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6.1 Introduction

There are several contexts in the theory of Markov processes in which the term ergodicity
is used, but in all of these, assertions of the form

lim
n→∞

1
n

n∑

k=1

h(Xk) =
∫

hdπ, (6.1)

or in continuous time,

lim
t→∞

1
t

∫ t

0
h(X(s))ds =

∫
hdπ, (6.2)

for some probability measure, π, appear. Limits of this form are essentially laws of large
numbers, and given such a limit, it is natural to ask about rates of convergence or fluctua-
tions, in particular, to explore the behavior of the rescaled deviations,

√
n

⎛⎜⎜⎜⎜⎜⎝
1
n

n∑

k=1

h(Xk) −
∫

hdπ

⎞⎟⎟⎟⎟⎟⎠ or
√

t

(
1
t

∫ t

0
h(X(s))ds −

∫
hdπ

)
.
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Many times during his career, Rabi has studied problems of this form. The goal of these
brief comments is to review some of his results and provide some of the background
needed to read his papers.

All processes we consider will take values in a complete separable metric space (E, r).
They will be temporally homogeneous and Markov in discrete or continuous time. In dis-
crete time, the transition function will be denoted by P(x, Γ), that is, there is a filtration
{Fk} such that the process of interest X = {Xk, k = 0, 1, . . .} satisfies

P{Xk+1 ∈ Γ|Fk} = P(Xk, Γ), k = 0, 1, . . . , Γ ∈ B(E), (6.3)

where B(E) denotes the Borel subsets of E. The filtration may be larger than the filtration
generated by {Xk}. When X and {Fk} satisfy (6.3), we will say that X is {Fk}-Markov with
transition function P.

In continuous time, the transition function will be denoted by P(t, x, Γ) and there will
be a filtration {Ft} such that the process {X(t), t ≥ 0} satisfies

P{X(s + t) ∈ Γ|Fs} = P(t, X(s), Γ), s, t ≥ 0, Γ ∈ B(E). (6.4)

Setting

T (t) f (x) =
∫

E
f (y)P(t, x, dy), f ∈ B(E),

where B(E) is the space of bounded, Borel measurable functions on E, the Markov prop-
erty implies {T (t)} is a semigroup, that is

T (s)T (t) f = T (s + t) f .

The semigroup can (and will be) defined for larger classes of functions as is convenient.
The notion of an operator A being a generator for a Markov process can be defined in

a variety of ways, but essentially always implies

T (t) f = f +
∫ t

0
T (s)A f ds,

which in turn implies

f (X(t)) − f (X(0)) −
∫ t

0
A f (X(s))ds (6.5)

is a martingale for any filtration satisfying (6.4).
The analog in discrete time to the continuous-time semigroup is obtained by defining

the linear operator

P f (x) =
∫

E
f (y)P(x, dy)
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and observing that

E[ f (Xk+n)|Fk] = Pn f (Xk),

and that

Mn = f (Xn) − f (X0) −
n−1∑

k=0

(P f (Xk) − f (Xk)) (6.6)

is a martingale for every f ∈ B(E). Consequently,

A = P − I

in discrete time plays the role of the generator in continuous time. The martingale proper-
ties (6.5) and (6.6) are central to the study of Markov processes and are the basis for the
central limit theorems that Rabi and others have given.

By the initial distribution of a Markov process, we mean the distribution of X0 in the
discrete case and of X(0) in the continuous-time case. The finite dimensional distributions
of a Markov process are determined by its initial distribution and its transition function. If
we want to emphasize the initial distribution μ of the process, we will write {Xμk } or {Xμ(t)}.

The following lemma will prove useful in studying discrete time Markov processes.

Lemma 1. Let P(x, Γ) be a transition function on E. There exists a measurable space
(U,U), a measurable mapping α : U × E → E, and a probability distribution ν on (U,U)
such that if ξ has distribution ν, then α(ξ, x) has distribution P(x, ·).

Consequently, if X0 has distribution μ ∈ P(E) and ξ1, ξ2, . . . is a sequence of inde-
pendent, ν-distributed, U-valued random variables that is independent of X0, then for
Fk = σ(X0, ξ1, . . . , ξk), {Xk} defined recursively by

Xk+1 = α(ξk+1, Xk), k = 0, 1, . . . ,

is a {Fk}-Markov process with initial distribution μ and transition function P(x, Γ).

Proof. The construction in [8] gives α for ξ uniformly distributed on [0, 1]×[0, 1]. A slight
modification allows ξ to be uniform on [0, 1].

Remark 1. If the mapping x ∈ E → P(x, ·) ∈ P(E) is continuous taking the weak topology
on P(E), then α given by the Blackwell and Dubins construction has the property that for
each x0 ∈ E, the mapping x ∈ E → α(x, ξ) is almost surely continuous at x0.

The next section reviews ideas of ergodicity of Markov processes and gives some of
the basic results. The final section considers central limit theorems exploiting the martin-
gale properties mentioned above. We assume that all continuous-time Markov processes
considered are cadlag.
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6.2 Ergodicity for Markov Processes

Ideas of ergodicity for Markov processes all relate to the existence of stationary distribu-
tions for the processes. In discrete time, π ∈ P(E) is a stationary distribution if

∫

E
P(x, Γ)π(dx) = π(Γ), Γ ∈ B(E),

and in continuous time, if
∫

E
T (t) f (x)π(dx) =

∫

E
f (x)π(dx), f ∈ B(E), t ≥ 0,

which is equivalent to requiring
∫

E
A f (x)π(dx) = 0

for a sufficiently large class of f .
If π is a stationary distribution and we take π to be the initial distribution for the process,

then {Xπk } (or {Xπ(t)}) will be a stationary process. If {Xπk } is ergodic as defined generally
for stationary processes, that is, the tail σ-field

T = ∩nσ(Xπk , k ≥ n)

only contains events of probability zero or one, we will say that π is an ergodic stationary
distribution. If there is only one stationary distribution, it must be ergodic. If π is an ergodic
stationary distribution, then taking X = Xπ, (6.1) or (6.2) hold for all h ∈ B(E), or more
generally, for all h ∈ L1(π).

The questions of existence and uniqueness of stationary distributions are among the
fundamental questions in the study of Markov processes. If, as is typically the case,

P : Cb(E)→ Cb(E), (6.1)

or

T (t) : Cb(E)→ Cb(E), t ≥ 0, (6.2)

where Cb(E)is the space of bounded continuous functions on E, proof of existence of a
stationary distribution can be reduced to the proof of relative compactness of a sequence
of probability measures.

Theorem 1. Assume that {T (t)} satisfies (6.2) and for a corresponding Markov process
{Xμ(t)}, define a family of probability measures {νt} by

νt f = E[
1
t

∫ t

0
f (X(s))ds] =

1
t

∫ t

0
E[ f (X(s))]ds

=
1
t

∫ t

0

∫

E
T (s) f dμds, f ∈ B(E). (6.3)

Then as t → ∞, any weak limit point of {νt} is a stationary distribution for {T (t)}.
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Similarly, in the discrete-time case, if P satisfies (6.1), any weak limit point of {νn}
defined by

νn f =
1
n

n−1∑

k=0

E[ f (Xk)] (6.4)

is a stationary distribution for P.

Proof. Suppose tn → ∞ and {νtn } converges weakly to π. Observe that for each f ∈ Cb(E)
and t > 0,

1
tn

∫ t+tn

t
E[ f (X(s))]ds = νtn T (t) f

has the same limit as νtn f . Consequently, π f = πT (t) f , and π is a stationary distribution.
The proof in the discrete case is essentially the same.

The natural approach to proving the existence of the sequence {νtn } is to prove relative
compactness for {νt}. Since relative compactness in P(E) is equivalent to tightness, we
have the following.

Corollary 1. Let E be compact. If {T (t)} satisfies (6.2), then there exists at least one sta-
tionary distribution for {T (t)}. Similarly, if P satisfies (6.1), then there exists at least one
stationary distribution for P.

More generally, relative compactness is usually proved by obtaining a Lyapunov func-
tion for the process. In particular, we want to find a function ψ : E → [0,∞) such that for
each a ≥ 0, the level set

Γa = {x ∈ E : ψ(x) ≤ a}

is compact and for some initial distribution μ,

K ≡ sup
t≥0

E[ψ(Xμ(t))] < ∞.

It follows that

P{Xμ(t) � Γa} = P[ψ(Xμ(t)) > a} ≤ K
a

and that

νt(Γ
c
a) ≤ νtψ

a
≤ K

a
,

so {νt} is tight and hence relatively compact.
The notion of a stochastic Lyapunov functions was developed in [14] and reflects ideas

dating back to [10] and [13]. There is a large literature on constructing such functions. In
discrete time, we have the following simple condition.

Lemma 2. Let ψ : E → [0,∞). Suppose that there exist a ≥ 0 and 0 ≤ b < 1 such that

Pψ(x) ≤ a + bψ(x). (6.5)
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Then for each n

Pnψ(x) ≤ a
1 − bn−1

1 − b
+ bnψ(x),

and hence for μ ∈ P(E) satisfying
∫

E
ψdμ < ∞,

sup
n

E[ψ(Xμn )] ≤ a
1 − b

+

∫

E
ψdμ < ∞.

Consequently, if ψ has compact level sets and P satisfies (6.1), then there exists at least
one stationary distribution for P.

The analogous result in the continuous-time case is somewhat more delicate. Rewrit-
ing (6.5) as

(P − I)ψ(x) ≤ a − (1 − b)ψ(x)

and recalling that P − I plays a role analogous to the generator A suggests looking for ψ
satisfying

Aψ(x) ≤ a − εψ(x),

for some positive a and ε. To this point, we have only considered A to be defined so that
f and A f are in B(E). For many Markov processes, for example, diffusions, the extension
of the generator to a large class of unbounded ψ is clear, but even in the diffusion setting
with smooth ψ, in general we can only claim that

ψ(X(t)) − ψ(X(0)) −
∫ t

0
Aψ(X(s))ds

is a local martingale, not a martingale. Note, however, that if ψ is bounded below and Aψ is
bounded above, this local martingale will also be a supermartingale. With that observation
in mind, the following lemma provides the desired extension.

The following is essentially a consequence of Fatou’s lemma.

Lemma 3. For n = 1, 2, . . ., let fn, A fn ∈ B(E), and

fn(X(t)) − fn(X(0)) −
∫ t

0
A fn(X(s))ds

be a martingale. Suppose fn ≥ 0, supn,x A fn(x) < ∞, and for each x ∈ E, { fn(x)} and
{A fn(x)} converge. Denote the limits ψ and Aψ. Then

ψ(X(t)) − ψ(X(0)) −
∫ t

0
Aψ(X(s))ds (6.6)

is a supermartingale.

The supermartingale property is exactly what is needed to give the continuous-time
analog of Lemma 2.
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Lemma 4. Let measurable functions ψ, Aψ : E → R satisfy ψ ≥ 0 and supx∈E Aψ(x) <
∞. For μ ∈ P(E) satisfying

∫
E
ψdμ < ∞, assume that (6.6) with X replaced by Xμ is a

supermartingale. Suppose
Aψ(x) ≤ a − εψ(x)

Then

E[ψ(Xμ(t))] ≤ a
ε
∨
∫

E
ψdμ. (6.7)

Consequently, if ψ has compact level sets and {T (t)} satisfies (6.2), then there exists at least
one stationary distribution for {T (t)}.

Proof. Let Zμ denote the supermartingale. Then

eεtψ(Xμ(t)) = ψ(Xμ(0)) +
∫ t

0
eεsdψ(Xμ(s)) +

∫ t

0
εeεsψ(Xμ(s))ds

= ψ(Xμ(0)) +
∫ t

0
eεsdZμ(s) +

∫ t

0
eεs(εψ(Xμ(s)) + Aψ(Xμ(s)))ds

≤ ψ(Xμ(0)) +
∫ t

0
eεsdZμ(s) +

∫ t

0
eεsads.

Since E[
∫ t

0
eεsdZμ(s)] ≤ 0,

E[ψ(Xμ(t))] ≤ e−εt
∫

E
ψdμ +

a
ε

(1 − e−εt),

and the lemma follows.

We can relax the conditions of Lemma 4 and still obtain relative compactness of {νt}
but without the moment estimate (6.7).

Lemma 5. Let measurable functions ψ, Aψ : E → R satisfy ψ ≥ 0 and K = supx∈E Aψ(x) <
∞. For μ ∈ P(E) satisfying

∫
E
ψdμ < ∞, assume that (6.6) with X replaced by Xμ is a su-

permartingale. Suppose that for each a > 0

Γa = {x : Aψ(x) ≥ −a}

is compact. Then {νt} defined by (6.3) is relatively compact, and if {T (t)} satisfies (6.2),
there exists at least one stationary distribution for {T (t)}.

If E is locally compact and {T (t)} satisfies (6.2), then existence of a stationary distribu-
tion holds as long as Γa is compact for some a > 0.
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Remark 2. The assumption that Γa is compact only for some a > 0 is, in general, not
enough to ensure relative compactness of {νt}. If, however, the process is Harris recurrent
(see Section 6.2.2), then existence of a stationary distribution implies convergence of {νt}.

Proof. The supermartingale property implies

−
∫

E
Aψdνt = −

1
t

E[
∫ t

0
Aψ(X(s))ds] ≤ 1

t

∫

E
ψdμ − 1

t
E[ψ(X(t))]] ≤ 1

t

∫

E
ψdμ,

and for a > 0,

aνt(Γ
c
a) ≤ K +

1
t

∫

E
ψdμ,

giving tightness and hence relative compactness for {νt}.
The second part of the lemma follows by the observation that {νt} is relatively compact

as a probability measure on the one-point compactification of E and the compactness of
Γa for some a > 0 implies that any limit point ν∞ satisfies ν∞(Γa) > 0 and hence ν∞(E) >
0. Normalizing the restriction of ν∞ to E to be a probability measure gives a stationary
distribution for {T (t)}. See Theorem 4.9.9 of [9].

The following lemma gives conditions which coupled with some kind of irreducibility
imply recurrence, but not necessarily positive recurrence.

Lemma 6. Let measurable functions ψ, Aψ : E → R satisfy ψ ≥ 0 and K = supx∈E Aψ(x) <
∞. For μ ∈ P(E) satisfying

∫
E
ψdμ < ∞, assume that (6.6) with X replaced by Xμ is a su-

permartingale. Suppose that for each a > 0,

Γa = {x : ψ(x) ≤ a}

is compact and that there exists a0 such that

sup
x∈Γc

a0

Aψ ≤ 0.

Let τ0 = inf{t ≥ 0 : Xμ(t) ∈ Γa0 and γa = inf{t ≥ 0 : Xμ(t) � Γa}. Then

lim
a→∞

P{γa ≤ τ0} = 0. (6.8)

Proof. It is at least not immediately obvious that γa < ∞ implies ψ(Xμ(γa)) ≥ a, so some
randomization may be necessary for a complete proof, but assuming this inequality holds,
the supermartingale property implies

aP{γa ≤ τ0} ≤ E[ψ(Xμ(γa ∧ τ0))] ≤
∫

E
ψdμ,

and (6.8) follows.
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Example 1. In [3], Rabi gives a class of ψ of the form ψ(x) = F(|x − z|) for nondegenerate
diffusion processes which satisfy the conditions of Lemma 6. (Actually, in Rabi’s notation,
we need to set ψ(x) = −F(|x − z|).) The non-degeneracy assumption then ensures Harris
recurrence (see below). He also formulates similar conditions that imply transience and
gives a construction of an F such that ψ(x) = −F(|x − z|) satisfies the conditions of the
second part of Lemma 5.

A central idea in the study of uniqueness of stationary distributions is the notion of
Harris recurrence.

6.2.1 Harris Recurrence

Harris irreducibility requires the existence of a measure ϕ on B(E) such that ϕ(B) > 0
implies that the Markov process visits B with positive probability, regardless of the initial
distribution. If the process visits such B infinitely often with probability one, or in the
continuous time case, the process visits B for arbitrarily large times, that is, τn = inf{t >
n : X(t) ∈ B} is finite almost surely for each n, the process is Harris recurrent. As long as
ϕ is σ-finite, without loss of generality, we can and will assume ϕ is a probability measure.
In discrete time, the classical conditions for Harris recurrence can be formulated under the
assumption that there exists a function ε : E → [0, 1] such that the transition function
satisfies

P(x, B) ≥ ε(x)ϕ(B) (6.9)

and that for each initial condition μ, the Markov process satisfies

P{
∞∑

k=1

ε(Xμk ) = ∞} = 1. (6.10)

The following lemma illustrates the significance of these conditions.

Lemma 7. Let μ ∈ P(E), and suppose that (6.9) and (6.10) hold. Then there exists a
probability space with a process Xμ, a filtration {F μk }, and a {F μk }-stopping time τμ such
that Xμ is {F μk }-Markov with initial distribution μ and transition function P(x, Γ) and the
distribution of Xμτμ is ϕ.

Proof. We enlarge the state space to be E×{−1, 1} and define the new transition function by

Q(x, θ, Γ × {θ}) = P(x, Γ) − ε(x)ϕ(Γ)

and

Q(x, θ, Γ × {−θ}) = ε(x)ϕ(Γ).
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If (Xμ, Θ) is a Markov process with this transition function such that Xμ0 has distribution μ,
then Xμ is a Markov process with transition function P(x, Γ) and initial distribution μ, and
the desired stopping time is τμ = min{k : θk � θk−1}. Note that

P{τμ > n} = E[
n−1∏

k=0

(1 − ε(Xμk ))]

and (6.10) implies P{τμ < ∞} = 1.

Much of the work on Harris recurrence is done under weaker conditions of the form

∞∑

n=1

anPn(x, Γ) ≥ ε(x)ϕ(Γ),

where an(x) ≥ 0,
∑∞

n=1 an(x) = 1, or in continuous time,

∫ ∞

0
P(t, x, Γ)ax(dt) ≥ ε(x)ϕ(Γ),

where ax is a probability distribution on (0,∞), and typically, ε(x) has the form ε1C(x) for
some constant ε > 0 and C ∈ B(E). The analog of Lemma 7 holds under these conditions,
at least if (6.10) is replaced by

P{
∞∑

k=1

ε(Xμk )2 = ∞} = 1 or P{
∫ ∞

0
ε(Xμ(s))2ds = ∞} = 1.

The existence of these stopping times implies the desired uniqueness of the stationary
distribution and convergence in total variation of νn and νt.

Lemma 8. Let ϕ ∈ P(E). Suppose that for each μ ∈ P(E), on some probability space,
there exists a process Xμ a filtration {F μk }, and a {F μk }-stopping time τμ such that Xμ is
{F μk }-Markov with initial distribution μ and transition function P and Xμτμ has distribution
ϕ. Then there is at most one stationary distribution for P.

If there is a stationary distribution π, then for each initial distribution μ ∈ P(E), {νn}
defined by (6.4) converges in total variation to π.

The analogous result holds in continuous time.

Proof. Suppose π1 and π2 are stationary distributions for P. Let Xπ1 and Xπ2 satisfy the
hypotheses of the lemma. By the ergodic theorem, for each h ∈ B(E), we can define

Hh
πi
= lim

n→∞

1
n

n−1∑

k=0

h(Xπi

k ) = lim
n→∞

1
n

τπi+n−1∑

k=τπi

h(Xπi

k ) = lim
n→∞

1
n

n−1∑

k=0

h(Xπi

τπi+k).

By the strong Markov property, Hh
π1

and Hh
π2

must have the same distribution. Since πih =
E[Hh

πi
], π1 = π2.
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Under the hypotheses of the lemma, for h ∈ B(E) and μ ∈ P(E),

|E[
1
n

n−1∑

k=0

h(Xμk )] − E[
1
n

n−1∑

k=0

h(Xϕk )]|] ≤ ‖h‖(P{τμ > k} + 2k
n

),

and hence

|E[
1
n

n−1∑

k=0

h(Xμk )] − πh| ≤ ‖h‖(P{τμ > k} + P{τπ > k} + 4k
n

), (6.11)

and taking the sup over h ∈ B(E) with ‖h‖ ≤ 1 gives the convergence in total variation.

If τϕ satisfies 0 < E[τϕ] < ∞, then τ1 = 0 and τ2 = τ
ϕ provide an example of τ1 and τ2

in the following lemma.

Lemma 9. Let X be {Fk}-Markov with transition function P, and let τ1 and τ2 be stopping
times satisfying τ1 ≤ τ2 and 0 < E[τ2 − τ1] < ∞ such that Xτ1 and Xτ2 have the same
distribution. Then π defined by

πh =
E[
∑τ2

k=τ1+1 h(Xk)]

E[τ2 − τ1]

is a stationary distribution for P.
In continuous time,

πh =
E[
∫ τ2

τ1
h(X(s))ds]

E[τ2 − τ1]
.

Remark 3. In the case 0 < E[τϕ] < ∞, this observation is essentially the renewal argument
of [1] and [16].

Proof. Since

Mn = h(Xn) − h(X0) −
n−1∑

k=0

(Ph(Xk) − h(Xk))

is a martingale,

0 = E[h(Xτ2 ) − h(Xτ1 )] = E[
τ2−1∑

k=τ1

(Ph(Xk) − h(Xk)),

and hence,

πPh = πh,

so π is a stationary distribution for P.
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Example 2. In [6], Rabi and Mukul Majumdar consider processes in E = (0, 1) of the form

Xn+1 = ξn+1Xn(1 − Xn),

where the {ξk} are iid with values in (0, 4). Clearly, this process satisfies (6.1). Under the
assumption that the distribution of ξ has an absolutely continuous part with a density that
is strictly positive on some interval, they give conditions for Harris recurrence.

Example 3. The inequality in (6.11) and the analogous inequality in continuous time,

|E[
1
t

∫ t

0
h(Xμ(s))ds] − πh| ≤ ‖h‖(P{τμ > r} + P{τπ > r} + 4r

t
), (6.12)

actually give rates of convergence. Under aperiodicity assumptions, one can replace the
average by E[h(Xμ(t))] and eliminate the O(t−1) term. In [7], Rabi and Aramian Wasielak
give conditions under which this can be done for a class of diffusion processes.

6.2.2 Conditions without Harris Recurrence

Harris recurrence is very useful when it holds, or perhaps more to the point, when it can be
shown that it holds. In general, it does not hold, even in relatively simple settings. Perhaps
the best known example is the “Markov process” in [0, 1) given by the recursion

Xn+1 = Xn + z mod 1,

for some irrational z.
For an example with more interesting probabilistic structure, let E = {−1, 1}∞, and

consider a generator of the form

A f (x) =
∞∑

k=1

λk( f (ηk x) − f (x)), (6.13)

where λk > 0,
∑

k λk < ∞, and ηk x is obtained by replacing xk by −xk. If x, y ∈ E differ on
infinitely many components, then P(t, x, ·) and P(t, y, ·) are mutually singular for all t, but
for all x ∈ E, P(t, x, ·) converges weakly to the distribution under which the components
are independent symmetric Bernoulli.

In general, infinite dimensional processes provide a source of examples that are not
Harris recurrent even if ergodic. We will not address any more examples of this type, but
see [11] for recent work in this direction.

There is a need for techniques for studying ergodicity for processes that are not Harris
recurrent. One approach that appears frequently in Rabi’s work involves the notion of
splitting and is discussed in the paper by Ed Waymire in this volume. A second approach
considered by Rabi and Gopal Basak in [2] is by verifying asymptotical flatness, that is,
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by showing that Xx and Xy can be coupled in such a way that for each compact K ⊂ E and
ε > 0,

lim
t→∞

sup
x,y∈K

P{|Xx(t) − Xy(t)| > ε} = 0.

For example, if one rewrites the generator in (6.13) as

A f (x) =
∞∑

k=1

2λk(
1
2

f (η1
k x) +

1
2

f (η−1
k x) − f (x)), (6.14)

where η1
k x is obtained from x by replacing xk by 1 and η−1

k x is obtained by replacing xk by
−1, then the coupling can be obtained using independent Poisson processes {Nk}, Nk with
intensity 2λk, and at the lth jump of Nk replacing xk by ξkl, where the {ξkl} are independent
symmetric Bernoulli.

Example 4. In [2], Rabi and Gopal Basak consider diffusions of the form

Xx(t) = x +
∫ t

0
BXx(s)ds +

∫ t

0
σ(Xx(s))dW(s).

One has a natural coupling simply by using the same Brownian motion W for both Xx and
Xy. Lyapunov-type arguments are again employed but with analytic estimates rather than
simply compactness arguments. In particular, the arguments employ ψ (v in the notation
of the paper) of the form

ψ(x) = (x ·Cx)1−ε,

for appropriately chosen positive definite C and ε ∈ [0, 1). Different choices of C are
applied to ψ(Xx(t)) to ensure the existence of a stationary distribution and to ψ(Xx(t)−Xy(t))
to give the asymptotic flatness.

6.3 Central Limit Theorems

There are many version of the martingale central limit theorem. See, for example, [15, 17,
12]. The following version is from Theorem 7.1.4 of [9].

Theorem 2. Let {Mn} be a sequence of cadlag, Rd-valued martingales, with Mn(0) = 0,
and let An = [Mn] be the matrix of covariations, that is,

Ai j
n (t) = [Mi

n,M
j
n]t.

Suppose that for each t ≥ 0,

lim
n→∞

E[sup
s≤t
|Mn(s) − Mn(s−)|] = 0
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and

lim
n→∞

An(t) = A(t),

where A is deterministic and continuous. Then {Mn} converges in distribution to a Gaus-
sian process M such that M has independent increments, E[M(t)] = 0, and [Mi,M j]t =

E[Mi(t)M j(t)] = Ai j(t).
If

A(t) =
∫ t

0
σ(s)σ(s)T ds,

for some d × m-matrix-valued function σ, then we can write

M(t) =
∫ t

0
σ(s)dW(s),

where W is an R
m-valued standard Brownian motion.

Example 5. Let π be an ergodic stationary distribution for a Markov semigroup {T (t)}.
Then {T (t)} extends to L2(π) and is strongly continuous on L2(π). Let A be the Hille-Yosida
generator for the semigroup on L2(π). Then for each f ∈ D(A), the domain of A,

M f (t) = f (Xπ(t)) − f (Xπ(0)) −
∫ t

0
A f (Xπ(s))ds

is a square integrable martingale.
Then, for h ∈ L2(π), ergodicity implies

lim
n→∞

1
n

∫ nt

0
h(Xπ(s))ds = πht,

and Theorem 2.1 of [4] gives the functional central limit theorem for the scaled deviations,

Zh
n (t) =

1
√

n

∫ nt

0
(h(Xπ(s)) − πh)ds.

The key assumption is that there exists f ∈ D(A) such that A f = h − πh. Then

Zh
n(t) =

1
√

n
( f (Xπ(nt)) − f (Xπ(0))) − 1

√
n

M f (nt).

Consequently, we have the functional central limit theorem for {Zh
n } provided we can prove

the functional central limit theorem for { 1√
n

M f (n·)}. Observe that the quadratic variation

of 1√
n

M f (n·) is the same as the quadratic variation for Un(t) = 1√
n

f (Xπ(n·)) and that by
Itô’s formula,
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[Un]t = Un(t)2 − 1
n

∫ t

0
2 f (Xπ(ns−))d f (Xπ(ns)) (6.1)

= Un(t)2 − 1
n

∫ t

0
2 f (Xπ(ns−))dM f (ns) −

∫ t

0
2 f (Xπ(ns))A f (Xπ(ns))ds

→ −t
∫

E
2 f (x)A f (x)π(dx).

By Theorem 2, the convergence of Zh
n follows. Of course, under the assumptions of

Lemma 8, the same result will hold for Xμ for all μ ∈ P(E).
If f is smooth and Xπ is an R

d-valued diffusion,

Xπ(t) = Xπ(0) +
∫ t

0
σ(X(s))dW(s) +

∫ t

0
b(X(s))ds,

then

f (Xπ(t)) = f (Xπ(0)) +
∫ t

0
∇ f (Xπ(s))Tσ(Xπ(s))dW(s) + R(t),

where R is continuous with finite variation, so we can also write

[Un]t =
1
n

∫ nt

0
∇ f (Xπ(s))Tσ(Xπ(s))σ(Xπ(s))∇ f (Xπ(s))ds (6.2)

→
∫

Rd
∇ f (x)Tσ(x)σ(x)T∇ f (x)π(dx).

Example 6. In [5], Rabi considers diffusions in R
d of the form

X(t) = X(0) +
∫ t

0
u0b(X(s))ds +

∫ t

0
σ(X(s))dW(s),

under the assumption that σ is the square root of a positive definite matrix and σ and b are
periodic in the sense that

σ(x + z) = σ(x) and b(x + z) = b(x) z ∈ Zd.

At least under additional regularity assumptions on σ and b, Y(t) = X(t) mod 1, 1 ∈ Zd, the
vector with each component 1, is a Markov process in [0, 1)d which has a unique, ergodic
stationary distribution π. Then

lim
n→∞

1
n

X(nt) = lim
t→∞

1
n

∫ nt

0
u0b(X(s))ds = lim

n→∞

1
n

∫ nt

0
u0b(Y(s))ds = u0b̄t,

where b̄ = πb. Rabi gives the corresponding central limit theorem showing the conver-
gence of

Vn(t) =
1
√

n
(X(nt) − nu0b̄t).
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For simplicity, assume X(0) = 0. Setting

Mn
1(t) =

1
√

n
(X(nt) −

∫ nt

0
u0b(Y(s))ds) =

1
√

n

∫ nt

0
σ(Y(s))dW(s),

the convergence of Mn
1 follows from Theorem 2 and the ergodicity of Y .

Note that Vn = Mn
1 + Zn, where

Zn(t) =
1
√

n
u0

∫ nt

0
(b(Y(s)) − b̄)ds.

Then Zn is of the form treated in [4], Example 5. Let Â denote the generator for Y , which
will satisfy Â f (x mod 1) = A f (x), if f extends periodically to an element in the domain of
A. Rabi shows the existence of a twice continuously differentiable g satisfying

Âg(y) = b(y) − b̄,

and setting

Mn
2(t) =

u0√
n

(g(Y(nt)) − g(0) −
∫ nt

0
(b(Y(s)) − b̄)ds),

we have

Vn(t) = Mn
1(t) − Mn

2(t) +
u0√

n
(g(Y(nt)) − g(0)).

Since

Mn
2(t) =

u0√
n

∫ nt

0
∇g(X(s))Tσ(X(s))dW(s) + Rn(t),

where Rn is continuous with finite variation,

[Mn
1 − Mn

2]t =
1
n

∫ nt

0
(I − u0∇g(X(s))T )σ(X(s))σ(X(s))T (I − u0∇g(X(s)))ds.

Setting a = σσT ,

D =
∫

[0,1)d
(I − u0∇g(y)T )a(y)(I − u0∇g(y))π(dy),

and Vn converges in distribution to a mean zero Brownian motion with covariance matrix
D. The form of D derived here differs from the form in [5], but compare (6.1) and (6.2).
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