the form of counts.

The purpose of this paper is twofold: first, to establish theoretical connections
between the constrained gravity model versions with balancing factors, fixed effects
represented by binary location specific indicator variables, and random effects; and
second, to illustrate these connections with an empirical example while accounting
for spatial dependence among flows during estimation. Fulfilling these goals reveals
that fixed and random effects are identical and equal to the logarithm of the entropy
maximisation derived factors, except for slight rounding/algorithm-convergence
errors. This finding is the outcome of an equivalency between assigning a single
fixed effects indicator variable to each origin/destination on the one hand, and
estimating a single random effects value for an origin/destination while treating
the corresponding destinations/origins as repeated measures, on the other. As
with the unconstrained gravity model variant, adjusting for spatial dependence in
origin-destination flows reduces bias in parameter estimates and improves model
performance.

The rest of the paper is organised as follows. Section 3.2 describes unconstrained
and constrained classes of the gravity model with a focus on doubly and singly
constrained model variants that rely on a multiplicative adjustment scheme to

4Spatial dependence is also known as network autocorrelation (see Black 1992; Chun 2008; Griffith
2009; Chun and Griffith 2011) even though there are similar differences between both as between
spatial dependence and spatial autocorrelation in general.
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enforce satisfactorily the conservation rule. Section 3.3 presents the counterpart
Poisson specifications that interpret/predict the level of flows as dependent on
not only the explanatory variables (and the associated coefficient estimates), but
also origin and destination specific effects coefficients. Section 3.4 describes
spatial filtering as a way of filtering the sample origin-destination data for spatial
dependence (i.e., transferring spatial autocorrelation effects from residuals to the
mean/intercept parameter) in an effort to mimic independent data amenable to stan-
dard Poisson regression estimation procedures. Section 3.5 continues to establish
theoretical connections between balancing factors, fixed effects and random effects
(spatially filtered) model specifications. The results are illustrated in Sect. 3.6 with
an empirical example involving knowledge flows between 257 European regions
resulting in 2572 D 66,049 flow dyads. Section 3.7 concludes the paper.

3.2 Unconstrained and Constrained Classes of Gravity
Models: The Classical View

Gravity models that describe mean interaction frequencies in a system of n locations
can be written5 as

E
�
Yij

� D Kij Ui Vj f
�
dij

�
(3.1)

where Yij .i; j D 1; : : : ; n/ is a random variable denoting the level of flows from
origin location i .i D 1; : : : ; n/ to destination location j . j D 1; : : : ; n/ ; Ui and
Vj are appropriate origin and destination specific factors or functions reflecting
locational propensities to emit or attract interactions, f (dij) is a separation function
of some inter-location measure d that separates origin i from destination j, and
Kij is an origin-destination specific constant of proportionality, or scaling factor,
which reduces to a constant scaling factor K for the unconstrained gravity model
specification (which then is accompanied by attaching exponents of other than one
to Ui and Vj). The role of this origin-destination specific constant of proportionality
in the gravity model equation depends on how extensively the conservation rule
(Ledent 1985) is enforced in the system of locations. Four alternative cases may be
distinguished, giving rise to equally many classes of gravity models.

A gravity model is called unconstrained if the conservation principle is ignored
altogether so that

Kij D K (3.2)

5An alternative formulation to that given in Eq. (3.1) is Yij D Kij Ui Vj f
�
dij

�
�ij C "ij where "ij

reflects the sample error and �ij the specification error. In this case, the stochastic nature of Yij

derives from assumptions made about the stochastic nature of "ij and �ij.
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where K is a constant scaling factor independent of all origins and destinations. If
Y•• denotes the total number of flows in the spatial system, then

K D Y��

2
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i¤j
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dij
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(3.3)

where the summation is over the range i D 1; : : : ; n and j D 1; : : : ; n: Although Eq.
(3.1) has been developed by analogy with Newton’s gravity equation, Isard (1960),
and Sen and Smith (1995) developed versions of the unconstrained model using a
probabilistic approach.

At the other extreme of the spectrum is the doubly constrained case of spatial
interaction that refers to a situation in which the conservation principle is enforced
from both the viewpoint of origin and destination locations. The origin-destination
specific constant of proportionality, Kij, now depends on both origins and destina-
tions. For simplicity, it is generally assumed6 that

Kij D Ai Bj (3.4)

where the origin and destination specific constants, Ai and Bj, called balancing
factors, are solutions of the equation system (Wilson 1967)

Ai D Yi�
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(3.5)

Bj D Y�j
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: (3.6)

These balancing factors act as constraints to ensure that the estimated inflows OY�j for
j D 1; : : : ; n and outflows OYi� for i D 1; : : : ; n equal the observed inflow and outflow
totals, respectively. Such doubly (or attraction-production) constrained models have

6The multiplicative form of the balancing factors Ai and Bj (Wilson 1967) ensures mathematical
tractability in searching for an adequate estimation procedure. Alternatively, Tobler (1983)
suggests an additive adjustment scheme, Kij D Ai C Bj, to enforce satisfactorily the conservation
rule. Ledent (1985) introduces a general functional form that subsumes both the multiplicative
(Wilson) and the additive (Tobler) variants.
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been extensively used as trip distribution models in transport modelling, and many
variants of this model form exist for describing journey-to-work interactions.

Between these two extreme cases of unconstrained and doubly constrained
spatial interaction lie many models that are subject to some constraints but not
to others. Two important classes can be identified: the origin (or alternatively
called production) constrained gravity model, and the destination (or alternatively
called attraction) constrained gravity model. In the production constrained case the
conservation principle is enforced from the viewpoint of origin locations7 only.
Hence

Kij D Ai: (3.7)

Ai is a factor dependent on the location of an origin, and is called an origin specific
balancing factor. If Yi• denotes the total number of outflows from location i,

Ai D Yi�
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: (3.8)

The origin constrained gravity model is useful in situations where the outflow totals
are known or can be exogenously predicted for each origin location in the system.
For an instructive example see Haynes and Fotheringham (1984, pp. 60–62).

The attraction constrained case of spatial interaction enforces the conservation
principle from the viewpoint of destination locations. Thus

Kij D Bj (3.9)

where Bj is a factor dependent on the destination location. If Y•j denotes the total
number of inflows into location j,

Bj D Y�j
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: (3.10)

This model variant can be used to forecast total outflows from origin locations.
Such a situation might arise, for example, in forecasting the effects of locating
a new industrial park within a metropolitan area. The number of people to be

7In the origin constrained and the destination constrained models presented here, the constraints
to which these models are subject refer to the full set of n origin or n destination locations. But
it is possible to develop models that are only constrained over certain subsets of locations. Such
models, which are not considered in this paper, may be found in Wilson (1970).
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employed in the new development area is known, and the destination constrained
gravity model can be used to forecast the demand for housing in particular locations
of the metropolitan area that will result from the new employment (Haynes and
Fotheringham 1984).

The models presented in Eqs. (3.1)–(3.10) are in a generalised form and no
mention has yet been made to the particular set of parameters characterising
such gravity models. Although the balancing factors are sometimes referred to as
parameters, in this paper the term parameter is restricted to those constants that must
be estimated statistically, rather than to those constants that imply the accounting
constraints placed on the model.

Many different model formulations can be obtained from Eq. (3.1), despite its
structural simplicity (see Baxter 1983). Ui and Vj can be treated as completely
known, as parameters to be estimated (see Cesario 1973), or as simple power
functions of some known variables (see Fotheringham and O’Kelly 1989). The
separation function constitutes the very core of gravity models.8 In this study we
use the multivariate exponential deterrence function

f
�
dij

� D exp
��� dij

�
(3.11)

in which d denotes a multivariate separation measure with an associated sensitivity
parameter � . This specification of the spatial separation function leads to the
following three variants of the gravity model: the doubly constrained variant

E
�
Yij

� D Ai Bj Ui Vj exp
��� dij

�
(3.12)
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the origin constrained variant

E
�
Yij

� D Ai Ui Vj exp
��� dij

�
(3.15)

8The notion that separation functions in conventional gravity models work to effectively capture
spatial dependence in origin-destination flows has long been challenged. Griffith (2007) provides
an historical review of the regional science literature about this topic in which he credits Curry
(1972) as the first to conceptualise the problem of spatial dependence in flows.
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and, the destination constrained variant

E
�
Yij

� D Bj Ui Vj exp
��� dij

�
(3.17)
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The central concern in this paper is with the problem of estimating the model
parameter � rather than with the problem of determining appropriate values for the
balancing factors.9 A solution to this latter problem, for example in the case of
Eqs. (3.12)–(3.14), involves using an iterative biproportional adjustment technique,
known as the Deming-Stephan-Furness procedure10 (see Sen and Smith 1995, p.
374). As Evans (1970) shows, convergence to a unique set of values for Ai and Bj is
guaranteed for any non-trivial set of starting values.

3.3 Poisson Versions of the Constrained Gravity Models

Flows often take the form of counts such as numbers of migrants moving from
one location to another. In such situations a common assumption is that the Yij

(i, j D 1, : : : , n) follow independent11 Poisson distributions,12 Yij �P(�ij), where
�ij is equated with the right hand side of Eq. (3.1). The mean and the variance of
the distribution are equal to �ij. The Poisson specifications of the gravity model

9The constrained gravity model variants are intrinsically non-linear in their parameters, and thus
the application of linear methods leads to biased estimates of these parameters.
10In the economics literature it is often called the RAS procedure.
11Independence means that the individual flows from origin i to destination j are independent from
each other, and that origin-destination flows between any pair of locations are independent from
flows between any other pair of locations.
12Closely related to this assumption are the assumptions that the set of observations for each origin
location has a multinomial distribution, say MN (Yi1, Yi2, : : : , Yin; Yi•), or that the set of all
observations has a multinomial distribution MN (Yi1, Yi2, : : : , Ynn; Y••), where Yi• is the total
flow from origin location i, Y•• is the overall flow, and n is the number of origin and destination
locations. These multinomial distributions can be generated by assuming that the Yij (i, j D 1, : : : ,
n) are independent Poisson random variables sampled subject to the origin totals Yi•, or the overall
total Y••, being fixed (Bishop et al. 1975).
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variants interpret/predict the level of flows as dependent on not only the explanatory
variables (and their associated coefficient estimates), but also origin and destination
specific effects coefficients. The fixed effects version of the three constrained model
variants of the gravity model can be described as in Eqs. (3.19)–(3.21), respectively.

E
�
Yij

� D �ij D Ui Vj exp

"

˛ C
n�1X

hD1

Iiho ˇho C
n�1X

kD1

Ijkd ˇkd � � dij

#

(3.19)

E
�
Yij

� D �ij D Ui exp

"
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hD1
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#

(3.20)

E
�
Yij

� D �ij D Vj exp

"

˛ C
n�1X

kD1

Ijkd ˇkd � � dij

#

(3.21)

with origin h and destination k specific effects coefficients exp(ˇho) and exp(ˇkd),
and corresponding binary indicator variables13 Iiho and Ijkd for origins i and
destinations j respectively,

Iiho D
�

1 if i D h
0 otherwise

(3.22)

Ijkd D
�

1 if j D k
0 otherwise:

(3.23)

The fixed effects parameters inflate or deflate the level of flows, depending on
whether they are positive or negative. Of note is that one of the origin and one of
the destination specific effects coefficients, ˇno and ˇnd, have to be set to zero to
avoid perfect collinearity in the specifications, and these values are absorbed in the
intercept term ˛.

The most direct approach to estimating the models is with maximum likelihood
techniques. The likelihood function to be maximised is proportional to

L D
Y

i;j

�
yij

ij exp
���ij

�
(3.24)

13One advantage of the use of origin/destination indicator variables in a Poisson regression
specification is that they yield individual rather than a single aggregate standard error, and null
hypothesis probability estimates for each of the individual values in the two sets of balancing
factors. One disadvantage is the amount of time necessary to estimate a GLM containing 2n � 2

indicator variables.
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where yij is the realisation of the random variable Yij. The Poisson distribution is a
member of the exponential family of distributions. Hence parameter estimation can
be achieved via GLMs (see McCullagh and Nelder 1983) so that the constrained
gravity model variants (3.19)–(3.21) can be treated simply as particular cases of a
GLM with a logarithmic link function14 and a Poisson mean. Then for the doubly
constrained case, for example, we get

log
�
E

�
Yij

�� D log �ij D log Ui C log Vj C ˛ C
n�1X

hD1

Iiho ˇko C
n�1X

kD1

Ijkd ˇkd � � dij

(3.25)

where the term
�
log Ui C log Vj

�
is included in the estimation procedure as an offset

variable (that is, its coefficient is fixed to equal one).
The maximum likelihood estimates can be derived by means of an iterative re-

weighted least squares procedure15 that is implemented in many statistical software
packages such as GLIM. A convenient property of the Poisson assumption along
with the log-linear functional form assumed for �ij is that the resulting maximum
likelihood estimates guarantee that the fitted flows Ŷij satisfy relationships that
are consistent with the desirable origin and/or destination constraints of spatial
interaction16 (see Kirby 1974; Davies and Guy 1987, and Bailey and Gatrell 1995,
pp. 353–354 for details). Hence, there is no need to modify standard maximum
likelihood parameter estimation to incorporate explicit constraints on predicted
flows. The goodness-of-fit of GLMs is assessed on the basis of the log-likelihood
ratio statistic, known as the deviance.

Fixed effects model specifications allow the unobserved location specific effects
to be correlated with the explanatory variables. If the individual effects are strictly
uncorrelated with the regressors, then it might be appropriate to model the location
specific constant terms as randomly distributed across the locations. The role of
random effects terms in this context may be twofold: first, supporting inferences
beyond the specific fixed values of covariates employed in an analysis, and, second,
accounting for correlation in a non-random sample of data being analysed, in part
due to missing variables, for which they function as a surrogate. Random effects may
be used if the values of independent variables—which were not deliberately selected

14The logarithmic link function is best thought of as being an exponential conditional mean
function.
15McCullagh and Nelder (1983) prove that the procedure converges to the maximum likelihood
solution. Note that zero observed flows do not require any special treatment.
16The equivalence of maximum likelihood estimation with the Poisson assumption and the entropy
maximisation solution for a doubly constrained gravity model with origin and destination specific
balancing factors is well known (see Wilson and Kirkby 1980, p. 310). In the latter case, parameter
estimation of a model such as Eq. (3.1) is obtained by maximising an objective function subject
to sets of constraints on the origin and destination totals in combination with some constraint on a
general measure of spatial separation in the system of locations (Baxter 1982).
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by an experimenter—are thought to be a small subset of all possible values to
which inferences are to be made, to account for heterogeneity/overdispersion/inter-
observation correlation, or to handle observations that are not obtained by simple
random sampling but come from a cluster or multi-level sampling design.

The random effects counterparts17 of the fixed effects model specifications
(3.19)–(3.21) may be formulated as in Eqs. (3.26)–(3.28).

E
�
Yij

� D �ij D Ui Vj exp
�
˛ C �io C �jd � � dij

�
(3.26)

E
�
Yij

� D �ij D Ui exp
�
˛ C �io � � dij

�
(3.27)

E
�
Yij

� D �ij D Vj exp
�
˛ C �jd � � dij

�
(3.28)

with zero mean normally distributed origin and destination specific random effects18

� io and � jd .
Finally, note that there is a constant of proportionality term, ˛, in the preceding

Poisson gravity model specifications. This term is made explicit because the
balancing factors that can be calibrated—as already mentioned – with the Deming-
Stephan-Furness procedure, have a constant factored from them. This factorisation
is achieved by: (i) setting the maximum Ai and/or the maximum Bj values to one
at each iteration step in the procedure; (ii) arbitrarily removing one of the origin
and/or destination indicator variables in the fixed effects specifications; and, (iii)
imposing a mean of zero on the random effects prior distribution. This is equivalent
to rewriting Eq. (3.12) as E.Yij/ D K Ai Bj Ui Vj exp.�� dij/; where K is a
constant.

3.4 Accounting for Spatial Dependence in the Model
Specifications

origin-destination flows are not independent (Bolduc et al. 1995; Tiefelsdorf 2003),
because flows are fundamentally spatial in nature (LeSage and Pace 2009). Spatial
dependence in flows relates to correlations among flows between locations that
are neighbouring a given origin-destination pair of locations.19 Hence, a failure

17Whether the random effects model variants are appropriate model specifications in spatial
research remains controversial. When the random effects gravity models are implemented, the
spatial units of observation should be representative of a larger population, and n should potentially
be able to get to infinity (see Elhorst 2010 for more details on this issue).
18Origin/destination specific spatial dependence in the random effects estimates motivated the
gravity model set forth in LeSage et al. (2007) that formally incorporates spatially structured
random effects in place of the zero mean, normally distributed independent random effects.
19This correlation differs from that latent in the geographic distributions of the origin and
destination variables that are reflected in the balancing factors. Pace et al. (2011) show that spatial
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to account for spatial dependence in model specifications may lead to biased
parameter estimates and incorrect conclusions. One way to overcome this problem
is by incorporating spatial dependence into the Poisson versions of the constrained
gravity model variants.20 Another way to address spatial dependence in origin-
destination flows involves eigenvector spatial filtering21 (see Chun 2008; Fischer
and Griffith 2008; Griffith 2009; Chun and Griffith 2011). Eigenvector spatial
filtering relies on a spectral decomposition22 of an N-by-N spatial weight matrix
W into eigenvalues and eigenvectors, and then uses a subset of these eigenvectors as
additional explanatory variables in the model specifications.

Spatial filtering used here in this paper relies on a spectral decomposition of
a transformed spatial weight matrix MWM, where W is an N-by-N spatial weight
matrix23

W D Wn ˝ Wn (3.29)

that captures spatial dependence between flows from locations neighbouring both
the origins and destinations, labelled origin-to-destination dependence by LeSage
and Pace (2008). Wn is a row-stochastic n-by-n spatial weight matrix that describes
spatial neighbourhood relationships between the n locations. This matrix has—by
convention—zeros in the main diagonal, and non-negative elements in the off-
diagonal cells. Specifically the (i, j)th element of Wn is greater than zero if i and
j are neighbouring24 locations. ˝ denotes the Kronecker product. M is the N-by-N

dependence in the explanatory variables decreases the ability of filtering to produce unbiased
regression parameter estimates.
20In the fixed effects case of the doubly constrained gravity model, for example, this takes the form

E
�
Yij

� D �ij D Ui Vj exp

"

˛ C
n�1X

hD1

Iiho ˇho C
n�1X

kD1

Ijkd ˇkd�� dij

#
nY

j¤i

E
�
Yij

��Wij

where Wij is the (i,j)th element of an N-by-N spatial weight matrix W and � is a scalar parameter
that governs the degree of spatial dependence in origin-destination flows. Lambert et al. (2010) set
forth a two-step maximum likelihood estimation approach for a spatial autoregressive Poisson
model for count data which would need to be extended to the case of flows involving N
observations.
21This is an especially valuable approach in situations where the flows are count data, because
conventional spatial regression models and software tools are less developed for this data type.
22We assume that W is similar to a symmetric matrix so that it has real eigenvalues. If W is not
symmetric, then 1

2
.W C W 0/, which is symmetric by construction, may be used.

23If intralocational flows are excluded from an analysis, the N-by-N spatial weight matrix reduces
to an n(n–1)-by-n(n–1) one, only marginally impacting upon these eigenvectors when n > 100.
24Neighbours may be defined using contiguity or measures of spatial proximity such as cardinal
distance (for example, in terms of transportation costs) or ordinal distance (for example, the six
nearest neighbours). In the illustrative example in Sect. 3.6, we use a binary contiguity matrix Wn

to define W.
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projection matrix

M D I � � �0
1

N
(3.30)

where I is the N-by-N identity matrix, and � the N-by-1 vector of ones.
The approach focuses on capturing correlations among flows with a spatial

filter that is constructed as a linear combination of eigenvectors extracted from
the matrix MWM. The eigenvalues scaled by N/(�0 Wn �) directly indicate Moran’s
I coefficient values of map patterns that are represented by the corresponding
eigenvectors (Tiefelsdorf and Boots 1995). The first eigenvector, say E1, is the set
of real numbers that has the largest Moran’s I value achievable by any set of real
numbers for the spatial dependence structure defined by the spatial weight matrix W.
The second eigenvector, E2, is the set of real numbers that has the largest achievable
Moran’s I value by any set that is orthogonal to and uncorrelated with E1. The
third eigenvector is the third such set of values, and so on through EN , the set of
real numbers that has the largest negative Moran’s I value achievable by any set
that is orthogonal to and uncorrelated with the preceding .N � 1/ eigenvectors. As
such, these eigenvectors furnish distinct map pattern descriptions of latent spatial
dependence in the origin-destination flow variable because they are both orthogonal
and uncorrelated. Their Moran’s Is corresponding eigenvalues index the nature and
degree of spatial dependence portrayed by each eigenvector (Tiefelsdorf and Boots
1995), which can be standardised by the largest Moran’s I value, Imax.

The construction of a spatial filter involves a stepwise selection process. Griffith
(2003) suggests identifying a set of candidate eigenvectors first, based on a critical
value for the corresponding eigenvalues, a value that indicates a specific minimum
spatial autocorrelation level25 such as 0.5 measured in terms of the statistic I/Imax.
From these candidate eigenvectors, a subset of Q eigenvectors then can be selected
with standard model selection criteria such as the Akaike information criterion.
In the doubly constrained case of spatial interaction, for example, this yields the
following spatial filter versions of the model specifications (3.12), (3.19) and (3.26),
respectively:

E
�
Yij

� D Ai Bj Ui Vj exp

0

@˛ � � dij C
QX

qD1

Eq �q

1

A (3.31)

E
�
Yij

� D �ij D Ui Vj exp

2

4˛ C
n�1X

hD1

Iiho ˇho C
n�1X

kD1

Ijkd ˇkd � � dij C
QX

qD1

Eq �q

3

5

(3.32)

25The criterion I/Imax D 0.5 suggests a restriction of the search over eigenvectors with moderate to
high spatial autocorrelation.
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E
�
Yij

� D �ij D Ui Vj exp

2

4˛ C �io C �jd � � dij C
QX

qD1

Eq �q

3

5 (3.33)

where Eq denotes the qth eigenvector and �q its associated coefficient. The term
exp

�P
q Eq �q

�
is called a spatial filter.

The approach provides a simple way of filtering the sample flow data for spatial
dependence in an effort to mimic independent data amenable to standard estimation
procedures, and hence to reduce potential bias in the estimation of coefficients
associated with the explanatory variables. Spatial filtering, however, also faces
computational challenges in situations involving a large sample of observations.26

3.5 Equivalency Relationships Between the Balancing
Factors, Fixed Effects, and Random Effects

This section compares the three different model variants of constrained spatial
interaction with each other. First, attention is shifted toward comparisons between
model specifications with balancing factors and with fixed effects, and then between
model specifications with balancing factors and with random effects, for both the
doubly and singly constrained cases of spatial interaction.

3.5.1 Comparisons Between Balancing Factors and Fixed
Effects

The first comparison is between the doubly constrained model with balancing
factors and its corresponding fixed effects model specification, and hence focuses
on the relationship between Eqs. (3.31) and (3.32).

Theorem 1 If Yij � Poisson with mean �ij D exp.log Ui C log Vj C ˛ C ˛io C
˛jd �� dij C CP

qEq �q/, where ˛ denotes the global Poisson regression intercept
term, ˛io the Poisson regression origin location intercept term, and ˛jd the Poisson
regression destination location specific intercept term, then the balancing factors for
the doubly constrained gravity model are given by Ai D exp.˛io/ and Bj D exp.˛jd/:

26Pace et al. (2011) demonstrate how using iterative eigenvalue routines on sparse matrices such
as W can make filtering feasible for data sets involving a million or more observations, and
empirically estimate an operation count on the order of N1.1.
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Proof Because Eqs. (3.31) and (3.32) posit the expectation for the same random
variable, Yij, for i; j D 1; : : : ; n

Ai Bj Ui Vj exp

0

@˛ � � dij C
QX

qD1

Eq �q

1

A

D Ui Vj exp

0

@˛ C ˇio C ˇjd � � dij C
QX

qD1

Eq �q

1

A (3.34)

Ai Bj D exp
�
ˇio C ˇjd

� D exp .ˇio/ exp
�
ˇjd

�
(3.35)

) Ai D exp .ˇio/ D exp .˛io/ for all i D 1; : : : ; n (3.36)

Bj D exp
�
ˇjd

� D exp
�
˛jd

�
for all j D 1; : : : ; n � (3.37)

Remarks The equivalencies ˛io D ˇio and ˛jd D ˇjd relate these results not only
to the doubly, but also to the singly constrained cases. Furthermore, exp(˛) is the
constant of proportionality, which frequently is set to one (i.e., ˛ D 0) for the
traditional entropy maximising solution, and other than one for the conventional
gravity model solution. Allowing ˛ to deviate from one in the Deming-Stephan-
Furness procedure helps to stabilise convergence for large flow matrices, and may
be achieved by setting the largest Ai and the largest Bj values to one during each
iteration. This adjustment is equivalent to setting one of the ˛io D ˇio and one of
the ˛jd D ˇjd to zero in the fixed effects specification in order to avoid perfect
multicollinearity between the location specific indicator variables and the global
mean (which is a coefficient times an n-by-1 vector of ones). Estimates of ˇio and
ˇjd are obtained with Poisson regression.

This result relates the log-balancing factors, log(Ai) and log(Bj), for the doubly
constrained gravity model to their counterpart origin and destination fixed effects,
˛io and ˛jd . Hence fixed effects take on a particular meaning because they can be
interpreted as balancing factors. Cesario (1977) characterises the meaning of the
origin and destination balancing factors as follows: 1/Ai indexes the accessibility of
all destination locations vis-à-vis origin i, and 1/Bj indexes the accessibility of all
origin locations vis-à-vis destination j.

The next comparisons are between the model specifications with balancing
factors and fixed effects in the singly constrained cases of spatial interaction. To
this end, Theorem 1 suggests the following two corollaries pertaining to the singly
constrained spatial filter model specifications.

Corollary 1 If Yij � Poisson with mean �ij D exp.log Ui C ˛ C ˛io � � dij CP
q Eq �q/, where ˛ denotes the global Poisson regression intercept term, and ˛io

the Poisson regression origin location specific intercept term, then the balancing
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factors for the origin constrained gravity model are given by Ai D exp.˛io/ for
i D 1; : : : ; n.

Corollary 2 If Yij � Poisson with mean �ij D exp.log Vj C ˛ C ˛jd � � dij CP
q Eq �q/, where ˛ denotes the global Poisson regression intercept term, and

˛jd the Poisson regression destination location specific intercept term, then the
balancing factors for the destination constrained gravity model are given by Bj D
exp.˛jd/ for j D 1; : : : ; n.

These two corollaries relate the log-balancing factors for the singly constrained
gravity models to their counterpart origin or destination fixed effect model specifi-
cations.

3.5.2 Comparisons Between Balancing Factors and Random
Effects

Finally, comparisons can be made between the preceding results and the random
effects model specifications. In this context, a specification includes � io and/or
� jd, normal random variables, which respectively denote the random effects for
origin i and/or destination j, whose stochastic quantities are added to the global
intercept term. The next theorem relates to the relationship between a doubly
constrained model with balancing factors and its corresponding random effects
model specification, and hence focuses on the relationship between Eqs. (3.31) and
(3.33).

Theorem 2 If Yij � Poisson with mean �ij D exp.log Ui C log Vj C ˛ C �io C �jd

�� dij C P
q Eq �q/, where ˛ denotes the global Poisson regression intercept

term, � io the Poisson regression origin location random effect, and � jd the Poisson
regression destination location random effect, such that �io � N .0; 	2

�o
/ and �jd �

N .0; 	2
�d

/, where 	2
�o

and 	2
�d

denote the origin and the destination location random
effects variances respectively, then the balancing factors for the doubly constrained
gravity model are given by Ai D exp.�io/ for i D 1; : : : ; n, and Bj D exp.�jd/ for
j D 1; : : : ; n.

Proof Equation (3.33) implies

log
�
E

�
Yij

�� D log �ij D log Ui C log Vj C ˛ C �io C �jd � � dij C
QX

qD1

Eq �q:

(3.38)
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Because Eqs. (3.31) and (3.38) posit the expectation for the same random variable,
Yij, for i; j D 1; : : : ; n

Ai Bj Ui Vj exp

0

@˛ � � dij C
QX

qD1

Eq �q

1

A

D Ui Vj exp

0

@˛ C �io C �jd � � dij C
QX

qD1

Eq �q

1

A (3.39)

AiBj D exp.�io C �jd/ D exp.�io/ exp.�jd/ (3.40)

) Ai D exp.�io/ for all i D 1; : : : ; n and Bj D exp.�jd/ for all j D 1; : : : ; n �

Remarks Both � io and � jd have a mean of zero, which is achieved by having the
global mean, ˛, in the model specification. In other words, the individual origin
and destination location means deviate from the global mean by random quantities.
Theorems 1 and 2 together imply: Ai D exp.�io/ D exp.ˇio/ D exp.˛io/ for all
i D 1; : : : ; n, and Bj D exp.�jd/ D exp.ˇjd/ D exp.˛jd/ for all j D 1; : : : ; n.
Estimates of � io and � jd are obtained by integrating them out of the likelihood
function.

Singly constrained models are obtained by setting �jd D 0 for all j, yielding
the origin constrained specification, or �io D 0 for all i, yielding the destination
constrained specification. Accordingly, Theorem 2 suggests the following two
corollaries pertaining to the singly constrained model specifications.

Corollary 3 If Yij � Poisson with mean �ij D exp.log Ui C ˛ C �io � � dij CP
q Eq �q/, where ˛ denotes the global Poisson regression intercept term, and � io

the Poisson regression origin location random effect, such that �io � N .0; 	2
�o

/,

where 	2
�o

denotes the origin location finite random effects variance, then the
balancing factors for the origin constrained gravity model are given by Ai D
exp .�io/ for i D 1; : : : ; n.

Corollary 4 If Yij � Poisson with mean �ij D exp.log Vj C ˛ C �jd � � dij CP
q Eq �q/, where ˛ denotes the global Poisson regression intercept term, and � jd

the Poisson regression destination location random effect, such that �id � N .0; 	2
�d

/,

where 	2
�d

denotes the destination location finite random effects variance, then the
balancing factors for the destination constrained gravity model are given by Bj D
exp.�jd/ for j D 1; : : : ; n.
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3.6 An Illustrative Example

In this section we use knowledge flows as captured by patent citation data to numeri-
cally illustrate the relationships between the aforementioned balancing factors, fixed
effects and random effects in the cases of singly and doubly constrained variants of
the gravity model. The origin-destination data relate to citations between European
high-technology patents. By European patents we mean patent applications at the
European Patent Office assigned to high-technology firms located in Europe. High-
technology is defined to include the International Standard Industrial Classification
(ISIC) sectors of aerospace (ISIC 3845), electronics-telecommunication (ISIC
3832), computers and office equipment (ISIC 3825), and pharmaceuticals (ISIC
3522). Self-citations (that is, citations from patents assigned to the same firm) have
been excluded, given our interest in pure externalities as evidenced by interfirm
knowledge spillovers.

Experts acknowledge that observations of patent citations are subject to a
truncation bias, because we observe citations for only a portion of the life of an
invention. To avoid this bias in the analysis, we have established a 5-year window
(that is, 1985–1989, 1986–1990, : : : , 1993–1997) to count citations to a patent.27

The observation period is 1985–1997 with respect to cited patents, and 1990–
2002 with respect to citing patents. The sample used in this section is restricted
to inventors located in n D 257 European NUTS-2 regions, covering the EU-27
member states (excluding Cyprus and Malta) plus Norway and Switzerland. In
case of cross-regional inventor teams, we have used the procedure of multiple
full counting that—unlike fractional counting—does justice to the true integer
nature of patent citations, but gives interregional cooperative inventions greater
weight.

Subject to caveats relative to the relationship between patent citations and
knowledge spillovers, the sample data allow us to identify and measure spatial
separation effects for interregional knowledge spillovers in the spatial system of
257 regions. We use a binary 257-by-257 contiguity matrix to specify the 66,049-
by-66,049 spatial weight matrix W that captures spatial dependence between patent
citation flows from locations neighbouring both the origins and the destinations.
Our interest is focused on the following three measures of separation: geographical
distance, measured in terms of the great circle distance (in km), technological
proximity, measured in terms of an index (for details see Fischer et al. 2006), and a
dummy variable that represents border effects measured in terms of the presence of
country borders between the regions. The product Ui Vj may be interpreted simply
as the number of distinct (i, j) interactions that are possible. Thus, a reasonable way
to measure the origin factor Ui is in terms of the number of patents in knowledge
producing region i in the time period 1985–1997, and the destination factor Vj in
terms of the number of patents in knowledge absorbing region j in the time period

27For details about the data construction, see Fischer et al. (2006).
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1990–2002 (Fischer and Griffith 2008). Accordingly, we have 66,049 observations,
five (four) covariates and an intercept term in the doubly (singly) constrained cases
of spatial interaction.

3.6.1 Model Specifications Ignoring Spatial Dependence
in origin-destination Flows

Empirical experiments were conducted to numerically illustrate relationships
between the aforementioned balancing factors, fixed effects, and random effects.
The preceding theorems and corollaries indicate that these should be perfectly
straight trend line relationships (using the log-balancing factors) with a slope of
one, but not necessarily an intercept of zero. The intercept term represents an
arbitrary multiplicative factor (i.e., a constant of proportionality).

Theorem 1 together with Corollaries 1 and 2 indicate that the scatterplots of the
log-balancing factors versus their concatenated Poisson regression indicator variable
coefficients (augmented by zero for the arbitrarily removed indicator variables) form
a perfect straight line [see Fig. 3.1]. The accompanying linear regression equations28

relating these two pairings of values are as follows29: for the origin constrained
case of spatial interaction: log(Ai) D 0.00051 C 0.99997 ’io (R2 D 1.0000), the
destination constrained case of spatial interaction: log(Bj) D 0.00001 C 0.99999
’jd (R2 D 1.0000), and the doubly constrained case of spatial interaction: log
(Ai) D 0.00018 C 1.00114 ’io (R2 D 1.0000) and log(Bj) D 0.00099 C 1.00110
’jd (R2 D 1.0000). Furthermore, these log-balancing factors strongly covary [see
Fig. 3.2(a) and (b)], and all deviate somewhat from a normal frequency distribution
as indicated by Fig. 3.2(c)–(f).

Model comparison results for the fixed effects versions of the constrained models
are presented in Table 3.1. Inclusion of the origin and/or destination balancing fac-
tors as fixed effects covariates reduces overdispersion as indicated by the deviance
statistic,30 noticeably changes the three separation function component parameter
estimates (especially that for the geographical distance decay), and remarkably
increases the pseudo-R2 value (measured in terms of a linear relationship between
the predicted and observed counts). The last column in Table 3.1 presents estimation
results for the doubly constrained spatially filtered gravity model specification, for

28A257 and B257 are the arbitrarily selected balancing factors set to one in each case, to avoid perfect
multicollinearity with the intercept term, resulting in an expected intercept of zero and an expected
slope of one.
29The regression equations describe each set of log-balancing factors as a function of the
corresponding fixed effects indicator variables. Error terms are not included here.
30A deviance statistic exceeding one indicates that overdispersion is present; that is, the Poisson
variance is greater than its mean. Although the existence of overdispersion does not affect the
unbiased character of the parameter estimates, their standard errors are underestimated, and hence
their significance is unrealistically increased.
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Fig. 3.1 Scatterplots of the log-balancing factors [log(Ai) and log(Bj)] versus the vector of
the Poisson regression indicator variable coefficients: (a) the singly-constrained cases: origin
and destination balancing factor plots; and (b) the doubly constrained case: the origin and the
destination balancing factor plots

comparative purposes. The elimination of spatial dependence in the flows triggers
a change of estimated parameter values and generates a decrease in the estimated
overdispersion, compared with the standard doubly constrained model specification.
That is, a part of the overdispersion, caused by spatial dependence, is eliminated
by including eigenvectors, which are the proxy variables of the spatial dependence
embedded in the standard model.

Theorem 2 together with Corollaries 3 and 4 address the random effects model
specifications for the three constrained variants of the gravity model. Treated as
particular cases of a GLM with a logarithmic link function and a Poisson mean,
these specifications yield the following expected values: log

�
E.Yij/

� D log.�ij/ D
log.Ui/C log.Vj/ C ˛ C �io C �jd � � dij in the doubly constrained case of
spatial interaction, log

�
E.Yij/

� D log.�ij/ D log.Ui/ C ˛ C �io � � dij in the
origin constrained case, and log

�
E.Yij/

� D log.�ij/ D log.Vj/ C ˛ C �jd � � dij

in the destination constrained case. The log terms on the right-hand side of the
equations are the offset variables. Bolduc et al. (1995) argue that estimating
origin and destination specific random effects in the gravity model specification
is very difficult. But the implication from Theorem 2 for the doubly constrained
specification supports a numerical demonstration for it, too.

Descriptive statistics for the random effects estimates are given in Table 3.2.
A frequentist approach requires integration of these effects out of the likelihood
function under study. As n increases, the multidimensional integration involved
becomes increasingly difficult. Here, with n D 257, the SAS procedure, called SAS
PROC NLMIXED, fails to correctly calculate about 10 % of the random effects (see
the Appendix). This complication resulted in the design of an indirect demonstration
of Theorem 2 as follows. Each balancing factor was introduced into the model
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Fig. 3.2 Log-balancing factors for the constrained model variants: (a) scatterplot of the singly
constrained origin and destination log-balancing factor pairs; (b) scatterplot of the doubly
constrained origin and destination log-balancing factor pairs; (c) normal quantile plot of log(Ai)
values in the origin-constrained case, with its 95 % confidence interval (CI); (d) normal quantile
plot of log(Bj) values in the destination-constrained case, with its 95 % CI; (e) normal quantile plot
of log(Ai) values in the doubly-constrained case, with its 95 % CI; and (f) normal quantile plot of
log(Bj) values in the doubly-constrained case, with its 95 % CI
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Table 3.2 Summary statistics for random effects estimations: the origin-constrained, the
destination-constrained and the doubly-constrained cases

Model specifications given by Eqs. (3.14)–(3.16)
Doubly-constrained

Statistics Origin-constrained Destination-constrained Origin Destination

Minimum �17:2 � 10�13 �15:5 � 10�13 �10:2 � 10�13 �10:5 � 10�13

Mean �2:5 � 10�13 �2:7 � 10�13 �83:6 � 10�13 �2:3 � 10�13

Median �2:9 � 10�13 �3:0 � 10�13 �0:1 � 10�13 �3:1 � 10�13

Maximum 10:9 � 10�13 9:8 � 10�13 11:0 � 10�13 10:4 � 10�13

Standard deviation 4:1 � 10�13 4:1 � 10�13 4:5 � 10�13 4:2 � 10�13

P(Shapiro–Wilk) <0:0001 0:0274 0:0077 <0:0001

GLMM estimation utilized a Newton–Raphson optimization procedure. The Shapiro–Wilk statistic
furnishes a diagnostic statistic for normality

specification, and then a random effects term was estimated. If a balancing factor
is equivalent to a random effects term, then all of the estimated random effects
are approximately zero. This expectation characterises the findings summarised in
Table 3.2. In other words, the estimated fixed and random effects display no conse-
quential differences. The generalised linear mixed model (GLMM) random effects
estimates are nearly identical to their balancing factor fixed effects counterparts.

Spatial filter descriptions of these variates are nearly identical,31 as shown in
Table 3.3, and comprise 17–20 of the 42 candidate eigenvectors depicting at least
weak positive spatial autocorrelation map patterns. These filters allow the balancing
factors to be deconstructed into spatially structured (SSRE) and spatially unstruc-
tured (SURE) random effects: the linear combination of eigenvectors constitutes
the SSRE, and the (remaining) residuals constitute the SURE. The SSREs account
for roughly two-thirds of the variance displayed by the total random effects terms.
This spatial structuring represents moderate-to-strong positive spatial autocorre-
lation, and is one reason the individual terms deviate from a normal frequency
distribution [all P(S-W) statistics increase, but still indicate marked deviation from
a normal distribution]. These linear spatial filters account for virtually all of the
spatial autocorrelation latent in the spatial distribution of these balancing factor
variates, which differ from the spatial dependence latent in the flows between the
regions.

31Because balancing factors are autoregressive specifications [see Eqs. (3.13)–(3.14)], they contain
marked spatial dependence by construction. The spatial filter descriptions of these balancing
factors rely on eigenvectors of the transformed spatial weight matrix MnWnMn where Wn is
the n-by-n binary contiguity matrix and Mn is the n-by-n projection matrix defined by Mn D
In � �n �0n n�1: Forty-two candidate eigenvectors (for which I/Imax > 0.25) are available for
constructing spatial filters portraying positive spatial autocorrelation across the European regions.
Of these, subsets have been selected with a stepwise regression procedure for constructing
spatial filters describing the two sets of balancing factors. The criteria used for selection were
statistically significant coefficients at the 10 % level associated with minimisation of the log-
likelihood function, which is standard practice.



60 D.A Griffith and M.M Fischer

Table 3.3 Summary statistics for the balancing factors and the decomposition

Log-balancing
factor

Spatially structured
random effects

Spatially unstructured
random effects

Constraint Ia P(S-W)b Ia # vectors R2 zI
c P(S-W)b

Singly-
constrained
origin

0.65 0.0002 0.93 18 70 0:36 0.0009

Singly-
constrained
destination

0.61 <0.0001 0.93 17 67 0:13 0.0007

Doubly-
constrained
origin

0.63 <0.0001 0.93 20 69 �0:29 0.0006

Doubly-
constrained
destination

0.61 <0.0001 0.93 20 67 �0:29 0.0032

aI denotes the Moran’s coefficient
bS-W denotes the Shapiro–Wilk statistic
cThe asymptotic standard error for the Moran’s I was used to compute the z-scores

Consequently, these particular singly constrained gravity model results confirm
Corollaries 3 and 4, and as such indirectly demonstrate Theorem 2. They also
illustrate that Ai D exp.�io/ D exp.ˇio/ D exp.˛io/ for i D 1; : : : ; n, and
Bj D exp.�jd/ D exp.ˇjd/ D exp.˛jd/ for j D 1; : : : ; n. In other words, the model
specifications with balancing factors, fixed effects and random effects, respectively,
yield identical estimation results for the production constrained and the attraction
constrained cases of spatial interaction. These findings imply that the same results
hold for the doubly constrained case (Fig. 3.3).

3.6.2 Spatial Filter Model Specifications Accounting
for Spatial Dependence in Flows

Estimating the balancing factors for singly and doubly constrained model speci-
fications accounts for spatial dependence in the origin and destination factors of
the gravity model, but not for spatial dependence in flows. Because only one set
of indicator variables is involved in singly constrained model specifications, the
intercept term can be added to each factor, forcing ˛ to zero in the origin con-
strained model specification, and in the destination constrained model specification,
respectively. This simple adjustment is not possible for the doubly constrained
model, for which the intercept term includes the sum of the two arbitrarily selected
indicator variable coefficients set to zero. Estimating random effects in the doubly
constrained case also overlooks spatial dependence in flows, and treats the n origin
flow recipients as repeated measures for each destination, and the n destination
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Fig. 3.3 Matrix lower triangular scatterplots, and upper triangular correlations: (a) spatially
structured random effects (SSREs): sossre—singly-constrained origin, sdssre—singly-constrained
destination, dossre—doubly-constrained origin, and ddssre—doubly-constrained destination;
and (b) spatially unstructured random effects (SUREs): sossre—singly-constrained origin,
sdssre—singly-constrained destination, dossre—doubly-constrained origin, and ddssre—doubly-
constrained destination

flow sources as repeated measures for each origin, respectively. All of these
specifications posit a unique value for each origin/destination for the N D n2 flow
data.

Origin and destination balancing factors must be estimated simultaneously (not
sequentially) with the spatial filters, in order to preserve the row and column
constraining totals. For the current case study, the spatial filters represent moderate-
to-strong positive spatial autocorrelation .I � 0:70/, decrease overdispersion by a
third or more beyond the reduction attributable to the balancing factors (Table 3.1),
produce a modest increase in the pseudo-R2 value, induce a marked decrease in
the distance decay parameter (for example, the confidence interval does not overlap
with those for the other specifications), and comprise Q D 221 of the 576 candidate
eigenvectors32 of matrix W.

Figure 3.4 reports the scatterplots of observed versus predicted flows for the
unconstrained gravity model specification, and the doubly constrained gravity
model specification with and without accounting for origin-to-destination depen-

32Of note is that for n larger than about 100, current computer resources do not allow direct
calculation of the eigenvectors of W. In order to reduce computational intensity we, followed
Griffith (2009) to construct the spatial filter with a linear combination of Kronecker products of
pairs of origin and destination eigenvectors. The result of this adjustment is 242 D 576 candidate
eigenvectors identified as Kronecker products of the 24 eigenvectors with an I > 0.5 extracted from
matrix .I � � �0 n�1/ Wn .I � � �0 n�1/. With 66,049 observations, five covariates and an intercept
term, and 576 candidate eigenvectors, the numerical intensity of the problem solution becomes
feasible but is still high.
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Fig. 3.4 Scatterplots of observed (vertical axis) versus predicted (horizontal axis) flows; grey
lines denotes the line of perfect prediction. (a) Unconstrained model specification; (b) doubly
constrained model specification; and (c) doubly constrained model specification adjusting for
spatial dependence

dence in the flows. The scatterplots display a standard Poisson random variable plot
of increasing variance with increasing amount of flow, and indicate a sequentially
improved alignment of predicted with observed values. Imposing flow data matrix
row and/or column total constraints coupled with inclusion of a spatial filter
capturing spatial dependence between flows from locations neighbouring both the
origins and destinations during estimation, shrinks especially the larger predicted
flow values toward the perfectly straight trend line.
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Fig. 3.5 Separation decay effects for the various model specifications: unconstrained (thin line),
destination-constrained (dotted line), origin-constrained (short dash line), doubly-constrained
(long dash line), doubly-constrained adjusted for network spatial autocorrelation (thick line).
(a) geographical distance; (b) technological distance; and (c) intervening border

Figure 3.5 portrays the three individual separation effects. An expected finding
is that the geographical distance decay parameter estimate adjusted for spatial
dependence is less than in the model specifications that ignore spatial dependence in
flows. And, it differs substantially from its unadjusted counterparts [see Fig. 3.5a].
The pairs of values do not have overlapping confidence intervals (CIs), in part
because of the large sample size. The CI for the unconstrained case of spatial
interaction is (�0.4887, �0.4613), the origin constrained case (�0.8473, �0.8161),
the destination constrained case (�0.7695, �0.7384), the doubly constrained case
(�0.9249, �0.8934), and the spatially filtered doubly constrained case (�1.5507,
�1.4476). The technological separation decay parameter estimate exhibits little dif-
ference across the specifications [see Fig. 3.5b]. And, ignoring spatial dependence
appears to exaggerate border separation effects [see Fig. 3.5c]. Of note is that the
geographical distance parameter estimate has the largest spread across the model
specifications.
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3.7 Concluding Remarks

This paper suggests a number of interesting conclusions and implications for the
statistical analysis of origin-destination data. Foremost, and quite counterintuitive,
fixed effects and random effects are identical and equal the logarithm of the entropy
maximisation derived balancing factors, except for slight rounding/algorithm-
convergence errors. This finding is the outcome of an equivalency between assigning
a single fixed effects indicator variable to each origin/destination, on the one
hand, and estimating a single random effects (which is a mean) value for an ori-
gin/destination while treating the corresponding n destinations/origins as repeated
measures, on the other hand. This finding also indicates that the number of degrees
of freedom associated with the random effects term in this context may well be
closer to n � 1 than to two (i.e., for estimating the mean and the variance of a
random effects term) for the origins as well as the destination stochastic variable.

As with the unconstrained gravity model, adjusting for spatial dependence in
flows improves the performance of the constrained variants of the gravity model
in terms of both the pseudo-R2 and the deviance statistic, and has a substantial
impact on the separation parameter estimates that is in line with Curry (1972).
The cost in degrees of freedom is modest. On average, at least 90 degrees
of freedom are available for each parameter estimated in this case study. The
eigenvectors successfully capture origin-to-destination dependence in flows. Hence,
eigenvector spatial filtering provides a useful way of filtering spatial dependence in
the sample origin-destination data. A virtue of this approach is that standard model
specifications of the constrained gravity models and existing software can be applied
to origin-destination data samples. This proves especially useful when dealing with
flows taking the form of counts. However, the difficulty of computing eigenvalues
and eigenvectors when dealing with a large number of locations limits the ability of
filtering to capitalise on these advantages.

Appendix: Results for the Estimation of Singly Constrained
Random Effects Specifications

Because of the large dimensionality of the calculus problem, multivariate integration
struggles to properly estimate the random effects terms. Largest values appear to
introduce the greatest difficulties. Figure 3.6 A reveals that integration is completely
successful between the minimum and roughly 0.5 in our case study. Integration
is only partially successful beyond 0.5. Incorrectly calculated random effects
constitute about 10 % of the total number of random effects in this case study.
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Fig. 3.6 Scatterplot of (a) the origin log-balancing factor (vertical axis) versus the Poisson
regression origin location random effects (horizontal axis); (b) the destination log-balancing factor
(vertical axis) versus the Poisson regression destination location random effects (horizontal axis)
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