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Preface

Is a new book on spatial interaction modelling needed in 2016? Do we need to
update our theoretical and methodological frameworks, about 20 and 30 years away
from landmark books like Gravity Models of Spatial Interaction Behavior (Sen and
Smith 1995) and Gravity and Spatial Interaction Models (Haynes and Fotheringham
1994)? Our answer to this question is ‘yes’!

This book aims to provide a number of convincing reasons—and tools—
for extending the way scientists and practitioners in regional and international
economics, geography, planning and regional science have been implementing, esti-
mating and interpreting spatial interaction models. It does so by collecting a number
of invited contributions by renowned scholars in the field, who propose innovative
interpretative and estimation approaches mostly relying on recent developments in
spatial statistics and econometrics.

The book originates from an International Exploratory Workshop on Advances
in the Statistical Modelling of Spatial Interaction Data held at the University of
Lugano (Switzerland) in September 2011. The papers presented at the workshop
have been published in a special issue of the Journal of Geographical Systems (15:3,
2013). This book collects such articles, as well as additional invited contributions,
in order to provide a broader view on spatial econometric approaches to spatial
interaction modelling.

Thanks are due to many people who made this book happen. We would first like
to express our gratitude to Rico Maggi for supporting our initial idea, to the Swiss
National Science Foundation (SNSF) for funding the International Exploratory
Workshop and to the University of Lugano for kindly hosting it. We would also
like to thank the Editors of the Journal of Geographical Systems for helping us
organize the preceding special issue, as well as Manfred Fischer and the Editorial
Board of the Advances in Spatial Science series and Springer for supporting this
book project. Finally, we are grateful to all contributing authors and to the referees
of both the special issue and the book.
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vi Preface

Last but not least, we would like to thank you, the readers. The success of this
project is in your hands. We sincerely hope you will enjoy this collection.

Rimini, Italy Roberto Patuelli
Rome, Italy Giuseppe Arbia
January 2016
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Chapter 1
Spatial Econometric Interaction Modelling:
Where Spatial Econometrics and Spatial
Interaction Modelling Meet

Roberto Patuelli and Giuseppe Arbia

Keywords Gravity • Spatial econometrics • Spatial interaction

JEL Classifications: C18, C51, R11

1.1 The Spatial Interaction Model: An Established Regional
Economics Workhorse

The present book is concerned with spatial interaction modelling. In particular, it
aims to illustrate, through a collection of methodological and empirical studies, how
estimation approaches in this field recently developed, by including the tools typical
of spatial statistics and spatial econometrics (Anselin 1988; Cressie 1993; Arbia
2006, 2014), into what LeSage and Pace (2009) deemed as ‘spatial econometric
interaction models’.

It is no surprise to scientists and practitioners in regional science, planning,
demography or economics that spatial interaction models (or gravity models, follow-
ing the traditional Newtonian denomination, still popular in fields like international
trade) are, after a long time, some of the most widely used analytical tools in
studying interactions between social and economic agents observed in space. Spatial
interaction indeed underlies most processes involving individual choices in regional
economics, and can apply to all economic agents (firms, workers or households,
public entities, etc.).
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2 R. Patuelli and G. Arbia

Although spatial interaction models originated at the end of the nineteenth
century following the Newtonian paradigm relating two masses and the distance
between them (for a more detailed review, see Sen and Smith 1995), they now have
solid theoretical economic foundations grounded on probabilistic theory, discrete
choice modelling and entropy maximization. The works of, among others, Stewart
(1941), Isard (1960) and Wilson (1970) during the twentieth century provided such
foundations, allowed to see spatial interaction models not just as mechanical tools
for empirical analysis, but also as a framework for theoretical and structural analyses
(see, e.g., Baltagi and Egger 2016; Egger and Tarlea 2015).

A spatial interaction model describes the movement of people, items or informa-
tion (the list of possible applications is long) between generic spatial units. We can
loosely write it as a multiplicative model of the type:

Tij D kO˛
i Dˇ

j f
�
dij
�
; (1.1)

where Tij is the flow (physical or not) moving from unit i to unit j, k is a
proportionality constant, Oi and Dj are sets of potentially different variables (e.g.,
population, income, jobs) measured at the origin and the destination, respectively,
and dij is the distance (possibly measured according to different metrics) between
units i and j. The latter is solely an example of different types of deterrence variables
accounting for factors which impede or favour pairwise interaction. Different
functional forms—most frequently power or exponential—have been tested over
the years to model the effect of distance on spatial interaction. The parameters ˛, ˇ
and those involved by the deterrence functions need to be properly estimated.

Such a simple specification is described as an unconstrained model, because it
does not fix the total number of outgoing or incoming flows (the marginal sums of
the origin–destination matrix). Singly- or doubly-constrained model specifications
impose such limitations by including sets of balancing factors, which are nonlinear
constraints requiring iterative calibration (Wilson 1970). Constrained approaches,
which are often seen as the correct way of estimating the model, are, however,
only seldom used in applied work, mostly because of the computational complexity
involved.

Although spatial interaction models have been used for decades by researchers
and practitioners in many fields, several authors have shown a renewed interest
in them over the last 10–15 years, both with regard to their theoretical foun-
dations and to the estimation approaches, the latter being greatly facilitated by
the wider computing power availability. The contributions by Anderson and van
Wincoop (2003, 2004) pushed the envelope in trade-related research by proposing
a theory-consistent interpretation of the balancing factors, relabelled as multilateral
resistance terms. Santos Silva and Tenreyro (2006) provided a stepping stone in the
discussion on the estimation of spatial interaction (and in general multiplicative)
models. They suggested that, because of Jensen’s inequality and of overdispersion,
these models should not be estimated in their loglinear transformation, but rather
using the count data (such as the Poisson) regressions framework. The pseudo-
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maximum likelihood estimator proposed by the authors is now one of the most
commonly used estimation approaches. Some recent studies focus on issues in
complementing the above groundbreaking studies. Burger et al. (2009) reviewed
alternative estimation approaches focusing on the cases of excess zeros. Krisztin
and Fischer (2015) suggested spatial filtering variants of the Poisson gravity model
(e.g., with zero-inflation) along with pseudo-ML estimation. Baltagi and Egger
(2016) proposed a quantile regression approach; Egger (2005), Baier and Bergstrand
(2009), and Egger and Staub (2016) proposed estimators for the cross-sectional
model, while Egger and Pfaffermayr (2003) discussed panel estimation issues. Many
more studies of recent publication could be cited in what appears to be—once
more—a very active and developing field.

1.2 Spatial Interaction and Flow Dependence

One of the dimensions along which the literature on spatial interaction modelling
recently developed is the explicit consideration of flow data correlation due to the
spatial configuration of the units involved. Explicitly incorporating spatial structure
(and its consequences) in spatial interaction is not a novel research question. It had
actually emerged among regional scientists much earlier. One of the first examples
in the literature is the lively debate appeared in the 1970s, generated by a paper
by Leslie Curry (1972), and then involving a series of quick-reply papers, by Cliff
et al. (1974, 1976), Curry et al. (1975), Sheppard et al. (1976), and Griffith and Jones
(1980). This discussion layed the ground for what was actively picked up only 30
years later.

In particular, this initial debate was centred on the misspecification of spatial
interaction models when it comes to the interpretation of the estimated distance
deterrence parameter. As Curry et al. (1975, p. 294) pointed out, problems of
interpretation of the distance parameter occur when in the model specified as a ratio
the numerator (the origin- and destination-specific variables) and the denominator
(the distance, when a power function is considered) are not independent. The authors
went as far as to state that ‘it will not be possible to determine how much of
the often observed variations in the distance exponent is due to aggregate spatial
pattern as opposed to that explainable by differences in spatial interaction’. The
authors refer in particular to the case in which origin or destination characteristics
(examples being population or income) can be seen as functions of distance (i.e.,
they are spatially autocorrelated). In other words, the spatial structure of the units
matters, so much that Sheppard et al. (1976, p. 337) state that ‘in the spatial
context misspecification will almost always occur’. This type of issue will later
be formalized more generally, giving birth to spatial econometrics. In a more
recent contribution, Tiefelsdorf (2003) picked up the topic of spatial autocorrelation
and spatial interaction, providing evidence in favour of the above statements.
Similarly, Fotheringham and Webber (1980) used a simultaneous equations model
to show how spatial structure and spatial interaction are ‘inextricably and mutually
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linked’ (Roy and Thill 2003, p. 353). Furthermore, Getis (1991) demonstrated
mathematically how spatial autocorrelation measures are confounded in spatial
interaction models, while Andersson and Gråsjö (2009) suggested how accessibility
(closely tied to spatial interaction) is a prime determinant of spatial autocorrelation
in areal data as well.

These contributions prompted new interest in the issue of spatial autocorrelation
and spatial autocorrelation (see, e.g., Griffith 2007, 2011). Although still not a
wide field of research, the general question of how to measure and treat spatial
dependence in flow (dyadic) data (the so-called network autocorrelation) is now
discussed in several papers. Black (1992) was an early contributor in this field,
relying on graph theory to define network autocorrelation providing empirical
evidence of it in real cases. Moran’s I statistic was used for this purpose. More
studies followed, for instance in Black and Thomas (1998), which focuses on
highway accidents. More recently, Peeters and Thomas (2009) provided a review on
network autocorrelation. In the context of political science, Neumayer and Plümper
(2010) discuss the problem of quantifying the correlation between flow (dyadic)
data and how public policies set contagion forces to work.

When it comes to indicators of network autocorrelation (or, so to say, spatial auto-
correlation on networks), an extension of the Getis-Ord Gi statistic for measuring
local spatial autocorrelation was proposed by Berglund and Karlström (1999), and
Fischer et al. (2010). Further attempts of measuring spatial/network autocorrelation
in flow data could be based on some recently developed spatial autocorrelation
indices implemented for generalized linear models and primarily for count data (see,
e.g., Jacqmin-Gadda et al. 1997; Lin and Zhang 2007; Griffith 2010).

1.3 Towards a New Class of Spatial Interaction Models

The renewed interest in spatial autocorrelation and spatial interaction modelling
documented above is manifest in the recent econometric contributions that col-
lectively form a new class of augmented spatial interaction models that are now
often referred to as spatial econometric interaction models. Such models are based
on the spatial statistics and econometrics techniques typically employed with areal
(and sometimes point) data, and aim to ‘cure’ spatial/network autocorrelation and
reinterpret the model parameters accordingly. A few initial attempts (see Bolduc
et al. 1992; Porojan 2001; Neumayer and Plümper 2010) were made to include
spatial relations in flow modelling. Bolduc et al. (1992), dealing with travel flow
data, proposed spatially structured error terms, which emerged as the sum of an
origin-level and a destination-level components, in addition to a non-spatial error.
Porojan (2001) used both spatial lag and spatial error models (and generalized
spatial models, with both terms), although without fully outlining how the row-
standardized spatial weights matrix used could be adapted for the task. Neumayer
and Plümper (2010) presented a similar approach, discussing contagion phenomena
between countries and their influence on the signing of bilateral investment treaties.
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They estimated spatial lag models where the weights matrix was alternatively
constrained to model only origin- or destination-level dependence (contagion), or
both.

Further and critical contributions to the above debate, providing a more in-depth
view on the estimation of spatial econometric interaction models, were published
between the years 2008 and 2012 (most notably by Fischer and Griffith 2008;
LeSage and Pace 2008; Behrens et al. 2012) and gained immediate recognition in the
scientific community. Methodologically, we can distinguish between three strains of
the literature, proposing:

• spatial interaction model estimated in their log-linearized form;
• spatial interaction models estimated using Poisson-type regressions;
• spatial interaction models augmented with spatial filters (estimated as Poisson as

well).

The most common spatial econometric-aware applications of the spatial inter-
action model belong to the first of the above categories. Estimating multiplicative
models in their loglinear form has long been a widely employed approach (e.g.,
in economics), although the publication of Santos Silva and Tenreyro (2006),
advocating Poisson-type regressions and the pseudo-Poisson maximum likelihood
estimator (PPML), has greatly reduced the diffusion of this approach, in particular
in the trade literature.

Fischer and Griffith (2008) proposed two competing models. The first was
based on a spatial error autoregressive model specification estimated within a
maximum likelihood (ML) framework. Along the same line, LeSage and Pace
(2008) presented a further ML-based spatial econometric model, encompassing
several alternative specifications, and providing additional economic motivations
for its use. Their model included simultaneously potential origin, destination and
network dependence elements, resulting in an equation of the type:

y D �oWoy C �dWdy C �wWwy C Zı C "; (1.2)

where y is an n2 � 1 vector containing all Tij flows, " are IID errors, and Wo,
Wd and Ww are (row-normalized) spatial weights matrices obtained by means of
Kronecker products of the regular n � n spatial weights matrix W with an identity
matrix In or itself (in the case of Ww) (LeSage and Fischer 2010). An alternative
to this specification, encompassing the above-mentioned one in Fischer and Griffith
(2008), is a model employing the same three spatial dependence terms of Eq. (1.2)
in a spatial error framework of the type:

y D Zı C uI
u D �oWou C �dWdu C �wWwu C ":

(1.3)

LeSage and Fischer (2010) also suggest a simpler approach, consisting in
employing one spatial weights matrix only in u, as the row-normalized sum of Wo

and Wd. Finally, Behrens et al. (2012) presented a formal theoretical justification for
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the use of spatial econometrics in trade modelling, within a framework controlling
for multilateral resistance terms and heterogeneity. They eventually estimated an
empirical spatial error model similarly to the one specified by Fischer and Griffith
(2008). Recent papers provide further extensions of these approaches (Egger and
Pfaffermayr 2016; Koch and LeSage 2015), and more heterodox approaches to
estimation, for example based on entropy maximization like in Bernardini Papalia
(2010). Finally, a development that is worth mentioning is the recent application of
the impact measures popularized by LeSage and Pace (2009) to spatial interaction
models, provided by Thomas-Agnan and LeSage (2014), and LeSage and Thomas-
Agnan (2015). The authors demonstrate that, similarly to the standard case of areal
data, the model’s estimated parameters cannot be directly interpreted as marginal
effects or elasticities, and that the bidimensionality of spatial interaction models,
where both origin- and destination-level effects are often estimated for a variable,
introduces further complications.

Although the path of research described above is the one that is most often fol-
lowed in the current literature (perhaps due to the simplicity of linear approaches),
two more heterodox strategies deserve consideration: the first based on Poisson-
type regression and the second on spatial filtering. Poisson-type regression models
incorporating spatial dependence or heterogeneity followed the wake traced by
Flowerdew and Aitkin (1982). However, while in statistics and in some applied
fields (like ecology or epidemiology) researchers have proposed various spatial
extensions of count models (see, e.g., Congdon 2010), mostly based on point data
and spatially correlated random effects, the explicit (parametric) inclusion of spatial
dependence into the models still represented a major obstacle until recent years. In
fact, it wasn’t until very recently that some contributions have emerged, tackling
this problem. For example, outside the spatial interaction modelling paradigm,
Lambert et al. (2010) proposed a two-step spatial lag model for count data providing
adaptations of the direct and indirect effects (LeSage and Pace 2009), while LeSage
et al. (2007) presented a first Poisson-based model grounded on Bayesian estimation
and Markov chain Monte Carlo (MCMC) methods. In this last contribution, origin-
and destination-level random effects with an autoregressive structure were estimated
in a hierarchical Poisson specification. A similar approach was recently followed
by Sellner et al. (2013), who developed a Poisson SAR estimator, based on two-
stage nonlinear least squares. In their model, the flow variable y is assumed to be
determined by a spatially random component y*, and by a residual spatial com-
ponent ỹ, where only the latter is assumed to be Poisson distributed. Consistently
with most of the literature cited above, the spatial component y* is expressed as a
linear combination of the origin- and destination-level spatial lags expressed by the
products Woy and Wdy, respectively. Therefore, the dependent variable is defined as:

y D Qy C y� D �oWoy C �dWdy C y�: (1.4)

A second alternative approach to modelling spatial and network autocorrelation
in flow data employs eigenvector spatial filtering within Poisson-type regression
models. This technique was first introduced by Griffith (2000, 2003, 2006) for



1 Spatial Econometric Interaction Modelling: Where Spatial Econometrics. . . 7

analysing areal and grid/raster data and it is based on the mathematical relationship
between Moran’s I (Moran 1948) and spatial weights matrices. In synthesis,
having defined M as the projection matrix In – 110/n and 1 as an n � 1 vector of
ones, the eigenvectors of matrix MWM represent all possible independent and
orthogonal spatial patterns implied by W. Using (parsimoniously) such eigenvectors
as additional covariates in regression models allows to filter spatial autocorrelation
similarly to SAR models (Griffith 2000). Fischer and Griffith (2008) presented an
application of spatial filtering to the spatial interaction model, where separate origin-
and destination-level spatial filters (again, similarly to what has been mentioned
above for fixed effects or spatially correlated random effects) were obtained by
means of n2 � 1 eigenvectors piled by means of Kronecker products. Chun (2008)
extended this approach to network autocorrelation, by using the eigenvectors of
MWwM, while Griffith and Chun (2015) recently showed that both origin/destination
and network dependence are relevant and stressed the need to incorporate both
of them in spatial interaction models. Finally, Krisztin and Fischer (2015) applied
this approach within the framework of a PPML estimation (as in Santos Silva and
Tenreyro 2006), directly addressing the trade modelling literature.

As it is evident from the work reported in this section, the last 10 years have
shown a resurgence of the gravity/spatial interaction modelling literature, and the
emergence of innovative estimation approaches making use of spatial statistics and
econometrics. Due to the extreme relevance of these new contributions, this book
aims at providing the state-of-the-art of such developments, and collects method-
ological and empirical contributions authored by some of the main contributors to
the field.

1.4 The Structure of the Book

The book is divided into three parts. Part I (General Methodological Issues) contains
general contributions on spatial econometric interaction modelling, pertaining
to coefficient interpretation, constrained specifications, scale effects and spatial
weights matrix specification. Part II (Specific Methodological Issues) concerns
in particular the phase of estimation and focuses on innovative estimators and
approaches, such as the treatment of intraregional flows, Bayesian PPML or VAR
estimation, and Pesaran-type cross-sectional dependence. Finally, Part III (Applica-
tions) contains a number of empirical studies ranging from interregional tourism
competition, domestic trade, to space-time migration modelling and residential
relocation. In what follows, we will describe in detail the content of the various
papers to orientate the reader.

Part I is composed of four chapters. In Chap. 2, James LeSage and Manfred
Fischer provide an extension of the recent article by LeSage and Thomas-Agnan
(2015) discussing impact measures for the case of spatial interaction modelling.
The authors focus on the distinction between endogenous and exogenous spatial
interactions, drawing an analytical framework consistent with the one differentiating

http://dx.doi.org/10.1007/978-3-319-30196-9_2
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conventional spatial models and models including only spatial lags of the indepen-
dent variables (ultimately similar to spatial error models, as suggested in LeSage
and Pace 2009). As a consequence, this chapter provides the reader with further
guidance in correctly interpreting the parameters of spatial interaction models.
In Chap. 3, Daniel Griffith and Manfred Fischer compare the (main) different
approaches to estimating spatial interaction models, that is specifications including
balancing factors, fixed effects (by means of sets of indicator variables), or random
effects. An empirical example of the equivalence between them is provided, also
employing spatially structured random effects obtained through eigenvector spatial
filtering. Chapter 4 is written by François Bavaud, who develops a new approach
to spatial autocorrelation testing for weighted networks by means of Moran’s I.
He provides an example based on Swiss migratory flows, showcasing a modes
autocorrelation test based on the transformation of spatial weights matrices into
exchange matrices. In Chap. 5, Giuseppe Arbia and Francesca Petrarca analyse
the implications of the modifiable areal unit problem (MAUP, see Arbia 1989)
for spatial interaction models. They focus on the ‘scale’ dimension of the MAUP,
which pertains to the different (hierarchical) levels of geographical aggregation of
flows. They illustrate their theoretical analysis with a set of simulations, and show in
particular how negative spatial autocorrelation in the origin and destination variables
affects mean interaction flows.

Part II of the book deals in particular with estimation issues and consists of seven
chapters. In Chap. 6, Kazuki Tamesue and Morito Tsutsumi focus on how to define
internal distances and to estimate models in the case of missing intraregional flows.
They propose approaches based on an expectation-maximization (EM) algorithm
and Heckman’s two-step estimator, evaluating the sample-selection bias caused
by missing intraregional flows data. Chapter 7, by James LeSage and Esra Satici
describes a spatial econometric extension of the abovementioned PPML estimator
by Santos Silva and Tenreyro (2006), though based on a Bayesian approach.
The authors deal with intraregional flows as well, by including a separate set of
parameters to be estimated for the diagonal of the origin–destination matrix. In
Chap. 8, Roberto Patuelli, Gert-Jan Linders, Rodolfo Metulini and Daniel Griffith
focus on the gravity model of trade, and discuss the links between the multilateral
trade resistance terms popularized by Anderson and van Wincoop (2003), and
the spatial filtering approach already suggested in Fischer and Griffith (2008).
Moreover, they provide an empirical comparison with the approaches of Feenstra
(2004) and Baier and Bergstrand (2009) within a negative binomial estimation
framework. Chapter 9 is by James LeSage and Carlos Llano. They propose a
spatial interaction model augmented with origin and destination spatially structured
latent factors. The model is estimated in a Bayesian hierarchical framework, with
spatially autoregressive random effects which incorporate the latent effects. Also
Chap. 10, by Minfeng Deng, makes use of Bayesian estimation. In particular, the
author develops a spatial vector autoregressive (VAR) model to predict traffic flows
within a simulated system. He uses temporally and spatially lagged traffic flows
as predictors, and sets up a Bayesian variable selection procedure to deal with the
large VAR at hand. In Chap. 11, Michael Beenstock and Daniel Felsenstein build

http://dx.doi.org/10.1007/978-3-319-30196-9_3
http://dx.doi.org/10.1007/978-3-319-30196-9_4
http://dx.doi.org/10.1007/978-3-319-30196-9_5
http://dx.doi.org/10.1007/978-3-319-30196-9_6
http://dx.doi.org/10.1007/978-3-319-30196-9_7
http://dx.doi.org/10.1007/978-3-319-30196-9_8
http://dx.doi.org/10.1007/978-3-319-30196-9_9
http://dx.doi.org/10.1007/978-3-319-30196-9_10
http://dx.doi.org/10.1007/978-3-319-30196-9_11
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on the definition of spatial dependence in flow (trade) data. They first consider the
case of spatial interaction models where the spatial units (regions, countries) are not
simultaneously repulsing and attracting, but exert their effect only in one direction,
so that bilateral relationships are one-way. Then, they propose a Lagrange multiplier
spatial autocorrelation test, and a further test for spatial autoregressive conditional
heteroscedasticity (SpARCH), that is, the case of spatially autocorrelated variances.
Finally, in Chap. 12, Camilla Mastromarco, Laura Serlenga and Yongsheol Shin
provide an empirical comparison between a trade model estimated following
Behrens et al. (2012) and an alternative specification using a common factor-based
approach. They stress that strong cross-sectional dependence is better accounted
for by factor models. In addition, they augment their factor model by instrumental
variables, in order to evaluate the effect of possibly endogenous trade determinants,
such as trade barriers. They provide an application looking at the trade effects of the
Euro area.

Part III of the book contains a number of applied contributions, showcasing
the potential of the new class of spatial interaction models discussed in Sect. 1.3.
In Chap. 13, Roberto Patuelli, Maurizio Mussoni and Guido Candela set up a
model for analysing domestic tourism flows in Italy and the effect of the inclusion
of landmark sites in UNESCO’s World Heritage List. They model intervening
opportunities in the tourists’ travelling choices, and demonstrate the emergence
of spatial competition between regions on the basis of their cultural amenities
using spatially lagged evaluations of origin/destination characteristics. Chapter 14
is written by Jorge Díaz-Lanchas, Nuria Gallego, Carlos Llano and Tamara de
la Mata. The authors focus on domestic trade in Spain, and in particular on the
phenomenon of ‘ambushed flows’, that is, recorded flows of goods that emerge
solely as a result of the multimodal operations in logistic/transport hubs. They
develop a spatial interaction model for studying this issue that accounts for the
related artificially generated cross-sectional dependence. In Chap. 15, Carlo Llano
and Tamara de la Mata once again study domestic trade flows in Spain, but from
a different perspective focusing on services. They investigate the role of social
networks in influencing such flows and they proxy social linkages by means of a
set of differentiated measures (such as past migration, second homes, past tourism
patterns), so as to provide a sensitivity analysis. In their models, they account for
social linkages by modelling spatial and network autocorrelation, and find that the
resulting deterrence effect of distance is diminished, while the relevance of borders
is increased. In Chap. 16, Timo Mitze estimates a spatial interaction model for
domestic migration by means of a dynamic panel spatial Durbin specification. His
results are consistent with a traditional neoclassical migration model, while pointing
at the need to separate temporal and spatial dynamics. In addition, he computes
cumulative multipliers up to 10 years ahead, in order to evaluate labour market
response over a longer run. Finally, in Chap. 17, Monghyeon Lee and Yongwan
Chun study residential relocation in the Seoul metropolitan area. They estimate a
spatial filtering-augmented spatial interaction model, and show that accounting for
network autocorrelation, even in a limited spatial domain like a metropolitan area,
is needed and leads to a reduction in the estimated overdispersion.

http://dx.doi.org/10.1007/978-3-319-30196-9_12
http://dx.doi.org/10.1007/978-3-319-30196-9_13
http://dx.doi.org/10.1007/978-3-319-30196-9_14
http://dx.doi.org/10.1007/978-3-319-30196-9_15
http://dx.doi.org/10.1007/978-3-319-30196-9_16
http://dx.doi.org/10.1007/978-3-319-30196-9_17
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General Methodological Issues



Chapter 2
Spatial Regression-Based Model Specifications
for Exogenous and Endogenous Spatial
Interaction

James P. LeSage and Manfred M. Fischer

Keywords Log-normal specification • Origin-destination flows

JEL: C18, C51, R11

2.1 Introduction

Spatial interaction models represent a class of models that are used for modeling
origin-destination flow data. The interest in such models is motivated by the need to
understand and explain the flows of tangible entities such as persons or commodities
or intangible ones such as capital, information or knowledge between regions. These
models attempt to explain interaction between origin and destination regions using
(i) origin-specific attributes characterizing the ability of the origins to generate
flows, (ii) destination-specific characteristics representing the attractiveness of
destinations, and (iii) variables that characterize the way spatial separation of origins
from destinations constrains or impedes the interaction. They implicitly assume that
using spatial separation variables such as distance between origin and destination
regions will eradicate the spatial dependence among the sample of spatial flows.

However, research dating back to the 1970s noted that spatial dependence or
autocorrelation might be intermingled in spatial interaction model specifications.
The idea was first put forth in a theoretical context by Curry (1972), with some
subsequent debate in Curry et al. (1975). Griffith and Jones (1980) documented the
presence of spatial dependence in conventional spatial interaction models. Despite
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this, most practitioners assume independence among observations and few have
used spatial lags of the dependent variable or disturbances in spatial interaction
models. Exceptions are Bolduc et al. (1992), and Fischer and Griffith (2008) who
rely on spatial lags of the disturbances, and LeSage and Pace (2008) who use spatial
lags of the dependent variable.

The focus of this chapter is on the log-normal version of the model. In
this context, we consider spatial econometric specifications that can be used
to accommodate two types of dependence scenarios, one involving endogenous
interaction and the other exogenous interaction. These model specifications replace
the conventional assumption of independence between origin-destination-flows with
formal approaches that allow for two different types of spatial dependence in flow
magnitudes.

Endogenous interaction reflects situations where there is reaction to feedback
regarding flow magnitudes from regions neighboring origin and destination regions.
This type of interaction can be modeled using specifications proposed by LeSage
and Pace (2008) who use spatial lags of the dependent variable to quantify the
magnitude and extent of feedback effects, hence the term endogenous interaction.
For example, commuters might react to congestion in regions near the origin or
destination of their commute to work by adjusting future location decisions. This
would of course produce changes in observed flows over time that need to be
considered in light of the steady state equilibria that would characterize future
period flows across the commuting network. Another example would be for the
case of international trade flows, where a tariff or other impediment to flows
might evoke a long-run response that changes the structure of flows across the
network of trading countries. Since we typically model flows using a cross-section
of observed flow magnitudes that have occurred during some type period (say the
past 5 years) to estimate our model parameters that describe responsiveness of flows
to characteristics of the regions and distance between regions, time is not explicit
in these cross-sectional models. However, interpretation of the model estimates
can take place with respect to comparative statics reflecting changes from one
equilibrium steady state to another.

Exogenous interaction represents a situation where spillovers arise from nearby
(or perhaps even distant) regions, and these need to be taken into account when
modeling observed variation in flows across the network of regions. In contrast
to endogenous interaction, these contextual effects do not generate reaction to the
spillovers, leading to a model specification that can be interpreted without consid-
ering changes in the long-run equilibrium state of the system of flows. Spillovers
arising from spatial dependence on the context in which commuters operate impact
observed variation in flows between regions and we can quantify these types of
impacts without reference to long-run equilibrium impacts on flows across the
network. As in the case of social networks (where the term contextual effects has
its origins), contextual effects are modeled using spatial lags of the explanatory
variables that represent characteristics of neighboring (or more generally connected)
regions, but not spatial lags of the dependent variable, hence the term exogenous
interaction.
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2.2 The Log-Normal (Independent) Spatial Interaction
Model

Spatial interaction models essentially assert a multiplicative relationship between
observed flows (reflecting the magnitude of interaction) and characteristics of origin
and destination regions, as well as measures of separation between the regions
(typically distance). As is typical of statistical model relationships, observations
on the dependent variable (observed flows between origin and destination dyads,
labeled i and j) are assumed independent of observed flows between other dyads,
say k and l (see, for example Sen and Smith 1995, and Fischer and Wang 2011).
Such a relationship is shown in (2.1).

Y.i; j/ D CX.i/X. j/S.i; j/; i; j D 1; : : : ; n (2.1)

where Y.i; j/ denotes flows from region i to region j, and C is a constant of
proportionality. X.i/ and X. j/ represent origin-specific and destination specific
characteristics, with S.i; j/ reflecting resistance or deterrence to flows between the
origin and destination, typically modeled using some form of deterrence function
reflecting spatial separation between locations i and j. At relatively large scales
of geographical inquiry this might be the great circle distance between regions,
measured in terms of the distance between their respective centroids. In other cases,
it might be transportation or travel time, cost of transportation, perceived travel
time or any other sensible measure such as political distance, language or cultural
distance measured in terms of nominal or categorical attributes.

The exact functional form of the three terms X.i/; X. j/ and S.i; j/ on the
right hand side of (2.1) is subject to varying degrees of conjecture. There is wide
agreement that the origin and destination factors are best given by power functions
X.i/ˇo and X. j/ˇd where X.i/ represents some appropriate variable measuring the
propulsiveness of origins and X. j/ attractiveness of destinations in a specific spatial
interaction context. The term gravity model is sometimes used in place of spatial
interaction because the relationship posits that the magnitude of flows (reflecting
interaction) between dyads i and j is directly proportional to size of the regions,
when X is a measure of size and the coefficients ˇo; ˇd take values of unity. In a
statistical modeling context, these coefficients are parameters to be estimated.

The deterrence function S.i; j/ also has a gravity interpretation such that inter-
action is inversely proportional to distance between dyads i and j. A number of
alternative more flexible specifications have been proposed in the literature (see
Fischer and Wang 2011), one being the power function:

S.i; j/ D ŒG.i; j/�� (2.2)

for an scalar (generalized) distance measure, G.i; j/, and negative parameter �
(reflecting the inverse relationship), with � treated as a parameter to be estimated.
The deterrence function reflects the way in which spatial separation or distance
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constrains or impedes movement across space. In general, we will refer to this as
distance between an origin i and destination j, using G.i; j/.

LeSage and Pace (2008) use a matrix/vector representation of the log-
transformed expression in (2.1) yielding the log-normal spatial interaction model,
shown in (2.3)

y D ˛�n2 C Xoˇo C Xdˇd C g� C " (2.3)

which more closely resembles a conventional regression relationship. In (2.3), y is
an n2 � 1 vector of (logged) flows constructed by stacking columns of the observed
n � n flow matrix Y, where we assume destination-centric organization throughout
this chapter. This means that the i; jth element of the flow matrix represents a flow
from region i to j. Similarly, applying the log transformation to the n � n matrix of
distances G between the n destination and origin regions and stacking the columns
results in an n2 � 1 vector g of (logged) distances, with associated coefficient � .
The term " represents an n2 � 1 vector of constant variance, independent identically
distributed normal disturbances. LeSage and Pace (2008) show that

Xo D �n ˝ X (2.4)

Xd D X ˝ �n (2.5)

for the case of a destination-centric organization, where X is an n � R matrix of
characteristics for the n regions, ˝ denotes the Kronecker product and �n is an n � 1
vector of ones. We note that this represents a general case where the same set of
R explanatory variables is used for both origins and destinations. Thomas-Agnan
and LeSage (2014) point out this may be preferred to a specification where different
(subsets of the R) explanatory variables are used for origin and destinations, since
exclusion of important explanatory variables may result in omitted variable bias.
The scalar parameter � reflects the effect of the vector of logged (generalized)
distances g on flows which is—given the power function specification in (2.2)—
thought to be negative. The parameter ˛ denotes the intercept term.

The Kronecker product repeats the same values of the n regions in a strategic
way to create a matrix of characteristics associated with each origin (destination)
region, hence the use of the notation Xo D �n ˝ X;Xd D X ˝ �n to represent
these explanatory variables. Recognizing this has important implications for how we
interpret estimates of the parameter vectors ˇo; ˇd from these models. The literature
has interpreted ˇo as reflecting a typical regression partial derivative @y=@Xo,
showing how changes in origin region characteristics impact flows (on average
across the sample of n2 dyads as is typical of regression estimates). Of course,
this suggests we can change characteristics of origin regions while holding those of
destination regions constant, since partial derivatives reflect a ceteris paribus change
in Xo. It should be clear that a change in the rth characteristic of a single region i,
Xr

i , will produce changes in both Xo;Xd, since by definition�Xr
o D �n ˝.Xr C�Xr

i /,
and�Xr

d D .Xr C�Xr
i /˝ �n.
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Intuitively, changes to the rth characteristic of a single region i will impact both
inflows and outflows to all other regions engaged or connected with region i as either
an origin or destination. For example, a (ceteris paribus) increase in employment
in region i would lead to inflows of commuters to this region (when viewed as a
destination) from (potentially) all other (origin) regions and a decrease in outflows
of commuters (when viewed as an origin) to (potentially) all other (destination)
regions. We will have more to say about this later.

There are some limitations to treating the spatial interaction relationship as
a regression relationship between the vector of n2 � 1 logged flows and log-
transformed explanatory variables. Regression relationships require the assumption
of constant variance independent normally distributed disturbances in order to rely
on conventional t-statistics for statistical inference regarding significance of the
explanatory variables. Normal disturbances imply normally distributed flows, which
is often not the case. Some flows reflect counts of migrants moving between regions,
and many flow matrices contain a large proportion of dyads reflecting zero flows.
These raise issues regarding the appropriate method for estimating regression-based
specifications of spatial interaction model relationships, but do not have an impact
on issues we will discuss pertaining to endogenous versus exogenous interaction
specifications, or interpretation of estimates from these relationships.

2.3 Exogenous Versus Endogenous Spatial Interaction
Specifications

We set forth spatial regression-based specifications for exogenous and endogenous
spatial interaction models, with a focus on interpretative considerations pertaining
to estimates from these two types of models.

2.3.1 An Endogenous Spatial Interaction Specification

As noted, this type of specification allows for flows from regions neighboring the
origin region i or destination region j as well as flows between regions neighboring
the origin and neighboring the destination, to exert an impact on the magnitude of
observed flows between dyad .i; j/. LeSage and Pace (2008) label dependence of
flows on regions neighboring the origin i as origin-based dependence, that on flows
neighboring the destination j as destination-based dependence, and that arising from
flows between regions neighboring the origin and neighboring the destination as
origin-destination based dependence.

The basic notion is that larger observed flows from an origin to a destination
region are accompanied by (i) larger flows from regions nearby the origin to the
destination region (origin-based dependence); (ii) larger flows from the origin region
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to regions neighboring the destination region (destination-based dependence), and
(iii) larger flows from neighbors to the origin to regions that are neighbors of the
destination (origin-to-destination-based dependence). This is accomplished using
the specification in (2.6).

Ay D ˛�n2 C Xoˇo C Xdˇd C g� C " (2.6)

A D .In2 � �oWo/.In2 � �dWd/ (2.7)

D .In2 � �oWo � �dWd C �o�dWdWo/ (2.8)

y D �oWoy C �dWdy C �wWwy C ˛�n2 C Xoˇo C Xdˇd C g� C ": (2.9)

Some things to note regarding this specification. The matrix product Ww D
WdWo can be written as W ˝ W, where W is an n � n spatial weight matrix.
While matrix multiplication produces the term �w D ��o�d, there is no need to
impose the implied restriction during estimation of the model. The resulting model
statement in (2.9) captures origin-based dependence with the spatial lag term Woy,
destination-based dependence with Wdy, and origin-destination-based dependence
using Wwy. The associated parameters �o; �d; �w reflect the relative strength of these
three different dependencies.

This specification posits a simultaneous or endogenous response relationship
between the variation in the dependent variable reflecting flows between all
dyads (y) and flows between other regions (specifically Woy;Wdy;Wwy) within the
observed network of interregional and intraregional flows.1 This has implications
for how we interpret the coefficient estimates from this type of specification, with
details set forth in LeSage and Thomas-Agnan (2014). It also has implications for
how we must estimate the parameters ˇo; ˇd; �; �o; �d; �w, with details provided in
LeSage and Pace (2008, 2009, Chapter 8). We will discuss interpretation issues in a
later section. This discussion takes the parameter estimates as given, and presumes
these reflect valid estimates produced using appropriate methods (either maximum
likelihood or Bayesian Markov Chain Monte Carlo procedures).

2.3.1.1 A Theoretical Motivation for Endogenous Interaction

A criticism that might be leveled at the endogenous interaction specification in
(2.9) is that this appears to arise from mere matrix algebra manipulations, rather
than economic theory. We present a theoretical motivation taken from LeSage and
Thomas-Agnan (2014) based on the notion that location decisions of commuters are
influenced by behavior of other commuters in previous periods.

They argue that commuting residents might be influenced by nearby flows
(congestion) resulting from past location decisions of other residents in neighboring

1Intraregional flows are recorded on the main diagonal of the flow matrix.
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regions. It might also be the case that firms are influenced by congestion arising
from location decisions of nearby firms in the past.

They formally express this type of dyadic O-D flow dependence of yt at time t on
past flows yt�1 as:

yt D Myt�1 C Zı C "t (2.10)

M D .�dWd C �oWo C �wWw/

Z D �
Xd Xo g

�

ı D �
ˇd ˇo �

�0

"t � N.0; �2In/

where underlying characteristics of the regions X remain relatively fixed over
time, allowing us to write Z without a time subscript. Since the characteristics
of regions in flow models often represent size of regions, this assumption seems
(approximately) valid.

Expression (2.10) indicates that (commuting-to-work) flows between O-D dyads
at time t depend on past period flows observed by residents and firms in regions
neighboring their origin (Woyt�1) and destination regions (Wdyt�1), as well as
flows between regions neighboring the origin to regions neighboring the destination
(Wwyt�1). This is close to the endogenous interaction specification from (2.9), but
relies on a time lag or past period flows, not current period as we have in our cross-
sectional model.

LeSage and Thomas-Agnan (2014) show that we can interpret the endogenous
spatial interaction model as the outcome or expectation of a long-run equilibrium or
steady state relationship as time q ! 1, which is shown in (2.11).

limq!1E.ytCq/ D .In2 � M/�1Zı

D .In2 � �dWd � �oWo � �wWw/
�1Zı: (2.11)

Of course, this is the expectation for the data generating process of the spatial
autoregressive interaction model given in (2.9).

From a theoretical perspective, changes in transportation infrastructure (improve-
ments in the road network) that connects commuters between regions would be
expected to result in endogenous interaction of the type captured by this model spec-
ification. We would expect to see diffusion of changes in commuting flows taking
place over space, that impact flows in neighboring regions with faster commuting
times, regions that neighbor these regions, and so on. These global spillover impacts
are what characterize endogenous interaction, and they presumably lead to a new
long-run steady state equilibrium in residents’ choices regarding routes used and
firms’ choices about location.

In general shared resources are often thought to be the basis for global spillover
impacts and the associated diffusion of these impacts to neighbors, neighbors to
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neighbors, and so on. The highway network that passes through many regions would
represent one type of resource shared by many regions. Changes taking place on
one segment of the highway would have (potentially) far reaching global spillover
impacts.

2.3.2 An Exogenous Spatial Interaction Specification

There are other modeling situations where endogenous interaction is not a likely
phenomenon, but spatial spillover impacts such as congestion in neighboring
regions is of interest when modeling variation in flows across the network of regions.
Theoretical aspects of the modeling circumstance would provide one approach
to distinguishing which type of specification is most appropriate for any given
application.

Exogenous interaction specifications are characterized by spatial lags of the
exogenous variables Xo;Xd, leading to a model

y D ˛�n2 C Xoˇo C Xdˇd C g� C WoXo�o C WdXd�d C ": (2.12)

It should be clear that no endogenous relationship between flows (y) and flows
from neighboring regions exists in this specification. Instead, we have a situation
where changes in characteristics of regions neighboring the origin (WoXo) and
regions neighboring the destination (WdXd) help explain variation in flows across
dyads.

A change in characteristics of neighboring regions, for example, an increase in
the number of retired persons (non-commuters) locating in regions that neighbor
commuting residents located at origin i .WoXo) might influence the magnitude
of flows between dyads .i; j/. Similarly, retirees locating in regions that neighbor
commuters’ destination regions j .WdXd) might influence the magnitude of flows
between dyads .i; j/.

A distinction between this specification and the endogenous specification is that
the focus here is on the local spillover impacts on flows arising from changes in
characteristics of regions neighboring the origin or destination region. There is no
implication that flows respond to feedback impacts associated with the increased
number of retirees locating in regions neighboring the origin or destination, just
spatial spillover impacts on the pattern of flows between origin and destination
dyads due to changes in the characteristics of (say immediately) neighboring
regions. Global spillovers imply diffusion over space, whereas local spillovers do
not imply diffusion over space that impacts neighbors, neighbors to neighbors, and
so on. Reduced congestion arising from retired persons (non-commuters) locating
in a specific region would likely impact commuters from neighboring regions, but
the impact would not extend to more distant neighboring regions. The number of
non-commuters located in any one region does not reflect a shared resource, and
would be expected to have only local spillover impacts.
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Another consideration useful in distinguishing between these two types of
specifications would be permanent and predictable events versus temporary or
unpredictable events. For example, unpredictable events such as traffic delays due to
construction or accidents in neighboring regions would not be expected to produce
endogenous interaction effects because of the unpredictability of such events. It
should be noted that congestion effects arising from unpredictable events such
as these may create local spillover congestion that spans many regions, so we
should not think of local spillovers as impacting only nearby/neighboring regions.
We still label these local spillover effects because they are not associated with
endogenous interaction or feedback effects whereby commuters adjust their travel
routes. However, consistently higher accident rates in a group of regions might
allow commuters to predict traffic delays resulting in endogenous reactions such that
commuters change their routes to avoid such regions. Observed adjustments in travel
routes by many commuters with widely varying origins and destinations would of
course appear as a global spillover effect having impacts on regions neighboring the
construction or accident zone, neighbors to these regions, neighbors to the neighbors
of these regions, and so on. This of course would be reflected in the new long-run
steady state equilibrium commuting flows.

2.4 Interpreting Estimates From Spatial Interaction
Specifications

In Sect. 2.4.1 we consider how changes in the characteristics of regions impact flows
in the case of the conventional (non-spatial) interaction model from (2.3). This
discussion draws heavily on ideas set forth by LeSage and Thomas-Agnan (2014).
They point out that changes in the rth characteristic of region i, �Xr

i , will produce
changes in flows into region i from (potentially) .n � 1/ other regions, as well as
flows out of region i to (potentially) .n � 1/ other regions. This can be seen by
noting that the matrices Xd D �n ˝ X and Xo D X ˝ �n repeat Xr

i n times. Unlike the
situation in conventional regression models where a change�Xr

i leads to changes in
only observation i of the dependent variable, yi, we cannot change single elements
of Xr

d;X
r
o, nor should we interpret the coefficient estimate Ǒ

o; Ǒ
d as reflecting the

impact of this change (averaged over all observations) on a single element of the
dependent variable vector y.

The fact that changes in characteristics of a single region give rise to numerous
responses in the flow matrix rather than changes in a single observation (dyad) of
the dependent variable (as in traditional regression) creates a challenge for drawing
inferences about the partial derivative impacts of changing regional characteristics
on flows. To address this challenge, Sect. 2.4.2 proposes scalar summary measures
for the impact of changing regional characteristics on flows, that collapse the many
changes in flows to a single number. These scalars average over the many changes
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that arise in the flow matrix from changing characteristics of the regions, as is typical
of the way in which we interpret regression models.

In Sect. 2.4.2 we describe how LeSage and Thomas-Agnan (2014) extend
the scalar summary approach to the case of an endogenous spatial interaction
specification from (2.9). In this model specification, changes in the characteristics
of a single region i can impact flows into and out of region i to its 2.n�1/ dyad .i; j/
partners (as described above), but also flows into and out of regions that neighbor
the origin i and destination j regions that are not part of the dyad .i; j/. This arises
from the spatial dependence part of the spatial autoregressive interaction model. An
implication is that we should not interpret the coefficient estimates ˇd; ˇo as if they
were regression estimates that reflect partial derivative changes in the dependent
variable associated with changes in the explanatory variables.

Section 2.4.3 adopts the scalar summary approach to the case of the exogenous
spatial interaction specification introduced here, which reflects new ideas not
previously considered in the literature. However, we show that interpretation of
estimates from these models reflects a special case of the scalar summary approach
set forth by LeSage and Thomas-Agnan (2014).

2.4.1 Interpreting Estimates from Non-Spatial Interaction
Specifications

Before proceeding to interpretation of the model estimates, we adopt an approach
suggested by LeSage and Pace (2009, p. 223) that introduces a separate model
for within region (intraregional) flows, which tend to have large values relative to
between region flows. This is done by creating an intercept for flows associated with
the main diagonal of the flow matrix (intraregional flows) that we label Q̨ , as well
as a set of explanatory variables for these flows that we label Xi. The explanatory
variables Xd;Xo are adjusted to have zero values for main diagonal elements of the
flow matrix and the new variables matrix Xi has associated coefficients that we label
ˇi. This set of explanatory variables will capture variation in intraregional flows.
An adjusted version of (2.3) is shown in (2.13) reflecting these modifications to the
model, where vec is the operator that converts a matrix to a vector by stacking its
columns.

y D ˛Q�n2 C Q̨vec.In/C QXoˇo C QXdˇd C Xiˇi C g� C " (2.13)

We use Q�n2 D �n2 � vec.In/; QXo D Xo � Xi; QXd D Xd � Xi to reflect the adjustment
made to the original intercept and explanatory variables matrices by setting these
elements to zero. The matrix Xi contains non-zero values only for dyads where the
origin equals the destination (i.e., intraregional flows).
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We also consider the simplest possible spatial configuration of the regions, which
positions these in a straight line, with a single neighbor to the left and right.2 For
simplicity, we work with a single vector of explanatory variables in the following
to avoid having to designate working with a specific explanatory variable. A scalar
change in the characteristics of the third region (�X3) will produce an n � n matrix
of changes in flows (�Y), shown in (2.14).

�Y=�X3 D

0

B
B
B
BB
B
B
B
BB
B
@

0:0 0:0 ˇo 0:0 0:0 0:0 0:0 0:0

0:0 0:0 ˇo 0:0 0:0 0:0 0:0 0:0

ˇd ˇd ˇi ˇd ˇd ˇd ˇd ˇd

0:0 0:0 ˇo 0:0 0:0 0:0 0:0 0:0

0:0 0:0 ˇo 0:0 0:0 0:0 0:0 0:0

0:0 0:0 ˇo 0:0 0:0 0:0 0:0 0:0

0:0 0:0 ˇo 0:0 0:0 0:0 0:0 0:0

0:0 0:0 ˇo 0:0 0:0 0:0 0:0 0:0

1

C
C
C
CC
C
C
C
CC
C
A

(2.14)

The role of the independence assumption is clear in (2.14), where we see from
column 3 that the change of outflows from region 3 to all other regions equals ˇo,
and similarly, row 3 exhibits changes in inflows to region 3, taking the value of the
coefficient ˇd. The diagonal (3,3) element reflects a response equal to ˇi, which
reflects the change in intraregional flows arising from the change in X3. We have
only 2.n � 1/ non-zero changes in flows by virtue of the independence assumption.
All changes involving flows in- and out-of regions other than those in the dyads
involving region 3 are zero.

This result suggests that for the conventional gravity model, interpreting ˇo

as the partial derivative impact on flows arising from changes in origin-specific
characteristics (Xo) is not too bad, since the only exception is the coefficient ˇi

in the (3,3) element. The partial derivative for changes in the ith observation
(i ¤ 3) would of course look similar to the matrix in (2.14), so averaging over
changes to all observations would produce an approximately correct result when
interpreting ˇo; ˇd as if they were simply regression coefficients. However, we will
see that this reasoning does not apply to the spatial variants of the interaction model
specification, a point made by Thomas-Agnan and LeSage (2014).

The approach taken by LeSage and Thomas-Agnan (2014) to producing scalar
summary measures of the impacts arising from changes in characteristics of
the regions involves averaging over the cumulative flow impacts associated with
changes in all regions, i D 1; : : : ; n. Scalar summaries are consistent with how
coefficient estimates for the parameters in a conventional regression model are
interpreted, and cumulating the impacts makes intuitive sense in our flow setting.

2The west most region at the beginning of the line of regions has a single neighbor to the right, and
the east most region at the end of the line has a single neighbor to the left.
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They calculate scalar summaries by expressing the partial derivatives as shown in
(2.15), where the n � n matrices of changes in (logged) flows arising from changing
the rth explanatory variable Xr

i are stored in the n � n matrices Yi.3

TE D

0

B
B
B
@

@Y1=@Xr
1

@Y2=@Xr
2

:::

@Yn=@Xr
n

1

C
C
C
A

D

0

B
B
B
@

QJd1ˇr
d C QJo1ˇr

o C J{1ˇr
iQJd2ˇr

d C QJo2ˇr
o C J{2ˇr

i
:::

QJdnˇ
r
d C QJonˇ

r
o C J{nˇr

i

1

C
C
C
A

(2.15)

In (2.15), Jdi is an n � n matrix of zeros with the ith row equal to �0nˇd, and Joi

is an n � n matrix of zeros with the ith column equal to �nˇo. The matrix J{i is
an n � n matrix of zeros with a one in the i; i row and column position. We could
express QJdi D Jdi � J{i, and also QJoi D Joi � J{i. We have n sets of n � n outcomes,
(one for each change in Xr

i ; i D 1; : : : ; n) resulting in an n2 � n matrix of partial
derivatives reflecting the total effect on flows from changing the rth characteristic
of all n regions, hence the label TE.

The TE consists of origin effects OE =
� QJo1ˇr

o; : : : ;
QJonˇ

r
o

�0
, destination effects

DE D � QJd1ˇr
d; : : : ;

QJdnˇ
r
d

�0
, and intraregional effects IE D �

J{1ˇr
i ; : : : ; J{nˇ

r
i

�0
.

The total effects on flows can be cumulated and then averaged to produce a
scalar summary measure of the total impact of changes in the typical region’s
rth characteristic. This takes the form: te D .1=n2/�0

n2
� TE � �n, where we follow

LeSage and Thomas-Agnan (2014) and use lower case te to represent the scalar
summary measure of the n2 � n matrix TE. This scalar summary is consistent
with the way that regression coefficient estimates are interpreted as averaging over
changes in all observations of an explanatory variable. We can also produce scalar
summary estimates of the origin effects (oe D .1=n2/�0

n2
�OE � �n), destination effects

(de D .1=n2/�0
n2

� DE � �n), and intraregional effects (ie D .1=n2/�0
n2

� IE � �n).
To illustrate use of these formulas, we provide a numerical illustration based on

values of ˇo D �0:5; ˇd D 1; ˇi D 0:5 in Table 2.1. The scalar summaries sum to
the scalar summary total effect. In addition to the scalar summary effects estimates,
we present the parameters ˇo; ˇd whose estimates are typically interpreted as origin
and destination effects, and whose sum is considered the total effect arising from a
change in the rth explanatory variable (Table 2.1).

As Thomas-Agnan and LeSage (2014) point out, the results differ slightly from
the conventional interpretation of non-spatial gravity models where the coefficient
ˇo is interpreted as a partial derivative reflecting the impact of changes in origin
characteristics and ˇd that associated with changing destination characteristics.
Although the conventional approach that uses the coefficient sum ˇo C ˇd as a
measure of the total effect on flows arising from changes in origin and destination

3Our expressions differ slightly from those of LeSage and Thomas-Agnan (2014) because of our
modification of the model specification to incorporate Xi variables to model intraregional variation
in flows.
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Table 2.1 Scalar summary measures of effects for the non-spatial model from a change in the
(single) rth characteristic Xr averaged over all regions

Scalar summary Correct Conventional interpretation

Origin effects �0:4375 ˇo D �0:5
Destination effects 0:8750 ˇd D 1:0

Intraregional effects 0:0625

Total effects 0:5000 ˇo C ˇd D 0:5

Table 2.2 Scalar summary measures of effects for the exogenous spatial interaction model from
a change in the (single) rth characteristic Xr averaged over all regions

Scalar summary Correct Conventional interpretation

Origin effects �0:4375 ˇo D �0:5
Destination effects 0:8750 ˇd D 1:0

Intraregional effects 0:0625

Network origin effects �0:2188 �o D �0:25
Network destination effects 0:4375 �d D 0:5

Total effects 0:7188 ˇo C ˇd C �o C �d D 0:75

characteristics would produce a correct inference, the appropriate decomposition
into origin, destination and intraregional effects has been wrong in the historical
literature.

2.4.2 Interpreting Estimates from Exogenous Interaction
Specifications

The exogenous interaction specification extended to include an intraregional specific
intercept and set of explanatory variables is shown in (2.16), where we have added
origin and destination specific spatial lags of the (adjusted) explanatory variables
matrices.

y D ˛Q�n2 C Q̨vec.In/C QXoˇo C QXdˇd C Xiˇi C Wo QXo�o C Wd QXd�d C g� C ": (2.16)

Changes in the rth explanatory variable now result in two additional terms in the
partial derivatives expressions shown in (2.17). The new terms associated with the
spatial lags of the explanatory variables reflect (local) spatial spillovers arising from
neighbors to the origin and neighbors to the destination regions.

TE D

0

B
B
B
@

@Y1=@Xr
1

@Y2=@Xr
2

:::

@Yn=@Xr
n

1

C
C
C
A

D

0

B
B
B
@

QJd1ˇr
d C QJo1ˇr

o C J{1ˇr
i C QJd1� r

d C QJo1� r
oQJd2ˇr

d C QJo2ˇr
o C J{2ˇr

i C QJd2� r
d C QJo2� r

o
:::

QJdnˇ
r
d C QJonˇ

r
o C J{nˇr

i C QJdn�
r
d C QJon�

r
o

1

C
C
C
A

(2.17)
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A similar approach to decomposing the total effects can be used along with
conversion of these to scalar summary estimates. In this case we have: te D
oe C de C ie C noe C nde, where the new terms: noe and nde are labeled
network origin effects and network destination effects. These are calculated using:
(noe D .1=n2/�0

n2
� NOE � �n), destination effects (nde D .1=n2/�0

n2
� NDE � �n), where:

NOE D � QJo1� r
o; : : : ;

QJon�
r
o

�0
, and NDE D � QJd1� r

d; : : : ;
QJdn�

r
d

�0
.

Intuitively, these new scalar summary measures of the origin- and destination-
specific spatial spillover effects reflect the impact of changes in characteristics of
regions neighboring the origin and destination on flows between the typical dyad.
We extend our previous example, using �o D �0:25; �d D 0:5 in Table 2.2 to illus-
trate the difference between using ˇo; ˇd; �o; �d as if these were partial derivatives.

In contrast to the Table 2.1 non-spatial case, the total effects calculated in
Table 2.2 by summing up coefficients ˇo C ˇd C �o C �d D 0:75 are not equal to
the true total effects. We also see discrepancies between the true origin, destination,
network origin and network destination effects (based on actual partial derivatives)
and those from simply interpreting the coefficient estimates as if they were partial
derivatives.

2.4.3 Interpreting Estimates from Endogenous Interaction
Specifications

The endogenous interaction specification extended to include an intraregional
specific intercept and set of explanatory variables is shown in (2.18), where we
have added origin and destination specific spatial lags of the dependent variable to
capture origin, destination and origin-destination dependence of the type proposed
by LeSage and Pace (2008).

y D �oWoy C �dWdy C �wWwy C ˛Q�n2 C Q̨vec.In/C QXoˇo C QXdˇd

CXiˇi C g� C ": (2.18)

Working with the expression for the data generating process of this model,
LeSage and Thomas-Agnan (2014) show that the partial derivatives @y=@Xr0

, take
the form shown in (2.19).

TE D

0

B
BB
@

@Y1=@Xr
1

@Y2=@Xr
2

:::

@Yn=@Xr
n

1

C
CC
A

D .In2 � �oWo � �dWd � �wWw/
�1

0

B
B
B
@

QJd1ˇr
d C QJo1ˇr

o C J{1ˇr
iQJd2ˇr

d C QJo2ˇr
o C J{2ˇr

i
:::

QJdnˇ
r
d C QJonˇ

r
o C J{nˇr

i

1

C
C
C
A
: (2.19)
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These represent an extension of the partial derivatives from the non-spatial
model, where in this endogenous spatial interaction specification, the n2� n2 matrix
inverse: A�1 D .In2��oWo��dWd��wWw/

�1, pre-multiplies the non-spatial effects.
(Of course, in the non-spatial case �o D �d D �w D 0.) A similar decomposition
of the total effects can be applied to produce origin effects (OE), destination effects
(DE), intraregional effects (IE) and network effects (NE). The network effects reflect
spatial spillovers from: neighbors to the origin, neighbors to the destination and
neighbors to the origin to neighbors of the destination.

As an illustration of the nature of these partial derivatives, consider the example
shown in (2.20), where we consider a change to the single observation X3, based on
the same numerical values set forth in the previous section for ˇo D �0:5; ˇd D
1:0; ˇi D 0:5, while setting �o D 0:5; �d D 0:4 and �w D ��o�d D �0:2.4

�Y=�X3 D

0

B
BBBB
BBB
BBB
B
@

0:052 �0:086 �0:777 �0:069 0:121 0:171 0:185 0:187

0:337 0:199 �0:492 0:216 0:406 0:457 0:470 0:473

2:048 1:910 1:219 1:927 2:117 2:168 2:181 2:184

0:318 0:180 �0:511 0:197 0:387 0:438 0:451 0:454

�0:043 �0:181 �0:872 �0:164 0:026 0:077 0:090 0:093

�0:118 �0:256 �0:947 �0:239 �0:050 0:001 0:015 0:017

�0:134 �0:272 �0:963 �0:255 �0:065 �0:014 �0:001 0:002

�0:136 �0:275 �0:965 �0:257 �0:068 �0:017 �0:004 �0:001

1

C
CCCC
CCC
CCC
C
A

:

(2.20)

As LeSage and Thomas-Agnan (2014) point out, the spatial autoregressive
specification results in the presence of network spillover effects, shown by the non-
zero elements in rows and columns other than 3. This means that a change in say the
attractiveness of region 3 impacts flows throughout the network. This arises because
the spatial autoregressive model specification allows for global spillovers which can
be viewed as diffusion throughout the network of the increased attractiveness of
region 3.

Of course, the largest network spillover impacts still tend to reside in the third
row and column, since the change in attractiveness of region 3 has the largest impact
on flows involving region 3 in the O-D dyads. The magnitude of impact decreases as
we move further from the (3,3) element, with the non-linear nature of this decay of
influence determined by a number of factors. Specifically, the matrix W plays a role,
as well as the spatial dependence parameters �o; �d; �w. For this simple example,
where regions are configured to lie in a line, moving to row and column elements
further from the (3,3) position should reflect more distant neighbors. An implication
of the increase in paths through which the flows must pass to reach the (8,8) and
(1,1) dyads in the network is that smaller network effects arise in the flow matrix for
these dyads.

4This example is identical to Thomas-Agnan and LeSage (2014).
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Table 2.3 Scalar summary
measures of effects for the
endogenous spatial
interaction model from a
change in the (single) rth
characteristic Xr averaged
over all regions

Scalar summary Correct Conventional interpretation

Origin effects �0:1817 ˇo D �0:5
Destination effects 0:3725 ˇd D 1:0

Intraregional effects 0:0267

Network effects �0:1450
Total effects 0:0725 ˇo C ˇd D 0:5

One point is that we follow LeSage and Thomas-Agnan (2014) who calculate
only a single scalar summary measure of the network effects, rather than attempt to
make distinctions between origin- and destination-specific network effects. Because
of the non-linearity and diffusion of effects evident in the matrix shown in (2.20), it
seems prudent to focus on a single measure of spatial spillovers falling on all regions
in the network. This is of course in contrast to the exogenous spatial interaction
specification where it is a simple matter to produce a decomposition that separates
network origin and network destination effects.

We extend our previous example, using the same values: ˇo D �0:5; ˇd D 1;

ˇi D 0:5; �o D 0:5; �d D 0:4; �w D �0:2 to produce correct partial derivatives.
These are contrasted with the typical interpretation of ˇo; ˇd as if these were partial
derivatives in Table 2.3.

For the case of an endogenous spatial interaction specification, we see little
relationship between the coefficients ˇo; ˇd and the true origin and destination
effects. This is similar to the case of conventional spatial regression models where
practitioners have historically misinterpreted these coefficient estimates as if they
represented partial derivatives (see LeSage and Pace 2008). For an application
involving commuting flows between regions in Toulouse, France see LeSage and
Thomas-Agnan (2014), who provide an interpretative discussion of the various
effects estimates and inferences associated with the endogenous spatial interaction
model. In the next section we provide an illustration of estimates and inferences for
the case of the exogenous spatial interaction model that we have proposed here.

2.5 An Applied Illustration Involving Movement of Teachers
Between School Districts

We use flows of teachers between 67 county-level school district, in Florida over the
period 1995 to 2004. The flows were constructed by tracing the location of 102,327
teachers in the system during 1995, who were still in the system during 2004. We
ignore teachers that left the system and those that entered during this time period.
The impact of this is an issue to be addressed in future work.

One way to motivate dependence is to view the county-level school districts
as representing a network system. Changes by a single school district that affect
working conditions, salary or employment requirements of teachers will have an
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impact on the own-district as well as other nearby districts that can be viewed as
nodes in the statewide network. The movement of teachers may be to and from
other schools within the own-county or district or they may be between districts.5

In the empirical trade literature, Poisson pseudo-maximum likelihood estimation
methods have become popular as a way of dealing with several econometric issues
that arise when modeling origin-destination flows [e.g., Santos Silva and Tenreyro
2006, 2010, 2011 and Gourieroux et al. 1984]. We rely on our exogenous spatial
interaction specification that allows for spatial dependence between flows from
nearby regions/school districts.

One econometric issue that arises when modeling inter-district flows of teachers
is that these reflect ‘count data’, or observations taking discrete values or zero
magnitudes in the case where no flows between dyads reflecting districts i and
j occur. This suggests a Poisson spatial interaction model is most appropriate.
There are several econometric advantages to this model specification along with
Poisson pseudo-maximum likelihood (PPML) estimation procedures over log-
normal specifications that either delete zero flows or modify the dependent variable
using ln.y C 1/ to accommodate the log transformation of the multiplicative gravity
model. One is that the coefficients on logged explanatory variables (X) in the
(exponential) relationship involving non-logged flow magnitudes as the dependent
variable (y) can be interpreted as the elasticity of the conditional expectation of
yi with respect to Xi. Since Jensen’s inequality implies that E.lny/ ¤ lnE.y/,
heteroscedasticity in log-linear regression gravity models can lead to inconsistent
elasticity estimates, which is not a problem with PPML estimates.6

In addition to dealing with heteroscedasticity, the Poisson gravity model along
with PPML estimation procedures does not require taking logs of the flows, to avoid
the problem of (logs) in the presence of zero flows. With regard to the zero problem,
our sample of flows between 67 counties/school districts contains 1,266 non-zero
flow magnitudes out of a possible 67 � 67 D 4,489 flows between the 67 districts.
This reflects 28.2 % non-zeros and 71.8 % zeros. Although the prevalence of zero
values has an adverse impact on the PPML estimates, Santos Silva and Tenreyro
(2011) point out that the PPML model works better than alternative approaches
even in the face of a large proportion of zero flow values.

This allows us to make a point that interpretative considerations discussed are
based on coefficient estimates for the parameters ˇo; ˇd; �o; �d which should be
produced using a valid estimation approach. Our derivations hold true for any valid
estimates of these parameters.

Characteristics used are shown in Table 2.4, where values for these variables are
for the year 1995 in an attempt to avoid a simultaneity problem. Use of the (log)
number of teachers (in the origin and destination districts) as explanatory variables
captures the basic notion behind gravity models where the magnitude of district

5Florida has county-level districts so that districts and counties coincide in our analysis.
6Santos Silva and Tenreyro (2006) note there is strong evidence that disturbances from log-linear
gravity models are heteroscedastic.



32 J.P. LeSage and M.M. Fischer

Table 2.4 District-level variables used in the model

Variable name Description

y Within and between district teacher flows 1995–2003

Teachers Log (count of teachers in each district in 1995)

Salary Log (average teacher salary in 1995)

Poverty Percentage of students receiving free lunches in 1995

Distance Log (distance between origin and destination district centroids)

interaction (in our case teacher movement) is directly proportional to the product
of district size measures (in our case the (log) of the number of teachers in origin
and destination school districts).7 Direct proportionality would result in an elasticity
coefficient for these two variables equal to one.

In addition to the origin and destination size variables, two other explanatory
variables were used, one reflecting a teacher characteristic, Salary, and the other
a student characteristic, Poverty. The decision to use only two other explanatory
variables was for the sake of simplicity in our illustrative example.

The traditional gravity model posits that flows are inversely proportional to
distance, so we would expect a coefficient of minus one on the logged distance
variable. Use of the conventional log transformation of the number of teachers,
salary, percentage of students in poverty and distance variables allows us to interpret
these estimates as elasticities. We adopt the approach that introduces a separate
model for within district flows of teachers, which tend to have large values relative
to between district flows.

As argued in the previous section, the coefficients in Table 2.5 should not be
interpreted as if they represent the true effects associated with changes in the
explanatory variables of the model. Table 2.6 shows the effects estimates that
represent actual partial derivatives showing how flows respond (in elasticity terms
on average over the sample) to changes in the number of teachers, salary of teachers
and poverty status of students in origin and destination districts, the own-district and
neighboring districts.

We can use the estimates in Table 2.5 to make the point that a non-spatial inter-
action specification would suffer from omitted variables bias due to its exclusion
of the spatial lags WoXo;WdXd variables, since all but one of these variables (Wo

teachers_o) are significantly different from zero at the 99 % level.
From Table 2.6, we see that larger origin and destination districts (measured by

the number of teachers in these districts) leads to an increase in flows. Given that the

7In the case of interregional commodity flows, the measure of regional size is typically gross
regional product or regional income. The model predicts more interaction in the form of commodity
flows between regions of similar (economic) size than regions dissimilar in size. For the case of
migration flows, population would be a logical measure of regional size, and in other contexts such
as ours involving teacher flows between school districts, use of the number of teachers in each
district seems a reasonable measure of district size.
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Table 2.5 Coefficient
estimates from the PPML
model

Variable Coefficient t-Statistic (p-level)

Constant �1:2738 �0:429 .0:6678/
�i 0:1476 0:231 .0:8170/

Teachers_d 0:6508 41:880 .0:0000/

Salary_d 0:0596 0:267 .0:7895/

Poverty_d �0:5153 �7:576 .0:0000/
Teachers_o 0:7397 48:581 .0:0000/

Salary_o �0:2552 �1:154 .0:2482/
Poverty_o 0:6659 8:648 .0:0000/

Teachers_i 0:9994 185:511 .0:0000/

Salary_i 0:4653 7:432 .0:0000/

Poverty_i �0:1638 �7:025 .0:0000/
Wd teachers_d 0:0568 2:584 .0:0098/

Wd salary_d �0:2056 �6:598 .0:0000/
Wd poverty_d 0:3304 3:618 .0:0003/

Wo teachers_o �0:0341 �1:550 .0:1210/
Wo salary_o �0:3711 �12:236 .0:0000/
Wo poverty_o �0:2656 �2:928 .0:0034/
Distance �0:6220 �26:177 .0:0000/

effects estimates reflect elasticity responses of flows, they point to flows as having a
slightly less than proportional relationship with size.

The intradistrict effects of size are positive and small, but statistically significant,
suggesting more intradistrict flows for larger districts, which makes intuitive sense.
Spatial spillovers from larger districts neighboring the origin district (network origin
effects in the table) are negative, but not significant (using the 0.10 level), while
larger districts neighboring the destination district are positive and significant.
This suggests a competition effect associated with larger neighboring districts, that
produces more inflows to destination regions from these larger neighboring districts.
The response of teacher flows to district size overall (the total effect) is such that a
10 % increase in the size of the typical district would produce 14 % more flows
across the entire network. This includes a small (0.15 %) significant increase in
within district flows, a 0.562 % increase of inflows to destination districts districts
from neighbors, as well as a 7.28 % increase in outflows from origins and a 6.41 %
increase of inflows to destinations.

Teacher salaries (logged) exhibit insignificant origin and destination effects,
suggesting these do not impact teacher decisions to move from one school district
to another. Higher salaries have a small but significant effect on within district
movement of teachers. This is not surprising given that higher salaries are positively
correlated with years of experience. The seniority system gives teachers with more
years of service preference in filling vacant jobs in other schools within the same
district. The origin spillover effects of teacher salary are positive, suggesting a
competitive effect where higher salaries in neighboring districts increase outflows
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Table 2.6 Effects estimates
from the exogenous spatial
interaction model

Variable Coefficient t-Statistic (p-level)

Origin effects

Teachers 0:7286 48:1762 .0:0000/

Salary �0:2529 �1:1592 .0:2464/
Poverty 0:6572 8:6807 .0:0000/

Destination effects

Teachers 0:6410 42:8701 .0:0000/

Salary 0:0617 0:2789 .0:7803/

Poverty �0:5106 �7:2483 .0:0000/
Intradistrict effects

Teachers 0:0149 188:6622 .0:0000/

Salary 0:0069 7:3095 .0:0000/

Poverty �0:0024 �7:4486 .0:0000/
Network origin effects

Teachers �0:0326 �1:4976 .0:1074/
Salary 0:3659 12:1361 .0:0000/

Poverty �0:2590 �2:8766 .0:0040/
Network destination effects

Teachers 0:0562 2:6508 .0:0073/

Salary �0:2036 �6:6438 .0:0000/
Poverty 0:3275 3:7598 .0:0002/

Total effects

Teachers 1:4081 36:8098 .0:0000/

Salary 0:6611 2:4396 .0:0147/

Poverty 0:2126 1:3473 .0:1779/

from origin districts. Destination spillover effects of salary are negative, suggesting
a competitive effect of districts with higher salaries that neighbor the destination
decreasing inflows. Given that these effects estimates are elasticities, we can say that
the positive impact of origin spillover effects are more important than the negative
impact of destination spillover effects.

For the poverty variable, an increase in the (logged) proportion of students in
poverty would increase outflows from the origin district, and decrease inflows to a
destination district, which makes intuitive sense. The effect of poverty on within
district teacher flows is small and negative, but significant. The effect of more
poverty in districts neighboring the origin is negative and significant, meaning that
inflows from neighboring districts would be smaller in this case. This suggests
a teacher retention effect for districts surrounded by those with more students
in poverty. The effect of more poverty in districts neighboring the destination is
positive and significant, suggesting more inflows to destination districts having
neighbors with more students in poverty. This suggests that teachers are more likely
to move to a neighboring district from surrounding districts with more students in
poverty, a competition effect. The retention and competition effects of poverty in
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neighboring school districts are reasonably large in magnitude, taking values nearly
half the magnitude of origin and destination effects for the poverty variable. It is
interesting that the total effect of students in poverty is not significantly different
from zero. This suggests that the retention and competition effects are offsetting.
One way to view this would be that teachers are needed to fill posts in all schools
including those with high proportions of students in poverty.

2.6 Conclusion

We reiterate the point made by LeSage and Thomas-Agnan (2014) and Thomas-
Agnan and LeSage (2014) that the structure of explanatory variables used in non-
spatial and spatial interaction models is such that we cannot interpret coefficients
associated with origin explanatory variables (that we label Xo here) and coefficients
from destination explanatory variables (that we label Xd here) as reflecting typical
regression partial derivatives @y=@Xo and @y=@Xd, showing how changes in origin
(destination) region characteristics impact flows (on average across the sample of
n2 dyads as is typical of regression estimates). This is because we cannot change
characteristics of origin (destination) regions while holding those of destination
(origin) regions constant, which is typical of how partial derivatives are viewed.
It should be clear that a change in the rth characteristic of a single region i, Xr

i , will
produce changes in both Xo;Xd, since by definition �Xr

o D �n ˝ .Xr C �Xr
i /, and

�Xr
d D .Xr C�Xr

i /˝ �n.
We provide a discussion of exogenous and endogenous spatial interaction model

specifications that are each suited to differing applied situations. The argument
advanced is that an exogenous specification is most appropriate when characteristics
of neighboring regions exert an influence on variation in flows between dyads,
but do not produce feedback effects producing changes in the long-run steady
state equilibrium of the network of flows. Examples include situations involving
temporary or unpredictable events that do not evoke endogenous interaction because
of the unpredictability of changes taking place in neighboring regions. In contrast,
endogenous interaction specifications are more appropriate for situations where
predictable or permanent changes take place in the network structure such that
economic agents react to these changes by changing decisions regarding routes of
movement for people, commodities, etc.

In addition to setting forth expressions for the true partial derivatives of non-
spatial and endogenous spatial interaction models and associated scalar summary
measures from LeSage and Thomas-Agnan (2014), we propose new scalar summary
measures for the exogenous spatial interaction specification introduced here. An
illustration applies the exogenous spatial interaction model to a flow matrix of
teacher movements between 67 school districts in the state of Florida.
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Chapter 3
Constrained Variants of the Gravity Model
and Spatial Dependence: Model Specification
and Estimation Issues
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3.1 Introduction

Traditionally, models that use origin-destination flow data to explain variation in the
level of flows between origin and destination locations of interaction across some
relevant geographic space are called gravity models,1 in analogy with Newton’s
concept of gravity. Locations may be either regions or point units, and spatial
interactions relate to movements of various kinds. Examples include not only
migration, journey-to-work, traffic, commodity or trade flows, but also flows of less
tangible entities such as capital, information and knowledge. By adopting a spatial
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(Wilson 1967), or utility maximization from economic theory (Niedercorn and Bechdolt 1969), and
those based on intervening opportunities which can be derived heuristically.
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interaction perspective, attention is focused on interaction patterns at the aggregate
rather than the individual level.

Gravity models2 typically rely on three types of factors to explain mean inter-
action frequencies: Origin specific variables that characterise the ability of origin
locations to produce or generate flows; destination specific variables that attempt
to capture the attractiveness of destination locations; and, a separation function
that reflects the way spatial separation of origins from destinations constrains or
impedes the interaction (Fischer and Wang 2011). At larger scales of geographical
inquiry spatial separation might be simply measured in terms of the great circle
distance separating an origin from a destination location. In other cases, it might
be transportation cost, perceived travel time or any other sensible measure such
as political distance, language distance and cultural distance measured in terms
of nominal or categorical attributes. One popular example of a separation or
deterrence function is the exponential function that leads to gravity models known
as exponential gravity models.

Alternative forms of the gravity model can be specified by imposing (exogenous)
constraints on the mean interaction frequencies. These model variants include origin
and/or destination specific balancing (normalising) factors that act as constraints
to ensure that the origin and destination totals for spatial interactions are exactly
predicted (see Wilson 1971). The model is said to be doubly constrained if both
origin and destination constraints hold for each location. If either the origin
or the destination constraints hold the model is singly constrained; otherwise it
is unconstrained. It is worth noting that the doubly constrained gravity model
has also become known as the trip distribution stage in the four-step transport
planning approach.3 One more recently recognized role of these constraints is
their accounting for spatial autocorrelation effects in the geographic distribution
attributes across origins and destinations.

The focus in this paper is on singly and doubly constrained exponential gravity
model variants for situations involving flows taking the form of counts; for example,
counts of persons commuting from home to work locations, or as in the example

2For a discussion of problems that plague empirical implementation of regression-based gravity
models, and econometric extensions that have recently appeared in the literature, see LeSage
and Fischer (2010). These new models replace the conventional assumption of independence
among origin-destination flows with formal approaches that allow for spatial dependence in flow
magnitudes. The econometric extensions are based on the assumption of a linear relation between
the dependent and the independent variables, and this assumes the dependent variable to be
normally distributed.
3Trip making is viewed as consisting of four components (see, for example, Fischer 2000): trip
generation and attraction (the decision to make a trip and how often); trip distribution in a system
of traffic zones; modal split (choice of mode of transport); and, trip assignment (choice of route
through network). The gravity model is used for trip distribution, but is preceded by trip generation
and attraction models that provide independent estimates of locational (zonal) trip origins and
attractions that subsequently become the “mass” terms of the gravity model. Thus, the definition
of the row and column sums of the predicted trip matrix coincides exactly with the definitions of
the respective mass terms.
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considered in this paper, the number of patent citations from one region to another.
In such cases, current practice is to model origin-destination flow data with Poisson
gravity model specifications. Under the assumption that the flows are independently
distributed Poisson variables the constrained gravity model variants can be treated
as particular cases of a generalised linear model (GLM) with fixed (or random)
effects, employing a logarithmic link function and a Poisson mean flow. Maximum
likelihood estimates of the model parameters can be achieved using an iterative re-
weighted least squares algorithm, as implemented in statistical software packages
such as GLIM (Generalised Linear Iterative Modelling).

Flows, however, are not strictly independent. Spatial (or network) dependence4

is more likely than spatial independence when considering origin-destination flows.
Spatial dependence in a flow setting refers to a situation where flows from nearby
locations (either origins or destinations) are similar in magnitude. A failure to
incorporate spatial dependence in model specifications leads to biased parameter
estimates and incorrect conclusions. Eigenvector spatial filtering—described in
Griffith (2003) for conventional regression models—offers an approach to dealing
with spatial dependence in constrained gravity model variants. This approach relies
on the decomposition of a spatial weight matrix into eigenvalues and eigenvectors
and then uses a subset of the eigenvectors as additional explanatory variables in the
singly and doubly constrained gravity model specifications to reduce potential bias
in parameter estimates. A virtue of this approach is that existing software can be
applied for the case of spatial dependence in constrained model variants involving
flows taking the form of counts.

The purpose of this paper is twofold: first, to establish theoretical connections
between the constrained gravity model versions with balancing factors, fixed effects
represented by binary location specific indicator variables, and random effects; and
second, to illustrate these connections with an empirical example while accounting
for spatial dependence among flows during estimation. Fulfilling these goals reveals
that fixed and random effects are identical and equal to the logarithm of the entropy
maximisation derived factors, except for slight rounding/algorithm-convergence
errors. This finding is the outcome of an equivalency between assigning a single
fixed effects indicator variable to each origin/destination on the one hand, and
estimating a single random effects value for an origin/destination while treating
the corresponding destinations/origins as repeated measures, on the other. As
with the unconstrained gravity model variant, adjusting for spatial dependence in
origin-destination flows reduces bias in parameter estimates and improves model
performance.

The rest of the paper is organised as follows. Section 3.2 describes unconstrained
and constrained classes of the gravity model with a focus on doubly and singly
constrained model variants that rely on a multiplicative adjustment scheme to

4Spatial dependence is also known as network autocorrelation (see Black 1992; Chun 2008; Griffith
2009; Chun and Griffith 2011) even though there are similar differences between both as between
spatial dependence and spatial autocorrelation in general.
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enforce satisfactorily the conservation rule. Section 3.3 presents the counterpart
Poisson specifications that interpret/predict the level of flows as dependent on
not only the explanatory variables (and the associated coefficient estimates), but
also origin and destination specific effects coefficients. Section 3.4 describes
spatial filtering as a way of filtering the sample origin-destination data for spatial
dependence (i.e., transferring spatial autocorrelation effects from residuals to the
mean/intercept parameter) in an effort to mimic independent data amenable to stan-
dard Poisson regression estimation procedures. Section 3.5 continues to establish
theoretical connections between balancing factors, fixed effects and random effects
(spatially filtered) model specifications. The results are illustrated in Sect. 3.6 with
an empirical example involving knowledge flows between 257 European regions
resulting in 2572 D 66,049 flow dyads. Section 3.7 concludes the paper.

3.2 Unconstrained and Constrained Classes of Gravity
Models: The Classical View

Gravity models that describe mean interaction frequencies in a system of n locations
can be written5 as

E
�
Yij
� D Kij Ui Vj f

�
dij
�

(3.1)

where Yij .i; j D 1; : : : ; n/ is a random variable denoting the level of flows from
origin location i .i D 1; : : : ; n/ to destination location j . j D 1; : : : ; n/ ; Ui and
Vj are appropriate origin and destination specific factors or functions reflecting
locational propensities to emit or attract interactions, f (dij) is a separation function
of some inter-location measure d that separates origin i from destination j, and
Kij is an origin-destination specific constant of proportionality, or scaling factor,
which reduces to a constant scaling factor K for the unconstrained gravity model
specification (which then is accompanied by attaching exponents of other than one
to Ui and Vj). The role of this origin-destination specific constant of proportionality
in the gravity model equation depends on how extensively the conservation rule
(Ledent 1985) is enforced in the system of locations. Four alternative cases may be
distinguished, giving rise to equally many classes of gravity models.

A gravity model is called unconstrained if the conservation principle is ignored
altogether so that

Kij D K (3.2)

5An alternative formulation to that given in Eq. (3.1) is Yij D Kij Ui Vj f
�
dij

�
	ij C "ij where "ij

reflects the sample error and 	ij the specification error. In this case, the stochastic nature of Yij

derives from assumptions made about the stochastic nature of "ij and 	ij.
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where K is a constant scaling factor independent of all origins and destinations. If
Y•• denotes the total number of flows in the spatial system, then

K D Y��

2

6
6
4

nX

iD1
i¤j

nX

jD1
UiVj f

�
dij
�

3

7
7
5

�1

(3.3)

where the summation is over the range i D 1; : : : ; n and j D 1; : : : ; n: Although Eq.
(3.1) has been developed by analogy with Newton’s gravity equation, Isard (1960),
and Sen and Smith (1995) developed versions of the unconstrained model using a
probabilistic approach.

At the other extreme of the spectrum is the doubly constrained case of spatial
interaction that refers to a situation in which the conservation principle is enforced
from both the viewpoint of origin and destination locations. The origin-destination
specific constant of proportionality, Kij, now depends on both origins and destina-
tions. For simplicity, it is generally assumed6 that

Kij D Ai Bj (3.4)

where the origin and destination specific constants, Ai and Bj, called balancing
factors, are solutions of the equation system (Wilson 1967)

Ai D Yi�
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Bj D Y�j
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: (3.6)

These balancing factors act as constraints to ensure that the estimated inflows OY�j for
j D 1; : : : ; n and outflows OYi� for i D 1; : : : ; n equal the observed inflow and outflow
totals, respectively. Such doubly (or attraction-production) constrained models have

6The multiplicative form of the balancing factors Ai and Bj (Wilson 1967) ensures mathematical
tractability in searching for an adequate estimation procedure. Alternatively, Tobler (1983)
suggests an additive adjustment scheme, Kij D Ai C Bj, to enforce satisfactorily the conservation
rule. Ledent (1985) introduces a general functional form that subsumes both the multiplicative
(Wilson) and the additive (Tobler) variants.
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been extensively used as trip distribution models in transport modelling, and many
variants of this model form exist for describing journey-to-work interactions.

Between these two extreme cases of unconstrained and doubly constrained
spatial interaction lie many models that are subject to some constraints but not
to others. Two important classes can be identified: the origin (or alternatively
called production) constrained gravity model, and the destination (or alternatively
called attraction) constrained gravity model. In the production constrained case the
conservation principle is enforced from the viewpoint of origin locations7 only.
Hence

Kij D Ai: (3.7)

Ai is a factor dependent on the location of an origin, and is called an origin specific
balancing factor. If Yi• denotes the total number of outflows from location i,

Ai D Yi�
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: (3.8)

The origin constrained gravity model is useful in situations where the outflow totals
are known or can be exogenously predicted for each origin location in the system.
For an instructive example see Haynes and Fotheringham (1984, pp. 60–62).

The attraction constrained case of spatial interaction enforces the conservation
principle from the viewpoint of destination locations. Thus

Kij D Bj (3.9)

where Bj is a factor dependent on the destination location. If Y•j denotes the total
number of inflows into location j,

Bj D Y�j

2

6
6
4Vi

nX

iD1
i¤j

Ui f
�
dij
�

3

7
7
5

�1

: (3.10)

This model variant can be used to forecast total outflows from origin locations.
Such a situation might arise, for example, in forecasting the effects of locating
a new industrial park within a metropolitan area. The number of people to be

7In the origin constrained and the destination constrained models presented here, the constraints
to which these models are subject refer to the full set of n origin or n destination locations. But
it is possible to develop models that are only constrained over certain subsets of locations. Such
models, which are not considered in this paper, may be found in Wilson (1970).
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employed in the new development area is known, and the destination constrained
gravity model can be used to forecast the demand for housing in particular locations
of the metropolitan area that will result from the new employment (Haynes and
Fotheringham 1984).

The models presented in Eqs. (3.1)–(3.10) are in a generalised form and no
mention has yet been made to the particular set of parameters characterising
such gravity models. Although the balancing factors are sometimes referred to as
parameters, in this paper the term parameter is restricted to those constants that must
be estimated statistically, rather than to those constants that imply the accounting
constraints placed on the model.

Many different model formulations can be obtained from Eq. (3.1), despite its
structural simplicity (see Baxter 1983). Ui and Vj can be treated as completely
known, as parameters to be estimated (see Cesario 1973), or as simple power
functions of some known variables (see Fotheringham and O’Kelly 1989). The
separation function constitutes the very core of gravity models.8 In this study we
use the multivariate exponential deterrence function

f
�
dij
� D exp

��� dij
�

(3.11)

in which d denotes a multivariate separation measure with an associated sensitivity
parameter � . This specification of the spatial separation function leads to the
following three variants of the gravity model: the doubly constrained variant

E
�
Yij
� D Ai Bj Ui Vj exp

��� dij
�

(3.12)

Ai D Yi�

2

6
6
4Ui

nX

jD1
j¤i

Bj Vj exp
���dij

�

3

7
7
5

�1

(3.13)

Bj D Y�j

2

6
6
4Vj

nX

iD1
i¤j

Ai Ui exp
���dij

�

3

7
7
5

�1

(3.14)

the origin constrained variant

E
�
Yij
� D Ai Ui Vj exp

��� dij
�

(3.15)

8The notion that separation functions in conventional gravity models work to effectively capture
spatial dependence in origin-destination flows has long been challenged. Griffith (2007) provides
an historical review of the regional science literature about this topic in which he credits Curry
(1972) as the first to conceptualise the problem of spatial dependence in flows.



44 D.A Griffith and M.M Fischer

Ai D Yi�
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6
4Ui

nX

jD1
j¤i

Vj exp
���dij

�

3

7
7
5

�1

(3.16)

and, the destination constrained variant

E
�
Yij
� D Bj Ui Vj exp

��� dij
�

(3.17)

Bj D Y�j

2

6
6
4Vj

nX

iD1
i¤j

Ui exp
���dij

�

3

7
7
5

�1

: (3.18)

The central concern in this paper is with the problem of estimating the model
parameter � rather than with the problem of determining appropriate values for the
balancing factors.9 A solution to this latter problem, for example in the case of
Eqs. (3.12)–(3.14), involves using an iterative biproportional adjustment technique,
known as the Deming-Stephan-Furness procedure10 (see Sen and Smith 1995, p.
374). As Evans (1970) shows, convergence to a unique set of values for Ai and Bj is
guaranteed for any non-trivial set of starting values.

3.3 Poisson Versions of the Constrained Gravity Models

Flows often take the form of counts such as numbers of migrants moving from
one location to another. In such situations a common assumption is that the Yij

(i, j D 1, : : : , n) follow independent11 Poisson distributions,12 Yij �P(
ij), where

ij is equated with the right hand side of Eq. (3.1). The mean and the variance of
the distribution are equal to 
ij. The Poisson specifications of the gravity model

9The constrained gravity model variants are intrinsically non-linear in their parameters, and thus
the application of linear methods leads to biased estimates of these parameters.
10In the economics literature it is often called the RAS procedure.
11Independence means that the individual flows from origin i to destination j are independent from
each other, and that origin-destination flows between any pair of locations are independent from
flows between any other pair of locations.
12Closely related to this assumption are the assumptions that the set of observations for each origin
location has a multinomial distribution, say MN (Yi1, Yi2, : : : , Yin; Yi•), or that the set of all
observations has a multinomial distribution MN (Yi1, Yi2, : : : , Ynn; Y••), where Yi• is the total
flow from origin location i, Y•• is the overall flow, and n is the number of origin and destination
locations. These multinomial distributions can be generated by assuming that the Yij (i, j D 1, : : : ,
n) are independent Poisson random variables sampled subject to the origin totals Yi•, or the overall
total Y••, being fixed (Bishop et al. 1975).
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variants interpret/predict the level of flows as dependent on not only the explanatory
variables (and their associated coefficient estimates), but also origin and destination
specific effects coefficients. The fixed effects version of the three constrained model
variants of the gravity model can be described as in Eqs. (3.19)–(3.21), respectively.

E
�
Yij
� D 
ij D Ui Vj exp

"

˛ C
n�1X

hD1
Iiho ˇho C

n�1X

kD1
Ijkd ˇkd � � dij

#

(3.19)

E
�
Yij
� D 
ij D Ui exp

"

˛ C
n�1X

hD1
Iiho ˇho � � dij

#

(3.20)

E
�
Yij
� D 
ij D Vj exp

"

˛ C
n�1X

kD1
Ijkd ˇkd � � dij

#

(3.21)

with origin h and destination k specific effects coefficients exp(ˇho) and exp(ˇkd),
and corresponding binary indicator variables13 Iiho and Ijkd for origins i and
destinations j respectively,

Iiho D
�
1 if i D h
0 otherwise

(3.22)

Ijkd D
�
1 if j D k
0 otherwise:

(3.23)

The fixed effects parameters inflate or deflate the level of flows, depending on
whether they are positive or negative. Of note is that one of the origin and one of
the destination specific effects coefficients, ˇno and ˇnd, have to be set to zero to
avoid perfect collinearity in the specifications, and these values are absorbed in the
intercept term ˛.

The most direct approach to estimating the models is with maximum likelihood
techniques. The likelihood function to be maximised is proportional to

L D
Y

i;j



yij

ij exp
��
ij

�
(3.24)

13One advantage of the use of origin/destination indicator variables in a Poisson regression
specification is that they yield individual rather than a single aggregate standard error, and null
hypothesis probability estimates for each of the individual values in the two sets of balancing
factors. One disadvantage is the amount of time necessary to estimate a GLM containing 2n � 2

indicator variables.
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where yij is the realisation of the random variable Yij. The Poisson distribution is a
member of the exponential family of distributions. Hence parameter estimation can
be achieved via GLMs (see McCullagh and Nelder 1983) so that the constrained
gravity model variants (3.19)–(3.21) can be treated simply as particular cases of a
GLM with a logarithmic link function14 and a Poisson mean. Then for the doubly
constrained case, for example, we get

log
�
E
�
Yij
�� D log
ij D log Ui C log Vj C ˛ C

n�1X

hD1
Iiho ˇko C

n�1X

kD1
Ijkd ˇkd � � dij

(3.25)

where the term
�
log Ui C log Vj

�
is included in the estimation procedure as an offset

variable (that is, its coefficient is fixed to equal one).
The maximum likelihood estimates can be derived by means of an iterative re-

weighted least squares procedure15 that is implemented in many statistical software
packages such as GLIM. A convenient property of the Poisson assumption along
with the log-linear functional form assumed for 
ij is that the resulting maximum
likelihood estimates guarantee that the fitted flows Ŷij satisfy relationships that
are consistent with the desirable origin and/or destination constraints of spatial
interaction16 (see Kirby 1974; Davies and Guy 1987, and Bailey and Gatrell 1995,
pp. 353–354 for details). Hence, there is no need to modify standard maximum
likelihood parameter estimation to incorporate explicit constraints on predicted
flows. The goodness-of-fit of GLMs is assessed on the basis of the log-likelihood
ratio statistic, known as the deviance.

Fixed effects model specifications allow the unobserved location specific effects
to be correlated with the explanatory variables. If the individual effects are strictly
uncorrelated with the regressors, then it might be appropriate to model the location
specific constant terms as randomly distributed across the locations. The role of
random effects terms in this context may be twofold: first, supporting inferences
beyond the specific fixed values of covariates employed in an analysis, and, second,
accounting for correlation in a non-random sample of data being analysed, in part
due to missing variables, for which they function as a surrogate. Random effects may
be used if the values of independent variables—which were not deliberately selected

14The logarithmic link function is best thought of as being an exponential conditional mean
function.
15McCullagh and Nelder (1983) prove that the procedure converges to the maximum likelihood
solution. Note that zero observed flows do not require any special treatment.
16The equivalence of maximum likelihood estimation with the Poisson assumption and the entropy
maximisation solution for a doubly constrained gravity model with origin and destination specific
balancing factors is well known (see Wilson and Kirkby 1980, p. 310). In the latter case, parameter
estimation of a model such as Eq. (3.1) is obtained by maximising an objective function subject
to sets of constraints on the origin and destination totals in combination with some constraint on a
general measure of spatial separation in the system of locations (Baxter 1982).
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by an experimenter—are thought to be a small subset of all possible values to
which inferences are to be made, to account for heterogeneity/overdispersion/inter-
observation correlation, or to handle observations that are not obtained by simple
random sampling but come from a cluster or multi-level sampling design.

The random effects counterparts17 of the fixed effects model specifications
(3.19)–(3.21) may be formulated as in Eqs. (3.26)–(3.28).

E
�
Yij
� D 
ij D Ui Vj exp

�
˛ C �io C �jd � � dij

�
(3.26)

E
�
Yij
� D 
ij D Ui exp

�
˛ C �io � � dij

�
(3.27)

E
�
Yij
� D 
ij D Vj exp

�
˛ C �jd � � dij

�
(3.28)

with zero mean normally distributed origin and destination specific random effects18

� io and � jd .
Finally, note that there is a constant of proportionality term, ˛, in the preceding

Poisson gravity model specifications. This term is made explicit because the
balancing factors that can be calibrated—as already mentioned – with the Deming-
Stephan-Furness procedure, have a constant factored from them. This factorisation
is achieved by: (i) setting the maximum Ai and/or the maximum Bj values to one
at each iteration step in the procedure; (ii) arbitrarily removing one of the origin
and/or destination indicator variables in the fixed effects specifications; and, (iii)
imposing a mean of zero on the random effects prior distribution. This is equivalent
to rewriting Eq. (3.12) as E.Yij/ D K Ai Bj Ui Vj exp.�� dij/; where K is a
constant.

3.4 Accounting for Spatial Dependence in the Model
Specifications

origin-destination flows are not independent (Bolduc et al. 1995; Tiefelsdorf 2003),
because flows are fundamentally spatial in nature (LeSage and Pace 2009). Spatial
dependence in flows relates to correlations among flows between locations that
are neighbouring a given origin-destination pair of locations.19 Hence, a failure

17Whether the random effects model variants are appropriate model specifications in spatial
research remains controversial. When the random effects gravity models are implemented, the
spatial units of observation should be representative of a larger population, and n should potentially
be able to get to infinity (see Elhorst 2010 for more details on this issue).
18Origin/destination specific spatial dependence in the random effects estimates motivated the
gravity model set forth in LeSage et al. (2007) that formally incorporates spatially structured
random effects in place of the zero mean, normally distributed independent random effects.
19This correlation differs from that latent in the geographic distributions of the origin and
destination variables that are reflected in the balancing factors. Pace et al. (2011) show that spatial
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to account for spatial dependence in model specifications may lead to biased
parameter estimates and incorrect conclusions. One way to overcome this problem
is by incorporating spatial dependence into the Poisson versions of the constrained
gravity model variants.20 Another way to address spatial dependence in origin-
destination flows involves eigenvector spatial filtering21 (see Chun 2008; Fischer
and Griffith 2008; Griffith 2009; Chun and Griffith 2011). Eigenvector spatial
filtering relies on a spectral decomposition22 of an N-by-N spatial weight matrix
W into eigenvalues and eigenvectors, and then uses a subset of these eigenvectors as
additional explanatory variables in the model specifications.

Spatial filtering used here in this paper relies on a spectral decomposition of
a transformed spatial weight matrix MWM, where W is an N-by-N spatial weight
matrix23

W D Wn ˝ Wn (3.29)

that captures spatial dependence between flows from locations neighbouring both
the origins and destinations, labelled origin-to-destination dependence by LeSage
and Pace (2008). Wn is a row-stochastic n-by-n spatial weight matrix that describes
spatial neighbourhood relationships between the n locations. This matrix has—by
convention—zeros in the main diagonal, and non-negative elements in the off-
diagonal cells. Specifically the (i, j)th element of Wn is greater than zero if i and
j are neighbouring24 locations. ˝ denotes the Kronecker product. M is the N-by-N

dependence in the explanatory variables decreases the ability of filtering to produce unbiased
regression parameter estimates.
20In the fixed effects case of the doubly constrained gravity model, for example, this takes the form

E
�
Yij

� D 
ij D Ui Vj exp

"

˛ C
n�1X

hD1

Iiho ˇho C
n�1X

kD1

Ijkd ˇkd�� dij

#
nY

j¤i

E
�
Yij

��Wij

where Wij is the (i,j)th element of an N-by-N spatial weight matrix W and � is a scalar parameter
that governs the degree of spatial dependence in origin-destination flows. Lambert et al. (2010) set
forth a two-step maximum likelihood estimation approach for a spatial autoregressive Poisson
model for count data which would need to be extended to the case of flows involving N
observations.
21This is an especially valuable approach in situations where the flows are count data, because
conventional spatial regression models and software tools are less developed for this data type.
22We assume that W is similar to a symmetric matrix so that it has real eigenvalues. If W is not
symmetric, then 1

2
.W C W 0/, which is symmetric by construction, may be used.

23If intralocational flows are excluded from an analysis, the N-by-N spatial weight matrix reduces
to an n(n–1)-by-n(n–1) one, only marginally impacting upon these eigenvectors when n > 100.
24Neighbours may be defined using contiguity or measures of spatial proximity such as cardinal
distance (for example, in terms of transportation costs) or ordinal distance (for example, the six
nearest neighbours). In the illustrative example in Sect. 3.6, we use a binary contiguity matrix Wn

to define W.
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projection matrix

M D I � � �0 1
N

(3.30)

where I is the N-by-N identity matrix, and � the N-by-1 vector of ones.
The approach focuses on capturing correlations among flows with a spatial

filter that is constructed as a linear combination of eigenvectors extracted from
the matrix MWM. The eigenvalues scaled by N/(�0 Wn �) directly indicate Moran’s
I coefficient values of map patterns that are represented by the corresponding
eigenvectors (Tiefelsdorf and Boots 1995). The first eigenvector, say E1, is the set
of real numbers that has the largest Moran’s I value achievable by any set of real
numbers for the spatial dependence structure defined by the spatial weight matrix W.
The second eigenvector, E2, is the set of real numbers that has the largest achievable
Moran’s I value by any set that is orthogonal to and uncorrelated with E1. The
third eigenvector is the third such set of values, and so on through EN , the set of
real numbers that has the largest negative Moran’s I value achievable by any set
that is orthogonal to and uncorrelated with the preceding .N � 1/ eigenvectors. As
such, these eigenvectors furnish distinct map pattern descriptions of latent spatial
dependence in the origin-destination flow variable because they are both orthogonal
and uncorrelated. Their Moran’s Is corresponding eigenvalues index the nature and
degree of spatial dependence portrayed by each eigenvector (Tiefelsdorf and Boots
1995), which can be standardised by the largest Moran’s I value, Imax.

The construction of a spatial filter involves a stepwise selection process. Griffith
(2003) suggests identifying a set of candidate eigenvectors first, based on a critical
value for the corresponding eigenvalues, a value that indicates a specific minimum
spatial autocorrelation level25 such as 0.5 measured in terms of the statistic I/Imax.
From these candidate eigenvectors, a subset of Q eigenvectors then can be selected
with standard model selection criteria such as the Akaike information criterion.
In the doubly constrained case of spatial interaction, for example, this yields the
following spatial filter versions of the model specifications (3.12), (3.19) and (3.26),
respectively:

E
�
Yij
� D Ai Bj Ui Vj exp

0

@˛ � � dij C
QX

qD1
Eq �q

1

A (3.31)

E
�
Yij
� D 
ij D Ui Vj exp

2

4˛ C
n�1X

hD1
Iiho ˇho C

n�1X

kD1
Ijkd ˇkd � � dij C

QX

qD1
Eq �q

3

5

(3.32)

25The criterion I/Imax D 0.5 suggests a restriction of the search over eigenvectors with moderate to
high spatial autocorrelation.
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E
�
Yij
� D 
ij D Ui Vj exp

2

4˛ C �io C �jd � � dij C
QX

qD1
Eq �q

3

5 (3.33)

where Eq denotes the qth eigenvector and �q its associated coefficient. The term
exp

�P
q Eq �q

�
is called a spatial filter.

The approach provides a simple way of filtering the sample flow data for spatial
dependence in an effort to mimic independent data amenable to standard estimation
procedures, and hence to reduce potential bias in the estimation of coefficients
associated with the explanatory variables. Spatial filtering, however, also faces
computational challenges in situations involving a large sample of observations.26

3.5 Equivalency Relationships Between the Balancing
Factors, Fixed Effects, and Random Effects

This section compares the three different model variants of constrained spatial
interaction with each other. First, attention is shifted toward comparisons between
model specifications with balancing factors and with fixed effects, and then between
model specifications with balancing factors and with random effects, for both the
doubly and singly constrained cases of spatial interaction.

3.5.1 Comparisons Between Balancing Factors and Fixed
Effects

The first comparison is between the doubly constrained model with balancing
factors and its corresponding fixed effects model specification, and hence focuses
on the relationship between Eqs. (3.31) and (3.32).

Theorem 1 If Yij � Poisson with mean 
ij D exp.log Ui C log Vj C ˛ C ˛io C
˛jd �� dij C CPqEq �q/, where ˛ denotes the global Poisson regression intercept
term, ˛io the Poisson regression origin location intercept term, and ˛jd the Poisson
regression destination location specific intercept term, then the balancing factors for
the doubly constrained gravity model are given by Ai D exp.˛io/ and Bj D exp.˛jd/:

26Pace et al. (2011) demonstrate how using iterative eigenvalue routines on sparse matrices such
as W can make filtering feasible for data sets involving a million or more observations, and
empirically estimate an operation count on the order of N1.1.



3 Constrained Variants of the Gravity Model and Spatial Dependence: Model. . . 51

Proof Because Eqs. (3.31) and (3.32) posit the expectation for the same random
variable, Yij, for i; j D 1; : : : ; n

Ai Bj Ui Vj exp

0

@˛ � � dij C
QX

qD1
Eq �q

1

A

D Ui Vj exp

0

@˛ C ˇio C ˇjd � � dij C
QX

qD1
Eq �q

1

A (3.34)

Ai Bj D exp
�
ˇio C ˇjd

� D exp .ˇio/ exp
�
ˇjd
�

(3.35)

) Ai D exp .ˇio/ D exp .˛io/ for all i D 1; : : : ; n (3.36)

Bj D exp
�
ˇjd
� D exp

�
˛jd
�

for all j D 1; : : : ; n � (3.37)

Remarks The equivalencies ˛io D ˇio and ˛jd D ˇjd relate these results not only
to the doubly, but also to the singly constrained cases. Furthermore, exp(˛) is the
constant of proportionality, which frequently is set to one (i.e., ˛ D 0) for the
traditional entropy maximising solution, and other than one for the conventional
gravity model solution. Allowing ˛ to deviate from one in the Deming-Stephan-
Furness procedure helps to stabilise convergence for large flow matrices, and may
be achieved by setting the largest Ai and the largest Bj values to one during each
iteration. This adjustment is equivalent to setting one of the ˛io D ˇio and one of
the ˛jd D ˇjd to zero in the fixed effects specification in order to avoid perfect
multicollinearity between the location specific indicator variables and the global
mean (which is a coefficient times an n-by-1 vector of ones). Estimates of ˇio and
ˇjd are obtained with Poisson regression.

This result relates the log-balancing factors, log(Ai) and log(Bj), for the doubly
constrained gravity model to their counterpart origin and destination fixed effects,
˛io and ˛jd . Hence fixed effects take on a particular meaning because they can be
interpreted as balancing factors. Cesario (1977) characterises the meaning of the
origin and destination balancing factors as follows: 1/Ai indexes the accessibility of
all destination locations vis-à-vis origin i, and 1/Bj indexes the accessibility of all
origin locations vis-à-vis destination j.

The next comparisons are between the model specifications with balancing
factors and fixed effects in the singly constrained cases of spatial interaction. To
this end, Theorem 1 suggests the following two corollaries pertaining to the singly
constrained spatial filter model specifications.

Corollary 1 If Yij � Poisson with mean 
ij D exp.log Ui C ˛ C ˛io � � dij CP
q Eq �q/, where ˛ denotes the global Poisson regression intercept term, and ˛io

the Poisson regression origin location specific intercept term, then the balancing
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factors for the origin constrained gravity model are given by Ai D exp.˛io/ for
i D 1; : : : ; n.

Corollary 2 If Yij � Poisson with mean 
ij D exp.log Vj C ˛ C ˛jd � � dij CP
q Eq �q/, where ˛ denotes the global Poisson regression intercept term, and

˛jd the Poisson regression destination location specific intercept term, then the
balancing factors for the destination constrained gravity model are given by Bj D
exp.˛jd/ for j D 1; : : : ; n.

These two corollaries relate the log-balancing factors for the singly constrained
gravity models to their counterpart origin or destination fixed effect model specifi-
cations.

3.5.2 Comparisons Between Balancing Factors and Random
Effects

Finally, comparisons can be made between the preceding results and the random
effects model specifications. In this context, a specification includes � io and/or
� jd, normal random variables, which respectively denote the random effects for
origin i and/or destination j, whose stochastic quantities are added to the global
intercept term. The next theorem relates to the relationship between a doubly
constrained model with balancing factors and its corresponding random effects
model specification, and hence focuses on the relationship between Eqs. (3.31) and
(3.33).

Theorem 2 If Yij � Poisson with mean 
ij D exp.log Ui C log Vj C ˛ C �io C �jd

�� dij C P
q Eq �q/, where ˛ denotes the global Poisson regression intercept

term, � io the Poisson regression origin location random effect, and � jd the Poisson
regression destination location random effect, such that �io � N .0; �2�o

/ and �jd �
N .0; �2�d

/, where �2�o
and �2�d

denote the origin and the destination location random
effects variances respectively, then the balancing factors for the doubly constrained
gravity model are given by Ai D exp.�io/ for i D 1; : : : ; n, and Bj D exp.�jd/ for
j D 1; : : : ; n.

Proof Equation (3.33) implies

log
�
E
�
Yij
�� D log
ij D log Ui C log Vj C ˛ C �io C �jd � � dij C

QX

qD1
Eq �q:

(3.38)
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Because Eqs. (3.31) and (3.38) posit the expectation for the same random variable,
Yij, for i; j D 1; : : : ; n

Ai Bj Ui Vj exp

0

@˛ � � dij C
QX

qD1
Eq �q

1

A

D Ui Vj exp

0

@˛ C �io C �jd � � dij C
QX

qD1
Eq �q

1

A (3.39)

AiBj D exp.�io C �jd/ D exp.�io/ exp.�jd/ (3.40)

) Ai D exp.�io/ for all i D 1; : : : ; n and Bj D exp.�jd/ for all j D 1; : : : ; n �

Remarks Both � io and � jd have a mean of zero, which is achieved by having the
global mean, ˛, in the model specification. In other words, the individual origin
and destination location means deviate from the global mean by random quantities.
Theorems 1 and 2 together imply: Ai D exp.�io/ D exp.ˇio/ D exp.˛io/ for all
i D 1; : : : ; n, and Bj D exp.�jd/ D exp.ˇjd/ D exp.˛jd/ for all j D 1; : : : ; n.
Estimates of � io and � jd are obtained by integrating them out of the likelihood
function.

Singly constrained models are obtained by setting �jd D 0 for all j, yielding
the origin constrained specification, or �io D 0 for all i, yielding the destination
constrained specification. Accordingly, Theorem 2 suggests the following two
corollaries pertaining to the singly constrained model specifications.

Corollary 3 If Yij � Poisson with mean 
ij D exp.log Ui C ˛ C �io � � dij CP
q Eq �q/, where ˛ denotes the global Poisson regression intercept term, and � io

the Poisson regression origin location random effect, such that �io � N .0; �2�o
/,

where �2�o
denotes the origin location finite random effects variance, then the

balancing factors for the origin constrained gravity model are given by Ai D
exp .�io/ for i D 1; : : : ; n.

Corollary 4 If Yij � Poisson with mean 
ij D exp.log Vj C ˛ C �jd � � dij CP
q Eq �q/, where ˛ denotes the global Poisson regression intercept term, and � jd

the Poisson regression destination location random effect, such that �id � N .0; �2�d
/,

where �2�d
denotes the destination location finite random effects variance, then the

balancing factors for the destination constrained gravity model are given by Bj D
exp.�jd/ for j D 1; : : : ; n.
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3.6 An Illustrative Example

In this section we use knowledge flows as captured by patent citation data to numeri-
cally illustrate the relationships between the aforementioned balancing factors, fixed
effects and random effects in the cases of singly and doubly constrained variants of
the gravity model. The origin-destination data relate to citations between European
high-technology patents. By European patents we mean patent applications at the
European Patent Office assigned to high-technology firms located in Europe. High-
technology is defined to include the International Standard Industrial Classification
(ISIC) sectors of aerospace (ISIC 3845), electronics-telecommunication (ISIC
3832), computers and office equipment (ISIC 3825), and pharmaceuticals (ISIC
3522). Self-citations (that is, citations from patents assigned to the same firm) have
been excluded, given our interest in pure externalities as evidenced by interfirm
knowledge spillovers.

Experts acknowledge that observations of patent citations are subject to a
truncation bias, because we observe citations for only a portion of the life of an
invention. To avoid this bias in the analysis, we have established a 5-year window
(that is, 1985–1989, 1986–1990, : : : , 1993–1997) to count citations to a patent.27

The observation period is 1985–1997 with respect to cited patents, and 1990–
2002 with respect to citing patents. The sample used in this section is restricted
to inventors located in n D 257 European NUTS-2 regions, covering the EU-27
member states (excluding Cyprus and Malta) plus Norway and Switzerland. In
case of cross-regional inventor teams, we have used the procedure of multiple
full counting that—unlike fractional counting—does justice to the true integer
nature of patent citations, but gives interregional cooperative inventions greater
weight.

Subject to caveats relative to the relationship between patent citations and
knowledge spillovers, the sample data allow us to identify and measure spatial
separation effects for interregional knowledge spillovers in the spatial system of
257 regions. We use a binary 257-by-257 contiguity matrix to specify the 66,049-
by-66,049 spatial weight matrix W that captures spatial dependence between patent
citation flows from locations neighbouring both the origins and the destinations.
Our interest is focused on the following three measures of separation: geographical
distance, measured in terms of the great circle distance (in km), technological
proximity, measured in terms of an index (for details see Fischer et al. 2006), and a
dummy variable that represents border effects measured in terms of the presence of
country borders between the regions. The product Ui Vj may be interpreted simply
as the number of distinct (i, j) interactions that are possible. Thus, a reasonable way
to measure the origin factor Ui is in terms of the number of patents in knowledge
producing region i in the time period 1985–1997, and the destination factor Vj in
terms of the number of patents in knowledge absorbing region j in the time period

27For details about the data construction, see Fischer et al. (2006).



3 Constrained Variants of the Gravity Model and Spatial Dependence: Model. . . 55

1990–2002 (Fischer and Griffith 2008). Accordingly, we have 66,049 observations,
five (four) covariates and an intercept term in the doubly (singly) constrained cases
of spatial interaction.

3.6.1 Model Specifications Ignoring Spatial Dependence
in origin-destination Flows

Empirical experiments were conducted to numerically illustrate relationships
between the aforementioned balancing factors, fixed effects, and random effects.
The preceding theorems and corollaries indicate that these should be perfectly
straight trend line relationships (using the log-balancing factors) with a slope of
one, but not necessarily an intercept of zero. The intercept term represents an
arbitrary multiplicative factor (i.e., a constant of proportionality).

Theorem 1 together with Corollaries 1 and 2 indicate that the scatterplots of the
log-balancing factors versus their concatenated Poisson regression indicator variable
coefficients (augmented by zero for the arbitrarily removed indicator variables) form
a perfect straight line [see Fig. 3.1]. The accompanying linear regression equations28

relating these two pairings of values are as follows29: for the origin constrained
case of spatial interaction: log(Ai) D 0.00051 C 0.99997 ’io (R2 D 1.0000), the
destination constrained case of spatial interaction: log(Bj) D 0.00001 C 0.99999
’jd (R2 D 1.0000), and the doubly constrained case of spatial interaction: log
(Ai) D 0.00018 C 1.00114 ’io (R2 D 1.0000) and log(Bj) D 0.00099 C 1.00110
’jd (R2 D 1.0000). Furthermore, these log-balancing factors strongly covary [see
Fig. 3.2(a) and (b)], and all deviate somewhat from a normal frequency distribution
as indicated by Fig. 3.2(c)–(f).

Model comparison results for the fixed effects versions of the constrained models
are presented in Table 3.1. Inclusion of the origin and/or destination balancing fac-
tors as fixed effects covariates reduces overdispersion as indicated by the deviance
statistic,30 noticeably changes the three separation function component parameter
estimates (especially that for the geographical distance decay), and remarkably
increases the pseudo-R2 value (measured in terms of a linear relationship between
the predicted and observed counts). The last column in Table 3.1 presents estimation
results for the doubly constrained spatially filtered gravity model specification, for

28A257 and B257 are the arbitrarily selected balancing factors set to one in each case, to avoid perfect
multicollinearity with the intercept term, resulting in an expected intercept of zero and an expected
slope of one.
29The regression equations describe each set of log-balancing factors as a function of the
corresponding fixed effects indicator variables. Error terms are not included here.
30A deviance statistic exceeding one indicates that overdispersion is present; that is, the Poisson
variance is greater than its mean. Although the existence of overdispersion does not affect the
unbiased character of the parameter estimates, their standard errors are underestimated, and hence
their significance is unrealistically increased.
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Fig. 3.1 Scatterplots of the log-balancing factors [log(Ai) and log(Bj)] versus the vector of
the Poisson regression indicator variable coefficients: (a) the singly-constrained cases: origin
and destination balancing factor plots; and (b) the doubly constrained case: the origin and the
destination balancing factor plots

comparative purposes. The elimination of spatial dependence in the flows triggers
a change of estimated parameter values and generates a decrease in the estimated
overdispersion, compared with the standard doubly constrained model specification.
That is, a part of the overdispersion, caused by spatial dependence, is eliminated
by including eigenvectors, which are the proxy variables of the spatial dependence
embedded in the standard model.

Theorem 2 together with Corollaries 3 and 4 address the random effects model
specifications for the three constrained variants of the gravity model. Treated as
particular cases of a GLM with a logarithmic link function and a Poisson mean,
these specifications yield the following expected values: log

�
E.Yij/

� D log.
ij/ D
log.Ui/C log.Vj/ C ˛ C �io C �jd � � dij in the doubly constrained case of
spatial interaction, log

�
E.Yij/

� D log.
ij/ D log.Ui/ C ˛ C �io � � dij in the
origin constrained case, and log

�
E.Yij/

� D log.
ij/ D log.Vj/ C ˛ C �jd � � dij

in the destination constrained case. The log terms on the right-hand side of the
equations are the offset variables. Bolduc et al. (1995) argue that estimating
origin and destination specific random effects in the gravity model specification
is very difficult. But the implication from Theorem 2 for the doubly constrained
specification supports a numerical demonstration for it, too.

Descriptive statistics for the random effects estimates are given in Table 3.2.
A frequentist approach requires integration of these effects out of the likelihood
function under study. As n increases, the multidimensional integration involved
becomes increasingly difficult. Here, with n D 257, the SAS procedure, called SAS
PROC NLMIXED, fails to correctly calculate about 10 % of the random effects (see
the Appendix). This complication resulted in the design of an indirect demonstration
of Theorem 2 as follows. Each balancing factor was introduced into the model
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Fig. 3.2 Log-balancing factors for the constrained model variants: (a) scatterplot of the singly
constrained origin and destination log-balancing factor pairs; (b) scatterplot of the doubly
constrained origin and destination log-balancing factor pairs; (c) normal quantile plot of log(Ai)
values in the origin-constrained case, with its 95 % confidence interval (CI); (d) normal quantile
plot of log(Bj) values in the destination-constrained case, with its 95 % CI; (e) normal quantile plot
of log(Ai) values in the doubly-constrained case, with its 95 % CI; and (f) normal quantile plot of
log(Bj) values in the doubly-constrained case, with its 95 % CI
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Table 3.2 Summary statistics for random effects estimations: the origin-constrained, the
destination-constrained and the doubly-constrained cases

Model specifications given by Eqs. (3.14)–(3.16)
Doubly-constrained

Statistics Origin-constrained Destination-constrained Origin Destination

Minimum �17:2 � 10�13 �15:5 � 10�13 �10:2 � 10�13 �10:5 � 10�13

Mean �2:5 � 10�13 �2:7 � 10�13 �83:6 � 10�13 �2:3 � 10�13

Median �2:9 � 10�13 �3:0 � 10�13 �0:1 � 10�13 �3:1 � 10�13

Maximum 10:9 � 10�13 9:8 � 10�13 11:0 � 10�13 10:4 � 10�13

Standard deviation 4:1 � 10�13 4:1 � 10�13 4:5 � 10�13 4:2 � 10�13

P(Shapiro–Wilk) <0:0001 0:0274 0:0077 <0:0001

GLMM estimation utilized a Newton–Raphson optimization procedure. The Shapiro–Wilk statistic
furnishes a diagnostic statistic for normality

specification, and then a random effects term was estimated. If a balancing factor
is equivalent to a random effects term, then all of the estimated random effects
are approximately zero. This expectation characterises the findings summarised in
Table 3.2. In other words, the estimated fixed and random effects display no conse-
quential differences. The generalised linear mixed model (GLMM) random effects
estimates are nearly identical to their balancing factor fixed effects counterparts.

Spatial filter descriptions of these variates are nearly identical,31 as shown in
Table 3.3, and comprise 17–20 of the 42 candidate eigenvectors depicting at least
weak positive spatial autocorrelation map patterns. These filters allow the balancing
factors to be deconstructed into spatially structured (SSRE) and spatially unstruc-
tured (SURE) random effects: the linear combination of eigenvectors constitutes
the SSRE, and the (remaining) residuals constitute the SURE. The SSREs account
for roughly two-thirds of the variance displayed by the total random effects terms.
This spatial structuring represents moderate-to-strong positive spatial autocorre-
lation, and is one reason the individual terms deviate from a normal frequency
distribution [all P(S-W) statistics increase, but still indicate marked deviation from
a normal distribution]. These linear spatial filters account for virtually all of the
spatial autocorrelation latent in the spatial distribution of these balancing factor
variates, which differ from the spatial dependence latent in the flows between the
regions.

31Because balancing factors are autoregressive specifications [see Eqs. (3.13)–(3.14)], they contain
marked spatial dependence by construction. The spatial filter descriptions of these balancing
factors rely on eigenvectors of the transformed spatial weight matrix MnWnMn where Wn is
the n-by-n binary contiguity matrix and Mn is the n-by-n projection matrix defined by Mn D
In � �n �0n n�1: Forty-two candidate eigenvectors (for which I/Imax > 0.25) are available for
constructing spatial filters portraying positive spatial autocorrelation across the European regions.
Of these, subsets have been selected with a stepwise regression procedure for constructing
spatial filters describing the two sets of balancing factors. The criteria used for selection were
statistically significant coefficients at the 10 % level associated with minimisation of the log-
likelihood function, which is standard practice.



60 D.A Griffith and M.M Fischer

Table 3.3 Summary statistics for the balancing factors and the decomposition

Log-balancing
factor

Spatially structured
random effects

Spatially unstructured
random effects

Constraint Ia P(S-W)b Ia # vectors R2 zI
c P(S-W)b

Singly-
constrained
origin

0.65 0.0002 0.93 18 70 0:36 0.0009

Singly-
constrained
destination

0.61 <0.0001 0.93 17 67 0:13 0.0007

Doubly-
constrained
origin

0.63 <0.0001 0.93 20 69 �0:29 0.0006

Doubly-
constrained
destination

0.61 <0.0001 0.93 20 67 �0:29 0.0032

aI denotes the Moran’s coefficient
bS-W denotes the Shapiro–Wilk statistic
cThe asymptotic standard error for the Moran’s I was used to compute the z-scores

Consequently, these particular singly constrained gravity model results confirm
Corollaries 3 and 4, and as such indirectly demonstrate Theorem 2. They also
illustrate that Ai D exp.�io/ D exp.ˇio/ D exp.˛io/ for i D 1; : : : ; n, and
Bj D exp.�jd/ D exp.ˇjd/ D exp.˛jd/ for j D 1; : : : ; n. In other words, the model
specifications with balancing factors, fixed effects and random effects, respectively,
yield identical estimation results for the production constrained and the attraction
constrained cases of spatial interaction. These findings imply that the same results
hold for the doubly constrained case (Fig. 3.3).

3.6.2 Spatial Filter Model Specifications Accounting
for Spatial Dependence in Flows

Estimating the balancing factors for singly and doubly constrained model speci-
fications accounts for spatial dependence in the origin and destination factors of
the gravity model, but not for spatial dependence in flows. Because only one set
of indicator variables is involved in singly constrained model specifications, the
intercept term can be added to each factor, forcing ˛ to zero in the origin con-
strained model specification, and in the destination constrained model specification,
respectively. This simple adjustment is not possible for the doubly constrained
model, for which the intercept term includes the sum of the two arbitrarily selected
indicator variable coefficients set to zero. Estimating random effects in the doubly
constrained case also overlooks spatial dependence in flows, and treats the n origin
flow recipients as repeated measures for each destination, and the n destination
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Fig. 3.3 Matrix lower triangular scatterplots, and upper triangular correlations: (a) spatially
structured random effects (SSREs): sossre—singly-constrained origin, sdssre—singly-constrained
destination, dossre—doubly-constrained origin, and ddssre—doubly-constrained destination;
and (b) spatially unstructured random effects (SUREs): sossre—singly-constrained origin,
sdssre—singly-constrained destination, dossre—doubly-constrained origin, and ddssre—doubly-
constrained destination

flow sources as repeated measures for each origin, respectively. All of these
specifications posit a unique value for each origin/destination for the N D n2 flow
data.

Origin and destination balancing factors must be estimated simultaneously (not
sequentially) with the spatial filters, in order to preserve the row and column
constraining totals. For the current case study, the spatial filters represent moderate-
to-strong positive spatial autocorrelation .I � 0:70/, decrease overdispersion by a
third or more beyond the reduction attributable to the balancing factors (Table 3.1),
produce a modest increase in the pseudo-R2 value, induce a marked decrease in
the distance decay parameter (for example, the confidence interval does not overlap
with those for the other specifications), and comprise Q D 221 of the 576 candidate
eigenvectors32 of matrix W.

Figure 3.4 reports the scatterplots of observed versus predicted flows for the
unconstrained gravity model specification, and the doubly constrained gravity
model specification with and without accounting for origin-to-destination depen-

32Of note is that for n larger than about 100, current computer resources do not allow direct
calculation of the eigenvectors of W. In order to reduce computational intensity we, followed
Griffith (2009) to construct the spatial filter with a linear combination of Kronecker products of
pairs of origin and destination eigenvectors. The result of this adjustment is 242 D 576 candidate
eigenvectors identified as Kronecker products of the 24 eigenvectors with an I > 0.5 extracted from
matrix .I � � �0 n�1/ Wn .I � � �0 n�1/. With 66,049 observations, five covariates and an intercept
term, and 576 candidate eigenvectors, the numerical intensity of the problem solution becomes
feasible but is still high.
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Fig. 3.4 Scatterplots of observed (vertical axis) versus predicted (horizontal axis) flows; grey
lines denotes the line of perfect prediction. (a) Unconstrained model specification; (b) doubly
constrained model specification; and (c) doubly constrained model specification adjusting for
spatial dependence

dence in the flows. The scatterplots display a standard Poisson random variable plot
of increasing variance with increasing amount of flow, and indicate a sequentially
improved alignment of predicted with observed values. Imposing flow data matrix
row and/or column total constraints coupled with inclusion of a spatial filter
capturing spatial dependence between flows from locations neighbouring both the
origins and destinations during estimation, shrinks especially the larger predicted
flow values toward the perfectly straight trend line.
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Fig. 3.5 Separation decay effects for the various model specifications: unconstrained (thin line),
destination-constrained (dotted line), origin-constrained (short dash line), doubly-constrained
(long dash line), doubly-constrained adjusted for network spatial autocorrelation (thick line).
(a) geographical distance; (b) technological distance; and (c) intervening border

Figure 3.5 portrays the three individual separation effects. An expected finding
is that the geographical distance decay parameter estimate adjusted for spatial
dependence is less than in the model specifications that ignore spatial dependence in
flows. And, it differs substantially from its unadjusted counterparts [see Fig. 3.5a].
The pairs of values do not have overlapping confidence intervals (CIs), in part
because of the large sample size. The CI for the unconstrained case of spatial
interaction is (�0.4887, �0.4613), the origin constrained case (�0.8473, �0.8161),
the destination constrained case (�0.7695, �0.7384), the doubly constrained case
(�0.9249, �0.8934), and the spatially filtered doubly constrained case (�1.5507,
�1.4476). The technological separation decay parameter estimate exhibits little dif-
ference across the specifications [see Fig. 3.5b]. And, ignoring spatial dependence
appears to exaggerate border separation effects [see Fig. 3.5c]. Of note is that the
geographical distance parameter estimate has the largest spread across the model
specifications.
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3.7 Concluding Remarks

This paper suggests a number of interesting conclusions and implications for the
statistical analysis of origin-destination data. Foremost, and quite counterintuitive,
fixed effects and random effects are identical and equal the logarithm of the entropy
maximisation derived balancing factors, except for slight rounding/algorithm-
convergence errors. This finding is the outcome of an equivalency between assigning
a single fixed effects indicator variable to each origin/destination, on the one
hand, and estimating a single random effects (which is a mean) value for an ori-
gin/destination while treating the corresponding n destinations/origins as repeated
measures, on the other hand. This finding also indicates that the number of degrees
of freedom associated with the random effects term in this context may well be
closer to n � 1 than to two (i.e., for estimating the mean and the variance of a
random effects term) for the origins as well as the destination stochastic variable.

As with the unconstrained gravity model, adjusting for spatial dependence in
flows improves the performance of the constrained variants of the gravity model
in terms of both the pseudo-R2 and the deviance statistic, and has a substantial
impact on the separation parameter estimates that is in line with Curry (1972).
The cost in degrees of freedom is modest. On average, at least 90 degrees
of freedom are available for each parameter estimated in this case study. The
eigenvectors successfully capture origin-to-destination dependence in flows. Hence,
eigenvector spatial filtering provides a useful way of filtering spatial dependence in
the sample origin-destination data. A virtue of this approach is that standard model
specifications of the constrained gravity models and existing software can be applied
to origin-destination data samples. This proves especially useful when dealing with
flows taking the form of counts. However, the difficulty of computing eigenvalues
and eigenvectors when dealing with a large number of locations limits the ability of
filtering to capitalise on these advantages.

Appendix: Results for the Estimation of Singly Constrained
Random Effects Specifications

Because of the large dimensionality of the calculus problem, multivariate integration
struggles to properly estimate the random effects terms. Largest values appear to
introduce the greatest difficulties. Figure 3.6 A reveals that integration is completely
successful between the minimum and roughly 0.5 in our case study. Integration
is only partially successful beyond 0.5. Incorrectly calculated random effects
constitute about 10 % of the total number of random effects in this case study.
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Fig. 3.6 Scatterplot of (a) the origin log-balancing factor (vertical axis) versus the Poisson
regression origin location random effects (horizontal axis); (b) the destination log-balancing factor
(vertical axis) versus the Poisson regression destination location random effects (horizontal axis)
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4.1 Introduction

Permutation tests of spatial autocorrelation are justified under exchangeability,
that is the premise that the observed scores follow a permutation-invariant joint
distribution. Yet, in the frequently encountered case of geographical data collected
on regions differing in importance, the variance of a regional score is expected
to decrease with the size of the region, in the same way that the variance of
an average is inversely proportional to the size of the sample in elementary
statistics: heteroscedasticity holds in effect, already under spatial independence,
thus weakening the rationale of the celebrated spatial autocorrelation permutation
test (e.g. Cliff and Ord 1973; Besag and Diggle 1977) in the case of a weighted
network.

This paper presents an alternative permutation test for spatial autocorrelation,
whose validity extends to the weighted case. The procedure relies upon spatial
modes, that is linear orthogonal combinations of spatial values, originally based
upon the eigenvectors of the standardized connectivity or adjacency matrix (Tiefels-
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dorf and Boots 1995; Griffith 2000). In contrast to regional scores, the variance
of the spatial modes turn out to be constant under spatial independence, thereby
justifying the modes permutation test for spatial autocorrelation.

Section 4.2.1 presents the definition of the local variance and Moran’s I in the
arguably most general setup for spatial autocorrelation, based upon the normalised,
symmetrical exchange matrix, whose margins define regional weights (Bavaud
2008a). Section 4.2.2 presents, in the spirit of spatial filtering (Griffith 2000), the
spectral decomposition of the exchange matrix, or rather of a standardised version
of it, currently used in spectral graph theory (Chung 1997; von Luxburg 2007;
Bavaud 2010), supplying the orthogonal components defining in turn the spatial
modes. Section 4.2.3 presents the mode permutation test, and its bootstrap variant,
illustrated in Sect. 4.2.4 on Swiss migratory and linguistic data.

Section 4.3 addresses the familiar case of binary or weighted adjacency matrices,
which have to be first converted into exchange matrices with a priori fixed margins.
Two proposals, namely a simple rescaling with diagonal adjustment (Sect. 4.3.1) and
the construction of time-embeddable exchange matrices (Sect. 4.3.2) are presented,
and illustrated on the popular “distribution of Blood group A in Eire” dataset
(Sect. 4.3.3).

4.2 Spatial Autocorrelation in Weighted Networks

4.2.1 Local Covariance and the Exchange Matrix

Consider a set of n regions with associated weights fi > 0, normalized to
Pn

iD1 fi D
1. Weights measure the importance of the regions, and define weighted regional
averages and variances as

Nx WD
nX

iD1
fixi var.x/ WD

nX

iD1
fi.xi � Nx/2 D 1

2

X

ij

fifj.xi � xj/
2 : (4.1)

Here x D .xi/ represents a density variable or a spatial field, that is a numerical
quantity attached to region i, transforming under aggregation i; j ! Œi[ j� as xŒi[j� D
. fixi C fjxj/=. fi C fj/, as for instance “ cars per inhabitants”, “ average income”
or “ proportion of foreigners”.

The last identity in (4.1) is straightforward to check (Lebart 1969), and shows
the variance to measure the average squared dissimilarity between pairs .i; j/ of
regions, selected independently with probability fifj. A more general sampling
scheme consists in selecting the regional pair .i; j/ with probability eij, such that

eij � 0 eij D eji ei� WD
X

j

eij D fi e�� D 1 (4.2)
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where “�” denotes the summation over the replaced index. A n � n matrix E D .eij/

obeying (4.2) is called an exchange matrix (Berger and Snell 1957; Bavaud 2008a),
compatible with the regional weights f . The exchange matrix defines an undirected
weighted network, with edges weights eij and regional weights fi D ei�. It contains
loops in general (eii � 0), denoting regional self-interaction or autarachy (Bavaud
1998).

By construction, the exchange matrix generates a reversible Markov transition
matrix W D .wij/ (Bavaud 1998) with stationary distribution f :

wij WD eij

fi
� 0

X

j

wij D 1
X

i

fiwij D fj fiwij D fjwji D eij : (4.3)

W constitutes a row-normalized matrix of spatial weights, entering in the autoregres-
sive models of spatial econometrics (see e.g. Anselin 1988; Cressie 1993; Leenders
2002; Haining 2003; Arbia 2006; LeSage and Pace 2009).

In spatial applications, the components of the exchange matrix are large for
nearby regions and small for regions far apart. The quantity

varloc.x/ WD 1

2

X

ij

eij.xi � xj/
2 (4.4)

defines the local variance, that is the average squared dissimilarity between
neighbours. Comparing the local and the ordinary (weighted) variance defines
Geary’s c and Moran’s I, measuring spatial autocorrelation (e.g. Geary 1954; Moran
1950; Cliff and Ord 1973; Tiefelsdorf and Boots 1995; Anselin 1995). Namely,
c.x/ WD varloc.x/=var.x/ (differing from its usual variant by a factor n=.n � 1/) and

I.x/ WD 1 � c.x/ D var.x/ � varloc.x/

var.x/
D
P

ij eij.xi � Nx/.xj � Nx/
P

i fi.xi � Nx/2 :

4.2.2 Spatial Filtering and Spatial Modes

Spatial filtering primarily aims at visualizing and extracting the latent factors
involved in spatial autocorrelation (Tiefelsdorf and Boots 1995; Griffith 2000, 2003;
Griffith and Peres-Neto 2006; Chun 2008; Dray 2011; and references therein).

Its first step consists in spectrally decomposing a matrix expressing inter-
regional connectivity in some way or another, such as the adjacency matrix or the
exchange matrix. Various choices are often equivalent under uniform weighting of
the regions, but the general weighted case calls for more precision. Arguably, the
most fruitful decomposition considers the so-called standardized exchange matrix
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Fig. 4.1 Reducible network, with 1 D 1 (left) and bipartite network, with n�1 D �1 (right)

Es, with components (Chung 1997; von Luxburg 2007; Bavaud 2010)

es
ij D eij � fi fjp

fi fj
i.e. Es D …� 1

2 .E � ff 0/…� 1
2 with … D diag. f / : (4.5)

Its spectral decomposition

Es D UƒU0 with U D .ui˛/ orthogonal and ƒ D diag./ diagonal

generates a trivial eigenvalue 0 D 0 associated with the trivial eigenvector
ui0 D p

fi. The remaining non-trivial decreasingly ordered eigenvalues ˛ (for
˛ D 1; : : : ; n � 1) lie in the interval Œ�1; 1�, as a consequence of the Perron-
Froebenius theorem and the symmetry of Es.

Also, 1 D 1 iff E is reducible, that is consisting of two or more disconnected
components (Fig. 4.1), and n�1 D �1 iff E is bipartite, i.e. partitionable into two
sets without within connections (e.g. Kijima 1997; Aldous and Fill 2002).

The exchange matrix itself expresses as

eij D fi fj Cp
fi fj

n�1X

˛D1
˛ui˛uj˛ D fi fjŒ1C

X

˛�1
˛ci˛cj˛� (4.6)

where the raw coordinates

ci˛ WD ui˛

ui0
D ui˛

˙p
fi

can be used at visualizing distinct levels of spatial autocorrelation (Griffith 2003),
or at specifying the positions of the n regions in a factor space (Bavaud 2010).

Raw coordinates are orthogonal and standardized, in the sense

X

i

fici˛ D ı˛0
X

i

fici˛ciˇ D ı˛ˇ : (4.7)
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As a consequence, the n regional values x can be converted into n modal values Ox,
and vice-versa, as

Ox˛ WD
X

i

fici˛xi xi D
X

˛�0
ci˛ Ox˛ D Nx C

X

˛�1
ci˛ Ox˛ : (4.8)

Equations (4.8) express orthogonal, Fourier-like correspondence between regional
values and modes. The latter depict global patterns, integrating the contributions
from all regions. In particular, the trivial mode yields the field average: Ox0 D Nx.

Borrowing an analogy from solid-state Physics, the spatial field x can describe
the individual displacements of each of the n atoms of a crystal. The modes Ox then
provide global parameters describing the collective motion of atoms, consisting of a
superposition of sound waves or harmonics, whose specific eigen-frequencies are
determined by the nature of the crystal, and whose knowledge permit to reconstruct
the individual atomic displacements.

4.2.3 The Modes Permutation Test

4.2.3.1 Heterodasticity of the Spatial Field

The hypothesis H0 of spatial independence requires the covariance matrix of
the spatial field X D .X1; : : : ;Xn/ to be diagonal with components inversely
proportional to the spatial weights, that is of the form (see the Appendix)

�ij D Cov.Xi;Xj/ D ıij
�2

fi
where �2 D Var. NX/ : (4.9)

In its usual form, the direct or regional permutation test compares the observed
value of Moran’s I.x/ to a set of values I.�.x//, where �.x/ denotes a permutation
(that is a sampling without replacement) of the n regional values x (e.g. Cliff and
Ord 1973; Thioulouse et al. 1995; Li and al. 2007; Bivand et al. 2009a). Sampling
with replacement, generating bootstrap resamples can also be carried out.

Both procedures are justified by the fact that the spatial variables Xi are
identically distributed under H0. Yet, (4.9) shows the latter assertion to be wrong
whenever the regional weights differ, thus jeopardizing the rationale of the direct
approach, based upon the permutation or the bootstrap of regional values.

The possible heteroscedasticity of regional values has been addressed by quite
a few researchers, in particular in epidemiology, and various proposals (transfor-
mations of variables or weights, reformulations in terms of residuals, Bayesian
approaches) have been investigated (see e.g. Waldhör 1996; Assunção and Reis
1999 or Haining 2003).
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4.2.3.2 Homoscedaticity of the Spatial Modes

As announced in the introduction, this paper proposes a presumably new modal
test, identical in spirit to the direct test but based upon modes permutation, together
with a variant based upon modes bootstrap. Its existence results from two fortunate
circumstances (see the Appendix), namely i) the homoscedasticity of the modes
under H0

O�˛ˇ WD Cov. OX˛; OXˇ/ D ı˛ˇ �
2 with OX˛ D

X

i

fi ci˛ Xi (4.10)

and ii) the simplicity of Moran’s I expression in terms of spatial modes, which reads

I.x/ 	 I.Ox/ D
P

˛�1 ˛ Ox2˛P
˛�1 Ox2˛

: (4.11)

As expected, the trivial mode Ox0 D Nx does not contribute to Moran’s I. Under H0, its
expectation and variance under all remaining .n�1/Š non-trivial modes permutations
read (see the Appendix)

E�.I j Ox/ D 1

n � 1
X

˛�1
˛ D trace.W/ � 1

n � 1 � �1
n � 1 (4.12)

Var�.I j Ox/ D s.Ox/ � 1
.n � 1/.n � 2/ Œ

X

˛�1
2˛ � 1

n � 1
.
X

˛�1
˛/

2� (4.13)

where

s.Ox/ WD .n � 1/
P

˛�1 Ox4˛
.
P

˛�1 Ox2˛/2
� 1

is a measure of modes dispersion.

4.2.3.3 The Test

The modes autocorrelation test consists in refuting H0, which denies spatial
dependence, if the value (4.11) of I.Ox/ is extreme w.r.t. the sample fI.�.Ox//g of
B permuted or bootstrapped mode values, that is if its quantile is near 1 (evidence
of positive autocorrelation) or near 0 (negative autocorrelation).

As expected, the trivial mode Ox0 D Nx does not contribute to Moran’s I. Also, I.x/
together with its permuted or bootstrapped values lie in an interval comprised in
Œn�1; 1� 
 Œ�1; 1�. The interval reduces to a single point I.�.Ox// 	 I0, invariant
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Fig. 4.2 Moran’s I.x/ is constant, independent of the value of the field x for the disconnected or
frozen network (left), for the fully connected or perfectly mobile network (middle), and their linear
combinations. Its minimum I.x/ � �1 occurs for the loopless network with n D 2 (right)

under permutations or bootstrapping, with a corresponding variance (4.13) of zero,
thus ruining the autocorrelation test, if (see (4.11), (4.13)):

(a) s.Ox/ D 1, that is Ox2˛ 	 Ox2 or equivalently Ox˛ 	 �˛ Ox, where Ox 2 R and �˛ D ˙1
for all ˛ � 1. Following (4.8), this occurs for “untestable” spatial fields of the
form xi D Nx C Oxzi where zi D P

˛�1 �˛ui˛=ui0 actually defines a set of 2n�1
configurations depending on the choice of the �˛ , whose sign is arbitrary, as is
the sign of the eigenvectors u˛.

Noticeably, the constant field xi 	 Nx is untestable, with a value I.x/ D
0=0 not even defined. However intriguing, the empirical relevance of those
“untestable” spatial fields is debatable, in view of the vanishing probability to
encounter exactly such a spatial pattern.

(b) ˛ 	  for all ˛ � 1, as with the :

(i) frozen networks E WD E.0/, where e.0/ij WD fiıij is the disconnected graph,1

associated to the immobile Markov chain with ˛ 	 1 and I.x/ 	 1

(Fig. 4.2, left)
(ii) or as with the perfectly mobile networks E WD E.1/, where e.1/

ij WD fi fj is
the complete weighted graph, free of distance-deterrence effects, associated
to the memoryless Markov chain with ˛ 	 0 and I.x/ 	 0 (Fig. 4.2,
middle)

as well as with their linear combinations E WD aE.0/ C .1 � a/E.1/. Also,
networks made of n D 2 regions are untestable: they automatically satisfy b)
and a) above (Fig. 4.2, right).

1Here the notations match the higher-order discrete time extensions of the exchange matrix,
resulting (under weak regularity conditions) from the iteration of the Markov transition matrix
as

E.r/ WD …Wr E.0/ D … E.2/ D E…�1E E.1/ D ff 0 :

.
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Under the additional normal assumption OX˛ � N.0; �2/ for ˛ � 1, one can show
E.s.Ox// D 3.n � 1/=.n C 1/ by the Pitman-Koopmans theorem (Cliff and Ord 1981,
p. 43) and hence

E.Var�.I j Ox// D 2

n2 � 1 Œ
X

˛�1
2˛ � 1

n � 1.
X

˛�1
˛/

2�

D 2

n2 � 1 Œtr.W
2/ � 1 � .tr.W/ � 1/2

n � 1
� : (4.14)

4.2.4 Illustration: Swiss Migratory and Linguistic Data

Flows constitute a major source of exchange matrices (e.g. Goodchild and Smith
1980; Willekens J 1983; Fotheringham and O’Kelly 1989; Sen and Smith 1995;
Bavaud 1998, 2002). Let nij.T/ denote the number of units (people, goods, matter,
etc.) initially in region i and located in region j after a time T. Quasi-symmetric
flows are of the form nij D aibjcij with cij D cji, as predicted by Gravity modelling.
They generate reversible spatial weights wij WD nij=ni�, with stationary distribution
fi, whose product fiwij defines the exchange matrix eij (Bavaud 2002).

Consider the inter-regional migrations data nij.T/ between the n D 26 Swiss
cantons for T = 5 years (1985–1990), together with the spatial fields x D
“ proportion of germanophones” or x D “ proportion of anglophones”, for
each canton. After determining the quasi-symmetric ML estimates Onij (Bavaud
2002), the exchange matrix is computed, and so are the spatial modes Ox˛ from (4.8)
and Moran’s index I.Ox/ from (4.11). Figure 4.3 depicts the distribution of 10000
permutation and bootstrap resamples of I.�.Ox//, from which the bilateral p-values
of Table 4.1 can be computed (see Sect. 4.3.2 for the details).

Most people do not migrate towards other cantons in 5 years, thus making the
exchange matrix “cold” (that is close to the frozen E.0/), with a dominating diagonal,
accounting for the high values of I and E�.I/ in Table 4.1.

Swiss native linguistic regions divide into German, French and Italian. Migrants
tend to avoid to cross the linguistic barriers, thus accounting for the spatial
autocorrelation of “germanophones” (Table 4.1, right). Detecting spatial patterns
in the anglophones repartition is, as expected from the above migratory scheme, less
evident.

Bootstrap tests (modal or regional) appear here less powerful than permutation
tests—a possibly true conjecture in general (Corcoran and Mehta 2002; Janssen and
Pauls 2005).

Modal autocorrelation tests of “anglophones” seem more sensitive than their
regional counterparts, while the opposite holds for “germanophones”: the usual
test of autocorrelation underestimates the dispersion of the resampled values of
I.�.germanophones// (Fig. 4.3, left), thus inflating the risk of type I errors for
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Fig. 4.3 Permutation (above) and bootstrap (below), modal (red) and regional (blue) testing of the
“migation-driven” spatial autocorrelation among germanophones (left) and anglophones (right).
B D 10000 samples are generated each time, and compared with the observed I, marked vertically
(color figure online)

Table 4.1 Left: observed I, its modal permutation expectation (4.12) and variance (4.13)
together with the z-value z WD .I � E�.I//=

p
Var�.IjOx/ and s.Ox/ in (4.13). Right: p-values

associated to the modal and direct autocorrelation test, in their permutation and bootstrap variants

Germanophones Anglophones

I 0:962 0.924

E�.I/ 0:917 0.917

Var�.IjOx/ 0:00044 0.000082

z 2:13 0.74

s.Ox/ 11:29 2.90

Germanophones Anglophones

Modal permutation 0.0006 0.048

Regional
permutation

0.0002 0.075

Modal bootstrap 0.0036 0.46

Regional bootstrap 0.0004 0.76
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size-unadjusted Moran’s I, in accordance with the simulation results of Assunção
and Reis (1999).

4.3 Adjacency Graphs and Accessibilities

Very commonly, space is defined by a binary, off-diagonal and symmetric connectiv-
ity or adjacency matrix n � n matrix A D .aij/, specifying whether distinct regions
i and j are direct neighbours (aij D 1) or not (aij D 0). This scheme can also,
as in gravity modelling, be extended to “weighted adjacencies” or accessibilities
aij D f .dij/ defined by a non-negative distance deterrence function f .dij/ decreasing
with the distance dij between distinct regions i and j.

In the sequel, we consider accessibility matrices with aij � 0, aij D aji and
aii D 0, with the interpretation that distinct regions i and j are direct neighbours iff
aij > 0. By construction, the three quantities

"ij D aij

a��
�ij D aij

ai�
�i D ai�

a��
D "i� (4.15)

respectively constitute an exchange matrix, its associated transition matrix and
the stationary distribution, proportional to the (possibly weighted) number of
neighbours or degree.

Although the series of steps of Sect. 4.2 can be wholly carried out by adopting
" WD ."ij/ as the reference exchange matrix, this procedure reveals itself far form
satisfactory in general: exchanges between non-adjacent regions are precluded, as
are the diagonal exchanges, thus mechanically generating negative eigenvalues in
view of 0 D trace."s

/ D 1 C P
˛�1 ˛ . Even worse, the normalized degree � in

(4.15), reflecting the regions centrality, strongly differs in general from the regions
weights f , reflecting their importance: a densely populated region can be weakly
connected to the rest of the territory, and inversely.

Proposals A and B below aim at converting an accessibility matrix A into an
exchange matrix E with given margins f , while keeping the neighborhood structure
expressed by A as intact as possible.

4.3.1 Proposal A: Simple Rescaling with Diagonal Adjustment

Define the symmetric exchange matrix

eij WD
�

Cbibjaij if i ¤ j
hi otherwise.

(4.16)
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where C, b and h are non-negative quantities obeying the normalisation condition
(recall aii D 0)

Cbi

X

j

aijbj C hi D fi for all i. (4.17)

By construction, ei� D fi and, for i ¤ j, eij D 0 whenever aij D 0.
An obvious choice, among many possibilities, consists in defining b as the first

normalised eigenvector of the accessibility matrix A, that is obeying Ab D 
b,
where 
 > 0 is the largest eigenvalue of A, and b (normalised to

P
i b2i D 1) is

non-negative by the Perron-Froebenius theorem on non-negative matrices. bi (or b2i )
is a measure of relative centrality of region i, sometimes referred to as eigenvector
centrality in the social networks literature.

Condition (4.17) becomes C
b2i C hi D fi, implying C D .1 � 	/=
, where the
quantity 	 WD P

i hi fixes the diagonal parameters to hi D fi�.1�	/b2i , and ranges in
	 2 ŒH; 1� to insure the non-negativity of C and h, where H WD 1� mini. fi=b2i / � 0.

The free parameter 	 controls the “autarchy of the network”: in the limit 	 ! 1,
one recovers the frozen network of Sect. 4.2.3.3, while 	 ! H yields at least one
region with eii D 0. Note that eii D 0 cannot hold for all regions, unless b 	 p

f
precisely, in which case H D 0.

4.3.2 Proposal B: Time-Embeddable Exchange Matrices

The second proposal is based upon the observation that �ij in (4.15) constitutes a
jump transition matrix, defining the probability that j will be the next, distinct region
to be visited after having been in region i (recall �ii D 0). Suppose in addition that,
once arrived in j, the state remains in j for a certain random time tj with cumulative
distribution function Fj.t/, with average waiting time or sojurn time �j D R

t dFj.t/.
This set-up precisely defines a so-called semi-Markov process (e.g. Çinlar 1975;
Barbu and Limnios 2008).

Together, the stationary distribution �j (4.15) of the jump transition matrix �ij

and the sojurn times �j determine the fraction of time spend in region j, that is the
regional weight fj, as (see e.g. Bavaud 2008b)

fj D �j�j

�
where � WD

X

j

�j�j or equivalently
1

�
D
X

j

fj
�j
: (4.18)

Furthermore, requiring exponentially distributed random times tj ensures the semi-
Markov process to be continuous or time-embeddable, that is of the form W.t/ D
exp.t R/ (matrix exponential) where R D .rij/ is the n � n rate transition matrix,
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with components rij D .�ij � ıij/=�i. In particular,

X

j

rij D 0
X

i

fi rij D 0 : (4.19)

The existence of transition matrices W.t/ D .wij.t// defined for any continuous
time t � 0, rather than limited to integer values t D 0; 1; 2; : : :, characterises time-
embeddable Markov chains. The symmetry of the associated exchange matrices
eij.t/ WD fi wij.t/ follows from the reversibility of W.t/, itself insured by the
reversibility of the jump matrix.

In summary, proposal B considers the adjacency matrix A as an infinitesimal
generator of the exchange matrix E; tuning the freely adjustable sojurn times �j in
(4.18) permits to transform any degree distribution � into any given regional weights
f , as required.

To achieve the practical, numerical construction of the time-embeddable
exchange matrix E.t/, consider the “standardised rate matrix” Q D .qij/ with
components

qij WD f
1
2

i f
� 1
2

j rij D "ij � ıij�j

�
p

fifj
: (4.20)

Q is semi-negative definite (see the Appendix). Its eigenvalues 
˛ and associated
normalised eigenvectors ui˛ satisfy 
0 D 0 with ui0 D p

fi, together with 
˛ � 0

for the non-trivial eigenvalues ˛ D 1; : : : ; n � 1. Now the eigenvectors of the
standardized exchange matrix Es.t/ D .es

ij.t// (4.5) turn out to be identical to
those of Q, irrespectively of value of t, (see the Appendix), while the non-trivial
eigenvalues of Es.t/ are related to those of Q by ˛.t/ D exp.
˛t/ for ˛ D
1; : : : ; n � 1. Substituting back in (4.6) finally yields the exchange matrix as

eij.t/ D fi fjŒ1C
X

˛�1
˛.t/ci˛cj˛� where ci˛ D ui˛p

fi
and ˛.t/ D exp.
˛t/: (4.21)

The eigenvalues ˛.t/ of the standardized exchange matrix Es.t/ (4.5) are non-
negative. This characterizes continuous-time Markov chain and diffusive processes,
by contrast to oscillatory processes associated to negative eigenvalues, as in the
bipartite network of Fig. 4.1, or as in the direct accessibility-based approach (4.15).

As a matter of fact, temporal dependence enters through the quantity t=� only:
defining Q� as (4.20) with � D 1 and 
� as the corresponding non-trivial
eigenvalues, one gets ˛.t/ D .exp.
�̨// t

� , which can be directly substituted into
(4.11) to compute Moran’s I. Note the modes Ox˛ D P

i

p
fiui˛xi, where the ui˛ are

the eigenvectors of Q�, to be time-independent.
The free parameter t (or t=�) represents the (relative) “age of the network”. E.t/

tends to the frozen network for t ! 0, and to the perfectly mobile network for t !
1 (Sect. 4.2.3.3). One expects spatial autocorrelation to be more easily detected for
small values of t, that is for networks able to sustain strong contrasts between local
and global variances.
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Fig. 4.4 “Blood group A in Eire” dataset: proposal A. Left: Moran’s I as a function of 	 2 ŒH; 1�.
Right: two-tailed p-values of the modes autocorrelation test, based upon B D 10000 permutation
(bold line) or bootstrap (dashed line) resamples

4.3.3 Illustration: The Distribution of Blood Group a in Eire

Let us revisit the popular “distribution of Blood group A in Eire” dataset (Cliff and
Ord 1973; Upton and Fingleton 1985; Griffith 2003; Tiefelsdorf and Griffith 2007),
recording the percentage x of the 1958 adult population with of Blood group A in
each of the n D 26 Eire counties, as well as the relative population size f , and the
inter-regional adjacency matrix A (data from the R package spdep Bivand 2009b).

Following the “proposal A” procedure of Sect. 4.3.1 yields 
 D 5:11 and
H D 0:904, echoing the existence of a region whose weight fi is about ten times
smaller than its “eigenvector centrality” b2i . Both permutation and bootstrap modes
autocorrelation tests reveal statistically significant spatial autocorrelation, without
obvious dependence upon the autarchy index 	 (Fig. 4.4).

“Proposal B” procedure of Sect. 4.3.2 yields p-values depicted in Fig. 4.5, left.
As expected, they reveal statistically significant spatial autocorrelation for small
values of t=� , and increase with t=� . Starting the procedure with one among the
many possible permutations of the field produces p-values as in Fig. 4.5 (right) and
indicates no spatial autocorrelation, as it must.

4.4 Conclusion

Real spatial networks are irregular and subject to aggregation. They are bound to
exhibit regions differing in sizes or weights. This paper proposes a weighted analysis
of Moran’s I, in the possibly most general set-up provided by the exchange matrix
formalism, rooted in the theory of reversible Markov chains and gravity flows of
geographers.

Besides providing a rationale for overcoming the heteroscedasticity problem in
the direct application of permutation or bootstrap autocorrelation tests, the concept
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Fig. 4.5 “Blood group A in Eire” dataset: proposal B. Left: two-tailed p-values of the modes
autocorrelation test, based upon B D 10000 permutation (bold line) or bootstrap (dashed line)
resamples. Right: the same procedure, applied to an arbitrarily selected permutation �.x/ of the
original spatial field x

of spatial modes we have elaborated upon arguably generalises the concept of
spectrally-based spatial filtering (e.g. Griffith 2003) to a weighted setting, and helps
integrating other network-related issues in a unified setting: typically, the first non-
trivial raw coordinate c1 of Sect. 4.2.2 has been known for some time to provide the
optimal solution to the spectral clustering problem, partitioning a weighted graph
into two balanced components (e.g. Chung 1997; von Luxburg 2007; Bavaud 2010).

Finally, local variance (4.4) can be generalised to local inertias 1
2

P
ij eijDij

(where D represents a squared Euclidean distance between regions) and to local
covariances 1

2

P
ij eij.xi�xj/.yi�yj/, whose future study may hopefully enrich formal

issues and applications in spatial autocorrelation.

Appendix

Proof of (4.7) U being orthogonal,
P

i fici˛ciˇ D P
i ui˛uiˇ D ı˛ˇ and

P
i fici˛ DP

i

p
fiui˛ D P

i ui0ui˛ D ı˛0.

Proof of (4.9) independence implies the functional form �ij D ıij g. fi/ where g.f /
expresses a possible size dependence. Consider the aggregation of regions j into
super-region J, with aggregated field XJ D P

j2J fjXj=fJ , where fJ WD P
j2J fj. By

construction,

g. fJ/ D Var.XJ/ D 1

f 2J

X

i;j2J

fifj�ij D 1

f 2J

X

j2J

f 2j g. fj/

that is f 2J g. fJ/ D P
j2J f 2j g. fj/, with unique solution g. fj/ D �2=fj (and g. fJ/ D

�2=fJ), where �2 D Var. NX/.
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Proof of (4.10) O�˛ˇ WD Cov. OX˛; OXˇ/ D P
ij fifjci˛cjˇCov.Xi;Xj/ D �2

P
i fici˛ciˇ D

�2
P

i ui˛uiˇ D �2ı˛ˇ .

Proof of (4.11)
P

˛�1 Ox2˛ D P
ij

p
fifjxixj

P
˛�0 ui˛uj˛�Ox20 D P

i fix2i �Nx2 D var.x/.

Also, varloc.x/ D 1
2

P
ij eij.xi � xj/

2 D P
i fix2i � P

ij eijxixj D P
i fix2i � Nx2 �

P
˛�1 ˛

P
i ci˛xi

P
j cj˛xj D var.x/ �P

˛�1 ˛ Ox2˛ :
Proof of (4.12) and (4.13) define

a˛ WD Ox2˛P
ˇ�1 Ox2ˇ

with
X

˛�1
a˛ D 1 and I.Ox/ D

X

˛�1
˛a˛ :

Under H0, the distribution of the non-trivial modes is exchangeable, i.e. f .a/ D
f .�.a//. By symmetry, E�.a˛/ D 1=.n � 1/, E�.a2˛/ D s.x/=.n � 1/2 where s.x/ DP

ˇ�1 a2ˇ=.n � 1/ and E�.a˛aˇ/ D .1 � s.x/=.n � 1//=Œ.n � 1/.n � 2/� for ˛ ¤ ˇ.
Further substitution proves the result.

Proof of the Semi-Negative Definiteness of Q in (4.20) for any vector h,

0 � 1

2

X

ij

"ij.hi � hj/
2 D

X

i

�ih
2
i �

X

ij

�ijhihj D �
X

ij

.�ij � ıij�j/hihj :

Relation Between the Eigen-Decompositions of Es.t/ and Q in (4.20) in matrix
notation, Q D …

1
2 R…� 1

2 , and hence Q
p

f D 0 by (4.19), showing u0 D p
f with


0 D 0. Consider another, non-trivial eigenvector u˛ of Q, with eigenvalue 
˛ ,
orthogonal to

p
f by construction. Identity E.t/ D … exp.tR/ together with (4.5)

yield

Es.t/ D
X

k�0

tk

kŠ
Qk �p

f
p

f
0

Es.t/u˛ D
X

k�0

tk
k
˛

kŠ
u˛ D exp.
˛t/u˛ :
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Chapter 5
Effects of Scale in Spatial Interaction Models

Giuseppe Arbia and Francesca Petrarca

Keywords Gravity models • Modifiable areal unit problem • Spatial autoregres-
sive random fields • Spatial interaction models

JEL Classification: C21, R19

5.1 Introduction

The MAUP (Modifiable Areal Unit Problem) is a particular form of the more general
Modifiable Unit Problem (MUP) that has a long tradition in statistics, see Yule and
Kendall (1950), whose spatial manifestation has been treated at length by Openshaw
and Taylor (1979); Arbia (1989) among others. The MAUP presents two facets.
The first is known as the “scale problem” and refers to the indeterminacy of any
statistical measure with respect to changes in the level of data aggregation (e.g.
from NUTS-3 to NUTS-2 in the EUROSTAT 2012). The second is referred to as the
“aggregation (or zoning) problem” and concerns the indeterminacy of any statistical
measure with respect to changes in the aggregation criterion at a given spatial scale
(e.g. two alternative partitions of the same area at a given spatial scale). In this
paper we explicitly aim to study the effects of scale on non linear spatial interaction
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models. A full understanding of the effects of MAUP on spatial interaction models is
relevant in many practical circumstances like, e.g., in the choice of the appropriated
spatial scale of analysis and of the spatial partition to be considered in geographical
studies, in the identification of possible ecological fallacies, in the inference of
individual (or disaggregated level) relationships from spatially aggregated data,
in the correct interpretation of the parameters’ estimates, and in the identification
of worst case scenarios when changing the level of aggregation. Furthermore, in
general a full understanding of the effects of MAUP is important to suggest grouping
criteria that preserve some properties when choosing between alternative zoning
systems at a given scale, in spatial interpolation and in small area estimation. Finally
it is relevant to suggest how to approximate the value of parameters when we are
interested at a fine level of aggregation (e.g. in EU NUTS-3), but we only avail
data at a coarser level of aggregation (e.g. in EU NUTS-2). It should be noted
that there is a close analogy between the problem of disaggregating information
and a parametric sampling problem. In both instances we start from a limited set
of information (the sample data in one case and the aggregated data in the other)
and we make use of them in order to acquire knowledge about some unknown
features of a wider set of data (a population parameter in one case and a parameter
at the disaggregated level in the other). The parametric inferential problem based
on sample data is traditionally solved by imposing some working hypotheses
on the unknown population and on the sampling criterion used to derive useful
indications in point and interval estimation and in hypothesis testing. BY analogy
in the disaggregation problem we can impose some working hypotheses on the
generating unknown disaggregated process and on the grouping criterion in order
to deduce the parameters value at the aggregated level and use it to derive useful
indications in the disaggregation process. This is the approach we used in the present
paper.

The setup of the paper is the following. In Sect. 5.2 we present a brief literature
review of the subject. In Sect. 5.3 we present a formalization of the effects of
MAUP in spatial interaction models by extending the approach employed in Arbia
and Petrarca (2011). In particular, we consider four different hypotheses for the
origin and the destination variables assuming that they are (a) non-stochastic; (b)
stochastic but without a spatial structure; (c) stochastic, spatially autocorrelated
and mutually independent and (d) stochastic, spatially autocorrelated and linearly
dependent. Section 5.4 reports the results of some simulations based on the theory
developed in Sect. 5.3, by referring in particular to the case of perfect aggregation,
(Theil 1954). The aim is to identify the worst case scenarios and to test the effects
on the aggregated flows of the introduction of spatial dependence in the origin
and in the destination variables. Some final remarks are reported in the concluding
Sect. 5.5.



5 Effects of Scale in Spatial Interaction Models 87

5.2 Literature Review

The effects of MUP on econometric models without reference to the peculiarity
of spatial data are well known dating back to the early contributions of Prais and
Aitchinson (1954); Theil (1954); Zellner (1962); Cramer (1964); Haitovsky (1973);
Orcutt et al. (1968); Pesaran et al. (1989) to name only a few. The main results
found in the literature are that the generalized least squares (GLS) estimators of
the regression parameters based on aggregated data are still best linear unbiased
(BLUE), even though they present a sampling variance greater than the one obtained
when using GLS on the original data. Such an underestimation of the variance of
the parameters in turn implies biases in the hypothesis testing on the parameters
leading to wrong inferential conclusions. A consequence is that the null hypothesis
is rejected more frequently than it should when we use aggregated data. The
magnitude of this efficiency loss of the estimators depends on the grouping criterion
and it is reduced to a minimum when groups are created to maximize the within-
group variability with respect to the between-group variability. Furthermore the
coefficient of determination is emphasized by aggregation. The general conclusion
is that micro-data can better discriminate between alternative specifications of the
models with respect to aggregate data. Referring specifically to spatial data Arbia
(1989) derived the formal relationship between the simple Pearsons’ correlation
coefficient at the original process level (or level-1) and the same at the aggregate
process level (level-2) when data are spatially correlated. In Arbia and Petrarca
(2011) this results were extended to the effects of aggregation on a general spatial
autoregressive linear econometric model. Focusing on the effects of scale this paper
shows that the obvious efficiency loss of the GLS estimators (connatural to the
process of aggregation) is, generally speaking, mitigated by the presence of a
positive spatial correlation and conversely exacerbated by the presence of a negative
spatial correlation both in the error component and in the dependent variable of
the model. This result is coherent with the theoretical expectations. Positive spatial
correlation implies that the aggregation between similar values preserves variability.
Conversely negative spatial correlation implies a more pronounced reduction of
variability and, hence, a greater efficiency loss.

5.3 A Formalization of MAUP in Spatial Gravity Models

We start considering the classical origin-destination simple gravitational model (see
LeSage and Fisher 2010):

Fij D kOiDjd
�2
ij (5.1)

with Fij the flow between location i and location j, k a dimensionality parameter, Oi

the origin variable of the flow in location i, Dj the destination variable of the flow in
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location j and dij the distance (however measured) between location i and location
j. Furthermore i D 1; 2; : : : ; n, j D 1; 2; : : : ; n and n is the number of locations. Let
us express the model in a matrix notation by setting:

Fij 2 F
n�nI Oi 2 OO

n�nI Dj 2 OD
n�nI d�2

ij 2 �
n�n D

2

6
66
6
6
6
66
6
4

0 d�2
12 : : : d�2

1n

d�2
21 0 : : : : : :

: : : : : : 0 : : :

d�2
n1 : : : : : : 0

3

7
77
7
7
7
77
7
5

the symbol O denoting the diagonal matrices. In the paper, we will consistently
assume that d can be measured without error so that the matrix �

n�n is non-stochastic.

Following this notation, we can rewrite Eq. (5.1) in matrix symbols as:

F
n�n D k OO

n�n �n�n
OD

n�n (5.2)

The whole system of interaction can be characterized by the mean flow given by:


 D 1

n2
iT F

n�n i D 1

n2
k iT OO

n�n�n�n
OD

n�n i (5.3)

where i is a unitary vector: i
1�n

T D Œ1 1 : : : 1�.

Let us now consider the case where we aggregate the original dataset, observed
on n locations, into a more aggregated partition of, say, m < n locations. In the
present paper, we restrict to the case of perfect aggregation (Theil 1954) that is the
case when the number of disaggregated units in each group is constant and it is
equal to r D n=m. Thus defined the parameter r quantifies the idea of the level of
aggregation. When r D 1 aggregation is minimal and we refer to the maximally
disaggregated level. Conversely, when r D n aggregation is at its maximum and all
information is concentrated in one single aggregated value. In particular, we will
consider 4 cases of increasing complexity:

(a) OO
n�n and OD

n�n are non stochastic;

(b) OO
n�n and OD

n�n are stochastic and with no spatial structure;

(c) OO
n�n and OD

n�n are stochastic, spatially autocorrelated and independent on one

another;
(d) OO

n�n and OD
n�n are stochastic, spatially autocorrelated and mutually dependent.

These case will be discussed in turn in the following sections.
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5.3.1 Case a: Ô and D̂ Are Non Stochastic

Let us introduce the aggregation matrix G defined as:

G
m�n D

2

6
6
6
66
6
6
6
6
66
4

r times
‚ …„ ƒ
1 : : : 1 0 : : : : : : : : : 0

0 : : : 0 1 : : : 1 0 : : : 0

: : : : : : : : :

0 : : : 0 0 : : : 0 1 : : : 1

3

7
7
7
77
7
7
7
7
77
5

with a cell size r (an integer) given by r D n
m .

As a consequence, the aggregated origin and destination variables are given by:

OO�
m�m D G

m�n
OO

n�n G
n�m

T I OD�
m�m D G

m�n
OD

n�n G
n�m

T

Thus the aggregated flows F�
m�m are given by:

F�
m�m D h OO�

m�m �
�

m�m
OD�

m�m D h G
m�n

OO
n�n G

n�m
T ��

m�m G
m�n

OD
n�n G

n�m
T (5.4)

where��
m�m is a non stochastic and exogenously given matrix and h a constant term.

The whole system of interaction can again be characterized by the mean flow
which can now be expressed as:


� D 1

m2
i�T

F�
m�mi� D 1

m2
hi�T OO�

m�m �
�

m�m
OD�

m�mi�

D 1

m2
hi�T

G
m�n

OO
n�n G

n�m
T ��

m�m G
m�n

OD
n�n G

n�m
Ti� (5.5)

with i� represents the unitary vector of dimension m i�T

1�m D Œ1 1 : : : 1� :

The relative change of mean flow from one aggregation level to the higher can
thus be measured by:

RC.r/ D 
�



D hn2

km2

i�T
G OO GT �� G OD GTi�

iT OO� OD i
(5.6)

The RC(r) function represents the aggregation bias in that it describes how the
mean flows are affected by the level of aggregation that (in this case of perfect
aggregation that we are considering here) can be expressed by the number of units
in each group given by r D n=m. By definition RC.r/ � 1 in that aggregation,
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other things being constant, produces a reduction of the variability of the origin and
the destination variables, that in turn generates an increase in the observed flows.
However, the introduction of a more realistic dependence structure of the origin
and the destination variables produces the effect of moderating or (conversely)
exacerbating this effect as we will show in the next sections.

5.3.2 Case b: Ô and D̂ Are Stochastic and Independent

When both the origin and the destination are stochastic, due to the presence of
measurement error, we can specify O and D as follows:

OO
n�n D O
O

n�n
C O"

n�n (5.7)

OD
n�n D O
D

n�n
C O	

n�n
(5.8)

where O
O
n�n

D 
O I
n�n and similarly O
D

n�n
D 
D I

n�n, with O
O and O
D constants, I
n�n the

identity matrix and "i 2 O"
n�n, 	i 2 O	

n�n
where "

n�1 iid N.0; �2" I/ and 	
n�1
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Consequently the disaggregated flow reported in Eq. (5.2) now becomes:
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The aggregated flow Eq. (5.4), instead, becomes:
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where
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Finally, the relative change of mean flow due to aggregation is now equal to:
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and can be seen as a function of the aggregation level r and of the two variances of
the error terms, �2" and �"	 .
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5.3.3 Case c: Ô and D̂ Are Stochastic, Spatially Autocorrelated
and Mutually Independent

As third case, let us assume that both the origin and the destination are stochastic
and generated by a spatial autoregressive random field (for a different treatment of
spatial dependence in spatial interaction models see Griffith 2009). In this case we
can specify O and D as follows:
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n�n
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n�n C O
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n�n
(5.12)
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OD
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C O
D
n�n

(5.13)

with W a weight matrix. It is the row-standardized n by n matrix defined according
to the rook’s case definition. The spatial correlation parameters  and � can be
specified such that wmin � � � wmax and similarly wmin �  � wmax, with
wmin; and wmax respectively the lower and the higher eigenvalues of W. Finally

O
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. As a consequence of Eqs. (5.12)–(5.13) we have that:
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Consequently the flow Eq. (5.2) now becomes:
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The aggregated origin and destinations are now given by:

OO�
m�m D �W�

m�m
OO�

m�m C O"�
m�m C O
�

O
m�m

(5.17)

OD�
m�m D  W�

m�m
OD�

m�m C O	�
m�m

C O
�
D

m�m
(5.18)

and, finally, from Eqs (5.14)–(5.15), we have:
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Therefore using Eqs (5.19)–(5.20) aggregated flow Eq. (5.4) now becomes:
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and the relative change of mean flow due to the aggregation can be measured by:
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which is now a function of the aggregation level r, of the two variances of the error
terms (�2" and �2	 ) and of the two spatial correlation parameters ( and �).

5.3.4 Case d: Ô and D̂ Are Stochastic, Spatially Autocorrelated
and Mutually Dependent

Finally let us assume (as we already did in the case discussed in Sect. 5.3.3) that
both the origin and the destination variables are stochastic and generated by spatial
autoregressive random field, but that, in addition, they are also mutually dependent.
In particular, without loss in generality, let us assume that the origin variable can be
expressed as a linear function of the destination variable and of an additional spatial
autoregressive term. We specify the relationship between O and D as follows:
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where ˇ is a regression parameter. As a consequence of Eqs (5.23)–(5.24) we have
that:
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and, considering Eq. (5.2), we now have the disaggregated flows expressed as:
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The aggregated origin and destination variables are then given by:
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with OO� D G OOGT and OD� D G ODGT as usual. Using Eqs. (5.25)–(5.26) we have:
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and the aggregated flow Eq. (5.4) now becomes:
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so that the relative change of mean flow due to the aggregation can now be expressed
as:
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which is now a function of the aggregation level r, of the two variances of the
error terms (�2" and �2	 ), of the two spatial correlation parameters and of the
regression parameter ˇ. In the present context we are interested, in particular, to
studying how different levels of spatial dependence in the origin and destination
variables may affect the mean flow when data are aggregated. However, the formal
expression derived in Eq. (5.33) is highly nonlinear in the parameters’ vector � D
.r; �2" ; �

2
	 ; �; ; ˇ/ and, as such, the relationship between the spatial structure of O

and D and the mean flow is not evident. To better visualize such a relationship in the
next section we will consider the behavior of the RC function in some artificially
generated data.

5.4 Analysis of Artificial Data

The aim of the present section is that of stressing the effects of spatial dependence
on the MAUP emerging in nonlinear spatial interaction models. To achieve this
aim we will consider artificially generated data laid on regular square lattice grids
hierarchically arranged in squares of increasing dimensions. In the present context
we will only consider the case of perfect aggregation, thus restricting only to the
scale problem and neglecting, at least for the time being, the aggregation problem.

In our experiments, a regular square lattice grid 64-by-64 (n D 4096) is
progressively aggregated by constituting groups of 4 neighbouring units into smaller
lattices of increasing cell size r according to the following scheme: 32-by-32
(m D 1024; r D 4), 16-by-16 (m D 256; r D 16), 8-by-8 (m D 64; r D 64)
and 4-by-4 (m D 16; r D 1024).

Our simulation exercise is deliberately kept at a very simple level to illustrate
the essence of the problem. We consider the case of a regular square lattice and
a constant criterion of aggregation of 4 adjacent cells at each step. Considering
irregular lattices and different criteria of aggregation (like e.g. the NUTS 1,2
and 3 levels in the Eurostat classification of European regions, see EUROSTAT
2012) can lead to different conclusions, but should not dramatically modify the
essence of them. With the aim of visualizing the effects of spatial dependence
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on aggregation, in our artificial data we considered the most general case where
the origin and the destination variables are stochastic, spatially autocorrelated and
mutually dependent according to the model formalization presented in Sect. 5.3.4.
In particular we generated our observations for " and, respectively, for 	, drawn
from two normal independent random variables and we introduced the results thus
obtained into Eqs. (5.25)–(5.26). This procedure guarantees that the origin and
destination variables are spatially correlated (with the desired level of intensity
captured by the parameters  and �) and mutually dependent (with a level of
dependence controlled by the parameter ˇ). Through the formal expressions derived
in Sect. 5.3, we use such observations to model the variation of the observed mean
flows when changing the level of scale. More specifically referring to the expression
reported in Eq. (5.33), we considered the following parameters specification. First
of all we considered a constant mean for the origin and destination, conventionally
set to 1 (
O D 
D D 1) and a constant value of the two dimensionality
parameters k and h (also conventionally set to unity: k D h D 1). The hypothesis
of an a priori constant mean may appear to be a limitation of our simulation
exercise. However, the presence of a spatial structure in Eqs. (5.23)–(5.24) and
of a linear dependence between the origin and the destination variables, has the
effect of modelling more realistic scenarios. For instance if we refer to origin and
destination variables proportional to the population size, we are able to reproduce a
situation where highly densely populated areas are close in space thus producing ex
post an uneven distribution which is closer to empirically observed phenomena.
In addition, we considered the effects on scale of two levels of the variance of
the random component " in Eq. (5.23) (namely �2" D Œ4; 8�), and a constant
proportionality between the variances of the two random components expressed
by �2	 D �2" =2. As for the spatial dependence parameters we considered both
the case of positive and negative values within the feasible range allowing �;  D
Œ�0:24;�0:1; 0; 0:1; 0:24�. Finally, in order to assess the effects on aggregation of
the strength of the relationship between the origin and the destination variables,
we considered two possible values of the regression coefficient corresponding to
ˇ D Œ1; 3�.

The choice of the simulation parameters 
O and 
D is purely conventional. The
choice of the parameters �", �	 and ˇ is justified empirically: we have attempted
several specifications and those reported here are enough to show the main effects.
Finally the choice of the parameters  and � are justified theoretically by the fact
that in a regular square lattice grid with a weight matrix W row-standardized and
defined according to the rooks case definition, they are restricted by the inequalities
jj < 0:25 and j�j < 0:25 (see e.g. Cliff and Ord 1981).

Figures 5.1 and 5.2 plot the Relative Change of mean flow (RC) as a function
of the level of spatial aggregation r observed at various levels of the spatial
dependence parameters  and �. The two Figures clearly show that the RC always
increase monotonically with aggregation as it was expected. Since the flows are
directly proportional to the size of the origin and the destination variables, higher
levels of scale will produce an increase in the total flows between regions. The
benchmarking values are represented by the solid line in Fig. 5.2, when both  and
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Fig. 5.1 Results of simulation of the model case d (Sect. 2.4) in the case of perfect aggregation.
Behavior of the Relative Change in mean flow (RC) with respect to the aggregation level r at
different values of the origin spatial dependence parameter rho (a)  D 0:1; (b)  D �0:1;
(c)  D 0:24; (d)  D �0:24. Graph are based on 1000 simulations

� are equal to zero. At any given level of the parameter  of spatial correlation
in the destination variable, when the spatial correlation in the origin variable (the
parameter �) is negative, we observe a more pronounced effect on the RC with a
sharper increase when r increases, with respect to the case of no spatial correlation.
On the contrary, the presence of positive values of the parameter � moderates the
increase of RC observed with aggregation. These effects are more evident in the
case of  D �0:24 (see Fig. 5.1d) and are conversely negligible in the case of
 D 0:24 (see Fig. 5.1c). Figures 5.1 and 5.2 show how the RC generally increases
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Fig. 5.2 Results of
simulation of the model case
d (Sect. 2.4) in the case of
perfect aggregation. Behavior
of the Relative Change in
mean flow (RC) with respect
to the aggregation level r at
different values of the origin
spatial dependence parameter
�. Case of  D 0. Graph are
based on 1000 simulations
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with the level of aggregation r, but it does not provide enough insights on how  and
� interact in determining it. For this reason we produced two more graphs reported
in Figs. 5.3 and 5.4. In these figures we keep the level of scale fixed at r D 256

and we concentrate our attention on the joint effects of  and � on RC in a three-
dimensional graph. In the same graphs we also aim at assessing the effects of ˇ
and the influence of the variability of " and 	 on the Relative Change of mean flow.
Notice that Figs. 5.3 and 5.4 report only the mean of the RC with no reference to its
simulation variability. These plots show that, when  and � are both negative, we
have a dramatic increase of the Relative Change of mean flow (higher values in the
bottom left corner of Figs. 5.3 and 5.4 with respect to the case of spatial incorrelation
 D � D 0 (the central point of the figures). Conversely, when  and � are both
positive we observe a moderating effect on the level of RC (lower values in the
upper right corner of Figs. 5.3 and 5.4).

These effects are consistent with the theoretical expectations. In fact, in the case
of a negative spatial correlation observed in both the origin and the destination
variables, the process of aggregation dramatically reduces the variability between
the aggregated areas (Arbia 1989) thus increasing the overall mean flow and
producing a higher level of flows between the areas. In contrast, when both  and
� are positive, the operation of aggregation involves the summation between values
that are similar to one another so that the reduction of the variance is moderated and
so it is the overall mean flow. This effect reduces the intensity of the inter-regional
flows between the aggregated areas and therefore moderates the RC.

As an example, let us consider the case of interregional flows of traded goods
modelled through Eq. (5.1) with the origin and the destination variables proportional
to the size of the population in the various regions (e.g. the NUTS-3 European
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Fig. 5.3 Results of simulation of the model case d (Sect. 2.4) in the case of perfect aggregation for
a fixed level of aggregation (r D 256) and �2" D 4. Behavior of the Relative Change in mean flow
(RC) with respect to different values of the origin and destination spatial dependence parameters �
and . (a) ˇ D 1; (b) ˇ D 3. Graph are based on 1000 simulations
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Fig. 5.4 Results of simulation of the model case d (Sect. 2.4) in the case of perfect aggregation for
a fixed level of aggregation (r D 256) and �2" D 8. Behavior of the Relative Change in mean flow
(RC) with respect to different values of the origin and destination spatial dependence parameters �
and . (a) ˇ D 1; (b) ˇ D 3. Graph are based on 1000 simulations
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regions, see EUROSTAT 2012). An even distribution of the population in the space
(corresponding to low variability) produces a high level of flows of goods among
regions due to our gravity model formalization. On the contrary, if the population is
unevenly distributed in space (thus displaying high variability connected to higher
concentration of people in some regions than in others) only the flows of goods
between overcrowded areas will be intense, whereas the flows involving (almost)
empty regions will be negligible. So, on the average, the flows at the aggregated
level will be lower than in the case of an even distribution.

When considering the effects of different levels of linear dependence between
the origin and the destination, Figs. 5.3 and 5.4 show that higher values of the
regression coefficient ˇ, (linking the origin variable to the destination variable;
see Eq. (5.25)), lead to sharper increases in the RC (compare Fig. 5.3a,b and also
Fig. 5.4a,b. Notice the different grey scales levels in the right banners). This effect
was also to be expected. In fact, when ˇ is large, the origin and the destination
variables will tend to have similar spatial structures thus emphasizing the effects
previously described. Finally, Figs. 5.3 and 5.4 show that the Relative Change of
mean flow is also emphasized by larger variances of " and 	 due to the overall
greater mean flow of the spatial system associated to larger variability (compare
Figs. 5.3a with 5.4a and Figs. 5.3b and 5.4b by observing the different grey scales
levels in the right banners).

5.5 Conclusions and Research Priorities

In this paper we have presented a formal approach to analyze the effects of
the modifiable areal unit problem in spatial interaction gravity models. More
specifically, we were interested in assessing the role of spatial dependence, observed
in the origin and the destination variables, in determining the amount of the loss
of information which is connatural to all aggregation processes. In particular, we
concentrated our attention on the ratio between the mean quantity of flows at the
more aggregated level and the mean quantity of flows at the more disaggregated
level: a parameter that we referred to with term Relative Change of mean flow or
RC. In Sect. 5.2 we derived a formal expression that links the RC to all the model’s
parameters when changing the level of spatial aggregation.

In synthesis our results show that, in the presence of positive spatial dependence
in both the origin and the destination variables, the increase in the mean flow,
(connatural with aggregation) is moderated. It is instead exacerbated when we
observe a negative spatial correlation in both the origin and the destination variables.

The results obtained in this paper provide a useful tool to study the influence of
spatial effects on aggregation in gravity models and they can contribute in various
ways to substantial achievements in nonlinear spatial econometric studies.

A first important use of the formal expressions derived in the present context is in
the identification of worst-case scenarios when data are aggregated and the amount
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of spatial dependence at the lower level of aggregation is unknown. This scenarios
correspond to the cases where the spatial dependence parameters are negative.

A second use of the results derived in this paper is in suggesting statistical tools
to infer the likely value of the mean flows at a finer level of aggregation when
only data at a coarser level of aggregation are available. In this sense, one possible
strategy consists in exploiting a Bayesian approach by using the formal expressions
derived in this paper for the aggregated mean flows as the likelihood and imposing
reasonable priors on the model parameters to derive the disaggregated mean flows.

In the present version we deliberately kept the presentation at the simplest
possible level to make more clearly the point, but the results obtained here could be
extended in the future to deal with more general cases like, e.g., the specification of
models different from the simple gravity-like law, the case of more than one origin
and destination variables and the case of non perfect aggregation thus considering
also the aggregation problems occurring when different partitions at the same level
scale are considered.
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6.1 Introduction

The gravity model, which employs the logic of the equation of gravity in physics,
has been indispensable for the analysis of origin–destination flows, mostly owing
to the simplicity of its mathematical form. Since the standard ordinary least squares
(OLS) type gravity model assumes observed flows as independent and affected by
spatial autocorrelation, LeSage and Pace (2008) proposed incorporating the spatial
dependence of OD flows in the gravity model by using a spatial econometrics
approach.

Recently, the number of applications for this spatial econometric gravity model
has been increasing. LeSage and Polasek (2008) used the model in considering
the highway network as a tool for spatial connectivity of commodity flows; Deng
and Athanasopoulos (2011) extended the model to a dynamic panel model for
investigating Australia’s domestic and international demand for inbound tourism;
de la Mata and Llano (2012, 2013) used the model to analyze the intra- and
interregional trade flows in several sectors in Spain, analyzing spatial as well as
social network dependence; Marrocu and Paci (2012) used it to analyze the demand
and supply determinants of domestic tourism flows in Italian provinces; and Behrens
et al. (2012) incorporated the techniques of spatial econometrics into the theory-
based gravity model to take into account the interdependence between trade flows.
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All these studies report that the empirical applications demonstrated the existence
of spatial dependence in the OD flow data, and that the model is more effective than
the classical OLS-type gravity model.

As in the case of other gravity models, there are some problems regarding
the treatment of intraregional flows within the spatial econometric gravity model.
Moreover, these problems are further complicated in this model as the model
requires both interregional and intraregional flows, owing to the interdependent
structure of the spatial weight matrices, as pointed out by Tsutsumi and Tamesue
(2012) and Behrens et al. (2012). The objective of this paper is to discuss two main
issues regarding intraregional flows within the spatial econometric gravity model:
the definitions of intraregional distance and model estimation with unobserved
intraregional flows. Some researchers may regard intraregional flows as nuisance
information. However, in spatial econometrics context, where we consider spatial
interdependence within observed phenomenon, information of intraregional flow
is as important as interregional flows. Moreover, the realization of intraregional
flows is similar to the modifiable areal unit problem, in that if OD regions are
disaggregated to the lower level of spatial units, intraregional flows can be decom-
posed into the lower level of interregional flows and are no longer intraregional.
Likewise, interregional flows can be treated as intraregional flows by considering
larger contiguous areas.

In the next section, we briefly review the model specification of the spatial
econometric gravity model and then introduce the estimation method employed in
this study. In Sect. 6.3, we discuss the issues regarding intraregional flows in the
model and introduce techniques or methodologies to deal with them. We apply these
methods to Japanese migration data in Sect. 6.4 as an illustration. In Sect. 6.5, an
experimental analysis about the difference between interregional and intraregional
flows is carried out, and in Sect. 6.6, we conclude.

6.2 The Spatial Econometric Gravity Model

In this study, we consider LeSage and Pace’s (2008) general unrestricted spatial lag
model (SLM) for OD flows, which is expressed as follows:

y D �1W1y C �2W2y C �3W3y C X“ C ©; (6.1)

where y is the n2 � 1 vector of OD flows, and is sorted by an origin-centric ordering
(LeSage and Pace 2008); X is the n2 � (2 C p C q) matrix containing a constant term,
p origin-specific variables, q destination-specific variables, and the n2 � 1 vector of
distances; and © is the n2 � 1 vector of disturbances with © � N

�
0; �2IN

�
. The

model differentiates the spatial contiguity between flows into three types by using
a set of spatial weight matrices: origin-based (W1 D W ˝ In), destination-based
(W2 D In ˝ W), and origin-to-destination based (W3 D W ˝ W), where W
is the n � n spatial weight matrix of objective regions and I is the n � n identity
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matrix. Thereby, W1y expresses the weighted average of the flows from neighbors
of an origin to a certain destination and W2y expresses the weighted average of
the flows from a certain origin to neighbors of a destination. The last spatial lag
W3y captures the spatial dependence of the flows from neighbors of an origin to
neighbors of a destination. Setting several restrictions on the spatial lag coefficients
(spatial parameters) would result in a family of nine models (LeSage and Pace
2008), which can consider different patterns of spatial dependencies.

To see how interregional and intraregional flows are treated in spatial weight
matrices, let us consider a two-region case for simplicity. The spatial weight matrix
of the target regions can be expressed as

W D
�
0 w12

w21 0

�
; (6.2)

where we suppose that w12 > 0 and w21 > 0. For the basic binary contiguity definition,
when each region is a neighbor of the other, w12 and w21 are equal to one. Using this
W and two-dimensional identity matrix I, three different spatial weight matrices can
be constructed:

Wo D W ˝ I D

2

6
6
4

0 0 w12 0

0 0 0 w12
w21 0 0 0

0 w21 0 0

3

7
7
5 ; (6.3)

Wd D I ˝ W D

2

66
4

0 w12 0 0

w21 0 0 0

0 0 0 w12
0 0 w21 0

3

77
5 ; (6.4)

Ww D W ˝ W D

2

6
6
4

0 0 0 w12w12
0 0 w12w21 0

0 w12w21 0 0

w21w21 0 0 0

3

7
7
5 : (6.5)

Consequently, an origin–destination flow matrix (logged) of these regions can be
expressed as

Y D
�

y11 y12
y21 y22

�
; (6.6)

and origin-centric vectorization would yield y D �
y11 y12 y21 y22

�0
. Since y11 and

y22 are intraregional flows, the first and the fourth rows and columns correspond to
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intraregional flows. As long as w12 > 0 and w21 > 0, intraregional flows have neighbor
flows and interregional flows have intraregional flows as their neighbors, in the
spatial weight matrices Wo, Wd, and Ww.

The maximum likelihood estimation of higher order spatial econometric models
would require solving the optimization problem involving the log-determinant ln
jIN � �1W1 � �2W2 � �3W3j. This is the most computationally demanding part
of the estimation and would create computer memory problems as the number
of origins and destinations rises (LeSage and Pace 2008). Thus, we employ an
alternative estimation method, that is, spatial two-stage least squares (S2SLS) for
parameter estimation. The S2SLS for higher-order spatial lag model, as in Eq. (6.1),
is described in Badinger and Egger (2011), which is an extension of the S2SLS by
Kelejian and Prucha (2010) into a higher-order model. In the first step, the predicted
values of the spatial lags are estimated with an instrumental variable H, where

OY D H
�
H0H

��1
H0Y (6.7)

and Y D .W1y;W2y;W3y/. The instrumental variable comprises explanatory
variables X and a subset of linearly independent columns of terms of the sum

MX

mD1

 
3X

rD1
Wr

!m

X (Badinger and Egger 2011), because

E

 
3X

rD1
Wry

!

D
3X

rD1
Wr

"

I C
1X

mD1

 
3X

r0D1
�r0 Wr0

!m#

X“; (6.8)

where m D 2 seems to be sufficient (Kelejian et al. 2004). Following Badinger and
Egger (2011), we chose H to be,

H D �
X;W1X;W2X;W3X;W2

1X;W
2
2X;W

2
3X;W1W3X;W2W3X

�
: (6.9)

In the second step, the predicted value OY is used in place of Y in Eq. (6.1), and the
�’s and “ are estimated via OLS since H and © are uncorrelated.

6.3 Issues with Intraregional Flows

6.3.1 Intraregional Distance

One of the issues when dealing with intraregional flows is how to define the dis-
tances of intraregional flows, whereas defining the distances of interregional flows
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can be done without much difficulty. There are a number of studies approximating
or determining the appropriate measure for internal distance, with Head and Mayer
(2002) presenting a good review of these studies.

The first attempt to define internal distance was as the fraction of distance to
the nearest neighboring regions (e.g., Wei 1996). However, this has been criticized
because internal distance should depend only on the geography of a region and
not of its neighbor (Nitsch 2000). An alternative and attractive approach is the
area-based measure, in which each region is assumed to be a circular disk. This
is a practical application of the analytical approach for approximating the average
distances between and within zones (e.g., Vaughan 1984; Koshizuka and Kurita
1991), and the internal distance can be given as follows:

dii D c

r
Si

�
; (6.10)

where Si is an area of region i and c is the constant. c D 1 would be a good
approximation of the average distance between two points in a population that is
uniformly distributed across regions (e.g., Nitsch 2000), or c D 2/3 as in Head and
Mayer (2000) and Redding and Venables (2004) for example. Behrens et al. (2012)
and Tsutsumi and Tamesue (2012) use c D 1/3 and c D 2/3 to check the robustness
of the estimation results.

6.3.2 Unobserved Intraregional Flow Data

6.3.2.1 The Heckit-Type Model

Another issue associated with intraregional flows is estimation of the model with
data in which intraregional flows are unobserved. In many cases, intraregional flows
tend to be missing values within the OD data. Some may think of simply setting
zeros for these unknown flows. However, the inadequacy of this ad hoc method
is clearly shown in the results of the empirical studies by LeSage and Fischer
(2010), and Tsutsumi and Tamesue (2012), which imply that information about
intraregional flows is as important as that of interregional flows. Another common
approach, especially in migration flows, is to estimate intraregional flows as a
difference between the total population of each region and net migration balance.
Unfortunately, this will lead to overestimation of intraregional flows, because the
flows obtained from this approach contain populations that did not move.

Another way would be to exclude the unobserved flows, a method known as
listwise deletion. This method requires reconstructing the spatial weight matrices
that are already constructed by the Kronecker products, and it may lead to bias
estimates due to the arbitrary deletion of observed data. The latter is known among
econometricians as the sample selection bias, and the Heckit model (Heckman 1979)
is widely used to take the sample selection problem into account. The following
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equation (selection model) represents the selection mechanism:

z� D Q” C u; (6.11)

where z* are latent variables with zi D 1, if flow i is observed, and zi D 0, if flow i
is unobserved. By assuming that © in Eq. (6.1) and u in Eq. (6.11) have a bivariate
normal distribution, with zero mean and correlation  , we can obtain the outcome
model for our study:

E
h
yi

ˇ̌
ˇzi D 1

i
D
"

IN �
3X

rD1
�rW�

r

#�1

i

ŒXi“ C  �"i .Qi”/� ; (6.12)

where i(Qi”) is the inverse mills ratio (IMR) of observation i. W*
r is the

n (n � 1) � n (n � 1) spatial weight matrix, which excluded rows and columns
corresponding to intraregional flows from Wr. The parameters of the sample
selection model can be estimated by maximum likelihood. However, Heckman
(1979) provides a two-step estimation procedure as described below:

1. Estimate parameter ” of the probit model in Eq. (6.11). Then calculate i for
each observed flows.

2. Estimate parameters for �, “ and ˇ D �" in Eq. (6.12).

Therefore, Heckman’s two-step estimation approach only requires adding the
IMR (i), which is derived from the first step, to the model and estimating
parameters as though they were other explanatory variables. i is also known as a
bias correction term that addresses the selection bias caused by unobserved values,
in this case intraregional flows. Thus, we can test the existence of the bias or effect
of unobserved values by checking whether the estimate of ˇ is significant. If we
cannot reject the hypothesis that ˇ D 0, we cannot reject the hypothesis that © and
u are uncorrelated.

6.3.2.2 EM Algorithm Model

While the Heckit-type model may correct the bias of unobservables, it requires
reconstruction of the spatial weight matrices. Tsutsumi and Tamesue (2012) focused
on the estimation problem of the spatial econometric gravity model with unobserved
intraregional flow data. They proposed the use of the EM algorithm, which is a
method for carrying out maximum likelihood estimation of incomplete data with
iterative calculation, to help estimate parameters without modifying or reconstruct-
ing the model. The estimation procedure is as follows:

1. The initial values are set to unobserved intraregional flows.
2. Until convergence, the following steps are iterated:

(a) parameter estimation with pseudo-complete data (M step)
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(b) calculation of expectations of the intraregional flows with the estimated
parameters (E step)

LeSage and Pace (2004) also discussed replacing missing spatial dependent data
with the EM algorithm. However, the method used in Tsutsumi and Tamesue (2012)
does not require model reconstruction, especially of the spatial weight matrix, and
seems to be more practical when spatial weight matrices for OD flows are already
constructed via the Kronecker products.

6.4 Empirical Application

6.4.1 Data

The OD flow data used in this study are the inter-prefectural migration flows
(logged) in 2006, acquired from the basic resident register migration report of the
Statistics Bureau of the Ministry of Internal Affairs and Communications in Japan.
The number of prefectures in Japan is 47, which makes the number of observed
flows to be 472 D 2209. The 47 � 47 five-nearest neighbor spatial weight matrix W
is used to construct the spatial weight matrices. To illustrate the size of the spatial
units, a map of Japan is depicted in Fig. 6.1. Note that the study chose the data
because it contains observed intraregional flows, so that we can compare and discuss
the effectiveness of the methods. To show internal mobility of the migration, Fig. 6.1
also illustrates the proportion of internal migration flows against total in-migrations

Fig. 6.1 Proportion of
internal migration
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Table 6.1 Descriptive statistics

Variable name Description Mean Std. error VIF

Dependent variable Interprefectural migration flow (log) 5:792 1.760
Pop Population (log) 14:500 0.743 2.693
LivArea Inhabitable land area (log) 12:229 0.581 2.083
U15Pop Proportion of the population under age 14

years
0:134 0.010 1.264

UnempPop Unemployment rate 0:030 0.006 1.825
TertiaryEmp Proportion of tertiary industry employee 0:313 0.016 1.588
Income Per capita income (log) 7:904 0.149 2.657
Distance The great-circle distance between

prefectures (log)
12:729 1.388 1.026

in each prefecture. The mean of the proportion is 0.52, which indicates that more
than half of total migration flows consist of internal migrations.

For explanatory variables representing the characteristics of origin and desti-
nation regions, the following variables from 2005 are chosen, to replicate those
used by LeSage and Pace (2008) and Tsutsumi and Tamesue (2012), starting with
the log of population, the log of inhabitable land area (in square meters), the
proportion of the population under 14 years, the proportion of the unemployed,
the proportion of the tertiary industry employees, and finally, the log of per capita
income (in thousands yen). We have decided to lag 1 year between the explained
and explanatory variables to avoid endogeneity problem, if any. The study employs
the great-circle distances (logged), between the centers of population for each
prefecture as the distance variable, and the distances are calculated using ArcGIS
software. All of the explanatory variables are from the Statistics Bureau of the
Ministry of Internal Affairs and Communications, except the per capita income,
which is from the Cabinet Office, Government of Japan. Descriptive statistics of
each variable are shown in Table 6.1 along with the variance inflation factor (VIF)
for indication of degrees of multicollinearity (e.g., O’Brien 2007). VIF of the jth

variable can be calculated as VIFj D 1=
	
1 � R2j



, where R2

j is the coefficient of

determination of a regression of the jth explanatory variable on all other explanatory
variables. 4 or 10 is commonly used as a rule of thumb for VIF, but the highest value
of VIF in Table 6.1 is only 2.69 and does not exceed the rule of thumb. This implies
that there is only a small possibility of collinearity among the explanatory variables.

6.4.2 Results

Tables 6.2, 6.3 and 6.4 illustrate the parameter estimates of three models: the
standard SLM, Heckit-type model, and EM algorithm model. The standard SLM
uses both intraregional and interregional observed flow data, and the remaining two
models use only interregional flow data for estimation. Moreover, for simplicity, the
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Table 6.2 Parameter estimates of standard SLM

c D 1/3 c D 2/3
Variables Coefficient t-Statistic p-Value Coefficient t-Statistic p-Value

Intercept �5:903 �4:150 0.000 �5:702 �3:992 0.000
Origin Pop 0:473 12:906 0.000 0:501 13:591 0.000
Origin LivArea �0:011 �0:239 0.811 �0:007 �0:169 0.866
Origin U15Pop 4:179 3:354 0.001 4:421 3:532 0.000
Origin UnempPop 11:068 4:233 0.000 11:815 4:497 0.000
Origin TertiaryEmp 6:118 6:740 0.000 6:460 7:082 0.000
Origin Income �0:479 �3:674 0.000 �0:527 �4:023 0.000
Destination Pop 0:489 13:638 0.000 0:519 14:345 0.000
Destination LivArea �0:007 �0:150 0.881 �0:003 �0:072 0.943
Destination U15Pop 6:593 5:255 0.000 6:994 5:547 0.000
Destination UnempPop 11:451 4:372 0.000 12:182 4:630 0.000
Destination TertiaryEmp 7:632 7:161 0.000 6:916 7:542 0.000
Destination Income �0:140 �1:083 0.279 �0:168 �1:291 0.197
Distance �0:504 �44:161 0.000 �0:552 �43:750 0.000
�1 0:536 21:959 0.000 0:509 20:635 0.000
�2 0:541 20:977 0.000 0:515 19:774 0.000
�3 �0:565 �17:505 0.000 �0:543 �16:752 0.000
AIC 3532:848 3551:298

study uses the explanatory variables of the probit model in the Heckit-type model to
be the same as the outcome model (Q D X).

In each model, two internal distances obtained from Eq. (6.10) with c D 1/3
and 2/3 are used for estimation. The standard SLM in Table 6.2 indicates that
c D 1/3 is preferable since it results in lower AIC than c D 2/3. Tables 6.3 and 6.4,
however, show that the difference in AIC between the two distance measures are
quite negligible in the Heckit-type and EM algorithm models. In the Heckit-type
model, the internal distances only enter as an explanatory variable in the selection
model to calculate the IMR. Thus, the parameter estimates are very much alike
between the two, as shown in Table 6.3. All the same, parameter estimates are robust
against the specification of internal distances in this study.

For all models, the signs of significant parameters show similar trends and are
reflective of our intuition. The inhabitable land area of both origin and destination,
and per capita income of destination are not significant for any model. Furthermore,
the unemployment rate of origin and destination, population under 14 years of age
at origin, and per capita income of origin prefectures are not significant at the 5 %
level, when the EM algorithm model is used. Table 6.3 shows that estimates of
the IMR coefficients are significant at the 5 % level, rejecting the hypothesis that
there is no correlation between © and u. Thus, the result indicates that just deleting
the unobserved intraregional flows and estimating the model would lead to biased
results.
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Table 6.3 Parameter estimates of Heckit-type model

c D 1/3 c D 2/3
Variables Coefficient t-Statistic p-Value Coefficient t-Statistic p-Value

Intercept �0:229 �0:172 0.863 �0:235 �0:177 0.860
Origin Pop 0:161 4:109 0.000 0:161 4:118 0.000
Origin LivArea 0:008 0:192 0.847 0:008 0:193 0.847
Origin U15Pop 1:879 1:659 0.097 1:879 1:659 0.097
Origin
UnempPop

4:366 1:806 0.071 4:378 1:811 0.070

Origin
TertiaryEmp

2:732 3:194 0.001 2:738 3:201 0.001

Origin Income �0:240 �1:989 0.047 �0:240 �1:990 0.047
Destination Pop 0:170 4:364 0.000 0:170 4:373 0.000
Destination
LivArea

0:006 0:162 0.871 0:007 0:163 0.870

Destination
U15Pop

2:535 2:178 0.030 2:537 2:179 0.029

Destination
UnempPop

4:682 1:934 0.053 4:695 1:939 0.053

Destination
TertiaryEmp

2:692 3:097 0.002 2:698 3:104 0.002

Destination
Income

�0:116 �0:989 0.323 �0:116 �0:989 0.323

Distance �0:254 �8:327 0.000 �0:254 �8:348 0.000
IMR 2:103� 109 2:096 0.036 1:630� 109 2:081 0.038
�1 0:854 28:378 0.000 0:854 28:381 0.000
�2 0:857 27:760 0.000 0:856 27:762 0.000
�3 �0:890 �24:804 0.000 �0:890 �24:803 0.000
AIC 2944:532 2944:595

In the standard SLM, absolute values of spatial parameters �1, �2, and �3

are lower than those of the Heckit-type and EM algorithm models. This may
be because the standard SLM includes intraregional flow data for estimation.
Thereby, the spatial parameters of the standard SLM express the degree of spatial
dependencies between all flows, whereas the spatial parameters of the other two
models express the spatial dependencies between interregional flows. The fact that
intraregional flows are much larger than interregional flows may have led to the
underestimation of spatial dependencies among flows. We may also infer from the
results that intraregional flows are different in nature compared to interregional
flows. Therefore, some modeling strategies to explicitly differentiate between
interregional and intraregional flows would be considered as desirable approaches
(e.g. LeSage and Fischer 2010). In case of the EM algorithm model, however,
specifying separate coefficients for inter and intraregional flows (missing data) will
affect the convergence, such that it depends on initial values (Tsutsumi and Tamesue
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Table 6.4 Parameter estimates of EM algorithm model

c D 1/3 c D 2/3
Variables Coefficient t-Statistic p-Value Coefficient t-Statistic p-Value

Intercept �2:287 �1:653 0.098 �1:910 �1:379 0.168
Origin Pop 0:158 4:296 0.000 0:143 3:837 0.000
Origin LivArea �0:010 �0:235 0.814 �0:010 �0:225 0.822
Origin U15Pop 2:002 1:699 0.090 1:897 1:609 0.108
Origin
UnempPop

3:933 1:586 0.113 3:629 1:463 0.144

Origin
TertiaryEmp

2:401 2:760 0.006 2:227 2:556 0.011

Origin Income �0:162 �1:314 0.189 �0:155 �1:253 0.210
Destination Pop 0:170 4:730 0.000 0:154 4:246 0.000
Destination
LivArea

�0:011 �0:259 0.796 �0:011 �0:255 0.799

Destination
U15Pop

2:723 2:288 0.022 2:536 2:130 0.033

Destination
UnempPop

4:379 1:762 0.078 4:075 1:639 0.101

Destination
TertiaryEmp

2:396 2:737 0.006 2:202 2:508 0.012

Destination
Income

�0:0376 �0:307 0.759 �0:040 �0:328 0.743

Distance �0:179 �15:856 0.000 �0:170 �13:503 0.000
�1 0:841 32:884 0.000 0:856 32:769 0.000
�2 0:845 31:350 0.000 0:860 31:299 0.000
�3 �0:861 �25:842 0.000 �0:876 �25:966 0.000
AIC 3283:361 3280:394

2012). Thus, the model has to be specified to have same explanatory variables for
inter and intraregional flows to enable the algorithm to converge appropriately.

6.5 Experimental Analysis of the Difference in Nature

Considering the difference in nature of interregional and intraregional flows, one
way to model these is to add a dummy variable representing intraregional flows to
capture fixed effect of intraregional flows. Other than this, LeSage and Pace (2008)
and LeSage and Fischer (2010) suggest using separate explanatory variables for
inter and intraregional flows, which they call as “adjusted model.” The “adjusted
model” can be expressed as

y D �1W1y C �2W2y C �3W3y CeX“ C X�” C ©; (6.13)
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where X� contains explanatory variables that correspond to intraregional flows and
all other rows are set to zero. Similarly, eX contains only explanatory variables that
correspond to interregional flows (see LeSage and Pace 2008 for more detail). This
approach can be seen as a special case of the regime-switching model, in that Eq.
(6.13) can be rewritten as

�
yi D �1W1iy C �2W2iy C �3W3iy CeXi“ C ©i

yi D �1W1iy C �2W2iy C �3W3iy C X�
i “ C ©i

Ii .�/ D 1

Ii .�/ D 0
(6.14)

where Ii(•) is some indicator function. The adjusted model in Eq. (6.13) is to
arbitrarily set the function Ii(•) as a dummy variable, indicating whether a flow is
interregional or intraregional flow. This is equivalent to postulating the existence of
non-linearity in the model between these two types of flows. Threshold regression
proposed by Hansen (2000) remedies the above-mentioned arbitrary setting of
the indicator function by introducing a threshold variable qi into the indicator
function. Threshold regression further provides us to estimate such a threshold that
distinguishes between two regimes (Ii .qi > ˛/ and Ii .qi � ˛/) endogenously, using
a simple estimation procedure. Estimation procedure of the threshold regression is
as follows (e.g., Hansen 2000; Falvey et al. 2009)

1. Sort the dataset in ascending-order of the threshold variable (the distances of the
flows)

2. Estimate parameters of model in Eq. (6.14) and calculate the sum of square errors
(SSEs) for each qi

3. Obtain the estimate of the threshold, Ǫ , that minimizes the SSE.

Going back to the introduction, where we have mentioned that intraregional flows
can be seen as the aggregation of flows at a smaller spatial unit, we can assume
that the non-linearity of the model may come from the difference between longer
distance and shorter distance flows. To verify this hypothesis in our data, we employ
the threshold regression with the distances of flows as the threshold variable, and
estimate the threshold value that divides observed flows into two regimes. Since
distances of intraregional flows are much lower than those of interregional flows, the
threshold can be found at the maximum distance of intraregional flows, which would
split the observations into interregional and intraregional clearly, if there exists the
difference in nature of interregional and intraregional flows.

We used the same dataset as in Sect. 6.4 for simplicity. Figure 6.2 shows the
transition of the SSE with the X-axis representing ascending-order of the threshold
variable. Both c D 1/3 and 2/3 are used for the internal distances, but the identical
results are obtained. The minimum value of the SSE is obtained at 78th and 79th
lowest distances. Since the maximum distance of intraregional flows is the 47th
lowest distance, the result indicates that the estimated threshold of our data contains
not only intraregional, but also some interregional flows that have shorter distances.
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Fig. 6.2 Transition of SSE in ascending order of the distances

6.6 Conclusion

This study has considered and discussed the issues regarding intraregional flows
with the spatial econometric gravity model. We mainly focused on two issues:
the definition of intraregional distance and model estimation with unobserved
intraregional flows. Heckman’s two-step estimation approach and the EM algorithm
approach were used to deal with unobserved intraregional flows. We demonstrated
the above methodologies by using Japanese inter-prefectural migration data and
examined the estimation results. The results of the Heckit-type model indicated
that excluding intraregional flows would cause the sample selection bias. The
Heckit-type and EM algorithm models gave similar results, and we concluded
that both approaches are fairly valid. It is important to note that the Heckit-type
model requires model specification of the outcome and the selection models (probit
model). In this study, we used the same explanatory variables for the outcome
and selection models. However, misspecification or alternative specification of the
selection model may lead to different results. On the other hand, the EM algorithm
model does not suffer from the aforementioned problem or require reconstruction
of the model. This characteristic sounds attractive for a practical use, but to ensure
the convergence of the algorithm, the model cannot consider heterogeneity between
observed and unobserved samples.

Considering the different natures of interregional and intraregional flows is a
stylized fact in much of the literature, but due to the limitation of the models, we
have assumed homogeneity between these two flows in actual study. Although the
result of the threshold regression in Sect. 6.5 suggests little evidence of any clear
distinction between inter and intra, we think that ignoring the difference in nature
may seriously affect the result, depending on a spatial scale of the data. For example,
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international flows rather than interregional flows in one country would likely suffer
from heterogeneity due to the border effect and home bias caused by asymmetric
information of foreign countries. The threshold regression can be used as a solution
to test the existence of the difference in nature; however, it is limited to a case when
both intraregional and interregional flows are observed.
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Chapter 7
A Bayesian Spatial Interaction Model Variant
of the Poisson Pseudo-Maximum Likelihood
Estimator

James P. LeSage and Esra Satici

Keywords Bayesian • Gravity • Poisson pseudo-maximum likelihood • Spatial
interaction

JEL: C11, C13, C18, R11

7.1 Advantages of PPML for Spatial Interaction Modeling

There are several econometric advantages to the Poisson pseudo-maximum likeli-
hood (PPML) approach to estimating relationships involving flows (Santos Silva
and Tenreyro 2010). One is that the coefficients on logged explanatory variables
(X) in the (exponential) relationship involving non-logged flow magnitudes as the
dependent variable (y) can be interpreted as the elasticity of the conditional expecta-
tion of yi with respect to Xi. Since Jensen’s inequality implies that E.lny/ ¤ lnE.y/,
heteroscedasticity in log-linear regression gravity models can lead to inconsistent
elasticity estimates, which is not a problem with PPML estimates.1 In addition to
dealing with heteroscedasticity, PPML estimation procedures do not require taking
logs of the flows, so avoid the problem of (logs) in the presence of zero flows. With
regard to the zero problem, Santos Silva and Tenreyro (2010) also point out that
zeros resulting from ‘rounding down’ small flows are likely to be associated with
levels of the explanatory variables, which suggests an endogeneity issue.

1Santos Silva and Tenreyro (2010) note there is strong evidence that disturbances from log-linear
gravity models are heteroscedastic.
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The traditional gravity relationship takes the form in (7.1) for the case of n
regions with an n�n matrix of flows. This can be written in the log-linear regression
form shown in (7.2) (see LeSage and Pace 2009; Sen and Smith 1995).

Yij D ˇ0X
ˇi
i X

ˇj

j D�
ij	ij (7.1)

ln.y/ D ln.ˇ0/�n2 C Xdˇd C Xoˇo C ln.d/� C ln.	/ (7.2)

Xd D �n ˝ ln.X/; Xo D ln.X/˝ �n

	 � N.0; �2In2 /

In (7.2), y is an n2 � 1 vector representing columns of the n � n flow matrix (Y)
stacked. Without loss of generality, the flows are organized so that element in the ith
column represents flows from the ith (origin) region to all destination regions, with
the i; ith diagonal element representing flows within the ith region. The n � 1 vector
�n contains all ones, ˝ denotes the kronecker product, and X is an n � k matrix of
explanatory variables describing characteristics of the n regions. The n2�1 vector d
represents columns from the distance matrix (D) stacked. The disturbances in (7.1)
are assumed to be such that E.	ijjXi;Xj;Dij/ D 1, and are statistically independent
of the explanatory variables. Santos Silva and Tenreyro (2010) point out that if we
assume 	 follows a log-normal, with E.	ijjXi;Xj;Dij/ D 1 and variance-covariance
�2ij D f .Xi;Xj;Dij/, then the log-linearized version of these (normally distributed)

version of these disturbances has E.ln.	ij/jXi;Xj;Dij/ D � 1
2
ln.1 C �2ij/, which

exhibits dependence on the explanatory variables.
A theoretical motivation for the relationship yi D exp.xiˇ/ is the constant

elasticity relationship between y and x implied by the gravity relationship. This leads
to a conditional expectation in (7.3), and the stochastic model relationship in (7.4)
and (7.5), where we let zi D Œ ln.1/ ln.Xi/ ln.Xj/ ln.Dij/ � and ı D Œ ln.ˇ0/ ˇi ˇj � �

0
(Smith 1975).

E.YijjXi;Xj;Dij/ D expfln.1/C ln.Xi/ˇi C ln.Xj/ˇj C ln.Dij/�g (7.3)

yi D ziı C "i (7.4)

yi D ziı C 	i (7.5)

	i D 1C "i=exp.ziı/

E.	ijz/ D 1

An important point is that consistent estimates based on the log-linear relation-
ship require special conditions to produce a situation where E.ln.	i/jz/ is constant
(homoscedasticity) (see Santos Silva and Tenreyro (2010) for details regarding
these).

The non-linear pseudo-maximum likelihood estimator proposed by Gourieroux
et al. (1984) is based on solving for Oı from the first-order conditions in (7.6),
which only required that the conditional mean in (7.7) be specified correctly. In fact,
Gourieroux et al. (1984) consider four different type of disturbance specifications
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and show that estimates based on this criterion have desirable properties.

nX

iD1

	
yi � exp.zi

Oı/



zi D 0 (7.6)

E.yijz/ D exp.ziı/ (7.7)

One of the four disturbance specifications considered in Gourieroux et al. (1984)
produces the Poisson pseudo-maximum likelihood (PPML) estimator, hence the
name given to this approach to estimation. For consistency, the data do not need
to be Poisson distributed, nor do the values of yi need to be integers. Both of these
properties are attractive in the context of modeling flows, which may be non-integer
as well as integer-valued (e.g., dollar values of flows versus counts of migrants).

Arvis and Shepherd (2013) have pointed out that the PPML model produces
estimates such that the doubly constrained model of Wilson holds for the case of
the log-linear model (that is, where the explanatory variables are log-transformed),
and when fixed effects for origins and destinations are added to the model (as is
conventional in the empirical trade literature). Fally (2012) argues that inclusion
of importer and exporter fixed effects are consistent with general equilibrium
conditions and the introduction of “multilateral resistance” indexes, along with other
useful properties of fixed effects in the PPML model.

7.2 A Spatial Extension of the PPML Model

The regional science literature credits Alonso (1973, 1978) with development of a
generalized gravity model (labeled Alonso’s Theory of Movements or ATM) used
in migration theory, whereas the international trade literature credits Anderson and
van Wincoop (2003). A generalized version of the gravity model takes the form in
(7.8), where the terms: B�˛

j and A�ˇ
i were labeled “multilateral resistance” indexes

by Anderson and van Wincoop (2003). (See de Vries et al. (2001) for an extensive
review of the ATM).

Yij D A1�˛i Xˇi
i B1�ˇj X

ˇj

j D��
ij (7.8)

Ai D f
X

j

B1�ˇj XjD
��
ij g�1 (7.9)

Bj D f
X

i

A1�˛i XiD
��
ij g�1 (7.10)

Alonso (1973, p. 11) described A�1 as ‘opportunity’, ‘demand’ or ‘draw’, noting
that if many opportunities (for migrants) were available from one location (origin),
the flow of out-migrants might be expected to increase overall, but the flow to any
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particular destination will decrease in response to the other attractive destinations.
Similarly, B�1 was labeled ‘competition’, ‘congestion’, ‘potential pool of moves’,
reflecting the fact that if a large number of migrants competed for opportunities at
one location (destination), this should reduce the attractiveness and have a negative
impact on flows.

In both the case of Alonso and Anderson and van Wincoop, the terms Ai;Bj

reflect latent unobservable variables that require estimation. In the trade litera-
ture the “multilateral resistance” indexes have been proxied using origin- and
destination-specific fixed effects (e.g., Feenstra 2004).

de Vries et al. (2001) point out that the ATM subsumes Wilson’s (1967; 1970;
1974) family of spatial interaction models as special cases. For the case of ˛ D
0; ˇ D 0, the doubly constrained model of Wilson arises. On the other hand, setting
˛ D 1; ˇ D 1 produces the unconstrained gravity model, and ˛ D 1; ˇ D 0 results
in an ‘attraction-constrained’ model whereas ˛ D 0; ˇ D 1 produces a ‘production-
constrained’ model. Taking this view, the ATM model can be viewed as reflecting
intermediate cases of the constrained models of Wilson, when we restrict ˛ and ˇ
to lie between 0 and 1.

In the spirit of Alonso, we propose adding a linear combination of the ‘size’
variables from regions neighboring the origin as a proxy for ‘opportunity’ or
‘draw’ and a linear combination of the ‘size’ variables for regions neighboring the
destination as a proxy for ‘competition’ or ‘congestion’. This can be accomplished
by forming spatial lag variables that reflect neighbors to the origin and destination
(Griffith and Jones 1980; Griffith 2007). LeSage and Pace (2008) point out that
these take the form of: Wo D .W ˝ In/;Wd D .In ˝ W/, where W is an n � n spatial
weight matrix for the n regions used to produce the n � n flow matrix. Returning to
our vector notation we have:

y D exp.ˇ0�n2 C Xdˇd C Xoˇo C ln.d/� C WdXd�d C WoXo�o/ (7.11)

Consistent with Alonso’s notion that changes in regions neighboring the origin
and destination will impact flows, we have a local spatial spillover effect that
arises in (7.11). Changes in (logged) characteristics of a single region i, ln.Xi/

produce changes in this region viewed as both an origin and destination since:
Xo D .ln.X/ ˝ �n/;Xd D .�n ˝ ln.X//, as well as regions neighboring the
origin and destination region i whose characteristics have changed, since: WoXo D
Wo.ln.X/˝ �n/;WdXd D Wd.�n ˝ ln.X//.

As noted in Sect. 7.1, an advantage of the PPML specification is that the
coefficients .ˇd; ˇo on logged explanatory variables (Xd;Xo) in the (exponential)
relationship involving non-logged flow magnitudes as the dependent variable (y)
can be interpreted as the elasticity of the conditional expectation of y with respect
to Xd;Xo. These reflect the usual interpretation where ˇr

o measures the impact of
changing the rth characteristic in the matrix Xo on outflows, and ˇr

d measures the
impact of changing the rth characteristic in the matrix Xd on inflows, (averaged
across all observations as in a typical regression). The coefficients .�d; �o on logged
explanatory variables (WdXd;WoXo) reflect the ‘spillover’ impact of changing
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the rth characteristic in the matrices Xd;Xo flows involving neighboring regions.
Specifically, � r

d measures the (elasticity) impact of changing the rth characteristic
in Xd on flows to regions neighboring the (typical) destination, again averaged
across all observations as in a typical regression. The coefficient � r

o measures the
(elasticity) impact of changing the rth characteristic in Xo on flows from regions
neighboring the (typical) origin (Thomas-Agnan and LeSage 2014).

As a concrete example, consider the case of commuting flows from places
of residence to that of employment. We assume two explanatory variables in
XrD1;XrD2, one measuring the population of residents in each region and another
reflecting the number of jobs in each region. An increase in employment/jobs in the
typical destination region�XrD2

d should produce a direct (elasticity) impact (ˇrD2
d )

showing increased inflows to that region. As noted by Alonso, the competition
or congestion impact (the spatial spillover impact in our model specification),
should exert a negative impact on inflows to the typical neighboring destination
as a result of the increase in employment. That is, we might expect � rD2

d to be
negative. Similarly, an increase in residents living in a region should have a positive
direct impact (ˇrD1

o ) on commuting outflows from the typical region, whereas the
opportunity or draw impact on neighboring regions (� rD1

o ) would be negative. In
our specification, the total impact is the sum of the direct plus indirect impacts. We
would expect the congestion and opportunity impacts (�d; �o) to be ‘second-order’
impacts of lesser magnitude than the direct impacts, leaving us with a total impact
consisting of the sum of the direct plus indirect impact that is still positive.

It would be possible to extend our specification to include second-order neigh-
bors by adding W2

d Xd and W2
o Xo to the model (and associated coefficients). However,

these variables are likely to be highly correlated with WdXd and WoXo as well as
Xd;Xo. For this variant of the model, the spatial spillover (indirect) effects would be
the sum of the coefficients on both set of variables WdXd;W2

d Xd and WoXo;W2
o Xo.

Since this is the case we have an analogy to vector autoregressive (VAR) models
where Granger causality tests and impulse response functions depend on a sum of
coefficients. This can lessen the impact of collinearity, since interest centers on a
joint test of these coefficients in the case of Granger causality tests and impulse
response functions. Another analogy to VAR models would be that a smoothness
prior could be imposed to force the coefficients on successively higher powers of
Wk

dXd to decay in magnitude. This topic is left as a subject for future research.
An important point is that PPML estimates are known to be robust with

respect to omitted variables that are not correlated with the included variables
Xd;Xo. However, variables such as WdXd;WoXo are likely to be highly correlated
with Xd;Xo for the case of regional data. For example, if Xd;Xo represent an
economic measure of regional size related to income, then WdXd;WoXo reflect
linear combinations of income from regions that neighbor the destination and origin.
Since regional income tends to exhibit clustering (e.g., spatial dependence) so that
neighboring regions have similar levels of income, exclusion of these spatial lags
when they are truly part of the data generating process should lead to bias in the
PPML model. We explore this issue in the next section.
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7.3 Estimating the PPML Model

Maximizing the objective function in (7.6) with respect the Oı is relatively straight-
forward and a numerical hessian calculation can be used to produce measures of
dispersion. These can be used to create t-statistics.

An alternative approach is to use Markov Chain Monte Carlo (MCMC) estima-
tion that relies on an independence random-walk proposal distribution for each coef-
ficient in ı. Specifically, given the scalar coefficient at draw t, ıt

i , we set the proposal
value ıtC1

i using: ıtC1
i D ıt

i C c � N.0; 1/, where c is a tuning parameter and N.0; 1/
denotes the standard normal distribution. The tuning parameter is varied according
to the acceptance rate such that c0 D c=1:1 if the rate falls below 40 %, which should
lead to an increase in the acceptance rate. If the acceptance rate rises above 60 %, we
set c0 D .1:1/c, which should lead to a decrease in the acceptance rate. The propos-
als were evaluated using the conditional distribution for each parameter, which takes

the form: p.ıtC1
i jıt

j¤i; y; z/ D Pn
kD1

	
yk � exp.zk;iı

tC1
i �P

j¤i.zk;jı
t
j/



zk;i, where

the proposed parameter is accepted according to the Metropolis-Hastings algorithm.
A block-sampling MCMC approach was also explored, where pilot draws from

the independence random-walk sampler described above were used to construct a
variance-covariance matrix (�) for all parameters in ı. This matrix was used in
conjunction with the random-walk scheme: ıtC1 D ıt C c � N.0;�/ to produce a
proposal vector that was accepted or rejected as a block. This seems to make little
difference in performance of the MCMC sampler.

Without prior distributions assigned to the coefficients, this approach to MCMC
estimation should produce nearly identical estimates as maximization. One advan-
tage of MCMC estimation is that the sequence of draws for the model parameters
can be used to calculate measures of dispersion that can be used for inference. Dif-
ficulties that may arise using numerical hessian calculations to produce dispersion
estimates should not arise for the case of MCMC estimates.

As with all non-linear optimization or MCMC estimation procedures, properly
scaled data is important, so the Xd;Xo matrices and (logged) distance vector are
standardized to reflect deviations from means divided by the standard deviation.

As a test of these estimation approaches as well as the spatial extension of
the model specification we conducted a simulation experiment. This involved
generating a vector of flows using the latitude-longitude coordinates of 60 regions
in Toulouse, as well as the residential population and employment of each region as
two explanatory variables, in addition to (logged) distance. The set of 3,600 (non-
spatial) flow observations (yns) were producing using (7.12), where zi;Z and ı are
as defined in (7.3). The disturbance term 	 is a log-normal random deviate with
mean 1 and non-constant variance �2i . The n � n distance matrix D contains zeros
on the main diagonal, so we add the identity matrix prior to taking logs, and the vec
operator stacks columns of the distance matrix to form an n2 � 1 vector of (logged)
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distances that we denote d. Of course, ˇ0 D ln. Q̌
0/.

yns D 
.Zı/	 D . Q̌
0Œ�n ˝ ln.X/�ˇd Œln.X/˝ �n�

ˇo Œvec ln.D C In/�
� /	 (7.12)

E.yjZ/ D exp.ˇ0 C Xdˇd C Xoˇo C d�/

Var.	i/ D �2i D 
.ziı/
�1I Var.yijzi/ D 
.ziı/

E.yjZ/ D exp.ˇ0 C Xdˇd C WdXd�d C Xoˇo C WoXo�o C d�/ (7.13)

The spatial variant of the model relied on expression (7.13) to produce a vector
of flows that we label ys. A reciprocal misspecification design was carried out using
100 trials. Four model were estimated using PPML estimates based on optimization,
where a combination of the spatial and non-spatial dependent variables were used
in conjunction with the spatial and non-spatial set of explanatory variables. That
is, .ys;Zs/; .ynsZns/; .ys;Zns/; .yns;Zs/. We would expect correctly specified models
based on .ys;Zs/ and .yns;Zns/ to perform best, but are interested in problems that
arise in the face of the misspecified models: .ys;Zns/; .yns;Zs/. In addition to PPML
estimates, ordinary regression estimates based on ln.ys/; ln.yns/ were also part of
the experiment. This was done to illustrate bias that arises from use of the log-
transformation in conjunction with regression, a common practice.

Table 7.1 shows results for the four models estimated, with mean and median
coefficient estimates calculated using the 100 trials as well as 0.05 and 0.95 intervals
for the distribution of 100 outcomes. True values of the model coefficients used to
generate the flow vectors ys; yns are shown in the first column. As expected, results
for the case of (yns;Zns) are excellent, with the mean and median for all coefficient
estimates falling within the 0.05 and 0.95 intervals. This is consistent with other
more extensive Monte Carlo evidence for the PPML model. We find similar results
for our spatial extension of the model reported for the case of (ys;Zs) in Table 7.1.

The case of (ys;Zns) should exhibit omitted variables bias, because the spatial
lags of the explanatory variables used to generate ys were excluded from the model.
Although the PPML model is robust to omitted variables that are uncorrelated
with included variables, this would not be the case for spatial lag variables such
as WdXd;WoXo, since there are highly correlated with the included variables Xd;Xo.

On the other hand, it is well-known that including redundant variables does not
lead to problems of bias. This appears for the case involving .ynsZs/, where the
estimates correctly indicate that none of the spatial lags of the explanatory variables
are different from zero (based on the 0.05 and 0.95 intervals).

For the set of experiments reported in Table 7.1 there were no zero flow values
generated. The PPML model specification can produce zero flow values by rounding
flows down to the nearest integer. The notion here is that zero flows represent
magnitudes that do not exceed a ‘threshold’ value. A second set of experiments was
conducted where the flows were generated in the same way as before, but rounded
down to the nearest integer. This produced 12.93 % zero flow values for the case of
yns and 15.40 % zero values for ys on average over the 100 trials. Estimation results
are reported in Table 7.2 for this data generating process.
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Table 7.1 PPML Monte Carlo results based on 100 trials

Coefficients Lower 0.05 Mean Median Upper 0.95

yns; Zns

ˇ0 D 2 1:9877 1:9990 1:9997 2:0079

ˇd1 D �0:8 �0:8039 �0:8004 �0:8004 �0:7968
ˇd2 D 1 0:9940 0:9998 0:9996 1:0046

ˇo1 D 1 0:9902 0:9999 0:9998 1:0102

ˇo2 D �0:5 �0:5060 �0:4997 �0:4996 �0:4933
� D �0:5 �0:5049 �0:5001 �0:5003 �0:4949

ys; Zns

ˇ0 D 2 1:9939 2:0028 2:0029 2:0106

ˇd1 D �0:8 �1:1475 �1:1450 �1:1452 �1:1425
ˇd2 D 1 1:1915 1:1961 1:1962 1:1997

ˇo1 D 1 0:7679 0:7744 0:7742 0:7797

ˇo2 D �0:5 �0:5483 �0:5437 �0:5438 �0:5401
� D �0:5 �0:6266 �0:6235 �0:6234 �0:6205

yns; Zs

ˇ0 D 2 1:9887 1:9991 1:9999 2:0080

ˇd1 D �0:8 �0:8042 �0:8002 �0:8004 �0:7957
ˇd2 D 1 0:9943 0:9998 0:9997 1:0042

ˇo1 D 1 0:9884 0:9998 0:9994 1:0106

ˇo2 D �0:5 �0:5069 �0:4995 �0:4992 �0:4924
�d1 D 0 �0:0096 0:0003 0:0006 0:0083

�d2 D 0 �0:0075 �0:0005 �0:0001 0:0038

�o1 D 0 �0:0061 0:0005 0:0010 0:0057

�o2 D 0 �0:0074 �0:0006 �0:0002 0:0051

� D �0:5 �0:5046 �0:5003 �0:5004 �0:4950
ys; Zs

ˇ0 D 2 1:9922 2:0001 2:0001 2:0066

ˇd1 D �0:8 �0:8042 �0:7999 �0:7998 �0:7960
ˇd2 D 1 0:9943 1:0001 1:0004 1:0043

ˇo1 D 1 0:9926 0:9999 0:9996 1:0069

ˇo2 D �0:5 �0:5056 �0:5000 �0:4998 �0:4951
�d1 D �0:5 �0:5085 �0:4999 �0:4998 �0:4936
�d2 D �0:5 �0:5053 �0:4999 �0:5001 �0:4934
�o1 D �0:4 �0:4040 �0:4004 �0:4002 �0:3968
�o2 D �0:2 �0:2042 �0:1996 �0:1997 �0:1959
� D �0:5 �0:5033 �0:4999 �0:5000 �0:4961

These results are consistent with points made in the trade literature by Martinez-
Zarzoso et al. (2007) and Martinez-Zarzoso (2013). The presence of zero values has
an adverse impact on the PPML estimates, producing results that exhibit systematic
bias. This is evident from the fact that the 0.05 and 0.95 intervals no longer
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Table 7.2 PPML Monte Carlo results based on 100 trials, flows rounded down to nearest integer

Coefficients Lower 0.05 Mean Median Upper 0.95

yns; Zns

ˇ0 D 2 1:9256 1:9350 1:9349 1:9449

ˇd1 D �0:8 �0:8110 �0:8077 �0:8076 �0:8046
ˇd2 D 1 1:0115 1:0173 1:0172 1:0229

ˇo1 D 1 1:0178 1:0265 1:0266 1:0373

ˇo2 D �0:5 �0:5192 �0:5127 �0:5133 �0:5051
� D �0:5 �0:5152 �0:5099 �0:5099 �0:5044

ys; Zns

ˇ0 D 2 1:9506 1:9587 1:9584 1:9686

ˇd1 D �0:8 �1:1542 �1:1518 �1:1519 �1:1491
ˇd2 D 1 1:2032 1:2071 1:2069 1:2119

ˇo1 D 1 0:7783 0:7833 0:7832 0:7879

ˇo2 D �0:5 �0:5517 �0:5481 �0:5480 �0:5444
� D �0:5 �0:6309 �0:6275 �0:6275 �0:6239

yns; Zs

ˇ0 D 2 1:9220 1:9317 1:9320 1:9421

ˇd1 D �0:8 �0:8163 �0:8114 �0:8114 �0:8065
ˇd2 D 1 1:0125 1:0182 1:0183 1:0242

ˇo1 D 1 1:0154 1:0251 1:0246 1:0344

ˇo2 D �0:5 �0:5197 �0:5118 �0:5121 �0:5036
�d1 D 0 �0:0113 0:0005 0:0009 0:0086

�d2 D 0 �0:0005 0:0061 0:0063 0:0122

�o1 D 0 �0:0037 0:0025 0:0027 0:0072

�o2 D 0 �0:0094 �0:0038 �0:0038 0:0018

� D �0:5 �0:5149 �0:5094 �0:5094 �0:5037
ys; Zs

ˇ0 D 2 1:9434 1:9532 1:9534 1:9640

ˇd1 D �0:8 �0:8082 �0:8045 �0:8046 �0:8006
ˇd2 D 1 1:0034 1:0078 1:0076 1:0136

ˇo1 D 1 1:0057 1:0118 1:0119 1:0170

ˇo2 D �0:5 �0:5102 �0:5054 �0:5050 �0:5009
�d1 D �0:5 �0:5247 �0:5146 �0:5148 �0:5057
�d2 D �0:5 �0:5064 �0:5003 �0:5002 �0:4944
�o1 D �0:4 �0:4050 �0:4008 �0:4008 �0:3968
�o2 D �0:2 �0:2077 �0:2034 �0:2036 �0:1996
� D �0:5 �0:5076 �0:5031 �0:5028 �0:4992

encompass the true parameter values used to generate the vectors yns; ys. However,
Santos Silva and Tenreyro (2011) point out that the PPML model works better than
alternative approaches even in the face of a large proportion of zero flow values.
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For the cases of no specification error .yns;Zns/ and (ys;Zs), we see small biases in
the estimation outcomes, with the largest bias occurring for the intercept coefficient
which has no interpretative value. A much more important source of bias would be
omission of spatial lags of the explanatory variables, as illustrated by the case of
(ys;Zns/ in both Tables 7.1 and 7.2.

The bias arising from the presence of zero flows does not appear to inhibit the
ability of the model estimates to detect the fact that coefficients on spatial lags of the
explanatory variables are zero for the case of .yns;Zs/, which would be important in
applied practice. All estimates for coefficients �d; �o on these spatially lags variables
have 0.05 and 0.95 intervals that span zero, indicating they are not different from
zero.

Table 7.3 presents results based on the common log-transformation of flows. We
report results based on the best case scenario with no rounding of flows down to the
nearest integer to produce zero flows. Here we see estimates across the board for
all models (correctly and incorrectly specified) that exhibit bias. The 0.05 and 0.95
intervals do not encompass the true coefficient values used to generate the vectors of
flows (yns; ys) in any of the four sets of results. Further, three of the four coefficients
�d; �o for the case of (lnys;Zs) would lead to the incorrect conclusion regarding the
significant of the spatial lag variables.

7.4 An Application to Commuting Flows

We illustrate estimation and interpretation of the model estimates using commuting-
to-work flows for 60 regions (Quartiers) in Toulouse France, taken from the 1999
census from INSEE (The National Institute for Statistics and Economic Studies,
France; LeSage and Thomas-Agnan 2015). Flows were constructed from the census
home and work addresses provided by the actively employed population. These
were aggregated from individual level information to the regional level. Workers
in the defense sector and workers moving to variable sites or working at home were
excluded from the individuals used in aggregating to the regional level. The distance
matrix was formed using distance between centroids of the spatial units.

For the 60 region area studied, 52 % of workers in the region come from outside
the region and 19 % of residents in the region work outside. These were excluded to
form a system of flows between districts that includes only persons who both live
and work in one of the 60 regions.

As explanatory variables we use the (logged) number of persons who work that
reside in each district (residents), and the (logged) number of jobs located in each
district (employment). These two vectors plus a constant and distance were used
in the non-spatial model. The variables and distance were standardized, that is,
put in deviation from means form and divided by the standard deviation. Use of
the conventional log transformation of the two explanatory variables and distance
allows us to interpret estimates as elasticities. We adopt an approach suggested by
LeSage and Pace (2009, p. 223) that introduces a separate model for intraregional
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Table 7.3 Regression Monte Carlo results based on 100 trials ln.yns/; ln.ys/

Coefficients Lower 0.05 Mean Median Upper 0.95

ln.yns/; Zns

ˇ0 D 2 2:2236 2:2303 2:2302 2:2374

ˇd1 D �0:8 �0:7188 �0:7107 �0:7108 �0:7037
ˇd2 D 1 0:8532 0:8599 0:8598 0:8661

ˇo1 D 1 0:6810 0:6882 0:6881 0:6957

ˇo2 D �0:5 �0:3570 �0:3478 �0:3473 �0:3411
� D �0:5 �0:4025 �0:3940 �0:3939 �0:3860

ln.ys/; Zns

ˇ0 D 2 2:2613 2:2682 2:2683 2:2746

ˇd1 D �0:8 �0:7762 �0:7700 �0:7700 �0:7639
ˇd2 D 1 0:6925 0:7000 0:6996 0:7081

ˇo1 D 1 0:6298 0:6381 0:6376 0:6451

ˇo2 D �0:5 �0:4176 �0:4101 �0:4106 �0:4012
� D �0:5 �0:2900 �0:2821 �0:2822 �0:2755

ln.yns/; Zs

ˇ0 D 2 2:2236 2:2303 2:2302 2:2374

ˇd1 D �0:8 �0:7221 �0:7142 �0:7139 �0:7074
ˇd2 D 1 0:8531 0:8604 0:8605 0:8668

ˇo1 D 1 0:6785 0:6861 0:6861 0:6945

ˇo2 D �0:5 �0:3406 �0:3311 �0:3308 �0:3241
�d1 D 0 0:0190 0:0294 0:0300 0:0387

�d2 D 0 �0:0121 �0:0039 �0:0037 0:0034

�o1 D 0 0:0392 0:0479 0:0482 0:0557

�o2 D 0 �0:0725 �0:0633 �0:0628 �0:0562
� D �0:5 �0:3982 �0:3906 �0:3903 �0:3827

ln.ys/; Zs

ˇ0 D 2 2:2613 2:2682 2:2683 2:2746

ˇd1 D �0:8 �0:7046 �0:6979 �0:6980 �0:6920
ˇd2 D 1 0:8239 0:8321 0:8318 0:8407

ˇo1 D 1 0:6782 0:6868 0:6866 0:6938

ˇo2 D �0:5 �0:3577 �0:3482 �0:3486 �0:3386
�d1 D �0:5 �0:3626 �0:3534 �0:3533 �0:3463
�d2 D �0:5 �0:4571 �0:4491 �0:4491 �0:4430
�o1 D �0:4 �0:3127 �0:3034 �0:3029 �0:2959
�o2 D �0:2 �0:2122 �0:2020 �0:2022 �0:1924
� D �0:5 �0:3771 �0:3694 �0:3699 �0:3629

flows, which tend to have large values relative to interregional flows. This is done
by creating an intercept for flows associated with the main diagonal of the flow
matrix (intraregional flows), as well as a set of explanatory variables for these flows.
The explanatory variables Xd;Xo are adjusted to have zero values for main diagonal
elements of the flow matrix and a new variable which we label Xi is created that



132 J.P. LeSage and E. Satici

contains the residents and employment explanatory variables for each region to
capture intraregional flow variation.

There were 15 % of the 3,600 flows with zero values. Interestingly, in the Monte
Carlo experiments reported in the previous section, where the same explanatory
variables and spatial weight matrix were used to generate a spatial ys dependent
variable that was rounded down to the nearest integer resulted in 15.40 % zero
values. This suggests that rounding is a plausible explanation for the observed zero
flows in this dataset.

The spatial model formed a spatial weight matrix W based on first-order
contiguity of the 60 regions. Regions with borders that touched each region were
equally weighted, and the matrix was row-standardized to have row-sums of unity.

Table 7.4 presents estimates for the non-spatial model. Ordinary regression
results based on log-transformed flows (plus one to avoid taking logs of the
zero values) are presented alongside PPML estimates based on optimization and
the MCMC procedure. The MCMC procedure used a burn-in sample of 5,000
independence-based tuned random-walk univariate normal proposals to produce
candidate values. The tuning adjusted the proposal distribution variance to achieve
acceptance rates between 40 and 60 %. The set of 5,000 burn-in draws were used
to calculate an empirical variance-covariance matrix that was used in conjunction
with a multivariate normal proposal and block sampling of the parameters ı to
produce another 5,000 draws. Posterior means and standard deviations were based
on the last 5,000 draws. For comparability with the regression-based estimates and
optimization-based PPML estimates, a pseudo t-statistic was calculated based on
the posterior mean and standard deviation of the retained 5,000 draws.

From the table we see agreement between the optimization-based PPML esti-
mates and MCMC-based PPML estimates to two decimal places. There is also
a great deal of agreement regarding the dispersion of the estimates indicated by
the similarity of the t-statistics based on the numerical hessian procedure for the
optimization-based estimates versus the sequence of 5,000 retained draws from the
MCMC procedure.

There is some disagreement between the regression estimates based on the log-
transformation and both sets of PPML estimates, but nowhere near that seen in the
Monte Carlo experiments from the previous section.

Turning attention to interpretation of the estimates, we would conclude that
the positive and significant intercept for intraregional flows (vec.In/) points to
higher flow levels within regions, and the positive and significant coefficients for
intraregional residents and employment point to higher intraregional flows for
regions where more residents and jobs are located. Specifically, a 10 % increase
in residents in a region would lead to a 7.4 % increase in intraregional commuting
flows, and a 10 % increase in employment is associated with a 4.8 % increase in
commuting flows within the region (those that begin and end in the same region).

Increasing residents in a (work-place) destination reduces commuting inflows
to those destination regions. A 10 % increase in residents would lead to a 1.29 %
decrease of commuting inflows. Increasing employment/jobs in a (work-place)
destination increases commuting inflows to those destination regions. A 10 %
increase in jobs would lead to a 13.2 % increase of commuting inflows.
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Table 7.4 Non-spatial estimates for Toulouse commuting flows

Variables Coefficient t-Statistic t-Probability

Regression using ln.y C 1/

Constant 2:3990 104:330 0:0000

vec.In/ 8:0022 6:916 0:0000

Residents at destination �0:1277 �5:962 0:0000

Employment at destination 1:3249 70:966 0:0000

Residents at origin 1:0508 49:053 0:0000

Employment at origin �0:0325 �1:744 0:0811

Intraregional residents 0:7331 5:596 0:0000

Intraregional employment 0:4285 4:112 0:0000

ln(distance) �0:3244 �21:104 0:0000

PPML optimization

Constant 2:4979 400:260 0:0000

vec.In/ 7:8517 56:994 0:0000

Residents at destination �0:1289 �26:049 0:0000

Employment at destination 1:3231 240:868 0:0000

Residents at origin 1:2104 150:458 0:0000

Employment at origin �0:1266 �21:939 0:0000

Intraregional residents 0:7441 53:734 0:0000

Intraregional employment 0:4835 48:620 0:0000

ln(distance) �0:3245 �87:558 0:0000

PPML MCMC

Constant 2:4980 384:315 0:0000

vec.In/ 7:8701 52:969 0:0000

Residents at destination �0:1293 �27:917 0:0000

Employment at destination 1:3225 229:913 0:0000

Residents at origin 1:2101 155:743 0:0000

Employment at origin �0:1246 �22:994 0:0000

Intraregional residents 0:7416 52:057 0:0000

Intraregional employment 0:4841 49:680 0:0000

ln(distance) �0:3247 �93:725 0:0000

Increasing residents in a (residential) origin produces a increase in commuting
flows from those origin regions. A 10 % increase in residents would lead to an
12.1 % increase in commuting outflows from the origin.

Increasing employment/jobs in a (residential) origin produces a small decrease
in commuting outflows from those origin regions. A 10 % increase in jobs located
in an origin regions reduces outflows by 1.26 %.

Distance of course has a negative impact on commuting flows, such that a 10 %
increase in distance would decrease commuting flows by 3.24 %.

Table 7.5 shows estimates from the spatial variant of the model. There are
larger discrepancies between the regression-based estimates and the two sets of
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Table 7.5 Spatial estimates for Toulouse commuting flows

Variables Coefficient t-Statistic t-Probability

Regression using ln.y C 1/

Constant 2:4021 105:788 0:0000

vec.In/ 7:8144 6:839 0:0000

Residents at destination �0:1112 �5:204 0:0000

Employment at destination 1:3210 68:748 0:0000

Residents at origin 1:0628 49:736 0:0000

Employment at origin �0:0059 �0:307 0:7587

Wd (Residents at destination) �0:0790 �4:218 0:0000

Wd (Employment at destination) 0:0144 0:800 0:4236

Wo (Residents at origin) �0:0093 �0:499 0:6172

Wo (Employment at origin) �0:0797 �4:421 0:0000

Intraregional residents 0:7480 5:782 0:0000

Intraregional employment 0:4448 4:317 0:0000

ln(distance) �0:2600 �15:513 0:0000

PPML optimization

Constant 2:5036 401:562 0:0000

vec.In/ 7:6710 55:690 0:0000

Residents at destination �0:0969 �19:155 0:0000

Employment at destination 1:3300 240:957 0:0000

Residents at origin 1:2117 145:866 0:0000

Employment at origin �0:0989 �16:075 0:0000

Wd (Residents at destination) �0:1533 �11:922 0:0000

Wd (Employment at destination) �0:0505 �5:526 0:0000

Wo (Residents at origin) �0:0315 �2:643 0:0082

Wo (Employment at origin) �0:1234 �11:264 0:0000

Intraregional residents 0:7562 54:729 0:0000

Intraregional employment 0:5045 50:659 0:0000

ln(distance) �0:2431 �56:175 0:0000

PPML MCMC

Constant 2:5042 273:870 0:0000

vec.In/ 7:6506 42:215 0:0000

Residents at destination �0:0978 �19:370 0:0000

Employment at destination 1:3302 141:187 0:0000

Residents at origin 1:2089 84:908 0:0000

Employment at origin �0:0979 �11:628 0:0000

Wd (Residents at destination) �0:1534 �11:921 0:0000

Wd (Employment at destination) �0:0502 �4:873 0:0000

Wo (Residents at origin) �0:0312 �2:437 0:0116

Wo (Employment at origin) �0:1236 �10:340 0:0000

Intraregional residents 0:7586 37:537 0:0000

Intraregional employment 0:5028 53:354 0:0000

ln(distance) �0:2434 �54:300 0:0000
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PPML estimates in this case. The PPML estimates indicate that spatial lags of
the explanatory variables are significantly different from zero. Inclusion of these
variables also impacts estimates for the other coefficients. For example, a 10 %
increase in distance implies a 2.43 % reduction in commuting flows for the spatial
model compared to the 3.24 % reduction noted above for the non-spatial model.

All of the estimates for the spatial lag variables are negative, consistent with
Alonso’s notion that regions neighboring origins represent opportunity or draw
impact on regions neighboring the origin and a congestion or competition impact
on regions neighboring the destination. As we would expect, the congestion and
opportunity impacts are small, consistent with ‘second-order’ impacts of lesser
magnitude than the direct impacts.

From the estimates, we would conclude that the positive and significant intercept
for intraregional flows (vec.In/) points to higher flow levels within regions, and
the positive and significant coefficients for intraregional residents and employment
point to higher intraregional flows for regions where more residents and jobs are
located. Specifically, a 10 % increase in residents in a region would lead to a 7.5 %
increase in intraregional commuting flows, and a 10 % increase in employment is
associated with a 5.0 % increase in commuting flows within the region (very similar
to our inferences for the non-spatial model).

Increasing residents in a (work-place) destination reduces commuting inflows
to those destination regions. A 10 % increase in residents would lead to a 0.96 %
decrease of commuting inflows for the typical region. Regions neighboring the
destination would also see a decrease in commuting inflows equal to 1.53 % in
response to a 10 % increase in residents of the typical region. The non-spatial
model assumes this magnitude equals zero. This would result in an underestimate
of the total impact on commuting inflows arising from an increase in residents in
the typical region by around one-half. The total impact is the sum of the direct
plus indirect impact determined by the sum of the rth coefficients ˇr

d C � r
d D

0:97C 1:53 D 2:50. If we compare this to the non-spatial model estimate of 1.29,
the downward bias is evident.

Increasing employment/jobs in a (work-place) destination increases commuting
inflows to those destination regions and reduces flow to regions neighboring those
destinations. A 10 % increase in jobs would lead to a 13.3 % increase of commuting
inflows for the typical region, while reducing inflows to neighboring regions by
0.5 % for a total impact of 12.8 %. This estimate would produce a nearly identical
inference as the 13.2 estimate from the non-spatial model

Increasing residents in a (residential) origin produces a increase in commuting
flows from those origin regions and reduces outflows from neighboring regions. A
10 % increase in residents would lead to an 12.1 % increase in commuting outflows
from the origin, and a reduction in outflows from regions neighboring the typical
origin by 0.31 %. As in the case of changes in jobs at the destination, inferences
from the non-spatial and spatial models would not differ in a substantive way.

Increasing employment/jobs in a (residential) origin produces a small decrease
in commuting outflows from those origin regions, while decreasing outflows from
regions neighboring the typical origin. A 10 % increase in jobs located in a typical



136 J.P. LeSage and E. Satici

origin region reduces outflows by 0.98 %, and reduces outflows from neighboring
regions by 1.23 %. The total impact estimate of �2:21% suggests some downward
bias in the non-spatial model estimate of �1:26%. Again, this arises from omitting
the spatial spillover impact.

Figure 7.1 shows the logged (non-zero) actual flows versus the logged predictions
from the spatial PPML model for these non-zero flows. The log transformation was
used to enhance scaling of the values in the figure.

For contrast, Fig. 7.2 shows the logged (non-zero) actual flows versus the
predictions from the regression model based on ln.flows C 1/ for contrast with the
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Fig. 7.1 Actual vs. predicted logged non-zero flows
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Fig. 7.2 Actual vs. regression predicted logged non-zero flows
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PPML spatial model predictions. The log transformation was used for compatibility
between the PPML and regression models.

As the figures suggest, the fit from both models is similar. The regression model
mean squared error for the non-zero flows was 0.3282 and 0.3311 for the PPML
model. The mean absolute error for the regression model was 0.4423 and 0.4386 for
the PPML model.

7.4.1 Higher-Order Neighbors

The 60 regions used represent relatively small areas within Toulouse, so spatial
spillover impact may extend beyond first-order (contiguous) neighboring regions.

Figure 7.3 shows a Moran scatterplot and Fig. 7.4 an associated map of jobs
for the 60 regions in Toulouse. The scatterplot shows employment in deviation
from means on the horizontal axis and average employment from neighboring
regions on the vertical axis (also in deviation from means). Points associated with
each region fall into four quadrants. Points in quadrant I indicate regions that
have higher than average employment and whose neighboring regions also have
higher than average employment. These points in the associated map show the
location of these regions, which tend to be clustered in the center of Toulouse.
The points in the third quadrant of the scatterplot show regions with lower than
average employment whose neighboring regions also have lower than average levels

Fig. 7.3 Employment Moran
scatterplot
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Fig. 7.4 Employment Moran
map
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of employment. These regions are clustered on the map in locations surrounding
the central Toulouse regions, where higher than average employment are located.
Points in the fourth quadrant indicate regions with higher than average employment
surrounded by regions with lower than average employment. These regions point
to areas of outlying employment, interspersed with residential regions. A clear
pattern of spatial clustering exists for the quadrant I, III and IV regions on the map,
which contradicts the assumption made by the non-spatial interaction model that
employment in one region is not systematically related to employment in nearby
regions.

Figure 7.5 shows a Moran scatterplot and Fig. 7.6 an associated map of (working)
residents for the 60 regions in Toulouse. Here we see quadrant I points indicating
a cluster of regions to the east of the city center with higher than average residents
whose neighboring regions also contain higher than average residents. The quadrant
III points show regions with lower than average residents whose neighboring regions
also contain lower than average residents, that tend to be clustered southwest of the
city center. Quadrant IV and II points and associated regions on the map indicate
areas where residences and employment are interspersed. This scatterplot and asso-
ciated map also points to clusters of regions with high and low numbers of (working)
residents which is inconsistent with the assumption of spatial independence of
residents made by the non-spatial interaction model.

We test the spatial extent of spillovers by adding additional spatial lags of the
explanatory variables to the model. Specifically, we test models that add second-
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Fig. 7.5 Residents Moran
scatterplot

Fig. 7.6 Residents Moran
map
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through fourth order neighbors to the origin and destination regions. shown in
(7.14).

E.yjZ/ D exp.ˇ0 C Xdˇd C Xoˇo

C
4X

jD1
Wj

dXd�dj C
4X

jD1
Wj

oXo�oj C d�/ (7.14)

Spillovers (or indirect effects) in these models are calculated using the sum of
the coefficients: �oj and �dj. Table 7.6 reports two measures of model fit for the set
of five different models that were estimated. The table indicates the five models
using: X;W1X;

P2
jD1 WjX;

P3
jD1 WjX;

P4
jD1 WjX to denote the set of explanatory

variables used. We note that some confusion has arisen in the literature due to
Anselin and Smirnov (1996), who view proper higher order spatial lag operators
as if they were time-series lag operators. They advocate an approach to calculating
higher-order spatial lags that purges feedback loops, which are of course the
hallmark of higher-order spatial lags that distinguishes them from time-series lag
operators. The higher-order spatial lags in (7.14) contain the feedback loops implied

Table 7.6 Extended model estimates

Measures of model fit

Measure/model X W1X
P2

jD1 WjX
P3

jD1 WjX
P4

jD1 WjX

Root mean squared error 17:7268 16:1210 15:6687 15:3776 15:4545

Mean absolute error 9:8143 9:3447 9:2193 9:0947 9:1090

Direct effects

Variables/model X W1X
P2

jD1 WjX
P3

jD1 WjX
P4

jD1 WjX

Residents at destination �0:1293 �0:0978 �0:0478 �0:0660 �0:0593
Employment at destination 1:3225 1:3302 1:3762 1:3673 1:3552

Residents at origin 1:2101 1:2089 1:2177 1:2477 1:2592

Employment at origin �0:1246 �0:0979 �0:0615 �0:0988 �0:0953
Indirect effects

Variables/model X W1X
P2

jD1 WjX
P3

jD1 WjX
P4

jD1 WjX

Residents at destination 0:0000 �0:1534 �0:3807 �0:4745 �0:4826
Employment at destination 0:0000 �0:0502 �0:1349 �0:1740 �0:1302
Residents at origin 0:0000 �0:0312 �0:0620 �0:0360 0:0705

Employment at origin 0:0000 �0:1236 �0:2455 �0:3442 �0:4335
Total effects

Variables/model X W1X
P2

jD1 WjX
P3

jD1 WjX
P4

jD1 WjX

Residents at destination �0:1293 �0:2512 �0:4284 �0:5405 �0:5419
Employment at destination 1:3225 1:2800 1:2414 1:1933 1:2250

Residents at origin 1:2101 1:1777 1:1557 1:2117 1:3297

Employment at origin �0:1246 �0:2215 �0:3069 �0:4430 �0:5288
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by spatial lags, and these matrix products must compete with lower-order spatial
lags to improve the model fit.

An alternative approach would be to define W D Pm
iD1

�
� iNi=

Pm
iD1 � i

�
, where

Ni refers to a matrix containing non-zero elements for the ith nearest neighbor, and
� serves to weight the relative effect of the ith individual neighbor matrices, so
that W depends on the parameter � as well as m the number of neighbor matrices
considered. To see the role played by the spatial decay parameter �, note that � D
0:87 implies a decay profile where the sixth nearest neighbor receives less than one-
half the weight of the nearest neighbor This approach would require estimation of
the additional parameters m and �. For an illustration of this see in another context,
see LeSage and Pace (2009, Chapter 9).

Of course, the additional explanatory variables for modeling intraregional flows
Xi and intercept term for these were also included in the model. The best fitting
model included first, second, and third order neighboring regions. Both root mean
squared error and mean absolute error were minimized for this model.

The direct effects reported in Table 7.6 represent coefficients on the set of
explanatory variables associated with the matrix X, while the indirect effects
estimates represent a sum of coefficients associated with the various orders of
spatial lags used in the alternative models. For example, in the model containing
only a single spatial lag (W1X), the indirect effect estimates are the MCMC
estimates reported in Table 7.5 for the variables: Wd (Residents at Destination),
Wd (Employment at Destination), Wo (Residents at Origin), and Wo (Employment at
Origin). For models containing higher-order neighbors, we sum over the coefficients
for all orders. The total effects reported in the table are the sum of direct plus indirect
effects.

From the table, we see that spatial spillovers may be larger than inferred
from the simple model containing only contiguous neighbors. For the best-fitting
model containing first through third order neighbors, the spillover magnitudes (for
Residents at Destination, Employment at Destination, and Employment at Origin
variables) are about three times that reported for the model containing only first-
order neighbors. For the variable Residents at Origin the indirect effects/spillovers
are the same for the first- and third-order models.

The conclusion drawn from this experiment with an extended version of the
model is that inferences regarding spatial spillovers may be sensitive to the number
of neighbors used, or more generally the spatial extent of the spillovers. Formal
statistical methods for comparing models based on varying specifications with
regard to neighboring regions included in the model seems an area for future
research.

7.5 Conclusion

A problem that can invalidate use of maximum likelihood and Bayesian spatial
autoregressive interaction models of the type described in LeSage and Pace (2008,
2009) is the presence of zero flow magnitudes. For datasets containing even a
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moderate number zero flows, this produces a situation where the assumption of
normally distributed disturbances required for maximum likelihood estimation is
not met.

Taking an approach used in modeling international trade flows based on an
exponential specification in conjunction with pseudo Poisson maximum likelihood
or Bayesian MCMC estimation appears to hold promise in these situations. A set
of Monte Carlo experiments based on Toulouse commuting-to-work flows showed
that the PPML model produce more accurate estimates that the conventional log-
transformed regression model in the presence of zero flows.

A spatial extension of the model to include ‘size’ variables reflecting neighbors
to origin and destination regressions was proposed. This type of extension appears
consistent with Alonso’s Theory of Movement, which generalizes the conventional
regional gravity model.

An application to Toulouse commuting-to-work flows showed that ignoring
spatial spillover impacts will lead to downward bias in estimates of the impacts
associated with changes in characteristics of the regions.

Future work should explore issues pertaining to the spatial extent of spillovers.
Extended specifications of the model can be used to introduce spillovers that extend
beyond immediately neighboring regions. However, collinearity problems arise
when introducing higher-order spatial lags in the model. Some type of Bayesian
smoothness priors such as those proposed by Shiller (1973) might be applicable for
the extended model.

Another area for future work would be consideration of Poisson modeling
situations where spillovers are present in the conditional mean of yi, which implies
spatial clustering of high and low conditional variances. We note however that
spatially lagged dependent variables considerably complicate interpretation of the
model estimates in the case of a spatial Poisson regression (see LeSage and
Thomas-Agnan 2015 on interpretation issues that arise for this type of model in
a non-Poisson context).

There is also the potential for spatial dependence in the model disturbances,
examined by Rathnun and Fei (2006) and Wakefield (2007), who consider Bayesian
spatial Poisson regression models where spatial dependence is modeled in the
residuals.
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8.1 Introduction

During the past two decades, scholars have shown renewed interest in the theoretical
foundations and estimation of the gravity model for bilateral trade (e.g., Deardorff
1998; Anderson and van Wincoop 2003). The interest in modelling trade flows has
increased with questions about the effectiveness of trade agreements (Baier and
Bergstrand 2009) and the persistence of border and distance effects and largely
unobserved trade costs (Anderson and van Wincoop 2004). The developments have
re-affirmed the importance of accounting for relative trade costs in explaining
patterns of trade. Yet, empirical application of the resulting gravity model frame-
work that incorporates theoretically motivated multilateral resistance (MR) is not
straightforward. The system of equations for MR involves non-linearities in the
parameters and requires custom programming (Feenstra 2004).
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An alternative specification that circumvents the need to consider the full system
of equations includes country-specific effects to control for omitted country-specific
MR variables. However, both the system approach and the alternative using fixed
effects impose restrictions on the empirical specification of the gravity model. They
allow identification of the impact of bilateral trade barriers, but preclude (at least in
a cross-section) the analysis of country-specific covariates that may affect patterns
of trade.

This paper aims to contribute to the literature in providing an alternative solution
to deal with omitted MR, which allows for parameter identification for country-
specific covariates in a cross-section analysis of trade patterns. This solution
hinges on the interpretation of spatial autocorrelation (SAC)1 in trade flows as
reflecting unobserved country-specific heterogeneity due to MR. Our approach is
complementary to a related recent strand of literature that starts from the same
interpretation in that we offer an alternative methodology to deal with SAC in trade
flows, called spatial filtering (SF) estimation.

The literature review about trade costs by Anderson and van Wincoop (2004)
suggests that the application of spatial econometric techniques in modelling
origin-destination trade flows needs further exploration, to take into account the
(auto)correlation in trade flows. Although the gravity model is essentially a model
of spatial interaction, little attention has been paid to flows autocorrelation in
the trade literature (Porojan 2001, is an exception). In part, this lack of attention
was due to technical reasons. Spatial econometric modelling of origin-destination
flows is complex and computationally taxing. Estimation of spatial lag and spatial
error models in this context has long been impossible due to computing power
limitations. Applications of spatial interaction modelling in regional science have
recently made progress on this issue (see Fischer and Griffith 2008; LeSage and
Pace 2008; Sellner et al. 2013). Applications in empirical trade and FDI modelling
have followed shortly thereafter (see Baltagi et al. 2007; Behrens et al. 2012). These
contributions show the relevance of autocorrelation in trade flows. However, spatial
econometric origin-destination flow models remain complex and relatively taxing
to apply empirically. In response to these concerns, several studies have applied
an alternative spatial econometric technique, SF, which deals with autocorrelation
in a different but equally effective way. The technique of SF has recently been
applied to the origin-destination flow context in other fields, such as commuting
and patent citations (Fischer and Griffith 2008; Griffith 2009). Instead of accounting
for autocorrelation by spatial modelling, SF estimation deals with it by filtering the
residuals. Because only an origin-specific and a destination-specific filter are needed
in order to account for autocorrelation, the dimensionality of estimation is much less
demanding than in the case of a spatial lag or spatial error origin-destination model.

1Spatial autocorrelation is the correlation that occurs among the values of a georeferenced variable,
and that can be attributed to the proximity of the units. The concept of SAC can be related to the
first law of geography, stating that ‘everything is related to everything else, but near things are
more related than distant things’ (Tobler 1970, p. 236).
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This paper follows up on this development by applying SF estimation to bilateral
trade flows. We argue that the application of origin-specific and destination-specific
filtering of residuals corresponds well to the theoretically expected importance of
omitted origin-specific and destination-specific MR terms. Empirical results show
that SF estimation can account well for autocorrelation in trade flows.

Moreover, SF estimation of an otherwise standard empirical gravity equation
appears to go a long way in correcting for bias due to the origin- and destination-
specific omitted variables predicted by the theoretical gravity model. The regression
coefficients are close to the benchmark values in a specification using origin- and
destination-specific indicator variables. This implies that SF estimation provides a
relatively simple alternative to spatial econometric origin-destination flow models
and custom-programmed non-linear estimation of the theoretical gravity model,
which can be estimated using standard techniques such as ordinary least squares
(OLS) or Poisson regression.2

Finally, the SF approach allows for a greater flexibility in the empirical specifi-
cation of the gravity equation. Unlike the specification using indicator variables,
we can include country-specific variables—so called push and pull factors—
in the model. Moreover, a SF model is a significant improvement in terms of
parsimony and efficiency compared to the indicator variables model. Compared
to the theoretical gravity framework, we can relax the assumption that total trade
depends exclusively and proportionately on the gross domestic product (GDP) of the
trading countries. Other potential push and pull factors, such as landlockedness, land
area, or per capita income can be included as well, and we do not have to assume
a proportional relation between trade and GDP. Thus, SF estimation entails greater
flexibility in specification choice compared to the stylized theoretical gravity model.

The paper proceeds as follows. In Sect. 8.2, we specify a theoretical gravity
model following Anderson and van Wincoop (2003) and discuss some practical
limitations of applying the theoretical framework. In Sect. 8.3, we illustrate the
link between theoretical gravity and autocorrelation in trade flows. We present the
approach of SF estimation to control for autocorrelation, and motivate that it allows
controlling for unobserved MR. Section 8.4 outlines the empirical specifications and
estimators that we compare, while Sect. 8.5 discusses the SAC tests that we use for
post-estimation diagnostics. In Sect. 8.6, after an overview of data used, we turn to
the estimation results and diagnostics. Section 8.7 concludes the paper.

8.2 The Gravity Model and Autocorrelation

We can divide the discourse over trade gravity modelling into two parts, regarding
the theoretical and empirical approaches to the problem, respectively. The following
sections attempt to provide such a discussion.

2The estimates presented in this paper have been carried out with the R statistical software (R Core
Team 2015). The script necessary for running the SF estimations is available for download from
the first author’s personal homepage.
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8.2.1 Theoretical Gravity

Gravity equations for analysing bilateral trade flows have been estimated since the
1960s (e.g., Tinbergen 1962; Pöyhönen 1963). The model describes the volume
of bilateral trade as a function of push and pull factors, such as economic size
of origins and destinations, and transactional distance between trade partners. It
has been deployed for various purposes, such as analysing the determinants of
trade patterns, testing trade theories, forecasting future flows or estimating missing
data, and comparative static analysis of changes in trade costs. Recent applications
increasingly emphasize the importance of estimating a gravity equation that is
consistent with theoretical gravity (e.g., Anderson and van Wincoop 2003; Baier
and Bergstrand 2009). The theoretical framework that is most influential has been
developed by Anderson and van Wincoop (2003), in their paper on consistent
estimation and assessment of the border effect in U.S.-Canadian regional trade
flows.3

Anderson and van Wincoop derive a reduced-form gravity equation, assuming
an N-country endowment economy, constant elasticity of substitution (CES) prefer-
ences, and symmetric bilateral trade costs. Their model explicitly takes into account
the role played by country-specific price indices (MR terms). The gravity equation
that results is specified as:

xij D yiyj

yw

�
tij
…iPj

�1�¢
; (8.1)

where xij is the value of the flow of goods from country i to country j, y is GDP (w
stands for world) and tij is the bilateral trade cost factor. Finally, two variables enter
that we discuss in greater detail later.˘ i measures outward MR of country i, and Pj

measures inward MR of country j. The term ¢ is the elasticity of substitution (¢ > 1).
Equation (8.1) shows that bilateral exports would be proportional to the size of

the exporting market and the share of the import market in total demand, in the
absence of bilateral trade costs (tij). Trade costs are of the iceberg type, and defined
as a mark-up on the ‘mill price’ pi (tij � 1). Hence, (tij � 1) is the ad-valorem tariff
equivalent of bilateral trade costs. The bilateral delivered prices (pij) then equal:

pij D tij � pi: (8.2)

A wide variety of covariates in the literature is used to represent bilateral trade
costs. We include some of the most common bilateral explanatory variables. A
multiplicative formulation of bilateral trade costs (see Deardorff 1998; Anderson

3Related theoretical derivations of a gravity equation for trade can be found in earlier literature as
well, such as Bergstrand (1985) and Bröcker (1989).



8 The Space of Gravity: Spatially Filtered Estimation of a Gravity Model for. . . 149

and van Wincoop 2004) yields:

tij D D“1
ij � e“2�.1�CBij/ � e“3�.1�CLij/ � e“4�.1�CHij/ � e“5�.1�FTAij/ � bij; (8.3)

where D stands for geographical distance; CB stands for an indicator variable equal
to 1 if two countries share a (land) border (and zero otherwise); CL, CH and FTA
are a set of similar indicator variables indicating whether or not two countries share
a common official language, common colonial history, and/or common free-trade
agreement. The parameter bij reflects the impact of all remaining bilateral trade
barriers on the bilateral trade cost factor, assumed independent from the included
covariates. Based on economic intuition, we expect positive parameters for the
covariates in the trade cost function.

Bilateral export does not depend on only bilateral trade cost and the (exogenously
given) size of the trading economies. It also depends on the weighted average
trade costs that an exporter and importer face in their export and import market,
respectively. This is reflected by the MR terms entering the denominator of equation
(8.1). Anderson and van Wincoop (2003) derive the set of equations for the MR
terms˘ i and Pj,

…i
1�¢ D

NX

jD1

�
™j

	
tij
.

Pj


1�¢�
; (8.4)

Pj
1�¢ D

NX

iD1

�
™i

	
tij
.

…i


1�¢�
; (8.5)

where ™i D yi=yw;8i:
Note that the outward (inward) resistance term includes the GDP-share-weighted

average of bilateral trade costs relative to the inward (outward) resistance terms
across destinations (origins). Given bilateral trade costs tij, a high value for MR
implies that other countries k are less attractive trading partners. Hence countries i
and j will trade more with each other, as shown in Eq. (8.1).

8.2.2 Practical Gravity

The theoretical gravity model conveys an important message. Trade flows are not
mutually independent. For a consistent econometric estimation of the parameters
in the model, problems emerge if the regressor variables are correlated with the
residuals. The theoretical model shows that this endogeneity bias is likely to emerge
if we do not control for country-specific MR.

Despite the prominent position of this theoretical framework over the past years,
many empirical studies continued to rely on a more pragmatic empirical gravity
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equation instead. Several plausible explanations for this come to mind. Estimating
a theoretically consistent gravity equation involves dealing with Eqs. (8.4) and
(8.5), which are nonlinear in their parameters. Developing the required estimation
procedures involve some restrictive assumptions (see Baldwin and Taglioni 2006;
Balistreri and Hillberry 2007), and work on deriving an analytical solution has only
recently emerged (e.g., Straathof 2008).

Furthermore, the theoretical framework puts restrictions on the empirical specifi-
cation that follows from the stylized model rather than from practical considerations.
In fact, trade depends proportionately on the GDP of an origin and destination.
Moreover, GDP variables are the only push and pull factors in the model to
explain total external trade. While the theoretical model requires total exports
to sum to an exporter’s GDP, and total imports to sum to an importer’s GDP,
these constraints do not hold in practical applications.4 First, trade and GDP are
measured in different units. While trade is measured in gross output values, GDP is
a measure of value added. Moreover, the model includes intranational trade while
most practical applications only consider international trade flows in estimating
the gravity equation, due to data limitations. This context implies that theoretically
imposed constraints in the model are not generally valid in estimation. Second, the
share of external trade in total expenditure and gross output may be different from
the predictions in the theoretical model. The theoretical gravity model predicts that
larger economies are less open to international trade and allocate a larger share of
their expenditure on intranational trade, but the share of international trade on GDP
is often constrained to a constant by imposing proportionality between the former
and the latter.

Hence, practical considerations may provide a valid motivation to choose
an unconstrained empirical gravity equation, which allows more flexibility in
specification. An empirical gravity equation can include additional push and pull
factors to capture variation in openness to international trade. For example, we may
think of per capita income, landlockedness, and land area as factors determining a
country’s openness to international trade. Many of these variables have been used
in empirical specifications of the gravity model for international trade (e.g., Frankel
1997; Raballand 2003; De Groot et al. 2004).

Taking theoretical and practical insight seriously, ideally we would need to
combine the flexibility of the empirical gravity equation and the insights about
omitted variable bias due to MR of the theoretical foundation of gravity. An
often used practical solution to deal with country-specific omitted variable bias
is to include country-specific indicator variables in the gravity equation (Bröcker
and Rohweder 1990). As argued by Feenstra (2004), a model specification that
includes origin- and destination-specific intercepts is consistent with theoretical
concerns. Moreover, this solution has been widely applied in regional science to

4The MR terms obtained impose the constraints:
X

i
xij D yj and

X

j
xij D yi: In similar

applications of the model in regional science, this type of specification is known as a doubly-
constrained gravity model (e.g., Wilson 1970; Fotheringham and O’Kelly 1989).
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deal with the practical problems of estimating a gravity equation in which the
total flows are not known (Sen and Smith 1995).5 This solution is not completely
satisfactory, though. It is rather drastic medicine to cure the patient. First, including
origin- and destination-specific indicator variables reduces the statistical efficiency
of econometric estimation. Second, it precludes the analysis of country-specific
determinants of trade, which are interesting for empirical applications, and which
explain cross-country variation in openness to international trade.

8.2.3 Consistent Estimation and Autocorrelation

The main insight from theoretically derived gravity is that regressor variables
and residuals in the unconstrained gravity equation are likely to be correlated,
because bilateral trade barriers also appear in the omitted MR terms. In empirical
estimations, failure to control for MR might result in omitted variable bias in the
parameter estimates of the bilateral regressors.

This paper proposes an alternative estimation approach that allows for the esti-
mation of an unconstrained empirical specification of the gravity model, including
push and pull factors, while offering a correction for origin- and destination-
specific omitted variable bias. The approach starts from a specific interpretation of
endogeneity bias as resulting from autocorrelation in trade flows. The argument for
this interpretation has been made before in Behrens et al. (2012) and in Koch and
LeSage (2009), and more generically relates to the recent revival in modelling SAC
in bilateral flow data in the previously mentioned regional science literature. To the
best of our knowledge, however, this paper is the first to link the theoretical MR
effects to origin- and destination-specific filters, and to make use of SF techniques
to accommodate autocorrelation in trade flows.

The argument starts by inspecting Eqs. (8.4) and (8.5). We propose that countries
located in close spatial proximity tend to have similar MR. Similar geographical
location implies similar geographical distance to trade partners across the world
and a higher probability of shared neighbours. Likewise, shared languages tend to
be more similar for countries closely located in space. Also, the logic of regional
integration implies a higher likelihood of proximate countries being part of shared
trade agreements with surrounding countries. This context implies that these spatial
patterns in MR would induce autocorrelation in the residuals of the unconstrained
gravity equation. As a result, the residuals and the bilateral trade cost variables
are correlated, because similar reasoning to the preceding discussion suggests

5Although total international trade by country is generally known, or can be proxied by summing
available bilateral flows, we do not have comparable direct observations for intranational trade.
Hence, we would need to proxy for openness to trade of each country in estimating the
gravity equation. This can be done either by including (additional) push and pull factors in the
specification, or by using country-specific intercepts.



152 R. Patuelli et al.

SAC would be in the regressor variables distance, contiguity, language and trade
agreement. Omitted variable bias would result.

8.3 Recent Developments in Estimating the Theoretical
Gravity Model of Trade

The theoretical gravity model shows that consistent estimation of the parameters
requires us to take into account the price indices. As discussed in Feenstra (2004),
the computational complexity of the non-linear estimation procedure has prevented
its widespread use in the applied international trade literature. Still, Anderson and
van Wincoop (2003) show that estimation of the more traditional empirical gravity
equation (omitting the MR terms) yields inconsistent parameter estimates for the key
regressor variables. A simple solution that results in consistent parameter estimates
is to use a set of country-specific indicator variables for the exporting and importing
countries (Bröcker and Rohweder 1990; Feenstra 2004). The indicator variables
capture the country-specific MR terms, and control for omitted variable bias related
to the country-specific intercepts. The main advantage of this formulation is that the
resulting specification can be estimated by familiar methods such as OLS or Poisson
regression.

However, the disadvantage of this solution is that the parameters of country-
specific determinants of trade cannot be estimated. Variables such as GDP, per
capita income, landlockedness, and land area are captured by the country-specific
indicator variables. Still, empirical estimation of the effect of these variables may
be relevant depending on the topic under investigation. Hence, a solution that would
share the basic simplicity of estimation with the indicator variable specification,
while allowing retention of the country-specific regressors, is needed.

Several recent developments in the trade gravity model literature focus on
combining consistent estimation and flexibility in the specification of the gravity
equation. Egger (2005) argues that a Hausman-Taylor approach, which allows
for country-specific covariates, is consistent even if unobserved country-specific
heterogeneity exists. This formulation provides an alternative to the indicator
variables specification that controls for omitted variable bias due to omitted MR
terms, and allows for the estimation of the parameters related to the country-specific
variables. The method is based upon an approach similar to instrumental variables,
which relies on instruments from inside the model.

In contrast, Baier and Bergstrand (2009) log-linearize the MR terms using a
first-order Taylor series approximation. This yields exogenous bilateral multilateral-
world-resistance (MWR) variables that proxy the endogenous country-specific MR
variables in Anderson and van Wincoop (2003). The resulting reduced-form gravity
equation can be estimated with OLS. This method is termed bonus vetus (‘good-
old’) OLS (BV-OLS). The approach yields log-linear approximations of the MR
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terms, using Taylor series expansion around a centre of identical and symmetric
trade costs, tij D t, but differing economic sizes (™i D yi/yw).

Starting from a reformulated Eq. (8.1):

ln xij D � ln yw C ln yi C ln yj � .¢ � 1/ ln tij C .¢ � 1/ ln Pi C .¢ � 1/ ln Pj;

(8.6)

the equation that Baier and Bergstrand derive is:

ln xij D � ln yw C ln yi C ln yj � .¢ � 1/ ln tij
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(8.7)

The terms in square brackets are the MR terms. They contain a first component that
captures multilateral trade frictions for each exporting or importing country, relative
to a second part that reflects world trade costs.

A third approach to the consistent cross-sectional estimation of the gravity
model is proposed in Behrens et al. (2012). Their approach is closely related
to our approach. Starting from the Anderson and van Wincoop formulation of
the theoretical gravity equation, they show that the MR terms can be shown to
reflect a correlation structure between trade flows that can be modelled similarly
to SAC. They suggest a spatial-autoregressive moving-average specification for the
gravity model, which results in consistent estimates of the standard gravity equation
parameters. At the same time, they argue that the baseline fixed-effects specification
discussed previously does not fully succeed in capturing the MR dependencies in
the error structure introduced by the general equilibrium nature of trade patterns
modelling, and that its residuals still show a significant amount of autocorrelation
(Behrens et al. 2012).

We now proceed to discuss the methodology followed in this paper. The
alternative we propose, SF, combines two attractive features. First, it is fairly simple
to apply, much like OLS with indicator variables; second, it takes into account the
general equilibrium interdependence of trade flows that can be modelled as SAC,
like spatial econometric origin-destination specifications.

8.4 Proposed Methodology: Spatial Filtering Estimation

The theoretical gravity model includes origin- and destination-specific MR vari-
ables that reflect the export and import accessibility of countries. Omitting these
endogenous MR variables from the specification results in potential omitted variable
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bias, both for the trade cost variables and for the size variables in the gravity
equation. Consistent estimation requires some way to capture the endogeneity
between MR terms and standard regressors. We propose to make use of the fact
that this dependency structure is likely to manifest as SAC in the residuals of the
traditional specification of the gravity model. The reasoning is that many trade cost
variables, such as geographical distance, adjacency, trade agreements, and common
language, are spatially correlated: countries close in space are more likely to share
the same (or similar) characteristics. This context likewise implies that both inward
and outward accessibility are spatially correlated: close countries are likely to have
more similar accessibility. We deal with SAC by using an origin- and a destination-
specific spatial filter, which serve to capture the spatially autocorrelated parts of the
residuals.

When including these spatial filters as additional origin- and destination-specific
regressors (much like the origin and destination specific MR variables), the model
can be estimated by standard regression techniques, such as OLS or Poisson
regression, which are common in the literature about spatial interaction patterns.
The parameters of the standard regressor variables are unrelated to the remaining
residual term, and standard estimation yields consistent parameter estimates as a
result. We refer to this estimation method as SF estimation of origin-destination
models (see Griffith 2007; Fischer and Griffith 2008).

Basically, SF estimation of georeferenced data regressions (such as international
trade) can reduce to defining a geographically varying mean and a variance on the
basis of an exogenous spatial weights matrix. In other words, the spatially correlated
residuals from an otherwise non-spatial regression model are partitioned into two
synthetic variables: (1) a spatial filter which captures latent SAC; and, (2) a non-
spatial variable (free of SAC), which will be the newly obtained residuals. The
workhorse for this SF decomposition is a transformation procedure based upon
eigenvector extraction from the matrix

�
I–11T=n

�
W
�
I–11T=n

�
; (8.8)

where W is a generic n � n spatial weights matrix; I is an n � n identity matrix;
and, 1 is an n � 1 vector containing 1s. The spatial weights matrix W defines the
relationships of proximity between the n georeferenced units (e.g., points, regions,
and countries). The transformed matrix appears in the numerator of Moran’s
coefficient (MC), which is a commonly used measure of SAC (see Sect. 8.5).

The eigenvectors of Eq. (8.8) represent distinct map pattern descriptions of SAC
underlying georeferenced variables (Griffith 2003). Moreover, the first extracted
eigenvector, say e1, is the one showing the highest positive MC that can be
achieved by any spatial recombination induced by W. The subsequently extracted
eigenvectors maximize MC while being orthogonal to and uncorrelated with the
previously extracted eigenvectors. Finally, the last extracted eigenvector maximizes
negative MC.

Having extracted the eigenvectors of Eq. (8.8), a spatial filter is constructed by
judiciously selecting a subset of these n eigenvectors. In detail, for our empirical
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application, we select a first subset of eigenvectors (which we will call ‘candidate
eigenvectors’) by means of the following threshold: MC(ei)/MC(e1) > 0.25. This
threshold yields a spatial filter that approximately replicates the amount of variance
explained by a spatial autoregressive model (SAR) (Griffith 2003).6 Subsequently, a
stepwise regression model may be employed to further reduce the first subset (whose
eigenvectors have not yet been related to the data) to just the (smaller) subset of
eigenvectors that are statistically significant as additional regressors in the model
to be evaluated. The resulting group of eigenvectors is what we call our ‘spatial
filter’. This estimation technique has been applied, both in autoregression and in
traditional modelling terms, to various fields, including labour markets (Patuelli
2007), innovation (Grimpe and Patuelli 2011), economic growth (Crespo Cuaresma
and Feldkircher 2013) and ecology (Monestiez et al. 2006).

The added challenge, with regard to the case at hand, is that trade data do not
represent points in space, but flows between points. Therefore, the eigenvectors are
linked to the flow data by means of Kronecker products: the product EK ˝ 1, where
EK is the n � k matrix of the candidate eigenvectors, may be linked to the origin-
specific information (for example, GDP per exporting countries), while the product
1 ˝ EK may be linked to destination-specific information (again, for example, the
GDP of importing countries) (Fischer and Griffith 2008). As a result, we have two
sets of origin- and destination-specific variables, which aim to capture the SAC
patterns commonly accounted for by the indicator variables of a doubly-constrained
gravity model (Griffith 2009), therefore avoiding omitted variable bias.

The main advantages of the proposed estimation method are: (a) this approach
can be applied to any type of regression, including simple OLS and generalized
linear models (GLMs) such as Poisson or negative binomial regressions (although
auto-Poisson and auto-negative binomial specifications cannot describe positive
spatial dependence), for which usually dedicated spatial econometric applications
do not exist; (b) by avoiding the use of indicator variables, we are able to save
degrees of freedom, and, (c) the approach can be used to estimate regression
parameters for origin- and destination-specific variables, such as GDP or trade
agreement indicators.

For our case study, because of the nature of trade data, as suggested by Santos
Silva and Tenreyro (2006), we estimate a count data model. While the natural choice
would be Poisson regression, in order to take into account overdispersion in the data
due to unobserved heterogeneity (which results in a sample variance which is much
greater than the sample mean), we estimate a negative binomial model, which can
explicitly account for such overdispersion by iteratively estimating the dispersion
parameter. In subsequent comparisons regarding residual spatial autocorrelation, we
consider, for the SF models, quasi-Poisson estimations as well.

6Recent research by Chun et al. (2016) proposes an estimation equation, based on residual SAC,
to predict the ideal size of the candidate set.
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8.5 Spatial Autocorrelation Diagnostics

When employing GLMs, traditional SAC indices may not be appropriate, as
discussed below. In this section, we review the available alternatives.

In linear regression contexts, when analysing model residuals, an adapted Moran
test (Cliff and Ord 1972, 1981) is commonly used, under a standard assumption of
normality. A t test can be used to test the null hypothesis of spatial randomness of
the residuals. The formula for the MC computed on the residuals is the following:

I D
n
X

i;j
wij©i©j

S0
X

i
©2i

; (8.9)

where wij is the (i,j) element of a chosen spatial weight matrix W, "i and "i are the
related model residuals, and S0 is the sum of all elements of W. The expected value
of this index is:

E.I/ D n tr .A/
S0 .n � k/

; (8.10)

where A D (XTX)–1XTWX corresponds to the factor that accounts for the effect
of the independent variables. X is the n � k matrix containing the values of the k
independent variables included in the regression model.

A permutation-based Moran test has also been proposed (Cliff and Ord 1981)
in order to improve the results of the approximate t test and to gain insights in its
sampling distribution under spatial randomness.

Because the Moran test has been developed for linear models and normally
distributed residuals, the use of MC calculated on the residuals of count data
(Poisson, negative binomial) regression models is questionable (Schabenberger and
Gotway 2005, p. 377), despite recent literature agreeing that it possesses good power
against a wide array of autoregressive models and different distributions of the
residuals (Anselin and Rey 1991).

Griffith (2010) studies the behaviour of the MC for non-normal random variables,
and shows that, above moderate values of n (25–100), the MC is a suitable indicator
in these cases as well. However, Griffith does not study the case of SAC diagnostics
for regression residuals, in which we can consider the effect of the independent
variables in the model.

Further, Moran’s test may not be properly applied to the residuals of Poisson or
negative binomial regression, whose distributional properties are not well known.
In addition, because the test does not consider the heterogeneity of observations,
its standard moments may not be appropriate under heteroscedasticity. For more
details, one can refer to Oden (1995), who discusses this problem.

Lin and Zhang (2007) suggest that the MC can be used to test the residuals of
a Poisson model by employing Pearson or deviance residuals under an asymptotic
normality assumption. This approach is followed, among others, by Scherngell and
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Lata (2013), who employ a panel SF modelling approach. However, this permutation
test once again does not incorporate the effect of the independent variables of the
model in constructing a reference distribution.

Fortunately, the standardized t statistic of Jacqmin-Gadda et al. (1997) can be
applied in this context. This t statistic can be considered as an extension of standard
SAC statistics into the domain of GLMs. It is derived in an analogous way to a score
test based on generalized estimating equations (Prentice and Zhao 1991). As the
condition of validity of the above test does not always hold, since the computation
is intractable for large samples, a test based on the permutation distribution has been
also proposed by the same authors.

Under the null hypothesis of no spatial autocorrelation, the t statistic is defined
as:

t D
Xn

iD1
X

j¤i
wij .yi � O�i/

�
yi � O�j

�
; (8.11)

or, in matrix notation:

t D .Y � O�/TW .Y � O�/ ; (8.12)

where Y is the n � 1 vector of the observations of the dependent variable, and O� is
the n � 1 vector of the estimated means.

Using a first-order Taylor series expansion for the deviation of estimated means
from the true means, Jacqmin-Gadda et al. (1997) show that the index’s expectation
and variance are as follows:

E.t/ D tr .RD/ I (8.13)

var.t/ D
Xn

iD1R
2
ii

	
�i.4/ � �2i.2/



C 2tr .RDRD/ ; (8.14)

where R D MTWM, M D I � DX(XTDX)�1XT, and D is the diagonal matrix whose
elements are the variance of each observation. Consequently, R2

ii is the ith diagonal
element of matrix R, while �i(2) and �i(4) are the second and the fourth central
moments of the ith observation, respectively. Jacqmin-Gadda et al. (1997) show that
the standardized t statistic asymptotically follows the standard normal distribution.

The Jacqmin-Gadda (JG) test is a development of the statistic developed by le
Cessie and van Houwelingen (1995), similarly derived as a score test in the spirit
of Prentice and Zhao (1991), but not accounting for the effect of the independent
variables. In fact, referring to Eq. (8.13), the component R in the le Cessie (LC)
test is reduced to R D WTW, while D D cov(Y). In other words, the LC test does
not incorporate the adjustment of estimating parameters, that is, the effect of
independent variables is not considered in constructing a reference distribution. In
summary, using the JG standardized t statistic, a test for spatial autocorrelation in
the context of GLMs can be carried out.
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8.6 Empirical Application

We apply the SF estimation to a cross-section of bilateral trade flows between 64
(major trading) countries for the year 2000 (a full list of countries is provided in the
Appendix, Table 8.3). In this section, we discuss the empirical specification, data
and the estimation results.

8.6.1 Data and Model Specification

For estimation, we follow a standard specification of the gravity equation of bilateral
trade. Starting from the trade costs variables identified in Eq. (8.3), we further extend
the specification with additional variables commonly mentioned in the literature
(see, e.g., Frankel 1997; Raballand 2003). We use the following specification of the
gravity equation:

ln Xij � ln
�
GDPi � GDPj

� D ’0 C ’1 � ln
�
GDPCAPi � GDPCAPj

�C “1 � ln
�
Dij
�

C “2 � CBij C “3 � CLij C “4 � CHij C “5 � FTAij C “6 � ISLi C “7 � ISLj C “8 � ln .Area/i
C “9 � ln .Area/j C “10 � LLi C “11 � LLj C •1 � MWRDij C •2 � MWRCBij

C •3 � MWRCLij C •4 � MWRCHij C •5 � MWRFTAij C ©ij; (8.15)

where GDPCAP represents per capita GDP, ISL is an indicator variable that equals
1 if the country is an island, Area is the land area of a country, and LL equals 1 for
landlocked countries, and in which:
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and likewise for the remaining MWR variables. The other variables are as defined
earlier. The product of origin and destination GDPs is used as an offset variable.

The data for trade are from the World Trade Database compiled on the basis
of COMTRADE data by Feenstra et al. (2005). GDP and per capita GDP data
are from the World Bank’s WDI database. Distance, language, colonial history,
landlocked countries, and land area data are from the CEPII institute.7 Whether
pairs of countries take part in a common regional integration agreement (FTA) has
been determined on the basis of OECD data about major regional integration agree-
ments.8 A dummy variable indicates whether a pair of countries has (membership

7See http://www.cepii.fr.
8See http://www.oecd.org/dataoecd/39/37/1923431.pdf.

http://www.cepii.fr/
http://www.oecd.org/dataoecd/39/37/1923431.pdf
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in) at least one common FTA. Data on island status have been kindly provided by
Hildegunn Kyvik-Nordas (from Jansen and Nordås 2004).

We first estimate Eq. (8.15) using negative binomial regression including
country-specific indicator variables. GDP is used as an offset, which implies we
move the log-sum of GDP to the left handside, assuming it has a proportional
effect on trade with elasticity equal to 1 (Anderson and van Wincoop 2003). This is
our first benchmark model, which, according to Feenstra (2004), yields consistent
parameter estimates, but is criticized by Behrens et al. (2012). Secondly, we estimate
Eq. (8.15), extending it with approximations of MR terms obtained using the Taylor
series approximation proposed by Baier and Bergstrand (2009). This is our second
benchmark model. These results, as well as the ones for the SF approach, are
discussed in Sect. 8.6.2.

8.6.2 Estimation Results: Spatial Filtering and Benchmark
Models

The first benchmark model includes origin- and destination-specific indicator
variables. As shown in Anderson and van Wincoop (2003) and Feenstra (2004),
this specification accounts for MR terms, and yields consistent parameter estimates.
The disadvantage is that country-specific variables cannot be included, as their
effect cannot be identified separately. This implies that explanatory variables that are
potentially relevant for explaining variation in bilateral trade patterns, such as GDP
per capita, land area and landlockedness, cannot be investigated empirically (if not
ex post, by, e.g., regressing the indicator variable coefficients on them). A second
disadvantage is the loss of degrees of freedom for estimation, because a substantial
number of indicator variables (2n � 2) is needed. Usually, however, the degrees of
freedom remain large enough, since observations are bilateral (i.e., n2 � n).

The second benchmark model is the specification developed in Baier and
Bergstrand (2009), which includes first-order Taylor series approximations of
the MR terms. This specification follows from Eq. (8.6). Further manipulation
[substituting Eq. (8.3) for bilateral trade costs] allows us to combine both terms
between square brackets into a set of bilateral variables, one for each bilateral
variable determining trade costs (such as geographical distance). The reduced-form
double-log gravity equation is as follows:

ln Xij � ln
�
GDPi � GDPj

� D ’0 C ’1 � ln
�
GDPCAPi � GDPCAPj

�C “1 � ln
�
Dij
�

C “2 � CBij C “3 � CLij C “4 � CHij C “5 � FTAij C “6 � ISLi

C “7 � ISLj C “8 � ln .Area/i C “9 � ln .Area/j C “10 � LLi C “11 � LLj

C •1 � MWRDij C •2 � MWRCBij C •3 � MWRCLij C •4 � MWRCHij

C •5 � MWRFTAij C ©ij;

(8.17)
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Baier and Bergstrand (2009) show that theory imposes the restrictions •k D �“k for
each k.

The equations specify the model in double-logarithmic transformation form.
We estimated the benchmark models multiplicatively, using negative binomial
regressions, aside from the BV model, which is estimated linearly. This method
allows a direct treatment of the non-negative values of trade flows and of the zeros,
and enables us to correct for overdispersion of trade flows (see Santos Silva and
Tenreyro 2006).

The empirical estimation results are presented in Table 8.1. Model (1) presents
the regression results for the first benchmark model, including country-specific
indicator variables. Following Anderson and van Wincoop (2003), we estimate
the model using GDP as an offset variable (i.e., restricting the coefficient of GDP
variables to equal 1). The parameter estimates are in line with the findings elsewhere
in the literature (see, e.g., Anderson and van Wincoop 2004; Disdier and Head
2008). Geographical distance has a negative effect on trade, with an estimated
elasticity of �1.30. The effect of proximity on trade is reinforced by a positive and
(marginally) significant effect of contiguity on trade. Proximity in terms of language
and colonial links also positively affects bilateral trade, while preferential trade
policy (i.e., enjoying common FTAs), appears to have a counterintuitive negative
effect. These results—with the exception of the latter—confirm previous findings

Table 8.1 Estimation results

(1) (2) (3) (4)
Fixed effects
(GDP offset) Spatial filter

BB-estimation
(GDP offset) BB-estimation

Distance –1.30*** –1.23*** –1.25*** –1.22***

Common border 0.24* 0.33** 0.23 0.25
Common language 0.36*** 0.33*** 0.32*** 0.37***

Common history 0.86*** 0.71*** 0.79*** 0.80***

Free trade –0.14** 0.41 –0.27*** –0.22**

GDP exporter – 0.75*** – 0.91***

GDP importer – 0.92*** – 1.15***

GDP per cap. exporter – 0.13*** –0.06** 0.02
GDP per cap. importer – 0.12*** –0.04* –0.16***

Island exporter – –0.41*** –0.29*** –0.28***

Island importer – –0.31*** 0.08 0.20*

Area exporter – –0.00 –0.11*** –0.07***

Area importer – –0.17*** –0.22*** –0.28***

Landlocked exporter – 0.23* 0.30** 0.26**

Landlocked importer – –0.58*** 0.07 0.19*

Constant –29.60*** –27.42*** –34.01*** –34.97***

AIC 101,713 47,805 102,485 102,436
Observations 4032 4032 4032 4032

Notes: BB stands for Baier-Bergstrand, and AIC for Akaike information criterion. ***, **, * denote
parameter estimates statistically significant at 1 %, 5 % and 10 %, respectively
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about the importance of these dimensions of transactional distance on trade (e.g.,
Obstfeld and Rogoff 2000; Loungani et al. 2002).

Model (3) compares these findings with the regression outcomes for the second
benchmark model, the Baier-Bergstrand estimation. This method proxies for the
endogenous and unobserved MR terms by including exogenous linear approxima-
tions based upon bilateral trade costs variables. Provided that the approximation
is sufficiently adequate, this specification results in consistent estimates (Baier and
Bergstrand 2009). Once again, GDP has been used as an offset variable, and the
model is estimated by OLS. The obtained parameter estimates are comparable to the
estimates for the first benchmark model [Model (1)], including the negative effect
found for free-trade blocs. Additionally, on the one hand, the Baier-Bergstrand spec-
ification has an advantage, because it enables us to include country-specific regres-
sors explicitly; on the other hand, the results do not always appear to be satisfactory.

Closer inspection of the Baier-Bergstrand estimation, dropping the offset
assumption on the product of exporter and importer GDP in Model (4), yields
qualitatively similar—and in some cases more plausible (e.g., for landlocked
importers)—results, and a slightly better fit. For example, although a negative
effect of GDP per capita variables on trade is not uncommon in some specifications
(see, e.g., Anderson and Marcouiller 2002), the effect in Model (3) seems to be
driven mainly by offsetting GDP, which imposes a GDP elasticity of trade of 1.

Summarizing, the two benchmark models yield somewhat different results.
Although, as mentioned, some effects may be more plausible in the Baier-
Bergstrand estimation results, the more traditional specification using country-
specific indicator variables results in a slightly better model likelihood, as shown
by the Akaike information criterion (AIC). The disadvantages of this model,
though, are the loss of country-specific variables, and a diminished precision in
the determination of the significance of variables, resulting from the loss of degrees
of freedom in the model estimation.

Results emerging from the SF estimation of the gravity model, which combines
the consistent estimation of the first benchmark model with the flexibility of
specification of the second benchmark model, are shown for Model (2) in Table 8.1.
The results presented here are obtained for a symmetrized k-nearest neighbours9

spatial weights matrix W, and for a negative binomial estimation, employed in order
to cope with overdispersion in the trade flows. With regard to the coefficients of
bilateral resistance variables, we note that with the exception of the one for FTA,
they are highly significant, and their values are consistent with the ones found for
Model (1). The FTA coefficient not being significantly negative anymore might be

9For the k-nearest neighbours definition of proximity, each country’s neighbours are defined by
selecting the k closest countries. Distance between the geographical centroids of the countries
was used (Great Circle), setting k D 3 and forcing, for computational reasons, symmetry of the
spatial weights matrix. As a result, the minimum number of neighbours per country is 3, while the
maximum number is not constrained. Alternative definitions of proximity based upon, for example,
simple rook contiguity or distance decay could be tested in order to assess the sensitivity of the
model to the choice of spatial specification.



162 R. Patuelli et al.

seen as a result that is more consistent with theoretical expectations. With regard
to the importer- and exporter-specific variables, we are able to identify highly
significant and positive coefficients for GDP, and GDP per capita is now significant
and positive as well in both cases. This result is in contrast with the ones for the
Baier-Bergstrand benchmarks [Models (3) and (4)], in which the same variable is
either not significant or significantly negative. The SF estimation also allows us
to estimate significant parameters for the variables identifying the geographical
characteristics of importer and exporter countries. The signs obtained are mostly
consistent with the ones found for the Baier-Bergstrand benchmarks. They show
that larger and both landlocked and island countries tend to trade less. Noteworthy
differences between the SF model and the benchmarks regard the negative and
significant coefficients obtained for the importing patterns of island and landlocked
economies (it was marginally positive or non-significant for the benchmarks). For
islands, it may seem counterintuitive to find this result, although it should be
considered that the sample of countries used excludes, because of non-reporting,
most micro-island countries, while it includes all large island countries like the
UK or Japan. In contrast, in the case of landlocked countries, a negative importing
coefficient is more consistent with theoretical expectations.

Finally, the AIC of the SF model appears to vastly improve on the ones of
the benchmark models, because of the high amount of variance explained by the
origin- and destination-specific spatial filters, which are also highly significant
from a statistical viewpoint (not shown in Table 8.1). In summary, the proposed
SF approach to the estimation of a gravity model of trade allows identification of
the regression parameters related to the bilateral variables, as well as those related
to the origin- and destination-specific variables. Moreover, the model has a better
likelihood (leading to improved AIC) than the competing models tested, and uses a
limited number of degrees of freedom.

8.6.3 Testing for Spatial Autocorrelation

In Sect. 8.5, we discussed SAC statistics based on the score test [by le Cessie and
van Houwelingen (1995) and Jacqmin-Gadda et al. (1997)], which are alternatives
to the traditional MC in the case of GLMs, since the MC statistical distribution
theory has been developed under linear regression assumptions.

Having an n2 � n2 spatial weight matrix (obtained as W ˝ W) and the t statistic
by Jacqmin-Gadda et al. (1997), residual SAC in Poisson and negative binomial
regressions can be modelled by eigenvector SF within the same framework as
standard spatial autocorrelation in regression residuals. The eigenvectors employed
in Model (2) (see the preceding section) represent a certain level of SAC, given
a spatial connectivity pattern, and by including them as proxy variables for such
spatial autocorrelation, SAC that is not explained by independent variables is
expected to be filtered out (at least partially) of the residuals, and transferred to
the mean response.
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Because eigenvectors are introduced as independent variables in a (forward or
backward) stepwise manner, the adjustment of estimating parameters for indepen-
dent variables developed in the Jacqmin-Gadda test seems to be desirable. Chun
(2008) performs the test to evaluate SAC in a Poisson model in an analysis of
migration flows. To the best of our knowledge, no one so far has used the test
on a negative binomial model. We performed both the aforementioned score tests
described in Sect. 8.5 to empirically detect the presence (or the absence) of SAC.
We compare the tests on the model augmented with selected SF variables with the
ones on the non-filtered model to verify if the introduction of the selected spatial
filters lets the SAC be filtered out of the residuals. The tests are calculated on both
quasi-Poisson10 and negative binomial model residuals (estimating or offsetting
GDP benchmark variables).

A further relevant question is whether adjusting the test for the presence of
independent variables considerably changes SAC detection outcomes, or if this
correction has just marginal effects. Table 8.2 presents the results for the different
SAC tests. We start by reporting, in the first and second row of the table, the value
of MC computed on the residuals as developed by Cliff and Ord for linear models.
In the first row, we show the results of the basic, stand-alone, MC, while in the
second row, the test accounts for the effect of independent variables. The presence
of SAC is never rejected, even when we introduce the spatial filters in the model
(despite the scores decreasing). Performing also the discussed MC permutation test,
our findings do not change: the permutation score decreases after adding the spatial
filters, but we never reject the SAC hypothesis.11 In the third and the fourth rows
of Table 8.2, the values for the LC and JG tests are reported. Using these tests,
developed for GLMs, we can note how the SAC is effectively filtered out by the
introduction of the selected spatial filters. The tests show significant SAC in the
baseline model, which is filtered out by the spatial filter eigenvectors, especially
when using negative binomial regression, for which the p-value stands to 0.239
(0.230 with offsets). Moreover, the results from LC and JG are quite similar,
highlighting that the introduction of the correction for the independent variables
in the JG test does not considerably change the test results. The general increase in
t-scores obtained when the right-hand-side variables are taken into account may be
explained by the fact that their inclusion pulls expected values slightly to the left
(towards negative values).

These results seem to be comforting, and they lead to a positive confirmation
of the initial theorized idea that we can account for spatial autocorrelation in the
model by filtering out the residual spatial component by means of the selected

10Quasi-Poisson models are equivalent to standard Poisson models in terms of coefficient
estimation, but because a dispersion parameter is estimated from the data, inference differs. For
the purposes of eigenvector selection, AIC- or BIC-based selection is not possible (quasi-Poisson
models have no likelihood), so it is manually performed by backward elimination (iteratively) of
the eigenvector with the highest p-value.
11Results of the Moran permutation tests are available upon request.
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spatial filters, and that this is detectable only using a correct SAC test (specifically
designed for GLMs).

8.7 Conclusions

Recent contributions to the modelling of bilateral trade have shown the importance
of sound theoretical underpinnings for obtaining consistent parameter estimates
for the determinants of trade in the gravity model of bilateral trade. This paper
addresses the issue of how to achieve empirical consistency without the need to
estimate a full general equilibrium system of equations, and without the loss of
specification flexibility that results from the use of origin- and destination-specific
indicator variables. We argue that endogeneity of regressors and residuals—due
to omitted MR variables in the traditional gravity model—is likely to manifest
in the form of autocorrelation in both regressors and residuals. By including an
origin-specific and a destination-specific spatial filter as additional regressors, SF
estimation of the gravity equation enables us to filter SAC out of the residuals,
as demonstrated by the results obtained implementing appropriate SAC tests for
nonlinear models. As a result, the residuals and the regressors are no longer
correlated, and standard estimation methods can be applied to obtain consistent
parameter estimates for the determinants of bilateral trade. We demonstrate the
use of SF estimation in a negative binomial estimation of the gravity equation of
bilateral trade. The comparison with two benchmark models, which are theoretically
consistent in estimation, reveals that SF yields results that are highly comparable to
the estimation using country-specific indicator variables. Moreover, SF estimation
does not suffer from the drawbacks of using indicator variables. It allows explicit
estimation of the effect of country-specific variables that are potentially important
determinants of bilateral trade, such as GDP, per capita GDP and landlockedness.

Further analyses aimed at measuring the extent to which SAC is filtered out in
SF estimation. We tested three different SAC tests, either from the linear modelling
tradition (Moran’s I tests) or specifically developed for GLMs (the le Cessie
and Jacqmin-Gadda tests) on both quasi-Poisson and negative binomial model
estimations. Our results confirm the ‘filtering’ effect of the spatial filters on the
residuals. Such a finding is mostly evident with the GLM tests, which can be
expected to be more suitable for analysing our models’ residuals. On the other hand,
the inclusion of right-hand-side variables in the computation of the SAC tests does
not appear to considerably change our findings.

Future research should focus, on the methodological side, on expanding the
analyses above to the SF network-autocorrelation approach first suggested by Chun
(2008) and further employed in a panel framework (see, e.g., Scherngell and
Lata 2013). Furthermore, quasi- or pseudo-Poisson estimation could be considered
more extensively, by employing stepwise selection criteria which do not require
likelihood-based indicators. In this regard, Krisztin and Fischer (2015) have very
recently applied network-autocorrelation SF to a trade model, by including, among
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others, zero-inflated specifications. On the empirical side, it would be desirable to
exploit the methodology proposed toward investigating specific research questions
in the trade field, while a simulation study could help further extend the presented
evidence on the adequacy of the SF approach for cross-sectional spatial interac-
tion/gravity models.

Acknowledgements We thank Yongwan Chun for useful comments, as well as participants at the
following conferences: Small Open Economies in a Globalized World II (Waterloo, ON); Summer
Conference of the German Speaking Section of the European Regional Science Association
(Kiel); 48th Conference of the European Regional Science Association (Liverpool); International
Conference on Econometrics and the World Economy (Fukuoka); SSES Annual Meeting 2009
(Geneva).

Appendix

Table 8.3

Table 8.3 List of the
countries used in the
empirical application

Algeria Angola Argentina
Australia Austria Belgium
Brazil Bulgaria Canada
Chile China Colombia
Czech Republic Denmark Dominican Republic
Ecuador Finland France
Germany Greece Hungary
India Indonesia Iran
Ireland Israel Italy
Japan Kazakhstan Kuwait
Libya Malaysia Mexico
Morocco Netherlands New Zealand
Nigeria Norway Oman
Pakistan Peru Philippines
Poland Portugal Qatar
Romania Russia Saudi Arabia
Singapore Slovakia Slovenia
South Africa South Korea Spain
Sweden Switzerland Thailand
Tunisia Turkey United Arab Emirates
United Kingdom United States Venezuela
Vietnam
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Chapter 9
A Spatial Interaction Model with Spatially
Structured Origin and Destination Effects

James P. LeSage and Carlos Llano

Keywords Bayesian hierarchical models • Commodity flows • Spatial autore-
gressive random effects • Spatial connectivity of origin-destination flows

JEL: C21, R11, R32

9.1 Introduction

We introduce a Bayesian hierarchical regression model that includes latent spatial
effects structured to follow a spatial autoregressive process to investigate commodity
flows between origin and destination regions. The sample data involves n D 18

Spanish regions where the commodity flows have been organized as an n by n
“origin-destination (OD) flow matrix” that we label Y. Without loss of generality,
the row elements of the matrix Yij; i D 1; : : : ; n reflect the dollar value (in millions of
Euros) of commodity flows originating in region j that were shipped to destination
regions i D 1; : : : ; n. We therefore treat the columns as “origins” of the commodity
flows and the rows are “destinations” of the flows.
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The term ‘spatial interaction models’ has been used by Sen and Smith (1995)
and others to label models that focus on flows between origins and destinations.
These models seeks to explain variation in the level of flows across the sample
of N D n2 OD pairs by relying on a function of distance between the origin
and destination regions as well as explanatory variables consisting of origin and
destination characteristics of the regions. Conventional spatial interaction models
assume that using distance as an explanatory variable will eradicate the spatial
dependence among the sample OD pairs allowing use of least-squares estimation
methods. We note that use of least-squares also requires a normal distribution for the
dependent variable magnitudes contained in the vectorized flow matrix y D vec.Y/
for valid inference using traditional regression t-tests and measures of statistical
significance. However, unbiased estimates for the slope parameters can still be
obtained for non-normal disturbances and associated distribution for the y variable.
We assume a normal distribution for the disturbances to be the case in developing
our model which rules out use of our methodology in cases where the flow matrix
is sparse containing a large number of zero entries reflecting a lack of interaction
between regions. Sparse flow matrices typically arise when regions are defined using
a fine spatial scale or a short time period over which observed flow information is
collected.

A spatial autoregressive structure is used to structure two latent regional effects
vectors, one for regions reflecting origins of the commodity flows and a second
for the destination regions. The spatial autoregressive prior structure reflects a prior
belief that the latent origin effects levels should be similar to those from regions that
neighbor the region where commodity flows originate. A second regional effects
vector imposes the same prior belief regarding the effects levels of destination
regions and their neighbors. Intuitively, the missing covariates for the origin region
that contribute to model heterogeneity may have a spatial character, so that the same
missing covariates would influence nearby regions. The same intuition applies to
the destination regions, missing covariates are likely to exert similar heterogeneity
as those from neighboring destinations.

We use posterior estimates of the origin and destination latent effects to identify
regions that exhibit positive and negative effects magnitudes. Since the effects
parameters have a prior mean of zero, positive and negative posterior effects
estimates can be interpreted as measuring the magnitude and influence of missing
covariates or latent unobservable factors on the commodity flow process.

The hierarchical regression model utilizes recent work by Smith and LeSage
(2004) that introduced Bayesian Markov Chain Monte Carlo (MCMC) estimation
methods for these models where the regional effects parameters are modelled
using data augmentation. There is a large literature on Bayesian hierarchical spatial
models (see Besag et al. 1991; Besag and Kooperberg 1995; Cressie 1995; Banerjee
et al. 2004), that relies on the conditional autoregressive (CAR) spatial prior to
structure the regional effects parameters. In contrast, our approach utilizes the
spatial autoregressive process (SAR) from Smith and LeSage (2004) as a prior
structure on the regional effects parameters.
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Individual effects estimates are notoriously difficult to estimate with precision
in conventional hierarchical linear models (Gelfand et al. 1995). Our approach to
structuring two sets of regional/spatial effects parameters overcomes these problems
in two ways.

First, the spatial autoregressive structure placed on the latent effects parameters
for the origin depend on one hyperparameter measuring the strength of spatial
dependence and another representing a scalar variance parameter. These two
parameters are introduced in the context of a sample of n2 D N observations,
where n D 18 regions and N D 324 represents the sample of origin-destination
pairs that arise from vectorizing the origin-destination flow matrix. As noted above,
the N D n2 sample size arises from vectorizing an n by n origin-destination flow
matrix Y, where the rows of the matrix Y reflect commodity flow destinations and
the columns reflect regions where the commodity flows originate. We estimate only
n latent regional “origin” effects parameters, one for each region treated as an origin,
allowing us to rely on n sample data observations for each of the i D 1; : : : ; n origin
effect parameter estimates. In fact, since the n origin effects parameters are derived
from the two hyperparameters that completely determine the spatial autoregressive
process assigned to govern these effects, we could view this as relying on a sample
of N observations to estimate two parameters. A similar situation holds for the case
of the n “destination” effects estimates for the destination regions. Again, we rely
on the larger sample of N observations to produce estimates of the two parameters
specifying the spatial autoregression assigned to these n effects parameters.

Second, the spatial autoregressive (SAR) structure assumed to govern the origin
and destination effects introduces additional sample data information in the form of
an n by n spatial contiguity matrix that describes the spatial connectivity structure of
the sample regions. This additional spatial structure in conjunction with the spatial
autoregressive process assumption provides a parsimonious parameterization of the
regional effects parameters. This is in contrast to the typical assumption of a normal
distribution with zero mean and constant scalar variance assigned as a prior for
non-spatial latent effects parameters. Our approach of estimating two sets of n
latent effects based on a sample of size N D n2 also differs from the conventional
approaches that estimate a latent effect parameter for all sample observations, which
would be N in our case.

As noted above, use of a spatial autoregressive process as a prior for the latent
effects parameters also differs from most hierarchical spatial linear models that
rely on a conditional autoregressive (CAR) process prior, or an intrinsic conditional
autoregressive (ICAR) process. In this regard, we follow Smith and LeSage (2004)
who introduced spatially structured SAR priors for latent effects in the context of
a probit model. There are numerous advantages to the SAR prior over the CAR.
We will have more to say about this in Sect. 9.2 where details regarding the model
specification are provided.

Section 9.2 of the paper describes the conventional spatial interaction model
along with our extension of this model to include the latent origin and destination
regional effects parameters. Section 9.3 applies the method to a data generated
example where the true parameters are known in order to illustrate and assess the
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proposed methodology, and Sect. 9.4 applies the method to a sample of commodity
flows during the year 2002 between 18 Spanish regions.

9.2 Empirical Modeling of Commodity Flows

In Sect. 9.2.1 we review the traditional gravity or spatial interaction model that
assumes the OD flows contained in the dependent variable vector y D vec.Y/
are independent, consistent with the Gauss-Markov assumptions for least-squares.
Section 9.2.2 describes our extension to this model that introduces spatially
structured regional effects parameters.

9.2.1 Conventional Gravity Models

A conventional gravity or spatial interaction model would rely on an n by k matrix
of explanatory variables that we label X, containing k characteristics for each of the
n regions and the flow matrix Y vectorized, so that each column of the matrix Y is
stacked. Given the origin-destination format of the vector y, where observations 1
to n reflect flows from origin 1 to all n destinations, the matrix X would be repeated
n times to produce an N by k matrix representing destination characteristics that
we label Xd (see LeSage and Pace 2008). We note that Xd equals �n ˝ X, where
�n is an n by 1 vector of ones. A second matrix can be formed to represent origin
characteristics that we label Xo. This would repeat the characteristics of the first
region n times to form the first n rows of Xo, the characteristics of the second region
n times for the next n rows of Xo and so on, resulting in an N by k matrix that we
label Xo D X ˝ �n. The distance from each origin to destination is also included
as an explanatory variable vector in the gravity model. We let G represent the n
by n matrix of distances between origins and destinations, and thus g D vec.G/ is
an N by 1 vector of these distances from each origin to each destination formed by
stacking the columns of the origin-destination distance matrix into a variable vector.

This results in a regression model of the type shown in (9.1).1

y D ˛�N C Xdˇd C Xoˇo C �g C " (9.1)

In (9.1), the explanatory variable matrices Xd, Xo represent N by k matrices
containing destination and origin characteristics respectively and the associated k
by 1 parameter vectors are ˇd and ˇo. The scalar parameter � reflects the effect
of distance g, and ˛ denotes the the constant term parameter. The N by 1 vector "

1If one starts with the standard gravity model and applies a log-transformation, the resulting
structural model takes the form of (9.1) (c.f., Eq. (6.4) in Sen and Smith (1995)).
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represent disturbances and we assume " � NŒ0; �2IN �, where we use NkŒ
;†� to
represent a k-variate normal distribution with mean 
 and variance-covariance†.

One problem encountered in modeling the n by n matrix of flows, which we
designate using Y is that main diagonal elements reflect intraregional flows and
are typically large relative to the off-diagonal elements that represent interregional
flows. LeSage and Pace (2008) suggest creating a separate model for intraregional
flows from the main diagonal of the flow matrix. They do this by setting all elements
of the covariate matrices Xd;Xo corresponding to the main diagonal of the flow
matrix to zero, and moving these elements to a new N by k matrix which we label Xi.
The matrix Xi has zeros except for those elements associated with the main diagonal
of the flow matrix. This which prevents the variables in Xd;Xo from entering the
interregional flow model, creating a separate set of explanatory variables to explain
this variation in the matrix Xi. In our applied illustration we use a vector for the
matrix Xi containing the main diagonal flow elements from a previous time period.
In many circumstances previous period flows may not be available, necessitating the
approach of LeSage and Pace (2008). We note that one need not employ all variables
in the matrix X, since a subset of these might work well to explain intraregional
flows. For example, the area of a region, the income level and population might
work well to explain the magnitude of flows within the region. It is typically the
case that intraregional flows are considered a nuisance in these models, since the
focus is on explaining variation in interregional flows. Introduction of the separate
models for inter- and intraregional flows allows the parameter estimates for ˇd; ˇo to
better reflect the impact of origin and destination characteristics on the interregional
flow levels. The conventional gravity model approach allows the large main diagonal
flow elements to influence these parameter estimates. A frequent practice in applied
modeling is to set the diagonal elements of the flow matrix to zero (see Tiefelsdorf
2003 and Fischer et al. 2006). In a spatial context where neighboring regions are
not independent, setting these elements to zero will exert an impact on the pattern
of spatial dependence.

A second problem that arises is the need to store sample data information in the
N by k matrices, Xd;Xo;Xi, which can consume a large amount of computer memory
when n is large. For example, a model involving 3,000 US county-level flows would
require three 9 million by k matrices. We extend the moment matrix approach of
LeSage and Pace (2008) to our model. They point out that rather than work with
matrices Xd D �n ˝ X;Xo D X ˝ �n, it is possible to work with smaller k by k
matrices X0X.

This can be accomplished for the least-squares model by letting:

y D Zı C " (9.2)

where: Z D
h
�N QXd QXo Xi g

i
, and ı D

h
˛ ˇd ˇo ˇi �

i0
.

We assume the matrix X is in deviation from means form, and define the n by
n matrix G to contain the interregional distances (in deviation from means form).
Based on the introduction of the matrix Xi described above, the matrices: QXd D
Xd � Xi, QXo D Xo � Xi, where Xd D In ˝ X;Xo D X ˝ In. The resulting moment
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matrices take the form:

Z0Z D

2

6
6
6
6
66
4

N 0 0 0 0

0 .n � 1/X0X �X0X 0 X0d.G/ � X0G�n
0 �X0X .n � 1/X0X 0 X0d.G/ � X0G�n
0 0 0 X0X X0d.G/
0 �0nG0X � d.G0/X �0nG0X � d.G0/X d.G0/X tr

�
G2
�

3

7
7
7
7
77
5

Where d.G/ is an n by 1 vector containing the diagonal elements of the matrix G.
For the case of the Z0y we have that: .Xd �Xi/

0y D .In ˝X/0y�X0
i y D X0Y�n �X0d.Y/

and .Xo � Xi/
0y D X0

oy � X0
i y D X0Y 0�n � X0d.Y/, yielding:

Z0y D
h
�0nY�n .Xd � Xi/

0y .Xo � Xi/
0y X0

i y tr.GY/
i0

D
h
�0nY�n X0Y�n � X0d.Y/ X0Y 0�n � X0d.Y/ X0d.Y/ tr.GY/

i

Least-squares estimates for the model can now be produced using: .Z0Z/�1Z0y,
which involves inversion of the 3k C 2 by 3k C 2 matrix Z0Z.

9.2.2 A Bayesian Hierarchical Gravity Model

LeSage and Pace (2008) point to the implausible nature of the assumption that OD
flows contained in the dependent variable vector y exhibit no spatial dependence.
They note that the gravity model makes an attempt at modeling spatial dependence
between observations using distance, but if each region exerts an influence on
its neighbors this might be inadequate. For example, neighboring origins and
destinations may exhibit estimation errors of similar magnitude if underlying latent
or unobserved forces are at work or missing covariates exert a similar impact on
neighboring observations. They point out that agents located at origins nearby
in space may experience similar transport costs and profit opportunities when
evaluating alternative destinations.

We extend the model from (9.1) by introducing two n by 1 vectors of regional
effects parameters, one for each region treated as an origin � and another for
destination regions �. This model can be expressed as:

yj D zjı C vj� C wj� C "j " � NN Œ0; �
2
" IN � (9.3)

y D Zı C V� C W� C "

� D �oD� C uo; uo � NnŒ0; �
2
o In� (9.4)

� D �dD� C ud ud � NnŒ0; �
2
d In� (9.5)
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Where zj D
h
1 Qxj;d Qxj;o xj;i gj

i
, with Qxj;d; Qxj;o; xj;i representing row elements from the

corresponding matrices: QXd; QXo;Xi. The vector, vj D .vj1; : : : ; vjn/ identifies region j
as an origin region and wj D .wj1; : : : ;wjn/ identifies destination regions. Given our
configuration for the commodity flow matrix with columns as origins and rows as
destinations, the matrices W D In ˝ �n and V D �n ˝ In such that vj and wj represent
the jth row of these mutually exclusive N by n matrices.

For the spatial effects parameters we rely on the spatial autoregressive priors
shown in (9.4) and (9.5), where D is an n by n row-normalized first-order spatial
contiguity matrix. This matrix reflects the spatial configuration of the regions
in terms of common borders, with row-sums of unity by virtue of the row-
normalization.

We provide an economic motivation for inclusion of the spatial effects vectors �
and � in the model in the sequel. Bonacich (1987) introduced a centrality measure
in the context of social networking that has come to be known as the Bonacich
centrality index. In our context, we can view the spatial weight matrix D as an
n by n adjacency matrix related to the spatial configuration or network of our
observations/regions. The Bonacich index for region i counts the total number of
paths in the network defined by our spatial contiguity weight matrix D that start at
region i. These consist of the sum of all loops from region i to itself, and the sum of
all outer paths from region i to every other region j ¤ i. Specifically, Bonacich
defines a vector: .In � �dD/�1�n D .

P1
kD0 �k

dDk/�n, that sums up the elements
of .In � �oD/�1. The i; jth element represents a count of the number of paths in
our regional configuration that start at region i and end at j, with paths of length
k weighted by the parameter �k.2 We note that the SAR structure placed on the
origin (destination) effects parameters reflect a weighted variant of the Bonacich
network centrality measure: � D .In � �oD/�1uo, where the heterogenous vector uo

replaces the homogenous �n vector.3 The centrality measure indicates regions with
more/less contiguous neighbors, and therefore posits large/smaller effects estimates
for regions in accordance with this. For example, regions on the edge of Spain as
well as (physically) large regions would have less contiguous neighbors, and we
would expect to see smaller (in absolute value terms) effects estimates. This is in
fact consistent with our empirical findings, an issue taken up when presenting a
map of the effects estimates.

Abstracting from any economic motivation, when �o > 0,the SAR prior structure
leads to larger origin and destination effects parameters � associated with regions
that exhibit greater “network centrality”, when regions are viewed as origins or
destinations of commodity flows.

An economic motivation for the vectors �; � on which we place the SAR prior
structure is provided by a result from Ballester et al. (2006). They show that in a
noncooperative network game with linear quadratic payoffs as a return to effort,

2For our conventional spatial contiguity matrix D which has zeros on the diagonal and row-sums
of unity, the inverse is well defined for � < 1.
3Of course for the destination effects parameters we have: � D .In � �dD/�1ud .



178 J.P. LeSage and C. Llano

the Nash equilibrium effort exerted by each player is proportional to the Bonacich
centrality of the player’s situation in the network. The game involves efforts that
exhibit local complementarity with efforts of other players.

Drawing on their result, we can posit the existence of unobservable inputs,
that play the role of effort exerted in Ballester et al. (2006). These inputs can
be related to intra- and interregional commodity flows using a strictly concave
bilinear payoff function. The unobservable inputs are not reflected in the regional
characteristics measured by Xd;Xo;Xi or the distances g, on which the model is
already conditioned. Ballester et al. (2006) show that for the case of a simultaneous
move n player game there is a unique (interior) Nash equilibrium (see Theorem 1,
Remark 1, Ballester et al. 2006) for effort exerted. The equilibrium (effort, or in
our case unobservable input usage) is proportional to our weighted variant of the
Bonacich network centrality measure. They establish that this result applies to
both symmetric and asymmetric structures of complementarity across the regions
represented by the n by n matrix D, and the matrix D is required to obey the usual
spatial autoregressive process restrictions.4

This result motivates that when we model a cross-section of observed commodity
flows at a particular point in time, after conditioning on observable regional factors
in the explanatory variable matrices Xd;Xo;Xi and g, unobservable factors are likely
to exhibit the SAR structure we use as a prior for the vectors � and �

Turning to specification of the remaining priors for parameters in our model, we
assign an uninformative inverse-gamma .IG/ prior for the parameters �2o ; �

2
d and �2" ,

taking the form:

�.�2o /; �.�
2
d /; �.�

2
" / � IG.�1; �2/ (9.6)

Where in the absence of prior information, it seems reasonable to rely on the same
prior for �2o ; �

2
d and �2" . It also seems reasonable to assign values �1 D 2; �2 D 1

which reflects an uninformative prior with mean = 1, mode = 0.33, and infinite
variance.

The spatial dependence parameters are known to lie in the stationary interval:
Œ��1

max; �
�1
min� where �min < 0; �max > 0 denote the minimum and maximum

eigenvalues of the matrix D, (see for example, Lemma 2 in Sun et al. 1999). We
rely on a uniform distribution over this interval as our prior for �o; �d, that is:

�.�o/; �.�d/ � UŒ��1
max; �

�1
min� / 1 (9.7)

Solving for � and � in terms of uo and ud suggests a normal prior for the origin
and destination spatial effects vectors taking the form:

� j�o; �
2
o � NnŒ0; �

2
o .B

0
oBo/

�1�

4Row-sums of unity and zeros on the main diagonal.
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�j�d; �
2
d � NnŒ0; �

2
d .B

0
dBd/

�1�

Bo D .In � �oD/

Bd D .In � �dD/

We note that Bo;Bd are non-singular for conventional row-normalized first-order
spatial contiguity matrices D and the spatial dependence parameters �o; �d in the
interval: Œ��1

max; �
�1
min�. This leads to a proper prior distribution in contrast to the well-

known intrinsic CAR prior introduced by Besag and Kooperberg (1995).
We also point out that when the parameters �o D �d D 0, our model collapses

to the special case of a normal prior for the random effects vectors with means of
zero for both effects and constant scalar variances �2o and �2d , so our SAR prior
specification subsumes this as a special case. It should be noted that estimates for
these two sets of random effects parameters are identified, since a set of n mutually
exclusive sample data observations are aggregated through the vectors vi and wi to
produce each estimate �i; �i in the vector of parameters � and �.

Finally, we use a normal prior distribution for the parameters ı Dh
˛ ˇo ˇd ˇi �

i0
associated with the covariates in the explanatory variables matrix

X D
h
� Xd Xo Xi g

i
centered on zero with a large standard deviation:

�.ıj / � N3kC2Œ0;T� (9.8)

Where 3k C 2 denotes the number of explanatory variables in the matrix Z, T D
!2I3kC2, with !2 D 1;000.

9.2.3 Related Spatial Effects Models

In place of the SAR prior, we could rely on variants of the CAR prior that result
in proper priors, Sun et al. (2000) among others. Other examples of the SAR prior
in the context of random spatial effects are Smith and LeSage (2004), and LeSage
et al. (2007).

Banerjee et al. (2000) model the timeliness of postal service flows using a binary
response indicator for on-time or delayed mail as the dependent variable in place
or our flows. Their model replaces the origin and destination effects terms: vj�

and wj� with dummy variables (fixed effects) and associated parameter estimates.
They then proceed to model the disturbances "j using a spatial process model. This
type of approach focuses on disturbance heterogeneity and covariance which can be
modeled in an effort to improve the precision of the estimates.
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We note the contrast with our model where introduction of the spatially structured
effects parameters will have a direct impact on the resulting estimates ˇd; ˇo; ˇi and
� . To see this consider the conditional distribution of ı:

ıj�; �; �d; �o; �u�o; �" D .Z0Z/�1Z0.y � V� � W�/ (9.9)

D .Z0Z/�1Z0Œy � V.In � �dD/�1ud � W.In � �oD/�1uo�

in contrast to that from a model where V and W represent fixed effects, and �; � the
associated parameters, with the disturbances modeled by a spatial process whose
variance-covariance structure we represent by �:

Qıj�; �; �d; �o; �u�o; �" D .Z0�Z/�1Z0�.y � V� � W�/ (9.10)

In the fixed effects model (9.10), E. Qı/ D .Z0Z/�1Z0.y � V� � W�/, so the spatial
process model for the disturbances has no impact on the parameter estimates Qı. If
we eliminated the spatial autoregressive priors in (9.12) and (9.13) and estimated
coefficient vectors �; � for the model: y D Zı C V� C W� C ", we would have a
fixed effects model.5

In contrast, the model containing SAR structured effects results in destination
or origin specific shocks, .ud; uo/, exerting an influence on the parameter estimates.
The amount of influence is described by the weighted Bonacich centrality measures:
.In � �dD/�1ud and .In � �oD/�1uo.

Intuitively, the existence of spatially clustered unobserved latent influences
should lead to an adjustment in the response of commodity flows (y) to destination
and origin region characteristics .Xd;Xo/ as well as distance .g/ and the intraregional
model variables (Xi), captured in the parameters ı associated with each of these
explanatory variables. Further, the magnitude of adjustment will depend on the
weighted Bonacich centrality of the region where unobserved latent influences are
operating.

9.2.4 MCMC Estimation of the Model

For notational convenience in the following discussion we restate the observation-
level expression (9.3) of our model in matrix form:

y D Zı C V� C W� C " (9.11)

� D �oD� C uo

� D �dD� C ud

5Of course, one of the regions would need be eliminated from each of the matrices V;W to avoid
have a perfect linear combination of dummy variables.
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�.� j�o; �
2
o / � .�2o /

n=2jBojexp

�
� 1

2�2o
� 0B0

oBo�

�
(9.12)

�.�j�d; �
2
d / � .�2d /

n=2jBdjexp

�
� 1

2�2d
�0B0

dBd�

�
(9.13)

Where the expressions (9.12) and (9.13) reflect the implied prior for the spatial
effects vector � conditional on �o; �

2
o and that for � conditional on �d; �

2
d .

We use the normal linear model from (9.11) as the starting point to introduce
the conditional posterior distributions that form the basis of an MCMC estimation
scheme for our model. The basic scheme involves the following steps.

1. sample the regression parameters ı given �; �; �o; �d; �
2
o ; �

2
d ; �

2
" .

2. sample the noise variance �2" given ı; �; �; �o; �d; �
2
o ; �

2
d .

3. sample the regional effects parameters �; � given �o; �d; �
2
o ; �

2
d ; ı; �

2
" .

4. sample the spatial dependence parameters �o; �d given �2o ; �
2
d .

5. sample the spatial effects variances �2o ; �
2
d given �o; �d.

Given the assumed prior independence of ı; �o; �d; �
2
o ; �

2
d ; �

2
" , we have a joint

posterior density for ı shown in (9.14).

p.ıj�; �; �o; �d; �
2
" / / �.ı/

� expf� 1

2�2"
.y � Zı � V� � W�/0.y � Zı � V� � W�/g

/ expf� 1

2�2"
.y � Zı � V� � W�/0.y � Zı � V� � W�/g

� expf�1
2
ı0T�1ıg (9.14)

In appendix, we show that this results in a multivariate normal conditional
posterior distribution for ı taking the form shown in (9.15).

ıj�; �; �o; �d; �
2
o ; �

2
d ; �

2
" ; y;Z � NkŒ†

�1
ı 
ı;†

�1
ı �


ı D ��2
" Z0.y � V� � W�/

†ı D .��2
" Z0Z C T�1/ (9.15)

As already noted when discussing the least-squares variant of the model, it is not
computationally efficient to work with the n2 by 3k C 2 matrix Z which involves
repeating the smaller n by k sample data information matrix X through the use of
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kronecker product. We can rely on a similar moment matrix approach as set forth
for the case of least-squares.6

Taking a similar approach to that for ı, we have a joint posterior density for � of
the form:

p.� jı; �; �o; �d; �
2
" / / �.� j�o; �

2
o /

� expf� 1

2�2"
ŒV� � .y � Zı � W�/�0ŒV� � .y � Zı � W�/�g

/ expf� 1

2�2"
ŒV� � .y � Xı � W�/�0ŒV� � .y � Zı � W�/�0g

� expf� 1

2�2o
� 0B0

oBo�g

Which we show in appendix leads to a multivariate normal as the conditional
posterior distribution for � :

� jı; �; �o; �d; �
2
o ; �

2
d ; �

2
" ; y;Z � NnŒ†

�1
� 
� ;†

�1
� �


� D ��2
" V 0.y � Zı � W�/

†� D .
1

�2o
B0

oBo C 1

�2"
V 0V/ (9.16)

Similarly for the spatial effects vector � we have:

�jı; �; �o; �d; �
2
o ; �

2
d ; �

2
" ; y;Z � NnŒ†

�1
� 
�;†

�1
� �


� D ��2
" W 0.y � Zı � V�/

†� D .
1

�2d
B0

dBd C 1

�2"
W 0W/ (9.17)

The joint posterior distributions for �o; �d take the forms:

p.�ojı; �; �; �2o ; �2d ; �d; �
2
" ; y/ / �.� j�o; �

2
o /�.�o/

/ jBojexp

�
� 1

2�2o
� 0B0

oBo�

�

p.�djı; �; �; �2o ; �2d ; �o; �
2
" ; y/ / �.�j�d; �

2
d /�.�d/

/ jBdjexp

�
� 1

2�2d
�0B0

dBd�

�
(9.18)

6For clarity of presentation, we set forth conditional distributions involved in our sampling scheme
in vector-matrix notation rather than the moment matrix form.
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Which as noted in Smith and LeSage (2004) are not reducible to a standard
distribution. We rely on a Metropolis-Hastings sampler for these parameters with
a tuned normal random-walk distribution as the proposal density. We note that the
determinant term jBoj D jIn � �oDj, is calculated using the sparse matrix methods
of Barrya and Paceb (1997) to compute and store tabled values for this determinant
over a grid of q values for �o in the interval Œ��1

min; �
�1
max�. This is done prior to

beginning the MCMC sampling loop with table look-up used during sampling,
allowing rapid evaluation of candidate values during sampling.

The joint posterior densities for �2o ; �
2
d take the form:

p.�2o jı; �; �; �o; �d; �
2
" ; y;Z/ / �.� j�o; �

2
o /�.�

2
o /

/ .�2o /
�n=2exp

�
� 1

2�2o
� 0B0

oBo�

�
.�2o /

� n
2C�1C1

Which results in an inverse gamma distribution for the conditional posterior. A
similar result applies to �2d , with details provided in appendix.

�2o jı; �; �; �o; �d; �
2
d ; �

2
" � IG.a; b/

a D .n=2/C �1

b D � 0B0
oBo� C 2�2 (9.19)

�2d jı; �; �; �o; �d; �
2
o ; �

2
" � IG.c; d/

c D .n=2/C �1

d D �0B0
dBd� C 2�2 (9.20)

Finally, the conditional posterior distribution for the noise variance parameter �2"
takes the form of an inverse gamma distribution:

�2" jı; �; �; �o; �d; �
2
d ; �

2
o ; y;Z � IG.e; f /

e D .n=2/C �1

f D �0� C 2�2 (9.21)

� D y � Zı � V� � W�

9.3 A Data Generated Example

To illustrate our method, a sample of flows were generated using the model from
(9.11) with the latitude-longitude coordinates from our sample of 18 Spanish regions
used to produce a spatial weight matrix based on 5 nearest neighbors. The parame-
ters of the model were set to: �2" D 1:5; �2o D 0:75; �2d D 0:5; �o D 0:6; �d D 0:7.
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Fig. 9.1 Posterior estimates for origin/destination regional effects parameters

Table 9.1 Posterior estimates for ı

Parameter Posterior mean Posterior median Posterior standard deviation

ıo1, truth D 1 0:9907 0:9912 0:0610

ıo2, truth D �1 �1:0073 �1:0095 0:0745

ıd1, truth D �1 �1:0760 �1:0752 0:0598

ıd2, truth D 1 0:9167 0:9179 0:0740

The parameters ı were associated with matrices Xo;Xd which reflected a random
normal n by 2 matrix X repeated to form: Xd D �n ˝ X and Xo D X ˝ �n. The
parameters ı D .ıo; ıd/ were set to:

�
1 �1 �1 1 �.7

The MCMC sampler was run to produce 5,500 draws with the first 2,500
discarded for burn-in of the sampler. Figure 9.1 shows the posterior means for the
spatially structured regional origin and destination effects parameters along with a
two standard deviation upper and lower limit. True effects parameters are also shown
in the figure, where we see that the posterior means are within the two standard
deviation limits.

The posterior means and medians for the parameters ı along with their standard
deviations and the true values are presented in Table 9.1. All of the estimates are
within two standard deviations of the true values used to generate the data. The
medians are near the means, indicating a symmetric posterior distribution.

7We exclude the intraregional model from the data generating process as well as estimation
procedure.
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Table 9.2 Least-squares
estimates for ı

Parameter OLS Oı Standard deviation

ıo1, truth D 1 1:0076 0:0861

ıo2, truth D �1 �0:6739 0:1034

ıd1, truth D �1 �1:1367 0:0861

ıd2, truth D 1 0:7416 0:1034

Table 9.3 Posterior estimates for the spatial dependence parameters

Parameter Posterior mean Posterior median Posterior standard deviation

�d, truth D 0.6 0:5701 0:5834 0:2002

�o, truth D 0.7 0:6290 0:6572 0:1986

Table 9.4 Posterior estimates for the variance parameters

Parameter Posterior mean Posterior standard deviation

�2d , truth D 0.5 0:5273 0:2041

�2o , truth D 0.75 0:7546 0:2793

�2" , truth D 1.5 1:4107 0:1122

An interesting contrast to the accurate estimates from the Bayesian hierarchical
spatial model are those from ordinary least-squares, shown in Table 9.2. Here, we
see two of the four parameter estimates more than two standard deviations away
from the true values used to generate the sample data. We note that the spatially
structured regional effects vectors � and � were generated to have a mean of zero, so
we would not expect bias in the least-squares estimates. Nevertheless, this appears
to be the case here. The least-squares noise estimate for �2" was 2.76, with the true
value used to generate the data equal to 1.5.

Table 9.3 shows estimates for the parameters �o; �d, and Table 9.4 presents results
for the variance parameters �2o ; �

2
d ; �

2
" . All of these posterior mean estimates are

reasonably close to the true values used to generate the sample data.

9.4 An Application to Commodity Flows Between Spanish
Regions

Here we present results from applying our methodology to the logged year 2002
commodity flows measured in Euros between 18 Spanish NUTS 2 regions.



186 J.P. LeSage and C. Llano

9.4.1 The Data

In Spain, like in many other countries, there are no official data on the interregional
trade flows. However, there are different estimates produced with alternative
methodologies (Oliver et al. 2003; Ghemawat et al. 2010). The data used in
this article corresponds to recent estimates produced in the C-intereg project
(www.c-intereg.es), by combining the most accurate data on Spanish transport flows
of goods by transport modes (road, rail, ship and plane) with additional information
regarding export price vectors, one per each region of origin, transport mode and
type of product. The methodology also includes a process for debugging the original
transport flows database, which allows the identification and reallocation of multi-
modal transport flows and international transit flows hidden in the interregional
flows. This procedure results in initial estimates of interregional trade flows in tons
and euros. Finally, a process of harmonization is applied to produce final figures
in tons and euros coherent with figures of total output from the Spanish Industrial
Survey and the National Accounts. At each stage the methodology relies on the
lowest level of disaggregation available.

The dependent variable was (logged) year 2002 flows within and between the 18
Spanish regions. Explanatory variables used in the model were characteristics of the
origin and destination regions: the log of 1995 GDP, the log of year 1995 population
density, the log of year 2002 kilometers of motorways in the region standardized by
area of the region, foreign exports and imports measured in millions of Euros. In
addition, the log of distance between regions constructed as a vectorized version of
the OD distance matrix was added.

The population density and 1995 GDP were included to capture size, urban
agglomeration and income effects. Foreign export and import trade variables were
included as a proxy for openness to trade by the regions. We would expect that
more foreign exports at the origin would lead to more interregional flows since this
suggests firms have in place administrative structures to facilitate export trade. More
foreign imports at the destination might also be positively related to interregional
flows because this should correlate with intermediate-final requirements, as well as
firms administrative structures to facilitate foreign imports. Since around 90 % of
Spanish interregional trade is moved by road, a motorways variable was included to
capture regional infrastructure effects of these on commodity flows.

Least-squares estimates are presented in Table 9.5. Posterior estimates from
the Bayesian hierarchical model in Table 9.6 are presented using t-statistics
and associated probabilities constructed using the posterior means and standard
deviations of the MCMC draws for ease of comparison with the least-squares
estimates. The r-squared for least-squares was 0.8, suggesting a good fit to the
data. All but three of the explanatory variables were significant at the 95 % level or
above. Origin and destination GDP in 1995 were both positive and near unity which
indicates that interregional trade flows are roughly proportional to this measure
of economic size of the regions, consistent with the underlying premise of the
gravity model relationship. More foreign exports at the origin exert a positive

www.c-intereg.es
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Table 9.5 Least-squares
gravity model estimates

Variable Coefficient t-Statistic t-Probability

Constant �16:1051 �9:505 0:0000

D_GDP95 1:5018 17:262 0:0000

D_PopDensity �0:1653 �2:238 0:0259

D_Motorways 0:2675 3:308 0:0010

D_Imports 0:3985 2:425 0:0158

D_Exports �0:0392 �0:271 0:7864

O_GDP95 1:0589 12:172 0:0000

O_PopDensity 0:0237 0:321 0:7482

O_Motorways 0:0603 0:745 0:4564

O_Imports �0:5913 �3:598 0:0003

O_Exports 0:6057 4:182 0:0000

log(Distance) �1:2206 �14:995 0:0000

Table 9.6 Bayesian model
posterior estimates

Variable Mean t-Statistic t-Probability

D_GDP95 1:3287 14:3966 0:0000

D_PopDensity �0:5699 �7:0965 0:0000

D_Motorways �0:1280 �1:3884 0:1660

D_Imports 0:2137 1:2046 0:2293

D_Exports �0:0927 �0:5707 0:5686

O_GDP95 0:7356 8:0480 0:0000

O_PopDensity �0:2437 �2:9809 0:0031

O_Motorways �0:0399 �0:4220 0:6733

O_Imports �0:8621 �4:7029 0:0000

O_Exports 0:6992 4:1297 0:0000

log(Distance) �1:5071 �17:5146 0:0000

impact on interregional exports as expected, whereas more foreign imports at the
origins have a negative impact on the interregional deliveries. By contrast, more
foreign imports at the destination implies more interregional imports, while foreign
exports at the destinations have not significant effects on interregional imports.
These results are coherent with previous findings (Llano et al. 2010) that suggest
that regions with higher levels of foreign imports (exports) are associated with
higher interregional imports (exports). Furthermore, as it was suggested in such
previous analysis, the non-significant results for ‘D_Exports’ and the negative and
significant for ‘O_imports’ are coherent with the inverse signs of the interregional
and international trade balance obtained for some regions such as Castilla y León,
Castilla-La Mancha, Comunidad-Valenciana, Cataluña or Madrid.

Motorways at the destination have a positive and significant impact on trade
flows, while motorways at the origin are not significant. Finally, population density
at the destination has a negative impact on interregional trade flows while that for
origins is not significant. This suggest less interregional trade flows going to more
densely populated regions where we would expect more intraregional flows to take
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place. Note that small (in surface) but dense populated and single-provincial regions
such as Ceuta y Melilla, Madrid, Asturias or the Islands (Canarias and Baleares)
are in this group. The insignificant coefficient for origin region population density
is probably explained by the fact that some of the largest exporting regions to
the rest of Spain are also big regions in terms of surface (Cataluña, País Vasco,
Comunidad Valenciana, Castilla y León or Andalucía), whose population density
are not among the largest in the country. Logged distance between regions has the
expected negative impact on interregional trade flows.

Bayesian estimates are reasonably similar to those from least-squares, with a few
exceptions that may be important. Origin and destination 1995 GDP was positive
and significant with coefficients near one, but smaller in magnitude than the least-
squares estimates. These estimates suggest that destination GDP is nearly twice as
important in explaining interregional flows than origin GDP. Motorways are not
significant at either the origin or destination, in contrast to least-squares where this
coefficient was positive and significant for the destination. Population density at
both the origin and destination were negative and significant, perhaps suggesting
more intraregional flows for high population density regions and less interregional
flows. Like in least-squares, origin region foreign imports exert a negative and
significant impact on interregional flows. Origin region foreign exports are positive
and significant, suggesting that openness to foreign trade is positively associated
with more interregional exports to the rest of the country. Destination region foreign
imports and exports are not significant in terms of their influence on interregional
trade flows.

A question of interest is whether the origin and destination individual effects
exhibit spatial dependence. Table 9.7 shows the posterior estimates for the spatial
dependence parameters. Posterior means, medians and standard deviations are
presented along with t-statistics constructed using the standard deviations.

From the table we see that destination effects exhibit positive and significant
spatial dependence, while origin effects exhibit positive but weak and possibly not
significant dependence. These positive dependence estimates indicate that latent or
unobserved variables are at work at destinations to create effects estimates that are
similar to those from regions neighboring the destinations. In our view, this result
is in line with the geographical structure of the Spanish interregional flows, where:
(1) some regions, such as Cataluña, Madrid, Comunidad Valenciana or País Vasco,
accumulate a large share of the outflows and are not surrounded by other regions

Table 9.7 Bayesian model posterior estimates

Parameter Mean Median Standard deviation t-Statistic

�d 0:4883 0:5080 0:2208 2:2115

�o 0:3386 0:3035 0:2239 1:5123

�2d 0:3743 0:1841 2:0331

�2o 0:8551 0:3681 2:3230

�2" 1:9850 0:1602 12:3908
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Fig. 9.2 Map of posterior estimates for origin effects parameters

with strong interregional exports; (2) while the main importing regions are clustered
together in the western and southern part of the country. This spatial pattern will be
clear in Figs. 9.2 and 9.4.

The posterior mean origin and destination effects estimates by regions are
presented in Tables 9.8 and 9.9 along with 0.05 and 0.95 credible intervals for these
parameters constructed using the sample of draws. A positive effects parameter
for the origin (destination) suggests that unobserved forces would lead to higher
commodity flow levels at origin (destination) than predicted by the explanatory
variables reflecting regional characteristics. Regions that have positive origin and
destination effects parameters are those that exhibit higher levels of commodity
flows not explained by their characteristics alone. These regions could have some
natural advantage or benefit from spatial spillovers. In contrast, regions with
negative effects parameters experience levels of commodity flows lower than would
be expected given their regional characteristics. These regions could be experiencing
a natural disadvantage or suffer from adverse spatial spillovers.

In terms of the origin effects parameters shown in Table 9.8, (also mapped
in Fig. 9.2 with accompanying legend in Fig. 9.3) we see six negative and sig-
nificant regional effects (Aragón, Balears, Castilla Y León, Castilla-La Mancha,
Extremadura and Ceuta y Melilla) and no positive and significant effects. The map
makes it clear that the negative and significant effects estimates are pointing to
two island regions (Balears, Canarias) and two other peripheral regions located on
the eastern border of Spain (Extremadura and Galicia). This is consistent with the
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Table 9.8 Bayesian model posterior origin effects estimates

Region 0.05 HPDI interval Mean 0.95 HPDI interval

Andalucia �1:4105 �0:7045 0:0015

Aragon �1:9017 �1:2078 �0:5140
Asturias (Principado de) �0:8699 �0:1944 0:4811

Balears (Illes) �3:0338 �2:3332 �1:6327
Canarias �0:7961 �0:0276 0:7408

Cantabria �0:8440 �0:1659 0:5122

Castilla y leon �2:0980 �1:3756 �0:6532
Castilla-La Mancha �2:0612 �1:3581 �0:6550
Cataluña �0:8102 �0:0977 0:6148

Comunidad Valenciana �1:0164 �0:3483 0:3199

Extremadura �2:3244 �1:5877 �0:8511
Galicia �0:5959 0:0695 0:7348

Madrid (Comunidad de) �0:8803 �0:1110 0:6583

Murcia (Region de) �0:9732 �0:2563 0:4605

Navarra (C. Foral de) �1:0243 �0:3735 0:2774

Pais Vasco �0:4113 0:2529 0:9172

Rioja (LA) �1:3142 �0:5724 0:1694

Ceuta y Melilla �2:3218 �1:4922 �0:6625

Table 9.9 Bayesian model posterior destination effects estimates

Region 0.05 HPDI interval Mean 0.95 HPDI interval

Andalucia 0:0766 0:7187 1:3608

Aragon �0:5562 0:0653 0:6868

Asturias (Principado de) �0:3995 0:2126 0:8247

Balears (Illes) �1:2403 �0:6190 0:0024

Canarias 0:0614 0:7607 1:4600

Cantabria �0:1628 0:4704 1:1037

Castilla y Leon �1:0215 �0:3497 0:3221

Castilla-La Mancha �0:6487 �0:0163 0:6161

Cataluña 0:1153 0:7621 1:4088

Comunidad Valenciana 0:1845 0:8258 1:4672

Extremadura �0:9758 �0:2921 0:3915

Galicia 0:0091 0:6146 1:2201

Madrid (Comunidad de) �0:2086 0:4573 1:1232

Murcia (Region de) �0:5898 0:0513 0:6923

Navarra (C. Foral de) �0:6849 �0:0870 0:5110

Pais Vasco 0:0345 0:6742 1:3138

Rioja (La) �0:5113 0:1601 0:8316

Ceuta y Melilla �0:7844 �0:0317 0:7211
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Fig. 9.3 Histogram legend
for origin effects parameters
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notion that the regional effects estimates point to regions with physical/geographical
disadvantages regarding origins of interregional trade flows. The negative and
significant effects suggests that interregional flows originating from these regions
are smaller than one would expect given regional characteristics and distance alone.
Of course, our model does not include an explanatory variable indicating the friction
that arises for the two island locations. Consistent with earlier comments regarding
the relationship of our spatial autoregressive prior and Bonacich centrality, the map
shows effects magnitudes that are near zero (not significantly different from zero)
for regions located more centrally in Spain, and the negative effects for eastern
border regions is also consistent with a lack of centrality (Table 9.10).

The destination effects in Table 9.9 (also mapped in Fig. 9.4 with accompanying
legend in Fig. 9.5) show only positive and significant regional effects for six regions
(Andalucía, Canarias, Cataluña, Comunidad Valenciana, Galicia and País Vasco).
However, the map shows that negative but not significant effects are indicated for
the island region of Balears and the eastern border region Castilla Y León.

The positive effects observed in País Vasco, Cataluña and Comunidad Valenciana
may be explained by the importance of their ports. Moreover, both País Vasco and
Cataluña play a role as importing hubs from international markets, being surrounded
by other important importing regions such as Cantabria, Navarra, Castilla y León or
la Rioja (for the País Vasco), or Aragón and Comunidad Valenciana (for Cataluña).
The sectoral and geographical specificities of these regions may explain the higher
interregional imports of their neighbors, resulting in flows that would be higher than
predicted by the destination characteristics included in the Xd matrix of explanatory
variables. Of course, Cataluña is the home of Barcelona, and the main entree-door
to the rest of Europe by road.
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Table 9.10 Bayesian model posterior origin C destination effects estimates

Region 0.05 HPDI interval Mean 0.95 HPDI interval

Andalucia �0:9518 0:0142 0:9802

Aragon �2:1025 �1:1425 �0:1826
Asturias (Principado de) �0:8983 0:0182 0:9347

Balears (Illes) �3:9166 �2:9522 �1:9879
Canarias �0:3131 0:7331 1:7792

Cantabria �0:6434 0:3045 1:2525

Castilla y Leon �2:7152 �1:7254 �0:7355
Castilla-La Mancha �2:3331 �1:3743 �0:4156
Cataluña �0:2762 0:6644 1:6051

Comunidad Valenciana �0:4600 0:4776 1:4152

Extremadura �2:8785 �1:8799 �0:8813
Galicia �0:2394 0:6841 1:6075

Madrid (Comunidad de) �0:6813 0:3463 1:3740

Murcia (Region de) �1:1733 �0:2050 0:7632

Navarra (C. Foral de) �1:3549 �0:4604 0:4341

Pais Vasco �0:0037 0:9271 1:8579

Rioja (La) �1:4412 �0:4122 0:6167

Ceuta y Melilla �2:6561 �1:5238 �0:3916
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Fig. 9.4 Map of posterior estimates for destination effects parameters
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Fig. 9.5 Histogram legend
for destination effects
parameters
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In addition to the two tables presenting origin and destination effects estimates
a third table shows the posterior mean for the sum of both origin and destination
effects along with 0.05 and 0.95 credible intervals. This was constructed using the
sum of the draws for both origin and destination effects. Positive values for these
combined parameter estimates provide us with an indication of which regions ben-
efit from unobserved positive forces at work that lead to high levels of interregional
commodity flows that originate and terminate in the region. Similarly, negative
combined values for these parameters point to regions that suffer disadvantages
leading to lower interregional commodity flow levels.

The combined effects in Table 9.10 shows six negative and no positive and sig-
nificant effects parameters. Consistent with the discussion above, this final picture
may capture the presence of possible disadvantages in those regions characterized
by a relative backwardness in terms of income and accessibility that are located
relatively far from the main axis of development (Mediterranean Arc; Ebro-Valley)
and the most powerful regions in terms of production and trade (Madrid, Cataluña,
Andalucía, Comunidad Valenciana).

In conclusion, the spatial effects estimates based on our model of commodity
flows aggregated across all commodity types seem plausible in that they were able
to capture the most salient feature of Spanish interregional trade. This is seen in the
concentration of flows within the eastern part of the country. In addition, the model
demonstrated the significance of distance and the origin-destination characteristics
of regions in explaining variation in the flows. (Nearly 80 % of the variation in flows
was explained by the model.)

Future work based on specific types of commodities as well as classification of
goods into final or intermediate products may be important.
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9.5 Conclusions

Gravity or spatial interaction models have traditionally relied on least-squares
estimation methods, ignoring the issue of spatial dependence between interregional
flows. We propose a modeling methodology that introduces spatially structured
origin and destination region effects parameters. These parameters allow spatial
heterogeneity to be modeled in such a way that regions treated as origins exhibit
similar random effects levels to those of regions that neighbor the origins. A similar
spatial structure is placed on random effects parameters for the regions viewed as
destinations.

In contrast to typical conditional autoregressive spatial structure we rely on a
spatial autoregressive prior to structure the random effects parameters. Our approach
subsumes normally distributed random effects models as a special case when spatial
dependence does not exist, so that �o D �d D 0. In addition, the effects parameter
estimates can be used to diagnose the presence of positive or negative unobservable
latent factors that influence interregional commodity flows.

In an application of the method to commodity flows among a sample of 18
Spanish regions, we found that least-squares estimates of the role played by regional
characteristics differ greatly from those found by our Bayesian hierarchical spatial
effects model. Introduction of the spatially structured random effects that account
for heterogeneity across the regions appear to produce more efficient parameter
estimates for the characteristics parameters.

Appendix: Details Regarding the MCMC Sampler

First, we show that the conditional posterior for ı takes the multivariate form
presented in the text.
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Where as reported in the text:


ı D 1

�2"
Z0.y � V� � W�/

†ı D 1

�2"
.Z0Z C T�1/

In this appendix we follow Smith and LeSage (2004) in deriving the conditional
posterior for the spatial autoregressive effects parameters � . They note that:
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The conditional posteriors for �2o ; �
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Which is proportional to the inverse gamma distribution reported in the text. A
similar approach leads to p.�2d j : : :/, and the conditional posterior for �2" :
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Chapter 10
Bayesian Variable Selection in a Large Vector
Autoregression for Origin-Destination Traffic
Flow Modelling

Minfeng Deng

Keywords Bayesian • Variable selection • Vector autoregressive model • Traffic

JEL Classifications: C11, C21, R41

10.1 Introduction

Modelling and forecasting of traffic conditions are very important for everyday life
in metropolitan areas, particularly for large cities. For commuters, obtaining reliable
real time traffic information and accurate short term traffic forecasts allow for a
smoother ride on the road. In fact, when a person checks Google Maps for real time
traffic conditions, she is implicitly making her own traffic forecasts using current
traffic conditions as predictors. The directed nature of traffic flow also implies
that certain upstream or downstream traffics are more important as predictors than
others, and it would be beneficial for a commuter to know which ones they are.
For urban planners, it is important to know where and why congestions occur
regularly in certain parts of the traffic network, so that road network infrastructure
improvements can be made. For the police, it might be of great interest to simulate
scenarios in which a part of the traffic network is blocked off due to road accidents
or signal faults. Traffic network sensitivity analysis of this kind can be performed if
a complete stochastic model for the traffic network is available.

It is noted that traffic flow modelling faces a number of non-trivial methodolog-
ical challenges. Firstly, both temporal and spatial dependence are important. It is
possible that a street that was congested 10 min ago could still be congested. It is
also possible that when all the streets within a 1 km radius are congested your current
street could be congested too. The need to jointly account for temporal and spatial
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dependence has lead to the application of the so-called space-time autoregressive
integrated moving average (STARIMA) methodology in traffic flow forecasting,
for instance see Kamarianakis and Prastacos (2005), Kamarianakis et al. (2005),
and Ding et al. (2011). The STARIMA methodology was originally due to Pfeifer
and Deutsch (1980a, b, 1981a, b) and is a multivariate extension of the univariate
ARIMA (autoregressive integrated moving average) methodology. To illustrate,
assume that there are N traffic flows under consideration, and for simplicity assume
that they are all stationary, mean-deviated, absent of seasonality, and containing only
first order lagged dynamics, a STARIMA(11,0,11) model for traffic flow forecasting
can be written as:

yt D �10yt�1 C �11W1yt�1 C "t � �10"t�1 � �11W1"t�1; t D 1; : : : ;T (10.1)

where yt is an .N � 1/ vector of observed traffic flows at time t. W1 is known as
the spatial weights matrix and is of dimension .N � N/. W1 identifies the first order
spatial relationships between the N traffic series, and W1,ij takes on a nonzero value
when traffic series i and j are spatially contiguous in some sense. Typically, the
closer i and j are, the larger W1,ij is. Thus, the inclusion of yt�1 and "t�1 accounts for
own lagged dynamics, and the inclusion of W1yt�1 and W1"t�1 accounts for lagged
dynamics of spatial neighbours. f�10,�11, �10, �11g are all scalar coefficients. The
above STARIMA model provides a parsimonious model that captures both temporal
and spatial dynamics, and it has been shown to produce more accurate traffic flow
forecasts when compared with univariate alternatives.

Another important feature of a traffic network is its origin-destination (OD)
flow structure. Every traffic flow has an origin and a destination, and for any
two connected traffic flows, one flow’s destination is another flow’s origin. The
connected nature of a traffic network is important, as it provides useful information
on the direction in which high level of correlation is expected to exist. While
the STARIMA model accounts for both temporal and spatial dynamics, it uses
averages of spatial neighbourhood values as predictors and therefore it does not
explicitly recognize the connected origin-destination flow nature of the data. It is
noted that OD flow regression modelling has a long history and has its origin in
spatial interaction models. For instance, Bolduc et al. (1989) and Bolduc et al.
(1992) provide excellent examples of OD travel flow modelling, and Griffith (2007)
provides an extensive review of the literature. Following the notation of Bolduc et al.
(1992), an OD travel flow model can be written as follows:

yij D ˇ0 C Nijˇ1 C Siˇ2 C Sjˇ3 C "ij (10.2)

where yij is the observed flow from origin i to destination j. Nij contains network-
specific explanatory factors, Si contains origin-specific factors, and Sj contains
destination-specific factors. Porojan (2001), LeSage and Pace (2008), LeSage and
Polasek (2008), and LeSage and Fischer (2010) provide detailed discussions on
the econometric framework. The OD model of Eq. (10.2) has the advantage of
explicitly accounting for the directed nature of flow data. However, empirically



10 Bayesian Variable Selection in a Large Vector Autoregression for Origin-. . . 201

OD flow modelling has been applied primarily in a cross-sectional setting. Deng
and Athanasopoulos (2010) is one of the few exceptions, where origin-destination
international inbound tourism flows are modelled using a dynamic spatial panel.

10.1.1 A VAR Model for Traffic Flows

Given the importance of both temporal dependence and origin-destination connec-
tivity of a traffic network, one might consider specifying traffic flow as a function
of temporally lagged values of all other traffic flows in the system. In doing so, one
would have arrived at a vector autoregression (VAR) model. Specifically,

yt D M Cˆ1yt�1 Cˆ2yt�2 C � � � Cˆpyt�p C "t; t D 1; : : : ;T (10.3)

where yt contains N observed traffic flows at time t and is explained by up
to p temporally lagged values of yt. "t is an .N � 1/ vector of independently,
identically and normally distributed errors with variance-covariance matrix †, i.e.,
"t � iidN .0;†/. ˆl .l D 1; : : : ; p/ are .N � N/ matrices of unknown coefficients
and M is an .N � 1/ vector of intercepts. Pfeifer and Bodily (1990) and Giacomini
and Granger (2004) show that the STARIMA model is a restricted case of vector
autoregressive integrated moving average (VARIMA) models, which includes the
VAR model of Eq. (10.3).

The literature on VAR, originally due to Sims (1972, 1980), is extensive and will
not be reviewed in great detail in this paper. VAR models offer a flexible and easy to
use alternative to multivariate time series modelling, but the problem of ‘overfitting’
of VAR has often limited its empirical application to a small number of equations.
It is clear that the number of unknowns in Eq. (10.3) grows geometrically with N
and proportionally with lag length p, and a serious consequence of ‘overfitting’ is
imprecise estimation of ˆl, which could lead to wildly inaccurate forecasts. This is
bad news for traffic flow modelling and forecasting, since in any realistic empirical
application the number of flows in a traffic system would be sizable.

10.1.2 Bayesian VARs

Litterman (1980, 1986) advocates a Bayesian approach to VAR estimation as a
solution to ‘overfitting’ of VAR in the context of macroeconomic forecasting. In
particular, the so-called Minnesota prior (Doan et al. 1984; Litterman 1986) relies
on well-known statistical properties of macroeconomic time series and imposes
stylized priors on elements of ˆl. Specifically, prior means are set to unity for own
lags while zero for other lags, reflecting the belief that many macroeconomic series
follow a random walk and that own lags are more important as predictors than
other lags. Furthermore, a small number of hyper parameters are used to control
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the tightness of the priors around their means. As a result, generally speaking
more recent lags are given more weight than distant lags, and own lags are given
more weight than lags of other variables. Assuming that this prior information is
neither too vague nor too informative, it will only be overwhelmed by ‘signal’
instead of ‘noise’ in the data. Empirically, it has been shown that Bayesian VAR
with Minnesota prior often performs well in forecasting, for instance see Alvarez
and Ballabriga (1994). Amongst others, Kadiyala and Karlsson (1997) provide
important extensions to the Bayesian VAR literature, where numerical estimation
methods are derived for different forms of priors.

Specifications of the Minnesota prior, while suitable for macroeconomic data,
may have little relevance or are ill-suited in another context. It is interesting to note
that, for regional studies a spatial prior for Bayesian VARs has been developed
in Pan and LeSage (1995), LeSage and Pan (1995), and LeSage and Krivelyova
(1999). Specifically, prior means on the ˆ matrix are derived directly from the
spatial contiguity structure and are equal to the spatial average of neighbouring
region coefficients, while prior variances are controlled by a small number of
hyper parameters to reflect the decreasing importance of higher lags in both spatial
and temporal dimensions. Their formulation offers an attractive alternative to
VAR estimation when spatial contiguity is inherent in the data. They show that
empirically VARs with spatial priors produce more accurate forecast than traditional
Minnesota priors.

Essentially, VARs are heavily parameterized models, and Bayesian estimators
with varying forms of priors are shrinkage methods that reduce the risks associated
with ‘overfitting’ by shrinking unlikely predictors towards zero. However, there
might be cases where more precise identification of the model space is needed. For
instance, it might be of great interest to urban planners to know exactly the directions
in which congestion builds up in a traffic network so that they could implement
infrastructural changes. Moreover, the directed nature of a traffic network means
that even amongst neighbouring flows of the same order of contiguity there could
be drastically different degrees of importance. For instance, it is often the case that
in any traffic network there are a number of predominant traffic flow directions, and
the identification of these directions (in the sense of identifying specific upstream
and downstream neighbours) becomes important. Bayesian priors that apply equal
shrinkage to lags of the same spatial and temporal order may fail to identify those
directions precisely, as they only capture an average spatial effect.

10.1.3 Bayesian Variable Selection

Therefore, there appears to be a need for variable selection in VAR modelling, in the
sense that one would want to completely zero out a large number of elements inˆl in
Eq. (10.3). An extensive literature exists on variable selection in Bayesian statistics,
a complete survey of which is beyond the scope of this paper. In a univariate
setting, George and McCulloch (1993), Smith and Kohn (1996), Geweke (1996),
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and Cui and George (2008) provide detailed discussions on sampling procedures for
Bayesian variable selection. Liang et al. (2008) provide a comprehensive summary
of state of the art Bayesian methods involving mixtures of Zellner’s g prior (1986)
for Bayesian variable selection. In a multivariate setting, Brown and Vannucci
(1998) illustrate the application of multivariate Bayesian variable selection in
compositional analysis of three sugars with 160 infra-red absorbances as regressors.
Korobilis (2013) is perhaps the only example in which Bayesian variable selection
is used explicitly in VAR forecasting.

In this paper, a complete Bayesian variable selection methodology for VAR will
be developed, with specific application in, though in theory not limited to, traffic
flow modelling. Markov Chain Monte Carlo sampling procedure will be discussed
at length. A simulation study demonstrates that the estimated posterior distribution
over the model space corresponds closely to the true connectivity of the underlying
traffic network, and the posterior distribution of the coefficient vector largely avoids
the issues associated with ‘overfitting’.

10.2 Bayesian Variable Selection in VAR

10.2.1 The Model

To illustrate the proposed method for Bayesian variable selection in VAR, consider
the closed traffic network in Fig. 10.1.

There are six intersections and N D 14 traffic flows in total (not allowing for
U-turns). For the sake of simplicity and without loss of generality, let temporal lag
effect be limited to order 1, we have a VAR(1) model:

yt D M Cˆ1yt�1 C "t; t D 1; : : : ;T (10.4)

where yt is .14 � 1/. "t is iid normal with a .14 � 14/ variance-covariance matrix†.
In particular,† needs not be diagonal, and its nonzero off-diagonal elements capture
important contemporaneous correlations between traffic flows. M is a .14 � 1/
vector of intercepts. ˆ1 is a .14 � 14/ coefficient matrix. Even in this simple
example, the total number of unknowns (excluding the nuisance parameters in†) is�
142 C 14

�
and is sizable, making precise estimation difficult.

The first step is to utilize the connectivity of the traffic network to zero out some
of the elements inˆ1. Define yij,t as the traffic flow from intersection i to intersection
j at time t, and suppose that we can reasonably assume that only: (1) own lagged
traffic flow, i.e., yij;t�1; (2) lagged traffic flows of immediate upstream neighbours,
i.e., yli;t�1; l ¤ i; (3) lagged traffic flows of immediate downstream neighbours, i.e.,
yjl;t�1; l ¤ j; are considered potential predictors, we arrive at a full set of potential
predictors as listed in the third column in Table 10.1.
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Fig. 10.1 A hypothetical
traffic network, with 6
intersections and 14 traffic
flows in total

For example, for traffic flow y25,t, its potential predictors are: (1) own lag
fy25;t�1g; (2) lagged upstream neighbours fy12;t�1I y32;t�1g; (3) lagged downstream
neighbours fy54;t�1I y56;t�1g. By utilizing the known structure of the traffic network,
the total number of predictors in the VAR model (equivalently the number of
unknowns in ˆ1), has been reduced from 142 to 54 (the total number of predictors
listed in the third column in Table 10.1), which is still a sizable number.

Now suppose that the ‘true’ traffic conditions are as shown in Fig. 10.2, in which
the dashed arrows represent dominant traffic flow in one direction, and the solid
arrows represent a second dominant traffic flow in another direction.

While the example is meant to be a stylized representation of a traffic network,
one could imagine a scenario where: (1) office buildings are positioned near both
intersection 1 and 3 while residential units near intersection 6, thus creating traffic
leaving work for home along the dashed arrows; (2) a football stadium is positioned
near intersection 1, thus creating traffic going from the residential units towards the
stadium along the solid arrows. If we further assume that traffics on any street are
allowed to clear within discrete time period t and that the own lagged values are
not important, the set of ‘true’ predictors for this traffic network can be found in



10 Bayesian Variable Selection in a Large Vector Autoregression for Origin-. . . 205

Table 10.1 The second column contains all 14 traffic flows in the system as specified in Fig. 10.1

Flow ID yij,t Xij,t: full set of potential predictors Xij,t: upstream Xij,t: downstream

1 y12,t y12;t�1; y41;t�1; y23;t�1; y25;t�1 y25;t�1

2 y23,t y23;t�1; y12;t�1; y32;t�1; y36;t�1

3 y36,t y36;t�1; y23;t�1; y65;t�1

4 y65,t y65;t�1; y36;t�1; y52;t�1; y54;t�1 y54;t�1

5 y54,t y54;t�1; y65;t�1; y25;t�1; y41;t�1 y65;t�1 y41;t�1

6 y41,t y41;t�1; y54;t�1; y12;t�1 y54;t�1

7 y14,t y14;t�1; y21;t�1; y45;t�1

8 y45,t y45;t�1; y14;t�1; y52;t�1; y56;t�1

9 y56,t y56;t�1; y45;t�1; y25;t�1; y63;t�1 y25;t�1

10 y63,t y63;t�1; y56;t�1; y32;t�1

11 y32,t y32;t�1; y63;t�1; y21;t�1; y25;t�1 y25;t�1

12 y21,t y21;t�1; y32;t�1; y52;t�1; y14;t�1

13 y25,t y25;t�1; y12;t�1; y32;t�1; y54;t�1; y56;t�1 y12;t�1; y32;t�1 y56;t�1

14 y52,t y52;t�1; y45;t�1; y65;t�1; y21;t�1; y23;t�1

The third column contains a full list of potential predictors in the VAR. The fourth and fifth
columns contain ‘true’ upstream and downstream predictors respectively

the fourth and fifth column in Table 10.1 for upstream and downstream neighbours
respectively. Thus, the ‘true’ set of predictors only contains 10 variables, and the
main methodological issue is to judiciously and consistently select ‘true’ predictors
from the full set of potential predictors, in this case identifying these 10 variables
from 54 potential variables.

One could think of many other ways to specify traffic conditions. Moreover, one
could easily relax the assumption of a closed system and allow for traffic to merge
in and out of the network through tertiary roads. This would not increase the level of
modelling difficulty, as auxiliary traffic flows can be treated as additional exogenous
predictors on the right-hand side and become part of the model selection process.

One could rewrite the system of equations, in the order the 14 traffic flows are
listed in the second column in Table 10.1, as:
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(10.5)

where yij D �
yij;1; yij;2; : : : ; yij;T

�0
is a .T � 1/ vector of the observed traffic

flow from intersection i to intersection j. 1 is a .T � 1/ vector of 1’s. Mij is
a scalar constant for the intercept in the equation for yij. Xij is a

�
T � Kij

�

matrix of potential predictors, in which the included elements vary and Kij

is not constant across equations. For example, for traffic flow y25, X25 D
fy25 .�1/ ; y12 .�1/ I y32 .�1/ ; y54 .�1/ I y56 .�1/g and K25 D 5. ˇij is a

�
Kij � 1�



206 M. Deng

Fig. 10.2 The dashed arrows
and the solid arrows point
towards two different
dominant traffic flow
directions in this
hypothesized traffic system

vector of unknown parameters. "ij D �
"ij;1; "ij;2; : : : ; "ij;T

�0
is a .T � 1/ vector of

errors terms, which are serially uncorrelated but cross-sectionally correlated, and
"t D Œ"12;t; "23;t; : : : ; "52;t�

0 � iidN .0;†/.
Equation (10.5) can be written more succinctly as:

Y D 1M C XB C E (10.6)

where Y is .NT � 1/, 1 is .NT � N/, M is .N � 1/, X is

0

@NT �
X

ij

Kij

1

A, B is

0

@
X

ij

Kij � 1
1

A, and E is .NT � 1/. In this example,
X

ij

Kij D 54. "t � iidN .0;†/

implies that E � N .0;†˝ IT/.
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10.2.2 The Latent Binary Selection Vector

Finally, variable selection will be introduced in the sense of George and McCulloch

(1993). Define a latent binary vector � of dimension

0

@
X

ij

Kij � 1
1

A, where �j D 1

if the jth predictor in X is included and �j D 0 otherwise. This � vector is of great
importance, as it allows us to perform selection and make probabilistic statements
about the model space of Eq. (10.6). The number of 1’s in � translates directly to
the complexity of the selected model. At one extreme, the most complex model
contains all potential predictors, in which case

X

j

�j D
X

ij

Kij and the degrees of

freedom is the lowest. At another extreme, the most simple model contains zero
predictors, in which case

X

j

�j D 0, leaving Eq. (10.6) with just the intercept 1M

and the noise term E. As the number of nonzero elements in � increases, the fit
of the model increases through increased number of predictors, but the trade-off is
such that imprecision of coefficient estimates also increases.

10.2.3 The Priors

Bayesian estimation of Eq. (10.6) requires suitably specified prior distributions of
the unknown parameters (M, B,†, � ). Assuming prior independence between M
and B, and between† and � , the joint prior can be broadly decomposed into:

p .M;B; †; �/ D p
	

M
ˇ̌
ˇ†



� p
	

B
ˇ̌
ˇ†; �



� p .†/ � p .�/ (10.7)

The prior for the intercepts vector M is relatively straightforward. Let

p
	

M � M
ˇ
ˇ̌
†



D N .h; †/ (10.8)

where M is an arbitrarily chosen prior mean of M. Brown and Vannucci (1998) show
that in the case of a weak prior, h can be set to be large and the intercepts vector
can be ignored in the variable selection process. This will be the approach taken in
this study, and for notational simplicity for the remainder of this paper the intercept
vector will be omitted.

For B and †, a vast literature has been devoted to the identification of their
suitable priors for Bayesian VAR, a complete survey of which is beyond the scope
of this paper. The Minnesota prior (Doan et al. 1984; Litterman 1986) is rooted in
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macroeconomic theory and seems ill-suited in the current context. The diffuse prior
of Kadiyala and Karlsson (1997)

p .B; †/ / j †j � NC1
2 (10.9)

is shown to be computationally straightforward and imposes no restrictions on
the structure of the variance-covariance matrix †. However, it does not allow for
incorporation of our prior belief that a large number of elements in B should be
shrunk towards zero. Moreover, as highlighted in Berger and Pericchi (2001) and
Liang et al. (2008), improper priors for B are usually not permitted in the context of
model selection, as they lead to indeterminate model probabilities and Bayes factors.
Another popular choice is the mathematically convenient conjugate Normal-Wishart
prior of Kadiyala and Karlsson (1997)

p
	

B
ˇ
ˇ
ˇ†



D N
�
B; †˝�

�
; p .†/ D iW

�
†; ˛

�
(10.10)

where the prior of B is normal with unconditional mean B and variance
.˛ � N � 1/�1† ˝ �, and the prior of † is inverse-Wishart with mean
.˛ � N � 1/�1† and ˛ > N C 1 degrees of freedom. In a conventional VAR
setting, the Normal-Wishart prior allows for a convenient analytical solution for the
marginal posterior of B being a multivariate t-distribution. Unfortunately, as pointed
out in Kadiyala and Karlsson (1997), it is also restrictive in a sense that the prior
variance-covariance matrix of B requires symmetrical treatments of all equations
in the VAR. More specifically, it eliminates the possibility of having different zero
restrictions in different equations, which is precisely what we need in the case of
traffic flow modelling, as significant upstream/downstream neighbours are most
likely different for different parts of the traffic network.

Yet another potential candidate is the Normal-Diffuse prior of Zellner (1971) and
Kadiyala and Karlsson (1997)

p .B/ D N
�
B; �

�
; p .†/ / j†j�.NC1/=2 (10.11)

which assumes prior independence between B and † and thus avoids restrictions
on the variance-covariance matrix of B. This is also the approach taken in Korobilis
(2013).

It should be noted that, in model selection in a univariate framework, Zellner’s g
prior (1986):

p
	
ˇ
ˇ̌
ˇ�2



D N
	
0; g�2

�
X0X

��1

(10.12)

has been widely used due to its computational efficiency and conceptual inter-
pretability. In particular, the prior variance-covariance matrix of ˇ corresponds to
a scalar multiple of the Fisher information matrix. g is typically set to be equal
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to sample size N, and it can be shown that g= .1C g/ can be interpreted as the
shrinkage factor applied to ˇ. The relationship between g and shrinkage is intuitive.
The smaller the sample size the smaller g is, which means g= .1C g/ becomes
smaller and a larger amount of shrinkage will be applied to ˇ. In other words, when
sample information is insufficient, we place less “trust” on the coefficient estimates
and shrink them more towards 0. On the other hand, when sample size is large,
g= .1C g/ � 1 and close to no shrinkage will be applied.

Finally, in terms of the prior for the model space, as defined by the latent binary
vector � , a popular option, for example in Korobilis (2013), is:

p
�
�j D 1

� D 0:5; 8j (10.13)

which is seemingly innocuous and uninformative. However, it should be noted
that a probabilistic statement for individual � j does not translate to the same
probabilistic statement for the complexity of the model space of � . If one defines
model complexity in terms of the size of � , denoted as q� , then Eq. (10.13) implies
a substantially high probability weight on mid-size q� , for the simple reason that
there are a lot more combinations of �

0

js that could give the same mid-size q� than
there are for small-size and/or large-size q� . As an example, for a model involving
500 potential predictors, Eq. (10.13) gives a prior probability in excess of 99.9 % for
all the models where q� 2 Œ200; 300�, which is highly informative and practically
eliminates any small-size models.

One viable alternative, originally proposed in George and McCulloch (1993), is
to assume a flat prior on model complexity q� . Specifically,

p
�
q�
� D uniform .0; q/ (10.14)

where q is the maximum size of � , which is equal to
X

ij

Kij. When q� D 0, it

gives the null model that includes only an intercept term. When q� D q, it gives a
full model. A flat prior on q� implies that models of any size have the same prior
probability of being chosen.

In this paper, given the focus on variable selection, a modified version of
Zellner’s g prior will be proposed for B:

p
	

B�
ˇ
ˇ
ˇ†; �



D N

�
0; g

h
X0
� .†˝ IT/

�1X�

i�1�
(10.15)

where the subscript � indicates that only elements in B and columns in X
corresponding to �j D 1 are included, thus X� is

�
NT � q�

�
. The Fisher information

matrix is adjusted to account for cross-equation correlation via .†˝ IT/
�1. g is set

to be sample size NT, as there are T observations on N traffic flows.
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And an inverse-Wishart prior will be proposed for†:

p .†/ D iW
�
†; ˛

�
(10.16)

where † is set to be equal to the variance-covariance matrix of the residuals from
equation-by-equation OLS. Following Kadiyala and Karlsson (1997), degrees of
freedom is set to be ˛ D N C 2.

Finally, for � , the first option is to impose a flat prior on model complexity in the
form of Eq. (10.14). Interestingly, an additional possibility arises for VAR models,
where model complexity can be specified for each equation of the VAR individually.
In this case, one could write:

p
�
q�;n

� D uniform .0; qn/ ; 8 n D 1; : : : ; N (10.17)

where q� ,n is the size of � for the nth equation and qn is the maximum size of � for
the nth equation. Both priors will be tested in the simulation study.

10.2.4 The Posterior

The joint posterior distribution of the parameters conditional on the data is obtained
via Bayes rule as:
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B; †; �
ˇ
ˇ̌Y



D
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ˇ
ˇ
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� p .†/ � p .�/

(10.18)

where p
	

Y
ˇ̌
ˇB; †; �



is the likelihood function. Substituting the proposed priors

into the above, and integrating out B� , one can obtain an analytical expression for

the joint posterior p
	
†; �

ˇ̌
ˇY



(see Appendix 1):
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†; �

ˇ
ˇ
ˇY



/ .1C g/�
q�
2 � j†j� TC˛CNC1

2 � exp
n
� 1
2
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††

�1
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�
� 1
2
Y 0
�
.†˝ IT/

�1 � .†˝ IT/
�1X�

h	
1Cg

g



X0
� .†˝ IT/

�1X�

i�1

X0
� .†˝ IT/

�1


Y


� p .�/

(10.19)

which can be simplified no further.



10 Bayesian Variable Selection in a Large Vector Autoregression for Origin-. . . 211

10.2.5 The Sampling Procedure

Even in this simple example, there are 254 � 1:8e C 16 different combinations
of the latent binary vector � , or equivalently 254 potential models to choose from.

The cardinality of the model space grows exponentially with q

0

@D
X

ij

Kij

1

A, which

makes it impossible to enumerate all possible configurations of � . However, Markov
Chain Monte Carlo (MCMC) methods can be used for posterior inference. A Gibbs
sampler similar to that of Smith and Kohn (1996) will be used to sequentially

generate iterates from conditional posterior p
	
�i

ˇ
ˇ
ˇY; †; �j¤i



for i D 1; : : : ; q.

Specifically, define �0i D �
�1; : : : ; �i�1; �i D 0; �iC1; : : : ; �q

�0
and �1i D �

�1; : : : ;

�i�1; �i D 1; �iC1; : : : ; �q
�0

. And let the value of † at the current kth step in the
MCMC sampler be †k, which is assumed to be positive-definite. In the first part of

the sampler, the conditional posterior p
	
�i

ˇ
ˇ
ˇY; †k; �j¤i



can be expressed as:

p
	
�i

ˇ
ˇ
ˇY; †k; �j¤i



D
	
1C BF�0i W�1i

ˇ
ˇ
ˇ†k


�1 p
	
�i D 1

ˇ
ˇ
ˇ�j¤i




p
	
�i D 0

ˇ̌
ˇ�j¤i
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where BF�0i W�1i
ˇ
ˇ
ˇ†k is the Bayes factor of the model given by �0

i relative to the

model given by �1
i , conditional on † being a known quantity at the kth step as †k.

Following a similar approach to Liang et al. (2008), after some algebra one obtains

BF�0i W�1i
ˇ
ˇ
ˇ†k

D .1C g/
1
2 � exp

�
� 1
2

�
Y 0.†k ˝ IT/

�1
�	

g
1Cg



X�1i

h
X0
�1i
.†k ˝ IT/

�1X�1i

i�1
X0
�1i



.†k ˝ IT/
�1Y � Y 0.†k ˝ IT/

�1
�	

g
1Cg



X�0i

h
X0
�0i
.†k ˝ IT/

�1X�0i

i�1
X0
�0i



.†k ˝ IT/
�1Y


D .1C g/

1
2 � exp

n
� 1
2

	
ESS�1i

ˇ̌
ˇ†k � ESS�0i

ˇ̌
ˇ†k


o

(10.21)

where ESS�1i

ˇ̌
ˇ†k and ESS�0i

ˇ̌
ˇ†k can be interpreted as the explained sum of squares

adjusted for shrinkage (due to the presence of shrinkage factor
	

g
1Cg



in the

projection matrix), conditional on †k, and for model �0
i and �0

i respectively. Thus
the inclusion probability of the ith predictor is meaningfully related to the extra
amount of fit the additional ith predictor adds to the model.
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On the other hand, under the flat prior on model complexity and using combina-

torics,
p

 

�iD1
ˇ̌
ˇ�j¤i

!

p

 

�iD0
ˇ
ˇ
ˇ�j¤i

! in Eq. (10.19) can be shown to be (see Appendix 2)

p
	
�i D 1

ˇ
ˇ
ˇ�j¤i




p
	
�i D 0

ˇ̌
ˇ�j¤i


 D
q�0i C 1

q � q�0i
(10.22)

where q�0i is the size of �0
i . The Gibbs sampler will sample through � i conditional

on †k and �j¤i for i D 1; : : : ; q and preferably in a random order.
In the second part of the sampler, the so-called Metropolisized hit-and-run

sampler, originally due to Schmeiser and Chen (1991) and Chen and Schmeiser
(1993), and extended for the reference prior in Yang and Berger (1994), will

be used to generate † from the conditional posterior p
	
†
ˇ
ˇ
ˇY; �



. Firstly, define

†� D log .†/, or equivalently † D exp .†�/, in the sense of Leonard and Hsu
(1992), that

† D
1X

iD0

.†�/i

iŠ
(10.23)

The Metropolisized hit-and-run sampler proceeds as follows:

1. For the current value of the variance-covariance matrix †k, compute †�
k D

log .†k/.
2. Generate a random direction symmetric matrix ‰ .N � N/, where  ij D

zij=

sX

l<m

z2lm, and zij � N .0; 1/ 8 i < j. The rest of the elements in ‰ are

defined by symmetry, i.e.,  ji D  ij.
3. Generate  � N .0; 1/.
4. Generate a proposal†��

k D †�
k C ‰.

5. Set

†kC1 D

8
ˆ̂
<̂

ˆ̂
:̂

†
�
k ; with probability min

0

B
@1;

p

 

†
�
k

ˇ̌
ˇY;�

!

p

 

†k

ˇ
ˇ
ˇY;�

!

1

C
A

†k; otherwise

where †�k D exp
	
†

��
k



. Note that as the proposal is generated in terms of †*

but the conditional posterior is evaluated in terms of †, the Jacobian term j†j
needs to be included in the computation of the conditional posterior.
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The procedure alternates and samples recursively between two conditional

posteriors, p
	
�
ˇ
ˇ
ˇY; †



and p

	
†
ˇ
ˇ
ˇY; �



, and forms a Markov Chain, which for a

sufficiently large number of iterations can be regarded as draws of (†, � ) from the

true joint posterior distribution from p
	
†; �

ˇ
ˇ
ˇY



as defined in Eq. (10.19). Marginal

densities of interest can be obtained easily with corresponding MCMC sample
averages.

10.3 A Simulation Study

The traffic network in Fig. 10.1 and dominant traffic flow directions in Fig. 10.2
will be used in this simulation study. There are 14 traffic flows in total and 54
potential predictors to choose from in the entire system. Let there be T D 30

observations in the time dimension. Let the intercept be five for all traffic flows,
and the nonzero elements of ˇij in Eq. (10.5) correspond to values in Table 10.2,
where the coefficients are given in the brackets. Finally, let E

�
"2n;t
� D 1 8 n D

1; : : : ; N; t D 1; : : : ; T and E ."l;t"m;t/ D 0:5 8 l ¤ m; t D 1; : : : ; T.
Figure 10.3 illustrates a typical simulation run of the traffic flows in this system.

Traffic volumes along the dominant flow directions are much higher, and both
contemporaneous and lagged correlations are significantly present.

To see the danger of ‘overfitting’ in a large system of equations, suppose Eq.
(10.6) was estimated with generalized least squares (GLS), the estimation results
can be found in Table 10.3 for a typical simulation run. Twice as many predictors
are found to be statistically significant. A large number of the coefficient estimates
report a counter-intuitive negative sign, and for some of the ‘insignificant’ predic-
tors, for example x54,t, the coefficient estimate is still sizable (0.259). Imprecise
coefficient estimates that are sensitive to noise and inability to distinguish between
genuine and false predictors are symptomatic of model overfitting.

Turning to the Bayesian VAR method proposed in this paper, the sampler was
run for 5000 iterations, and the simulation exercise was repeated 100 times and
averaged results are reported. Starting values for � were randomly selected with
10 % inclusion probability. Starting value for † was chosen to be the variance-
covariance matrix of the residuals from equation-by-equation OLS. Moreover, two

Table 10.2 Coefficient
values used in the simulation
study

Flow ID yij,t Xij,t: upstream Xij,t: downstream

1 y12,t y25;t�1.0:6/

4 y65,t y54;t�1.0:6/

5 y54,t y65;t�1.0:4/ y41;t�1.0:4/

6 y41,t y54;t�1.0:6/

9 y56,t y25;t�1.0:6/

11 y32,t y25;t�1.0:6/

13 y25,t y12;t�1.0:3/; y32;t�1.0:3/ y56;t�1.0:3/
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Fig. 10.3 A typical simulation run of the traffic flows in the system. It can be seen that traffic
volumes are much higher along the dominant directions, and both contemporaneous and lagged
correlations are significantly present

types of priors on model complexity: (a) flat prior on overall model complexity; (b)
flat prior on model complexity for each equation in the VAR, are investigated.

Firstly, the marginal posterior probabilities for components in � , i.e.,

p
	
�i D 1

ˇ
ˇ
ˇY


; i D 1; : : : ; 54, under both priors, are plotted in Fig. 10.4. The green

columns represent the known ‘true’ predictors, and it can be seen that the spikes of
the marginals, which represent high inclusion probabilities in the MCMC sample,
correspond very closely to the green columns. The marginals under both types of
priors on model complexity yield very similar results, with the second type giving
slightly higher inclusion probabilities overall. The average inclusion probabilities
of ‘true’ predictors and ‘false’ predictors under both types of priors can be found
in Table 10.4. The average inclusion probabilities for the ‘true’ predictors are very
high and at 0.782 and 0.828 respectively, and the average inclusion probabilities for
the ‘false’ predictors are very low and at 0.153 and 0.202 respectively.

For decision makers, it is often more important to be able to select the best
model than to know on average which models could be better. For instance, urban
planners may want to know exactly which roads need to be widened to relieve
traffic congestion. To this end, it is informative to look at the posterior mode of
� , which corresponds to the model picked most often by the sampler. The average
inclusion probabilities of the posterior mode are plotted in Fig. 10.5. A very similar
picture emerges, in which the modal model’s inclusion probabilities correspond very
closely to the true model. The modal model’s average inclusion probabilities of
‘true’ predictors and ‘false’ predictors under both types of priors can be found in
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Table 10.3 GLS estimates are listed

True predictor Predictor Estimate Std Error t-value P-value

No X1 0:025 0.100 0:254 0.799
No X2 �0:090 0.117 �0:767 0.443
No X3 0:218 0.168 1:293 0.196
Yes X4 0:660 0.090 7:357 0.000 ***

No X5 0:017 0.185 0:094 0.925
No X6 �0:004 0.035 �0:128 0.899
No X7 �0:310 0.192 �1:614 0.107
No X8 0:139 0.122 1:144 0.252
No X9 �0:100 0.140 �0:713 0.476
No X10 �0:050 0.152 �0:329 0.742
No X11 0:032 0.047 0:672 0.502
No X12 �0:159 0.058 �2:714 0.007 ***

No X13 0:623 0.122 5:119 0.000 ***

No X14 �0:492 0.149 �3:298 0.001 ***

Yes X15 0:675 0.049 13:831 0.000 ***

No X16 �0:042 0.091 �0:456 0.648
Yes X17 0:280 0.121 2:313 0.021 **

No X18 �0:002 0.087 �0:023 0.982
Yes X19 0:604 0.132 4:567 0.000 ***

No X20 �0:012 0.098 �0:118 0.906
Yes X21 0:494 0.085 5:821 0.000 ***

No X22 0:021 0.089 0:238 0.812
No X23 0:153 0.118 1:302 0.193
No X24 �0:298 0.095 �3:150 0.002 ***

No X25 �0:206 0.103 �1:990 0.047 **

No X26 �0:365 0.164 �2:223 0.026 **

No X27 0:412 0.194 2:119 0.034 **

No X28 �0:483 0.213 �2:274 0.023 **

No X29 �0:052 0.049 �1:063 0.288
No X30 0:106 0.069 1:546 0.122
No X31 0:083 0.106 0:781 0.435
Yes X32 0:508 0.055 9:299 0.000 ***

No X33 �0:040 0.106 �0:380 0.704
No X34 �0:073 0.121 �0:601 0.548
No X35 0:073 0.134 0:547 0.584
No X36 �0:086 0.139 �0:616 0.538
No X37 �0:055 0.078 �0:713 0.476
No X38 0:023 0.107 0:215 0.830
No X39 �0:002 0.094 �0:021 0.983
Yes X40 0:620 0.060 10:274 0.000 ***

No X41 �0:111 0.163 �0:686 0.493
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Table 10.3 (Continued)

True predictor Predictor Estimate Std Error t-value P-value

No X42 �0:035 0.051 �0:690 0.490
No X43 �0:635 0.216 �2:939 0.003 ***

No X44 0:316 0.182 1:736 0.083 *

No X45 �0:087 0.081 �1:079 0.281
Yes X46 0:552 0.151 3:669 0.000 ***

Yes X47 �0:132 0.159 �0:834 0.404
No X48 0:079 0.091 0:868 0.385
Yes X49 0:527 0.167 3:157 0.002 ***

No X50 �0:520 0.195 �2:666 0.008 ***

No X51 �0:001 0.092 �0:008 0.993
No X52 �0:042 0.045 �0:936 0.349
No X53 0:118 0.094 1:251 0.211
No X54 0:259 0.192 1:351 0.177

Twice as many predictors were identified as statistically significant. And the coefficients are
imprecisely estimated, fluctuating between large positive and large negative values
Significance levels are at 10 %, 5 %, and 1 % for *, **, and *** respectively

Fig. 10.4 Average marginal posterior probabilities of components in � . Under both priors, the
inclusion probabilities correspond very closely to the ‘true’ model

Table 10.4 Average inclusion probabilities of ‘true’ predictors and ‘false’ predictors based on the
marginals for both types of priors

Marginal Prior (1) Prior (2)

P(True) 0.782 0.828
P(False) 0.153 0.202

Table 10.5. While the true inclusion probabilities remain similar for both types of
priors, the false inclusion probabilities are even lower.
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Fig. 10.5 Average inclusion probabilities of posterior modes of � . Under both priors, the inclusion
probabilities correspond very closely to the ‘true’ model

Table 10.5 Average inclusion probabilities of ‘true’ predictors and ‘false’ predictors based on the
posterior modes for both types of priors

Modal Prior (1) Prior (2)

P(True) 0.784 0.812
P(False) 0.100 0.151

It is also informative to look at the marginal posterior distribution for B, i.e.,

p
	

B
ˇ
ˇ
ˇY



. While B was integrated out in Eq. (10.19), given the MCMC sample

of (†, � ) the conditional posterior of p
	

B
ˇ
ˇ̌Y; †; �



can be viewed as a valid

approximation to the true p
	

B
ˇ̌
ˇY



. Figure 10.6 compares the GLS estimates

with the sample mean of estimates of B from both types of priors for a typical
simulation run. It is interesting to see that, large negative GLS estimates have largely
disappeared under the Bayesian model. As the modified g prior shrinks coefficient
estimates towards 0, when genuine signal is not present for a potential predictor its
effect size is by designed forced towards zero. This provides further support to the
claim of this paper that Bayesian variable selection provides a superior option to
making statistical inferences over a large model space.

Overall, it appears that the choice between the two priors on model complexity
makes only a small difference to the estimation outcome in this simulation study,
with the second prior giving slightly larger models on average. However, it would be
interesting to examine what happens when the number of potential predictors differs
substantially for different equations. For instance, the hubs of a traffic network might
have a lot more potential predictors than the far ends of the network. In that case,
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Fig. 10.6 Comparison of GLS estimates and Bayesian VAR estimates of B. Large fluctuations
that are symptomatic of ‘overfitting’ have mostly disappeared for Bayesian VAR estimates

model complexity might be dominated by potential connections to the hubs and
equation-specific model complexity assumptions may add more value.

10.4 Concluding Remarks

VAR models have been used extensively in macroeconomic modelling and fore-
casting. A growing literature also exists for Bayesian variable selection in VAR. In
this paper, the methodology has been adapted to the specific context of traffic flow
modelling. In particular, shrinkage prior in the form of Zellner’s g prior (1986) has
been modified for VAR modelling, the flat prior on model complexity in the form of
George and McCulloch (1993) has been modified to account for equation-specific
model complexity assumptions, and an MCMC sampling procedure is developed at
length. A small scale simulation study shows that the marginal posterior distribution
of the inclusion indicator vector � corresponds very closely to the ‘true’ underlying
model space, and the marginal posterior distribution of the effects vector B centres
around the ‘true’ values of B, and in comparison to conventional GLS estimates it
largely avoids the problems of ‘overfitting’.

It should be noted that the topic of impulse response analysis has not been
covered in this paper. As noted in Koop and Korobilis (2009), in the absence of
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natural conjugate priors and analytical solutions, which is the case for the model
presented in this paper, posterior distributions of impulse response functions have
to be obtained through Monte Carlo integration and is not trivial. The presence of the
latent selection vector � further complicates matters. As the main goal of this paper
is to propose a Bayesian variable selection method for VAR model identification
and estimation in the context of traffic flow modelling, the topic of impulse response
analysis will be left for future research.

Finally, contemporary spatial dependence in the form of spatially weighted
contemporary values of yt (i.e., �Wyt) is also not being considered in this manuscript.
In the literature of Bayesian shrinkage and variable selection, all predictors are
assumed to be either predetermined or exogenous thus far. Introduction of endoge-
nous predictors to the right-hand side introduces significant challenges to the
modelling framework and will be left for future research.

Appendix 1

Recall that the joint posterior is
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Complete the squares and divide and multiply
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is easily recognized as the kernel of the integral over B. Thus
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Finally, substitute the prior density of
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Into the above, Eq. (10.19)
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is obtained.

Appendix 2

Define q�0i as the size of � excluding element i, one can write
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Using combinatorics, as defined for the same prior in Cui and George (2008), one
could write
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which, after some algebra, yields
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which implies

p
	
�i D 0
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D

q � q�0i
q C 1

It is straightforward to show that Eq. (10.19)
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holds.
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11.1 Introduction: 150 Years of Gravity

Gravity modeling emerged over a century ago as an attempt to harness Newtonian
physics in the explanation of socio-economic processes. Ravenstein’s Law of
Migration (1885) and Reilly’s Law of Retail Gravitation (1929) are but two exam-
ples of the mechanistic straightjacket of early social physics. With the expansion of
applications to spatial consumer choice, commuting patterns and housing choice, a
more behavioral gravity model emerged. This embraced the principles of minimum
effort (Zipf 1949) intervening opportunities (Stouffer 1960) and demographic
potential (Stewart 1948). Over time, the use of gravity models in spatial analysis
veered away from social physics and contemporary spatial gravity modeling is now
part of a toolkit of spatial interaction techniques that run from entropy maximization
(Wilson 1971) through to neural network modeling (Fischer et al. 2003).

A major juncture in the development of gravity modeling developed 50 years
ago in the field of bilateral trade flows with the pioneering work of Tinbergen
(1962) and Pöyhönen (1963). In its basic form, the gravity model hypothesizes
that bilateral transactions between origins and destinations vary inversely with
the distance between them, as well as with pull factors in destinations and push
factors in origins. Although gravity modeling was initially applied to international
trade, it was subsequently extended to the study of international capital flows and
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international migration. Gravity modeling has also been applied intranationally,
e.g. in the study of internal migration. Indeed, the gravity model has served as a
methodological work-horse in numerous empirical studies involving origins and
destinations. Most probably the number of published papers using gravity modeling
runs into the thousands.

Although the basic gravity assumption, the strength of attraction between origins
and destinations varies inversely with distance between them, makes intuitive sense,
it was not until the late 1970s that the theoretical underpinnings of gravity in
international trade were formulated (Anderson 1979). Subsequently trade theorists
have disputed whether gravity is consistent with the old theory of international
trade based on Heckscher–Ohlin or the new theory of international trade based on
imperfect competition (Bergstrand 1985, 1989; Deardorff 1998; Evenett and Keller
2002).

It took another 20 years for the theoretical underpinnings of gravity in inter-
national trade and migration to be formulated in terms of Multilateral Resistance
(Anderson and van Wincoop 2003, 2004; Feenstra 2004), according to which traders
or migrants face a discrete choice problem in choosing to trade with or emigrate to
alternative destinations. The common denominator to these theories is that goods in
the case of trade, and domiciles in the case of migration are imperfect substitutes
and that trade and migration involve frictions. In this chapter, however, our concern
does not lie with gravity theory but with its econometric aspects. Surprisingly, the
latter have attracted little attention, except until recently.

In gravity models the dependent variable is bilateral from an origin to a destina-
tion. If there are N locations or nodes there must be N(N-1) bilateral observations.
The standard econometric assumption made in innumerable studies has been that
these bilateral observations are independent, which enables the use of ordinary
least squares (OLS) to estimate the parameters of the gravity model. Denoting
the residuals from the gravity model by uod (where o labels origins and d labels
destinations), OLS assumes that uod is independent of udo. For example, Italian
exports to Israel are independent of Italian imports from Israel. This assumption may
be contravened for a variety of reasons.1 OLS also assumes the uod is independent
of uod0 where d0 is another destination. If, for example d0 refers to Greece and the
economies of Israel and Greece are related directly through international trade or
indirectly through third countries, Italian exports to Israel may not be independent
of Italian exports to Greece. OLS further assumes that uod is independent of uo0d

where o0 is another origin. If, for example, o0 refers to France and the economies
of France and Israel are related, Israel’s exports to Italy may not be independent of
Israel’s exports to third countries such as France. In short, the assumption that the
residuals are independent may be incorrect.

If the gravity residuals are dependent, OLS estimates of the gravity model
parameters are inefficient but consistent and unbiased, because according to the
classical OLS assumptions dependence between residuals induces inefficiency

1For example, Israel swimsuit exports use fabrics made in Italy.
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but does not constitute a threat to consistency and unbiasedness.2 Since OLS
is inefficient there may be many results that are incorrectly reported as being
statistically significant. In principle robust standard errors may be calculated which
take account of the dependence between the gravity residuals. Driscoll and Kraay
(1998) have suggested such a procedure for spatially correlated residuals in panel
data. More generally, the solution to this problem would be seemingly-unrelated
regression (SUR) in which the estimated standard errors are calculated under the
assumption that the gravity residuals are dependent. However, SUR is only feasible
in the case of panel data.

The issue of dependence runs deeper than this; it does not merely concern the
gravity residuals, but the specification of the gravity model itself. Since trade, capital
flows and immigration are essentially multilateral, a bilateral specification is miss-
specified. The trade flows between Italy and Israel do not only depend on push
and pull factors in these countries, but also on these factors in third countries. For
example, an increase in GDP in France might affect bilateral trade between Italy and
Israel. In principle, the gravity model should specify all N � 2 push-pull factors.
Since in practice gravity models do not specify third country effects, numerous
studies may have omitted variables that are empirically relevant. If these omitted
variables are correlated with the variables in the gravity model, the parameter
estimates of the gravity model will be biased and inconsistent. This criticism applies
to hundreds of studies that have been published during the last 50 years.

Econometric theory for gravity modeling only began to receive attention in
the last few years. LeSage and Pace (2008) were the first to draw attention to
the problem. Although the problem is essentially multilateral, LeSage and Pace
assume that the data are spatially dependent. This simplification enables them to
draw upon spatial econometric theory by specifying spatially lagged dependent
variables in the gravity model, and by allowing the gravity residuals to be spatially
autocorrelated. They specify separate spatial connectivity matrices for origins and
destinations. If multilateralism happens to be spatial this solution is fine. However,
it might not be. In the case of trade, for example, Israel’s high-tech exports to
Italy may be multilaterally related to Israel’s competitors in the US and Finland,
which are remote, rather than to Israel’s immediate neighbors in the Middle East.
Behrens et al. (2012) have adapted LeSage and Pace (2008) to multilateral resistance
theory by giving spatial connectivity matrices a multilateral rather than a spatial
interpretation.3 Recently this attention to spatial dependence has been extended
to the case where ‘latent’ spatial effects are estimated for both the origin and
destination (LeSage and Llano 2013). This involves the estimation of a Bayesian

2This is the spatial counterpart to the time series result that auto-correlated residuals induce
inefficiency but do not threaten consistency, unless the model includes lagged dependent variables.
3Behrens et al. assume that because income and the number of product varieties vary directly with
scale, larger economies are more likely to trade with each other than smaller ones. According,
spatial weights are defined in terms of the relative size of regions as reflected in population shares.
Their identification strategy assumes that internal migration is independent of trade.
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hierarchical model that uses the SAR structure as a spatial prior to structure the
regional effects parameters.

It should be clear by now that econometric theory for gravity has lagged
substantially behind the economic theory of gravity. Indeed, the econometric theory
for gravity is in its infancy. Economists have been preoccupied instead with other
econometric problems that arise in gravity models, and especially how to deal
with the fact that many bilateral flows are zero, and their implications for testing
hypotheses about extensive and intensive margins. Helpman et al. (2008) specify
a probit selection model for zero trade flows, and Burger et al. (2009) apply a
zero-inflation methodology. In our opinion this a second order problem; the main
methodological problem stems from the fact that gravity is essentially multilateral
rather than bilateral.

We have noted that dependence between gravity residuals affects the efficiency
but not consistency of OLS estimates of gravity parameters. Matters are different
regarding the nonlinear maximum likelihood estimators used to handle zero bilateral
flows. Dependence between residuals in probit and zero-inflating estimators induces
inconsistency. Having solved one problem, Helpman et al. and others might have
created another. It is difficult to know whether OLS that ignores zero bilateral
flows is inferior to ML which does not ignore zeros, but which ignores dependence
between gravity residuals.

Griffith and Fischer (2013) suggest treating spatial dependence by using spatial
filtering. This involves screening the origin–destination data for spatial association
by transferring SAC effects from residuals to the mean or intercept. This creates
dependence-free data suitable for Poisson estimation. The Poisson regression
interprets the flows as dependent on the origin and destination specific effects.
Spatial filtering treats spatiality as a nuisance parameter that may be “concentrated
out” of the data to estimate the parameters of interest. We have remarked elsewhere
(Beenstock and Felsenstein 2007) that spatial filtering is only legitimate if the
parameters of interest are independent of the spatial nuisance parameters. If they
are not, spatial filtering may induce pre-test bias, and in the limit the effect of
a parameter of interest may be completely filtered away.4 Indeed, since trade
and migration are inherently multilateral, spatial filtering inappropriately treats
parameters of interest as nuisances.

In this chapter we make the following methodological contributions to the
econometrics of gravity modeling. First, we consider the case in which origins
and destinations are not mutual, i.e. countries or spatial units are either origins or
destinations, but not both, so bilateral relations are one-way. Second, we propose
a lagrange multiplier test for spatial autocorrelation among origins and among
destinations, which may be used to check whether OLS gravity residuals are
spatially independent. Third, we also propose a test for spatial autoregressive con-
ditional heteroscedasticity (SpARCH) between origins and destinations. SpARCH

4Temporal filtering (seasonal adjustment) of time series data is usually avoided because seasonality
cannot be assumed to be independent of the parameters of interest.
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exists when error variances are spatially autocorrelated; it is the spatial counterpart
to ARCH in time series, and it is the counterpart to spatial autocorrelation for
variances.5 More generally, whereas spatial econometric analysis has been almost
exclusively concerned with spatial dependence between means, as e.g. in the spatial
lag model, we draw attention to potential spatial dependence between second
moments as well as between first moments. We illustrate these concepts empirically
with an application to migration from European Neighborhood Countries (EN) to
members of the European Union (EU). Since migration from EN to EU is one-way,
EN countries serve as origins and EU countries serve as destinations.

A limitation is that multilateralism is assumed here to be spatial. This means,
for example, that when Egyptians emigrate to France their decision is not inde-
pendent of local alternative destinations to France, such as Germany. However,
it is independent of distant alternatives, such as the United States. It also means
that when Libyans emigrate to France their decision is not independent of their
Egyptian neighbors’ decisions to emigrate to France. However, their decisions are
independent of emigration decisions in origins remote from Libya, such as Ukraine.
The implicit assumption in spatial multilateralism is that, everything else given,
destinations are closer substitutes the nearer they are, and that shocks are likely to
be more correlated among origins the closer they are.

This implicit assumption is no doubt too restrictive because multilateralism is
not merely spatial. Quebec may be a closer substitute to France for francophone
Algerians than Germany regardless of distance. Also, the emigration decisions of
Israelis and Egyptians are unlikely to be correlated just because they happen to be
in the Middle East. If decision making in migration and trade is hierarchal or nested,
then spatial effects are likely to be important. However, if it is direct and unmediated,
we can assume that relations are multilateral.

11.2 Theory

11.2.1 Origins and Destinations

Let yod denote the bilateral flow between origin o and destination d. There are No

origins, Nd destinations and N D NdNo one-way bilateral flows. Let yo denote an
Nd-length vector of bilateral flows from origin o to all destinations. These vectors

5SpARCH is not to be confused with the spatial GARCH model in Willcocks (2010) in which
the variance in location i at time t depends on the variance of location j at time t-1. Nor should
it be confused with the SEARCH model of Caporin and Paruolo (2005) in which the residuals
are spatially autocorrelated in a regular ARCH model, i.e. uit D Wuit C eit where e is an ARCH
process.
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are stacked, as in panel data, to form an N-length vector of bilateral flows y:

y0 D �
y0
1 y0

2:::::y
0
No

�

The first Nd elements of y refer to flows from origin 1 to all destinations, the second
Nd elements refer to flows from origin 2 to all destinations, and so on until the last
Nd elements refer to flows from origin No to all destinations. Wo is a square No-
matrix of spatial weights in the origins with zeros along the leading diagonal, and
row-summed to one:

Wo D

2

6
6
4

0 w12 :: w1N0

w21 0 :: w2N0

:: :: :: ::

wNo1 wNo2 :: 0

3

7
7
5

Wd is a square Nd-matrix of spatial weights in the destinations with zeros along the
leading diagonal, and row-summed to one:

Wd D

2

6
6
4

0 w12 :: w1Nd

w21 0 :: w2Nd

:: :: :: ::

wNd1 wNd2 :: 0

3

7
7
5

The elements wij are zero if i and j are spatially unconnected.6 Define D D INo ˝Wd

and � D Wo ˝ INd , which are N � N matrices. D is block diagonal with Wd along
the leading diagonal and zeros elsewhere. � has zeros along the leading diagonal
and wodINd elsewhere. The vector of spatial lags in origins and destinations may be
defined as:

Qyo D �y (11.1a)

Qyd D Dy (11.1b)

For example, yod is the flow from origin o to destination d. Let o be Egypt and
d be France. Flows from Egypt to France might be related to flows from Libya
(Egypt’s neighbor among origins) to France. This spatial lag component is included
in Qyo because Libya and Egypt are origins with common destinations. Flows from
Egypt to France might be related to flows from Egypt to Germany. This spatial lag

6Subscripts i and j refer to origins in Wo and destinations in Wd.
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component is included in Qyd because France and Germany are destinations with
common origins.

11.2.2 Spatial Gravity

The generalized spatial lag model with origins and destinations (GSOD) is:

y D ˛iN C X�
oˇo C X�

d ˇd C ıC C QX�
o�o C QX�

d�d C �o Qyo C �d Qyd C u
X�

o D Xo ˝ iNd

X�
d D iNo ˝ Xd

QX�
o D WoXo ˝ iNdQX�
d D iNo ˝ WdXd

(11.2)

where C is an N-vector of distances between origins and destinations with elements
cod, Xo is an No � Ko matrix of push factors in the origins, Xd is an Nd � Kd matrix
of pull factors in the destinations, and QXo D WoXo and QXd D WdXd are their spatial
“Durbin” lag counterparts. Greek symbols are parameters to be estimated where ’
and • are scalars, “o and ”o are Ko-vectors of push parameters, “d and ”d are Kd-
vectors of pull parameters, and ¡o and ¡d are spatial lag coefficients in origins and
destinations. Finally, u is an N-vector of residuals. Equation (11.2) states that flows,
e.g. from Egypt to France depend on push factors in Egypt through ’, push factors
in Libya through •, pull factors in France through “, and pull factors in Germany
through . They also depend on flows from Libya to France via ¡o, and from France
to Germany via ¡d.

There are several economic justifications for specifying spatial dynamics in Eq.
(11.2). First, there may be mutual causal effects between neighboring origins and
destinations. For example, the decision by Libyans to emigrate to France might
induce Egyptians to emigrate to France because neighbors influence one another.
Second, if the specification of the pull (Xd) and push (Xo) factors is incomplete
spatial lagged dependent variables might capture omitted variables. For example,
if Libya and Egypt share common omitted variables they will be picked up by ¡o.
Third, Libyans and Egyptians might be complements or substitutes in common labor
markets such as France. In the former case Libyans and Egyptians crowd-in one
another in France; in the latter case they crowd-out one another. In the case of illegal
immigration there is likely to be crowding-out unless Libyans and Egyptians share
common social networks and logistics.

Similar economic justifications for ¡d apply in the destinations. There might be
a causal effect of Egyptian immigration to Belgium on Egyptian immigration to
France through demonstration effects; Egyptian immigration to Belgium induces
Egyptians to consider emigration to France. Omitted variables might be picked-up
by Egyptian immigration to Belgium. Finally, if Belgium accepts more Egyptians
this might deflect Egyptian emigration to France.
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11.2.3 Spatial Multilateralism

The general solution for y is obtained by substituting Eq. (11.2) into Eq. (11.3) to
obtain:

y D ‚
�
˛iN C X�

oˇo C X�
d ˇd C ıC C QX�

o�o C QX�
d �d C u

�

‚ D .IN � �o� � �dD/�1
(11.3)

We assume that ¡o and ¡d are less than one in absolute value otherwise y would
be spatially nonstationary (Beenstock et al. 2012). This ensures that ‚ is invertible.
The N2 elements of ‚, denoted by ™od.o0d0 , describe the partial derivative of yod

with respect to immigration shocks from origin o0 to destination d0. These shocks
propagate spatially so that to a greater or lesser degree all bilateral flows are related.
This means for example that immigration from Morocco to Spain depends on
shocks to immigration from Ukraine to Finland. Similarly, shocks to push factors
in Morocco and pull factors in Spain affect immigration from Ukraine to Finland.
It also means that ™od.od does not necessarily equal unity as it would in a standard
gravity model. Indeed, if the spatial dynamics are positive ™od.od > 1 because shocks
propagate spatially back onto their origins. For example, an immigration shock from
Morocco to Spain reverberates back onto Morocco via its effect on immigration
from other origins to other destinations.

The spatial specification of the gravity model “multilateralizes” it from being
purely bilateral. In short, GSOD specifies a rich range of spatial dynamics of the
autoregressive and moving average varieties through ¡o and ¡d, and ”o and ”d

respectively.

11.3 The Econometrics of Spatial Gravity Modeling

11.3.1 Double Spatial Lagged Dependent Variables

Since GSOD involves a double spatial lag, estimation is not straightforward because
the likelihood function involves the determinant jIN � �o� � �dDj. If ¡o D ¡d

matters are simplified and the determinant reverts to its standard form involving a
single spatial lag, in which case standard estimators available in Matlab etc. may be
used. The likelihood has to be maximized with respect to ¡o and ¡d as well as other
GSOD parameters. We use the double spatial lag estimator developed by Elhorst
et al. (2012) to estimate the parameters of GSOD.
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11.3.2 Spatial Autocorrelation

The GSOD residuals (u) are assumed to be iid random variables that are asymptot-
ically normal. Spatial autocorrelation in GSOD residuals may arise either because
the residuals are spatially correlated among origins, or because they are spatially
correlated among destinations. For example, spatial autocorrelation among origins
arises when the residuals for Egyptian flows to France and other destinations are
correlated with Libya’s residuals with respect to France as well as other destinations.
Spatial autocorrelation among destinations arises when the residuals for Egyptian
flows to France are correlated with Egypt’s residuals with respect to Germany and
other destinations.

We suggest the following auxiliary regression to test for both types of spatial
autocorrelation:

Ou D Xo ˝ iNd o C iNo ˝ Xd d C o Quo C d Qud C "

Quo D � Ou
Qud D D Ou

(11.4)

where û are the GSOD residuals estimated by ML, and " is iid. The absence of
spatial autocorrelation means that œo and œd are zero, in which case §o and §d must
be zero. The lagrange multiplier statistic is LM D NR2 where R2 is for Eq. (11.4).
It has a chi-square distribution with 2 degrees of freedom for the two independent
restrictions regarding œo and œd.

If the GSOD residuals happen to be spatially autocorrelated, this may indicate
that the GSOD model is spatially misspecified, or it may suggest that it is correctly
specified but the residuals just happen to be spatially autocorrelated. A straight-
forward common factor test (Anselin 1988) may be used to distinguish between
these alternatives. If there is a spatial common factor the model would be spatially
misspecified. If in the former event, œo only is statistically significant the spatial
misspecification arises among the origins, and if œd only is statistically significant
the spatial misspecification arises among the destinations.

11.3.3 Spatially Robust Standard Errors for Gravity Models

Spatial autocorrelation may be inherent or it might be induced by the misspecifi-
cation of Eq. (11.2). In the latter case the remedy involves specifying the model
correctly. In the former case the parameter estimates are unbiased but inefficient
in linear models, but are inconsistent in nonlinear models such as ML estimates
of spatial lag models. In this section we assume that the true model is not spatial
so that ¡o D ¡d D ”o D ”d D 0, but the gravity residuals are spatially autocorrelated.
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Equation (11.2) is rewritten compactly as Eq. (11.5a):

y D Q! C u (11.5a)

u D .o�C dD/ u C " (11.5b)

where Q D (Xo* Xd* C) refers to the Ko C Kd C 1 regressors in Eq. (11.2) and
¨D (“o “d •) their coefficients. Equation (11.5b) is the SAC model for the gravity
residuals. The solution for u is:

u D A"
A D .IN � o� � dD/�1

(11.6)

The spatially robust covariance matrix of the OLS estimate of ¨ is:

†! D .Q0Q/�1
	

Q0 O‚Q


.Q0Q/�1

O‚ D OA O†" OA0 (11.7)

If " is homoscedastic‚D ¢"
2AA0. To implement Eq. (11.7) consistent estimates of

A and†" based on estimates of œo, œd and " obtained from Eq. (11.4) are substituted
into Eq. (11.7). If " is heteroskedastic ‚D A „ A0 where „ is a diagonal matrix
with diagonal elements û2

od.
General least squares (GLS) jointly estimates the parameters of the error model

and the structural parameters consistently and efficiently. By contrast, the estimate
of †¨ in Eq. (11.7) is consistent but not efficient because it is derived from
OLS parameter estimates which are less informative than their GLS counterparts.
Therefore a superior alternative to the use of spatially robust standard errors is to
estimate Eq. (11.2) by GLS, which involves the joint estimation of the parameters
in Eq. (11.2) together with œo and œd. This argument applies generally and is not
specific to spatial models.7 Indeed, the preference for robust standard errors is
typically motivated by convenience.

11.3.4 Spatial Autoregressive Conditional Heteroskedasticity
(SpARCH)

Another type of potential dependence concerns variances. We suggest that the
spatial counterpart to the ARCH (autoregressive conditional heteroskedasticity) that

7See e.g. Greene (2012), pp. 325 and 960.
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arises in time series may be specified as:

Ou2 D � C �o Qu2o C �d Qu2d (11.8)

The spatial ARCH (SpARCH) parameters are ¥o and ¥d, which might differ
between origins and destinations. Equation (11.8) assumes that volatility may be
transmitted spatially, and that the conditional variance of uod depends on volatility
in the vicinity of o among origins, and in the vicinity of d among destinations. These
variances are therefore conditionally heteroskedastic. By contrast, the unconditional
variance is:

�2e D �ŒIN � �o� � �dD��1

Since this does not depend on o or d the unconditional variance is the same for
all gravity residuals (uod). The LM test for SpARCH involves using the estimated
GSOD residuals to estimate Eq. (11.8). The test statistic is NR2 and has a chi-
squared distribution with 2 degrees of freedom.

Whereas unconditional homoskedasticity is one of the classical assumptions
required for OLS, conditional heteroskedasticity does not violate these assump-
tions.8 Therefore, evidence of SpARCH does not matter for efficiency in OLS
contexts because the residuals remain unconditionally homoskedastic. With nonlin-
ear estimators matters are different because it is well known that ARCH interferes
with consistency. Since the spatial lag parameters in GSOD obtained by ML
are nonlinear, SpARCH induces inconsistency in the estimates of the GSOD
parameters.

11.4 The European Neighborhood

The European Neighborhood (EN) is a geopolitical concept (see map) as defined
by EU foreign policy in general and the European Neighborhood Policy (ENP) in
particular.9 It includes countries that are not candidates for EU membership, hence
Turkey is not included in the EN. EN includes all countries in North Africa with
coasts on the Mediterranean. It includes countries in the Middle East (Israel, Jordan,
Lebanon and Syria), countries in South Caucasia (Georgia, Armenia, Azerbaijan),
and countries in the former USSR (Ukraine, Belorussia and Moldova), making
16 countries in all. The EU regards EN countries as their political and economic
hinterland. These EN countries serve as origins in the present study.

8See e.g. Greene (2012), p. 972.
9ENP involves concessions to EN countries regarding trade, investment and migration. It also
obliges neighboring countries to adapt local legislation to EU norms thereby extending integration
without formal enlargement (Harpaz, 2014).
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Dealing with migration flows from the ENP countries is high on the EU policy
agenda. While this chapter deals with immigration over the period 2000–2010, i.e.
prior to the current immigration crisis in the EU, the issues of cross-border controls
with the EN countries remain a pervasive issue. The EU shares a 5000 C km border
with the EN countries to the east and a similar length (albeit maritime) border with
the EN countries to the south. EU policy relating to migration from the EN countries
has been articulated in various agreements such as the Amsterdam Treaty and the
Tampere, Hague and Stockholm Programs. Migration policy with respect to EN
countries is part of an EU attempt to regulate border security in three areas: illegal
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(or irregular) migration, combating trafficking and smuggling of human beings and
cross-border management practice.

The EU currently has 28 members, including countries such as Latvia, Romania
and Croatia that have joined recently. In principle these countries serve as the
destinations. However, we restrict the EU destinations to the 15 members prior to
the recent enlargement for two reasons. First, the study period refers to immigration
during the first decade of the twenty-first century. Since countries such as Romania
and Bulgaria were not members in 2000 they are omitted from the study. Secondly,
it turns out that there were no immigrants from EN in the 10 omitted EU members.
Dropping these countries conveniently means that we may ignore the problem of
treating zero bilateral flows. Therefore, No is 16 and Nd is 15.

We use the Global Bilateral Migration Database (GBMD, World Bank) which
provides estimates of the number of foreign-born by all origins of the world in all
destinations.10 Table 11.1 presents these data in 2000 for our 16 origins in the 15
destinations. Notice that with the exception of Portugal these population stocks are
non-zero. GBMD is decennial starting from 1960. Since GBMD refers to population
stocks, we define immigration flows from origins to destinations by the stock in
2010 minus the stock in 2000. GBMD in principle covers people who returned to
their country of origin by 2010 or migrated to third countries. However, foreign-
born who died between 2000 and 2010 would be registered as a decrease in the
number of foreign-born. Therefore, our definition of immigration flows is an under-
estimate because GBMD does not identify the deceased. This partly explains why
the estimated flows of immigrants (Table 11.2) are occasionally negative. Table 11.2
expresses changes in foreign-born during 2000–2010 as a percentage of the stock in
2000. Some of these estimated rates are very large especially in destinations where
foreign-born in 2000 was small (e.g. Portugal)

11.5 Immigration Theory

This paper tests the welfare-motivation pull factor hypothesis of migration. The
basic idea that immigration is driven by income differentials between origins and
destinations is usually attributed to Hicks (1932) and Sjaastad (1962). However,
Adam Smith argued that migration is driven by wage differentials, and regarded
policies to limit internal migration in England as unjust and economically harmful.11

The development of the welfare state during the twentieth century created a new
motivation for immigration. Immigrants are attracted to destinations where welfare

10See Özden et al. (2011) for methodological details how GBMD was constructed.
11Smith (1776) argued that the Law of Settlements, enacted to prevent inter-parish welfare-chasing,
restricted internal migration and was responsible for spatial wage inequality. “The very unequal
price of labour which we frequently find in England in places at no great distance from one another,
is probably owing to the obstruction which the law of settlements gives to a poor man who would
carry his industry from one parish to another without a certificate” (p. 142). Smith called for the
repeal of the Law of Settlements and the promotion of internal migration.
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benefits in cash and in kind are more generous.12 Empirical evidence in favor of
this hypothesis has been found for the EU (Péridy 2006; De Giorgi and Pellizzari
2006; Docquier and Marfouk 2006; Razin et al. 2011) and for internal migration
in the US (Borjas 1999; McKinnish 2007). In recent work we found that while
immigration does not depend on the level of welfare generosity, it varies directly
with changes in generosity (Beenstock et al. 2015). More benevolent countries do
not necessarily attract more immigration but if a country become more welfare-
generous that will have a positive effect on migration. Razin et al. argue that
welfare generosity disproportionately attracts unskilled immigrants because skilled
immigrants are deterred by the higher taxation required to finance this generosity.
In all of these studies it is assumed that bilateral migration flows are independent.

11.5.1 Stocks and Flows

Immigration flows during time t to t C 1 are hypothesized to be determined
according to Sjaastad’s stock adjustment model in which the levels of push and
pull factors at time t and their changes during times t to t C 1 are hypothesized to
determine immigration. For example, if GDP per head is a pull factor, immigration
varies directly with the level of GDP per head at time t and the change in GDP
per head between times t and t C 1. If the immigrant stock was at its equilibrium
level in time t, the stock-adjustment model predicts that immigration during times
t and t C 1 should only depend on changes in the push and pull factors. The stock
adjustment model predicts that immigration during t and t C 1 should vary inversely
with the stock of immigrants at time t. If, however, incumbent immigrants provide
new immigrants with social network amenities, the stock of immigrants at time t
might also increase immigration.

Let Yodt denote the stock of immigrants, or foreign-born, from origin o in
destination d in time t, and Y*odt denote its equilibrium counterpart. The stock
adjustment model predicts that the flow of immigrants between times t and t C 1
is:

yodt D 	
�
Y�

odt � Yodt
�C '�Y�

odtC1 (11.9)

where ˜ and ® are stock adjustment coefficients with values between zero and one,
and Y* depends on the levels of push and pull factors:

Y�
t D X�

d � C X�
o � (11.10)

12Adam Smith would have been familiar with this theory since the Law of Settlements prevented
individuals from migrating to parishes where the poor laws were administered more generously.
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Substituting Eq. (11.10) into Eq. (11.9) and dropping subscript t gives:

y D 	
�
X�

d � C X�
o �
�C '

�
�X�

d � C�X�
o �
� � 	Yod (11.11)

Therefore in Eq. (11.2) immigration depends on the levels and the changes in push
and pull factors.

11.5.2 Push and Pull Factors

In gravity models immigration is assumed to depend on GDP per head in origins
and destinations, as well as measures of cultural and ethnic difference. For example,
if o and d share a common language immigration from o to d is likely to be greater.
Also, immigration is hypothesized to vary inversely with the geographical distance
between o and d. If immigrants are positively selected (Borjas 1987) they are
attracted by income inequality since they expect to earn more where there is more
wage dispersion. If so, immigration should vary directly with the gini coefficient in
d.

We also investigate whether immigration is motivated by welfare. Legal immi-
grants benefit from social security and other benefits received by natives. Apart
from pecuniary benefits, such as unemployment benefit and income support, we
attach importance to benefits in kind including health, education and housing. Given
everything else, we expect that d will be a more attractive destination to immigrants
the more generous are its benefits.

The case of illegal or irregular immigrants is more complicated. Procedures for
dealing with political refugees vary by country; they may be more or less lenient. If
country d is more lenient it is likely to attract more immigrants. Illegal immigrants
either did not apply for refugee status, or if they did and were refused, they go
underground. Countries also vary by their alacrity in expelling illegal immigrants.
Finally, countries vary by the legal rights of illegal immigrants and their children
in terms of their access to health services and schooling. Countries that are more
lenient and generous in their treatment of illegal immigrants are expected to be
more attractive as destinations. We are unaware of empirical studies of the effects of
immigration policy on illegal immigration. Indeed, Yoshida and Woodland (2005)
signally do not cite such studies.13

We have collected data on the rights of legal and irregular immigrants, as well
as on the way countries treat irregular immigrants. We use data on expulsions
and apprehensions to calculate expulsion and apprehension rates (in terms of the
population at risk) in EU destinations. These rates are of the order of one percent
except in Greece where they approach 30 % (see data Appendix). We also report

13Their concern is with the effects of illegal immigration on natives and policies designed to
achieve the socially optimum amount of illegal immigration.
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in the data appendix an index (MIPEX) of the treatment of legal immigrants in EU
destinations in terms of the assistance they get to integrate economically, socially
and politically.

11.6 Results

The dependent variable in Eq. (11.2) is defined as the rate of immigration that took
place between 2000 and 2010, i.e. it is the data in Table 11.2. The push factors in
origins (Xo) include GDP per head in 2000 and its rate of growth during 2000–
2010. The push factors in destination (Xd) include GDP per head in 2000 and its
rate of growth during 2000–2010, the gini coefficient for household income, social
spending per head in 2000 and its rate of growth during 2000–2010, spending per
head on primary education, expulsion and apprehension rates, and the treatment
index of immigrants. We also control for distances between origins and destinations,
common official languages, and immigrant stocks in 2000.

Most of these variables did not turn out to be statistically significant. Model 1
in Table 11.3 retains the variables which survived a specification search process in
which insignificant variables were successively omitted. Since Model 1 is estimated
by OLS it is assumed that the observations are spatially independent. The signs
of the parameters in Model 1 are “correct” but they are not statistically significant
at conventional levels. Since the LM test statistic for heteroskedasticity is highly
significant, we also use robust standard errors.

Variables that do not feature in Model 1 include GDP per head and its growth in
the EU destinations as well as the treatment index of immigrants. Immigration flows
vary inversely with apprehension rates, and GDP per head and its growth in the EN
origins, and they vary directly with social spending per head, spending on education
and income inequality. When model 1 is estimated using data for 1990–2000 its
explanatory power is even smaller than it is for 2000–2010, none of the estimated
parameters is statistically significant, and many parameters change their signs. In
short, model 1 is not robust and depends on the observation period.

The LM statistics reported in Table 11.4 indicate that the residuals of model 1
are not spatially autocorrelated, and the SpARCH coefficients are not significantly
different from zero. When spatially lagged dependent variables are specified in
models 2 and 3, the spatial lag coefficients are statistically significant. In model
2 the spatial lag coefficients are restricted to be identical in origins and destinations.
Although in model 3 these coefficients are unrestricted, their estimates turn out
to be similar, but different to their counterpart in model 2. Table 11.4 shows that
when spatially lagged dependent variables are specified, the SAC and SpARCH
coefficients are statistically significant between 2000 and 2010 as represented by
the data in Table 11.2.
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Table 11.4 SAC and SpARCH coefficients

Model 1 2 3

SAC
Origin 0:0504 .0:23/ �0:4768 .�2:06/ �0:9941 .�9:16/
Destination �0:0511 .�0:63/ �0:0840 .�0:37/ �0:9725 .�8:90/
LM 2:6015 24:209 81:399

SpARCH
Origin 0:6596 .0:59/ 0:9152 .4:18/ 0:5922 .4:33/

Destination 0:0167 .0:25/ 0:2350 .2:44/ 0:5961 .6:91/

LM 0:408 25:536 61:968

Notes: LM refers to lagrange multiplier statistics for SAC and SpARCH. Their critical values
(p D 0.05) are ¦2 (df D 2) D 5.991. t-statistics for SAC and SpARCH coefficients reported in
parentheses

11.7 Conclusions

We have tried to make two contributions, methodological and substantive. Standard
econometric analysis of gravity models has typically assumed that the observations
are independent. This assumption is surprising because it implies that transactions
from a given origin to alternative destinations are independent. It also assumes
that transactions from different origins to the same destination are independent. We
suggest a lagrange multiplier statistic to test origin–destination independence. We
also model origin–destination dependence using recently developed double spatial
lag estimators.

Our substantive contribution uses data on migration flows from European Neigh-
borhood countries to EU destinations during the first decade of the twentieth century
to test key hypotheses concerning the determinants of international migration. These
include the hypotheses that migration is driven by income differentials, income
inequality, welfare generosity in the destination countries, and policies to deter
irregular immigration.

During the first decade of the twentieth century there is little if any evidence that
migration from European Neighborhood Countries to the European Union depended
on determinants that have been high-lighted in the theoretical literature. Neither the
level of GDP per head in EU countries nor its rate of growth, explain migration
from EN to EU. Therefore, the recent economic recession in EU is unlikely to deter
migration from EN. There is some weak evidence that GDP per head and its growth
in the EN countries deter migration. There is also some evidence that migrants prefer
to migrate to EU countries where there is greater economic inequality. If immigrants
are positively selected they stand to gain more in countries where incomes are more
unequal.

There is no evidence that immigrants engage in welfare-chasing. This is true
when welfare generosity is measured by social spending per head in the EU
countries, when it is measured by per capita spending on primary schooling, or when
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expert indices are used. Nor does physical distance or common languages, which
are standard variables in gravity models, significantly explain immigration from EN
to EU. Indeed, immigration does not seem to be explained by any of the standard
hypotheses regarding international migration. However, there is weak evidence that
immigration policy, as measured by apprehension rates among irregular immigrants,
deters immigration.

These results may be disappointing as far as policy recommendations are con-
cerned. Social welfare policy and policy towards illegal migrants in EU destinations
do not seem to impact the flow of migrants from the ENP countries. The paper also
addresses the extent to which destination choices within the EU are complements
and substitutes. This has policy ramifications with respect to the spillover of
migration pressure points within the EU. A parochial policy which, for example,
restricts migration in one country might deflect immigration to its neighbors. Also a
policy which encourages immigration in one country might induce immigration to
its neighbors. Thus immigration policy would need to be designed globally rather
than parochially.

On the other hand, the methodological results are more salient. They show
that results obtained using conventional econometric methods which assume grav-
ity flows are independent are over-turned when these flows are specified to be
dependent. Specifically, gravity models in which spatial lags are specified produce
different results to standard gravity models. Moreover, separate spatial lags are
specified among destination countries in the EU and origin countries in the EN. The
coefficients on these spatial lags are about 0.5–0.6, implying that there are strong
spillover effects in migration between neighboring origins as well as destinations.
Indeed, these effects cancel out almost all the substantive effects to which reference
has already been made.

Appendix: Data Sources
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Chapter 12
Multilateral Resistance and the Euro Effects
on Trade Flows

Camilla Mastromarco, Laura Serlenga, and Yongcheol Shin

Keywords Multilateral resistance • The factor-based and the spatial-based panel
gravity models • Cross-section dependence • The Euro effects on trade and
integration

JEL: C33, F14

12.1 Introduction

With the formation of the Euro in 1999, the literature on the common currency
effects on trade has been rapidly growing. By eliminating exchange rate volatility
and reducing the costs of trade, a currency union is expected to boost trade among
member countries. An important policy issue is identifying the right magnitude
and the nature of the Euro’s trade impact, which is not only important for member
countries but also for EU members that have not joined yet. Baldwin (2006) provides
an extensive survey, establishing that the infamous Rose effect is severely (upward)
biased. As an earlier evaluation of the Euro effect, Micco et al. (2003) find that
the common currency increases trade among Euro zone members by 4 % in the
short-run and 16 % in the long-run. See also de Nardis and Vicarelli (2003), Flam
and Nordström (2006), and Berger and Nitsch (2008), from which we find that the
estimated Euro effects are very wide from 2 % to over 70 %.
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However, most of existing studies make an implicit assumption, which does not
hold in practice, that bilateral trade flows are independent of the rest of the trading
world. Anderson and van Wincoop (2003) highlight an importance of controlling
for the regional interaction structure in estimating gravity equation systems. They
propose including multilateral resistance terms that capture the fact that bilateral
trade flows depend on bilateral barriers as well as trade barriers across all trading
partners. Acknowledging such an important issue, an investigation of unobserved
multilateral resistance terms together with omitted trade determinants has assumed
a prominent role in measuring the Euro’s trade effects (Baldwin 2006; Baldwin and
Taglioni 2006).

To address this important issue of how best to model (unobserved and time-
varying) multilateral resistance and bilateral heterogeneity, simultaneously, in
this paper, we implement two recently proposed methodologies: the factor-based
approach proposed by Serlenga and Shin (2013, hereafter SS) and the spatial-
based techniques developed by Behrens et al. (2012, hereafter BEK). The first
approach extends the cross-sectionally dependent panel gravity models advanced
by Serlenga and Shin (2007) and Baltagi (2010), which can control for time-
varying multilateral resistance and trade costs through using both observed and
unobserved factors with heterogenous loadings. The spatial model by BEK is
derived from a structural gravity equation, and it allows both trade flows and error
terms to be cross-sectionally correlated with the spatial weight matrix derived
directly from economic theory. Chudik et al. (2011) show that the factor-based
models account for strong cross section dependence while the spatial-based model
addresses weak dependence. Following SS, we combine these estimators with the
instrument variables estimators advanced by Hausman and Taylor (1981), Amemiya
and McCurdy (1986), and Breusch et al. (1989), and develop a methodology which
allows us to consistently estimate the impacts of (potentially endogenous) bilateral
resistance barriers such as border and language effects.

We apply these methodologies to the dataset over 1960–2008 for 190 country-
pairs. This is an extended dataset analysed by SS by enlarging the control group.
Though the Euro-area economies have become more integrated with a trade boost
within the region, this positive currency-union effect can be greatly mitigated
by multilateral trade costs associated with the larger control group of non-Euro
countries. This may help us to better disentangle the effect of the Euro on trade
within and outside currency union by introducing a substitutability between intra-
EU and extra-EU trade flows (Anderson and van Wincoop 2003, 2004).

Our main empirical findings are summarized as follows: First, when we control
for time-varying multilateral resistance and trade costs through cross-sectionally
correlated unobserved factors, we find that the Euro impact on trade amounts to 4–
5 %. This magnitude is generally consistent with comprehensive evidence compiled
by Baldwin (2006). We also find that the custom union effect is substantially reduced
to 11 %. Next, we find that the impacts of the Euro and the custom union on trades
are estimated at about 20 % and 30 %, respectively, under the spatial-based SARAR
models. These magnitudes are substantially larger than those obtained under the
factor-based models, but rather close to the values estimated under the basic model
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without controlling for cross-section dependence. Furthermore, when applying the
cross-section dependency (CD) test advanced by Pesaran (2004), we find that the
null of no cross-sectional dependence is strongly rejected for all of the spatial-based
gravity models. Therefore, we may conclude that trade flows are likely to be better
modelled by allowing for a strong form of cross section dependence rather than
weak dependence.

Finally, we investigate another important issue of the Euro effect on trade
integration by estimating time-varying coefficients of bilateral resistance terms, and
find that border and language effects declined more sharply after the introduction of
the Euro in 1999. The implication of these findings is that the Euro helps to reduce
trade effects of bilateral resistance and to promote the EU integration. On the other
hand, distance impacts have been rather stable, showing no pattern of downward
trending. This generally supports broad empirical evidence that the notion of the
death of distance is difficult to identify in current trade data (Disdier and Head 2008;
Jacks 2009).

The paper is organised as follows: Sect. 12.2 provides a brief literature review on
the Euro’s Trade Effects. Section 12.3 describes two alternative cross-sectionally
dependent panel gravity models. Section 12.4 presents main empirical findings.
Section 12.5 concludes.

12.2 Literature Review

Recently, there has been an intense policy debate on the effects of the Euro on trade
flows. Rose (2000) was the first to introduce common currency variables in the
gravity model, and documented evidence that countries in a currency union trade
three times as much, using the data for 186 countries over the period, 1970–1990. It
is widely acknowledged that Rose’s huge estimate of the currency union effect on
trade is severely (upward) biased. In particular, his estimates are heavily inflated
by the presence of very small countries (Frankel 2008). Thus, whether one can
uncover similar findings for the European monetary union with the substantially
large economies, is an important policy issue.

The main critiques against Rose’s (2000) original gravity approach are clas-
sified as follows: inverse causality or endogeneity, missing or omitted variables,
and incorrect model specification (nonlinearity or threshold effects). Once these
methodological issues have been appropriately addressed, the currency union effects
appear to be far less than those estimated earlier by Rose and others. Baldwin
(2006) presents an extensive survey, highlighting that recent studies report relatively
smaller trade effects of the Euro. See also Micco et al. (2003), de Nardis and
Vicarelli (2003), Flam and Nordström (2006) and Berger and Nitsch (2008).

Another important issue is the omitted variables bias. Omitted pro-bilateral
trade variables are likely to be correlated with the currency union dummy, as the
formation of currency unions is driven by factors which are omitted from the gravity
specification. If so, the Euro effect may capture general economic integration among
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the member states, not merely the currency impact. Anderson and van Wincoop
(2003) develop the micro foundation of the gravity equation by introducing the
multilateral resistance terms, which are bilateral trade barriers relative to average
trade barriers that both countries face with all of their trading partners. In this regard,
the gravity model produces seriously misleading results, if multilateral resistance
terms and trade costs are neglected. Baldwin (2006) also stresses an importance of
taking into account time-varying multilateral resistance terms such as trade costs
(Anderson and van Wincoop 2004), and criticises against the use of the fixed effect
estimation as it may still leave a times-series trace in the residuals, which is likely
to be correlated with the currency union dummy.1

In retrospect, a large number of existing studies have already highlighted
an importance of taking into account unobserved and time-varying multilateral
resistance and bilateral heterogeneity, simultaneously. This raises an immediate
important issue of controlling for cross section dependence or correlation among
trade flows in a coherent manner. Only recently, a small number of studies have
begun to explicitly address this issue, e.g., Serlenga and Shin (2007, 2013), Herwartz
and Weber (2010), Behrens et al. (2012), and Camaero et al. (2012).

SS follow recent developments in panel data studies (Pesaran 2006; Bai 2009),
and extend the cross-sectionally dependent panel gravity models advanced by
Serlenga and Shin (2007). The desirable feature of this approach is to control for
time-varying multilateral resistance, trade costs and globalisation trends explicitly
through the use of both observed and unobserved factors, which are modelled as
(strong) cross-sectionally correlated. Applying the proposed model to the dataset
over the period 1960–2008 for 91 country-pairs amongst 14 EU member countries,
SS find that the Euro’s trade effect amounts to 3–4 %, even after controlling for trade
diversion effects, and conclude that these small effects of currency union provide a
support for the hypothesis that the trade increase within the Euro area may reflect a
continuation of a long-run historical trend of economic integrations in the EU (e.g.
Berger and Nitsch 2008).

Alternatively, BEK propose the modified spatial techniques by adopting a
broader definition of the spatial weight matrix, which can be derived directly from
the theoretical structural gravity model. By capturing (cross-sectionally correlated)
multilateral resistance through the spatial effects, they find that the measured
Canada-US border effects are significantly lower than paradoxically large estimates
reported by McCallum (1995). Thus, in an analysis of the trade-creation effects of
a single currency, it is important to specify an estimation procedure that account
for distribution of data in space. The spatial dependence may arise due to the so-
called third country (neighbour) effects, which is increasingly playing a central role

1In particular, Bun and Klaassen (2007), and Berger and Nitsch (2008) simply introduce time
trends with heterogeneous coefficients, and find that the Euro effect on trade falls dramatically.
However, Baldwin et al. argue that including time trends in an ad hoc manner is not the satisfactory
empirical approach. SS also show that simply introducing heterogeneous time trends is not yet
sufficiently effective in capturing any upward trends in omitted trade determinants, which suggests
that such diverse measures might be better described by stochastic trending factors (e.g. Herwartz
and Weber 2010).
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in examining the spatial dependence structure in the closely linked literature on
foreign direct investment and multinational enterprises, e.g., Baltagi et al. (2007,
2008), Blonigen et al. (2007), and Hall and Petroulas (2008), and Camaero et al.
(2012).

12.3 Cross Sectionally Dependent Panel Gravity Models

All of the discussions in Sect. 12.2 suggest that a Euro effect on trade flows be
carefully examined under the appropriate econometric framework that is expected to
deal with time-varying and cross-sectionally correlated multilateral resistance terms
in a robust manner.2 In what follows, we will describe two alternative approaches to
the panel gravity model of the trade flows: the spatial-based techniques developed
by BEK and the factor-based approach proposed by SS.

We first consider a factor-based panel data model as follows:

yit D ˇ0xit C � 0zi C � 0
ist C "it; i D 1; : : : ;N; t D 1; : : : ;T; (12.1)

"it D ˛i C '0
i� t C uit; (12.2)

where xit D .x1;it; : : : ; xk;it/
0 is a k�1 vector of variables that vary across individuals

and over time periods, st D .s1;t; : : : ; ss;t/
0 is an s�1 vector of observed factors, zi D�

z1;i; : : : ; zg;i
�0

is a g � 1 vector of individual-specific variables, ˇ D .ˇ1; : : : ; ˇk/
0,

� D �
�1; : : : ; �g

�0
and � i D .�1;i; : : : ; �s;i/

0 are the associated column vectors of
parameters, ˛i is an individual effect that might be correlated with regressors, xit

and zi, � t is the c � 1 vector of unobserved common factors with the loading vector,
'i D .'1;i; : : : ; 'c;i/

0, and uit is a zero mean idiosyncratic disturbance with constant
variance. Notice that the cross-section dependence in (12.1) is explicitly allowed
through heterogeneous loadings, 'i. Chudik et al. (2011) show that these factor
models exhibit the strong form of cross section dependence (hereafter, CSD) since
the maximum eigenvalue of the covariance matrix for "it tends to infinity at rate
N.3 We thus expect that this factor-based panel gravity model will capture the time-
varying pattern of unobserved multilateral resistance effects in a robust manner.

To avoid the potential biases associated with the cross-sectionally dependent
factor structure, (12.2), SS propose using two leading approaches developed by

2The multilateral resistance function and trade costs, both of which affect bilateral trade flows, are
not only difficult to measure, but also are likely to vary over time. A number of ad hoc approaches
have been proposed in the literature. Simply, fixed time dummies or time trends are added as
a proxy for time-varying effects in the gravity equation, e.g. Baldwin and Taglioni (2006), Bun
and Klaassen (2007) and Berger and Nitsch (2008). Alternatively, some studies include regional
remoteness indices (e.g. Melitz and Ghironi 2007).
3Bailey et al. (2012) also discuss that the extent of cross-sectional dependence crucially depends
on the nature of factor loadings. The degree of cross-sectional dependence will be strong if 'i is
bounded away from 0 and the average value of ' is different from zero.
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Pesaran (2006) and Bai (2009). Hence, we consider the following cross-sectionally
augmented regression of (12.1):

yit D ˇ0xit C � 0zi C �0
ift C Q̨ i C Quit; i D 1; : : : ;N; t D 1; : : : ;T; (12.3)

where ft D �
s0

t; Nyt; Nx0
t

�0 ˚D . f1;t; : : : ; f`;t/
0� is the ` � 1 vector of augmented factors

with ` D s C 1 C k and �i D .1;i; : : : ; `;i/
0, Nyt D N�1PN

iD1 yit, Nxt D
N�1PN

iD1 xit, �0
i D �

� 0
i � .'i= N'/ N� 0; .'i= N'/ ;� .'i= N'/ˇ0�0 with N' D N�1PN

iD1 'i

and N� D N�1PN
iD1 � i, Q̨ i D ˛i � .'i= N'/ N̨ � .'i= N'/� 0 Nz with N̨ D N�1PN

iD1 ˛i and
Nz D N�1PN

iD1 zi, and Quit D uit � .'i= N'/ Nut with Nut D N�1PN
iD1 uit. Using (12.3),

we can derive Pesaran’s Pooled Common Correlated Effects (PCCE) estimator of
ˇ by (12.4) below. Alternatively, we can estimate ˇ consistently by Bai’s (2009)
principal component (PC) estimator in which case the cross section averages are

replaced by the estimated factors
	 O� t



such that ft D

	
s0

t;
O� 0

t


0
.4 Thus, we obtain the

CSD-consistent estimator of ˇ by

Ǒ
CSD D

�
NP

iD1
x0

iMT xi

��1 � NP

iD1
x0

iMTyi

�
; Ǒ

CSD D Ǒ
PCCE or Ǒ

PC (12.4)

where yi D . yi1; : : : ; yiT/
0, xi D .xi1; : : : ; xiT/

0, MT D IT � HT
�
H0

THT
��1

H0
T ,

HT D .1T ; f/, 1T D .1; : : : ; 1/0 and f D �
f0
1; : : : ; f

0
T

�0
.

Alternatively, we will investigate the issue of CSD among trade flows by
employing spatial techniques. This approach assumes that the structure of cross
section correlation is related to the location and the distance among units on
the basis of a pre-specified weight matrix.5 Hence, cross section correlation is
represented mainly by means of a spatial process, which explicitly relates each
unit to its neighbours. A number of approaches for modeling spatial dependence
have been suggested in the spatial literature. The most popular ones are the Spatial
Autoregressive (SAR), the Spatial Moving Average (SMA), and the Spatial Error
Component (SEC) specifications. The spatial panel data model is estimated using
the maximum likelihood (ML) or the generalized method of moments (GMM)
techniques (e.g., Elhorst 2011). We follow BEK and consider a spatial panel data
gravity (SARAR) model, which combines a spatial lagged variable and a spatial
autoregressive error term:

yit D �y�
it C ˇ0xit C � 0zi C Q̨ i C vit; i D 1; : : : ;N; t D 1; : : : ;T; (12.5)

vit D v�
it C uit (12.6)

4We estimate � t consistently using the Bai and Ng (2002) procedure.
5Pesaran and Tosetti (2011) argue that proximity does not have to be measured in terms of physical
space. Rather, it can be defined in terms of other types of metric such as economic, policy or social
cost and distance (e.g., Conley and Topa 2002).
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where y�
it D PN

j6Di wijyjt is the spatial lagged variable, and v�
it D PN

j6Di wijvjt is
the spatial autoregressive error term, wij’s are the spatial weight with the row-sum
normalisation,

P
i wij D 1, and uit is a zero mean idiosyncratic disturbance with

constant variance. This approach is especially designed to deal with CSD across
both variables and error terms in which � is the spatial lag coefficient and  refers
to the spatial error component coefficient. These coefficients capture the spatial
spillover effects and measure the influence of the weighted average of neighboring
observations on cross section units. Chudik et al. (2011) show that a particular form
of a weak cross dependent process arises when pairwise correlations take non-
zero values only across finite units that do not spread widely as the sample size
rises. A similar case occurs in the spatial processes, where the local dependency
exists only among adjacent observations. In particular, Pesaran and Tosetti (2011)
show that spatial processes commonly used, such as the SAR or the SMA process,
can be represented by a process with an infinite number of weak factors and no
idiosyncratic error terms.

Both the factor- and the spatial-based models cannot estimate the coefficients,
� on time-invariant variables in the presence of fixed effects. In this regard, we
follow SS and combine these estimators with the instrumental variables estimation
proposed by Hausman and Taylor (1981, HT), Amemiya and McCurdy (1986, AM),
and Breusch et al. (1989, BMS). We denote such estimators by the PCCE-HT,
PCCE-AM, PCCE-BMS, PC-HT, PC-AM, PC-BMS, SARAR-HT, SARAR-AM,
and SARAR-BMS estimators, respectively.

We now decompose xit D �
x0
1it; x

0
2it

�0
and zi D �

z0
1i; z

0
2i

�0
, where x1it, x2it are k1�1

and k2 � 1 vectors, and z1i, z2i are g1 � 1 and g2 � 1 vectors. Then, we estimate �

consistently using instrumental variables in the following regression:

dit D � 0
1z1i C � 0

2z2i C Q̨ i C Quit D 
C � 0zi C eit; i D 1; : : : ;N; t D 1; : : : ;T:
(12.7)

We construct dit as follows, for the factor models, we obtain

dit D yit � ˇ0xit � �0
ift;

where 
 D E . Q̨ i/, and eit D . Q̨ i � 
/ C Quit is a zero mean process. Next, for the
spatial-based model, we have

dit D yit � �y�
it � ˇ0xit;

where 
 D E . Q̨ i/, and eit D . Q̨ i � 
/ C vit is a zero mean process. In matrix
notation, we have:

d D 
1NT C Z1�1 C Z2�2 C e; (12.8)

where d D �
d0
1; : : : ;d

0
N

�0
, di D �

di1; : : : ; diT
�0

, Zj D ��
z0

j1 ˝ 1T
�0
; : : : ;

�
z0

jN ˝ 1T
�0�0

,

j D 1; 2, 1NT D �
10

T ; : : : ; 1
0
T

�0
, 1T D �

1; : : : ; 1
�0

, and e D �
e

0

1; : : : ; e
0

N

�0
with ei D
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�
ei1; : : : ; eiT

�0
. Replacing d by its consistent estimate, Od D ˚ Odit; i D 1; : : : ;N; t D

1; : : : ;T
�
:6

Od D 
1NT C Z1�1 C Z2�2 C e� D Cı C e�; (12.9)

where e� D eC
	 Od � d



, C D .1NT ;Z1;Z2/ and ı D �


;� 0
1;�

0
2

�0
.

To deal with nonzero correlation between Z2 and ˛, we should find the NT �
.1C g1 C h/ matrix of instrument variables:

W D Œ1NT ;Z1;W2� ;

where W2 is an NT � h matrix of instrument variables for Z2 with h � g2 for
identification. To this end, we follow SS and obtain the NT � .k1 C `/ HT, the NT �
.k1 C `C Tk1 C T`/AM and the NT�.k1 C `C Tk1 C T`C Tk2/BMS instrument

matrices as: WHT
2 D

h
PX1;P O�1; : : : ;P O�`

i
, WAM

2 D
�

WHT
2 ; .QX1/

� ;
	

Q O�1

�
; : : : ;

	
Q O�`


��
, and WBMS

2 D
h
WAM

2 ; .QX2/
�
i
, where P D D.D0D/�1D0 is the

NT � NT idempotent matrix, D D IN ˝ 1T , IN is an N � N identity matrix,
O�j D

	 Oj;1f0
j; : : : ;

Oj;Nf0
j


0
, j D 1; : : : ; `, where fj D �

fj;1; : : : ; fj;T
�0

with Oj;i being

consistent estimate of heterogenous factor loading, j;i, Q D INT � P, .QX1/
� D

.QX11;QX12; : : : ;QX1T/ is the NT �k1T matrix with QX1t D .QX11t; : : : ;QX1kt/
0,

and .QX2/ D .QX21; ; : : : ;QX2T/.
To derive the consistent estimator of ı, we premultiply W0 by (12.9)

W0 Od D W0Cı C W0"C
: (12.10)

Therefore, the GLS estimator of ı is obtained by

OıGLS D �
C0WV�1W0C

��1
C0WV�1W0 Od; (12.11)

where V D Var
�
W0e�

�
. We obtain the feasible GLS estimator by replacing V

by its consistent estimator. In practice, estimates of ı and V can be obtained
iteratively until convergence. The HT-IV estimator employs only the mean of X1 to
be uncorrelated with the effects whereas the AM-IV estimator exploits such moment
conditions to be held at every time period. Hence, the AM instruments requires

6For the factor-based models, dit is consistently estimated by Odit D yit � Ǒ0

CSDxit � O�0

i ft , where
O�i are the OLS estimators of �i consistently estimated from the regression of

�
yit � Ǒ0

CSDxit

�
on�

1; ft

�
for i D 1; : : : ;N. Next, for the spatial-based models, dit is consistently estimated by Odit D

yit � O�SARARy�

it � Ǒ0

SARARxit, where O�SARAR and Ǒ
SARAR are the ML estimators of � and ˇ in (12.5)

and (12.6).
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the stronger exogeneity assumption for X1, under which the AM-IV estimator
is more efficient. Furthermore, the BMS instruments require uncorrelatedness of
X2 with fixed effects separately at every point in time. The validity of AM and
BMS instruments can be easily tested using the Hausman statistics testing for the
difference between HT-IV and AM-IV and between AM-IV and BMS-IV, both of
which follow the asymptotic �2g null-distribution with the degree of freedom g, being
the number of coefficients tested, see SS for details.

12.4 Empirical Results

We extend the dataset analysed by Serlenga and Shin (2007, 2013) to cover the
longer period 1960–2008 (49 years) for 190 country-pairs amongst 14 EU member
countries (Austria, Belgium-Luxemburg, Denmark, Finland, France, Germany,
Greece, Ireland, Italy, Netherlands, Portugal, Spain, Sweden, the United Kingdom)
plus six OECD member countries (Australia, Canada, Japan, Norway, Switzerland
and the US). By considering the larger control group of countries that do not belong
to the currency union, we can check for the robustness of the previous empirical
results reported in SS. These additional countries constitute the meaningful control
group such that we can better identify the trade effect of currency union within and
outside the Euro area by introducing substitutability between them (Anderson and
van Wincoop 2003, 2004). The US is still the leading trade partner of the EU, though
its role has recently been challenged by China and Russia. Norway and Switzerland
constitute a coherent control group since these non-member countries share with
similar historical ties to the Euro-area countries and experience similar legislation
and regulation. Australia, Japan and Canada also belong to the large global traders.

Our sample period consists of many important economic integrations such as the
Custom Union in 1958, the European Monetary System in 1979 and the Single
Market in 1993.7 Given that the Euro effect should be analysed as an ongoing
process (Berger and Nitsch 2008), we will examine the Euro’s trading effect more
carefully by applying the two alternative cross-sectionally correlated panel data
gravity models described in Sect. 12.3.

We first estimate the panel data model of gravity, (12.1) and (12.2). First,
we consider the basic model without unobserved time-varying factors in order
to facilitate the comparison with most of existing studies. Secondly, we consider
the factor-based model with both unobserved time-varying factors, 'i�t, and linear
time trends, st D ftg, as a single observed factor. Following Serlenga and Shin
(2007), we focus on the augmented gravity model specification in which trade flows
depend on (1) gravity determinants (countries’ economic mass and geographical
distance); (2) time-varying covariates such as bilateral real exchange rates, free trade
agreements and common currency union; and (3) time-invariant dummies that proxy
common language and common border. Finally, in line with the New Trade Theory

7See Table 12.1 in SS for the key summary figures of EU trade shares and growths.
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Table 12.1 Estimation results for the panel gravity model without cross-section dependence

OLS FE RE HT AM

gdp 1.6861�� 1.9207�� 1.9049�� 1.9208�� 1.9150��

[0.008] [0.010] [0.010] [0.010] [0.010]

sim 1.0006�� 0.8803�� 0.9833�� 0.8807�� 0.9301��

[0.011] [0.037] [0.031] [0.037] [0.034]

rfl �0:0030 0.0156�� 0.0207�� 0.0157�� 0.0175��

[0.005] [0.006] [0.006] [0.006] [0.006]

rer �0:0079* 0.0211�� 0.0177�� 0.0191�� 0.0192��

[0.003] [0.007] [0.006] [0.006] [0.006]

emu 0.2659�� 0.2109�� 0.2060�� 0.2105�� 0.2079��

[0.032] [0.018] [0.018] [0.018] [0.018]

cee 0.3811�� 0.3860�� 0.3867�� 0.3851�� 0.3860��

[0.019] [0.014] [0.014] [0.014] [0.014]

dis �0:7026�� �0:7864�� �0:7587�� �0:8090��

[0.008] [0.040] [0.090] [0.056]

bor 0.2711�� 0.1220 0.8341 �0:0298
[0.028] [0.164] [1.038] [0.251]

lan 0.5171�� 0.4849�� �0:8909 0.7316��

[0.023] [0.133] [1.880] [0.277]

CD 126.13

p-value 0.00

Notes: Using the annual data over 1960–2008 for 190 country-pairs, we estimate the model (12.1)
and (12.2) without including time specific factors, where the dependent variable is the logarithm
of real total trade flows and the regressors are x0

it D fRER; TGDP;RLF; SIM;CEE;EMUgit and
zi D fDIS;BOR; LANgi. POLS stands for the pooled OLS estimator, FE for fixed effects estimator
and RE for random effects estimator, respectively. For the HT and the AM estimates we consider
the following set of instruments: IV D fRERit;RLFitg. Figures in Œ�� indicate the standard error.
��, � and + denote 1, 5, and 10 % level of significance, respectively. CD denotes the diagnostic test
statistic for the null of no cross-section dependency advanced by Pesaran (2004)

(e.g., Krugman, 1979; Helpman, 1987), we add two more variables: relative factor
endowment and similarity in size. See the Data Appendix for more details with a
priori expectations about the signs of their impacts on trade flows

Table 12.1 presents the estimation results for the basic model with individual
effects only, using the alternative estimation methodologies. The random effects
model (REM) assumption that there is no correlation between regressors and
individual effects is convincingly rejected in all cases considered. Therefore, we
focus on the fixed effects model (FEM) results. The FEM estimation results
are all statistically significant and consistent with our a priori expectations. The
impact of GDP (the sum of home and foreign country GDPs) on trade is positive.
The impact of relative difference in factor endowments between trading partners
(RLF) is significant and positive whilst similarity in size (SIM) boosts trade flows
significantly. A depreciation of the home currency (increase in RER) increases
trade flows as the export component of the total trade is larger than the import.
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Importantly, we find that trade and currency union memberships (CEE and EMU)
significantly boost trade flows, but their magnitudes appear to be substantial at
0.39 and 0.21. This finding confirms our main concern that upward trends in
omitted trade determinants may cause them to be upward-biased.8 We now turn
to the estimated impacts of individual-specific bilateral trade barriers. Under the
maintained assumption that LAN is the only variable correlated with individual
effects (as a proxy for cultural and historical proximity), we select the final set of
instruments containing RER and RLF, after conducting a sequence of the Sargan
tests for the validity of over-identifying restrictions. As the Hausman test does not
reject the legitimacy of the AM-IV estimates, we focus on more efficient AM results,
and find that impacts of DIS and LAN are significant (�0:81 and 0.73) while the
border impact is insignificant and negligible.

Given that (unobserved) multilateral resistance terms and trade costs are likely
to exhibit history and time dependence in a complex manner (e.g. Herwartz and
Weber 2010), we turn to the factor-based panel gravity models proposed by SS. In
Table 12.2, we report two consistent estimators, the PCCE and PC.9 The stylised
findings are summarised as follows: First, the impact of RLF becomes significant
and negative,10 confirming our expectations that its impact on total trade flows (the
sum of inter- and intra-industry trades) may not necessarily be unambiguous (e.g.
Helpman and Krugman 1985). Secondly, similarity turns out to have a larger effect.
Combined together, the intra-industry trade appears to have been the main part of the
total EU trade.11 More importantly, the impacts of CEE and EMU are substantially
smaller albeit still significant. The CEE impact falls to 0.114 and 0.117 for PCCE
and PC estimators while the Euro impact drops sharply to 0.039 and 0.048 for PCCE
and PC. Turing to HT-IV and AM-IV estimates of the impacts of time-invariant
regressors,12 we find that the impacts of distance dummy and language dummy

8When comparing with the estimation results reported in SS for the smaller dataset with 91
country-pairs among 14 EU countries, we find the following notable difference that the impacts
of EMU and CEE increase from 0.21 and 0.14 to 0.39 and 0.31, respectively.
9For the PCCE estimation we consider ft D ˚

TRADEt; TGDPt; SIMt;RLFt;CEEt

�
0

and st D ftg in
(12.3), where the bar over variables indicates their cross-sectional average. For the PC estimation,
we first extract six common PC factors using the Bai and Ng (2002) procedure, and use them as ft

in (12.3) together with st D ftg. See SS for more details about a selection of the final specification
on the basis of statistical significance and empirical coherence.
10This result is crucially different from those reported in SS. This may be due to the fact that
we now employ a larger number of country-pairs. In particular, the OECD dataset includes large
countries such as the US, Japan and Canada, that have recently experienced a steady growth in
the intra-industry trade. The presence of those countries might help to better identify the effect of
relative factor endowments by fostering intra-industry trade, see OECD (2010).
11We observe form Table 12.1 in SS that the share of the intra-trade increase from 37.2 % in 1960
to around 60 % from 1990 onwards.
12Assuming that LAN is the only time invariant variable correlated with individual effects, we use
the same instrument variables, IV D fRERit;RLFitg. We also consider an additional instrument

set, denoted IV1 D
n
IV; O� it

o
, where O�it D Oi ft, and Oi are estimated loadings. See SS for more

details about a selection of the final set of HT and AM instrument variables.
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are significantly negative and positive whilst the border impact is still insignificant,
a finding consistent with SS. Furthermore, the Hausman test does not reject the
hypothesis that the AM-IV estimates are more efficient.

Similar to the results reported in SS for a smaller EU dataset, we also confirm
that both the PCCE and the PC estimation results are remarkably similar. First,
the coefficient of TGDP converges at around 2.13 Secondly, both the Euro and
the CEE impacts are significant but considerably smaller (around 0.04 and 0.11)
than those reported in Table 12.2 without considering time-varying unobserved
factors. This is generally consistent with the predictions of most recent studies
and survey evidence (Baldwin 2006) as reviewed in Sect. 2. Finally, focussing on
efficient AM-IV estimates, we find that distance and common language dummies
exert significantly negative and positive impacts on trade. But, the border impact
appears to be insignificant.

Tables 12.3 and 12.4 display the estimation results for SARAR models with
endogenous interaction effects among the dependent variables (spatial lag effects)
and the interaction effects among the disturbance terms (spatial error component
effects). To examine the robustness of the estimation results, we consider four
different spatial weight matrices so as to capture potentially complex spatial
interactions: namely, the population-, the trade-, the border- and the distance-based
ones. Following BEK, we first construct the population-based weight matrix, which
is designed to capture the concept of multilateral resistance with respect to country-
pair trade flows; namely, the weight for the pair of countries i and j is given by Lk

L
where Lk is the third country population/trade for k ¤ i and k ¤ j, and L D P

k Lk

is the total population. To examine the robustness of the estimation results, we
consider the trade-based weight matrix, following the global macroeconometric
modelling (e.g. Greenwood-Nimmo et al. 2013). Further, as commonly used in the
spatial econometric literature, we also consider the distance-based weight matrix
by employing the inverse squared distance using the geographical coordinates of
countries pair capitals, and the border-based one on the basis of contiguity. Hence,
for the pair of countries i and j, the distance and the border matrices capture the
geographical proximity between countries j and k. In all four weight matrices, our
prior is a negative spatial autoregressive coefficient, �.14 We find that the impacts of
GDP, SIM and RLF are significantly positive. A depreciation of the home currency
(increase in RER) leads to an increase in trade flows for the case of W D border and

13Serlenga (2005) estimates coefficients on GDPh and GDPf , using the triple index model, where
h and f indicate home and foreign countries, and finds that the sum of their coefficients are close
to the coefficient on TGDPhf obtained from the double index model.
14We expect � to be negative because it measures the multilateral trade resistance. For example,
if the trade barriers between country k and country j (k ¤ i and k ¤ j) are reduced, then the
trade flow between country j and country k increases while the trade flow between the country i
and j decreases. Indeed we find that the autocorrelation coefficient between y and Wy is �0:014 for
W D trade, �0:019 for W D population, �0:218 for W D distance, and �0:165 for W D border.
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Table 12.3 Estimation results for the panel gravity SARAR model with W = Pop and W = Trade

W=Pop W=Trade

gdp 2.3967�� 2.1667��

[0.059] [0.060]

sim 0.9871�� 1.231��

[0.054] [0.042]

rfl 0.0239�� 0.0026

[0.0051] [0.0051]

rer �0:0173�� �0:0235��

[0.0057] [0.0059]

emu 0.1879�� 0.1907��

[0.0216] [0.022]

cee 0.3955�� 0.3856��

[0.0149] [0.015]

Spatial �0:1692�� �0:0806��

rho [0.0256] [0.0265]

lambda 0.7531�� 0.7503��

[0.0137] [0.0156]

OLS HT AM OLS HT AM

con 5.062 �� 4.359 �� 5.118 �� 2.852 �� 3.743 �� 5.118 ��

[0.601] [1.176] [0.667] [0.450] [0.554] [0.667]

dis �1:067�� �0:949�� �1:076�� �0:874�� �0:856�� �1:076��

[0.075] [0.176] [0.087] [0.056] [0.082] [0.087]

bor �0:296 1.395 �0:451 0.057 0.319 �0:451
[0.308] [2.080] [0.332] [0.231] [1.024] [0.332]

lan 0.481 * �2:643 0.776 * 0.519 �� 0.035 0.776 *

[0.251] [3.686] [0.361] [0.188] [1.868] [0.361]

Sargan �21 D 0:005 �250 D 58:31 �21 D 0:095 �250 D 59:75

p value 0.941 0.196 0.761 0.162

Hausman H1:�23 D 0:092 H1:�23 D 0:084

p value 0.901 0.999

CD 9.961 7.089

p value 0.000 0.000

Notes: Using the annual data over 1960–2008 for 190 country-pairs, we estimate the SARAR
model (12.11) and (12.12). Figures in [.] indicate the standard error. ��, � and + denote 1, 5, and
10 % level of significance, respectively. The weight matrices used in the estimations are: Population
and Trade. See also note to Table 12.1
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Table 12.4 Estimation results for the panel gravity SARAR model with W = Border and W =
Distance

W=Border W=Distance

gdp 2.0393�� 2.3647��

[0.0132] [0.0390]

sim 0.7594�� 0.8778��

[0.0351] [0.0417]

rfl 0.0059 0.0120��

[0.0052] [0.0049]

rer 0.0321�� 0.0960��

[0.0072] [0.0081]

emu 0.2267�� 0.2201��

[0.0207] [0.0198]

cee 0.3261�� 0.3683��

[0.0143] [0.0148]

Spatial �0:0786�� �0:2100��

rho [0.0092] [0.0198]

lambda 0.3842�� 0.6184��

[0.0125] [0.0121]

OLS HT AM OLS HT AM

con 5.262 �� 4.937 �� 5.353 �� 5.172 �� 5.198 �� 5.449 ��

[0.480] [0.732] [0.496] [0.622] [0.751] [0.675]

dis �0:910�� �0:855�� �0:923�� �0:971�� �0:975�� �1:011��

[0.060] [0.109] [0.064] [0.078] [0.110] [0.087]

bor 0.091 0.874 �0:043 �0:212 �0:274 �0:610
[0.246] [1.266] [0.259] [0.318] [1.324] [0.468]

lan 0.510� �0:937 0.721� 0.440� 0.555 1.057�

[0.200] [2.268] [0.309] [0.259] [2.465] [0.399]

Sargan �21 D 1:816 �250 D 59:51 �21 D 9:303 �250 D 56:81

p value 0.177 0.167 0.002 0.236

Hausman H1:�23 D 0:866 H1:�23 D 0:671

p value 0.923 0.954

CD 7.497 3.571

p value 0.000 0.000

Notes: Using the annual data over 1960–2008 for 190 country-pairs, we estimate the SARAR
model (12.11) and (12.12). Figures in [.] indicate the standard error. ��, � and + denote 1, 5, and
10 % level of significance, respectively. The weight matrices used in the estimations are: Border
and Distance. See also note to Table 12.1
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W D distance, but a decrease in trade for W D trade and W D pop.15 We also find
that trade and currency union memberships (CEE and EMU) boost real trade flows
significantly.

We now follow LeSage and Fisher (2010), and discuss the estimation results
for the spatial gravity model in terms of direct and indirect effects. To this end we
rewrite (12.5) as follows:

yt D �Wyt C Xtˇ C Z� C "t; t D 1; : : : ;T (12.12)

where yt D . y1t; : : : ; yNt/
0, W D ˚

wij
�N

i;jD1 is the N � N spatial weight matrix, Xt D
�
x0
1t; : : : ; x

0
Nt

�
is the N �k matrix of time-varying regressors, Z D �

z0
1; : : : ; z

0
N

�
is the

N �g matrix of time-invariant regressors,and "t D ."1t; : : : ; "Nt/
0 with "it D Q̨ i Cvit.

We then rewrite (12.12) as

yt D .IN � �W/�1 .Xtˇ C Z� C "t/ : (12.13)

Then, the impacts of a change in the rth time-varying regressor corresponds to the
following N � N matrix of partial derivatives:

@yt

@Xrt
D .IN � �W/�1 ˇr; r D 1; : : : ; k (12.14)

Notice that diagonal elements of (12.14) (direct impacts), are different across cross-
section units; off-diagonal terms (indirect impacts) differ from zero, and the matrix
is not symmetric. We now have N direct effects and N.N � 1/ indirect effects.
To avoid such an interactive heterogeneity issue, LeSage and Pace (2009) suggest
to employ only three scalar measures to summarise information contained in the
matrix (12.14): the average of the N diagonal elements as a measure of direct effects,
the average of the N.N � 1/ off-diagonal elements as the average of the cumulative
indirect effects and the average total effect as the mean of total effects.

From Table 12.5 we find that the direct effects are always positive while the
indirect effects are mostly negative and significant.16 Thus, the estimated total
effects are smaller than the main estimates reported in Tables 12.3 and 12.4. As
discussed in footnote 16, we also notice that the signs of impacts of real exchange
rates on trades are different across different spatial weights. Furthermore, we find

15These contradictory findings can be explained as follows: When we use W D border and
distance, the spatial matrices capture the effect of proximity and distance on trade flow, and
therefore, a depreciation of the home currency leads to an increase in trade flow, especially as
the distance rises. On the other hand, when we employ W D trade and pop, the spatial matrices
control for multilateral resistance in which case it would prevent the trade flow (exports) to increase
as RER rises.
16For example, the indirect spillover effects of GDP, SIM, EMU and CEE are all negative and
significant. Where indirect effects are positive, they are insignificant or negligible.
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that indirect spillover effects of RFL are significantly negative only for W D Pop
and Distance.

Comparing the estimation results for the spatial-based panel gravity models in
Tables 12.3 and 12.4 with those for the factor-based models in Table 12.2, we
notice the following important differences: The impact of RLF is rather positive
and significant for W D pop and W D distance. Secondly, as explained above,
the effect of depreciation of home currency depends on the way we model spatial
spillover effects. Thirdly, the impacts of EMU and CEE are around 0.2 and 0.3
and substantially higher than those obtained by the factor-based models. These
values are rather close to the estimates obtained under the basic model specification
without controlling for cross-section dependence. To investigate this issue further,
we apply the cross-section dependency (CD) test advanced by Pesaran (2004)
to the residuals obtained from the spatial-based gravity models, we find that the
null of no cross-sectional dependence is strongly rejected for all of the models
as reported in Tables 12.3 and 12.4. On the other hand, we find from Table 12.2
that the null hypothesis is only marginally rejected for the factor-based models.
Overall evidence may suggest that the spatial model does not fully accommodate
the potential correlation between regressors and unobserved individual and time
effects.

Given that most of existing studies neglect an important issue of evaluating the
currency union effects on trade through bilateral resistance channels, SS propose
an alternative way to testing the Euro effect on trade integration by testing the
validity of the hypothesis that the Euro might have caused a fall in trade impacts
of bilateral trade barriers, if it had a positive effect on internal European trade
(by reducing overall trade costs). In particular, we will examine whether the
coefficients on bilateral resistance proxies (� ) tend to be more downward-sloping
after the introduction of the Euro in 1999 than before. If so, this implies a (indirect)
positive effect of the Euro on the European Integration. To this end, we re-estimate
the model, (12.9), by the cross-section regressions for each time period. After
consistently estimating Odit in (12.9) by the factor-based PCEE and PC estimators or
the spatial-based SARAR estimators, we apply the more efficient AM-IV estimation
and perform the following cross section regression for each t:

dit D ai C � 0
tzi C eit; i D 1; : : : ;N;

where zi includes Disi, Bori and Lani.
Figures 12.1 and 12.2 display the estimation results for the time-varying coeffi-

cients of O� . Overall, we find that the downward slopes of coefficients are steeper for
both border and language effects after 1999 than before 1999.17 Also, their decreases

17Close inspection of Figs. 12.1 and 12.2 reveals that here are the following (minor) differences
among six different estimation results: The decrease in border and language effects is slightly more
pronounced for the PCCE estimator than the PC estimator. Turning to the spatial models, we find
that the time-varying patterns for W = Population and W = Distance are similar whereas the spatial
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Fig. 12.1 Time-varying trade impacts of bilateral trade barriers for the factor-based gravity
models. Notes: We estimate the time-varying impacts of bilateral trade barriers (distance, border
and language) on trade flows by applying the two-step AM-IV estimators as follows: In the first-
step, we estimate the factor-based gravity model, (12.1)–(12.2), by PCCE or PC estimators as in
Table 12.2. Then, in the second-step, we estimate (12.9) by the cross-section regression at each
time period. See SS for details. To enhance visibility, we super-impose the fitted relative slopes

turn out to be sharp and monotonic. The declining language impacts may reflect the
progressive lessening of restrictions on labor mobility within EU (e.g. Rauch and
Trindade 2002). Importantly, the monotonically declining border impacts especially
after 2000 suggest that the Euro help to reduce border-linked trade costs. Finally,
we find that the distance effects on trade have been more or less stable or slightly
increasing over the full sample period. This evidence provides support for the studies
by Disdier and Head (2008) and Jacks (2009), who document that the notion of
the death of distance has been difficult to identify in the present-day trade data.18

Overall, these findings suggest that the introduction of the Euro helps to reduce
trade effects of bilateral trade barriers and promote more integration among the EU
countries.

models with W = Trade and W = Border produce similar results. Further, the fall in language effect
is sharper for W = Distance.
18On the basis of our most preferred specification with unobserved factors (strong CSD) and
endogeneity (AM-IV estimates), we are able to document a negative albeit the lower impact of
distance on trade.



12 Multilateral Resistance and the Euro Effects on Trade Flows 273

0
.5

1
1.

5

0 10 20 30 40 50
year

Fitted values Fitted values
border_IV distance_IV
Fitted values Fitted values
language_IV

W=Pop

0
.5

1
1.

5

0 10 20 30 40 50
year

Fitted values Fitted values
border_IV distance_IV
Fitted values Fitted values
language_IV

W=Trade

0
.5

1
1.

5

0 10 20 30 40 50
year

Fitted values Fitted values
border_IV distance_IV
Fitted values Fitted values
language_IV

W=Border

.5
1

1.
5

2

0 10 20 30 40 50
year

Fitted values Fitted values
border_IV distance_IV
Fitted values Fitted values
language_IV

W=Distance

Fig. 12.2 Time-varying trade impacts of bilateral trade barriers for the spatial-based gravity
models. Notes: We estimate the time-varying impacts of bilateral trade barriers (distance, border
and language) on trade flows by applying the two-step AM-IV estimators as follows: In the first-
step, we estimate the spatial-based gravity model, (12.11)–(12.12), by SARAR estimators with
W = Pop, Trade, Border and Distance as in Tables 12.3 and 12.4. Then, in the second-step, we
estimate (12.9) by the cross-section regression at each time period. See SS for details. To enhance
visibility, we super-impose the fitted relative slopes
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12.5 Conclusion

The investigation of unobserved and time-varying multilateral resistance terms in
conjunction with omitted trade determinants has assumed a prominent role in the
literature on the Euro’s trade effects (e.g. Baldwin 2006). To address this important
issue we apply the panel gravity models to the dataset over the period 1960–2008 (49
years) for 190 country-pairs amongst 20 OECD member countries, employing two
recent methodologies: the factor-based approach proposed by SS and the spatial-
based techniques developed by Behrens et al. (2012).

The estimation results for the factor-based model provide the following stylised
findings: First, the sum of home and foreign country GDPs significantly boosts trade
while a depreciation of the home currency increases trades. Secondly, the impact of
difference in relative factor endowments is significantly negative whilst the effect
of similarity is positive. This suggests that similarity (in terms of countries’ GDP)
helps to ease the integration process by capturing trade ties across countries and the
diversity in relative factor endowments (decrease in RFL) boosts trades as suggested
by Heckscher Ohlin’s theory. Thirdly, the impacts of distance and common language
on trade are significantly negative and positive whereas the border impact is
insignificant. Further investigation of their time-varying coefficients reveals that
border and language effects started to fall more sharply after 1999. Finally and
importantly, we find that both the Euro and the custom union impacts on trade
amounts only to 4–5 % and 11 %. Combined together, these findings may support
the idea that the potential trade-creating effects of the Euro should be viewed in
terms of the proper historical and multilateral perspective rather than simply in terms
of the formation of a monetary union as an isolated event.

Next, from the estimation results for the spatial-based gravity model, we find
that the impacts of the Euro and the custom union on trade rises to 20 % and 30 %,
respectively, which are both significantly higher than those obtained by the PCCE
and the PC estimators. Furthermore, the CD test results confirm that the factor-based
model is able to better accommodate correlation between regressors, unobserved
individual and time effects. This evidence highlights an importance of appropriately
controlling for cross-section dependence in the panel gravity models of trade flows
through the use of both observed and unobserved factors in order to account for
time-varying multilateral resistance, trade costs and globalisation trends.

12.6 The Data Appendix

Here we revise and update the data appendix of Serlenga and Shin (2007) for the
sake of completeness.

All variables are converted into constant dollar prices with 2005 as the base
year. The dependent variable is the logarithm of real total trade given by Tradeit D
ln
	

XR
hft C MR

hft



, where XR

hft is the bilateral real export from country h to country
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f , and MR
hft are bilateral real imports from country h to country f , at time t with i

denoting the country-pair.
Regressors can be divided into two categories: time-varying and time-invariant

variables. First, the time-varying regressors are:

TGDP is the (log of) total GDP defined as TGDPit D ln
	

GDPR
ht C GDPR

ft



,

where GDPRs are defined as gross domestic products at constant (2005) dollar prices
for home and foreign countries, respectively. TGDP proxies overall economic mass
of the trading pair countries, and it is expected to exert a positive effect on bilateral
trade.

SIM is the measure of countries’ similarity in size constructed as

SIMit D ln

2

41 �
 

GDPR
ht

GDPR
ht C GDPR

ft

!2
�
 

GDPR
ft

GDPR
ft C GDPR

ht

!23

5 I

This index is bounded between zero (absolute divergence) and 0.5 (equal size). The
SIM effect on trade is expected to be positive.

RLF is a measure of countries’ difference in relative factor endowments,
constructed as

RLFit D ln
ˇ̌
PGDPR

ft � PGDPR
ht

ˇ̌
;

where PGDPR is per capita GDP. The higher is RLF, the larger is difference between
their factor endowments, resulting in the higher volume of inter-industry trade and
the lower share of intra-industry trade. Therefore, the total impact of RLF on trade
flows (sum of inter- and intra-industry trades) might not be unambiguous.

RER is the real exchange rate in constant (2005) dollars, defined as RERit D
NERit � XPIUS, where NERit is nominal exchange rate between currencies h and f
in terms of the U.S. dollars, XPIUS is the exports price index. RER is the price of
the foreign currency per the home currency unit and is meant to capture the relative
price effects. A depreciation of the home currency relative to the foreign currency
(an increase in RER) should lead to more export and less import for home country.
The effect of real exchange rates on trade flows will be positive if the export is
significantly larger than the import, and vice versa, e.g., Egger and Pfaffermayr
(2003).

CEE is the European Community dummy, which is equal to one when both
countries belong to the European Community, and it is expected to exert a positive
impact. See also De Sousa and Desdier (2005) and Cheng and Wall (2005) for an
analysis of the effects of regional trading blocks.

EMU is the European Monetary Union dummy which is equal to one when both
trading partners adopt the Euro. Given that an official motivation behind the EMU
is that the single currency will reduce the transaction costs of trade, the impact of
EMU on trade flows is expected to be positive.



276 C. Mastromarco et al.

Next, we consider the following time-invariant variables:
LAN is the dummy for common language, which is equal to one when both

countries speak the same official language. As LAN is supposed to capture similarity
in cultural and historical backgrounds of trading countries, it is expected to display
a positive effect.

BOR is a dummy for common border which is equal to one when the trading
partners share a border. Its effect on bilateral trade flows is expected to be positive.

DIS is the (log of) distance between countries, where the distance is measured as
the (log) of great circle distance between national capitals in kilometers. The effect
of geographical distance on trade flows is expected to be negative.
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Chapter 13
The Effects of World Heritage Sites on Domestic
Tourism: A Spatial Interaction Model for Italy

Roberto Patuelli, Maurizio Mussoni, and Guido Candela

Keywords Cultural tourism • Domestic tourism • Italy • Spatial competition •
Spatial interaction model • World Heritage Sites

JEL Classifications: C23, L83, R12, Z10

13.1 Introduction

Culture is gaining increasing importance in the modern tourism industry, and
represents a significant force of attraction for tourists (both domestic and inter-
national). Cultural tourism allows destinations and regions to: (1) expand their
customer base; (2) diversify their offer; (3) extend the stay of the tourists (overnight
stays) and reduce seasonality. For these reasons, national governments and regions
make great efforts to obtain official designation for their historical and cultural
attractions, for example through the United Nations Educational, Scientific and
Cultural Organization (UNESCO) World Heritage Sites (WHS) label.

Such aspect seems particularly relevant for a country like Italy, which is
internationally renowned for its abundance of historical and cultural resources, as
shown by its high number of entries in the WHS list, and where regions take an
active role in promoting tourism. As of 2011, the UNESCO WHS list included 936
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sites: 725 were cultural, 183 natural, and 28 mixed, in 153 countries (UNESCO
2011). Italy hosted the greatest number of WHS to date, with 47 sites, corresponding
to 5.02 % of the total.

Tourism is one of the fastest growing and most profitable sectors of the Italian
economy: in 2010, with 43.6 million international tourist arrivals, and international
tourism receipts estimated at US$ 38.8 billion, Italy was the fifth highest tourism
earner and the fifth most visited country in the world (UNWTO 2011), behind
France, Spain, United States, and China.

In this paper, we analyse Italian ‘domestic tourism’, which, according to the
United Nations, is defined as tourism involving residents of a given country
travelling only within the country itself (UNWTO 1994).1 Recently, the tourism
industry has shifted from the promotion of inbound tourism to the promotion of
domestic tourism, because many countries are experiencing increasing competition
on the inbound tourism market. Some national policymakers have shifted their
priority to the promotion of domestic tourism to contribute to the local economy.
Domestic tourism, historically speaking, is in fact the first form of tourism, and
today continues to account by far for most of this activity: it is estimated that
worldwide, out of the 4.8 billion tourist arrivals per year (2008 figures), 4 billion
(83 %) correspond to domestic tourism (Pierret 2011). Likewise, UNWTO scholars
estimate that, globally, domestic tourism represents:

• 73 % of total overnight stays;
• 74 % of arrivals and 69 % of overnight stays at hotels;
• 89 % of arrivals and 75 % of overnight stays in other (non-hotel) accommoda-

tions.

In Italy, it represents the greatest share of the entire tourism sector, and produces
a remarkable macroeconomic impact in terms of value added and labour force. In
2007, domestic tourism provided, on a regional scale, up to 88 and 90 % of arrivals
and overnight stays, respectively (Massidda and Etzo 2011).

Several studies have investigated whether or not WHS endowment, or more
generally cultural offer, increases tourism demand. However, the empirical evidence
on this issue is mixed. A number of studies claim that the cultural heritage
and attractions of a country are important determinants of tourism demand (see,
e.g., Carr 1994; Alzua et al. 1998; Vietze 2008), while others conclude that it
is not possible to find a clear positive relationship between cultural endowment
and tourism flows (see, e.g., Cuccia and Cellini 2007; Cellini and Cuccia 2013).
Regarding specifically WHS endowment, UNESCO declares that obtaining a WHS
designation provides significant economic benefits to the host countries (UNESCO
2012). Nevertheless, there is no agreement on this finding in the scientific literature,

1The UNWTO also derived different categories of tourism by combining the three basic forms
of tourism: ‘internal tourism’, which comprises domestic tourism and inbound tourism; ‘national
tourism’, which comprises domestic tourism and outbound tourism; and ‘international tourism’,
which consists of inbound tourism and outbound tourism.
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and the debate, focusing on international tourism, is still open (see, e.g., Arezki et al.
2009; Yang et al. 2010; Cellini 2011; Yang and Lin 2011).

On the basis of the above discussion, the aim of this paper is to investigate
the determinants of Italian domestic tourism flows, with particular reference to the
specific contribution of the endowment in WHS. The main concern of this paper
is to investigate the importance of the regional endowment in WHS for domestic
tourism. We analyse how and to what extent WHS designation affects the flows of
tourists between each pair of Italian regions (i.e., between any origin and destination
region). The domestic tourism setting, using regional data, provides a more fitting
framework for analysing spatial interaction and spatial competition phenomena. We
do not analyse international tourism flows (to and from Italy), because of lack of
data (for consistency with the modelling framework employed, data on international
flows to and from each Italian region would be necessary).

To the best of our knowledge, two specific research questions remain unanswered
in the literature on the relationship between WHS endowment and tourism: (1) How
differently does the WHS endowment of the origin and destination regions influence
tourism flows (i.e., in a push/pull perspective)? (2) Does WHS endowment generate
spatial substitution or complementarity between regions?

Accordingly, the objectives of this paper are: (1) to separate the effects on tourism
flows of WHS located in the residence region of the tourist (the origin region) and
in the destination region; and (2) to take into account potential spatial substitution
or spatial complementarity between regions due to their WHS endowment.

Specifically, our first research question, regarding the origin- and destination-
level effects of WHS endowment, can be further stated as follows:

• Does the origin region’s WHS endowment push the inhabitants to travel more (or
less), influencing tourism outflows (the ‘push effect’)?

• Does the destination region’s WHS endowment attract greater tourism inflows
(the ‘pull effect’)?

In addition to the effect of WHS endowment on inflows and outflows, we are
interested in evaluating how the tourists’ choices are influenced by the spatial
distribution of the WHS. In particular, our second research question can be declined
as follows:

• Does the WHS endowment of the regions surrounding the tourist’s origin
region create a substitution between ‘recordable’ tourism (arrivals, which involve
overnight stays) and daily trips of excursionists (e.g., within the origin region)?

• Does the WHS endowment of the regions surrounding each possible destination
region cause spatial competition for tourism demand or spatial complementarity
(mutual beneficial effects deriving by trip-chaining) between regions? This
question may be particularly relevant from a policy perspective, since regions
could use WHS designation for competition or towards joint benefits.

With regard to our second research question, we provide an interpretative
framework for the potentially varying effects of WHS endowment of ‘neighbouring’
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destination regions on tourism flows, which is followed by a spatial sensitivity
analysis.

To answer the above questions, we set up a spatial interaction model for tourism
flows recorded between the 20 Italian regions over the years 1998–2009 (i.e., a
12-year panel). We divide the possible determinants of domestic tourism flows into
‘push variables’, ‘pull variables’, and ‘deterrence (bilateral) variables’, and carry
out two Poisson-based (negative binomial) estimations: a two-way fixed effects (FE)
model and a spatial filtering-augmented model (including origin and destination FE
and a network autocorrelation spatial filter).

The paper is organized as follows. Section 13.2 briefly reviews the literature on
the application of the spatial interaction model in tourism studies. Section 13.3
briefly presents the literature on the relationship between cultural heritage and
tourism, and more specifically between WHS endowment and tourism. Section 13.4
describes the model and the variables used, the estimation strategy and an interpreta-
tive model for the spatial sensitivity analysis offered. Section 13.5 describes the data
set used in this study, and presents our empirical findings and their interpretation.
Section 13.6 provides concluding remarks and future research directions.

13.2 Modelling Tourism Flows: Spatial Interaction Models

The spatial interaction model (or gravity model; for an overview, see Haynes and
Fotheringham 1984; Sen and Smith 1995), is a modelling framework commonly
used in many fields, like commuting, migration, trade, leisure activities, and also
tourism. In the case of the latter, it is often used for studying tourism flows between
regions or countries (e.g., Uysal and Crompton 1985; Witt and Witt 1995; Khadaroo
and Seetanah 2008).

Gravity equations have been estimated since the 1960s for analysing bilateral
trade flows (e.g., Tinbergen 1962; Pöyhönen 1963; Anderson 1979; Colwell 1982),
and recent applications increasingly emphasize the importance of estimating a
theoretically consistent model (e.g., Anderson and van Wincoop 2003; Baier and
Bergstrand 2009). The spatial interaction model describes the interaction flow (Tij)
between the origin region i and the destination region j as a function of repulsive
forces/push factors at i (Ri) and attractive forces/pull factors at j (Aj), such as the
economic size of the origins and destinations, and separation variables referring to
the (i, j) pair, such as an inverse function of the friction/distance between the regions
i and j (Dij). A generic formulation of the spatial interaction model can be as follows:

Tij D f
�
Ri;Aj

�

f
�
Dij
� : (13.1)

Formally, a spatial interaction model is specified as:

Tij D G
R˛i Aˇj

D�
ij

; (13.2)
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where G is a proportionality constant, and ˛, ˇ and � are the specific weights of
Ri, Aj and Dij respectively. This multiplicative model is typically estimated after
rendering it linear in parameters through log-linearization, or through nonlinear
optimization techniques, when constraints are applied in order to respect marginal
totals (Wilson 1967, 1970).

Likewise, applications of the spatial interaction model to tourism (see, e.g.,
Armstrong 1972; Crampon and Tan 1973; Malamud 1973; McAllister and Klett
1976; Swart et al. 1978; Saunders et al. 1981) express bilateral tourism flows (Tij)
as a function of the characteristics of the regions of origin i and destination j (Xi

and Xj)—factors that augment or distort tourism flows—and of distance, which
acts as a proxy for transportation costs. More specifically, in the tourism context,
repulsive forces/push factors are associated with leaving i for tourism reasons
(tourism outflows), while attractive forces/pull factors are related to going to j for
tourism reasons (tourism inflows).

Within this framework, tourism flows (in particular arrivals) can be seen in a
similar fashion to migration or commuting flows (e.g., Lowry 1966). Accordingly,
tourism flows could be related, for example, to the number of WHS available in the
destination, and to other control variables evaluated at the same location, like crime
indices and other cultural proxies. On the other hand, flows could also be dependent
on the number of WHS available in the origin, as well as on the population basin or
per capita income, and finally on the distance between the origin and the destination.
An alternative interpretation of the spatial interaction model for tourism consists
of applying a ‘commodity version’ of the model, according to which tourism is
essentially seen as a form of trade, and tourism flows are treated as traded services
(Leamer and Levinsohn 1995; Eilat and Einav 2004; Yang et al. 2010).

In the empirical literature on international and domestic tourism (e.g., Sheldon
and Var 1985; Calantone et al. 1987; Kim and Fesenmaier 1990; Gardini 1998;
Zhang and Jensen 2007; Nicolau 2008; Keum 2010; de la Mata and Llano-
Verduras 2011), the most frequently used dependent variables have been tourist
arrivals or overnight stays, as well as tourist expenditures or receipts. Regarding the
explanatory variables, there is undoubtedly a wide range of possible determinants
of tourism demand, the most prominent being income (GDP at the macro level),
relative tourism prices, transportation costs, exchange rates, and qualitative factors
in destination regions.

In particular, the level of income of the potential tourist affects his/her capability
to pay for travel (Sheldon and Var 1985), while GDP (observed both at the origin and
at the destination) is used as a proxy for market size, and represents push and pull
factors, which influence the value of tourism flows.2 Other important determinants
of tourism demand are: the relative prices of goods and services purchased by
tourists in the destination, compared with the origin and the competing destinations
(see, e.g., Gerakis 1965; Edwards 1976; Bond et al. 1977); transportation costs
(usually proxied for by distance), which refer to the cost of round-trip travel between

2Further specifications in the literature have used population (Linnemann 1966) in order to capture
size effects.
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the origin and destination regions; the exchange rates between the currencies
of origin and destination (mostly relevant in the case of international tourism).
Demand for travel to a particular destination is expected to be positively related
to both income in the origin and exchange rates, and negatively related to both
transportation costs and relative tourism prices.

Further explanatory variables included in tourism demand models (for an
overview, see Sheldon and Var 1985; Lim 1997) are: trip motive or frequency;
destination attractiveness and endowment (climate and temperature, natural envi-
ronment, pollution and environmental quality, culture and history, cultural heritage,
WHS); political, social, cultural and sporting events in the destination; destina-
tion marketing or promotional expenditures (information, tourist services, public
expenditure for culture activities and events, etc.); supply/capacity constraints of
tourist accommodations (carrying capacity); supply-side variables, like tourism and
transport infrastructure of the destination; social variables capturing the role of
public safety, such as the diffusion of small and/or violent crime (Eilat and Einav
2004; Massidda and Etzo 2011); a time trend variable capturing long-run change in
tourist tastes (Barry and O’Hagan 1972) or the steady change in the tourist mix (Fujii
et al. 1985, 1987); lagged variables accounting for dynamics, such as the previous
values of income, relative prices, exchange rates, and foreign investment; proxies for
business travels, such as trade, foreign direct investment, or capital outflows. Finally,
a large number of qualitative factors (typically accommodated by means of dummy
variables) may influence the decision to demand tourism, including the tourists’
attributes (gender, age, education level, and employment/profession), which may
affect leisure time availability or similar constraints.

In this paper, we choose as a dependent variable the bilateral tourism flows (in
terms of arrivals) between each pair of Italian regions, while, in terms of explanatory
variables we consider the main determinants outlined above. Our variable of interest
is the number of WHS existing in each Italian region. Finally, on the basis of the
preceding discussion, we argue that the spatial interaction model is a suitable tool
for investigating the research questions proposed in this paper. We build our model
starting from a standard spatial interaction model for tourism, and we subsequently
augment it by including key variables related to WHS.

To further investigate our research questions, the next section briefly presents the
literature and the ongoing debate on the relationship between cultural heritage and
tourism, and more specifically between WHS endowment and tourism.

13.3 Cultural Heritage, WHS Endowment and Tourism: The
Evidence

13.3.1 Cultural Heritage and Tourism

Many studies aim to investigate whether the cultural endowment and heritage of
a country can be considered as an important determinant of tourism demand, for
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either domestic or international tourism. Several studies claim that cultural heritage
and attractions, in many developed countries, are becoming a major driving force
for further growth of the tourism market, and that the abundance and diversity of
cultural resources are essential assets for a country to develop its tourism industry
(see, e.g., Carr 1994; Markwell et al. 1997; Alzua et al. 1998; McIntosh and Prentice
1999; Herbert 2001; Vietze 2008). According to these studies, all combinations
of natural, cultural, and manmade elements are closely related to the demand
for tourism, since they are unique to the single tourism destinations and cannot
be transferred or reproduced in other locations (Dritsakis 2004). Consequently, a
location endowed with natural landscapes, historical sites, cultural traditions, and
heritage could have a competitive advantage when it comes to attracting tourists.
Moreover, from the viewpoint of domestic tourism, heritage tourism is recognized
as an effective way of achieving the educational function of tourism (Light 2000;
Dean et al. 2002).

However, other studies stress that cultural sites and attractions are not effective
in attracting tourism flows (see, e.g., Cuccia and Cellini 2007). Cellini and Cuccia
(2013) find evidence that tourism flows Granger-cause cultural sites attendance,
while the reverse does not hold, that is, a unidirectional long-run causal link
emerges, but running from tourism flows to cultural sites attendance. Consequently,
it would not be possible to sustain the hypothesis that cultural attractions can
promote tourism in the long run, at least at the aggregate level, and, at most, the role
of cultural sites would be limited to being a marginal product within a destination’s
tourism basket or a possible solution towards decreasing seasonality. Moreover,
contrasting evidence on the relationship between attendance of cultural attractions
and tourism flows was found for other ‘cultural goods’ as well, such as temporary
arts exhibitions (Di Lascio et al. 2011) or museums and monuments (Cellini and
Cuccia 2013).

13.3.2 WHS Endowment and Tourism

We focus on the effects of UNESCO’s WHS designations on Italian domestic
tourism flows, rather than on the overall effects of ‘cultural heritage’,3 or of generic
cultural sites and attractions. According to UNESCO, there are significant economic
benefits to obtaining a WHS designation. This is due to an ‘increase in public
awareness of the site and of its outstanding values’, which would in turn spark an
increase in tourist activities and visitation to the area, with related economic benefits

3‘Cultural heritage’ is defined in Article 1 of the Convention concerning the Protection of the World
Cultural and Natural Heritage (adopted by UNESCO in 1972) as monuments, groups of buildings
and sites that are of ‘outstanding universal value from the point of view of history, art or science’
and form the ‘aesthetic, ethnological or anthropological point of view’.
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not only for the destinations hosting the cultural and natural sites, but also for the
local economy (UNESCO 2012).

There is a large body of literature that investigates the impact of WHS endow-
ment on tourism, although no final evidence appears to have been reached. The
literature on this topic can be divided into four main streams, depending on the
conclusions on the impact of WHS endowment on tourism: (1) the literature which
generally suggests a positive effect; (2) the empirical studies that claim that WHS
designation has a positive but relatively small effect; (3) the recent studies which find
an insignificant effect for tourism but an important effect in terms of protection of
heritage; and (4) the literature on the overall negative aspects of WHS designation.

The early literature focuses mainly on the benefits of WHS designation. Its
primary motivation was the protection and preservation of outstanding natural and
cultural sites, but since the mid 1990s the literature began to analyse also its potential
socio-economic benefits, mostly in terms of possible increases of tourism flows
and revenues (Ashworth and Tunbridge 1990; Drost 1996; Pocock 1997; Shackley
1998; Thorsell and Sigaty 2001). The main conclusions were generally that WHS
designation increases the popularity of a location, acts as a ‘magnet for visitors’, and
is ‘virtually a guarantee that visitor numbers will increase’ (Shackley 1998, Preface).
Therefore, according to this strain of the literature, WHS designation helps building
a ‘destination image’. Moreover, according to more recent studies (Arezki et al.
2009; Yang et al. 2010; Yang and Lin 2011), WHS are increasingly becoming one
of the main touristic resources in many countries. The UNESCO WHS label would
provide a surplus value to the sites, with respect to the generic cultural, historical
and natural sites of a country, as it is expected to have a (strong) impact on tourism
demand, and therefore on tourist arrivals, revenues and jobs creation, all important
aspects for regional development. For example, WHS labels are nowadays widely
used in marketing campaigns to promote tourism, and to increase the visibility of
destinations.

A second stream of (empirical) literature focuses on the quantification of the
impact of WHS designation on tourism flows and revenues. These studies provide
mixed results, and generally suggest that WHS designation has a positive but
relatively small impact on tourism flows (see, e.g., Buckley 2004; van der Aa
2005; Blacik 2007; Soares et al. 2007; Bové Sans and Laguado Ramírez 2011;
VanBlarcom and Kayahan 2011). These studies find a positive association between
WHS designation and tourism flows, but in some cases the evidence presented is
not conclusive. Di Giovine (2009) argues that WHS designations are not ‘impotent
political performances that lead to the commercialization of local monuments’,
but instead are the building blocks of a new social and economic system. Other
studies analyse the relationship between WHS endowment and tourism for specific
countries; for example, Buckley (2004) for Australia, Blacik (2007) for Africa,
Soares et al. (2007) for Portugal, VanBlarcom and Kayahan (2011) for Canada, and
Bové Sans and Laguado Ramírez (2011) for Spain. Most of the sites reported an
average increase of 1–5 % per year in tourists since the designation. However, the
causal link between WHS designation and increased tourism flows above existing
tourism trends is found to be relatively weak, particularly for sites that were already
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major attractions prior to their designation. In fact, according to VanBlarcom and
Kayahan (2011), sites that are globally well known appear to benefit less from WHS
designation relative to sites with a lower global profile. Furthermore, Bové Sans and
Laguado Ramírez (2011) claim that, in order to exploit a WHS for tourism, it is
necessary to enforce policies of external promotion and communication, in order
to clearly position the destination within the tourism market as a ‘cultural heritage
destination’. Finally, according to van der Aa (2005), WHS status leads in particular
to an increase in the number of international tourists, who tend to stay longer and
spend more than domestic tourists.

A third and more recent stream of literature finds an insignificant impact of WHS
designation in terms of tourism flows, but an important effect in terms of heritage
protection (see, e.g., Hall and Piggin 2001; Hall 2006; Cellini 2011). Cellini claims
that the effects of the WHS designation on tourism demand are far from clear-cut
and robust. As a consequence, the main motivation for WHS recognition would only
be a better protection of heritage, through the availability of additional funds. Hall
(2006) states that the common perception is that WHS designation leads to increased
commitment and tourism flows, and to increased public support for site maintenance
and preservation. However, he notes that there are many other implications of a
WHS designation, including ‘potential changed access and use of the site and related
environmental issues, new regulatory structures and altered economic flows’. The
author concludes that much attention has been given to WHS designation, rather
than to how effectively the designation has been implemented.

Finally, a fourth stream of literature suggests an overall negative impact of WHS
designation (see, e.g., Mossetto 1994; Gamboni 2001; Meskell 2002; Frey and
Steiner 2011). In particular, according to some studies (Li et al. 2008; Yang et al.
2010), WHS designation might have a negative impact on heritage conservation,
since the sites could attract an excessive number of visitors, carrying the danger of
seriously compromising the environmental and cultural integrity of the sites.

An alternative stream of literature focuses on the costs of WHS designation, in
comparison with the related benefits, and conducts cost-benefit analyses (CBA).
PriceWaterhouseCoopers LLP (2007) carries out a CBA of WHS designation in the
UK, and finds an increase in tourism flows by 0–3 %, compared to an increase in
costs around £500 K, including bidding costs, cost of the management plan and
management costs of the WHS. Research Consulting Ltd and Trends Business
Research Ltd (2009) report that approximately 70–80 % of WHS sites appear to
be doing little or nothing to exploit the WHS designation towards significant socio-
economic impacts. The authors conclude that management organization, marketing
promotion and stakeholders’ perception of WHS status matter. They argue that the
small-to-null economic impacts of WHS designation found in the early literature are
not surprising, since most of the sites analysed lack the motivation to promote their
WHS designation in order to generate economic gains. VanBlarcom and Kayahan
(2011) find evidence consistent with the conclusions of Research Consulting Ltd
and Trends Business Research Ltd (2009): the economic impact of WHS labels
is site-specific, and is subject to overall tourism trends affecting the level of
tourism flows. In other words, WHS designation alone is not sufficient to stimulate
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transformational change, so the local policymakers must enforce policies aimed at
capitalizing upon it, and invest in the other links within the tourism chain to gain
benefits through a ‘ripple’ effect.

On the basis of the above discussion, we believe that it is highly relevant to
further investigate and assess the extent to which WHS endowment attracts tourists,
in order to gather information that can be critical towards implementing effective
tourism policies, in terms of both promoting cultural tourism and managing potential
damages caused by the overloading of tourists. In particular, we aim to shed light
on the role of WHS endowment in trip generation and assignment, that is, on its
influence over the outflows and inflows of tourists. The studies reviewed above
investigate the impact of WHS endowment on tourism by applying a variety of
econometric models. However, none of them faces the problem from a spatial
interaction perspective. In addition, the current applied literature does not provide
empirical evidence on how the spatial distribution of amenities (in our case, WHS)
affects tourists’ trips, in a competing destinations (Fotheringham 1983) or trip-
chaining perspective. Following these reflections, the subsequent section outlines
the empirical model used in this paper, and further specifies our research questions
and their operationalization.

13.4 Model and Estimation Strategy

13.4.1 Model

Most applications of the spatial interaction model in the tourism domain regard
international tourism. Nevertheless, models for international or domestic tourism do
not differ in their fundamentals, but with respect to the set of explanatory variables
considered. In the international domain, exchange rates, institutional factors, trade
intensity, and common characteristics of countries (such as language) are important
drivers of tourism flows. For domestic tourism, such variables are generally not
relevant (institutions and language tend to be invariant within a country, and
interregional trade is seldom measured) or indirectly related (e.g., the substitution
effects generated by exchange rate variations may alter the distribution of domestic
tourism). On the other hand, variables relating to demand (e.g., GDP or per capita
GDP) or supply (e.g., kms of coastline, investment in recreational activities, cultural
offer) can easily be interpreted in a domestic setting as well.

We start from a standard spatial interaction model, by considering two types of
variables: origin-related and destination-related. In addition, bilateral variables are
frequently given in the context of international tourism, while geographical distance
remains a variable of interest in the domestic context as well. In particular, although
most origin or destination variables can be reformulated (and reinterpreted) in a
bilateral fashion (i.e., in terms of differentials), in our modelling framework we
prefer to maintain the bidimensionality of our information, so to differentiate the
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effect of the characteristics of the origins on outgoing flows, and of destination
characteristics on incoming flows.

Our model can be written as follows:

Tij D f
�
Xi;WHSi;L:WHSi;Xj;WHSj;L:WHSj;Dij

�
; (13.3)

where Tij is the flow of tourists from region i to region j, Xi and Xj are the
vectors of values for the origin (push) and destination (pull) variables given above,
respectively, and Dij is the geographical distance between the two regions.4 We
exploit the full origin-destination (OD) matrix, therefore including all cases of i D j
(i.e., intra-regional flows). Because of data availability, most variables are lagged, in
the empirical specification, by 1 or 2 years. By means of Eq. (13.3), we can separate
the main effect (direct effect) of WHS endowment of the origin and destination on
tourism flows (WHSi and WHSj) from the indirect effect of WHS endowment of
their surrounding regions (L.WHSi and L.WHSj; see below for discussion).

We model interregional tourism flows, measured as arrivals in hotels and other
accommodation structures, as a function of a number of control variables incorpo-
rating push and pull factors, including regional population and GDP, evaluated at
both the origin and destination regions, in order to capture information on market
size and income (i.e., GDP conditional to market size), respectively. For the origin
region, these variables are commonly expected to be associated with a positive effect
on tourism flows. For the destination region, GDP can still be interpreted in a market
size fashion, to account for the share of business trips over total flows, and both
GDP and population may have an influence on the choice of destination both as a
positive effect, proxying for the level of economic development, and as a negative
effect, since tourists could prefer visiting less-industrialized (or less dense) and more
relaxing areas (see, e.g., the ‘snob effect’, in Candela and Figini 2012). Because
income tends to influence consumption choices with a delay, we use lagged GDP.

Furthermore, we control for the price dynamics in the origin and destination
regions, to cope with variations in the costs of living. More precisely, we use
a price index computed regionally and specifically for the hotels and restoration
sector.5 Destination prices are commonly used in the tourism modelling literature
and are expected to negatively affect inflows, while origin prices may be expected
to have the opposite effect, pushing tourists out in search of price-effectiveness. In

4A further (binary) variable, simply indicating a relationship of spatial contiguity (shared border)
between the origin and destination regions could be employed, if it is of interest to parcel this
component out from the average effect of distance. We choose not to follow this approach, so to
maintain the most general estimate for distance deterrence.
5One would prefer to use regional power-purchasing-parity (PPP) price indices to account for
relative consumption prices. However, such indices are not available from the Italian National
Statistical Agency and have been computed only in one study (ISTAT, Unioncamere and Istituto
Tagliacarne 2010). Additionally, the FE estimators used in this paper would render the long-run
levels of relative price irrelevant (they are absorbed into the FE), so that only short-run inflation
trends would be identified (as for the variable used here).
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other applications, the ratio between destination and origin prices is used to permit
substitution between the choice of a destination and the local tourism/stay-home
hypothesis (or, in the international tourism framework, between foreign destinations
and domestic tourism; Witt and Witt 1995).

We include in the model further regional characteristics, aiming to account for the
diffusion of crime, public spending in recreational activities, regional reliance on the
tourism industry and seasonal concentration of tourism, public transport efficiency,
cultural demand, and environmental quality. In detail, with regard to crime diffusion,
we employ two indices, which denote small crime and violent crime, respectively.
With regard to the destination, regions with high crime rates may be expected to
show a diminished interest from tourists, all being equal, because of safety concerns.
On the other hand, a region with renowned tourism sites may actually attract further
criminals seeking potential victims (Eilat and Einav 2004; Dhariwal 2005), therefore
incorporating the medium-long run level of local tourism demand. As far as the
origins are concerned, we may expect residents of high-crime regions to be more
likely to travel, in order to alleviate, at least temporarily, their risky condition.
However, this effect may indeed be difficult to catch, even conditionally to per capita
income, if the income distribution is strongly unequal (that is, a vast share of the
population would not be able to afford travelling). Finally, to control for possible
endogeneity of the tourism-crime relationship, we enter the small crime and violent
crime variables in the model in lagged form.

In order to account for the different tourism ‘vocation’ of regions, and their
reliance on this sector, we include a variable reporting the share of regional value
added of the macro-sector including commerce, hotels and restaurants, transports
and communications over total value added. Similarly, we account for the share of
regional public spending invested in recreational, cultural and religious activities. A
third variable accounts for the regions’ reliance on off-season tourism.

We may expect the tourism specialization variable to account, for destination
regions, for most of past unobservable factors that make a region a staple in
(domestic) tourism, and therefore to be positively correlated with flows. With regard
to origin regions, sign expectation is ambiguous. On the one hand, residents of
tourism-relying regions might tend to have repulsion for traditional (hotel) tourism.
On the other hand, a phenomenon of tourism ‘addiction’ à la Becker (1996) might
be observed, for which the residents of such regions would appear to travel more,
on average. Public spending in recreational/cultural activities represents, in our
model, the investment of local administrations towards attracting tourists. As such,
we should expect a positive effect on flows with regard to destination regions.
However, this spending can also be seen as the administrations’ attempt to face
a medium-term scarcity in tourism demand, eventually showing a possible negative
correlation with tourism flows. A similar reasoning goes for the origin region, where
the residents may be more likely to stay or to undertake shorter (1-day) trips, if local
recreational and cultural activities generate a significant interest, while if spending
efforts are made in order to catch up with more successful regions, we might
observe greater tourism outflows. Finally, the variable for the number of off-season
tourists (per inhabitant) accounts for the regions’ success in extending their period
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of touristic consumption, for example by diversifying their touristic offer. Regions
with higher off-season tourism are expected to experience greater inflows, while
a sign expectation at the origin level can hardly be formulated. For both tourism
specialization and recreational spending, we include the variables in lagged form, to
allow for habit formation and the fact that, for example, longer periods of time are
needed for public events to develop a ‘reputation’.

On the supply side, more variables are included, namely the share of satisfied
customers of the regional railway service, and the percentage of coastline unsuit-
able for bathing. The former accounts for the provision and quality of transport
infrastructure, which can be expected to influence flows both at the origin and at the
destination. The latter is an indicator of the quality of waters for coastal regions (in
Italy, 15 of 20 regions have access to the sea), and therefore should be expected
to negatively influence flows to the destination region, and positively influence
outflows from the origin region.6

On the demand side, we account for the quality of the cultural offer by including
the average number of visitors per state museums, and the number of tickets sold
per inhabitant for theatrical and musical events. Both variables can be expected to
have a positive effect on inflows of tourists, while the expected sign at the origin is
unclear: on the one hand, higher quality attractions in the region of residence may
diminish outflows; on the other hand, we might again observe a phenomenon of
‘addiction’, for which the residents of a cultural endowed region might travel more
to experience further cultural goods.

The first research question we aim to answer is whether the regional endowment
in WHS has a measurable effect on domestic tourism flows, and how this (potential)
effect can be decomposed in an origin-level effect and a destination-level effect.
More precisely, we aim to evaluate whether WHS-endowed regions (1) generate
more or less recordable outflows, and (2) attract greater inflows.

With respect to the first case, both a positive and a negative effect may be
expected. On the one hand, we might expect regions which are endowed in WHS
to experience lesser tourist outflows, if the residents’ opportunity cost linked to
travelling is evaluated on the basis of the lower opportunity cost of visiting local
valuable cultural sites. As a result, if potential tourists prefer to travel locally, in
particular by daily excursions, recorded flows—which are collected at hotels and
other accommodations—would be diminished, leading to a negative push effect.
On the other hand, a positive push effect might be found if the region’s residents
tend to be more curious, and therefore to generally travel more, when they are
locally surrounded by cultural sites (because of love for variety). The second case
is more straightforward, that is, WHS endowment allowing regions to attract a
greater number of tourists. We expect a positive sign for this effect, since a negative

6The variable for the share of coast unsuitable for bathing should ideally be complemented by a
variable for the length of the coast, in order to account for landlocked regions. As for other time-
invariant variables (e.g., indicator variables for regions bordering with other countries), it is not
possible to include them in our models (unless interacted with time-varying variables), as their
effect is accounted for by the FE.
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one could only be justified by a crowding out effect of international tourists (not
considered here) on domestic tourists.

The paper’s second research question deals with the tourists’ behaviour with
respect to the spatial distribution of the WHS endowment of the regions. As above,
we can subdivide it in two subquestions: (1) Does the WHS endowment of the
regions surrounding the origin influence tourists outflows? (2) Does the WHS
endowment of the regions surrounding a destination influence its inflows?

The first subquestion can be reconducted to the justification of the similar
question we introduced above with respect to the WHS endowment of the origin
region. We hypothesize that, the higher a WHS endowment is available in nearby
regions, the more potential tourists could be induced to substitute ‘traditional’
tourism (i.e., hotel arrivals, involving overnight stays, and therefore recordable)
with ‘daily excursions’, inducing a negative effect on recorded outflows. The second
subquestion has both an empirical interest and a policy one. Fotheringham (1983)
has shown, in his work on competing destinations theory, that the spatial interaction
model is better specified when the clustering of possible destinations is explicitly
taken into account within the theoretical model leading to a multinomial logit (at the
individual level). In other words, he showed that the individual does not have perfect
information on the characteristics of all destinations, and that he/she will consider,
for each possible destination, alternatives clustered in its proximity. Eventually, this
boils down to incorporating in the spatial interaction model an additional variable
describing the alternative destinations, usually in terms of accessibility. In tourism
modelling, an attempt to include such aspects in an empirical model is made by
Khadaroo and Seetanah (2008), who, in a study on international tourism, include a
binary variable for the presence of nearby alternative destinations.

With regard to our case study, we model accessibility to alternative destinations
by considering the WHS endowment of the regions surrounding each destination
(i.e., we use a rook contiguity definition of proximity7). We hypothesize that
the tourist’s set of information—for the purposes of evaluating a destination’s
attractiveness—is limited to just the set of all neighbouring alternative destinations.
We may frame this approach within the more general framework of the prominence
models described in Sen and Smith (1995), which includes, among others, Fother-
ingham’s model of competing destinations (Fotheringham 1983). An estimated
positive effect for the endowment of neighbouring destinations would therefore
imply that a phenomenon of trip-chaining exists (spatial complementarity), in which
the tourists consider potential visits to WHS outside of the destination region (but
relatively close). On the other hand, a negative sign would instead imply that the
‘competition’ of alternative WHS decreases a region’s inflows (spatial competition).
This aspect assumes great relevance from a policy perspective, in a framework like

7When a contiguity rule is applied to define proximity, two regions are defined as neighbours if
they share a border. In rook contiguity, the common border has to have length greater than zero,
while in queen contiguity common borders of length zero are allowed as well.
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the one of Italy, where regional agencies are in charge of promoting tourism, and
where lobbying activities for the designation of additional WHS is strong.

The two research questions outlined above are operationalized in a spatial
interaction model by including, for the first research question, two variables, WHSi

and WHSj, accounting for the WHS endowment of each origin and destination
region, respectively. With regard to the second question, we include the average
WHS endowment of regions contiguous to each origin and destination. The new
variables, L.WHSi and L.WHSj, are computed as W * WHSi and W * WHSj,
respectively, where W is a 20 � 20 row-standardized spatial weights matrix defining
contiguity relations of proximity between all regions.

The inclusion of spatial lags of other independent variables is equally interesting
and useful from an econometric viewpoint, as it helps accounting for omitted
spatial dependence. In a linear estimation framework, this has been shown to result
in spatially correlated model residuals and model parameter estimates which are
inefficient and potentially biased (LeSage and Pace 2009). Theoretically, spatial lags
could be computed for all explanatory variables in the model, therefore covering as
much omitted information as possible. At the same time, accessibility to all other
destination characteristics, as modelled for WHS, can be of interest to the analyst,
in particular when considering the possibility that tourists simultaneously consider
various characteristics of neighbouring destinations in forming their ideal trip (e.g.,
combining a seaside vacation with some cultural activities in a nearby region). We
spare this additional analysis for model parsimony and to focus on our interest
variable.

The following sections describe the empirical estimation method and provide
an interpretative framework for the varying direct and indirect effects of WHS
endowment on tourism flows, according to a spatial sensitivity analysis.

13.4.2 Estimation

We estimate our model for a panel of all 20 Italian regions, and 12 years (1998–
2009). Considering the time dimension, we can again generically write Eq. (13.3)
for estimation purposes, as follows:

Tijt D f
�
˛ij; yeart;Xit;WHSit;L:WHSit;Xjt;WHSjt;L:WHSjt

�
; (13.4)

where ˛ij is a vector of individual FE coefficients (or random effects if, e.g.,
suggested by a Hausmann test), and yeart is the vector of time FE, included to
account for the business cycle. The model constant is excluded if all time effects
are estimated. In an estimation framework including individual FE, time-invariant
variables (like distance) cannot be identified, and are dropped.

Since the spatial interaction model is multiplicative (see Sect. 13.2), a typical
choice—as for any other multiplicative model, like production functions—is to
render it linear in parameters through log-linearization (see, e.g., Lim 1997). In
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panel applications, the individual FE act as surrogates for the omitted explanatory
variables, similarly to the case of international trade models (in which price
indices are unobserved; see Anderson and van Wincoop 2003). In this paper,
we estimate the spatial interaction model in its multiplicative form, by means of
count data regression techniques, in order to account for Jensen’s inequality and
potential overdispersion. Santos Silva and Tenreyro (2006) have shown, in a widely
popular article, that many problems are associated with the log-linearization of
multiplicative models in the presence of heteroskedasticity (e.g., because of the zero
trade problem in international trade, or because of the typical presence of a small
number of flows much greater than the average), and suggested the use of count data
regression models. Following Santos Silva and Tenreyro’s contribution, Burger et
al. (2009) have expanded this discussion by considering a wider family of Poisson-
type models. In this regard, the negative binomial model is suggested as a solution
to the problem of overdispersion in the data due to unobserved heterogeneity, which
hinders the hypothesis at the basis of the Poisson regression model of equal sample
mean and variance. Overdispersion phenomena are typical of dyadic data (e.g., in
trade, commuting, migration), whose statistical distribution shows a multitude of
small flows and a small number of much greater flows. On the basis of the above
considerations, we carry out negative binomial two-way FE estimations. Formally,
the estimated model can now be written as follows:

Tijt D exp
�
˛ij C yeart C Xit C WHSit C L:WHSit C Xjt C WHSjt C L:WHSjt

�C "ijt;

(13.5)

where "ijt is the regression residual for the generic flow from region i to region
j at time t. A dispersion parameter ® is iteratively estimated. It should be noted
that, because of the inclusion of the FE, the effect of any WHS that obtained
its designation before our observation period is null, so that the WHS variables
employed here produce exactly the same results as alternative WHS variables where
previously designated WHS are omitted. A similar reasoning can be applied to the
control variables.

Finally, with the purpose of empirically evaluating the effect of distance, we
set up a further model by means of an alternative estimation approach, that is, a
panel spatial filtering-based negative binomial model. In this model specification,
the individual (pair-level) FE are substituted by two sets of origin and destination
dummy variables and a network autocorrelation filter. The former components
include, in a common FE manner, all time-invariant information specific to the
origin and destination regions (for example, the average level of GDP). The latter
component incorporates spatial and network dependence due to omitted variables.
Because the FE are moved from the pair-level to the origin- and destination-level,
time-invariant bilateral variables can be identified, allowing the estimation of a
regression coefficient for the distance variable.8 The spatial filter is included in the

8Internal distances are computed as
p

area=� (see, e.g., Leamer 1997; Nitsch 2000).
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regression model as a set of eigenvectors related to the chosen spatial weights matrix
(see Sect. 13.4.1).9

The model with distance and spatial filter is the following one:

Tijt D exp
	
˛i C ˛j C yeart C Xit C WHSit C L:WHSit

C Xjt C WHSjt C L:WHSjt C Dij C
X

k
ek;ij



C "ijt; (13.6)

where ˛i and ˛j are the origin and destination FE, and ek is value for the (i, j) pair
of the kth network autocorrelation eigenvector selected (and composing the spatial
filter).

13.4.3 Spatial Sensitivity Analysis: An Interpretative
Framework

We now expand on our second research question, by providing an interpretative
framework aimed at understanding how and to what extent the effects of the
neighbouring (competing) destinations’ WHS endowment on tourism flows (the
indirect effect discussed above) may vary depending on the assumptions we make on
the tourist’s capacity to compare alternative destinations in his/her choice set. In this
regard, a spatial sensitivity analysis according to the average number of neighbours
k is offered in the paper.

In the case of no neighbours (k D 0), all regions are isolated destinations
(‘islands’ in a relational sense). In this case, all additional flows T due to an interest
in visiting the new WHS reach the corresponding region independently of the WHS
endowment of other regions. In the case of one neighbour (k D 1), the regions are
not isolated anymore, but have a possible spatial competitor (each), with which
they compete on the basis of their WHS endowment. Given that the competitor is
perceived by the tourists as ‘close’, it may now represent a valid alternative, all else
being equal. Following the same line of reasoning, in the case of two neighbours
(k D 2), we hypothesize that the tourists evaluate each destination against its two
possible spatial competitors based on WHS, and so on for higher numbers of
neighbours.

To build a general model, we make three assumptions. First, in order to test the
corresponding effect, ceteris paribus, on tourism flows, we assume that a new WHS
is designated in a region (i.e., a change in the region’s WHS endowment).

The second assumption is that the designation of a WHS can cause two main
opposite direct effects on tourism flows: (1) a negative crowding-out effect (E � 0, in

9Because the implementation of a panel spatial filtering model is not the main focus of this paper,
we refer to Chun and Griffith (2011) and Lionetti and Patuelli (2009) for methodological and
implementation details.
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absolute value), as a result of which some tourists may dismiss the destination since
the new WHS may entail some constraints, costs and limitations in site accessibility,
such as restrictions on visiting flows, management costs yielding a price increase, or
tourism pressure. In fact, these reasons could persuade some tourists (with different
motivations or different capability to spend) to leave the destination; (2) a positive
attractiveness effect (T1 > 0), which on average dominates the negative crowding-
out effect (T1 > E � 0), so that the overall direct effect of WHS designation on
tourism flows is positive. As a matter of fact, were the direct effect of WHS
designation negative (E > T1 > 0), applying for it would not be desirable for a
rationale destination within an objective function aiming to maximize tourism flows.

The third assumption concerns the possible spatial interaction effect on tourism
flows (indirect effect) between neighbouring regions due to their WHS endowment,
T2(k), which can be of (1) spatial competition or (2) spatial complementarity.
There is spatial competition when a region’s tourism inflows are diminished by the
WHS endowment of regions which are perceived as substitute destinations (T2(k)
is negative and may be expected to increase with the number of neighbours k),
while there is spatial complementarity when a region receives a benefit, in terms of
inflows, from the WHS endowment of ‘close’ regions (e.g., mutual beneficial effects
may derive by trip chaining, so that T2(k) is positive and expected to increase with
the number of neighbours k). In other words, according to this third assumption,
WHS-induced flows are conditional on the number of destinations perceived as
substitutes or complements by the tourist. Such competition (complementarity)
effect may be expected to vary monotonically with the number of neighbours
considered, until a threshold is reached after which regions further away are not
perceived anymore as substitutes (complements) by tourists.

We can now outline a simple model for the relationship between WHS-induced
tourism inflows and the number k of alternative destinations considered by the
tourist. We can describe the tourism flows T towards a single destination as
depending on other destination characteristics (T0, given by the generic X in the
model) and on WHS endowment, which generates a positive direct effect on inflows
T1. In addition to T1, a second indirect effect T2(k) may be included, for the overall
interplay of spatial complementarity and competition effects, which depends on the
number of neighbours k. By assumption, T2(0) D 0, while for k > 0, T2(k) > 0 denotes
a dominance of spatial complementarity, while T2(k) < 0 denotes a dominance of
spatial competition. Exploiting the Poisson-type estimation framework of the paper,
and omitting origin-level variables for notation simplicity, the total tourism inflows
of a region j from a region i can be written as:

Tij D exp
�
T0;ij

�
exp

�
.T1 � E/WHSj C T2.k/L:WHSj

�
; (13.7)

with T1 > E � 0, and where T0 are inflows due to the control variables, on the scale
of the linear predictor. In regression terms, ˇ1 D T1 � E is the regression coefficient
estimated for the WHS variable, while ˇ2 D T2(k) is the coefficient of the spatial
lag of WHS (i.e., W * WHS D L.WHSj). We can now analyse how tourism inflows
change conditional to the number of neighbours k. Since by assumption dT1/dk D 0



13 The Effects of World Heritage Sites on Domestic Tourism: A Spatial. . . 299

and T2(0) D 0, then the sign of the overall effect of WHS on domestic tourism
depends only on the assumptions made on the behaviour of T2(k).

To further investigate the indirect effect, we can specify T2(k) as the difference
between two separate effects:

T2.k/ D T2:1.k/ � T2:2.k/; (13.8)

where T2.1(k) � 0 is the spatial complementarity effect, and T2.2(k) � 0 is the spatial
competition effect. By construction, T2.1(0) D T2.2(0) D 0, and we may hypothesize
that both effects increase with k (T2:10.k/ > 0 and T2:20.k/ > 0/, with T2:100.k/ < 0

and T2:200.k/ > 0, resulting in two functions crossing each other at the value k*

that implies an overall null indirect effect [T2.1(k*) D T2.2(k*)], as suggested in
Fig. 13.1.10 Here, we hypothesize that competition effects eventually dominate
complementarity effects for greater values of k.

The above model can explain the mixed empirical evidence in the current
literature on the effects of WHS endowment on tourism flows (see Sect. 13.3).
In fact, even though a region’s WHS endowment can potentially attract additional
tourists (direct effect T1; not shown in Fig. 13.1), the indirect effect on tourism
flows T2(k) can be both positive, if it is dominated by spatial complementarity, and
negative in the case of a prevailing competitive relationship (spatial competition).
Nevertheless, even in the latter case, the overall effect, given T1, can be positive,
negative or null, depending on the number of spatial competitors (neighbours). Since
T2 depends on k, dT2/dk < 0 (for k large enough) implies tendencies towards spatial
competition as the number of neighbours considered increases, while tendencies
towards spatial complementarity are found in the opposite case. Discussing the most
problematic case, that is, the competitive relationship, we note that in general a
number of neighbouring destinations k always exists which compensates the direct
tourism flows growth induced by WHS increase. Furthermore, if spatial competition
is very strong, there will be no advantage whatsoever for destinations deriving from
WHS designation, but only potential losses in terms of tourism flows.

The present interpretative framework is particularly fitting for Italian domestic
tourism, because of the many WHS, which are well distributed over the different
regions (only 2 small regions out of 20 do not have any). Without a precise
motivational analysis of the tourists, E, T1, T2.1 and T2.2 are not directly observable.
However, the observed regional tourism flows allow us to test a crucial assumption
of the model, that is, whether T2(k) is increasing in k, which implies tendencies
towards a dominance of spatial complementarity, or decreasing in k, implying
tendencies towards spatial competition.

Furthermore, in the case of spatial competition, we can test: (1) for k D 0, if the
direct effect of a new WHS designation is positive (T1 > E) or null (T1 D E); and (2)
for k > 0, if it is possible to identify the number of competitors cancelling out the

10Alternatively, we could hypothesize T00

2:2.k/ < 0. We consider the case of the intersecting
functions more interesting and we limit ourselves to discussing the latter.



300 R. Patuelli et al.

Fig. 13.1 Spatial
complementarity and spatial
competition effects within
T2(k)

k 

T2.1 

T2.2 

k 
T2 k*

positive direct effect of WHS endowment, and to justify why with a higher number
of competitors the destination can eventually lose tourists. The following section
reports our findings.

13.5 Empirical Application

13.5.1 Data

Our empirical application to tourism flows between the 20 Italian regions employs
data from the Italian Statistical Agency (ISTAT). The dependent variable, that
is, regional arrivals from and to all Italian regions for the period 1998–2009, is
provided within the publication ‘Statistiche del Turismo’, and collected through
the accommodation structures survey. Traditional hotel accommodations, as well
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Table 13.1 Explanatory variables

Variable Description Source

WHS Number of WHS UNESCO
GDP Regional GDP (1-year lag, in logs) ISTAT
SpecTour Specialization in tourism (D share of value added generated

from accommodation and restaurants, commerce, transport,
etc.) (2-year lag, in logs)

ISTAT

ExpRecr Share of public spending in recreational, cultural and
religious activities (2-year lag, in logs)

ISTAT

PricesH&R Price index for hotels and restaurants (in logs) ISTAT
Pop Regional population (in logs) ISTAT
CrimDiff Small crime index (D thefts and robberies � 1000

inhabitants) (1-year lag, in logs)
ISTAT

CrimVio Violent crime index (D violent crimes � 10,000 inhabitants)
(2-year lag, in logs)

ISTAT

SatisTrain Train service satisfaction index (D share of customers who
declare to be satisfied with train service) (in logs)

ISTAT

CultDem Cultural demand index (D visitors to state antiquities and
arts museums x institute) (1-year lag, in logs)

ISTAT

DiffShows Diffusion of theatrical and musical shows (D theatrical and
musical shows tickets sold � 100 inhabitants) (1-year lag, in
logs)

ISTAT

NonBath Coast unsuitable for bathing (D share of coast kms which are
unsuitable for bathing due to pollution) (1-year lag)

ISTAT

OffSeas Deseasoning index (D overnight stays in off-season
months � inhabitant) (1-year lag, in logs)

ISTAT

Distance Distance between regional centroids (in km, in logs) Own calculation

as complementary accommodations and privately rented houses, are included in the
survey.

Our key variable, the number of regional WHS, is obtained directly from
UNESCO’s World Heritage Convention website (http://whc.unesco.org/), which
provides a list of all WHS by country, year of inclusion and nature of the site. All
further variables used in this paper are obtained by ISTAT, and are published on:
‘Conti Economici Regionali’, ‘Prezzi al Consumo’, and ‘Banca Dati Territoriale per
le Politiche di Sviluppo’. Table 13.1 provides a concise description of the variables
used in our empirical application, while Table 13.6 in the Appendix provides the
related correlation matrix. All variables are expressed in logs, aside from ‘WHS’
and “NonBath’, which include a share of zeros.

Our interest variable, the number of sites inscribed in UNESCO’s WHS list, is
clearly not uniformly distributed across regions, as some have acquired over time
a relatively large number of WHS, while others still have zero or very few (see
Table 13.2). When looking at the WHS acquired during our observation period
(1998–2009), some regions increased their (relative) quota of WHS considerably.
The geographical allocation of WHS and of newly acquired WHS is provided in
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Table 13.2 Italian WHS in
1998 and 2009

Region 1998 2009 Diff. (1998–2009)

Abruzzo 0 0 0
Basilicata 1 1 0
Calabria 0 0 0
Campania 5 5 0
Emilia-Romagna 3 3 0
Friuli-Venezia Giulia 1 2 1
Lazio 1 4 3
Liguria 1 2 1
Lombardia 3 6 3
Marche 1 1 0
Molise 0 0 0
Piemonte 1 2 1
Puglia 2 2 0
Sardegna 1 1 0
Sicilia 2 5 3
Toscana 5 6 1
Trentino-Alto Adige 0 1 1
Umbria 0 1 1
Valle d’Aosta 0 0 0
Veneto 3 5 2

Fig. 13.2. In addition to WHS, we also provide, in Fig. 13.3, maps for regional
population and GDP, which are expected to act as the main control variables for
size effects in the spatial interaction model. From the maps, it can be observed that,
while the most populated regions are distributed in different parts of the country,
a larger part of the overall GDP is produced in the northern part of the country,
supporting the hypothesis that both variables could be employed together in our
modelling exercise, in order to identify, in addition to population, the effect of per
capita GDP.

13.5.2 Model Results

We start by estimating a benchmark model, that is, a standard tourism
spatial interaction model, including only the control variables described in
Sects. 13.4.1 and 13.5.1. Empirical estimates, according to Eq. (13.5), are provided
in Table 13.3.

Model (1) in Table 13.3 confirms most of our basic assumptions. Regional
inflows are positively influenced by supply factors, like the quality of the museum
offer (CultDem) and the diffusion of cultural events (DiffShows), and nega-
tively influenced by the level of prices of the restoration/accommodation sector
(PricesH&R). Furthermore, regions which deseasonalize (OffSeas) enjoy greater
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Fig. 13.2 Geographical distribution of WHS in 2009 and WHS acquired between 1998 and 2009

Fig. 13.3 Geographical distribution of population and regional GDP in 2009

inflows. Public spending in recreational activities (ExpRecr), instead, does not
appear to have a significant impact. Finally, greater inflows are associated with
lower GDP, suggesting that tourists look for less developed, more relaxing desti-
nations. With regard to the regional outflows, GDP, which conditional to population
identifies per capita income, is surprisingly not significant as a push effect.11 Crime

11The results concerning GDP and population are stable independently of the number of contextual
variables added to the basic framework of the spatial interaction model (supply and demand size



304 R. Patuelli et al.

levels appear to have a role also in pushing tourists (out), since they positively affect
outflows (CrimVio and CrimDiff), implying that residents of at-risk areas tend to get
away in search of safer destinations. The residents of regions specialized in tourism
(SpecTour) appear to have a higher propensity to travel, possibly according to an
‘addiction to tourism’ effect or as a refuge from the summer crowding.

We can now augment the benchmark model by including our variables of
interest, that is, ‘WHS’ and ‘L.WHS’, again evaluated both at the origins and
at the destinations. Model (2) in Table 13.3 provides empirical estimates for
Eq. (13.5). The inclusion of the WHS variables allows to retain the findings of
Model (1), while providing evidence for an effect of WHS endowment on tourism
flows. We find that, with regard to the destinations, WHS are positively associated
with inflows (this being the direct effect of WHS on tourism, and including, if
existent, crowding-out effects). An increase of one WHS, for a generic destina-
tion, would imply, with a 95 % confidence interval, an inflows increase between
2.9 and 4.3 % [exp(0.0355)D 1.0361]. The effects of the WHS endowment of
neighbouring destinations (the indirect effects of complementarity and competition)
are also found to be significant, but negative, suggesting the existence of spatial
competition between contiguous regions induced by WHS endowment. Clearly, a
complementarity effect could exist as well, but appears to be dominated by the
competition effect. Our finding implies that an increase of one WHS, on average,
in the surrounding regions of a generic destination (an acceptable assumption in
the long run) would lead to a decrease of arrivals, for the above destination, of
about 10 % [exp(�0.1035)D �0.9017]. As the marginal effects of ‘WHS dest’ and
‘L.WHS dest’ cannot be considered separately, we conclude that, for an increase
of one WHS in every region, the overall effect on tourism flows would be negative
(around 6 %) when competing destinations are defined by shared borders.

With regard to the origin regions, we find a negative and significant sign
(suggesting that outflows would decrease with the increase in WHS endowment) for
both the direct and the indirect effects, reinforcing the hypothesis that the availability
of WHS near the tourist’s residence may lead to substitution between hotel arrivals
(traditional tourism) and daily excursions, both within the residence region and to
nearby (alternative) destinations. The decrease of outflows is numerically consistent
with the decrease of inflows discussed above. From a statistical perspective, Model
(2) improves significantly on the reliability of the benchmark model [Model (1)],
as suggested by the improvements in terms of AIC, BIC and pseudo-R2, as well as
by a �2-based likelihood ratio (LR) test between the two models, which is highly
significant.

Finally, Model (3) presents the results from an eigenvector spatial filtering model
specification [Eq. (13.6)], carried out in order to evaluate the tourists’ demand
elasticity with respect to distance. With regard to the control variables, only selected

variables and distance as a deterrence variable). Only if the individual FE are excluded from the
model GDP and population appear with the usual (expected) coefficient values between 0 and 1,
which leads us to assume that in our panel specifications the ‘size’ effects are picked up by the FE.
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Table 13.3 Empirical estimates

Estimate
(Std error) p-value

Estimate
(Std error) p-value

Estimate
(Std error) p-value

(1) (2) (3)

GDP orig 0.2101 (0.3498) 0.5481 0.1834 (0.3481) 0.5983 0.3470 (0.6337) 0.5840

GDP dest �2.2471 (0.3636) <0.0001 �2.4442 (0.3670) <0.0001 �2.2774 (0.6524) 0.0005

SpecTour orig 0.2823 (0.1098) 0.0101 0.2973 (0.3670) 0.0070 0.3177 (0.2408) 0.1870

SpecTour dest 0.3686 (0.1373) 0.0072 0.1753 (0.1407) 0.2128 0.1701 (0.2692) 0.5275

ExpRecr orig 0.0846 (0.0670) 0.2068 0.0422 (0.0667) 0.5272 0.0469 (0.1254) 0.7085

ExpRecr dest �0.0681 (0.0552) 0.2174 �0.0832 (0.0595) 0.1617 �0.0632 (0.1246) 0.6118

PricesH&R
orig

0.2101 (0.2610) 0.4207 0.2307 (0.2646) 0.3832 0.3454 (0.4700) 0.4624

PricesH&R
dest

�0.8296 (0.2405) 0.0006 �1.1275 (0.2453) <0.0001 �1.3658 (0.4594) 0.0030

Pop orig �0.4803 (0.4571) 0.2933 �0.1232 (0.4522) 0.7853 �0.7002 (0.7332) 0.3396

Pop dest 0.3004 (0.2860) 0.2936 0.6503 (0.2590) 0.0120 0.3365 (0.5801) 0.5619

CrimDiff orig 0.1159 (0.0533) 0.0298 0.1153 (0.0533) 0.0304 0.1139 (0.0992) 0.2508

CrimDiff dest �0.0237 (0.0279) 0.3966 �0.0044 (0.0280) 0.8755 0.0117 (0.0733) 0.8731

CrimVio orig 0.0522 (0.0264) 0.0480 0.0563 (0.0270) 0.0373 0.0577 (0.0492) 0.2412

CrimVio dest �0.0214 (0.0251) 0.3951 0.0099 (0.0255) 0.6987 �0.0010 (0.0500) 0.9837

SatisTrain orig 0.0696 (0.0450) 0.1226 0.0292 (0.0460) 0.5251 0.0677 (0.1073) 0.5282

SatisTrain dest 0.0551 (0.0514) 0.2837 0.0627 (0.0499) 0.2088 0.1059 (0.1059) 0.3176

CultDem orig �0.0356 (0.0222) 0.1089 �0.0305 (0.0223) 0.1722 �0.0234 (0.0456) 0.6080

CultDem dest 0.1879 (0.0223) <0.0001 0.2073 (0.0233) <0.0001 0.1971 (0.0452) <0.0001

DiffShows
orig

0.0574 (0.0390) 0.1409 0.0656 (0.0391) 0.0929 0.0818 (0.0689) 0.2350

DiffShows
dest

0.0967 (0.0309) 0.0017 0.0868 (0.0317) 0.0062 0.0818 (0.0624) 0.1902

NonBath orig 0.0007 (0.0027) 0.7851 0.0011 (0.0027) 0.6691 0.0003 (0.0048) 0.9547

NonBath dest 0.0006 (0.0027) 0.8140 0.0016 (0.0028) 0.5562 0.0016 (0.0060) 0.7864

OffSeas orig �0.0033 (0.0393) 0.9335 0.0020 (0.0389) 0.9599 0.0230 (0.0778) 0.7677

OffSeas dest 0.4093 (0.0521) <0.0001 0.3915 (0.0514) <0.0001 0.3541 (0.0927) 0.0001

WHS orig – – �0.0164 (0.0079) 0.0387 �0.0203 (0.0159) 0.2009

L.WHS orig – – �0.0451 (0.0198) 0.0227 �0.0516 (0.0364) 0.1567

WHS dest – – 0.0355 (0.0067) <0.0001 0.0420 (0.0147) 0.0044

L.WHS dest – – �0.1035 (0.0204) <0.0001 �0.0983 (0.0365) 0.0071

Distance – – – – �1.0165 (0.0362) <0.0001

AIC 71,705 – 71,660 – 75,689 –

BIC 74,136 – 74,116 – 76,369 –

Res. dof 2977 – 2973 – 3263 –

McFadden’s
pseudo-R2

0.4068 – 0.4073 0.1199 –

ANOVA (�2

LR test)
– – 52.9132 <0.0001 – –
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destination-level variables are found to be significant (GDP, PricesH&R, CultDem,
and OffSeas). The ‘WHS’ and ‘L.WHS’ variables, again for destination regions
only, are significant and similar in estimated effect size to Model (2). The regression
coefficient for the effect of distance is close to 1 (a unitary elasticity), suggesting,
for example, that all else being equal, a destination region being 20 % farther away
than another from a specified origin region will receive 20 % less tourists.12

13.5.3 Spatial Sensitivity Analysis

The analyses presented in the preceding section are based on a generic assump-
tion of spatial competition/complementarity happening along regional borders. In
particular, it is assumed that in evaluating the attractiveness of each region the
tourist considers all other regions with which the destination shares a border
(rook contiguity definition of proximity). This assumption is a common practice
in the spatial econometric literature, but can be explicitly tested against alternative
specifications of the spatial weights matrix.

We carry out a spatial sensitivity analysis to test the robustness of our findings
to different hypotheses on the nature and geographical extent of spatial interaction,
according to the interpretative framework described in Sect. 13.4.3. In particular, we
aim to test to what extent the overall effect of WHS endowment on tourism flows
may vary, in particular with regard to the (indirect) effect of WHS endowment in
neighbouring regions and the average number of possible spatial competitors.

From a methodological viewpoint, the effect size and statistical significance
of the indirect effect of WHS endowment may be sensitive to the definition of
‘neighbours’ used, that is, to the choice of the spatial weights matrix W. In Models
(2) and (3) of Table 13.3, we define W by rook contiguity. According to this
criterion, the average number of neighbours per region is 3.1, ranging from 0
to 6.

To carry out a spatial sensitivity analysis, we test different specifications of
W for an increasing number of assigned neighbours, according to two additional
definitions of proximity:

• k-nearest neighbours, based on Great Circle distance, for k D 0, 1, : : : , 4;
• distance thresholds, based on distance bands computed as h * min(dist), with

h D 0, 2, : : : , 4.

12A sensitivity analysis testing polynomial specifications for the distance term shows that a cubic
specification provides slight fitting advantages (for example, in terms of BIC). The negative-
positive-negative signs for the three terms of the polynomial suggest that a destination’s distance
from the tourist’s residence region becomes a positive tourism reinforcing factor only after a certain
threshold (after which the destination appears to be ‘exotic’), and up to a second threshold level,
after which the distance deterrence effect again becomes dominant.
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Table 13.4 k-nearest neighbours results for WHS dest and L.WHS dest

k-Nearest neighbours 0 1 2 3 4

WHS dest 0.0395*** 0.0394*** 0.0390*** 0.0372*** 0.0357***
L.WHS dest – �0.0153 �0.0210 �0.0320 �0.0731***
AIC 71,762 71,758 71,757 71,755 71,736
LR (�2) test – H0: k D 0 – 8.04** 9.14** 10.62*** 30.41***
LR (�2) test – H0:
“WHS dest C “L.WHS dest D 0

– – – – 1.48

*** and ** denote 1 and 5 percent significance levels, respectively

Table 13.5 Distance-threshold results for WHS dest and L.WHS dest

Distance
threshold 0

2 * min(dist)
(1.3 neigh.)

3 * min(dist)
(3.3 neigh.)

4 * min(dist)
(5.1 neigh.)

WHS dest 0.0395*** 0.0366*** 0.0371*** 0.0398***
L.WHS dest – –0.0317** –0.0484** –0.1386***
AIC 71,762 71,757 71,749 71,714
LR (�2) test – H0: k D 0 – 8.83** 16.80*** 52.51***
LR (�2) test – H0:
“WHS dest C “L.WHS dest D 0

– 0.07 0.20 13.99***

*** and ** denote 1 and 5 percent significance levels, respectively

Table 13.4 provides the empirical estimates for the effect of the destinations’
WHS endowment on tourist inflows according to the k-nearest neighbours criterion,
and presents the direct and indirect effect estimates (for variables ‘WHS dest’
and ‘L.WHS dest’). In addition to effect size estimates, Table 13.4 provides AIC
values and two �2-based likelihood ratio (LR) tests against (1) the hypothesis of
equivalence between the k > 0 models and the k D 0 model (i.e., with no ‘L.WHS’
variables), and (2) the hypothesis that the overall effect of WHS endowment is
null.

Table 13.4 shows that, when applying a k-nearest neighbours definition of prox-
imity, the direct effect of WHS endowment is positive and numerically stable over
estimations (around 4 %), confirming the results of Sect. 13.5.2. The WHS indirect
effect is negative and increases in size with the number of neighbours, although it
becomes significant only with k � 4. The LR �2 tests against the k D 0 model always
reject the hypothesis of equivalence, suggesting that the characteristics of competing
destinations should indeed be considered in our modelling framework. Moreover,
the LR test against the hypothesis that the overall effect of WHS endowment is
null, which is not computed when a direct effect only is found, is not significant for
k D 4, that is, when 4 neighbours per region are considered, the direct effect of WHS
endowment is cancelled by the (negative) effect of WHS-based competition.

Finally, Table 13.5 provides the estimated effect sizes of WHS endowment
according to distance-threshold models, with min(dist) D 67 km. Several distance
bands (for h D 0, 2, 3, 4) are tested, corresponding each to a different neighbours
list.
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The distance-threshold models show again a positive and stable direct effect of
WHS endowment (and always close to 4 %), while the indirect effect is significant
and negative starting from the first bandwidth, and increasing with distance, like
in the k-nearest neighbours case. The LR tests against the neighbourless model
always reject the hypothesis of equivalence, as before, while the LR test against
the hypothesis of null overall effect of WHS endowment is not significant for the
first two bandwidths tested, while it becomes significant for h � 4, for an overall
negative effect over greater distances.

Finally, with regard to the interpretative model provided in Sect. 13.4.3, we can
note that the hypothesis of a tendency towards the dominance of spatial competition
over spatial complementarity is confirmed. However, our results, showing first a
non-significant indirect effect and then a negative one, do not allow us to shed light
on the possibility, suggested in Fig. 13.1, of a sign inversion of the indirect effect
over increasing values of k, and therefore on the sign of T2:200.k/:

In summary, our sensitivity analysis shows that the assumption made over the
geographical extent at which regions may compete for tourists in terms of their WHS
endowment matters. Among all the models tested above, the model with the best fit
(in terms of AIC) is the one with the largest distance bandwidth, although Model
(2) from Table 13.3, based on rook contiguity, has the best overall fit. Our findings
suggest that, when comparing destinations on the basis of their WHS endowment,
the tourist uses a potentially large number of alternative destinations.

13.6 Conclusions

In this paper, we analysed the relationship between domestic tourism and cultural
endowment measured in terms of the number of sites enlisted in UNESCO’s World
Heritage List (WHS). We carried out an empirical application for 20 Italian regions
for the years 1998–2009, employing data on the interregional tourism flows recorded
as arrivals in hotels and other types of accommodation structures.

Our objectives can be framed within the ongoing debate on the relevance of
cultural—and more specifically WHS—endowment for tourism. Our contribution
appears to support the view that such a relationship exists, and that its numerical
extent is non-negligible.

The first research question we aimed to answer was whether the regional WHS
endowment affects tourism flows. On the one hand, we find that regions which
are endowed in WHS are able to attract a greater number of tourists, all else
being equal. More in detail, an increase of one WHS in a region’s endowment
implies a 4 % increase in tourist inflows. On the other hand, we found a negative
effect of WHS endowment on regional outflows, that is, on the emissiveness of the
tourists’ residence regions. The estimated effect, around �1.6 % is most likely due
to substitution between arrivals (traditional—and recordable—tourism) and daily
excursions.
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Our second research question regarded the spatial behaviour of tourists, and the
potential substitution or complementarity between tourism destinations. We found
that the WHS endowment of the regions surrounding a hypothetical destination (i.e.,
sharing a border with it) has a negative effect on its inflows of tourists. We estimated
this effect at about 10 % for an average increase of one WHS in a destination’s
neighbours. We may then speculate that, consistently with a competing destinations
framework (Fotheringham 1983), tourists appear to consider, in forming their
travelling choices, the WHS endowment of alternative destinations, generating a
phenomenon of spatial substitution. The overall effect of a generalized increase of
one unit in the WHS endowment of the regions would then lead—on average—to
a negative balance (�6 %) in inflows. Consistently with the above results, we find
that tourism outflows appear to be constrained also by the endowment of the origin
region’s neighbours.

Finally, in order to investigate the robustness of our findings to different
hypotheses on the nature and geographical extent of spatial interaction, we carried
out a spatial sensitivity analysis. In particular, we applied two further definitions of
proximity, according to the k-nearest neighbours method and to distance thresholds.

With regard to the effect of WHS endowment on inflows (i.e., towards the desti-
nation regions), the result of a positive direct effect was confirmed in all cases. The
negative indirect effect of the WHS endowment of neighbouring destinations (up to
�13 %) was confirmed as well, showing in particular that the spatial competition
effect becomes significant when a greater geographical extent is considered. The
overall effect is therefore: first (1) positive and equal to about 4 % (when only 1 or 2
neighbouring regions are considered), then (2) non-significantly different from zero
(when the number of spatial competitors is 3), and finally (3) negative (�9 % for the
greatest distance bandwidth considered). This result may help explaining the mixed
empirical evidence found in the literature, and suggests that spatial competition
appears to dominate spatial complementarity (i.e., a cultural district effect is not
observable, at least at the regional spatial scale).

Altogether, we can conclude that the spatial sensitivity analysis confirmed the
robustness of our results. Furthermore, for all the definitions of proximity tested, the
models including indirect effects outperformed in terms of AIC the model with only
direct effects, confirming the empirical relevance of our second research question.

From a policy viewpoint, our findings have two main implications: (1) WHS
endowment does appear to influence arrivals to tourism destinations for Italian
domestic tourism,13 providing a justification for local policymakers’ lobbying
towards the national government for obtaining WHS designations; (2) however,
spatial competition may reduce the positive direct effect down to an overall negative
effect, suggesting that the desirability of WHS designation depends on the expected
spatial extent of competition. This last result strengthens the importance of WHS
endowment, since it implies that competition among regions on the basis of
WHS can be justified. In fact, given that the positive effects of trip-chaining are

13Our results might not carry over to international tourism.
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outweighed by spatial competition, regions could indeed use WHS designations to
gain competitive advantages over other regions, which also outlines the critical role
of regional tourism promotion agencies in effectively managing the designated sites
to cater to the cultural tourism demand.

Further improvements, from a methodological viewpoint, could involve the
estimation of our model in a dynamic panel framework, to account for inertia
mechanisms, as well as in its doubly-constrained form, so as to provide a view on the
spatial substitution/complementarity effects under the hypothesis of constant overall
tourism flows. From an empirical viewpoint, it would be desirable to augment the
model specification by introducing physical variables (e.g., length of coastline,
overall area, mean elevation) and further proxies of cultural offer, in order to
further improve the identification of the WHS endowment’s contribution to tourism.
Moreover, our sensitivity analysis findings regarding the use of different distance
bandwidths call for further testing by means of more realistic distance/opportunity
cost metrics, such as the actual driving distance or travelling time between the
regional centroids. Finally, including international tourist flows to and from each
Italian region, and extending the analyses to additional regions outside of Italy, to
account for the effects of WHS on international tourism, is also desirable in the
future.
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14.1 Introduction

In most countries, information concerning interregional commodity flows is scarce
and incomplete (Jackson et al. 2006). One of the most common ways to obtain it is
to look at transport flows within the country. Many of these analyses are found in the
literature on border effects, where the trade intensity within one country (or region)
is measured against with the trade flows develop with other countries (or regions
of the same country). Directly connected to our paper, some authors have focused
on the national level and computed a country’s home bias, defined as how much
some regions (provinces) trade with itself than with any other region (province) of
the same country. Wolf (1997, 2000) and Yilmazkuday (2012) did it for the United
States; Helliwell (1996, 1997, 1998) for Canada; Helble (2007) and Nitsch (2002)
for Germany; Combes et al. (2005) for France; and Garmendia et al. (2012) for
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Spain. In most of these studies, interregional transport flows or deliveries as reported
by the exporting firm (Hillberry and Hummels 2008) are used as the best proxy for
internal bilateral trade (as in fact it is).

In principle, a commercial transaction implies the shipment of a good, but
shipment can mean single-mode or multimodal transport. It might be simple door-
to-door delivery, or it might encompass a range of intermediation activities, such as
multimodal nodes, logistics platforms, warehouses and wholesale operations. The
same single trade transaction could be registered in any number of ways by different
trade and transport surveys; there could thus be coherence or divergence between the
surveyed records of the various intervening agents (exporter, importer, transporter,
customs, etc.). Assuming a good match between transport and trade information, it
is standard to identify the origin of a transport flow with the point of production and
the destination with the point of consumption.

In this regard, recent literature on transport economics, geography, global
management and logistics points to a rise in economic and logistical complexity
(Van Klink and van den Berg 1998; Woudsma 1999; Rodrigue 2003; Hesse and
Rodrigue 2004; Rodrigue et al. 2009; Rodrigue and Notteboom 2010), which may
introduce a number of misrepresentations in the observation of specific dyadic
records, for both international and intra-national transport flows. Thus behind
any given interprovincial flows across one single country, a number of factors
could contravene the previous hypothesis. Indeed, it is a commonplace to call into
question anyone’s work in this literature for the bias induced by bilateral transport
flows within a country (or between countries) precisely because of this logistical
complexity (see McCallum 1995; Henderson and Millimet 2008, and Combes et al
2005, for specific comments on the limitations of their datasets in relation to this
point, both when using datasets for Canada and the U.S., and France).

The aim of this paper is to analyze the complexity of modal cooperation
and competition behind apparently standard deliveries within a country. We will
evaluate some of the aforementioned biases attributable to logistics infrastructures,
warehouses and wholesale activities as well as to hub-spoke structures and interna-
tional transit flows. We will use a novel dataset that contains 16 sector-specific flows,
by four modes of transport (truck, train, ship, and aircraft), between 50 provinces.
Our dataset—which includes 160,000 origin–destination deliveries (50*50*4*16)
for the single year of 2007, along with a comprehensive set of regressors and rich
distance measures based on Spain’s actual transportation network—is notable both
for its size and for its quality. We then introduce a novel index to address the
presence of hub-spoke structures within a country. We analyze this index with GIS
techniques using the actual transport network for each mode. Finally, we feed our
data into various specifications of the gravity model that incorporate spatial autocor-
relation elements when modeling flows for each transport mode and its competition
effects with regards to the other modes. We also use a gravity equation with a
spatial autocorrelation term (SAR) for tackling network dependence attributable to
hub-spoke structures. Our hypothesis is that “re-exportation schemes” constitute an
additional source of cross-sectional correlation between dyadic commodity flows to
the sources already described in the literature (LeSage and Pace 2008, 2009; Fischer
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and Griffith 2008). To the best of our knowledge, no one has analyzed this type of
relationship in the same detail.

The rest of the paper is structured as follows: Sect. 14.2 describes some important
links between trade, transportation and logistics and briefly reviews the state of
the art in the analysis of these complexities in Spain and elsewhere. Section 14.3
describes a conceptual framework that will be the base for our empirical strategy—
revised in Sect. 14.4—for modeling flows within a country in presence of this
logistic complexity. Section 14.5 describes the dataset. Section 14.6 comprises our
descriptive and Section 14.7 the results for the econometric analysis. A final section
concludes.

14.2 Trade, Transport Flows and Logistics

As certain authors (Rodrigue 2003; Hesse and Rodrigue 2004; Rodrigue and
Notteboom 2010) have posited, freight flows at the local level result from global and
regional economic processes. Internationally, with the division of the production
chain and the development of door-to-door distribution schemes, distribution net-
works have expanded. The development of hub structures, gateways and corridors
is also connected as global supply chains have sprouted up, firms have sought out
optimal locations in more stable and free-entry situations for foreign investment
and multi-location firms have surged. These developments have modified freight-
distribution systems and spurred a proliferation of new transport terminals and
distribution centers in new locations.

The same author (Rodrigue 2003) defines an “articulation point” as “a location
that promotes the continuity of circulation in a transportation system servicing a
supply chain. Such concept expands the traditional “hub” concept as it includes the
consideration of terminal facilities, distribution centers, warehouses and finance”.
He also suggests that an articulation point’s relevance depends on the volume and
nature of the traffic it handles, which in turn suggest that the characterization of such
points depends on the type of flow (international versus intra-national) as well as on
the transport modes used. In line with such concepts, Hesse and Rodrigue (2004)
provide an insightful description of the evolution of logistics as it pertains to the
core dimensions of transport geography (flows, nodes/locations and networks).

In a related paper, Rodrigue and Notteboom (2010) compared the North Amer-
ican and European freight transport systems, showing that the two regions were
following alternative patterns of transport and logistics networks. To explain this
polarity, the authors cited three main factors: globalization, economic integration
and intermodal transport. Intermodalism results from high integration between
transport modes and tends to produce complex transport networks.

So much for international freight flows within large regional areas (Europe vs.
North America). What about equivalent systems within single countries? These, it
turns out, are similarly complex, although, because of a lack of statistical sources,
perhaps more opaque. Our paper focuses on this more opaque part of the problem.
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Another interesting result in the literature on logistics and transport geography
is the idea of transport-mode competition and cooperation. Some stimulating
papers have analyzed these relationships within Spain with micro-founded general
equilibrium and model-choice approaches, both for freight and person movements
(Monzón and Rodríguez-Dapena 2006; Cantos-Sánchez et al. 2009; Álvarez-
SanJaime et al. 2013a, b). Similarly, Feo-Valero et al. (2011) focuses on the
empirical evidence regarding modal-choice determinants for the inland leg of
maritime shipments. The paper analyzes modal choice between road and rail
transport on the inland leg of Spanish maritime freight shipments through an error
components mixed logit discrete choice model, with the aim of evaluating the
potential of rail transport to connect ports with their respective hinterlands. In most
European countries, rail freight departing from or bound for ports accounts for the
bulk of the rail-freight market. But its share is much smaller in Spain. The authors’
main contribution is to have produced an empirical study of door-to-port/port-to-
door freight traffic. Their results confirm the role that frequency plays in the relative
competitiveness of rail transport.

Taking a more empirical approach, a certain number of papers have combined
gravity equations and spatial econometric techniques in order to deal with some
of the issues mentioned above. We will discuss two examples here. First, LeSage
and Polasek (2008) modeled commodity flows with an extended gravity model
that incorporates information on the highway network into the spatial connectivity
structure of the spatial autoregressive econometric model. Their results pointed to
better model fits and higher likelihood-function values. They also found different
types of origin and destination connectivity between regions when considering the
links between trading regions and their neighbors, as defined by the actual highway
network.

Second, and more recently, Alamá-Sabater et al. (2013a) analyzed whether
transport connectivity affects trade flows. Using first-order contiguity and incor-
porating logistics-network-structure dependence in a spatial autoregressive model,
they considered flows between 15 landlocked regions (Nuts 2) of Spain and
sector-specific flows by road. Their results provided evidence for the role of
logistics-platform location in satisfying existing demand for transport structures in
Spain. Their approach relied mainly on the definition of two different connectivity
concepts. First, they considered a purely geographical effect, using contiguous
regions as an ad-hoc structure for spatial autocorrelation effects. Then, they built
an index that captured the relative presence of logistics platforms in each region. By
considering the endowment of such platforms in regions adjacent to trading partners,
they expected to capture part of the previously defined logistical complexity. In line
with previous papers (Lesage and Llano 2013) confirms the presence of spatial-
dependence effects for the Spanish case. In addition, the weighted matrix defined
by the index of logistics platforms generated poor results for aggregate flows but
interesting insights for certain industry-specific deliveries. The authors have also
developed a working paper that uses similar techniques, as well as transport flows
by road, to analyze the same effects at NUTS-3 level in Spain. Our paper explores a
wider set of flows (50 NUTS-3 provinces and four transport modes instead of one)
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and considers alternative effects (hub-spoke structures, international transit flows
and wholesale activity).

14.3 A Conceptual Framework for Competition
and Cooperation Between Transport Modes

Let us start by considering a country with I provinces (I D 50 for Spain). Without
loss of generality, all types of bilateral trade flows from province i to province j could
be defined as Yji. If i D j we have intra-provincial trade flows, while if i ¤ j we have
inter-provincial, intra-national trade flows. International exports and imports from
each province can be denoted YRoWi and YjRoW respectively. Note that such flows can
correspond to products delivered to the point of final or intermediate demand.

Let us now consider that each bilateral aggregated flow can be decomposed into a
set of sector-specific flows for every set of tradable goods k,1 which can be delivered
by four alternative transport modes (m): road (R), train (T), ship (S) and aircraft (A).
Therefore, for the most general case of aggregate trade flow, Yji can be decomposed
as:

Yk
ji D YkR

ji C YkT
ji C YkS

ji C YkA
ji (14.1)

where YkR
ji is the bilateral trade flow in current AC of commodity k delivered from

province i to province j within Spain. The capital letters R, T, S, A denote the
transport mode used for the delivery.

In principle, an inter-provincial trade flow by road of product k from province
i to province j (that is, YkR

ji ) corresponds to a transport movement with similar
characteristics, which could itself be denoted FkR

ji (F for freight). Under normal
circumstances it is standard to assume that Yk

ji D Fk
ji. However, as described in

the previous section, economic complexity and modern logistics can introduce
certain alterations into this match between trade flows (usually non-observable
within a country) and transport flows for each mode (sometimes observable within a
country). In some cases Yk

ji ¤ Fk
ji, because behind two or more “apparent” transport

flows (Fk
ni;F

k0

mn; : : :F
k00

jc ) there is just one trade flow Yk
ji.

1Although in some parts of this paper the terms goods, products and sectors are used interchange-
ably, we prefer the term sector-specific flows. This reason is the limited number of products (15)
available in our dataset. For the sake of rigor, we have discarded alternative expressions such as:
industry-specific flows (because of the inclusion of agricultural products) and commodity flows
(because commodity can be identified with raw materials and non-transformed products, which are
not included here).
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14.3.1 Transport Mode Competition

Before we analyze the main reasons why Yk
ji ¤ Fk

ji, it is convenient to briefly discuss
the concept of “transport competition”.

Firms located in province i have access to a range of transport-mode mixes
with which to deliver a given product k to some other province j, both within
the country or abroad. All these transport modes differ in price, security and
speed. Since each product type has its own nature and characteristics (volume,
value, perishability, demand, etc.), there is a preferred transport mix by sector
and province. Given the geographical location of firms, final markets and actual
transportation networks, similar products can be shipped in parallel by alternative
transport modes. The likelihood of competition will differ by product k and dyad
i-j. When it comes to island provinces, for example, ships and aircraft may compete
for certain products but not for others. For a given pair of landlocked provinces i-j,
competition between road and train will depend on the actual transport network and
the nature of the products. Moreover, the transport network will be endogenous to
preexisting demand for a certain transport mode between the countries of a dyad
(Fig. 14.1).

14.3.2 Transport-Mode Cooperation

In this section we focus on transport mode cooperation. With this aim, we start
considering the general case where a trade flow (transaction) is linked to more than
one concatenated transport flow (physical movement of a good), and therefore where
Yk

ji ¤ Fk
ji. This re-exporting scheme generates what can be described as transit flows

between the initial delivery from i and the final destination j. In this paper, a transit

Road: kR

ij
F

Train: kT

ij
F

Ship: kS

ij
F

Aircraft: kA

ij
F

Province I

(producer = exporter) 

ecnivorP j

(consumer = importer) 

i j

Fig. 14.1 Domestic transport-mode competition scheme
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Fig. 14.2 Transport mode cooperation: “hub-spoke” structure with national and international
“transit flows”

flow can imply multimodality or not. Generally, then, transit flow refers to flows that
satisfy either of the following two conditions:

• The transport flow’s point of departure (Fk
jH) is not the point of production but

the Hub (H). In this case, logistics platforms, warehouses and wholesale activities
located in the province of delivery accumulate certain amounts of a product k,
which has been produced elsewhere within the country (intra-national transit
flow) or abroad (inter-national transit flow).

• The transport flow’s point of destination (Fk
Hi) is not the point of consumption

but the Hub (H). That is, shipments arrive at a province where a logistics
platform, warehouse or wholesale activity is located.

We can thus depict a transit flow with the following scheme (Fig. 14.2):
In summary, in this paper the term transit flow implies that two or more

concatenated flows correspond to the same commodity (k1 D k2). In principle,
any province can serve as a Hub, for both intra-national and inter-national flows.
In this general definition of the hub-spoke relationship, no additional conditions
are set regarding the transport mode used for the initial inflow to the Hub
and the subsequent outflow from the Hub. Multiple combinations are possible,
each explicable in terms of location (i, H, j) and the specific product in ques-
tion (k). For example, we can account for (transit) flows entering or leaving a
province (H) in at least one of two ways: by the presence of logistics platforms,
warehouses and wholesales infrastructures2 or by the presence of “multimodal

2Moreover, inflows to and outflows from the warehouse could be different in nature: (a) the
warehouse could be owned by a logistics company offering services to the producer or to retailers.
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platforms”. The latter case is not expressly considered in this paper due to lack
of space.

We emphasize that, in principle, any province of a country can serve as a Hub.
In fact, any i and any j in a given system of bilateral flows can play that role. For
simplicity, we will assume that there is no interconnection between transit flows—in
other words, that a flow i1-H-j1 is not connected to another flow i2-H-j2 such that
j1 D i2 becomes a new Hub (H), and so on.

As we will see in the next sections, spatial econometrics techniques allow us
to identify and control for potential connections between flows departing from or
arriving at any i and j from any other location in the system. To this end, our
empirical approach assumes a typical situation: the statistical system of a developed
country, where trade and transport bilateral flows are reported separately, with little
connection between them. Moreover, transport bilateral flows within the country
are stated on an isolated basis by transport mode, with no information about their
relationship with the actual point of production/consumption or about any previous
or subsequent delivery using the same or an alternative mode (Boonstra 2011).
Perfect identification of such links between concatenated flows would, of course,
require a very detailed dataset on the products and specific locations of each flow.
Since such data is, to the best of our knowledge, unavailable anywhere, we have
developed our empirical strategy in such a way as to describe an average EU country
while taking full advantage of a very rich dataset for Spain. This is the next best
thing, and far better than nothing at all.

14.4 The Empirical Strategy

In this section we define the empirical models we will use to embody the main
concepts described before regarding competition and cooperation between the
transport flows within a country.

The simplest gravity equation for modelling commodity flows between a set of n
provinces within a country is described in Eq. (14.2):

ln Fkm
ji D ˛iN C Xiˇ1 C Xjˇ2 C ln djiˇ3 C Intraˇ4 C Adjˇ5 C ln

�
gdpi

�gdpj
�
ˇ6 C "ji

(14.2)

Where Fkm
ji is the bilateral flow of product k (or the aggregate) in current euros

with origin in province i and destination in province j, which has been delivered

Therefore, although there is no transformation of product k when it is delivered to the warehouse,
the outflows and inflows truly correspond to “trade flows”; (b) however, if the warehouse is owned
by the producer or the retailer, product k’s entry into or departure from that infrastructure does
not necessarily imply a trade flow between i and j but, perhaps, an “intra-firm” displacement of
products with the aim of getting said products closer to the final market. An additional problem is
that the products could be produced abroad and only moved within the country.
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using transport mode m (or the aggregate). Flows Fkm
ji have been organized into an

n � n (N D 50 � 50 D 2500, in our case) destination–origin (j-i) flow matrix, which
contains intra-regional flows in the on-diagonal elements, and inter-provincial in
the off-diagonal ones. By vectorizing the matrix, we obtain a column vector F with
dimensions n2 � 1. Thus, using the terminology of LeSage and Pace (2009), this
column vector is destination-based. Thus, the first n (50) observations correspond
to interprovincial flows exported by province i D 1, the next n (50) to exports
departing from i D 2, and so on. The term iN is an n2 � 1 vector of ones. A dummy
variable, Intra, is included to control for the potentially different nature of flows
occurring within a province and between provinces. This dummy variable takes
the value of one if the flow’s origin and destination are the same province and
zero otherwise. The anti-log of the coefficient linked with this dummy variable
can be interpreted as the provincial home bias discussed in the introduction. We
add a dyadic dummy, Adj, to control for trading-partner adjacency. Xi and Xj

contain different characteristics of province i and j, as the production capacity of
province i or the absorption capacity in province j. More specifically the main
variables considered in these two matrices are described below. Moreover, in order
to disentangle the effect of the previous monadic variables and the economic size
of the exporting and importing province, we have opted for introducing the gross
domestic product of the trading provinces as a dyadic variable, by computing the log
of their product (gdpi * gdpj). By doing this, we avoid that the monadic variables will
compete with the gdp’s. All specifications also add two dummy variables Islandi

and Islandj to control for the specific characteristics of being an Island province,
both as an exporter or as an importer. Thus, for example, Islandi is a dummy
variable identifying the three island provinces of Spain (Islas Baleares, Las Palmas
and Santa Cruz de Tenerife) as exporting provinces. To conclude, all models add
the bilateral distance (dji) between the exporting and importing province (the best
available proxy for transport cost by transport mode and commodity type). All the
variables considered—except the dummies—are expressed in logarithms. ". is an
n2 � 1 vector of normally distributed constant variance disturbances. For the sake
of generality, although due to a lack of space some of our specifications are just
tested for aggregate flows at the sectoral and transport mode level, the equations are
defined using superscripts k and m.

It is common to depart from this basic equation and introduce variables that help
to account for other factors affecting the direction and intensity of flows. Inadequate
specification of the forces driving flow intensity can induce problems of cross-
sectional autocorrelation, rendering the estimation method unsuitable. In line with
the general goal of this paper, after testing a basic specification of the simplest
gravity equation, we add the following variables with the aim of capturing the
logistical capacity of trading partners (logistics platforms, warehouses, wholesale
activities) and potential controls for international transit flows3:

3For simplicity, we now define these variables only for exporting province i (there is an equivalent
set of variables for importing province j).
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– Ln(wholesales pci): the ratio between the number of wholesale activities in
province i (La Caixa 2013) relative to the population of i. It is expressed as a
log and used as an alternative to the “platform infrastructure” in Alamá-Sabater
et al. (2013a, b).

– Border int. core EUi: a dummy variable identifying Spanish provinces that share
an international border with France and Andorra in the north. This variable—
taking the value one for border provinces and zero otherwise—is meant to control
for expected higher flows departing from/arriving at these provinces as gateways
for trade with the EU core. A positive and significant coefficient for the variable
should be interpreted as a symptom that these border provinces are behaving
as Hubs for international flows; in other words, their exports exceed expected
inter-provincial flows (relative to their size, remoteness, etc.) because they are
receiving from the EU core international imports of product k, which will be
subsequently re-exported domestically (generating an apparent inter-provincial
flow). Note that by including an equivalent dummy for importing provinces j, we
also control for the potential of border provinces to behave as Hubs and receive
domestic imports for subsequent re-exportation to the EU core.

– Border int. otheri: a dummy variable meant to control for the same effect as
the previous variable but for Spanish provinces that share an international border
with countries to the southeast: that is, Portugal and countries in Africa. Although
the aim is equivalent, the importance of the EU core and these other markets,
along with the size of Spain’s border provinces, make it worthwhile to consider
the effects separately.

– Ln(imp. int. all/gdpi): a further variable added to take into account the bias
introduced by ambushed international flows within domestic flows. In addition
to controlling for Spanish provinces bordering on foreign markets, this variable
is the logarithm of the total products, measured in euros, imported by i (origin
province of the domestic flow) regardless of transport mode. The variable is
introduced in relative terms to i’s GDP, so we can measure relative openness
to foreign markets, at the same time that we avoid multicollinearity problems
with the other variables that are associated with the size of the province. The idea
is to acknowledge that even a non-border province can behave as a Hub (in this
case, not as a gateway, since it is not a border-province), thanks to, say, a large
maritime port (e.g., Barcelona, Bilbao, Valencia). Thus a positive and significant
coefficient for this variable indicates that interprovincial product exports from i
are positively associated with the province’s absorption capacity for international
imports. Note that by including an equivalent variable, Ln(exp. int. all/gdpj), for
importing provinces j, we also control for the contrary case, where the large
capacity for importing interprovincial Spanish flows of a province j is associated
with its high intensity of international exports regardless of transport mode.

Moreover, for those of our specifications that use sector-specific flows as
endogenous variables, the previous variables Ln(imp. int. all/gdpi) and Ln(exp. int.
all/gdp j) are redefined much more precisely as Ln(imp. int.allk/gdp i) and Ln(exp.
int. allk/gdp j). In these cases, although all transport modes are considered together,
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international exports and imports are k-specific. We thus expect to disentangle the
very cases of hub-spoke structures (which implies international re-exportation of
exactly the same product k that was previously unloaded in the exporting province
and produced elsewhere in the country), and an alternative situation where a
province is an important international exporter (of all products) and a great importer
of a specific product k produced in another province within the country.

Taking a cue from the literature, our empirical strategy is based on several alter-
native gravity-equation specifications some of which embed spatial econometric
terms. For the sake of clarity, each specification is defined along with each of
the previously described possible relationships between competing or cooperative
transport modes.

14.4.1 Transport Mode Competition

14.4.1.1 A Basic Gravity Equation for Testing Transport Mode
Competition

To consider the presence of transport-mode competition within the country, we first
estimate a non-spatial model, as in Eq. (14.3):

ln FkR
ji D ˛iN C Xiˇ1 C Xjˇ2 C ln djiˇ3 C Intraˇ4 C Adjˇ5

C ln FkT
ji ˇ6 C ln FkS

ji ˇ7 C ln FkA
ji ˇ8 C ln

�
gdpi

�gdpj
�
ˇ9 C "ji

(14.3)

Where FkR
ji is the bilateral flow of product k (or the aggregate) by road with

origin i and destination j. Elements ˛iN , Xi, Xj, dji, Intra and Adj are the same as
in Eq. (14.2). In addition, Eq. (14.3) includes three new elements, FkT

ji ; FkS
ji ; FkA

ji ,
each of them corresponding to equivalent (same k) flows between i and j by
alternative transport modes (T D train, S D ship, A D aircraft).4 By means of these
new elements we expect to measure whether the trade flows of one mode are, on

4Similarly, we estimate alternative combinations such as:

ln FkT
ji D ˛iN C Xiˇ1 C Xjˇ2 C ln djiˇ3 C Intraˇ4 C Adjˇ5 C ln FkR

ji ˇ6 C ln FkS
ji ˇ7 C ln FkA

ji ˇ8

C ln
�
gdpi

�gdpj

�
ˇ9 C "ji

ln FkS
ji D ˛iN C Xiˇ1 C Xjˇ2 C ln djiˇ3 C Intraˇ4 C Adjˇ5 C ln FkR

ji ˇ6 C ln FkT
ji ˇ7 C ln FkA

ji ˇ8

C ln
�
gdpi

�gdpj

�
ˇ9 C "ji

ln FkA
ji D ˛iN C Xiˇ1 C Xjˇ2 C ln djiˇ3 C Intraˇ4 C Adjˇ5 C ln FkR
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average, compatible with those of the others for the full range of products (aggregate
flow) and for each separately (k-specific).

14.4.1.2 An Extended Gravity Equation with Cross-Sectional Dependence

The use of least-squares would imply to assume that the bilateral flows are
considered to be independent. The validity of this assumption has long been
questioned by various authors (Griffith and Jones 1980; Black 1992; Bolduc et
al. 1992; LeSage and Pace 2008), who have shown how potential spatial and
network dependence can affect different types of bilateral flows. LeSage and Pace
(2008) suggested, among other potential causes, the variable-omission problem.
According to Black (1992), network and spatial autocorrelation could bias the
classical estimation procedures for spatial interaction models. He suggested that
“autocorrelation may [ : : : ] exist among random variables associated with the links
of a network”. Bolduc et al. (1992) suggested that classical gravity models did
not consider the socioeconomic and network variables adjacent to the bilateral
origin–destination regions i and j, arguing that these too should be incorporated
into the relationship that attempts to explain flows (Fji) between these provinces.
They emphasized that the omission of neighboring variable values would give rise
to spatial autocorrelation in regression errors. Sources of spatial autocorrelation
among errors included model misspecification and omitted explanatory variables
to capture effects related to the physical and economic characteristics (distances
between zones, zone sizes, lengths of frontiers between adjacent zones, etc.) of
a region. More recently, LeSage and Pace (2008) challenged the assumption that
the classical gravity model’s origin and destination (OD) flows contained in the
dependent variable vector Fji exhibited no spatial dependence.

For most socioeconomic spatial interactions (migration, trade, commuting,
etc.), there are several explanations for these effects. For example, neighboring
origins (exporting provinces) and destinations (importing provinces) could exhibit
estimation errors of similar magnitude if underlying latent or unobserved forces
were at work, so that missing covariates exerted a similar impact on neighboring
observations. Agents located at contiguous provinces could experience similar
transport costs and profit opportunities when evaluating alternative nearby desti-
nations. This similar positive/negative influence among neighbors could also be
explained in terms of common factor endowments, complementary/competitive
sectoral structures, etc.

As explained in the previous section, in many cases two or more bilateral
transport flows might be anything but independent, being the end of the one the
beginning of the next. Transport infrastructures (the network itself, but also ports,
airports and logistics facilities) are usually not included as explanatory variables
in trade-flow models. Moreover, the actual transport mode used for delivery and
transport-mode competition/cooperation schemes is often overlooked in models of
aggregate flows and sector-specific deliveries. All these omitted variables can easily
become additional sources of spatial and network autocorrelation effects affecting
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spatial interaction models. In the next section, we formally test an extended gravity-
model specification that accounts for such cross-sectional autocorrelation effects in
models of inter-provincial flows with Spain. The extended model subsumes models
that exclude such dependence as special cases of the more elaborate model.

Departing from these previous comments, we now extend the model described
by Eq. (14.3) for testing the presence of transport mode competition by adding a
spatial lag component in the spirit of LeSage and Pace (2008). The aim of this spatial
model is to determine whether competing structures exist in neighboring provinces
(neighbors to the origins and destinations of the observed transport flows). The
economic rationale behind this extension could be, for example, that if a province
i delivers products to a province j by a specific transport mode (e.g., train), it
would raise the price of that mode for this specific trip (dyad i-j). Thus neighboring
provinces of i (ni) [or of j (nj)] could gain by using an alternative transport mode
(e.g., road) for their deliveries to j (or from i).5 We therefore test the data for such
effects with a spatial autocorrelation model (SAR), described in Eq. (14.4):

ln FkR
ji D ˛iN C Xiˇ1 C Xjˇ2 C ln djiˇ3 C Intraˇ4 C Adjˇ5

C ln FkT
ji ˇ6 C ln FkS

ji ˇ7 C ln FkA
ji ˇ8 C ln

�
gdpi

�gdpj
�
ˇ9 C �1W ln FkR

ji C "ji

(14.4)

This model includes all the explanatory variables from the previous models,
allowing them to subsume non-spatial regression models as special cases. The main
novelty lies in the spatial lag term �1WFkR

ji , where W represents a spatial weight
matrix of the form suggested by LeSage and Pace (2008).

In a typical cross-sectional model with n provinces, where each pair of provinces
represents an observation, spatial regression models rely on an n � n non-negative
weight matrix that describes the connectivity structure between the n provinces. For
example, Wji > 0 if province i is contiguous to province j. By convention, Wii D 0
to prevent an observation’s being defined as a neighbor to itself, and the matrix W
is typically row-standardized. In the case of bilateral flows, where we are working
with N D n2 observations (50 � 50 D 2500 in our case), LeSage and Pace (2008),
Chun (2008), Chun and Griffith (2011) and Fischer and Griffith (2008) suggest
using W D Wj C Wi, where Wj D In ˝ Ws represents an N � N spatial weight
matrix (2500*2500 in our case) that captures connectivity between the importing
province and its neighbor, and Wi D Ws ˝ In is another N � N spatial weight matrix
that captures connectivity between the exporting province and its neighbor.6 Ws

5Or, on the other hand, it could be that, thanks to economics of scale in freight (by train in
this example), the very fact that a province i delivers product k to j by train could increase the
probability that i or j will become a “Hub”, since neighboring regions to i or j might prefer to
ship their products to i in order to enjoy less expensive deliveries by train to j, than to ship them
directly by an alternative mode (say, road). If this were the case, the preceding model would fail
(non-significant results would be expected), and we would have a Hub-spoke structure (see the
next family of models described in this paper).
6We use the symbol ˝ to denote a Kronecker product.
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describes spatial connectivity between n provinces. This Ws matrix is symmetric,
so it has a real eigenvalue and n orthogonal eigenvectors. We row-standardize the
matrix W to form a spatial lag of the N � 1 dependent variable.

LeSage and Pace (2008) note that the spatial lag variable captures both
‘destination’- and ‘origin’-based spatial dependence using an average of flows
from neighbors to each origin (exporting) and destination (importing) province.
Specifically, this means that flows from any origin to a particular destination may
exhibit dependence on flows from the origin’s neighbors to the same destination.
LeSage and Pace (2008) call this origin-based dependence. The spatial lag matrix,
W, also captures destination-based dependence, the term used in LeSage and Pace
(2008) to reflect dependence between flows from a particular origin province to
neighbors of the destination province.

As suggested above, origin- and/or destination-based dependence could be
present for purely spatial reasons (long-lat. coordinates, temperature, factor endow-
ments, etc.), or because of unobserved factors that are also conditioned by space.
Moreover, as some papers (de la Mata and Llano 2013) have described, other non-
pure spatial correlations could also appear. In the next sections we address certain
such correlations connected with the idea of hub-spoke relations and multimodal
links between subsequent trips.

To help elucidate the next sections, we remind the reader that, as in LeSage and
Pace (2009), the spatial model in Eq. (14.4) can be described as filtering for spatial
dependence related to the destination- and origin-based effect, as described in Eq.
(14.5):

�
IN � �jWj

�
.IN � �iWi/ ln FkR

ji D ˛iN C Xiˇ1 C Xjˇ2 C ln djiˇ3 C Intraˇ4 C Adjˇ5
C ln FkT

ji ˇ6 C ln FkS
ji ˇ7 C ln FkA

ji ˇ8 C ln
�
gdpi

�gdpj
�
ˇ9 C "ji (14.5)

Again, the N � N weight matrix W is obtained by adding the destination- and origin-
based matrices (W D Wj C Wi). The matrix Wj can be expressed as a Kronecker
product, as in Eq. (14.6):

Wj D In ˝ Ws D

0

B
B
BB
@

Ws 0n � � � 0n

0n Ws
:::

:::
: : :

0n Ws

1

C
C
CC
A

(14.6)

Similarly, origin-based connectivity can be defined as Wi D Ws ˝ In. An
important characteristic of these expressions is that, for example, in a system of



14 Testing Transport Mode Cooperation and Competition Within a Country:. . . 331

five provinces, where province 2 is contiguous to province 1, Ws is structured as
follows7:

Ws D

0

B
B
B
BB
@

0 1 0 0 0

1 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

1

C
C
C
CC
A

(14.7)

14.4.2 Hub-Spoke Structures and Transit Flows

As previously described, a hub-spoke structure exists where an apparent transport
flow i-j is connected with a preceding flow (with i serving as a Hub: i D H) or a
subsequent one (with j serving as a Hub: j D H). For simplicity, we focus on the
latter case, and we assume that there is no concatenation of two transit flows. We
also assume that transit flows can be associated with any combination of transport
modes (R, T, S, A).

With this approach, any i or j in a system of N (n � n) bilateral flows i-j can
behave as a Hub. With this idea in mind, we formulate an approach linked to
the gravity equation and the spatial autocorrelation effects described before. This
strategy for modeling transit flows in hub-spoke structures assumes that every
province j is a potential Hub (H). Thus, much as in the previous case, if we wish
to explain a flow by road from i (Barcelona) to j (Zaragoza), we should consider
the possibility that j (Zaragoza) will become H—that is, that it will re-export the
same load, or some part of it, to a third province d (Madrid). Thus, j’s absorption
capacity (i.e., Zaragoza’s GDP) should be reinforced with variables explaining the
possibility of j’s being H (Zaragoza). This possibility is based on, among other
factors, the number of potential re-exporting flows of the same product k that is
delivered from j to other destinations in the country (in this case, Madrid as a final
destination). As we will see in Eq. (14.8), we can easily put this intuition to use in
the standard structure of an SAR model, but using a special version of the weight
matrix, labeled WH (H for Hub):

ln Fkm
ji D ˛iN C Xiˇ1 C Xjˇ2 C ln djiˇ3 C Intraˇ4 C Adjˇ5 C ln

�
gdpi

�gdpj
�
ˇ6

C�2WH ln Fkm
ji C "ji (14.8)

where �2WH ln Fkm
ji is a spatial lag term similar to the one in Eq. (14.4). The main

difference lies in weight matrix WH, which, unlike W D Wi C Wj (defined on a
purely spatial basis), is defined on the basis of actual trade flows for a given sector

7Remember that the OD matrix used for the endogenous variable is expressed with “destinations”
in rows and “origins” in columns.
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k and a given transport mode m (the aggregate in our empirical application). The
goal of WH is to capture all flows departing from a given destination j to any other
province d in the system. To be more restrictive, we consider all potential (final)
destinations d with the exception of i. Thus, we exclude the possibility that an initial
flow of product k from region i to region j will be re-exported afterwards (with no
further transformation) from j to i. The procedure to obtain this WH matrix is as
follows:

First, it is convenient to remember that the structure of all of our observations
is destination-based, using the terminology of LeSage and Pace (2009). Thus, we
produce WH as a matrix with n block matrices each one of it referring to each
exporting province i. This WH matrix is defined in such a way as to capture every
(subsequent) flow departing from the destination province j of a given dyad i ! j.
Three alternative criteria are used to fill in this matrix WH :

Option A: As described in Eq. (14.9), the first version of these matrices is WHa,
which contains a set of n rectangular matrices An where all potential flows departing
from H to any third destination j (except i) have a one, or otherwise a zero. The
matrix thus links every flow i ! H with every flow H ! j ( j being any province in
the system except i).
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@
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:::
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1

C
CC
A

(14.9)

To better illustrate our approach, the structure of three matrices (A1, A2, : : : A5)
corresponding to a system of n D 5 provinces is described below.

A1 D

0

B
B
B
B
B
@

0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1

1

C
C
C
C
C
A

A2 D

0

B
B
BB
B
@

1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1

1

C
C
CC
C
A
: : :



14 Testing Transport Mode Cooperation and Competition Within a Country:. . . 333
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Note that with this procedure, and for every j-i flow in the system, we consider
j as a potential Hub (so we denote them with an H, while j is used just to denote
the final destination of the subsequent re-exportation flows). Therefore WHa can
be described as a variation on a pure destination-based dependence like Wj in
LeSage and Pace (2008, 2009). It is also important to note that the previous matrix,
WHa, gives the same weight to all potential re-exported flows from H (the potential
Hub) to any subsequent final destination j (except i). Such an approach could be
considered naive, since the farther H is with regards to the final destination j the
lower the likelihood that such flow is a re-exportation of a previous one. This
is the reason why two alternative definitions of hub-spoke schemes are defined
below.

Option B: A more restrictive way to define this hub-spoke structure is described
by WHb in Eq. (14.10). Now, the matrix WHb contains n rectangular matrices of
type Bn, which contain ones for the flows from H to its contiguous regions nH , and
zeros otherwise. We thus link every flow i ! H with every flow H ! nH. Following
with the previous example of a system with five provinces, a flow from 1 ! 2 is
connected only to the flow from 2 (the potential Hub) to its contiguous province f1;
4g, setting to zero the other three elements. This situation is captured by a matrix
WHb, which has a similar structure than WHa, but has just ones when the destination
province of the first flow is re-exporting to its contiguous provinces.8 Note also that
the perfect-loop elements have also a zero.
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Option C: Our final version of weight matrix is based on Eq. (14.11), where WHc

contains a set of n rectangular matrix Cn. Here as in WHa, we link every flow i ! H

8Note that, by means of WHb, flow i ! j is associated with (subsequent) flow j ! nj. This “network
autocorrelation scheme”, which is explained by “re-exporting” activity within a “hub-spoke”
structure, is different from the typical “destination-base” spatial autocorrelation scheme (LeSage
and Pace 2008, 2009), where, by means of matrix Wj, flow i ! j is associated with the flow from
the same origin i to the neighbor of destination j (here labeled nj).
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with every flow H ! j (except i) but assigning a different weight to each potential
re-exportation flow. The weight structure is based on the inverse of the distance
from the Hub (H) to the final destination ( j). Thus the closer is H to j, the larger the
weight for the potential re-exporting flow H ! j.
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Following with our previous example’s flow F21 in a system of five provinces,
the first block rectangular matrix C1 will be as the one below, where the flow
F21 is associated with all the flows delivered from the potential Hub (H D 2) to
the remaining destinations fF22, F32, F42, F52g, again with the exclusion of the
perfect loop (F12). Now, however, the weight of each of these potential re-exporting
flows depends on the inverse of the distance to the potential Hub (d22; d32; d42;
d52).
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Finally, it is worth mentioning that in none of the previous specifications, which
are based in the SAR model, we are able to deal with inter-modal hub-spoke
structures (multimodality: combination of different transport modes between two
concatenated flows). Such option, is beyond the scope of this paper, and will be
made in future research. However, since some of our specifications use aggregate
flows (all transport modes analyzed together), it can be argued that multimodal
transport relations are somehow present in these examples.

For the sake of clarity, Fig. 14.3 summarizes the different models and weight
matrices considered in this paper.

14.5 Data

The dataset used in this paper to feed in the endogenous variable (flows) is based on
the most accurate data on Spanish transport flows of goods by transport mode (road,
train, ship, aircraft), in addition to 50 specific export price vectors, one for each
province of origin, transport mode and product type. This rich dataset was collected
and filtered in accord with the methodology described in Llano et al. (2010) and
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Model Endogenous 
variable

Exogenous variables (just the variables for the 

exporting province are reported)

Weight
matrix 

Baseline Models 
M1 All modes (aggreg.) Monadic: Island_i;

Dyadic: Ln (dji); Intra; Adj; Ln (gdpi*gdpj)
None 

M2 enoN1MnisAdaoR

M3 enoN1MnisAniarT

M4 enoN1MnisApihS

M5 enoN1MnisAtfarcriA

M6 All modes (aggreg.) Monadic: Ln (wholesales_pc_i); Island_i; 
Border_int_coreEU_i; Border_int_other_i; Ln 

(imp_int_all_gdp_i) 
Dyadic: Ln (dji); Intra; Adj; Ln (gdpi*gdpj)

None

M7 Road :cidanoM  As in M6 

Dyadic: Idem than in M6 +  Ln(FTji); Ln(FSji); Ln(FAji);
None

Transport Mode Competition 
M8 Road :cidanoM  As in M6 

Dyadic: Idem than in M6 +  Ln(FT
ji); Ln(FS

ji); Ln(FA
ji);

Spatial 

W
M9 Train :cidanoM  As in M6 

Dyadic: Idem than in M6 +  Ln(FR
ji); Ln(FS

ji); Ln(FA
ji);

Spatial 

W 
M10 Ship :cidanoM  As in M6 

Dyadic: Idem than in M6 +  Ln(FR
ji); Ln(FT

ji); Ln(FA
ji);

Spatial 

W
M11 Aircraft :cidanoM  As in M6 

Dyadic: Idem than in M6 +  Ln(FR
ji); Ln(FT

ji); Ln(FS
ji);

Spatial 

W 
Transport Mode Cooperation: hub-spoke structures 

M12 All modes (aggreg.) As in M6 WHa

M13 All modes (aggreg.) As in M6 WHb

M14 All modes (aggreg.) As in M6 WHc

Transport Mode Cooperation: hub-spoke structures with sector specific flows 
M14 All modes (by sector) As in M6. Note that some variables are k specific WHc

W for controlling for origin + destination base spatial autocorrelation: W= Wi + Wj

Wi Wj

WH matrices to control for hub-spoke structures
WHa WHb WHc 

Fig. 14.3 Scheme describing the empirical strategy



336 J. Díaz-Lanchas et al.

Table 14.1 Transport statistics used to estimate Spanish interregional trade

Mode Description and main features

Road Permanent Survey on Goods Transport by Road (Encuesta Permanente de
Mercancías por Carretera)
• Source: Ministerio de Fomento (Spanish Ministry of Public Works)
• Product Disaggregation: 160 products (class. NSTR-3 digits)
• Availability: 1995–present
Remarks:
• Permanent survey on the activity of a large sample of trucks in Spain: each trip
includes origin–destination, product type, volume, distance (km), etc.
• Survey may also include international transit flows from ports/airports to final
destinations
• It should be noted that figures obtained from truck surveys can be inconsistent
with figures on production/purchases from firms/household surveys

Train RENFE Statistics on Complete Wagon and Container Flows
• Source: Statistics Department of RENFE
• Product Disaggregation: approx. 40 categories (RENFE classification)
Remarks:
• Every domestic flow recorded: high quality, low product detail
• No information on products transported by container (30 % of rail flows)

Ship Statistics from Spanish Ports (Puertos del Estado)
Indirect estimation of interregional flow matrices using optimization procedure
based on:
(a) Tons loaded/unloaded per Spanish port, flow type, product type
• Source: Statistical Yearbook. Puertos del Estado
• Data: Annual. 27 Spanish ports
• Product Disaggregation: 40 products (Puertos del Estado classification)
(b) Set of Spanish domestic flow matrices with Ports of Origin and
Destination.1989
• Source: Domestic maritime flows by Origin and Destination. 1989. Puertos del
Estado
• Data: Annual. 38 largest Spanish ports (at the time)
• Product Disaggregation: 52 products (CSTE)

Aircraft O/D matrices of domestic flows of goods by airport of origin and destination 1995.
AENA
• Source: AENA & Ministerio de Fomento
• Data: Annual. Main Spanish Airports
• Product Disaggregation: None
Remarks:
• No information on sectoral disaggregation of domestic flows by air

published as part of the C-intereg project (www.c-intereg.es).9 The result is initial
estimates of interprovincial trade flows in current euros, based on a combination
of the transport and price databases. At each stage up to the final aggregation,

9The data used in this paper is not exactly the same than the official figures generated by C-intereg
project. The reason is that in this paper, we want to be as close as possible to the original statistical
source, rather than to use the C-intereg ones, which has been object of several final adjustments
with regards to the Spanish national accounts and industrial business surveys.

http://www.c-intereg.es/
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Table 14.2 Variables

Name (variables for
importing regions
are reported in
parentheses) Description Source

FkR
ji ; FkT

ji ; FkS
ji ; FkA

ji Inter-provincial flows in Spain by
transport mode (R, T, S and A) and
sector (k D all sectors, or product
specific flows for 15 sectors)

Several sources reported in
Table 14.1. Prepared for the
C-intereg project

Popi (Popj) Population of province i (Population of
province j)

INE. Regional accounts

GDPi (GDPj) Gross Domestic Product of province i
(Gross Domestic Product of province j)

INE. Regional accounts

dij • For distance within the Iberian
Peninsula: actual distance traveled by
trucks on their deliveries (EPTMC)
• For distance between provinces
within the Iberian Peninsula and
islands: actual distance to main
ports C actual distance from ports to
islands by ship

• EPTMC. Ministerio de
Fomento
• Puertos del Estado

Intra Dummy variable that takes value 1 if
i D j and 0 otherwise

Authors

Adj Dummy variable that takes value 1 if i
and j share a common border within
Spain and 0 otherwise

Authors

Wholesales pci

(Wholesales pcj)
Ratio between number of wholesale
activities in province i (j) and
population of same province

La Caixa et al. 2013

Islandi (Islandj) Dummy variable that takes value 1 if
exporting region i (importing province
j) is an island province: Islas Baleares;
Las Palmas and Santa Cruz de Tenerife

Authors

Imp. int. all/gdpi

(Exp. int. all/gdpi)
International imports of all products in
province i regardless of transport mode
(Idem for exports in province j)

Official international trade
data. AEAT

Imp. int.allk/gdpi

(Exp. int.
allk/gdpj).

International imports of product k in
province i regardless of transport mode
(Idem for exports in province j)

Official international trade
data. AEAT

Border int. core
EUi (Border int.
core EUj)

Dummy variable that takes value 1 for
Spanish provinces bordering on France
or Andorra and 0 otherwise. (Idem for
province j)

Authors

Border int. otheri

(Border int.
otherj)

Dummy variable that takes value 1 for
Spanish provinces bordering on
Portugal or Africa and 0 otherwise.
(Idem for province j)

Authors
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the methodology relies on the lowest level of disaggregation available. Table 14.1
provides a summary of the original information used for each transport mode, while
Table 14.2 describes the variables used as regressors.

14.6 Descriptive Analysis

The aim of this section is to describe the dataset. Our initial exploration aims to
describe as thoroughly as possible the logistical complexity previously introduced.
We will define a general index and explain our use, through GIS software, of some
very rich information about the actual transportation network. The starting point of
this analysis is found in Fig. 14.4, which depicts total inter-provincial flows for each
province in 2007.

As shown, the main inter-provincial flows stem from Spain’s richest provinces:
Madrid, Barcelona, Valencia, Sevilla and Zaragoza. The northeast shows high trade
volume; the west and south, low. As we will see later, this localization of trade flows
is driven by network infrastructure (road, port and rail networks), which determine
the transport mode used in each province.

Fig. 14.4 Total trade flows (exports) by provinces (2007). Euros
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This previous map breaks down trade flows by transport mode composition in
order to bring out the transport specialization of each province. Our exploratory
analysis aims to determine which provinces maintain high-level exporting and
importing flows for each transport mode. A high intensity of inflows and outflows
for a specific sector could be due to intra-industry trade, where interchanges between
the production and consumption of goods occur within the same place and sector, or
to product re-exporting flows, where third regions act as intermediate trade points
between the actual origin and destination provinces (i.e., regions which receive
and dispatch the same sector’s inflows and outflows through the same transport
mode).

To this end, we propose the “Intra-Mode Re-exporting Index (IMRI)” described
in Eq. (14.12). It identifies provinces that can be considered as re-exporting points
(hub-regions). The IMRI represents provinces that maintain a significant level of
intra-mode trade flows: i.e., that move significant exports and imports by the same
transport mode (m).

IMRIm
i D 1

K

KX

kD1
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@ Fkm
:i C Fkm

:i

max
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:j




 

1 �
ˇ
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i: � Fkm
:i

ˇ
ˇ

Fkm
i: C Fkm

:i

!1

A (14.12)

This index is a version of the well-known Grubel and Lloyd (1975) index, which
is the standard tool for measuring intra-industry trade between countries. Here,
instead of international trade flows (regardless of transport mode), we use inter-
provincial freight flows split by transport mode, where the variable F.i represents
total freight flows with an origin in province i and a destination elsewhere in
the country, freight flows within i itself is excluded. Conversely, the variable Fi.

represents the total inter-provincial freight flows that arriving at that province from
elsewhere in the country. As a first step, the index focuses strictly on each transport
mode m in sector k. The authors proposed their index to evaluate the extent to which
intra-industry trade was more important than inter-industry trade between countries.
As our definition of the index shows, the Grubel-Lloyd index is implemented on the
last term on the right-hand side of the equation. We have included a term to weight
the importance of exports and imports, in freight flows, of region i in sector k by
transport mode m, relative to the maximum level of exports plus imports observed
in the data for sector k and transport mode m.

If total importing freight flows for province i in sector k (Fkm
i. ) are equal to

province i’s total exporting freight flows (Fkm
. i ), the ratio of the second term of the

IMRI index is zero, and the whole term equals one. On the other side, if a province
receives or sends freight flows only within the same sector and transport mode—i.e.,
buys or sells goods only from sector k—the second term of the IMRI index equals
zero. Finally, to summarize the information, we take the average mean for the 15
sectors to obtain one unique index by transport mode for each province. If the index
for a specific province and transport mode approaches the value one, the province
is, in relation to the rest of Spain, a re-exporting province (potential “Hub”) with
a high intensity of trade flows by that transport mode. By contrast, if the index is
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Fig. 14.5 IMRI for road freight flows (2007)

closer to zero, the province could be a site of consumption or of production without
re-exporting flows.

The following maps show this index, highlighting each transport mode. Fig-
ure 14.5, showing the main road network in Spain (highways and national routes),
reflects the IMRI for road by province. At a glance, the index identifies three
main “Hubs” (Madrid, Barcelona and Valencia) when the “road” transport mode
is considered alone. These regions present the widest road-crossing intensity, with a
positive correlation between re-exporting flows by road and the actual road network,
especially for regions crossed by main highways. Other provinces (Zaragoza,
Sevilla, Valladolid and the three provinces of the País Vasco), which show a high
volume of trade flows in Fig. 14.4, are not as important in terms of re-exporting
intensity. As we will see later, this could be because other transport modes account
for their trade-flow intensity.

Figure 14.6 reflects the IMRI for rail and the main Spanish rail network. Again,
there exists a high correlation between the rail network and re-exporting trade flows
by train. Here the potential “Hubs” are Madrid, Barcelona, Valencia and Vizcaya
in the north of Spain, with important provinces to the northeast and the south.
Indeed, there exists a positive correlation between provinces that re-export by rail
and provinces that re-export by road.

As for trade flows by ship (Fig. 14.7), as expected, only provinces with ports
(the islands, Cádiz in the south and, at lower intensity, Valencia and Barcelona on
the Mediterranean coast) appear to be potential “Hubs”, since they receive high-
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Fig. 14.6 IMRI for train freight flows (2007)

intensity inflows from the rest of Spain for export outflows to the islands (Islas
Baleares and Islas Canarias) or to other provinces with ports. Anecdotally, it is
interesting to highlight that some landlocked provinces show slight (but not null)
intensity of inflows/outflows by ship. This is because trade-flow statistics with the
Islas Canarias are, as explained in the Annex, official statistics from the AEAT,
which collects the data that establishes the main transport mode used in the freight
flow. That is, a freight flow originating in a landlocked province and proceeding by
road to a port before taking a ship is nevertheless recorded as a delivery by ship
from the landlocked province.

Finally, Fig. 14.8 presents the IMRI for aircraft flows, along with the location
of the main Spanish commercial airports. Again, Madrid, Valencia and Barcelona
appear to be the potential “Hubs”, with Madrid’s Barajas airport, one of the
largest in Europe, playing a particularly important role and maintaining high-
frequency freight flows with the Islas Canarias (Las Palmas and Santa Cruz de
Tenerife). Here the Islas Baleares and the Islas Canarias are also important hub-
provinces for airplanes, because most of their re-exporting flows occur between
the small islands forming each province (e.g., the single province of the Islas
Baleares, which includes such islands as Mallorca, Menorca, Ibiza and Cabrera)
and use planes as the most efficient transport mode. For inland provinces with
airplane freight flows but no airport, we advance the same explanation as in the
case of ship flows, although freight-flow volumes tend to be insignificant in these
provinces.
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Fig. 14.7 IMRI for ship freight flows (2007)

Fig. 14.8 IMRI for aircraft freight flows (2007)
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14.7 Econometric Analysis

In this section we present estimates for the expressions in Sect. 14.4. The analysis
is divided into two parts. First, we present a set of models to consider flows that
are aggregated from the sectoral perspective but (sometimes) disaggregated from
the transport-mode perspective. Then, focusing on the hub-spoke structures, we
complement this analysis with an additional section where sector specific flows
are analyzed in light of our main models. For each model it is important to
consider the entry of endogenous variables, as well as aggregate or sector-specific
factors considered regressors. We want to remark at this point that the number of
alternative—an interesting—specifications is very large. Due to the nature of this
contribution, we explore the main ones, leaving others for further developments.

14.7.1 Aggregate Flows by Modes

Our analysis begins with basic specifications of the gravity equation, with aggregate
flows and OLS estimation procedure. The results are reported in Table 14.3
correspond to the results obtained using Eqs. (14.2) and (14.3). The first five
columns (M1–M5) present the results for aggregate trade flows. In the case of M1
all transport modes are analyzed together, while the other four columns contain the
results for each mode-specific delivery. In all cases, the most basic gravity model is
taken into account. Models M6 and M7 reflect estimations for an augmented gravity
model, including, among other variables, the per-capita wholesale variable for the
origin and the destination. M6 uses aggregate flows by all modes while M7 focuses
on flows by road, and tests cross-relationships between this mode and the other
three.

The results for aggregate flows are in line with the standard results of the gravity-
model literature for interregional trade flows; we find significant and negative
coefficients for distance and positive and significant coefficients for the product
of the GDP of the trading provinces. The positive and significant result for the
Intra dummy also confirms that intra-provincial flows are much higher than inter-
provincial flows; this result is consistent with the border-effect and regional home
bias literature for almost all countries and circumstances. The coefficient observed
for the Adj (contiguity) variable is also positive and significant in all models,
indicating that adjacent provinces tend to trade above average. For transport-mode-
specific (but still sectorally aggregated) flows, and for flows by road (the most
relevant) and train, we find consistent results with M1, although for road flows (M2)
island geography and distance have a much higher negative impact on trade. It is
also remarkable that the positive coefficient obtained for some modes is slightly
similar to the one for Intra (road and train), but considerable smaller for the other
two (ship and aircraft).
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For ship (M4) and aircraft (M5) flows, we obtain new and promising results.
In these regressions, the distance and island variables present signs opposite to
those obtained previously in the literature. We find a positive effect for both
variables, thereby confirming the heterogeneity of trade, distance, transport costs
and transport-mode competition. This result, in our view, confirms that the use
of these two modes increases with the distance between origin and destination,
something that usually occurs for an island. Concretely, for some locations (islands)
aircraft and ships are the only transport modes available for trade. Consequently,
the distance and island dummy variables have a positive sign. The intra-region
dummy variable also presents a positive sign, because ships and aircraft are the
main transport modes used to supply other locations (smalls islands) within the same
province.

The M6 and M7 regressions present the augmented gravity model specifically
including international trade flows (exports and imports) and dummy variables that
indicate a border with a European core-country (basically France) or with other
countries to the south, such as Portugal and Morocco. Both columns show consistent
results, where the product of GDPs, distance and islands have the expected impact
on trade. More interestingly, international imports seem to be positively correlated
with the capacity of exporting within the country, which can be interpreted as a
large content of international imports on inter-provincial exports, or as a sign of a
pure international hub-spoke structure. However, international exports intensity has
a negative and significant coefficient, indicating that the larger the foreign exports
of a region relative to its gdp, the lower their inter-provincial imports. Another
interesting point of reference is the result for the dummy variable controlling for
border provinces, which have no significant impact on trade except if the origin
trade-flow province shares a border with a country other than a European core
country (in which case the effect is in fact negative). This result is crucial for anyone
using our dataset, or the official freight flows considered in this paper, since it
indicates that the risk incurred when including international transit flows in the inter-
provincial flows is non-significant for the border provinces, and just can be possible
in the interprovincial exports of non-border provinces. Moreover, the negative sign
found in many cases (significant only for Border int. otheri) also suggests a certain
degree of international isolation in the Spanish border provinces, which indeed show
a negative correlation between their international importing/exporting capacity and
their inter-provincial exporting/importing deliveries. This result makes sense in light
of the political tensions some of these border provinces have suffered with their
international neighbors in the past and their tendency to be overshadowed by other,
larger nearby Spanish provinces (e.g., Girona vs. Barcelona, Guipuzcoa vs. Vizcaya,
Cáceres vs. Sevilla).

We move now to the other variables of interest in these models: namely, those
that capture the role of logistics, warehouses and wholesale activity in each trading
province. In M6 (aggregate flows by sectors and modes), just Ln(wholesales_pc_j)
has a positive and significant coefficient. Conversely, in M7, where just flows
by road are modeled, the two variables capturing the number of wholesale per
capita for the exporting and importing provinces show a positive and significant
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impact on trade. Finally, it is interesting to remember that M7 accounts for the
interrelation between three transport modes in the flows by road (endogenous
variable). Remarkably, train and aircraft flows show a positive and significant effect
on road flows, while ship flows present no significant impact. Such results suggest
that pairs of provinces with intense flows by road can also have intense bilateral
flows by train and aircraft and could be a sign of competition between transport
modes, at least when all products are analyzed together.

All these regressions lead us to perform a set of tests to determine the existence
of spatial autocorrelation in our model. Table 14.4 reflects various spatial tests,
such as Moran’s I, the LM error test, the LM lag test, the robust version of these
tests and a combination of them. We have performed them for Eq. (14.4) the M6–
M7 regressions, using the three pure spatial weight matrices separately (Wi, Wj,
Wi C Wj). As we can observe, all tests reject the null hypotheses for the non-
existence of spatial autocorrelation effects based on the origin, the destination and
both. We have tested alternative spatial models on the basis of these results and
found the spatial lag model to be the most suitable.

Table 14.5 reports the results for modeling aggregate flows from a sectoral
perspective with spatial autoregressive effects considered. The first four models
(M8–M11) use pure spatial dependence structures, defined by W D Wi C Wj matri-
ces. In all these models, then, we are testing for the presence of origin- and

Table 14.4 Spatial autocorrelation tests. Model 6–7

M6 M7
Wi Wj W D Wi C Wj Wi Wj W D Wi C Wj

Moran’s I—test for spatial autocorrelation in the residuals
Moran’s I 0.132 0.1769 0.171 0.108 0.155 0.137
Moran’s I-statistic 10.031 13.324 17.574 8.318 11.735 14.248
Marginal probability 0.000 0.000 0.000 0.000 0.000 0.000
LM error test for spatial autocorrelation in the residuals
LM value 94.9614 169.780 290.659 64.155 130.352 187.921
Marginal probability 0.000 0.000 0.000 0.000 0.000 0.000
LM error test for spatial autocorrelation in the dependent variable
LM value 15.410 62.529 215.827 12.626 78.528 142.281
Marginal probability 0.000 0.000 0.000 0.000 0.000 0.000
Robust LM error test
LM value 129.540 143.787 77.667 88.230 56.664 48.780
Marginal probability 0.000 0.000 0.000 0.000 0.000 0.000
Robust LM lag test
LM value 49.989 36.536 2.835 36.701 4.840 3.140
Marginal probability 0.000 0.000 0.092 0.000 0.027 0.07638727
Combined LM lag and LM error test
LM value 144.951 206.317 293.494 100.856 135.192 191.061
Marginal probability 0.000 0.000 0.000 0.000 0.000 0.000
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destination-based spatial autocorrelation effects affecting flows by road (M8), train
(M9), ship (M10) and aircraft (M11). In all cases, �1 is positive and significant,
indicating that the exporting and importing province’s neighbors exert, on average,
an enhancing effect on the trading dyads’ bilateral flows. This result is consistent
with previous papers and similar datasets in Spain (LeSage and Llano 2013; de
la Mata and Llano 2013; Alamá-Sabater et al. 2013a, b). Results for the standard
variables also meet expectations based on previous specifications. Among the
exceptions is the variable Border int. core EU for the exporting and importing
province, which, being negative and significant in more cases than previously,
reinforces our previous conclusions. The special results for ships and aircraft also
find confirmation. More interestingly, the four models include the flows of the other
three. For road (M8) we find enhancing effects, as before, with trains and aircraft.
For trains (M9), we find a positive correlation with road, ships and aircraft. As
expected, for ships (M10) we find positive coefficients with trains and aircraft but
not with road. Finally, for aircraft (M11) we obtain positive results with all other
modes.

The last three columns of Table 14.5 reports the results when the flows for all
transport modes are modeled with Eq. (14.8), designed specifically to deal with hub-
spoke structure using a SAR-like structure. The only difference between the three
models is the weight matrix used for capturing the re-exporting scheme of importing
province j when it can be assumed to be serving as a Hub within the country. M12
uses WHa, M13 uses WHb, and M14 uses WHc. In M12 and M14, a positive and
significant �2 is obtained. Inversely, in M13, which uses the narrowest definition of
re-exporting scheme, a negative and significant � is obtained. Focusing on the first
two, in all humility and prudence, one cannot affirm when using aggregate flows
that this result unequivocally proves the presence of a “hub-spoke” structure in the
country. What it indicates is that, on average, with these two alternative measures
for the re-exportation scheme, there is a positive and significant relation between
inflows received by road at province H and exports dispatched by road from H to
other provinces j. Again, with aggregate flows, this could be a sign of a hub-spoke
structure, but it could also be an effect of intra-industry trade or an indication of
strong urban provinces with intense inflows and outflows. Clearly, a more detailed
analysis using sector specific flows is needed.

14.7.2 Product-Specific Flows

In Table 14.6 we report the results of using Eq. (14.8) and WHc to model sector-
specific flows by the aggregate for all transport modes. This approach reduces the
number of zeroes for each sector specific flow, a factor that could harm our strategy
using a Maximum Likelihood estimator for our SAR specifications. As a robustness
check, we have produced a number of alternative estimates, which are not reported
for brevity. Such analyses are expected to be published in forthcoming articles
extending this approach.
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We now focus on Table 14.6. Remember that WHc is probably the finest definition
of a “hub-spoke” structure considered here, since by means of this weight matrix,
for every given i ! j dyad, re-exporting flows of product k from j to any other
provinces is considered, but weighting each by the distance between the potential
hub H and the final destination j (See Tables 14.7 and 14.8 in the Appendix of this
chapter to find out the results when is used WHa and WHb “hub-spoke” structure,
respectively). The results show certain heterogeneity, which is a sign of the richness
and complexity of the phenomenon being modeled at the sectoral level. To facilitate
this analysis we schematically focus on the main variables:

• As in the case of aggregate flows (M14, Table 14.5), �2 is significant and
positive for every sector. This indicates that, on average, provinces that are strong
importers of product k from other provinces in the country are strong exporters
of the same product k to other provinces, and with a higher intensity to its closest
provinces.

• Size of trading regions: for all sectors, also de product of the GDPs of the trading
partners has a positive and significant effect on the intensity of inter-provincial
flows.

• Variables capturing the relevance of trading provinces in terms of logistics, ware-
houses and wholesale facilities—Ln(wholesale pci) and Ln(wholesale pcj)—
generate interesting results. In the case of the exporting province (Ln(wholesale
pci)), with all other variables controlled for, ten sectors show significant and
positive coefficients, indicating that provinces with large ratios of such facilities
per capita are positively associated with a larger capacity for export to other
provinces than one might expect given their gross output in this sector. The
exceptions are: S1, which shows a negative and significant coefficient; S2 and S3,
also attaining negative (but non-significant) coefficients; and S8, with positive but
non-significant coefficient. By contrast, the equivalent variable for the importing
province (Ln(wholesale pci)) generates completely different results. None of
the inter-provincial sector-specific flows are enhanced by a high/low per-capita
ratio of wholesale facilities in the importing province. More surprisingly, the
coefficient for S2 is negative and significant.

• Results obtained with variables controlling for international trade flows entering
or living the country are also worth mentioning:

– Results obtained with the four border-province variables (Border int. core
EUi, Border int. core EUj, Border int. otherj, Border int. otheri) confirm
that border provinces are not operating as gateways to foreign markets—
or, better yet, their inflows and outflows are not inflated by their border
geography, because of international transit flows of the same product k.
Furthermore, in several cases a negative and significant coefficient is found,
which indicates that bordering province are exporting (or importing) less than
the provincial average, ceteris paribus. This can be, in part, caused by a certain
level of substitution of national for international destinations by some of the
merchandise produced in these border regions.

– The results of contrasting inter-provincial flows with international flows for
the same k are not so clear. For example, with Ln(imp int.allk/gdpi) some
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sectors (S3; S6; S7; S11; S12; S13; S14) show positive and significant
associations between their international inflows of product k by all transport
modes and, at the same time, their strong interprovincial exports within
Spain. This could be a sign that international transit flows can be induced
by strong demand for intermediate products imported from abroad (usually
included under the same rubric at this rough, fifteen-sector disaggregation). In
other cases, such as S8 (Chemicals), both effects can be dismissed, since the
coefficient obtained is negative and significant. Further research is needed on
this point.

– By contrast, the results obtained for Ln(exp.int.allk/gdpj) are more surprising.
In any case, positive and significant coefficient between the international
outflows and the internal inflows of k in a given province is just found for
sector S3 (Food and Beverages). In fact, in most cases the coefficients are
negative, and just in five cases both significant and negative. This result also
points to a low risk of having international transit flows (exports) hidden in
our interprovincial flows.

– Finally, it is interesting to comment briefly the heterogeneous results obtained
for the Distance, Intra and Adjacency variables. Distance has a negative
and significant effect in all cases. However, the elasticity shows a clear
heterogeneity, even when we consider only one transport mode and a medium-
size country like Spain. Further research will analyze the variability of mixing
the four available transport modes and the nature of each product-specific
flow (value/weight; transportability, etc.). The coefficient estimates for Intra,
the variable related with the home bias, is also positive and significant in all
cases, with large values for some sectors, as in previous papers using similar
datasets (Garmendia et al. 2012). Adjacency remains an enhancing force for
inter-provincial flows in all sectors.

14.8 Conclusions

Local freight flows result from global and regional economic processes. Internation-
ally, distribution networks have expanded, in line with the division of the production
chain and the development of door-to-door distribution schemes. The proliferation
of hub structures, gateways and corridors is growing in most parts of the world.
Such developments are behind the rise of efficiency in logistics. However, their
complexity is compounding the already difficult task of producing accurate trade
analyses within and between countries.

Many papers comparing international and interregional flows use transport flows
as the best proxy for internal bilateral trade, assuming no transit flows or re-
exportation activities. However, very few have seriously addressed the difficulties
that the growing complexity of logistics poses for the identification of production
and consumption sites with the points of origin and destination of flows.
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The aim of this paper is to analyze the complexity of modal cooperation and
competition, modeling interprovincial flows within a country and in the presence
of logistics infrastructures, warehouses and wholesale activities, as well as hub-
spoke structures and multimodal internal and international transit flows. It develops
various gravity models incorporating spatial and network autocorrelation effects,
and conducts tests upon a rich dataset with aggregate and sector-specific flows
between 50 provinces by four alternative transport modes (road, trains, ships, and
aircraft) in Spain.

The results are rich and promising, but not conclusive. The bottom line is that our
paper suggests a new strategy to deal with the growing complexity in logistics, and
finds significant results regarding the presence of transport mode cooperation and
competition within Spain using a rich dataset. In addition, the paper has reached
at least four important conclusions: (1) certain transport modes compete with other
modes within the country (road, trains and aircraft); (2) the effect of distance on
trade becomes positive and significant when the focus is ships and aircraft (i.e.,
the preferred modes for long distances and access to islands); (3) as our results
suggest, our dataset is free (to a large extent) of international transit flows, for
we find no “inflation” of inter-provincial flows at border provinces attributable to
their status as gateways or corridors to important foreign markets; (4) on average,
with aggregate and sector-specific flows, provinces receiving strong inter-provincial
imports in Spain are also strong exporters to other provinces in the country. This
important result is robust with (almost all) the definitions used here for capturing
“hub-spoke” structures and the use of aggregated and disaggregated data. However,
rather than clearly confirm the presence of “hub-spoke” structures, it could also be
symptomatic of other, equally plausible phenomena, such as intra-industry trade or
intermediate-final linkages formed by the presence of a multiple-stage production
process within the country. Further research is needed to refine the modeling
strategy, as well as the empirical assessment for Spain and other countries. In
the meantime, our results can be considered a first attempt to tackle this complex
topic.

Appendix

Tables 14.7, 14.8 and 14.9
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Table 14.9 Sectoral
classification

Sector CNAE-93 Description

1 AA,BB Agriculture, fishing
2 CA,CB Mining industry
3 DA Food and beverages
4 DB Textile
5 DC Shoes
6 DD Wood
7 DE Paper, edition
8 DG Chemical industry
9 DH Plastic
10 DI Non-metallic minerals
11 DJ Metallurgy and metallic products
12 DK Machinery and mechanical equipment
13 DL Electronic and electrical material
14 DM Transport material
15 DN Other industries

Comments on the Data

a) Transport flows by road (QkR
ji )

The Permanent Survey on Commodity Transport by Road (PSCTR), published
by the Spanish Ministry of Public Works (Ministerio de Fomento), is one of the
key sources for our original database on transport flows in tons (more than 80 %
of commodity flows in Spain take place by road). From this key survey, we obtain
a large set of OD matrices of flows in tons, one per product type (i D 160). In
order to get as close as possible to the concept of trade flow, we have removed
intra-municipal flows from the road-transport database.10 In addition, we have
depurated the original flows recorded by the PSCTR to prevent the inclusion of
international transit flows hidden within interregional deliveries.

b) Transport flows by train (QkT
ji )

Information on commodity flows by train is provided by Spain’s national rail
network RENFE, the main operator and a former national monopoly. The
statistics include commodities transported in ‘complete wagon’ or in ‘containers’
(30 % of total tonnage transported by CNT). The latter are more clearly subject
to ambushing multimodal transport strategies.

c) Transport flows by ship (QkS
ji )

Owing to the absence of an up-to-date set of OD matrices by ship with the
required sectoral breakdown, we have estimated these by a method commonly

10In some cases, intra-municipal flows do not correspond to economic transactions but to the
capillary distribution of commodities stocked and distributed within each municipality for final
consumption. The elimination of such flows will prevent the double counting of intra-regional
flows.
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used in the literature to update old inter-sectoral structures with new data
for margin totals. The method, based on previous works, uses Long-Scale
Optimization to update the most recent OD matrices available with new data on
the volume of commodities loaded/unloaded at each port (Statistical Yearbook.
Puertos del Estado11). Details in Llano et al. (2010).

d) Transport flows by aircraft (QkA
ji )

On the basis of an aggregated OD matrix of total domestic flows by aircraft
in tons in Spain, we have obtained a full set of OD matrices for domestic
flows by product using the expected structure of flows by product observed on
international flights for each airport of origin (r) and year (t). In this estimation
we assume that if a specific region has interregional exports of goods shipped
by aircraft, then the sectoral structure of its domestic outflows to any of its
destinations will be the same as those observed in international exports from the
same airport. To increase the plausibility of this assumption, we have considered
only the international trade of Spanish regions with the nearest countries (France,
Portugal, Germany, Italy and Morocco), where the same competition structures
in terms of transport modes operate. The flows are divided into the 160 categories
considered in the NSTR-3 digits used for road flows.

First Debugging Procedure for Transport Flows in Tons

a) Debugging interregional flows from international transit flows (ITF)
Although all the information described so far refers to interregional flows in
tons taking place within the country, the transported products may have an
international origin/destination. As a result, international trade may be double-
counted and the interregional trade of some specific regions may be overvalued.
In the case of Spain, the highest risk for that is associated with maritime-road and
maritime-railway intermodal connections.12 The identification and elimination of
ITF have focused solely on transport flows by road (which account for more than
90 % of flows in Spain) and are detailed in Llano et al. (2010).

b) Allocation of multi-modal flows
Another key difficulty in the estimation of interregional trade with transport flows
is that of identifying intermodal flows that correspond to the same transaction.
The risk of intermodal connections is mainly associated with interregional trade
between the mainland, the islands (Islas Baleares, Islas Canarias) and Ceuta and
Melilla (in Africa). Owing to the existence of special fiscal regimes in some
of these territories (Islas Canarias, Ceuta and Melilla), we have been able to
access detailed fiscal information on the mainland’s interregional trade with

11Puertos del Estado: http://www.puertos.es/es/estadisticas/index.html.
12In Spain, most international trade with non-European countries uses shipping as the transport
mode. Trade by road tends to use international freight services, which are not included in our
database.

http://www.puertos.es/es/estadisticas/index.html
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the Islas Canarias as well as with Ceuta and Melilla (Spanish Tax Authority,
www.aeat.es). Consequently, for these two cases, the quality of interregional
flows within Spain is similar to that of international trade flows. One of the
similarities stems from the procedure for reporting the main transport mode used
for deliveries. For these extra-peninsular regions, our dataset includes flows by
road between inner Spanish regions and overseas provinces. These flows imply
a combination of road and ship modes, and can therefore be considered typical
multimodal examples.

Estimating Interregional Trade Prices

Trade prices are estimated on the basis of value/volume relations deduced from
detailed statistics in the Spanish Branch Surveys, Agricultural Price Survey and
International Trade databases. For each year, transport mode and product type, the
objective is to estimate 52 export price vectors (one per Spanish province, NUTS-
3), at the lowest level of disaggregation, to capture price/quality differences between
regions for the same product. For the sake of simplicity, we use a superscript m to
denote the four transport modes considered (R, T, S, A).13 Regional (NUTS-2) and
national prices have been used in the absence of provincial data. Our estimation
method is explained in detail in Llano et al. (2010).
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Chapter 15
Modeling the Effect of Social-Network
on Interregional Trade of Services: How
Sensitive Are the Results to Alternative
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Carlos Llano and Tamara de la Mata

Keywords Bayesian spatial autoregressive regression model • Border effect •
Gravity models • Internal tourism • Social networks • Spatial connectivity of
origin-destination flows • Trade in services • Trade of services

JEL Classifications: C21, F12, F14, L83, R23

15.1 Introduction

The recent literature on border effects shows that, despite decreases in transport
costs, countries still engage in more internal trade than external trade (McCallum
1995; Helliwell 1996; Wolf 2000; Chen 2004; Okubo 2004; Evans 2006; Ghemawat
et al. 2010). To explain this, research has increasingly focused on informal barriers
to trade. One such barrier is the lack of information about international trade and
investment opportunities (Rauch and Casella 2003). Social and business networks
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are seen as possible ways to overcome such barriers and increase the volume of
international trade (Portes and Rey 2005). Evidence supporting such channels has
been found for business groups operating across national borders (Belderbos and
Sleuwaegen 1998), immigrants (Gould 1994) and long-settled ethnic minorities that
maintain co-ethnic business societies.

This literature distinguishes two main mechanisms through which bilateral
trade could be promoted by immigration. The first relates to the ‘idiosyncratic’
preferences of immigrants, or ‘taste effect’, where the positive impact of immigrants
on trade intensity reflects their taste for goods from their countries of origin. The
second relates to the reduction of transaction costs, or ‘information effects’, due
to migration; migrant familiarity with the preferences, social institutions, language
and legal institutions of both countries reduces communication costs and cultural
barriers. Communication between migrants and those living in their country of
origin is facilitated by social and business networks, which in turn account for higher
bilateral trade flows.

Some authors have tried to quantify the relevance of social and business networks
on trade in goods between countries.1 However, few papers have examined the role
of migration in determining patterns of trade flows within a single country (i.e.
Helliwell 1997; Combes et al. 2005; Millimet and Osang 2007; Garmendia et al.
2012). Helliwell (1997) has argued that, because institutions, flavors, culture, etc.
might differ more in from country to country than between the regions of a single
country, the trade-creation effect of migrants should be more intense on international
than on interregional trade. Despite these results, there remain several reasons
to expect larger effects on trade in services. First, domestic trade in services far
outstrips domestic trade in goods in all OCDE countries2; second, immigration flows
can be more intense, and at times more persistent, within countries than between
countries; third, because services require face-to-face contact for the interchange
to take place (also called ‘proximity burden’), information is more important for
trade in services than for trade in goods, so we can expect social-network–driven
reductions in transaction costs to be larger; finally, in focusing on interregional
tourism-related trade flows in services, we must consider (apart from information
and taste effects operating in goods) the potential reduction of lodging costs for
tourists who take advantage of second homes and accommodations owned by
relatives and friends, a reduction most likely to occur within single countries,
as tourists travel back to the regions of their birth. Note that at least in some
Mediterranean countries, like Spain, Italy and France, this phenomenon is far from
sporadic, and may be occurring almost every weekend. However, most of the studies
focus on trade in goods, without considering interregional trade in services or the
role of interregional migration flows.

1Among others: Gould (1994), Head and Ries (1998), Dunlevy and Hutchinson (1999, 2001),
Wagner et al. (2002), Rauch and Trindade (2002), Girma and Yu (2002) and White and Tadesse
(2008).
2For example, according to the Spanish National Accounts, more than 60 % of Spain’s GDP is
produced by services, and more than 70 % of Spain’s total output is consumed within the country.
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Then, we consider that an analysis of these effects on services and at the regional
level is in order, and for several reasons. First, it is well known that services account
for the largest share of total economic activity in all developed countries. Second,
the lack of information on bilateral trade in services has stymied empirical work that
quantifies border effects on services. Third, as mentioned, given the characteristics
of services, we can reasonably expect information and tastes to have a greater
effect on trade in services than on trade in goods. And, finally, because of data
restrictions, most studies have focused on the link between international migration
and international trade, ignoring the fact that most flows in both people and trade
take place between the regions of single countries. There are, then, intuitively
obvious reasons to analyze the relationships between trade flows in services sectors
and immigrant stocks at the interregional level, but a lack of information has limited
such analysis. To help fill this gap, we have already investigated—in de la Mata
and Llano (2013)—whether similar results exist for regional trade in services linked
with tourism3: Accommodations, Restaurants and Travel Agencies.

An additional novelty in de la Mata and Llano (2013) that is also explored
in the present work is the use of spatial-econometrics techniques, which have
elsewhere been used to analyze various topics in international economics, such
as the determinants of foreign direct investment (Ledyaeva 2009) and the effects
of bilateral agreements (Porojan 2001; Egger and Larch 2008). It is important to
include the geographical perspective in such analyses in order to control for the spa-
tial dependence caused by spatial aggregation, spatial externalities, spillover effects
and spatial heterogeneity (Anselin 1988). Finally, Behrens et al. (2012) derived
a structural gravity-equation system in which both trade flows and error terms
were cross-sectionally correlated and estimable by means of techniques from the
spatial-econometrics literature. According to their findings, directly controlling for
cross-sectional interdependence reduces border-effect measurements by capturing
‘multilateral resistance’, which origin- and destination-specific fixed effects do not
totally control for. As for social networks, we find—in addition to the trade-creation
effects that the literature traditionally ascribes to emigrants and immigrants—
potential sources of cross-section autocorrelation in the regional concentration of
interregional emigration and immigration stocks. These sources, which we have
labeled ‘network autocorrelation’ or ‘demography-based autocorrelation’, could
also affect bilateral flows between two regions, as explained in Sect. 15.2.

In de la Mata and Llano (2013) we explored various models that allowed us to
incorporate both spatial and demographic cross-sectional dependence. We estimated
three versions of the Spatial Durbin Model (SDM), four versions of the General
Spatial Model (SAC) and a Spatial Autoregressive Model that simultaneously
incorporated two spatial lags (SAR): based on contiguity and based on regional
demographic structure. All these models were estimated for different specifications

3There exist a few studies that analyze internal tourism flows, but they use input–output models
(Eriksen and Ahmt 1999) or time-series approaches (Athanasopoulus and Hyndman 2008). None
use a gravity model with cross-sectional data or pay attention to network effects.
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and given robustness checks with a past-migration-flows variable, given by (a) a
matrix of migration stocks in 1981 and (b) a second version of the same 1981
matrix that restricted the concept of ‘neighbor’ to the most intense demographic
links. Our main conclusions can be summarized as follows: the distance coefficient
turned out to have a negative sign, and therefore a negative effect, but the effect was
mitigated when we controlled for intraregional flows and migration stocks, because
the coefficient, while retaining the negative sign, became numerically smaller; the
trade creation effect of social networks was confirmed, although the directionality of
this effect (whether it was significant for emigrants, immigrants or both) depended
on the spatial model used; the best performing model was the SAC model, which
used a restricted version of the matrix (defining demographic neighbors by 1981
migrant stocks, so as to account for the spatial autocorrelation of the dependent
variable) and a contiguity matrix (to control for the spatial autocorrelation in
residuals). This confirmed a certain level of complementarity between the two types
of autocorrelation, although the demography-based “network” autoregressive term
was non-significant.

On the basis of these recent approaches and the results of our analysis in de la
Mata and Llano (2013), in this paper we study the relationship between interregional
trade flows in Accommodations and Restaurants as generated by travel. We use
a gravity model that relies on conventional distance measures that are thought to
inhibit flows and alternative social network-measures. For estimation purposes, we
relied on spatial-econometric methods, incorporating cross sectional dependence
based on contiguity and social-network dependence. The last one being measured
by a spatial weight structure that links regions based on the stock of interregional
immigrants living in each region. This type of interregional dependence is contrasted
with more conventional weight structures based on the geographical proximity of
regions. As in de la Mata and Llano (2013), we exploit recent estimates of intra- and
interregional trade flows in tourism-related service sectors between Spanish regions
(de la Mata and Llano 2012b). We have used Maximum Likelihood (ML) estimation
to test four alternative spatial-model specifications: namely, a spatial lag model
(SAR), a spatial error model (SEM), a spatial Durbin model (SDM) and a spatial
general model (SAC).4 Some of these specifications have been defined in such a
way as to embed two different weight matrices, which attempt to capture (separately
or simultaneously) the two previously described autocorrelation effects: spatial
and demographic. We also report additional robustness analyses, using alternative
measures that are thought to capture the pro-trade effect of variables representing
different types of social networks, as described in Sect. 15.4.

One of the novelties of this paper is that we include only domestic flows linked
with trips. This allows us to measure home-bias—defined as how many more times
a region trades within itself than with any other region, once other factors are
controlled for—in the domestic trips of Spanish residents at the regional level,

4These models have been estimated using the spatial econometrics toolbox provided by James P.
LeSage (www.spatial-econometrics.com).

http://www.spatial-econometrics.com/
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as well as the extent to which strong social networks over short distances can
explain the observed internal border effect. Interestingly, once social networks are
controlled for, the home-bias of domestic trips tends to decrease or, in some cases,
even disappear. With this analysis we confirm that social networks do, by various
measurements, exert a trade-creation effect and that in most cases, once social
networks are controlled for, the negative effect of distance vanishes. We also confirm
the spatial autocorrelation of flows and test it with two complementary matrices:
contiguity and main relative social networks.

In Sect. 15.2 we discuss trade in services and network influences on its flows.
Section 15.3 presents an empirical gravity model, detailing a series of increasingly
complex specifications that control for spatial/geographical as well as network
dependencies. In Sect. 15.4 we present and discuss our empirical results by applying
the model to intra-and interregional trade flows associated with tourism in Spain.
Section 15.4 includes an additional analysis with the model preferred, but instead
of social-network variables we use different variables that try to capture other ways
that social networks can be created.

15.2 Trade and Social Networks: Background
and Definitions

An economic network has been defined as a group of agents that pursue repeated,
enduring exchange relations with one another (Podolny and Page 1998). Using
this definition, several authors have analyzed the impact on bilateral trade between
origin and destination regions of the stock of immigrants in or emigrants from the
importing and exporting region. Rauch (2001) pointed out in his review that any
positive impact of immigration on trade may simply reflect immigrant preferences
for goods from their countries of origin or a correlation of immigration with
the trade-promoting characteristics of the country of origin or destination (e.g.,
geographic proximity). As other authors have shown, however, apart from these
‘taste effects’, there also exists a ‘network effect’ induced by social links that
immigrants maintain with their countries of origin. Such links may lead to important
reductions in transaction cost, which may in turn boost bilateral trade flows.

For our purposes, an immigrant is an individual born in a region (‘homeland’)
different from his current region of residence (‘host region’). Note also that, when
considering interregional monetary flows in tourism-related sectors, we define the
‘exporting region’ as the one producing the service: in this case, the region receiving
the tourists. Within these sectors are several channels that may lead to a positive
relationship between the intensity of trade and the presence of social networks.
We classify these channels into two groups, differentiating between relations that
affect the trading regions (‘emigrant and immigrant effects’, as they have been
traditionally labeled in the literature) and relations that affect the neighbors of
trading regions (cross-section autocorrelation).
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The empirical literature on the trade-creation effect of social networks identifies
two main channels between our tourism-linked trade flows and interregional
migration stocks:

1. Immigrants select their destination for internal (domestic) touristic trips in accord
with family ties in their homeland (home region). Since tourists take advantage of
vacations to visit their homeland, they may own homes or have access to property
there. Thus the larger the stock of emigrants in a region, the greater the flow of
exports from the emigrants’ birth regions to their host regions. We call this the
‘emigrant effect’.

2. Conversely, non-migrant relatives and friends may tend to visit immigrants in
their host regions, since these visits are made easier by access to information and
to less-expensive accommodations than in other tourist destinations. Thus the
larger the stock of immigrants in a region, the greater the flow of exports from
the host region to the migrant homeland. We call this the ‘immigrant effect’.

Apart from these two effects, which appear to enhance bilateral flows and
have traditionally been analyzed in the literature on trade, there are additional
channels of influence that could affect bilateral trade flows in tourism-related
sectors. These additional channels arise from what we might consider cross-
sectional autocorrelation due to ‘spatial’ or ‘demographic’ neighboring, and they
tend to connect each bilateral trade flow of services with outflows from or inflows
to the neighboring exporting or importing regions under consideration.

For origin and destination flows, Lesage and Pace (2008) described an ‘origin-
based dependence’ and a ‘destination-based dependence’. The former associates
flows from i to j with flows from i’s neighbors to j, whereas the latter associates
flows from i to j with flows from i to j’s neighbors.5

Moreover, we could define a ‘neighboring region’ in terms of geographic
proximity/spatial contiguity, as in Lesage and Pace (2008), or, more generally, in
terms of proximity as measured by population and demography.

There could be cross-sectional dependence between a given flow and a flow
from the exporting region’s spatial neighbor (contiguous region) to the importing
region (exporting-based dependence) and another flow from the exporting region
itself to a neighbor of the importing region (importing-based dependence):

1. Export flows from a region i to a region j can be correlated with exports from i’s
neighbors to j. This spatial dependence could be caused by:

(a) The ‘taste effect’, in which exports of tourism-related services from one
region and its contiguous neighbors to some other region are related because
people living in the importing region may select any or all of the exporting

5LeSage and Pace (2008) described a third ‘origin–destination–based dependence’, which related
flows between the neighbours of i and the neighbours of j. This paper, like Fischer and Griffith
(2008), does not consider this relationship.
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regions as their destination for their similar characteristics (weather, culture,
etc.).

(b) People are more likely to have information about the tourism options of
regions contiguous to the destination region and shared infrastructure often
reinforces this channel.

2. Conversely, from the perspective of the importing region, there could also be
some correlation between exports from a given region i to j and between the
exports of the same region i and the neighbors of j. The mechanisms behind this
spatial autocorrelation are equivalent to those described for the regions where
flows originate (tourist destinations) but with the forces acting in the opposite
direction.

For cross-section autocorrelation based on regional demographic structure
(network dependence), we can also delineate two such mechanisms (on the basis of
emigration from and immigration to each region):

1. The first relates a region’s historical patterns of emigration with current tourist
decisions through ‘importing-based dependence’. If a given region’s emigrants
have concentrated in a group of host regions, then a social network between home
and host regions is likely to appear. People in this social network (e.g., members
of one family living in different regions) may decide to travel periodically as
tourists to the same region. Thus the imports of one region are not independent of
the imports of its demographic neighbor. This cross-relation between a region’s
demographic neighbors may introduce effects that enhance or compete with the
positive relation of migrants and trade in our three services sectors. As noted
earlier, immigration is influenced by gravity, so ‘demographic neighbors’ could
coincide with ‘spatial neighbors’. However, alternative situations might also
arise.

2. A second situation could give rise to ‘exporting-based dependence’. If one
region’s emigrants are highly concentrated in another region, exports from the
homeland to any other region j will be correlated with exports from the host
region to region j. The mechanisms that explain this dependence on flows are
similar to those explained before but act in a different direction, toward the trip
destination (the exporting region).

Finally, it is important to highlight that immigrants could also affect the ‘tourism
decisions’ of non-immigrants living in the same region. Since a large number of
immigrants start families with their host region’s natives, it is easy to imagine
an influence arising from tastes and family ties that acts not only on immigrant
tourism decisions but on non-immigrant tourism decisions as well. Moreover, an
immigrant’s relatives and friends still living in the homeland (but remaining in
regular contact) could also spread their travel experiences and tastes to fellow
inhabitants of the homeland. Although information and preferences would spread
mainly within each of the two regions (homeland and host region), it could also
gradually spread to neighboring regions. In Combes et al. (2005), this effect is
described as the main force driving the relation between the ‘information effect’
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Fig. 15.1 Intuitive scheme showing the relation between trade flows in services and migration
stocks

and the ‘border effect’ for interregional trade in goods. In this paper, the effect is
mixed with and strengthened by the effects described above.

In conclusion, we have described how the stock of immigrants and emigrants can
influence bilateral flows between two regions through different channels, but also
how a given region’s trade flow can be related to the flows to and from contiguous
regions and demographic neighbors (where a relatively large concentration of
emigrants from one region lives in the other, or where a large share of a region’s
immigrants have been born in the other). We have described, furthermore, how all
these influences could affect both immigrant and non-immigrant tourism decisions.
These effects are summarized in Figs. 15.1 and 15.2.

15.3 The Empirical Model

In this section, we first discuss the cross-section dependence of flows based on
spatial and demographic neighboring and how they relate to our spatial econometric
model. We set forth a series of alternative, increasingly complex specifications and
compare them.
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Fig. 15.2 Scheme summarizing spatial and network effects on bilateral flows

15.3.1 Spatial and Demographic Dependence Affecting
Gravity-Model Estimates

Black (1992) suggested that network and spatial autocorrelation may bias the
classical estimation procedures for spatial interaction models. He suggested that
“autocorrelation may [ : : : ] exist among random variables associated with the links
of a network”. Bolduc et al. (1992) suggested that classical gravity models do
not consider the socioeconomic and network variables adjacent to bilateral origin–
destination regions i and j, arguing that these should also be incorporated into the
equation that attempts to explain flows (Tij) between these regions. He emphasized
that omission of neighboring variable values gives rise to spatial autocorrelation in
the regression errors. The sources of spatial autocorrelation errors include model
misspecification and omitted explanatory variables to capture effects related to a
region’s physical and economic characteristics (distances between zones, size of
zones, length of frontiers between adjacent zones, etc.).

More recently, LeSage and Pace (2008) challenged the assumption that the
origin and destination (OD) flows in the classical gravity model contained in the
dependent variable vector Tij exhibit no spatial dependence. They note that the
use of distance alone in a gravity model may be inadequate for the modeling
of spatial dependence between observations. Most socioeconomic spatial interac-
tions (migration, trade, commuting, etc.) have several explanations. For example,
neighboring origins (exporting regions) and destinations (importing regions) may
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exhibit estimation errors of similar magnitude if underlying latent or unobserved
forces or missing covariates exert a similar impact on neighboring observations.
Agents located in contiguous regions may meet with similar transport costs and
profit opportunities when evaluating alternative nearby destinations. This similar
positive/negative influence among neighbors could also be explained in terms of
common factor endowments or complementary/competitive sectoral structures. For
example, if natural factor endowments are key variables explaining patterns of trade
specialization, neighboring regions with similar factor endowments may be affected
in similar ways by demand and supply shocks. Since a large number of factor
endowments are conditioned by space (similar natural resources and climate, joint
transport infrastructures, etc.), it would be easy, on a sufficiently fine spatial scale,
to find spatial autocorrelation in the sector specialization of regional production and
trade.

As explained in the previous section, bilateral trade flows of tourism-related
services could themselves be affected by these sources of spatial dependence. In
the next section, we formally test an extended gravity-model specification that
accounts for spatial and network (in our case, demographic) autocorrelation effects
in interregional trade flows. The extended model subsumes models that exclude
spatial and network dependence as special cases of the most elaborate model, and
provides a simple empirical test for the presence of significant spatial and network
dependence.

Our empirical model will be based on several alternative specifications that allow
us to consider the interdependence of flows between two regions and of flows to
and from their neighbors. In this respect, we have defined two different types of
neighbors: one based on geography and regional borders (the contiguity matrix) and
a second based on the relative importance of certain past migration flows, which
allow us to take into account the interdependence of flows caused by the existence
of social networks.

15.3.2 Introducing Spatial and Network Effects in the Gravity
Model

A conventional least-squares gravity-model specification is shown in Eq. (15.1),
where bilateral flows (Tij) between exporting region i and importing j are modeled
as a function of a set of explanatory variables reflecting the economic size
of the two regions and the distance (dij) between them. Tij denotes the n � n
matrix of exports in monetary units (current euros) of the services produced by
Restaurants C Accommodations between each region i and imported by each region
j. The size of the origin of the flow (exporting region) is proxied by the hospitality-
industry gross value added in region i (gvai), while the size of importing region j is
modeled as depending on population (popj) and income (incj). A dummy variable
ownregij, taking the value one when trade is intraregional and zero otherwise, has
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been included to control for the different nature of intraregional trade flows (flows
generated by trips within the region of residence), Tii. Past studies (McCallum
1995; Helliwell 1997; Wolf 2000; Chen 2004; Okubo 2004; Combes et al. 2005;
Requena and Llano 2010) have interpreted the coefficient associated with this
dummy variable as an ‘internal border effect’ or ‘home bias’. Once we have
controlled for other factors (size, bilateral distance, presence of a social network),
we interpret the coefficient linked with this dummy variable, ”, as the number of
times one region tends to trade more within itself than with any other region in the
country. We measure the trade creation effect of social networks by introducing the
variables mij and mij. The former captures the effect of emigrants on trade exports
from region i to j; similarly, the latter captures the variation in flows due to the stock
of immigrants hailing from region j but living in region i. In a first specification we
imposed the value of zero on both coefficients, while in a second we obtained both
effects simultaneously. For simplicity we are not using alternative specifications
with just one of the coefficients set to zero and thus estimating the ‘emigrant’ and
‘immigrant’ effect separately. We have already carried out this analysis, although
with slightly different data, in de la Mata and Llano (2013).

Tij D ˛iN C gvaiˇ1 C popjˇ2 C incjˇ3 C dijˇ4 C ownregij� C mijˇ5 C mjiˇ6 C "ij

(15.1)

One may wish to consider the presence of potential multicolinearity problems
caused by a high correlation between emigrant and immigrant bilateral flows.
To cope with this limitation, Eq. (15.2) uses a single vector for bilateral “net
migration” m_netij D �

mji C mij
�

with which to capture the aggregate effect of
immigrants C emigrants on trade. This third specification will be considered also for
the forthcoming augmented models, which will include spatial and network effects.

Tij D ˛iN C gvaiˇ1 C popjˇ2 C incjˇ3 C dijˇ4 C ownregij� C m_netijˇ7 C "ij

(15.2)

15.3.3 Alternative Spatial Models for Origin and Destination
Flows

To determine whether spatial dependence on the bilateral flows discussed in
previous sections is consistent with the data, we follow the approach set forth
in LeSage and Pace (2008) and make our next spatial regression models rely
on the spatial lags of the dependent variable. These models also include all the
explanatory variables from the previous models, allowing them to subsume the
non-spatial regression models as special cases. We include a spatial lag of the
dependent variable (WTij), the independent variables (WXij), the error term (Wuij), or
some combination thereof, where W represents a spatial weight matrix of the form
suggested by LeSage and Pace (2008).
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In a typical cross-sectional model with n regions, where each pair of regions
represents an observation, spatial regression models rely on an n � n non-negative
weight matrix that describes the connectivity structure between the n regions. For
example, Wij > 0 if region i is contiguous with region j. By convention, Wii D 0 to
prevent an observation from being defined as a neighbor to itself, and the matrix
W is typically row-standardized. In the case of bilateral flows, where we work
with N D n2 observations, LeSage and Pace (2008), Chun (2008), Chun and Griffith
(2011) and Fischer and Griffith (2008) suggest using Wspa D Wspa

j C Wspa
i , where

Wspa
j D In ˝Ws represents an N � N spatial weight matrix that captures connectivity

between the importing region and its neighbor, and Wspa
i D Ws ˝In is another N � N

spatial weight matrix that captures connectivity between the exporting region and its
neighbor.6 We row-standardize the matrix Wspa to form a spatial lag of the dependent
variable.

LeSage and Pace (2008) note that the spatial lag variable captures both
‘destination-’ and ‘origin-based’ spatial-dependence relations using an average
of flows from neighbors to each origin (exporting) and destination (importing)
region. Specifically, this means that flows from any origin to a particular destination
region may exhibit dependence on flows from the origin’s neighbors to the same
destination—a situation that LeSage and Pace (2008) call origin-based dependence.
The spatial lag matrix, Wspa, also captures destination-based dependence, which
is a term used by LeSage and Pace (2008) to reflect dependence between
flows from a particular origin region to neighboring regions of the destination
region.

We take a similar approach to produce a network-dependence weight matrix,
Wnet, which captures network autocorrelation effects. As in the case of Wspa, the Wnet

matrix is formed as a sum of two matrices that specify ‘demographic neighbors’ to
the origin and destination regions, specifically Wnet D Wnet

i C Wnet
j . The matrix

Wnet
j D In ˝ Wnet

81�sym, where Wnet
81�sym is constructed on the basis of regions with

the strongest demographic links as shown by past migration-stock patterns, is an
N � N weight matrix that captures connectivity between the importing region and
its demographic neighbors. Details on the procedure used to build this matrix are
provided in the next section. Similarly, Wnet

i D Wnet
81�sym ˝ In, and the matrix Wnet

is row-standardized. This allows us to include in this model a network lag of the
dependent variable shown in Eqs. (15.1) and (15.2).

We will now present our econometric models, which allow us to account for the
different structures of the flows’ spatial dependence.

15.3.3.1 A Spatial Lag Model

Equation (15.3) is a spatial lag model, including: (1) a spatial lag of the dependent
variable (WTij), in which Tij is the N � 1 vector representing the n � n flows matrix

6We use the symbol ˝ to denote a Kronecker product.
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transformed into a vector, W is one of the previously described matrices used to
capture spatial autocorrelation based on contiguity or demographic structures; iN
is an N � 1 vector of ones; gva, pop and inc are N � 1 vectors containing the
explanatory variables; d is the n � n matrix of interregional distances transformed to
an N � 1 vector appropriate for each bilateral flow; ownregij is an identity matrix
of order n controlling for intraregional flows that has been transformed into an
N � 1 vector; mij and mji are two n � n matrices of interregional migration stocks
transformed into a pair of N � 1 vectors and " is an N � 1 vector of normally
distributed constant variance disturbances.

The scalar parameter ¡ denotes the strength of spatial dependence in flows.
When it takes the value of zero the model in Eq. (15.3) becomes the independent
regression model. This allows us to carry out a simple empirical test for the
statistical significance of spatial dependence in the flows.

Tij D ˛iN C �WTij C gvaiˇ1 C popjˇ2 C incjˇ3 C dijˇ4 C ownregij�

Cmijˇ5 C mjiˇ6 C "ij
(15.3)

Then, as in Eq. (15.3), a new Eq. (15.4) can be defined, where immigrant and
emigrant effects are added in a single net migration vector.

Tij D ˛iN C �WTij C gvaiˇ1 C popjˇ2 C incjˇ3 C dijˇ4 C ownregij�

Cm_netijˇ7 C "ij
(15.4)

15.3.3.2 A Spatial Error Model

The spatial error model is appropriate when the error terms of particular regions
are can be expected to be linked. The parameter œ captures the presence of spatial
dependence in the residuals of the bilateral flows.

lTij D ˛iN C gvaiˇ1 C popjˇ2 C incjˇ3 C dijˇ4 C ownregij� C mijˇ5 C mjiˇ6 C uij

uij D Wuij C "ij

"ij � �
0; �2IN

�
(15.5)

For the sake of simplicity, in this and the following models we do not include a new
equation to describe the corresponding models in which the “net migration” vector
would be used instead of their emigrant and immigrant counterparts. However, we
analyze the corresponding results in the next section.
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Now we briefly describe two of the models that allow us to test for more elaborate
structures of dependence in the flows: the spatial Durbin model and the spatial
general model.

15.3.3.3 A Spatial Durbin Model

This model, described in LeSage and Fischer (2008) and elsewhere, has been
applied in the context of gravity equations by Angulo et al. (2011). In contrast to the
previous models, it assumes spatial dependence in the dependent and independent
variables, as described in Eq. (15.6):

Tij D ˛iN C �1WTij C Xˇ C WX� C "ij (15.6)

Where WX is the spatial lag of all the independent variables included in X. Note
that, in contrast to previous specifications included in this paper, only one weight
matrix is used at a time, but it generates two sources of spatial dependence. An
SDM gravity model with two alternative W matrices has not been reported in the
literature. Here, however, we depart from this common specification and estimate
three alternative models using the following weight matrices, as in de la Mata and
Llano (2013): (1) W1 D Wspat, (2) W2 D Wnet, (3) W3 D Wspa C Wnet.

15.3.3.4 A Spatial General Model

The last model, based on the spatial general model (SAC) described in LeSage and
Pace (2009, p. 32), considers spatial dependence in both the dependent variable and
the disturbance term, as described in Eq. (15.7):

Tij D ˛iN C �W1Tij C gvaiˇ1 C popjˇ2 C incjˇ3 C dijˇ4 C ownregij�

C mijˇ5 C mjiˇ6 C uij

uij D W2uij C "ij

"ij � �
0; �2IN

�
(15.7)

Note that the model described in Eq. (15.7) considers two different weight matrices,
W1 and W2, each capturing the effects on the dependent variable and the disturbance
term. Following the recommendations of LeSage and Pace (2009, p. 32), we
will consider four alternative cases, without imposing a preferred structure to
the data in advance: (1) W1 D Wspa, W2 D Wnet; (2) W1 D Wnet, W2 D Wspa; (3)
W1 D W2 D Wspa; (4) W1 D W2 D Wnet.
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15.4 An Application to Spanish Domestic Trade in Certain
Service Sectors

15.4.1 The Data

Like most countries, Spain has no official data on monetary interregional trade flows
associated with the two tourism-related sectors we are considering here: Restaurants
and Accommodations. To group these sectors between the Spanish regions, our
application takes advantage of recent estimates of intra- and interregional trade
flows. To generate our dataset for 2000–2009 (de la Mata and Llano 2012b)—
a dataset constructed as part of a larger research project (www.c-intereg.es)—we
improved on the methodology presented for 2001 in Llano and de la Mata (2009)
and analyzed in De la Mata and Llano (2012a). Schematically, the methodology
comprises two steps:

1. Estimation of the portion of each region’s output that is consumed by Spanish
citizens (i.e., that is not exported internationally);

2. Determination of the bilateral distribution of each region’s non-internationally-
exported output. This second step uses existing information on the daily expenses
of domestic travelers in the destination region and origin and destination matrices
(Familitur surveys and Occupancy Surveys) that capture the overnight stays
and displacements of Spanish residents, depending on the accommodation types
available in destination regions. The estimation uses different daily expenses
in ‘Accommodations’ and ‘Restaurants and the Like’ for hotels, apartments,
campsites, rural tourism, the homes of friends and relatives, second residences
and excursions, covering all possible trip motives (leisure, work, education, etc.).
We have performed separate estimations for Accommodations and Restaurants.
By not including expenses for transport, shopping or any other goods or services
in our data, we avoid endogeneity problems between interregional trade flows of
tourist services and transport costs related to bilateral distance.

3. Proportional adjustment of bilateral flows for Accommodations to total output,
and adjustment of the sum of interregional exports for ‘Restaurants and the Like’
to output, under the assumption that the difference is the daily consumption in
this sector.7

In summary, the estimates for the interregional monetary flows of the two
service sectors analysed (Accommodations and Restaurants) use the most accurate
statistical sources available in Spain, obtaining figures that are constrained by
the regional and national output of the sector (Instituto Nacional de Estadística,
INE), the Balance of Payment (Bank of Spain) and the widest available sample of

7In de la Mata and Llano (2013) we included the consumption for restaurants not linked to trips and
travel agencies. These two types of consumption only increase intraregional flows, but since they
have a different nature, we have in this case preferred to keep them out of the analysis. Note that
we have nevertheless retained intraregional flows generated by trips within the region of residence.

http://www.c-intereg.es/
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Fig. 15.3 Main interregional flows (AC) for accommodations and restaurants % of total interre-
gional flows (average for 2000–2009)

surveys on people movements within the country (Familitur, Instituto de Estudios
Turísticos).

To provide an overview of internal flows for the Spanish sectors considered in this
work, Fig. 15.3 shows the largest average interregional monetary flows in Accom-
modations and Restaurants, as well as the distribution of the population and the
location coefficient for the ‘Hotels and Restaurants’ sector (LCRegion D Regional
Hospitality Industry GVA/National Hospitality Industry GVA). Arrows from eastern
coastal regions (Andalucía, C. Valenciana and Cataluña) to the landlocked region
of Madrid show that a large share of interregional exports (in current euros) in
Accommodation and Restaurants flow from these regions to Madrid. This is a
consequence of the large number of travelers from Madrid to Andalucía. It is easy
to see from the figure that the major exporting regions are located along the coast,
with the largest importers located in the most populous high-income regions. There
are also large exports from the islands to populous regions (Canarias to Madrid and
Baleares to Madrid and Cataluña). In addition, there are many flows between the
largest regions, such as exports from Cataluña to Madrid and Madrid to Cataluña
or Andalucía. Note also that some of the largest interregional flows occur between
distant regions. Finally, there are strong flows from the landlocked larger regions
to contiguous, richer regions (Castilla y León and Castilla–La Mancha to Madrid).
These results can be explained first by the size of the regions (in terms of population



15 Modeling the Effect of Social-Network on Interregional Trade of Services:. . . 381

and income or gross domestic product) and second by important social networks
that have arisen as a result of historical bilateral migration flows.

For the remaining variables, we use the hospitality—industry gross value added
(gva), regional income (inc) from the Spanish Regional Accounts (INE) and popu-
lation (pop) from the Spanish Register (INE). The interregional migration matrices
are also obtained from the Spanish Register (INE), which offers information on the
stock of region inhabitants born in other regions. The direct effects captured by the
mij and the mji terms enter as two independent column vectors.

Distances are obtained from the 2001 Movilia survey (Ministerio de Fomento);
these are the actual distances travelled by Spanish residents in their displacements,
both within and between regions. The inclusion of both inter- and intraregional
distance is one of the most interesting features of this measure. In line with Head and
Mayer (2010), then, we are able to escape from the a priori quantification of intrare-
gional distances assumed in other papers. Moreover, the distance used is an average
of the actual distance travelled in each of the more than 500 million displacements
estimated by the 2001 Movilia survey. These displacements cover all motives, so
that reported distance is not constrained to the distance between capitals, which,
while perhaps predominant for business trips, does not reflect the distances between
peripherally located tourist spots (beaches, skiing resorts, the countryside, etc.).

The spatial weight matrices have been built to take into account first-order
contiguity relations based on shared borders, with islands treated as having no
adjacent regions. The demographic network weight matrix Wnet

81 is built to depart
from an OD matrix of the stock of immigrants born in one region and living in
another, with diagonal elements set to zero. We obtain this weight matrix through
the following steps: (1) We create a matrix containing the stock of interregional
migrants in 1981 as reported in the Spanish census. (2) For Wnet

81_born we use every
home region’s share of interregional immigrants with respect to every host region’s
total (forming the rows), while for Wnet

81_residence we use the every host region’s
share of interregional emigrants with respect to each home region’s total (forming
the columns). (3) Next, we compute the 90th percentile in the distribution of the
shares of interregional migration for each home and host region. We then consider
two regions to be neighbors when the threshold defined by the 90th percentile is
lower than the corresponding share. In this case, the corresponding W matrix will
either contain this share or have a value of zero. Note that by obtaining our two
matrices, Wnet

81_residence and Wnet
81_born, in this way, we ensure that every region has

a positive number of neighbors and that the neighbor relation depends not on the
size of both regions but on the relative weight that each region represents in the
overall demographic structure of all the regions.8 (4) Adding these two matrices,

8For example, emigrants from the Islas Canarias, with their small population, do not represent
more than 2 % of interregional immigrants living in any other region. The largest shares are found
in Andalucía, Baleares and Murcia. In these regions, immigrants from the Islas Canarias represent
a 1.4, 1.2 and 1.3 % of total interregional immigrants. Their relative weight is higher in those
regions than in Madrid (although in absolute terms are higher in Madrid), where they represent
just the 0.2 % of total interregional immigrants. According to our definition, then, Canarias is a
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Region 
(NUTS 2) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

1 X X O X O

2 O O O O

3
4 X X X X X

5 X X X X

6
7 O O O O

8 O O O O

9 X X O

10 O X O

11 O X X

12 X

13 X X

14 O X O

15
16 X

17 O

Region (NUTS 2) Code Region (NUTS 2) Code Region (NUTS 2) Code
Andalucía 1 Castilla y León 7 Madrid (Comunidad de) 13

Aragón 2 Castilla-La Mancha 8 Murcia (Región de) 14

Asturias (Principado de) 3 Cataluña 9 Navarra (Comunidad Foral de) 15

Baleares (Islas) 4 Comunidad Valenciana 10 País Vasco 16

Canarias 5 Extremadura 11 Rioja (La) 17

Cantabria 6 Galicia 12

Fig. 15.4 Comparison of the neighboring pattern with the contiguity matrix and the demography-
link matrix

we obtain a general matrix Wnet
81 D Wnet

81born
C Wnet

81residence
. (5) Then we add the Wnet

81
matrix to its transpose, imposing bidirectional links between regions and obtaining a
symmetric version, Wnet

81�sym D Wnet
81 CWnet

81 ’. In de la Mata and Llano (2013), Wnet
81born

and Wnet
81residence

were used independently as two alternative W matrices, with very
similar results. This matrix has also the virtue of capturing a stock of interregional
relations with a 20-year lag with respect to the interregional bilateral flows used
as endogenous variables in all of our models. This strategy overcomes the main
criticism of endogeneity and circular causation.

Figure 15.4 helps determine whether the patterns described by the two baseline
W matrices considered in this work (contiguity and social networks) are similar or
very different. Cells with an “O” represent country-pairs that are contiguous but
not considered demographic neighbors. Cells with an “X” are country-pairs that are

demographic neighbor of Andalucía, Baleares and Murcia and not of Madrid, because its relative
magnitude is higher for the former group of regions than for the latter.
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considered demographic neighbors but are non-contiguous. Finally, cells with a “˝”
represent country-pairs that are both contiguous and demographic neighbors. From
Fig. 15.4, although 36 (of a total 289) country-pairs are neighbors in both matrices,
20 are contiguous but not demographic neighbors and 22 are demographic neighbors
but non-contiguous. Thus a certain level of complementarity between both W
matrices exists. Cataluña, for example, is simultaneously (1) contiguous with but
not a demographic neighbor to the Comunidad Valenciana, (2) a demographic
neighbor to non-contiguous regions like Andalucía and the Islas Baleares and (3)
a demographic neighbor and contiguous region to Aragón. By working with two
W matrices instead of just one, we expand our ability to capture complexities and
complete relations.

15.4.2 Alternative Measures for Capturing the Pro-Trade
Effect of Social Networks

As a robustness check, we define certain alternative social-network measures, which
enter into the model by substituting for the interregional migration stocks captured
by mij and mji, or m_netij D �

mji C mij
�

in the case of net effects.
For the sake of simplicity, since all these alternative variables are dyadic, and

connect the trading regions i and j, we retain the same variable names (mij; mji;
m_netij) as in Eq. (15.7). However, the model is re-estimated 18 times with these
alternative proxies for the social links between each pair of Spanish regions.
It is important to remark that we intend this robustness analysis to consider
alternative channels through which information and taste effects might be enhancing
interregional trips and, thereby, the corresponding interregional flows of services in
euros.

A brief description of each of these variables is shown in Table 15.1. Here, as
when the stock of migrants was considered, these variables are likely to have a
bidirectional effect. That is, an individual will travel to visit the members of his
social network in regions other than his region of residence, but the members of his
social network will also travel to visit him.

The variables soc-net-2 and soc-net-10 are equivalent to the interregional stock
of migrants from the 1981 Spanish census but draw from the 2001 and 1991
censuses respectively. The use of these two alternative variables will illustrate the
stability of interregional links as well as the persistence of the effects in different
periods. The soc-net-8 variable restricts this concept to employed individuals over
16 years of age. Despite some differences, the pattern of interregional migrations
is similar for all migrant stocks9 and similar to the born-residence links of 1981.

9The main emigration stocks are found from Andalucía to Cataluña; from Castilla y León, Castilla–
La Mancha, Andalucía and Extremadura to Madrid; from Castilla–La Mancha and Andalucía
to the Comunidad Valenciana; from Castilla y León to the País Vasco and Cataluña; and from
Extremadura to Cataluña.



384 C. Llano and T. de la Mata

Table 15.1 Alternative social-network matrices

Social-network
variable Definition Source

Interpretation—social
networks

Soc_net_2 Stock of individuals born
in region i and residing in
region j in 2001

Spanish census,
2001, INE

Effect of emigration

Soc_net_3 Stock of individuals
owning a second home in
region i and residing in
region j in 2001

Spanish census,
2001, INE

Effect of second
homes owned by
non-residents

Soc_net_4 Stock of individuals
residing in region j in
2001 and with mothers
born in i

Spanish census,
2001, INE

Effect of
second-generation
emigration on region
of mother’s birth

Soc_net_5 Stock of individuals
residing in region j in
2001 and with fathers
born in i

Spanish census,
2001, INE

Effect of
second-generation
emigration on region
of father’s birth

Soc_net_6 Individuals whose
previous residence was i
and who resided in j in
2001

Spanish census,
2001, INE

Effect of previous
residence

Soc_net_7 Stock of individuals who
lived in i in 1991 and in j
in 2001

Spanish census,
2001, INE

Effect of residence 10
years earlier

Soc_net_8 Stock of individuals born
in region i and living in j
in 2001 (employed and
over 16)

Spanish census,
2001, INE

Effect of emigrations
for employed
individuals over 16

Soc_net_9 Stock of individuals who
work in i and lived in j in
2001 (employed and over
16)

Spanish census,
2001, INE

Social networks
generated by
commuting

Soc_net_10 Stock of individuals who
were born in region i and
lived in region j in 1991

Spanish census,
1991, INE

Effect of emigration

Soc_net_11 Stock of individuals that
lived in i in 1981 and live
in j in 1991

Spanish census,
1991, INE

Effect of residence 10
years earlier

Soc_net_12 Stock of individuals that
lived in i from 1981 to
1991 and moved to j in
1991. (Note: said
individuals could have
lived in multiple places
over 10 years)

Spanish census,
1991, INE

Effect of previous
residences

Soc_net_13 Stock of individuals
living in region j in 1991
and with fathers born in i

Spanish census,
1991, INE

Effect of
second-generation
emigration on region
of father’s birth

(continued)
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Table 15.1 (continued)

Social-network
variable Definition Source

Interpretation—social
networks

Soc_net_14 Stock of individuals
living in region j in 1991
with mothers born in i

Spanish census,
1991, INE

Effect of
second-generation
emigration on region
of mother’s birth

Soc_net_15 Stock of individuals with
fathers born in region i
and mothers born in
region j

Spanish census,
1991, INE

Effect of marriages

Soc_net_16 Average number of trips
to j taken by individuals
living in i in 2000–2004

Familitur
2000–2004, IET

Social networks
generated during
previous trips and
inertia on destination

Soc_net_17 Average number of
overnight stays in j in
2000–2004 by individuals
living in i (all kinds of
establishments)

Familitur
2000–2004, IET
and Encuesta de
Ocupación, INE

Social networks
generated during
previous trips and
inertia on destination

Soc_net_18 Average number of
overnight stays in j in
2000–2004 by individuals
living in i (hotels,
apartments, rural tourism,
campsites)

Encuesta de
Ocupación
2000–2004, INE

Social networks
generated during
previous trips and
inertia on destination

Soc_net_19 Parcels received in i and
sent by j in 1995–2000

Ministerio de
Fomento

Proxy of interregional
information flows or
social networks

This new measure is meant to determine whether information and taste effects
are equivalent for employed people and for the general population. The purpose
of testing this is twofold: (1) on the one hand, part of our interregional flows of
services can be caused by professional trips within Spain; (2) on the other, we should
remember that information and taste effects can be transmitted between co-workers
as well as between relatives and friends. Moreover, social connectivity can operate
between different generations and social groups. An ‘active’ person’s decision to
travel, for example, can affect the travel decisions of other active or non-active
people.

Soc-net-3 measures the impact of second-home ownership. This variable is
drawn from the 2001 Spanish census and defined as the stock of people living in
one region and owning a second home in any other. Although some of the main
bilateral relations exist between region-pairs with strong migration relationships,
others do not. For example, while immigrants from Andalucía living in Cataluña
account for almost 11 % of the total stock of interregional migration, residents in
Cataluña owning a second home in Andalucía account for just 2 % of total second
homes in a region other than the region of residence. People living in Madrid
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and owning a second home in Castilla–La Mancha or Castilla y León represent
the 11.7 % and 10.3 % respectively of total second homes in a region other than
the region of residence, while emigrants from these regions living in Madrid each
account for the 6.5 % of total interregional migration stocks, according to the 2001
Spanish census. It is also important to note the high share of second homes in
the Comunidad Valenciana owned by residents in Madrid (10.4 % of the total),
while emigrants from the Comunidad Valenciana in Madrid accounted for less than
1 % of total interregional migration stocks. An additional example of this unclear
relationship between interregional migration stocks and interregional second-home
ownership is found in the País Vasco. First, residents in the País Vasco that own
a second home in Castilla y León account for 4.6 % of total second homes owned
by residents of any other region. This can be explained by the share of emigrants
from Castilla y León living in the País Vasco, but it is also notable that Basques
own a large share of second homes in nearby regions, such as Cantabria, and
represent 3.2 % of total second homes in Cantabria owned by residents in different
regions, whereas first-generation Cantabrian emigrants in the País Vasco account
for less than 0.5 % of total interregional migration stocks, according to the 2001
Spanish census. Although this variable is affected by certain interregional migration
relationships, it also describes other patterns related to frequent trips by one region’s
residents to other regions, patterns that could promote the advantages of owning a
second home in these regions. Because of the bidirectional effect of this variable, we
should expect: (1) that the larger the share of second homes owned by non-residents,
the larger the interregional export flows of services from the region of residence to
the region where the second homes are located, and (2) that personal relationships
created in the region where the second home is located will create incentives to
travel to the region of residence of the individuals who own the second homes.

Soc-net-4, soc-net-5, soc-net-13 and soc-net-14 concern the social networks
created between the region of residence and the birthplace of the residents’ mothers
or fathers as drawn from the 2001 (soc-net-4, soc-net-5) and 1991 Spanish censuses
(soc-net-13, soc-net-14). These variables try to measure the impact of second-
generation migration, although they can also capture the effect of families that move
to other regions once their children are born; such children are considered first-
generation or generation 1.5. In any case, in a country like Spain, part of the social
network of individuals whose parents are migrants might pertain to the parents’
family in the region of origin, independently of the individuals’ region of residence.
Despite some differences, the largest interregional stocks correspond to those of soc-
net-2 and soc-net-10. A fifth variable from the 1991 census (soc-net-15) relates
the birth region of the father and mother. It shows the strongest links between
contiguous regions or regions linked by migration stocks (birth vs. residence). All
these variables are in relation to the previously mentioned ‘mixed couples’ concept,
where the two partners are born in different regions of the country.

In addition, migrations that take into account the link between previous and
current places of residence are relevant to determining the existence of social
networks. We are drawing our links between current and previous region of
residence (soc-net-6) from the 2001 census (and disregarding individuals’ date of
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migration), our links between current region of residence and region of residence
10 years earlier from the 2001 and 1991 censuses (soc-net-7, soc-net-11) and our
links with any of region of residence over the previous 10 years (soc-net-12) from
the 1991 census. Of course, the previous region of residence sometimes coincides
with an individual’s birth region, but not always. For instance, an individual might
migrate to a region and spend part of his life there before moving back to his home
region for retirement. Such a displacement from host to home region is captured as
an interregional movement by these variables, whereas in the matrix capturing the
birth-vs.-residence relationship it is counted as an intraregional migration (birth and
residence in the same region), although the person in question would still probably
keep friends and part of his family in the region where he has been living part of his
life. Thus the birth-vs.-residence variable is unable to capture this type of relation.
On the other hand, we can capture an individual migration dating more than 10 years
into the past as an intraregional movement by using the matrices describing past vs.
actual residence. But in this case we cannot capture the migration as an effect of the
social network in the migrant’s homeland, whereas the birth-vs.-residence matrix
would allow us to do so.

An additional cause of social-network creation is work relationships. To take this
into account, we are including links between regions of residence and workplace
regions (soc-net-9). Commuters may create an additional social network with co-
workers, providing them with information about their regions of residence as well as
feeding their home-region social networks with information about their workplace
regions. The main commuting links exist between close and contiguous regions, like
Madrid and Castilla–La Mancha (and vice versa), Castilla y León and Madrid, and
the Comunidad Valenciana and Murcia. It is surprising to find relatively strong links
between such distant regions as Extremadura and Madrid. It could be that certain
people spend only a short part of the year working in other regions and thus do not
change their region of residence. It could also be that at the time the census they
were living in a region (region of residence) where they used to work.

Additionally, past interregional trips (soc-net-16) and overnight stays, whether
in any kind of establishment (soc-net-17) or in a regulated establishment (soc-
net-18), are included. Such trips correspond to the average reported in the official
statistics for 2000–2004—that is, the period preceding the one captured by the
endogenous variable (in euros). Past bilateral trips can help account for more recent
flows in two ways. First, traveling individuals come into contact with residents in
their destination regions and can create a network with them, thereby inspiring trips
from these destination regions to the individuals’ regions of origin. We can capture
this kind of effect by including these variables. Moreover, their transpose versions
capture the inertia of the series and how the trips of one region’s residents to any
other region can subsequently inspire fellow residents of the origin region to travel
to the same destination. Finally, we include a matrix of parcel posts soc-net-19 as a
proxy for social and business networks. This last variable captures both tight social-
network links (as between Andalucía and Madrid) and tight business-network links
(as between Madrid and Cataluña). As we explain below, the nature of this variable
has implications for the results generated with it. Although with this variable we try
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to capture all kinds of networks—and not just social networks driven by different
types of migration—the truth is that high parcels links can be found between regions
with strong social and business links as well as between distant regions, so post
and parcel traffic might be a satisfactory alternative to face-to-face relations for the
members of a social network to keep in contact.

Figure 15.5a, b show the pattern of the 18 alternative social-network measures
described in Table 15.1. Although all the variables enter the model as column
vectors, they are all obtained as the vectorialization of an equivalent set of
origin–destination matrices. For comparison, the first graph in both Fig. 15.5a, b
corresponds to the pattern for the migration variable used in the previous section,
which represents the stock of people born in one region and residing in any other, as
reported in the 1981 Spanish census. The other 18 graphs correspond to the origin–
destination matrices of these alternative measures for social networks, where i and j
are ranked in accord with the 1981 census stock of interregional migrants. To avoid
scale problems, intraregional flows are not included in these graphs. However, both
intra- and interregional connections are included when they are entered into the
regressions. A glance at these graphs should make the differences and similarities
between the flows clear.

15.4.3 Estimation Results

Here we compare results from the sequence of models estimated for the bilateral
flows between 17 NUTS two Spanish regions (N D 17 � 17 D 289 observations
based on the average of the flows in 2005–2009), with Ceuta and Melilla excluded.
In this case, since two of the alternative social network variables (soc-net-17 and
soc-net-18) that we want to test is the previous trips, we have decided to select
the flows for the last 5 years available in the dataset in order to construct the
dependent variable. All the variables (except dummy variables) are averaged and
log-transformed, as is customary in the estimation of gravity models. We could have
estimated the same specifications for each year, but, for the sake of simplicity, in this
section we will comment on the results with averaged data, which reduces the effect
of outliers.

Table 15.2 shows the results for three different specifications estimated by
Ordinary Least Squares, all of them accounting for more than 84 % of the variation
of the 289 bilateral flows. The first excludes both mij and mji, the second includes
both, and the third substitutes m_netij for both. The estimated coefficients are
significant and have the expected signs—positive for size variables and negative
for distance—but the signed numerical value of the latter increases once the social-
network variables are included. Similarly, the border-effect variable halves when
social-network variables are introduced, suggesting, in agreement with Garmendia
et al. (2012), that social networks reduce the magnitude of the border effect.
However, we still have a positive and significant coefficient, which suggests that
bilateral flows are more than 150 % larger than interregional ones, even when we



15 Modeling the Effect of Social-Network on Interregional Trade of Services:. . . 389

Fig. 15.5 (a, b) Geographical pattern of alternative social-network measures
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Fig. 15.5 (continued)
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Table 15.2 Ordinary least squares

(1) (2) (3)

R-squared 0:848 0:881 0:876

Rbar-squared 0:846 0:878 0:874

iN �26:365���.�12:63/ �27:701���.�13:187/ �24:51���.�12:881/
gvai 0:84���.24:782/ 0:57���.12:747/ 0:647���.16:589/

popj 0:942���.24:006/ 0:683���.14:22/ 0:674���.13:802/

incj 1:337���.7:075/ 1:76���.8:776/ 1:395���.8:158/

dij �0:454���.�9:19/ �0:107�.�1:806/ �0:16���.�2:764/
ownregij 1:903���.10:633/ 0:957���.4:896/ 0:981���.4:935/

mij 0:06��.1:994/

mji 0:248���.6:817/

m_netij 0:142���.7:985/

Source: Authors’ calculations
T statistics in brackets
Dependent variable: interregional monetary flows of Accommodations and Restaurants generated
by trips. (Average 2005–2009.)
Significance: *p < 0.1; **p < 0.05; ***p < 0.01

control for region size, interregional distance and interregional social networks.
This result, obtained with trip-generated bilateral flows only, contrasts with the
results in de la Mata and Llano (2013), where the inclusion of other types of
intraregional flows, such as travel-agency services and non-trip-linked consumption
in Restaurants and the Like, generated a more intense ‘border effect’.

Finally, we also obtain a positive and significant impact for all social-network
variables.

We now move on from these first estimates to consider several statistical tests,
with the aim of motivating the inclusion of spatial lag and/or spatial error terms.
This analysis is conducted by computing the I-Moran, and the classic and robust
versions of the LM-lag and the LM-error statistics over the residuals obtained for
the three models. In all of them we consider the spatial structure based on three
different spatial weight matrices (each row-normalized): (1) Wi

spa, to capture the
“spatial origin-based” autocorrelation; (2) Wj

spa, to capture the “spatial destination-
based” autocorrelation; and (iii) Wspa D Wi

spa C Wj
spa, to capture the aggregate

spatial autocorrelation (as previously stated, we omit the origin-to-destination-based
element). The results for the three models, five tests and three spatial autocorrelation
matrices are reported in the first three columns of Table 15.3. All cases show
spatial autocorrelation in the residuals (Moran I analysis). This result is found
for the ‘origin-based’ and ‘destination-based’ weight matrices, as well as when
both are mixed in a single spatial matrix (Wspa D Wi

spa C Wj
spa). As for the LM

tests, in all cases except when both ‘emigrants’ and ‘immigrants’ are introduced
and W D Wi C Wj is used (Model 2, LM error tests for spatial correlation in the
dependent variable), the test confirms the suitability of a spatial lag model (SAR)
as well as a spatial autoregressive error model (SEM). When the robust version of
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these two previous tests is used, non-significant results are obtained in the robust
LM error tests for spatial autocorrelation in the dependent variable generate non-
significant results when W D Wi C Wj, but the results are indeed significant when
‘origin’- and ‘destination’-based dependence are tested for separately.

We then conduct a similar exercise using the network (demographic) weight
matrices to analyze the results for the same three models. These results are
reported in the columns (4)–(6) of Table 15.3, and consider three alternative
demography-based weight matrices: namely, the origin-based demographic-
neighbor structure (Wi

net), the destination-based demographic-neighbor structure
(Wj

net) and the aggregate origin C destination-based demographic-neighbor
structure (Wnet D Wi

net C Wj
net). Although most of the tests confirm the presence of

network (demographic) autocorrelation effects when origin- and destination-based
weight matrices are used, some tests are non-significant in some cases.10

In conclusion, although non-significant cases exist,11 the significant results
obtained in most cases, for both spatial and demographic weight matrices, support
the wisdom of estimating a number of alternative specifications, which would
preferably consider two potential sources of autocorrelation (spatial and demo-
graphic) affecting the dependent variable and/or the disturbance term. We therefore
now proceed to analyze the results obtained using the Spatial Lag Model (SAR), the
Spatial Error Model, the Spatial General Model (SAC) and the Spatial Durbin Model
(SDM). These models have been estimated with maximum likelihood methods (cf.
LeSage and Pace 2009, Chapter 3).

Next we analyze the results obtained for the augmented gravity models that
consider the presence of spatial and/or network (in our case, demographic) effects.
But first it is important to keep in mind, as pointed out in LeSage and Pace (2009),
Chapter 8, that the coefficient estimates on the explanatory variables in these models
are not interpretable in the same fashion as those in non-spatial models. However,
the sign of the coefficient estimates reflects the correct direction of impact on flows
that would arise from changes in the explanatory variables.12

Estimation results for the spatial autoregressive model (SAR) are shown in
Table 15.4. Unlike non-spatial least-squares estimates, which treat all flows as
independent, these models allow for the spatial dependence of flows for neighboring
regions and for spatial dependence based on the influence of social networks. The

10Non-significant results are found when: (1) the Wi is considered in the model without migration
variables and with mij and mji included separately (column 4 and 5) according to the Robust LM
test in the residuals; and when the net migration variable is included (column 6) according to the
Moran I test and to the LM error tests for spatial correlation in residuals; (2) the Wj is considered
in the model without migration variables and with mij and mji included separately (column 4 and
5) according to the Robust LM lag test.
11For these non-significant results it is important to remark that the tests used here cannot combine
the two alternative autocorrelation effects at the same time, while some of our models can.
12The correct approach to calculating partial derivatives, showing the impact of changes in the
explanatory variables on the dependent variable in spatial gravity models, is studied in Lesage and
Thomas-Agnan (2012).
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two specifications that include any social-network measure (mij, mji, m_netij) have
each been estimated with the two different W matrices considered. The first and
second columns in Table 15.4 consider the spatial dependence of flows as based
on the contiguity matrix, while the third and fourth column consider the spatial
dependence based on demographic links.

In all cases, the coefficients for size variables are significant and have positive
signs; the coefficient controlling for intraregional flows is also significant, with a
coefficient ranging from 1.051 (column 1) to 1.135 (column 4). For the distance
variable, we obtain a low negative coefficient, significant in all the cases except
where migration variables are included separately and spatial dependence is based
on contiguity. In addition, the trade-creation effect of migration is confirmed in all
cases, although the magnitude of the impact depends on the type of autocorrelation
considered and on the social-network variable included (emigrants, immigrants or
total migration linkage). When immigrants and emigrants are included separately,
immigrants have a greater effect than emigrants. In fact, the effect of emigration is
not significant when spatial lag based on demographic structure is considered. When
the effect of migration is measured as the net effect of emigrants and immigrants, the
effect is positive and significant but lower than that of immigrants when the emigrant
and immigrant stocks are included separately. Finally, the estimated parameter �,
which captures the dependence of flows, is positive in all cases although non-
significant, unless at 5 % when the W matrix considered is the contiguity matrix.
It is positive and highly significant when we control for the dependence of flows
based on social-network links.

Judged by likelihood-function values, the higher pseudo R2 and lower noise
variance estimate (b�213) model in column 3, with dependence based on social
networks and emigrants and immigrants included separately, has the best fit.

Once we have confirmed the presence of autocorrelation in the flows, it is
interesting to test whether a similar autocorrelation exists also in the residuals of
the models. Table 15.5 shows the results for the spatial error model. As before,
we get positive and significant coefficients for the variables that capture the size of
the regions. In this case, the distance and the ‘intra’ variables are non-significant
when the spatial autocorrelation based on contiguity is controlled for (columns 1
and 2), while they are significant when the network autocorrelation of the flows is
controlled for (columns 3 and 4). The effect of the migration variables is significant
and positive in all cases, although the magnitude of their effect depends on the type
of autocorrelation considered: when we consider contiguity, the effect of emigrants
is greater than that of immigrants, while the opposite is true when we consider
social-network autocorrelation. The parameter estimates of the spatial correlation
of the residuals are positive and significant in all cases, with greater magnitudes
generated by contiguity.

After confirming the presence of spatial and demographic autocorrelation in the
flows and the residuals, we focus on the results for the general spatial model and

13The pseudo R2 was calculated usingbT
0bT=T0T, wherebT D .iN � �1Wspa � �2Wnet/�1Xb̌.
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the four specifications described above: SAC-I: (W1 D Wspa; W2 D Wnet); SAC-II:
(W1 D Wnet; W2 D Wspa), SAC-III: (W1 D W2 D Wspa); SAC-IV: (W1 D W2 D Wnet).
These results are shown in Table 15.6.

The first thing to note is the strong similarity between the two specifications in
each of the four cases. The more remarkable difference across each of the four cases
is that in SAC-II and SAC-III (when the spatial autocorrelation in the residuals is
based on the contiguity matrix), neither the dummy controlling for intraregional
flows nor the distance variable is significant. However, in SAC-I and SAC-IV, both
of which use Wnet on the error term, the negative coefficient of distance runs from
�0.16 to �0.19 and the dummy coefficient for intraregional flows runs from 0.5
to 0.6; these are close to the values we obtain in the SEM model when using the
Wnet. In SAC-II and SAC-III, the effect of emigrants is greater than the effect
of immigrants, while the opposite is the case in SAC-I and SAC-IV. In addition,
with regard to the parameters of spatial and network dependence, it is important to
highlight that the parameter measuring the dependence in the residuals is positive
and significant in all cases, and is of lesser magnitude when the dependence is based
on social networks rather than contiguity. On the other hand, the spatial lag of the
flows is non-significant except with SAC-III, but in this case we get a negative
sign.

Finally, the results reported in Table 15.7 for the SDM are complementary
to those for the SAR, the SEM and the SAC estimates: the coefficients for
the spatial and network (demographic) autocorrelation terms are positive and
significant for the dependent variable, with high values for ¡ in the six specifications
reported. Moreover, the coefficients for the spatial and network (demographic)
autocorrelation terms for the explanatory variables are not always significant
and the signs vary with the variable. For example, variables such as W-gvai and
W-popj show negative and significant coefficients for all specifications, suggesting
that, on average, flows between the trading regions decrease as their neighbors’
population and hospitality-industry gross value added increase—whether we define
a ‘neighbor’ geographically (shared border), by the intensity of demographic links
or both. In another example, a negative sign in the lag of both the emigrant and
the net migration variables suggests that trade flows between a given country-
pair decrease as their neighbors’ average emigration (or emigration C immigration)
stocks increase. We might attribute these results to some kind of competition
between regions. Finally, with regard to the effect of distance on bilateral trade
flows when an SDM is estimated, it is remarkable that the coefficient is negative
and significant when we include the Wnet matrix in the pattern of the spatial
autocorrelation considered (in Table 15.6, �0.186 and �0.2), but non-significant
when we include the contiguity-based Wspa matrix.
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Another thing worthy of note is the difference in the significance of the coeffi-
cients of the migration variables depending on the model estimated. When a SAR
model is estimated, the level of significance and the magnitude of the coefficient
for emigrants is lower than for immigrants (0.21 in column 3 of Table 15.4),
while both variables are significant and positive when an SEM or SAC model
is estimated. Finally, when an SDM is estimated, the significant effect is found
for the stock of emigrants and not for immigrants except when we consider Wnet

(column 3 in Table 15.7), where both emigrants and immigrants are significant
and immigrants get a higher coefficient. The effect of migration on trade flows,
regardless of its direction (emigrants or immigrants), does not disappear when the
spatial autocorrelation of the flows is controlled for, although it changes with the
type of model.

Next, Fig. 15.6a, b reports the Moran scatterplots for the residuals of the main
specifications that use row-normalized spatial (Wspa D Wi

spa C Wj
spa) and network

(demographic) (Wnet D Wi
net C Wj

net) weight matrices to capture the aggregate
spatial autocorrelation of both exporting and importing regions. As in LeSage and
Pace (2009) and de la Mata and Llano (2013), each graph is divided into quadrants:
Q-I (red points): ij flows where both the residuals and the average of neighboring ij
flows (origin-basedC destination-based) are above the mean; Q-II (green points): ij
flows where the residuals are below the mean but the average of neighboring ij flows
is above it; Q-III (blue points): ij flows where both the residuals and the average
of the neighboring ij flows are below the mean; Q-IV (purple points): ij flows
where the residuals are above the mean and the average of neighboring ij flows is
below it.

By means of the Moran scatterplot we can verify a positive association between
the residuals (horizontal axis) and the spatial lag (vertical axis). The magnitude
of this positive association grows as the number of green and purple points
decreases and the number of blue and red points increases. Here unlike in other
papers using scatterplots, the residuals cannot be plotted in a map, because our
dataset is referred to each region-pair. Such a graphical analysis would required
specialized GIS systems for transport modeling (Berglund and Karström 1999a, b),
which are beyond the scope of this paper. The results in Fig. 15.6a, b suggest a
positive association between the residuals of the three main specifications obtained
by simple OLS estimation and the two different cross-section autocorrelation
structures—one purely spatial, the other purely demographic—under consideration.
It is also worth mentioning the differences in the shapes of the dot clouds
generated by each weight matrix, which indicate the complementary nature of both
structures.

Then, Fig. 15.6a, b show the Moran scatterplots for the residuals obtained
from the SAR, SEM, SDM and SAC-I-IV estimations, and a row-normalized
weight matrix obtained as a sum over all the weight matrices described here
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Specification 2 – SAR (W1) Specification 2 – SAR (W2)

Specification 2 – SEM (W1) Specification 2 – SEM (W2)

Specification 2 – SDM (W1) Specification 2 – SDM (W2)

Fig. 15.6 (a) I-Moran scatterplot on residuals from SAR, SEM and SDM estimates.
Y D Residuals with “average” flows and stocks for 2000–2009. Scatterplot uses W3 D Wspa C Wnet.
(b) I-Moran scatterplot on residuals from SAC estimates. Y D Residuals with average flows and
stocks 2000–2009. Scatterplot uses W3 D Wspa C Wnet
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SAC – I SAC – II

SAC - III SAC – IV

Fig. 15.6 (continued)

(W3 D Wspa C Wnet).14 This approach is an attempt to show in a single picture
whether after the use of these spatial models the residuals still show a significant
association with a lag based on spatial and demographic structure. As these graphs
show, the SAR, SEM and SDM still have a clear positive relation, while the SAC
model—especially SAC-II and SAC-III—seems to do a better job of eliminating
the positive association between the residuals and the spatial and demographic
lags.

14The Moran scatterplots for the residuals using each matrix Wspa and Wnet instead of the sum of
both and for the rest of the models are available upon request.



406 C. Llano and T. de la Mata

15.4.4 Results Using Alternative Measures for Social Networks

In this section we test the preferred model as determined by the residuals in
Fig. 15.6a, b—that is, the SAC-III model15 (column 5 of Table 15.6)—using the
alternative social-network measures described in Table 15.1. Table 15.8 shows the
corresponding results. It is important to remark that the alternative social-network
measures enter into the model as substitutes for the 1981 interregional migration
stocks through the vector variables (mij, mji, m_netij), while the W1 D W2 D Wspa is
just based on spatial contiguity as in the baseline model (SAC-III).

The results obtained with these alternative variables are, in general, robust
with those obtained in the previous models, with expected signs and levels of
significance. As for the size of the trading regions as measured by gross value added
(for the exporting region), population and per-capita income (for the importing
region), positive and significant signs are obtained in all cases, much as with
the baseline model in Table 15.6. The only remarkable difference occurs when
social networks created by previous trips with stays in regulated establishments
are included (soc_net_18), where the coefficients decrease notably. Also, when the
variables soc_net_16, soc_net_17 and soc_net_18 are included, the coefficient for
per-capita income is lower than one—reducing its significance in the latter-, contrary
to what happens in all other cases. These results can be attributed to gravity’s effect
on previous trips, so part of the effect of the gravity variables is captured in the
coefficient for previous trips.

It is interesting to note that, while the intraregional dummy gets a positive
and significant sign in some cases, certain social-network variables help overcome
this home bias (soc-net-2; soc-net-11; soc-net-15; soc-net-16; soc-net-17; soc-
net-18 and soc-net-19) or reduce its significance (soc-net-3; soc-net-14). When
the variables soc-net-7 and soc-net-12 (which concern individuals’ previous resi-
dences) are used, the intraregional dummy gets a negative sign, probably because
of the disproportionate intraregional linkages (more than 95 %) in each of the two
variables.

Another interesting result is that, as in column 3 of Table 15.6, the distance
variable is in most cases non-significant when alternative social-network measures
are considered—with the following exceptions: soc-net-6; soc-net-16 and soc-
net-18 (significant at 5 %), soc-net-11 and soc-net-12 (significant at 10 %) and
soc-net-19. The last variable contains ‘parcel flows’ as a proxy for networks.
That this variable gets the most significant coefficient for distance and the highest
coefficient for the intra variable has to do with its nature, which allows it to capture
other kinds of relations (e.g., business networks) as well. Parcel flows, moreover,
can substitute for face-to-face contact when travel costs are high, as it over-weights
the existence of networks at greater distances.

15The results using the alternative social network variables for the SAC-II model (column 3 of
Table 15.6) are reported in the Appendix. This model was the one that perform better in de la Mata
and Llano (2013).



15 Modeling the Effect of Social-Network on Interregional Trade of Services:. . . 407

T
ab

le
15

.8
A

lt
er

na
tiv

e
sp

at
ia

lg
en

er
al

m
od

el
(S

A
C

-I
II

:
W

1
D

W
2

D
W

sp
a)

)

So
ci

al
-

ne
tw

or
k

m
ea

su
re

us
ed

fo
r

el
em

en
ts

m
ij

an
d

m
ji

R
-s

qu
ar

ed
R

ba
r-

sq
ua

re
d

si
gm

aˆ
2

L
og

lik
el

ih
oo

d
i N

gv
a i

po
p j

pc
in

co
m

e j
ow

nr
eg

ij
d i

j

m
ij

D
So

ci
al

ne
tw

or
ks

m
ji

D
So

ci
al

ne
tw

or
ks

’
rh

o
la

m
bd

a

So
c_

ne
t_

2
0.

93
86

0.
93

7
0.

13
85

�4
8.

45
49

98
�2

4.
30

4*
**

0.
47

1*
**

0.
51

**
*

1.
70

7*
**

0.
02

8
�0

.0
64

0.
22

8*
**

0.
25

2*
**

�0
.0

7*
**

0.
83

6*
**

So
c_

ne
t_

3
0.

95
18

0.
95

06
0.

10
88

�1
2.

52
57

03
�1

7.
87

**
*

0.
52

9*
**

0.
54

4*
**

1.
06

3*
**

0.
63

**
*

�0
.0

15
0.

31
4*

**
0.

11
4*

**
�0

.0
62

**
*

0.
81

6*
**

So
c_

ne
t_

4
0.

93
76

0.
93

6
0.

14
08

�5
1.

87
73

11
�2

4.
44

**
*

0.
49

9*
**

0.
53

1*
**

1.
71

1*
**

0.
25

7*
�0

.0
57

0.
23

5*
**

0.
22

1*
**

�0
.0

76
**

*
0.

84
4*

**

So
c_

ne
t_

5
0.

93
68

0.
93

52
0.

14
24

�5
3.

13
18

46
�2

4.
70

1*
**

0.
50

8*
**

0.
53

6*
**

1.
72

2*
**

0.
20

4
�0

.0
62

0.
24

5*
**

0.
21

6*
**

�0
.0

73
**

*
0.

83
7*

**

So
c_

ne
t_

6
0.

93
86

0.
93

71
0.

13
84

�4
8.

55
59

03
�2

2.
71

3*
**

0.
47

3*
**

0.
51

5*
**

1.
56

3*
**

�0
.1

28
�0

.1
07

**
0.

25
**

*
0.

23
1*

**
�0

.0
69

**
*

0.
83

3*
**

So
c_

ne
t_

7
0.

94
58

0.
94

44
0.

12
23

�2
5.

72
33

18
�1

8.
62

6*
**

0.
40

6*
**

0.
37

2*
**

1.
40

8*
**

�1
.6

34
**

*
�0

.0
71

0.
11

9*
*

0.
49

2*
**

�0
.0

6*
**

0.
76

3*
**

So
c_

ne
t_

8
0.

93
91

0.
93

76
0.

13
73

�4
7.

64
01

28
�2

2.
98

6*
**

0.
44

7*
**

0.
48

8*
**

1.
66

1*
**

�0
.0

06
�0

.0
6

0.
22

1*
**

0.
27

8*
**

�0
.0

66
**

*
0.

84
**

*

So
c_

ne
t_

9
0.

93
61

0.
93

45
0.

14
4

�4
9.

76
23

95
�2

2.
51

**
*

0.
52

3*
**

0.
6*

**
1.

45
6*

**
0.

09
0.

03
8

0.
20

1*
**

0.
15

4*
**

�0
.0

46
**

0.
77

2*
**

So
c_

ne
t_

10
0.

93
75

0.
93

59
0.

14
09

�5
2.

32
41

79
�2

3.
53

**
*

0.
50

2*
**

0.
53

3*
**

1.
58

5*
**

0.
1

�0
.0

66
0.

24
8*

**
0.

20
6*

**
�0

.0
76

**
*

0.
84

4*
**

So
c_

ne
t_

11
0.

94
03

0.
93

88
0.

13
46

�4
0.

29
71

77
�1

8.
06

6*
**

0.
42

1*
**

0.
41

9*
**

1.
30

7*
**

0.
38

6*
**

�0
.0

89
*

0.
04

4
0.

50
2*

**
�0

.0
6*

**
0.

77
5*

**

So
c_

ne
t_

12
0.

94
04

0.
93

89
0.

13
44

�4
1.

14
04

92
�1

8.
70

2*
**

0.
42

2*
**

0.
42

4*
**

1.
35

3*
**

�1
.1

37
**

*
�0

.0
98

*
0.

06
1

0.
49

3*
**

�0
.0

62
**

*
0.

77
7*

**

So
c_

ne
t_

13
0.

93
9

0.
93

75
0.

13
75

�4
9.

25
70

76
�2

3.
32

9*
**

0.
51

2*
**

0.
52

1*
**

1.
58

5*
**

0.
17

2
�0

.0
54

0.
27

4*
**

0.
20

1*
**

�0
.0

78
**

*
0.

85
7*

**

So
c_

ne
t_

14
0.

93
84

0.
93

68
0.

13
9

�5
0.

96
13

68
�2

3.
10

5*
**

0.
51

3*
**

0.
52

6*
**

1.
55

3*
**

0.
27

9*
�0

.0
42

0.
26

4*
**

0.
19

3*
**

�0
.0

75
**

*
0.

84
6*

**

So
c_

ne
t_

15
0.

92
68

0.
92

5
0.

16
5

�7
2.

11
99

97
�3

2.
62

2*
**

0.
62

2*
**

0.
66

**
*

2.
22

5*
**

0.
74

1*
**

�0
.0

69
�0

.1
27

0.
49

3*
�0

.0
66

**
*

0.
81

2*
**

So
c_

ne
t_

16
0.

95
59

0.
95

48
0.

09
95

3.
18

76
67

1
�1

6.
36

9*
**

0.
4*

**
0.

50
3*

**
0.

84
1*

**
0.

61
8*

**
�0

.1
12

**
0.

11
**

*
0.

41
4*

**
�0

.0
43

**
0.

78
**

*

So
c_

ne
t_

17
0.

96
18

0.
96

08
0.

08
62

23
.3

16
95

9
�1

5.
94

2*
**

0.
41

7*
**

0.
44

3*
**

0.
72

1*
**

0.
37

4*
**

�0
.0

55
0.

08
7*

**
0.

48
**

*
�0

.0
56

**
*

0.
79

1*
**

So
c_

ne
t_

18
0.

97
06

0.
96

99
0.

06
63

58
.0

39
69

1
�6

.5
13

**
*

0.
15

8*
**

0.
10

8*
*

0.
30

4*
0.

55
**

*
�0

.0
9*

*
0.

13
8*

**
0.

78
4*

**
�0

.0
58

**
*

0.
82

6*
**

So
c_

ne
t_

19
0.

90
4

0.
90

16
0.

21
64

�1
09

.2
30

21
�2

6.
75

**
*

0.
8*

**
0.

94
8*

**
1.

34
7*

**
1.

56
4*

**
�0

.2
76

**
*

0.
01

1
0.

01
9*

�0
.0

58
**

0.
78

1*
**

So
ur

ce
:A

ut
ho

rs
’

ca
lc

ul
at

io
ns

D
ep

en
de

nt
va

ri
ab

le
:i

nt
er

re
gi

on
al

m
on

et
ar

y
flo

w
s

of
A

cc
om

m
od

at
io

ns
an

d
R

es
ta

ur
an

ts
ge

ne
ra

te
d

by
tr

ip
s.

(A
ve

ra
ge

20
05

–2
00

9.
)

T
st

at
is

tic
s

in
br

ac
ke

ts
Si

gn
ifi

ca
nc

e:
*p

<
0.

1;
**

p
<

0.
05

;*
**

p
<

0.
01



408 C. Llano and T. de la Mata

The effect of social networks is confirmed in both directions in most cases, with
coefficients similar to the one in the baseline regression. There are some exceptions.
For example, with the variables soc-net-11 and soc-net-12 the social-network effect
is confirmed in only one direction, and with soc-net-15 and soc-net-19 it seems to
have almost no impact. As previously stated, the latter can serve as an alternative
form of contact, other than trips, with the members of a social network. In soc-net-
16, soc-net-17 and soc-net-18, the effect is confirmed in both directions, although
at different intensities, with stronger effects linked with a certain inertia in the
flows.

In all cases, the positive autocorrelation in the residuals is confirmed and the
spatial lag of the dependent variable is found to be significant, although with a
negative impact. In the SAC-II model, when the spatial lag of the dependent variable
is based on demography, it is significant and positive when the variable soc-net-19
is included.

Table 15.9 in the Appendix shows a similar analysis for all the alternative
matrices, but the social-network variable is included only in its unidirectional
version (m_netij D �

mji C mij
�
). This produces similar results.

15.5 Conclusions

In this article we have analyzed the relation between interregional trade in services
and social networks and how these social networks can explain part of the resulting
border effect on such services. We have also considered whether interregional trade
flows in tourism-related services exhibit spatial and/or social-network dependence.
Conventional empirical gravity models assume that the magnitude of bilateral flows
between regions are independent of flows to/from geographically proximate regions
or to/from regions connected by social/cultural/ethnic networks.

We provide an extended empirical specification that relaxes the assumption of
independence between bilateral flows inherent to any least-squares regression. Our
argument is that bilateral flows between an exporting region i and an importing
region j can exhibit dependence on: (1) flows to regions that are geographically
near exporting and importing regions i and j (spatial dependence) and (2) flows
to regions that are socially/demographically “related” to exporting and importing
regions i and j. We have used a spatial weight matrix elaborated in the way suggested
by LeSage and Pace (2008) to quantify the spatial structure of the connectivity
between interregional bilateral flows. And we have constructed a social-network
matrix with information on the bilateral stock of interregional migrants between 17
Spanish regions.

Estimates from a set of models have shown evidence of statistically significant
spatial and network (demographic) dependence in the bilateral flows of the service
trade considered. The analysis has been applied to data averages for the period
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2005–2009, with alternative datasets for migration stocks and alternative definitions
for network effects. It has produced robust results and shown the high inertia that
exists in these social phenomena, where patterns from 1981 affect flows that exist
20 years later. We might interpret the significant network dependence thus brought
to light as a general preference for destinations in or near one’s home region or
for destinations in or near regions where natives of one’s birth region have settled
heavily. Significant spatial dependence is an indication that bilateral flows between
two regions are associated to those to/from neighboring regions.

One finding of interest is that the introduction of explanatory variables to control
for emigrant and immigrant stocks and for spatial and network dependence (as
well as conventional measures of the economic size of origin and destination
regions) results in a low coefficient estimate for bilateral distance between origin
and destination regions and a high coefficient for the internal border effect—
such that distance and home bias are, in certain cases, no longer significant. This
suggests that social networks might exert sufficient influence on the selection
of destinations to overcome the traditional obstacle of distance, which typically
diminishes the magnitude of bilateral flows. It also suggests that the distribution
of social networks over short distances may partly explain the gravity effect on trip
decisions, especially within the region of residence.

Further analysis for the interpretation of these parameters, in the spirit of Lesage
and Thomas-Agnan (2012), is certainly in order. Although the effect of social
networks has been widely tested in this work, it would be an important next step
to take into consideration, for instance, the effect of business networks.

Acknowledgments The authors wish to express their gratitude to James LeSage for his help in
improving previous versions of this paper. This paper has been developed over the course of various
research projects: TransporTrade S2007/HUM/497 (www.uam.es/transportrade), funded by the
Education Department of the Madrid Regional Government; the Project (ECO2010-21643/ECON),
funded by the Spanish Ministry of Science and Innovation; and the DESTINO Project (Ministerio
de Fomento).
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Tables 15.9, 15.10, and 15.11
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Chapter 16
On the Mutual Dynamics of Interregional Gross
Migration Flows in Space and Time

Timo Mitze

Keywords Interregional migration • Dynamic spatial panel • Network autocorre-
lation • Multiplier analysis

JEL: R23, C21, C23

16.1 Introduction

Lately, new methods to estimate spatial dynamic panel data models and to mean-
ingfully interpret their regression results have been proposed in the literature (see
Elhorst 2012). Researchers are now able to consistently track the dynamic evolution
of economic and social processes over space and time as well as provide answers
with respect to short and long-run impacts of direct and space-related indirect
variable changes in a multivariate context. This paper applies a spatial dynamic
panel model to analyse the link between interregional out-migration flows and
regional labor market signals.1 The approach thus seek to extend recent empirical
work, which has highlighted the importance of mutual dynamic features in models
of migration flows when having space-time panel data at hand. For instance, Chun
and Griffith (2011) have shown by means of an Eigenvector filtering approach
in a generalized linear mixed model that—over time—the impact of network
autocorrelation on U.S. interstate migration is strongly present.

1In the migration literature, typically the terms ‘interregional’ and ‘internal’ migration are used
interchangeably to define pairwise migratory movements between different regions of a national
territory. Throughout the remainder of this manuscript, I will use the former term.
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For this particular analysis, I focus on the consistent estimation and interpretation
of the different effects on migration stemming from regional labor market signals
in the short and long-run as well as with regards to their direct effect and
associated indirect spatial spillovers in such a regional migration network. Using
data for pairwise migration flows among the 16 German states over the period
1993–2009, the estimation results indicate that, first of all, both temporal and
spatial autocorrelation are strongly present. Moreover, compared to standard non-
spatial estimations, the results show that spatially augmented network estimators
significantly enrich the interpretation of the overall impact of different regional labor
market signals.

With respect to the latter type of estimators, this study applies time-dynamic
versions of the Spatial Autoregressive (SAR) and Spatial Durbin Model (SDM).
Regarding the economic interpretation of the results, particularly regional differ-
ences in real income growth, the labor participation rate and real-estate prices are
found to impact on interregional out-migration flows. The estimated coefficients
signs of the obtained space-time summary measures thereby hint at the validity
of the neoclassical migration model in predicting interregional flows. Robustness
checks further show that some of the estimated labor market adjustment mechanisms
are sensitive to the choice of the underlying network weighting matrix and thus the
spatial dimension of the specified migration network.

The remainder of the paper is organized as follows: The next section starts
with a brief description of the neoclassical migration model and reviews the
recent empirical literature dealing with interregional migration flows in Germany.
Observing that most contributions abstract from a simultaneous space-time dynamic
specification, in what follows, different empirical extensions to the neoclassical
migration model are discussed, where the focus rests upon including both type
of effects in a network modelling context. Section 16.3 translates the model
into an proper econometric specification, while Sect. 16.4 reports data properties,
estimation results and associated impact summary measures. Multiplier analysis and
robustness checks are performed as well. Section 16.5 concludes the paper.

16.2 Neoclassical Migration Model with a Spatial Dimension

In the neoclassical migration model, a representative agent decides to move between
two regions if this improves his welfare position relative to the case of not moving.
As elaborated by Harris and Todaro (1970) for a macro-theoretical perspective, the
key determinant in the model is the expected income differential between regions
net of ‘transportation’ costs.2 Expected income is typically expressed as a function
of the agent’s (real) income and the probability of being employed, with the latter

2The micro-foundation of the neoclassical migration model was first introduced by Sjaastad (1962).
For a recent overview of different migration theories see, for instance, Hagen-Zanker (2008).
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being inversely related to the regional unemployment rate. The model thus predicts
that a (relative) increase in the home region’s real income ceteris paribus leads to
lower migratory out-flows, while a (relative) real income increase in the alternative
region j results in higher out-migration from the home region i to the destination
region j. Opposite effects are noted for differences in regional unemployment rates.

There are many contributions to the empirical literature that test the validity of the
neoclassical framework. In a literature survey for German interregional migration,
Alecke et al. (2010) have recently shown that while microeconometric approaches
tend to identify regional unemployment rates as the key driver of interregional
migration processes (see e.g. Schwarze and Wagner 1992; Wagner 1992; Burda
1993; Büchel and Schwarze 1994; Brücker and Trübswetter 2004), macroeconomic
studies assign a more prominent role to regional income differentials in predicting
German interregional migration flows (see e.g. Burda and Hunt 2001; Parikh and
Van Leuvensteijn 2003; Hunt 2006). Using a panel VAR approach, Alecke et al.
(2010) find that both the wage/income and the unemployment rate channel are
consistent with the theoretical expectations of the neoclassical migration model.

Increasingly, empirical research has also accounted for the role of temporal
adjustment processes among migration flows and the existence of information lags
in the transmission process from the explanatory to the endogenous variable. The
inclusion of a time lagged endogenous variable has proven to be an important factor
in the adjustment path of interregional migration flows (see e.g. Etzo 2011) and
may reflect different channels through which past flows affect current migration
(e.g. as migrants serve as communication links for friends and relatives left
behind). These social linkages, in turn, are expected to have a potential impact on
prospective migrants who want to live in an area where they share cultural and social
backgrounds with other residents (see e.g. Chun 1996; Rainer and Siedler 2009).

The existence of such social networks not only hints at the presence of temporal
adjustment processes, but may also affect the spatial orientation of migration flows.
Nevertheless, in most empirical applications migration flows are still assumed to
be independent of each other. Motivating the inclusion of spatial network effects,
Chun (2008) points out that individual migration decisions should be seen as the
result of choice processes in space, which are likely to be influenced by other
migration flows at the macro level. Outflows from a particular origin may thus
be correlated with other outflows that have the same origin and geographically
proximate destination regions given unobservable characteristics of origins and
destinations in the sample. This small example also highlights that the introduction
of spatial autocorrelation increases the model’s complexity compared to the case
of purely temporal autocorrelation. While the latter is only one-dimensional and
one-directional, resulting in correlation that arise from a single variable pair,
spatial dependence is two-dimensional and multi-directional, resulting in correlation
arising from a number of variable pairs.

For the case of (dyadic) flow data, the associated dependency structure has to
be measured in terms of network autocorrelation. Starting from a standard spatial
weighting matrix W as an n-by-n matrix of spatial connectivity among the set of
n regions in the sample, a network matrix WN can be constructed, which extends
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the two-dimensional space for n � n origin region (i), destination region ( j) pairs
fi; jji ¤ jI i; j D 1; : : : ; ng to a four dimensional space with n2�n2 origin-destination
linkages fi; j; r; sji ¤ j; r ¤ sI ij D 1 : : : ; n2I rs D 1; : : : ; n2g. Given that migration
data typically abstracts from intraregional flows, the network matrix can defined as a
non-negative symmetric matrix of the form Œ.n2�n/�.n2�n/� leaving intraregional
flows aside.

Based on this information, a network weight matrix (WN) can be constructed as a
combination of origin- (WN

O) and destination-related interactions (WN
D) with (Chun

and Griffith 2011)

WN
O D W ˝ I (16.1)

WN
D D I ˝ W (16.2)

WN D W ˚ W D W ˝ I C I ˝ W D WN
O C WN

D; (16.3)

where I is an n-by-n identity matrix, ˝ and ˚ denote the Kronecker product and
Kronecker sum, respectively. For the binary case, elements wN

O of the origin-based
network weight matrix can be defined as

wN
O.i; jI r; s/ D

�
1 if j D s and w.i; r/ D 1,
0 otherwise,

(16.4)

where w.i; r/ are the elements of a (n � .n � 1/) spatial weight matrix (first-
order contiguity) taking values of one, if i and r are linked to each other, and zero
otherwise. In this framework, the network weight matrix WN

O specifies an origin-
based neighborhood for each origin-destination pair (i,j) by assigning a second pair
(r,s) as its neighbor if the origin regions i and r are contiguous spatial units and
j D s (Fisher and Griffith 2008). The underlying spatial link between origins i and r
may, for instance, be measured in terms of common boundaries or equivalently by
defining a threshold distance between i and r. Similarly, elements of the destination
based network weights matrix WN

D consists of the following elements wN
D

wN
D.i; jI r; s/ D

�
1 if i D r and w. j; s/ D 1,
0 otherwise,

(16.5)

where w. j; s/ is the binary indicator for spatial correlation between j and s in a
first-order contiguity matrix as outlined above. As Chun and Griffith (2011) point
out, a desirable feature of the above defined network scheme is that its design can
be motivated by spatial search models, which allow an economic interpretation of
the obtained spatially lagged regression coefficients. Thereby, WN

O proxies the so-
called ‘intervening opportunities’ effect, which models movements of people in
space upon the idea that the number of migration flows between two regions is
determined by the availability of different intervening opportunities (such as the
number of available jobs) existing between the origin and the destination.
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The specification of WN
D can be motivated by the so-called ‘competing des-

tinations’ effect (see e.g. Fotheringham 1983; Hu and Pooler 2002). The basic
idea of the latter is to model human behavior as a spatial choice process based
on the assumption that the actual choice occurs through hierarchical information
processing since migrants are supposed to be only able to evaluate a limited number
of alternatives at a time. Prospective migrants tend to simplify the alternatives by
categorizing all alternatives into clusters, where the probability that one destination
in a certain cluster will be chosen is related to the other regions in that cluster.
This clustering process in turn requires that spatial proximity of destinations has an
influence on the destination choice of migrants from one particular origin.

In the following, it is assumed that both effects operate simultaneously advocat-
ing the use of the combined matrix WN . Besides the above mentioned behavioral
motivations for the existence of network effects, Zimmer (2008) argues that also
herd behavior among migrants may lead to the occurrence of such patterns. In other
words, under imperfect information the destination choice of other migrants may be
interpreted as a positive signal regarding the quality of migration choice having a
positive impact on the own migration decision. Such spatial herd behavior may thus
entail positive space-time covariances in the dynamic adjustment processes taking
place for the interregional migration network. This calls for a mutually dynamic
empirical modelling strategy, which will be outlined in the next section.

16.3 Econometric Specification

To set up a model of interregional migration flows, this paper uses a fairly general
modelling framework with both serial and spatial correlation being present in data
generating process. In its triple-indexed form, the regression equation in log-log
specification can be stated as

mi;j;t D ˛
�
mi;j;t�1

�C �

0

@
X

r;s¤i;j

w.i;jIr;s/;t � mr;s;t

1

A

Cˇ �Xi;j;t�1
�C �

0

@
X

r;s¤i;j

w.i;jIr;s/;t � Xr;s;t�1

1

AC �i;j C �i;j;t; (16.6)

where mi;j;t is a measure of regional gross out-migration from state i to j (with
i; j D 1 : : : ; n/ for time period t (with t D 1; : : : ;T/ as a log-linearized function
�.�/ of its own time lag (mi;j;t�1), a contemporaneous spatial lags of the dependent
variable (

P
r;s¤i;j w.i;jIr;s/;t � mi;j;t) as well as a vector of labor market signals (X) and

their spatial lags, which both enter as one-period lagged values in order to account
for information lags and reduce the reversed causality problem. �i;j is a vector of
(fixed or random) individual effects to be specified by the researcher and �i;j;t is the
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model’s error term. In the following, �i;j and �i;j;t are assumed to be independent over
the cross-sectional dimension with �i;j;t being distributed as N.0; �2� /, whereas �i;j is a
vector of fixed effects to be estimated. The use of the fixed effects specification can
motivated by the fact that empirical applications in spatial econometrics typically
use space-time data of adjacent spatial units located in unbroken study areas. Thus,
this study area typically takes the form of a fixed population of regions rather than a
randomly drawn sample from a underlying regional population. In this setting, fixed
effects estimation is the more appropriate choice (Elhorst 2012).

As demonstrated above, the elements w.i;jIr;s/;t of the network weight matrix WN

are defined in a four dimensional space of origin-destination linkages varying by i, j,
r and s, where i and r denote flow origins and j and s flow destinations for each time
period t, respectively. ˛, �, ˇ and � are coefficients to be estimated. Since the model
in Eq. (16.6) only includes a contemporaneous spatial lag of the dependent variable,
it is also referred as space-time simultaneous model (see Anselin et al. 2007). The
choice of this model puts certain restrictions on the functional form of the model and
implies that all explicitly modelled spatial effects are assumed to take place within
each time period of observation.3 Although this modelling approach is clearly a
simplification compared to a full space-time dynamic approach, which also accounts
for time lags of the spatially lagged endogenous variable, Elhorst (2012) points out
that the loss of this restriction due to the limited flexibility of the ratio between the
indirect and direct effects is rather small compared to the pro of avoiding severe
identification problems.4

The regression equation in Eq. (16.6) is also referred to as a spatial Durbin
model (SDM), which provides a general basis for including different types of spatial
interdependencies. LeSage and Pace (2009) put forward different arguments why
the SDM provides a sufficiently general modelling basis: First, the model can be
derived as a data generating process for an ordinary least-squares regression model
in the presence of spatially omitted variables. The inclusion of spatial effects thus
helps to control for the latter bias. Second, the regression coefficients of the spatial
lags of the endogenous and explanatory variables can be interpreted as spatial
(network) spillovers. For instance, one might be interested in assessing the strength
of substitutive or complementary effects emanating from changes in the relative
unemployment rate between r and s on migration flows between i and j given that i
and r (or j and s) are neighboring regions.

Since the SDM nests the spatial autoregressive (SAR) model as a specific case,
it is further possible to test for the validity of the SDM versus SAR based on the
following coefficient restrictions H0 W � D 0 and H0 W � C �ˇ D 0 (see Burridge
1981; LeSage and Pace 2008). Finally, given that Eq. (16.6) is a combination of a
time and spatial autoregressive model, we need to ensure that the resulting process is

3For a general classification scheme of different combination including time-space lags in a
regression framework, see Anselin et al. (2007).
4Additionally, it reduces the likely problem of multicollinearity among the regressors given that
spatial dependence tends to arise from temporal dependence.
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stationary. The stationarity restrictions in this model are stronger than the individual
restrictions imposed on the coefficients of a pure spatial or time dynamic model
(see Elhorst 2012). In this case, dynamic stability requires that the combination
of the time autoregressive parameter ˛ and the spatial lag coefficient � satisfies
j˛j C j�j < 1. The spatially augmented specifications will be estimated by means of
the bias corrected ML-approach proposed in Lee and Yu (2010).

16.4 Data and Regression Results

16.4.1 Variable Definition and Data Properties

For the empirical analysis, annual data for the 16 German federal states in the period
1993–2009 is used, which has been retrieved from the official migration statistics of
the German statistical office.5 Out-migration flows from i to j at time t (mi;j;t) serve
as the endogenous variable of the model. Among the set of explanatory variables in
X adjusted real wages (wradj) and regional unemployment rates (ur) are used as key
labor market variables. Further, labor productivity (ylr), the labor participation rate
(q), a regional human capital composite indicator (hk), regional real estate prices
proxied by the price for building land per sqm (pl) and the sum of population in i
and j (spop) are selected as additional controls. The latter variable seeks to control
for the fact the populous regions tend to have higher in- and out-migration flows as
such. All variables are used as logarithmic transformations.6

Since the correlation between wages and productivity is expected to be high
according to the marginal revenue productivity theory of wages (see Zierahn 2012),
the empirical analysis separates the effects of wages and productivity by estimating
a proxy for the “excessive wage” (see Südekum and Blien 2004). The latter subtracts
the productivity effect from wage rate changes by running an auxiliary regression
(with all variables in logarithmic transformation) of the form

wri;t D ı1wri;t�1 C ı2�yrli;t C ı3�yrli;t�1 C �i C t C vi;t (16.7)

The real wage for region i at time t depends on its own time lag, current
productivity growth (�yrl), where� is the difference operator as�yrli;t D .yrli;t �
yrli;t�1/, as well as time period (t) and regional fixed effects (�i), respectively.
Using the fitted values cwri;t of this regression, the adjusted wage (wradj

i;t ) can then

be calculated as wradj
i;t D cwri;t � Oı2.�yrli;t/. It is defined as the wage, not ascribed

to the evolution in productivity and is taken as explanatory variable in the migration

5The first two sample years after German re-unification are dropped due to missing data and
structural breaks in the time series.
6A description of variable definitions and data sources is given in the appendix (see Table A.1).
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Fig. 16.1 Network graph of state-level migration flows in 2009. Note: BW = Baden-Württemberg,
BAY = Bavaria, BER = Berlin, BRA = Brandenburg, BRE = Bremen, HH = Hamburg, HES = Hessia,
MV = Mecklenburg-Vorpommern, NIE = Lower Saxony, NRW = North Rhine-Westphalia, RHP
= Rhineland-Palatine, SAAR = Saarland, SA = Saxony, ST = Saxony-Anhalt, SH = Schleswig-
Holstein, TH = Thuringia. The size of ties between state pairs measures the respective relative
strength of interstate migratory linkages

equation.7 Moreover, as the number of parameters to be estimated in the migration
equation may become very large, all explanatory variables are restricted to enter
as interregional differences, where Qxi;j;t for any variable xi;j at time t is defined as
Qxi;j;t D .xi;t � xj;t/.

Figure 16.1 visualizes the network dimension of migration flows among the
16 states for the sample year 2009. The size of ties between state-pairs thereby
measures the respective relative strength of two-sided interstate migratory flows.
As Fig. 16.1 shows, most migration flows take place over short-distances between
neighboring states. Moreover, populous states such as Bavaria, Baden-Württemberg
and North Rhine-Westphalia also show to have relatively strong positions in the
German migration network.

Throughout the empirical analysis, we will construct different empirical proxies
for WN to capture the spatial dimension of the German migration network. As
default specification, we use information on geographical distances between states
and define a 200 km threshold distance in order to assign spatial neighbors by means
of a binary, row-standardized WN matrix.8 The choice for the latter cutoff value can
be motivated by the fact that, on the one hand, the spatial weighting matrix should

7Regression details for the auxiliary wage equation can be obtained from the author upon request.
8Distance between two states is thereby calculated as the road distance in kilometers between a
population weighted average of combination of pairs among the (up to three) major cities for each
federal state.
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be able to reflect the dominant trend of short-distance migration in Germany. On
the other hand, the chosen weighting scheme should not be too tight in terms of
producing isolated regions given that the average minimum distance between states
in Germany is roughly 145 km. Thus, I have tried to trim the threshold value in such
a way that it lies between the two extremes 1.) each federal state is an isolated island
and 2.) each state is connected to everybody else. This approach is broadly in line
with Zimmer (2008) as an earlier empirical application of spatial network estimation
of German interregional migration flows and thus allows for a comparison with
the former results. To check the sensitivity of the results with respect to alternative
distance bands as well as a border-based contiguity specification for WN , I perform
robustness tests in Sect. 16.4.3.

Prior to estimation, the data properties should also be carefully analysed in order
to avoid any estimation bias. Basically, the following questions arise: (1) What is the
correct functional form of the model given the empirical distribution of migration
flows? (2) What are the time series properties of the data? and (3) Do global
indicators of spatial (network) association ex-ante support the need for a spatially
augmented regression design?

The first question has important implications for the functional form of the
regression approach. In Eq. (16.6), a (log-)linear relationship among the variables
is assumed to hold. However, such a model is only suitable when out-migration
(or its logarithmic transformation) is, in fact, a continuous normally distributed
variable. Alternatively, one could treat these observations as count data and use a
(zero-inflated) Poisson regression. As Devillanova and Garcüa-Fontes (2004) point
out, the latter approach is particularly useful if the number of locations considered
is large and contains a high proportion of zero or very small values. This, however,
is not the case for this data set, which is based on a rather high level of regional
aggregation (NUTS1 level). Nevertheless, tests for the statistical distribution of log-
transformed migration flows are provided. Figure 16.2 therefore plots univariate
kernel density estimates for the logarithmic transformation of out-migration flows
for different sample periods. Additionally, the outcome of Skewness and Kurtosis
tests for normality are reported in Table 16.1. The results show that the (joint) null
hypothesis of a normal distribution for the logarithm of migration flows cannot be
rejected for reasonable confidence levels in most sample periods. The use of a log-
linear specification for the estimation of Eq. (16.6) thus appears to be an appropriate
modelling choice.

Given the moderate time dimension with T D 19, I also check for the time-
series properties of the variables in order to avoid any spurious regression bias.9

Table 16.2 reports the results of the Im et al. (2003) and Pesaran (2007) panel unit
roots tests. The test results clearly reject the null hypothesis of non-stationarity for
all variables based on reasonable confidence levels, however, one has to note that
growth rates for labor productivity and prices for building land per sqm. (�ylr; �pl)

9For T D 19, the sample range includes all available time periods from 1991–2009. As outlined
above, for estimation purposes, the first 2 years after German re-unification will be dropped later
on.
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Fig. 16.2 Kernel density estimates for log-transformed out-migration flows. Note: The solid line
shows the fitted values of univariate kernel density estimation. The dotted line shows a normal
distribution

have been used since their levels turned out to be non-stationary. Finally a test
to detect structural breaks in the time series is conducted, which-if a structural
break is present-might bias the results of the unit root tests. Adapting a sequential
testing procedure proposed by Tzavalis (2008), the results, however, indicate that
all variables are stationary and that no structural break is present.10

Finally, the potential role played by spatial dependence in migration flows is
investigated. For panel data settings, (Mutl and Pfaffermayr 2010) as well as
Lopez et al. (2011) have recently proposed spatio-temporal extensions of Moran’s
I (STMI).11 By means of Monte Carlo simulations, Lopez et al. (2011) have
shown that the STMI has a satisfactory small sample behavior compared to other
‘spatialized’ test statistics for the cross-sectional independence of the residuals. To
apply the STMI test, the above specified binary WN matrix based on a 200 km
distance band is used. For the dependent variable mi;j;t the value for the extended
Moran’s I is STMI D 0:481, the corresponding test statistic is ZSTMI D 23:51.
Hence, under the assumption of normality, this result strongly rejects the null
hypothesis of independence among network flows. The upper part of Fig. 16.3
additionally plots the results of the STMI graphically based on the correlation of the

10Detailed test results can be obtained from the author upon request.
11Earlier concepts have already been proposed by (Cliff and Ord 1981) as well as Griffith (1981).
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Table 16.1
Skewness/kurtosis tests for
normality of out-migration
flows

Year Prob.
(skewness)

Prob.
(kurtosis)

Prob.
(joint)

1993 (0.07) (0.15) (0.07)

1994 (0.08) (0.23) (0.11)

1995 (0.08) (0.29) (0.12)

1996 (0.08) (0.35) (0.14)

1997 (0.08) (0.35) (0.14)

1998 (0.03) (0.66) (0.08)

1999 (0.04) (0.29) (0.08)

2000 (0.04) (0.24) (0.06)

2001 (0.05) (0.15) (0.05)

2002 (0.03) (0.33) (0.06)

2003 (0.03) (0.37) (0.07)

2004 (0.08) (0.21) (0.10)

2005 (0.06) (0.30) (0.10)

2006 (0.06) (0.42) (0.12)

2007 (0.03) (0.69) (0.08)

2008 (0.05) (0.42) (0.11)

2009 (0.03) (0.73) (0.09)

Note: Reported results are p-values for nor-
mality tests based on skewness, kurtosis and a
combined test statistic

Table 16.2 Im et al. (2003)
IPS and Pesaran (2007) CIPS
panel unit root test for
variables

IPS and CIPS tests for N � .N � 1/; T D .240; 19/

H0: All cross-sections contain unit roots

Specification IPS p-value CIPS p-value

mi;j;t �16:09 (0.00) �10:39 (0.00)

euri;j;t �14:65 (0.00) �12:82 (0.00)

ewri;j;t �86:87 (0.00) �8:35 (0.00)

�eylri;j;t �67:40 (0.00) �28:70 (0.00)

Qqi;j;t �12:25 (0.00) �7:57 (0.00)

ehci;j;t �6:99 (0.00) �2:06 (0.02)

�epl
i;j;t �48:01 (0.00) �32:49 (0.00)

spopi;j;t �40:11 (0.00) �27:25 (0.00)

Note: Including a constant term; optimal (average) lag
length selection for the IPS test according to the AIC. The
same lag length was then imposed for the CIPS test

standardized net-migration variable and its spatial lag. Finally, standard Moran’s I
statistics for each individual year have been computed in the lower part of Fig. 16.3,
which show that network dependency is present in each sample year and even
increase towards the end of the sample.
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Space-Time Moran’s I (STMI) = 0.481
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Fig. 16.3 Fitted scatter-plot for the spatio-temporal Moran’s I (STMI). Note: The upper part of
the figure displays the scatter-plot of out-migration and its spatial lag (calculated using the default
200 km distance band). The slope coefficient of the included regression line equals the computed
STMI value. In the lower part of the figure, the red line highlights the overall STMI value for the
whole sample, while the blue line shows the standard Moran’s I values for the individual sample
years

16.4.2 Regression Results, Summary Measures and Multiplier
Analysis

First, a non-spatial dynamic Fixed-Effects model (DFE) is estimated to serve as
benchmark specification. There is already a significant body of literature dealing
with the proper estimation of such time-dynamic panel data models given that the
lagged endogenous variable is correlated with the model’s error term. In order
to obtain consistent parameter estimates for the DFE model, an analytical bias
correction as proposed in Kiviet (1995) will be used. The results for the DFE
specification are shown in column I of Table 16.3. Extending this benchmark
specification, consecutively spatial dynamics is introduced to the model by means of
spatially lagged variables using the above defined network matrix with a threshold
distance value of 200 km to define neighboring network flows. One has to note
that in the regression equations, all further regressors enter as one-period lagged
values in order to account for information lags and to minimize the risk of reversed
causality.
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Table 16.3 ML-estimation results for the dynamic spatial migration model

Model DFE DFE-SAR DFE-SDM DFE-SDM

euri;j;t�1 0.070��� 0.014 �0:024 0.011

(0.0272) (0.0248) (0.0433) (0.0259)

ewradj
i;j;t�1 �0:029 �0:054�� �0:033 �0:043�

(0.0367) (0.0266) (0.0391) (0.0265)

�eylri;j;t�1 �0:125��� �0:090��� �0:056 �0:063��

(0.0419) (0.0311) (0.0422) (0.0296)

Qqi;j;t�1 0.361��� 0.196 �0:117 0.093

(0.1391) (0.1306) (0.2257) (0.1374)

ehki;j;t�1 0.025 0.014 �0:039� �0:033
(0.0212) (0.0181) (0.0221) (0.0224)

�epl
i;j;t�1 0.031��� 0.012� 0.016 0.014�

(0.0085) (0.0076) (0.0101) (0.0077)

spopi;j;t�1 �0:053 �0:031 �0:009 �0:025
(0.0334) (0.0222) (0.0277) (0.0259)

mi;j;t�1 0.824��� 0.624��� 0.623��� 0.625���

(0.0121) (0.0236) (0.0237) (0.0236)
P

w.i;jIr;s/;t � mr;s;t 0.306��� 0.306��� 0.310���

(0.0174) (0.0175) (0.0175)
P

w.i;jIr;s/;t �eurr;s;t�1 0.057

(0.0467)
P

w.i;jIr;s/;t � ewradj
r;s;t�1 �0:057

(0.0514)
P

w.i;jIr;s/;t ��eylrr;s;t�1 �0:089 �0:042��

(0.0584) (0.0169)
P

w.i;jIr;s/;t � Qqr;s;t�1 0.437� 0.128��

(0.2581) (0.0581)
P

w.i;jIr;s/;t � ehkr;s;t�1 0.083��� 0.069���

(0.0269) (0.0264)
P

w.i;jIr;s/;t ��epl
r;s;t�1 �0:006

(0.0144)
P

w.i;jIr;s/;t � spopr;s;t�1 �0:079
(0.0604)

(continued)



428 T. Mitze

Table 16.3 (continued)

Model DFE DFE-SAR DFE-SDM DFE-SDM

N � T 3600 3600 3600 3600

LMSAR 220.18

(0.00)

LMSEM 0.439

(0.51)

H0 W � D 0 307.19��� 312.20���

(0.00) (0.00)

Coef W ˛ C � 0.930��� 0.929��� 0.934���

(0.0238) (0.0245) (0.0243)

H0 W j˛j C j�j � 1 8.61��� 8.25��� 7.33���

(0.00) (0.00) (0.00)

Note: ���, ��, � denote significance at the 1, 5 and 10 %-level. Standard errors in brackets. In the
case of post-estimation tests, the results of Wald F-tests and corresponding p-values are reported

To test for the importance of spatial network effects, LMSEM and LMSAR tests—
as proposed in Elhorst (2010)—will be applied to the within-transformed residuals
of the non-spatial DFE specification. The tests can be used in order to test the null
hypothesis whether the coefficient of the spatial lag variables in the spatial error
model (SEM) and spatial autoregressive (SAR) model turn out to be statistically
insignificant, in which place the DFE would be the optimal choice. Although the
LMSEM test does not reject the null hypothesis of no spatial correlation in the error
term, the LMSAR test strongly hints at the presence of global spillovers induced by
the spatial lag of the endogenous variable (see column I of Table 16.3).

Thus, switching to the DFE-SAR specification, the associated regression results
are shown in column II of Table 16.3. As the results show, the spatial lag term of
the dependent variable enters statistically significant into the model and indicates
the presence of positive spatial autocorrelation among interregional migration
flows. The coefficient size of � D 0:306 is thereby in line with earlier evidence
on network effects among German interregional migration reported in Zimmer
(2008).12 Since the DFE-SAR comprises spatial and temporal dynamics, the validity
of the restriction H0 W j˛j C j�j < 1 has to be tested for the stationarity condition
to hold. As Table 16.3 shows, however, the null hypothesis of dynamic stationarity
cannot be rejected for reasonable confidence levels in the case of the DFE-SAR.
Comparing the estimation results for the DFE and DFE-SAR, the table shows
that the inclusion of joint space-time autocorrelations also affects the statistical
significance of the included labor market signals. While regional unemployment rate
differences have shown to be a statistically significant driver of out-migration flows
in the DFE specification, they turn out to be statistically insignificant in the DFE-

12For static SARAR specifications, Zimmer (2008) reports values for � ranging from 0.23 to 0.48.
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SAR extension. At the same time, in the latter model a stronger weight is given to the
adjusted wage rate differential among German states. Although, regional differences
in the growth rate of labor productivity turn out to be highly statistically significant
in both specifications, though.

Extending the DFE-SAR specification to the DFE-SDM case, it is possible to
test for the validity of the augmentation by means of common factor restrictions
(Burridge 1981) as H0 W � D 0 and H0 W � C �ˇ D 0. Using a set of Wald F-tests,
the second restriction will be explicitly tested for each exogenous regressor with the
intention to capture the mutual spatial dynamics present in the data, on the one hand,
while reducing the number of regressors to a minimum, on the other hand. Starting
from a fully specified SDM in column III of Table 16.3, the post-estimation tests
indicate that only for three variables, namely�fylri;j;t�1, Qqi;j;t�1 and ehci;j;t�1, the null
hypothesis of H0 W � C �ˇ D 0 can be rejected at reasonable confidence levels.13

Thus, column IV of Table 16.3 reports the final form of the DFE-SDM with spatial
lags for �fylri;j;t�1, Qqi;j;t�1 and ehci;j;t�1 besides the spatial lag of the endogenous
variable. As for the DFE-SAR regression results, also for the DFE-SDM case the
null hypothesis of dynamic stationarity cannot be rejected for reasonable confidence
levels. Thus, given that our empirical identification strategy hints at the fact that the
DFE-SDM with partial parameter restrictions on the set of exogenous regressors
is the optimal choice, in the following, economic interpretation of the regression
results will be based on this latter specification.

The “specific-to-general” modelling strategy has identified the dynamic DFE-
SDM specification as most appropriate model presentation. Since this model is
characterized by a high degree of simultaneity and complexity, the corresponding
regression output cannot be interpreted as such. Instead meaningful summary
measures for the short-term and long-term marginal effect of a change in an
exogenous variable in X on out-migration will be reported. The measures allow
tracking the evolution of the different spatial effects for each regressor over space
and time and thus allow to test for the validity of the neoclassical migration theory.
In the short-run, the direct and spatially indirect effects measure the instantaneous
impact of regional labor market signals on migration flows. The direct effect thereby
measures the impact of a unit change in the kth explanatory variable from X for each
origin-destination pair .i; j/ on migratory flows between i and j, while the spatially
indirect effect measures the change in migration flows between i and j due to a
percentage change in the kth explanatory variable in X for neighboring pairs .r; s/.
The sum of the direct and indirect effect is the total effect. Taken together, these
measures allow for the analysis of the overall impact of regional labor market signals
on interregional migration flows.14

13Detailed test results are given in Table A.2 the appendix.
14As Elhorst (2011) points out, although the calculation of the above effects is straightforward,
no direct statistical inference on these measures can be performed. The reason is that they are
composed of different coefficient estimates according to complex mathematical formulas and the
dispersion of the effects depends on the dispersion of all coefficient estimates involved. This paper
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In the long-run, direct, indirect and total effects for each explanatory variable
additionally need to be corrected by the degree of temporal adjustment processes
taking place, which are determined by the size of ˛. Formally, the latter long-run
effect can be computed from the (systematic part of the) reduced form of Eq. (16.6)
stacked over the (dyadic) cross-sectional dimension i; j as

mt D Œ.1 � ˛/I � �WN ��1ŒˇXt C �WNXt�: (16.8)

Then, for the kth regressor it is possible to decompose this reduced form equation
into three long-run summary measures Mlr as

Mlr
total.k/ D z0 �Œ.1 � ˛/I � �WN ��1ŒIˇk C �kWN �

�
z .1=N/ (16.9)

Mlr
direct.k/ D trace

�
Œ.1 � ˛/I � �WN ��1ŒIˇk C �kWN �

�
.1=N/ (16.10)

Mlr
indirect.k/ D Mlr

total.k/ � Mlr
direct.k/ (16.11)

with z as N D n � .n � 1/ vector of ones. For the computation of
short-term effects, the term .1 � ˛/�1 can be ignored (see LeSage and Pace
2009). Given the dynamic nature of our model, it is then also possible to
track the temporal evolution from the short- to the long-term effects by means
of multiplier analysis (see Debarsy et al. 2011; Lütkepohl 2005). For each
period s, an interim multiplier Ds as Ds D .˛/s � B�1 is calculated, where
B D .I � �WN/, which models the speed of adjustment of the migration
response to a change in regional labor market signals. Based on these interim
multipliers, cumulative effects up to time period s can be calculated asPS

sD0 Ds.
Table 16.4 reports the simulated short- and long-term direct, indirect and

total effects for the preferred DFE-SDM specification from column IV in
Table 16.3. Focusing on the long-run effect first, the table reports statistically
insignificant results for the regional unemployment and adjusted wage rate
differential. In contrast, out-migration flows are shown to be negatively affected
by regional differences in the labor productivity growth rate. Here, we observe
that both direct and spatially indirect network effects are at work. For regional
differences in the labor participation rate, the simulated long-run summary
measures hint at statistically significant positive total effects on out-migration
flows, where the total effect is driven by indirect network spillovers. This
indicates that not only direct changes between regional labor market signals
affect migration flows between i and j, but also indirect changes between
(neighboring) third party states may trigger pull effects on regional out-migration
flows.

thus follows LeSage and Pace (2009), Elhorst (2011) and simulates the distribution of the effects
using the estimated variance-covariance of the regression analysis.
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Table 16.4 Direct, indirect and total effect for DFE-SDM migration equation

Short-run Long-run

Direct Indirect Total Direct Indirect Total

euri;j;t�1 0.005 0.002 0.007 0.013 0.005 0.019

(0.0112) (0.0043) (0.0156) (0.0298) (0.0115) (0.0414)

ewradj
i;j;t�1 �0:016 �0:006 �0:022 �0:042 �0:016 �0:058

(0.0111) (0.0043) (0.0154) (0.0295) (0.0115) (0.0409)

�eylri;j;t�1 �0:026�� �0:029��� �0:055��� �0:068�� �0:078��� �0:146���

(0.0117) (0.0099) (0.0195) (0.0309) (0.0260) (0.0509)

Qqi;j;t�1 0.049 0.078��� 0.127� 0.131 0.207��� 0.339�

(0.0587) (0.0269) (0.0755) (0.1561) (0.0706) (0.2000)

ehki;j;t�1 �0:009 0.028�� 0.020� �0:023 0.076�� 0.053�

(0.0081) (0.0113) (0.0121) (0.0215) (0.0296) (0.0319)

�epl
i;j;t�1 0.006�� 0.002�� 0.008�� 0.015�� 0.006�� 0.020��

(0.0028) (0.0011) (0.0038) (0.0073) (0.0028) (0.0101)

spopi;j;t�1 �0:008 �0:003 �0:012 �0:022 �0:009 �0:031
(0.0087) (0.0033) (0.0121) (0.0231) (0.0089) (0.03208)

Note: ���, ��, � denote significance at the 1, 5 and 10 %-level based on partial derivatives and
parameter simulations as described in the text. For the SDM, the restricted parameter specification
according to column IV in Table 16.3 is used

Both the negative correlation between regional out-migration and regional
differences in labor productivity growth as well as the positive correlation between
out-migration and changes in the labor participation rate are in line with the
neoclassical migration model. The latter model predicts that a relative increase in the
regional income level should diminish outward oriented migration flows, while an
increase in the labor participation rate should be seen as an substitutive adjustment
mechanisms to restore labor market disequilibria. Hence, it can be expected that
relative changes in the labor participation rate co-move uni-directionally with the
evolution of gross out-migration flows. In the case of labor productivity growth,
this variable captures the migration effect stemming from relative changes in the
expected income across regions as outlined in Sect. 16.2.

Moreover, the scalar summary measures show statistically significant and posi-
tive indirect network effects of regional differences in human capital endowments
on out-migration, while real estate price differences show the theoretically expected
positive relationship with out-migration flows. In other words, with increasing
regional real estate prices in state i, the costs of living in this region rise, which thus
induce a further pressure on out-migration flows from i to j. For the latter variable the
results hint at positive direct as well as indirect effects. The statistically significant
effect of the human capital variable underlines the importance to properly account
for differences in the skill-level of the work force as an explicit factor in regional
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production (as e.g. outlined in the new growth theory) and an important driver of
labor market dynamics through migratory behavior.

Finally, in order to take a closer look at the adjustment dynamics of the direct
and indirect effects for each variable over time, cumulative multipliers for a time
horizon of up to 10 years have been computed. The graphical presentation of these
cumulative multipliers in Fig. 16.4 shows that the speed of adjustment towards
the long-run impact is rather fast and mostly occurs within the first 3 years.
Regarding the interplay of the direct and indirect effects per variable, in all cases
uni-directed direct and indirect effects are observed although the model is not
restricted to a common global multiplier process ex-ante as it is the case in the

Fig. 16.4 Dynamic cumulative multipliers for direct and indirect effects. Source: Based on the
simulated effects for the DFE-SDM according to Table 16.4. Hatched bars indicate statistically
insignificant effects. Multiplier results for spop are omitted and can be obtained from the author
upon request
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DFE-SAR specification. The results shown in Fig. 16.4 finally highlight the fact,
that for most variables the indirect spatial effect dominates the direct counterpart.
In other words, spatial network effects play a key role in assessing the overall
impact of regional labor marked differences on regional out-migration flows. All
in all, these findings support earlier empirical evidence for German interregional
migration provided by Zimmer (2008), who finds that besides an increase in
expected income, network effects seem to have the strongest influence on the
decision to migrate.

16.4.3 Robustness Checks

Before drawing conclusions, the robustness of the above findings with respect to
the choice of the underlying imposed spatial structure to construct WN has to be
inspected. The latter aspect is a common point of critique in spatial econometric
applications. Arbia and Fingleton (2008), for instance, call for more research on
the robustness of outcomes to variations in assumptions about the weight matrix
structure should be carried out in order to allay such criticism. Although LeSage and
Pace (2010) have recently shown that the sensitivity of spatial econometric models is
rather due to model misspecification and misinterpretation of regression coefficients
as true partial derivatives (and not the form of W). However, to be sure about this,
five alternative network weight matrices both as a common border based first order
(queen-type) contiguity matrix as well as different threshold distances with d D
.175; 250; 300/ in kilometers will be computed.15

Looking at the key summary statistics for the different network weight matri-
ces, Table 16.5 displays these characteristics of the different weighting schemes
including the minimum, mean and maximum value of each matrix entry as
well as the total and average number of linkages. The table shows that the
benchmark matrix with a threshold value of d D 200 lies within (but at the
lower bound of) the range of the chosen alternative specifications. Calculating
a measure of similarity between two matrices, where the correlation coefficient
for their spatial lags based on an independent identically distributed normal
variable u as WNu is used, the observed similarity is the highest for the com-
bination Corr.WN

d200;W
N
d175 D 0:85/ and steadily decreases for larger distance

bands. Nevertheless, in all cases the correlation is sufficiently high in order not
to expect significant deviations in the economic interpretation of the obtained
effects.

The results in Fig. 16.5 present the simulated long-term direct and indirect effects
for the DFE-SDM based on alternative network weighting schemes. Hollow bars
indicate statistically insignificant results. As the figure shows, despite some degree

15We restrict the computation of weight matrices to a minimum threshold distance of d D 175 km
in order to avoid modelling network flows without neighbors in the network.
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Table 16.5 Descriptive characteristics of the different network weight matrices

d200 d175 d250 d300 Border

Dimension 240� 240 240 � 240 240 � 240 240� 240 240 � 240

Normalization Row-sum Row-sum Row-sum Row-sum Row-sum

Min. value 0.143 0.200 0.125 0.077 0.083

Mean value 0.004 0.004 0.004 0.004 0.004

Max. value 1.000 1.000 1.000 0.333 0.500

Total links 784 560 1288 2072 1568

Mean no. of links 3.2663 2.333 5.366 8.633 6.53

Corr(WN
d200;W

N
i ) 1.000 0.849 0.715 0.565 0.516

of heterogeneity among the simulated effects, in most cases, the result obtained
from the benchmark network weight matrix with d D 200 km are qualitatively
confirmed by the alternative network specifications. For regional unemployment
rate differences all specifications report statistically insignificant direct and indirect
effects. For labor productivity growth, the direct and indirect effects are persistently
negative and statistically significant. However, while the estimated direct effect
remains rather constant in size across the different specifications, the size of
the indirect network increases for larger distance bands and the border-based
weights. This result may indicate that productivity differences exhibit strong indirect
migration signals for long-range flows. Similarly, negative effects stemming from
wage rate differences (both direct as well as indirect) also turn significant only
for larger distance threshold values and may be rooted in the distinct wage gap
between West and East German federal states. The empirical findings support earlier
empirical evidence for Germany provided by Zimmer (2008), who finds that besides
an increase in expected income, network seem to have the strongest influence on the
decision to migrate.

For the labor participation rate, I observe that there is no direct effect on regional
out-migration flows, however, in most specification the indirect effect is estimated
to be negative. Similar results are also found for interregional differences in
human capital endowments. Finally, for differences in real estate prices, statistically
significant effects on out-migration flows are observed only for tightly specified
geographical threshold distances, while estimation results based on wider distance
bands seem to dilute the real estate market pricing signal. Summing up, given that
the observed heterogeneity in the empirical results is rather moderate, the general
picture drawn in Fig. 16.5 supports the conclusion of LeSage and Pace (2010) that
appropriately fitted models using different forms of WN are not likely to produce
estimates for the different effects that substantially differ from each other. However,
especially for wage rate differences, on the one hand, and real estate prices, on
the other hand, the results seem to be sensitive with respect to the chosen type of
WN . The results thus call for a careful treatment of network weights in the light of
migration flow analyses given that effects may be amplified or diluted by the former
choice.
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Fig. 16.5 Comparison of long-term effects for different network weight matrices. Source: Hollow
bars indicate statistically insignificant results. Based on DFE-SDM specification. Results for spop
are not reported and can be obtained from the author upon request

16.5 Conclusion

The aim of this paper was to consistently estimate and interpret dyadic econometric
models of interregional population flows which are driven by spatial and temporal
dynamics. Using panel data for interregional out-migration among the 16 German
federal states throughout the period 1993–2009 and applying recent advances in
panel econometric modelling as well as the computation of meaningful scalar
summary measures for spatial dynamic models, the empirical results show that
standard non-spatial migration specifications are likely to obtain biased parameter
estimates due to the omission of relevant network factors. Based on the specification
of a space-related network weight matrix, it was then possible to broaden the
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scope of the analysis and conduct a “specific-to-general” modelling strategy, which
identified the dynamic spatial Durbin model (DFE-SDM) as preferential empirical
specification. This model is driven by temporal and spatial dynamics in the
dependent variable as well as by direct and indirect network effects stemming from
the set of regressors. The latter are proxied by different regional labor market signals
that are derived from neoclassical migration theory.

The long-run results show that state-level gross out-migration flows are nega-
tively correlated with regional differences in labor productivity growth, capturing
the effect of changes in expected income as predicted by the neoclassical migration
theory. For network weighting matrices with larger threshold distances, changes
in the relative regional (adjusted) wage rate differential are also found to have
a negative impact on out-migration flows. Changes in the relative regional labor
participation rate show the theoretically expected positive correlation with out-
migration flows indicating that adaptions in the migration and labor participation
behavior can be seen as an alternative adjustment mechanisms to restore labor
market disequilibria. Similarly, differences in real estate prices across regions show
the theoretically expected pricing signal on migration flows, namely that increasing
relative prices in state i are a push factor for regional out-migration flows from
i to j.

In order to take a closer look at the relative dynamic evolution the direct and
indirect network effects for each variable over time, cumulative multipliers for a
time horizon of up to 10 years have been computed. The results show that for
all variables the speed of adjustment towards the long-run impact is rather fast
and mostly occurs within the first 3 years. Regarding the interplay of the direct
and indirect effects by variable, the estimation results uniformly hint at additive
linkages. Overall, the obtained results underline the importance of a decomposition
of the total effects of labor market signals on interregional migration flows by
means of their spatial and temporal dynamics. A robustness analysis has finally
shown that—although the obtained effects remain roughly stable for alternatively
specified network weight matrices—the estimated impact for some variables such as
adjusted wage and real estate price differences may be sensitive to the choice of the
network weighting scheme. The proper specification and interpretation of network
models for dyadic flow data should thus be subject to further research efforts in the
field.
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Variable Definitions

See Tables A.1 and A.2.
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Table A.1 Data description and source

Variable Description Source

mi;j;t Total number of out-migration from i to j in 1000 Destatis (2012)

yli. j/;t Gross domestic product per Employee in 1000 Euro in i. j/ VGRdL (2012)

pyi. j/;t GDP deflator for state i. j/ VGRdL (2012)

ylri. j/;t Real labour productivity defined as .yli. j/;t � pyi. j/;t/ VGRdL (2012)

popi. j/;t Population in 1000 in i. j/ VGRdL (2012)

empi. j/;t Total employment persons in 1000 in i. j/ VGRdL (2012)

unempi. j/;t Total unemployment in 1000 in i. j/ VGRdL (2012)

uri. j/;t Unemployment rate defined as .unempi. j/;t � empi. j/;t/ VGRdL (2012)

pcpii. j/;t Consumer price index based on Roos (2006) and regional
CPI inflation rates

Roos (2006),
Destatis (2012)

wri. j/;t Real wage rate defined as wage compensation per employee
deflated by pcpii. j/t

VGRdL (2012)

qi. j/;t Labor market participation rate in region defined as
.empi. j/;t � popi. j/;t/

VGRdL (2012)

hki. j/;t Human capital index as weighted average of: (1) high school
graduates with university qualification per total pop. between
18–20 years, (2) number of university degrees per population
between 25–30 years, (3) share of employed persons with a
university degree relative to total employment, (4) number of
patents per total population

Destatis (2012)

pl
i. j/t Real estate prices as price for building land per qm in i. j/, in

Euro
Destatis (2012)

disti;j Geographical distance between state i and j calculated as the
road distance in kilometers between a population weighted
average of major city pairs for each pairwise combination of
regions

Own computation
based on www.
map24.de

Note: All variables in logarithmic transformation. For Bremen, Hamburg, Schleswig-Holstein
(Rhineland-Palatine and Saarland prior to 1995) no consumer price inflation rates are available.
West German aggregate rates are used instead. In order to construct time series for the price of
building land (pl) no state level data before 1995 was available. Average growth rate between 1995
and 1999 have been used to construct values prior to 1995 for each state

Table A.2 Test for common
factor restriction
H0 W � C �ˇ D 0 in
DFE-SDM

Variable Test statistic p-value

euri;j;t�1 1.82 (0.18)

ewradj
i;j;t�1 2.19 (0.14)

�eylri;j;t�1 4.18�� (0.04)

Qqi;j;t�1 3.80�� (0.05)

ehki;j;t�1 9.18��� (0.00)

�epl
i;j;t�1 0.01 (0.93)

spopi;j;t�1 2.03 (0.15)

Note: ���, ��, � denote significance
at the 1, 5 and 10 %-level
The test statistic is distributed as �2.1/

www.map24.de
www.map24.de
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Chapter 17
Residential Relocation in a Metropolitan Area:
A Case Study of the Seoul Metropolitan Area,
South Korea

Monghyeon Lee and Yongwan Chun

Keywords Network autocorrelation • Residential relocation • Seoul metropolitan
area • Spatial interaction model
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17.1 Introduction

A quantitative modeling for population movement is often performed with gravity
type spatial interaction models. These models, which are inspired by Newton’s
law of gravity, explain population movements with population sizes at origins and
destinations plus the level of separation between an origin and a destination which
is commonly measured with distance between them. Spatial interaction models
have been further extended by incorporating variables to reflect the characteristics
of origins and destinations. While entropy-maximization techniques are used to
estimate spatial interaction models (Wilson 1974), regression type techniques have
also been widely utilized, including linear regression (Greenwood 1985), Poisson
regression (Flowerdew and Aitkin 1982), and negative binomial regression (Liu
and Shen 2013). Recent research points out that empirical flow data are not likely
to be independent, and shows how spatial interaction models can be improved by
incorporating a dependence structure among the flows in their model specifications,
also called network autocorrelation (e.g., Griffith 2007; Chun 2008; LeSage and
Pace 2008). This framework to incorporate network autocorrelation has been
applied to different types of flows including population migration (Chun and Griffith
2011), knowledge spill over (Fischer and Griffith 2008), commuting (Griffith 2009),
commodity flows (Chun et al. 2012), and tourism flows (Patuelli et al. 2013).
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As a prominent type of population movement in a geographical space, residential
relocation is also frequently investigated utilizing a spatial interaction model
framework. Residential relocation refers to movements within a small area such
as city or metropolitan area, and has an influence on urban environments such as
urban structure (Krizek 2003) and travel patterns (Buchanan and Barnett 2006).
It is contrasted to interregional migration, which often involves long distance
movements. While interregional migration is generally caused by a job status
change, residential relocation does not necessarily have the same cause. Studies
investigate residential relocation largely in the context of housing market, neighbor-
hood changes, and accessibility (Clark 1982). However, many of these studies do
not explicitly incorporate network autocorrelation in their model specifications and,
hence, the statistical results of the studies might be unreliable.

This paper investigates residential relocation in the Seoul metropolitan area,
South Korea. With an extreme concentration of population (about 50 % of the total
population in South Korea), this metropolitan area has experienced a number of
urban issues, such as high housing prices (Kim 1993; La Grange and Jung 2004)
and urban sprawl (Cho 2006), thus gaining a lot of attention from researchers. This
paper utilizes a spatial interaction modeling framework and further extends it to
account for network autocorrelation among residential relocation flows using the
eigenvector spatial filtering technique. The rest of this paper is organized as follows.
Sect. 17.2 reviews relevant literature on residential relocation, and the study area
is introduced in the following Sect. 17.3. Then Sect. 17.4 provides methods and
Sect. 17.5 presents analysis results. Conclusions are given in the final section.

17.2 Literature Review

There is an established set of literature covering residential relocation and/or
residential mobility (Rossi 1955; Clark and Onaka 1983; Gober 1992; Clark et al.
2000). This research focuses mainly on three factors in examining residential
relocation: household characteristics as decision makers (behavioral perspective),
housing market characteristics (supply–demand perspective), and neighborhood
characteristics (geographical perspective). The behavioral perspective approach
explains that residential relocation occurs as individual households are motivated
to seek a new location to reside, while the supply–demand perspective approach
places more emphasis on conditions that affect the housing market, including
housing price, housing policy, and physical characteristics of building. From the
geographical perspective, residential mobility can be mainly determined by the
characteristics of neighborhoods such as land value, transportation accessibility, and
distance of the movement.

From the behavioral perspective, researchers have investigated residential relo-
cation with more of a focus on decision maker’s circumstances and events such as
family size, income, education levels, and life cycle. Studies (e.g., Rossi 1955; Clark
and Onaka 1983) discuss the characteristics of migrants as an essential determinant
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for residential relocation. Specifically, life cycle is emphasized as an important
factor (Rossi 1955; Clark and Onaka 1983; Mulder 1993; Clark et al. 2000). Life
events such as marriage, birth, and retirement lead to a change in stage of life
and, accordingly, generate different needs for housing. For example, people often
need more space as their family grow with the birth of a child and may consider
moving into an area with desirable schools. The impacts of life cycle on housing
mobility are substantial also for aged people, as residential relocation often happens
when they retire (Rogers and Castro 1981) and expect better health and social
services (Longino 1980). The characteristics of individual decision makers are also
considered as an important factor for residential relocation in the framework of
a value-expectancy model (Golledge and Stimson 1997). This model argues that
residential relocation occurs through a process in which each decision maker wants
to achieve a personally valued goal, which includes wealth, comfort, status, and
morality. In other words, each decision maker assesses a personalized trade-off
between remaining at the previous location and moving to a later location and
decides to move when the decision maker expects a better return with the relocation
(Pacione 2001).

However, these behavioral perspective approaches have been criticized because
the models emphasize only the demand side but not the supply side. Nijkamp
et al. (1993) suggest that supply factors such as local and federal government
policies can affect housing mobility. Smith (1996) also identifies public clearance
or gentrification as substantial supply side factors. Other factors that are recognized
in the literature include housing policy (Forrest and Murie 1990; Knox 1993),
housing tenure (Sullivan and Murphy 1984), building structure (Ball 1986), housing
prices (de Palma et al. 2005), and neighborhood conditions (Ludwig et al. 2000).
Intra-urban migration is tightly related to housing opportunities and constraints on
housing choices for certain groups of people (White 1985). Residential relocation
processes cannot be explained only by their preferences and choices because a
housing market significantly affects decisions; the decisions of migrants are based
on the characteristics of available houses on the market (e.g., location, size, tenure,
price, and government policies). In addition, because intra-urban relocation fre-
quently happens within the same local housing market, a local housing market needs
to be factored into explaining residential relocation (Dieleman 2001). Generally,
residential relocation can be better explained by simultaneously reflecting the
behavioral and the demand–supply perspectives in a model specification (Clark and
Onaka 1983; Nijkamp et al. 1993).

Geographical characteristics have an influence on a choice for a new residential
location. Well-recognized factors in the literature include traffic conditions, the
homogeneity of cultural community, and distance to work place. The travel behavior
of residents can dominate in decision of residential relocation over other preferences
of household (Jonas et al. 2012). In an empirical study, Jonas et al. (2012) find that
the mobility conditions of people keep them in their current residential locations.
Access to private transportation or, alternatively, access to public transportation
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highly influences residential dissonance and relocation in both urban and rural
areas. A social network and community tied by culture/language are substantially
important in residential relocation (Teixeira and Murdie 1997). A co-ethnic or co-
cultural relationship leads migrants to live closely together in a neighborhood and to
construct a community. This phenomenon is often accelerated by people who own
real estate business and share a common culture. The distance between home and
workplace is one of the key reasons for residential relocation (Clark et al. 2003).
A majority of people tend to stay within an area such as a city, the same housing
market, or the same labor area rather than cross boundaries. Even though commuting
distance is not the only reason for residential relocation, there is a marked tendency
for households to move nearer to their workplace (Dieleman 2001).

The impact of political and government system has been investigated. A transi-
tional economy also has been recognized as a unique factor for residential relocation
in cities that were formerly governed by the economics of socialism. Under the
socialist system, residential relocation was limited by a residence permit system and
allocations of housing units (Daniell and Struyk 1997). For example, Daniell and
Struyk (1997) found that residential relocation in Moscow, Russia occurs selectively
among householders in a high social status. However, a residential relocation rate
increased regardless of social status when the restrictions were mitigated with the
change of regime. Restrictions from local or federal governments previously had
enormous effects on residential relocation, but the income level of households
became a major factor. A similar pattern occurs after the Chinese government
announced their new land-lease system (Wu 2004; Gu and Liu 1997). Consequently,
the movement of laborers became one of the main factors for residential relocation
in China (Wu 2004). The impact of political or government systems has been also
investigated in western countries. Ladd and Ludwig (1997) investigated the impact
of the federal housing assistance in Baltimore, Maryland. Strassmann (2001) found
that European governments tend to have more complex interventions in land use,
finance, construction, and housing price than governments in other countries.

17.3 Study Area: The Seoul Metropolitan Area

This study investigates residential relocation within the Seoul metropolitan area
(SMA) in South Korea, which includes the city of Seoul, the city of Incheon, and
Gyeonggi province. Province is the highest ranked administrative units in South
Korea. Seoul and Incheon are special cities, which have an equivalent status to
provinces. The city of Seoul, which is located at the center of the SMA, is the capital
of South Korea and has been a center for economic, political, and cultural activities
in the county. Figure 17.1a displays the location of the SMA, highlighted in a darker
color, along with other provinces and the special cities in total 9 provinces and 7
cities. The population of Seoul is approximately 10.3 million in December 2010
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Fig. 17.1 The Seoul metropolitan area with its population densities and the metro subway lines in
2010

according to the national resident registration reported by the government (http://
rcps.egov.go.kr/). Incheon is the third most populous city with 2.76 million popu-
lation, and Gyeonggi has 11.79 million population. That is, almost the half of total
population in South Korea is concentrated within the SMA. Figure 17.1b shows the
distribution of population at the Si-Gun-Gu level that is compatible with the county
level in the United States. This figure also displays subway lines encompassing the
SMA. Since this subway system furnishes an important method of public trans-
portation, easy access to the subway lines has been an attractive living condition.
Figure 17.1c displays population densities and the subway lines only within the
boundaries of Seoul. This shows a highly concentrated population in Seoul, espe-
cially compared with the outskirts of the SMA, which are mostly rural areas. Fur-

http://rcps.egov.go.kr/
http://rcps.egov.go.kr/


446 M. Lee and Y. Chun

thermore, the Han river, which passes through Seoul, is considered as a natural and
cultural barrier between the northern and the southern parts of Seoul (Davis 2004).

This population concentration has been a major characteristic of population
distribution in South Korea since their massive rural–urban migration started
occurring in 1960s (Lee and Lee 2008). This rural–urban migration was the most
noticeable pattern of population redistribution in South Korea until late 1990s.
Over this period, Seoul gained about 5 million population, which caused rapid
urbanization and related housing issues, including a housing shortage in Seoul.
The Korean government has implemented various housing policies such as Housing
Construction Promotion Act and has conducted multiple land development projects.
As a result, a number of sub-centers and satellite cities have been developed in
the metropolitan area. Nevertheless, Seoul is often preferred to other residential
locations, resulting in substantially high land values (see Fig. 17.2).

Fig. 17.2 Land values of the Seoul metropolitan area in 2010
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Fig. 17.3 Major residential relocation flows in 2010 (top 1 % of flows)

Although the population growth caused by the rural–urban migration has been
currently weakened, residential relocation within the SMA is still dynamic. More
than 70 % of residential relocation in Seoul occurs within the boundaries of the
city (Choi and Cho 2005a), and about 50 % of residential relocation in the SMA
are internal movements (Lee and Lee 2008). Recent studies (e.g., Kwon and Lee
1995; Choi 2004; Choi and Cho 2005b) suggest that residential relocation in the
area is mostly affected by industrial structure change, housing supply–demand,
government policy, housing value, and housing ownership.

Figure 17.3 shows some dominant residential relocation flows (top 1 %) in the
SMA in 2010. The major flows appear between counties (Si-Gun-Gu) that are
located outside of Seoul but close to the boundaries of Seoul. These counties
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have relatively recent developments of residential areas within their boundaries,
but living cost in these counties, including housing price, is still lower compared
to Seoul. These counties include Suwon-si (1), Hwasung-si (2), Yongin-si (3),
Sungnam-si (4), Goyang-si (5) and Paju-si (6). Another noticeable pattern is that
considerable residential relocation appears among Seocho-gu (7), Gangnam-gu (8),
and Songpa-gu (9), which are generally perceived as upper middle class areas with
high residential housing price. Regarding some natural and cultural borders in the
SMA, there is no dominant flow crossing the Han river. Also, residential relocation
crossing the border of Seoul is not prevalent in the map.

17.4 Methodology

17.4.1 Spatial Interaction Models for Residential Relocation

Spatial interaction models are widely utilized in analyzing geographic flows. These
models furnish a useful methodological framework for not only long distance
movements, such as interregional migration flows and interregional commodity
flows, but also short distance movements, such as residential relocation within a
relative small region. A simple gravity type model can be formulated as follows:

Fij D e˛ � PˇO
i � PˇD

j � dˇdist
ij ; i; j D 1; : : : ; n (17.1)

where Fij is the size of flow from origin i and destination j, Pi and Pj are populations
at i and j, dij is distance between i and j, ’ is a constant, and e denotes the
mathematical exponential function. The parameters ˇO and ˇD denote emissiveness
from origins and attractiveness of destinations, respectively. The parameter ˇdist

represents impedance of movements and, hence, an estimate of ˇdist is expected
to have a negative sign. This model also can be extended to include additional
covariates to reflect the characteristics of origins and destinations such as a socio-
economic conditions which potentially have an impact on the size of movements.
Greenwood and Hunt (2003) provide an extensive review of spatial interaction
modeling.

This spatial interaction model is often estimated with regression type estimators.
Linear regression is commonly used with log-transformation on both sides of Eq.
(17.1), which is under a log-normal approximation assumption. When a dependent
variable is count type such as the number of migrants, Poisson regression is
preferred over linear regression (Flowerdew and Aitkin 1982). A Poisson distri-
bution is commonly utilized to model count values. Further, Poisson regression can
effectively deal with unequal variance for individual counts, while linear regression
assumes an equal variance. Alternatively, negative binomial regression is employed
especially when a Poisson model suffers from overdispersion (e.g., Burger et al.
2009; Chun 2014). A Poisson regression model specification can be rewritten from
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Eq. (17.1) as follows:

Fij D g�1 �˛ C ˇO� ln .Pi/C ˇD� ln
�
Pj
�C ˇdist� ln

�
dij
��
; i; j D 1; : : : ; n (17.2)

where Fij is assumed to follow a Poisson distribution, g .�/ is a link function between
the dependent variable and the linear combination of independent variables. For the
link function, g .�/, the natural logarithm is commonly used for Poisson regression.
So g�1 .�/ is the mathematical exponential function here. When additional covariates
are involved to reflect the characteristics of origins and destinations, Eq. (17.2)
can be expressed by replacing the population terms with matrix notions for origin
and destination covariates, ln(xi) � “O and ln(xj) � “D. A negative binomial regression
model can be expressed also with Eq. (17.2) replacing the distribution of Fij with a
negative binomial distribution.

However, the estimates by these regression methods are likely to be statistically
unreliable when the independence assumption is violated. Hence, when spatial
autocorrelation in network flows, also called network autocorrelation, is present, an
appropriate method is required to accommodate it in a model specification (Black
1992; Griffith and Jones 1980; Fischer and Griffith 2008; Griffith 2009). The spatial
autoregressive model specification, including simultaneously autoregressive (SAR)
model, is often utilized to account for network autocorrelation (e.g., Bolduc et al.
1989; Chun et al. 2012). LeSage and Pace (2008) provide details about how this
model specification can be implemented. Alternatively, eigenvector spatial filtering
(ESF) has been utilized. Studies (e.g., Griffith 2007; Chun 2008; Patuelli et al. 2011)
show that the ESF method successfully explains network autocorrelation in spatial
interaction models. Furthermore the ESF method provides a way to effectively
visualize network autocorrelation components (Griffith 2011a) and can be extended
to space-time flow modeling (Chun and Griffith 2011).

The ESF method utilizes the spectral decomposition of a transformed spatial
weights matrix,

�
I � 11T=n

�
B
�
I � 11T=n

�
where B is an n-by-n spatial weights

matrix, 1 is a vector of ones with an n-by-1 dimension, and I is an n dimensional
identity matrix. The n eigenvectors of this matrix, which are orthogonal and
uncorrelated with each other, represent underlying spatial autocorrelation patterns.
The ESF method introduces a set of the eigenvectors in a regression model as proxy
variables to isolate spatial autocorrelation (Griffith 2003). As a result, ESF allows to
estimate regression parameters with standard estimation methods such as maximum
likelihood. A proper set of eigenvectors needs to be identified based on the principal
of parsimony. A stepwise process to maximize model fit or to minimize spatial
autocorrelation at each step can be utilized (Tiefelsdorf and Griffith 2007). Detail
discussions about the ESF method can be found in Griffith (2003).

Modeling network autocorrelation with the ESF method requires defining a
network weights (or link) structure which can be organized in a matrix. Extending a
spatial autocorrelation structure embedded among regions where flows are observed,
a network weights matrix can be easily defined. Because a flow occurs from an
origin to a destination, a spatial autocorrelation structure can be embedded around
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origins and/or destinations. With a spatial weights matrix, B, an n2-by-n2 network
weights matrix, BN , can be generated with Kronecker product and Kronecker sum
operations (Chun 2008; LeSage and Pace 2008). A network weights matrix to reflect
a spatial autocorrelation structure around an origin given a same destination can
be generated with I ˝ B where I is an identity matrix with dimension n and ˝
denotes the Kronecker product. Similarly, a network weights matrix to reflect a
spatial autocorrelation structure around a destination given a same origin can be
generated with B ˝ I. Additionally, a network weights matrix can be generated
by B ˝ B, which reflects the spatial autocorrelation structure of a given flow
with flows occurring from its origin spatial neighbors to its destination neighbors.
These three effects can be modeled by three separate weights matrices in a model
specification (LeSage and Pace 2008). A further specification can be defined by
the combination of these three matrices; for example, BN D I ˝ B C B ˝ I which
reflects the origin and destination based on spatial structures (Chun 2008) and
BN D I ˝ B C B ˝ I C B ˝ B in which these three types of matrices are combined
(Chun 2013). Once a network weights matrix is decided, well known spatial
autocorrelation indices, including Moran’s I, can be utilized to measure a level of
network autocorrelation.

Extending Eq. (17.2), an ESF model specification for a spatial interaction model
can be written as follows:

Fij D g�1 �˛ C ˇO� ln .Pi/C ˇD� ln
�
Pj
�C ˇdist� ln

�
dij
�C Eij� ”

�
; i; j D 1; : : : ; n

(17.3)

Here, Eij is a row vector corresponding to Fij in a set of selected eigenvectors from a
whole eigenvector set, which is generated from

�
IN � 1N1T

N=N
�

BN
�
IN � 1N1T

N=N
�
,

where N D n2, IN is an n2 dimensional identity matrix, 1N is a vector of ones with
an n2-by-1 dimension. And ” is a vector of parameters. As described above, a set of
selected eigenvectors can be identified with a stepwise regression technique.

17.4.2 Model Specification

In this paper, residential relocation in the SMA is modeled with 11 covariates.
Five variables to reflect the characteristics of origins are subway station density,
land value, residential land value change rates, home ownership rates, and college
graduation rates. These five characteristics for destinations are also included.
Finally, distance is included for distance decay. Subway densities are expected to
an attractive factor for residential relocation because the subway system provides
the major public transportation model in the SMA (Goh et al. 2012). It is generally
expected that land value and residential land value change rates are associated
to economic behavior in residential relocation decisions. Therefore, a high land
value and an increase of high residential land value change rate (i.e., positive
values) are expected to be positively related to the size of outflows from origins and
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negatively associated to inflows to destinations. Since home ownership is commonly
considered as an impeding factor for residential relocation, a negative association to
residential relocation is anticipated. College graduation rates can directly reflect
an education level of population at origins and destinations, but this may indirectly
reflect the composition of population because young generation tends to have a high
rate of college graduation.

Because distance plays an impeding role for residential relocation, a strong
negative association is expected. Inter-county distance is measured between the
centroids of origins and destinations. Intra-county distance is calculated as dii Dp

Ri=� where Ri is the areal size of spatial unit i and � is the mathematical constant
pi. Following Kim et al. (2012), when this intra-county distance is longer than any
inter-county distance from county i, this intra-county distance is further adjusted;
that is, d�

ii D �
dmin

i� =dii
� � dmin

i� , if dii > dmin
i� where dmin

i� is the minimum inter-county
distance from county i. This distance calculation avoids unrealistic zero distance for
intra movements and ensures that intra-county distance is shorter than inter-county
distance.

A spatial interaction model for residential relocation in the SMA is similarly
specified as Eq. (17.2). These models are estimated using generalized linear models,
specifically, Poisson regression and negative binomial (NB) regression. Unlike Eq.
(17.2), the models contain an offset variable which reflects the number of expected
flows between each dyad of origin and destination. An offset model specification
allows to model variations in a response variable around an expectation based on a
global rate rather than variations in raw counts.1 With a global movement rate that
can be calculated as a ratio between the number of migrants and total population
across an entire study area, an expected number of migrants for a spatial unit can
be calculated by multiplying the global movement rate and its population size. With
expected values based on a global movement rate as an offset on the right side, a
Poisson or NB regression model with log-link is specified as

ln.observed/ D ln.expected/C xˇ: (17.4)

Here, ln(expected) is an offset term. A simple arrangement shows that this spec-
ification compatibly models with ln(observed/expected), which is a ratio between
observed and expected values.

A remaining issue is to calculate expected flows between origin i and destination
j, E[Fij]. As a flow is observed with an origin and a destination, an expected number
of a flow can be defined as:

E
�
Fij
� D 1

2

�
E
�
FO

i

�C E
�
FD

j

�� D 1

2

2

4

X
Fi�

X
Pi

Pi C
X

F�j
X

Pj

Pj

3

5 D 1

2

�
OPi C DPj

�

(17.5)

1An offset model specification is commonly utilized in modeling disease rates (e.g. Lawson et al.
2003).
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where E(FO
i ) denotes expected outflows from origin i, E(FD

j ) denotes expected
inflows to destination j, Fi� denotes the sum of outflows from origin i, F�j denotes
the sum of inflows to destination j, and Pi and Pj respectively denote population at
i and j. That is, the expected flows for Fij is calculated as an average of expected
outflows from i and expected inflows to destination j. Here, a gross outflow rate, O,
is defined as a ratio between the sum of all outflows and the sum of population across
all spatial units. Similarly, a gross outflow rate, D, is defined as a ratio between the
sum of all inflows and the sum of population across all spatial units. Because flows
are observed among a given set of spatial units, the sum of outflows is the same as
the sum of inflows: that is,

X

i
Fi� D

X

i

X

j
Fij D

X

j

X

i
Fij D

X

j
F�j. Also

X
Pi is same as

X
Pj for the same reason. Hence, O D D and the Eq. (17.5) can

be simplified as:

E
�
Fij
� D 1

2

�
OPi C DPj

� D 1

2

�

�
Pi C Pj

��
(17.6)

where O D D D . The expected flows indicate that the number of flows from
origin i and destination j based on the global movement rate () and their population
sizes. With the logarithm of these expected values as offset, a spatial interaction
model fits to the variations of flows around expected flows in which population
sizes are already adjusted. Hence, population sizes at origins and destinations are
not included as a control variable in this model specification.

Model I is specified with the 11 covariates and an offset term. It can be expressed
as:

Fij D g�1 �ln
�
E
�
Fij
��C ˛ C ln .xi/ � “O C ln

�
xj
� � “D C ln

�
dij
� �ˇdist

�
(17.7)

where xi denotes origin covariates, xj denotes destination covariates, and dij denotes
distance between i and j. (˛, “O, “D,ˇdist) are parameters to be estimated. Here,
g�1 .�/ is the mathematical exponential function.

Model II is specified to investigate the impact of borders among three sub-regions
on residential relocation in the SMA. The three sub-regions are the River North in
Seoul (also called Gangbuk), the River South in Seoul (also called Gangnam), and
the outside of Seoul (see Fig. 17.1). Since, the Han river, which passes through
Seoul east to west, is widely accepted as the boundary of economic and cultural
disparities between the northern and southern parts of Seoul (Davis 2004; Kim
2009), it would be interesting to examine whether or not residential relocation is
influenced by the border of Seoul in the SMA as well as the disparities in the city.
Specifically, the behavior of distance decay is further investigated with statistical
interaction terms between the distance variable and a categorical variable for the
nine flow types among the three sub regions. The notations of N (denoting the River
North in Seoul), S (denoting the River South in Seoul), and O (denoting the outside
of Seoul), are used as the categorical variable code for residential relocation NN,
NO, NS, ON, OO, OS, SN, SO, and SS, in which the first character indicates an
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origin region and the second indicates a destination region. Model II can be written
as:

Fij D g�1 �ln
�
E
�
Fij
��C ˛ C ln .xi/ � “O C ln

�
xj
� � “D C ln

�
dij
� �ˇdist

C ln
�
dij
� W xc�ˇc

�
(17.8)

where xc is a categorical variable for the nine flow types and ˇc is a corresponding
parameter. This categorical variable is prepared with a centered coding scheme2 so
that its parameter ˇc for the interaction term indicates a deviation from the global
distance parameter, ˇdist. These models are estimated with standard Poisson and NB
regression, and further ESF Poisson and ESF NB regression.

17.5 Results

Table 17.1 reports these four estimation results. The ESF models contain 236
eigenvectors for the Poisson model and 91 eigenvectors for the NB model. These
results confirm that accounting for network autocorrelation with the ESF method
significantly improves the spatial interaction model in both Poisson and NB
regression: the p-value of 0.0000 for the likelihood ratio test for the Poisson models
and the p-value 0.0000 for the NB models.3 Their AIC values also indicate that the
ESF models are improved from their counterpart models. In fact, the decrease of
the AIC value is very noticeable in the Poisson models. Among the four models,
the ESF NB model can be preferred over the other models with the smallest AIC
value.

The estimate for the overdispersion parameter also dramatically decreased from
2490.19 in the standard Poisson model to 559.31 in the ESF Poisson model.
This decrease aligns with findings in the literature that overdispersion decreases
when network autocorrelation is accounted for (e.g., Chun and Griffith 2011).
However, the large value for overdispersion, which is supposed to be 1 for a Poisson
distribution, still indicates a potential issue in the Poisson model specification and
may suggest that a NB model is more appropriate. The decrease of dispersion
parameter estimate by accounting for network autocorrelation is also observed from
the NB models. While the dispersion parameter for the standard NB model is
0.5734, one for the ESF NB model is 0.2968. This may indicate that a portion
of the dispersion is contributed by network autocorrelation, and that accounting
for network autocorrelation by the eigenvectors leads to the decrease of dispersion
(Griffith 2011b).

2Using contr.sum() function in R.
3The test statistics of the likelihood ratio test for the Poisson models is 4,099,762 with 236 degrees
of freedom. For the NB models, the test statistic is 3082.44 with 91 degrees of freedom.
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Fig. 17.4 The scatterplots of observed versus predicted values for Model I

Figure 17.4 displays scatterplots of observed versus predicted values from these
four specifications in the natural log scale. These scatterplots generally show that
the spatial interaction models produce a good fit to the empirical dataset. However,
the better model fits of the ESF models than their counterpart standard models are
observed can be observed, as the points in the ESF models are more closely located
to the perfect fit line. One interesting finding is that the ESF Poisson model has a
better prediction for the flows with large values (larger than approximately 10) than
the ESF NB model. These large values are observed from internal flows within a
spatial unit. The ESF NB model tends to over-predict for the internal flows.

The ESF models lead to changes of statistical significance for some covariates in
both Poisson and NB models. Regarding to the Poisson models, land value change
rate at origins is not significant in the standard model at the 1 % level but becomes
significant in the ESF model at the same level. Similarly, land value change rate
at origins also becomes statistically significant in the ESF model at the 1 % level.
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The statistical significance at the l % level for the other variables remains the
same. Between the standard and ESF NB models, only two variables experience
the change of statistical decision at the 1 % level. Land value at destinations and
college graduation rate are significant in the standard NB model but not in the ESF
NB model. The other variables are significant in both of the standard and the ESF
NB models at the same level.

Table 17.2 reports the estimation results by the standard Poisson, the standard
NB, the ESF Poisson, and the ESF NB regression for Model II. These results also
show that the ESF model specification improves the spatial interaction models in
both Poisson and NB specifications by accounting for network autocorrelation.
The ESF Poisson and ESF NB models have smaller AIC values (56,804.49 and
53,946.5, respectively) than their counterpart standard specifications (5,641,626 and
1,922,540 correspondingly). Also the decrease of estimate for the overdispersion
parameter in the Poisson model (from 2,236.71 to 554.68) and the dispersion
parameter in the NB models (from 0.5641 to 0.2948) is observed when network
autocorrelation is accounted for. Because of the large estimates for overdispersion
in the standard and the ESF Poisson models, the NB models are also preferred
in Model II. The scatterplots of observed versus predicted values from the four
specifications in Fig. 17.5 illustrate the improved model fits of the ESF models. The
points are closely located to the perfect fit line for the ESF models. On the other
hand, the over-prediction tendency for the internal flows by the ESF NB model is
also observed.

In Model II, the changes of statistical inference between the standard and ESF
models are also observed. For the Poisson case, the variable land value at origins
is significant in the standard model but not in the ESF model at the 1 % level. In
contrast, home ownership rates is not significant in the standard model but becomes
significant in the ESF model at the 1 % level. For the NB cases, land value at origins
and land value at destinations are significant in the standard model, but they become
insignificant in the ESF model at the 1 % level. The statistical interaction between
the categorical variable and the distance variable experience a change of statistical
decision at the 1 % level for three cases: OO and SS for the Poisson and OO for the
NB cases.

Among the eight models, the ESF NB for Model II with the smallest AIC value
is possibly preferred. Overall, the Model II specifications have a better fit than
their counterpart specifications in Model I. Based on the ESF NB in Model II,
residential relocation in the SMA is negatively associated to subway station density
and residential land value change rate at both origins and destinations. The negative
association to subway station density at origins and destinations may indicate that
residential relocation occurs less than the overall rate in areas with a better access
to the subway system. In other words, better public transportation access is an
attractive factor, so people tend not to move out from those areas. Subsequently, in-
migration to those areas can be limited because of the lower availability of housing
units for relocation. The negative association to residential land value change rate
at destinations may imply that an increase of land value at destinations is less
attractive economically for residential relocation. However, the negative association
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Fig. 17.5 The scatterplots of observed versus predicted values for Model II

to residential land value change rate at origins is counter intuitive because an
increase of land value at origins may be expected as a push factor. Also, it is
positively associated to college graduation rate at origins and home ownership
rates, both at origins and destinations. The positive sign of college graduation rate
at origins could suggest that counties (Si-Gun-Gu) with a higher college graduation
rate tend to experience a higher out-migration than the global movement pattern.
This can be explained by a high movement tendency by young adults, who generally
have a high level of education and reside in urban areas. The significant positive
associations of home ownership rates both at origins and destinations are counter
intuitive because home ownership is a well-known impeding factor. However,
Helderman et al. (2006) identify three factors that can counterbalance the impeding
effects of home ownership on residential relocation. These factors are an increase
of young population in the composite of home owners, an increase of dynamics
within owner-occupied segments as home ownership becomes more common, and
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macro factors such as economic growth. Although a further investigation is required
to identify factors, continuous developments of large scale residential areas around
the outskirts of Seoul may provide an explanation of the residential location pattern
(e.g. Jun 2012).

These results show that distance decay effect is highly significant. The global dis-
tance decay parameter for the ESF NB is �1.8972. The estimates for the interactions
between the distance and the dummy variables show that four types of flows have
a significantly different distance decay effect from the global distance decay at the
1 % level. The negative significant estimate for the interaction between distance and
NN (�0.0241) means that the distance decay effect within the River North region in
Seoul is �1.9213 (D �1.8972 � 0.0241). This indicates that residential relocation
within the River North region in Seoul tends to occur in a shorter distance than
the overall residential relocation in the SMA. Also, residential relocation from the
River North region to outside of Seoul tends to move a short distance (the estimate
for the interaction between distance and NO is �0.0194). In contrast, the estimates
for the interactions of OS and SS with distance are positively significant. Their
estimated distance decay effects are �1.8844 (D �1.8972 C 0.0128) and �1.8661
(D �1.8972 C 0.0311), respectively. These demonstrate that residential relocation
from outside of Seoul to the River South region and within the River South regions
tends to occur over a longer distance than the overall pattern in the SMA. Also the
interaction between distance and NS is significant at the 5 % level. These significant
parameter estimates suggest that people tend to move a longer distance when they
move to and within the River South region.

17.6 Conclusions

This paper examines residential relocation in the SMA in 2010 using gravity
type spatial interaction models. Since the dependent variable has the counts of
population movements, or non-negative integer values, Poisson and NB regression
are used to estimate the spatial interaction models. The results show that the
residential relocation is effectively modeled with spatial interaction models. Among
the different model specifications, the ESF NB model specification is preferred to
the other models. The results of the ESF NB Model II may indicate that residential
relocation in the SMA is significantly associated to subway stations density which is
a major public transportation method in the SMA, and residential land value change
rates which can be interpreted an economic factor. It shows a positive association to
college graduation rate at origins. Since a high college graduate rate is observed in
the population group with a large portion of young adults, this might represent a high
movement tendency of young adults. The model shows a significant distance-decay
effect. Interestingly, the results show that the distance-decay effects vary among the
three regions: the River South in Seoul, the River North in Seoul, and outside of
Seoul.
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There are two notable methodological features in the paper. First, the eigenvector
spatial filtering method is utilized in order to account network autocorrelation in res-
idential relocation flows. This paper empirically shows that network autocorrelation
exists among residential relocation flows and, subsequently that residential reloca-
tion needs to be specified to appropriately account for network autocorrelation. The
eigenvector spatial filtering method improved the spatial interaction models with
a set of selected eigenvectors that successfully explained network autocorrelation
in the empirical dataset. This improvement is observed from both Poisson and NB
specifications. Further, the decrease of the estimated (over-) dispersion parameter
values in the ESF model specification by accounting for network autocorrelation
confirms findings in existing studies (e.g., Curry 1972; Chun and Griffith 2011).
Nevertheless, the ESF Poisson models suffer from an excessive overdispersion that
can suggest that the ESF NB models are preferable.

Second, these spatial interaction models employed an offset term in their model
specification to control population sizes at origins and destinations. With these
offset specifications, this paper shows how to model the variations of flow volumes
around expected values rather than raw counts. Conventionally, spatial interaction
models have not been specified with an offset term in Poisson and/or NB regression.
This offset specification provides a good alternative way to control the effects of
population sizes. Because population sizes have an obvious positive association to
the magnitude of flows in most empirical flow modeling, the sizes of population
should stay in a model specification although they are not very interesting and
are often treated as nuisance variables. An offset specification does not need
to include population sizes as independent variables and, thus, other potentially
interesting variables that might have a high correlation could still remain in a model
specification. The empirical analysis illustrates that this specification is potentially
useful, but this needs to be further investigated in future research.
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Chapter 18
Conclusions: The Future of Spatial Interaction
Modelling

Giuseppe Arbia and Roberto Patuelli
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18.1 A Reappraisal of the Presented Contributions

The present volume showcased a series of papers related to some of the most
recent developments in the field of spatial econometric methods applied to spatial
interaction modelling. In particular, this book was motivated by the need to testify,
through a collection of methodological and empirical studies, how the various
approaches that have been present in this field in the last decades have recently
developed, by including tools that are typical of spatial statistics and spatial
econometrics, giving birth to a somewhat novel discipline characterized by a body of
methods and techniques known under the heading of spatial econometric interaction
models (LeSage and Pace 2009).

Looking at the contributions reported here, the reader can have a good snapshot
of the current state-of-the-art in the field. In particular, from a theoretical point
of view, the papers contained in this volume witness the various methodological
progress made recently in the analysis of gravity-type modelling (e.g., in the
chapters by Griffith and Fischer, Tamesue and Tsutsumi, and Patuellli, Linders,
Metulini and Griffith), in the definition of exogenous and endogenous spatial
interaction (LeSage and Fischer), in the analysis of the effects of spatial dependence
on flow data (Bavaud, as well as Beenstock and Felsenstein), in the Bayesian
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approach to spatial interaction modelling (the chapters by LeSage and Satici, Deng,
and LeSage and Llano), and in assessing the effect of scale on spatial interaction
model parameters (Arbia and Petrarca). Under the applied point of view this
book also provides a good overview of the typical areas of application of spatial
econometric interaction models, such as tourism (Patuelli, Mussoni and Candela),
transportation (Diaz-Lanchas, Gallego, Llano and de la Mata), social networks
(Llano and de la Mata), migration (Mitze), urban development (Lee and Chun) and
trade (Mastromarco, Serlenga and Shin).

18.2 Future Roads of Spatial Interaction

If it is certainly true that the progress in the field has been tremendous in the last 50
years or so, starting from the publication of the first prototype gravity-type models
(Isard 1960; Tinbergen 1962; Wilson 1970), it is equally fair to recognize that a lot
still remains to be done in different directions in order to answer the current and
future challenges of the discipline. In particular, the measurement of spatial and
network autocorrelation in flow data is still nowadays for the most part based on
the typical spatial autocorrelation indices that assume normally distributed random
variables. However, flow data are, by definition, non-negative and discrete, which
raises the important question of whether the classical spatial correlation measures,
like Moran’s I or Geary’s G indices, are the most appropriate ones to characterize
the phenomenon. A step forward in this direction could be represented by the use of
alternative indices that explicitly account for non-normality in flow data like those
reported in Jacqmin-Gadda et al. (1997); Arbia and Lafratta (2005); Lin and Zhang
(2007) or Griffith (2010). A further problem of spatial interaction modelling that is
often overlooked and needs to be properly considered is represented by the possible
presence of heteroskedasticity in the regression disturbances. As it is well known,
heteroskedastic disturbances destroy the properties of the estimators and may lead
to wrong hypothesis testing decisions. However, spatial units are often characterized
by heterogeneity in many important characteristics (e.g., in their size) and hence in
most empirical situations the homoscedasticity assumption may not be sustainable.
An example of a heteroskedastic spatial interaction modeling of commodity flows
can be found in Trang et al. (2016), based on the advances introduced in the literature
by Kelejian and Prucha (see Kelejian and Prucha 2007, 2010; and Arbia 2014b,
for a review). A typical application of spatial interaction models that could be
greatly influenced by the presence of spatial dependence in flow data is the process
of interpolation. In this field it is necessary to develop appropriate methods that
could help in filling gaps in data while considering autocorrelation issues (as a
starting point, see, e.g., Polasek et al. 2012). Furthermore, the spatial econometric
interaction modelling literature still appears to be scarcely considering special cases
in which the distribution of flow data does not conform to the expected one for
Poisson models. A typical example is the case of zero-inflation (Burger et al. 2009),
which is indeed very frequent in empirical cases. Regression models that explicitly
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and separately consider spatial effects in the zero-inflation and count parts (Metulini
et al. 2015) should be developed in order to enrich the set of tools available to
researchers and practitioners facing challenging data sets. Finally, another field
where the introduction of innovation is needed is in the area of efficient visualization
especially in the presence of a very large number of origins and destinations.

So far the interest in spatial interaction models have been motivated by the need
to explain the aggregated flows of individual agents, goods, or information occurring
between discrete partitions of space. In this book, as an example, all papers refer to
flows as they are observed between, cities, metropolitan areas, provinces, regions or
states. However, the big data revolution that we are currently experiencing has the
potential to revolutionize our current approach to the analysis of flows providing
detailed datasets describing the movements of individuals over space and their
interacting behavior. New and alternative methods of data collection (such as crowd
sourcing, GPS positioning devices, cell phones data, drones, satellite images and
many others) will more and more be able to provide detailed information about
the movements of economic agents, of goods and information over geographical
space. For example, in many instances data are already available sourced from
sample information obtained through cell phone movements; furthermore, satellite
images provide data on flows proxied by the remotely sensed quantity of lighting
on the earth; drones can acquire information about the movement of people; sensors
located on individuals can perfectly describe their daily commuting trip. These are
only a few examples of how the process of data acquisition is changing dramatically
in these days. This huge amount of information about individual flows made
available to researcher and practitioners, while solving at its very root the modifiable
areal unit problem (MAUP; see the chapter by Arbia and Petrarca), also raises
entirely new problems of method and interpretation under many different points
of view. Some of them are not of direct interest to spatial econometrics (such as
the confidentiality and ethical issues connected with the process of automatic data
acquisition), some are potentially very relevant (such as the computational issues
raised by analyzing with the current techniques very large sample sizes; see, e.g.,
LeSage and Pace 2007; Arbia 2014a; Arbia et al. 2015), but some of them will
definitely constitute the big challenge faced by all researchers involved in this
field in the next few years. The big data revolution is already manifesting itself
in many scientific fields, and the ability of the scientific community to answer
to these questions will determine the future of the spatial econometrics of spatial
interaction.
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