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2.1 Introduction

Spatial interaction models represent a class of models that are used for modeling
origin-destination flow data. The interest in such models is motivated by the need to
understand and explain the flows of tangible entities such as persons or commodities
or intangible ones such as capital, information or knowledge between regions. These
models attempt to explain interaction between origin and destination regions using
(i) origin-specific attributes characterizing the ability of the origins to generate
flows, (ii) destination-specific characteristics representing the attractiveness of
destinations, and (iii) variables that characterize the way spatial separation of origins
from destinations constrains or impedes the interaction. They implicitly assume that
using spatial separation variables such as distance between origin and destination
regions will eradicate the spatial dependence among the sample of spatial flows.

However, research dating back to the 1970s noted that spatial dependence or
autocorrelation might be intermingled in spatial interaction model specifications.
The idea was first put forth in a theoretical context by Curry (1972), with some
subsequent debate in Curry et al. (1975). Griffith and Jones (1980) documented the
presence of spatial dependence in conventional spatial interaction models. Despite

J.P. LeSage (�)
Department of Finance and Economics, McCoy College of Business Administration, Texas State
University, San Marcos, TX, USA
e-mail: james.lesage@txstate.edu

M.M. Fischer
Institute for Economic Geography and GIScience, Vienna University of Economics and Business,
Vienna, Austria

© Springer International Publishing Switzerland 2016
R. Patuelli, G. Arbia (eds.), Spatial Econometric Interaction Modelling, Advances
in Spatial Science, DOI 10.1007/978-3-319-30196-9_2

15

mailto:james.lesage@txstate.edu


16 J.P. LeSage and M.M. Fischer

this, most practitioners assume independence among observations and few have
used spatial lags of the dependent variable or disturbances in spatial interaction
models. Exceptions are Bolduc et al. (1992), and Fischer and Griffith (2008) who
rely on spatial lags of the disturbances, and LeSage and Pace (2008) who use spatial
lags of the dependent variable.

The focus of this chapter is on the log-normal version of the model. In
this context, we consider spatial econometric specifications that can be used
to accommodate two types of dependence scenarios, one involving endogenous
interaction and the other exogenous interaction. These model specifications replace
the conventional assumption of independence between origin-destination-flows with
formal approaches that allow for two different types of spatial dependence in flow
magnitudes.

Endogenous interaction reflects situations where there is reaction to feedback
regarding flow magnitudes from regions neighboring origin and destination regions.
This type of interaction can be modeled using specifications proposed by LeSage
and Pace (2008) who use spatial lags of the dependent variable to quantify the
magnitude and extent of feedback effects, hence the term endogenous interaction.
For example, commuters might react to congestion in regions near the origin or
destination of their commute to work by adjusting future location decisions. This
would of course produce changes in observed flows over time that need to be
considered in light of the steady state equilibria that would characterize future
period flows across the commuting network. Another example would be for the
case of international trade flows, where a tariff or other impediment to flows
might evoke a long-run response that changes the structure of flows across the
network of trading countries. Since we typically model flows using a cross-section
of observed flow magnitudes that have occurred during some type period (say the
past 5 years) to estimate our model parameters that describe responsiveness of flows
to characteristics of the regions and distance between regions, time is not explicit
in these cross-sectional models. However, interpretation of the model estimates
can take place with respect to comparative statics reflecting changes from one
equilibrium steady state to another.

Exogenous interaction represents a situation where spillovers arise from nearby
(or perhaps even distant) regions, and these need to be taken into account when
modeling observed variation in flows across the network of regions. In contrast
to endogenous interaction, these contextual effects do not generate reaction to the
spillovers, leading to a model specification that can be interpreted without consid-
ering changes in the long-run equilibrium state of the system of flows. Spillovers
arising from spatial dependence on the context in which commuters operate impact
observed variation in flows between regions and we can quantify these types of
impacts without reference to long-run equilibrium impacts on flows across the
network. As in the case of social networks (where the term contextual effects has
its origins), contextual effects are modeled using spatial lags of the explanatory
variables that represent characteristics of neighboring (or more generally connected)
regions, but not spatial lags of the dependent variable, hence the term exogenous
interaction.
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2.2 The Log-Normal (Independent) Spatial Interaction
Model

Spatial interaction models essentially assert a multiplicative relationship between
observed flows (reflecting the magnitude of interaction) and characteristics of origin
and destination regions, as well as measures of separation between the regions
(typically distance). As is typical of statistical model relationships, observations
on the dependent variable (observed flows between origin and destination dyads,
labeled i and j) are assumed independent of observed flows between other dyads,
say k and l (see, for example Sen and Smith 1995, and Fischer and Wang 2011).
Such a relationship is shown in (2.1).

Y.i; j/ D CX.i/X. j/S.i; j/; i; j D 1; : : : ; n (2.1)

where Y.i; j/ denotes flows from region i to region j, and C is a constant of
proportionality. X.i/ and X. j/ represent origin-specific and destination specific
characteristics, with S.i; j/ reflecting resistance or deterrence to flows between the
origin and destination, typically modeled using some form of deterrence function
reflecting spatial separation between locations i and j. At relatively large scales
of geographical inquiry this might be the great circle distance between regions,
measured in terms of the distance between their respective centroids. In other cases,
it might be transportation or travel time, cost of transportation, perceived travel
time or any other sensible measure such as political distance, language or cultural
distance measured in terms of nominal or categorical attributes.

The exact functional form of the three terms X.i/; X. j/ and S.i; j/ on the
right hand side of (2.1) is subject to varying degrees of conjecture. There is wide
agreement that the origin and destination factors are best given by power functions
X.i/ˇo and X. j/ˇd where X.i/ represents some appropriate variable measuring the
propulsiveness of origins and X. j/ attractiveness of destinations in a specific spatial
interaction context. The term gravity model is sometimes used in place of spatial
interaction because the relationship posits that the magnitude of flows (reflecting
interaction) between dyads i and j is directly proportional to size of the regions,
when X is a measure of size and the coefficients ˇo; ˇd take values of unity. In a
statistical modeling context, these coefficients are parameters to be estimated.

The deterrence function S.i; j/ also has a gravity interpretation such that inter-
action is inversely proportional to distance between dyads i and j. A number of
alternative more flexible specifications have been proposed in the literature (see
Fischer and Wang 2011), one being the power function:

S.i; j/ D ŒG.i; j/�� (2.2)

for an scalar (generalized) distance measure, G.i; j/, and negative parameter �

(reflecting the inverse relationship), with � treated as a parameter to be estimated.
The deterrence function reflects the way in which spatial separation or distance



18 J.P. LeSage and M.M. Fischer

constrains or impedes movement across space. In general, we will refer to this as
distance between an origin i and destination j, using G.i; j/.

LeSage and Pace (2008) use a matrix/vector representation of the log-
transformed expression in (2.1) yielding the log-normal spatial interaction model,
shown in (2.3)

y D ˛�n2 C Xoˇo C Xdˇd C g� C " (2.3)

which more closely resembles a conventional regression relationship. In (2.3), y is
an n2 � 1 vector of (logged) flows constructed by stacking columns of the observed
n � n flow matrix Y, where we assume destination-centric organization throughout
this chapter. This means that the i; jth element of the flow matrix represents a flow
from region i to j. Similarly, applying the log transformation to the n � n matrix of
distances G between the n destination and origin regions and stacking the columns
results in an n2 � 1 vector g of (logged) distances, with associated coefficient � .
The term " represents an n2 � 1 vector of constant variance, independent identically
distributed normal disturbances. LeSage and Pace (2008) show that

Xo D �n ˝ X (2.4)

Xd D X ˝ �n (2.5)

for the case of a destination-centric organization, where X is an n � R matrix of
characteristics for the n regions, ˝ denotes the Kronecker product and �n is an n � 1

vector of ones. We note that this represents a general case where the same set of
R explanatory variables is used for both origins and destinations. Thomas-Agnan
and LeSage (2014) point out this may be preferred to a specification where different
(subsets of the R) explanatory variables are used for origin and destinations, since
exclusion of important explanatory variables may result in omitted variable bias.
The scalar parameter � reflects the effect of the vector of logged (generalized)
distances g on flows which is—given the power function specification in (2.2)—
thought to be negative. The parameter ˛ denotes the intercept term.

The Kronecker product repeats the same values of the n regions in a strategic
way to create a matrix of characteristics associated with each origin (destination)
region, hence the use of the notation Xo D �n ˝ X; Xd D X ˝ �n to represent
these explanatory variables. Recognizing this has important implications for how we
interpret estimates of the parameter vectors ˇo; ˇd from these models. The literature
has interpreted ˇo as reflecting a typical regression partial derivative @y=@Xo,
showing how changes in origin region characteristics impact flows (on average
across the sample of n2 dyads as is typical of regression estimates). Of course,
this suggests we can change characteristics of origin regions while holding those of
destination regions constant, since partial derivatives reflect a ceteris paribus change
in Xo. It should be clear that a change in the rth characteristic of a single region i,
Xr

i , will produce changes in both Xo; Xd, since by definition �Xr
o D �n ˝.Xr C�Xr

i /,
and �Xr

d D .Xr C �Xr
i / ˝ �n.
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Intuitively, changes to the rth characteristic of a single region i will impact both
inflows and outflows to all other regions engaged or connected with region i as either
an origin or destination. For example, a (ceteris paribus) increase in employment
in region i would lead to inflows of commuters to this region (when viewed as a
destination) from (potentially) all other (origin) regions and a decrease in outflows
of commuters (when viewed as an origin) to (potentially) all other (destination)
regions. We will have more to say about this later.

There are some limitations to treating the spatial interaction relationship as
a regression relationship between the vector of n2 � 1 logged flows and log-
transformed explanatory variables. Regression relationships require the assumption
of constant variance independent normally distributed disturbances in order to rely
on conventional t-statistics for statistical inference regarding significance of the
explanatory variables. Normal disturbances imply normally distributed flows, which
is often not the case. Some flows reflect counts of migrants moving between regions,
and many flow matrices contain a large proportion of dyads reflecting zero flows.
These raise issues regarding the appropriate method for estimating regression-based
specifications of spatial interaction model relationships, but do not have an impact
on issues we will discuss pertaining to endogenous versus exogenous interaction
specifications, or interpretation of estimates from these relationships.

2.3 Exogenous Versus Endogenous Spatial Interaction
Specifications

We set forth spatial regression-based specifications for exogenous and endogenous
spatial interaction models, with a focus on interpretative considerations pertaining
to estimates from these two types of models.

2.3.1 An Endogenous Spatial Interaction Specification

As noted, this type of specification allows for flows from regions neighboring the
origin region i or destination region j as well as flows between regions neighboring
the origin and neighboring the destination, to exert an impact on the magnitude of
observed flows between dyad .i; j/. LeSage and Pace (2008) label dependence of
flows on regions neighboring the origin i as origin-based dependence, that on flows
neighboring the destination j as destination-based dependence, and that arising from
flows between regions neighboring the origin and neighboring the destination as
origin-destination based dependence.

The basic notion is that larger observed flows from an origin to a destination
region are accompanied by (i) larger flows from regions nearby the origin to the
destination region (origin-based dependence); (ii) larger flows from the origin region
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to regions neighboring the destination region (destination-based dependence), and
(iii) larger flows from neighbors to the origin to regions that are neighbors of the
destination (origin-to-destination-based dependence). This is accomplished using
the specification in (2.6).

Ay D ˛�n2 C Xoˇo C Xdˇd C g� C " (2.6)

A D .In2 � �oWo/.In2 � �dWd/ (2.7)

D .In2 � �oWo � �dWd C �o�dWdWo/ (2.8)

y D �oWoy C �dWdy C �wWwy C ˛�n2 C Xoˇo C Xdˇd C g� C ": (2.9)

Some things to note regarding this specification. The matrix product Ww D
WdWo can be written as W ˝ W, where W is an n � n spatial weight matrix.
While matrix multiplication produces the term �w D ��o�d, there is no need to
impose the implied restriction during estimation of the model. The resulting model
statement in (2.9) captures origin-based dependence with the spatial lag term Woy,
destination-based dependence with Wdy, and origin-destination-based dependence
using Wwy. The associated parameters �o; �d; �w reflect the relative strength of these
three different dependencies.

This specification posits a simultaneous or endogenous response relationship
between the variation in the dependent variable reflecting flows between all
dyads (y) and flows between other regions (specifically Woy; Wdy; Wwy) within the
observed network of interregional and intraregional flows.1 This has implications
for how we interpret the coefficient estimates from this type of specification, with
details set forth in LeSage and Thomas-Agnan (2014). It also has implications for
how we must estimate the parameters ˇo; ˇd; �; �o; �d; �w, with details provided in
LeSage and Pace (2008, 2009, Chapter 8). We will discuss interpretation issues in a
later section. This discussion takes the parameter estimates as given, and presumes
these reflect valid estimates produced using appropriate methods (either maximum
likelihood or Bayesian Markov Chain Monte Carlo procedures).

2.3.1.1 A Theoretical Motivation for Endogenous Interaction

A criticism that might be leveled at the endogenous interaction specification in
(2.9) is that this appears to arise from mere matrix algebra manipulations, rather
than economic theory. We present a theoretical motivation taken from LeSage and
Thomas-Agnan (2014) based on the notion that location decisions of commuters are
influenced by behavior of other commuters in previous periods.

They argue that commuting residents might be influenced by nearby flows
(congestion) resulting from past location decisions of other residents in neighboring

1Intraregional flows are recorded on the main diagonal of the flow matrix.
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regions. It might also be the case that firms are influenced by congestion arising
from location decisions of nearby firms in the past.

They formally express this type of dyadic O-D flow dependence of yt at time t on
past flows yt�1 as:

yt D Myt�1 C Zı C "t (2.10)

M D .�dWd C �oWo C �wWw/

Z D �
Xd Xo g

�

ı D �
ˇd ˇo �

�0

"t � N.0; �2In/

where underlying characteristics of the regions X remain relatively fixed over
time, allowing us to write Z without a time subscript. Since the characteristics
of regions in flow models often represent size of regions, this assumption seems
(approximately) valid.

Expression (2.10) indicates that (commuting-to-work) flows between O-D dyads
at time t depend on past period flows observed by residents and firms in regions
neighboring their origin (Woyt�1) and destination regions (Wdyt�1), as well as
flows between regions neighboring the origin to regions neighboring the destination
(Wwyt�1). This is close to the endogenous interaction specification from (2.9), but
relies on a time lag or past period flows, not current period as we have in our cross-
sectional model.

LeSage and Thomas-Agnan (2014) show that we can interpret the endogenous
spatial interaction model as the outcome or expectation of a long-run equilibrium or
steady state relationship as time q ! 1, which is shown in (2.11).

limq!1E.ytCq/ D .In2 � M/�1Zı

D .In2 � �dWd � �oWo � �wWw/�1Zı: (2.11)

Of course, this is the expectation for the data generating process of the spatial
autoregressive interaction model given in (2.9).

From a theoretical perspective, changes in transportation infrastructure (improve-
ments in the road network) that connects commuters between regions would be
expected to result in endogenous interaction of the type captured by this model spec-
ification. We would expect to see diffusion of changes in commuting flows taking
place over space, that impact flows in neighboring regions with faster commuting
times, regions that neighbor these regions, and so on. These global spillover impacts
are what characterize endogenous interaction, and they presumably lead to a new
long-run steady state equilibrium in residents’ choices regarding routes used and
firms’ choices about location.

In general shared resources are often thought to be the basis for global spillover
impacts and the associated diffusion of these impacts to neighbors, neighbors to
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neighbors, and so on. The highway network that passes through many regions would
represent one type of resource shared by many regions. Changes taking place on
one segment of the highway would have (potentially) far reaching global spillover
impacts.

2.3.2 An Exogenous Spatial Interaction Specification

There are other modeling situations where endogenous interaction is not a likely
phenomenon, but spatial spillover impacts such as congestion in neighboring
regions is of interest when modeling variation in flows across the network of regions.
Theoretical aspects of the modeling circumstance would provide one approach
to distinguishing which type of specification is most appropriate for any given
application.

Exogenous interaction specifications are characterized by spatial lags of the
exogenous variables Xo; Xd, leading to a model

y D ˛�n2 C Xoˇo C Xdˇd C g� C WoXo�o C WdXd�d C ": (2.12)

It should be clear that no endogenous relationship between flows (y) and flows
from neighboring regions exists in this specification. Instead, we have a situation
where changes in characteristics of regions neighboring the origin (WoXo) and
regions neighboring the destination (WdXd) help explain variation in flows across
dyads.

A change in characteristics of neighboring regions, for example, an increase in
the number of retired persons (non-commuters) locating in regions that neighbor
commuting residents located at origin i .WoXo) might influence the magnitude
of flows between dyads .i; j/. Similarly, retirees locating in regions that neighbor
commuters’ destination regions j .WdXd) might influence the magnitude of flows
between dyads .i; j/.

A distinction between this specification and the endogenous specification is that
the focus here is on the local spillover impacts on flows arising from changes in
characteristics of regions neighboring the origin or destination region. There is no
implication that flows respond to feedback impacts associated with the increased
number of retirees locating in regions neighboring the origin or destination, just
spatial spillover impacts on the pattern of flows between origin and destination
dyads due to changes in the characteristics of (say immediately) neighboring
regions. Global spillovers imply diffusion over space, whereas local spillovers do
not imply diffusion over space that impacts neighbors, neighbors to neighbors, and
so on. Reduced congestion arising from retired persons (non-commuters) locating
in a specific region would likely impact commuters from neighboring regions, but
the impact would not extend to more distant neighboring regions. The number of
non-commuters located in any one region does not reflect a shared resource, and
would be expected to have only local spillover impacts.
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Another consideration useful in distinguishing between these two types of
specifications would be permanent and predictable events versus temporary or
unpredictable events. For example, unpredictable events such as traffic delays due to
construction or accidents in neighboring regions would not be expected to produce
endogenous interaction effects because of the unpredictability of such events. It
should be noted that congestion effects arising from unpredictable events such
as these may create local spillover congestion that spans many regions, so we
should not think of local spillovers as impacting only nearby/neighboring regions.
We still label these local spillover effects because they are not associated with
endogenous interaction or feedback effects whereby commuters adjust their travel
routes. However, consistently higher accident rates in a group of regions might
allow commuters to predict traffic delays resulting in endogenous reactions such that
commuters change their routes to avoid such regions. Observed adjustments in travel
routes by many commuters with widely varying origins and destinations would of
course appear as a global spillover effect having impacts on regions neighboring the
construction or accident zone, neighbors to these regions, neighbors to the neighbors
of these regions, and so on. This of course would be reflected in the new long-run
steady state equilibrium commuting flows.

2.4 Interpreting Estimates From Spatial Interaction
Specifications

In Sect. 2.4.1 we consider how changes in the characteristics of regions impact flows
in the case of the conventional (non-spatial) interaction model from (2.3). This
discussion draws heavily on ideas set forth by LeSage and Thomas-Agnan (2014).
They point out that changes in the rth characteristic of region i, �Xr

i , will produce
changes in flows into region i from (potentially) .n � 1/ other regions, as well as
flows out of region i to (potentially) .n � 1/ other regions. This can be seen by
noting that the matrices Xd D �n ˝ X and Xo D X ˝ �n repeat Xr

i n times. Unlike the
situation in conventional regression models where a change �Xr

i leads to changes in
only observation i of the dependent variable, yi, we cannot change single elements
of Xr

d; Xr
o, nor should we interpret the coefficient estimate Ǒ

o; Ǒ
d as reflecting the

impact of this change (averaged over all observations) on a single element of the
dependent variable vector y.

The fact that changes in characteristics of a single region give rise to numerous
responses in the flow matrix rather than changes in a single observation (dyad) of
the dependent variable (as in traditional regression) creates a challenge for drawing
inferences about the partial derivative impacts of changing regional characteristics
on flows. To address this challenge, Sect. 2.4.2 proposes scalar summary measures
for the impact of changing regional characteristics on flows, that collapse the many
changes in flows to a single number. These scalars average over the many changes
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that arise in the flow matrix from changing characteristics of the regions, as is typical
of the way in which we interpret regression models.

In Sect. 2.4.2 we describe how LeSage and Thomas-Agnan (2014) extend
the scalar summary approach to the case of an endogenous spatial interaction
specification from (2.9). In this model specification, changes in the characteristics
of a single region i can impact flows into and out of region i to its 2.n�1/ dyad .i; j/
partners (as described above), but also flows into and out of regions that neighbor
the origin i and destination j regions that are not part of the dyad .i; j/. This arises
from the spatial dependence part of the spatial autoregressive interaction model. An
implication is that we should not interpret the coefficient estimates ˇd; ˇo as if they
were regression estimates that reflect partial derivative changes in the dependent
variable associated with changes in the explanatory variables.

Section 2.4.3 adopts the scalar summary approach to the case of the exogenous
spatial interaction specification introduced here, which reflects new ideas not
previously considered in the literature. However, we show that interpretation of
estimates from these models reflects a special case of the scalar summary approach
set forth by LeSage and Thomas-Agnan (2014).

2.4.1 Interpreting Estimates from Non-Spatial Interaction
Specifications

Before proceeding to interpretation of the model estimates, we adopt an approach
suggested by LeSage and Pace (2009, p. 223) that introduces a separate model
for within region (intraregional) flows, which tend to have large values relative to
between region flows. This is done by creating an intercept for flows associated with
the main diagonal of the flow matrix (intraregional flows) that we label Q̨ , as well
as a set of explanatory variables for these flows that we label Xi. The explanatory
variables Xd; Xo are adjusted to have zero values for main diagonal elements of the
flow matrix and the new variables matrix Xi has associated coefficients that we label
ˇi. This set of explanatory variables will capture variation in intraregional flows.
An adjusted version of (2.3) is shown in (2.13) reflecting these modifications to the
model, where vec is the operator that converts a matrix to a vector by stacking its
columns.

y D ˛Q�n2 C Q̨vec.In/ C QXoˇo C QXdˇd C Xiˇi C g� C " (2.13)

We use Q�n2 D �n2 � vec.In/; QXo D Xo � Xi; QXd D Xd � Xi to reflect the adjustment
made to the original intercept and explanatory variables matrices by setting these
elements to zero. The matrix Xi contains non-zero values only for dyads where the
origin equals the destination (i.e., intraregional flows).
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We also consider the simplest possible spatial configuration of the regions, which
positions these in a straight line, with a single neighbor to the left and right.2 For
simplicity, we work with a single vector of explanatory variables in the following
to avoid having to designate working with a specific explanatory variable. A scalar
change in the characteristics of the third region (�X3) will produce an n � n matrix
of changes in flows (�Y), shown in (2.14).

�Y=�X3 D

0

B
B
B
BB
B
B
B
BB
B
@

0:0 0:0 ˇo 0:0 0:0 0:0 0:0 0:0

0:0 0:0 ˇo 0:0 0:0 0:0 0:0 0:0

ˇd ˇd ˇi ˇd ˇd ˇd ˇd ˇd

0:0 0:0 ˇo 0:0 0:0 0:0 0:0 0:0

0:0 0:0 ˇo 0:0 0:0 0:0 0:0 0:0

0:0 0:0 ˇo 0:0 0:0 0:0 0:0 0:0

0:0 0:0 ˇo 0:0 0:0 0:0 0:0 0:0

0:0 0:0 ˇo 0:0 0:0 0:0 0:0 0:0

1

C
C
C
CC
C
C
C
CC
C
A

(2.14)

The role of the independence assumption is clear in (2.14), where we see from
column 3 that the change of outflows from region 3 to all other regions equals ˇo,
and similarly, row 3 exhibits changes in inflows to region 3, taking the value of the
coefficient ˇd. The diagonal (3,3) element reflects a response equal to ˇi, which
reflects the change in intraregional flows arising from the change in X3. We have
only 2.n � 1/ non-zero changes in flows by virtue of the independence assumption.
All changes involving flows in- and out-of regions other than those in the dyads
involving region 3 are zero.

This result suggests that for the conventional gravity model, interpreting ˇo

as the partial derivative impact on flows arising from changes in origin-specific
characteristics (Xo) is not too bad, since the only exception is the coefficient ˇi

in the (3,3) element. The partial derivative for changes in the ith observation
(i ¤ 3) would of course look similar to the matrix in (2.14), so averaging over
changes to all observations would produce an approximately correct result when
interpreting ˇo; ˇd as if they were simply regression coefficients. However, we will
see that this reasoning does not apply to the spatial variants of the interaction model
specification, a point made by Thomas-Agnan and LeSage (2014).

The approach taken by LeSage and Thomas-Agnan (2014) to producing scalar
summary measures of the impacts arising from changes in characteristics of
the regions involves averaging over the cumulative flow impacts associated with
changes in all regions, i D 1; : : : ; n. Scalar summaries are consistent with how
coefficient estimates for the parameters in a conventional regression model are
interpreted, and cumulating the impacts makes intuitive sense in our flow setting.

2The west most region at the beginning of the line of regions has a single neighbor to the right, and
the east most region at the end of the line has a single neighbor to the left.
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They calculate scalar summaries by expressing the partial derivatives as shown in
(2.15), where the n � n matrices of changes in (logged) flows arising from changing
the rth explanatory variable Xr

i are stored in the n � n matrices Yi.3

TE D

0

B
B
B
@

@Y1=@Xr
1

@Y2=@Xr
2

:::

@Yn=@Xr
n

1

C
C
C
A

D

0

B
B
B
@

QJd1ˇ
r
d C QJo1ˇ

r
o C J{1ˇ

r
iQJd2ˇ

r
d C QJo2ˇ

r
o C J{2ˇ

r
i

:::
QJdnˇ

r
d C QJonˇr

o C J{nˇ
r
i

1

C
C
C
A

(2.15)

In (2.15), Jdi is an n � n matrix of zeros with the ith row equal to �0nˇd, and Joi

is an n � n matrix of zeros with the ith column equal to �nˇo. The matrix J{i is
an n � n matrix of zeros with a one in the i; i row and column position. We could
express QJdi D Jdi � J{i, and also QJoi D Joi � J{i. We have n sets of n � n outcomes,
(one for each change in Xr

i ; i D 1; : : : ; n) resulting in an n2 � n matrix of partial
derivatives reflecting the total effect on flows from changing the rth characteristic
of all n regions, hence the label TE.

The TE consists of origin effects OE =
� QJo1ˇ

r
o; : : : ; QJonˇ

r
o

�0
, destination effects

DE D � QJd1ˇ
r
d; : : : ; QJdnˇr

d

�0
, and intraregional effects IE D �

J{1ˇ
r
i ; : : : ; J{nˇr

i

�0
.

The total effects on flows can be cumulated and then averaged to produce a
scalar summary measure of the total impact of changes in the typical region’s
rth characteristic. This takes the form: te D .1=n2/�0

n2 � TE � �n, where we follow
LeSage and Thomas-Agnan (2014) and use lower case te to represent the scalar
summary measure of the n2 � n matrix TE. This scalar summary is consistent
with the way that regression coefficient estimates are interpreted as averaging over
changes in all observations of an explanatory variable. We can also produce scalar
summary estimates of the origin effects (oe D .1=n2/�0

n2 �OE � �n), destination effects
(de D .1=n2/�0

n2 � DE � �n), and intraregional effects (ie D .1=n2/�0
n2 � IE � �n).

To illustrate use of these formulas, we provide a numerical illustration based on
values of ˇo D �0:5; ˇd D 1; ˇi D 0:5 in Table 2.1. The scalar summaries sum to
the scalar summary total effect. In addition to the scalar summary effects estimates,
we present the parameters ˇo; ˇd whose estimates are typically interpreted as origin
and destination effects, and whose sum is considered the total effect arising from a
change in the rth explanatory variable (Table 2.1).

As Thomas-Agnan and LeSage (2014) point out, the results differ slightly from
the conventional interpretation of non-spatial gravity models where the coefficient
ˇo is interpreted as a partial derivative reflecting the impact of changes in origin
characteristics and ˇd that associated with changing destination characteristics.
Although the conventional approach that uses the coefficient sum ˇo C ˇd as a
measure of the total effect on flows arising from changes in origin and destination

3Our expressions differ slightly from those of LeSage and Thomas-Agnan (2014) because of our
modification of the model specification to incorporate Xi variables to model intraregional variation
in flows.
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Table 2.1 Scalar summary measures of effects for the non-spatial model from a change in the
(single) rth characteristic Xr averaged over all regions

Scalar summary Correct Conventional interpretation

Origin effects �0:4375 ˇo D �0:5

Destination effects 0:8750 ˇd D 1:0

Intraregional effects 0:0625

Total effects 0:5000 ˇo C ˇd D 0:5

Table 2.2 Scalar summary measures of effects for the exogenous spatial interaction model from
a change in the (single) rth characteristic Xr averaged over all regions

Scalar summary Correct Conventional interpretation

Origin effects �0:4375 ˇo D �0:5

Destination effects 0:8750 ˇd D 1:0

Intraregional effects 0:0625

Network origin effects �0:2188 �o D �0:25

Network destination effects 0:4375 �d D 0:5

Total effects 0:7188 ˇo C ˇd C �o C �d D 0:75

characteristics would produce a correct inference, the appropriate decomposition
into origin, destination and intraregional effects has been wrong in the historical
literature.

2.4.2 Interpreting Estimates from Exogenous Interaction
Specifications

The exogenous interaction specification extended to include an intraregional specific
intercept and set of explanatory variables is shown in (2.16), where we have added
origin and destination specific spatial lags of the (adjusted) explanatory variables
matrices.

y D ˛Q�n2 C Q̨vec.In/ C QXoˇo C QXdˇd C Xiˇi C Wo QXo�o C Wd QXd�d C g� C ": (2.16)

Changes in the rth explanatory variable now result in two additional terms in the
partial derivatives expressions shown in (2.17). The new terms associated with the
spatial lags of the explanatory variables reflect (local) spatial spillovers arising from
neighbors to the origin and neighbors to the destination regions.
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A similar approach to decomposing the total effects can be used along with
conversion of these to scalar summary estimates. In this case we have: te D
oe C de C ie C noe C nde, where the new terms: noe and nde are labeled
network origin effects and network destination effects. These are calculated using:
(noe D .1=n2/�0

n2 � NOE � �n), destination effects (nde D .1=n2/�0
n2 � NDE � �n), where:

NOE D � QJo1�
r
o; : : : ; QJon� r

o

�0
, and NDE D � QJd1�

r
d; : : : ; QJdn� r

d

�0
.

Intuitively, these new scalar summary measures of the origin- and destination-
specific spatial spillover effects reflect the impact of changes in characteristics of
regions neighboring the origin and destination on flows between the typical dyad.
We extend our previous example, using �o D �0:25; �d D 0:5 in Table 2.2 to illus-
trate the difference between using ˇo; ˇd; �o; �d as if these were partial derivatives.

In contrast to the Table 2.1 non-spatial case, the total effects calculated in
Table 2.2 by summing up coefficients ˇo C ˇd C �o C �d D 0:75 are not equal to
the true total effects. We also see discrepancies between the true origin, destination,
network origin and network destination effects (based on actual partial derivatives)
and those from simply interpreting the coefficient estimates as if they were partial
derivatives.

2.4.3 Interpreting Estimates from Endogenous Interaction
Specifications

The endogenous interaction specification extended to include an intraregional
specific intercept and set of explanatory variables is shown in (2.18), where we
have added origin and destination specific spatial lags of the dependent variable to
capture origin, destination and origin-destination dependence of the type proposed
by LeSage and Pace (2008).

y D �oWoy C �dWdy C �wWwy C ˛Q�n2 C Q̨vec.In/ C QXoˇo C QXdˇd

CXiˇi C g� C ": (2.18)

Working with the expression for the data generating process of this model,
LeSage and Thomas-Agnan (2014) show that the partial derivatives @y=@Xr0 , take
the form shown in (2.19).
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These represent an extension of the partial derivatives from the non-spatial
model, where in this endogenous spatial interaction specification, the n2 � n2 matrix
inverse: A�1 D .In2 ��oWo��dWd��wWw/�1, pre-multiplies the non-spatial effects.
(Of course, in the non-spatial case �o D �d D �w D 0.) A similar decomposition
of the total effects can be applied to produce origin effects (OE), destination effects
(DE), intraregional effects (IE) and network effects (NE). The network effects reflect
spatial spillovers from: neighbors to the origin, neighbors to the destination and
neighbors to the origin to neighbors of the destination.

As an illustration of the nature of these partial derivatives, consider the example
shown in (2.20), where we consider a change to the single observation X3, based on
the same numerical values set forth in the previous section for ˇo D �0:5; ˇd D
1:0; ˇi D 0:5, while setting �o D 0:5; �d D 0:4 and �w D ��o�d D �0:2.4
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(2.20)

As LeSage and Thomas-Agnan (2014) point out, the spatial autoregressive
specification results in the presence of network spillover effects, shown by the non-
zero elements in rows and columns other than 3. This means that a change in say the
attractiveness of region 3 impacts flows throughout the network. This arises because
the spatial autoregressive model specification allows for global spillovers which can
be viewed as diffusion throughout the network of the increased attractiveness of
region 3.

Of course, the largest network spillover impacts still tend to reside in the third
row and column, since the change in attractiveness of region 3 has the largest impact
on flows involving region 3 in the O-D dyads. The magnitude of impact decreases as
we move further from the (3,3) element, with the non-linear nature of this decay of
influence determined by a number of factors. Specifically, the matrix W plays a role,
as well as the spatial dependence parameters �o; �d; �w. For this simple example,
where regions are configured to lie in a line, moving to row and column elements
further from the (3,3) position should reflect more distant neighbors. An implication
of the increase in paths through which the flows must pass to reach the (8,8) and
(1,1) dyads in the network is that smaller network effects arise in the flow matrix for
these dyads.

4This example is identical to Thomas-Agnan and LeSage (2014).
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Table 2.3 Scalar summary
measures of effects for the
endogenous spatial
interaction model from a
change in the (single) rth
characteristic Xr averaged
over all regions

Scalar summary Correct Conventional interpretation

Origin effects �0:1817 ˇo D �0:5

Destination effects 0:3725 ˇd D 1:0

Intraregional effects 0:0267

Network effects �0:1450

Total effects 0:0725 ˇo C ˇd D 0:5

One point is that we follow LeSage and Thomas-Agnan (2014) who calculate
only a single scalar summary measure of the network effects, rather than attempt to
make distinctions between origin- and destination-specific network effects. Because
of the non-linearity and diffusion of effects evident in the matrix shown in (2.20), it
seems prudent to focus on a single measure of spatial spillovers falling on all regions
in the network. This is of course in contrast to the exogenous spatial interaction
specification where it is a simple matter to produce a decomposition that separates
network origin and network destination effects.

We extend our previous example, using the same values: ˇo D �0:5; ˇd D 1;

ˇi D 0:5; �o D 0:5; �d D 0:4; �w D �0:2 to produce correct partial derivatives.
These are contrasted with the typical interpretation of ˇo; ˇd as if these were partial
derivatives in Table 2.3.

For the case of an endogenous spatial interaction specification, we see little
relationship between the coefficients ˇo; ˇd and the true origin and destination
effects. This is similar to the case of conventional spatial regression models where
practitioners have historically misinterpreted these coefficient estimates as if they
represented partial derivatives (see LeSage and Pace 2008). For an application
involving commuting flows between regions in Toulouse, France see LeSage and
Thomas-Agnan (2014), who provide an interpretative discussion of the various
effects estimates and inferences associated with the endogenous spatial interaction
model. In the next section we provide an illustration of estimates and inferences for
the case of the exogenous spatial interaction model that we have proposed here.

2.5 An Applied Illustration Involving Movement of Teachers
Between School Districts

We use flows of teachers between 67 county-level school district, in Florida over the
period 1995 to 2004. The flows were constructed by tracing the location of 102,327
teachers in the system during 1995, who were still in the system during 2004. We
ignore teachers that left the system and those that entered during this time period.
The impact of this is an issue to be addressed in future work.

One way to motivate dependence is to view the county-level school districts
as representing a network system. Changes by a single school district that affect
working conditions, salary or employment requirements of teachers will have an
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impact on the own-district as well as other nearby districts that can be viewed as
nodes in the statewide network. The movement of teachers may be to and from
other schools within the own-county or district or they may be between districts.5

In the empirical trade literature, Poisson pseudo-maximum likelihood estimation
methods have become popular as a way of dealing with several econometric issues
that arise when modeling origin-destination flows [e.g., Santos Silva and Tenreyro
2006, 2010, 2011 and Gourieroux et al. 1984]. We rely on our exogenous spatial
interaction specification that allows for spatial dependence between flows from
nearby regions/school districts.

One econometric issue that arises when modeling inter-district flows of teachers
is that these reflect ‘count data’, or observations taking discrete values or zero
magnitudes in the case where no flows between dyads reflecting districts i and
j occur. This suggests a Poisson spatial interaction model is most appropriate.
There are several econometric advantages to this model specification along with
Poisson pseudo-maximum likelihood (PPML) estimation procedures over log-
normal specifications that either delete zero flows or modify the dependent variable
using ln.y C 1/ to accommodate the log transformation of the multiplicative gravity
model. One is that the coefficients on logged explanatory variables (X) in the
(exponential) relationship involving non-logged flow magnitudes as the dependent
variable (y) can be interpreted as the elasticity of the conditional expectation of
yi with respect to Xi. Since Jensen’s inequality implies that E.lny/ ¤ lnE.y/,
heteroscedasticity in log-linear regression gravity models can lead to inconsistent
elasticity estimates, which is not a problem with PPML estimates.6

In addition to dealing with heteroscedasticity, the Poisson gravity model along
with PPML estimation procedures does not require taking logs of the flows, to avoid
the problem of (logs) in the presence of zero flows. With regard to the zero problem,
our sample of flows between 67 counties/school districts contains 1,266 non-zero
flow magnitudes out of a possible 67 � 67 D 4,489 flows between the 67 districts.
This reflects 28.2 % non-zeros and 71.8 % zeros. Although the prevalence of zero
values has an adverse impact on the PPML estimates, Santos Silva and Tenreyro
(2011) point out that the PPML model works better than alternative approaches
even in the face of a large proportion of zero flow values.

This allows us to make a point that interpretative considerations discussed are
based on coefficient estimates for the parameters ˇo; ˇd; �o; �d which should be
produced using a valid estimation approach. Our derivations hold true for any valid
estimates of these parameters.

Characteristics used are shown in Table 2.4, where values for these variables are
for the year 1995 in an attempt to avoid a simultaneity problem. Use of the (log)
number of teachers (in the origin and destination districts) as explanatory variables
captures the basic notion behind gravity models where the magnitude of district

5Florida has county-level districts so that districts and counties coincide in our analysis.
6Santos Silva and Tenreyro (2006) note there is strong evidence that disturbances from log-linear
gravity models are heteroscedastic.
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Table 2.4 District-level variables used in the model

Variable name Description

y Within and between district teacher flows 1995–2003

Teachers Log (count of teachers in each district in 1995)

Salary Log (average teacher salary in 1995)

Poverty Percentage of students receiving free lunches in 1995

Distance Log (distance between origin and destination district centroids)

interaction (in our case teacher movement) is directly proportional to the product
of district size measures (in our case the (log) of the number of teachers in origin
and destination school districts).7 Direct proportionality would result in an elasticity
coefficient for these two variables equal to one.

In addition to the origin and destination size variables, two other explanatory
variables were used, one reflecting a teacher characteristic, Salary, and the other
a student characteristic, Poverty. The decision to use only two other explanatory
variables was for the sake of simplicity in our illustrative example.

The traditional gravity model posits that flows are inversely proportional to
distance, so we would expect a coefficient of minus one on the logged distance
variable. Use of the conventional log transformation of the number of teachers,
salary, percentage of students in poverty and distance variables allows us to interpret
these estimates as elasticities. We adopt the approach that introduces a separate
model for within district flows of teachers, which tend to have large values relative
to between district flows.

As argued in the previous section, the coefficients in Table 2.5 should not be
interpreted as if they represent the true effects associated with changes in the
explanatory variables of the model. Table 2.6 shows the effects estimates that
represent actual partial derivatives showing how flows respond (in elasticity terms
on average over the sample) to changes in the number of teachers, salary of teachers
and poverty status of students in origin and destination districts, the own-district and
neighboring districts.

We can use the estimates in Table 2.5 to make the point that a non-spatial inter-
action specification would suffer from omitted variables bias due to its exclusion
of the spatial lags WoXo; WdXd variables, since all but one of these variables (Wo

teachers_o) are significantly different from zero at the 99 % level.
From Table 2.6, we see that larger origin and destination districts (measured by

the number of teachers in these districts) leads to an increase in flows. Given that the

7In the case of interregional commodity flows, the measure of regional size is typically gross
regional product or regional income. The model predicts more interaction in the form of commodity
flows between regions of similar (economic) size than regions dissimilar in size. For the case of
migration flows, population would be a logical measure of regional size, and in other contexts such
as ours involving teacher flows between school districts, use of the number of teachers in each
district seems a reasonable measure of district size.
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Table 2.5 Coefficient
estimates from the PPML
model

Variable Coefficient t-Statistic (p-level)

Constant �1:2738 �0:429 .0:6678/

�i 0:1476 0:231 .0:8170/

Teachers_d 0:6508 41:880 .0:0000/

Salary_d 0:0596 0:267 .0:7895/

Poverty_d �0:5153 �7:576 .0:0000/

Teachers_o 0:7397 48:581 .0:0000/

Salary_o �0:2552 �1:154 .0:2482/

Poverty_o 0:6659 8:648 .0:0000/

Teachers_i 0:9994 185:511 .0:0000/

Salary_i 0:4653 7:432 .0:0000/

Poverty_i �0:1638 �7:025 .0:0000/

Wd teachers_d 0:0568 2:584 .0:0098/

Wd salary_d �0:2056 �6:598 .0:0000/

Wd poverty_d 0:3304 3:618 .0:0003/

Wo teachers_o �0:0341 �1:550 .0:1210/

Wo salary_o �0:3711 �12:236 .0:0000/

Wo poverty_o �0:2656 �2:928 .0:0034/

Distance �0:6220 �26:177 .0:0000/

effects estimates reflect elasticity responses of flows, they point to flows as having a
slightly less than proportional relationship with size.

The intradistrict effects of size are positive and small, but statistically significant,
suggesting more intradistrict flows for larger districts, which makes intuitive sense.
Spatial spillovers from larger districts neighboring the origin district (network origin
effects in the table) are negative, but not significant (using the 0.10 level), while
larger districts neighboring the destination district are positive and significant.
This suggests a competition effect associated with larger neighboring districts, that
produces more inflows to destination regions from these larger neighboring districts.
The response of teacher flows to district size overall (the total effect) is such that a
10 % increase in the size of the typical district would produce 14 % more flows
across the entire network. This includes a small (0.15 %) significant increase in
within district flows, a 0.562 % increase of inflows to destination districts districts
from neighbors, as well as a 7.28 % increase in outflows from origins and a 6.41 %
increase of inflows to destinations.

Teacher salaries (logged) exhibit insignificant origin and destination effects,
suggesting these do not impact teacher decisions to move from one school district
to another. Higher salaries have a small but significant effect on within district
movement of teachers. This is not surprising given that higher salaries are positively
correlated with years of experience. The seniority system gives teachers with more
years of service preference in filling vacant jobs in other schools within the same
district. The origin spillover effects of teacher salary are positive, suggesting a
competitive effect where higher salaries in neighboring districts increase outflows
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Table 2.6 Effects estimates
from the exogenous spatial
interaction model

Variable Coefficient t-Statistic (p-level)

Origin effects

Teachers 0:7286 48:1762 .0:0000/

Salary �0:2529 �1:1592 .0:2464/

Poverty 0:6572 8:6807 .0:0000/

Destination effects

Teachers 0:6410 42:8701 .0:0000/

Salary 0:0617 0:2789 .0:7803/

Poverty �0:5106 �7:2483 .0:0000/

Intradistrict effects

Teachers 0:0149 188:6622 .0:0000/

Salary 0:0069 7:3095 .0:0000/

Poverty �0:0024 �7:4486 .0:0000/

Network origin effects

Teachers �0:0326 �1:4976 .0:1074/

Salary 0:3659 12:1361 .0:0000/

Poverty �0:2590 �2:8766 .0:0040/

Network destination effects

Teachers 0:0562 2:6508 .0:0073/

Salary �0:2036 �6:6438 .0:0000/

Poverty 0:3275 3:7598 .0:0002/

Total effects

Teachers 1:4081 36:8098 .0:0000/

Salary 0:6611 2:4396 .0:0147/

Poverty 0:2126 1:3473 .0:1779/

from origin districts. Destination spillover effects of salary are negative, suggesting
a competitive effect of districts with higher salaries that neighbor the destination
decreasing inflows. Given that these effects estimates are elasticities, we can say that
the positive impact of origin spillover effects are more important than the negative
impact of destination spillover effects.

For the poverty variable, an increase in the (logged) proportion of students in
poverty would increase outflows from the origin district, and decrease inflows to a
destination district, which makes intuitive sense. The effect of poverty on within
district teacher flows is small and negative, but significant. The effect of more
poverty in districts neighboring the origin is negative and significant, meaning that
inflows from neighboring districts would be smaller in this case. This suggests
a teacher retention effect for districts surrounded by those with more students
in poverty. The effect of more poverty in districts neighboring the destination is
positive and significant, suggesting more inflows to destination districts having
neighbors with more students in poverty. This suggests that teachers are more likely
to move to a neighboring district from surrounding districts with more students in
poverty, a competition effect. The retention and competition effects of poverty in
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neighboring school districts are reasonably large in magnitude, taking values nearly
half the magnitude of origin and destination effects for the poverty variable. It is
interesting that the total effect of students in poverty is not significantly different
from zero. This suggests that the retention and competition effects are offsetting.
One way to view this would be that teachers are needed to fill posts in all schools
including those with high proportions of students in poverty.

2.6 Conclusion

We reiterate the point made by LeSage and Thomas-Agnan (2014) and Thomas-
Agnan and LeSage (2014) that the structure of explanatory variables used in non-
spatial and spatial interaction models is such that we cannot interpret coefficients
associated with origin explanatory variables (that we label Xo here) and coefficients
from destination explanatory variables (that we label Xd here) as reflecting typical
regression partial derivatives @y=@Xo and @y=@Xd, showing how changes in origin
(destination) region characteristics impact flows (on average across the sample of
n2 dyads as is typical of regression estimates). This is because we cannot change
characteristics of origin (destination) regions while holding those of destination
(origin) regions constant, which is typical of how partial derivatives are viewed.
It should be clear that a change in the rth characteristic of a single region i, Xr

i , will
produce changes in both Xo; Xd, since by definition �Xr

o D �n ˝ .Xr C �Xr
i /, and

�Xr
d D .Xr C �Xr

i / ˝ �n.
We provide a discussion of exogenous and endogenous spatial interaction model

specifications that are each suited to differing applied situations. The argument
advanced is that an exogenous specification is most appropriate when characteristics
of neighboring regions exert an influence on variation in flows between dyads,
but do not produce feedback effects producing changes in the long-run steady
state equilibrium of the network of flows. Examples include situations involving
temporary or unpredictable events that do not evoke endogenous interaction because
of the unpredictability of changes taking place in neighboring regions. In contrast,
endogenous interaction specifications are more appropriate for situations where
predictable or permanent changes take place in the network structure such that
economic agents react to these changes by changing decisions regarding routes of
movement for people, commodities, etc.

In addition to setting forth expressions for the true partial derivatives of non-
spatial and endogenous spatial interaction models and associated scalar summary
measures from LeSage and Thomas-Agnan (2014), we propose new scalar summary
measures for the exogenous spatial interaction specification introduced here. An
illustration applies the exogenous spatial interaction model to a flow matrix of
teacher movements between 67 school districts in the state of Florida.
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