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Preface

It is our privilege and great honor to pay our tribute to our friend, collaborator,
and teacher Rabi N. Bhattacharya in the form of this volume of selected papers,
collecting some of his most influential papers together with commentaries of col-
leagues from around the world. For more than three decades, we have been able to
see Rabi’s knowledge, insight, and influence in probability, statistics, and their ap-
plications grow; we hope this volume will shed some light on this fact and the reader
will enjoy reading about Rabi’s scientific developments and the state of research his
name represents.

The book is divided into three parts, Modes of Approximation, Large Times for
Markov Processes, and Stochastic Foundations in Applied Sciences, representing the
main scientific contributions of Professor Bhattacharya. It ranges from theoretical
statistics via analytical probability theory, Markov processes, and random dynamics
to applied topics in statistics, economics, and geophysics. Such a wide range of in-
terests is hardly overseen by a single person, so we are especially glad that so many
of our colleagues representing these fields were willing and eager to contribute to
this volume. Their articles help to position Rabi’s work in the light of other achieve-
ments, further developments, and directions of research. An explicit goal is to help
researchers who may wish to embark on any of these many varied paths. The reader
will find a list of Rabi’s PhD students and scientific writings just before the table of
content.

This volume would not have been put together without the help of several people
and numerous publishers. First of all, Anirban DasGupta from Purdue University
made an initial proposal to Springer for a volume like this one. We thank Lizhen
Li from the University of Texas at Austin for her support in collecting data, and
Christopher Tommich and Benjamin Levitt from Birkhäuser/Springer for their help
in the editorial process. The technical support by Suresh Kumar from Birkhäuser is
greatly appreciated.

We also thank the publishers American Mathematical Society, World Scien-
tific Publishing Com., Institute of Mathematical Statistics, Society for Industrial
and Applied Mathematics (SIAM), János Bolyai Mathematical Society, Elsevier,
and Springer Nature for generously granting the copyrights of those articles of
R.N. Bhattacharya we had chosen to be reproduced in this volume. A list of these
papers is provided under Acknowledgments.
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vi Preface

Dedicated to Random Processes
The name “Bhattacharya” is a combination of two words: Bhatta, meaning Vedic

priest, generally known as sages or seers during the Vedic period, and the word
Acharya, with the Sanskrit meaning of teacher. Although Rabindra Nath (Rabi)
Bhattacharya has no formal religious affiliation, he exemplifies the best of the human
spirit through his steadfast concern for the well-being of others throughout his ca-
reer. This comes across most clearly in his professorial role via a sincere dedication
to teaching, research, and service. Rabi has been a remarkable “seer” of unknown
mathematical and statistical truths and always happy to share those insights with
students and collaborators.

“But this can be treated as a Markov process” is a standing phrase of Rabi’s that
exemplifies a fundamentally important mathematical structure that attracted Rabi’s
attention shortly after completing his PhD thesis on a classic unsolved problem per-
taining to rates of convergence in the central limit theorem for independent and
identically distributed random vectors. An interest in Markov processes and their
applications endured throughout his scientific career and is also well documented
by this Selecta volume. An important part of this volume is dedicated to Rabi’s ex-
traordinary contributions to the theory and application of Markov dynamics in their
many guises, ranging from discrete parameter Markov chains and/or i.i.d. iterated
random maps to continuous parameter Markov processes and diffusions.

However, this volume covers more than one or two such topics from Rabi’s work
and interest in mathematics. There are two achievements connected to his name for-
ever, the aforementioned clarification of rates of convergence to the normal distribu-
tion, the topic he started in his dissertation that made him well known immediately.
This culminated in his providing the complete mathematical framework to justify
the Edgeworth expansion of distributions during a collaboration with J.K. Ghosh in
the 1970s. A statistician might argue that its value is overcome by computing power.
In fact, Rabi and his students have substantiated this in a comparative analysis with
Efron’s bootstrap method. However, the intrinsic mathematical and statistical value
of Rabi’s contribution is far from being even a topic of discussion when viewed on
its own right. Such results gain their importance in mathematical applications and
generally serve as the final word on this question in the foundations of probability
theory and mathematical statistics.

It is very hard to have a final judgment on Rabi’s more recent interest and achieve-
ments in statistics for data observed on manifolds. The absence of an obvious notion
of a mean was overcome by Rabi and his former Indiana PhD student Vic Patrange-
naru. Rabi had conceived of the proper formulation for statistical inference in this
context as far back as the 1990s. Today, as we witness the emergence of a relatively
new and deep area of statistics, it is not hard to guess that results of Rabi and his
students will play an important role. The new theory and methods are supported

other areas of statistics as well. Rabi’s ideas follow traditional lines but also take
excursions into unknown territory for statistical inference, such as data represented
through the differential geometry of manifolds and cotangent spaces. As we see it
today, one of the outstanding problems for statistical inference on manifolds is that
of uniqueness of the Fréchet mean when there is positive curvature. Beyond Rabi’s
initial proof for the case of the circle published in his monograph with his student
Abhishek Bhattacharya, such results under conditions of practical value for statistics

by high computational power. We have been seeing this for quite some time in



Preface vii

remains one of the central obstructions to the development of a proper theory of in-
ference on manifolds having positive curvature.

It is one of Rabi’s firmly held tenets that mathematics can have a significant
impact on applied sciences and many other disciplines, as he has demonstrated in
diverse ways. Fair play in economics is one of his beliefs, and he tried in several
publications to clarify the time evolution of market data. This is mainly done in the
framework of random dynamics, which may be a good approximation to observed
time series data. Although we do not yet know this, it is natural to follow this math-
ematical path to see where it leads. Another of Rabi’s main contributions from an
application point of view originates in the dispersion of solutes in fluid flows. In
a long-term collaboration with hydrologist Vijay Gupta, Rabi was among the first
to recognize the role of central limit theorems, Brownian motion, and the role of
multiple-scale hierarchies in explaining observed transport behavior from labora-
tory to field scales. Striking results have been achieved here which made Rabi a
much cited author in hydrology, geophysics, and applied probability.

Rabindra Nath Bhattacharya was born January 11, 1937, in his ancestral home
of Porgola, District of Barisal, in the present country of Bangladesh. His family was
uprooted by the partition of India and moved to Calcutta in 1947, where Rabi studied
in Presidency College, receiving Bachelor of Science and Master of Science degrees,
respectively, in 1956 and 1959. He then secured a research scholar appointment
at the Indian Statistical Institute from 1959 to 1960. Rabi joined the mathematics
faculty at the University of Kalyani, teaching there from 1961 to 1964. In 1964, Rabi
obtained a fellowship from the Statistics Department at the University of Chicago,
where he completed his PhD in 1967 under direction of Patrick Billingsley. Upon
graduation, he returned to India to marry Bathika (Gouri) Banerjee, followed by
acceptance of a position as Assistant Professor in the Statistics Department at the
University of California in Berkeley in 1967. Rabi and Gouri have two children and
four grandchildren.

In 1972, Rabi was recruited to join the Mathematics Department at the Univer-
sity of Arizona as an Associate Professor and was promoted to Full Professor in
1977, where he remained until 1982. In 1982, he accepted a professorship in the
Mathematics Department at Indiana University and remained there until retirement
in 2002. Upon retirement from Indiana University, Rabi returned to the University
of Arizona where he is once again a tenured Professor of Mathematics.

Rabi received many honors and awards during his career. Well known are his
Special Invited Papers in the Annals of Probability 1977 and the Annals of Applied
Probability 1999. He was a specially invited lecturer at the German Mathematical
Meeting 1989 and the IMS Annual Meeting 1996 in Chicago (Medallion Lecture).
He received the prestigious Humboldt Senior Award in 1994/1995 and the Guggen-
heim Fellowship in 2002. The book Probability, Statistics and Their Applications:
Papers in Honor of Rabi Bhattacharya1 attests to the utmost appreciation by his
friends, collaborators, and colleagues.

Rio de Janeiro, Brazil Manfred Denker
Corvallis, OR, USA Edward C. Waymire
October 2015

1 IMS Lecture Notes Monogr. Ser., 41, Institute of Mathematical Statistics, Beachwood, OH, 2003.
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Chapter 1
Contributions of Rabi Bhattacharya to the Central
Limit Theory and Normal Approximation

Peter Hall

Abstract Rabi Bhattacharya has made signal contributions to central limit theory and
normal approximation, particularly for sums of independent random vectors. His mono-
graph in the area (Bhattacharya and Ranga Rao 1976) has become a classic, its impor-
tance being so great that it has had significant influence on mathematical statistics as
well as probability. The methods developed in that monograph led to Bhattacharya and
Ghosh’s (1978) seminal account of general Edgeworth expansions under the smooth func-
tion model, as it is now commonly called. That article had a profound influence on the
development of bootstrap methods, not least because it provided a foundation for influen-
tial research that enabled different bootstrap methods to be compared. At a vital time in
the evolution of bootstrap methods, it led to an authoritative and enduring assessment of
many of the bootstrap’s important contributions.

Keywords Asymptotic expansion, Berry-Esseen bound, Bootstrap, Diffusion, Edgeworth
expansion, Markov model, Moment condition, Oscillation, Rates of convergence, Smooth
function model, Smoothing lemma

1.1 Rates of Convergence in the Central Limit Theorem

Included among Rabi’s earliest research are vital contributions to rates of convergence in
the multidimensional central limit theorem. A good example is the work in Bhattacharya
[3], taken from his PhD thesis, which established a Berry-Esseen type rate of convergence
in the multidimensional central limit theorem under rather general moment conditions. He
introduced important tools and applied them to successively more complex problems, for
example in the papers Bhattacharya [4, 5, 6, 7].

P. Hall (�)
Professor Peter Hall passed away on January 9, 2016. We are most fortunate to have his remarkably
astute and insightful contribution to this volume. As a great admirer of Rabi’s work, Peter was the first to
contribute, and a most generous scholar to the very end of his life.
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One of Rabi’s key contributions, opening up the field for considerable further work,
was the development of new methods for describing distributions of sums of independent
random vectors in terms of the characteristic functions of those sums. In one dimension
such problems can often be solved rather simply, by invoking Esseen’s [34] smoothing
lemma. This result has applications well beyond the context of the central limit theorem
and related expansions, but we shall state it below in that setting.

Lemma (Esseen 1945 [34]). Let F be a nondecreasing function on the real line, and write
G for the standard normal distribution function plus, if desired, terms in its Edgeworth
expansion. Let χF(t) =

∫
eits dF(s) denote the Fourier-Stieltjes transform of F, where

i =
√
−1, and define χG analogously. Then, for each c1 > 1 and each T > 0,

sup
−∞<x<∞

|F(x) −G(x)| ≤ c1

2π

∫ T

−T

∣∣∣∣∣
χF (t) − χG(t)

t

∣∣∣∣∣ dt +
c2 C

T
(1.1.1)

where c2 > 0 depends only on c1, and C = supx |G′(x)|.

A closely related result had been used earlier, implicitly, by Berry [2], but was not
stated formally. Esseen [34] introduced a partial extension of his smoothing lemma to the
multidimensional case, but was not able to generalize directly what we know today as the
Berry-Essen theorem, to the multidimensional form of that result.

Rabi showed that, when working in more than one dimension, a very different approach
has to be taken, based on a careful and subtle assessment of “oscillations” of functions. As
Esseen [34] had discovered, when working in multidimensional settings the case of finite
fourth moments, rather than finite third moments, is from some points of view easier to
treat, since it does not require such a detailed analysis of oscillations.

Next we consider an oscillation-based version of (1.1.1), appropriate in k dimensions.
The oscillation of a function f : IRk → IR, on a set R ⊆ IRk, is defined by

ω f (R) = sup{| f (y) − f (z)| : y, z ∈ R} .

The average oscillation of f , with respect to a bounded, positive measure Q, is given by

ω̄ f (2ε : Q) =
∫

IRk
ω f {B(x, ε)}Q(dx) ,

where B(x, ε) denotes the open ball in IRk with center x ∈ IRk and radius ε > 0. In k-variate
cases the analogue of the integrand in (1.1.1) is not necessarily integrable, and to avert the
problems that this creates we smooth F, which is typically the distribution function of a
k-variate random variable, by convolution with a particular probability measure Kε . This
leads to the following bound, in place of (1.1.1):

∣∣∣∣∣

∫

IRk
f d(F −G)

∣∣∣∣∣ ≤ ω f
(
IRk) ‖(F −G) ∗ Kε‖ + ω̄ f (2ε : |G|) (1.1.2)

where we have written |G| for the total variation measure associated with G. (We have used
the same notation for the functions F and G, and their associated measures.) Result (1.1.2)
plays the role of (1.1.1) in multidimensional problems, and leads to Berry-Esseen bounds
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and asymptotic expansions in central limit theorems in k-variate cases. The measure Kε is
defined by Kε(R) = K(ε−1R), where ε−1R = {ε−1 x : x ∈ R} for each Borel set R ⊆ IR, and
K is a probability measure with support confined to B(0, 1) and particularly smooth on IRk.

With characteristic generosity, Rabi discussed his oscillation arguments widely within
the mathematics community, and that may have resulted in Sazanov [54] publishing the
multidimensional analogue of the Berry-Esseen theorem a little ahead of him. Related
work at that time included contributions by von Bahr [57, 58], who introduced bounds and
short expansions in the multidimensional central limit theorem under various moment con-
ditions; by Sadikova [51], whose convergence rates in the central limit theorem addressed
the case k = 2 and include additional log-factors; and by Bergström [1].

Bhattacharya [6], in a contribution to the Sixth Berkeley Symposium, provided a
remarkably authoritative and influential treatment of rates of convergence in the multi-
dimensional central limit theorem under the assumption of just three moments. A partic-
ularly attractive feature of that work was his derivation of relatively small values for the
constants in Berry-Esseen bounds, in cases where the components are independent, by
exploiting results of Zolotarev [60].

In Bhattacharya [8], appearing in the Annals of Probability, he established accurate
bounds for expected values of functions of sums of independent k-variate random variables
with three finite moments.

1.2 Asymptotic Expansions

In the Annals of Probability in 1977 [9], Rabi surveyed recent developments in the area of
rates of convergence and asymptotic expansions for multidimensional central limit theo-
rems for independent and identically distributed random vectors. Writing in Mathematical
Reviews, Julian Leslie noted of this paper that:

The tedium and intricacy of proofs in this subject are well known; in this article the author manages
to prune away unnecessary detail to reveal the essential mechanisms of these proofs.

A year earlier there had appeared the remarkably influential, and now classic, research
monograph by Bhattacharya and Ranga Rao [19]. This volume set down the wealth of
knowledge Rabi had acquired during about a decade of research on rates of convergence
and asymptotic expansions in multidimensional central limit theorems. The book proved
to be a guiding light for a generation of probabilists, and others, who worked in the area. I
am proud to count myself among them. I became familiar with the volume relatively late,
a little less than decade after it appeared. Indeed, I had difficulty buying it in Australia,
and I recall that it was a kind and generous colleague who purchased it abroad for me.
For a long time it became a close companion, sharing my bag on many travels, along with
V.V. Petrov’s Sums of Independent Random Variables.

As the quotation from Leslie’s review of an earlier paper, two paragraphs above, makes
clear, the field is not for the faint hearted. The book does not pull its punches; the reader
has to be prepared to work hard to master the material. However, he or she is rewarded
richly for the experience.



6 P. Hall

I have my copy on my desk now, as I write this. It is quite visibly water damaged. I took
it on a trip one spring Saturday, some twenty years ago, into the countryside north-west of
Canberra, where I wished to take some photographs. Towards the end of a very pleasant
afternoon, about two hours before sunset, I realized that to get to where I wanted to go next
I had to ford a stream. Judging the stream to be sandy but shallow, I drove my car rather
fast down one bank in the hope of building up enough momentum to get across to the
other. However, I was too timid; I should have driven faster, and my car stalled abruptly a
little way up the opposite bank. My copy of Bhattacharya and Ranga Rao [19] flew off the
back seat onto the floor, and water from the stream flooded in when I opened the driver’s
door. Fortunately the car’s engine was out of the water, and by putting floor mats under the
wheels, driving across them and repeating the process several times, I managed to move
the car onto dry ground.

Every time I pick up that book, where the pages are still curled from the effects of
water, I remember the many things I learned from it, for example while reading it out in
the countryside that day. I also recall that lovely, golden evening, as the cockatoos chatted
to one another before roosting in trees for the night.

1.3 Influence on Statistics

The paper by Bhattacharya and Ghosh [14], published in the Annals of Statistics, solved
a major, long-open problem relating to the accuracy of Edgeworth expansions. It provided
simple, explicit conditions under which such expansions are valid. Half a century earlier,
Cramér [27, 28, Chapter VII] had given detailed, rigorous theory in the context of sums of
independent and identically distributed random variables, but beyond that, even in 1978,
little was known in generality, with mathematical precision and rigor.

Geary [37], Gayen [36], and Wallace [59] had discussed both particular and general
expansions, but concise assumptions and general, detailed conclusions were largely absent.
For example, Bergström’s account of the work of Wallace [59], in Mathematical Reviews,
described it as “an expository lecture reviewing some important problems.” The research
of Hsu [45] and Chibisov [23, 24, 25], in probability and statistics, and of Sargan [52, 53],
in econometrics, helped significantly, but it predated the work of Bhattacharya and Ranga
Rao [19], and so lacked the simultaneous rigor and sweep that was now becoming possible
in the area.

Commenting on the need for general Edgeworth expansions for many different statis-
tics, Wallace [59] lamented in the following words our lack of understanding of expansions:

A general result would be highly desirable or else an example of a statistic, smooth enough at the
population value, but for which the series is not a valid asymptotic expansion to show that the
construction described is not valid as generally as appears plausible.

Bickel [20], discussing “results obtained since the general review paper by D. Wallace,”
also pointed to the disparate development of results on Edgeworth expansions via particu-
lar cases.

To a large extent, Bhattacharya and Ghosh [14] changed all that. They introduced what
has come to be known as the “smooth function model,” where a statistic, perhaps after
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Studentizing, is represented as a smooth function of the components of a sum, or mean, of
independent and identically distributed random vectors. By appealing to results of Bhat-
tacharya and Ranga Rao [19], and undertaking subtle analysis to identify terms in Edge-
worth expansions, Bhattacharya and Ghosh [14] introduced a theoretical approach which
gave, at once, expansions for a particularly wide class of quantities of considerable statis-
tical interest.

Almost as though by design, the work of Bhattacharya and Ghosh [14] came just in
time for the development of theory for a wide variety of bootstrap methods, ushered in
by Efron [32]. Efron’s rather non-technical paper suggested methodology whose broad
acceptance by the statistical community was to rely heavily on authoritative theoretical
analysis.

Efron [33] was himself in the vanguard of those who appreciated the essential, intimate
connection between theory for, and applications of, computer-intensive statistical methods:

The need for a more flexible, realistic, and dependable statistical theory is pressing, given the moun-
tains of data now being amassed. The prospect for success is bright, but I believe the solution is
likely to lie along the lines suggested [above]—a blend of traditional mathematical thinking com-
bined with the numerical and organizational aptitude of the computer.

The general Edgeworth expansions of Bhattacharya and Ghosh [14], and just as
importantly the methods by means of which those expansions were derived, were to play
a major role in establishing the credentials of the bootstrap for distribution estimation and
for constructing confidence intervals and hypothesis tests. The first Edgeworth-type con-
tributions came from Singh [56] and Bickel and Freedman [21], and over the next decade
they became ubiquitous, based heavily on Bhattacharya and Ghosh’s paper. For exam-
ple, the work of Bhattacharya and Ghosh [14] formed the basis for the second chapter of
Hall [43].

Related work of Chandra and Ghosh [22] also should be mentioned here. Those authors
showed that, in the context of the smooth function model, and using arguments of Bhat-
tacharya and Ghosh [14], statistics whose asymptotic distributions are central chi-squared
have finite-sample distributions that enjoy asymptotic expansions in powers of n−1, rather
than n−1/2. These results are, in a sense, two-sided analogues of one-sided properties
derived by Bhattacharya and Ghosh [14].

Bhattacharya [11] showed that the smoothness assumptions in the smooth function
model could be relaxed, and that ideas similar to those in Bhattacharya and Ghosh [14]
could be used to develop asymptotic expansions of general moments, similar to those
derived by Götze and Hipp [39].

The substantial generality of the results of Bhattacharya and Ghosh [14] can be
improved somewhat in particular cases, as Bhattacharya and Ghosh [16] demonstrated.
They showed that if the gradient of the function in the smooth function model has certain
zero components, then moment conditions can be relaxed substantially. This generalized,
in important ways, earlier work of Hall [40].

Bhattacharya [12] developed Edgeworth expansions for non-independent data, for
example data from linear and nonlinear autoregressions. In that paper he also compared
bootstrap distribution estimators with empirical Edgeworth expansion approximations to
the same distributions. The latter estimators involve replacing population moments by the
corresponding sample moments.
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In a similar vein, but using theoretical arguments, Bhattacharya and Qumsiyeh [18]
showed that, under the smooth-function model and moment conditions, the bootstrap
enjoys greater accuracy than a two-term, empirical Edgeworth expansion. This result
pointed clearly to the value of computer-intensive methods such as those based on
resampling.

However, in related numerical work in a different setting, Bhattacharya and Chan [13]
reached a somewhat different conclusion. They described the relative accuracy of local
Edgeworth expansions, bootstrap and chi-squared approximations to probability densities,
in both numerical and theoretical terms. In the cases considered, two-term Edgeworth
expansions enjoy very good performance, although, as the authors acknowledged, they
can be particularly difficult to evaluate in complex cases. Additionally the authors observed
that, again in the cases that they consider:

The bootstrap does quite well occasionally. Chisquare, however, seems to outperform the bootstrap
in the majority of cases, symmetric or asymmetric.

The first part of the monograph by Bhattacharya and Denker [15] introduces Edge-
worth expansions in a variety of settings, including that of smooth functions of means of
independent and identically distributed random variables.

Rabi also has made many contributions to central limit theory for a variety of pro-
cesses, including several types of diffusion. For example, Bhattacharya [10] established
central limit theorems and laws of the iterated logarithm for ergodic, stationary Markov
processes. Bhattacharya and Ghosh [17] derived central limit theorems for U-statistics
where the kernel depends on sample size. The generality of this setting allowed the authors
to establish new properties of the number of k-clusters among uniformly distributed points
in the d-dimensional box [−a, a]d, as a diverges.

1.4 Past, Present, and Future

To appreciate the motivation for advances that might be made in the future, let us revisit
the past. The contributions to Edgeworth expansions made by Geary [37], Gayen [36],
and Wallace [59], and even those of Chibisov [23, 24, 25] and Sargan [52, 53], were
undertaken in an era where asymptotic theory was still the most widely used, and even
the most promising, approach to approximating the distributions of estimators and related
statistics. Prior to 1970, only a prescient few—for example, Simon [55], along with the
early developers of bootstrap methods such as those noted by Hall [44], and perhaps Fisher
[35, p. 50] and others who developed permutation methods—saw with relative clarity the
computer-intensive future of statistical methods.

Against this background it comes as no surprise to learn that the early work on Edge-
worth expansion, mentioned above, was designed to enhance the performance of standard
asymptotic methods based on the central limit theorem. Even today statistical scientists
sometimes argue that Edgeworth expansions should, or could, be pressed into use as prac-
tical statistical tools; to give a range of examples over the last 40 years we mention Pfan-
zagl [50], Pfaff and Pfanzagl [49], Hall [41], Contaldi et al. [26], and Gonçalvesa and
Meddahia [38].
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However, a distinct drawback of this approach is that it often requires a high degree
of mathematical analysis in order to establish the nature of the expansion. Even with the
benefit of software such as Mathematica, this can be quite inconvenient for practitioners
of statistics. For that reason alone, even if Edgeworth approximation was particularly com-
petitive in terms of its accuracy, which it often is not, it would face a significant obstacle
to widespread use.

Similar comments apply to central limit theorems applied without Edgeworth correction.
For example, those methods often require explicit computation of a variance estimator,
which can be awkward in nonstandard cases (or even in standard cases, for example the
correlation coefficient). One of the attractive aspects of the percentile bootstrap approach
to constructing confidence intervals is that it estimates scale implicitly. If the interval is
coverage-corrected using the double bootstrap, it preserves the coverage accuracy of meth-
ods that involve explicit estimation of scale.

There is both numerical and theoretical evidence that empirical Edgeworth correction
is not always effective, indeed that it is inferior to the bootstrap, at least for sufficiently
large samples. See, for example, Hall [42]. One reason is that Edgeworth expansions give
of their best in “absolute” rather than “relative” senses, whereas bootstrap methods tend to
perform well from both perspectives.

To explain this point we note that an Edgeworth expansion of the distribution of
n1/2 (θ̂ − θ), where θ̂ is an estimator of a parameter θ and is computed from a sample
of size n, can provide accurate approximations to P(θ̂ > θ + n−1/2 x) for fixed x, in the
sense that when x is fixed, the absolute error in the approximation converges to zero at
rate n−c, for some c > 1

2 , as n diverges. However, that expansion generally does not pro-
vide an accurate approximation in a relative sense, as both x and n diverge. That is to say,
the ratio of P(θ̂ > θ + n−1/2 x) to its Edgeworth approximation typically departs quickly
from 1 if x and n diverge together. That scenario often reflects accurately the context of
confidence intervals in the case of small to moderate-sized samples. Good performance
in a relative sense is the realm of large (or moderate) deviation expansions, rather than
Edgeworth expansions.

The statistical analogues of large or moderate deviation expansions are saddlepoint
approximations, and they are known to be competitive with the simulation-based boot-
strap. See, for example, Davison and Hinkley [30], Daniels and Young [29], and DiCiccio
et al. [31]. Innovative research on large and moderate deviations, in some ways analogous
to Rabi’s early work on Edgeworth expansions, is continuing at a reasonably fast pace.
Qi-Man Shao and his co-authors have been major contributors; examples include the work
of Jing et al. [47], Hu et al. [46], and Liu and Shao [48].

Partly for the reasons mentioned above, contributions to Edgeworth expansions, with
reasonably direct statistical applications, are apparently not being pursued so actively. One
could add that, in the approximately 15-year period during which bootstrap methods were
being evaluated vigorously, Edgeworth expansions were used widely as a theoretical tool
for explaining the effectiveness of bootstrap techniques, but were not so frequently sug-
gested as serious, direct competitors with the bootstrap.

Thus, while there are particularly good reasons for further developing large and moder-
ate deviation expansions, the case for Edgeworth expansions arguably is not so compelling
right now. That is not to say that in the future we shall not see substantial motivation
for further development of Edgeworth expansions. It’s just that, today, statistical work on
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Edgeworth expansions for their own sake, rather than to shed light on other techniques,
appears not to be as well motivated as it was when Rabi made his crucial, and rightly
influential, contributions. Rabi’s work too was used not so much to develop new statisti-
cal techniques based directly on Edgeworth expansions, as to explain the effectiveness of
various computer-intensive methods, such as the bootstrap and the jacknife, which, it was
shown, could be interpreted as making implicit Edgeworth corrections.

As we explained in Section 1.3, Rabi’s contributions to probability are linked closely to
his influence on statistics. Today, however, one finds increasingly that most topics related
to the central limit theorem are regarded as part of statistics, not probability. I was rather
surprised to discover this recently, while serving on an IMS committee. Thus, some of the
great contributors to probability and stochastic processes, including Rabi, are being seen
increasingly as pioneers in statistics, quite apart from any additional statistical work they
might have done.
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Chapter 2
Asymptotic Expansions for Stochastic Processes

Nakahiro Yoshida

2.1 Introduction

The central limit theorems are the basis of the large sample statistics. In estimation theory,
the asymptotic efficiency is evaluated by the asymptotic variance of estimators, and in
testing statistical hypotheses, the critical region of a test is determined by the normal
approximation.

Though asymptotic properties of statistics are based on central limit theorems, the acc-
uracy of their approximation is not necessarily sufficient in practice, especially in the case
not many observations are available. Even then, we experienced possibility of getting more
precise approximation by the asymptotic expansion methods.

The asymptotic expansion has theoretical importance. This method is today recognized
as basis of various branches of theoretical statistics like higher order inferential theory,
prediction, model selection, resampling methods, information geometry, and so on. For
example, the Akaike Information Criterion (AIC) for statistical model selection is a statis-
tic that incorporates higher-order behavior of the maximum log likelihood.

In the recent four decades, intensive studies have been done for statistics of semi-
martingales. See, e.g., Kutoyants [54, 55, 56], Basawa and Prakasa Rao [8], Küchler and
Soerensen [51], and Prakasa Rao [80, 79]. Since large sample theoretical approaches are
inevitable to semimartingales, the development was in exact timing interactively with that
of limit theorems.

The counterpart of traditional independent observations is the class of stochastic pro-
cesses with ergodic property. Laws of large numbers were often deduced from mixing
properties or from ergodic theorems through Markovian structures of processes, and var-
ious central limit theorems have been produced in the mixing framework and in the mar-
tingale framework. Thus, after developments of the first order statistics, it was natural that
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a part of studies of limit theorems for stochastic processes was directed to higher-order
asymptotics. This trend entailed generalization of techniques applicable to dependency.

The emphasize of this survey is put on central limit theorems and asymptotic expan-
sion applied to statistics for semimartingales. The results can essentially apply to Markov
chains, therefore so-called nonlinear time series models. On the other hand, it should be
remarked that quite a few techniques invented in classical higher-order limit theorems,
such as smoothing inequalities, work as fundamentals of the theory of asymptotic expan-
sion for semimartingales.

Since non-normality of the limit distribution of statistical estimators, even in regular
experiments, emerged rather early [95, 4], the non-ergodic statistics was commonly recog-
nized and established in the 70s. There appear limit theorems that have a mixture of normal
distributions as the limit distribution. Intuitively, the Fisher information or the energy of
the martingale of the score function does not converge to a constant like classical statis-
tics, but does to a random variable. Then the error becomes asymptotically conditionally
normal given the random Fisher information. The non-ergodic statistics required develop-
ments in limit theorems and raises a problem about asymptotic expansion. These topics
will be discussed in Section 2.5.

2.2 Refinements of Central Limit Theorems

Let (ξ j) j∈N be a sequence of d-dimensional independent and identically distributed (i.i.d.)
random vectors with E[ξ1] = 0 and Cov[ξ1] = Id, the identity matrix.

2.2.1 Rate of Convergence of the Central Limit Theorem

The central limit theorem states S n = n−1/2∑n
j=1 ξ j →d Nd(0, Id), namely, for any bounded

continuous function g on R
d,
∫
Rd gd(Qn − Φ) → 0 as n → ∞, where Qn is the distribution

of S n and Φ = Nd(0, Id).
Let βs,i = E[|ξ(i)

1 |
s] and βs =

∑d
i=1 βs,i, ξ

(i)
1 being the i-th element of ξ1. For a function g

on R
d, let ωg(A) = sup{|g(x) − g(y)|; x, y ∈ A} and let ωg(x; ε) = ωg(B(x, ε)) for B(x, ε) =

{y; |x − y| < ε}. The existence of third order moment gives a refinement of the central limit
theorem. For example, under the assumption β3 < ∞, it holds that for every real valued
bounded measurable function g on R

d,
∣∣∣∣∣

∫

Rd
gd(Qn −Φ)

∣∣∣∣∣ ≤ c0ωg(Rd)β3n−1/2 +

∫

Rd
ωg(·; c2β3n−1/2 log n)dΦ (2.1)

if β3 < c1n1/2(log n)−d, where c0, c1, and c2 are constants depending on d (Theorem 4.2
of Bhattacharya [15]). See also Bhattacharya [13, 14] for the origin of this result. Bhat-
tacharya and Ranga Rao [20] give a comprehensive exposition and generalizations.
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2.2.2 Cramér-Edgeworth Expansion

The ν-th cumulant of ξ1 is denoted by χν for a multi-index ν ∈ Zd
+, Z+ = {0, 1, . . .}. That is,

for the characteristic function ϕξ1 of ξ1,

logϕξ1 (u) =
∑

ν:2≤|ν|≤s

χν
ν!

(iu)ν + o(|u|s) (u→ 0)

where |ν| = ν1 + · · · + νd and uν = (u1)ν1 · · · (ud)νd for ν = (ν1, . . . , νd) ∈ Z
d
+ and u =

(u1, . . . , ud) ∈ Rd.
Let S n = n−1/2∑n

j=1 ξ j. Then independency yields

ϕS n (u) = e−|u|
2/2 exp

[ ∑

ν:3≤|ν|≤s

χν
ν!

(iu)νn−(|ν|−2)/2
]
× [1 + o(n−(s−2)/2)]

as n→ ∞ for every u ∈ Rd. The last expression is rewritten as

ϕS n (u) = e−|u|
2/2
[
1 +

s−2∑

r=1

n−r/2P̃r(iu)
]
+ o(n−(s−2)/2). (2.2)

Here each P̃r is a certain polynomial whose coefficients are written in χν’s. The first term
on the right-hand side of (2.2) will be denoted by P̂n.

The (s−2)-th order Edgeworth expansion of the distribution of S n is given by the Fourier
inversion pn = F −1[P̂n] of P̂n. Asymptotic expansion gives higher-order approximation of
the distribution of S n. This method goes back to Tchebycheff, Edgeworth, and Cramér.

Regularity of the distribution is often supposed to obtain an asymptotic expansion of
the distribution. Otherwise, this approximation is not necessarily valid. In fact, for the
Bernoulli trials ξ j ( j ∈ N), i.e., these random variables are independent and P[ξ j = −1] =
P[ξ j = 1] = 1/2. We denote by Fn the distribution function of n−1/2∑n

j=1 ξ j. Then for even
n ∈ N,

Fn(0) − Fn(0−) = P
[ n∑

j=1

ξ j = 0
]
=

(
n

n/2

) (
1
2

)n
∼
√

2/πn−1/2

and hence for any sequence of continuous functionsΦn,

lim inf
n→∞

(2n)1/2 sup
x∈R

∣∣∣F2n(x) −Φn(x)
∣∣∣ > 0.

Therefore the ordinary Edgeworth expansion always fails to give a first-order asymptotic
expansion to Fn.

The Cramér condition

lim sup
|u|→∞

∣∣∣ϕξ1 (u)
∣∣∣ < 1 (2.3)
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is effective to deduce the decay of the characteristic function of S n. If the distribution
L{ξ1} has a nonzero absolutely continuous part of the Lebesgue decomposition, then Con-
dition (2.3) holds.

Under (2.3), combining the estimate (2.6) with (2.5) below, it is possible to evaluate
the error of the asymptotic expansion. Let s be an integer greater than 2. Let Mr( f ) =
supx∈Rd (1 + |x|r)−1| f (x)| for measurable function f on R

d. Let s′ ≤ s. Then, under (2.3),

∣∣∣∣∣

∫

Rd

f dQn −
∫

Rd

f pndx
∣∣∣∣∣ ≤ Ms′ ( f )εn + c(s, d)

∫

Rd

ω f (x; 2e−cn)Φ(dx) (2.4)

where c is a positive constant, c(s, d) is a constant depending on (s, d), and εn = o(n−(s−2)/2)
as n → ∞. This result is Theorem 20.1 of Bhattacharya and Ranga Rao [20]. We refer the
reader to Cramér [26], Bhattacharya [14], Petrov [75], and other papers mentioned therein
for results in the early days.

2.2.3 Smoothing Inequality

The so-called smoothing inequality plays an essential role in validation of the above refine-
ments (2.1) and (2.4) of the central limit theorem. Let p be an integer with p ≥ 3. Consider
a probability measure K on R

d and a constant a such that α := Kε (B(0, a)) > 1/2. The
scaled measureKε is defined byKε(A) = K(ε−1A) for Borel sets A. Given a finite measure
P and a finite signed measure Q on R

d, let γ f (ε) = ‖ f �‖∞
∫
Rd h(|x|)|Kε ∗ (P − Q)|(dx),

ζ f (r) = ‖ f �‖∞
∫
{x;|x|≥ar} h(|x|)K(dx), and τ(t) = supx:|x|≤taε′

∫
Rd ω f (x + y, 2aε)Q+(dy), where

f �(x) = f (x)/h(|x|), h(r) = 1 + rp0 (p0 = 2[p/2]) and Q+ is the positive part of Q. Among
many versions, Sweeting’s smoothing inequality [88] is given by

∣∣∣(P − Q)[ f ]
∣∣∣ ≤ 1

2α − 1
[
A0γ f (ε) + A1ζ f (ε′/ε) + τ(t)

]
+

(1 − α
α

)t
A2‖ f �‖∞ (2.5)

for ε, ε′ t satisfying 0 < ε < ε′ < a−1 and t ∈ N (aε′t ≤ 1), where A0, A1, and A2 are
some constants depending on p, d, and (P+ |Q|)[h(| · |)]. See Bhattacharya [13, 14, 15] and
Bhattacharya and Rao [20] for more information of smoothing inequalities.

There exists a constant Cd such that
∫

Rd
| f (x)|dx ≤ Cd max

nν∈Zd
+ ,

|ν|=0,d+1

∫

Rd

∣∣∣∂νF [ f ](u)
∣∣∣du (2.6)

for all measurable functions f : R
d → R satisfying

∫
Rd (1 + |x|d+1)| f (x)|dx < ∞; see

[19, 20]. Thus, the comparison between two measures comes down to the integrability of
their Fourier transforms and estimation of the gap between them.
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2.2.4 Applications to Statistics

Asymptotic expansion has been a basis of modern theoretical statistics. Bhattacharya
and Ghosh [17] established validity of the Edgeworth expansion of functionals of inde-
pendent random variables, and it was applied to various statistical problems by many
authors; see Google Scholar for citing papers. The reader finds related works in Bhat-
tacharya and Denker [11]. Bootstrap methods obtain their basis on the asymptotic expan-
sion (Hall [36]). Information geometry introducedα-connection and gave an interpretation
of the higher-order efficiency of the maximum likelihood estimators by the curvature of
the fiber associated with the estimator (Amari [1]). Asymptotic expansion was also applied
to construction of information criteria for model selection as well as prediction problems;
e.g., Konishi and Kitagawa [50], Uchida and Yoshida [91], Komaki [49].

2.3 Asymptotic Expansion for Mixing Processes

As a generalization from independency, central limit theorems and asymptotic expansion
were developed under mixing properties; Ibragimov [39] among many others for a central
limit theorem. Error bounds were given in Tikhomirov [89], Stein [86], and others. Nagaev
[71, 72] presented rates of convergence and asymptotic expansions for Markov chains.
Doukhan [29] gives exposition of mixing properties and related central limit theorems.

The class of diffusion processes is of importance as the intersection of the Markovian
processes and the processes for which the ergodicity can be successfully treated. Bhat-
tacharya [16], Bhattacharya and Ramasubramanian [18], and Bhattacharya and Wasielak
[12] provided ergodicity of multidimensional diffusion processes and related limit theorems.
Also see the textbook by Meyn and Tweedie [67] for a general exposition of ergodicity, and
a series of papers of Meyn and Tweedie [64, 65, 66]. Kusuoka and Yoshida discussed mix-
ing property of possibly degenerate diffusion processes in [53]. Masuda [61] gave mixing
bounds for jump diffusion processes.

Under assumption of mixing property, Götze and Hipp [34] gave asymptotic expan-
sions for sums of weakly dependent processes that are approximated by a Markov chain.
The smoothing inequality discussed in Section 2.2 was applied together with inventive
estimates of the characteristic function. A Cramér type estimate was assumed for a con-
ditional characteristic function of local increments of the process. Götze and Hipp [35]
carried out their scheme for more concrete time series.

The Markovian property in practice plays an essential role in estimation of the char-
acteristic function of an additive functional of the underlying process. Mixing property is
deeply related to the ergodicity especially in Markovian contexts. Therefore it is practically
natural to approach Edgeworth expansion through mixing.

Given a probability space (Ω,F , P), let Y = (Yt)t∈R+ be a d2-dimensional càdlàg process
and let X = (Xt)t∈R+ be a d1-dimensional càdlàg process with independent increments in the
sense that BX,Y

[0,r] is independent of BdX
[r,∞) for r ∈ R+, where BX,Y

[0,r] = σ[Xt, Yt; t ∈ [0, r]] ∨N
and BdX

I = σ[Xt − Xs; s, t ∈ I] ∨ N , I ⊂ R+, with N being the null-σ-field. Suppose that
Y is an ε-Markov process driven by X. That is, there exists a nonnegative constant ε such
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that Yt is BY
[s−ε,s] ∨ B

dX
[s,t]-measurable for all t ≥ s ≥ ε, where BY

I = σ[Yt; t ∈ I] ∨ N . Let
BI = σ[Xt − Xs, Yt; s, t ∈ I] ∨ N for I ⊂ R+.

An α-mixing condition for Y is expressed by the inequality

E
[∣∣∣EBY

[s−ε,s]
[ f ] − E[ f ]

∣∣∣] ≤ α̃Y (s, t)‖ f ‖∞

for s ≤ t and bounded BY
[t,∞)-measurable functions f . Let α(s, t) = α̃Y (s, t − ε) if s ≤ t − ε

and 1 if s > t − ε. Let α(h) = suph′≥h,s∈R+ α(s, s + h′). we shall assume exponential rate,
namely, there exists a constant a > 0 such that α(h) ≤ a−1e−ah for all h > 0. This condition
can be relaxed but the exponential rate is assumed for simplicity.

We consider a d-dimensional process Z = (Zt)t∈R+ satisfying that Z0 is B[0]-measurable
and that Zt −Zs is B[s,t]-measurable for every t ≥ s ≥ ε. Given an integer p ≥ 3, we assume
that there exists h0 > 0 such that

E[|Z0|p+1] + sup
t,h:t∈R+,0≤h≤h0

E[|Zt+h − Zt |p+1] < ∞,

and that E[Zt] = 0 for all t ∈ R+.
Suppose that there exists a sequence of intervals I( j)=[u( j), v( j)] ( j=1, . . . , n(T )) such

that limT→∞ n(T )/T > 0 and 0 < δ ≤ v( j) − u( j) ≤ δ̄ < ∞ for some δ and δ̄, and that for
each j, some σ-field B′[v( j)−ε,v( j)) of B[v( j)−ε,v( j)] satisfies EB[v( j)−ε,v( j)] [h] = EB′[v( j)−ε,v( j)]

[h] for all

bounded B[v( j),∞)-measurable functions h. Let Ĉ( j) = B[u( j)−ε,u( j)] ∨ B′[v( j)−ε,v( j)]. Denote by
ZJ the increment of Z over the interval J. Moreover, suppose that

lim
B→∞

lim sup
T→∞

n(T )−1
∑

j

E
[

sup
u:|u|≥B

∣∣∣EĈ( j)[e
iu·ZI( j)ψ j]

∣∣∣] = 0 (2.7)

and lim infT→∞ n(T )−1∑
j E[ψ j] > 0 for some [0, 1]-valued measurable functionals ψ j.

These conditions work as a kind of Cramér’s condition. Thus, in this situation, we obtain
an Edgeworth expansion of T−1/2ZT as follows. The cumulant functions χT,r(u) of T−1/2ZT

are defined by χT,r(u) = (∂ε)r|ε=0 log E[exp(iεu · T−1/2ZT )] for u ∈ Rd. Next define P̃T,r(u)
by the formal expansion

exp
( ∞∑

r=2

(r!)−1εr−2χT,r(u)
)
= exp
(
2−1χT,2(u)

)
+

∞∑

r=1

εrT−r/2P̃T,r(u).

Let ΨT,p = F −1[Ψ̂T,p] for Ψ̂T,p(u) = exp
(
2−1χT,2(u)

)
+
∑p−2

r=1 T−r/2P̃T,r(u). Then if the
covariance matrix Cov[T−1/2ZT ] converges to a regular matrix as T → ∞, then it is possi-
ble to show that a similar estimate to (2.4), and the error |E[ f (T−1/2ZT )]−ΨT,p[ f ]| becomes
o(T−(p−2)/2) ordinarily in applications. See Kusuoka and Yoshida [53] and Yoshida [99].

In order to validate the asymptotic expansion, it suffices to find good truncation func-
tionals ψ j and σ-fields B′[v( j)−ε,v( j)] as well as intervals I( j) for which (2.7) is satisfied. For
example, we shall consider a system of stochastic integral equations
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Yt = Y0 +

∫ t

0
A(Ys−)ds +

∫ t

0
B(Ys−)dws +

∫ t

0

∫
C(Ys−, x)μ̃(ds, dx)

Zt = Z0 +

∫ t

0
A′(Ys−)ds +

∫ t

0
B′(Ys−)dws +

∫ t

0

∫
C′(Ys−, x)μ̃(ds, dx)

where Z0 is σ[Y0]-measurable, A ∈ C∞(Rd2 ;Rd2 ), B ∈ C∞(Rd2 ;Rd2 ⊗ R
m), C ∈ C∞(Rd2 ×

E;Rd2 ), and similarly A′ ∈ C∞(Rd2 ;Rd), B′ ∈ C∞(Rd2 ;Rd ⊗ R
m), C′ ∈ C∞(Rd2 × E;Rd),

where w is an m-dimensional Wiener process, E is an open set in R
b, and μ̃ is a compen-

sated Poisson random measure on R+ ×E with intensity dt×dx. Under standard regularity
conditions, (Yt, Zt) can be regarded as smooth functionals over the canonical space. In this
case, the process Xt can be chosen as Xt = (wt, μt(gi); i ∈ N) for a countable measure det-
ermining family over E, and Y is a 0-Markov process (i.e., a Markovian process). Though
there are several versions of the Malliavin calculus for jump processes, we consider a clas-
sical version based on diffusive intensive measure for example by Bichteler et al. [22].
Then it is possible to make truncation functionals ψ j by using local non-degeneracy of the
Malliavin covariance matrix of the system. See Kusuoka and Yoshida [53] and Yoshida
[99] for details of this case. The local non-degeneracy of the Malliavin covariance of the
functional to be expanded plays a similar role as the Cramér condition in independent
cases, assisted by the support theorem for stochastic differential equations.

Since typical statistics are expressed as a Bhattacharya-Ghosh [17] transform of a multi-
dimensional additive functional that admits the Edgeworth expansion, it is possible to
obtain Edgeworth expansions for them. This enables us to construct higher-order statistics
for stochastic processes (Sakamoto and Yoshida [83, 84], Uchida and Yoshida [91]). For
moment expansions, if the Fourier analytic aspect of the smoothing inequality is recalled
or the Taylor expansion is applied directly, it is clearly possible to remove Cramér’s type
condition of the regularity of the distribution. Some refinements of the results of Götze
and Hipp were given in Lahiri [57].

2.4 Asymptotic Expansion for Martingales

2.4.1 Martingale Central Limit Theorems

Suppose that, for each n ∈ N, Bn = (Ωn,F n,Fn, Pn) is a stochastic basis with a
filtration Fn = (F n

t )t∈0,1,...,Tn . We consider a sequence of discrete-time L2-martingales
Mn = (Mn

t )t=0,1,...,Tn (n ∈ N), each Mn defined on Bn and M0 = 0. Let ξn
t = Mn

t − Mn
t−1

for t = 1, . . . , Tn. Then a classical martingale central limit theorem is stated as follows.
Suppose that (i)

∑Tn
t=1 En[(ξn

t )2|F n
t−1] →p σ2 as n → ∞ for some constant σ2, and that for

ε > 0,
∑Tn

t∈=1 En[(ξn
t )21{|ξn

t |>ε}|F
n

t−1] →p 0 as n → ∞. Then Mn
Tn
→d N(0, σ2) as n → ∞.

Here En denotes the expectation with respect to Pn, and the convergence→p is naturally
defined along the sequence (Pn)n∈N. For this result, see B. M. Brown [25], Dvoretsky [30],
McLeish [63], Rebolledo [82], Hall and Heyde [37]. Functional type convergence results
also hold.
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Various extensions were made to limit theorems for semimartingales. Among them,
a version of the central limit theorem for seminartingales is as follows. Consider a
sequence of stochastic processes Xn, n ∈ N, each of which is a semimartingale defined
on a stochastic basis Bn with a filtration Fn = (F n

t )t∈R+ , and has the local character-
istics (Bn,Cn, νn), where Bn is the finite variation part with respect to the truncation
by the function x1{|x|≤1}, Cn is the predictable covariation process for the continuous
local martingale part Xn,c of Xn, and νn is the compensator of the integer-valued ran-
dom measure μn of jumps of Xn. Denote by M = (Mt)t∈R+ a continuous Gaussian
martingale with a (deterministic) quadratic variation 〈M〉. Suppose that Xn

0 = 0 and
the following conditions are fulfilled for every t > 0 and ε > 0 as n → ∞: (i)∫ t

0

∫
{|x|>ε} ν

n(ds, dx) →p 0, (ii) Bn,c +
∑

s≤t

∫
{|x|≤ε} xνn({s}, dx) →p 0, Bn,c being the con-

tinuous part of Bn, and (iii) Cn
t +
∫ t

0

∫
{|x|≤ε} x2νn(ds, dx)−

∑
s≤t

(∫
{|x|≤ε} ν

n({s}, dx)
)2
→p 〈M〉t.

Then the finite-dimensional convergence Xn →df M holds. Moreover, under (i), (iii), and

(ii�) sups∈[0,t]

∣∣∣∣Bn,c
s +
∑

s≤t

∫
{|x|≤ε} xνn({s}, dx)

∣∣∣∣ →p 0 as n → ∞ for every t > 0 and ε > 0,

in place of (ii), one has the functional convergence Xn →d M in D(R+;R) as n → ∞.
See Liptser and Shiryayev [59], Jacod et al. [42], Jacod and Shiryaev [43], and Liptser
and Shiryaev [60]. Developments of the central limit theorems for martingales and con-
vergences to processes with independent increments are owed to many authors. We refer
the reader to the bibliographical comments to Chapter VIII of Jacod and Shiryaev [43].

The simplest case is the central limit theorem for continuous local martingales. Let
Mn = (Mn

t )t∈[0,1] be a continuous local martingale defined on Bn. If 〈Mn〉1 →p C∞ as
n→ ∞ for some constant C∞, then

Mn
1 →

d N(0,C∞) as n→ ∞. (2.8)

For later discussions, it is worth recalling the derivation of the central limit theorem (2.8).
Let Cn

t = 〈Mn〉t. We have a trivial decomposition of the characteristic function of Mn
1 :

E[eiuMn
1 ] = T0 + T1 + T2 (2.9)

for u ∈ R, where T0 = E[e−2−1C∞u2
], T1 = E

[
eiuMn

1
(
1 − e2−1(Cn

1−C∞)u2 )]
and T2 =

E
[(

eiuMn
1+2−1Cn

1 u2 − 1
)
e−2−1C∞u2]

. If necessary, we replace Mn by a suitably stopped process
to validate integrability of variables. By the convergence of Cn

1, the tangent T1 tends to 0.
Moreover, the torsion T2 vanishes thanks to the martingale property of the exponential
martingale since C∞ is deterministic. Thus, E[eiuMn

1 ] → E[e−2−1C∞u2
] = e−2−1C∞u2

, which
proves (2.8).

For martingales with jumps, a uniformity condition such as the conditional type Lin-
deberg condition is necessary to obtain central limit theorems. Otherwise, processes with
independent increments can appear as the limit.

2.4.2 Berry-Esseen Bounds

Berry-Esseen type bounds are in Bolthausen [24] and Häusler [38]. Rate of convergence in
the central limit theorem for semi-martingales is in Liptser and Shiryaev [58, 60]. In other
frames of dependent structures, error bounds are found in Bolthausen [23] for functionals
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of discrete Markov chains, Bentkus, Götze, and Tikhomirov [10] for statistics of β-mixing
processes, Dasgupta [28] for nonuniform estimates for some stationary m-dependent pro-
cesses, and Sunklodas [87] for a lower bound for the rate of convergence in the central
limit theorem for m-dependent random fields.

2.4.3 Asymptotic Expansion of Martingales

Consider a sequence of random variables (Zn)n∈N having a stochastic expansion

Zn = Mn + rnNn, (2.10)

where for each n ∈ N, Mn denotes the terminal random variable Mn
1 of a continuous martin-

gale (Mn
t )t∈[0,1] with Mn

0 = 0, on a stochastic basis Bn = (Ωn,F n, Fn, Pn), Fn = (F n
t )t∈[0,1].

The variable Nn is a random variable on Bn but no specific structure like adaptiveness is
assumed, and (rn) is a sequence of positive numbers tending to zero as n → ∞. Suppose
that 〈Mn〉1 →p 1 as n → ∞ for the quadratic variation 〈Mn〉 of Mn. Then the martingale
central limit theorem (2.8) ensures the convergence Mn →d N(0, 1) as n→ ∞.

The effect of the tangent T1 appears in the asymptotic expansion of the law L{Zn}. We
suppose that (Mn, ξn,Nn)→d (Z, ξ, η) as n→ ∞ for ξn = r−1

n (〈Mn〉1−1). Define the density
pn by

pn(z) = φ(z) +
1
2

rn∂
2
z
(
E[ξ|Z = z]φ(z)

)
− rn∂z
(
E[η|Z = z]φ(z)

)
, (2.11)

where φ is the standard normal density. Furthermore, we assume that each (Ωn,F n, Pn) is
equipped with a Malliavin calculus and random variables are differentiable in Malliavin’s
sense. Then the derivatives in (2.11) exist, and for any α ∈ Z+, p > 1 and q > 2/3, we
obtain the estimate

∣∣∣∣∣E[ f (Zn)] −
∫

f (z)pn(z)dz
∣∣∣∣∣ ≤ C
(
‖ f (Zn)‖Lp′ + ‖ f ‖L1 ((1+|z|2)−α/2dz)

)

×
(
r−q

n P[σMn < sn]1/p + εn
)

for any measurable function f satisfying E[| f (Zn)|] < ∞ and
∫
| f (x)|pn(z)dz < ∞, where

σMn is the Malliavin covariance of Mn, sn are positive smooth functionals with complete
non-degeneracy supn∈N E[s−m

n ] < ∞ for any m > 1, p′ = p/(p − 1), εn = o(rn), and C is a
constant independent of f . Assumption of full non-degeneracy for σMn is not realistic in
statistical applications, nor necessary in asymptotic expansion.

The central limit theorem for the functional of the form
∫ T

0
T−1/2atdwt for a random

process at is indispensable to deduce asymptotic normality of the estimators in the like-
lihood analysis of the drift parameter of ergodic diffusion processes. Then it is natural to
seek for asymptotic expansion for martingales to formulate higher-order statistical infer-
ence for diffusion processes. As a matter of fact, the martingale expansion went ahead of
the mixing method, as for semimartingales. The second-order mean-unbiased maximum
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likelihood estimator θ̂∗T of the drift parameter θ of an ergodic diffusion process has the
Edgeworth expansion

P
[√

IT (θ̂∗T − θ) ≤ x
]
= Φ(x) +

Γ(−1/3)

2I3/2
√

T
(x2 − 1)φ(x) + o

(
T−1/2
)

where I is the Fisher information at θ and Φ is the standard normal distribution function.
Γ(−1/3) is the coefficient of the Aamari-Chentsov affine α-connection for α = −1/3 [97].

See [97] for details of this subsection. A similar asymptotic expansion formula exits
for general martingales Mn with jumps. In that case, we take ξn = r−1

n (Ξn − 1) with Ξn =
1
3 [Mn] + 2

3 〈M
n〉1. A Malliavin calculus on Wiener-Poisson space is used to quantify the

non-degeneracy of Mn [98].
Mykland [68, 69, 70] provided asymptotic expansion of moments. The author was in-

spired by his pioneering work.
The mixing approach gives in general more efficient way to asymptotic expansion if

one treats functionals of ε-Markov processes with mixing property like the above example.
However, the martingale approach still has advantages of wide applicability. For example,
an estimator of volatility in finite time horizon, non-Gaussianity appears in the higher-
order term of the limit distribution even if the statistic is asymptotically normal. Such
phenomena cannot be handled by mixing approach; however, the martingale expansion
still gives asymptotic expansion.

2.5 Non-ergodic Statistics and Asymptotic Expansion

2.5.1 Non-central Limit of Estimators in Non-ergodic Statistics

The non-ergodic statistics features asymptotic mixed normality of estimators. Non-normality
of the maximum likelihood estimators was observed quite many years ago: White [95],
Anderson [4], Rao [81], Keiding [46, 47].

Extension of the classical asymptotic decision theory was required to formulate non-
ergodic statistics: Basawa and Koul [7], Basawa and Prakasa Rao [8], Jeganathan [45], and
Basawa and Scott [9]. From aspects of limit theorems, the notion of stable convergence is
fundamental since the Fisher information is random even in the limit. The nesting con-
dition with Rényi mixing is a standard argument there. In this trend, Feigin [31] proved
stable convergence for semimartingales.

Statistical inference for high frequency data has been attracting attention since around
1990. Huge volume of literature is available today: Prakasa Rao [77, 78], Dacunha-Castelle
and Florens-Zmirou [27], Florens-Zmirou [32], Yoshida [96, 100], Genon-Catalot and Ja-
cod [33], Bibby and Soerensen [21], Kessler [48], Andersen and Bollerslev [2], Andersen
et al. [3], Barndorff-Nielsen and Shephard [5, 6], Shimizu and Yoshida [85], Uchida [90],
Ogihara and Yoshida [73, 74], Uchida and Yoshida [92, 93], and Masuda [62] among many
others. Recently a great interest is in estimation of volatility. The scaled error of a volatility
estimator admits a stable convergence to a mixed normal distribution, that is, typically for
a volatility estimator θ̂n,

√
n(θ̂n − θ)→ds Γ−1/2ζ where Γ is the random Fisher information

and ζ ∼ N(0, 1) independent of Γ. It is possible to apply the martingale problem method
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as in Genon-Catalot and Jacod [33], Jacod [41], or convergence of stochastic integrals in
Jakubowski et al. [44] and Kurtz and Protter [52] to obtain stable convergence.

2.5.2 Non-ergodic Statistics and Martingale Expansion

To go beyond the first order1 asymptotic statistical theory, we need to develop asymptotic
expansion of functionals. However, the potential (Doléans-Dade exponential−1) that makes
a local martingale from exp(uMn

1) no longer has a deterministic limit, and this breaks a
usual way to asymptotic expansion. In other words, the exponential martingale in T2 is not
a martingale under the measure E[·e−C∞u2/2]/E[e−C∞u2/2], and the torsion of this shift on
the martingale appears in the expansion.

We will consider a d-dimensional random variable Zn that admits the stochastic
expansion (2.10) on (Ω,F , F, P), F = (Ft)t∈[0,1]. Mn is a d-dimensional continuous local
martingale with Mn

0 = 0, and Nn is a d-dimensional random variable. Let Cn
t = 〈Mn〉t,

R
d ⊗Rd-valued random matrix. A d1-dimensional reference variable is denoted by Fn. For

example, Fn is the Fisher information matrix. We shall present an expansion of the joint
law L{(Zn, Fn)}.

The tangent vectors are given by
◦
Cn= r−1

n (Cn
1 − C∞1 ) and

◦
Fn= r−1

n (Fn − F∞). Sup-

pose that (Mn,Nn,
◦
Cn,

◦
Fn) →ds(F ) (M∞,N∞,

◦
C∞,

◦
F∞) and M∞

t ∼ Nd(0,C∞t ). These limit

variables are defined on the extension (Ω̄, F̄ , P̄) = (Ω×
◦
Ω,F×

◦
F , P×

◦
P) of (Ω,F , P).

Let F̌ = F ∨ σ[M∞
1 ]. Random function C̃∞(z) = C̃(ω, z) is a matrix-valued random

function satisfying C̃(ω,M∞
1 ) = E[

◦
C∞ |F̌ ]. Similarly, let F̃∞(ω,M∞

1 ) = E[
◦
F∞ |F̌ ] and

Ñ∞(ω,M∞
1 ) = E[N∞|F̌ ].

To make an expansion formula, we need two kinds of random symbols: the adap-
tive random symbol and the anticipative random symbol. The adaptive random symbol
is defined by

σ(z, iu, iv) =
1
2

C̃∞(z)[(iu)⊗2] + Ñ∞(z)[iu] + F̃∞(z)[iv]

for u ∈ Rd and v ∈ Rd1 . Here the brackets mean a linear functional. This random symbol is
corresponding to the correction term of the classical asymptotic expansion. Let Ψ∞(u, v) =
exp
(
− 1

2C∞[u⊗2]+ iF∞[v]
)
, C∞ := C∞1 and let Ln

t (u) = exp
(
iMn

t [u]+ 1
2Cn

t [u⊗2]
)
− 1. Then

the anticipative random symbol σ(iu, iv) =
∑

j c j(iu)mj(iv)nj (multi-index) is specified by

lim
n→∞

r−1
n E[Ln

1(u)Ψ∞(u, v)ψn] = E
[
Ψ∞(u, v)σ(iu, iv)

]
, (2.12)

where ψn ∼ 1 is a truncation functional a suitable choice of which reflects the local non-
degeneracy of (Zn, Fn).

1 The order of the central limit theorem is referred to as the first order in asymptotic decision theory,
differently from the numbering of terms in asymptotic expansion.
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For the full random symbol σ = σ+σ, the asymptotic expansion formula is defined by

pn(z, x) = E
[
φ(z; 0,C∞)δx(F∞)

]
+ rnE
[
σ(z, ∂z, ∂x)∗

{
φ(z; 0,C∞)δx(F∞)

}]
,

where φ(z; 0,C) is the normal density with mean 0 and covariance matrix C, and δx(F∞)
is Watanabe’s delta function; cf. Watanbe [94], Ikeda and Watanabe [40]. The adjoint
σ(z, ∂z, ∂x)∗ is naturally defined as σ(z, ∂z, ∂x)∗

{
φ(z; 0,C∞)δx(F∞)

}
=
∑

j(−∂z)mj (−∂x)nj

s
{
c jφ(z; 0,C∞)δx(F∞)

}
and similarly for σ. The density formula gives a concrete expres-

sion since E[ψδx(F)] = E[ψ|F = x]pF (x) for functionals ψ and F.
Under certain non-degeneracy conditions, for any positive numbers B and γ,

sup
f∈E(B,γ)

∣∣∣∣∣E
[
f (Zn, Fn)

]
−
∫

Rd+d1

f (z, x)pn(z, x)dzdx
∣∣∣∣∣ = o(rn) (2.13)

as n → ∞, where E(B, γ) is the set of measurable functions f : R
d+d1 → R satisfying

| f (z, x)| ≤ B(1 + |z| + |x|)γ for all (z, x) ∈ Rd × R
d1 . Details are given in [102].

The martingale expansion (2.13) was applied to the realized volatility in [101]. The
martingale part Mn is a sum of double Skorokhod integrals. The anticipative random
symbol σ specified by the integration-by-parts formula at (2.12) has expression involv-
ing the Malliavin derivatives. Recently Podolskij and Yoshida [76] obtained expansions
for p-variations. Construction of higher order statistical inference is a theme of the non-
ergodic statistics today.
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Chapter 3
An Introduction to Normal Approximation

Qi-Man Shao

3.1 Introduction

Normal approximation or, more generally the asymptotic theory, plays a fundamental role
in the developments of modern probability and statistics. The one-dimensional central
limit theorem and the Edgeworth expansion for independent real-valued random variables
are well studied. We refer to the classical book by Petrov (1995). In the context of the
multi-dimensional central limit theorem, Rabi Bhattacharya has made fundamental contri-
butions to asymptotic expansions. The book by Bhattacharya and Ranga Rao (1976) is a
standard reference. In this note I shall focus on two of his seminal papers (1975, 1977) on
asymptotic expansions. Recent developments on normal approximation by Stein’s method
and strong Gaussian approximation will also be discussed.

3.2 Asymptotic Expansions

Let {Xn = (Xn,1, · · · , Xn,k), n ≥ 1} be a sequence of independent and identically distributed
(i.i.d.) random vectors with values in R

k and common distribution Q1. Assume that

E(X1) = 0, CovX1 = I,

where I is the k × k identity matrix. Let v = (v1, · · · , vk) denote a multi-index and write

|v| = v1 + · · · + vk, v! = v1!v2! · · · vk!, xv = (xv1
1 , · · · , x

vk

k ) for x = (x1, · · · , xk) ∈ Rk.
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For a positive integer s, the sth absolute moment of X1 is

ρs = E‖X1‖s,

where ‖ · ‖ is the Euclidean norm. Let Q̂1(t) = E exp(i〈t, X1〉) be the characteristic function
of X1. The vth cumulant of X1 is

χv = i−|v|(Dv log Q̂1)(0),

provided ρ|v| < ∞. Here Dv is the vth derivative, i.e.,

Dv = Dv1

1 · · ·D
vk

k ,

where D j denotes differentiation with respect to the jth coordinate variable. The Taylor
expansion gives

log Q̂1(t) =
∑

2≤|v|≤s

χv

v!
(it)v + o(‖t‖s).

Let

χr(it) = r!
∑

|v|=r

χv

v!
(it)v

and

P̃r(it) =
r∑

m=1

1
m!

{∑∗ χ j1+2(it)

( j1 + 2)!

χ j2+2(it)

( j2 + 2)!
· · ·

χ jm+2(it)

( jm + 2)!

}

where the summation
∑∗ is over all m-tuples of positive integers ( j1, · · · , jm) satisfying∑m

l=1 jl = r. Let

Pr(−φ)(x) = P̃r(−D)φ(x)

where φ is the standard normal density and P̃r(−D) is the differential operator obtained by
formally replacing (it)v by (−D)v = (−1)|v|Dv in the polynomial expression for P̃r(it). For
example,

P1(−φ)(x) = −1
6

k∑

l=1

E(X3
1,l)(3xl − x8

l )

−1
2

∑

1≤l�m≤k

E(X2
1,lX1,m)(xm − xmx2

l )

+
∑

1≤l<m< j≤k

E(X1,lX1,mX1, j)xlxmx j.

Let Qn denote the distribution of n−1/2(X1 + · · · + Xn). Theorem 1.2 in Bhattacharya
(1977) gives the expansion for the density of Qn.
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Theorem 1. Assume ρs < ∞ for some integer s ≥ 2. In order for the distribution Qn to
have a density qn satisfying

sup
x∈Rk

|xv(qn(x) − φ(x) −
s−2∑

r=1

n−r/2Pr(−φ)(x))| = o(n−(s−2)/2), 0 ≤ |v| ≤ s, (3.1)

for sufficiently large n, it is necessary and sufficient for Q∗m1 to have a bounded density for
some positive integer m.

This is followed by an Edgeworth type expansion, see Theorem 1.5 in [4].

Theorem 2. If ρs < ∞ for some integers s ≥ 3 and Q̂1 satisfies Cramér’s condition

lim sup
‖t‖→∞

|Q̂1(t)| < 1,

then for every real-valued, bounded, Borel measurable function f on R
k one has

|
∫

Rk
f d[Qn −Φ −

s−2∑

r=1

n−r/2Pr(−Φ)]| ≤ δn

n(s−2)/2
ω f (R

k) + ω̃ f (e
−dn, Φ), (3.2)

where Pr(−Φ) is the signed measure having density Pr(−φ), δn → 0 as n → ∞, d is a
positive constant, and the quantities δn and d do not depend on f , ω f (Rk) = sup{| f (y) −
f (z)| : y, z ∈ Rk}, and

ω̃ f (ε, Φ) =
∫

Rk
ω f (x, ε)Φ(dx), ω f (x, ε) = sup{| f (y) − f (z)| : y, z ∈ B(x, ε)}.

A Berry-Essen type bound is also available assuming the Cramér condition; see
Theorem 1.7 in [4] and Sweeting (1997).

Theorem 3. If ρ3 < ∞, then for every real-valued, bounded, Borel measurable function f
on R

k one has

|
∫

Rk
f (d(Qn −Φ)| ≤ c1,k{ω f (R

k)ρ3n−1/2 + ω̃ f (εn, Φ)}, (3.3)

where εn = c ρ3n−1/2 and c1,k is a constant depending only on k.

Letting f in (3.3) be the indicator function of a convex set yields for any convex set A

|Qn(A) −Φ(A)| ≤ c2,kρ3n−1/2. (3.4)

As proved in Bentkus (2003), c2,k ≤ 400k1/2.
Bhattacharya (1975) obtains a similar result as (3.3) for unbounded functions f and for

independent not necessary identically distributed random vectors. In particular, for i.i.d.
random vectors Xn, n ≥ 1 in R

k, he proved the following theorem.
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Theorem 4. Assume

ρs < n(s−2)/2/(8k)

for some integer s ≥ 3. Let r be a nonnegative integer, 0 ≤ r ≤ s, and define r0 = r if r is
even, and r0 = r + 1 if r is odd. Then there exist constants ci, 1 ≤ i ≤ 2 depending only on
k, r, s such that the inequalities

|
∫

Rk
f d(Qn −Φ)|

≤ c1 Mr( f ) max
3≤m≤s

ρmn−(m−2)/2 + c1ω̃g(c2ρ3n−1/2, Φr0 ). (3.5)

A direct consequence of (3.5) is a nonuniform Berry-Esseen type bound for the multi-
dimensional central limit theorem.

The results of Theorems 2 and 3 have been extended to general independent random
vectors by Sweeting (1980).

For a statistic that can be expressed as Wn = H(X̄), where X̄ = 1
n

∑n
j=1 X j is a mean of

i.i.d. vectors in R
k and H is a smooth function in a neighborhood of μ = EX1, Bhattacharya

and Ghosh (1988) give a (3.2) type Edgeworth expansion with an error o(n−(s−2)/2). Götze
and Hipp (1983) had previously obtained a useful asymptotic expansion for dependent
sequences.

3.3 Normal Approximation by Stein’s Method

The results presented in the previous section are mainly proved through the Fourier trans-
form or characteristic functions. It was Stein (1972) who introduced a completely different
method to determine the accuracy of the normal approximation. The method works for
both independent and dependent random variables, for normal approximation and also for
non-normal approximation. The method has been successfully applied to study the abso-
lute error of approximations and the relative error as well. Using Stein’s method, Chen and
Shao (2001, 2004) proved the uniform and nonuniform Berry-Esseen bounds for indepen-
dent as well as locally dependent random variables; Chen, Fang, and Shao (2013) obtained
Cramér type moderate deviation theorems for random variables satisfying a general Stein’s
identity. We refer to Chen, Goldstein, and Shao (2011) for a thorough coverage of the fun-
damental methods, as well as recent developments in both theory and applications. We
also refer to Chatterjee (2014) for “a short survey of Stein’s method.”

For the one-dimensional case, let Wn be the random variable of interest. One wants
to prove that Wn can be approximated by a standard normal random variable Z. More
specifically, for a given Borel measurable function h, one wants to estimate

Eh(Wn) − Eh(Z).

Letting f = fh be the solution to the following Stein’s equation:

f ′(w) − w f (w) = h(w) − Eh(Z),
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one has

Eh(Wn) − Eh(Z) = E f ′(Wn) − EWn f (Wn).

A key idea of Stein’s method is to express EWn f (Wn) as close as possible to E f ′(Wn).
Stein’s method has also been extended to multivariate normal approximation for both

smooth and non-smooth functions although the problem is much more challenging for
non-smooth functions, see, e.g., Götze (1991), Chatterjee and Meckes (2008), and Reinert
and Röllin (2009). Götze (1991) used Stein’s method to provide an ingenious derivation
of the Berry-Esseen type bound (3.4) with c2,k = O(k). Bhattacharya and Holmes (2010)
provided a more readable account of Götze’s result than given in his original work with
c2,k = O(k3/2). Chen and Fang (2011) recently also recovered (3.4) with the constant c2,k

of order of k1/2 by developing a concentration inequality in R
k. It would be interesting to

see if the constant c2,k can be reduced to an order of k1/4, as proved by Bentkus (2003).
It is also noted that the results proved by Stein’s method are mainly the first order

approximation. It is unclear whether Stein’s method can be used to prove an Edgeworth
expansion such as (3.2). If one can establish the expansion for independent random vectors,
then one may also be able to obtain similar results for dependent random vectors.

3.4 Strong Gaussian Approximation

Let Xn, n ≥ 1 be a sequence of independent random vectors in R
k with EXi = 0 and

covariance matrix Cov(Xi), and let Yn, n ≥ 1 be a sequence of independent Gaussian
random vectors with EYi = 0 and covariance matrix Cov(Yi) = Cov(Xi). Set

S n =

n∑

i=1

Xi, Tn =

n∑

i=1

Yi.

The central limit theorem as well as Edgeworth expansion provides the distribution app-
roximation between S n and Tn. It is well known that S n cannot be approximated by Tn in
probability on the original probability space; however, the strong Gaussian approximation
gives a completely new aspect. One can construct a new probability space and define a
new sequence of independent random vectors {X̃n, n ≥ 1} and a sequence of independent
Gaussian random vectors {Yn, n ≥ 1} such that

X̃n
d.
= Xn, Ỹn

d.
= Yn

and

‖
n∑

i=1

X̃i −
n∑

i=1

Ỹi‖ = o(an) a.s. (3.1)

where an tends to infinity but as slow as possible. For the sake of simplicity, the strong
approximation result (3.1) will be stated as follows: There is a construction such that

‖S n − Tn‖ = o(an) a.s.
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Let

Δn(X, Y) = max
1≤ j≤n

‖S i − Ti‖.

When k = 1, the strong approximation theory has been well developed. Well-known
results include KMT (1975, 1976)’s strong approximation theorem and the following the-
orem of Sakhanenko:

Theorem 5. Let Xn, n ≥ 1 be independent real-valued random variables with EXn = 0 and
E|Xn|p < ∞ for p > 2. Then there is a construction such that

EΔn(X, Y)p ≤ Cp2p
n∑

i=1

E|Xi|p,

where C is an absolute constant.

For the multi-dimensional case, Zaitsev (2007) gives a similar result as Theorem 5. For
bounded random variables, Zaitsev (1987) obtained the following result.

Theorem 6. Assume that ‖Xi‖ ≤ M. Then there is a construction such that for x > 0

P(Δn(X, Y) ≥ x) ≤ c1,k exp(−c2,kx/M).

where c1,k and c2,k are positive constants depending only on k.

A weaker result, but with a more precise convergence rate, has been established in Lin
and Liu (2009). Let N be a centered normal random vector with covariance matrix Ik.
Let | · | denote the spectral norm for a matrix and | · |k denote |z|k = min{|z1|, . . . , |zk |} for
z = (z1, . . . , zk) ∈ Rk.

Theorem 7. Assume that ‖Xi‖ ≤ cnB1/2
n , 1 ≤ i ≤ n, for some cn → 0 and Bn → ∞ and that
∣∣∣∣B−1

n Cov(S n) − Ik

∣∣∣∣ ≤ bn (3.2)

for some 1 ≥ bn → 0. Suppose that βn := B−3/2
n
∑n

i=1 E‖Xi‖3 ≤ an for some an → 0. Let
dn > 0 be any sequence satisfying d2

n/|β2
n log βn| → ∞. Then, there exists a number n0

determined by the sequences {an, bn, cn1, dn} such that for all n ≥ n0,

|P(|S n|k ≥ x) − P(|N|k ≥ xB−1/2
n )| ≤ An1P(|N|k ≥ x/B1/2

n ) + An2

for all 0 ≤ x ≤ c1,k min{c−1
n , d

−1
n , β

−1/3
n }B1/2

n , where

An1 = c2,k(βnt3
n + dn(1 + x/

√
Bn)),

An2 = 7 exp
(
− c3,kt2

n

)
+ 3 exp

( c3,kd2
n

β2
n log βn

)

+3 exp
(
− c3,kc−1

n b−1
n dn

)
+ 3 exp

(
− c3,kb−2

n d2
n

)
,

c1,k, c2,k and c3,k are positive constants depending only on k, and tn is any positive number
satisfying 4x/B1/2

n + 1 ≤ tn ≤ min{c−1
n , β

−1/3
n }.
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Theorems 6 and 7 have been applied to derive various asymptotic results. For example,
Liu and Shao (2013) establish a Cramér type moderate deviation theorem for Hotelling’s
T 2 statistics.

There has been an increasing interest in the case of k tending to infinity along with n.
Write

S n = (S n,1, · · · , S k) and Tn = (Tn,1, · · · , Tn,k).

Chernozhukov, Chetverikov, and Kato (2014) prove that

Theorem 8. There is a construction such that

P
(
|max

1≤i≤k
S n,i −max

1≤i≤k
Tn,i| ≥ x

)

≤ C
(
x−2B1 + x−3B2 log(kn)

)
log(kn) +Cn−1 log n, (3.3)

where C > 0 is an absolute constant and

B1 = E max
1≤ j,l≤k

∣∣∣∣∣

n∑

i=1

{Xi jXil − E(Xi jXil)}
∣∣∣∣∣,

B2 = E max
1≤ j≤k

n∑

i=1

|Xi j|3 +
n∑

i=1

E max
1≤ j≤k

|Xi, j|3I{max
1≤ j≤k

|Xi, j| ≥ x/(log(kn)}.

Other related results can be found in Chernozhukov, Chetverikov, and Kato (2013).
It would be interesting to improve their results.
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4.1 “Berry-Essen bounds for the multi-dimensional central
limit theorem”
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BERRY-ESSEEN BOUNDS FOR THE MULTI-DIMENSIONAL 
CENTRAL LIMIT THEOREM1 

BY R, N, BHATTACHARYA 

Communicated by P. R. Halmos, September 21, 1967 

1. Introduction. Let { Xn} be a sequence of independent and 
identically distributed random variables each with mean zero, vari
ance unity, and finite absolute third moment f3a. Let Fn denote the 
distribution function of (X1 + · · · +Xn)/(n)1' 2• Berry [2] and 
Esseen [4] have proved that 

(1) sup I Fn(x)-~f x e-'h2dy I ~ c{3 3/n 112, n = 1, 2, · · ·, 
zER1 (21T) -oo 

where c is a universal constant. Consider now a sequence { X(n) 
= (X1<n>, · · · , X1nl)} of independent and identically distributed 
random vectors in Rk each with mean vector (0, · · · , 0) and covari
ance matrix I, the kXk identity matrix. If Pn denotes the probability 
distribution of (X(l>+ · · · +X<n>)jn 112 and <I> is the standard k
dimensional normal distribution, then it is well known that P n con
verges weakly to <I> as n---'> oo. Bergstrom [1] has extended (1) to this 
case, assuming finiteness of absolute third moments of the com
ponents of X(l>. Since weak convergence of a sequence Qn of proba
bility measures to <I> means that Qn(B)---'><l.>(B) for every Borel set B 
satisfying <I.>(iJB) = 0, aB being the boundary of B, it seems natural to 
seek bounds of I P n(B) -<P(B) I for such sets B (called <P-continuity 
sets). Let a be a class of Borel sets such that, whatever be the se
quence Qn converging weakly to <I>, Qn(B)---'><l>(B) as n---'> oo uniformly 
for all BE a. Such a class is called a <P-unijormity class. By a theorem 
of Billingsley and Topsoe [3], a class a is a <I>- uniformity class if and 
only if sup { <P(iJB)•; BE a} t 0 as E t 0, where (iJB)• is the E-neighbor
hood of aB. This leads one naturally to consider the class a1(d, Eo) of 
all Borel sets B for which <P(iJB)·~dE for O<E<Eo, d and Eo being any 
two given positive constants. One may also consider the class ai(d, Eo), 
which is the largest translation-invariant subclass of a1(d, Eo); this 
means that BE af (d, Eo) if and only if all translates of B belong to 
a1(d, Eo). 

I The research for this work was supported in part by the Army Research Office, 
Office of Naval Research, and Air Force Office of Scientific Research by Contract No. 
Nonr-2121(23), NR 343-043. 
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2. Results. We shall write fJ,= I::- 1 Ej X~1)1• for s>O. Also c's 
will denote constants. For example, Ct(k, o), c2(k), and C4 will stand 
for a constant depending only on k and o, a constant depending on k 
alone, and a universal constant, respectively. 

THEOREM 1. Suppose fJ8H < oo for some o > 0. Then, for all n, 

sup I P n(B) - ci>(B) I 
-1/2{ 3(1+8)/(3+8) [ ] 3/(3+8) 

:;;;! n Ct(k, o)fJs..-a + c2(k)d + ca(k)/eo f38+B }, 

where the supremum extends over all B in CXt*(d, Eo). 

We shall state two applications of Theorem 1. 
ExAMPLE 1. Let e be the class of all measurable convex sets in Rk. 

It follows from certain results of Ranga Rao [5] that ec CXt*(d(k), Eo) 
for every Eo>O, d(k) being an appropriate constant depending on k. 
l-Ienee 

sup I Pn(C)- ci>(C) I :;;;! n - 112{ Ct(k, o)fJ!l1tlli<B+8l + c2(k)d(k){3:~~8+Bl} 
cee 

for all n. This is an improvement on a result of Ranga Rao [6]. 
ExAMPLE 2. Let fY(l) be the class of all measurable sets in R2 each 

of whose boundaries is contained in a rectifiable curve of length not 
exceeding l. It may be shown (cf. [3]) that fJ(l) C a1*(47rl+87r, 1). 
Hence Theorem 1 applies. In fact, in this case it suffices to assume 
that {33 < oo, so that we have 

n = 1, 2, · · ·. 

THEOREM 2. Suppose {38+8 < oo for some o > 0. Then, for all n, 

sup I Pn(B) - ci>(B) I 
-1/2{ 6/(3+5) [ ] 3/(3+8) } 

:;;;! n C7(k, o)f38H + Cs(k) d + 1/eo fJsH log(n + 1) 1 

where the supremum extends over all B in a1(d, Eo). 

The methods used in proving Theorems 1 and 2 enable one to 
obtain bounds for general lf?-uniformity classes, and, in particular, 
for any lf?-continuity set. 

An asymptotic expansion holds for the class CXt(d, Eo) under the 
assumption that 

lim sup I f(t) I < 1, 
jtj->00 
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where f is the characteristic function of xo>. If {3. < 00 for some 
integer s~3, then Pn(B) may be estimated by this expansion with 
an error O(n-<•-2>1 2 • [log n]k1 2) uniformly for all BEa1(d, Eo). 

ExTENSIONS. Theorems 1 and 2 may be extended to the fol
lowing cases: (1) { X<n>} is not identically distributed, but 
SUPn L::-1 El x~n) j3H< 00 for some o>O; (2) {x<n)} has a common 
nonsingular covariance matrix perhaps different from I. 

In proving Theorem 1 we look at the convolution (Pn-cl>)*l'n, 
where r n is a probability measure having a characteristic function 
which vanishes everywhere outside a sphere, and r n converges weakly 
to the probability measure degenerate at (0, · · · , 0). Theorem 2 is 
obtained by sharpening a technique of Esseen [4] and Ranga Rao [5]. 

The details and proofs of these results, which are part of the 
author's doctoral dissertation, submitted to the University of Chi
cago, will appear elsewhere. 

AcKNOWLEDGEMENT. I am extremely grateful to Professor Patrick 
Billingsley for guidance and encouragement, and, in particular, for 
suggesting the above investigation. 
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4.2 “Rates of weak convergence and asymptotic expansions
for classical central limit theorems”

Rates of weak convergence and asymptotic expansions for classical central limit theorems.
The Annals of Mathematical Statistics. 42 (1971), 241–259.

c©1971 Institute of Mathematical Statistics. Reprinted with permission.
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RATES OF WEAK CONVERGENCE AND ASYMPTOTIC EXPANSIONS 
FOR CLASSICAL CENTRAL LIMIT THEOREMS 1 

BY R. N. B HATTACHARYA 

University of California, Berkeley 

0. Introduction and summary. Let Qn(n = 1, 2, · · · ), Q be probability measures 
on the Borel q-field of Rk. The sequence {Qn} converges weakly to Q if for every 
real-valued, bounded, almost surely (Q) continuous function g on Rk the 
convergence 

(0.1) 

holds (cf. [9], Chapter I). Such functions g are called Q-continuous. If the indicator 
function /A of the set A is Q-continuous, then A is also called Q-continuous. If fF 
is a class of Q-continuous functions g over which the convergence (0.1) is uniform 
for every sequence {Qn} converging weakly to Q, then fF is called a Q-uniformity 
class. A class of sets is called a Q-uniformity class if the indicator functions of the 
sets of this class form a Q-uniformity class of functions. A systematic study of 
Q-uniformity (in separable metric spaces) ~as initiated by Ranga Rao [21], who 
obtained a number of nice results. His studies were carried further in a very useful 
manner by Billingsley and Topsee [10). 

In this article the error of normal approximation IJ g d(Qn- <1>)1 is estimated for 
arbitrary <1>-continuous g, <I> being the k-dimensional standard normal distribution 
and Qn the distribution of the appropriately normalised nth partial sum of a 
sequence of independent k-dimensional random vectors { x<r>; r = I, 2, · · · } . The 
classical central limit theorems assert weak convergence of {Qn} to <I> under 
certain moment conditions. It is shown here (Theorem I, Section 3) that for an 
arbitrary real-valued, bounded, measurable g on Rk one has 

(0.2) IJ gd(Qn-<1>) j ~ c(k,o)wg(Rk)p~<.1a::>1<3 H>n-t+ J Wg(S(x,en))d<l>(x). 

where o is any positive number; p3 H,n is defined by (1.4), and 

(0.3) wg(A) =sup {!g(x)- g(y)!; x, yeA}, S(x, e)= {y; lx - Yl < e}, 

en = c(k)p~~~~3>n -t log n, 

c(k), c(k, Ci) being positive constants depending only on their respective arguments. 
If en goes to zero as n goes to infinity, then the right side of (0.2) goes to zero for 
every <1>-continuous g. For the rest of this section let us assume that {p3 H,n} is 
bounded. By (0.2), if J wg(S(x, e))d<l>(x) = O(e) as e goes to zero, then the error of 
approximation is O(n-t logn). One may also use (0.2) to obtain uniform upper 

Received April 28, 1969; revised February 22, 1970. 
1 Much of this work was carried out in partial fulfillment of the Ph.D. requirement in the 

University of Chicago. This research was partially supported by U.S. Army Grant DA AROD-3 1-
124 G-816. 
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bounds for errors of approximation over arbitrary <1>-uniformity classes. In 
particular, 

(0.4) sup {jJ g d(Qn-<I>)j; ge~ 1(<1>; c, d, s0)} = O(n-tlog n), 

where 

(0.5) ~1(<I>;c,d,s0)={g;wg(Rk)~c, Jwg(S(·,e))d<I>~B for 0<s~s0}, 

c, d, s0 being arbitrary positive constants. For the largest translation-invariant 
subclass of this class a sharper bound O(n-t), which is best possible, was obtained 
in [3]; [5], (cf. [4]). A similar result (in the i.i.d. case) has been independently 
obtained by Von Bahr [22]. As applications one obtains precise bounds for many 
interesting classes of sets and functions. However, there are <1>-continuous functions 
and <I>-uniformity classes of functions for which the technique used in [5] or [22] 
is not effective. An example in Section 3 shows that there are Borel sets A such 
that the upper bound for jQn(A)-<I>(A)j as provided by [5] (Theorem 1) is 0(1), 
while (0.2) provides the bound O(n-tlogn). A modification of the bound (0.2) 
when applied to g = /A for an arbitrary Borel set A enables one to show that the 
Prokhorov distance between Qn and <I> is O(n-tlogn). It is not known whether the 
factor log n in the expression for Bn in (0.3) (and, hence, in (0.4) and in the estimate 
of Prokhorov's distance) may be dispensed with or not. However, under Cramer's 
condition (3.42) log n may be replaced by one. 

The remaining theorems are proved for the i.i.d. case, partly for the sake of 
simplicity and partly because of the non-availability in the existing literature of 
complete proofs for some of the expansions related to the characteristic function 
of Qn in the non-identically distributed case. Theorem 2 provides an asymptotic 
expansion for J gdQn with a remainder term which is o(n-<•- 2>12) uniformly over 
all gin ~ 1 *(<I>; c, d, s0), the largest translation-invariant subclass of~ 1 (<I>; c, d, s0), 

when Ejx(l>j• < oo for some integers not smaller than three and the characteristic 
function of x<0 obeys Cramer's condition (3.42)'. Applications to the class rc of 
all measurable convex sets, the class L(c, d) (see (3.54)) of bounded Lipschitzian 
functions, etc., are immediate. Theorem 3 gives an asymptotic expansion for J g dQn 
for a very special class of functions g when no restriction like (3.42)' is imposed. 
Theorem 4 provides some classes of functions g (under varying restrictions on the 
distribution of x(l>) for which the error of approximation IJ g d(Qn- <I>)j is of the 
order O(n- 1). 

Section I introduces notation to be used throughout the article. Section 2 
provides basic lemmas for proving th~ results (outlined above) of Section 3. 

1. Notation. All probability measures here are defined over the Borel a-field rJik, 
unless otherwise specified. Let { x<•> = (X 1 <•>, • • • , Xk <•>); r = 1, 2, · · · } be a sequence 
of independent random vectors in R\ the rth vector x<•> having distribution Q<•> 
and characteristic function j<•>. It will be assumed that 

(1.1) E(X/'>)=0, i=1,···,k; r=1,2,···, 

Cov x<•> = v<•>, r=1.2,···, 
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ncrJ being a positive definite covariance matrix. The same symbol will be used for 
a linear operator on Rk and its matrix relative to the standard Euclidean basis. 
Thus Bx denotes the image of x under the map B. Let Bn, Bn' denote a non-singular 
matrix and its transpose, respectively, such that 

(1.2) 

Let 

(1.3) 

B 'B =n("n D(r))-1 n n ~r= 1 • 

Yn = n-tBnL~= 1 xcrJ; Qn(A) = Probability(YnEA), 

fit)= I1~=1pr>(n-tBn't), 

Thus Qn is the distribution of Yn and f, its characteristic function. The covariance 
matrix of Yn is, by (1.2), the identity matrix. We write 

(1.4) 

II (r) = '~ E(X .(r))s 
rs f.....;= 1 J ' 

fJ (r) = "~ E JX .(r)Js s f.....;= 1 J ' 

Ps,n = (L~= 1 E IBn x(r)Js)jn, 

_ ('n (r))j Jls,n - f.....r= 1 Jls n, 

!Js,n = (L~=1 fJs(r))jn, 

As,n(u) = (L~= 1 .A,Crl(u))jn, UER\ 

where JxJ =CD= 1 x/)t, (x, y) = L~= 1 xj yJor x = (x1, · .. , xk), andy= (y1, · .. ,yk) 
belonging to Rk, and .A,Crl(u) is the cumulant of order s of the random variable 
(u, x<rl). The expressions in (1.4) are, of course, defined for appropriate values of s. 
Let Pi(u),j = 0, 1, 2, ···,be polynomials in u = (u1, · · ·, uk) defined purely formally 
by equating coefficients of n- j/2 on both sides of 

(1.5) exp [L}= 3 n -u- 2 >2 .Ai,nCu)jj !] = L}=o n- jf2 Pj(u). 

Thus what P/s are meaningfully defined depends on the set of moments which 
are assumed finite. One has 

(1.6) P0(u) = 1, Pz(u) = A4,n(u)j24+.A~.nCu)j72. 

We shall denote by Pj(- <p) the function on Rk whose Fourier transform has the 
value Pj(it)exp( -JtJ 2/2) at t. Note that since the relation 

(1.7) (it1)'' · · · (itk)'kexp( -JtJ 2/2) 

I o" + .. ·+sk 
=(-1)s,+ .. ·+sk exp[i(t,x)L a s <p(x)dx, 

ox1s, ... xk k 

where <p is the standard normal density, <p(x) = (2n)-kf 2 exp( -JxJ 2/2), holds for 
every k-tuple of nonnegative integers (this may be proved by repeated integration 
by parts), P/- <p)(x) may be obtained ftom the expression Pj(it) exp( -JtJ 2/2) by 
replacing each term (it1)'' .. ·(itk)'kexp(-JtJ 2/2) by (-ojox1)"'·"(-ojoxk)'k<p(x). 
The finite signed measure with density Pj( -<p) is denoted by P/ -<1>). The distri
bution function corresponding to the measure <I> will also be denoted by <1>. 

The topological boundary of any subset A of Rk will be denoted by oA. Also the 
<--neighborhood A" of A is defined by 

(1.8) A"= {x; Jx- yJ < e for some y in A}, B > 0. 



50

244 R. N.BHATTACHARYA 

For ease of reference the definitions (0.3) of the sphere S(x, e) and the oscillation 
w9(A) are repeated here. 

(1.9) S(x,e) = {y; yeR\ lx- Yl < e}, 

wg(A) = sup{lu(x)-g(y)l;x,yeA}, 

g being a given real-valued function on Rk. Often times we shall deal with the 
oscillation function wg(S(x, e)) on Rk into the nonnegative reals for a given positive e. 

A probability measure P will be said to have support in a set B if P(B) = 1. 

CONVENTION. Throughout c's will denote constants, either absolute or depending 
on the indicated arguments. 

2. Some lemmas. We shall prove five lemmas in this section. Lemma 1 gives a 
type of inequality first obtained by Cramer [11] (page 72, Lemma 2). 

LEMMA 1. If p3H,n < oo for some b, 0 < <5 ~ I, and ltl ~ nt/(2p~~~::;d>), then 

(2.1) lfn(t)- (1 + n -tp 1 (it)) exp ( -ltl2 /2)1 

~ (5/2)p~~d::>t<3 H>n-<1 H)/2Citl3 H + ltl3(1 H)) exp ( -ltlz /2). 

PROOF. We first prove the lemma fork= I. In this case 

(2.2) - -(3+6)!2p P3 +d,n - Jl.2,n 3 +~,n · 

Let 

(2.3) g(r, t) = f<'l(n -tJ1.2.tt), U(r, t) = g(r, t) -1. 

By Taylor expansion (cf. [18],.page 199), 

(2.4) g(r, t) = 1- Jl.z (r)t2 /(2np,z,n) + p,3 (r)(it)3 /(6ntp,!,n) 

+ 021-~p~~~ jtj3 H/[(1 + <5)(2 + <5)(3 + b)n<3+~)/2p,~:nH)f2J, 

where f) is used here and elsewhere for a complex number, not always the same, of 
magnitude not exceeding one. In the given range of t, 

(2.5) IU(r,t)l < 136• jlog(1 + U(r, t))- U(r, t)l ~ I U(r, t)jl. 

Hence from (2.4) one gets 

(2.6) 

log g(r, t) = - J12 (r)t2 /(2np,z,n) +(i)J1.3 (r)(it)3 J(np,z,n)t 

+ 0(-t)fJ~~~ jtj 3 +6/(np,z,nP H)/Z + O[p,z (r)t 2/(2np,z,n) 

+(-l;)p3(r) jtj 3/(np,z,n)t +(t)p~~~ jtj 3 +0/(np,z,nY3+~)f2]2. 

We now note that for 2 ~ s ~ 3+<5 one has 

(2.7) 'n (fJ (r))2 < (nfJ )2s/(3 +~) 
t...,r= 1 s = 3 +~,n • 

Summing both sides of (2.6) over r = I,···, n, and using (2.7) one obtains after 



51

RATES OF WEAK CONVERGENCE AND ASYMPTOTIC EXPANSIONS 245 

elementary calculations (note that for any three complex numbers a, b, c, 
ja+b+cj 2 ~ 3(jaj2 + jbj 2 + jcj 2)) 

(2.8) logfn(t) = - t2 /2 + JJ.3 ,n(it)3 /(6ntJ1.1,n) 

say, so that 

(2.9) 

Clearly,. 

(2.10) 

+ (}(~ ~)p3 +d,n jtj3 +d /(11(1 +d)/2 Jl.~:n+d)/2) = - t2 /2 + V, 

fn(t)-exp(- t2/2) = [exp(V)-1] exp(- t2/2). 

exp(V)-1 = V+(0/2)jVj 2exp(jVj). 

Also simple calculations show that in the given range of t 

(2.11) 

Using (2.10) and (2.11) in (2.9) one obtains 

(2.12) lfn(t)- [1 + n -tJ1.3 ,nJ1.i,t{it)3/6] exp (- t2/2)j 

~ (!)f3No~,:'>f<3 H)J1.2.~(1 H)/2n -(1 H)/2(jtj3+d + jtj3(1 H>) exp ( -jtj2 /2) 

for jtj ~ nt/(2pYJ~~d>). This proves the lemma for k = 1. Note that in this case 
P1(it) = A3,n(it)/6 = J1. 3,nJ1.2,t{it)3j6. For the general case, define, for a non-zero t 

in Rk, 

(2.13) 

Then { z<r>} is a sequence of independent random variables centered at expectations, 
and 

(2.14) (L~= 1 E(z<r>)2)/n = 1, (i jtj) 3(L~= 1 E(z<r>)3)/(6n) = P 1(it), 

(L~= 1 E jz<r>j•)jn ~ Ps,n, s ~ 0. 

Applying (2.1) (fork= 1) to the characteristic function g"' say, of(L~= 1 z<r>)jnt and 
using (2.14) one gets the inequality 

(2.15) jgn(v)- [1 + n -t(iv)3(L~= 1 E(z<r>)3)f(6n)] exp (- v2 /2)j 

~ (!)p~~o~,:'l/(Ho>n-<1 +O)f2(jvj3+d + jvj3<1 +D)) exp (- v2 /2) 

for jvj ~ nt/(2p~~~~o>). Take v =It! in (2.15). Since g/ltl) =fn(t), (2.15) reduces to 
(2.1). D 

LEMMA 2. {f p3+D.n < w for some o, 0 < o ~ 1, and ltl ~ nt/(4p3 1J~;o>), then 

(2.16) l.t~(t)l ~ exp( -jtj2/3). 

PROOF. Fork = 1 and o = 0 this is a result of Cramer [II] (page 75, Lemma 3). 
Since p 3 ,n ~ p31J~.~o> for o ~ 0, (2.16) holds in the given range oft, for the case 
k = 1. The multi-dimensional case is proved by applying the one-dimensional 
inequality to the characteristic function 9n defined above. D 
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The next two lemmas estimate the effect of smoothing by convolution. We denote 
by p, +, p,-, IJil, the positive, negative, and total variations, respectively, of a finite 
signed measure p, (p, = p,+ -p,-, lll-1 = p,+ + p,-). The symbol '*' denotes the opera
tion of convolution. For a bounded, real-valued function g on Rk and a positive 
number 8, we define (see (1.9)) 

(2.17) g•·•(x) = sup{g(y);yeS(x,8)}, 

gi·'(x) = inf{g(y);yeS(x,8)}. 

Note that g•·• is lower semi-continuous and gi,e is upper semi-continuous because 
of the (readily verified) equalities 

(2.18) {x;g•·"(x) > c} = U{S(x,8);g(x) > c}, 

i·'=-(-g)'•'. 

In particular, g•·•, i·", wg(S( ·, 8)) = g•·•- gi,e are all Borel measurable (whether 
or not g is measurable). 

LEMMA 3. Let G. be a probability measure with support in S(O, 8), Pan arbitrary 
probability measure, and Q a .finite signed measure. For a real-valued, bounded, Borel 
measurable function g on Rk, define 

(2.19) y(8) =max {f g•·"d(P- Q) *G.,-J gi·"d(P-Q) *G.}, 

r(8) =max {f (g•· 2'- g) dQ +, J (g- i·2") dQ+}. 

Then, for every positive 8, 

(2.20) IJ gd(P-Q)I ~ y(8)+r(8). 

PROOF. By definitions (2.19), 

y(8) ~ J g•·'d(P-Q) * G, 

= J1x1 <e [J g•·•(y +x) d(P- Q)(y)] dG,(x) 

(2.21) = J1x1 <e [J g•·•(y +x) dP(y)- J g(y) dQ(y) 

Similarly, 

- J (g•·•(y +x)- g(y)) dQ(y)] dG.(x) 

~ J1x1 <e [J g(y) dP(y)- J g(y) dQ(y)- J (g•·•(y+x)- g(y)) dQ+(y)] dG,(x) 

~ J1x1 <e(J gd(P- Q)) dG,(x)- J1x1 <• [J (g•· 2"(y)- g(y)) dQ+(y)] dG.(x) 

= J gd(P-Q)- J(g•· 2"-g),dQ+ ~ J gd(P-Q)-r(8). 

-y(8) ~ J i·"d(P-Q) *G.= J1x1 <e [J i·'(y+x)d(P-Q)(y)] dG.(x) 

(2.22) = J1x1 <• [J i•'(y+x) dP(y)- J g(y) dQ(y) 

+ J (g(y)- gi·"(y+x)) dQ(y)] dG.(x) 

~ J gd(P-Q)+ J(g-gi• 2')dQ+ ~ J gd(P-Q)+r(8). 
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If J gd(P-Q);;;; 0, (2.21) yields (2.20); if J gd(P-Q) < 0, then (2.20) follows from 
(2.22). 0 

CoROLLARY. Under the hypothesis of Lemma 3, the following inequality holds: 

(2.23) IJ g d(P- Q)l ;;;;; IJ g d(P- Q) *Gel+ J W9 (S( ·,e)) d I(P- Q) *Gel 

+ J ro9{S( ·, 2e)) d IQI. 

If, further (P- Q) * G.(Rk) = 0, then 

(2.24) -IJ gd(P-Q)I;;;;; rog(R") I<P-Q)• G.l (Rk)+ J rog{S( · ,2e))d IQI. 

PROOF. It is easy to see that 

(2.25) y(e);;;;; IJ gd(P-Q)• G.l +J rog(S( · ,e))di(P-Q)• G.l. 

and that 

(2.26) -r(e) ;;;;; J rog(S( ·, 2e)) d IQI. 

Using these estimates in Lemma 3 one gets (2.23). lf(P- Q) * Ge(Rk) = 0, then from 
the definition of y(e) it follows that 

(2.27) y(e) ;;;;; ro9(Rk) I(P- Q) * G.l (Rk). 

Inequalities (2.26), (2.27) yield (2.24). 0 
The next lemma is similar to Lemma 3 in content. Given any probability 

measure G we denote by G. the distribution of the random vector eX, X having 
distribution G. In this notation G. of Lemma 3 may be regarded as arising from a 
G with support in the unit sphere. Given any real-valued function g on Rk we 
denote by Uu the translate of g by u, i.e., 

(2.28) Uu(x) = g(x+u). 

For a given probability measure G, and a constant r:x' satisfying 

(2.29) t<r:x' < 1, 

one can find a constant r:x such that 

(2.30) 

LEMMA 4. Let P be a probability measure and Q a finite signed measure. For a 
real-valued, bounded, Borel measurable function g on Rk, define 

(2.31) y 1(e) =sup {max(IJ Uu"·«• d(P-Q) * G.l, IJ Uu1',."d(P-Q) * G.l); u eRk}, 

T1(e) =sup [max {J (gu"'2,."-Uu)d IQI, J(gu-Uu1' 2,.") d IQI}; u eRk], 

where G is any probability measure, r:x is chosen to satisfy (2.30). Then one has, for 
every positive e, 

(2.32) 
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This lemma and the following corollary are proved in [5] (Lemma 8 and relation 
(2.27)). 

CoROLLARY. Under the hypothesis of Lemma 4 one has 

(2.33) IJ g d(P- Q)l ~ (2cx' -1)- 1[sup {IJ g. d(P- Q) * G,l + J W9u(S( ·, cxs)) 

· d i(P-Q)* G,l; u ERk}+sup {J w9u(S( · ,2cxs))d IQI; uERk}]. 

Lastly, we shall need the following lemma. 

LEMMA 5. There exists a probability measure H 1 with support in S(O, I) and having 
a characteristic function ' satisfying 

(2.34) IW)I ~ cx(k)exp( -ltlt), tERk. 

PROOF. By a result of Ingham [17], there exists a probability measure H on PA 1 

such that 

(2.35) IJ exp(itx) dH(x)l ~ cx(k) exp (-I tit), 
Let H 1 be the product measure on (R\ PAk), each coordinate measure being H. 0 

3. Main results. We continue to use the notation of Section I. 

THEOREM I. If p3 +lJ,n < oofor some D > 0, then for any bounded, Borel measurable 
function g on R\ the inequality 

(3.1) IJ g d(Qn- fl>)j ~ c(k, D)wg(Rk)p~~o~:)/(3 +a)n -t + J w9(S( ·, sn)) dfl> 

holds with en = c(k)p~~~.~oln -t log n. 2 

PROOF. Without loss of generality we assume 0 < <5 ~ I. Let Z be a random 
vector with distribution H 1 of Lemma 5. Let H~ denote the distribution of rJZ for 
positive 1J. In Lemma 3 take P = Qn, Q = fl>, s =prJ, G, = H~ *P, where pis a positive 
integer and H'l *P is the p-fold convolution of H~. Since (Qn- fl>) * G,(Rk) = 0, one 
has, by (2.24) (corollary to Lemma 3), 

(3.2) IJ g d(Qn- fl>)l ~ wg(Rk) I(Qn- fl>) * G,l (Rk) + J wg(S( ·, 2s)) d<l>. 

Now 

(3.3) I(Qn-fl>)* G,l (Rk) ~ I(Qn-fl>-n-tPl( -fl>))* G,l (Rk)+n-t IP1( -fl>)l (Rk). 

One can show (cf. [5], Lemma 7) that 

(3.4) 

We now estimate lflnl (Rk), where 

(3.5) fln = (Qn-fl>-n-tPl( -fl>))* G,. 

2 One may take o = 0 if k = 1 or 2 (see [5]). This is true for all kif {X<'>) is i.i.d. This and some 
other recent results in the i.i.d. case are contained in the author's article "Recent results on refine
ments of the central limit theorem" in the forthcoming Proc. Sixth Berkeley Symp. Math. Statist. 
Pro b. 
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(3.7) illni (Rk- S(O, r)) 

~ (Qn * Hq*P +<1> * Hq *P)(Rk- S(O, r)) + n -tIP 1( -<1>)1 * Hq*P(Rk). 

We shall later chooser, p, and '1 so as to satisfy 

(3.8) r > 2pq, 

and, consequently, 

(3.9) 

Therefore, 

(3.10) Qn *Hq*P(Rk-S(O, r)) ~ Qn(Rk-S(O, r/2)), 

<1> * Hq *P(Rk- S(O, r)) ~ CJ>(Rk- S(O, r/2)). 

Now it is easy to show that 

(3.11) C1>(Rk-S(O, r/2)) ~ (c1(k)exp( -r2/8k))fr. 

Also one can show (cf. [5], relation (2.48)) by using the Berry-Esseen theorem (cf. 
[14], page 43, Theorem 1) that 

(3.12) QnCRk- S(O, r/2)) ~ (c1(k) exp(- r2/8k))fr+c2(k)p3 ,n n-t. 

Using these estimates and (3.4) in (3.7) one obtains 

(3.13) lllnl (Rk- S(O, r)) ~ (2c1(k)exp(- r2 /8k))/r+ c2(k)p3 ,n n-t + h(k)p3 ,n n-t. 

It remains to estimate lllnl (S(O, r)). Now lln has an integrable Fourier transform 
~n given by 

(3.14) 

where Cis the characteristic function of H 1. By the Fourier inversion theorem lln 
has a density qn given by 

(3.15) qn(x) = (2n)-k J exp [- i(t, x)] · ~nCt) dt, 

Hence 

(3.16)-

where 

(3.17) 12 = Jnti>nlf6J(Zpi1.,<~,;.d>>J !JnCt)CP(qt)l dt, 

J3 = Joti>nlf6J(Zpi1.n,;.d>)) 11 +n-tP1(it)i exp( -ltl 2/2)dt. 
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(3.18) 
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I < c (k)p3(1 HJ/(3 Hln- (1 H)/2 1 = 4 3+11,11 . 

Since one may assume that 

(3.19) nt;(2p1/(3 Hl) ~ 1 3+11,11 -

(in the contrary case (3.1) is trivially true), one easily obtains 

(3.20) 

By Lemma 2, 

I < c (k)p3<1 +IIJ/(3 +ll>n-<1 +11)/2 3 = 5 3+11,11 . 

(3.21) I2 ~ Jlltl>n•l6f(2p~/~~.;.6>nexp( -ltl2/3)dt+ Jlltf~ 11 t/2f(4p~~~l.~6>)J lf,.(t)CP(I11)i dt. 

The first integral is smaller than 

(3.22) c (k)p3<1 +11)/(3 +llln- (1 +11)/2 
6 3+11,11 ' 

and the second is, by Lemma 5, smaller than 

(3.23) 

We now choose 

(3.24) 11 = 16(logcx(k)+ k)2p~~~.~ 11>n-t, 

p = [logn]+1, 

where [x] denotes the integer part of x. Elementary calculations now yield 

(3.25) 

Using estimates (3.22) and (3.25) in (3.21) one obtains 

(3.26) I ~ c (k)p3<1+11J/(3+11>n-<1Hl/2+c (k)n-k12log-2k n. 2- 6 3+11,11 7 

The estimates {3.18), {3.20) and {3.26), when used in {3.16), give 

(3.27) 1, i(S(O r))<c (k ~)p3(1+11J/(3+11lr"n-tlog-2kn ,..,. ' = 8 ' 3+11,11 . 

Now choose 

(3.28) r = (8k'log(n+l))t. 

Then .{3.13) and {3.27) give 

(3.29) !fl.,. I (R~ ~ c9(k, ~)p~<.J11::>1<3 +11>n-t. 

Finally, making use of {3.29) in {3.2) one obtains (via (3.3) and {3.4)) the desired 
inequality (3.1). Note that e = Pl1 =:= c(k). p~~t~11>n-t log n by the choice of 11 and p 
in {3.24). 0 
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REMARK 1. If g in Theorem 1 is such that 

(3.30) J ro9(S( ·,e)) d<D = O(e), e-+0, 

then 

(3.31) IJ gd(Qn-<D)i ~ c(k,8)wg(Rk)p~~.;;:>I<H.S>n-t+c 10(k,g)p~~~;.s>n-tlogn. 

For the <D-uniformity class ~1(<D; c, d, e0 ) defined by (0.5) one has 

(3.32) sup {IJ gd(Qn-<D)i ;ge~ 1(<D; c, d, e0)} 

~ c(k, 8)cp~~.s~:>1< 3 +.s>n -t +c(k)(d+cfe0)p~~~.~6>n-t log n. 

The term involving e0 is introduced to take care of those integers for which 
en> e0 ; note that IJ gd(Qn-<D)i ~ c for all gin the class ~1(<D; c, d, e0). If we 
denote by d 1 ( <D; d, e0 ) the class of all Borel sets A satisfying ( cf. [5], Section 1) 

(3.33) <D((oA)") ~ de, 0 < e ~ e0 , 

oA denoting the boundary of A, then the class of all indicator functions of sets in 
this class is contained in ~ 1 ( <D; 1, d, e0). 

Hence 

(3.34) sup {!Qn(A)- <D(A)i; A Ed 1 (<D; d, eo)} 

::;; c(k 8)p3(1 H)/(3 Hln -t + c(k)(d + 1/e )p3/(3+.Sln -t log n. - • 3+6,n 0 3+6,n 

For suitable c and d these two classes include most functions and sets of interest. 
But (3.1) provides an upper bound for every <D-continuous g. By a variant of a 
characterization of uniformity classes of functions due to Billingsley and Tops0e 
[8] (also see [5]), ~ is a <D-uniformity class of functions if and only if 

(3.35) (i) 

(ii) 

sup{ro9(Rk);ge~} < oo, 

limsup.~ 0 {J rog(S( · ,e))d<D;ge~} = 0. 

Hence (3.1) provides effective uniform upper bounds to errors of normal approxi
mation over arbitrary <D-uniformity classes. 

REMARK 2. An error bound different from (3.1) is given in [5] (Theorem 1). 
According to this 

(3.36) IJ gd(Qn-<D)i ~ c'(k,8)w9(Rk)p~~.s~:>I<3 H>n-t 

+ c'(k) sup {J (J)gu(S(. 'an)) d<D; u E Rk}, 

where an= c"(k)p~~~.~ 6>n-t. Although (3.36) provides a precise upper bound 
O(n-t) (if {p3 H,n} is bounded) for several interesting classes of functions and sets 
(cf. [5], [20]), we shall show by an example now that there are Borel sets A for 
which <D((oA)") = O(e) as e goes to zero, while sup {<D((o(A -u))"); ueRk} = 1 for 
every positive e; thus for such a set A, (3.36) is useless, while (3.1) provides an 
upper bound O(p~~.s~:>l< 3 +.s>n-tlogn). 



58

252 R. N.BHATTACHARYA 

EXAMPLE. In R1 let 

(3.37) A= u~l Uf~1l)/ll{[r+2i/r,r+(2i+1)/r]}, 

where [(r-1)/2] is the integer part of (r-1)/2. It is easy to see that for every 
positive e 

(3.38) sup{ct>((o(A-u))");ueRk} = 1, but 

REMARK 3. It is clear that if g has a compact support, then one may take o = 0, 
in Theorem 1. For this case one will have to replace (3.2) by (see (2.23)) 

(3.40) IJgd(Qn-ct>)l ~ 1Jgd(Qn-ll>)•G.I+Jw9(S(·,e))d!(Qn-ll>)•G.I 

+ J w9(S( ·, 2e)) dct>, 

and (3.27) by (use Lemma 1 and Lemma 2 with o = 0) 

(3.41) l.uni(S(O,r)) ~ Cu(k,g)p3,nn-t, 

where r is such that g vanishes outside S(O, r). A similar remark applies to the 
inequality (3.36). It is not known however, whether the factor logn in the 
expression for en in Theorem 1 may be removed or not. If the sequence of 
characteristic functions {j<•>} obeys Cramer's condition: for all positive 11 

(3.42) sup {!J<'>(t)l; It I > f/, r = 1, 2, · · ·} < 1, 

then even without the factor log n in en (i.e., with p = 1 in (3.24)) one may easily 
show that / 2, defined by (3.17), is of the smaller order of lfn as n goes to infinity, 
so that one obtains (3.1) with en= c(k)p~1~.~ 6>n-t. Consequently, logn may be 
removed from the expressions (3.31), (3.32), and (3.34). For the independent and 
identically distributed case (3.42) is equivalent to': 

(3.42)' limsup1,1.., 00 IJ(l>(t)l < 1. 

REMARK 4. There are several well-known metrics which metrize the topology of 
weak convergence of probability measures on (Rk, fllk). We mention here the Levy 
distance dL, the Prokhorov distance dp, and the bounded Lipschitzian distance 
d BL defined by 

dL(Q,Q') = inf{e;e > O,FQ(x-ree)-e ~ FQ.(x) 

~ F0(x+ee)+e for all x in Rr.}, 

(3.43) dp(Q,Q') = inf{e;e > O,Q(A) ~ Q'(A")+e and 

Q'(A) ~ Q(A")+e for all Borel sets A}, 

dBL(Q, Q') =sup {IJ gd(Q-Q')I;g, lu(x)-g(y)l ~ lx- Yl for all 

x,y in Rk,w,(Rk)~ 1}, 
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where FQ, FQ' are the distribution functions corresponding to Q, Q', respectively, 
and e = (1, I,···, I) is the unit vector in Rk. The fact that dL metrizes the topology 
of weak convergence of probability measures in R 1 is proved in [I6] (page 33, 
Theorem I); the proof for Rk is entirely analogous. A proof of the corresponding 
assertion for dp (in a separable metric space) may be found in [9] (page 237-238). 
Dudley [12] (Theorem I2) shows that dBL also metrizes this topology (in a separable 
metric space). We now estimate these distances between Qn and <1>. Note that in 
view of Bergstrom's extension ( cf. [1]) to Rk of the Berry-Esseen theorem, one has 

(3.44) n--+ oo, 

if {p3 <rl} is a bounded sequence. This estimate is precise. The estimate (3.44) may 
also be obtained under weaker hypotheses (cf. [5], (3.19)). It has been shown in [5] 
(Section 3, Application 2) that under the hypothesis of Theorem I, 

(3.45) n--+ oo. 

To estimate dp we note that (cf. [13], Proposition 1) 

(3.46) dp(Q,Q')=inf{e;e>O,Q(A):;;;Q'(A")+e forallBorelsets A}. 

Also, note that, by (2.21), for every bounded Borel measurable g, 

(3.47) J g d(Q- Q'):;;; J g•·• d(Q- Q') * G,+ J (g5 •2'- g) dQ', 

for probability measures Q, Q'. Taking g = JA, where A is a Borel set, one obtains 

(3.48) Q(A)-Q'(A):;;; (Q-Q') * G.(A")+Q'(A2'-A). 

Now take Q = Q", Q' = <1>, and G, as in Theorem 1. From the estimates obtained 
in the course of proving Theorem 1, one now has, for every Borel set A, 

(3.49) Q (A)-<l>(A) < c (k b)p3<lH)/( 3 Hln-t+<l>(A'"-A) 
n = 12 ' 3 +t5,n ' 

where en is as in Theorem 1. Let c13(k, b)= max {c(k), c1 z(k, b)}. 
Then 

(3.50) 

(3.51) 

It now follows from (3.46) and (3.50) that 

(3.52) 

where 

The next theorem provides an asymptotic expansion for a large class of functions 
under Cramer's condition (3.42)'. For a given triplet (c, d, e0 ) of positive numbers, 
we define 

(3.53) ff 1*(<l>;c,d,e0) = {g;guEff1(<l>;c,d,e0) for all UERk} 

= {g; wg(Rk) :;;; c, J wu/S( ·,e)) d<l> :;;; de for all e in 

(0, e0 ] and for all u in Rk}. 
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Thus :!' 1 *( <1>; c, d, a0 ) is the largest translation-invariant subclass of :F 1 ( <1>; c, d, a0 ). 

We consider a few examples. 

EXAMPLES. Let 'lzl be the class of all measurable convex sets of Rk. For a suitable 
constant d depending on k (cf. [20], Appendix A, or [5], Application 1), the class 
of all indicator functions of members of 'lzl is contained in :!' 1 *( <1>; 1, d, a0) for 
every positive a0 • The bounded Lipschitz class L(c, d) of all functions g satisfying 

lg(x)-g(y)l ~ dlx-yl for all x andy in Rk, 

is contained in :!'1 *(<1>; c, 2d, a0). The class of all indicator functions of sets in 
R2 , each with a boundary contained in a rectifiable curve of length not exceeding a 
given number/, is contained in :!'1*(<1>; 1,2/+4, 1) in R 2 (cf. [10], Section 9, 
Example 7). 

The proof of the theorem below makes use of Lemma 4 and an important 
estimate of Bikjalis [8]. We shall consider only the identically distributed case. The 
symbol <1>, will denote the distribution of BZ, where z1 has distribution <1>. 

THEOREM 2. Let {x<r>} be a sequence of independent and identically distributed 
k-dimensional random vectors each with a zero mean vector, a covariance matrix I 
(the k x k identity matrix), and a finite moment Ps = EIX(l)l•, s being an integer not 
smaller than three. If Q, denotes the distribution of <I~= 1 x<r>)jnt, then for every 
triplet o.f positive numbers (c, d, a0), 

(3.55) sup {IJ gd[Q,- Ii=~ n-if2P/-<l>)JI ;gE:!'1*(<1>; c, d,a0 )} 

= o(n-<s-2)12), 

provided x 0 > obeys Cramer's condition: limsup 111 -oo if<l)(t)l < 1. 

n -4 oo, 

PROOF. It has been shown by Bikjalis [8] (relations (15), (16), (22), (28), (29) 
combined) that 

(3.56) 

for a suitable B satisfying 

(3.57) B = o(n-<s-2)12), n -4 oo. 

By Lemma 4, for every bounded Borel measurable g, 

(3.58) 

where, denoting by v, the signed measure 2}:~ n- jf 2 Pl- <1>), one has 

(3.59) y1(a) = sup {max <If gus,ae d(Q,- v,) * <1>,1); u E Rk} 

~ wg(Rk) ICQ,- v,) * <1>,1 (Rk) = o(n -(s- 2)/2), n -4 oo, 

by (3.56). The inequality in (3.59) holds because 

(3.60) (Q,-v,)(Rk) = 0. 
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Also, 

(3.61) r1(s) =sup [max {J(gu8 ' 2'"- Uu) d lvnl• J(gu- Bui,2a') d lvnl}; u eRk], 

so that, for g e !F 1 *(<I>; c, d, s0), one has 

(3.62) r 1(s) ~ sup {f cv9JS( ·, 2as)) d(<I> + L}.: in- j12 IPi -<I>)!); u e Rk} 

~ 2 dae+ sup {J cv9JS( ·, 2as)) d(Lj:i n- j12 1Pi -<I>)!); u eRk}. 

Now (see the definition of P/ -<I>) in Section I) for r = (3slogn)t, 

(3.63) Js(O,r) cv9JS( ·, 2as)) d(Lj: in- j12 IPi -<I>)!) 

~ c14(k)n-t P.(l + r 3<•- 2 l) J cv9.(S( ·, 2as)) d<I> ~ c15(k)p. de, 
and 

(3.64) JRk-S(O,r)cv9"(S( · ,2ae))d(Lj:i n-ji2 1Pi -<I>)!) 

~ cvg(Rk) Lj:i n-j12 IP/ -<I>)! (Rk-S(O, r)) = o(n-•12), 

Hence 

(3.65) 

One now obtains (3.55) by using (3.59) and (3.65) in (3.58). D 

REMARK 1. As an application of Theorem 2 one has 

(3.66) 

11 -+ Cf.). 

n-+ oo. 

n-+ oo, 

under the hypothesis of Theorem 2. This is an improvement on a previous result 
of Ranga Rao [20] (Theorem 5.3.2). A result similar to Theorem 2 for indicator 
functions has been proved by Von Bahr [22] (Theorem 3(b)) under more restrictive 
assumptions. When applied to distribution functions (i.e., taking the supremum in 
(3.66) over the subclass of infinite rectangles), one obtains a previous result due to 
Bikjalis [8] (Teorema 2) and Von Bahr [22] (Theorem 2). The present author has 
now been able to prove that one may replace !F 1 *(<I>; c, d, s0 ) by the larger class 
!F 1 (<I>; c, d, s0 ) in Theorem 2. The proof, however, is based on somewhat different 
techniques, and will be given elsewhere. 

REMARK 2. If x<ll has a distribution with a non-zero absolutely continuous (with 
respect to Lebesgue measure) component, then Cramer's condition is satisfied. 
However, in this case the following much stronger inequality holds under the same 
moment conditions as in Theorem 2: 

(3.67) n-+ oo. 

Fork= 1, this was proved simultaneously by Petrov [19] (Theorem 5) and Bikjalis 
[6] (Teorema 1). For arbitrary kit has been proved by Bikjalis [8] (Teorema 3). 

Theorem 2 obviously holds (and so does Theorem 1) if we allow g to be complex
valued, and redefine !F 1 *(<I>; c, d, s0 ) appropriately. In particular, if one takes 
g(x) = exp [i(t, x)], x E R\ then one obtains 

(3.68) lfit)-[Lj:~n-j12P/it)]exp(-ltl 2/2)1 =o(n-<•- 2 )12), n-+oo, 
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for all t in Rk. However, much more refined expansions of the characteristic 
function f,.(t) are available (cf. [16], page 204, Theorem I for k =I, and [20], 
Theorem 5.4.I for arbitrary k), under the same moment conditions as in Theorem 
2, and without the assumption of Cramer's condition (such expansions are, in fact, 
used to prove (3.56); note also that Lemma I of Section I is an expansion of this 
kind). It is, therefore, natural to seek out functions g for which asymptotic 
expansions hold whatever be the type of distribution of x<l). The theorem below is 
only a preliminary result in this direction. It does not imply (3.68). 

THEOREM 3. Let {x<r>} be a sequence of independent and identically distributed 
k-dimensional random vectors, each with a zero mean vector, a covariance matrix I 
(the k x k identity matrix), and a finite moment Ps = EJx(l>J• for some integers not 
smaller than three. Let Qn be the distribution of (L~= 1 x<r>);nt. Then for a real
valued, integrable function g on Rk whose Fourier transform '¥ satisfies 

(3.69) 

the asymptotic expansion 

(3.70) 

holds. 

s w- 2 l'~'<t)l dt < oo, 

PROOF. We need the following lemma (cf. [20], Theorem 5.4.I). 

n-+ oo 

LEMMA 6. For It I ~ nt(l/8s)p. - 31•, the characteristic functionfn of Qn satisfies 

(3.71) lfn(t)- (~};;~ n-i/2 Pi( it)) exp ( -J tl 2 /2)J 

~ c t6(k, s) b(n )n- <•- 2)/2 p,3l•- 2)/•(Jtl' +I tl3<•- 2)) exp (-I tl2 /4), 

where b(n) goes to zero as n goes to infinity. Now by Parseval's formula 

(3.72) J gd[Qn- }2j;;;~ n-i12 pi( -<D)] 

= (2n)-k Jl¥( -t)[fn(t)-(}2j:~ n-ii2Pj(it))exp( -ltl 2/2)] dt. 

The integral on the right is estimated first over the region {ltl ~ nt(lj8s)p. - 31•} by 
Lemma 6. This is of the order o(n- <•- 2>12). Over the complement of this region it is 
bounded above in absolute value by 

(3.73) (2n)-k f!lt!>nY:.(l/Ss)p,-3/•J llf'(t)l dt 

+ (2 n )-k J {it!> n'h(l/Ss)p, -3/•J I~};;~ n- i/2 Pi(it))l exp (-I tJ 2 /2) dt. 

The first integral is o(n-<•- 2 >12 ) because of (3.69), while the second integral is 
o(n-<•- 2>12 ) because of the presence of the exponential term. D 

REMARK. Condition (3.69) implies that g has bounded, continuous derivatives of 
all orders up to (and including) s-2. 

EXAMPLES. The functions g 1(x)=exp[-}2L=taii(xi-m;)(xi-mi)] where 
A = ((aii)) is a positive definite symmetric matrix and m = (m 1 , • • ·, mk) is a given 
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vector in Rk, gz(x) = Ilf= 1 (1 + x/)- 1, and any function whose Fourier transform 
has a compact support (e.g., Ilf= 1 (sin2 x;)fx/) meet the requirement (3.69). 

Before stating the final result let us observe that one cannot expect the error 
IJ gd(Qn-<1>)1 to be of order o(n-t) if the second term n-t J gdP1( -<I>) in the 
asymptotic expansion (whenever appropriate) does not vanish. It does vanish, 
however, if g is symmetric (about zero) in each co-ordinate for every set of values 
of the remaining co-ordinates, in which case we shall say that g is symmetric. It 
also vanishes if the third order moments of x<0 (i.e., E(X/1l xpl X/ 1l) for all 
i,j, l) vanish (e.g., if x<1l and -x<o have the same distribution). Esseen [14} 
(Theorem 1, page 92) has shown that the error is of the order O(n-k!(k+ll) uniformly 
over all indicator functions of spheres centered at the origin provided E lx<o 14 is 
finite. Theorem 4 below provides some classes of functions (under varying 
restrictions on {x<rl}) for which the error of normal approximation is O(n- 1). 

THEOREM 4. Let {x(r)} be a sequence of independent and identically distributed 
k-dimensional random vectors each being centered at expectation, and having the 
covariance matrix I and a.finitefourth moment p4 = E IX<1ll4 • Let g be a real-valued, 
bounded, Borel measurable function on Rk. Let also the following hypothesis (H) 
hold: either g is symmetric, or all the third order moments of x<0 are equal to those 
of <I>. Then each of the conditions (a), (b), (c) below implies 

(3.74) n--+ oo. 

(a) g is integrable and has an integrable Fourier transform \f' satisfying 

(3.75) c--+ 00. 

(b) Cramer's condition (i.e., limsupltl-+oo IJ< 0 (t)l < 1) holds, and 

(3.76) sup {J wuJS( ·,e)) d<l>; u eRk} = O(e), e,J.O. 

(c) The distribution of the random vector x<0 has a non-zero absolutely continuous 
component. 

PROOF. (a) By the hypothesis (H) and Parseval's formula, 

(3.77) J gd(Qn-<1>) = J gd(Qn-<1>-n-±Pl( -<I>)) 

= (2n)-k J \f'(- t)[fn(t) -(1 + n -tp 1(it)) exp ( -ltl 2 /2)] dt. 

Over the region {ltl ~ n±(If32)p4 -t} t~e last integral is of the order O(n- 1), by 
Lemma 6. Over the complement of this region it is bounded above in absolute 
value by 

(3.78) (2n)-kJ!Itl>nl/2(1/32)P4-3/4J 1\f'(t)l dt 

+ (2n) -k J lit I> nl/2( 1; 32Jp4- 3/4 J 11 + n -t P 1 ( it)l exp (-I tl 2 /2) dt. 

The first integral is of the order O(n- 1) because of (3.75), and the second integral 
is of the order o(n - 1) because of the presence of the exponential term. 
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(b) In this case (3.74) is a consequence of Theorem 2 and the first equality in 
(3.77). 

(c) In this case (3.74) follows from the first equality in (3.77) and Remark 2 
following Theorem 2. D 

REMARK 1. If one assumes, instead of (H), that all moments of order s and less 
(s is an integer larger than two) of x< 1 l coincide with the corresponding moments 
of <1>, then under the condition (b) one has, by Theorem 2, 

(3.79) 

since the polynomials Piit) (see (1.5) and remember that every cumulant of <I> of 
order three or more is zero), and, hence, the corresponding signed measures 
Pi -<I>), vanish identically for j = I, 2, · · ·, s- 2. If, in this case, (c) holds, then 
(by (3.67), 

(3.80) 

REMARK 2. All the results in this article may be stated for convergence to a 
normal distribution <I>I: with an arbitrary positive definite covariance matrix ~. 
This may be done directly by using expansions of characteristic functions in terms 
of the characteristic function of such a normal distribution (cf. Bikjalis [7]), or by 
noting that (cf. [5], Section 4) if {Qn} converges weakly to <I>I, then for every 
bounded, measurable g, one has 

(3.81) 

where { Pn} converges weakly to <1>, and gT - 1(x) = g(T - 1(x)), T being a linear 
operator satisfying 

(3.82) 
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Let Q,. be the distribution of the normalized sum of n independent 
random vectors with values in R", and <I» the standard normal distribution 
in R". In this article the error I ~ fd(Q,.- <1»)1 is estimated (for essentially) 
all real-valued functions f on R" which are integrable with respect to Q,. 
when sth moments are finite, and for which the error may be expected to 
go to zero. When specialized to known examples, the (main) error bound 
provides precise rates of convergence. 

0. Introduction and summary. In this article we study rates of convergence 
for the classical central limit theorem. For the sake of simplicity let us assume 
in this section that {X,.: n 6 1} is a sequence of i.i.d. random vectors with values 
in R"(k 6 1) and that 

(0.1) Cov X1 =I, 

Here I is the identity matrix. The classical central limit theorem asserts that 
the distribution Q,. of n-i(X1 + ... + X,.) converges weakly to the standard 
normal distribution <I> on R", as n ~ oo. This means that 

(0.2) lim,._ .. l ~nk/d(Q,.- <1>)1 = 0 

for every bounded measurable real-valued function f on R" whose points of 
discontinuity form a <1>-null set. It is reasonable to expect that the rate of con
vergence in (0.2) will depend on the range M0(/) off (see (1.6)) and on the 
average oscillation function (see ( 1. 3)) 

(0.3) wAe: <I>)= ~nk wAx, e)Cl>(dx) (e > 0). 

Indeed, a variant of a general theorem due to Billingsley and Tops9le [9] 
(Theorem 1) proved in [3] (Theorem 1') shows that in order that the relation 

(0.4) lim,. sup16 _,. l~n"fd(P,.- <1>)1 = 0 

be satisfied for a given class .5T of bounded Borel measurable functions on R" 
and for every sequence of probability measures {P,.: n 6 1} converging weakly 
to <I>, it is necessary as well as sufficient ,that one has 

(0.5) 

The second inequality ( 1.11) in our theorem implies, when specialized to r = 0, 

Received January 8, 1974; revised February 7, 1975. 
AMS 1970 subject classification. Primary 60F05. 
Key words and phrases. Central limit theorem, rates of convergence, average oscillations, 

Fourier transform. 
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s = 3, that one has 

(0.6) J~R"fd(Q,.- <I>)J ~ c/M0(f)p3 n-> + c2'&1(c3'p3 n-•log n: <D). 

Thus it provides an effective bound for every bounded almost surely (w.r. t. <D) 
continuous f (uniformly over every class ffsatisfying (0.5)). Further, (1.10) 
shows that the factor log n in (0.6) may be removed if one replaces & 1 by the 
function (of e) 

(0.7) & 1(e: <D)= sup11 eR" w111(e: <D), 

where f 11 is the translate off by y (see (1.5)), so that one obtains the important 
inequality 

(0.8) J~Rkjd(Q.,- <I>)J ~ c1 M0(f)p3 n-t + C2 6J1(c3 p3 n-t: <D). 

The applications (2.1 ), (2. 5) follow from (0. 8). The inequality (0.6) is still 
useful in estimating some elusive quantities like the Prokhorov distance between 
Q,. and <I> (see [5], Application 4.3, pages 472-473), and error bounds for 
functions f for which w1 is small and w1 is large. As special cases of (0.6), (0.8) 
(or (2.1 ), (2. 5)) one can obtain virtually all known 'uniform' or Berry-Esseen 
type bounds. Because M 0(f) = oo iff is unbounded (and so may be wt(e: <I>)), 
(0.6), (0.8) are unsuitable for unbounded f. It turns out that the proper things 
to look at are Mr(f), wg( e: <I> ro) defined by ( 1.4), (1.6), (1. 7), ( 1, 9) and ( 1.13), 
and one obtains the very general inequalities (1.10), (1.11). This takes care of 
all functions which are integrable with respect to Q,. under the given moment 
condition. Application 2 provides the simplest examples of unbounded functions 
(namely those which are Lipschitzian) to which (1.10) may be applied; however, 
the same inequality (2. 7) would hold if wg(e: <I> ro) ~ d1 ea( e > 0), where g, <I> ro 
are defined by (1.13), (1.7). Perhaps of greater significance is the fact that (even 
for bounded f) ( 1.10) uses different features (of growth and average smoothness) 
off for different values of r. This enables one to obtain the very general in
equality (2.13). In turn this inequality yields essentially all known 'nonuniform' 
rates (e.g., (2.16), (2.17)) and the 'mean central limit theorem' (2.18). 

References to some earlier work are given in Section 2. It should be mentioned, 
however, that even for the i.i.d. case and bounded f the present results are 
significant extensions of corresponding results in [ 5] (Theorems 4.1, 4.2). For 
general non-identically distributed random vectors the theorem improves earlier 
investigations [2]-[ 4] of the author in, two directions. First, with s = 3, it relaxes 
the moment condition assumed earlier (namely, Pa+J < oo for some a > 0). 
Secondly, of course, it is much more general in scope, being able to deal with 
all integrable functions and yielding existing as well as new nonuniform rates. 

The proof of ( 1.1 0) is based on a number of technical lemmas which are stated 
in Section 3 without proof. Some of these are either available i"n the current 
literature or easily deduced from them. The other lemmas are new. Detailed 
proofs of all lemmas will appear in [6]. To facilitate comprehension of the 
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proof of the theorem we briefly sketch the main ideas here. If the distribution 
Q1 of X1 has an integrable characteristic function (ch. f.) Q1, then the ch. f. Q,. 
of Q" is integrable for all n, and one can use Fourier inversion to obtain the 
density of the signed measure Q" - <I> in terms of Qn - <D. To get an estimate 
of the variation norm IIQn- <1>11 one may integrate the bound of the density so 
obtained over Rk. Although precise estimates of Qn- <Dare available, integration 
over the unbounded domain Rk results in a loss of precision; to overcome this 
one also incorporates estimates of D 01(Q,. - <i>) (where a is a nonnegative integer 
vector and na is the ath derivative) in this scheme and uses the powerful 
Lemma 8. Since this Lemma can be used only if ~ llxW+1Qn(dx) is finite, one 
has to resort to truncation. Lemmas 1, 5, and 6 allow one to take care of the 
perturbation due to truncation, and a fairly precise estimate of IIQ,. - <1>11 is 
obtained. For integration of unbounded functions, however, one needs to 
estimate ~ llxWIQn- <I>I(dx), where IQn- <I>I is the total variation (measure) 
of Qn - <I>. The procedure for this is similar; one looks at the signed measure 
llxWo(Q,.- <I>)(dx), where r 0 is defined by (1.9), instead of Qn- <I>. We use r0 

instead of r because llxW is not a polynomial for odd rand the Fourier-Stieltjes 
transform of llxW(Qn - <I>)(dx) for an odd r is not nearly as well-behaved as that 
for an even integer r. However, this change from r to r0 does not entail any 
essential loss of generality; for one merely changes <I>r to <Pro (see (1.7)) and, 
the normal density being rapidly decreasing at infinity, this change is insignificant. 
In the general case (i.e., when X1 does not have a density) we smoothen Q,. by 
convolving it with a smooth kernel K,, apply the above argument to (Q,. - <P) * 
K, and, for final accounting, use the general Lemma 7. Although in the actual 
proof one uses expansions of Q,. (and D 01Q,.) beyond the first term <D for greater 
precision, the ideas are quite similar to those explained above. 

It is noteworthy that the present method allows one to obtain analogous 
significant extensions of existing results on asymptotic expansions in case Q1 has 
a density (as given in Bikjalis [7], Theorem 3) or when Q1 satisfies the so-called 
Cramer's condition (as given in Bhattacharya [5], Theorem 4.3). Indeed, the 
derivation of such an extension in the first case using Lemma 3 is simpler (than 
the present proof), since, as indicated in the sketch above, the smoothing by 
convolution in the last step may be avoided. These new results and details of 
their derivations will appear in [6] and will not be discussed any further here. 

1. Notation and the main result. Let X1, ••• , X,. be n independent random 
vectors with values in Rk. Throughout this article we assume, without any 
essential loss of generality, 

(1.1) EXi = 0 (1 ~ j ~ n), 

where EXi is the expectation (vector) and Cov Xi the covariance matrix of Xi, 
and I is the k x k identity matrix. We write 

(1.2) p. = n-1 .I;j=l Ps,j (s > 0) ' 
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where 11·11 denotes Euclidean norm in Rk. Let f be a real-valued Borel measurable 
function on Rk. We define 

(1.3) wAx, e) =sup {lf(y)- f(x)l: y E Rk, IIY- xll < e} (x E Rk, e > 0). 

For a given measure v on Rk (measures and signed measures are defined on the 
Borel sigma-field) define 

(1.4) w1(e: v) = ~Rk w1(x, e)v(dx), 

&Ae: v) = supveRk &1/e: v), 

where the translate fv off is defined by 

(1.5) 

For a given nonnegative integer r define 

(1.6) Mr(f) = supzeRk (1 + llxln-1lf(x)l ' 

M 0(/) = sup {lf(x) - f(y)l: x, y E Rk} . 

For a given finite (signed) measure v on Rk and for a given r0 ~ 0, define a new 
(signed) measure vr0 by 

(1. 7) JJr0(dx) = (1 + llxWo)v(dx), r0 > 0, 

l.Jo = JJ. 

Let Q, denote the distribution of n-! ,L;j=1 Xi and let <D denote the standard 
normal distribution on Rk. Our main result is the following. 

THEOREM. Assume 

(1.8) Ps < ncs-2JI2j(8k) 

for some integers ~ 3. Let r be a nonnegative integer, 0 ~ r ~ s, and define 

(1.9) if r is even, 

if r is odd. 

There exist constants ci, c/ (i = 1, 2, 3) depending only on k, r, s, such that the 

inequalities 

( 1.10) 

and 

(1.11) 

lhkfd(Q,- <D)I ~ c1 Mr(f)max{p,.n-c"'-2)/2: m = 3, · · ., s} 

+ c2wu(CaPan-!: <Dr0)' 

I~Rkfd(Q,- <D)I ~ c/Mr(f)max{pmn-cm-2)12 : m = 3, · · ., s} 

+ c2'&1(c3'p3 n-~ log n: <D) 

hold for every real-valued Borel measurable function f on Rk satisfying 

(1.12) 
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g(x) = (1 + llxWo)-y-(x) 

=f(x) 

if r>O, 

if r = 0. 

Assumption (1.8) may be replaced simply by 

(1.14) Pa < 00 ' 

if r = 0. 

2. Applications. 

819 

2.1. Let A be a Borel subset of Rk. Taker= 0, s = 3,f =/A (the indicator 
function of A) in the theorem. Inequality (1.10) then reduces to 

(2.1) IQ,.(A)- <I>(A)I ~ c1 p3 n-~ + C2 supv•Rk <l>((oA)' + y), 

where 

(2.2) 

oA is the topological boundary of A and (oA)'' is the set of all points whose 
distances from oA are less than e'. This follows from 

(2.3) M0(/A) = 1, W1A(x, e)= IWAJ•(x), 

Denoting by Sli"a *(d: <D) the class of all Borel sets A satisfying 

(2.4) supyeRk <D((oA)' + y) ~de", 

for a given pair of positive numbers a, d, one has (from (2.1 )) 

(2.5) supA•..w,*<d:<I>J IQ,.(A)- <I>(A)I ~ C1 p3 n-~ + C2 d(c3 p3 n-1)", 

whenever (1.14) holds. Examples of various classes of sets A satisfying (2.4) 
uniformly for a = 1 and some dare given in [3]. Among these is the class Y!? 
of all Borel measurable convex subsets of Rk. Inequalities similar to (2.1 ), (2. 5) 
were first obtained independently by Von Bahr [14] and Bhattacharya [2] under 
somewhat more stringent moment conditions. For the special class Yf? (replacing 
Sli""* by Yf? and a by 1) inequality (2.5) was also obtained by Sazonov [13] in 
the i.i.d. case. 

2.2. An immediate application of (1.10) is to a function f satisfying 

(2.6) lf(x)- f(y)l ~ d1llx- Yll", x,y ERk, 

for some a, 0 < a~ 1, some d1 > 0, and some integer r, 0 ~ r ~ s .. For such 
a function ( 1.10) yields 

(2.7) I~Rkfd(Q,.- <D)!~ C1 Mr(f) max {p.,n-<"'- 2)12 : m = 3, · · ·, s} 

+ c2dl(CaPan-~)". 
2.3. For an application of a different nature, let A be a Borel set and define 

(2.8) f(x) = (1 + d•(O, oA))/A,(x), 
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if 0 \t R,., 
if 0 E Rk, 

and d(O, aA) is the Euclidean distance between 0 (the origin) and aA. Note that 

(2.10) M.(f) ~ 1. 

Taking r = s in the theorem, one has 

lg(x + y + z) - g(x + y)l 

(2.11) 
~ (1 + llx + Yll'o)-11/(x + Y + z)- f(x + Y)l + c6s 

~ (1 + \!x + yl!'o)-1(1 + d•(O, aA))lcaA)•(x + y) + c5 s 

~ (1 + [d(O, aA) - s]•o)-1(1 + d•(O, aA))lcw•(x + y) + c5 s 

l!zl! < s, 0 < s < cr> 
for a suitable constant c7• The constants c6 , c6 , c7 as well as c8--'-c13 below depend 
only on sand k. On integration with respect to <D,0, (2.11) yields 

(2.12) Oiu(s: <D.0) ~ C6 sup11 eRk <D,0((aA)• + y) + C 8S. 

Hence ( 1.10) reduces to 

(1 + d•(O, aA))!Q,.(A)- <D(A)! 

(2.13) = lh~<fd(Q,.- <D)i 

~ c1 max{p,.n-<"'-2' 12 : m = 3, · · ·, s} + C9 supv•Rk <D,0((aA)•' + y), 
where 

(2.14) 

For the class <tf? of convex sets one has (see von Bahr [14], Lemmas 8, 9) 

(2.15) sup0 .'ll" <D,0((aC)•' + y) ~ c11 s'. 

Using (2.15) in (2.13) one obtains a result announced inRotar' [12] (Theorem2): 

(2.16) SUPao'll" (1 + d•(O, aC))!Q,.(C)- <D(C)I 

~ c12 max {p,. n-<"'-2''2 : m = 3, ... , s} . 

Taking C = (-oo, x], XERk, one obtains 

jF,.(x) - <D(x)! 

(2.17) ~ c13(1 + min{!xi!•: i = 1, · · ., k})-1 

X max {p,.n-<"'-2' 12 : m = 3, · · ·, s}, x = (x1 , • • ·, x,.) E R", 
where F,.(.) and <D( ·)are the distributions of Q,. and <D, respectively. Fork= 1, 
(2.17) was proved by Nagaev [ 11] in the i.i.d. case. Fork = 1, (2.17) immediately 
yields the so-called mean centra/limit theorem: 

(2.18) !JF,.- <D!!P = (~R1 JF,.(x)- <D(x)\P)11P 

~ Cu max {p,.n-<"'-2' 12 : m = 3, ... , s} 
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for all p > 1fs. Here c1, depends only on sand p. Inequalities like (2.18) were 
first obtained by Agnew [ 1] and Esseen [ 10]. ' 

3. Proof of the theorem. We shall only give a detailed proof of inequality 
(1.10), and outline the modifications necessary to prove (1.11). Note that all 
the applications above stem from (1.10). 

We need some additional notation. Let Xr,J(t) denote the rth cumulant of the 
random variable (t, XJ), where ( , ) denotes Euclidean inner product, t E Rk, 
and r is a positive integer. Define 

(3.1) Xr(it) = n-1ir I;j=1 Xr,J(t)' 

p (it)= '\'r- _1_ {"* Xr1+2(it) 
r .C...m-1 f £-J ( + 2)! m. r 1 • 

where the summation I;* is over all m-tuples of positive integers (rl' ... , r ,.) 
satisfying 

(3.2) 

Associated with the polynomials Pr are the functions Pr defined by 

(3.3) Pr(x) = (2rr)-k ~nk exp{ -i(t, x)- t[[t[[ 2}Pr(it) dt. 

It is easy to show that Pr is a linear combination of the standard normal density 
on Rk and some of its derivatives. For convenience we write 

(3.4) P0(it) = 1 , 

P0(x) = (2rr)-k12 exp{ -t[[x[[2}, 

We also define truncated random vectors 

(3.5) 

Write 

(3.6) 

if [[XJ[[ ~ nt 

if [[Xi[[ > nt, 

1 ~j ~ n. 

and define polynomials P/ as in (3.1) with Xrjt)- replaced by the rth cumulant 
of (t, ZJ)· If Dis nonsingular, define functions P/ by 

(3.7) P/(x) = (2rr)-k ~nk exp{ -i(t, x)- i(t, Dt)}P/(it) dt, r > 0, 

Let Q,.', Q,." denote the distributions of n-!(Z1 + · · · + Zn) and n-!(Y1 + · · · + Y,.), 
respectively. We also write 

(3.8) p/ = n-1 I;j=1 E[[ZJW. 

Finally, if D is nonsingular we let B denote the unique symmetric positive 
definite matrix satisfying 

(3.9) B• = n-1 • 
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The following series of lemmas will be needed. Detailed proofs of these will 
appear in the forthcoming monograph [6], although some of them are essentially 
proved in the literature. 

LEMMA 1. Let p. < oo for some integers> 3. Then one has 

(3.10) 

and 

(3.11) 

i(t, Dt)- lltWI ~ 2kn-<•-2ll2p. 

p/ ~ 2rpr 
~ 2rn<r-s)/2p8 

if 2 ~ r ~ s, 

if r > s. 

This type of estimate was earlier obtained by Bikjalis [7] (pages 411-412), 
[8] (Lemma 10). 

LEMMA 2. Let m be an integer not smaller than three. For every integer r ~ m 
and every nonnegative integer vector a = (a1, • • ·, ak) satisfying a1 + · · · + ak ~ 
3r, one has 

I(Da.l\')(it)i ~ cl6(1 + p~r(m-3)/(m-2>)(1 + lltll3r-ac .. ·-ak). p~/(tn-2) 

where na = (ajat1)a1 · · · (ajatk)ak and c16 depends only on r, m, k, and a. If 
a 1 + ... + a,. > 3r, then naP/ is identically zero. 

A special case of Lemma 2 appears in Bikjalis [8] (Lemma 17). 

LEMMA 3. SupposeD is nonsingular. Let 

(3.12) 

Let m be an integer not smaller than three. Then there exist two positive numbers 
c16, c17 depending only on m and k such that if 
(3.13) 

then 

(3.14) 1Da[I1i=1 E(exp{(iBt, n-iX1)}) - :L;;';t n-r12P/(iBt) · exp{ --!litW}]I 

~ Cu1J,.n-<tn-2)/2[iitll"'-ac···-ak + 1it113(m-2l+al+· .. +ak]. exp{-tiitW}' 

for every nonnegative integer vector a = (a10 • • ·, ak) satisfying a 1 + · · · + ak ~ m. 

Special cases of this lemma appear in Bikjalis [7] (Lemma 8), [8] (Lemma 16). 

LEMMA 4. Suppose (1.8) holds f'Or some integer s ~ 3. Let a,.' denote the 
characteristic function of Q,.'. If 

(3.15) 

then 

I(Daa .. ')(t)i ~ cla(1 + lltW1+ .. ·+ak) exp{ -"2"54iitW} 

for every nonnegative integer vector a = (a10 • • ·, a~e)· Here c18 depends only on a 
and k. 
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This result is essentially due to Rotar' [12] (Lemma 7). 

LEMMA 5. Suppose (1.8) holds for some integers;;;;; 3. Then Dis nonsingular, 
and for every integer r, 0 ~ r ~ s - 2, one has 

(3.16) 

n-rl2jP,.(x) - P/(x)j ~ c19p,n-<•-2>12(1 + llxllar+2) exp{ -illxW + l!xil}' 
n-'"12JP,.(x + a,.) - P,.(x)J 

~ Coop.n-<•-2>12(1 + l!xW'"+1). exp { -!llxW + 8!* llxll} X E Rk' 

where c19, c20 depend only on r, s, k. 

LEMMA 6. Assume ( 1.8) for some integer s ;;;;; 3. Recall that Q,.'' is the distri

bution of n-i(Y1 + · · · + Y,). For every integer r, 0 ~ r ~ s, there is a positive 
number c21 (depending only on s, k, and r) such that 

SRk llxii'"IQ,.- Q,."j(dx) ~ c2lp.n-<•-2ll2, 

where j,uj denotes the total variation (measure) of a finite signed measure ,u. 

LEMMA 7. Let ,u be a finite measure and v a finite signed measure on Rk. Let e 

be a positive number and K, a probability measure on R" satisfying 

(3.17) (3 = K,({x: llxll < e}) >!. 
Then for each real-valued, Borel measurable bounded function f on Rk one has 

ISRkfd(,u- v)j ~ (2(3- 1)-1[llfll .. ll(.u- v) * K,ll + wJ(2e: jvi)J, 
where llfll .. = sup {if(x)j : x E Rk}, Jvj is the total variation of v, and * denotes 
convolution. 

This is proved in [5] (Lemma 2.2, inequality (2.14)). Finally one has 

LEMMA 8. Let h be integrable with respect to Lebesgue measure on Rk and satisfy 

hk llxllk+1 jh(x)l dx < oo . 
Then there exists a positive constant c22 depending only on k such that 

Jlhll1 ~ C22 max {ijDPh1!1 : 0 ~ {31 + · · · + (3k ~ k + 1}, 

where II lh denotes V-norm, fz is the Fourier transform of h and (3 = ({31, • • •• {3k) 
is a nonnegative integer vector. 

The above lemma is perhaps well known to analysts. 
After these preliminaries we proceed to prove (1.10). The constants c23-c47 

below do not depend on anything other than r, s, k. The symbol S h d,u denotes 
integration of h with respect to ,u over the whole space Rk. The characteristic 
function of a probability measure Q is denoted by 0. 

PROOF OF INEQUALITY (1.10). Let <1>', <I>" denote normal distributions on Rk, 
<I>' having mean zero and covariance D while <I>" has mean -a,. and covariance 
I. One has 

(3.18) IS fd(Q,. - <I>)! ~ IS fd(Q, - Q,.")l + IS fd(Q,." - <1>)1 • 
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By Lemma 6, 

(3.19) Is fd(Q,. - Q,.")l ~ M,(f) s ( 1 - II XI niQ .. - Q,.''l(dx) 

~ 2cMM .. (f)p.n-<•-2112 . 
Also, 

(3.20) IS/d(Q,."- <D)I = IS/ .. ,.d(Q,.'- <D")I ~ IS/ .. ,.d(Q,.'- <D')I 

+ IS/ .. ,.d(<D'- <D)I + IS/ .. ,.d(<D- <D")I· 

But, by Lemma 5 (with r = 0), 

IS/ .. ,.d(<D'- <D)I ~ M,(f) S (1 + llx + a,.II')I<D'- <DI(dx) 

~ M .. (f) S (1 + 2'11a .. W + 2'11xii')I<D' - <DI(dx) 

(3.21) ~ M .. (f)[II<D'- <DII + 2'11a .. II'II<D'- <DII 

+ 2• S llxWI<D' - <DI(dx)] ~ C24 M,(f)p,n-<•- 2112 , 

IS/ .. ,. d(<D - <D") I ~ M,(f)[ II<D - <D"II + 2'11a,.WII<D - <D"II 

+ 2• S llxWI<D - <D"I(dx)] ~ C25 M,(f)p.n-<•-M. 

Note that 11a .. 11 ~ p.n-<•-M ~ 1/(8k) (by Lemma 1 and (1.8)). Hence (3.18) 
reduces to 

(3.22) IS/d(Q,.- <D)I ~ c26 M .. (f)p,n-<•- 2112 + IS/ .. ,.d(Q,.'- <D')I· 

To estimate the second term on the right side of (3.22) we introduce a kernel 
probability measure K on Rk satisfying 

(3.23) K({x: llxll < 1}) ~ i, S llxW+s+2K(dx) < oo, 

K(t) = 0 if lltll ~ c27, 

One construction of such a probability measure is given in [5] (Lemma 3.10). 
For e > 0 define the probability measure K, by 

~ 

(3.24) K,(B) = K(c1B) BE .'!;$k, c 1B = {e-1x: x E B}. 

Then one has, by (3.23), 

(3.25) K,({x: llxll < e}) ~ i, K,(t) = 0 if lltll ~ C27/e. 

Now 

IS/ .. ,. d(Q,.' - <D')I 

= IS (1 + llx + a,.ll'o)-y(x +a,.)· (1 + llx + a,.II'0)(Q,.'- <D')(dx)l 

~ IS (1 + llx + a,.Wo)-y(x + a,.)(1 + llxii'0)(Q,.'- <D')(dx)l 

+ M .. 0(/) S lllx + a,.ll'0 - llxii'0I(Q,.' + <D')(dx), 

(3.26) S lllx + a,.ll'o - llxll'oi(Q,.' + <D')(dx) 

~ 'olla,.ll S (llxWo-1 + lla,.II'0- 1)(Q,.' + <D')(dx) 

~ r0p,n-<•-2>12[EIIn-i(Z1 + ... + Z,.)Wo-1 + (8kt•o+l 

+ S (llxll'0- 1 + (8kt•o+1)<D(dx) 

+ S (llxll•o-1 + (8k)-•o+l)I<D' - <DI(dx)] ~ c2sp.n-<•-M' 



77

NORMAL APPROXIMATION 

using Lemmas 1, 4, 5 and inequality (1.8). Hence 

(3.27) I~ fd(Q .. - <1>)1 ~ c29(M .. (f) + M .. 0(f))p,n-<•-2>12 

+ I~ Y.,,.(x)(1 + llxWo)(Q,.'- <l>')(dx)l 

where Y.,,.(x) = g(x +a .. ). By Lemma 7, 

(3.28) I~ Y.,,.(x)(1 + llx!ro)(Q,.'- <l>')(dx)l 

where 
~ 2(sup,.Bk IY(x)I)II(Q .. '- Cl>')r/K.II + 2ciJ0(2.s: <1>~0), 

(3.29) (Q,.' - <1>') .. /dx) = (1 + llx!ro)(Q,.' - <l>')(dx) . 

Choose 

(3.30) 

By Lemma 8, writing lal for the sum of the coordinates of a vector a, 

825 

(3.31) II(Q,.'- <1>') .. 0 * K,ll ~ Ca01 .S1+P2I:>k+ro+l ~ IDP1(Q .. '- ci»')(t)DP2K,(t)l dt. 

Since DP2K,(t) = 0 if lltll > n!j(16pa), and 

(3.32) IDP2K,(t)l ~ ~ .si.S2IIxP2IK(dx) ~ ca1, 

where one hasx" = x1"1 ... X~c"k for a nonnegative integer vector a= (a1, ... , a,~:), 

(3.33) ~ IDP1(Q,.'- ci»')(t) • DP2K,(t)l dt ~ Ca1 ~!lltll:>"tf(lGpa>liDPl(Q,.'- <l>')(t)l dt. 

Now 
~ !lltll~ .. if(l&p8 >l IDPl(Q,' - ci»')(t)l dt 

~ ~ !lltii~A,l IDP1[Q,.'(t) - .L;~t,:0 1 n-T'12P~,(it) exp{ --!(t, Dt) }]I dt 

(3.34) + ~ IDP1[.L;~t,:11 n-r'12P;,(it) exp{ -!(t, Dt)}]l dt 

+ ~{A,.<IItii::>A,.'} IDPlQ,'(t)l dt + b,.<lltii~A,'l IDPl<i>'(t)l dt 

= /1 + /2 + la + I, ' 

say, where (using Lemma 1) 

A = C (n<k+•>l2jp' )ll<k+s+2> > C (n<k+s)/2-<k+2>!2jp 2k+s+2)ll<k+s+2> " - a2 k+•+2 = a2 • 
(3.35) = c83(n<s-2)/2/p.)l/(k+s+2) ' 

A,,' ==: nij(16p8) • 

The positive constant ca2 is so chosen as to satisfy 

(3.36) IIDIIiA,. ~ Clo[n<k+•>12fQIBIIk+•+2p~+a+2))ll<k+s+2>. 

Since IIDII ~ :i and IIBW = IID-111 ~ i by (3.10) and (3.11), such a choice is 
possible (take Ca2 = (~)(i)c16). By Lemma 3 we then have (using Lemma 1) 

(3.37) 

By Lemmas 1, 2, 

(3.38) ~ IDPl[n-r'I2P;,(it) exp{ -!(t, Dt)}]l dt 
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if 1 ~ r' ~ s - 2. If s - 2 < r' < k + s, then 

(3.39) ~ IDPl[n-r'I2P~,(it) exp{ --!<t, Dt)JJI dt ~ Ca7n-r'l2p~'+2 

Hence 

(3.40) I2 ~ C39 max {p, n-cm-2>12 : m = 3, ... , s} . 

By Lemma 4 and (3.35) 

Is = ~ fA,.<lltll:OA,.'l IDP1Q,.'(t)l dt 

(3.41) ~ C40 ~flltii>A,.l (1 + !it!i1P1l) exp{ --f4 !itW} dt 

~ c40 A;ck+s+2> ~ (1 + !it1!1Pll)!it!!Ck+•+2) exp{- ~s4 !itW} dt 

~ c4lp,n-c•-2>12. 

Finally, again using Lemma 1, 

I, = s (A,.<IIIII:OA,.'l IDPl<i>'(t)l dt 

(3.42) ~ C42 ~ flltii>A,.l (1 + !it!i1fi11) exp{ -f!itW} dt 

It follows that 

~ c42 A;Ck+•+2> S (1 + !!t!!IPll)!it!!k+•+2 exp{ -fl!tW} dt 

~ c43p,n-c•-2>12. 

(3.43) I!(Q,' - <!»')* K.l! ~ c44 max {p,.Hn-"'12 : m = 1, ... , s - 2} . 

Next observe that by Lemma 5, 

lw,(2e: <1»~0) - w,(2e: Cl),.o)l 

(3.44) ~ sup,eRk ~ w9./X, 2s)IW~0 - W,.0j(dx) 

<2M (/)11<1»' - W II < c M (f)p n-cs-2)/2. = ro ro ro = 4G ro ' 

Using (3.43), (3.44) in (3.28) and noting that 

(3.45) M,.0(f) = supzeRk (1 + l!x!l"o)-11/(x)l 

~ M,.(f) · sup~eRk :: ii~~i:o ~ 2M,.(/), 

we get the desired inequality (1.10). 0 

The proof of (1.11) differs from that of (1.10) principally in the choice of a 
kernel probability measure. For (1.11) one needs to choose a probability 
measure K' (in place of K) with compact support (i.e., assigning probability 
one to a compact set). This rules out the possibility of K' having a compact 
support (i.e., vanishing outside a compact set). However, it is necessary that 
K' vanishes at infinity rapidly. For such a choice see [ 5] (Corollary 3.1 ). By 
a different smoothing inequality than the one used to obtain (2.12) one obtains 
(see [5], Corollary 2.1, whose proof extends almost word for word to_the present 
case) 

(3.46) lhr./ .. ,.d(Q,.'- Cl)')l 

~ h~< (!/ .. I + w1 ( •, e))di(Q,.' - W') * K.'l + w1 (2e: W'), .. ~ ~ 
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where K,' is obtained on replacing K in (3.24) by K'. One now chooses e = 
C46 p8n-i log nand proceeds with the estimation much the same way as above. 
One important difference is that (Q,.' - <i>')K,' does not vanish outside B,. = 
{t: lltll ~ c47 n'-/p3}, and since the estimates of DP(Qn'- <f>') are available only 
in B,, one has to do some extra estimation outside Bn. It is here that the fast 
rate of convergence to zero of k at infinity is made use of (see [5], proof of 
Theorem 4.2, to get an idea of this). 

REMARK. By a fairly straightforward truncation argument one can extend the 
theorem to the case when only p2 is assumed to be finite. This leads to multi
dimensional extensions and refinements of Liapounov's and Lindeberg's central 
limit theorems. Although these refinements are new we have not derived them 
here for fear of overburdening the notation, particularly since the bound would 
then have to be expressed in terms of the tail behavior of X;'s. This will 
appear in [6]. 
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University of Arizona 

This is an expository survey of recent developments in the field of 
rates of convergence and asymptotic expansions in the context of the multi
dimensional central limit theorem. A number of applications are discussed. 
One of them deals with normal approximations and expansions of distri
bution functions of a class of statistics which includes functions of sample 
moments. 

0. Introduction and summary. The problem of estimating the error of normal 
approximation in the central limit theorem is an old one. Among important 
early work we cite Liapounov [28], Cramer [19], [20], Khinchin [26], Berry 
[6], Esseen [21], a~d Bergstrom [5]. The present article emphasises those de
velopments which have taken place since the appearance of Ranga Rao's work 
[36], [37]. Since the detailed proofs given in the literature may often appear to 
be long and somewhat cumbersome, the statements of results in this survey are 
generally accompanied by sketches of main ideas underlying the proofs. 

In order to motivate the discussion we consider a sequence of probability 
measures {Q,.: n ~ I} on Rk converging weakly to a probability measure Q. 
This means 

(0.1) n-+ oo 

for every real-valued, bounded Borel measurable function f on Rk whose points 
of discontinuity form a Q-null set. Equivalently, (0.1) holds iff is bounded and 
the oscillation 

(0.2) wAx: e) = sup {1/(y) - J(z)i : y, z E B(x: e)} 

off on the open ball B(x: e) with center x and radius e goes to zero as e! 0 for 
almost every x(Q). In turn this means that (0.1 ) holds if 

(0.3) 

as e ! 0 . 

We say w ARk) is the total oscillation off and ciJ A e: Q) is the average modulus of 
oscillation of [with respect to Q. 
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A variant of a theorem due to Billingsley and Topsj1Se [14] says that in order 
that the convergence (0.1) be uniform over a class of functions ff, irrespective 
of the sequence { Q,: n ~ 1} converging weakly to Q, it is necessary as well as 
sufficient that (0.3) holds uniformly over ff. Hence if {Q,: n ~ 1} converges 
weakly to Q, then it should be possible to bound ISfdQ,- SfdQI by an ex
pression which depends on J only via (/)ARk) and the function e ~ &.t(e: Q). 
Note that if IA denotes the indicator function of a Borel set A, then 

(0.4) (J)1A(Rk) = 1 if A * Rk , A * ¢ , 

w1A(e: Q) = Q((oA)•), 

where oA is the topological boundary of A and (oA)' is the set of all points at dis
tances less than e from oA. One also defines another related average modulus of 
oscillation, namely, 

(0.5) 

where fu is the translate of J by y, i.e., 

(0.6) JY(x) = f(x + y) x,y E Rk. 

Again note that if A is a Borel set, then 

(0.7) 

where A + y = {x + y: x E A}. Let now {X,: n ~ 1} be a sequence of i.i.d. k
dimensional random vectors each with mean zero, covariance I= ((o;1)) (k x k 
identity matrix), and finite sth absolute moment for some integers~ 3. 'Let Q, 
denote the distribution of n-•(X1 + ... + X,), and let <D be the standard normal 
distribution on Rk. Theorem 1. 7 estimates the error S J dQ, - S J d<D in terms of 
(/)ARk) and (J)1*(e,: <D) where e, = O(n-•). Theorem 1.5 provides an asymptotic 
expansion of S J dQ, with an error term o (n-c•-2l12) for all J satisfying 

(0.8) 

if Cramer's condition (1.36) holds. The condition (0.8) is very mild. Both these 
theorems have appropriate extensions to unbounded f. In case X 1 has a density, 
Theorem 1.2 provides an asymptotic expansion for the density of Q,. Under the 
assumption that X 1 has a nonzero absolutely continuous component, Theorem 1.3 
implies that the variation norm of the difference between Q, and its asymptotic 
expansion is 0 (n-C•- 2)12). If xl has a lattice distribution then a precise expansion 
of the point masses of Q, (Theorem ,2.1) may be used in conjunction with a 
multidimensional generalization of the Euler-Maclaurin sum formula to yield 
an asymptotic expansion of probabilities of rectangles properly aligned with the 
lattice (Theorem 2.2). This restriction on the type of sets for which one has 
computable expansions in the lattice case is rather severe. The source of diffi
culty here li~s fairly deep. An indication of the nature of this problem is afforded 
by a discussion of its relationship with the lattice point problem of analytic 
number theory (Section 3). The usefulness of Theorem 3.1 and its extension 
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(3.12) to special convex sets A may be viewed in this context. Section 4 is de
voted to another application. Here one finds precise error bounds and asymptotic 
expansions of qistribution functions of a class of statistics. This class includes 
those statistics which are functions of sample moments. With the help of the 
expansions of Section 4 we are also able to resolve an old conjecture concerning 
the validity of the formal Edgeworth expansion using the so-called delta method 
for computation of approximate moments and cumulants. To keep the presen
tation simple, proofs (of the results of Section 4) are merely outlined leaving 
the details to a future publication. The final section briefly discusses some other 
applications. 

The recent monograph [11] gives a comprehensive account of the theory of 
rates of convergence and asymptotic expansions in the context of the central 
limit theorem. Details of proofs of the results in Sections 1 and 2 (excepting 
Lemma 1.4) may be found there. However, applications are not dealt with in 
[ 11 ]. The present article is intended not only to provide an easy access to some 
of the main results of the theory but also to introduce the reader to some areas 
of fruitful applications. Bearing statistical applications (especially, robustness) 
in mind, an attempt has been made to specify (see, e.g., remarks following (1.50) 
and (1.64)) the nature of dependence of the error in asymptotic expansions not 
only on the function, whose integral one approximates, but also on the under
lying distribution. In addition, Lemma 1.4 serves to clarify the role of Cramer's 
condition (1.36) in applications. 

For ease of reference we list here some of the main notation used in this article. 
We deal with sequences of i.i.d. random vectors {X,: n ~ 1} (or {Y,: n ~ 1}, 
{Z,: n ~ 1}). The nth normalized partial sum is n-~(X1 + · · · +X,) if EX1 = 0; 
its distribution is Q, and characteristic function Q,.. The Fourier transform of 
a function f is j, and the Fourier-Stieltjes transform of a finite signed measure 
G is G. The standard normal distribution on Rk is <I> and its density is if;, while 
<I>v, iflv denote the distribution and density of a normal random vector with mean 
zero and covariance V. Thus <I> = <I>r, where I is the identity matrix. The 
Cramer-Edgeworth polynomials Pr, r ~ 1, are defined by (1.16), (1.21). The 
function Pr( -iflv) is defined by (1.24) (on replacing if; by the more general iflv)· 
In other words, Pr( -iflv) is the function (iflv times a polynomial) whose Fourier 
transform is (Pr. <Dv)(t) = Pr(it) exp{ -Ht, Vt)}. The signed measure having 
density Pr( -iflv) is Pr(-<I>v)· 

1. The Cramer-Edgeworth expansions and rates of convergence. Consider 
a sequence of independent and identically distributed (i.i.d.) random vectors 
{X, = (X,.I 1J, .•. , X,1k>): n ~ 1} with values in Rk and common distribution Q1• 

Unless otherwise specified we assume (without essential loss of generality) 

(1.1) EX1 = 0, Cov X1 =I, 

where EX1, Cov X1 are, respectively, the mean vector and covariance matrix of X1, 

and I is the k X k identity matrix. Let lJ = (li11 >, • • ·, ,P>) denote a multiindex, 
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i.e., a k-tuple of nonnegative integers, and write 

(1.2) lvl = v111 + ... + vcki ' v! = 1,11>! vc21! ••• vl"l! , 

• ( (1))•111 ( (ki)•lkl X= X ... X x = (x111 , . · ·, x1">) E R". 

The vth moment of X1 (or of Q1) is 

(1.3) P.. = EXt = ~R" x•Qt(dx) , 

provided the integral is convergent. For a positive integer s the sth absolute 
moment of X 1 (or of Q1) is 

(1.4) 

where 11·11 is Euclidean norm. If G is a finite signed measure on (the Borel sigma 
field of) Rk, then the Fourier-Stieltjes transform (or characteristic function (ch.f.) 
in case G is a probability measure) ofG is 

(1.5) G(t) = h,. exp{i(t, x)}G(dx) t E R", 

where ( , ) denotes Euclidean inner product. Since a Taylor expansion and (1.1) 
yields 

(1.6) teR", 

the range df a1 on the unit ball {II til < 1} is contained in the disc D(1 : i) := 
{z E C: lz - 11 < !} of the complex plane. Since log, the principal branch of 
the logarithm, is analytic in D(1 : !), log a1 has continuous derivatives of all 
orders up to s (if p. < oo) in a neighborhood of the origin. The vth cumulant 
of X1 (or of Q1) is 

(1. 7) X. = ;-I•I(D" log a1)(0) , 

provided p1• 1 < oo. Here D" is the vth derivative, i.e., 

(1.8) 

where D i denotes differentiation with respect to the jth coordinate variable. 
Since x. = P.v = 0 if I vi = 1, a comparison of the Taylor-expansions 

(1.9) 

log a1(t) = L; 2:>l•l;!;• X~ (it)" + o(lltll') 
' ).1, 

t-40, 

leads to the formal identity 

( 1) ... +1 [ ]"' x. . v co - P.. . v 
L:2:>lvl<co 1 (zt) = L:m=l L:2:>1•1<co 1 (ll) • v. m v. 

(1.10) 

By equating coefficients of (it)" from the two sides of (1.10) one may express 
cumulants in terms of moments. In particular, if s ~ 3 then (1.10) implies 

(1.11) Xv = P.v if jvl = 2, 3. 
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Now the distribution of X1 + .. · + X,. is the n-fold convolution Q/" and its 
ch.f. is Qt. Let Q,. denote the distribution of n-!(X1 + · · · + X.,.). The J.~th 
cumulant of Q,. is i-lvl times 

(1.12) 

if p1"1 < oo. This relation makes an asymptotic expansion of Q,. in powers of 
n-! possible. To see this assume p. < oo for some s ~ 2 and use the second 
relation in (1.9) to obtain 

(1.13) log Q,.(t) = - llt2W + L:a;;;JvJ;;;a X~ (it)"n-' 1" 1- 2>12 + n · 0 (i!tJn!W) 
].1. 

Hence for all t E Rk 

(1.14) Q,. = exp{-lltW/2}. exp { L:a,.1"1,.. ~! (it)"n-'1"1-2>12} 

X [ 1 + o (n- (a-2)/2) J n~ oo. 

If one takes s = 2 in (1.14) and uses the Cramer-Levy continuity theorem ([20], 
page 106) then one arrives at the classical multidimensional central limit theorem: 
If p2 < oo, then {Q,.: n ~ 1} converges weakly to the standard normal distribution <I>. 
If s ~ 3, then expanding the second exponential in (1.14) and collecting together 
terms involving the same power of n-! one has 

(1.15) exp {" x. (it)"n-'1"1-2>12}- 1 + "'-2 n-ri2P (it)+ o(n-'•-2 >12) "-'3;;;/vl:>• -~ - "-'r=l r • ].1. 

More precisely, replacing n-! by the real variable u one obtains a Taylor ex
pansion of the exponential as a function of u. The sum 1 + L:~;;.~ urPr(it) is this 
Taylor expansion, i.e., 

( 1.16) 

Combining ( 1.14) and ( 1.15) one gets 

(1.17) Q,.(t) = exp { -~~~~ 2 } • [1 + L;~;;,~n-r12F,(it)] + o(n-(•-2 >12). 

By carefully estimating the remainders in the two Taylor expansions (1.13) and 
(1.15) one may obtain the following result. 

THEOREM 1.1. Suppose p. < oo for some integers ~ 3. There exist two positive 
constants c1(k, s), elk, s) depending only on k and s such that if iitll ~ ci(k, s)n! -7-

p/1'•-2> then 

( 1.18) ID"[Q,.(t) - {1 + I:~;;.~ n-'12F,(it)} exp{-lltW/2}]1 

~ ~ [iitlls-1"1 + iitW'•-2>+1viJ exp{ -lltW/4} n(s-2)/2 1].11 ~ s' 

where o,. ~ 0 as n ~ oo and o,. ~ c2(k, s)p, for all n. 
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The first result of this type was obtained for k = 1 by Cramer [20] (page 72). 
Many authors have refined Cramer's result and the present version is proved in 
[11] (Theorem 9.12). 

To obtain a more computable expression for Pr(it) it is convenient to define 

(1.19) ( ' ) •r ( ) f " X" ( • )" Xr lt = l Xr t = r . ..LJI"l=r' It . 
J.!. 

It is not difficult to check that Xr(t) is the rth cumulant of the random variable 
(t, X1). Now (1.15) reduces to 

(1.20) exp { " xr(it) n-(r-2)/2} - 1 + "•-2 n-r!2p (it) + 0 (n-(8-2)/2) 
Ll3~r:;is f - .L.Jr=l r • 

r. 

From this one obtains 

(1.21) p (it)= r;r- _1_ {I:* XJ1+2(it) XJ2+iit) ... XJm+lit)} 
r m-1 m! (j1 + 2)! (j2 + 2)! (j,. + 2)! 

where the summation L: * is over all m-tuples of positive integers (jl> ... , jm) 

satisfying 

( 1.22) 

For example, 

P (it) = X3(it) = !:__ X (t) = L; _ X" (it)" 
1 3! 3! 3 J"J-3 v! ' 

(1.23) p (it) = X4(it) + X32(it) 
2 4! 2! (3!)2 ' 

P3(it) = x6(it) + X4(it)x3(it) + J:.3~(i!L . 
5! 4! 3! (3!)4 

For a smooth functionfrapidly decreasing at infinity the function t ~ (it)"](t) is 
the Fourier transform of ( -1 )1" 1D"f. Hence the function t ~ Pr(it) exp { -lltW/2} 
is the Fourier transform of the function 

(1.24) Pr( -¢)(x) = Pr(-D)¢(x) 

where¢ is the standard normal density, i.e., 

(1.25) XE Rk' 

and Pr( -D) is the differential operator obtained by formally replacing (it)" by 
(-D)"= (-1) 1" 1D" (for each multiindex v) in the polynomial expression (1.21) 
for Pr(it). For example, 

P1( -¢)(x) = -i L:f=l E(X1<ll)3[3xill - (x111 ) 3] 
(1.26) - t L:1;;;z,;•m:>k E[(X1'0)2X1(m 1][x("'1 - x("'l(xa 1) 2] 

+ " E(X 111X '"' 1X (p 1)xa 1x("' 1x(p) ..LJ 1;>l<m<p:i0k 1 1 1 

X= (x' 11 , · · ·, x'k1) E Rk. 

The finite signed measure having density Pr( -¢) will be denoted by Pr( -<I>). 
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Note that ifJ + :E~~i n-ri2Pr( -ifJ) is a polynomial times ifJ, and that.(l.18) implies 
(on taking the derivative at t = 0) 

(1.27) ~Rk x"Q,.(dx) = ( -i)I•I(D"Q,.)(O) 

= ~Rk x"[ifJ(x) + :E~~i n-ri2Pr(-ifJ)(x)] dx 0 ~ jvj ~ s. 

However, the relations (1.27) do not uniquely determine this polynomial (mul
tiple of ifJ). The reason for this is that the polynomial is of degree 3(s - 2) > s, 
if s > 3. 

Let us assume now that Q1 is integrable. Then Q,. is integrable and Q,. has a 
density q,.. By Fourier inversion 

(1.28) 

where 

(1.29) 

By Theorem 1.1 

h.(x) = x"[q,.(x)- ifJ(x)- I:~:; n-rf2Pr( -ifJ)(x)] 
= (2n)-k ~Rk exp{ -i(t, x)}h.(t) dt 

(1.30) ~{lltll::>cl(k,s)nfjp,l/18-21) jh.(t)i dt = o(n-('-2112). 

XERk' 

Also, since jQ1(t)i < 1 for t =/= 0 and jQ1(t)j - 0 as iitll - oo (by the Riemann
Lebesgue lemma) 

(1.31) o =sup {jQ1(t)j; lltll > C1(k, s)fp,w-21} < 1 . 

By repeated use of the Leibnitz rule for differentiation of a product of functions 
it may be shown that 

(1.32) jD"Q,.(t)i = jD"Q/'(tfni)j ~ n1•112p1.dQ1(tfni)j"-l•l . 

Therefore, 

~ {11tll>c1(k,s)ni/p81/(s-21) jD"Q,.(t)j dt 

(1.33) ~ n1•1/2pl•lo"-I"H ~Rk IQltfni)l dt 

= nCi•l+ki/2o"-l"l-1 ~Ri. jQl(t)j dt = o (n-(•-2>12) . 

Since the remaining terms in li. possess an exponential factor it follows from 
(1.28), (1.30), and (1.33) that 

(1.34) supzeRk jx"[q,.(x)- ifJ(x)- I:~~; n-ri2Pr( -ifJ)(x)]j = o(n-(•-2>12) 

0 ~ jvj ~ s. 

Taking v = 0 in (1.34) one arrives at a uniform local expansion of q,.. It may be 
noted that the proof undergoes only minor modification if one assumes that jQ1 j"' 
is integrable for some m ~ 1. It is also fairly simple to show that the last con
dition is equivalent to saying that Q1 *"' has a bounded density for some positive 
integer m. Thus one has 

THEOREM 1.2. Assume p, < oo for some integer s ~ 2. In order that for suffi
ciently large n the distribution Q,. may have a density q,. satisfying (1.34) it is neces
sary as well as sufficient that Q1*"' has a bounded density for some positive integer m. 
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One dimensional versions of this theorem may be found in Gnedenko and 
Kolmogorov [22] (page 228) and in Petrov [32]. The present version is proved 
in [11] (Theorems 19.1, 19.2). If s > k + 1, then on integration over Rk the 
relation (1.34) yields an estimate o(n-c•-2112) for the variation norm IIQ,.- <I>
I:~:~ n-r/2 Pr(- <I>) II· However, for this there is a better result. We denote by 
IGI the total variation (measure) of a finite signed measure G. 

THEOREM 1.3. Suppose p. < oo for some integers ;::;; 2. In order that the relation 

(1. 35) 

may hold it is necessary as well as sufficient that Q/m has a nonzero absolutely con

tinuous component for some positive integer m. 

If the integrand (1 + llxll•) in (1.35) is replaced by 1, then one arrives at the 
variation norm estimate mentioned above. This estimate is due to Bikjalis [13]. 
The present stronger result is useful (e.g., in estimating moments of a function 
of X= n-1(X1 + ... + X,.)) and a detailed proof is given in [ 11] (Theorem 19.5). 
It should be noted that the hypothesis of Theorem 1.3 is less restrictive than 
that of Theorem 1.2. Thus if one is interested only in estimating ~ f dQ,. for 
Borel measurable functions f (or probabilities Q ,.(B) for Borel sets B), then 
Theorem 1.3 is a more useful result than Theorem 1.2. 

A hypothesis less restrictive than those used in the preceding theorems was 
introduced by Cramer ([20], page 82). This is the so-called Cramer's condition: 

(1.36) lim sup11 ttt~oo IQ1(t)l < 1 . 

In view of the Riemann-Lebesgue lemma, it Q1 has a nonzero absolutely con
tinuous component then Q1 satisfies (1.36). There are, however, many singular 
measures satisfying Cramer's condition. The following lemma provides a class 
of examples which are used in Section 4. 

LEMMA 1.4. Let X be a random vector with values in Rm whose distribution has 
a nonzero absolutely continuous component H (relative to Lebesgue measure on Rm). 
Let[;_, 1 ~ i ~ k, be Borel measurable real-valued functions on Rm. Assume that 
there exists an open ball B of Rm in which the density of His positive almost every

where and in which f;' s are continuously differentiable. If in B the functions 1, 
f1 , • • ·,fk are linearly independent, then the distribution Q1 of (/1(X), · · ·,fk(X)) 
satisfies Cramer's condition (1. 36). 

PROOF. Let 80 = (80n1, • • ·, 80ck 1),eRk, 80 =1= 0. The assumption of linear in
dependence implies that there is a j (1 ~ j ~ m) and an x0 E B such that 
(I:i~ 1 80CliD1 f 1)(x0) * 0. Without loss of generality we may take j = 1 and as
sume that (I:7~ 1 {}Cl!Dd1)(x) > iJ > 0 for all x E B and all {} in the open ball 
B(80 : e) with center 80 and radius e > 0. Here iJ is an appropriate positive 
number. Consider the function 

g(O, x) = (8, x'), 

x' = (I:t~l {}CliJ,.(x), x(21' ••• ' xcml) 
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on B(fJ0: s) x B. Since the Jacobian of this map is L.;~=l fJU 1 DJz, which is posi
tive on B(fJ0 : s) x B, one may use the inverse function theorem to assert (by re
ducing sand B is necessary) that g defines a diffeomorphism between B(fJ0 : s) x B 
and its image under g. It follows that for each fJ E B(80 : s) the map g0(x) = 
(L.:f=1 fJ 10f 1(x), x121 , ••• , x1m 1) is a diffeomorphism between Band g0(B). Let H 0 

denote the restriction of H to B. Then the measure H0 o g0 -I induced on g0(B) 
by the map g0 has a density given by 

h z - h(go -I(z)) 
o( ) - L.:f=l fJUI(DJl)(go- 1(z)) 

z E g0(B), 

where h is the density of H0 • Extend h to all of R"' by setting it equal to zero 
outside g0(B). Then for all z E R"', z €t og00(B), h0 (z)----* h00(z) as fJ ----* 80• Write 

ho,I(zlli) = ~Rm-1 ho(z) dz12i ... dzCm) 

Since the m-dimensional Lebesgue measure of og00(B) is zero, 

(1.37) 

Now suppose (1.36) does not hold. Then there exists a sequence {t,.: n ~ 1} 
such that llt,.ll ----* oo and 

(1.38) as n----* oo. 

Let fJ,. = t,./llt,.ll· Restricting to a subsequence if necessary, we assume that 
{ fJ ,.} converges to some fJ 0 • Let G,. be the distribution of the random variable 
I:f=1 fJ"Ilif1(X) for n = 0, 1, 2, · · ·. Write 

(1. 39) G, = G,,1 + G,., 2 , 

where G,., 2 has density h0", 1• Then 

(1.40) 

But IIG",2 - G0 , 2 ll----* 0 as n- oo by (1.37). Hence G,.,2(u) converges to G0 , 2(u) 
uniformly in u. Also by the Riemann-Lebesgue lemma G0 , 2(llt,.ll)- 0 as n----* oo. 

Therefore, IG,., 2(IIt"ll)l----* 0. Using this and (1.40) one has 

lim sup,.~oo IQI(t,.)l ~lim sup,.~oo IG,.,l(llt,.ll)l ~ lim SUPn~oo IIGn,lll 
= 1- ~Riho0Au)du < 1. 

This contradicts (1. 38). D 

To appreciate the significance of this result take m = 1' k > 1. Then X -

(f1(x), ... , fk(x)) is a curve in Rk, and the distribution Q1 of the random vector 
(/I(X), ... , fk(X)) is clearly singular (with respect to Lebesgue measure on Rk). 

It has been shown by Yurunskii [ 44] that if theft's in Lemma 1.4 are analytic 
then there exists an integer m such that Q1*"' has a nonzero absolutely continuous 
component. 

It is clear that if Q1 *" is, for all n, singular (with respect to Lebesgue measure 
on Rk), then there exists a Borel set A such that Q,.(A) = 1 for all nand <I>( A) = 0. 
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Thus convergence in variation norm is ruled out and we fall back on weak con
vergence. Recall the definitions of the total oscillation w1(Rk) and the average 
modulus of oscillation wAe: Cl>) (see (0.2), (0.3)). The following expansion holds. 

THEOREM 1.5. If p. < oo for some integers;;;;:; 3 and Q1 satisfies Cramer's con

dition (1.36), then for every real-valued, bounded, Borel measurable function f on 
Rk one has · 

(1.41) lr kfia[Q - ci>- "'::2 n-r!2p (-Cl>)]l :::;; ~ w (R") + w (e-a": Cl>) 
lR " £-Jr-1 r - n<a-2)/2 f f ' 

where o,. ~ 0 as n ~ oo, dis a positive constant, and the quantities o,. and d do not 

depend on f. 

A detailed proof of this theorem may be found in [8] (Theorem 4.3). How
ever, the main ideas underlying the proof may be stated rather simply. In the 
present case Q,. is not necessarily integrable. Therefore, one chooses a kernel 
probability measure K whose support is contained in the closed unit ball of Rk, 
and whose characteristic function satisfies 

(1.42) lltll ~ 00 ' 

for all multiindices v. The existence of such a kernel follows from a result of 
Ingham (see [8], Corollary 3.1). Fore> 0 define the probability measure K, by 

(1.43) K,(A) = K(e-1A) (A Borel set; e-1A = {c1x: x E A}). 

The effect of smoothing by convolution with K, is provided by the following 
lemma (see [8], Corollary 2.1). 

LEMMA 1.6. Let G be a finite measure and H a finite signed measure such that 

G(Rk) = H(Rk), and let K be a probability measure on R". If 

(1.44) K(B(O: 1)) = 1 (B(O: 1) = {llxll < 1}), 

then for every e > 0 and every real-valued, bounded, Borel measurable junction f on 
Rk one has 

(1.45) 

where IHI is the total variation of H. 

In this lemma let G = Q,., H = ci> + I:~:~ n-ri2Pr(- Cl>) and K as specified ear
lier. The optimum e is of the ordere-d~ where dis a positive constant satisfying 

(1.46) 1 
0 < d < --log 0, 

k 

Cramer's condition (1.36) ensures that 8 < 1 and that, consequently, such a 
choice of d is possible. Since (G- h). K, is integrable; one may. use Fourier 
inversion and Theorem 1.1 to estimate the variation norm II(G- H)* K,ll· In
tegrability of K, and the fact that sup {IQ,.(t)l: lltll > nlf(16p3)} = 0" makes an 
adequate estimation of the tail integral of (G - h) . K.. possible. 
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To apply Theorem 1.5 note that the right side in (1.41) is o(n-c•-2l12) if (0.8) 
holds. For example, consider the class of Borel sets 

(1.47) ~a( a: Cl>) = {A: A Borel set, ci>((aA)<) ~ asa for s > 0} , 

where a and a are specified positive numbers. Then one has 

(1.48) supAE.JVa(a:<l>) IQ,(A) - CI>(A) - I;~:~ n-ri2P~( -CI>)(A)I = o(n-(s-2)/2). 

It was first shown by Ranga Rao [36] and later by von Bahr [2] that for the class 
'tf? of all Borel measurable convex subsets of Rk one has (a complete proof may be 
found in [ 11 ], Corollary 3.2) 

(1.49) supcew ci>((aC)<) ~ a(k)s s > 0 . 

It follows from (1.48), (1.49) that 

(1.50) SUPcew IQ,(C) - CI>(C)- I:~:~ n-ri2Pr( -CI>)(C)I = o(n-(s-2)/2). 

We make two more observations on Theorem 1.5. First, suppose .9 is a rela
tively norm compact class of probability measures Q1 satisfying, in addition to 
the hypothesis of Theorem 1.5, the condition 

(1.51) supQ1eg ~Rk llxlls+1Q1(dx) < oo. 

It is then simple to show, using norm compactness, that on .9 the quantity (} 
defined in (1.46) is bounded away from one. Hence (1.41) and, therefore, (1.48), 
(1.50) hold uniformly over such a class .9. The second remark concerns the 
extension of ( 1.41) to unbounded f. Such an extension is possible if 

(1.52) 

Indeed, if Mr(f) < oo for some integerr, 0 ~ r ~ s, then(l.41)holds(see[ll], 
Theorem 20.1) with w1(Rk) replaced by 

(1.53) Mr *(/) := 2 infceRl Mr(f- c) . 

Observe that if M.(f) = oo, then ~ f dQ, may not exist. 
Theorem 1.5 still leaves out the entire class of discrete probability measures 

as well as many nonatomic singular distributions. If Q1 is of the lattice type, 
then jQ11 is periodic and, consequently, the lim sup of IQ1(t)i as II til~ oo is one. 
For an arbitrary discrete Q1, the ch.f. Q1 is a uniform limit of trigonometric 
polynomials and is, therefore, almost periodic in the sense of Bohr; hence 
lim sup IQ1(t)i = jQ1(0)1 = 1. Now it is possible to show ([11], Theorem 17.5), 
no matter what the type of the distributi~n Q1 is, that an affine subspace of di
mension m (0 ~ m < k) has Q, measure at most O(n-ck-m)/2) provided p3 < oo. 
If Q1 is of the lattice type, then this bound is actually attained, and it follows 
that the distribution function F, of Q, has jumps of order O(n-~). But Cl> + 
I:~:~ n-'12P7 (- Cl>) is absolutely continuous. Thus Theorem 1.5 can not be true in 
the lattice case. However, because of the lattice structure a different expansion 
of Q,(A) for special rectangles A may be given. This is discussed in Section 2. 
If no assumption is made on the type of Q1 one may still estimate ~ f d(Q., - Cl>). 
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THEOREM 1. 7. If p3 < oo, then for every real-valued, bounded, Borel measurable 
function f on Rk one has 

(1.54) I~R~:fd(Q,.- <1>)1 ~ c.(k)m,(Rk)p3 n-t + c5(k)m/(e,.: <I>), 

where e,. = c/(k)p3 n-l. 

To prove this one chooses, as in the proof of Theorem 1. 5, a smoothing kernel 
K. However, this time the probability measure K is chosen so that K vanishes 
outside a compact set. This rules out the possibility of K having a compact 
support. Instead one requires 

(1.55) r = K({llxll < 1}) > i, 
Define K, by (1.43). Then one has, instead of Lemma 1.6 (see [8], Corollary 2.2), 

LEMMA 1.8. If G is a finite measure and H is a finite signed measure such that 
G(Rk) = H(R~<), and if K, is as above, then 

(1.56) I~R~:fd(G- H)l ~ (2r- 1)-I[tm,(R~<)II(G- H)*K,II + m1*(2e: IHI)], 

for every bounded measurable f. 

One also needs the analytical result (see [ 11 ], Lemma 11.6) 

LEMMA 1.9. There exists a positive constant c6(k) such that if g satisfies 

(1.57) 

then 

(1.58) 

Write G = Q,., H = <I>, e = C7(k)p3 n-i, and let g be the density of (G - H)* K,. 
Assume PH1 < oo, so that (1.58) may apply. Note that D"[(G - II). K,](t) 
vanishes outside a sphere of radius O(n')· Thus Theorem 1.1 is adequate in 
showing that the right side in (1.58) is O(n-l). Now use Lemma 1.8 to complete 
the proof of Theorem 1. 7 in the case PH1 < oo. Finiteness of Pk+1 is assured by 
the hypothesis of the theorem if k = 1 or 2. For k > 2 one uses truncation 
(see [9] or [11 ]). 

Letting/ in (1.54) be the indicator function of a Borel set A one gets 

(1.59) 

In view of (1.49) and the fact that <tff is translation invariant, it follows that 

(1.60) 

The inequality (1.60) is an improvement of an earlier result of Ranga Rao [37]. 
Inequalities (1.59) and (1.60) were proved independently by von Bahr [2] and 
the present author [7] under slightly more stringent moment conditions (e.g., 
in [7] it is assumed that Ps+a < oo for some o > 0). Later the present form of 
(1.60) was obtained by Sazonov [38]. Theorem 1.7 is due to the author [9]. 
An extension to unbounded f and applications to nonuniform rates of conver
gence and mean central limit theorems may also be found in [9]. 
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Although Theorem 1. 7 seems adequate for most applications in which no as
sumption is made on the type of distribution Q1, it is still important to know if 
w1* may be replaced by w1 in (1.54). Very recently, Sweeting [41] has settled 
this important issue by proving that this is indeed possible. That this is possible 
if e,. is also replaced by e.,.' = e,. log n was shown earlier in [7], [8]. 

The next theorem of this section provides a limited expansion under a relax
ation of Cramer's condition (1.36). To state this we define a strongly nonlattice 

probability measure Q1 to be one for which 

(1.61) for all t =1= 0. 

It is easy to show that in one dimension the terms nonlattice and strongly non

lattice are equivalent. This is not the case in higher dimensions. Indeed, given 
a real c and a nonzero vector t0 one may easily construct a nonlattice (or even 
nondiscrete) probability measure Q1 which concentrates all its mass on the 
countable set of hyperplanes {x: (t0, x) = c + 2mr}, n = 0, ± 1, ±2, · · ·. 
Clearly I!Uto)l = 1, so that Q1 is not strongly nonlattice. 

THEOREM 1.10. If Q1 is strongly nonlattice and p3 < oo, then the relation 

(1.62) 

holds uniformly for every class .fJT of functions satisfying 

(1.63) sup1 e_,.- w/(e: cJ>) = O(e) as e! 0. 

The proof of Theorem 1.10 is analogous to that of Theorem 1. 7. Let YJ be 
any small number, and let e = n-!YJ. In Lemma 1.8 take G = Q,., H = cJ> + 
n-lP1(-cJ>), and let K, be as in the proof of Theorem 1.7. To estimate II(G
H)* K,ll use Lemma 1.8 with the density of (G -H)* K, as g, and then apply 
Theorem 1.1 to estimate the integral of ID"§I = ID"[Q,. - <f> - n-iP1(- cJ>)K,]I 
over a ball of radius c/n*, say. This estimate is wr(Rk) · o(n-i). Since K,(t) = 0 
for II til > n*fYJ, one needs to estimate the integral also over the set B,. = {c1'ni < 
lltll ~ nlfYJ}· Since Q1 is strongly nonlattice, one has 

(1.64) o(u) = sup•'<lltll<" IQ1(t)l < 1 u > c1', 

and IQ .. (t)i = IQ1(tfn')l" ~ (o(YJ-1))" on B,.. But (o(YJ- 1))" goes to zero exponentially 
fast as n ~ oo, and the estimation is complete. It is also clear that a detailed 
knowledge of the asymptotic behavior of o(.) at infinity would enable one to 
refine (1.62). For example, if p, < oo and o(u) = 0(1 - u-1) as u ~ oo, then 
by taking one more term in the asymptotic expansion one may replace the re
mainder o(n-l) by O(n-1) in (1.62). The relation (1.62) is also uniform over 
every relatively norm compact class of probability measures Q1 (strongly non
lattice and normalized) whose fourth moments are bounded away from infinity. 

In many applications one needs to estimate the probability Q,.({llxll > a,.}) 
where a,.~ oo as n ~ oo. The estimation (1.60) is usually not adequate for 
this purpose. In case the Laplace-Stieltjes transform A~ ~ exp{(..<, x)}Q1(dx) is 
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finite in a neighborhood of the origin, precise estimates may be given, provided 
a,.= o(ni). In one dimension this was done by Khinchin [26] in a special case 
and Cramer [19] in the general case. For a multidimensional extension we refer 
to von Bahr [3]. We shall not discuss this large deviations theory here. For 
applications discussed in this article the following result (due to von Bahr [1]) 

is adequate. 

THEOREM 1.11. If p. < oo for some integer s ~ 3, then for each o > 0 one has 

(1.65) 

where 0,. goes to zero as n ,...-+ oo. 

To prove this we need to apply Lemma 1.6 to G = Q,., H =<I>+ 
r;~:~ n-ri2Pr( -<I>), K, as used in the proof of Theorem 1.5, and the function 

f(x) = 0 

= a• 

if [[x[[ <a 
if [[x[[ ~a. 

Also the quantity w ARk) in the bound ( 1.45) has to be replaced by M.(f) defined 
by (1.52). In this case M.(f) = a•f(1 + a•) < 1, and wt<2e: [H[) = a•[H[({a-
2e < [[x[[ < a+ 2e}). Since a is large, the average modulus of oscillation is 
small (namely, o(n-(•-2" 2) if e = n-i log n). The variation norm [[(G- H)* K,[[ 

is estimated as usual by appealing to Theorem 1.1 and doing a separate estima
tion of the integral of D"[(G- b). K,](t) over the region {[[t[[ > ni}. This last 
integration is facilitated by our choice of the kernel K (whose Fourier transform 
goes to zero fast at infinity). 

2. Asymptotic expansion 'in the lattice case. A discrete subgroup L of Rk is 
a lattice if it is of rank k, i.e., if Lhasa representation 

(2.1) L = Z · ~1 + · · · + Z · ~k = {l::;~=1 m 1 ~~: m1, · · ·, mk E Z} . 

Here ~1 , ••• , ~k are k linearly independent vectors of 'Rk which are said to form 
a basis of L, and Z is the set of all integers. A probability measure Q on Rk is 
of the lattice type (or, simply, lattice) if there exist a lattice L and a vector x0 

such that 

(2.2) Q({x0 + L}) = 1 . 

A lattice random vector is one whose distribution is of the lattice type. If Q is 
lattice and nondegenerate (i.e., no hyperplane carries the entire mass of Q), then 
there exists a smallest lattice L0 , called the minima/lattice of Q, such that (2.2) 
holds with L = L 0 and some x0 (see [11 ], Lemma 21.4). It is obvious that if Q 
has finite second moments then it is nondegenerate if and only if its covariance 
matrix is nonsingular. If the standard Euclidean basis {e1, • • ·, ek}.is a basis of a 
lattice L, then L = z~c. For the sake of simplicity we assume below that Q1 has 
a nondegenerate lattice distribution with minimal lattice Zk. Suppose X1 has a 
nondegenerate lattice distribution whose minimal lattice has a basis {~1 , ... , ~k}· 
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Note that if T is the linear transformation mapping ~1, • • ·, ~k into e1, • • ·, ek, 
then the random vector Y1 = TX1 has minimal lattice :Z?. Since such a trans
formation changes the covariance matrix, we must now deal with an arbitrary 
covariance matrix V instead of the identity I. In addition, it would be conven
ient to take x0 = 0 in (2.2). However, in order that one does not lose generality, 
one should then deal with an arbitrary mean vector. Throughout this section, 
therefore, we require that the lattice random vector Y1 has a distribution Q with 
minimal lattice Z? and that 

(2.3) Cov Y1 = V, 

where V is nonsingular. Let then {Y,: n ;;:;:; 1} be a sequence of i.i.d. lattice 
random vectors with Y1 as specified. Let Q, denote the distribution of (Y1 + ... 
+ Y, - np)fn'. Write 

a- np 
Ya,n = ni ' 

(2.4) Pn(a) = Pr (Yl + · · · + Y" =a) = Q"({y"·"}) 

q.,,.(x) = n-kl2[¢v(x) + I;~:,:\_ n-ri2Pr(-¢v)(x)]. 

Here ¢v is the normal density on Rk having zero mean and covariance matrix V, and 
Pr( -¢v) is obtained by replacing¢ by ¢v in (1.24). The polynomials Pr are the 
same as before with the understanding that the cumulants x" are now those of 

Y1- P· 

THEOREM 2.1. If p. = EIIY1 - Pll• < oo for some integers;;:;:; 2, then 

(2.5) supaezk (1 + IIYa,nll.)lp,(a)- q,,.(Ya,n)l = o(n-Ck+s-2)12)' 

In order to prove (2.5) first note that the ch.f. Q" of Y1 + ... + Y,. is the 
multiple Fourier series 

(2.6) 

so that 

Q"(t) = I:aezk exp{i(t, a)}p,.(a) 

(2.7) p,.(a) = (2n-)-k ~c-rr,rrJk Q"(t) exp{ -i(t, a)} dt 

= (2n-)-kn-k12 ~c- .. ~rr,,.irrJk exp{ -i(r, Ya,,.)}Q,.(r) dr, 

changing variables t ---7 r = nit in the second step. Now approximate Q" in (2. 7) 
by its asymptotic expansion (a change of variables will convert Theorem 1.1 into 
the needed expansion corresponding to an arbitrary covariance matrix V) and 
compare the resulting expression with 

(2.8) q,.,.(Ya,n) = (2n-tkn-k 12 ~Rk exp{-i(r, Ya,n)} 

X [1 + I;~;;;;n-r12Pr(ir)]exp{-i(r, Vr)}dr. 

Similarly Y~ ... p,(a) and Y~ ... q,,.(a) are compared by inverting derivatives of Q, 
and those of its expansion. The first relation in (2.5) is obtained in this way; 
the second follows from the first on summing over a. 
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The local expansion (2.5) is precise. The next problem is to find a method for 
summing up these approximations of point masses over sets. In one dimension 
Esseen [21] adapted the classical Euler-Maclaurin sum formula for this purpose. 

Ranga Rao [36], [37] proved a generalization of this summation formula in 
multidimension and used it to obtain expansions of Q,.. To explain this we in
troduce a sequence of functions S3 (j = 0, 1, 2, ... ) on R1 which are periodic 
with period one, differentiable at all nonintegral points, and satisfy 

(2.9) d 
So = 1 , dx S3+1(x) = S;(x) for all x if j ~ 1 , 

d - S1(x) = 1 for nonintegral x . 
dx 

Assume also that S1 is right continuous. These conditions completely specify 
the·sequence. For example, 

(2.10) S1(x) = x - ! , S2(x) = !(r - x + t) , 
S8(x) = t(x8 - ~r + !x) , 

For j ~ 2 the functions S3 are absolutely continueus on Rt, while S1 has jumps 
-1 at all integral points. Let now 1 be an arbitrary real-valued function on R1 

having continuous and integrable derivatives Dil, 0 ~ j ~ r. Write 

(2.11) F(x) = ~"-~l(t) dt, 

Fr(x) = L:i=o ( -1)3S3(x)D3F(x) + (- Iy+l S"-~ Sr(t)Dr+lF(t) dt. 

Then Fr is the distribution function of a finite signed measure and an integration 

by parts yields 

(2.12) 

The summation on the left is over integers m. To extend (2.12) to multidimen
sion consider a function 1 on Rk having continuous and integrable derivatives 

D"l, 0 ~ Jvl ~ r. Define 

(2.13) F(x) = ~"_<~ · ·. ~:<!' l(y) dy x = (x<l>, · .. , x<k>) E Rk. 

Define operators lr,;• Tr,i acting on such functions F by 

I -(F)(x) - r ~<i> S (t)(D~+1F)(x< 1 > . . . x<i-l> t x<i+l> . . . x<k>) dt 
r,3 - J -oo r 3 ' ' ' ' ' ' 

(2.14) = s:<~ ... s:<!) Sr(i3')D/I(y) dy X= (x<1>, ... 'x<k>)' 

Tr,;(F) = (1 - S1(x<i>)D; + · · · + (-1YSr(x<1')D/ 

+ ( -1 y+lJr,;)(F) • 

Since the operators Tr,i are associative and commutative one may define 

(2.15) 

Fr(x) = <ID=l Tr,;)(F)(x) 

= ID=l {1 - Sr(x<:i>)D3 + 
+ ( -1 Y+lfr,;}(F)(x) 

+ (-1YSr(x<:i>)D/ 

x = (x<1>, ••• , x<k>). 
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Again one may show that Fr is of bounded variation; and an induction on k 
using (2.12) yields 

(2.16) x = (x<1>, ••• , x<k>). 

The summation on the left is over integral vectors a = (au>, · · ·, a<k>). To apply 
this result to our specific situation define 

(2.17) f(x) = q,.,. (x --;;! np) 

and obtain (taking r = s- 1 in (2.16)) 

XERk' 

(2.18) 

" (a - np) - Ilk {1 S ( <i> ! <i>)D t-l{a:a:;;nt~+npl q,.,s __ n_i_ - i=1 - 1 np + n X i + 
+ ( -1 )•-1S8_ 1( np<i> + nix<i>)D :-1 

+ ( -1)•I._1,;}(F)(nix + np.). 

By expanding the product in (2.18) and omitting terms of order O(n-i'2), j ~ 
s- 1, one has 

(2.19) 

L: {a:;;.,i~+o>pl q,.,. (a ~i np. ) 

= L:l•l=>•-2 n-1•112( -1 )I•IS.(np + nlx)D"Cl>v(x) 

+ n-! L:l•l:>•-s n-1•112( -1 )I•IS.(np + nix)D"P1( -Cl>v)(x) + 
+ n-<s-2)!2ps-2(- Cl>v )(x) + o (n-<s-2)/2) 

uniformly for x E Rk. Here for each multiindex l.i = (l.i<1>, ... , l.i<k>) 

(2.20) x = (x<1>, • •• , x<k>) . 

Combining (2.5) and (2.19) one has 

THEOREM 2.2. If p. < oo for some integer s ~ 3 and F,. denotes the distribution 
function of Q,., then 

sup~. Rk IF,.(x) - L: 1•1,;8 _ 2 n-1•112( -1 )l•IS.(np + nix)D"Cl>v(x) 

(2.21) - n-1 L: l•l:>s-s n-1•112( -1 )I•IS.(np + nlx)D" P1(- Cl>v )(x) - ... 

- n-<s-2)!2ps-2( -Cl>v)(x)l = o(n-<s-2)/2). 

Note that if p.,. denotes the signed measure whose distribution function appears 
on the right side of (2.18), then (by vi~tue of (2.18) and (2.5)) 

(2.22) IQ.,(A) - p,.(A)I = o (n-<•-2>12) 

uniformly over all Borel sets A. Unfortunately, it has not been possible so far 
to obtain computable expressions of p.,.(A) for sets A other than rectangles whose 
sides are parallel to the hyperplanes {x<i> = 0}, 1 ~ j ~ k. In case Y1 has a 
minimal lattice with basis {eu · · ·, ek}, Theorem 2.2 is easily modified to apply to 
rectangles whose sides are parallel to the hyperplanes {x = L:~ y<i>e1 : ym = 0}, 
1 ~ I~ k. The difficulty is caused by the presence of terms involving S1• One 
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of the most outstanding problems in the subject is to obtain "good" estimations 
of Q,.(A) in the lattice case for sets A other than rectangles properly aligned with 
the lattice. Perhaps the nature of the problem is best appreciated by linking it 
with the lattice point problem of analytic number theory. We do this in the 
following section. 

3. The lattice point problem. Confining ourselves to the standard lattice Z?, 
we define a lattice-point as a point in Zk. Let V be a positive definite symmetric 
matrix and consider the ellipsoids 

(3.1) E(c: V) = {x E Rk: (x, V-1x) ~ c} 

Let N(c: V) denote the number of lattice points in E(c: V). An important 
problem in analytic number theory is to obtain asymptotic estimates of N( c : V) 
as c ~ oo. If no further specification is made on k and V, then the best known 
result is that of Landau, namely, 

(3.2) IN(c: V) - volume of E(c: V)l = O(ckt2-ktk+l) 

Esseen [21] showed that (3.2) is essentially equivalent to the following theorem 
specialized to lattice random vectors. 

THEOREM 3.1. If {Y,.: n ~ 1} is a sequence of i.i.d. random vectors each with 
mean p., covariance matrix V, and a finite fourth absolute moment, then 

(3.3) sup,.<1<0 IQ,.(E(a: V)) - <I>v(E(a: V))l = O(n-k/(k+ll), 

where Q., is the distribution of n-! ~j=1 (Y3 - p.). 

The proof of Theorem 3.1 is rather long and is given in [21 ]. We shall only 
give a sketch of Esseen's argument linking (3.2) and (3.3). Note that the right 
side in (3.3) goes to zero faster than n-! if k > 1. If the distribution Q1 satisfies 
Cramer's condition (1.36), then a faster rate of convergence (with an error O(n-1)) 

may be obtained from (1.50) with s = 4. Here one uses the fact that P1( -if>v) 
is an odd function and, therefore, 

(3.4) 

The strength of Esseen's result lies, however, in its generality. For example, 
suppose Y1 in the theorem is lattice having Zk as its minimal lattice. Without 
loss of generality assume Pr ( Y1 E Zk) = 1. The local expansion (2. 5) with s = 4 
yields (we take p. = 0 for simplicity) 

sup,.~0 JQ .. (E(a: V)- (det V)-i(2trn)-kl2 

(3.5) X ~{aeZk:(a-nl',v-1ca-nl'));>;a"} exp {- 2~ (a- np., v-l(a- np.)) }I 
= O(n-1), 

again because P1(-ifJv) is an odd function and the set of vectors Ya, .. =(a
np.)fnl over which P1( -if>v)(Ya ... ) is to be summed is symmetric. Combining (3.3) 
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and (3.5) one gets 

supa~o l(det Vt!(2trn)-k12 

(3.6) X I; {(a-ni', v-l(a-nl'i):>an! exp {- ;n <a - np, V-1( a - np )) } 

- (det V)-t(2rrtk12 ~{(z,v-Iz);:>a} exp{ -t<x, v-1x)} dxl 
= O(n-k/(k+IJ) . 

Now write N(u) for the number of lattice points in E(u: V) + np = {x: <x- np, 
v-1(x - np)) ~ u}, u > 0. Also write B(u) for the volume of E(u: V), and let 

(3.7) R(u) = N(u) - B(u) . 

Then (3.6) reduces to 

(3.8) supa~o l(det V)-!(2trn)-k12 ~[o,anl exp {-;J dR(u)l = O(n-k!(k+ll). 

An integration by parts immediately gives 

(3.9) supa~o \(det Vt!(2rrn)-k12 [e-a12"R(an) + ;n ~[o,anl e-"12"R(u) du ]\ 

= O(n-k/(k+Il) . 

Since (ant 1 ~[o,anJIR(u)l du is of order not larger than that of IR(an)l, (3.9) leads to 

(3.10) R(an) = O(nk/2-k/(k+Il) 

for all a > 0. Landau's result (3.2) follows from (3.10). Conversely, on retrac
ing the steps one can deduce (3.3) for lattice random vectors from (3.2). More 
precisely, it has been shown by Yarnold [ 43] using the expansion in Section 2 
that in the lattice case one has 

(3.11) supa~o IQ,.(E(a: V)) - <Dv(E(a: V)) - R(an)e-a12(2rrntk12(det Vt!l 

= O(n-1). 

It is a simple consequence of (3.2) that the number of lattice points on the 
surface {x: <x, v-1x) = c} is of the order O(ckl2-k/(k+l1) as c ~ oo. Also observe 
that we can derive a weaker estimate O(c(k-l)/2) for this as well as for the re
mainder in (3.2) more simply from the inequality (1.60) without appealing to 
Theorem 3.1 or the material in Section 2. 

The foregoing discussion virtually niles out the possibility of obtaining com
putable expansions of Q,.(A) in the lattice case except for sets A properly aligned 
with the lattice. Under the circumstances perhaps the best one can hope for is 
an extension of Theorem 3.1. Of course, for sets A which are not symmetric 
the analogue of (3.3) is 

(3.12) IQ .. (A) - <Dv(A) - n-tP1( -<l>v)(A)I = O(n-k/(k+Il). 

Recently, Matthes [30] proved this for a class of convex bodies A having 
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sufficiently smooth surfaces whose Gaussian curvatures are bounded away from 
zero and infinity. The result is delicate. Note that it does not hold for rectan
gles. It would appear that (3.12) will not hold if oA contains too many points 
of the lattice n-k/2'1:/. Technically, the proof by Matthes uses an estimate of 
Esseen [21) on the value distribution of IQ11 and a result of Herz [23] asserting 

(3.13) lltll ~ 00 

for the convex sets A discussed by Matthes. Since convexity is a bothersome 
restriction, it would be useful to extend the result of Matthes by proving (3.13) 
for other smooth sets A. 

The lattice point problem is intimately related to the asymptotic distribution 
of eigenvalues of self ad joint elliptic operators in the theory of partial differential 
equations. For a delightful discussion of this we refer to Courant and Hilbert 
[18) (pages 429-445). 

4. Asymptotic distributions of a class of statistics. In this section we briefly 
sketch the derivation of normal approximations and asymptotic expansions of a 
class of statistics commonly used for purposes of statistical inference. Simplest 
examples of such statistics are functions of sample moments. Detailed proofs 
will appear elsewhere. Theorem 4.1 is based on joint work with J. K. Ghosh. 
Theorem 4.2 and the expansion ( 4.15) were obtained by Chibisov [ 15] under 
more restrictive assumptions on the functions fi (1 ~ i ~ k) below using different 
methods. While we merely require differentiability, Chibisov [15] assumes ana
lyticity of these functions, but obtains estimates of the variation norm. 

Let {Y,. ::= (Y,.11l, ... , Y,.1"'l): n;;;; 1} be a sequence of i.i.d. random vectors 
with values in R"' (m ;;;; 1 ). Let G denote their common distribution. We intro
duce real-valued, Borel measurable functions f 1, • • ·, fk on R"' and assume 

A1: El.ft(Y1)1" < oo, 1 ~ i ~ k. Heres is a positive integer, s ~ 3. 
A 2: His a real-valued Borel measurable function defined on a neighborhood N of 

(4.1) 

H has bounded and continuous derivatives of order p0 or less in some neighborhood 
M( c N) of p. Here p0 ;;;; 2. Also, 

(4.2) (grad H)(p) ::= (D1 H, · · ·, DkH)(p) * 0. 

The derivatives of H at p are denoted by 

(4.3) !1 = (D1H)(p) (1 ~ j ~ k), l = (!1, • • ·, t.); 

Also write 

(4.4) 

li1. ··ip = (Di1 • • • Dip H)(p) ( 1 ~ i 1, • • ·, ip ~ k; p ~ p0) • 

Z,. = (/I(Y,.), · · ·, fk(Y,.)) , 

W,. = n'[H(Z) - H(p)] , 

- 1 z =- L:~=lzi, 
n 
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and introduce the function 

(4.5) 

By extending H, if necessary, arbitrarily (but measurably) over all of R" we 
make W,. and g,. well defined. Note that {Z,.: n ~ 1} is an i.i.d. sequence, 
EZ1 = p.. Let 

(4.6) V = Cov Z 1 • 

It is easy to see that Vis singular if and only if the functions 1, f 1 , • • ·, fk are 
linearly dependent on the support of G, i.e., if and only if there exist ()11>, ..• , 

fj( k>, c E RI, not all zero, such that 

(4.7) G({y: I;~=r fj(i>pt>(y) = c}) = 1 . 

Let A, A denote the smallest and largest eigenvalues of V, respectively. Recall 
that ¢v is the normal density on Rk with mean zero and covariance V. The 
following result holds. 

THEOREM 4.1. If A1 holds with s = 3, A2 holds with Po = 2, and if V is non
singular, then 

(4.8) 

where d depends only on the moments of Z 1 of orders three or less and on the first 
order derivatives of H on M. 

In order to prove this theorem one cannot appeal to (1.59) directly, since, in 
general, V is not the identity matrix. But transforming the random vectors 
Z 1, ••• , Z,., by a nonsingular linear transformation one easily obtains (from 
(1.59)) 

[Q,.(A) - <l>v(A)[ ;::;;; C8(k).{-iE[[Z1 - p.I[Sn-~ 

(4.9) + cs'(k) supysRk <I>v((aAp + y), 

r; = c6(k).{-!£[[Z1 - p.I[Sn-i, 

where Q,. is the distribution of n-~(Z1 + · · · + Z,. - np.). To apply (4.9) one 
may take A= {zE Rk: g,.(z);::;;; u} or, in view of Theorem 1.11, its restriction to 
the set {[[z[[ ;::;;; ((s- 1)A log n)i}. A fairly straightforward computation yields 

(4.10) supvsRk <I>v((aA)' + y);::;;; d's s > 0, 

uniformly in u, and (4.8) follows from (4.9) and (4.10). 
To obtain asymptotic expansions going beyond (4.8) we assume 

As: The distribution G of Y1 (or G*r for some positive integer r) has a nonzero ab
solutely continuous component H. Further, there exists a nonempty open set B of R"' 
on which the density of His positive and the functions 1, fD · · ·, fk are continuously 
differentiable and linearly independent. 

Note that if As holds, then by Lemma 1.4 the distribution of Z1 ~ p. satisfies 
Cramer's condition (1.36). Theorem 1.5 then implies (by a linear transformation 
of Z/s) 
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THEOREM 4.2. Assume A1, A2, As hold with p0 = s ~ 3. Then 

(4.11) 

Since the domain of integration {g,.(z) ~ u} is not simple to deal with we now 

provide a more computable expression for the expansion. For this we first in

troduce the function 

(4.12) h (z) - "k I zli> + 1 " I zli>zW + •-1 - LJ i=1 ; 2ni "-' 1:;;;,;:;;k ii · • · 

and note that h._1 is a Taylor expansion of g,. and, therefore, for all constants 

c > 0, 
s/2 

(4.13) sup111• 11 <clot,1 lg,(z)- h._1(z)i = O(n-l•-1112 log n). 

In view of (4.13) and Theorem 1.11 one may replace g, by h._1 and the random 

variable W, by 

(4.14) 

The next task is to derive the expansion 

( 4.15) ~ 1,.8 _ 11•>:iu} </J(z) dz 

= ~~2~ ,1.u>:;; .. 1 [</J(z) + I;~:,; n-r12</Jr(z)] dz + O(n-1•-1>12), 

where </J, ¢1, · · ·, </Jr are polynomial m)Jltiples of <Pv whose coefficients do not 

depend on n. This may be done by an appropriate change of variables; but we 

omit the details. For example, one may easily show (assuming lk =1= 0) 

(4.16) [ (( r; ./ .zW) 
~!k21•>:iu} </J(z) dz = ~c~:;l;•'.i>:;;u} </J(z) 1 - lk~~ 

- (Dk </J)(z) I;;,; Iii zli> zl.i> )] dz + O(n-1) . 
2/kni 

Applying (4.13) and (4.16) in Theorem 4.1 one obtains. 

(4.17) sup,..R1 IPr (W, ~ u)- ~~co ¢;;2(v) dvl ~ d'n-i, 

where d' is a positive constant and 

(4.18) 0'2 = (/, VI), 1 { v2 
} </J;;2\v) = (2tr)ia exp - 20'2 . 

Similarly from Theorem 4.2 one gets 

(4.19) sup,..R1 \ Pr (W, ~ u) - ~!(l,z):;;u} [ <Pv(z) ( 1 - lk~i I;; lk;zW) 

1 1 J . \ - 2/kni(L;;,;li.izli>zW)(Dk</Jv)(z) + lifP1(-</Jv)(z) dz = O(n-1), 

if A1, A2, As hold with p0 = s = 4. 
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By a linear transformation z ~ x, with x11l(z) = (l, z), the right side of (4.15) 
may be reduced by integration to yield 

(4.20) ~!h,_ 1 (z):;;ul {¢v(z) + I;~-:;~ n-ri2Pr( -¢v)(z)} dz 

- )~= [ 1 + I;~-:;~ n-r12qr(v)]¢u2(v) dv = O(n-1•-1l12), 

where q1, • • ·, q,_2 are polynomials whose coefficients do not depend on n. To 
identify the polynomials q;'s we describe another formal procedure for expand
ing the distribution function of W,. Since W, may not have finite moments of 
orders up to s, a formal method for computing "approximate cumulants" of W, 
is used. This is the so-called delta method. Assume, for the sake of simplicity, 
that Z1 has finite moments of all orders. Since h,_ 1 is a polynomial of degree 
s - 1, the moments and cumulants of W,' can be computed in terms of those 
of Z1 - p either directly (algebraically), or using Theorem 1.5 with f = h,_1, 

or using Theorem 1.1. One may show 

(4.21) /'th cumulant of W ' = K. + o (n- 1•-2ll2) 
n 3,n . ' 

where 
K1,n = I;t:~ n-il2b1i, 

(4.22) Ki,, = n-IJ-2)12Ki +I;}::.; n-il2bii j ~ 2' 
K1 = jth cumulant of (I, Z 1 - p) , 

and b1;'s depend only on cumulants of Z1 - p of orders s2 and less. Also note 
that K2 = a2• Now write 

(4.23) { . K (it)2 (K -2) + "' (itt K } exp lt 1,n + 2 2,n- (J L.Jr=3 ~ r,n 

t E R1 , 

where IT/s are polynomials whose coefficients depend only on the cumulants 
of Z1 - p of orders s and less. One would then expect (as in the case of the 
Edgeworth expansion in Section 1) 

(4.24) Pr (W,;;:::; u) = ~~= [1 + I;~-:;; n-ri2ITr( -D)]¢;;2(v) dv + o(n-l•-2ll2), 

where ITr( -D) is the differential operator obtained by formally substituting 
(-1)1Di for (it)i in the polynomial ITr(it), j ~ 0. The integrands on the right 
sides of (4.20) and (4.24) are identical, i.e., 

(4.25) 

One proves this by showing that the 'two densities under the integral signs in 
(4.20) and (4.24) have the same moments of all orders. 

We refer to Wallace [ 42] for a description of the original conjecture about 
the validity of an expansion analogous to (4.24) using n-li-2l12K1 instead of K 1,,. 

In [12] Bickel modified this conjecture essentially in its present form. We do 
emphasize, however, that the moments and cumulants of W, are not quite rele
vant for the above expansion; for the asymptotic distribution of W, depends 
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only on the local behavior of Hat p.. Bickel [12] also discusses the possibility 
of applying the above expansion to other types of statistics. The main problem, 
of course, is to prove that there exists an expansion. 

The results of this section extend in a fairly straightforward way to vector
valued functions H, and to probabilities of other sets of interest (not merely 
intervals or rectangles). 

5. Other applications, extensions. A number of applications other than those 
discussed in Sections 3, 4 are listed below. 

(a) U-statistics. Suppose {X,.: n ~ 1} is a sequence of i.i.d. observations with 
values in some space S. Let cp be a real or vector-valued function on S x S 

such that cjJ(x, y) = cp(y, x). The function U,. = (;}-1 L; 1:;t<i=>" cjJ(Xt, X3) is a U

statistic with kernel cp. Subtracting the expectation if necessary, we assume that 
EcjJ(Xl> X2) = 0. Also suppose EJJcjJ(X1, X2)W < oo. Let c/J1(x) = EcjJ(X1, x); then 
{c/J1(X,.): n ~ 1} is an i.i.d. sequence. By comparing U,. with s .. = n-1 I:f c/J1(Xt), 
Hoeffding (see [35], page 58) showed that as n- oo the statistic niU,. converges 
in distribution to <I>v, where V = Cov c/J1(X1). By an attractive argument Bickel 
[ 12] has recently shown that if cp is real-valued and bounded, then 

(5.1) sup 1 1Pr(niU ;:<=;; u)- 1 '" e-•212• 2 dvi = O(n-i) 
"eR I "- (2n")!a J-oo I ' 

where a2 = Ec/J12(X1). It would be useful to relex Bickel's assumption of bounded
ness of cp, to extend (5.1) to vector-valued cp, and, more importantly, to obtain 
an asymptotic expansion under appropriate assumptions. There are similar im
portant problems concerning the so-called rank statistics (see [12]). 

(b) Maximum likelihood estimators. Let [X,.: n ~ 1} be a sequence of i.i.d. 
observations from a distribution with a strictly positive density f(x; 0) (relative 
to some a-finite measure), where the parameter 0 lies in an open subset of Rk (or, 
more generally, in a k-dimensional manifold). Assume that f is twice differenti
able in 0 and that the likelihood equations (in 0) 

(5.2) 1 ~j~ k 

have a unique solution 0,., the maximum likelihood estimator of 0. If the infor
mation matrix 1(0) = -((E~DtD; logf(X1, 0))) is nonsingular, then under regu
larity assumptions one shows that T .. ,= ni(O,.- 0) is asymptotically normal <I>v, 
where V = J-1(0). For the case k = 1 Berry-Esseen bounds and asymptotic 
expansions of the distribution function of T.,. have been obtained by Linnik and 
Mitrofanova [29] and Pfanzagl [34]. A complete derivation for multidimensional 
parameters is still not available. 

An entirely analogous problem arises in mathematical economics [10]. Here 
the summands in (5.2) are excess demands of individuals, 0 is the (normalized) 
price vector. The solution 0,. is the equilibrium price. One is interested in the 
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asymptotic behavior of IJ"' when n, the number of agents in the economy, is 
large. 

(c) Law of the iterated logarithm. The classical law of the iterated logarithm 
(LIL) is essentially tied up with the central limit theorem. Indeed, a very useful 
method of proving LIL's is by using the classical Berry-Esseen theorem. This 
method is originally due to Chung [16] (also see [17] pages 231-237) and was 
later rediscovered by Petrov [33]. It can be used to derive classical as well as 
Strassen type LIL's for independent as well as dependent random variables with 
the help of such Berry-Esseen type bounds as obtained by Statulevicius [39] and 
Stein [ 40]. This method is comparable in effectiveness with that using the 
Skorokhod representation (of successive partial sums of a sequence of random 
variables as values of the Brownian path at appropriately defined successive 
stopping times). 

(d) Statistical mechanics. In his important works on the mathematical foun
dations of classical statistical mechanics Khinchin [27] used (his own) results on 
refinements of the central limit theorem to provide an analytical derivation of the 
Gibbs canonical ensemble and the laws of classical thermodynamics. Khinchin's 
book [27] is still one of the most penetrating studies on the foundations of equi
librium statistical mechanics of ideal gasses. 

We conclude this article with a few additional remarks. First, the main theo
rems of Sections 1 and 2 have appropriate analogs in the non-i.i.d. case; these 
analogs may be found in the cited references. Secondly, note that if {X"': n ~ 1} 
is an i.i.d. sequence of k-dimensional random vectors such that X1 has inde
pendent coordinates, then obtaining rates of convergence and asymptotic ex
pansions of the distribution Q,. (of the normalized partial sum) reduces to a 
one-dimensional problem. This is obvious if one is approximating the distribution 
function of Q,; but even for more general sets (e.g., the class ~of Borel meas
urable convex sets) one only needs to use the classical Berry-Esseen theorem 
and the Fubini theorem. Thus one can easily show (see [8], Theorem 4. 7) 

(5.3) 

where the universal constant c0 is the one appearing in the Berry-Esseen bound 
(see Van Beek [ 4] for an estimation c0 = . 7975). Thus, in our context, the 
complexity of higher dimensionality arises only through the dependence among 
coordinate variables. 

As a third remark it may be mentioned that errors of normal approximation 
have also been estimated by methods different from the Fourier analytic method 
used here (e.g., see [5], [31], [38], [41]). Because these methods are somewhat 
more direct it is possible that they will yield better estimates of constants in
volved in the bounds. However, none of these other methods have been suc
cessful in providing asymptotic expansions. Our final remark concerns the 
moment condition "p3 < =" in Theorem l. 7. Rates of convergence can be 
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obtained when p2.;.a is assumed finite for some o, 0 ~ o < 1 (see, e.g., Section 
18 in [ 11 ]). For distribution functions in one dimension definitive results have 
been obtained in this case by Heyde [24] and Ibragimov [251. 
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4.5 “On the validity of the formal Edgeworth expansion”
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Let {Y,.),. ;o; 1 be a sequence of i.i.d. m-dimensional random vectors, and 
let /~o · .. , /k be real-valued Borel measurable functions on Rm. Assume 
that z .. = (/1(Y,.), · · ·, jk(Y,.)) has finite moments of orders ;?; 3. Rates of 
convergence to normality and asymptotic expansions of distributions of 
statistics of the form W,. = n![H(Z) - H(p)] are obtained for functions H 
on Rk having continuous derivatives of order sin a n~ighborhood of p = 
EZ1• This asymptotic expansion is shown to be identical with a formal 
Edgeworth expansion of the distribution function of w... This settles a 
conjecture of Wallace (1958). The class of statistics considered includes all 
appropriately smooth functions of sample moments. An application yields 
asymptotic expansions of distributions of maximum likelihood estimators 
and, more generally, minimum contrast estimators of vector parameters 
under readily verifiable distributional assumptions. 

1. Introduction. Consider a sequence of independent and identically distri
buted m-dimensional random vectors {Y,.},. ;o; 1 • Let h· · · ·, fk be real-valued Borel 
measurable functions on R"'. Consider the statistic 

(1.1) W,. = n~(H(Z) - H(p.)) 

where His a real-valued Borel measurable function on Rk, and 

(1.2) p. = EZ,.. 

Note that all functions of sample moments are of the form H(Z). For example, 
H(Z) becomes the bivariate sample correlation coefficient if one takes m = 2, k = 
5, h(y) = y<l), f 2(y) = y<2>, ls(y) = (ym)2, f.(y) = (y<2>)2, h(y) = ymy<2> (for y = 
(y0 >,y!2l)), H(z) = (z< 6> - zmz< 21)(z<31 -(z01)2)-l(z<•> -(z< 2>)2)-~forz = (z!l>, ... , z<61) 
belonging toaneighborhoodNof p.=(EY,!l>, EY,<21 , E(Y,my, E(Y,<21)2, (EY/l) Y,<2l)) 
contained in the set {z E R6 : z<3> > (zm)2, z<•> > (z<2>)2 , -1 < H(z) < 1}; H may 
be defined arbitrarily outside N. 

It is well known (see Cramer (1946), page 366, and Wilks (1962), page 260) 
that if Z , has finite second moments and H is continuously differentiable in a 
neighborhood of p., then W,. has a limiting normal distribution with mean zero 
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and variance 

(1.3) a2 = "~·-I v .. /i/. L.Jt,j- tj J 

where V = ((vi;)) is the dispersion matrix of Z1 and 

(1.4) 1 ;£ i ;£ k; z = (zoi, .. . , z(ki). 

Throughout this article it is assumed that a2 is positive. As a first refinement of 
asymptotic normality one has 

THEOREM 1. If Z1 has finite third moments and if all third order derivatives of H 
are continuous in a neighborhood of p. = EZ1 , then 

(1.5) 

for every class .05' of Borel sets satisfying 

(1.6) SUPse.{"_; ~(oBJ' rfJa2(v)dv = O(c:) (e! 0). 

Here oB is the boundary of B, (oB)' is the <:-neighborhood of B, and 

(1. 7) -00 < v < 00. 

It is important to note that the mean H(p.) and the variance a2jn of the asymp
totic distribution of H(Z) are not the mean and variance of H(Z). Indeed, in 
many common examples (e.g., the t-statistic, the sample correlation) the mean 
and higher moments of H(Z) may not even be finite. This feature of the problem 
shows up in a more serious manner when one attempts an asymptotic expansion 
going beyond (1.5). It is common practice among applied statisticians to calcu
late "approximate moments" of w. by expanding H(Z) around p., keeping a cer
tain number of terms, raising to an appropriate power and taking expectations 
term by term. This is the so-called delta method. These "approximate moments" 
are sometimes used to obtain a formal Edgeworth expansion of the distribution 
function of W,. It was conjectu(ed by Wallace (1958) (also see Bickel (1974)) 
that such a formal expansion would be valid if suitable assumptions were made. 
One of the principal aims in this article is to prove that a more precisely formu
lated version of this conjecture, as described in the following paragraphs, is 
valid. As pointed out by Wallace, such a formal expansion is easier to compute 
compared to the alternative procedure of reducing a multivariate Edgeworth 
expansion to a univariate one. 

Denote the derivatives of H at p. by 

(1. 8) /. . = (Di D. · · · D H)(") t 1, ... , tp 1 t 2 tp r 

where Di denotes differentiation with respect to the ith coordinate. A Taylor ex
pansion of W, yields the statistic 

(1.9) W,' = n!{.L;f=t/i(z(o - p.(i)) + i .L:u /i,;(Z(i)- p.(i>)(Z(j) - p.(j>) + ... 
+ 1 " /. . (Z(il) _ ,(it>) ... (Z(i•-1) _ ,(i.-1))}. 

(s _ 1 )! £...J '1•"·•'•-1 r r 
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Since W,. - W,.' = o,(n-<•-2)12), one may expect that an asymptotic expansion of 
the distribution function of W,.' may coincide with that of W,.. Also, it is easy 
to check that (if Z1 has sufficiently many finite moments) the jth cumulant te;, .. 

of W,.' is given by 

(1.10) 

where 

(1.11) 

te. = iC. + o(n-<•-2)12) 
j,'ft. j,'llo 

i; ... = I:~;;;~ n-ii2b ;.• 

= q2 + I;i;;;~ n-•tsb2,i 

if j =I= 2' 

if j = 2' 

j ~ 1' 

and b ;./s depend only on appropriate moments of Z1 and on derivatives of H 

at p. of orders s - 1 and less. We refer to f;, .. as "approximate cumulants" of W,.' 

(or W,.). The expression 

( 1.12) exp { iti1,,. + (it/ (f2,,. - q 2) + I:i=s (~t i 3,,.} exp{ -(J2 t 2/2} 

is an approximation of the characteristic function of W,.' (or W,.). Expanding 
the first exponential factor one may reduce ( 1.12) to 

(1.13) exp{ -q2t2J2}[1 + L:~':;·n-r12i,.(it)]'+ o(n-<•-2ll2) 

= l},,,.(t) + o(n-<•-2)12), 

say, where 1t'/S are polynomials whose coefficients do not depend on n. The 
formal Edgeworth expansion w .... of the distribution function of W,. is defined by 

(1.14) ifl .... (v) = [1 + I:~-;;; n-'"121t',. ( -~) J ¢ 0 2(v), 

w .... (u) = ~~ .. ¢ .... (v) dv. 

Note that the Fourier-Stieltjes transform of w .... is o/ ..... 
To state the next result let 1·1, ( , > denote Euclidean norm and inner product, 

respective I y. 

THEOREM 2. Assume that, for some integers~ 3, all the derivatives of H of or

ders sand less are continuous in a neighborhood of p. = EZ1 and that EIZ1I" is finite. 

(a) If, in addition, (i) the distribution of Y1 has a nonzero absolutely continuous 

component (with respect to Lebesgue measure on R"') and (ii) the density of this com

ponent is strictly positive on some nonempty open set U on which j;_, · · ·, f,. are con

tinuously differentiable and 1, f 1 , ••• , f,. are linearly independent (as elements of the 

vector space of continuous Junctions on U), then 

(1.15) supB IProb (W,. e B) - ~B ¢ .... (v) dvl = o(n-<•-2>12) , 

where the supremum is over all Borel sets B. 

(b) If, instead of (a), it is merely assumed that 

(1.16) lim sup111~ .. IE(exp{i(t, Z1)})1 < 1 , 
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then the relation 

(1.17) supB•a IProb (W,. E B)- ~B ¢ .... (v) dvl = o(n-<•-2>'2) 

holds uniformly over every class~ of Borel sets satisfying (1.6). 

REMARK 1.1. Theorems 1 and 2 extend in a straightforward man~er to vector

valued H(z) = (H1(z), · · ·, HP(z)) provided that the dispersion matrix M = ,l;Vl:' 

of ((Z1 , grad H1(p.)), · · ·, (Z1, grad H"(p.))) is nonsingular. Here l: is the p x k 

matrix whose rth row is grad Hr(P.) = (D1 Hr(f1.), · · ·, DkHr(p.)). In this case one 
must replace ¢ .... by 

(1.18) xeRz>, 

where ,PM is the normal density on R" with mean zero and dispersion M, itr is a 
polynomial in p variables (whose coefficients do not depend on n), and -D = 

( -Du · · ·, -D"). There is virtually no difference in the proofs for vector
valued fl, apart from an additional complexity in notation. 

REMARK 1.2. Let G denote the distribution of Y1 • If the density g, say, of 

the absolutely continuous part of G is such that U1 = {y: g(y) > 0} is open and 
G(U1) = 1, then one may replace (ii) in the statement of Theorem 2(a) by (ii)': 
j;_, • • • , fk are continuously differentiable on Ul' For, in this case, the functions 
1, j;_, · · ·, fk are linearly dependent as continuous functions on U1 if and only if 

1, j;_(Y1), • • ·, fk(Y1) are linearly dependent .as elements of the V space of random 
variables, and, as explained in the first paragraph of Section 2, one may always 

replace {l,f1, • • ·,fk} by a maximal linearly independent set {l,ft1 , • • ·,ftk,} 

(1 ~ k' ~ k). 

REMARK 1.3. Assuming, in addition to the hypothesis of Theorem 2(a), that 

ft's are analytic, Chibishov (1972) proved that an asymptotic expansion 

Prob (W,. E C) - ~c [1 +I:~-:~ n-r12qr(x)]ifJM(x) dx = o(n-<•-2>'2) 

holds uniformly over all measurable convex sets C (intervals, in case His real). 
For the special case of polynomial H he was able to prove that this expansion 

was uniform ove·r all Borel sets. For many applications (see, e.g., Theorem 3) 
analyticity of .ft's is a severe restriction. Also, he was not concerned with the 

problem of identifying this expansion with the formal Edgeworth expansion. 

REMARK 1.4. Note that in Theorem 2 we only require EIZ11• < oo, whereas 

an algebraic computation of the moments of W,.' yields expressions for tej, .. 

(1 ~ j ~ s) as polynomials in n-i whose coefficients are (polynomial) functions 
of moments of Z1 of orders up to s(s ...:... 1 ). This apparent anomaly is resolved by 

the fact that the "approximate cumulants" ij,,., 1 ~ j ~ s, only involve mo
ments (of Z1),of orders sand less so that (1.14) is well defined. In the course of 
proving Theorem 2 it is first shown that under the hypothesis of Theorem 2(b) 

there exists an asymptotic expansion of the distribution function of W,. in the 
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form 

(1.19) F.,.(u) + o(n-<•-2'12), 

F.,.(u) = ~~oo [1 + I:~:~ n-~12qr('v)]¢a2(v) dv, 

where q/s are polynomials. The coefficients of q~ (1 ~ r;;:;; s - 2) are polyno
mials in the moments of Z 1 of orders s and less, and the coefficients of these last 
polynomials are constants which do not depend on the distribution of Z 1• It is 
next shown that, in case Z 1 has finite moments of all orders, 

(1.20) l;;:;;r;;:;;s-2. 

It follows that ;r/s (1 ;;:;; r ;;:;; s - 2) depend only on those moments of Z 1 which 
are of orders sand less, and the same is, therefore, true of i 1,.,. (1 ;;:;; j;;:;; s). In 
view of (1.11)-(1.13), and (1.21) below, the jth moment ofW,,,. (j ~ 0) differs 
from that computed from i 1,.,. (using the familiar relations between moments 
and cumulants) by o (n-<•-2'12). Iri other words, under the hypothesis of Theorem 
2(b) it is a valid procedure to compute moments of the asymptotic expansion by 
the so-called delta method in which· W.,.' is raised to a power, expectations taken 
term by term (formally) and terms of order o (n-<•-2'12) neglected. Expansions of 
moments as well as expectations of other smooth functions of W,.' (and of W.,., 

if it has enough moments) are valid solely under moment conditions on Z 1 (see 
Gotze and Hipp (1977)), and these expansions may be obtained by integrating 
the smooth function with respect to the formal Edgeworth expansion W,,.,., even 

when the distribution function of W.,. does not admit an expansion. Finally, the proof 
of the identification (1.20) depends crucially on the following important com
binatorial result of James (1955), (1958), and James and Mayne (1962): 

(1.21) tC. = O(n-<i-2)12) 
3 ... j ~ 3' 

which holds if EIZ1Ii<•-1' < oo. There may, however, be statistics whose cumu
lants satisfy (1.10), (1.11), but not (1.21). Consider such a statistic T,., assume 
(for simplicity) that it has finite moments of all orders, and define, for each 
r ~ 3, the polynomials ;r 1 .~ by 

(1.22) 

{. - + (it)2 
("' 2) "' (it)i - } { 2 2/2} exp lftC1,,. T ... 2,,. - a + £....i=S}! tC1,.. exp -at 

= exp{ -a2t 2/2}[1 + .L:j-:,21 n-i12;r J.~(it)] + o (n-<•-2>, 2) 

= rfi •. ~ ... (t) + o(n-<•-2)/2)' 

say. Define the formal Edgeworth expansion of type (r, s) by 

(1.23) 

It is easy to see from (1.22) that the polynomials ;r 1 .~ have no constant terms, and 
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¢ •. ~ ... (0) = 1. It follows that there exists a smallest integer r0 such that 

(1.24) ~log;;; ,(t)l = o(n-<•-2,'2) if 1· > r0 • dt3 'f's,T, t=O 

If now the distribution function of the statistic T, has a valid asymptotic ex
pansion given by (1.19), then the same procedure as used in verifying (1.20) 
leads to the conclusion: F,. = w.,T,n if and only if r ~ ro. 

REMARK 1.5. Theorem 2, incidentally, justifies the remark made in Ghosh 
and Subramanyam (1974), page 356, that their Eu(T,.- 00) 2 is the second mo
ment of an Edgeworth expansion. 

AN APPLICATION. We now apply Theorem 2(a) for yector-valued H (see Re
mark 1.1) to obtain asymptotic expansions of distributions of a class of statistics 
including maximum likelihood estimators and the so-called minimum contrast esti

mators for vector parameters. 
Let {Y,.},;:1 be a sequence of i.i.d. m-dimensional random vectors whose com

mon distribution G 0 is parametrized by 0 = ( onJ, ... , ocp>) belonging to an open 
subset e of RP. For each 0 let f(y; 0) be an extended real-valued Borel measur
able function on R"'. For nonnegative integral vectors JJ = (JJ(l), · . ·, JJrp>) write 
JJJI = JJn> + ... + JJCP>, JJ! = JJc 1'! ... JJCP>!, and let D• = (D1)"(1) ... (DP)"CP> denote 
the JJth derivative with respect to 0. We shall write P0 to denote the product prob
ability measure on the space of all sequences in R"' and regard Y,.'s as coordinate 
maps on this space. Expectation with respect to P0 will be denoted by £ 0 • The 
following assumptions will be made: 

(A1) There is an open subset U of R"' such that (i) for each 0 E e one has 
G0(U) = 1, and (ii) for each JJ, 1 ~ IJJI ~ s + 1, f(y; 0) has a JJth derivative 
D•f(y; 0) with respect to 0 on U x e. 

(A2) For each compact K c e and each JJ, I ~ JIJJ ~ s, sup00 ex E00 JD"f(Y1; 

00)1'+1 < oo; and for each compact K there exists s > 0 such that 

sup00 ex E00(max10 _ 001 ;;;, JD"f(Y1; 0)1)• < oo if IIJJ = s + 1. 
(A8) For each 00 E e, E00 DTJ(Y1; 00) = 0 for I ~ r ~ p, and the matrices 

(1.25) /(00) = ((-E00 DiD~f(Y1 ; 00))), 

D(00) = ((E00(Dd(Y1; 00) • DTJ(Y1; 00)))) 

are nonsingular. 
(A4) The functions /(0), E0(D"f(Y1; 0) · D•f(Y1; 0)), 1 ~ !JJJ, !JJ'! ~ s, are con

tinuous on e. 
(A~) The map 0 -4 G0 one into the space of all probability measures on (the 

Borel sigma field of) R'"' is continuous when the latter space is given the (vari
ation) norm topology. 

(A6) For each 0 E e, G0 has a nonzero absolutely continuous component (with 
respect to Lebesgue measure) whose density has a version g(y; 0) which is strictly 
positive on U. Also, for each 0 and each JJ, 1 ~ IJJI ~ s, D•J(y; 0) is continuously 
differentiable in y on U. 
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Now write 

(1.26) 

and consider the p equations 

(1.27) 

+ _1_ L:l"l=•-1 (0 -, Oo)" D"D,L.,.(Oo) + R,.,r(O) 
n l.J. 

1 
= -- D,L.,.(O), 

n 

where x" = (x1!))"11 ) .•• (x1P))"1p) for x = (x11), ••• , x1P)) E RP, and R,.,r( 0) is the 

usual remainder in the Taylor expansion, so that 

(1.28) 

The statistics&.,. considered below are measurable maps on the probability space 

into some compactification of e. 

THEOREM 3. 

(a) Assume (A1)-(A4) hold for some s ~ 3. There exists a sequence of statistics 

{0,.},.;:1 such that for every compact K c 8 

(1.29) inf80 eK P00([0.,.- 00 [ < d0 n-~(log n)~, 0.,. solves (1.27)) 

= 1 - o (n-1•-2)/2) , 

where d0 is a constant which may depend on K. 

(b) If (A1)-(A6) hold, then there exist polynomials q,, 80 (in p variables), not de

pending on n, such that for every sequence {tf,.},.;1; 1 satisfying (1.29) and every compact 

K c 8 one has the asymptotic expansion 

( 1. 30) sup80 eK [Po 0(nl(O,.- 00) E B)- ~B [I + I:~:~ n-'12qr.80(x)]¢x(x) dx[ 

= o(n-1•-2)/2) 

uniformly over every class qjJ of Borel sets of RP sarisfying 

(1.31) as e l 0. 

Here M = J-1(00)D(00)J-1(00), where !(00), D(00) are defined by (1.25). Also, the 

coefficients of the polynomials qr,oo are themselves polynomials in the moments of 

D" L1(00), 1 ~ [l.i[ ~ s, under P80 , and are consequently bounded on compacts. 

REMARK 1.6. Theorem 3 is actually proved under the weaker hypothesis 

(A1)-(A5) and (in place of (A6)) (A6)': the distribution of Z1 under P8 satisfies 

Cramer's condition (1.16), for each 0. Under this latter condition, and for one

dimensional parameters, relations similar to (1.30) were established (with analo

gous regularity assumptions) for the class of intervals, in place' of general Y6' 
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satisfying (1.31), by Pfanzagl (1973b, Theorem 1) and Chibishov (1973b). 
Pfanzagl also provided a verifiable condition (see [21], page 1012) under which 
his distributional assumption may be checked. The situation is more complex 
in the multiparameter case. For this case Chibishov (1972, 1973a) was able to 
prove a result analogous to (1.30) for the special class of all measurable convex 
sets (which, of course, satisfies (1.31); see [4], page 24) under the additional as
sumption that D"f(y; 8), 1 ;;;;; IJ..II ;;;;; s, be analytic in y. In the present context 
this assumption is severely restrictive. Note that assumption (A6) provides a 
simple verifiable sufficient condition for the validity of (A6)' (see Lemma 2.2 
and Remark 1.2). Finally, it is also possible (see the proof in Section 2) to re
place the continuity conditions in (A4) by 'boundedness' conditions (as, e.g., in 
Pfanzagl (1973a)). 

REMARK 1.7. Under assumptions (A1)-(A4) with s = 3 one may easily prove 
(using Theorem 1 for vector H, instead of Theorem 2) that the error of normal 
approximation is O(n-i) uniformly over every compact K c 6 and every class 
SW satisfying (1.31). However, for the special class of all Borel measurable 
convex sets such a result has been proved by Pfanzag1 (1973b). 

REMARK 1.8. Assume that for some s;;;;; 2 one has (A1), (A3), E00 ID"f(Y1; 

8o)i' < oo for 1 ;;;;; IJ..II ;;;;; s, and E0o<max10 _ 001 :;;. JD"f(Y1 ; 8)1)• < oo for some s > 0 
and all J..l with IJ..II = s + 1. Then one may prove using (1.27), (1.28) and the 
law of the iterated logarithm that there exists an a.s. (P00) finite integer-valued 
random variable N( •) such that with P00 probability one for n > N(.) one has 

(1.32) I! DrL,.(80)1;;;;; d1 n-!(log n)i, 

I! D•L,.(80)- E00 D"f(Y1 ; 80)1;;;;; d1 n-i(log n)! 

JR,.,r(8)J ;;;;; J8- 80 J•{d3 + d1 n-i(log n)i} 

for all 8 satisfying J8 - 80J ;;;;; s 1 ;;;;; r;;;;; p, 

for any positive constant d1 and a suitable constant d3• Using the Brouwer fixed 
point theorem, as in the proof of Theorem 3(a), one can then show that there 
exists a sequence of statistics {U,.},.61 such that for every d > 0 with P00 proba
bility one 

(1.33) and &., solves (1.27) if n > N(·). 

If, due to some additional structure (e.g., convexity or concavity of L,.(8) as a 
function 8 for every n, a.s. (P0 )), the equations (1.27) have at most one solution 

0 ~ 

for each n (a.s. (P0 )), then of course one may define 8,. to be this solution when 
0 ~ 

it exists and arbitrarily (measurably) if it does not, and such a 8., will satisfy 
(1.33) with P00 probability one (strong consistency) and, under the hypothesis 
(A1)-(A6) will also admit the asymptotic expansion (1.30). Finally, we consider 
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the so-called minimum contrast estimators (see Pfanzagl (1973b)). It is known 
(see [21], Lemma 3, which admits extension top> 1) that for such estimators 
8 .. , say, one has, under certain regularity conditions, 

(1.34) 

for every compact K c e. Here d' is bounded on compacts. Since 8 .. minimizes 
(or maximizes) L.,.(O) it follows that (1.29) holds. Augmenting these regularity 
conditions, ifnecessary, so that (A1)-(A6) hold one has'(l.30). Conditions not 
significantly different from (A1)-(A6) are generally included among these regu
larity conditions. Finally, the reason for not restricting the context of Theorem 
3 to minimum contrast estimators is that in its present from this theorem also 
applies to problems, e.g., in mathematical economits (see Bhattacharya and 
Majumdar (1973)), in which 8 .. is not a statistical estimator. 

Among the earliest results on asymptotic expansion of some special functions 
of sample moments we refer to Hsu (1945) who obtained an asymptotic expan
sion for the sample variance. 

For relations with questions concerning asymptotic efficiencies of statistical 
estimators we refer to Pfanzagl (1973a), Ghosh and Subramanyam (1974), and 
Ghosh, Sinha and Wieand ( 1977). 

Some of the results of this article in weaker form were announced earlier in 
Bhattacharya ( 1977). It may be noted that the entire Section 4 of that article 
([2]) was based on joint work by the authors. 

2. Proofs. For proving Theorems 1 and 2 it will be assumed, without any es
sential loss of generality, that the dispersion matrix V of z .. is nonsingular. For, if 
Vis singular, then 1, _h(Y.,.), · · ·, fk(Y .. ) are linearly dependent when considered 
as elements of the L 2 space of random variables. Then there exist a maximal inte
ger k' and distinct indices i1 , • • ·, ik, among 1, 2, · · ·, k such that 1, j;_1, • • ·, j;_k, 
are linearly independent. Defining z .. = (/1 (Y,.), · · · ,j;_ ,(Y,.)) one can define 

1 . k -
a function H' defined on Rk' and as smooth as H such that H'(Z) = H(Z) where 
Z = (1/n) L:f=1 2 1• In view of the positivity of u2, k' ~ 1. 

Throughout the letters c, d will denote constants (i.e., nonrandom numbers 
not depending on n, x, z, u, or v). 

Let X;(t) denote the jth cumulant of (t, Z1 - p.) = L:~=1 t'r>(Z1 - p.)'r>, and 
introduce the Cramer-Edgeworth polynomials 

(2.1) p (it)= "r _ { "* X;1+2(it) ... Xip+2(it) } 
r "-'P-1 "-' (11 + 2)! {jp + 2)! 

t E Rk; r = 1, 2, · · ~ , 

where the sum L:* is over all p-tuples of positive integers (11, ... , jp) satisfying 
L:f=1 } 1 = r. Letting D; denote differentiation with respect to the ith coordinate, 
write 

(2.2) 
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Then Pr( -D) is a differential operator. Write 

(2.3) rf>v(z) = (27r)-k12(det V)-~ exp{ -~(z, V-1z)}, 

~.,n(z) = [1 + L;~-:,21 n-rt2Pr( -D)]r/>v(z) 

Define the functions 

gn(z) = ni[H(p + n-iz)- H(p)], 

(2.4) h,_1(z) = I: l;,z<il + ~n-i I: li,Jz<ilz<il + ... 
+ 1 n-<•-21/2 '>' 1. . z<i11 ... z<i.-11 

(s- 1)! '-' t1, ... ,t.-1 

z = (z<11, ... , zlkl) E Rk. 

Note that h._1 is a Taylor expansion of gn and write 

(2.5) Wn = g,.(n-i(Z- p)), Wn' = h._1(n-i(Z- p)). 

Define the maps 

(2.6) T(z) = (z111 , ... , zlk-n, gn(z)), 

where p = 1 or s - 1. Assume without lqss of generality that lk > 0. For the 
following discussion n0 is an integer such that for n > n0 the map T,_1(T) is a 
C=( C•) diffeomorphism on the set 

(2.7) Mn = {jzj < ((s - 1 )A log n)~} 

onto its image. Here A is the largest eigenvalue of V. 

LEMMA 2.1. Assume p. = EJZ1 j' < oo and that all derivatives of H of orders s 
and less are continuous in a neighborhood of f1 = EZ1 , for some s ~ 3. Then there 
exist polynomials qr (in one variable), whose coefficients do not depend on n, such 
that uniformly over all Borel subsets B of R1 one has 

(2.8) ~{gni<)EB) ~s,n(z) dz = ~B dFn(u) + o(n-1•-2112), 

where 

(2.9) 

Also, for all nonnegative integers j 

(2.10) ~Mn gni(z)~ •. n(z) dz = ~""= ui dFn(u) + o(n-1•-2112), 

~Rk h!_1(z)~ •. n(z) dz = ~""= ui dFn(u) + o(n-<•-2112). 

PROOF. By the change of variables x = T1- 1T(z), the first integral in (2.8), 
when restricted to the set Mn, becomes 

(2.11) 

Now the elements of the Jacobian matrix of T(z) and those of the inverse of this 
matrix, as well as their derivatives of orders s - 1 and less, are bounded on M,. 
by constants independent of n. Hence a Taylor expansion yields 

(2.12) (T-1T1(x))ik) - x<kl = (T-1Tl(x))1k) - (T-1T(x))<k1 

= L;~-:,; n-r/2Pr(x) + R(jxj). o(n-1•-2112) ' 
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where p;s are polynomials in k variables and R is a polynomial in one variable 
whose coefficients do not depend on n; and the factor o(n-<•-2>12) does not involve 
x. Using (2.12) and the fact that (T- 1Tlx))w = x<i> for 1 ~ i ~ k- 1, one 
reduces (2.11) to 

(2.13) ~ {hl(X) E B} n TllTCM,.J [1 + I;~:; n-r/2p/(X)]¢v(X) dX + o(n-(s-2)/2 ) , 

where p/'s are polynomials (in k variables) whose coefficients do not depend on 
n. Since T1- 1T(M,.) :::J {[x[ < ((s- !)A log n)i} if n > n0 , (2.13) reduces to 

~ih1 <xJEBl [1 + I;~-:;; n-'12p/(x)]¢v(x) dx + o(n-<•- 2>12). 

Recall that h1(x) = I; lixCi> = (/, x) and write 

G,.(u) = ~l(l,x)~ul [1 + I;~-::,21 n-'12p/(x)]¢v(x) dx 

The Fourier-Stieljes transform of G,. is 

{ 
(}2(2} [1 + I;~-:;; n-•12p/( -iD)]¢v(tl) = [1 + I;~:; n-•12q/(it)] exp - 2 

where qr''s are polynomials (in one variable) whose coefficients do not depend 
on n. Define 

to complete the proof of (2.8). The first relation in (2.10) is proved in the same 
manner, while the second follows from the first and the inequalities 

(2.14) sup [g i(z) - hi (z)[ < d n-<•-t>12(log n)•12 
ZEJlfn n s-1 = 1 ' 

r hi (z)t:: (z) dz = o(n-<•-2 >12) 
)/ZiNn} s-1 ~s.n j ~ 0. 0 

PROOF OF THEOREM 1. Let Q,. denote the distribution of ni(Z - p) and let <l>v 
be the k-variate normal distribution with mean zero and dispersion matrix V. Jt 
follows from a recent result of Sweeting (1977), Corollary 3 (also see [4], pages 
160-162) that 

(2.15) [Q,.(A)- ¢v(A)[ ~ c1 2-'p3 n-i + c2¢v((aA)'"), 

e, = c3 At2-'p3n-! p3 = E[Z1[3 • 

Here ). is the smallest (and A the largest) eigenvalue of V. Fix BE 95', where 
~satisfies (1.6), and in (2.15) take 

(2.16) A= {z E Rk: g,(z) E B}. 

Since g, is continuous, 

(2.17) aA C {z E Rk: g,.(z) E aB} . 

Now if z E (aA)', then there exists z' such that g,.(z') E aB and [z - z'[ < e. If, 
in addition, z EM,. (see (2. 7)), then [g,(z) - g,.(z')[ ~ d'e, where d' is an upper 
bound of [grad g,[ on M,' (thee-neighborhood of M,). Since the <l>v-probability 
of the complement of M, is o(n-<•-2>12), it follows that 

(2.18) 
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But by Lemma 2.1 (relation (2.8)) one has 

<l>v( {g,.(z) E (oB)d''}) = ~ lu,.e 1aBJd'•i e.,,.(z) dz + o (n-1'- 21 12) 

(2.19) = LaBJd'• if1a2(v) dv + o(n- 1'-2112) 

= O(e) + o(n- 1'-2112) 

if p, = EJZ1J' is finite. Taking ,s = 3 and using (1.6), (2.18) and (2.19) the right 
side of (2.15) is estimated as 0( n-!) uniformly over .9j5. Again use Lemma 2.1, 
this time for B itself, to complete the proof of Theorem 1. 

PROOF OF THEOREM 2. We first prove part (b) of Theorem 2. From a general 
result on asymptotic expansion under Cramer's condition (1.16) (see [4], Corol
lary 20.2, page 214) and the estimates (2.18), (2.19) (t follows that 

(2.20) supBeg JQ,.(A)- ~A e,,,.(z) dzj = o(n-l'-2112) 

where ~satisfies(1.6)and A is defined by (2.16). Now use Lemma 2.1 to esti
mate the integral. It remains to identify F,. and W,,,. (see (1.14)). First assume 
that Z1 is bounded. Since W,.' = h,_ 1(n!(Z- f-l)) is a polynomial in n!(Z- f-l) it 
follows from the asymptotic expansions of .moments of Q,., i.e., of the derivatives 
of its characteristic function at zero (see [4), Theorem 9.9, page 77), that 

(2.21) EW,.'i = ~Rk hLlz)e.,,.(z) dz + o(n- 1'-2112) j ~ 0. 

By Lemma 2.1 (second relation in (2.10)) one then has 

(2.22) EW,.'i = ~~= ui dF,.(u) + o(n-1•-2112) j ~ 0. 

On the other hand, the expression (1.12) differs from(},,,. by o(n- 1'-2112) uniformly 
on a compact neighborhood of zero, say {JtJ ~ 1 }. Also, according to a result 
due to James (1955), (1958), and James and Mayne (1962), the cumulants of 
W,.' satisfy 

(2.23) tC. = O(n-IJ-2112) 
J ·" 

j ~ 3' 

so that, the "approximate cumulants" it 1,,. (see ( 1.11 )) satisfy 

(2.24) j ~ 1' 

taking it1,,. = 0 for j > s. Hence (1.12) differs from the characteristic function 
of W,.' by o(n- 1'- 2112) uniformly on {JtJ ~ 1}. Therefore, 

(2.25) sup1t 1,; 1 J(},,,.( t) - E( exp{itW,.'})J = o ( n-1•- 2 112 ) • 

By the familiar inequality of Cauchy for derivatives of analytic functions, de
rivatives of(}.,,. at zero differ from those of E(exp{itW,.'}) by o(n- 1'-2112), proving 

(2.26) EW,.'i = ~~= ui dW,,,.(u) + o(n-l•- 2112) j ~ 0. 

Together (2.22) and (2.26) imply 

(2.27) ~~= ui dF,.(u) - ~~= ui dW,,,.(u) = o(n- 1•-2112) j ~ 0. 

Since neither F,. nor W,,,. involve terms of order o(n- 1'- 2112), 

(2.28) j ~ 0. 
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Now the Fourier-Stieltjes transforms of F. and W,,,. are (extendable to) entire 
functions on the complex plane whose values and derivatives of all orders coin
cide at the origin. Hence F,. = W.,,., completing the proof of Theorem 2(b) in 
case Z 1 is bounded. We now proceed with the general case. Recall the poly
nomials 7r r defined by ( 1.13) and write 

(2.29) 

= coeff. of n-r/2 in ¢.,,. . 

Both qr and ijr are polynomials in the cumulants of Z 1 of orders sand less. De
noting the vector of all these cumulants by r. write qr(r.), ijr(r.) to denote this 
functional dependence. For c > 0 define the truncated random vector Z 1• to 
be equal to Z 1 if /Z1 / ;;S c and zero if jZ1 / >c. We can choose c so large that 
the characteristic function of Z1• satisfies Cramer's condition ( 1.16). Let r •.• 
denote the vector of all cumulants of Z 1• of orders s and less. Since Z 1• is a 
bounded random vector, qr(r.,c) = ijr(r •.• ). Since r •.• ~ r. as c ~ oo (and qr, ijr 
are continuous in r.), one gets qr(r.) = ijr(r.). Proof of Theorem 2(b) is complete. 

In order to prove Theorem 2(a) it is now enough to show that, under the given 
hypothesis, 

(2.30) Prob (n'(Z- p.) E A)= ~A .;.,,.(z) dz + o(n-1•-2>12) 

uniformly over all Borel subsets A of Rk. By a result of Bikjalis ( 1968) this will 
follow if we can show that there exists an integer p such that Z1 + ... + ZP 
has a nonzero absolutely continuous component with respect to Lebesgue meas
ure on Rk. The following result shows that this is true with p = k. 

LEMMA 2.2. Assume that G has a nonzero absolutely continuous component (with 

respect to Lebesgue measure on Rm) whose density is positive on some open ball B in 

which the functions f; ( 1 ;;S i ~ k) are continuously differentiable and in which 1, 
fl' ... , fk are linearly independent as elements of the vector space of continuous 

functions on B. Then Q1 H has a nonzero absolutely continuous component. 

PROOF. To show that the distribution of zl + ... + zk = o:::Ur(Yj), ... ' 
I;f fk(Y1)) has a nonzero absolutely continuous component under the given hy
pothesis define the map (on Rmk into Rk) 

F(yl, ... 'Jk) = (L:U1(YJ), ... ' L:Uk(YJ)) 
YJ = (y/r>, .. . ,y/m>) E Rm, I ~j ~ k. 

The Jacobian matrix of this map will be denoted by Jk,m' This matrix may be 
displayed as Jk,m = [A1 A 2 • • • Ad, where A 1 is a k X m matrix whose ith row 
is (grad f;)(y 1). Clearly, it is enough to show that Jk,m has rank k at some 
(y 1 , ••• , yk) withY; in the open ball B for all j. We shall prove this by induction 
on k (keeping m fixed). Suppose then, as induction hypothesis, that Jk0 -r,m(a1 , • • ·, 

ak0_ 1) has rank k0 - 1 for some k0 - I ~ I and for some (al' • · ·, ak0 _ 1) with a1 

in B for all j. Note that the submatrix formed by the first (k0 - I) rows and 
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(k0 - 1 )m columns of Jk0,,.(a1, 0 0 o, ak0_1, y) is Jk0_ 1,,.(a1, o 0 0 , ak0_ 1), while its last 

m columns are given by Ak0(y), and the first (k 0 - 1 )m elements of its last row 

are formed by gradfk0(a1), o o o, grad[k0(ak0_ 1)o 

Let £ 1, • • ·, Ek0 _ 1 be (k 0 - 1) linearly independent columns among the first 

(k 0 - 1 )m columns of Jk0 ,,.. (which exist by the induction hypothesis). Let C1, 

C2 , • o • , C,. be the (k0 X k0) submatrices of Jk0,m formed by augmenting £ 1, £ 2 , ••• , 

Ek0_ 1 by the first, second, · · ·, mth columns of Ak0(y), respectively. If rank of 

Jk0 ,,.(al' · · ·, ak0_ 1, y) is less than k 0 for all y in B, then the determinants of 

C1 , •• 0 , C,. must vanish for ally in B, i.e., 

for i = 1 , · · . , m , and y E B . 

Here d3 is (- 1 )i times the determinant of the submatrix of Jk0,,. comprising the 

columns £ 1, 0 • • , Ek0 _ 1 minus the jth row. Since dko =F 0, by induction hypothe

sis, the above relations are equivalent to saying that the gradient of (the nonzero 

linear combination) I; to dJ3(y) vanishes identically in B. This means that 

I: d1f 1 is constant on every line segment contained in B; since B is connected, 

this means that there exists a number d0 s\:lch that I; to dJ;(y) = d0 for ally in B 

contradicting the hypothesis of linear independence of 1, j;_, •.. , fko in B. Hence 

there must exist ak0 in B such that Jk0,,.(a1, · 0 ·, ak0_1, ak0) has rank k0. The proof 

is now completed by noting that the hypothesis of linear independence of 1, [ 1 

in B implies that grad f 1 does not vanish identically in B, so that the induction 

hypothesis is true for k 0 - 1 = 1. 0 

The above lemma improves Lemma 1.4 in [2]. The main idea behind the 

proof is contained in Dynkin (1951), Theorem 2. 

PROOF OF THEOREM 3. We shall need an estimate of tail probabilities due to 

von Bahr (1967). Let {Z,.},.;;:;1 be a sequence of i.i.d. random vectors each with 

mean p. and dispersion matrix V. Let A denote the largest eigenvalue of V. 

Then, if EIZ11' < oo for some integers~ 3, 

(2. 31) Prob (lnl(Z- p.)l > ((s- 1)A log n)l) ~ dn-<•-2ll2(log n)-•12 

where Z = n-1(Z1 + · · . + Z,.), and dis bounded on any bounded set of values 

of A. 
Fix 00 E E>. In view of (2.31 ), the assumptions (A1)-(A4) and inequality (1.28) 

imply that there are constants d1, d2 , d3 such that 

P00 (j ~ DrL,.(00)1 > d1 n-l(log n)l) ~ d2(log n)-•12n-<•-2l/2 

(2.32) P00 (j ~ D"DrL,.(00)- E00 D"DrL1(00)1 > d1 n-l(log n)l) 

~ ~(log n)-•12n-<•-2l/2 1 ~ IJJI ~ s - 1 , 

P00(IR,.,r(O)I > 10 - 00l•{d3 + d1 n-l(log n)l}) ~ d2(log n)-•12n-<•-2l/2 , 
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Therefore, on a set having P80 probability at least 1 - d4(log n)-•12n-<•-2>12 one 
may rewrite (1.27) as 

(2.33) (0- 00) = (/(00) + r;,.}-1 [o,. + 2:; 2::;; 1• 1::;;3-l ~ (0- 00)"E00 D"D.L1(00 ) 
IJ. 

+ daiO - Ool's,. J ' 
where r; .. is a random matrix and o,. is a random vector each having norm less 
than d6 n-l(log n)i and s,. is a random vector of norm less than one. Note that 
there exists a sufficiently large positive constant d6 and a (nonrandom) integer n0 

such that if n > n0 and 10 - 001 ~ d6 n-i(log n)i, the right side of (2.33) is less 
than d6 n-i(log n)l. It then follows from the Brouwer fixed point theorem (see 
Milnor (1965), page 14) applied to the expression on the right side of (2.33) 
(regarded as a function of 0 - 00) that there exists a statistic 0 .. such that 

(2.34) 

f;; 1 - d4(log n)-'12n-<•-2 >;2 • 

To obtain an asymptotic expansion of the distribution of 0 ,., first define 

(2.35) /.(y) = D• logf(y; 00 ) , z,.<•> = /.(Y,.) 

Consider the random vectors z .. = (Z,.<•>)1::ol•l:>• whose coordinates are indexed 
by IJ's. The dimension of z .. is k = 2::~= 1 (P+~- 1). From the definition of 0 .. one 
has, outside a set of probability at most o(n-<•-2>'2), 

(2.36) o = __!_ D L (U ) = Z<•.> + I;'-1 _!__ Z<•.+•>(O - o )• + R (U ) n r .. " 1•1=1 IJ! .. 0 .... " 

1~r~p, 

where the rth coordinate of e. is one and other coordinates zero. Now consider 
the p equations 

(2.37) 0 = z<•r> + I:i,;;~ 1 ~ z<•r+>>(O - 00)" := P(O, z; r) 
IJ. 

in the p + k variables 0, z. These equations have a solution at 0 = 00 , z = p, 
where p = EZ1 , i.e., 

(2.38) 

,<•> - E D• log[IYY · 0) r - 00 \ 1' o 

1~r~p, 

2 ~ 1).11 ~ s. 

Also, since /(00) is nonsingular, the p vectors (D1 P(00, p; r)), · · ·, (DPP(00 , p; r)), 
1 ~ r ~ p, are linearly independent. Therefore, by the implicit function theo
rem, there is a neighborhood N of p and p uniquely defined real-valued infinitely 
differentiable functions Ht (1 ~ i ~ p) on N such that 0 = H(z) = (H1(z), ... , 
Hiz)) satisfies (2.37) for zEN, and 00 = H(p). By (2.32), IZ<•.> + R,.,.(U,.)I < 
d7 n-i(log n)i with P00 probability 1 - o(n-<•-2>12). Therefore, by (2.36) and the 
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uniqueness part of the 
o(n-(•-l>t:) one has 

implicit function theorem, with P1r0 probability 1 -

0,. = H(Z') with Z'(•> = Z(•> for 2 :;£ jJJj :;£ s , 

(2.39) 

Therefore, by (2.32) and (2.34)>< there are constants d8, d9 such that 

P00(jni[H(Z)- H(,u)] - ni(O,.- 00)1 :;£ d8(log n)''2n-(•-I>12) 

(2.40) = P00(jH(Z')- H(Z)I = jR,.,,.(O,.)j :;£ d8(log n)'12n-"12) 

;;;;; 1 - d9(log n)-'12n-(•-2>12 • 

In view of (A8) (and Remark 1.2) Lemma 2.2 applies, so that Theorem 2 yields, 
for vector H (see Remark 1.1 ), 

(2.41) P00(n![H(Z)- H(,u)]EB) = ~B¢ .... (x)dx + o(n-(•-2>12) 

uniformly over all Borel sets B. Here ¢ .... is given by (1.18) with M = 
J-1(00)D(00)I-1(00), where /(00) and D(00) are defined by (1.25). This evaluation 
of M follows from (2.33), (2.36), or, alternatively, from a computation of 
grad H,.(,u), I :;£ r :;£ p, obtained from inverting the Jacobian matrix (at (Or., ,u)) 
of the transformation whose first p coordinate functions are given by the right 
side of (2.37) and the remaining coordinate functions by z(•>, I :;£ jJJj :;£ s. 
Finally, if~ satisfies (1.31), then it is simple to check that 

(2.42) sup Be . .# ~ (oB>' l¢ .... (x)j dx :;£ d10 e + o(n-(•-2>12) 0 :;£ e :;£ I . 

Relations (2.40)-(2.42), with e = d8(log n)'12n-(•-I>t2, now complete the proof 
excepting for the uniformity over compacts. By assumptions (A1)-(A4), the 
constants d8 , d9 , d10 are bounded on compact K (since so are d1-d7). The term 
o(n-(•-2>12) in (2.41) is uniform on compact K forB E ~due to the uniformity of 
the error of approximation of the distribution Q,. of ni(Z - ,u) by its Edgeworth 
expansion, assuming, without loss of generality (see Remark 1.2), that the dis
persion matrix of Z1 is nonsingular. Note that we have only made use of (2.41) 
uniformly over ~ For this it is sufficient (see Theorem 2(b)) that Z1 satisfies 
Cramer's condition (1.16). Assumptions (A2) and (A6) now imply that this con
dition holds uniformly on compacts Kin an appropriate sense (see the first ob
servation in [2] following (1.50), page II). D 

There appears to have grown in recent times a considerable amount of applied 
work, especially in econometrics, on the formal Edgeworth expansion. See, for 
example, Chambers (1967), Phillips (1977), Sargan (1976), and references con
tained in these articles. It may be noted that the conditions imposed by Chambers 
(1967) (Section 2.2) on the characteristic function of the statistic are not sufficient 
to insure the existence of a valid asymptotic expansion. Besides, such conditions 
imposed directly on the statistic are extremely hard to verify, at least in the 
context of the present article. 
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Part II
Large Time Asymptotics for Markov

Processes I: Diffusion



Chapter 5
Martingale Methods for the Central Limit Theorem

S.R. Srinisava Varadhan

5.1 Introduction

As the name suggests, central limit theorem or CLT does play a central role in probabil-
ity theory. Early masters like De Moivre, Laplace, Gauss, Lindeberg, Lévy, Kolmogorov,
Lyapunov, and Bernstein studied the case of sums of independent random variables. Their
results were then extended to sums of dependent random variables by various authors. For
sums of the form

∑
i V(Xi) where Xi is a stationary Markov chain, the CLT was proved by

Markov himself. The proof consisted of leaving large gaps to create enough independence
but not large enough to make a difference in the sum. It is a bit delicate to balance the
two and requires assumptions on the mixing properties of the stationary process. If the
summands form a stationary sequence and the partial sums is a martingale relative to the
natural filtration, it was observed by Paul Lévy that the CLT was valid under virtually no
additional conditions. An early version of this result can be found in Doob’s book [5] on
Stochastic Processes and a more modern version in Billingsley [3].

5.2 Methods for Proving the CLT

Since the central limit theorem for martingales is easy, it is natural to ask if the sum S n =

X1 + · · · + Xn can be written as Mn + An, where Mn is a martingale and An is negligible. If
this can be accomplished the proof for the CLT would be greatly simplified.
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Let us consider Brownian motion x(t) on the circle S = [0, 1] with end points identified.

Let V(x) be continuous function on S satisfying
∫ 1

0
V(x)dx = 0. We are interested in

proving a central limit theorem for

y(t) =
∫ t

0
V(x(s))ds

or in functional form, the convergence of the process

yλ(t) =
1
√
λ

∫ λt

0
V(x(s))ds

to a Brownian motion on R = (−∞,∞) with variance σ2t as λ → ∞ and determine σ2

in terms of V . Because Brownian motion on the circle is exponentially mixing it is not
difficult to adapt the earlier method of rewriting the integral as the sum of integrals over
disjoint intervals separated by gaps and prove the central limit theorem in this manner. The
limiting variance will be

σ2 = 2
∫ ∞

0
EP[V(x(0))V(x(t))]dt

where P is the stationary version of the Brownian motion on S with Lebesgue measure as
the invariant measure.

We will now explore two other methods that look different from each other but are
closely related.

The martingale method proceeds as follows. Since V(x) has mean zero there is a func-
tion W(x) with mean 0 such that

1
2

W′′(x) = −V(x)

By Itô’s formula

W(x(t)) −W(x(0)) = −
∫ t

0
V(x(s))ds +

∫ t

0
W′(x(s))dx(s) = −y(t) + M(t)

In particular,
|y(t) − M(t))| ≤ 2 sup

x
|W(x)|

Since W is bounded, the central limit theorem for y(t) reduces to proving it for M(t) =∫ t

0
W′(x(s))dx(s), which is a continuous martingale. It can therefore be time changed to a

Brownian motion with the clock

D(t) =
∫ t

0
[W′(x(s))]2ds
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and the distribution of M(t)√
t

is the same as that of Y( D(t)
t ) for some other Brownian motion

Y(t). But, by the ergodic theorem, D(t)
t →

∫
|W′(x)|2dx and we have convergence to a

Gaussian with mean 0 and variance D =
∫
|W′(x)|2dx. Or better still,

1
λ

[M(λt)]2 − 1
λ

D(λt)

is a martingale. It is not hard to establish tightness for the family Pλ of distributions of the
processes 1√

λ
y(λt) in C[0, T ] and with respect to any limiting measure Q on C[0, T ], the

evaluation maps x(t) is a martingale as is

x2(t) − ct

with

c =
∫ 1

0
|W′(x)|2dx = 2

∫ ∞

0
EP[V(x(0))V(x(t))dt]

This determines the limiting measure Q as Brownian motion with variance ct and requires
only the law of large numbers for D(t), i.e., the ergodic theorem for P.

There is another way of looking at this as a problem of singular perturbation in PDE.
The pair x(t) and y(t) =

∫ t

0
V(x(s))ds can be viewed as a degenerate two-dimensional

diffusion on S × R, with generator

L =
1
2

D2
x + V(x)Dy

Considering instead x( t
ε2 ) and εy( t

ε2 ) leads to

Lε =
1

2ε2
D2

x +
1
ε

V(x)Dy

We are interested in the behavior of the solution uε = uε(t, x, y) of the equation

∂uε
∂t
+ Lεuε = 0

with the initial condition u(T, x, y) = f (y). We try a solution of the form

uε(t, x, y) = u0(t, x, y) + εu1(t, x, y) + ε2u2(t, x, y) + · · ·

substitute it in the equation and equate like powers of ε. We obtain the equations

1
2

D2
xu0(t, x, y) = 0

1
2

D2
xu1(t, x, y) + V(x)Dyu0(t, x, y) = 0

Dtu0(t, x, y) +
1
2

D2
xu2(t, x, y) + V(x)Dyu1(t, x, y) = 0
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for u0, u1, u2 that are periodic in x. Solving them yields the following. u0 cannot depend
on x. Therefore u0(t, x, y) can only be a function v0(t, y) of t and y. Then 1

2 D2
xu1 has to

equal the product −V(x)Dyv0(t, y). Since V has mean 0 on S this is possible by solving
1
2 W′′ = −V and taking u1(t, x, y) = W(x)v0(t, y). For the last equation to be solvable with
u0(0, y) = f (y) we need for each (t, y)

Dtv0(t, y) −
[
∫ 1

0
V(x)W(x)dx

]
D2

yv0(t, y) = 0

or

Dtv0(t, y) +
σ2

2
D2

yv0(t, y) = 0; v0(T, y) = f (y)

and

σ2 = −1
2

∫
W(x)W′′(x)dx =

1
2

∫
[W′(x)]2dx

With

Fε(t, x) = v0(t, y) + εu1(t, x, y) + ε2u2(t, x, y)

it is an easy computation to show that many terms cancel out and we get

DtFε + LεFε = O(ε)

We can now apply the maximum principle to conclude that the solution uε of

Dtuε + Lεuε = 0; u(T, y) = f (y)

satisfies |uε − Fε | ≤ Cε and therefore uε → v0 which is the CLT. This is really the PDE
version of the martingale approximation.

5.3 A Bit of History

Martingale approximations in the proof of the central limit theorem have emerged in many
places often independently. In the late seventies Bensoussan, Lions, and Papanicolaou [1]
used singular perturbation techniques to prove results on homogenization, which in cer-
tain situations can be interpreted as a central limit theorem. This was explored further in
an article by Papanicolaou, Stroock, and Varadhan [11]. In Soviet Union, Sergei Kozlov
[10] published a fair body of material on homogenization. Gordin and Lifšic in [6] pro-
vide a central limit theorem for functions of Markov chains using explicitly the martingale
approximation. This was extended to continuous time Markov processes by Rabi Bhat-
tacharya in [2]. Kipnis and Varadhan [9] provide a general result for reversible Markov
processes and the martingale methods are now used regularly in different situations, for
instance in Kifer-Varadhan [8]. A point to note is that CLT for functions of a Markov pro-
cess is proved when the process has the stationary distribution. The methods actually show
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that the invariant measure of the set of starting points for which the Gaussian approxima-
tion has an error at least ε goes to 0 as t → ∞. The validity of the CLT for every starting
point can be proved under additional Doeblin type assumptions. The question of validity
of the CLT for almost all starting points under the stationary measure has been considered
by several authors. References can be found in Derriennic and Lin [4].
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Chapter 6
Ergodicity and Central Limit Theorems for Markov
Processes

Thomas G. Kurtz

Keywords Ergodicity, Invariant measures,Markov processes, Generators, Diffusions,
Harris recurrence, Martingale central limit theorem, Functional central limit theorem

6.1 Introduction

There are several contexts in the theory of Markov processes in which the term ergodicity
is used, but in all of these, assertions of the form

lim
n→∞

1
n

n∑

k=1

h(Xk) =
∫

hdπ, (6.1)

or in continuous time,

lim
t→∞

1
t

∫ t

0
h(X(s))ds =

∫
hdπ, (6.2)

for some probability measure, π, appear. Limits of this form are essentially laws of large
numbers, and given such a limit, it is natural to ask about rates of convergence or fluctua-
tions, in particular, to explore the behavior of the rescaled deviations,

√
n

⎛
⎜⎜⎜⎜⎜⎝

1
n

n∑

k=1

h(Xk) −
∫

hdπ

⎞
⎟⎟⎟⎟⎟⎠ or

√
t

(
1
t

∫ t

0
h(X(s))ds −

∫
hdπ

)
.

T.G. Kurtz (�)
University of Wisconsin, Madison, WI, USA
e-mail: kurtz@math.wisc.edu

© Springer International Publishing Switzerland 2016
M. Denker, E.C. Waymire (eds.), Rabi N. Bhattacharya, Contemporary
Mathematicians, DOI 10.1007/978-3-319-30190-7_6

137

mailto:kurtz@math.wisc.edu


138 T.G. Kurtz

Many times during his career, Rabi has studied problems of this form. The goal of these
brief comments is to review some of his results and provide some of the background
needed to read his papers.

All processes we consider will take values in a complete separable metric space (E, r).
They will be temporally homogeneous and Markov in discrete or continuous time. In dis-
crete time, the transition function will be denoted by P(x, Γ), that is, there is a filtration
{Fk} such that the process of interest X = {Xk, k = 0, 1, . . .} satisfies

P{Xk+1 ∈ Γ|Fk} = P(Xk, Γ), k = 0, 1, . . . , Γ ∈ B(E), (6.3)

where B(E) denotes the Borel subsets of E. The filtration may be larger than the filtration
generated by {Xk}. When X and {Fk} satisfy (6.3), we will say that X is {Fk}-Markov with
transition function P.

In continuous time, the transition function will be denoted by P(t, x, Γ) and there will
be a filtration {Ft} such that the process {X(t), t ≥ 0} satisfies

P{X(s + t) ∈ Γ|Fs} = P(t, X(s), Γ), s, t ≥ 0, Γ ∈ B(E). (6.4)

Setting

T (t) f (x) =
∫

E
f (y)P(t, x, dy), f ∈ B(E),

where B(E) is the space of bounded, Borel measurable functions on E, the Markov prop-
erty implies {T (t)} is a semigroup, that is

T (s)T (t) f = T (s + t) f .

The semigroup can (and will be) defined for larger classes of functions as is convenient.
The notion of an operator A being a generator for a Markov process can be defined in

a variety of ways, but essentially always implies

T (t) f = f +
∫ t

0
T (s)A f ds,

which in turn implies

f (X(t)) − f (X(0)) −
∫ t

0
A f (X(s))ds (6.5)

is a martingale for any filtration satisfying (6.4).
The analog in discrete time to the continuous-time semigroup is obtained by defining

the linear operator

P f (x) =
∫

E
f (y)P(x, dy)
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and observing that

E[ f (Xk+n)|Fk] = Pn f (Xk),

and that

Mn = f (Xn) − f (X0) −
n−1∑

k=0

(P f (Xk) − f (Xk)) (6.6)

is a martingale for every f ∈ B(E). Consequently,

A = P − I

in discrete time plays the role of the generator in continuous time. The martingale proper-
ties (6.5) and (6.6) are central to the study of Markov processes and are the basis for the
central limit theorems that Rabi and others have given.

By the initial distribution of a Markov process, we mean the distribution of X0 in the
discrete case and of X(0) in the continuous-time case. The finite dimensional distributions
of a Markov process are determined by its initial distribution and its transition function. If
we want to emphasize the initial distribution μ of the process, we will write {Xμk } or {Xμ(t)}.

The following lemma will prove useful in studying discrete time Markov processes.

Lemma 1. Let P(x, Γ) be a transition function on E. There exists a measurable space
(U,U), a measurable mapping α : U × E → E, and a probability distribution ν on (U,U)
such that if ξ has distribution ν, then α(ξ, x) has distribution P(x, ·).

Consequently, if X0 has distribution μ ∈ P(E) and ξ1, ξ2, . . . is a sequence of inde-
pendent, ν-distributed, U-valued random variables that is independent of X0, then for
Fk = σ(X0, ξ1, . . . , ξk), {Xk} defined recursively by

Xk+1 = α(ξk+1, Xk), k = 0, 1, . . . ,

is a {Fk}-Markov process with initial distribution μ and transition function P(x, Γ).

Proof. The construction in [8] gives α for ξ uniformly distributed on [0, 1]×[0, 1]. A slight
modification allows ξ to be uniform on [0, 1].

Remark 1. If the mapping x ∈ E → P(x, ·) ∈ P(E) is continuous taking the weak topology
on P(E), then α given by the Blackwell and Dubins construction has the property that for
each x0 ∈ E, the mapping x ∈ E → α(x, ξ) is almost surely continuous at x0.

The next section reviews ideas of ergodicity of Markov processes and gives some of
the basic results. The final section considers central limit theorems exploiting the martin-
gale properties mentioned above. We assume that all continuous-time Markov processes
considered are cadlag.
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6.2 Ergodicity for Markov Processes

Ideas of ergodicity for Markov processes all relate to the existence of stationary distribu-
tions for the processes. In discrete time, π ∈ P(E) is a stationary distribution if

∫

E
P(x, Γ)π(dx) = π(Γ), Γ ∈ B(E),

and in continuous time, if
∫

E
T (t) f (x)π(dx) =

∫

E
f (x)π(dx), f ∈ B(E), t ≥ 0,

which is equivalent to requiring
∫

E
A f (x)π(dx) = 0

for a sufficiently large class of f .
If π is a stationary distribution and we take π to be the initial distribution for the process,

then {Xπk } (or {Xπ(t)}) will be a stationary process. If {Xπk } is ergodic as defined generally
for stationary processes, that is, the tail σ-field

T = ∩nσ(Xπk , k ≥ n)

only contains events of probability zero or one, we will say that π is an ergodic stationary
distribution. If there is only one stationary distribution, it must be ergodic. If π is an ergodic
stationary distribution, then taking X = Xπ, (6.1) or (6.2) hold for all h ∈ B(E), or more
generally, for all h ∈ L1(π).

The questions of existence and uniqueness of stationary distributions are among the
fundamental questions in the study of Markov processes. If, as is typically the case,

P : Cb(E)→ Cb(E), (6.1)

or

T (t) : Cb(E)→ Cb(E), t ≥ 0, (6.2)

where Cb(E)is the space of bounded continuous functions on E, proof of existence of a
stationary distribution can be reduced to the proof of relative compactness of a sequence
of probability measures.

Theorem 1. Assume that {T (t)} satisfies (6.2) and for a corresponding Markov process
{Xμ(t)}, define a family of probability measures {νt} by

νt f = E[
1
t

∫ t

0
f (X(s))ds] =

1
t

∫ t

0
E[ f (X(s))]ds

=
1
t

∫ t

0

∫

E
T (s) f dμds, f ∈ B(E). (6.3)

Then as t→ ∞, any weak limit point of {νt} is a stationary distribution for {T (t)}.
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Similarly, in the discrete-time case, if P satisfies (6.1), any weak limit point of {νn}
defined by

νn f =
1
n

n−1∑

k=0

E[ f (Xk)] (6.4)

is a stationary distribution for P.

Proof. Suppose tn → ∞ and {νtn } converges weakly to π. Observe that for each f ∈ Cb(E)
and t > 0,

1
tn

∫ t+tn

t
E[ f (X(s))]ds = νtn T (t) f

has the same limit as νtn f . Consequently, π f = πT (t) f , and π is a stationary distribution.
The proof in the discrete case is essentially the same.

The natural approach to proving the existence of the sequence {νtn } is to prove relative
compactness for {νt}. Since relative compactness in P(E) is equivalent to tightness, we
have the following.

Corollary 1. Let E be compact. If {T (t)} satisfies (6.2), then there exists at least one sta-
tionary distribution for {T (t)}. Similarly, if P satisfies (6.1), then there exists at least one
stationary distribution for P.

More generally, relative compactness is usually proved by obtaining a Lyapunov func-
tion for the process. In particular, we want to find a function ψ : E → [0,∞) such that for
each a ≥ 0, the level set

Γa = {x ∈ E : ψ(x) ≤ a}

is compact and for some initial distribution μ,

K ≡ sup
t≥0

E[ψ(Xμ(t))] < ∞.

It follows that

P{Xμ(t) � Γa} = P[ψ(Xμ(t)) > a} ≤ K
a

and that

νt(Γc
a) ≤ νtψ

a
≤ K

a
,

so {νt} is tight and hence relatively compact.
The notion of a stochastic Lyapunov functions was developed in [14] and reflects ideas

dating back to [10] and [13]. There is a large literature on constructing such functions. In
discrete time, we have the following simple condition.

Lemma 2. Let ψ : E → [0,∞). Suppose that there exist a ≥ 0 and 0 ≤ b < 1 such that

Pψ(x) ≤ a + bψ(x). (6.5)
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Then for each n

Pnψ(x) ≤ a
1 − bn−1

1 − b
+ bnψ(x),

and hence for μ ∈ P(E) satisfying
∫

E
ψdμ < ∞,

sup
n

E[ψ(Xμn )] ≤ a
1 − b

+

∫

E
ψdμ < ∞.

Consequently, if ψ has compact level sets and P satisfies (6.1), then there exists at least
one stationary distribution for P.

The analogous result in the continuous-time case is somewhat more delicate. Rewrit-
ing (6.5) as

(P − I)ψ(x) ≤ a − (1 − b)ψ(x)

and recalling that P − I plays a role analogous to the generator A suggests looking for ψ
satisfying

Aψ(x) ≤ a − εψ(x),

for some positive a and ε. To this point, we have only considered A to be defined so that
f and A f are in B(E). For many Markov processes, for example, diffusions, the extension
of the generator to a large class of unbounded ψ is clear, but even in the diffusion setting
with smooth ψ, in general we can only claim that

ψ(X(t)) − ψ(X(0)) −
∫ t

0
Aψ(X(s))ds

is a local martingale, not a martingale. Note, however, that if ψ is bounded below and Aψ is
bounded above, this local martingale will also be a supermartingale. With that observation
in mind, the following lemma provides the desired extension.

The following is essentially a consequence of Fatou’s lemma.

Lemma 3. For n = 1, 2, . . ., let fn, A fn ∈ B(E), and

fn(X(t)) − fn(X(0)) −
∫ t

0
A fn(X(s))ds

be a martingale. Suppose fn ≥ 0, supn,x A fn(x) < ∞, and for each x ∈ E, { fn(x)} and
{A fn(x)} converge. Denote the limits ψ and Aψ. Then

ψ(X(t)) − ψ(X(0)) −
∫ t

0
Aψ(X(s))ds (6.6)

is a supermartingale.

The supermartingale property is exactly what is needed to give the continuous-time
analog of Lemma 2.
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Lemma 4. Let measurable functions ψ, Aψ : E → R satisfy ψ ≥ 0 and supx∈E Aψ(x) <
∞. For μ ∈ P(E) satisfying

∫
E
ψdμ < ∞, assume that (6.6) with X replaced by Xμ is a

supermartingale. Suppose
Aψ(x) ≤ a − εψ(x)

Then

E[ψ(Xμ(t))] ≤ a
ε
∨
∫

E
ψdμ. (6.7)

Consequently, if ψ has compact level sets and {T (t)} satisfies (6.2), then there exists at least
one stationary distribution for {T (t)}.

Proof. Let Zμ denote the supermartingale. Then

eεtψ(Xμ(t)) = ψ(Xμ(0)) +
∫ t

0
eεsdψ(Xμ(s)) +

∫ t

0
εeεsψ(Xμ(s))ds

= ψ(Xμ(0)) +
∫ t

0
eεsdZμ(s) +

∫ t

0
eεs(εψ(Xμ(s)) + Aψ(Xμ(s)))ds

≤ ψ(Xμ(0)) +
∫ t

0
eεsdZμ(s) +

∫ t

0
eεsads.

Since E[
∫ t

0
eεsdZμ(s)] ≤ 0,

E[ψ(Xμ(t))] ≤ e−εt
∫

E
ψdμ +

a
ε

(1 − e−εt),

and the lemma follows.

We can relax the conditions of Lemma 4 and still obtain relative compactness of {νt}
but without the moment estimate (6.7).

Lemma 5. Let measurable functionsψ, Aψ : E → R satisfy ψ ≥ 0 and K = supx∈E Aψ(x) <
∞. For μ ∈ P(E) satisfying

∫
E
ψdμ < ∞, assume that (6.6) with X replaced by Xμ is a su-

permartingale. Suppose that for each a > 0

Γa = {x : Aψ(x) ≥ −a}

is compact. Then {νt} defined by (6.3) is relatively compact, and if {T (t)} satisfies (6.2),
there exists at least one stationary distribution for {T (t)}.

If E is locally compact and {T (t)} satisfies (6.2), then existence of a stationary distribu-
tion holds as long as Γa is compact for some a > 0.
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Remark 2. The assumption that Γa is compact only for some a > 0 is, in general, not
enough to ensure relative compactness of {νt}. If, however, the process is Harris recurrent
(see Section 6.2.2), then existence of a stationary distribution implies convergence of {νt}.

Proof. The supermartingale property implies

−
∫

E
Aψdνt = −

1
t

E[
∫ t

0
Aψ(X(s))ds] ≤ 1

t

∫

E
ψdμ − 1

t
E[ψ(X(t))]] ≤ 1

t

∫

E
ψdμ,

and for a > 0,

aνt(Γc
a) ≤ K +

1
t

∫

E
ψdμ,

giving tightness and hence relative compactness for {νt}.
The second part of the lemma follows by the observation that {νt} is relatively compact

as a probability measure on the one-point compactification of E and the compactness of
Γa for some a > 0 implies that any limit point ν∞ satisfies ν∞(Γa) > 0 and hence ν∞(E) >
0. Normalizing the restriction of ν∞ to E to be a probability measure gives a stationary
distribution for {T (t)}. See Theorem 4.9.9 of [9].

The following lemma gives conditions which coupled with some kind of irreducibility
imply recurrence, but not necessarily positive recurrence.

Lemma 6. Let measurable functionsψ, Aψ : E → R satisfy ψ ≥ 0 and K = supx∈E Aψ(x) <
∞. For μ ∈ P(E) satisfying

∫
E
ψdμ < ∞, assume that (6.6) with X replaced by Xμ is a su-

permartingale. Suppose that for each a > 0,

Γa = {x : ψ(x) ≤ a}

is compact and that there exists a0 such that

sup
x∈Γc

a0

Aψ ≤ 0.

Let τ0 = inf{t ≥ 0 : Xμ(t) ∈ Γa0 and γa = inf{t ≥ 0 : Xμ(t) � Γa}. Then

lim
a→∞

P{γa ≤ τ0} = 0. (6.8)

Proof. It is at least not immediately obvious that γa < ∞ implies ψ(Xμ(γa)) ≥ a, so some
randomization may be necessary for a complete proof, but assuming this inequality holds,
the supermartingale property implies

aP{γa ≤ τ0} ≤ E[ψ(Xμ(γa ∧ τ0))] ≤
∫

E
ψdμ,

and (6.8) follows.
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Example 1. In [3], Rabi gives a class of ψ of the form ψ(x) = F(|x − z|) for nondegenerate
diffusion processes which satisfy the conditions of Lemma 6. (Actually, in Rabi’s notation,
we need to set ψ(x) = −F(|x − z|).) The non-degeneracy assumption then ensures Harris
recurrence (see below). He also formulates similar conditions that imply transience and
gives a construction of an F such that ψ(x) = −F(|x − z|) satisfies the conditions of the
second part of Lemma 5.

A central idea in the study of uniqueness of stationary distributions is the notion of
Harris recurrence.

6.2.1 Harris Recurrence

Harris irreducibility requires the existence of a measure ϕ on B(E) such that ϕ(B) > 0
implies that the Markov process visits B with positive probability, regardless of the initial
distribution. If the process visits such B infinitely often with probability one, or in the
continuous time case, the process visits B for arbitrarily large times, that is, τn = inf{t >
n : X(t) ∈ B} is finite almost surely for each n, the process is Harris recurrent. As long as
ϕ is σ-finite, without loss of generality, we can and will assume ϕ is a probability measure.
In discrete time, the classical conditions for Harris recurrence can be formulated under the
assumption that there exists a function ε : E → [0, 1] such that the transition function
satisfies

P(x, B) ≥ ε(x)ϕ(B) (6.9)

and that for each initial condition μ, the Markov process satisfies

P{
∞∑

k=1

ε(Xμk ) = ∞} = 1. (6.10)

The following lemma illustrates the significance of these conditions.

Lemma 7. Let μ ∈ P(E), and suppose that (6.9) and (6.10) hold. Then there exists a
probability space with a process Xμ, a filtration {F μk }, and a {F μk }-stopping time τμ such
that Xμ is {F μk }-Markov with initial distribution μ and transition function P(x, Γ) and the
distribution of Xμτμ is ϕ.

Proof. We enlarge the state space to be E×{−1, 1} and define the new transition function by

Q(x, θ, Γ × {θ}) = P(x, Γ) − ε(x)ϕ(Γ)

and

Q(x, θ, Γ × {−θ}) = ε(x)ϕ(Γ).
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If (Xμ, Θ) is a Markov process with this transition function such that Xμ0 has distribution μ,
then Xμ is a Markov process with transition function P(x, Γ) and initial distribution μ, and
the desired stopping time is τμ = min{k : θk � θk−1}. Note that

P{τμ > n} = E[
n−1∏

k=0

(1 − ε(Xμk ))]

and (6.10) implies P{τμ < ∞} = 1.

Much of the work on Harris recurrence is done under weaker conditions of the form

∞∑

n=1

anPn(x, Γ) ≥ ε(x)ϕ(Γ),

where an(x) ≥ 0,
∑∞

n=1 an(x) = 1, or in continuous time,

∫ ∞

0
P(t, x, Γ)ax(dt) ≥ ε(x)ϕ(Γ),

where ax is a probability distribution on (0,∞), and typically, ε(x) has the form ε1C(x) for
some constant ε > 0 and C ∈ B(E). The analog of Lemma 7 holds under these conditions,
at least if (6.10) is replaced by

P{
∞∑

k=1

ε(Xμk )2 = ∞} = 1 or P{
∫ ∞

0
ε(Xμ(s))2ds = ∞} = 1.

The existence of these stopping times implies the desired uniqueness of the stationary
distribution and convergence in total variation of νn and νt.

Lemma 8. Let ϕ ∈ P(E). Suppose that for each μ ∈ P(E), on some probability space,
there exists a process Xμ a filtration {F μk }, and a {F μk }-stopping time τμ such that Xμ is
{F μk }-Markov with initial distribution μ and transition function P and Xμτμ has distribution
ϕ. Then there is at most one stationary distribution for P.

If there is a stationary distribution π, then for each initial distribution μ ∈ P(E), {νn}
defined by (6.4) converges in total variation to π.

The analogous result holds in continuous time.

Proof. Suppose π1 and π2 are stationary distributions for P. Let Xπ1 and Xπ2 satisfy the
hypotheses of the lemma. By the ergodic theorem, for each h ∈ B(E), we can define

Hh
πi
= lim

n→∞

1
n

n−1∑

k=0

h(Xπi

k ) = lim
n→∞

1
n

τπi+n−1∑

k=τπi

h(Xπi

k ) = lim
n→∞

1
n

n−1∑

k=0

h(Xπi

τπi+k).

By the strong Markov property, Hh
π1

and Hh
π2

must have the same distribution. Since πih =
E[Hh

πi
], π1 = π2.



6 Ergodicity and Central Limit Theorems for Markov Processes 147

Under the hypotheses of the lemma, for h ∈ B(E) and μ ∈ P(E),

|E[
1
n

n−1∑

k=0

h(Xμk )] − E[
1
n

n−1∑

k=0

h(Xϕk )]|] ≤ ‖h‖(P{τμ > k} +
2k
n

),

and hence

|E[
1
n

n−1∑

k=0

h(Xμk )] − πh| ≤ ‖h‖(P{τμ > k} + P{τπ > k} + 4k
n

), (6.11)

and taking the sup over h ∈ B(E) with ‖h‖ ≤ 1 gives the convergence in total variation.

If τϕ satisfies 0 < E[τϕ] < ∞, then τ1 = 0 and τ2 = τ
ϕ provide an example of τ1 and τ2

in the following lemma.

Lemma 9. Let X be {Fk}-Markov with transition function P, and let τ1 and τ2 be stopping
times satisfying τ1 ≤ τ2 and 0 < E[τ2 − τ1] < ∞ such that Xτ1 and Xτ2 have the same
distribution. Then π defined by

πh =
E[
∑τ2

k=τ1+1 h(Xk)]

E[τ2 − τ1]

is a stationary distribution for P.
In continuous time,

πh =
E[
∫ τ2

τ1
h(X(s))ds]

E[τ2 − τ1]
.

Remark 3. In the case 0 < E[τϕ] < ∞, this observation is essentially the renewal argument
of [1] and [16].

Proof. Since

Mn = h(Xn) − h(X0) −
n−1∑

k=0

(Ph(Xk) − h(Xk))

is a martingale,

0 = E[h(Xτ2) − h(Xτ1)] = E[
τ2−1∑

k=τ1

(Ph(Xk) − h(Xk)),

and hence,

πPh = πh,

so π is a stationary distribution for P.
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Example 2. In [6], Rabi and Mukul Majumdar consider processes in E = (0, 1) of the form

Xn+1 = ξn+1Xn(1 − Xn),

where the {ξk} are iid with values in (0, 4). Clearly, this process satisfies (6.1). Under the
assumption that the distribution of ξ has an absolutely continuous part with a density that
is strictly positive on some interval, they give conditions for Harris recurrence.

Example 3. The inequality in (6.11) and the analogous inequality in continuous time,

|E[
1
t

∫ t

0
h(Xμ(s))ds] − πh| ≤ ‖h‖(P{τμ > r} + P{τπ > r} + 4r

t
), (6.12)

actually give rates of convergence. Under aperiodicity assumptions, one can replace the
average by E[h(Xμ(t))] and eliminate the O(t−1) term. In [7], Rabi and Aramian Wasielak
give conditions under which this can be done for a class of diffusion processes.

6.2.2 Conditions without Harris Recurrence

Harris recurrence is very useful when it holds, or perhaps more to the point, when it can be
shown that it holds. In general, it does not hold, even in relatively simple settings. Perhaps
the best known example is the “Markov process” in [0, 1) given by the recursion

Xn+1 = Xn + z mod 1,

for some irrational z.
For an example with more interesting probabilistic structure, let E = {−1, 1}∞, and

consider a generator of the form

A f (x) =
∞∑

k=1

λk( f (ηk x) − f (x)), (6.13)

where λk > 0,
∑

k λk < ∞, and ηk x is obtained by replacing xk by −xk. If x, y ∈ E differ on
infinitely many components, then P(t, x, ·) and P(t, y, ·) are mutually singular for all t, but
for all x ∈ E, P(t, x, ·) converges weakly to the distribution under which the components
are independent symmetric Bernoulli.

In general, infinite dimensional processes provide a source of examples that are not
Harris recurrent even if ergodic. We will not address any more examples of this type, but
see [11] for recent work in this direction.

There is a need for techniques for studying ergodicity for processes that are not Harris
recurrent. One approach that appears frequently in Rabi’s work involves the notion of
splitting and is discussed in the paper by Ed Waymire in this volume. A second approach
considered by Rabi and Gopal Basak in [2] is by verifying asymptotical flatness, that is,
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by showing that Xx and Xy can be coupled in such a way that for each compact K ⊂ E and
ε > 0,

lim
t→∞

sup
x,y∈K

P{|Xx(t) − Xy(t)| > ε} = 0.

For example, if one rewrites the generator in (6.13) as

A f (x) =
∞∑

k=1

2λk(
1
2

f (η1
k x) +

1
2

f (η−1
k x) − f (x)), (6.14)

where η1
k x is obtained from x by replacing xk by 1 and η−1

k x is obtained by replacing xk by
−1, then the coupling can be obtained using independent Poisson processes {Nk}, Nk with
intensity 2λk, and at the lth jump of Nk replacing xk by ξkl, where the {ξkl} are independent
symmetric Bernoulli.

Example 4. In [2], Rabi and Gopal Basak consider diffusions of the form

Xx(t) = x +
∫ t

0
BXx(s)ds +

∫ t

0
σ(Xx(s))dW(s).

One has a natural coupling simply by using the same Brownian motion W for both Xx and
Xy. Lyapunov-type arguments are again employed but with analytic estimates rather than
simply compactness arguments. In particular, the arguments employ ψ (v in the notation
of the paper) of the form

ψ(x) = (x ·Cx)1−ε,

for appropriately chosen positive definite C and ε ∈ [0, 1). Different choices of C are
applied to ψ(Xx(t)) to ensure the existence of a stationary distribution and to ψ(Xx(t)−Xy(t))
to give the asymptotic flatness.

6.3 Central Limit Theorems

There are many version of the martingale central limit theorem. See, for example, [15, 17,
12]. The following version is from Theorem 7.1.4 of [9].

Theorem 2. Let {Mn} be a sequence of cadlag, Rd-valued martingales, with Mn(0) = 0,
and let An = [Mn] be the matrix of covariations, that is,

Ai j
n (t) = [Mi

n,M
j
n]t.

Suppose that for each t ≥ 0,

lim
n→∞

E[sup
s≤t
|Mn(s) − Mn(s−)|] = 0
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and

lim
n→∞

An(t) = A(t),

where A is deterministic and continuous. Then {Mn} converges in distribution to a Gaus-
sian process M such that M has independent increments, E[M(t)] = 0, and [Mi,M j]t =

E[Mi(t)M j(t)] = Ai j(t).
If

A(t) =
∫ t

0
σ(s)σ(s)T ds,

for some d × m-matrix-valued function σ, then we can write

M(t) =
∫ t

0
σ(s)dW(s),

where W is an R
m-valued standard Brownian motion.

Example 5. Let π be an ergodic stationary distribution for a Markov semigroup {T (t)}.
Then {T (t)} extends to L2(π) and is strongly continuous on L2(π). Let A be the Hille-Yosida
generator for the semigroup on L2(π). Then for each f ∈ D(A), the domain of A,

M f (t) = f (Xπ(t)) − f (Xπ(0)) −
∫ t

0
A f (Xπ(s))ds

is a square integrable martingale.
Then, for h ∈ L2(π), ergodicity implies

lim
n→∞

1
n

∫ nt

0
h(Xπ(s))ds = πht,

and Theorem 2.1 of [4] gives the functional central limit theorem for the scaled deviations,

Zh
n(t) =

1
√

n

∫ nt

0
(h(Xπ(s)) − πh)ds.

The key assumption is that there exists f ∈ D(A) such that A f = h − πh. Then

Zh
n (t) =

1
√

n
( f (Xπ(nt)) − f (Xπ(0))) − 1

√
n

M f (nt).

Consequently, we have the functional central limit theorem for {Zh
n } provided we can prove

the functional central limit theorem for { 1√
n

M f (n·)}. Observe that the quadratic variation

of 1√
n

M f (n·) is the same as the quadratic variation for Un(t) = 1√
n

f (Xπ(n·)) and that by
Itô’s formula,
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[Un]t = Un(t)2 − 1
n

∫ t

0
2 f (Xπ(ns−))d f (Xπ(ns)) (6.1)

= Un(t)2 − 1
n

∫ t

0
2 f (Xπ(ns−))dM f (ns) −

∫ t

0
2 f (Xπ(ns))A f (Xπ(ns))ds

→ −t
∫

E
2 f (x)A f (x)π(dx).

By Theorem 2, the convergence of Zh
n follows. Of course, under the assumptions of

Lemma 8, the same result will hold for Xμ for all μ ∈ P(E).
If f is smooth and Xπ is an R

d-valued diffusion,

Xπ(t) = Xπ(0) +
∫ t

0
σ(X(s))dW(s) +

∫ t

0
b(X(s))ds,

then

f (Xπ(t)) = f (Xπ(0)) +
∫ t

0
∇ f (Xπ(s))Tσ(Xπ(s))dW(s) + R(t),

where R is continuous with finite variation, so we can also write

[Un]t =
1
n

∫ nt

0
∇ f (Xπ(s))Tσ(Xπ(s))σ(Xπ(s))∇ f (Xπ(s))ds (6.2)

→
∫

Rd
∇ f (x)Tσ(x)σ(x)T∇ f (x)π(dx).

Example 6. In [5], Rabi considers diffusions in R
d of the form

X(t) = X(0) +
∫ t

0
u0b(X(s))ds+

∫ t

0
σ(X(s))dW(s),

under the assumption that σ is the square root of a positive definite matrix and σ and b are
periodic in the sense that

σ(x + z) = σ(x) and b(x + z) = b(x) z ∈ Zd.

At least under additional regularity assumptions on σ and b, Y(t) = X(t) mod 1, 1 ∈ Zd, the
vector with each component 1, is a Markov process in [0, 1)d which has a unique, ergodic
stationary distribution π. Then

lim
n→∞

1
n

X(nt) = lim
t→∞

1
n

∫ nt

0
u0b(X(s))ds = lim

n→∞

1
n

∫ nt

0
u0b(Y(s))ds = u0b̄t,

where b̄ = πb. Rabi gives the corresponding central limit theorem showing the conver-
gence of

Vn(t) =
1
√

n
(X(nt) − nu0b̄t).
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For simplicity, assume X(0) = 0. Setting

Mn
1(t) =

1
√

n
(X(nt) −

∫ nt

0
u0b(Y(s))ds) =

1
√

n

∫ nt

0
σ(Y(s))dW(s),

the convergence of Mn
1 follows from Theorem 2 and the ergodicity of Y.

Note that Vn = Mn
1 + Zn, where

Zn(t) =
1
√

n
u0

∫ nt

0
(b(Y(s)) − b̄)ds.

Then Zn is of the form treated in [4], Example 5. Let Â denote the generator for Y, which
will satisfy Â f (x mod 1) = A f (x), if f extends periodically to an element in the domain of
A. Rabi shows the existence of a twice continuously differentiable g satisfying

Âg(y) = b(y) − b̄,

and setting

Mn
2(t) =

u0√
n

(g(Y(nt)) − g(0) −
∫ nt

0
(b(Y(s)) − b̄)ds),

we have

Vn(t) = Mn
1(t) − Mn

2(t) +
u0√

n
(g(Y(nt)) − g(0)).

Since

Mn
2(t) =

u0√
n

∫ nt

0
∇g(X(s))Tσ(X(s))dW(s) + Rn(t),

where Rn is continuous with finite variation,

[Mn
1 − Mn

2]t =
1
n

∫ nt

0
(I − u0∇g(X(s))T )σ(X(s))σ(X(s))T (I − u0∇g(X(s)))ds.

Setting a = σσT ,

D =
∫

[0,1)d
(I − u0∇g(y)T )a(y)(I − u0∇g(y))π(dy),

and Vn converges in distribution to a mean zero Brownian motion with covariance matrix
D. The form of D derived here differs from the form in [5], but compare (6.1) and (6.2).
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CRITERIA FOR RECURRENCE AND EXISTENCE OF INVARIANT 
MEASURES FOR MULTIDIMENSIONAL DIFFUSIONS1 

BY R. N. BHATTACHARYA 

University of Arizona 

Let L = ! L:L=t a;;(x)(()2f()x; ()x;) + L;~=t b;(x)(()f()x;) be an elliptic op
erator such that a;;( •) are continuous and b;( •) are measurable and bounded 
on compacts. Criteria for transience, null recurrence, and positive recur
rence of diffusions on Rk governed by L are derived in terms of the coef
ficients of L. 

1. Introduction. The main objective of this article is to obtain criteria for 
transience, positive recurrence, and null recurrence of diffusions on Rk governed 
by elliptic operators L = 'L:L=1 a,,.(x)(a2fax, ax,.) + r;:et b,(x)(afax·,) in terms 
of the coefficients of L. The matrix ((a,,.(x))) is assumed to be nonsingular for 
each x; the functions a,,.(.) are continuous, and the functions b,(.) are Borel 
measurable and bounded on compacts. For the case k = 1 complete charac
terizations are known (see, e.g. , Mandl (1968)). Fork> I important criteria 
were announced without proof by Khas'minskii (1960) in a supplement to his 
paper [3], under the hypothesis that the coefficients of L are thrice continuously 
differentiable. The first derivation of criteria for recurrence and transience 
analogous to Khas'minskii's is due to Friedman (1973), who assumed the coef
ficients to be Lipschitzian on compacts and to satisfy certain growth conditions 
at infinity. As far as we know there has not appeared in the literature any proof 
of Khas'minskii ' s criteria (or analogous ones) for positive and null recurrence. 
Since positive recurrence is essentially equivalent to the existence of a (unique) 
invariant probability measure determining the ergodic behavior of the diffusion 
(see, e.g., Khas'minskii (1960), Maruyama and Tanaka (1959)), such criteria 
are of importance. Theorem 3.5 provides a criterion for positive recurrence 
which implies the corresponding criterion of Khas'minskii (1960) (Theorem III 
of his Supplement). It also provides a criterion for null recurrence which is 
comparable to Khas'minskii's (when specialized to Khas' minskii 's assumptions), 
although neither implies the other. We are unable to verify Khas'minskii's 
criterion for null recurrence. Theorem 3.3 is an improvement upon Friedman's 
criteria for transience and recurrence. The criteria derived in this article are 
exact if L is radial near infinity. Among other results we mention Theorem 3.2 
establishing a dichotomy (into transience and recurrence) in the class of all 
diffusions considered here. 

Throughout this article we assume k ;s;; 2. 

Received May 18, 1977; revised July 18, 1977. 
1 This research was supported in part by NSF Grant Nos. ENG76-09081, MCS76-06118. 
AMS 1970 subject classification. 60160. 
Key words and phrases. L-harmonic functions, strong Markov property, invariant measures. 
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2. Notation and preliminaries. This section is devoted to background ma
terial. Proofs are given only when results are not readily available in the desired 
form. 

Let L = ! I; i.;e1 a1;(x)(IJ2 fox, ox;) + I; ;. 1 b,(x)(o fox,) be an elliptic opera tor 
on Rk. More precisely, we assume 

(A) The matrix ((a1;(x))) is real symmetric and positive definite for each x 
in Rk, the functions a,;(.) are continuous. The functions b1(.) are real valued, 
Borel measurable and bounded on compacts. 

For N = 1, 2, · . · , 1 ;;:;; i, j;;:;; k, define 

a1;,N(x) = a1;(x) 

b,,N(x) = b,(x) if lxl ;;:;; N , 

a,;, N(x) = a,1(x0) 

b,,N(x) = b,(x0) if lxl = cx0 for some x0 , lxol = N , 

and some c > 1 . 

Let L N = ! .EL-1 a,1,N(x)(o2fox, ox1) + .E~e 1 b,,N(x)(ofox,). 
For A c Rk, A denotes the closure of A and A• denotes the complement of A . 

Also, oA denotes the boundary of A. The symbol 1x1 stands for the Euclidean 
norm of x. 

Denote the space C([O, oo): Rk) of all continuous functions on [0, oo) into R• 
by 0'. Endow 0' with the topology of uniform convergence on compact subsets 
of [0, oo ). Let A' denote the Borel sigma field of 0'. Let X(t) = X(t, • ) be 
the tth coordinate map: X(t, w) = w(t) for wE 0'. The sigma field generated by 
{X(s): 0 ;;:;; s ;;:;; t} is denoted by ..4/;' (0 :;;;; t < oo ). A function r on 0' into 
[0, oo] is a stopping time if {r ;;:;; t} E ..4/;' for all t ~ 0. If r is a stopping time 
then the map X,- on Q' into 0' defined by 

X, - (t) = X(r 1\ t) 

is measurable and is called the process stopped at r. The pre-r sigma field A.' 
is generated by {X(r n t): t ~ 0}. Also measurable on the restriction of (0' , A') 
to {r < oo} is the map x,+ defined by 

X, +(t) = X(r + t) 
Let {Pz: x E Rk} be a family of probability measures on (0', A') such that 

for every a.s. (P.) finite stopping timer a regular conditional distribution of X,+ 
given A.' is P x< r> · We then say that X is a strong Markov process under P •. 
Such a process is said to be strong Feller if for every bounded real measurable 
function f on Rk the function: x-+ E.f(X(t)) is continuous on Rk for each t > 0. 
Here E. denotes expectation under P.. The following result due to Stroock and 
Varadhan ([7]-[9]) will be frequently used in this article. 

THEOREM 2.1. If, in addition to the hypothesis (A), a,1( ·) and b,( ·) are bounded 
on Rk, then for each x in R• there exists a unique probability measure Pz on (0', A ') 
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such that (i) Pz(X(O) = x) = 1, (ii) for every bounded real f on Rk having bounded 

and continuous first and second order derivatives, the process 

f(X(t)) - ~~ Lf(X(s)) ds 

is a martingale under P". Further, (a) X is strong Markov and strong Feller, and 

(b) support of P" is Oz' = {wE 0': w(O) = x}. 

Let Pz,N denote the probability measure in Theorem 2.1 with L = LN. 

The following simple result will also be needed. For any set A, XA is the 
indicator function of A. 

LEMMA 2.2. Let U be a nonempty bounded open subset of Rk. Let 

(2.1) 'u = inf{t ~ 0: X(t) (t U}. 

Under the hypothesis of Theorem 2.1, for every bounded real Borel measurable func

tion! on U, the function Ez(X!ru>tJ(X(t))) is continuous on U. If¢ is a real valued 
bounded measurable function on au, then the function Ez(¢(X(ru))) is continuous on 

u. 
PRooF. The first assertion is proved in Dynkin (1965) (Volume II, page 30, 

relation (13.4)). It is of course necessary to check Dynkin's hypothesis that 

(2.2) 

for every compact subset D of U. 
But (2.1) follows from the inequality (see Stroock and Varadhan (1969), page 

355) 

(2.3) SUPzeRk Pz(JX(t)- xj >e)~ 2k exp{ -(e- {3t) 2 f2at} e > 0, t > 0 

where {32 is an upper bound of 1:: b,2(x) for all x, and a is an upper bound for 
the largest eigenvalue of ((a,1(x))), x E Rk. To prove the second assertion define 
if} on U by letting if} = </Jon aU and if} = Con U where C ~ <jJ(x) for all X in aU. 

Then, according to Dynkin (1965) (Volume II, page 30, relation (13.5)), the 
function h1(x) = Ezif}(X(ru 1\ t)) is continuous on U for every t > 0. Letting 
t j oo, one has h1(x) j ¢(x). Hence ¢ is lower semicontinuous. Similarly, -¢ 
is lower semicontinuous. 0 

To construct probability measures P" under the hypothesis (A) replace the 
"state space" Rk by its one point compactification Rk U { oo }. Let 0 = C((O, oo): 
Rk u { oo}) be the set of all continuous functions on [0, oo) into Rk u { oo} and 
endow 0 with the topology of uniform convergence (relative to some metric 
metrizing Rk u { oo}) on compact subsets of [0, oo ). Let .At' be the Borel sigma 
field of 0. We continue to denote by X(t) the tth coordinate map (this time on 
0 into Rk u {oo}). Also, ..4!; will denote the sigma field generated by {X(s): 
0 ~ s ~ t}, and ..At'. will denote the pre-r sigma field for any stopping time ' 
(relative to ..4!;, t ~ 0) on 0. Denote by P"" the probability measure degenerate 

at w"" where woo(t) = oo for all t ~ 0. For x =F oo, one way to construct P,. is 
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to introduce the product probability space (E, gc', p), where E is the Cartesian 
prOdUCt Xx,N Q~,N (each Q~,N being a COpy Of Q'), gc' iS the prOdUCt Sigma field, 
and f1 is the product probability Xx,N Pz,N· If x0, N 0 are such that lxol < N 0 , 

define a map yon E into Q by requiring that Y(t) = x.o.No(t) (here x •. N(t) is the 
tth coordinate map on Q~,N) for t ~ TJ 1 = inf {s ~ 0: IX.0 ,N0(s)l = N0}, Y(t) = 
X Xi~;>.No+i(t) forT); < t ~ TJi+P where TJ;+1 - TJ; = inf{s ~ 0: X Xl~;l,No+i(s)l = N0+ i}; 
let T)oo = limiT oo T); and define Y(t) = = for T)oo ~ t < =. We denote by Pz0 the 
probability measure on (Q, ~)induced by Y, i.e., P.0 = f1 o Y-1 • It is simple to 
check from this construction that the coordinate process X= {X(t): 0 ~ t < =} 
on Q is a strong Markov process under Px, x E Rk u { = }. 

On Q define the stopping times 1: u for open subsets U of Rk as in (2.1 ), and 
define the explosion time ( by 

(2.4) 

where B(O: N) = {x E Rk: lxl < N}. The probability measure Px (x E Rk) is said 
to be conservative if Px(( = =) = 1. A Borel measurable real valued function 
f on Rk will be said to be L-harmonic on an open subset G of Rk if it is bounded 
on compacts, and for all x in G 

(2.5) f(x) = EJ(X(<u)) 

for every neighborhood u of X having compact closure a in G. It may be re
marked at this stage that the notation P,, E. used here is consistent with that 
used earlier. For it follows immediately from the construction that under the 
hypothesis of Theorem 2.1 the present P. has support Q.' and coincides with 
the corresponding P. in Theorem 2.1 on Q/. Also, if (A) holds, then for lxl < N 
the present measure P. agrees with the earlier P. ,. on .Af't'.. (i.e., on the trace 

• •" •BIO:N) 

of this sigma field on Qz'). From now on we regard all measures Px, Px.N to be 
defined on (Q, ~), and Ex, Ex,N are corresponding expectations. 

Part (a) of the following lemma may also be obtained from Dynkin (1965), 
Volume II, Theorem 13.2, page 31. 

LEMMA 2.3. Assume (A) holds. (a) Every L-harmonicfunction on an open subset 
G of Rk is continuous in G. (b) (Maximum principle.) Let f be a nonnegative L
harmonic function on a connected open subset G of Rk. Then f is either strictly 
positive or identically zero. 

PROOF. (a) Iff is L-harmonic in G, x E G, and U is a neighborhood of x such 
that the closure a of U is compact in G, then 

(2.6) f(x) = Exf(X(<u)) = Ex,Nf(X(<u)), 

provided U c B(O: N). By Lemma 2.2 the last expression in (2.6) is continuous 
in U. 

(b) Suppose f(x0) = 0. Let B = B(x0 : e) be the open ball with center x0 and 
radius e such that B c G. Then 
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where Il(x0, dy) is the distribution of X(r-B) under P.,0 and, hence, under P.,0,N if 
N > jx0 J + e. By Theorem 2.1 the support of Il(x0, dy) is oB. Since f ~ 0 and 
continuous it follows that[= 0 on an. Therefore, f = 0 on G. D 

LEMMA 2.4. Assume (A) holds. (a) If U is a nonempty open subset of Rk, 
u * Rk, then X- Pz(r-u < oo) is positive and continuous on u. (b) If ul, u2 are 
two nonempty open subsets of Rk such that V1 n V2 = ifJ, V2• = Rk\ V2 is connected, 
then x- P.('<u• < '<u•) is positive and continuous on V1• n V2•. 

I 2 

PROOF. It follows from the strong Markov property that both the functions 
in question are £-harmonic and, therefore, continuous. To prove positivity in 
(b) (which implies positivity in (a)) let X E Vt" n V2·· Take an open ball B c ul 
and let B1 be a bounded open set such that x E B1, B c B1 c {jxj < N}, 

B1 n V2 = ifJ. Then P.(r-u~ < '<u~) ~ P.("ii• < '<Ji~) = P.,,N('<ii• < '<Ji~)· The last 
expression is positive, since the support of P •. N is 0.,'. D 

LEMMA 2.5. Assume (A) holds. If P.0 is conservative for some x0 E Rk, then P., 
is conservative for all x E Rk and the process {X(t): t ~ 0} has the strong Feller 
property. 

PROOF. Since x- P.(' < oo) is harmonic, the first assertion follows. To 
prove the second let f be a real valued bounded Borel measurable function on 
Rk. Assume P., is conservative for all x E Rk. Fix x0 in Rk. One has 

(2.7) JE.f(X(t))- E.,Nf(X(t))l =IS Xt'B<o:N>:itlf(X(t))[P.(dw)- P.,N(dw)]l 

;:;;;; 211/11[1 - P.,,N('<B<o:N> > t)] t > 0, 

where 11/11 = sup lf(x)l· Choose e > 0 and fix N such that the last expression in 
(2.7) is less than ef3 if x = x0 • Since x- P.,N(r-B<o=N> > t) is continuous on Rk 
(by Lemma 2.2), and x- E.,Nf(X(t)) is continuous (since X is strongly Feller 
under P.,N, x E Rk), there exists o > 0 such that if lx - x0l < o, then 

IE.,J(X(t))- E.J(X(t))l ;:;;;; 211/11[1 - P.,N(r-B<O:N> > t) + 1 - P.0 ,N('<B<o:N> > t)] 
+ IE.,NJ(X(t))- E.0,Nf(X(t))1 <e. 0 

LEMMA 2.6. Assume (A) holds, U is a bounded open subset of Rk. Then 

sup .. u E.(r-u) < oo. 

PROOF. Let Nbe such that B(O: N) :::J V. Then E.,r-u = E•,N"u for x E U. Fix 
t0 > 0. Since 0.' = {wE 0': w(O) = x} is the support of P.,,N, P.,N('<u > t 0) ;:;;;; 

P.,N(IX(t0)l < N) < 1 for all x E V. Since x-. P.,,N(IX(t0)l < N) is continuous, 
sup •• v P.,N('<u > t 0) < 1. Now use the inequality (see, e.g., Dynkin (1965), 
Volume I, Lemma 4.3, page 111) 

E.,,N'<u;:;;;; to 0 
1 - sup •• u P •. N(r-,. > t 0) 

Finally, a nonzero measure m on the Borel sigma-field ~k of Rk is said to be 
invariant for the Markov process P.,, x E Rk, if for all BE .:3/lk and all t > 0, 

(2.10) m(B) = SRk P.,({X(t) E B})m(dx). 
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We shall henceforth refer to Pz, x E Rk, or to the coordinate process under 
Pz, x E Rk, as the diffusion with generator L. 

3. Criteria for recurrence and transience. Assume (A) holds, and consider 
the diffusion X (under Pz, x E Rk) with generator L. A point x in Rk is said to be 
recurrent for this diffusion if given any o: > 0 

(3.1) Pz(X(t) E B(x: o:) for a sequence of t's increasing to infinity)= I , 

where B(x: o:) = {y: IY - xl < o:}. It follows that xis a recurrent point if and 
only if for every o: > 0 and every a.s. (Pz) finite random variable r 

(3.2) Pz(X(t) E B(x: o:) for some t > r) = 1 . 

A point x is transient if 
(3.3) Pz(IX(t)l -> oo as t-> oo) = 1 . 

If all points of a diffusion are recurrent, the diffusion itself is called recurrent. 
If all points of a diffusion are transient, the diffusion is called transient. It will 
be presently shown (see Theorem 3.2) that if (A) holds every diffusion is either 
recurrent or transient. Since different authors often use different definitions of 
recurrence and transience (see, e. g., Maruyama and Tanaka ( 19 59), Khas'minskii 
(1960), and Friedman (1973)), it is useful to show that these definitons are 
equivalent. 

PROPOSITION 3.1. Assume that (A) holds. The following statements are equivalent. 

(a) The diffusion is recurrent. 

(b) Pz(X(t) E U for some t ;;;;; 0) = 1 for all x E Rk and all nonempty open U. 
(c) There exists a compact set K of Rk such that Pz(X(t) E K for some t ;;;;; 0) = 1 

for all x E Rk. 

(d) Pz(X(t) E U for a sequence oft's increasing to infinity) = 1 for all x E Rk and 
all nonempty open U. 

(e) There exist a point z in Rk, a pair of numbers r0, r1, 0 < r0 < r10 and a point 
y E aB(z: rl) = {y': IY' - zl = rl} such that Py(rBC(z:ro) < 00) = 1. 

PROOF. The implications (b)~ (c), (b)~ (e), (d)~ (a), are obvious. We 
prove (a)~ (b), (b)~ (d), (c)~ (b), (e)~ (c). 

(a)~ (b). Assume (a), x E Rk, U nonempty open, x !l U. Let B be an open 
ball such that B c U. Choose o: > 0 such that B(x: o:) n B = if;. Let U1 be a 
bounded open set containing B(x: o:) u B. Define r;1 = r u1, r;2i = inf {t > TJ2i-I: 

X(t) E aB(x: o:)}, TJ2i+ 1 = inf {t > r;2;: X(t) E aU1} (i = 1, 2, · . · ). By Lemma 2.6 
and recurrence of x, r;;'s are a.s. (Pz) finite stopping times. Consider the events 
A 0 = {X(t) E B for some t E [0, r;1)}, A; = {X(t) E B for some t E [ r;2;_1, r;,;)} (i = 
1,2, ···). Sincey-.Py(rfjc < TB(x:<)c)ispositiveandcontinuouson.B• n B(x: o:/ 
(Lemma 2.4(b)). 

(3.4) 0 := infveau1 Py(TJ3c < TBIZ:i)•) > 0 . 
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Using the strong Markov property and induction on none obtains Px(n~=oA/) ~ 
(1 - o)". Thus 

(3.5) Pz(X(t) E U for no t:;;;: 0) ~ Pz(X(t) E B for no t:;;;: 0) 

~ lim,.~= Px(n~=o A/) = o . 
(b)= (d). Let x E Rk, U nonempty open, Ban open ball and c > 0 such that 

B n B(x: c) = tp and B c U. Define 81 = inf {t :;;;: 0: X(t) E aB(x: c)}, 82, = 
inf {t > 02i_ 1 : X(t) E aB}, 82i+l = inf {t > 82i: X(t) E aB(x: c)} (i = 1, 2, · · · ). 
By (b) and the strong Markov property, O;'s are a.s. (Pz) finite. Also, {)i j oo 
a.s. (P.) as i j oo; otherwise, with positive Px probability the sequences {X(02i_1): 

i = 1, 2, ... } and {X(02i): i = 1, 2, ... } converge to a common limit, which is 
impossible since aB(x: c) and aB are disjoint. 

(c)= (b). Let K be as in (c), Ban arbitrary open ball, x E Rk. Let U be an 
open ball containing B U K. Define r;/ = "K•• 7J~i = inf {t > 7J~i-l: X(t) E aU}, 
r;~i+l = inf{t > r;~i: X(t) E K} (i = 1, 2, · · · ). By (c), the strong Markov property 
and Lemma 2.6, the r;/'s are a.s. (Pz) finite. Now proceed as in the proof of 
(a)= (b), i.e., define A/s with r;;"s in place ofr;/s, and define o = infveK PY(A 1); 

by Lemma 2.4 (b), o > 0; and P.(X(t) E B for not :;;;: 0) ~ Pz<n~=l A/) ~ ( 1 - o)" 
for all n. 

(e)== (c). Follows from Lemma 2.4(a) and the maximum principle (Lemma 
2.3 (b)), if one takes K = B(z: r0). D 

The next result establishes a dichotomy in the class of all diffusions for which 
(A) holds. 

THEOREM 3.2. Assume (A) holds. (a) If there exists a recurrent point, then the 
diffusion is recurrent. (b) If there exists no recurrent point, then the diffusion is 
transient. 

PROOF. (a) Suppose y is a recurrent point. Choose r0 , r 1 (0 < r0 < r 1), z such 
that IY - z1 = r 1 • It has been shown in the course of the proof of Proposition 
3.1 ((a)== (b), (3. 5)) that Py(X(t) E aB(z: r 0) for some t :;;;: 0) = Pv(X(t) E B(z: r 0) 

for some t:;;;: 0) = 1. By Proposition 3.1 (e), the diffusion is recurrent. 
(b) Suppose no point in Rk is recurrent. Fix x E Rk. Let r be an arbitrary 

positive number such that r > 1x1. By Proposition 3.1 (e) and the maximum 
principle (Lemma 2.3 (b)), for each r 1 > r one has 

orl = sup[y[=rl Py(-rB(O:r)c < oo) < 1. 

Define 7J1 = inf {t :;;;: 0: X(t) E aB(O: r1)}, 7J2i = inf {t > 7J2i_ 1 : X(t) E B(O: r)}, 

7JM 1 = inf {t > 7J2t: X(t) E aB(O: r 1)} (i = 1, 2, · · · ). By Lemma 2.6 and the 
strong Markov property, for all i :;;;: 1 

(3.6) 

Px(X(t) E B(O: r) for some sequence of t's increasing to infinity) 

~ Pz(r;u+l < oo) = E.(Xt~2i-I<"'lPX1~2i-ll(-rBIO:d < oo)) 

~ OTl P.(r;2i-1 < 00) ~ ... ~ 0~1 . 
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Hence the left side of (3.6) is zero and 

P~(lim inft~oo jX(t)j > r) = 1 . 

Since this holds for all r > 0, the proof is complete. D 

The next theorem improves and extends a result of Friedman (1973). The 
criteria for recurrence and transience derived in Theorem 3.3 were announced 
without proof earlier by Khas'minskii (1960) (Theorem II of his Supplement) 
under the additional assumption that the coefficients of L are thrice continuously 
differentiable. To prove it we introduce some notation. 

Let F be a real-valued twice continuously differentiable function on (0, oo ). 

Let z E Rk. Consider the function 

(3.7) f(x) = F(jx - zl) x E Rk , jx - zj > 0 . 

A straightforward differentiation yields 

of(x) = (xi - zi) F'(jx - zl) ' 
axi jx- zj 

(3.8) o2f(x) = (xi - zi)2 F"(jx - zl) - (xi - zi)2 F'(jx - zl) + F'(jx - zl) ' 
ox/ jx - zj 2 jx - zj 3 jx - zj 

o2j(x) = (xi - zi)(x; - Z;) F"(lx _ zl) _ (xi - zi)(x; - Z;) F'(jx _ zl) 
axi OX; jx - zj 2 jx - zj3 

i =1= j, jx - zj > 0 . 

Now fix r0 > 0 and write x' = x - z and 

A,(x) = I:L=1 ai;(x' + z)x/x;' Jjx'j2 , B(x) = I:~= 1 au(x' + z) , 

(3.9) C ( ) 2 "k 'b ( I ) tJ. ( ) - B(x) - A.(x) + c.(x) • x = L...i=lxi i x + z , ~-'• r - sup1 ~'l=r , 
A,(x) 

fi.(r) = inflz'!=r B(x) - A,(x) + C,(x) ' 
- A,(x) 

a.(r) = SUP!z'l=r A.(x) ' 

q,(r) = inf1z'l=r A,(x) , J,(r) = s~ ~.(u) du' 
0 u 

I (r) = Sr ~.(u) du. 
-· ro u 

It is easy to check that 

(3.10) 2Lf(x) = A,(x)F"(jx- zl) + F'(jx- zl) [B(x)- A,(x) + C,(x)]. 
jx- zj 

THEOREM 3.3. Assume (A) holds. (a) If for some r0 > 0 and z 

(3.11) s~ exp{ -l.(r)} dr = 00 ' 

then the diffusion with generator L is recurrent. (b) If for some r0 > 0 and z 

(3.12) s~ exp{ -l.(r)} dr < 00' 

then the diffusion with generator L is transient. 
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PROOF. (a) Assume (3.11) holds. Define 

(3.13) F(r) = - ~~0 exp{ -l.(u)} du, f(x) = F(jx- zl) jx- z! ~ ro. 

Let x be such that r = jx - zj > r 0 • Define stopping times 

(3.14) r; = inf {t ~ 0: X(t) E oB(z: r 0)} , 'YJN = 'YJ 1\ !' B(z:Nl " 

By Theorem 2.1, and optional sampling (see Nevue (1965), page 142), 
f(X(t 1\ 7JN)) - ~~"~N Lf(X(s)) ds (t ~ 0) is a P.-martingale, provided jx - zj < N. 

Hence, for r = jx - zj > r0, 

2E.F(jX(t 1\ r;N) - zl) - 2F(r) 

(3.15) =E. w~N 2Lf(X(s)) ds 

~E. w~N A.(X(s)) [F"(jX(s)- zl) + F'j~X)--z~i) ~.(\X(s)- zi)J ds 

= 0, 

by the relations 

(3.16) F'(u) ~ 0, 
1 -

F"(u) + - F'(u)f3.(u) = 0 
u 

Letting t j oo in (3.15) and remembering that r;N < oo a.s. (P.), one obtains 

(3.17) -E.F(jX(r;N)- zj) ~ -F(r) = ~~0 exp{ -l.(u)} du. 

On evaluating the left side of (3.17) one has 

(3.18) P.(r; > "Bcz:N>) ~~ exp{ -l.(u)} du ~ ~~0 exp{ -l.(u)} du. 

Letting N j oo one gets 

(3.19) P ( = oo) < lim ~~o exp{ -J.(u)} du = 0. 
• r; = Nt= ~~ exp{ -J.(u)} du 

Hence P.(r; < oo) = 1 and the diffusion is recurrent by Proposition 3.1 (e). 
(b) Assume (3.12) holds. Define 

G(r) = ~~0 exp{ -I.(u)} du, g(x) = G(jx- zl) jx- zj ~ r0 • 

Since G'(u) ~ 0 and G"(u) + (1/u)G'(u)~.(u) = 0 for u ~ r0 , one obtains, as 

above, 

(3.20) E.G(jX(r;N) - zl) - G(jx - zl) ~ 0 

or, 

(3.21) P.(r; > "Bcz:NJ) ~~ exp{ -l.(u)} du ~ ~~-·1 exp{ -[.(u)} du. 

Hence, letting N j oo, 

(3.22) P.(r; = oo) ~ ~~0-• 1 exp{ -l.(u)} duf~':o exp{ -l.(u)} du > 0. 

Hence the diffusion is not recurrent (by Proposition 3.1) and therefore, it is 

transient (by Theorem 3.2). D 
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A recurrent diffusion admits a unique (up to a constant multiple) sigma finite 
invariant measure. This fact was proved by Maruyama and Tanaka (1959) in 
a more abstract setting and by Khas' minskii ( 1960). Khas 'minskii 's proof applies 
immediately to the present context. The following fact, which is easily deduced 
from Theorem 3.3 of Khas'minskii (1960) in conjunction with Lemma 2.6 and 
Proposition 3.1, will be needed. 

LEMMA 3.4. Assume (A) holds. (a) The diffusion is recurrent and admits a finite 
invariant measure if there exists z in Rk such that 

(3.23) 

for some r0, r 1 satisfying 0 < r0 < r 1 • (b) If there exist some z in Rk and positive 
numbers r0, r1 (0 < r0 < r1) satisfying 

(3.24) 

for ally E oB(z: r 1), then there does not exist a finite invariant measure. 

Our final result is 

THEOREM 3.5. Assume (A) holds. (a) The diffusion with generator Lis recurrent 
and admits a finite invariant measure (unique up to a constant multiple) if there exists 
z in Rk and r0 > 0 such that 

(3.25) 

(3.26) 

~;'0 exp{ -l.(u)} du = oo , 

1 -
~; -exp{I.(u)}du < oo. 

o l!.(u) 

(b) If there exist z in Rk and r0 > 0 such that (3.25) holds and 

(3.27) limN-·= ~~0 exp{ -l.(s)}(~~o [exp{l.(u)}fa.(u)] du) ds = 00 , 

~~ exp{ -l.(u)} du 

then the recurrent diffusion does not admit a finite invariant measure. 

PROOF. (a) Assume (3.25), (3.26). Define 

(3.28) F(r) = - ~~ exp{ -l.(s)} (~: - 1- exp{l.(u)} du) ds 
o l!.(u) 

Then 

(3.29) - 1 -F'(r) = -exp{ -I.(r)} ~;- exp{I.(u)} du < 0, 
l!.(u) 

F"(r) = -~.(r) F'(r) + _I_ 
r l!.(r) 

Let 
f(x) = F(lx - zl) 

Then, using (3.29), 

(3.30) 2Lf(x) ;;;; A.(x)/l!.(\x - zl) ;;;; 1 

r > ro. 
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If TJ, TJN are as in (3.14) then, as in the proof of Theorem 3.3, 

2E,,f(jX(t 1\ TJN) - z!) - 2F(jx - z!) 

(3.31) ~ Ez w~N 2Lf(X(s)) ds 

~ Ez(t 1\ TJN) 

First letting t j oo in (3.31) and then letting Nj oo, one has 

(3.32) 

551 

since TJN j TJ a.s. (P,) as N j oo (due to recurrence). Now apply Lemma 3.4(a). 
(b) Assume (3.25), (3.27) hold. Define 

(3.33) G(r) = ~~ exp{ -l.(s)} (~~ - 1- exp{l.(u)} du) ds, 
o o a.(u) 

g(x) = G(jx - z!) jx - zj ~ r0 • 

Since G'(r) ~ 0 and G"(r) = -(1/r)ft.(r)G'(r) + 1fa.(r), 2Lg(x) ~ 1. Therefore, 
one has 

(3.34) 

Letting t j oo in (3.34) one gets 

(3.35) Ez(TJN) ~ 2EzG(jX(TJN) - z!) - 2G(jx - z!) 

= 2Pz('rBcs:N> < TJ)G(N) - 2G(jx- z!). 

Let N j oo to obtain, using (3.21 ), 

Ez(TJ) ~ 21imN~~ ~~-•i exp{ -l.(u)} du . G(N) - 2G(jx - z!) = oo . 
~~ exp{ -[(u)} du 

The proof is now complete by Lemma 3.4 (b). D 

Following the terminology used for Markov chains one may call a point x in Rk 

positive recurrent for the diffusion with generator L if for every r0, r1 (0 < r0 < r1) 

one has Ez(O(x; r0, r1)} < oo, where 

O(x; r0, r1) = inf {t > T Bcz:r1>: jX(t) - xj = r0}. 

If xis recurrent but not positive recurrent then xis called null recurrent. If all 
points in Rk are positive (null) recurrent, the diffusion is called positive (respec
tively, null) recurrent. In this terminology, Theorem 3.5 provides criteria for 
positive and null recurrence. The criterion for positive recurrence extends a 
criterion announced by Khas'minskii (1960; Theorem III of his Supplement) to 
more general coefficients. The criterion for null recurrence given here is com
parable in strength to Khas'minskii's (1960; Theorem III of Supplement), when 
specialized to Khas'minskii's hypothesis; however, neither implies the other. 

An indication of the sensitivity of the criteria provided by Theorems 3.3, 3.5 
are afforded by the fact that if for some z the functions A.(x), B(x) + C,(z), defined 
by (3.10), are functions of jx'! for sufficiently large jx'j, then the criteria are exact. 
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For in this case one may delete the "bars" and assert: (i) the diffusion is recurrent 
if and only if ~;;, exp{ -I.(u)} du = oo for some r0 > 0; (ii) a recurrent diffusion 
is positive or null according as ~;;, [exp{I.(u)}/a.(u)] du is finite or infinite. 

4. Some remarks. This section is devoted to some miscellaneous comments 
on the material in the preceding sections. 

First, the definition of transience used in this article leaves open the possibility 
that a transient diffusion may be nonconservative. In order to restrict oneself 
to conservative diffusions one may use the following criterion for explosion 
essentially proved by McKean (1969), pages 102-104, and earlier stated by 
Khas'minskii (1960) (Theorem I of his Supplement), extending a one-dimen
sional result of Feller: Assume that, in addition to (A), the coefficients ai;• bi are 

Lipschitzian on compacts. (a) If, for some z E Rk and some r > 0, 

(4.1) ~; exp{ -l.(s)} (~~ _j_ exp{l.(u)} du) ds = oo , 
a,(u) 

then the diffusion is conservative. (b) If, for some z E Rk and some r > 0, 

(4.2) ~; exp{ -l.(s)} (~~ _l_ exp{f.(u)} du) ds < oo , 
g,(u) 

then the diffusion is almost surely explosive, i.e., P~(C < oo) = 1 for all x E Rk. 

Secondly, the problem of studying diffusions (in our sense) on those open 
subsets of Rk which are C2-diffeomorphic to Rk is easily reduced to the investiga
tion on Rk in view of Ito's lemma (see McKean (1969)) which enables one to 
compute "drift" and "diffusion" coefficients of the transformed process, at least 
when the corresponding process on Rk has coefficients which are Lipschitzian 
on compacts. 

Finally, suppose that the coefficients of L satisfy (A) and are Holder continuous 
on compacts. Using standard results from the theory of elliptic partial differential 
equations one can show that if z is a positive recurrent point then the function 
u(y) = Eu(rB(z:~o)c) is continuous on B(z: ror for every ro > 0 (indeed, it is twice 
differentiable and satisfies Lu = -1 ). From the uniqueness (up to a constant 
multiple) of the invariant measure and Lemma 3.4 it then follows that all points 
in Rk are positive recurrent. There is then a complete classification of diffusions 
into transient, null recurrent, and positive recurrent ones. 

Acknowledgment. The author wishes to thank Professor D. W. Stroock and 
the referee for helpful suggestions. 
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Summary. Let {X,: t~O} be an ergodic stationary Markov process on a 
state space S. If A is its infinitesimal generator on L2 (S, dm), where m is the 
invariant probability measure, then it is shown that for all fin the range of 

nt 

A, n- 112 J f(X,) ds (t~O) converges in distribution to the Wiener measure 
0 -

with zero drift and variance parameter CJ 2 =- 2(f, g)=- 2(Ag, g) where g 
is some element in the domain of A such that A g = f (Theorem 2.1 ). 
Positivity of u2 is proved for nonconstant f under fairly general conditions, 
and the range of A is shown to be dense in 1 1• A functional law of the 
iterated logarithm is proved when the (2 + b)th moment off in the range of 
A is finite for some b>O (Theorem 2.7(a)). Under the additional condition 
of convergence in norm of the transition probability p(t, x, dy) to m(dy) as 
t--> XJ, for each x, the above results hold when the process starts away from 
equilibrium (Theorems 2.6, 2.7(b)). Applications to diffusions are discussed 
in some detail. 

1. Introduction and Summary 

Let {X,: t~O} be a continuous parameter Markov process on a state space S 
having a transition probability function p(t, x, d y). Assume that there exists an 
inrariant probability measure m for p and that the process starting with (initial) 
distribution m is ergodic (i.e., the shift invariant sigma-field is trivial). Assume 
also, for purposes of measurability, that the process is progressively measur
able. The functional central limit theorem (FCLT) is said to hold for some m
integrable f on S if the sequence of stochastic processes 

{ 
nt } 

n- 112 !CJ(Xs)-Jfdm)ds (t~O):n=1,2, ... 

* This research was partially supported by NSF Grants MCS 79-03004, CME 8004499 

0044-3719/82/0060/0185/$03.40 
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converges in distribution to a Wiener measure w,., with zero drift and variance 
parameter a2 ~0. Without loss of generality assume Jfdm=O. Unlike discrete 
parameter Markov chains (which are specified by a one-step transition proba
bility function), a Markov process in continuous time is generally specified by 
infinitesimal conditions (e.g., rates of transitions from one state to another for 
pure jump processes, drift and diffusion coefficients for diffusions). Theorem 2.1 
says that, under the initial distribution m, the FCLT holds for all f belonging 
to the range ~A of the infinitesimal generator A (on L2 (S, dm)), and that the 
variance parameter of the limiting Wiener measure is 

a2 = - 2(f, g)= - 2(Ag, g), (1.1) 

where g is some element in the domain IDA of A satisfying Ag = f It is also 
shown (Proposition 2.4) that a 2 >0 for all nonconstant (a.s. dm) bounded fin 
~ A• provided for some t > 0 and all x the transition probability p(t, x, d y) and 
the invariant measure m(dy) are mutually absolutely continuous; if, however, A 
is selfadjoint, then a2 >0 for all nonzero ferJt A• without the additional assump
tions of boundedness and mutual absolute continuity (Remark 2.4.1). The 
linear space ~A is also shown to be dense in the set of all square untegrable 
functions with mean zero if ID 1 is dense in L2, or, equivalently, if the transition 
semigroup is strongly continuous on L2, which is a very mild restriction (Prop
osition 2.3). 

One may say that Theorem 2.1 deals with the case when the process is 
already in equilibrium. When the process starts away from equilibrium (i.e., the 
initial distribution is not m), the FCL T holds for all f e~ A, if the tail sigmafield 
is trivial under all initial distributions Jl., or, equivalently, if p(t, x, dy) converges 
to m(d y) in norm for all x, as t -4 oo (Theorem 2.6). A Strassen-type functional 
law of the iterated logarithm (FLIL) is proved in Theorem 2.7. 

The above strengthen and generalize earlier results proved in an elegant 
paper by Baxter and Brosamler (1976) for the special case of diffusions on 
compact manifolds. Since Doeblin's well known condition holds in this case, 
p(t, x, dy) converges to m(dy) in norm exponentially fast uniformly in x as 
t-+ oo. This is generally not true for noncompact state spaces, and for the most 
part, the special methods used by Baxter and Brosamler (1976) do not extend 
to the general case under consideration. Their computation of the variance for 
this special case is easily shown to agree with (1.1). 

A result analogous to Theorem 2.1 (although not in a functional form) has 
been proved for discrete parameter Markov chains by Gordin and Lilsic 
(1978). The continuous parameter case treated here is more delicate and is 
based on semigroup theory. One of the common features of both proofs is a 
theorem proved independently by Billingsley (1961) and Ibragimov (1963) 
which asserts that the CLT holds for a square integrable martingale sequence 
whose successive differences form an ergodic stationary process. This theorem 
is ideally suited for our purposes. 

Since the results of this article mentioned above are fairly general, one 
expects to do some extra work in specific classes of applications. This includes 
finding criteria (in terms of the infinitisimal conditions) 
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(1) for the existence of an invariant probability measure and its ergodicity, 
(2) for f to belong to ~ .4, 

(3) for p(t, x, dy) to converge in norm to m(dy) as t-t oo, etc. 

The well known Proposition 2.1 (which is stated here for the sake of 
completeness) says that ergodicity is equivalent to zero being a simple eigen
value of A. A sufficient condition for (3) is m-recurrence (see Remark 2.6.2). 
Examples in the last section illustrate how (1), (2), (3) may be verified for some 
important classes of Markov processes, and provide comparisons with results 
obtained earlier by the renewal method by Mandl (1968) for one dimensional 
diffusions and recently by Bhattacharya and Ramasubramanian (1982) for 
multidimensional diffusions. 

2. Main Results 

Let S be a nonempty set, and fJI(S) a sigmafield of subsets of S. Let p(t, x, dy) 
be a transition probability function on S, i.e., 

(i) p(t, x, dy) is a probability measure on fJI(S) for each pair (t, x): t>O, 
XES; 

(ii) for each 88E88(S), the function (t, x) -t p(t, x, B) is Borel measurable on 
(0, oo) x S; 

(iii) the Chapman-Kolmogorov relation p(t + s, x, B)= J p(s, z, B) p(t, x, dz) 
holds for all BE88(S) and all t>O, s>O. s 

Let lB denote the Banach space of all real bounded measurable functions f 
on (S, fJI(S)) into (IR I, fJI 1) (rJ1 1 is the Borel sigmafield of 1R 1) endowed with the 
'sup norm' llfll =sup {lf(x)l: xES}. In view of the Chapman-Kolmogorov re
lation (iii), the transition operators T;: t > 0, defined by 

(T;f)(x)=Jf(y)p(t,x,dy) t>O, xES, (2.1) 
s 

form a semigroup of positive contractions on lB. Let IB 0 be the center of this 
semigroup, i.e., 

lB 0 ={fEIB: IIJ;f-fll-tO as t-tO}. (2.2) 

The infinitesimal generator A of {I;: t > 0} is defined on the domain IDA 
={fEIB0 : II(J;f-f)/t-gll-tO for some gElB0 , as t~O}, by 

Af-1' I;f-f -1m---, 
t.l-0 t 

(2.3) 

the limit being in sup norm. 
Suppose now that p(t, x, dy) admits an invariant probability measure m (on 

(S, 88(S)): 
J p(t, x, B) m(dx) = m(B) for all BE88(S). 

Then {7;: t>O} is a contraction semigroup on IJ(S, dm): 

II T;fll~ = J (J;f(x)) 2 m(dx)~ J (T;JZ)(x) m(dx) 

= JJZ(x)m(dx)= llfll~-

(2.4) 

(2.5) 
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Let B0 denote the center of this semigroup (on Lz(S, dm) with respect to the 
norm II • liz) and A its infinitesimal generator on the domain IDA. Since II · liz is 
weaker than 11· II, JB 0 ~IB0 , ID A~ID A' and A is an extension of A on 
Lz(S,dm). 

Let { X 1 : t ~ 0} be a stationary Markov process having transition probability 
p(t, x, dy) and initial distribution m, defined on some probability space 
(Q, d, Q) on which an increasing family of sigmafields {g.;;: t ~ 0} (ff c d for 
all t) is given such that 

(i) xt is g;;-measurable, and 
(ii) E(f(X1+s)/~) =(TJ)(Xs) a.s. (dQ) for all m-integrable f 
It will be assumed throughout that for each t>O the function (t', w)-*X1.(w) 

on [0, t] x Q is measurable with respect to the sigmafield {16'[0, t] x g.;;, where 
{18 [0, t] is the Borel sigmafield on [0, t]. In the usual Markov process jargon 
X 1 is thus progressively measurable. Note that this is a rather mild restriction 
and is met whenever S is a metric space ({!6'(S) is then the Borel sigmafield on 
S) and t---* X,(w) is right continuous (see Blumenthal and Getoor (1968), p. 34). 
For every set FEO"{X,: t~O} there exist a countable set {t1, tz, ... }c[O, oo) and 
a measurable set G of the product space (S{t,, 12 ' ... J, ® {!6'(S{t,J)) such that F 

i 

={wEQ: (X1,(w), X 12 (w), ... )EG} (see Doob (1953), p. 604). Such a set F is said 
to be shift-invariant if for all t>O, F=Fo tl1 ={wEQ: (X1,+ 1(w), 
X 12 + 1(w), ... )EG}. The shift-invariant sigmafield J is the collection of all such 
shift-invariant sets. The stationary Markov process {X1 : t~O} is said to be 
ergodic if J is trivial, i.e., if its sets have probabilities zero or one. 

Tt 

For each T>O, and each fEL1 (S,dm), the map W---*T- 112 Jf(Xs(w))ds 
0 

induces a probability measure on the (Borel sigmafield of the) space C [0, oo) of 
all real continuous functions on [0, oo) endowed with the topology of uniform 
convergence on compact subsets of [0, oo ). Weak convergence of probability 
measures on C [0, oo) has its usual meaning (see Billingsley (1968), p. 7). 

Below ~A(~ A) denotes the range of A (A):~ A= {Ag: gElD 1l Note that if 
gElD A, then 

J Ag(x) m(dx) = (dd J ~ g(x) m(dx)) = dd (J g(x) m(dx))1= 0 = 0. (2.6) 
t t= 0 t 

Theorem 2.1. Let {X1 : t~O} be a progressively measurable stationary ergodic 
Markov process having transition probability function p(t, x, dy) and invariant 
initial distribution m. (a) If fE~ A then, as n--+ oo, the distribution of the stochas-

tic process { n- 1/Z I f(Xs) ds: t ~ 0} converges weakly to the Wiener measure with 

zero drift and variance parameter 

0' 2 =-2(f, g)=- 2 J f(x) g(x) m(dx), (2.7) 

where g is any element of ID 1 satisfying 

Ag=f (2.8) 
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Proof Let (2.8) hold. Using the identity (see Dynkin (1965), p. 23, relation (1.5)) 

t 

7; g(x)- g(x) = J T., Ag(x) ds (a. e. dm), (2.9) 
0 

it is simple to check that 

n 

Y,.(g)=g(Xn)-JAg(X3)ds (n=1,2, ... ) (2.10) 
0 

is a square integrable martingale, whose differences 

n+ 1 

J.(g)=g(Xn+l)-g(Xn)- J Ag(X.)ds (n=O, 1,2, ... ) 
n 

form a stationary ergodic sequence~ By a result of Billingsley (1961) and 
Ibragimov (1963) (the functional form used here is due to Billingsley (1968), 
Theorem 23.1, pp. 205-208), the distribution of 

Zn(t) =n- 112 (Y[nt](g) +(nt- [nt]) .d[nr](g)) (t~ 0), (2.11) 

converges weakly to the Wiener measure with zero drift and variance parame
ter 

a2 =E(L1o(g))2 =E [ g(X 1)-g(X o)-! Ag(X.) ds r. (2.12) 

Here we have made use of (2.6), which implies that E..1"(g)=0. Now 

I m I ( ~Q+l ) Zn(t)+n- 112 JAg(X.Jds ~n- 112 jg(X[nr])l+l..1[nt)(g)l+ J IAg(X.Jids 
0 ~ 

= n- 1 12 (I 1 ([nt]) +I 2 ([nt]) +I 3 ([nt])), (2.13) 

say. But, given any e>O, 

00 ()() 00 

2: Q(I/n)>evn>= I Q(Ii1)>evn>~ J Q(Iil)>lq;';;)dv 
n~l n~l 0 

2 co 
= 2 JQ(Ii!)>u)udu=e- 2 E(Ii1))2 <oo U=1,2,3), (2.14) 

e o 

so that n- 112 Ii(n)-+0 (a.s. dm) as n-+oo, implying that 

sup {n- 112 (I1 ([nt] +I2 [nt] +I3 [nt]): O~t~t0} -+0 a.s. as n-+oo, 

for every t0 >0. It remains to show (2.7). For each positive integer n one has, 
since martingale differences are orthogonal, 

(2.15) 



176

190 R.N. Bhattacharya 

On the other hand, 

E [ g(X 11n)- g(X 0)-I Ag(X.) ds J 2 =E(g(X 11n)- g(X 0)) 2 

+E Ct Ag(X.) ds r -2E [(g(xl/n)-g(Xo)) TAg(X.)ds] 

=2 J g2 (x) m(dx)-2E(g(X 0) E(g(X 11.)/ff0))+E Ct Ag(X.) ds J 
-2E (<g(X11")-g(X0))rA:g(X.) as] 

=2 J g2 (x) m(dx)- 2 J g(x) T11n g(x) m(dx) +o(n- 1) 

=2 J g2 (x) m(dx)- 2 J g(x)([g(x) +n- 1 Ag(x)] + o(n- 1)) m(dx) + o(n- 1) 

= -~ f g(x)Ag(x)m(dx)+o (~), (2.16) 

where we have used the elementary inequalities 

E Ct Ag(X.) ds r ~E (~ r(Ag(X.))2 ds) = :2 s (Ag(x)f m(dx), 

E l(g(X 1/n)- g(X o)). r Ag(X.) dsl 

~(E(g(X 1/n)-g(X o))2)1/2 ( E Cf Ag(X.) ds rr2 
= ( -~ S g(x)Ag(x) m(dx)+o(n- 1)r2

. ~ (J(Ag(x))2 m(dx) 1' 2 

=O(n- 3' 2). (2.17) 

Using (2.16) in (2.15) one gets 

a 2 =- 2(g, A g)+ o(l). (2.18) 

The term o(l) must vanish, since the left side of (2.18) is independent of n. D 

k 

Remark 2.1.1. Suppose .t; (i= 1, 2, ... , k)EBl ,t, then L. rx;/;EBl .A for every k-tuple 
1 k 

of reals (a. 1, ..• , a.k). Hence applying the conclusion of Theorem 2.1 to L. r:t.J; for 
1 

( 
nt 

every k-tuple of reals, one proves that the distribution of n- 112 r J;(X.) ds (i 

= 1, 2, ... , k)) converges weakly to a k-dimensional Wiener measure with drift 

vector 0 =(0, ... , 0) and dispersion matrix ((aii =- (Ag;, g)- (g;, A g))), 1~ i, 
j~k. 
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Remark 2.1.2. Suppose m is an invariant probability measure for a transition 
probability function p(t, x, dy). Since A is a closed operator, its null space N.J. 
={heiDA:Ah=O} is a closed subset of L2 (S,dm). Therefore, givenfe~A. there 
exists a unique gEID.JnNj such that Ag=f One may take this gin (2.7). 

Now suppose heN A' Then Ah=O and T,h=h for all t. This implies, by the 
martingale convergence theorem applied to the square integrable martingale 
{h(X,): t~O}, that h(X1)=E(Z/u{X.: s;;;;;t}) for a shift-invariant square inte
grable random variable Z=limh(X,). Since Z=ZolJ, and the distribution of 
(ZolJ,X,) is the same as that of (Z,X0), one has h(X0)=E(Z/u{X0 }) 

=E(Z o lJ1/u{X1})=E(Z o lJ1/u{X.: s;;;;;t})=h(X1) a.s. Hence Z =h(X0 ) a.s. This 
implies that the ergodicity of (X,: t~O} is equivalent to NA being the one 
dimensional subspace of L2 (S, dm) spanned by constants. Another way of stating 
this is 

Proposition 2.2. Let m be an invariant probability measure for p(t, x, dy). Then 
the following statements are equivalent: 

(a) The Markov process having transition probability p and initial distribution 
m is ergodic. 

(b) 0 is a simple eigenvalue of A. 
The next result assures us that rJl A is fairly large. 

Proposition 2.3. Let p(t, x, dy) be a transition probability function having an 
invariant probability measure m. Suppose that IDA. is dense in L2 (S, dm) (i.e., JB 0 

=L2 (S, dm)). Then 

(a) NA= N.J., and 
(b) r!lA. is dense in {l}_j_ if and only if NA. is one dimensional (i.e., the Markov 

process is ergodic). 
(c) If for some A.>O, the resolvent (A.-A)- 1 is compact, then r!l.J. is closed; 

and if, in addition, 0 is a simple eigenvalue of A, then rJl A is the space of all 
feiJ(S, dm) such that Jfdm=O. 

I 
Proof (a) Suppose heN A then h(X1) = h(X 0) a.s. Therefore, for all gelD A one 
has 

<Ag, h) =lim jT, g- g, h) =lim t- 1 (Eh(X 0) g(X1)-Eh(X 0) g(X 0)) 
qo \ t qo 

=lim t- 1(Eh(X,) g(X,)-Eh(X 0) g(X 0))=0. (2.19) 
t~O 

This shows rJl A c N j. Since IDA. is dense in L2 , A* is well defined, and ~A= N j •. 

Hence Nj.cNj, so that NA.=>NA. A* is a closed operator; hence NA* is a 
closed set, and one has NA* => NA. Conversely, suppose heN A*· Then for all 
gelD A one has 

d ~ ~ 
dt <T,g, h)=<AT,g, h)=<T,g, A *h)=O, (2.20) 

i.e., <T,g, h) =(g, h), or T,* h=h. Now 
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0~ 117;h-hll~= 117;hll~+ llhll~-2<7;h, h) 

~2llhll~-2<h, 7;* h) =211hll~ -211hll~ =0, 

implying J;h=h and, therefore, Ah=O. Thus NA.cNJ. 

R.N. Bhattacharya 

(2.21) 

(b) Since f7£A=N}.=N} (the second equality follows from part (a)), the 
assertion follows from Proposition 2.2. 

(c) Write A;,=A.2 (A.-A)- 1 -A.; then A;,=A.A(A.-1)- 1 (see, e.g., Dynkin 
(1965), p. 31). Therefore, ~A=~ A'"· On the other hand, since V=.-1.2 (..1.-l)- 1 is 
compact, the range of V-A. is closed (see Yosida (1965), Lemma, p. 283). D 

Remark 2.3.1. It was observed by Gordin and Lilsic (1978), p. 393, that for 
discrete parameter Markov processes which are ¢-mixing with </J(n) _., 0, the 
maximal correlation p(n) goes to zero exponentially fast and, therefore, the 
central limit theorem holds for all f ..L 1. This extends to the continuous param
eter case as follows: Write p(t)=sup{ll7;fll 2 :f..L1, 11!11 2 =1} 
=sup{<J;f,g):f,g..L1, 11!11 2 =1, llgll 2 =1}. Suppose p(t)-'>0; then p(t)-'>0 ex
ponentially fast (see Rosenblatt (1971), Chap. VII). Hence iff ..L 1 the function g 

00 

= - J 7; f d t satisfies 
0 

(i) llgll 2 ~ (I p(t)dt) 11!11 2 and 

s 

(ii) lims- 1 (T,g-g)=lims- 1 JJ;fdt=f, provided jEB0 , the center of the 
s"O s"O 0 

semigroup. 

Thus if IDA is dense in L2 (S, dm) (i.e., if {7;: t>O} is a strongly continuous 
semigroup on L2 (S, dm)), and p(t) _.,o, then A - 1 is bounded on 1.L, implying f11 A 

= 1.L. Since p(t) ~ 2¢(t) 112 (see Billingsley (1968), p. 170), the last assertion holds 
if p(t) is replaced by the ¢-mixing coefficient ¢(t). 

Our next task is to show that, at least under some reasonable additional 
conditions, the variance parameter (J 2 in (2. 7) is strictly positive unless f = 0 
(a.s. dm). The idea of the proof is taken from Baxter and Brosamler (1976), 
Theorem 4.16. The actual proof, however, is simpler and more widely applic
able. 

Proposition 2.4. In addition to the hypothesis in Theorem 2.1 assume that, for 
each pair (t, x)E(O, oo) x S, p(t, x, dy) and m(dy) are mutually absolutely con
tinuous. Then if jEfJA! A and f is bounded ( a.s. dm ), then the variance parameter (J 2 

in (2. 7) is strictly positive, unless f = 0 ( a.s. dm ). 

Proof Suppose jE~A' f bounded, and f=l=O. Let gElD A be such that Ag=f If 
possible suppose (J 2 = 0. Since differences of the martingale Y; = g(X1) 

t 

- J f(Xs) ds over successive nonoverlapping time intervals of equal length form 
0 

a stationary sequence of martingale differences one must have, choosing a 
separable version of the martingale if necessary, 
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t 

Thus, with probability one, J f(X 8)ds=g(X1)-g(X 0 ) for all t. Using the same 
0 

argument as given in the last paragraph of the proof of Theorem ( 4.16) in 
Baxter and .Brosamler (1976), one shows that g(X1)- g(X 0 ) = 0 (a.s. dQ). Choose 
and fix t > 0. Since g is not an a.s. constant, there exist numbers a< b and sets 
A, BE&B(S) such that 

(i) g<a on A, g>b on B, and 
(ii) m(A) > 0, m(B) > 0. 

Hence, writing p(t, x, y) for a strictly positive verston of the density of 
p(t, x, d y) with respect to m(d y), 

Q({g(X0)<a,g(X1)>b})= J J p(t,x,y)m(dx)m(dy)>O, (2.23) 
{g(y) >b) {g(x) <a) 

which contradicts g(X1)- g(X 0 ) = 0 a.s. D 

Remark 2.4.1. Under the hypothesis of Theorem 1 the variance parameter G 2 

can be shown to be strictly positive for all nonzero fErllA, provided A is 
selfadjoint. For in this case an immediate consequence of the spectral theorem 
is: <Ag, g) ~0 for all gEID A, with equality if and only if g belongs to the 
eigenspace of 0, i.e., g is a constant (a.s. dm). This extends Remark (4.29) in 
Baxter and Brosamler (1976). 

Remark 2.4.2. Let t ~ X 1 denote a deterministic periodic motion on the unit 
circle. Let m denote the unique invariant initial distribution. (In case the 
motion is uniform, m is the usual Haar 'measure.) This stationary Markov 

t 

process is ergodic. Iff is bounded and Jfdm=O, then Jf(X8)ds is bounded (in 
0 

t). Hence G 2 = 0. This counterexample is due to C.M. Newman. 

Let us now consider a progressively measurable Markov process { X1 : t;::; 0} 
with state space S, initial distribution f.l and transition probability p defined on 
some probability space (Q, d, Q~'). As f.1 varies let the probability space vary. In 
this notation, Q=Qm. The tail sigmafield is:!/= n {Xs:s;::;t}. The tail sig-

. t~O 

mafield is Q1l-trivial if Q~'(A) = 0 or 1 for all A E:T. The following proposition is 
essentially proved in Orey (1971), Proposition 4.3, pp. 19-20. 

Proposition 2.5. Let p be a transition probability admitting an invariant initial 
distribution m. Then the following statements are equivalent: 

(a) The tail sigmafield is Q1l-trivial for every initial distribution f.l· 
(b) ]]p(t, x, dy)-m(dy)llv ~o as t~ oo, for every xES. Here llvllv denotes the 

variation norm of a signed measure v. 

Note that if condition (b) (or (a)) of Proposition 2.5 holds, then for every m
integrable f one has 

Qll (lim T- 1 J f{Xs) ds= Jfdm) = 1, 
T-).oo 0 

(2.24) 
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whatever be the initial distribution Jl. For the event C within parentheses is the 

{ 
T+t } 

same as Co81 = lim r- 1 J f(XJds=Jfdm for every t>O. Hence the left 
T~oo t 

side of (2.24) equals Elld(X1) where d(x)=Q0JC) and Ell denotes expectation 
with respect to Jl. Now Em d(X1) = Qm( C)= 1, by the ergodic theorem. Therefore, 

IQ~'( C) -11 =IE~' d(X1)-Em d(X1)1 
=IJJ d(y)(p(t, x, dy)-m(dy))Jl(dx)l 

~ IIP(t, x, dy)-m(dy)llv~o as t~ oo. (2.25) 

Hence (2.24) holds. We can now prove the following useful result. 

Theorem 2.6. Let p be a transition probability admitting an invariant initial 
distribution m. Assume that l!p(t,x,dy)-m(dy)II~O as t--+oo,for all xES. Sup
pose fEr!lt A· Then for every Jl, the Qll-distributions of the random functions 

nt 

n- 112 J f(Xs) ds (t ~0) converge weakly to the Wiener measure with zero drift and 
0 

variance parameter a 2 given by (2. 7). 

Proof Fix a probability measure J.t on S. Write Zn for the random function 
nt 

n- 112 J f (X 8 ) d s ( t ~ 0). Let 1/1 be a real valued bounded continuous function on 
0 nt+h 

C[O, oo). For h>O let z,,h denote the random function n- 112 J f(X8)ds 
h 

(t~O). Then Ell 1/l(Z,.J=EPh 1/l(ZJ, where llh is the Q"'-distribution of X h. Note 
that IE"'" 1/J(Z,) -Em tfr(Zn)l ~III/I lloo J IIP(h, x, dy) -m(dy)llv Jl(dx)--+ 0 as h~ oo, uni
formly for all n. Choose h(n)--+ oo, h(n) = o(n - 112 ). Then by Theorem 1, 
Em 1/l(Z,)--+ J If dW.,.2 (where ~2 is the limiting Wiener measure), and one has 
limE~' f(Z,,h(nJ)--+ J 1/1 dW.,.2 as n~ oo. By the ergodic theorem and (2.24), 

{I h(n)+nt I } h(n) 
sup Zn,h<n>(t)-n- 112 ! f(X,)ds: t~O ~n- 112 ! lf(Xs)l ds--+0 

in QP-probability as n--+ oo. Finally, the change of time O,(t)=(t-h(n)/n) v 0, 
h(n)+nt 

applied to the process n- 112 J f(Xs) ds shows that Ell f(Z,) ~ J I/Jd~2 as 
0 

n--+ oo (see Billingsley (1968), pp. 144-145). 0 

Remark 2.6.1. Recall that a transition probability p is said to satisfy Doeblin's 
condition if there exist 

(i) a probability measure v on (S, PJ(S}}, 
(ii) t 0 > 0, and 

(iii) eE(O, 1), 

such that p(t0 , x, B)~ 1-e whenever v(B) ~ e, for all x. It is well known (see 
Doob (1953), Theorem 2.1, p. 256) that under this condition there exists a 
unique invariant probability measure m and that llp(t, x, dy)-m(dy)llv~o ex
ponentially fast as t--+ oo, uniformly for xES. In particular, the ¢-mixing 
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coefficient <f>(t) goes to zero exponentially fast as t-+ oo. Thus by Theorem 2.6 
and Remark 2.3.1 it follows that for all f _l 1, the conclusion of Theorem 2.6 
holds, provided {7;: t>O} is strongly continuous on L2 (S, dm). 

Although the requirement of strong continuity on L2 (S, dm) (i.e., ID 0 

=L2 (S, dm)) is quite mild, a functional CLT holds even without this restriction 
for all f _l 1 in the present case (see Billingsley (1968), Theorem 20.1, p. 174). 

Remark 2.6.2. We shall say that a transition probability function p has the m
recurrence property for some probability measure m if there exists a t 0 >0 such 
that, for each XES, the Markov chain Xo=X, xto' ... ,Xnto' ... ,having tran
sition probability p(t0 ) has the property: Prob(X"10 EB for some n)=1 for all 
BE88(S) such that m(B)>O. It follows from the Corollary on p. 25 in Orey 
(1971) that if p admits an invariant probability measure m with respect to 
which it is m-recurrent, then ]]p(t, x, dy)-m(dy)llv-+0 as t-+oo. For ergodic 
diffusions on Rk this was checked in Bhattacharya and Ramasubramanian 
(1982), Theorem 2.7 and Lemma 2.8. 

The next result is a Strassen-type law of the iterated logarithm, which 
generalizes Theorem 7.1 of Baxter and Brosamler (1976). 

Theorem 2.7. (a) In addition to the hypothesis in Theorem 2.1 assume that 
J lfi2+J dm< oo for some 6>0. Then with Qm-probability one, the sequence of 
random functions 

{(2nloglogn)- 112 If(Xs)ds: O~t;£1}, n=2,3, ... , 

is relatively compact in C [0, 1 J and the set of limit points is the set of all 
absolutely continuous functions e on [0, 1] satisfying 

1 

J 8'(t) 2 dt~.i;rr 2 , 8(0)=0. (2.26) 
0 

(b) If. in addition to the above hypothesis, one has ]]p(t, s, dy)-m(dy)llv-+0 as 
t-+ oo, for all x, then the above conclusion holds a.s. Qll, for every initial 
distribution p. 

Proof (a) Applying Corollary 4.2 in Hall and Heyde (1980), p. 118, to the se
quence of differences Ling of the martingale Y,(g) defined by relation (2.10), and 
using the estimates (2.13), (2.14), one gets the desired result. Note that for the 
case rr 2 =0 the result is trivially true, again in view of (2.14) and the fact that 
n 

J f(Xs) ds= g(X")- g(X 0) for all n (a.s. dQm). 
0 

(b) Since the event, whose probability is to be shown to equal one, belongs 
to the shift invariant sigmafiled, the relations (2.25) hold for this event (in palce 
of C). 0 

There are important classes of Markov processes for which the norm 
convergence of p(t, x, dy) to m(dy) is either false or has not been proven, 
although the existence of an invariant probability measure and ergodicity can 
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often be checked (diffusions with jumps is one example). On the other hand, 
for physical applications it is often unrealistic to assume that the Markov 
process starts off in equilibrium. The following result salvages the situation 
somewhat. The notation is the same as introduced before the statement of 
Proposition 2.5. 

Theorem 2.8. Let p(t, x, dy) admit an invariant probability measure m, and let 
{X1 : t~O} be ergodic under Qm. (a) Fix fE!!ItA. Then the FCLT and the FLIL 
hold for f under Qbx for almost all x outside an m-null set. (b) If fl is absolutely 
continuous with respect tom, then the FCLT and the FLIL hold for all fEf!ltA 
under Qw 

Proof (a) Let Ag =f for some gEID A. Then Lln(g) (see the proof of Theorem 2.1) 
is a uniformly bounded sequence of martingale differences. Also, writing </J(x) 
=Ex L1 ~(g), one has 

(2.27) 

{ 
N-1 } 

where C= w: N- 1 n~o </J(Xn)~Em(Ll~(g))= -2<f, g) . Hence Q,dC)=1 for all 

x outside an m-null set M. For x not in M one may now apply Theorem 4.1 
(for FCLT) and Corollary 4.1 (for FLIL) of Hall and Heyde (1980). 

(b) Qm (C)= 1 implies Ql' (C)= 1. Hence proceed as in (a). 0 

3. Miscellaneous Examples 

Example 1. (Diffusions on compact manifolds.) For diffusions generated by 
smooth strictly elliptic operators L=tl:: aij(x) 82 /8xi axj+ I bi(x) a;axi (in local 
coordinates) on a compact connected C00-manifold, the transition probability 
density p(t, x, y) (with respect to the volume element (det a- 112 (x)) dx) is 
smooth and positive for t > 0. Therefore, Doeblin's condition holds and Theo
rems 2.6 and 2.7(b) apply. Also :!It ,4= 1.L, since B0 is easily seen to contain 
C00 (M), which is dense in L2 (M, dm). The same results apply to diffusions on a 
compact connected manifold with boundary which are generated by smooth 
strictly elliptic operators subject to Neumann type boundary conditions. See 
Mckean (1969), Chap. 4, for basic properties. 

Example 2. (Feller's one dimensional diffusions.) Here S=(- oo, oo) or 
(- oo, r 1], or [r 0 , oo ), or [r 0 , r1] (r 0 < r1), a finite measure m is given on S such 
that every nonempty open subinterval of S has positive ifi-measure. The opera-

tor A is given by d~ ddx with boundary condition (for g) (-1)ig'(r;)-rrJ(r;) 

=0 (i=O, 1) applied to the boundary ri (when S has such a boundary). Here f 
d d 

= dm dx g, and rri ~ 0. These processes have continuous trajectories. Details 

may be found in Ito and Mckean (1965) or Mandl (1968). Since such diffusions 
are point recurrent (i.e., the process starting from some point reaches every 
other point with probability one), and since the expected time to reach any 
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given point is finite (this is known as the property of positive recurrence), if 
follows from standard Markov process theory that there ex:ists a unique in
variant probability measure m. Also since point recurrence obviously implies 
m-recurrence, 1\p(t,x,dy)-m(dy)llv~o as t~oo (see Remark 2.6.2). Here lB0 is 
the set of all real continuous functions on S, having finite limits at infinite end 
points. Hence ~A= 1 j_ (Proposition 2.3(b)) and Theorems 2.6 and 2.7(b) apply. 
One may actually compute a£ A· Let us consider the case S = (- oo, oo ). By 
solving the second order ordinary differential equation A g = f, one can show 

X 

thatfEBfA iff x~J J f(z)m(dz)dy is in L2 • Also it is not difficult to check 
that 0 (- oo,y] 

This last expression makes sense iff 

One needs to assume that 

(i) fEL2,f 1_1, and 
X 

(ii)x~J J f(z)m(dz)dyEL2 , 
0 (-oo,y] 

(3.2) 

in order to apply Theorem 2.6 (or Theorem 2.1). On the other hand, the 
t 

method of renewal (i.e., dividing up the integral J f(Xs) ds into contributions 
0 

over successive cycles - each cycle comprising a return to the starting point a 

subsequent to the first visit to another point b) yields a somewhat better result: 
the conclusions of Theorem 2.6 and Theorem 2.7(b) hold for all f such that Jf dm 
=0 and (3.2) is finite (see Theorem 9, p. 94; Theorem 10, p. 96 in Mandl (1968)). 
To illustrate this point take m(dz)=(l+z4)- 1 dz, f(z)=lzi 0 -Jizi6 m(dz)/m(S) 
for some t5E(2, 5/2). Then J lf(z)l 3' 2 m(dz)= oo, but (3.2) is finite. 

Finally note that (if cr;=O (i=O, 1), in presence of boundaries) A is self
adjoint, so that cr2 >0 for fEflll A• f =1=0. Verifiable criteria for compactness of the 
resolvent operator (A.-A)- 1 is given in Ito and McKean (1965), p. 154. For 
maximal correlation to go to zero one only requires that 0 be an isolated point 
of the spectrum of A. 
Example 3. (Diffusions on R\ k~2.) Let L={~:>ii(x)8 2j8x;8xi+Lb;(x)aj8x; 
be an elliptic operator, with ((a;i(x))) positive definite for each x, the functions 
aii(x) being continuous and b;(x) being Borel measurable and bounded on 
compacts. Sufficient conditions (as well as some necessary ones) for the dif
fusion generated by L to admit an invariant probability measure m are given 
in terms of the coefficients aii• b;, in Khas'minskii (1960), and Bhattacharya 
(1978). For k~2 diffusions are never point recurrent. It is proved in Bhat
tacharya and Ramasubramanian (1982), however, that in case an invariant 
probability measure m (necessarily unique) exists, the diffusion is m-recurrent, 



184

198 R.N. Bhattacharya 

so that llp(t,x,dy)-m(dy)llv---*0 as t---*00. It is also not difficult to show that 
IDA contains all coo functions with compact support, so that ID .A=L2 (Rk, dm). 
Hence ~.A is dense in 1.L. But, in general, ~.A is not closed. Hence one needs to 
find verifiable conditions on f guaranteeing that /E~ .A· These may be obtained 
by the methods used in [ 4]. From the point of view of the renewal method, 
conditions analogous to (3.2) are given in [ 4] (Theorem 2.9, relations (2.31), 
(2.32)). Again these conditions, in general, do not require that jEL2 (Rk, dm). 
The positivity of the variance for all nonzero jE~ .A may be proved by deriving 
the following alternate expression for the variance. Let A g = f Then 

(3.3) 

To prove this assume that aii(x) and b;(x) are Lipschitzian on compacts. Then 
by Ito's lemma (see McKean (1969), pp. 43-45) one has 

Em (g(X1)-g(X0)- k(xs)dsy 

t ag og ag ag 
=EmfL:aii(Xs)-;;- (Xs) ;;----(X,) ds=t JL:: a;/x)-;;- ;;---- (x)m(dx). (3.4) 

0 uX; uxj uX; uxj 

Example 4. (Diffusions on the the torus.) Let L be as in Example 3, but assume 
that the coefficients are periodic with period 1 in each coordinate. Let { X 1 

= (Xl 1), ... , Xlk))} be the corresponding diffusion starting at some x. Define r;<i) 
=X; 11 tmod1), 1~i~k. Then{¥;: t~O} is a diffusion on the torus Tk (which 
may be identified with [0, 1)k as a set). Let m be the invariant probability 
measure for this diffusion. One may write b(X1) = /3(¥;), a112 (X1) = y(¥;) for some 

nt 

/3, y. Then Zn(t)=n- 112 J(b(X5)- J bdm)ds is asymptotically (as n--*oo) a 
0 [0. 1)k 

Wiener process with zero drift and dispersion matrix c:5 = (( c:5;)) given by 

(3.5) 

where gi is a periodic solution of 

(3.6) 

In a beautiful work using stochastic integrals Bensoussan, Lions and Papani
colau (1978), Chap. 3, have shown that n- 112 (Xn 1-bnt) converges in distribu
tion to the Wiener process with zero drift and dispersion matrix D given by 

D= J (ddg -1) a(x) (ddg -1)' m(dx) 
[0, l)k X X 

=ZHc:5-B, (3.7) 
where 

a= J a(x) m(dx), 
[0, 1)k 

(dg (dg )') B= J -d a(x)+a(x) -d m(dx). 
[0, 1)" X X 

(3.8) 
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In the stochastic integral representation, 

nt 

Un(t) = n- 1/ 2 J a1i 2 (X.) dB(s), 
0 

199 

(3.9) 

where B(s) is standard Brownian motion. Although Z" and Un are asymptoti
cally Gaussian with dispersions b and a, respectively, they are not asymptoti
cally independent. In fact, for k = 1 one easily checks that 

2 1 

li=- J cf;(x)dx, 
(I( 0 

2 (1 (1 )- 1) b=a ~cf;(x)dx- ~cf;(x)- 1 dx , 

4(1 (1 )-1) 8=a ~ cf;(x) dx- ~ cf;(x)- 1 dx , 

(3.10) 

where cf;(x)= exp {2j a(y)- 1 b(y) dy}, (I(= J 2a(x)- 1 cf;(x) dx. Since the arithmatic 
1 0 0 1 -1 

mean ! cf;(x) dx is greater than the harmonic mean (! cjJ(x)- 1 dx) unless 

¢(x)=1, i.e., b=O (in which case b=8=0), in presence of a nonconstant drift 
one has D > ii +b. Also, no matter what the coefficients may be, D < 4ii. 

Example 5. (Diffusions with jumps.) Diffusions with jumps on S=Rk are gov
erned by certain linear integra-differential operators, one component of which is 
an elliptic operator and the other an integral operator governing (pure) jumps. 
They may be constructed by an extension of Ito's stochastic integration theory 
(see, e.g., Gihman and Skorohod (1968), Part II, Chaps. 1, 2). As is done in the 
case of multidimensional diffusions (e.g., in [3, 4, 16]), one may obtain upper 
and lower bounds to solutions of certain integra-differential equations to 
derive criteria for tightness and, thereby, of existence of invariant probability 
measures. For example, specializing Theorem 3, p. 333 of [11] to time inde
pendent coefficients and requiring that the elliptic operator be nondegenerate, 
in addition to the condition for the boundedness of the second moment 
already imposed, one can prove that the corresponding Markov process admits 
a unique invariant probability measure m, and that with this as the initial 
distribution, the process is ergodic. Theorem 2.1 may then be applied to 
functions f which are shown to belong to fll .A by a method analogous to that 
described in Example 3 and in [ 4]. The details will appear elsewhere. To 
obtain a central limit theorem when the process starts at an arbitrary initial 
distribution, one needs to prove the strong Feller property: x--+ p(t, x, B) is 
continuous for all Borel sets B and t > 0. This is, in general, a difficult 
analytical problem. 

We conclude with the remark that those central limit theorems which use 
mixing type conditions are generally not applicable to diffusions (or other 
Markov processes) on noncompact spaces. Even in the cases of one dimen
sional diffusions and birth and death processes it is not difficult to prove, via 
the so-called inverse spectral problem (see Dym and McKean (1976), Chaps. 
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5, 6), the existence of ergodic Markov processes having selfadjoint generators A 
with discrete spectra clustering near zero in such a manner that Rosenblatt's 
coefficient of strong mixing goes to zero more slowly than any (negative) 
power oft, as t __, oo. 
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Note Added in Proof. A better result than Proposition 2.3(c) is the following. Proposition 2.3(c'): 
Suppose 0 is a simple eigenvalue of A. Then 91!A={1}j_ if and only if 0 is an isolated point of the 
spectrum of A. To prove this note that if the simple eigenvalue 0 is an isolated point of the 

00 

spectrum of A then (A-A)- 1 has a Laurent series expansion A- 1 B1 +I A" A. in {O<IAI<A0 } for 
n=O 

some positive A0 ; here B1 is the projection onto the null space of A (i.e., the space of constants), 
and A. are bounded operators which annihilate constants and satisfy An= ( -1)" A~+ 1 . It follows 

00 

that on {l}j_ one has (A-A)- 1 = I A" A., convergent for IAI <x0 . In particular, -A- 1 =A0 is 
n=O 

bounded on {l}j_. Conversely, suppose !JI!A={l}j_. Then A- 1 is bounded on {l}j_; hence 0 is in the 
resolvent set of A which is the restriction of A to { 1 }j_. Since the resolvent set is open, there exists 
Ao > 0 such that (A- A) - 1 is bounded for IAI < A0 . Since (A- A) - 1 is bounded on the span of { 1} for 
A =I= 0, it follows that (A- A) - 1 is bounded for 0 < IAI < A0 . 
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7.3 “A central limit theorem for diffusions with periodic coefficients”

A central limit theorem for diffusions with periodic coefficients. The Annals of Probability.
13 (1985), 385–396.

c© 1985 Institute of Mathematical Statistics. Reprinted with permission.
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A CENTRAL LIMIT THEOREM FOR DIFFUSIONS WITH 
PERIODIC COEFFICIENTS1 

BY RABI BHATTACHARYA 

Indiana University 

It is proved that if X, is a diffusion generated by the operator L = 
lJ2 L: aii(x)82/8x;(Jxi + L: uob;(x)ajax, having periodic coefficients, then 
J..-1;2(X~,- J..u0 5t), t;:: 0, converges in distribution to a Brownian motion as 
A-> oo. Here 5 is the mean of b(x) = (b,(x), · · ·, bk(x)) with respect to the 
invariant distribution for the diffusion induced on the torus Tk = [0, 1)k. The 
dispersion matrix of the limiting Brownian motion is also computed. In case 
ii = 0 this result was obtained by Bensoussan, Lions and Papanicolaou (1978). 
(See Theorem 4.3, page 401, as well as the author's remarks on page 529.) 
The case ii ~ 0 is of interest in understanding how solute dispersion in a 
porous medium behaves as the liquid velocity increases in magnitude. 

1. The limit theorem. Let L = 1/2 Lti=1 au(x)iPjaxJJxi + Lf=l uoMx)ajaxi 
be a differential operator (k ~ 1), whose coefficients satisfy the following 
assumptions. 

Assumptions. (1) For each x the (k X k) matrix ((aij(x))) is symmetric and 
positive definite; (2) the functions aii(x), Mx) are real valued and periodic, i.e., 
au(x + v) = au(x), bi(x + v) = bi(x) for all x and all vectors v with integers as 
coordinates (1 =:;; i, j =:;; k); (3) the functions aii(x) have bounded second ordf:r 
derivatives, and b;(x) have continuous first order derivatives; (4) u0 is a real 
parameter. 

Let (Q, .W, P"') be a probability space on which are defined (1) a random 
vector Xo with values in JR2k and distribution 1r ', and (2) a standard k-dimensional 
Brownian motion {B1 = (B~l)' · · ·, B)kl): t ~ Oj which is independent of X 0• In 
case 1r'({xj) = 1, P"' will also be denoted by px_ E"' denotes expectation under 
P"'. 

Let {Xt: t ~ Oj be the solution (continuous, nonanticipative) to Ito's stochastic 
integral equation 

(1.1) Xt = Xo + lt Uob(X.) ds + lt a(X.) dB., (X1 = (X)l), · · ·, X)k>)), 

where a(x) is the positive square root of ((a;j(x))). The P"'-distribution of 
{Xt:t ~ Oj is a probability measure on (the Borel sigmafield of) the space 
C([O, · · · ): !R2k) of continuous functions on [0, oo) into IR2\ endowed with 
the topology of uniform convergence on compact subsets of [0, oo). Note that 

Received November 1983; revised March 1984. 
1 Research partially supported by NSF Grant MCS 82-43649. 
AMS 1980 subject classifications. Primary 60J60; secondary 60F17. 
Key words and phrases. Markov process on the torus, generator, dispersion. 
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{Xt: t =::: 0} is a Markov process. Let p(t, x, y) be the transition probability density 
(with respect to Lebesgue measure on ~k) of this Markov process. Because of 
periodicity of the coefficients one has 

(1.2) p(t; x, y) = p(t; x + v, y + v) 

for every vector v with integral coordinates. 
We shall write 

(1.3) x = (x(l>(mod 1), · · ·, x<k>(mod 1)) (x = (x(l>, ... , x<k>) E !R2k), 

(1.4) Xt = Xt(mod 1) = (XP>(mod 1), · · · , X1k>(mod 1)) 

In view of (1.2), Xt is a Markov process on the state space Tk = [0, 1)k having 
the transition probability density function (with respect to Lebesgue measure on 
[0, 1)k) 

(1.5) p(t; x, y) = L•ezk p(t; x, y + v), (x, y E [0, 1)k). 

Assumptions (1)-(3) imply, by the maximum principle (Friedman, 1975, 
Chapter 6), 

(1.6) infx,yE[0,1]kp(t; X, y) > 0, (t > 0). 

Therefore, 

(1.7) infx,yE[0,1)kp(t; X, y) > 0, (t > 0). 

This implies Doblin's condition and irreducibility (Doob, 1953, Theorem 2.1, 
page 256; Bensoussan, Lions and Papanicolaou, 1978, Theorem 3.2, page 373), 
and the existence of a probability density 1r(x) on [0, 1)k and positive constants 
c, {j such that 

(1.8) l p(t; x, y)1r(x) dx = 1r(y) a.e. (dy) on [0, 1)k 
[0,1)k 

and 

(1.9) SUPxe[0,1)k l I p(t; x, y) - 1r(y) I dy =5 ce-flt (t > 0) 
[0,1)k 

The following proposition is easy to prove. 

PROPOSITION 1. The px_distribution of {Xt - x: t =::: 0} is the same as the 
P'"-distribution of {Xt- x: t =::: 0}. 

Next consider the discrete parameter stochastic process 

(1.10) (m = 1, 2, . ·. ). 

Denote by fft the sigmafield generated by {X.: 0 =::; s =::; t}. By the Markov 
property and Proposition 1, the conditional distribution of the stochastic process 
{Xm+n-1- Xn-1: m = 1, 2, ···I given ffn-1 is the same as the P'"-distribution of 
{Xm - x: m = 1, 2, · · ·} with X = Xn-1. But fXm: m = 0, 1, 2, · · ·} is a stationary 
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sequence under P". Hence the (unconditional) P"-distribution of {Xm+n-1- Xn-1: 
m = 1, 2, · · ·l equals the P"-distribution of {Xm- X0: m = 1, 2, ···).In particular, 
the P"-distribution of I Ym+n-1 = (Xm+n-1- Xn-1)- (Xm-l+n-1- Xn-1): m = 1, 
2, · · ·l is the same as the P"-distribution of IYm = (Xm- X 0) - (Xm-l- X 0): 
m = 1, 2, · · ·). This proves that l Y m: m = 1, 2, · · ·l is a stationary sequence 
under P". 

Now let B be a Borel subset of (~ki'4+, where a:;+= 11, 2, · · ·l. Then 

(1.11) 

P"({Ym+n+i:j = 1, 2, ···I E B)/Yu. 

= E"(Pxm+n({Yi:j = 1, 2, .. ·I E B)/Yu.) 

= E"(f(Xm+n)/!Tm) = E"(f(Xm+n)/Xm), 

wheref(x) = px({Yi:j = 1, 2, · · ·l E B). By (1.8), (1.9) 

I E(f(Xm+n)/Xm) - E"f(Xm+n) I 

(1.12) = I r f(y)p(n; Xm, y) dy- r k f(y)1r(y) dy I 
J[0,1)k J[0,1) 

::S C llfll,.[i3n ::S ce-!3n. 

Combining (1.11), (1.12) and recalling the definition of </>-mixing (Billingsley, 
1968, page 166) one arrives at the following result. 

PROPOSITION 2. Under P" the sequence I Y m: m = 1, 2, · · ·l defined by (1.10) 
is stationary and </>-mixing, with a </>-mixing coefficient which decays to zero 
exponentially fast. 

Consider the real Hilbert space £2([0, 1)\ 1r) with inner product and norm 

(1.13) (f,g) = ( kf(y)g(y)1r(y) dy, IIIII = ((f,f)) 112• 
J[0,1) 

Let ITt: t > 0 I be the strongly continuous semigroup of contractions on this space 
defined by 

(1.14) (Ttf)(x) = ( p(t; x, y,)f(y) dy, (x E [0, 1)k). 
J[0,1)k 

Let A be the infinitesimal generator of this semigroup on the domain g-.4. Let 
.9f.4 be the range of A. Then .9f.4 = 1·L, the set of all functions fin £2([0, 1)R, 1r) 
such that (f, 1) = 0, and given any f E 1.L there exists a unique element gin 
g-.4 n 1.L such that (Bhattacharya, 1982, Theorem 2.1 and Remark 2.3.1) 

(1.15) Ag = f, g(x) = -loo (Ttf)(x) dt. 

We will denote this element by A~lf: 
A -1 

(1.16) g = A1J.f. 
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Now write 

(1.17) 
A 1 -

gi = A~.1(bi- bi), (1 :s i :s k). 

Under Assumptions (1)-(4), gi is (equivalent to) a twice continuously differenti
able function, when extended to JR{k periodically, and 1r(y) is a continuously 
differentiable periodic function (Bensoussan et al., 1978, 386-401). 

The main result of this article may be stated as follows. 

THEOREM 3. Under Assumptions (1)-(4), no matter what the initial distri
bution 1r' is, the stochastic process 

(1.18) 

converges weakly, as ;\ ~ oo, to a Brownian motion with zero drift and dispersion 
matrix D = ( (Dij)) given by 

(1.19) 

PROOF. First let the initial distributions be 1r(x) dx. Write 

(1.20) W = S[nt] + (t- ([nt]/n)) Yrnt]+l 
t,n .Jn .Jn ' 

where [nt] is the integer part of nt. Then, in view of Proposition 2, {Wt,n: t ~ 01 
converges in distribution to a Brownian motion with zero drift, as n ~ oo. (See 
Billingsley, 1968, Theorem 20.1, page 174, where the result is stated for 
W£,n = SrntJi.Jn. It is easy to check that maxi I Wt,n- W£,n I :0 :s t :s Tl ~ 0 in 
probability for every T > 0.) 

Now, fix a T > 0 arbitrarily and note that 

maXo:st<T I Wt,n - Zt,n I 

(1.21) I Xo I + I Uobl 1 , -
:s .Jn + .Jn maxl:sm:s[nT]maxo:st':sll Xm+t' - Xm- t Uob I· 

The sequence maxi I Xm+t' - Xm - t'uobl: 0 :S t' :S 11 is stationary. Also, the 
exponential martingale inequality (Friedman, 1975, page 93) may be used to 
prove that the common distribution of this sequence has finite moments of all 
orders. Chebyshev's inequality may be used now to show that the last summand 
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on the right side of (1.21) converges to zero in probability, as n ~ oo. Hence 
{Zt,n: t :::: Ol converges in distribution to a Brownian motion. 

Now let the initial distribution be 1r', different from 1r. In view of (1.12) one 
has 

limm--.ooSUPB I P,..'({Ym+j:j = 1, 2, · · ·l E B) 
(1.22) 

- P,..(IYm+j:j = 1, 2, · • ·l E B) I = 0, 

where the supremum is taken over all Borel subsets B of (~k)z:+. 
Define 

Sm,n = Y m+l + · · · + Y m+n - nuoli, 
W = Sm,[nt] + (t- ([nt]/n))Ym+[nt]+l 

t,m,n .Jn .Jn • 
(1.23) 

It follows from (1.22) that the (variation) norm distance between the measures 
induced by Wt,n under P,.. and Wt,m,n under P,..' (on C([O, oo): ~k)) goes to zero as 
m ~ oo, uniformly for all n. Also for every positive integer m and every T > 0, 
whatever the initial distribution 1r ', 

(1.24) 

maXostsT I Wt,m,n - Wt,n I 
1 

:s .Jn maxtsrs[nTJI Y, + Yr+t + · · · + Yr+m-tl 

m I b I Uo o . b b'I' + ~ m pro a 1 1ty as n ~ oo, 
.Jn 

by the same type of moment estimates as used for (1.21). If 1/t is a real bounded 
continuous function on C([O, oo): ~k), then by (1.24), 

(1.25) 

lim SUPn--.ool E,..'l/t(Wt,n) - E,..l/t(Wt,n) I 

:S lim SUPn--.oo I E,..' 1/t( Wt,n) - E,..' 1/t( Wt,m,n) I 

+ lim SUPn--.oo I E,..' 1/t( Wt,m,n) - E,..l/t( Wt,n) I 

= lim SUPn--.oo I E,..' 1/t( Wt,m,n) - E"l/t( Wt,n) 1. 
But the last expression in (1.25) goes to zero as m ~ oo. The proof of convergence 
to a Brownian motion is completed by observing that max{ I Zt,x - Zt,[xJI: 
0 :s t :S T l goes to zero for every sample point, as A ~ oo. 

It remains to compute Dii· Let us first show that {I Z1,x 12 : A:::: 1l is uniformly 
integrable with respect to P,... One has 

E,..l z~:U 4 = A -2E,..( uo lx MX.) ds + lx L~=l (J;,(X.) dm'> + xg> - UoAbJ 

(1.26) :s A - 233{ E,..(xg>)4 + u6E,..( lx (b;(X.) - b) ds r 
+ E,..(l"h L~=l q;,(X.) dB~r))4}. 
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It is known that (McKean, 1969, page 40) 

(1.27) g·-(lx L~=l u;,(X.) dBl'J :S c1X 2 

for some c1 which does not depend on X. Also, writing f(x) = b;(x)- b;, one has 

(1.28) 

The last inequality follows from (1.12) (with n replaced by 8): 

IIT.{IIoo = SUPx IT.f(x) I :S C llfllooe-~•, 

(1.29) I (f, 1'.g) I = I (f, 1'.(g - E"g) >I s II f II IIT.(g - E" g) II 

:S ell f II · 211 g llooe-~•, 

applied first tog = [(1'.3-s/f(T.c•a))) and 8 = 82 - 81> and then tog = f and 
8 = 84 - sa. A straightforward evaluation of the last multiple integral in (1.28) 
yields 

(1.30) 

where c2 does not depend on X. Using (1.27), (1.30) in (1.26) one gets the desired 
uniform integrability. It now follows that 

(1.31) 

D;j = limx--B"Zi~~Z~~~ 

= limx-- ~ [ u~"( lx (b;(X.) - b;) d8 ·lx (bj(X.) - ~) d8) 

+ UoE"(lx (b;(X.) - b;) ds·lx L~=l CTjr(X.) dB~r)) 

+ UoE"(lx (bj(X.) - ~) d8·lx L~=l u;r(X.) dB~')) 

+ E"(lx L~=l u;,(X.) dBYl·lx L~=l CTjr(X.) dm'l)] 
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By Theorem 2.1 and Remark 2.3.1 in Bhattacharya (1982) and relation (1.30) 
one has 

(1.32) 
lim,____,~~ E'{l" (b;(X.) - b) ds ·l" (bj(X.) - ~) ds) 

= u~((-b;- li;, gi) + (-bi- ~. g;)) = -u~((b;, g;) + (bh g;)). 

Also, from a standard result in stochastic integrals (Friedman, 1975, Chapter 4), 

(1.33) 
E'{l" L~=l u;,(X.) dB<;> ·l" L~=l O"jr(X.) dB}rl) 

= l" E"(L~=l u;r(X.)<Tjr(X.)) ds = l" ii;j ds = A.iiij· 

It remains to estimate the second and third terms in (1.31). For this estimation 
we make use of the definition of stochastic integrals as limits (at least in L2 w.r.t. 
the product measure P7( X ds on Q X [0, A.]). One has 

(1.34) 
L~=I E'{l" (b;(X.) - li;) ds ·l" ujr(X.) dBi'>) 

= L~=l E''{l" (<MXt) - b;) lt O"jr(X.) dB~'>) dt). 

using the orthogonality of b;(Xt) - li; and the stochastic integral over [t, A.]. Fix 
e > 0, sufficiently small. Then 

E"(l" ( (b;(Xt) - bt)(l~.)Vo Ujr(X.) dB}'>) dt) r 
:5 E"( 2 sup{ I b;(x) I: X E JR(kl 0 (l" ll~e)VO O"jr(X.) dB~r) I dt) r 

(1.35) 
:5 C3E"( (" I J.t O"jr(X.) dB~r) I dt)2 

Jo (t-e)VO 

:5 caA.E"(l" (f.t O"jr(X.) dBi'>)2 
dt) 

0 (t-e)VO 

for appropriate positive constants c2 , c4• It is, therefore, enough to evaluate the 
last expression in (1.34) with t replaced byt-e. Now, writing Exf(Xt) = Td(x), 
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one has 

(1.36) 

R. BHATTACHARYA 

= L:=l limh!oE·-(lA (b;(Xt) - b;){L~,:-8)/h] Ujr(Xmh) 

(B~~+llh - B~}.)} dt) 

= L:=l limh!oE•{lA {L~,:-8)/h] Tt-(m+l)h(b;- i);)(X(m+l)h) 

• Ujr(Xmh)(B~~+l)h- B~}.)} dt). 

By Ito's lemma (Friedman, 1975, page 90) one has 

(1.37) l (m+l)h 
+ LTt-(m+llh(b; - b;)(X.) ds 

mh 

l (m+l)h 
+ grad Tt-(m+l)h(b; - b;)(X.)u(X.) dB •• 

mh 

Now (t', x)--'» LTt'(b;- b;)(x) is bounded on [e/2, A] x ~k. since this function is 
continuous on [e/2, A] X ~k (Friedman, 1975, Chapter 6) and periodic in x. 
Hence, for h < e/2, the first integral in (1.37) is bounded above by c5 h. Also, 

is differentiable with a derivative which is continuous on [e/2, A] x ~k. Since 
this derivative is also periodic, the second integrand in (1.37) differs from 

by a quantity smaller than csh. Therefore, the second integral differs from 

grad Tt-(m+l)h(b; - li;)(Xmh)u(Xmh)(B(m+l)h - Bmh) 

by a quantity whose square has expectation less than c7 h2• In view of this it is 
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easy to check that (1.36) equals 

(1.38) 

Since 

limhlo L~=1 lA E .. { L!i:;o>thJ [ L~·-1 (a~,. Tt-<m+~>h(b;- O;))(Xmh) 

X ( L~-1 u,.,...(Xmh)(Bl~~1lh - B~)) }"ir(Xmh)(Bl~+llh - B~)} dt 

= limhlo L~1 lA E""{ L~.:;;>thJ [ L~·-1 (a~,. T Hm+1lh(b; - 0;) )<Xmh) 

X u,.,(Xmh)ui,(Xmh)(Bl~+1lh- B~)2]} dt 

= lA lt-• ( L~·-1 E .. { (a~,. T t-s(b; - 5) )<X.)air'(X,)}) ds dt 

= (A (t-• [L~-1 ( (~ Tt-s(b; - O;))(x)ai,.(x)r(x) dx] ds dt 
Jo Jo J[0,1l• uX,• 

= - (A rt-. [L~·-1 f Tt-.(b; - 5;)(x) ~ (aj,·(x)r(x)) dx] ds dt 
Jo Jo .Jro.1l" uX,• 

lt-• Tt-8 (b; - b;)(x) ds 

(1.39) = It T.(b; - b;)(x) ds 

= It t.(b; - b;)(x) ds -+ -g;(x) - l' t.(b; - b;)(x) ds, 

uniformly in x E [0, 1)k as t-+ oo, (1.38), (1.35), (1.34) yield 

lim)\-- ~ }:~=1 E·'{l)\ (b;(X.) - b;) ds ·l)\ ui,(X.) dB!'>) 
(1.40) 

= l g;(x)(}:~'=l !I a (ajr•(x)7r(x))) dx. 
[O,l)k uX,• 

Using (1.32), (1.33), and (1.40) in (1.31) one obtains the desired result (1.19). 
Q.E.D. 

Extensions. I. The functional central limit theorem proved above holds if 
Assumption (3) is replaced by (3') :aii(x) are continuous and b;(x) are Borel 
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measurable and bounded. The proof of convergence to a Brownian motion may 
be carried out as above. An alternative proof in this case may also be given by 
the renewal method (see Bhattacharya and Ramasubramanian, 1982). In com
puting Dii all the steps can be justified, except (1.40). This is the main reason 
why the smoothness assumption (3) was made. 

II. Let B. be an open ball of radius r with center at the (lattice) point v, where 
0 < r < V2. Let B = UB., the union being over all v in ~k. Consider the diffusion 
on Jmk\B whose transition probability density function p(t; x, y) satisfies the 
equation apjat = Lp in the interior and a Neumann boundary condition on aB 
(e.g., vanishing of the conormal derivative LZi=I (x; - v;)a;i(x)apjaxi on aB). If 
IX1: t 2:: 0} is this diffusion, then IX1: t 2:: 0} is a diffusion on Tk\B, where i3 is 
the image of B under the map x - x. The diffusion on the torus is ergodic and 
its transition probability density p(t; x, y) is bounded away from zero (for each 
t > 0). Therefore, Propositions 1, 2 carry over to this case, and as a consequence 
so does the first part of the proof of Theorem 3. Hence {A. -l/2(X;>..t - AUotb): 
t 2:: 0} converges to a Brownian motion with zero drift, as A. - oo. Here 
b; = f Tk\J'J b;(x)1r(x)dx, 1r(x) dx being the invariant probability for p. 

2. Concluding remarks. Suppose the diffusion matrix is al, where a 
is a positive constant and I is the k X k identity matrix. Suppose also that 
div b(x) = 0 for all x. In this case 1r(x) = 1, i.e., the invariant distribution is the 
uniform distribution on the torus. In various examples of this type numerical 
computation of the diagonal elements D;; of the dispersion matrix D, using (1.19), 
shows that Du increase with Uo; at first approximately quadratically, and then at 
higher values possibly at a linear rate. These computations as well as their 
significance in modelling solute transport in porous media will appear in Bhat
tacharya and Gupta (1984). However, D can be explicitly computed for the case 
k = 1 for general periodic functions b(x) and a(x) > 0; this computation shows 
that D goes to zero as Uo - oo. This is not really a great surprise. For, in the one 
dimensional case, as Uo increases X1 winds around the same path (the circle) 
faster; the fluctuations become less important and X~o.- UoAb is close to zero for 
large X. In two or higher dimensions this does not happen unless the coordinates 
are separated. Detailed computations will appear in the article mentioned above. 

Note also that in case ((a;j(x))) = al, and div b(x) = 0 for all x, the last two 
terms in (1.19) vanish. In particular, one has 

(2.1) Dii = -2u5(b;, g;) + a. 

In problems of interest in solute dispersion the first term dominates (and goes 
to infinity as Uo goes to infinity). 

Check also that in this model the first term in (2.1) remains the same if the 
period is taken to be Uo, while the factor Uo in the drift is taken to be 1. Thus 
asymptotic steady increase in dispersion with respect to the magnitude of the 
mean (liquid) velocity is equivalent to its asymptotic steady increase with respect 
to the spatial scale of heterogeneity. This is the so-called scale effect which has 
also been observed repeatedly in hydrological experiments (Molinary et al., 1977). 
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Of course, in the context of solute dispersion in porous media, the 
assumption of a periodic liquid velocity field is much too idealized. Unfortunately, 
this seems to be the only broad class of drift functions with nonzero mean (or 
large scale average of some sort) for which the central limit theorem has been 
proved. There is a novel central limit theorem type result due to Papanicolaou 
and Varadhan (1979) for the case of an Lin divergence form: 

L = 112 L~=l (ajaxi)(Lj=l aij(x)ajaxj), 

with the functions aii(x) almost periodic in the sense of Bohr. But the divergence 
theorem shows that in this case the large scale volume average of the drift is 
zero, which (in the context of solute transport) says that the higher scale velocity 
of the liquid is zero. This makes the result inapplicable to the present context. 
An appropriate extension of the result together with a perturbation expansion of 
the dispersion coefficients in a parameter like Uo would be of much interest. 

An entirely different type of model has been considered by Gelhar and Axness 
(1983) and independently by Winter, Newman and Neuman (1983). The results 
of Winter et al. (1983) are somewhat more general. In their model they take 
((aii(x))) =I, and the drift as p, + eU(x), where p, is a constant (mean) vector, e 
is a small parameter and U(x) is a mean zero stationary ergodic random field 
(indexed by the spatial parameter x). Assuming that the central limit theorem 
does hold, Winter et al. (1983) obtain a perturbation expansion of the dispersion 
matrix of the limiting Gaussian distribution (or Brownian motion). It would be 
important to prove such a central limit theorem. For the case p, = 0, div b = 0, 
Papanicolaou and Pironeau (1981) have proved that leXt1,2: t ~ 0} converges to a 
Brownian motion as e ~ 0, and have computed the dispersion matrix of the 
limiting Brownian motion. The case of nonzero mean velocity, however, is the 
one of importance for solute dispersion in porous media, and this case remains 
open. 

Acknowledgment. Thanks are due to the referee for providing an alter
native proof of Theorem 3 along the lines of Bensoussan, Lions and Papanicolaou 
(1978). The weak convergence part of the present proof as well as the computation 
of the dispersion coming from the drift (which in many applications constitutes 
the dominant part) seem to extend more immediately to the cases mentioned 
under Extensions. The author would also like to thank the Associate Editor for 
providing a direct proof that the dispersion matrix (1.19) coincides with the 
expression J[o,1)k (I- Uo "il g). a(x)(I- Uo "il g)* d1r appearing in Bensoussan (1978, 
page 401.) 
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ON THE CENTRAL LIMIT THEOREM FOR DIFFUSIONS 
WITH ALMOST PERIODIC COEFFICIENTS 

ByRABIN.BHATTACHARYA 

Indiana University 
and 

S. RAMASUBRAMANIAN 

Indian Statistical Institute 

SUMMARY. We consider a class of n-dimensional elliptic generators having almost 

periodic coefficients depending on finitely many rationally independent frequencies in each 
coordinate. A strong law of large numbers and a fru1ctional central limit theorem are proved 

for such diffusions. 

I. INTRODUOTION 

In this article we study asymptotic behaviour of diffusions on Rn whose 
drift and diffusion coe:ffic~ents are almost periodic depending on M1 rationally 
independent frequencies wCtl, I < r < M1, in the jth coordinate (I < j < n). 

In the case of a diff~on whose generator is in the self-adjoint divergence 

form and whose coefficients come from a random field, a novel functional 
central limit theorem was obtained by Papanicolaou and Varadhan (I979) 
under the general condition that the random field is stationary and ergodic. 
Kozlov (I979), (1980) contain similar results; but the regularity arguments 
in Kozlov (I979) appear to have a gap. However Kozlov (1979) contains 
some significant ideas which we have made use of. While Kozlov's approach 
is purely analytical, ours is primarily probabilistic. We also mention the 
work of Papanicolaou and Pironeau (1981), in which the diffusion matrix is 
the identity and the drift vector is a mean-zero divergence free stationary 
ergodic random field. In all these articles the large scale mean is zero. The 
point of departure in the present article is the consideration of drift veloci
ties whose large scale mean need not be zero. Part of the motivation for look
ing at this comes from the problem of modeling solute dispersion in an aqui
fer (Bhattacharya et al., I987; Gelhar and Axness, I983; Winter et al., 1984} 
and analyzing the limitmg dispersion as a function of the large scale velocity. 

*Research supported by NSF Grants DMS 85 3358, ECE 85 13980. 

AMS {1980) lfUbject dasBijicaW>n: Primary: 60J60, Secondary 60Fl7. 

Key wortJ.a afld phraau : Markov pro0611Se8 on the torus, generators, invariant measure, 
ergodioity. 

A 1-2 
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It may be noted that for arbitrary strictly elliptic generators with periodic 
coefficients the pathwise central limit theorem holds (see Bensoussan, 
Lions and Papanicolaou (I978),Bhattacharya (I985), and the remark on p. 846 
in Papanicolaou and Varadhan (I979)). 

2. PRELIMilURIES Al!ID THE L.A. W OF LARGE :!!lUMBERS 

It will be assumed throughout that bk(.), akk' (.) are real-valued functions 
on Rn of the form 

.. . (2.I) 

Here Mv M 2, ... , Mn are fixed positive integers; for each j(1:;;;; j:;;;; n) one 
has a given set of M1 rationally independent (i.e., independent over the field 
of rationals) positive numbers w~>, I < r < Mj; the sums in (2.1) are over 
a finite set of integer vectors m = (mC?> :I < r:;;;; M1, I < j < n) eZM where 

(2.2) 

The coefficients b~m>, a1:~ are complex constants. For each x e R• the nxn 
matrix a(x) · ((akk'{x))) is symmetric and positive definite and 

i\0 ' inf (smallest eigenvalue of a(x)) > 0. ... (2.3) 
X€Rn 

In order to avoid ending up with the periodic case it will be assumed 
that M > n. 

For each c = (c~>: 2 :;;;; r:;;;; M1 , I < j < n) eRM-n denote by He the 
n-dimensional hyperplane in RM given by 

Hc={y=(yC/>: I:;;;;r<M1, 1 <;j<n): y~j)=y~>+c~>, 2<r<M1}. ... (2.4) 

We shall adopt the following convention throughout: if M1 = I, then 
terms involving subscripts r > 2 and superscripts j will be omitted. 

Let Q denote the following discrete subgroup of RM-n : 

Q={mW(211/wV>)+m¥>(211/wji>): 2<r:;;;;M1, l<j<n): me ZM}). ... (2.5) 

Write f e Trig ((J)) iff is a finite sum of the form 

{ 
n Mj } 

f(x) = ~ pm> exp i ~ x1 ~ m~>w~i> , 
m j=l r=l 

... (2.6) 

where pm> are complex numbers. 
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A complex-valued function h(y) on RM will be said to be periodic (211/w) 

if it is periodic with period 2rrfwV> in the coordinate uV>(I < r < M1, 

I~ j < n). 

Iff e Trig (w) is given by (2.6) define 

( n Mj l 
f<u) = 'E. J<m> exp ~ i 'E. 'E. mV> w~i>yy> r. 

m L j=1 r=1 J 
... (2.7) 

Then f is periodic (211/w), and f may be identified with the restriction of J to 

the hyperplane H 0 • 

Lemma 2.1 : Q is dense in RM-n. 

Proof: It is sufficient to prove that if wv w2, ••• , w~c are rationally in
dependent positive numbers then {(q1w11+q2w21, qtw11+qaw31, ... , qlw11+ 
q~cw-;;1 ) : q1, q2, •.• , q!c6Z) is dense in Rk-1. Take w1 = 1 without essential 
loss of generality. It is clear that 

... (2.8) 

Now, by Kronecker's theorem (Hardy and Wright (1959), p. 382), {(q1 w2 (mod 
1), q1w3 (mod 1), ... , q1w~c(mod 1)): q1 eZ} is dense in [0, I]k-1• Therefore, 
by (2.8), {(q1 (mod w21), q1 (mod w3 1), ••. , q1 (mod wk" 1)) : q1 e Z) is dense in 
[0, w21] X ..• X [0, w-;; 1]. Consequently, D • {q1 +q2wi\ q1 +qawa\ ... , 
q1+q~c wi1) : q1, q2, ... , q~c e Z} is dense in [0, w21] X .•• X ]0, w;1]+(q~w21 , 

... , q~ w-;;1) for every choice of integers q~, ... , q~. Hence D is dense in Rk-1. 

n M 1 
Henceforth .:1 will denote the ]}f -dimensional torus TI TI [0, 211{ w~i>) 

1=-l r-1 
{y = y e RM} where 

... (2.9) 

Let akk' (.), b~c(·) be defined on RM by (2.7). Since a~c~co(.) may be viewed 
as the restriction of aw (.) on H 0 and since s(H0 ) is dense in .:1 (Hardy and 
Wright, 1959, Theorem 444, p. 382), it follows by the periodicity and con
tinuity of akk' (.) on RM and by (2.3) that the smallest eigenvalue of O,(y) 

.....:.. ((O,kk' (y))) is bounded away from zero : 

in£ (smallest eigenvalue of il(y)) = .t\0 > 0. 
ye:RM 

... (2.10) 

Let t1(y) • ((&w(y))) denote the nxn symmetric positive definite square 
root of iJ,(y). 
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Let (0, 3, p) be a probability space on which is defined ann-dimensional 

standard Brownian motion B(t) = (B1(t), B2(t), ... , Bn(t)), t ;;;:, 0, which is 

adapted to a right continuous increasing family of P-complete sigmafields 

.!It. t;;;:, 0. 

Let Y(t) = (Y~k>(t) : 1 ~ r < M7c, I <; k < n), t;;;:, 0, be the continuous 

nonaticipative solution to ItO's stochastic differential equations 

... (2.11) 

subject to some initial condition Y(O} = Z, where Z is an M dimensional 

random vector independent of B(t}, t;;;:, 0. 

For all c = (c~> : 2 <: r ~ MJ, 1 ~ j ~ n) define the functions (on B") 

{ n MJ } 
bk,c(x) = l: b~~> exp i l: x1 l: m~>wy~ , 

m 1=1 1=1 

akk' 0(x) = l: atfl!l c exp {i :E X• t m0>wU>} 
' m"'"'• i-lJr=l'' 

where 
{ n MJ } 

blkm\ = b<m> exp i :E :E cU>mmw<1> 
.o i r r r ' 

j=l r=2 

Note that dY~k>(t)-d Y~•>(t) = 0 for 2 ~ r ~ M11;. Hence 

Y~k>(t) = Y~k>(t)+( Y~k>(O)- Y\k>(O)), t ~ 0, 

with probability one. 

... (2.12) 

... (2.13) 

(2.I4) 

From (2.11)-(2.I4) and (2.4) the following lemma is immediate. Write 

Mk 

ore = l: ofomk> (1 "" k < n). (2.15) 
r=l 

Lemma 2.2 : (i) Y(t), t ;;;:, 0, is a singular diffusiun an BM generated, 

in the sense of Ito, by 

.... In ["' ] ""' L ..:. 2 "~1 fJ1c k"!:,1 rlkk'(y)fJk, + k~1 bi(y)fJk ... (2.16) 

where&; is defined an BM by (2.7) from the function (an Bn) 

... (2.17) 
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(ii) If Y(O) e He (with probability one), then ( Y~1 > (t), Y~2> (t), ... , Yi"> (t)), 
t > 0, is a nonsingular diffusion on Rn with drift coefficients bk,c (.) and 
diffusion coefficients akk'• c(·), and its generator may be expressed as 

n 
+ ~ b~. c (x)ofoxk, 

k=l 
... (2.18) 

n 
where b~c(x) = b&c(x)- ~ (o/oxk') aw c(x), b% 0 = b;. In particular, if 

, , k'-1 , , 

c = 0 then this n-dimensional diffusion has drift coefficients bk(.) and diffusion 
coefficients akk' {.) (1 < k, k' < n). 

Note that Y(t) = s(Y(t)), t > 0, is a Markov process with state space .!1, 
since bk(·), akk'(·) are periodic (2rrfw). 

n 
Lemma 2.3 : Assume div b*(x) _!_ ~ (ofiJx&)b:(x) = 0. Then (i) the 

k-1 

Lebesgue measure on RM is invariant for Y(t), t > 0, and (ii) the normalized 
Lebesgue measure 7t(dz) on a is an invariant probability for the lYfarkov process 

:f{t), t > 0. 

Proof: (i) In view of the assumption div b* = 0 the formal adjoint 

L: of Lc (and L* of L) annihilates constant functions. One may then check 
that the n-dimensional Lebesgue measure is invariant for the diffusion with 
generator Le. Integrating first along He for a fixed c and then over a set 
of c values the result is proved. The precise change of variables involved 
is given by (2.21) below. 

(ii) Let p(t ; y, B), p(t ; y, C) denote the transition probabilities of the pro

cesses Y(t), t;>O, and Y(t), t>O, respectively. For all Borel sets C of .:zone has 

7t(C) = J p(t; y, C) dy 
RM 

= J p (t ; y, C) 1t (dy) . 
.!1 
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Let r = 0([0, oo) : 3) be the set of all continuous functions on [0, oo) 

into a. Let P1l denote the distribution of Y(t}, t > 0, (i.e., a probability 

measure on the Borel sigmafield of r) when Y(O) = y. Clearly Pv = Pv. 
Let p'IC denote the corresponding distribution when Y(O) has distribution 7t 

(the normalized Lebesgue measure on 3). Then p'IC (F)= J pu (F)7t(dy) for 
all Borel subsets F of r. .:1 

Lemma 2.4: Let B be a Borel subset of .!1 8UCk that, for some t > 0, 

1B(y(O)) = 1B(Y(t)) for almost all (w.r.t. Pn)yer, ... (2.19) 

where 1B(Y) is the indicator function of the set B. Then there exists a Borel 

subset 0 of RM-n suck that 7t(Bil~(B)) = 0 where 

B=UHc, ... (2.20) 
C€0 

~is the map y....:; iJ (see (2.9)) and a denotes 81Jmmetric difference. 

Proof: Let rp, lfr be linear maps on RM (into RM-n, Rn, respectively) 

defined by 

rp(y) = (y~Tc>-y~"> : 2 < r < M1c, 1 ~ k ~ n), 

1/J'(y) = (rp(y), Yil), ift2>, ... , y~n>). ... (2.21) 

Then lfr is nonsingular with Jacobian determinant one. Let Pr denote 
Lebesgue measure on Rr. For ceRM-n, zeRn, the transition probability 

q(t ; (c, z), D) • PfC({lfr(y(t)) e D} llfr(y(O)) = (c, z)) may be expressed as 

q(t ; (c, z), D) = J fc(t ; z, z') Pn(dz'), .. . (2.22) 
De, 

where De. = {z'eR11 : (c, z')eD}, and fc(t ; z, z') is the strictly JlOSitive con
tinuous density (w.r.t p 11} of the transition probability of the n-dimensional 

diffusion generated by Lc (see (2.18)). On taking conditional expectation 
given y(O) in (2.19) one has 1B(y) = p(t ; y, B) a.s. 'It, i.e., 

1 1 (y) = p(t ; y, ~-1(B)) a.e. PM· 
C(B) 

Writing F = lfr(~-1(B)) and using (2.22)), one may express (2.23) as 

(2.23) 

1F((c, z)) = f fc(t ; z, z') p,.(dz') a.e. JtM, (2.24) 
Fe. 

i.e., there exists a PM-null set J such that (2.24) holds for all (c, z) ' J. Hence 

jt11(R11,Fc.) = 0 (2.25) 
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for almost all (w.r.t. #M-n}c in 

0 = {c e RM-n : p,.(Fc.) > 0}. ... (2.26) 

It follows from (2.25), (2.26) and Fubini's theorem that 

P,M((OxBn)flF) = 0. .. . (2.27) 

Let B be as in (2.20), with 0 as in (2.26). Then 

B = ljf-1(0xRn), .. . (2.28) 
and (2.27) implies 

and, therefore, 

n(l;(B)ilB) = o. ... (2.29) 

The main result of this section is the following. 

Theorem 2.5 : Suppose div b*(x) = 0. (i) If Y(O} has distribution n, 

then Y(t), t ;>: 0, is a stationary ergodic Markov process on .:Z. 
denote an n-dimensional diffusion with drift coefficients b~c,c(·) 

coefficients aw,cH· Then for all c eRr-n outside a set of zero 
sional) Lebesgue measure, 

1. X(t ; c) - b- ~ (b<O) b<o> b<o>) 
Im t - - 1 ' 2 ' •.. ' n a.s., 

t--tOD 

whatever the initial distribution of X(t; c). 

(ii) Let X(t ; c) 

and diffusion 
(M-n dimen-

... (2.30) 

Proof : (i} Suppose Y(O) has distribution n. Then Y(t), t ;>: 0, is a sta

tionary process with distribution prt. Let F be a shift-invariant Borel set 

of r = 0([0, oo) : .!1). There exists a Borel set B of .!1 such that (Doob, (1953), 
p. 460) 

Prt(Ftl{y(t) e B}) = 0 for all t ;>: 0. (2.31) 

In particular, Prc({y(O) e B}tl{y(t) e B}) = 0 for all t > 0, i.e., (2.19) holds . 
... 

Hence, by Lemma 2.4, there exists a Borel set 0 C RM-n such that n(Btll;(B)) 

= 0 with B given by (2.20). Let G = O+Q = {c+q : c e 0, q e Q}, where Q 

is the set (2.5). Since ~(He) =~(He') if c-c' e Q one has ~(IJ) = ~(Ucea He) 

We need to prove Prt(F) = 0 or 1, i.e., 

n(~(B)) = 0 or 1. 

Suppose that (2.32) is not true, so that 0 < n(s(B)) < 1. Then 

#M-n(G) > 0, #M-n (RM-n'\_G) > 0. 

... (2.32) 

... (2.33) 
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But G is invariant under tra.nsla.tion by elements of Q which is dense in 
RM-n (Lemma 2.1). If (2.33) holds, then one may find two compact sets 
K 1 C G, K 2 C RM-n\. G both with positive .UM-n-mea.sure ; but the convolu
tion 1g1 • 1K2 vanishes on the dense set Q; this convolution is continuous 

(indeed Us Fourier transform is integrable), so that 1g1 • 1g2 = 0, whioh is 

false. Hence (2. 33) is false, and (2.32) is true. 

(ii) Let Y(O) have distribution n:. Then, by the ergodic theorem 
app:led to the time integral, a.nd the maximal inquality applied to the sto
chastic integral in (2.11), one has a.s. (P), 

... (2.34) 

Let PY be the distribution of (Yp> (t), ... , Y{"> (t)), t > 0, (on G([O, oo) : R")) 

when Y(O) = y. Note that fiv is the distribution of X(t ; c), t > 0, if y e He 
and X{O ; c) = y ...:_ (yfl>, ... , Yi,.>). Now (2.34) implies that ,UM(RM\.B) = 0, 

where B = {y e RM : g(y) = I}, g(y) • P({(2.34) holds I Y(O) = y}). Since 
X(t; c), t > 0, is a nonsingular n-dimensional diffusion, g(y) is continuous 
on He ; also, by the maximum principle, g(y) = 1 on He if B n He ¥= rp 
(soo, e.g., Bhattacharya (1978), Lemma. 2.3). It follows that B = Ucea He 
with G a Borel subset of RM-n such that ,UM-n(RM-n""-G) = 0. 

3. THE CENTRAL LIMIT THEOREM 

We continue to use the notation of Section 2. 

Let .,Col(.a) denote the usuaJ Hilbert space of (equivalence classes) of 
real-valued functions square integrable with respect to the normalized 
Lebesgue measure n: on S. The inner product on .,e2( .7) wiJI be denoted by 

<, >, and norm by II • llo· Let ON be the subspace 

where I m I = ~ J m~J> J. We shall use fhv to denote projection onto 0 N. 
j,r 

Reca.ll the singular differential operator L on RM defined by (2.16) 

Lemma. 3.1 : Suppose div b• = 0. Then for each N > 1, ON L i8 a 
1-1 rrw,p on ON onto ON. 
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Proof: Clearly, ON Lp eON for each cp eON. Now div b*(x) = 0 im-
n 

plies ~ a, b:(y) = 0, so that for every cp e ON 
k-1 

1 l . , = - 2 r ~ a, g:w>J cp2(1J) K(ay) = o. 
:J. k=l 

(3.2) 

By (2.10), (3.2) and the self-adjointness of ON, one has for every 
cp e ON, cp =I= 0, 

< ON Lp, cp > = < Lp, cp > = - ! f [ ~ ai:k' (y) arc cp(y) al:' cp(y)] n(dy) 
.!1 k,k'-1 

< - ~ J ~ (ak cp(y))2 K!dtl> ... (3.3) 
.!1 k•l 

i\. " l MJ& ]2 = - ..!.. ~ ~ lcp<m> 12 t m~>w~"> < 0. 
2 k=l O;d lml.- N r-l 

Mil 
For ~ m~k> w~k> is nonzero for each k and each m =I= 0. 

r-1 

Hence ON Lis 1-1 on ON into ON. Since ON is finite dimensional, ON L 
is 1-1 on ON onto ON. 

For infinitely differentiable periodic (211/W) functions cp on BM define 

where a= (a1, as .... , a.) is a multi-index and Ia! = a1+ ... +a •. 

Lemma 3.2 : Suppose div b•(x) = 0. Let J e Trig (w) witk jl0> = 0. 
Let J be given by (2.7), tke sum being over m satisfying lml < N 0• Tken for 

every N :;> N 0 tkere exists a unique uN eON suck tkat ON UN =i, and for all 
s = 0, 1, 2, ... ; one 1ws 

n 
~ [la,UNII~ ~ c{s), ... (3.5} 

k=l 

wkere c(s) does not deperW, on N. 

Proof: Since J eON for all N ~ N 0 one has, by Lemma 3.1, a unique 

UN eON such that oNZUN =I for N ~ No. One then has (as in Kozlov 
(1979), p. 487} 

.A. 1-3 
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I 1 Mk -1 . Mk 

=. l: - pm> ( :£ m~k>w~k>] . ~( ~ m~k>w~k>] u<;->1 
I m:;:to ~ r=l r=l 

< _.! :£ -i 1 J<ml 121 ~ m~k>w~k> ,-2 
2 l<lmt<No ~ r=l 

1 Mk 2 

+- ~2 :£ I uc;'> 12 [ 4 m~k>w~k>] 
2 1 EiO lml EiO N r=l 

... (3.6) 

Also, from the calculations in (3.3), 

... (3.7) 

From (3.6), (3. 7) one obtains 

n 
4 llokuNI!5 < c(O), ... (3.8) 

k-1 

proving (3.5) for 8 = 0. 

In order to prove (3.5) for s > 0, introduce the differential operator 

,.., , n ]8 n, = l :£ a: (8 = o, 1, 2, ... ). 
k=l 

On integration by parts one has 

" =- }:; (1/2)(-l)sx 
j,j',k,, ... ,k. = 1 

.. . (3.9) 

... (3.10) 
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Using Leibniz rule for differentiation of produota one gets, from (3.10) and 
and (2.10), 

fJ kt' .. ak.a~kUN > -cl(a)!lokuNIJ~-c2(s)llfJkuNI!s+lllfJkuNIIs 

> c3(s)llfJkuNJI~+l-c1(a)ll8kuNII~-ca(s)llfJk UN!Iall8ku11!~+1• ... (3.ll) 

We shall now prove (3.5) by induction on s. Suppose it holds for s < s0• 

Then 

... (3.12) 

= I < D,o akJ. 0TcUN > 1 < c4(8o)llo.tttNllo < c5(8o), (3.13) 

by (3.8). Also, the differentia.! operator D80 is of order 2s0 and on expressing 

it as a sum of products of two differential operators each of order s0, and inte
grating by parts one gets 

~ c6(s0) [ ~ 118JUNI'i, +l]llok UNIJ8 < c7(s0) ( ~ 1!81 UNl!, +l]· ... (3.14) 
1=1 0 0 J=l 0 

One similarly obtains 

I< D, ~ caJ;(.))oJ uN, ak UN > I 
0 1=1 

... (3.15) 
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Using (3.13)-(3.15) in (3.12) one gets 

... (3.16) 

On the other hand, (3.11) and the induction hypothesis yield 

... (3.17) 

From (3.16), (3.17) one easily obtains 

... (3.18) 

In the proof of Theorem 3.4 we apply Lemma 3.2 (as well as Lemma 
3.3 below) with/= t11:-b<~>, and N0 = l; !.m<!J in the representation (2.1). 

For the next lemma. we shall need the following hypothesis (see Kozlov, 
1979, p. 489) concerning w<:>). 

Condition ( 0). There exists a positive integer s0 and a positive number 8 
such that 

... (3.19) 

for all m = (m<~>: 1 <; r <; M11:, 1 <; k < n) e ZM (m ¥= 0). 

It may be noted that outside a set of Lebesgue measure (M-dimen.sional) 
zero, aJl M-tuples ( w~>) : 1 < r <: Mk, 1 <; k <; n) satisfy (3.19) if 8 > 0 
and s0 is sufficiently la.rge. (Sprindzuk, 1979, Theorem 12, p. 33). 

It is easy to check (see Kozlov, 1979, p. 492) that condition (C) implies 

... (3.20) 

Now let Te, t > 0, denote the semigroup of transition operators on .,e2(~) 
defined by 

(Ttf)(y) = E(f(Y(t)) I Y(O) = y) = J f(z)p(t; y, dz). · ... (3.21) 
.:1 
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It is simple to check that this is a contraction semigroup. Let ~ denote 
1 

the set of all f in .,&(~) such that the following limit exists in ,f!2: 

AI . Um TJ-f. 
e+ o t 

(3.22) 

The operator A is the infinitesimal generator of the semigroup and ~. its 

domain. Let 'R.. denote the range of A. A 

A 

Lemma 3.3: Suppose div b* = 0 and condition (0} holds. Let 

f e Trig ( w) be suck that f'0l = 0, where f is represented as in (2.6). Let J be 

defined by (2.7). Then there exists g e ~- B'UCk that Ag = J, and there exist 
A 

gNe ON(N = I, 2, ... )suck that YN-+ g and AgN-+ Ag = J in ef!2-norm, asN-+oo. 

Proof: Let UN be the unique solution of ONUN = J, for N ;) N 0 • By 
Lemma 3.2, and (3.20}, 

sup JlfiNII: < oo (s = I, 2, ... ). 
n;p,No 

... (3.23} 

Now it is easy to check using Ito's lemma and path continuity of Y(s) 

that all infinitely differeniable functions which are periodic (27r/w}, regarded 

as elements of _e2(.!t), belong to ~ ~, and A= L when restricted to this class 
A 

of functions. Hence UNB~ •• and (3.23) implies that uNandAuN = LuN, 
A 

N > N 0 , are norm-bounded. Therefore, there exists a subsequence N' of 

the integers such that UN, converges weakly to g, say, and AuN, converges 

weakly to k, say. Thus (g, k) belongs to the weak closure of the graph of A 
~ -restricted to 0 = U ON. Since (i) 0 C ~ .. • (ii) the graph of A is closed, 

N=l A 

and (iii) the weak closure of the graph of A restricted to 0 equals its strong 

clo8'Ure (Yoshida, 1966, Theorem 11, p. 125), it follows that (g, h) belongs to 

the graph of A, i.e., ge ~~ and Ag = h. Also for all u e 0 one has 
A 

< h, u > = lim < AuN"'U > 
N'-+"' 

= lim < ON•AUNII'U > = </. 'U >· 
N'-+~ 

... (3.24} 
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Since 0 is dense in l.L, k 6 l.L (since B _ C P; Bhattacharya, (1982, Relation 
A 

(2.6)) and J 6 r.a., it follows that k = J. 
Finally, again using the fact that the weak closure of the restriction of 

the graph of A to 0 equals its strong closure, the second assertion follows. 

Theorem 3.4 : Suppose div b• = 0 and condition (C) holds. Define 

t -X,(t; c) = 6(X(tf69 ; c))-- b, 
6 

... {3.25) 

where X(t; c) is the n-dimensional diffusion generated by Lc in (2.18), starting 
at an arbitrary initial state in B". For all c 6 BM-n outside a set of(M-n)
dimensional Lebesgue measure zero, Xe(t; c), t ;;;.. 0, converges weakly as 6 ,J, 0 
to a Brownian motion with zero drift and dispersion matix 

J cau<v>-I)a(y)(oo(y)-I)'1T(dy), ... (3.26) 
:1 

where u(y) = (ul(y), ... , un(y)) is the unique solution of Auk= g~:-bi0 > (I < k 

<:; n) in 1.a., and ou is the nxn matrix((o~cuTc'))· 

Proof : By the second part of Lemma 3.3 there exists, for each j{1 < j 
< n), UJ,N60N(N =I, 2, ... ) such that, as N-HXJ 

Since (see (3.3)) 

JloTc~,N-OTcUJ,N'JI~ 

/ 2 .A-(.. " ) ... ... """'x- <- UJ,N-UJ,N', UJ,N-UJ,N' >, 
0 

it follows from (3.27) that o~:uJ6 aez(:J) and 

... (3.27) 

... (3.28) 

... (3.29) 

Ndw let Y{t), t >: 0, be the continuous nonanticipative solution of (2.ll) 
with Y(O) = y. Then writing 

WTc(t) • y~>(t)- y~>(O)-tb~0>, 

one has t A _ t 
W(t) = J (6(Y(s))-b)ds+ J tJ(Y(s))dB(s). 

0 0 

(3.30) 

(3.31) 
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By Ito's lemma, 

UJ,N( Y(t))-uJ,N( Y(O)) 

t - t 
= f .A.uJ,N(Y(s))ds+ f ou1,N(Y(s)). &(y(s))dB(s), (1 <; j <; n). 

0 0 

... (3.32) 

In view of (3.27), (3.29) one has the representation (see Ikeda and Watanabe, 
1981, Chapter II) 

~( Y(t) )-u1( Y(O)) 

t " t 
= f (b1(Y(s))-b)Ol)ds+ f ou1(Y(s))&(Y(s))dB(s) a.s. (t ~ 0). 

0 0 

From (3.31), (3.33) one has 

W(t) = u(Y(t))-u(Y(O)) 
t 

... (3.33) 

- f (o·U.(Y(s))-l)$(Y(s))dB(s) a.s. (t ~ 0). ... (3.34) 
0 

The quadratic variation of the martingale 
W8(t; c)....: X 8(t; c)-eu(Y(tfe2))+eu(Y(O)) is given by 

tJe2 

z.(t) = e J (ou(Y(s))-l)il(Y(s)) (au(Y(s))-I)'ds. ... (3.35) 
0 

Since each element of the integrand is a stationary ergodic stchastic process 
(when Y(O) has distribution n) having a finite expection, by the ergodic theo
rem one has a.s. 

lim Z8(1) = S (ou(Y)-l)a(y) (iJa(y)-I)'rc(dy). ... (3.36) 
q. 0 .:1. 

It follows that (3.36) holds with Y(O) = Yo for all Yo e .2 outside a set of null 
n-measure. Let cp(y0 ) denote the probability that (3.36) holds with Y(O) = Yo 

Since the event that (3.36) holds is shift-invariant, cp(y0 ) is L-harmonic, and 
its restriction to He is L 0-harmonic (see (2.16), (2.18)). Thus if cp(y0 ) = I 
for some Yo e Hr;, then cp(y) = 1 for all y e He, by the maximum principle 
for strictly elliptic operators. Therefore, for all c outside a set '11. of 
zero (M -n)-dimensional Lebesgue measure, if y0 e He then (3.36) holds with 
initial state y0 • It now follows from (3.34)-(3.36) that with Yo e He (c rf: '11), 
Wa(t; c) converges weakly to the desired Brownian motion (one may show 
this, e.g., by expressing e. W8 {t ; c) as a time changed one-dimensional Brow-

nian motion, for each 8 eRn)). Finally, eu(Y(t/e2))-eu(Y(O)) converges to 
zero uniformly on compact time intervals, with probability one (See Bhatta
charya, 1982, p. 189) when the initial distribution is n. Again this implies 
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that eu(Y(t/e2))-eu(Y(O)) converges to zero uniformly on compact time inter

vals, with probability one when the initial state lies on B 0 , for c lying out

side a set of zero (M -n)-dimensional Lebesgue measure. 

Remark 1: One may relax the assumption that the sums in (2.1) be 

over a finite set of integer vectors m. The proof of Theorem 2.5 goes over 

if one assumes 

: I b~•> I [ 1~1 I~~: mY>wy> I] < oo (1 ~ k ~ n), 

:E la<:tll [ l: I~~ m~i>wy> IJ < oo (1 < k, k' ~ n). 
m J=l ro=l 

... (3.37) 

Theorem 3.4 goes over if the 'finite sum' assumption is replaced by (3.37) 

and (see (3.6)) 

~ 1 b1m>l 2 (j! mY>wy> 1r• < oo (1 <: k < n, 1 ·< i < n). (3.38) 

In view of condition (C), (3.38) may be replaced by the condition 

MJ 12fo :E [b~m>j 2 [ :E I mY> I < oo (1 <; k <; n, 1 <;j <; n). 
m ro=l 

... (3.39) 

Remark 2. With each y 6 .!J. one may associate the set of drift and diffu

sion coefficients bk,c(.+z), a • (.+z), where c = (c~k) = ff,'k>-Y'J.'k> : 2 <; r 
kkc 

~ Mk, 1 <; k <; n) 6 RM-ft and' z = (zk = yt> : 1 <; k ~ n) eRn. When fi 
is chosen at random with distribution n, one obtains a randmn field indexed 

by Xe Rn: x~ {(b.t,c(x+zhE;k.O n•(akk',c(x+z)h lliii k,k'ISO n}· This random field 
is stationary (w.r.t. translation on B") and ergodic (See Papanicolaou and 

Varadhan, 1979). The proof of Theorem 3.4 shows that when the drift and 
diffusion coefficients arise in this random manner (i.e., as a raalization of 

this random field) and the corresponding stochastic differential equation is 

solved with a Brownian motion B(t) independent of this random field (i.e., 

independent of fie .!J.), then the solution X(t), say, is asymptotically Gaussian: 

eX(tfel)-.!. b, t ~ 0, converges in distribution to ann-dimensional Brownian 
e 

motion with zero drift and dispersion matrix (3.26). 

Remark 3 : Kozlov (1979) derives estimates such as (3.5) in the self

adjoint case, and infers the smoothness of solutions. Since these estimates 
concern differentiation ·in only n directions in an M-dimensional space, the 

validity of such an inference is doubtful. 
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7.5 “Stability in distribution for a class of singular diffusions”

Stability in distribution for a class of singular diffusions. The Annals of Probability. 20
(1992), 312–321 (with G. Basak).

c© 1992 Institute of Mathematical Statistics. Reprinted with permission.
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The Annah of Probability 
1992, Vol. 20, No. 1, 312-321 

STABILITY IN DISTRIBUTION FOR A CLASS OF 
SINGULAR DIFFUSIONS 

BY GoPAL K BASAK AND RABIN. BHATTACHARYA1 

University of California, Berkeley and Indiana University-

A verifiable criterion is derived for the stability in distribution of 
singular diffusions, that is, for the weak convergence of the transition 
probability p(t; x, dy ), as t --> co, to a unique invariant probability. For this 
we establish the following: (i) tightness of {p(t; x, dy ): t ;:::: 0}; and (ii) 

asymptotic flatness of the stochastic flow. When specialized to highly 
nonradial nonsingular diffusions the results here are often applicable where 
Has'minskii's well-known criterion fails. When applied to traps, a sufficient 
condition for stochastic stability of nonlinear diffusions is derived which 
supplements Has'minskii's result for linear diffusions. We also answer a 
question raised by L. Stettner (originally posed to him by H. J. Kushner): Is 
the diffusion stable in distribution if the drift is Bx where B is a stable 
matrix, and u( ·) is Lipschitzian, u(Q) ofo 0? If not, what additional condi
tions must be imposed? 

1. Introduction. Consider a diffusion {Xx(t): t ~ 0} on !Jlk satisfying 
ItO's equation 

(1.1) X"(t) = x + {Bxx(s) ds + {u(X"(s)) dW(s), 
0 0 

where B is a k X k matrix, u( ·) is a Lipschitzian (k X I)-matrix-valued 
function on ffik and {W(t): t ~ 0} is a standard l-dimensional Brownian 
motion. Let p(t; x, dy) denote the transition probability of the diffusion. The 
following definitions apply to general diffusions, and not only to those of the 
form (1.1) with linear drifts. 

DEFINITION 1.1. A diffusion is stable in distribution if its transition proba
bility p(t; x, dy) converges weakly to some probability measure rr(dy ), as 
t ~ oo, for every x. 

It is clear that stability in distribution implies the existence of a unique 
invariant probability. It is simple to check that stability in distribution follows 
from the following: (i) tightness of {p(t; x, dy ): 0 :::; t < oo}; and (ii) the follow-
ing notion of asymptotic flatness. · 

Received May 1990; revised September 1990. 
1Work partially supported by NSF Grant DM_S-90-03324. 
AMS 1980 subject classification. Primary 60J60. 
Key words and phrases. Unique invariant probability, asymptotic flatness, stochastic stability. 
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DEFINITION 1.2. The stochastic flow {Xx(t): t :2!:: 0, x E ffik} is asymptoti
cally flat (in probability) uniformly on compacts if 

(1.2) sup P(IXx(t)- XY(t)l > s) ~ 0 as t ~ oo, 
x,yEK· 

for every s > 0 and every compact set K. 

We will actually derive a stronger property than (1.2) called asymptotic 
flatness of the stochastic flow in the Mh mean (8 > 0), which means that for 
every compact K, 

(1.3) lim sup EIXx(t) -XY(t)l8 = 0. 
t-+oo x,yEK 

In the special case when a trap x* exists, that is, xx*(t) = x* for all t :2!:: 0, 
(1.2) withy= x* implies stochastic stability defined as follows. 

DEFINITION 1.3. Let x* be a trap. Then {Xx(t): t :2!:: 0, X E ffl k} is stochasti
cally stable (in probability) if for all 8 1 > 0, 8 2 > 0 there exists S > 0 such that 

(1.4) sup sup P(IXx(t)- x*l > 8 1 ) < 8 2 • 

O~t<"' {x: lx-x•j~ll} 

Consider the question: Under what conditions on B and u( ·) is the 
diffusion stable in distribution? If u( · )u( · )' is nonsingular, then the existence 
of an invariant probability is equivalent to stability in distribution, and 
Has'minskii's well-known criteria apply (Has'minskii [4]; Bhattacharya [2]). 
Our main interest lies in the singular case: u(x)u(x)' is of rank less than k 
for some x. In this case the existence of a unique invariant probability does not 
necessarily imply stability in distribution, as may be shown by examples [e.g., 
k = 1, B = 1, u(x) = x]. If u ( ·) = u is a constant matrix, then a well-known 
necessary and sufficient condition for stability is that all eigenvalues of B have 
negative real parts (see, e.g., Arnold [1], pages 178-187). If u( ·)is linear, that 
is, every element of u( ·) is a linear function, then x = Q is a trap and stability 
in distribution is equivalent to stochastic stability (in probability), which has 
been extensively studied by Has'minskii [5], Chapter 6. We are primarily 
interested in the case u(Q) -:/= 0, that is, Q is not a trap. In this case if the 
diffusion is stable in distribution, the invariant probability has no discrete 
component. However, one may also derive criteria for stochastic stability by 
the method used in this article.(see Remark 2.4). 

ii The main distinction between nonsingular diffusions and singular ones in 
the present context is that for nonsingular diffusions tightness of {p(t; x, dy ): 
t::::::. 0} for some x is equivalent to stability in distribution, while this is far 
from being true in the singular case. Here is a simple but interesting example. 
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EXAMPLE 1.1. Let k = 2, B = diag( -1, -1) and 

( x2 0) 
u(x) = c -xl 0 . 

Then R2(t) == x;ct) + x:ct) satisfies dR 2(t) = {c2 - 2)R 2(t) dt, so that 
R 2(t) = R 2(0) X exp{(c2 - 2)t}. Consider the case lei= ..f2. Then R 2(t) = 
R 2(0) for all t, which in particular implies tightness of {p(t; x, dy ): t ~ 0} for 
every x. On the other hand, there is an invariant probability on every circle 
and the angular motion on the circle is a periodic diffusion. If lei '=!= ..f2, the 
only invariant probability is the point mass at the origin. If lei> 12 and 
X(O) '=!= Q, then R 2(t)--+ oo a.s. as t--+ oo, If lei< ..f2, then the diffusion is 
stochastically stable a.s. and, therefore, stable in distribution. One may modify 
this example by taking u( ·) so that u( · )u( · )' is nonsingular on {lxl < r} for 
some r > 0, and letting u( ·) be as above with c = ± ..f2 on {lxl ~ r}. In this 
case the diffusion starting in {lxl ~ r} has the limit cycle property, converging 
in distribution to the invariant probability on {lxl = r}, but still has infinitely 
many invariant probabilities-one on each circle {lxl = r'}, r' ~ r. 

The following simple example shows that (1.3) alone is not enough and that 
tightness is needed along with (1.2) [or (1.3)] to establish stability in distribu
tion. 

EXAMPLE 1.2. Let k = 1, b(x) = e-"', u(x) = 0. Then X"'(t) = 
ln(t + e"') --+ oo as t --+ oo, but X"'(t) - XY(t) = ln((t + e"')/(t + eY)) --+ 0 as 
t --+ oo, uniformly for x, y in a compact set K. 

Finally, stable singular diffusions are not in general Harris recurrent, nor 
strongly mixing. To derive central limit theorems and laws of the iterated 
logarithm for processes such as fJ f(X(s)) ds, a convenient method in this case 
is to show that f belongs to the range of the infinitesimal generator on 
L 2( ffi: k, 'lT) (Bhattacharya [3]). Estimates of asymptotic flatness such as (2.17) 
enable one to identifY a broad subset of the range. 

Some qualitative aspects of asymptotics of singular diffusions have been 
studied by Kliemann [7]. · 

2. The main result. Assume that, for some .A0 ~ 0, 

(2.1) llu(x) - u(y) II~ .A 0 ]x- y], for all x,y. 

Throughout · (dot) and I I denote euclidean inner product and norm, while II II 
de,p.otes matrix norm with respect to I 1. Write 

(2.2) 
a(x) = u(x)u(x)', 

a(x,y) = ( u(x) - u(y))( u(x) - u(y))'. 
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Write tr(A) for the trace of the matrix A. Our main result is: 

THEOREM 2.1. Suppose u( ·)is Lipschitzian. 
(a) If there exist a symmetric positive definite matrix C and a positive 

constant 'Y such that 

2C(x- y) · a(x,y)C(x- y) 
2C(x- y) · B(x- y) - ( ) C( ) (2.3) X - Y • X - Y 

+ tr(a(x,y)C) ~ -ylx- yl2 , x+y, 

then the diffusion (1.1) is stable in distribution. 
(b) If there exist a symmetric positive definite matrix C and a constant 

f3 > 0 such that 

(2.4) 

2Cx · a(x)Cx 
2Cx · Bx- C + tr(a(x)C) ~ -{31xl2 

x· x 

for all sufficiently large lxl, 

then there exists an invariant probability. 

The inequalities (2.3) and (2.4) arise from the use of the Liapounov function 
v(x) == (x · Cx)1-s [for a suitable s E [0, 1)] applied, respectively, to the 
stochastic processes zx,Y(t) := xx(t) - XY(t) and xx(t). 

As a corollary we have 

CoROLLARY 2.2. Assume u( ·) is Lipschitzian and all eigenvalues of B have 
negative real parts. Assume in addition that 

(2.5) 
2 1 

( k - 1)A0 < Ap, 

where A0 is as in (2.1) and Ap is the largest eigenvalue of 

(2.6) P =={Xi exp{sB'}exp{sB} ds. 
0 

Then the diffusion (1.1) is stable in distribution. 

PROOF. In order to deduce Corollary 2.2 from Theorem 2.1, let C = P. It is 
not difficult to check that 

(2.7) B'P +PB =-I, 

where I is the k X k identity matrix. Using this, we get 2Px · Bx = x · (PB + 
B'P)x = -lxl2• Also, 

tr( a(x, y)P) = tr( fiia(x,y)fii) 



224

316 G. K. BASAK AND R. N. BHATTACHARYA 

and 

2P(x- y) · a(x,y)P(x- y) 

(x-y)·P(x-y) 

2../P (X - y) · .JP a (X, y) .JP .JP (X - y) 

IP(x- y) · IP(x- y) 

;::: 2( smallest eigenvalue of .JP a ( x, y) .JP). 
Therefore, 

(2.8) 

2P(x- y) · a(x,y)P(x- y) 
- ( ) P( ) + tr(a(x,y)P} x-y · x-y 

k 

::;; L A;(x,y)- A1(x,y), 
i=2 

where A1(x,y)::;; A2(x,y)::::;; · · · ::::;; Ak(x,y)aretheeigenvalues offiia(x,y){P. 
The right side of (2.8) is clearly no larger than 

(k- 1)11../Pa(x,y)../PII::::;; (k- 1)(11PII)(IIa(x,y)ll) ::::;; (k- 1)ApA~Ix- yl 2 • 

Now let y = (1 - (k - l)ApA~) to obtain (2.3). D 

REMARK 2.1. Before proceeding with the proof of Theorem 2.1, let us note 
that if O"( ·) is Lipschitzian, then (2.3) implies (2.4) for every f3 E (0, A). To see 
this simply take y = 0 in (2.3) and use the estimate 

2 2Cx · a(x, O)Cx 
-ylxl ;::: 2Cx · Bx- C + tr(a(x,O)C} 

x· x 
{2.9) 

2Cx · a(x)Cx 
= 2Cx · Bx- C + tr( a(x)C) + O(lxl) as lxl--> oo. 

x· x 

As we shall see in the course of the proof of Theorem 2.1, (2.4) implies the 
existence of an invariant probability, but not uniqueness. The stronger condi
tion (2.3) also implies the asymptotic flatness (1.3). The existence of an 
invariant probability and asymptotic flatness together immediately yield 
uniqueness and stability. 

PROOF OF THEOREM 2.1. Consider the (Liapounov) function 

(2.10) v(x) = (x · Cx) 1-• 

for some s E [0, 1) to be chosen later. Define, for a given pair (x, y) with x =I= y, 

(2.11) = x- y + {Bzx,y(s) ds + {(CT(Xx(s)}- CT(XY(s))) dW(s), 
0 0 

'To:= inf{t;::: 0: zx,y(t) = 0}. 
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By ItO's lemma (see Ikeda and Watanabe [6], pages 66-67) 

v(zx,y(t))- v(x- y) = ft(v)(Xx(s), XY(s)) ds 
0 

(2.12) + f(grad u)(Z-"•Y(s)) 
0 

·(u(Xx(s))- u(XY(s))) dW(s), 

317 

where writing iJ; for differentiation with respect to the ith coordinate and 
using (2.3), 

- 1 k 
L(v)(x,y) == B(x- y) ·(grad v)(x- y) + 2 E aij(x,y)(iJ;iJjv)(x- y) 

i,j=l 

{2.13) 

= (1- e)((x- y) · C(x- y)) -e[2B(x- y) · C(x- y) 

(x- y) · Ca(x,y)C(x- y) ] 
-2e ( ) C( ) +tr(a(x,y)C) x-y · x-y 

:s; (1- e)((x- y) · C(x- y)) -e[ -ylx- yl2 

(x- y) · Ca(x,y)C(x- y)] 
+2(1-e)-----------------

(x- y) · C(x- y) 

:s; (1- e)((x- y) · C(x- y)) -e 

X [ -ylx- yl 2 + 2(1- e)A~A0Ix- yl 2 ]. 

Here A0 is the largest eigenvalue of C. Now choose e E [0, 1) such that 

(2.14) - y1 == -y + 2(1- e)A~A0 < 0. 

Then we have 

(2.15) L(v)(x,y) :s; -av(x- y), 

with a== (y1(1 -e))/ A 0 . Consider the process Y(t) := exp{at}v(zx,y(t)). It 
follows from (2.12) and (2.15) that {Y(t A T 0): t ~ 0} is a positive supermartin
gale. In particular, 

(2.16) EY(t A To) :s; EY(O) = v(x ~y). 

Since zx,y(t) = 0 a.s. for all t ~To, so that Y(t) = 0 for all t ~To, (2.16) 
implies EY(t) :s; v(x - y ). That is, 

E(Z-"·Y(t) · czx,y(t)) 1 -" 
(2.17) 

:s; exp{ -at}((x- y) · C(x- y)) 1-" t ~ 0. 
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This establishes the asymptotic flatness of the stochastic flow [in the 2{1 - s)th 
mean]. 

In view of Remark 2.1, to complete the proof of Theorem 2.1 we need to 
show that (2.4) implies the existence of an invariant probability. But (2.4) 
implies Lv(x)- -oo as lxl- oo, and the existence of an invariant probability 
follows from Has'minskii [5], Theorem 5.1, page 90. Note that v may be 
modified near the origin to make it twice continuously differentiable on all of 
lJtk. D 

REMARK 2.2 (Almost sure asymptotic flatness). The proof of Theorem 2.1 
may be slightly modified to show that if (2.3) holds, then the stochastic flow is 
asymptotically flat almost surely, that is, there exists a finite random variable 
yx,y such that 

(2.18) v(zx,y(t)) ~ yx.yexp{ -at} a.s., t ~ 0. 

REMARK 2.3 (Nonlinear drift). If instead of a linear drift one has an 
arbitrary Lipschitzian drift b( · ), then Theorem 2.1 holds with B(x - y) [in 
(2.3)] and Bx [in (2.4)] replaced by b(x)- b(y) and b(x), respectively. There is 
no essential change in the proof. 

REMARK 2.4 (Stochastic stability). If the origin Q is a trap, that is, u(Q) = 0, 
then {p(t; 0, dy ): t ~ 0} is trivially tight. In this case the proof of Theorem 2.1 
shows that it is enough to check (2.3) withy= 0 (for all x). In view of(2.18), 
the diffusion is then stochastically stable a.s. and in the 8th mean, for some 
8 > 0. More generally, if the drift is b( ·) [b( ·) and u( ·) are assumed to be 
Lipschitzian] and if x* is a trap, that is, b(x*) = 0, u(x*) = 0, then a sufficient 
condition that x: - x* a.s. and in the 8th mean exponentially fast for every x 
as t-oo, is 

2C(x- x*) · a(x)C(x- x*) 
2C(x-x*)·b(x)- ( *) C( *) +trfa(x,x*)C) 

(2.19) X -X • X -X 

~ -ylx - x*l 2 for all x =fox*, 

for some positive definite matrix C and some 'Y > 0. In the case b( ·) and u( ·) 
are both linear, this result may also be derived by the method of Has'minskii 
[5]. Note that a(x, x*) = a(x) if u(x*) = 0. 

REMARK 2.5. Suppose the left side in (2.3) is greater than or equal to 
ylx - y[2 for some 'Y > 0 and all x =fo y. Then one may show (by the method of 
prqpf for asymptotic flatness) that IXx(t)- XY(t)[- oo a.s. (and in the 8th 
mean) exponentially fast as t-oo. This is true for the general nonlinear case, 
if B(x - y) is replaced by b(x) - b(y ). Similarly, if the left side of (2.4) is 
greater than or equal to J3lxl 2 for all x, then JXY(t)j - oo a.s. as t - oo for 
every y that is not a trap. 
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REMARK 2.6 (Criterion for stability in distribution for nonsingular diffu
sions). Since (2.4) ensures tightness, a nonsingular diffusion with drift b( ·) is 
stable in distribution if (2.4) holds [with Bx replaced by b(x)]. Although for 
nonsingular diffusions Has'minskii's useful criterion of positive recurrence is 
available, it is not very suitable if the infinitesimal generator is far from being 
radial. We give a simple example where Has'minskii's criterion is not satisfied, 
but (2.4) holds. 

EXAMPLE 2.1. Let k = 2, B = diag( -1, -1), a(x) = (81 + 8ix2)2)1, where 
81 > 0, 82 ~ 0 are constants. To apply Has'minskii's criterion we compute (see 
Bhattacharya [2]) 

. x·a(x)x 
Q:(r) := mf 2 = 81, 

lxl~r lxl 

(2.20) 
_ 2x·Bx+tr(a(x)) ( 2) 28tf82 
f3( r) := sup --------'- - 1 = 1 - - + --=----

lxl~r (x·a(x)x)jlxl 2 82 81 +82 r 2 ' 

l(r) := {-i§(_u_) du = (1- ~)In r + 0(1). 
1 u 82 

According to Has'minskii's criterion (see [2] and [4]) a sufficient condition for 
stability in distribution is 

[~' exp{-l(r)}dr = oo, 
1 

(2.21) 
1oo exp{l(r)} 

( ) dr < oo. 
1 Q: r 

In the present example, 

(2.22) 

1oo exp{ -l(r)} dr = oo for all82 ~ 0, 
1 

roo exp{l(r)} 
}, ( ) dr < oo iff 82 < 1. 

1 Q: r 

Thus, according to Has'minskii's test, the diffusion is stable in distribution if 
82 E [0, 1). On the other hand, taking C =I, the left side of (2.4) is -21xl 2• 

Thus the criterion (2.4) is satisfied and the diffusion is stable in distribution no 
matter what the value of the nonnegative constant 82 is. 

REMARK 2.7. A specific question raised by L. Stettner to one of us during a 
vi§it to the IMA in 1986 at the· University of Minnesota was: Is the diffusion 
(1.1) stable in distribution if u( ·)is Lipschitzian, u(Q) =F 0, and all eigenvalues 
of B have negative real parts? It is obvious from (2.5) that the answer is yes 
for k = 1. A counterexample is contained 'in Example 1.1 for the case k = 2 
[with u( ·)modified near the origin], which can be extended to k > 2. The two 
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examples below show that even when restricted to nonsingular diffusions, the 
answer is "yes" for k = 1 and "no" for k > 1. 

EXAMPLE 2.2 (k > 2). Let B = -(jf (15 > 0), a(x) = dr 2 I (d > 0) for r = 
lx I ;;:: 1; then a(·) is nonsingular and Lipschitzian on m k. In this case 
Has'minskii's criterion (2.21) is necessary as well as sufficient. But .f(r) = 
(k - 1 - (215/d))ln r (r;;:: 1). If 5/d < (k - 2)/2, then the first integral in 
(2.21) converges, implying that the diffusion is transient. If 15/d = (k - 2)/2, 
then the first integral in (2.21) diverges, as does the second integral, and the 
diffusion is null recurrent. If 15/d > (k- 2)/2, then (2.21) holds so that the 
diffusion is positive recurrent and, therefore, stable in distribution. 

EXAMPLE 2.3 (k = 2). Let B = -M, 

( 
A1xi + e - A1x1x2) 

a(x) = 2 , 
-Alxlx2 Alxl + e 

where 5, A1 and e are positive constants. Note that the positive definite square 
root of a(x) is Lipschitzian in this case. Then 

_ (A1 - 25)lxl2 + e A1 - 215 2 
f3(r) = f3(r) := inf = 1 + r , 

- lxl=r e e 

_ jrf3(u) 
I(r) = !(r) := --- du. 

1 u 

(2.2~) 

Has'minskii's criterion for recurrence (or transience) is necessary as well as 
sufficient here. If A1 = 25, then {3(r) = 1 and both the integrals in (2.21) 
diverge, which implies the diffuSion is null recurrent. If A1 > 25, then 
/i exp{ -!(r )} dr < oo, so that the diffusion is transient and no invariant 
probability exists. 
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7.6 “Speed of convergence to equilibrium and to normality
for diffusions with multiple periodic scales”

Speed of convergence to equilibrium and to normality for diffusions with multiple periodic
scales, Stochastic Processes and their Applications. 80, pages 55–86 (with M. Denker &
A. Goswami).
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Abstract 

The present article analyses the large-time behavior of a class of time-homogeneous diffusion 
processes whose spatially periodic dynamics, although time independent, involve a large spatial 
parameter 'a', This leads to phase changes in the behavior of the process as time increases 
through different time zones, At least four different temporal regimes can be identified: an initial 
non-Gaussian phase for times which are not large followed by a first Gaussian phase, which 
breaks down over a subsequent region of time, and a final Gaussian phase different from the 
earlier phases, The first Gaussian phase occurs for times 1 « t « a 2' 3 , Depending on the specifics 
of the dynamics, the final phase may show up reasonably fast, namely, for t » a2 log a; or, it 
may take an enormous amount of time t » exp{ ca} for some c > 0, An estimation of the speed 
of convergence to equilibrimn of diffusions on a circle of circmnference 'a' is provided for the 
above analysis, © 1999 Elsevier Science B,V, All rights reserved, 

Keywords: Diffusions; Periodic coefficients; Spectral gaps; Gaussian approximation 

1. Introduction and summary 

Consider a diffusion X(,) govemed by Ito's stochastic integral equation of the fonn 

X(t) = x0 + l { b(X(s)) + f1(X(s )/a)} ds + l a(X(s)) dB(s ), (L I) 

where b(x) may be thought of as the local drift velocity, and f1(x/a) the large-scale 
d1itl velocity of X(,), The spatial scale parameter 'a' is large and, therefore, f1(xja) 
changes slowly, As a consequence, one may expect X(') to be well approximated, 
during an initial period of time, by X 1 (,) satisfying 

t t X1(t)=xo+ Jo {b(XI(s))+fl(xofa)}ds+ Jo a(X1(s))dB(s), (L2) 

* Corresponding author, 
1 Research supported by an NSF Grant DMS 9504557, and by the Alexander von Humboldt-Stithmg, 

0304-4149/99/$ - see ti,ont matter © 1999 Elsevier Science RY All rights reserved, 
PII: S0304-4149(98)00069-6 
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Notice that the large-scale drift is replaced by a constant f1(x0 ja ). By changing the 
origin, one may take x0 = 0 in Eqs. ( 1.1) and ( 1.2 ), so that the dynamics of X1 ( ·) are 
completely unaffected by large-scale fluctuations embodied in /1(x/a ). In the case of k

dimensional diffusions it was shown in Bhattacharya and Gi.itze ( 1995) that X1 (s ), 0 ~ 
s~t, well approximates X(s), O~s~t, if t=o(a213 ), provided h(·),fl(·) are 
Lipschitzian and a(-) is a constant nonsingular matlix. Now if h(-) is periodic then 
X1 ( ·) is asymptotically a Brownian motion whose parameters can be computed by solv
ing ce1tain elliptic equations (Bensoussan et al., 1978; Bhattacharya, 1985 ). It follows 
that for I « t « a213 , X(·) has the same Brownian motion approximation. The time 
scale t = o(a213 ) for this approximation cannot in general be expanded. 

As t becomes larger, the effects of large-scale fluctuations become significant, and 
X(·) may go through a number of phase changes with time. This phenomenon was 
analysed in Bhattacharya and Gi.itze (1995) for k-dimensional diffusions (k ~ 2) such 
that h(-) and /1(-) are periodic, having the same period lattice, 'a' a (large) positive 
integer, a(·) a constant nonsingular k x k matrix. In addition, it was assumed that 
div h(x) = 0 = div f1(x). The 'divergence-free' assumption was crucial in this analysis, 
which showed that for times t » a2 1og a the diffusion X ( ·) is again asymptotically 
a Brownian motion, whose parameters are quite different from those of the initial 
approximating Brownian motion. The time scale for this later approximation cannot in 
general be made smaller than t » a2 . 

Under the 'divergence-free' assumption, the diffusion X(t) :=X(t) mod a (t~O) on 
the hiq torus sk (a):= {x mod a: x E [Fgk} has normalized Lebesgue measure as its in
variant distribution. This assumption also allows one to use elegant spectral theoretical 
methods for the analysis of the dispersion matrix (of the limiting Brownian motion 
approximation for t » a2 log a). Tn the absence of this assumption one cannot in gen
eral analytically compute the invariant density, and cannot take recourse to the spectral 
expansions for the analysis of dispersion. 

The present article provides an insight into the case when h( ·) and /1( ·) are not 
divergence-free by analyzing the one-dimensional case, where the differential equations 
leading to the invariant density and asymptotic variance can be solved explicitly. 

The first phase of the asymptotics here are derived much the same way as in 
Bhattacharya and Gi.itze ( 1995 ). Using the Cameron-Martin-Girsanov Theorem 
( Karatzas and Shreve, 1991, p. 193) it is shown in Theorem 3.1 that the total vari
ation distance between the distributions of X(·) and X1 ( ·) on C[O, t] goes to zero if 
t = o(a213 ), i.e., as t/a213 ---+ 0. This is true without any specific assumption (such as pe
riodicity) on h(-) and /1( · ). Theorem 3.3 says that if b(·) is periodic then X(t) is asymp
totically Gaussian, provided 1 « t « a2!3. The asymptotic distribution here is the same 
as that of X1 (t ), so that the asymptotic variance parameter does not depend on /1( · ). 

For the final phase of the asymptotics, h( · ), /1( ·) and a(·) are assumed to be periodic 
withthesameperiod 1, a 2(-)>0, 'a' apositiveinteger. ThenX(t):=X(t)moda(t~O) 
is a diffusion on the biy circle S 1(a) := {xmoda: x E IR}. First, consider 'a' fixed. Then 
the diffusion X is (p-mixing with an exponentially decaying (p-mixing rate with time. 
It follows that X(t) is asymptotically Gaussian with mean t(b +[>a) and va1iance trY2 , 

say. Here b, fJa are the averages of h( ·) and flU a) w.r.t. the invariant probability 
na(x)dx on S1(a), and na and c;. 2 may be computed by solving a couple of second-
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order ordinary differential equations. The important problem is to figure out how large 
t must be for this Gaussian approximation to take hold, when the parameter 'a' is very 

large. Of course, a precise Berry-Esseen-type bound, displaying the constants involved 
as explicit functions of 'a', would be ideal. In spite of much recent progress on Berry
Esseen bounds (see e.g., Bhattacharya and Ranga Rao, 1976: Gi:itze and Hipp, 1983; 
Stein, 1972; Tikhomirov, 1980), such a precise and explicit computation for the present 
case seems very hard. In addition, such bounds generally do not reveal phase changes 
over different scales of time. The present approach is to let t and 'a' go to infinity 

simultaneously, and detennine how large t should be in relation to 'a' for an effective 
Gaussian approximation to be valid in the final phase. 

Without loss of generality, we assume J~ (h(y)/0'2(y)) dy = 0. This may be achieved 
by adding a constant to /1( · ). Two cases are considered. In Case 1, /1(-) is bounded 
away from zero. In case 2, 0'2 (-) is taken to be a constant and J~ j)(x) dx = 0. The first 
order of business, in either case, is to determine the speed with which the distribution 
ft(t;x0 ,y)dy of X(t) approaches the equilibrium iia(y)dy on the big torus S 1(a). For 
this we estimate the spectral gap of the generator L of X on U(S1(a), Tia)· Since Lis 

not self-adjoint in Case I, the spectral gap h of ~(L + L) is estimated, L being the 
generator of the time-reversed process. With this notation, h = inf{ ( -Lf, f): f E 

flz n I j_ }, where (, ) denotes the inner product on L2(S 1(a), n0 ), 0Jz is the domain 
of L, and I_!_ is the set of all f E L2 which have zero mean. Some general facts 
relating to this estimation are derived in Section 2 (Lemmas 2.1 and 2.3 ). Detailed 
computations in Section 4.1 show that, in Case I, h?c1 where c;'s are positive 

constants independent of 'a'. Although h concerns the rate of L2-convergence of 
a square integrable density to equilibrium, a little extra work (using an estimate of 
Aronson ( 1967) for the fundamental solution of a parabolic equation, and an inequality 
of Fill ( 1991)) shows that the rate of convergence to equilibrium in total variation 
norm is no more than c2a 112 exp{ -c1t/a2 } (Theorem 4.2), whatever be the initial state. 

Crucial in this estimation of Jcr is the fact that maxx n0 (X )/minx n0 (x) is bounded away 
from zero, as a ____., oo. The central limit theorem, Theorem 4.5, is based on this estimate 

of the spectral gap and on a computation of the asymptotic variance (parameter) (]2. It 

says that, for t » a2 log a, {X (t) - t( h + fia)} Wli is asymptotically standard nonnal, 
and fl = fl( a) is bounded away from zero and infinity. 

In Case 2, L is self-adjoint: L = L. Also, max, Tia(x)j min, n0 (x) goes to infinity ex
ponentially fast as a ____., oo. This leads to a spectral gap estimate h? c3a- 2 exp{ -c4a} 
and a consequent rate of convergence to equilibrium given by c5 a112 exp{c6a- 2e-C4"t}. 
To have an intuitive feeling about AL it is better perhaps to look at the scaled diffusion 

Y on the unit torus S 1 : = {x mod 1: x E IR}, defined by 

( 1.3) 

The generators L of X and A of Y are 

1 d2 d 
L =- 0'2 -d 2 + {h(x) + (f(x/a)}-d , 

2 X X 
( 1.4) 

I d2 . . d 
A= -a2 -d 2 + [a{h(ay) + fl(y)}]-.. 

2 y ~ 
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One may check that Ar = (I ;a2 ) AA (Proposition 4. I). The invariant density na of Y 
on S 1 is given by na(x) = aiia( ax). ln the present Case 2, as a ---+ oo, all weak limit 
points of na(x) dx are discrete distributions with suppmi contained in the finite set F of 
those points x* E S 1 where the potential function lj;(x) := J; f1(y) dy attains its max
imum value (Proposition 4.1 0). In the case t/1 has a unique maximum at x*, na(x) dx 
converges weakly to the degenerate distribution ()x* ( dx) at x*. 

Also, in Case 2, one has b + fia = 0. Using the spectral gap estimate given in the 
preceding paragraph, one may now show that for t » a2 exp{ c7a} log a, X( t )/rxVt con
verges to the standard normal J'f/(0, 1) (Theorem 4.13). Here .a2 goes to zero expo
nentially fast, as a ---+ :x:. This has two significant implications. First, since a2 t must 
go to infinity in order for a Gaussian approximation to hold, the requirement that t 

must he at least as large as an exponential in 'a' cannot be avoided. Indeed, even if 
the process X is in equilibrium (i.e., the initial distribution is iia ), the final Gaussian 
approximation becomes valid only after times exponentially large in 'a'. Secondly, the 
exceedingly small value of a2 indicates that dispersivity, or variance per unit time, is 
almost negligible in the final phase. 

The results here are in sharp contrast to those obtained in Bhattacharya and Gotze 
(I 995) for the divergence-free case. First, in the latter case it always suffices to have 
t » a2 log a for the final phase of asymptotics to take hold. Second, the asymptotic 
variances (per unit time) never decay as a ---+ oo in the divergence-free case, and indeed 
often grow quadratically with 'a'. One expects that the present one-dimensional results 
may be extended to ce1iain multidimensional cases of interest, besides the obvious case 
of independent coordinates. 

The present analysis also serves as a pointer to the inadequacy of the Berry-Esseen 
type bounds under dependence (Stein, I 972; Tikhomirov, I 980) without a careful es
timation of the constant involved. Such a bound, which applies to the final phase of 
the asymptotics here, indicates that the error of normal approximation of X( t) is no 
more than }'/Vi for some constant }' > 0. The problem in using it, without an ex
plicit estimation of ;·, is that I' may be reasonably small, as would be the case under 
the hypothesis of Theorem 4.5; it may also be enonnously large, as in the case of 
Theorem 4. I 3. The size of ·y does not depend only on the exponential phi-mixing rate 
of X, and on the bounds for b(- ), (J(- ), and cr2 • Tt also depends crucially on the rate 
at which the asymptotic dispersivity, under equilibrium, grows or decays. The latter in 
turn depends delicately on the nature of the coefficients (in our case fl), not just on 
their lower and upper bounds. 

2. Estimation of the spectral gap and the speed of convergence to equilibrium 
for diffusions on S 1 

Let X( r ), r?: 0, be a Markov process on a state space M endowed with a sigma field 
"4/1. Suppose its transition probability has a density r(t;x,y) with respect to a sigma 
finite measure v and that there exists a unique invariant probability n( dx) = n(x )<·( dx ). 
Write U for the real Hilbert space U(M,n). Denote by T1 (t>O) the semigroup of 
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transition operators on L2 , 

(Ttf)(x)= lf(y)r(t:x,y)v(dy) (/ E L2 ). (2.1) 

Let A denote the infinitesimal generator of this contraction semigroup. We will assume 
that the domain ~A of A is dense in L2 , i.e., the semigroup is strongly continuous. Let 
q(t; x, .Y )v(dy) denote the transition probability of the time-ret'ersed Markov process: 

n(y) 
q(.t·x v)=r(t· v x)-· -. 

' 'J '· ' n(x) 
(2.2) 

Let T1, t > 0, denote the semi group of transition operators of the time-reversed process: 

(2.3) 

Then, denoting by (, ) the inner product on L 2 , 

(Ttf,g) = /(Ttf)(x)g(x)n(x)v(dx)= l [lf(y)r(t;x,y)v(dy)] y(x)n(x)v(dx) 

= l [lg(x)r(t;x,y)n(x)v(dx)] f(y)v(dy) 

= l [/g(x)q(t;y,x)r(dx)] f(y)n(y)1·(dy)= (/,f,g) (f,g E L2 ). 

(2.4) 

In other words, f, is the adjoint of T1 on L 2 . Let A denote the infinitesimal generator 
off, t > 0. We will assume that is dense in L 2 • Denote by I_!_ the closed subspace 
of L2 orthogonal to constants. Then 9l4n I j_ is dense in I j_. The following is an analog 
of an inequality of Fill (1991). (Also see Diaconis and Stroock (1991)). 

Lemma 2.1. Assume that ~A is dense in L2 . Let 1111, ( ) denote norm and inner 

product on L2 =.L2(M, n). Define A?O h.v 

A= inf { ( -Af,f): f E 1 j_ n ~A·, 11/11 = 1 }. (2.5) 

Then if X ( 0) has a probability densit.v 17 w. r. t. 1', one has 

(2.6) 

where 171 is the density of X (t) w. r. t. v, and 

1, ( ') _ 1J(y)- n(y) 
tro J. - ( . ) · n y 

(2.7) 

Proof. If lll/loll=oo, there is nothing to prove. Therefore, we assume l/10 E 1_]_. For 
g E ]_!_ n EZ'A·, Ttg E ]_!_ n ~A·(t>O) and, by (2.5), 

d- 2 d(- -\ (- --\ . - 2 
dtiiTrgll = dt Tt(J,Ttg! =2 Tt(;,AT1g; ~ -2AIITrffll, (2.8) 
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or 

is dense in 1 _!_ by assumption, inequalities (2.9) hold \fg E I_!_. 

~ j'J(x) j'J(x) n(x) T1(1J/n)(y) = -q(t; y,x)v(dx) = -r(t;x, y)--v(dx) 
n(x) n(x) n(y) 

I 
= -( .)l)t(y), 

ny 

(2.9) 

(2.10) 

so that T1( l/Jo) = 1Jtfn - 1. By the Cauchy-Schwarz inequality and ( 2. 9) one then has 

]17Jt(y)- n(y)lr(dy) = j ll]t(y~(~;(y) ln(y)v(dy) 

= ji(Ttl/Jo)(y)ln(y)v(dy)::( II Ttl/loll ::(e--i'lll/loll· D 

(2.11) 

Remark 2.2. Note that ( -Af,f) = ( -f,Af) = ~ (-(A+ A)f,f) iff E E2:4 n ~A-· 
Assuming that E2:4 n is dense in U, one may take i.=inf{(-Af,f): f E ]_]_ n 
~An fZii, llfll = 1 }. This assumption is satisfied for diffusions on the circle considered 
in this article. 

Consider now a one-dimensional diffusion with continuously differentiable drift and 
diffusion coefficients, p(x) and a2(x ), both periodic with period I. Assume a 2(x) > 0 \f x. 

Such a diffusion X(·) may be regarded as the solution to the Ito equation 

dX(t) = JL(X(t)) dt + a(X(t)) dB(t), t ~ 0, (2.12) 

subject to an initial condition X(O) =X0 , where X 0 is independent of the standard 
Brownian motion B( ·) appearing in Eq. (2.12 ). Here a(x) is the positive square root 

of a2(x ). 

Let X ( ·) be the process defined by 

X(t)=X(t)mod I, t~O. (2.13) 

Then X(-) is a Markov process on the unit circle S 1 ={xmod 1: x E IR}, called a 
diffusion on the unit circle S 1 (See, e.g., Bhattacharya and Waymire, 1990, p. 400 ). 

Its unique invariant probability n has a density n(x) (w.r.t. Lebesgue measure on S 1 ) 

satisfying the forward equation 

(2.14) 

On integration this yields 

el(O.x) d(O,x) lx . 
n(x) =c2-.- + 2c1-.- e-J(O,.J) dv, 

a2(x) a2 (x) 0 • 
(2.15) 
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where 

1x 2p(y) 
J(O,x)= - 2-dy. 

0 (J (y) 

The boundary condition rr( 0) = n( I ) leads to 

c2(1 - eJ(o, 1)) 
CJ = .J • 

2e/(O, I) lo e-I(O,y) dy 

Two cases arise. 
Case 1: 

1(0, 1)=0, 

and 
Case 2: 

1(0,1)yf0. 

In Case I, c1 =0 and 

n( x) = cef(O,x l / u2 (x ), 

where c is the nonnalizing constant 

(11 e/(O,x) )- 1 

c= --dx 
o u2(x) . 

In Case 2, with a different normalizing c, 

n(x) = --. e-J(O.yl dy- e-J(O.yl dv . cel(O.x) { e/(0.1) 11 1x } 
u2(x) ei(O.I l - I o o ~ 

(2.16) 

(2.17) 

(2.18) 

(2.19) 

(2.20) 

(2.21) 

Consider the real Hilbert space L2 = L2(S1, n ). Let T1 (t > 0) be the strongly contin
uous contraction semi group on L 2 defined by 

(T,f)(x)= { f(y)J)(t;x,y)dy, f E L2 , Js, (2.22) 

where ;)(t; x, y) is the transition probability density (w.r.t. Lebesgue measure) of X(-). 

The infinitesimal generator of this semigroup is A defined by 

(Af)(x) = ~u2 (x )r (x) + p(x )f'(x) (2.23) 

for all sufficiently smooth periodic f, and then by extension to §A by the closure (in 
L 2 x L 2 ) of the graph of this restriction. 

Lemma 2.3. (a) The infinitesimal qenerator A is selFadjoint on L2(S 1,n) ijEq. (2.18) 
holds, and non-self~adjoint under (2.19). (b) In both cases (2.18) and (2.19), one has 

(2.24) 
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and 

(2.25) 

where 

1'vf :=sup{ ( a 2 (z)n(z))- 1 1z n(x) dx 11 
n(y) dy: z E S 1 } • (2.26) 

Proof. (a) Let f, q E C2(S1 ), i.e., the lifts of f, y to IR are twice continuously differ
entiable periodic functions. On integration by pmts, and using Eq. (2.14 ), we get 

(Af,g)= 11 {~a2 (x)f"(x)+,u(x)f'(x)}g(x)n(x)dx 

= -1 1 

f'(x) { (~a2(x)n(x)J- p(x)n(x)} g(x)dx 

(1 I . •/ I 
- Jo 2a2(x)f (x)g (x)n(x)dx. (2.27) 

The expression within curly brackets on the right side equals the constant of integration 
c1 appearing in Eq. (2.17), which vanishes in the case (2.18), but is nonzero in the 
case (2.19). 

(b) For f E C2(S1 ), letting y = f in Eq. (2.27), one gets 

-(!,if) = (-Af,f) = c1 11 
f'(x)f(x)dx + ~ llaf'll 2 

= ~ 11 
(f2 )'(x) dx + ~ llaf'll 2 = ~ llaf'll 2 · (2.28) 

This proves Eq. (2.24) for all f E C2(S1 ), and the assertion \If E ~-follows by closure. 
It remains to prove (2.25). Let fE~.fn lj_, llfll =I. Then, 

1 1·1 t I = 2. 
0 

Jo (f(x)- f(y)) 2 n(x)n(y)dxdy 

= ;·;· . (j'}f'(z)dz)
2 

n(x)n(y)dxdy 
X<J X 

= 11 
{ 1Y (['f'(z)dz )

2 
n(x)dx} n(y)dy 
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~ 11
(f 1(z))2u2(z)n(z)(u2(z)n(z))- 1 [ 1~ n(x)dx 11 

n(y)dyl dz 

~ lluf1 ll 2 s~p { (u2(z)n(z))- 1 lz n(x)dx 11 
n(y)dy} ~MIIuf1 ll 2 . (2.29) 

The proof of (2.25) is completed on using Eq. (2.28) in (2.29). D 

Remark 2.4. The fact that C2 (S1 ) is dense in :'J?A and in :2?4 may be proved, e.g., by 
using Ito's Lemma along the lines of Bhattacharya and Waymire ( 1990, pp. 604, 605 ). 

Remark 2.5. To compute A in the case (2.19), integrate by parts Eq. (2.27) once more 
to get 

[' [{cl+(!u2(x)n(x))1
} 1 I 2 11 l 

(Af,y) = Jo f(x) n(x) g (x) + 2u (x)y (x) n(x)dx 

j ·l . [{ CJ } 1 ] 7 11 ] = 
0 

J(x) n(x) + p(x) 9 (x) + 2u-(x)g (x) n(x)dx 

=\f,Ag), 

with 

- ( Ci ) d ] o d2 
A= -+p(x) -. +-u"(x)-, 

n(x) dx 2 dx2 

Combining Lemmas 2.1 and 2.2, we arrive at the following result. 

Theorem 2.6. Let X(·) be the difji1sion on S 1 defined by Eq. (2.13), where X(-) is a 

dif/itsion on IR1 1vith continuously differentiable periodic dif/itsion coefficient u2(· )>0 
and drift p(·), both of period one. Then, if X(O) has the distribution 1Jo(y)dy, the 

distribution 171(y) dy of X(t) satisfies 

ji1Jr(y)- n(y )I dy ~ II(IJo/n)- Ill exp{- 2~t} (t > 0), (2.30) 

1vhere M is yiven by Eq. (2.26). 

3. Diffusions with two spatial scales: phase-one asymptotics 

Consider a diffusion X(·) on IR governed by the Ito equation 

dX(t) = {b(X(t)) + j)(X(t)ja)} dt + u(X(t)) dB(t), X(O) =x0 , (3.1) 

where b(- ), fl(- ), u(-) are bounded and Lipschitzian, u2 (-) is bounded away from 0 
and oo, and 'a' is a positive number. As in Bhattacharya and Gotze ( 1995 ), one may 
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prove the following result using the Cameron-Martin-Girsanov Theorem (Karatzas and 

Shreve, 1991, p. 193 ). Let X1 ( ·) be the solution of the Ito equation 

dX1(t) = {h(X1(t)) + j)(x0 ja)} dt + u(X1(t))dB(t), X 1(0) =x0 . (3.2) 

Let p(t;x0,y), p 1(t;x0,y) be the densities (w.r.t. Lebesgue measure) of X(t) and 

X 1(t), respectively. 

Let P0,1 and PJ,t denote the distributions of the processes {X(s): O~s~t} and 

{X1 (s ): 0 ~.1 ~ t}, respectively, on C[O, t]. Let IIPo.t- PL II TV denote the total variation 

distance between Po,t and PJ. 1• 

Theorem 3.1. Under the above assumptions, one has 

IIPo.t- P6, 1 IITV---+ 0 as t/a213 ---+ 0. 

In particular, 

/ I p(t; Xo, y) - PI (t; xo, y )I dy---+ 0 as t/ a 213 ---+ 0. }p; 

Relation (3.3) holds unijimnly for all initial points x0 . 

(3.3) 

Proof. Let (p be a real-valued bounded Borel measurable function on C[O, t], and let 

XJ, X{, 0 denote the restrictions of the di1Tusions X(-) and X 1(- ), respectively, on the 

interval [0, t]. By the Cameron-Martin-Girsanov Theorem, one has 

E(p(XJ) -E(p(Xi, 0 )=E((p(X(, 0 )[exp{Z(t)}- 1]), (3.4) 

where Z(t) is given by 

11 f1(X1(s)/a)- {;.)(x0 ja) d . 1 j·t [/1(X1(s)/a)- f1(x0/a)] 2 d 
Z(t)= B(s)-- s 

0 u(XI(s)) 2 0 u(XI(s)) 

= I(s)dB(s)-- I 2(s)ds, 11 111 

0 2 0 
say. (3.5) 

Letting t denote the Lipschitz constant for /1( · ), and writing d 1 :=min u2(x ), d 2 := 

maxu2(x ), one has 

2 (t)2
1 2 EI(s)~ d: a2 E(X1(s)-x0 ), 

E(X,(s) -xo)2 = E [l'{h(X,(u)) + j)(xo/a)} du + L' u(X,(u))dB(u)r 

~ 2(llhlloo + ll/1llool~2 +2d2s, 

Cllhll= :=max lh(x)l, 11/111= :=max l/1(x)l). 

(3.6) 
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Hence 

E (1' l(s)dB(s))
2 

= 1' EJ 2(s)ds 

:( 2 ( (I )
2 
-; { ( II b II 00 + II/) II 00 ) 2 ~ + d 2 t_ } --+ 0 

d1 a 3 2 
t 

as -. --+ 0. 
a2;3 

(3.7) 

From this calculation it follows that both tem1s on the right side of Eq. (3.5) go to 
zero in probability as --+ 0. Now use the relations 0 = E( 1 - exp{ Z( t)}) = E( 1 -

exp{ Z(t)} )+ - E( 1 - exp{ Z(t)})-, to write Ell - exp{ Z(t)} I = 2£( 1 - exp{ Z(t)})+ :( 
2£( IZ(t )I 1\ I). One may now use Lebesgue's Dominated Convergence Theorem. Thus 
the left side of Eq. (3.4) goes to zero, as t;a213 --+0, uniformly over all Borel (p on 
C[O, t] such that I(PI is bounded by 1. In particular, the L1-distance (on IR 1 w.r.t. the 
Lebesgue measure) between the densities of X(t) and X1 (t) goes to zero as t/a213 --+ 0. 

D 

Remark 3.2. If we assume /1( ·) is Lipschitzian, but not necessarily bounded, while 
0'2 (-) is bounded away from 0 and infinity, then (3.3) still holds, but only unifonnly 
over compact sets (independent of 'a') of initial states x0 . 

For the rest of this section we assume 

b( ·) and 0'( ·) are Lipschitzian and periodic of period one, (3.8) 

and 

(3.9) 

Under these assumptions, X 1 (·) :=X1 (·)mod 1 is a diffusion on the unit circle S 1• Its 
unique invariant probability n has a density given by Eq. (2.20) or Eq. (2.21 ), depending 
on whether Eq. (2.18) or (2.19) holds, with J(O,x)= 2 J;[{b(y) + j)(x0 ja)}j0'2 (y)] dy. 

Write p(x) = b(x) + fl(x0 ja), 

b= 11 
b(x)n(x)dx, (3.10) 

and let y be the twice differentiable periodic solution (on IR) of 

~0'2 (x)y"(x) + p(x)y'(x)=b(x)- b, 

satisfying 

?7= 11 
g(x)n(x)dx=O. 

(3.11) 

(3.12) 

Then it follows from Bensoussan et a!. ( 1978, Chapter 3) or Bhattacharya ( 1985 ), that 
one has the convergence in law 

X 1(t)- t{b + f!(x0 /a)} ~ N(O, / ), 
,ji Hoo 

(3.13) 
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where 

j·l 

y2 = 
0 

0'2 (x )(g' (x) - I )2n(x) dx 

j·l j'' t = 
0 

0'2(x)n(x)dx + 
0 

0'2 (x)(q'(x))2n(x)dx- 2 Jo 0'2(x)q'(x)n(x)dx. 

(3.14) 

Note that in all cases 1.2 >0. The normal convergence (3.13) and Theorem 3.1 now 
imply the following result (also, see Remark 3.1.1 ). 

Theorem 3.3. Assume (3.8) and (3.9), and that {1(·) is Lipschitzian, and let x0 =0. 
Then as t--+ oo, tja213 --+ 0, one has 

X(t)-t{b+/1(0)} y; i~'(O ,2 ) 
,;t -----+ u v ' } ' (3.15) 

the converyence ~ is in lmv, or distribution. 

Remark 3.4. Note that, in view of the initial condition x0 = 0 in the hypothesis of 
Theorem 3.3, the process X1 does not depend on a. 

Remark 3.5. The functional central limit theorem holds for the process X 1 (see 
Bhattacharya ( 1985) ). By Theorem 3.1, it therefore holds for the process X. In other 
words, the process WA := [Jc -i/2 {X(Jct)- At( b + (1( 0) )}: t:;:::: 0] converges in distribution 
to a Brownian motion with diffusion coefficient ·/, as } --+ oo, Jcja213 --+ 0. 

4. Periodic diffusions with two spatial scales: the final phase of asymptotics 

The constants c;, d; in this section, with subscripts, are positive and independent of a. 

Consider diffusion ( 3.1) again, with X0 independent of B( · ), 

dX(t) = {b(X(t)) + f1(X(t)/a)} dt + O'(X(t))dB(t), X(O)=X0 . 

We assume throughout this section that 

b(· ), fi( · ), 0'( ·) are continuously differentiable and periodic with period I, 

and 'a' is a positive integer. 

Also assume 

Let X(-) be defined by 

X(t)=X(t)moda (t;::O). 

( 4.1) 

(4.2) 

(4.3) 

(4.4) 
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Then X(-) is a diffusion on the circle S 1(a) := {xmoda; x E IR}. It will be convenient 
for us to scale both X(·) and X(·) in space and time as follows. Define 

Y(t) =X(a2t)ja (t~O). (4.5) 

Then Y(t) is governed by the Ito equation 

dY(t) =a{ b(a Y(t)) + /1( Y(t))} dt + u(a Y(t) )dB(t ), 

where B(t)=B(a2 t)ja (t~O) is again a standard Brownian notion. Since the functions 
y---+b(ay) and y---+u(ay) are periodic with period I 

petiod 1. Therefore, the process 

Y(t):= Y(t)mod I (t~O), 

they are also periodic with 

(4.6) 

is a diffusion on the unit circle S 1• Let ii,H ITa denote the invariant probability densities 
of X and Y, respectively. The infinitesimal generators L of X on U(S1(a), iia) and A 

of Yon L2(S 1,na) are given by 

1 d2 d 
L = -u2(x)-d 2 + {b(x) + fl(xja)}-d , 

2 X X 

1 d2 . d 
A= -u2(ax)-d 2 + a{b(ax) + /l(x)}-d . 

2 X X 

Let L and i be the adjoints of L and A. The following proposition relates the spectral 
gaps of ~(L + L) and ~(A+ i). 

Proposition 4.1. Suppose that h is the spectral yap of ~(L + L), and AA that of 
~(A+ A). Then 

) 1 . 
~L = 2 leA. 

a 

Proof. Let ?JEC2(S1)n1j_cL2(S1,na). Then f(x):=g(x/a)EC2(S1(a))n1j_cL2 

(S1(a), iia), and 

. I 
(Lj )(x)= 2 (Ay)(xja). 

a 

Therefore, by change of variables, 

It 
(-Lf,f)ii., =- a2 Jo (Ay)(xja){J(Xja)iia(x)dx 

1 t 1 
=- a2 Jo (Ay)(y)g(y)na(y)dy= a2 (-Ay,g)"". 

Conversely, given f E C2(S 1 (a)) n 1 j_, g(x) := f(ax) E C2(S 1) n 1 j_, and the same re
lations are obtained. D 
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Without any essential loss of generality we will assume, by adding a constant to the 
function /1(-) if necessary that 

t b(y) dv=O. 
Jo a2(y) . 

The analysis in this section is substantially different depending on whether 

is zero or not. Therefore, we split the analysis in two subsections. 

4.1. The case j)(x)>O \/x, or j)(x)<O \/x 

(4.7) 

For the diffusion Y in this case (see Eq. (2.16)), writing [u] for the integer part 
of u, 

. _ 1x {h(ay)+/)(y)}d,- ;·ax h(z)dz 1x /)(z)dz l(O,x)-2 a 2 >-2 2 +2a 2 , 
0 a (ay) ~ [ax] a (z) 0 a (az) 

J(x,z) := J(O,z) -J(O,x ), 1(0,1)=2a t /1(y)dy. 
} 0 a2 (ay) 

(4.8) 

Therefore, by Eq. (2.21 ), the invmiant density of ( Y)(-) is 

c { el(O,l) 11 1x } n11 (x) := -.-.-. e1(0.x) e - 1(0.z) dz - e -1(0.~) dz 
a2(ax) el(O.I)- 1. o o 

= -- e-J(x,z) dz + -- e-1(0,~) dz c 1! c el(O.x) ;·I 
a2(ax) x a2(ax) e1CO,Il- I 0 

c 11 c 11 
= -.- e -J(x.z) d7 + -.-e -J(x.l) e -J(O.z) d7 

a2(ax) x - a2(ax) 0 -

+ _L_: -el(O,x) { 1 -_1_} t e-1(0.~) dz 
a2(ax) el(O.I)- 1 el(O.ll Jo . 

( 4.9) 

For specificity, assume f1(x) > 0 \/x. The case (f(x) < 0 \/x is entirely analogous. Write 

/1* := min f1(y), /1* := max /)(y ), 
y J' 

and note that we are assuming 

Then, \/0 :o:;x :o:;z :o:; 1, 

2afl* 2<5 2aj)* 2() 
- 1-(z-x)--1 :o:;J(x,z):o:;-1-(z-x)+-d. 

G 2 ( I G I I 

d 2 := max a2(y), 
y 

( 4.10) 

( 4.11) 

(4.12) 
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Using this in Eq. ( 4.9) one obtains 

0'2 (ax )na(x) 11 { 21) 2aj)* . . } d ----:( exp ----(z-x) z 
C X d 1 d2 

{ 26 2aj)* } 11 
{ 26 2aj)* } +exp -- --· (1-x) exp -- --z dz 

dl ~ 0 dl ~ 

[ ( { 2aj)*} )- 1
] x I+ exp T -I 

( 21)) t-x {2aj)* } 
= exp d 1 } 

0 
exp d 2 u du 

( 46) { 2aj)* . } t { 2aj)* } +exp d 1 exp -y(1-x) Jo exp -yz dz 

[ ( { 2af1*} )-I] x 1 + exp T -1 . ( 4.13) 

Now, using the fact that for any A> 0, A> 0, 

( 4.14) 

we obtain that, if /1* > 0, 

_0'
2_(_a_x_)n_u--'-(x_·) :( exp ( 26) . _d_2_ + exp ( 4/)) . _d_2_ ( 1 + _d_2_) 

c d 1 2aj)* d 1 2aj)* 2aj)* 

= 2:;)* [ exp{ ~~:} + exp{ ;~} ( 1 + 2:;)J] . ( 4.15) 

Integrating both sides with respect to x, we obtain 

~ :oS 2a
1
j)* (~~) [exp{ ~~} + exp{ ;~} ( 1 + 2:;1J]. ( 4.16) 

Next, using the second half of inequality (4.12) in Eq. (4.9), 

0'2 (ax)nu(x) { 2./)} ;·I { 2a.fl* . . . } .1 _ -'----'---'--'--'- ? exp -- exp ---(z- x) uz 
C d1 X d1 

[ ( { 2aj)*} )- 1
] { 46} + 1 + exp T - 1 exp - ""d: 

{ 2aj)* . } t { 2afl* } 
x exp -T(l-x) x Jo exp -Tz dz 

{ 2<)} ( d1 ) [ { 2aj)* }] = exp ---,-- --. I - exp --.-(I - x) 
d1 2af1* d1 

[ ( { 2aj)*} )- 1] { 41)} ( d1 ) + I + exp T - I exp -""d: 2aj)* 
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{ 2af)* . } [ { 2afl* }] x exp -~ (I - x) I - exp -~ 

{ 2!5} ( d1 ) { 2!5 2af)* } ( d1 ) ~ exp -- -- - exp --- --(1-x) --
d I 2a()* d I d I 2aj)* 

[ { 2/)}( { 2afl*})] x I - exp - d 
1 

I - exp -~ . (4.17) 

The last expression is minimized by setting x = I, so that, after cancellation, one has 

a2 (ax)nu(x) { 4(5} ( d 1 ) ( { 2afl* }) ~ exp -- -- I - exp - -d
1 

• 
c d 1 2a()* 

( 4.18) 

From ( 4.15) and ( 4.18) we get 

( 4.19) 

By using this estimate the quantity M in (2.26) is estimated in the present case as 

( 4.20) 

Applying Theorem 2.6 to the transition probability density p(t;x, y) of Y(- ), 

J I I ll
jj(s;x,·) II { t} jj(t+s;x,y)-n0 (.:v)dy'( . -1 exp --.. 

51 ITa(·) 2c2 
( 4.21) 

In order to estimate the L 2 -norm on the right, first use an estimate of Aronson ( 196 7) on 
the transition probability density p(f; x, y) of the diffusion X(·) govemed by 
Eq. (4.1 ): 

(4.22) 

where c3 , c4 are constants independent of a. From ( 4.22) we deduce the inequality 

jj(1ja2 ;x,y)=a L p(1;ax,ay+an)'(acs. ( 4.23) 
-CX)<JI<CX) 

From (4.18) and (4.23) it follows that there exist constants c6, c;, independent of a 

such that one has 

II 
j7( I / a2 ; x, · ) _ I 11

2 
= J 

na( ·) 51 

l'j( 1 la2 · x ;:))2 
1 ,. ' dv- I 
nu(Y) ~ 

Using this in (4.21), with 1ja2 for s and t- 1ja2 fort, one gets 

J lfi(t;x,y)-na(Y)Idy'(c7a112 exp{-cst} (t>O). 
Sl 

( 4.25) 
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Although this estimate is derived for t ~ I , note that c7 may be adjusted so that 
it holds for 0 < t < l/a2 as well. Thus we arrive at the following result. Note that the 
diffusions X (on S 1(a)) and Y (on S 1 ) are related by 

. . X(ch) 
Y(t)= --, X(t)=czY(t/a 2 ). 

a 

We denote by ;) the transition probability density of X. 

Theorem 4.2. Under Assumptions ( 4.2 ), ( 4.3) and ( 4.1 I), one has 

J lfi(t;x,y)- na(Y)I dy::(c7a 112 exp{ -est} (t>O), 
S' 

\fxES 1, and 

J IP(t;x, y)- iru(Y)I dy::(c7a 112 cxp{ -cgtja2 } (t>O), 
S1(a) 

(4.26) 

(4.27) 

(4.28) 

\f x E S 1(a ), where iru(x) := na(xja )/a is the invariant probahility density of X. Here 

c7, c8 are positive constants depending only on the functions 0"2(- ), b(- ), /1(-), and not 

on 'a'. 

Remark 4.3. Inequality ( 4.28) implies that the total variation distance between the 
equilibrium distJibution of X and the distribution of X starting at an arbitrmy initial 
state x goes to zero if t » a2 1og a, uniformly for all x. 

A word of caution on notation: Let X(t) have the equilibrium distJibution ira. For 
periodic functions f of period a we will write / for Ef(X(t) ), while for periodic f 

with period one/, denotes Ef(X(t)ja). When the X process is in equilibrium (namely, 
when X(O) has the invariant distribution ira on S 1(a)), then the process Y is also in 
equilibrium with Y(t) having distribution nu on the unit circle S 1: na(Y) = anu(ay ). 

Hence for functions f of period one, /, =Ef(Y(t)). Since functions f of period 
one are also of period a (a integral), one has / =Ef(aY(t)). In general / c;f / 1 for 
periodic functions of period one, unless the invariant distribution is uniform. Note that 
the invariant distribution (of X( t) or Y( t)) is uniform if b( · ), /1( ·) are constants, a case 
of little interest to us. Finally, we will denote by T1 ( t ~ 0) the transition operators 
of X. Thus 

(Ttf)(y) := E[f(X"(t) )IX(O) = y ], 

/ := J f(x)na(x)dx = J f(ay)n 11(y)dy, 
S1(a) S 1 

/, := / f(xja )ira(X) dx = J f(y )na(Y) dy. 
J~ 1 (a) S 1 

( 4.29) 

Also, let Ex, cov,, varx denote expectation, covariance and variance given X(O) =x, 

and let E, cov, var denote the same under the equilibrium initial distribution ira. 
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The following corollary of Theorem 4.2 is derived in exactly the same way as Corol
lary 4.4 in Bhattacharya and Gotze ( 1995 ). (See also Correction, ibid, Bhattacharya 
and Gotze, 1996.) 

Proposition 4.4. Assume the hypothesis of Theorem 4.2. There exist positive con
stants c9 and c 10 depending only on c7 , c8 of Theorem 4.2 such that the .fi>llmvinq 
inequalities hold for all bounded measurable f, g on S 1(a) := {x mod a: x E IR 1 }: 

]cov,{f(X(s)), g(X(t))}] ~Ctoa 1 12 ]]f]]oo ]]g]]oo exp{ -c7(t- s)ja2} (0 ~s ~ t). 

(4.31) 

Proof. Relation (4.30) is an immediate consequence of (4.28). To derive 
( 4.31 ), use the Markov property to write 

cov,{f(X(s) ), g(X(t))} 

=Ex[{f(X(s))- (tf)(x)}{Tt-sY(X(s))- (Ttg)(x)}], (4.32) 

and apply (4.30) to the second factor on the right, and to ]]T1g- iJlloc· D 

We will make use of Proposition 4.4 to prove Theorem 4.5 below, which says that for 

t » a2 log a (or, t---+ oo, a---+ oo, -2- 1-t- ---+ oo) , 
a oga 

X ( t )-X (0) is asymptotically Gaussian with mean t( h + {i(l) and variance 

rJ2(t) := trJ2. (h'()- 1 )2 = ti:P, say. 

Here his the unique mean-zero solution in L2(S 1(a),na) of 

Lh(x) = b(x) + /)(xja)- b- fia, 

1 2 d2 . ! d 
L:=-rJ (x)-d 2 +{h(x)+/1(x;a)}-d . 

2 X X 

( 4.33) 

(4.34) 

(4.35) 

It is clear that the mean of X ( t) -X (0) under the equilibrium initial distribution is 
t(b + fia ). To see that the corresponding (asymptotic) variance is given by Eq. ( 4.34 ), 

use Ito's lemma (see, e.g., Rogers and Williams (1987), (pp. 60-62), or, Bhattacharya 
and Waymire (1990), (p. 585)) to write 

h(X(t))- h(X(O)) = 1' Lh(X(s))ds + 1' rJ(X(s))h'(X(s))dB(s) 

= 11 
{b(X(s))+f1(X(s)ja)-h-fi,J ds 

+ 11 
rJ(X(s) )h' (X(s)) dB(s ), (4.36) 
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so that 

X(t) -X(O)- t(b + f}a) 

= 11 
{h(X(s)) + /)(X(s)ja)- b- f}a} ds + 1' a(X(s))dB(s) 

= h(X(t))- h(X(O)) + 11 
u(X(s)){l- h'(X(s))}dB(s). (4.37) 

The expected squared value of the stochastic integral is given by Eq. ( 4.34 ), under 
equilibrium. 

For convenience, instead of solving Eq. ( 4.35) directly, which is not difficult, let us 
solve the corresponding equation for the scaled process Y( · ). That is, find a function 
g which is periodic with period I such that 

Ay(x)=b(ax) + f1(x)- h -/~," ( 4.38) 

where A is the infinitesimal generator of Y: 

I , d2 d 
A:= -u~(ax)-d 2 + a{b(ax) + /1(x)}-d . 

2 X X 
(4.39) 

The solution is unique up to an additive constant (which is determined if g = 0) and 
is given by 

q(x)=c' + ~ ( e-1(0,1) t ei(O,z)f(z)dz) j·x e-J(O,z)dz 
u2 1 - e-I(OJJ lo o 

+ :21x e-J(O.z) (1= el(O.y)f(y)dy) dz; 

f(z) := b(az) + f1(z)- b- Ho· ( 4.40) 

Here c' is an arbitrary constant and l(O,x) is as given in Eq. (4.8). lt is simple to 
check that if y satisfies Eq. ( 4.38 ), then 

h(x) := a2 g(xja) 

satisfies Eq. ( 4.35 ). 

Theorem 4.5. Assume ( 4.2 ), ( 4.3 ), ( 4.7), and ( 4.11 ). Then, as 

a ---> oo, t ---> oo, ------> CXJ 
a2 1oga ' 

( 4.41) 

( 4.42) 

[X(t)- X(O)- t(b + H,)]/(fiVt) converges 1veak(v to the standard normal distribu

tion, 1rhatever the initial distribution. Here 0 = O(a) is hounded mvay fi·om zero and 

infinity. 

Proof. Let cp( a) (a = I, 2, ... ) be a sequence of integers such that 

(p(a) 
--- ---> oo as a ---> oo. 
a2 log a 

( 4.43) 
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First assume X(O) has the equilibrium initial distribution ira. Note that 

fi;.:=~~~ 1 ()(X(s)){1-h1(X(s))}dB(s) (r=1, ... ,(p(a): a=1,2, ... ) (4.44) 

is a triangular array of martingale differences, since 

E( Vrl :Fr,) = 0 \lr1 <r. ( 4.45) 

Here 3"t' := (){X(s): 0 :::;s::::; t }. Write 

1 ( f' 2 . 1 · 2 a- ) =e2 E r-l()(X(s)){l-h(X(s))} dsl3'~·-l . ( 4.46) 

By direct computation one may show that llh'lloo is bounded in 'a' and 82 = 82(a) is 
bounded away from zero (see Lemma 4.6 below). Therefore, the following Lindeberg
type condition holds: \;/ c: > 0 

I c,o(a) 

--. '""E( /1;2 · 1 {[ " 1 >-. ;-::;-:::;( )} I:Fr-d---+ 0 in probability, as a---+ oo. cp(a) L ,,. ~cyrp,a; 
r~l 

To see this use Schwarz inequality to write 

£( /1;21 {[V,:[ ~c~} I:Fr-1) 

::::;{E(V,.4 I~-1). P(IVrl ?c:~ I:Fr-1 )} 112 

:::;{gi(X(r- 1))£(/1;.2 1~-l )/(c2 (p(a))} 112 

= {?fl(X(r- I ))u(X(r- I )} 1/2 ~· 
c: cp( a) 

Here (see Bhattacharya and Waymire, 1990, p. 588), 

. 9 !r . I . 
9I(X(r- I))= "'4 E(()4(X(s)){l - h (X(s))}4 l$'f·-I) ds 

fl r-1 

(4.47) 

( 4.48) 

( 4.49) 

is bounded (uniformly in 'a', since I- h' and 1/0 are). From (4.48) one gets (4.47). 

Let us now show that 

I w(u) 

--L u(X(r- I))---+ I in probability as a---+ oo. 
cp(a) 

r~l 

(4.50) 

Since the expected value of the left side is I (for, Eu(X ( r)) = E( ~2 ) = I ), it is enough 
to show that its variance goes to zero as a---+ oo. Write this variance as 

I . . 2 !p(a) r-l 

--var(u(X(O))) + - 2- L L cov{u(X(r- l)),u(X(r'- I))}. 
cp(a) cp (a) 

r=1 r'=l 

( 4.51) 
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The first tenn goes to zero as a-.oo, since llull= is bounded in 'a'. For the second 
term, use the estimate ( 4.31) to write 

r-1 

L cov{u(X(r- I)), u(X(r'- I))} 
r'=I 

~ ~ min{llull~, c 10 11ull~} exp { -c7 (r- r'- a
2 :~ga) I a2 } 

( a21oga ) II 112 ~ ---+1 u= 
C7 

{ ( a2 lou a) I 2 } exp -c7 r - r' - -----::---- a 

( 4.52) 

where c; 0 does not depend on 'a'. Now use the fact that (a2 1og a )/<p(a)--. 0, to see 
that Eq. (4.51) goes to zero as a-.oo. It now follows from the martingale CLT (see, 
e.g., Bhattacharya and Waymire, 1990. p. 508) that 

X( <p(a))- X(O)- <p(a )(b + Ha) 

8j(P(aj 
w(a) , 

= h(X(<p(a))- h(X(O))) + L _l'r_. ~X(O, 1) 

8j(P(aj r=l y(P(a) 

as a-.oo, since by Eqs. (4.40) and (4.41), 

sup lh(x)- h(y)l/~ 
x.y 

= supa2 lg(x)- g(y)I/~=O(a/~)----> 0 
x,y 

as a--. oo. 

( 4.53) 

( 4.54) 

To prove the desired result when X(O) is arbitrary, it will be convenient to w1ite 
X'(t) for the diffusion with initial state x. For s < t one may write 

xx (I) - X - t( b + {111 ) 

Hj(P(aj 
X'(s)- x- s(b + fJa) X'(t)- Xx(s)- (t- s)(b + fia) 

= +--------==,--------'--"--
8 j(P(aj 8 j(P(aj . 

We will let s=tfi(a), t=<p(a), where 

~(a) 
-- ----> 0 as a--. oo. 
(p(a) 

( 4.55) 

( 4.56) 
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For example, take t/1( a) to be the integer part of ( ({J( a )a2 log a )112 . By Eq. ( 4.37 ), and 
the fact that for bounded nonanticipative functionals f one has E(f; f( u) dB(u) )2 = 

J~ (EP(u)) du, we have 

E (X"(s)- x- s(b + {J,J)2 

0/(P(a) 

:( [4llhll~ + 2(maxz 0'2 (z))max~(l - h'(z)?Jt/J(a) -----+ 0 
ti2 ({J( a) 

as a----> oo. ( 4.57) 

We have used here the estimates in Le1mna 4.6 below. Therefore, it is enough to show 
that the second term on the right in Eq. ( 4.55) converges in distribution to .IV( 0, I), 

with s = t/1( a) and t = cp( a). By the Markov property, the conditional distribution of 
X"(t)-X"(s), given :F.s, is the same as the distribution of x=(t-s)-z, with z =X"(s). 

But the latter distribution may be expressed as Qz(t-s) with i = Xx (s ), since it depends 
only on Xx (s) and t - s. By Theorem 4.2 (and Remark 4.3) the variation distance 
between the equilibrium distribution Tea and the distribution of Xx (s) goes to zero 
unifonnly in x, as a----> oo (with s = t/1( a)). Therefore, the variation distance between 
the distribution of the second term on the right of Eq. ( 4.55) and the distribution of 

X(t- s)- X(O)- (t- s)(b + f>a) 

e/(P(a) 
(4.58) 

with X( 0) having dist1ibution Tea, goes to zero as a----> oo. Thus it is enough to show 
that ( 4.58) converges in law to JV(O, 1 ). However, we have shown that 

X(t- .s·)- X(O)- (t- s)(b + {J11 ) !£' '" 
~ ---->A(0,1). 

&y ( - ,) 
( 4.59) 

Now note that since ( 4.58) differs from the left side of ( 4.59) by the factor 
-j(t- s)/cp(a) = -j(cp(a) -lj!(a))jcp(a) which goes to I as a----> oc, the proof is com
plete. D 

lt remains to prove Lemma 4.6 below. Using Eq. ( 4.41) one obtains 

h' (x) = ay' (x/a ). ( 4.60) 

Also (see Eq. (4.34)) 

( 4.61) 

Lemma 4.6. Under the hypothesis of' Theorem 4.5, one has 

sup IO'(x)(l- h'(x)l <oo, 0 < lim inf 82 :( lim sup (12 < oo, ( 4.62) 
a?:-l,x (J---'>CX) (l---+(X) 

where 82 is the variance parameter defined in Eqs. ( 4.34) and ( 4.6 I ). 
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Proof. First, it follows from the first relation in ( 4.8) that 

b + !1a = 11 
(h(ax) + (.!(x))na(x)dx 

= ~ {( 1 _ e-I(O.I))-1 t e-I(O.y) dy} t ~ei(O,x) dx 
2a } 0 } 0 dx 

-C {1 { b(ax~ + f.i(x) el(O,x) r e-J(O.y) dy} dx 
Jo a (ax) Jo 

= ~ el(O,I) t e-J(O,y) dy _ ~ t (!!_ el(O,x)) ( r e-J(O.y) dy) dx 
2a } 0 2a } 0 dx } 0 

= ~e/(0.1) t e-J(O,y) dy 
2a Jo 

-;~ [e/(0.1) 11 e-J(O.y)dy-11 el(O,x)e-J(O,r)dyl 

c 

2a 

Now (see Eqs. (4.38) and (4.40)) y is a solution of 

a2 (ax ) 11 . 1 - -

- 2 -q (x) + a(h(ax) + f.!(x))q (x) = h(ax) + (l(x)- (h + fia) 

Therefore, 

c 
= h(ax) + f.i(x)- -. 

2a 

" 1 . { 2a } c aq (x)+(aq(x)-1) - 2-(h(ax)+/.i(x)) =--2-, 
a (x) a (ax) 

which may be expressed as 

c [(ayl(x) _ 1 )el(O,xl]' = ___ el(O.xl, 
a 2 ( ax) 

so that 

1x el(O.y) 
(ay'(x)-1)e1(0.x)=(ag'(0)-1)-c - 0--. dy. 

0 a~(ay) 

(4.63) 

(4.64) 

( 4.65) 

( 4.66) 

( 4.67) 

Using the pe1iodic boundary condition g1(0) = q1 ( 1) one gets, taking x = 1 in Eq. ( 4.67), 

11 erco,y) 
(ay 1(0)- 1)e1(0,I) =(ay1(0)- 1)- c -- dy, (4.68) 

o a2(ay) 

or, 

11 erco.y) 
ay'(O)- 1 = -c(e1(0.I)- 1)-1 --. dy. 

o a2(ay) 

Therefore, 

aq'(x)-1=-ce-J(O,x) (e1C0· 1l-I)- 1 --dy+ --dy. { 11 el(O.y) j'" eJ(O,y) } 

o a2(ay) o a2(ay) 
(4.69) 
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It follows from ( 4.16) and ( 4.18) that there exist positive constants d3 , d4 which do 
not depend on 'a' such that 

(4.70) 

Using this and (4.12) it is straightforward to show (as in estimates (4.13)-(4.19)) that 

sup lu(x)(l- h'(x))l = sup lu(ax)llay'(x)- II =ds<oo. ( 4.71) 
x.a?;:.l a?;::; 1,x 

Similarly one may show, using Eq. ( 4.68) and the fact that na(x) is bounded away 
from zero and infinity uniformly in x and 'a' (see ( 4.19) ), that 

11 
lu(ax)(ay'(x)- 1 )lna(x)dx 

=lei t lu(ax)le-/(O.x) ( r e~(O.y) dy) Tra(x)dx+O(!). 
Jo Jo u (ay) a 

(4.72) 

Now use ( 4.70 ), the fact that lu( ·)I is bounded away tl·om zero, and that na is bounded 
away from zero, to derive from Eq. (4.72) the inequality 

lim inf t lu(ax)(ag'(x)- I )lnu(x)dx>O, 
a----;.(x) lo ( 4.73) 

which implies 

( 4.74) 

yielding lim inf {]2 > 0. From ( 4. 71 ) one gets lim sup 82 < oc. D 

Remark 4.7. One may show that the functional version of the CL T holds in 
Theorem 4.5. That is, the process XJc := {8v0J(X(At)- Jt(b +it)): t?oO} converges 
in distribution to a standard Brownian motion as a----+oo, J.;(a2 loga)----+oo. For tight
ness, one may use Doob's maximal inequality and the fourth moment estimates used 
in (4.48 )-(4.50 ). A similar remark applies to Theorem 4.13 coming up later. 

4.2. The case J0
1 f)(x) dx = 0 

In this subsection we will assume u2(x) is a positive constant, 

(4.75) 

Then the innocuous assumption ( 4.7) becomes 

11 
h(y)dv=O. (4.76) 

The main assumption here is 

11 
fi(x)dx=O. (4.77) 
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lt follows from Lemma 2.3 that the diffusion X and its scaled version Y are time 
reversible, that is, the generator A of Y is self-adjoint, 

I d2 d 
A:=- a2 - 2 + a{b(ax) + /.l(x)}-. 

2 dx dx 
( 4. 78) 

In this case the invariant density of the process Y(-) is given by (see Eqs. (2.20) 
and (4.8)) 

na(X) = c exp{/(O,x )}, 2a lx /(O,x):= 2 {b(ay)+(f(y)}dy. 
(J 0 

( 4. 79) 

Since (2aja2 ) I~' b(ay) dy = (2ju2 ) Ioax b(z) dz = (2ja2 ) I~:l b(z) dz, which is bounded 

by (2/a2 )J0
1 lb(z)ldz=(2/u2 )<5, it follows that 

( 4.80) 

Let 8*, 8* be the minimum and maximum values, respectively, of x---+ j~" f1(y) dy. 
Then 

( 4.81) 

so that 

na(X) 4 .l.; ' 2 ('!* II max-- :((e 'J' )e a' - * 
x.y ITa(Y) 

(4.82) 

Thus, by Lemma 2.3, an estimate of the spectral gap AA of ~(A+ A) on L2 (S1, ITa) is 
given by 

1 >- 2a mm n (x)>-2a · >-c· e-''' 2 . 2/max,na(x) 1 ,, 
fL.A :::;..--- a .. /"' · /"" I ' 

x mmx ITa(X) 

( 4.83) 

Therefore, by Proposition 4.1, the spectral gap Ar of ~(L + l) on U(S1(a),TI:a) is 
estimated by 

( 4.84) 

with c~, c~ as given in ( 4.83 ). The proof of the theorem below is entirely analogous to 
that of Theorem 4.2. 

Theorem 4.13. Assume (4.2) and (4.75)-(4.77). Then the transition probability den

sities p of X and jj of Y satisfy the inequalities 

{ lfi(t;x, y)- ITaCv)l dJ· :( c~a 1 !2 e-JAt 
Js 1 

(4.85) 
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.fiJr all X E S 1, and 

(t>O), ( 4.86) 

.fiJr all xES 1(a), 1vhere c; (i= 1,2,3) do not depend on 'a'. 

Remark 4.9. We have not attempted to derive the precise exponential constant -c~ in 
the spectral gap estimate in ( 4.83 ). Using the first inequality for ,;A in ( 4.83 ), along 
with (4.81), one gets AA~(2a2 e-lb/rr')cexp{2aO*ju2 }=c'exp{2aO*ju2 }/ J0

1 e/(O,xldx, 
where c' is independent of a. For a method of precise estimation of the exponential 
constant see Holley et a!. ( 1989), where it is shown that the spectral gap can be 
exponentially small, i.e., 0( e-aa) for some C( > 0. 

A significant difference between the present case and the case in the preceding 
subsection is brought out by the following result. Recall that 8* denotes the maximum 
value, and 0* the minimum value, of the potential.f~mction 1/J(x) := J0' f!(y) d.v. 

Proposition 4.10. Assume the h;pothesis ol Theorem 4.8. Assume also that {!(-) has 
a .finite number of zeros. (a) If lj;(x) has a unique maximum at x*, then na(x) dx con
veryes weakly to the point mass bx* ( dx) at x* as a____, oo. (b) In general, { na(x) dx: a 

~ I} is a tight family and all its weak limit points have support contained in the 
.finite set of points in S 1 where the maximum value 8* of 1/J is attained. 

Proof. (a) In this case, for all x -j. x* in S 1• 

na(X) = el(O.x)-J(O,x*) 

na(x*) 

= exp{ !~ (1x h(ay)dy -1x* h(ay)dy) + !~ (tf;(x)- tf;(x*))} 

"( e2'5/"2 exp{ !~ (lj;(x) - lj;(x*))} ____, 0 as a____, oo. 

For inequality (4.87), use the fact that for all u<v, 

2 b(ay)dy = 2 b(y)dy :'( 2 lb(y)ldy=~, 12a 1'" . I 2 11"'" . I 211 2) 
(J u <1 au (J 0 (J 

smce 

j z+l 

_ b(y) dy = 0 for all z. 

( 4.87) 
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(b) The proof here is virtually the same, if one chooses x outside the finite set of x* 

values where lj; attains its maximum H*. D 

Example 4.11. Let h(·) be arbitrary (satisfying J0
1 b(y)dy=O), and (.!(x)=4ncos4nx. 

Then lj;(x) = sin 4nx has its maximum value 0* = 1 attained at x = ~ and x = ~. ln this 
case na(x) dx converges weakly to the two-point distribution assigning probabilities ~ 

and ~ to x = ~ and x = ~. Note also that these two points are the stable, or attractive, 
fixed points for the motion dx( t )/ dt = (l(x(t) ), while x = ~ and x = ~ are unstable, or 
repelling, fixed points. It may be shown in this case, using results of Holley et al. 
( 1989 ), that the spectral gap is 0( e-~a) for some positive constant :x independent of a. 

Remark 4.12. In contrast to Example 4.11 one may also construct a potential function 
lj;(x) with a unique maximum, representing a stable fixed point, together with a single 
unstable fixed point. For example, take t/l(x) =sin 2nx, i.e., f.!(x) = 2n cos 2nx. In this 
case the approach to equilibrium should be fast. In an unpublished recent work one 
of the authors has shown that in a class of examples, including this one, the spectral 
gap is O(l/a2 ) for the X process (i.e., for its generator). Our estimates (4.78) and 
( 4.79) of the spectral gap, and of the speed of convergence to equilibrium (See ( 4.80) 
and (4.81 )), contend against the 'vv·orst case' scenario. 

The next result is an analog of Theorem 4.5 again with distinctive differences. In 
patiicular, part (b) of the result shows that the variance parameter of the limiting 
distribution of X(t), i.e., the asymptotic variance of X(t) per unit time, goes to zero 
exponentially fast as a----+ oo. 

Theorem 4.13. Assume the hypothesis of Theorem 4.8. Also assume /1(-) is not iden
tically zero. Then 

X(t)- X(O) .'!! " 
r; --uV( 0, 1 ), 

uaOv' 

whatever be the initial state X(O ), as 

t----+oo, a----+oo, t»a2exp{ 1: 2a(8*- 8*)}. 

( 4.88) 

(4.89) 

Here 0* and 0* are the maximum and minimum values, respectively, of lj;(x) = J0' (l(y) 
dy, and 

( 1 1 )-l 
82 = fo el(O.x) dx. fo e-I(O,x)dx (4.90) 

The variance parameter u2a2 02 goes to zero exponentially fast in 'a' as a----+ oo. 

Proof. Writing 

p(x) :=a{h(ax) + f.!(x)}, ( 4.91) 
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one has 

r (J
2 j·X ( d ) ;· t Jop(y)na(y)dy=-i- o dyel(O,y) dy Joel(O,y)dy 

(J2 ;· t =-i-(e/(O.xl_l) Jo e/(O.yldy. 

In particular, 

j'i = 11 
p(x)n0 (x)dx = 0, 

that is, 

jj + fJu = 0. 

Now consider the equation 

Ayl(x) = p(x) = a{h(ax) + f)(x )}. 

On integration one gets 

y;(x) = c1 e-/(O,x) + 1, 

?]2(x)=c2 +c1 r e-l(O,y)dy+x. 
Jo 

The boundary condition {}2(0) = g2 ( 1) implies 

I 
C1=- 1 ' fo e-I(O.y) dy 

so that 

e-J(O.x) 

q;(x) = I - r1 -I(o ·) . , 
Jo e ·-' d;· 

Y2(x) = c2 +x -1x e-I(O.y) dy/1 1 e-I(O,y) dy, 

where c2 is arbitrary. One may now write 

(4.92) 

( 4.93) 

(4.94) 

(4.95) 

(4.96) 

(4.97) 

y ( t) - y ( 0) 1 { . . 11 . - } fi =----y; r]2(Y(t))-q2(Y(O))-u {y;(Y(s))-l}dB(s) . 
uO uOvt o 

(4.98) 

Since, by Eq. (4.97), l{f2(x)-?]2(y)l is bounded by 2 forx,yE[0,1], and since it is 
easily shown that ()2 ~ c; exp{ -(2aju2 )( 0* - 0*)} (See ( 4.107) below) 

if ( 4.89) holds, 

{}2(Y(t))- Y2(Y(O)) ___. 0 
0-/i 

(4.99) 

in probability. (4.100) 



259

R. Bhattacharya et a/. I Stochastic Processes and their Applications 80 ( 1999) 55-86 83 

Using this in Eq. ( 4.98 ), one now needs to prove 

(4. I 01) 

Now, writing En" for the expectation under the equilibrium distribution na of Y(s), one 
has 

I . . 2 fol e-2J(O.x)na(X) dx J~l e-J(O.x) dx 
En,({h(Y(t))- I)= 1 = ·1 . ·1 

(fo e-f(O.x) dx )2 Jo ef(O.J. l dx. Uo e-f(O.xl dx )2 

1 
r I ei(O,x) dx. r I e-I(O,x) dx 

Jo • Jo • 

= 82. (4.102) 

The proof of (4.101) is now stmctured along the lines of that of Theorem 4.5. 
However, the estimates, as functions of 'a' are quite different in the present case, and 
care is needed to check the conditions for the mmiingale CL T to hold. First assume 
Y(O) has the equilibrium distribution na. Let§{ :=u{Y(u): O:<S;u:<S;s}, and consider the 
triangular anay of martingale differences 

1 jr I . -
V,.:= 0 {I -{h(Y(s))}dB(s) (r=1,2, ... ,<P(a): a=1,2, ... ), 

lJ r-1 
(4. I 03) 

where (p( a) is a sequence of positive integers satisfying 

<P(a) 
-----:.,..------ ____, oo as a ____, oo. 
exp{ I;,a ((I* - ()*)} 

(4.104) 

Write 

(4.105) 

2b 2a0. 2b 2a0* 
-2 + - 2-· :<S;/(O,x):<S; 2 + - 2- (O:<S;x:<S;I), 

(j' (j' (j' (j' 
(4.106) 

where 0* and ()* are the maximum and minimum values of t/J(x ), respectively. 
Therefore, by Eqs. (4.97) and (4.102), 

cxp{~- 2"~*} 4) 2 
I 1 • I ". r;L { ( a D* 0 } 1 - ?h(x) :<S; 2 2 &* = exp -2 + -2 ( u - u*) ' 

exp{--4- ...!!c...,} u u 
(JL (JL 

fl >exp --- -(fl - fl ) 2 { 4() 2a * } 
"" . 0'2 0'2 ¥ • 

(4.107) 

To find an upper bound for (]2, assume first that ()* > 0, and let t/J(x*) = ()*. Since 
If/(x)=fl(x), it follows that Ijl(x)?cfi*(I -u2 j2a) on an interval in [0, I] of length at 
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least 20*(a2 /2a)/ll/1lloo = O*a2/(ll/1llooa), if the latter is less than one. Therefore, 

j ·l J(O.x) d ()* 0'2 { 2() 2a ()* ( 0'2) } 
o e x ~ ll/1llooaexp - a2 + a2 1- 2a 

()* a2 { 2(\ *} { 2a0* } 
= ll/1llooa exp - a2 - () exp 7 (0* >0). (4.108) 

Also, since ljr(O)=O, ljr(x)'(ll/1lloox, 

j .[ . 'j.[ { 2 l/11 } o e-/(O,xl dx ~ e-2il/CJ~ o exp - a a2 = x dx 

2 
0' -2iijr/ 

~ e . 
2all/1lloo 

(4.109) 

If 8* = 0, then 8* < 0 and one has, in the same manner as in the derivation of 
(4.108) and (4.109), 

(4.110) 

and 

el(O,x) dx >- e-2<l/CJ 1[ . 0'2 . 2 

o . ~ 2all/1lloo · 
( 4.111) 

From ( 4.108 )-( 4.111) it follows that 

(4.112) 

so that 

(4.113) 

To prove the conditional Lindeberg condition use inequality (4.107), and an estimate 

of the fourth moment of the stochastic integral (Bhattacharya and Waymire, 1990, 

p. 588) to get 

E(r~21 {[V,[?c~} I ~-I) 
"( { £( v;4 I~-]). P( I v,. I~ r:.;;p(c0 I~-])} 1/2 

(4.114) 
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Then 

1 <,o(a) 

-"'E(V2 ·1 I~ ) (p(a) L..., r {IV,I"'"~} 1-1. 
r=l 

{ 181) 9a 9a * } 1 
~3exp - 2 + 2 + 2 (0 -0*) r:::r::\----+0 asa----+oo, 

u u u Hy 1p(a) 

by the hypothesis ( 4.104 ). It remains to check that 

I q>(a) 

-- L u( Y(r- I))----+ I in probability as a----+ ex::. 
cp( a) 

r=l 

( 4.115) 

(4.116) 

Since the expected value of the left side is I, it is enough to show that its variance 
goes to zero. This variance may be estimated by (see ( 4.51 ), ( 4.52), and ( 4.85)) 

1 • 2 2 1 I 

--var(u(Y(O))) + --. c; 1 llulloo/ e''"loga (4.117) 
1p( a) 1p(a ) c 1 

where C:'s are independent of 'a', c~ =2(0*- O*)/u2 . Using (4.117) and 

llulloo~(:2 exp{!~ + ~~(0*-0*)} ~exp{ 1:21) + !~(0*-0*)}, 
one obtains, from Eq. (4.118), 

( 
1 <,o(a) ) 

var --2:u(Y(r-1)) ----+0 
(p(a) 

r=l 

as a----+ oo. 

(4.118) 

(4.119) 

This completes the proof of (4.88) for times t satisfying (4.89), when Y(O) (or, X(O)) 
has the equilibrium distribution. When the initial distribution is arbitrmy, then one uses 
( 4.85 ), and proceeds as in the last pmi of the proof of Theorem 4.8, with Y(t) instead 
of X ( t ), using estimates ( 4.107 ). 

Finally it follows from (4.113) that 

for every D > 0. D 

Remark 4.14. The proof shows that the convergence (4.88) is unifonn (e.g., in the 
Kolmogorov distance for distribution functions) with respect to all initial X(O). 

Remark 4.15. Theorems 4.5 and 4.13 imply corresponding asymptotics of the solution 
c(t; y) of the Fokker-Pianck equation 

rlc 1 a 
- =-- -;;-{(h(y) + f1(yja))c} (t>O, y E IR), 
Dt 2 cy 

c(O, r) =lim c(t, u) = c0 ( v) ( v E !R). 
J flO . J .~ .~ 

(4.120) 

The .fimdamental solution of Eq. (4.120) (i.e., c(t,y) under the point initial input 
c(O,dy)=(\(dy)) is the transition probability density p(t;x,y) of the diffusion X(t) 
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governed by Eq. ( 1.1) (See, e.g., Bhattacharya and Waymire, 1990, pp. 377-381 ). The 
general solution of Eq. (4.120) may be expressed as 

c(t,y)= i c0(x)p(t;x,y)dx (t>O,J·E IR). (4.121) 

If c0 is localized, e.g., if c0 has a compact support independent of 'a', then the asymp
totics of c(t,y) are the same as those of the distribution of X(t) with an initial dis
tribution c0(x) dx. This correspondence has important implications for the problem of 
solute transport in porous media (Bhattacharya and Gotze, 1995 ). 

Remark 4.16. As a final remark it may be pointed out that the analysis in this article 
leaves out all those cases where /1(x) changes sign, but J0

1 f1(x) dx cl 0. For these cases 
the generator is not self-adjoint, and the invariant density is given by Eq. (2.21 ). 
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Part III
Large Time Asymptotics for Markov Processes

II: Dynamical Systems and Iterated Maps



Chapter 8
Dynamical Systems, IID Random Iterations,
and Markov Chains

Krishna B. Athreya

Abstract The many areas in mathematical statistics, probability theory, statistics pro-
cesses, and mathematical analysis to which Professor Rabi Bhattacharya has made im-
portant and deep contributions include the topics in the title of this paper. In this paper we
shall outline some interesting recent results in these topics.

8.1 Dynamical Systems

Let S be a nonempty set and T : S → S be a map from S to S . The pair (S , T ) is called a
dynamical system. For each x in S , the sequence Ox = {x, T (x), T (T (x)), · · · , T (n)(x), · · · },
where T (n+1)(x) = T (T (n)(x)), n = 0, 1, 2, · · · , with T (0)(x) ≡ x is called the orbit of x under
the map T . Some topics of interest in the study of dynamical systems are:
(2.1) The existence of a probability distribution π on (S ,S) where S is a σ-algebra of

subsets of S , which is stationary (also called invariant) w.r.t. T , i.e., each A in S,
π(A) = π(T−1(A)), assuming, of course, that T : S → S is (S,S) measurable.

(2.2) The convergence of the empirical distribution of Ox, i.e., if μn(A|x) ≡ 1
n

n−1∑

j=0

IA(T ( j)(x)), A ∈ S then does μn(·|x) converge in a suitable sense as n→ ∞?
(2.3) Ergodic theorems of the kind: for h : S → R, S measurable the “time average”

1
n

n−1∑

j=0

h(T ( j)(x)) converges as n→ ∞ to the “space average”
∫

S
hdμ for some appro-

priate measure μ on (S ,S).
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(2.4) Central limit theorem (CLT) of the kind: for h : S → R such that
∫
|h|dπ < ∞ where

π is a stationary (w.r.t. T ) distribution on (S ,S)

π

{
x : a ≤

√
n

(
1
n

∑n−1
j=0 h(T ( j)(x)) −

∫
hdπ
)

σ
≤ b

}

converges as n → ∞ to
1
√

2π

∫ b

a
e−u2/2du for some 0 < σ < ∞ and all a, b in R

with a < b, under some further conditions on h and π.
The above four topics have been studied for a number of dynamical systems, especially,

those arising in probability theory. Consider the following: Let μ be a probability measure
on (R,B(R)) where B(R) is the Borel σ-algebra on R, the real line. Let S ≡ R∞, the
countable infinite product of R with itself and S ≡ B(R∞) and π = μ × μ × μ × · · · ,
the infinite product measure on (S ,S). Let T : S → S be the map T (x1, x2, x3, · · · ) =
(x2, x3, · · · ), called the unilateral shift to the right. This dynamical system (S , T ) has π
as a stationary distribution and so (2.1) holds. Next, by the Birkhoff ergodic theorem the
empirical distribution converges to π(·) in variation norm as it can be shown that T is
measure preserving (i.e., π preserving) and ergodic (see Athreya and Lahiri [3]). So (2.2)
holds. By the same reasoning (2.3) holds as well.

Finally, if h(x1, x2, · · · ) = h̃(x1) where h̃ : S → R and S measurable and
∫

S
(h̃(x1))2

dμ(x1) < ∞ then the CLT, i.e., (2.4) holds with

σ2 =

∫
(h̃(x))2dμ(x) −

( ∫
h̃(x)dμ(x)

)2
.

It is not difficult to verify that this dynamical system is isomorphic in an appropri-
ate sense to the Baker map on S̃ ≡ [0, 1] defined by T̃ (x) = 2x mod 1 and the invari-
ant measure being Lebesgue measure on [0, 1]. To see this let S 0 = {0, 1} and μ be
the Bernoulli distribution { 12 ,

1
2 } on S 0. Let T be the unilateral shift to the right on S∞0 .

Now map x = (δ1, δ2, · · · ) where δi ∈ {0, 1} to x̃ =
∞∑

i=1

δi

2i
. Then the dynamical system

(S̃ , T̃ ,Lebesgue measure) is isomorphic to (S∞0 , T, μ
∞). This is also an example of what is

called the Bernoulli shift. See Ornstein [14].
Another example from probability theory is that of a countable state space, positive

recurrent, irreducible Markov chain. Let μ be the unique stationary distribution of an
irreducible, positive recurrent Markov chain {Xn}n≥0 with countable state space S 0. Let
S = S∞0 , the countable product of S 0 and S be the σ-algebra in S generated by the finite
dimensional sets of the form {X0 = a0, X1 = a1, · · · , Xn = an}, n < ∞, ai ∈ S 0, 0 ≤ i ≤ n.
Let π be the probability distribution of the Markov chain {Xn}n≥0 with X0 distributed as
μ. Let T be the unilateral shift to the right on S defined by, for x = (a0, a1, a2, · · · ),
T x = (a1, a2, a3, · · · ). Then (S , T ) is a dynamical system and π is invariant for (S , T ).

Now fix b0 in S 0 and let X0 = b0 w. p. 1.
Now set τ0 = 0, τ1 = inf{n : n ≥ 1, Xn = b}, and recursively let τk+1 = inf{n : n ≥

τk + 1, Xn = b}, k = 0, 1, 2, · · · .
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Then, by the recurrence of {Xn}n≥0 and in particular of the state b, and by the strong
Markov property of {Xn}n≥0, {τk}k≥0 is a renewal sequence, i.e., {τk+1 − τk}k≥0 are i.i.d.
positive random variables. Further, if ηk ≡ {Xτk+ j, 0 ≤ j < τk − τk−1, τk − τk−1} for k =
1, 2, · · · then {ηk}k≥1 are i.i.d. excursions (see Athreya and Lahiri [3]). Further, by positive
recurrence of {Xn}n≥0, Eτ1 < ∞. These excursions of {Xn}n≥0 will ensure that the results in

(2.1) and (2.3) hold. Further, if h : S 0 → R is such that E
( τ1−1∑

j=0

h(X j)
)2
< ∞ then (2.4) will

also hold.
The above assertions carry over to the case when {Xn}n≥0 is a Harris recurrent Markov

chain with a general state space S 0 (not necessarily countable) and with a σ-algebra S0

that is countably generated and admits an invariant probability measure. This result can
be proved using the atom technique of Athreya and Ney [4] and the splitting method of
Nummelin [13]. See Athreya and Lahiri [3] for more details.

8.2 IID Random Iterations

Let S be a nonempty set and G be a collection of maps from S to S . Let μ be a proba-
bility distribution on G. Let { fi}i≥1 be i.i.d. elements of G with distribution μ. Let X0 be a
S -valued random variable independent of { fi}i≥1. Assume all these random variables are
defined on a probability space (Ω,B, P). Define a sequence of S valued random variables
{Xn}n≥0 on (Ω,B, P) as follows:

X0(ω), X1(ω) ≡ f1(X0(ω), ω), · · · , Xn+1 = fn+1(Xn(ω), ω), n = 0, 1, 2, · · ·

Definition 1 The sequence {Xn(ω)}n≥0 is called an iterated function system generated by
the iteration of the i.i.d. maps { fi}i≥1 and initial value X0(ω).

8.2.1 Examples

1. Let S = [0, 1] and G ≡ {h1(x) = x
2 , h2(x) = 1+x

2 }. Let μ be a probability distribution on
G such that μ{h1} = α, μ{h2} = 1 − α, 0 < α < 1. Thus, given X0, X1, · · · , Xn,

Xn+1 =

{ Xn
2 with probability α

1+Xn
2 with probability 1 − α

2. Sierpiński triangle: Let S ≡ the equilateral triangle with vertices V1 = (0, 0), V2 =

(1, 0), V3 = ( 1
2 ,
√

3
4 ). Let G ≡ {h1(x) = x+V1

2 , h2(x) = x+V2
2 , h3(x) = x+V3

2 } and μ be the
probability distribution μ(hi) = pi, i = 1, 2, 3, with pi > 0, p1+ p2+ p3 = 1. The iterated
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function system generated by the iteration of i.i.d. maps { fi}i≥1 from (G, μ) with initial
value X0(ω) satisfies: given X0, X1, · · · , Xn,

Xn+1 =
Xn+Vi

2 with probability pi, i=1,2,3.

3. Random iteration of affine maps in Euclidean spaces: The following is a generalization
of the above two examples.

Let G ≡ {hi : 1 ≤ i ≤ k} be a finite collection of affine maps from Rd to Rd for some
0 < d < ∞. That is, each hi is of the form hi(x) = Aix + bi, Ai a d × d matrix and bi a
d×1 vector in Rd, i = 1, 2, · · · , k. Let μ ≡ {p1, p2, · · · , pk} be a probability distribution.
Consider the IID Random Iteration Scheme, for n ≥ 0,

Xn+1 = fn+1(Xn)

where { fn}n≥1 are i.i.d. random maps from G with distribution μ and X0 is chosen from
Rd independently of { fn}n≥1. M. Barnsley [10] used this Markov chain to construct
approximation to sets in Rd.

4. Random logistic maps: Let S = [0, 1] and {Cn}n≥1 be a sequence of i.i.d. random vari-
ables such that Cn ∈ [0, 4] w.p.1. Consider the sequence of i.i.d maps of S into itself
defined by

fn(x) = Cnx(1 − x), 0 ≤ x ≤ 1.

Let {Xn}n≥0 be a sequence of random variables such that X0 is independent of { fn}n≥1

and satisfy
Xn+1 = fn+1(Xn) = CnXn(1 − Xn), n = 0, 1, 2, · · · .

This family was studied in Bhattacharya and Rao [11], Athreya and Dai [2], Athreya
and Schuh [8], and many others.

5. IID random Lipschitz maps: Let (S , d) be a metric space that is complete. Let G be a
collection of maps from S to S that are Lipschitz, i.e.,

∀h ∈ G, ∃ 0 < C(h) < ∞, d(h(x), h(y)) ≤ C(h)d(x, y)

for all x, y in S . Let

sup
x�y

d(h(x)), h(y))
d(x, y)

≡ S(h)

be the Lipschitz bound on h. Let μ be a probability measure on (G,G) where G is a
σ-algebra of subsets of G. Let { fi}i≥1 be i.i.d. G valued random variables such that, for
all i, fi has distribution μ. Let X0 be a random variable with values in S and independent
of { fi}i≥1. Set

Xn+1 = fn+1(Xn), n = 0, 1, 2, · · · .

It is not difficult to verify that all the previous examples are special cases of this last
one, i.e., iteration of IID random Lipschitz maps.
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8.2.2 A Basic Convergence Theorem

Theorem 1 Assume the set up in example 5 above of i.i.d. random Lipschitz maps. Let
E| logS( f1)| < ∞ and E logS( f1) < 0. Assume, further, that for ∀x ∈ S ,

∑

n

μ(d( f1(x), x) >

an) < ∞ for {an} such that
∞∑

1

ane−rn < ∞ for some 0 < r < −E logS( f1). Then, for any

distribution of X0, the sequence Xn converges in distribution as n → ∞ to a probability
distribution π on S and π is independent of X0.

Proof. Since Xn+1 = fn+1(Xn) for n ≥ 0, it follows that

Xn = fn( fn−1(· · · f1(X0) · · · )), n ≥ 1.

By independence of X0 and { fi}i≥1 and since { fi}i≥1 are i.i.d., Xn has the same distribution as

X̂n = f1( f2(· · · fn(X0) · · · )), n ≥ 1.

By the Lipschitz property of { fi}i≥1,

d(X̂n+1, X̂n) ≤ S( f1)S( f2) · · · S( fn)d( fn+1(X0), X0)

= d( fn+1(X0), X0)e
∑n

i=1 logS( fi).

Now the strong law implies that for any 0 < r < −E logS( fi), w.p.1.,

1
n

n∑

i=1

logS( fi) < −r for all large n

Also, by Borel-Cantelli, w.p.1.,

d( fn+1(X0), X0) ≤ an for all large n.

This implies that w.p.1. (since
∞∑

n=1

ane−rn < ∞),

∞∑

n=1

d(X̂n+1, X̂n) < ∞ w.p.1. for any initial X0.

Thus, for any initial X0, by the triangle inequality of d, {X̂n}n≥0 is Cauchy in (S , d) w.p.1.
By the completeness of (S , d), X̂n converges w.p.1. to say X̂.
Also, the same argument as above shows that for any x0 � y0, w.p.1.

d(X̂n(x0), X̂n(y0))→ 0 as n→ ∞.

So for any initial X0, X̂n → X̂ w.p.1. and X̂ is independent of X0.
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This implies that Xn converges in distribution to X̂ (for any initial X0), and the distribu-
tion of X̂ does not depend on X0. The distribution of X̂, say π, is therefore unique.

Corollary 1. Let (An, bn), n ≥ 1, be i.i.d. such that for each n ≥ 1, An is a k × k random
matrix and bn is a k × 1 vector. Let E log ‖A1‖ < 0 where for any k × k matrix

‖A‖ = sup
x�0

‖Ax‖
‖x‖

where x is a k × 1vector and ‖x‖ is the Euclidean norm of x. Let E(log ‖b1‖)+ < ∞. Then
the i.i.d. random iteration sequence, the AR1 sequence, Xn+1 = An+1Xn + bn+1 converges,
for any initial X0, in distribution to the random variable

X̂ ≡ b1 + A1b2 + A1A2b3 + · · · + A1A2 · · · Anbn+1 + · · ·

which is well defined (since E log ‖A1‖ < 0 and E(log ‖b1‖)+ < ∞).

The examples 1–3 in Section 8.2.1 are covered by the above corollary. It is applicable
to Example 4 as well but in this case X̂ turns to be zero w.p.1. However, under the hy-
potheses E log C1 > 0 and E| log(4 − C1)| < ∞ there does exist a nontrivial stationary
distribution for the Markov chain in Example 4. See Bhattacharya and Rao [11], Athreya
and Dai [2]. In Example3, if {An}n≥1 are i.i.d. with An taking only finitely many values
{B1, B2, · · · , Bk} where each Bi is an affine contraction and a mild condition on the distri-
bution of b1 holds, then the limit X̂ is a proper random variable in Rd. Further, its support
is typically a compact set K with intricate self similar geometry. The limit point set of
the orbit of the Markov chain {Xn} coincides with the support set of K w.p.1. Barnsley
[10] and others have worked on the inverse problem. Namely, given a compact set K in
some Rd, d < ∞, find a finite number of contractions and an i.i.d. iteration scheme of the
kind in Example 3 so that the limit point set of the orbit of the Markov chain {Xn} will
be exactly K. Barnsley has used the idea to generate what he calls fractal objects such as
ferns, flowers, coast lines, brain images as well as applications to image processing and
data compression. In Example 3, the support of the stationary measure turns out be the
so-called Sierpiński gasket K generated by deleting the open equilateral triangle obtained
by joining the midpoints of the sides and doing the same to each of the remaining three
equilateral triangles and so on.

A result similar to Theorem 1 was established by Wu [15]. In this result, the fi’s do not
have to satisfy the Lipschitz condition of Theorem 1.

Theorem 2 Let { fn}n≥1 be i.i.d. maps on a Polish space S to itself. Let for some 0< p0 <∞,

sup
x�y

E

(
d( f1(x), f1(y))

d(x, y)

)p0

< 1.
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Let E(log d( f1(x0), x0))+ < ∞ for some x0 ∈ S . Let {Xn}n≥0 be defined by

Xn+1 = fn+1(Xn), n ≥ 0.

Then, for any initial X0, Xn converges in distribution as n → ∞ which does not depend
on X0.

Wu [15] gives the following example in which the fi’s are not Lipschitz and hence
Theorem 1 is not applicable but the hypothesis of Theorem 2 holds with k = 1.

Let {θi}i≥1 be i.i.d. uniform [0, 1] random variables. Let 0 < α < 1 and let fi(x) =
(αx + θ) mod 1, x ∈ [0, 1]. Then it can be shown that

P( f1 is not Lipschitz in [0, 1]) ≥ α

but

sup
x�y

∣∣∣∣∣∣
f1(x) − f1(y)

x − y

∣∣∣∣∣∣ < 1 and E| log | f1(
1
2

) − 1
2
||+ < ∞

and by Theorem 2 above, Xn converges in distribution. It is shown by Wu [15] that this
limit is uniform distribution on [0, 1].

In Example 1, if α � 1
2 , then the limit random variable X̂ will be supported by a set in

[0, 1] of Lebesgue measure zero. If α = 1
2 , X̂ will have uniform distribution on [0, 1].

8.3 Markov Chains

If (S ,S) is a measurable space and { fi(x, ω)}i≥1 are i.i.d. random maps from S to S , S
measurable, on some probability space (Ω,B, P), the sequence defined by

Xn+1(ω) = fn+1(Xn(ω), ω) n ≥ 0,

X0 independent of { fi(·, ω)}i≥1, then {Xn}n≥0 is a S -valued Markov chain with probability
transition function P(x, A) = P(ω : f1(x, ω) ∈ A) for x in S and A in S.

Here we assume that for each x, f1(x, ω) : Ω → S is (B,S) measurable. A natural
question is that is the converse true? That is, given a probability transition P(x, A), x ∈ S ,
A ∈ S, i.e., P(·, ·) is such that for each x in S , P(x, ·) is a probability measure on (S ,S)
and for each A in S, P(·, A) is a S measurable map from S to [0, 1], does there exist a map
f (x, ω) on some space S × Ω→ S where (Ω,B, P) is a probability space such that

P(x, A) = Pr(ω : f (x, ω) ∈ A) ∀x ∈ S , A ∈ S.

The answer turns out to be yes if S is a Polish space, i.e., a complete, separable, metric
space. This was proved by Y. Kifer [12]. See also Athreya and Stenflo [9].

When S is countable and the transition function P reduces to a transition probability
matrix P ≡ ((pi j)), the map f (x, ω), x ∈ S can be constructed on the Lebesgue space
([0, 1],B[0, 1], Lebesgue measure) as follows. Let the transition probabilities in the ith
row be pi1, pi2, pi3, · · · . For ω in [0, 1] and i ∈ S
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f (i, ω) = 1 if 0 < ω ≤ pi1

= 2 if pi1 < ω ≤ pi1 + pi2

= 3 if pi1 + pi2 < ω ≤ pi1 + pi2 + pi3

and so on.
Let { fn(·, ·)}n≥1 be i.id. copies of the above f . Then, the sequence {Xn}n≥0 defined by the

IID random iteration scheme

Xn+1(ω) = fn+1(Xn, ω) n = 0, 1, 2, · · ·

where X0(ω) is independent of { fn}n≥1 is a Markov chain with state space S and transition
matrix P ≡ ((pi j)).

Recall that a Markov chain {Xn}n≥0 with a countable state space S is said to be irre-
ducible if

P(Xn = j for some n ≥ 1|X0 = i) > 0 for all i, j ∈ S .

If the state space S is not countable a similar notion of irreducibility was introduced by
Harris (see Athreya and Lahiri [3]). Let (S ,S) be a measurable space and P : S×S → [0, 1]
be a transition function. Then a Markov chain {Xn}n≥0 with S as its state space and P as
its probability transition function is said to Harris irreducible with reference measure ϕ on
(S ,S) if A ∈ S, ϕ(A) > 0 implies

P(Xn ∈ A for some n ≥ 1|X0 = x) > 0 for all x in S .

It is easily verified that if S is countable, a Markov chain {Xn} with state space S is
irreducible in the sense defined earlier then it is Harris irreducible with reference measure
ϕ that is simply the counting measure on S .

Next, we discuss Harris irreducibility of Markov chains generated by IID iteration of
random S -unimodal maps on [0, 1].

Definition 2 A map f : [0, 1]→ [0, 1] is called S -unimodal if
i) f is three time differentiable

ii) f is unimodal on [0, 1] with a mode at c in (0, 1) such that f ′′(c) < 0, f (·) is strictly
increasing in (0, c) and strictly decreasing in (c, 1).

iii) f (0) = f (1) = 0
iv) the Schwartzian derivative of f :

(S f )(x) ≡

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

f ′′′(x)
f ′(x)

− 3
2

( f ′′(x)
f ′(x)

)2
if f ′(x) � 0

−∞ if f ′(x) = 0

is negative for all 0 < x < 1.

Examples of S -unimodal maps are f (x) = x(1 − x), f (x) = x2 sin πx.

Theorem 3 Let S = [0, 1], A = [0, L], 0 < L < ∞. Assume:
i) for each θ in A, let f (x) ≡ θh(x), x ∈ [0, 1], where h is S -unimodal as in the above

definition.
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ii) there exists an α in (0, L) and a p in (0, 1) and a positive integer m ≥ 1 such that
f (m)
α (p) = p and | f (m)

α (p)| < 1 where f (m)
α (·) is the mth iterate of fα(x) ≡ αh(x),

0 ≤ x ≤ 1.
iii) Let μ be a probability distribution on (0, L) such that there is a δ > 0 and a function ψ

on J ≡ (α − δ, α + δ) to R+ such that ψ(x) > 0 for all x in J and

μ(B) ≥
∫

B
ψ(u)du for all Borel sets B ⊂ J.

iv) Let {θi}i≥1 be i.i.d. random variables with distribution μ satisfying iii) above and {Xn}n≥0

be a Markov chain with values in S defined by the IID random iteration scheme Xn+1 =

θn+1h(Xn) for n ≥ 0 with X0 being independent of {θi}i≥1.
Then {Xn}n≥0 is Harris irreducible.

An example of a Markov chain {Xn}n≥0 of the above kind is one generated by h(x) =
x(1 − x), i.e., the logistic map and {θi}i≥1 are i.i.d. random variables with distribution on
[0, 4] where μ the distribution of θ1 satisfies iii) above. For a proof of Theorem 3 see
Athreya [1].

We conclude this paper with statements of a law of large numbers, a central limit theo-
rem for null recurrent Markov chains and a Brownian motion, and an application to Monte
Carlo methods for estimating integrals with respect to improper measures. For proofs see
Athreya and Roy [5, 7], Athreya et al [6].

Theorem 4 Let {Xn}n≥0 be an irreducible Markov chain with a countable state space S
and null recurrent. Fix i0 ∈ S . Let T1 ≡ min{n : n ≥ 1, Xn = i0}, T j+1 = min{n :
n ≥ T j + 1, Xn = i0}, j ≥ 1. Let η j ≡ {Xi : T j ≤ i < T j+1, T j+1 − T j}, j ≥ 1. Let

πk ≡ E
(∑T2−1

i=T1
I(Xi=k)

)
, k ∈ S . Then

i) {η j} j≥1 are i.i.d.

ii)
∑

k∈S
πk = ∞

iii) If {ak}k∈S is such that
∑

k∈S
|ak|πk < ∞ then for any initial distribution

λn ≡
1

Nn

n∑

j=0

aX j → λ ≡
∑

k∈S
akπk w.p.1

as n→ ∞ where Nn ≡
n∑

j=0

I(X j=i0).

iv) If E
( T2−1∑

j=T1

aX j

)2
< ∞, then

√
Nn

(λn − λ)
σn

d−→ N(0, 1)
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where σ2
n =

1
n

n∑

i=1

V2
i − λ2

n, where Vi =

Ti+1−1∑

j=Ti

aX j , i ≥ 1.

Theorem 5 Let {Xn}n≥0 be a simple symmetric random walk on the integer with X0 = 0
w.p.1. Let {ak}k∈Z be such that

∑

k∈Z
|ak| < ∞. Then

i) λn ≡
1

Nn

n∑

j=0

aX j → λ ≡
∑

k∈Z
ak w.p.1 as n→ ∞, where Nn =

n∑

j=0

I(X j=0).

ii) If
∑

k∈Z
|ak|
√
|k| < ∞ then there exist {σn}n≥1 such that σn → σ, 0 < σ < ∞ and σn is a

function of {X j}nj=0 and
√

Nn
(λn − λ)
σn

d−→ N(0, 1).

Theorem 6 Let f : R → R be integrable with respect to Lebesgue measure. Let {B(t) :
t ≥ 0} be standard Brownian motion. Let T0 = 0, Tk+1 = inf{t : t > Tk,∃ 0 < s < tB(s) =
1, B(t) = 0}, k ≥ 0. Then

i) λ(t) ≡ 1
N(t)

∫ t

0
f (B(u))du → λ ≡

∫

R

f (x)dx w.p.1 as t → ∞where N(t) =
∞∑

k=0

I(Tk≤t).

ii) If
∫
| f (x)|
√
|x|dx < ∞ then there exists a function σ(t) depending on {B(u) : 0 ≤ u ≤ t}

such that σ(t)→ σ, 0 < σ < ∞ w.p.1 as t→ ∞ and

√
N(t)

(λ(t) − λ)
σ(t)

d−→ N(0, 1).
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Chapter 9
Random Dynamical Systems and Selected Works
of Rabi Bhattacharya

Edward C. Waymire

Abstract Thetopic of random dynamical systems is extremely broad. However the focus of
Rabi Bhattacharya’s work in this area is largely from the perspective of discrete parameter
Markov processes on a general state space S , equipped with a suitable sigmafield S of
measurable subsets. Such Markov processes are either prescribed as evolutions defined by
i.i.d. iterated random maps from S to S , or by such a representation theorem that holds
for any discrete parameter Markov processes having stationary transition probabilities on
a Borel subset S of a Polish space, with Borel sigmafield S. A theme of much of Rabi’s
work is that of existence and uniqueness of invariant probabilities under conditions in
which the Markov process may not be irreducible. These and corresponding problems
concerning rates of convergence and various asymptotic limit theorems are representative
of the research addressed here. Applications, particularly to geosciences and economics,
are also a main theme of Rabi’s body of work in this area; however, these will be covered
in separate essays and not treated here. The co-authored texts [6, 11] include a variety of
such applications.

Keywords Splitting, Iterated maps, Markov, Invariant probability, Non-irreducible

9.1 Introduction and Preliminaries

“Limit theorems and asymptotic analysis” provide a central theme for summarizing the
bulk of Rabi’s work in probability theory and its applications. The progression from the
study of the asymptotics of sums of i.i.d. sequences of random variables to the asymptotics
of discrete parameter Markov processes was a naturalstep in this context.

To set the mathematical framework in somewhat general terms, the state space (S ,S) is
minimally a measurable space, but how general is general? For the purposes of this article
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we will assume, unless explicitly stated otherwise, that S is a Borel subset of a complete
and separable metric space, i.e., a standard space, [24], and S is its Borel sigmafield of
subsets. One advantage is that any reference to conditional distributions can be assumed
to be in terms of regular conditional distributions without any further loss of generality.

A discrete parameter time-homogeneous Markov process with state space S is a
sequence of random variables X0, X1, X2, . . . , defined on a probability space (Ω,F , P)
with values in S , such that for each n ≥ 0, the conditional distribution of Xn+1 given
σ(X0, X1, . . . , Xn) coincides with the conditional distribution of Xn+1 given σ(Xn), and is
the same for any n. The (regular) conditional distribution of Xn+1 given σ(Xn) is given
by a probability B → p(x, B), B ∈ S, on the event [Xn = x], i.e., P(Xn+1 ∈ B|σ(Xn)) =
p(Xn, B), B ∈ S, n = 0, 1, 2, . . . . The one-step transition probability p(x, dy) may be spec-
ified so that for each B ∈ S, x → p(x, B), x ∈ S , is a nonnegative, Borel measurable
function, and for each x ∈ S , the assignment B → p(x, B), B ∈ S is a probability mea-
sure on (S ,S). The equilibrium/stability theory of such processes begins with the notion
of invariant probabilities π, defined as fixed points of the transformation T ∗ acting on the
space P(S ) of probabilities on (S ,S) via

T ∗μ(B) =
∫

S
p(x, B)μ(dx), B ∈ S. (9.1)

Stability generally refers to convergence to π in some metric for a class of initial distribu-
tions μ � π. More specifically, in its present use, stability in distribution means that there
is weak convergence to π from any initial distribution.

Given a probability μ on (S ,S) and transition probability kernel p(x, dy), Tulcea’s
theorem provides the canonical representation given by the coordinate projection pro-
cess Xn, n ≥ 0, on the product space Ω = S∞,F = S⊗∞, and P ≡ Pμ, where
Xn(ω) = ωn, ω = (ω0, ω1, . . . ) ∈ Ω, and

Pμ(C × S∞) =
∫

C
μ(dx0)p(x0, dx1)p(x1, dx2) · · · p(xm−1, dxm), C ∈ S⊗(m+1)). (9.2)

Some basic questions at the heart of equilibrium (stability) theory for such stochastic
processes may be delineated as:

• Q1 Conditions for existence of a probability π on (S ,S) such that choosing P(X0 ∈ B) =
π(B), B ∈ S makes X0, X1, X2, . . . a stationary process.

• Q2 Conditions for uniqueness of π.
• Q3 Conditions (and metrics) for stability: convergence of the distribution of Xn as n→
∞.

• Q4 Metric rates of convergence in distribution of Xn as n→ ∞.
• Q5 Asymptotic fluctuation laws for the process X0, X1, . . . under conditions of station-

arity.

Remarkable progress has been made over the past one-hundred years and has in-
cluded contributions by some of history’s greatest probabilists. Growing numbers of
textbook and research monograph treatments exist for diverse more specialized Marko-
vian models, far too numerous to list in this generality. That said, from the perspec-
tive of general theories any such list of references would include the influential books
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[20, 27, 30, 29, 31, 33, 16, 26, 28] to list a few. Of course the equilibrium theory of
discrete parameter Markov processes entails more questions than Q1-Q5. Additional spe-
cial structure leads to considerations of fine scale structure of equilibrium distributions,
coupling, mixing times, perfect simulations, and MCMC, for example, and are largely out-
side the scope of this article, but not outside the scope of Rabi’s broader interests. The
more comprehensive treatment [6] provides ample evidence of this.

The generic answers to Q1-Q5 learned from the study of irreducible Markov processes
are that: (i) sufficiently rapid frequencies of returns to a set of locations (renewals) can
provide existence; (ii) some form of irreducibility is sufficient for uniqueness; (iii) period-
icities may need to be averaged out for convergence; (iv) rates of convergence in suitable
metrics can range from algebraic to geometric depending on the degree of recurrence, e.g.,
as reflected in moments of return time distributions, and (v) fluctuation laws result from
ergodicity and strong mixing properties.

Rabi has taken a broad yet focussed approach to expand on refinements and answers
to these basic questions. In particular, within the general framework described above, he
asks how one might approach these basic questions in the absence of irreducibility. The
obstructions to some classic approaches to uniqueness and convergence questions are per-
haps the most obvious. In the absence of irreducibility, even ergodic Markov chains can
have a nontrivial tail sigmafield, and fail to have good mixing properties.

For the existence, uniqueness, and stability problems Rabi’s view has been to consider
a representation by iterations of i.i.d. random maps. For fluctuation laws his approach is
to exploit this and/or the martingale difference sequences g(Xn+1) −

∫
S

g(y)p(Xn, dy), n =
0, 1, 2, . . . , g ∈ L2(S , π). Specific progress in both regards will briefly be described in the
ensuing sections.

The representation of the Markov process as iterations of i.i.d. random maps is as
follows, [12, 13, 27]:

Theorem 1 (Blumenthal, Corson 1970, Kifer 1986). Assume that S is a Borel subset of
a complete and separable metric space with Borel sigmafield S. Let p(x, dy) be a one-step
transition probability on S . Then there is a set Γ of maps γ : S → S and a probability Q
defined on a sigmafield Σ of subsets of Γ such that
1. the map (γ, x)→ γ(x) is Σ ⊗ S measurable,
2. p(x,C) = Q({γ ∈ Γ : γ(x) ∈ C}), x ∈ S ,C ∈ S.

In view of Theorem 1 one may view the Markov process with initial distribution μ(dx)
and transition probabilities p(x, dy) as a sequence of random variables X0, X1, X2, . . .
defined on a probability space (Ω,F , P) according to the successive iterations

Xn = αn ◦ αn−1 ◦ · · · ◦ α1(X0), n = 1, 2, . . . , (9.3)

where X0 is a random variable on (Ω,F , P) with values in S and distribution μ(dx), and
α1, α2, . . . , is an i.i.d. sequence of random maps, independent of X0, having respective dis-
tributions Q, i.e., each αn is a Γ-valued random variable on (Ω,F , P) with distribution Q.

Remark 1. Alternatively, one may directly define Markov processes via i.i.d. iterated ran-
dom maps without regard to a topology for (S ,S). However, the topological assumptions
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will remain throughout this article as they are required by most of the theory developed to
answer the basic questions above. The essential generality is in the direction of relaxations
of irreducibility than with concern for anything beyond standard topologies.

Accordingly, for the purposes of this article, any of the following may serve as the
framework in which the Markov process is presented: (a) (Ω,F , P, X = {Xn : n =
0, 1, 2, . . . }); (b) (Q, Γ, Σ, X0, {αn : n ≥ 1}), where X0 is independent of {αn : n ≥ 1};
(c) (S ,S, μ(dx), p(x, dy)).

In the next section a basic splitting theorem of Bhattacharya and Majumdar [5] will be
presented. This involves the introduction of a metric dA on the space P(S ) of probabilities
on (S ,S) defined by a collection A of measurable subsets of S , referred to as a splitting
class. In Section 9.2 it will be shown that the classic theorem of [21] for monotone maps
on S = R is a special case, as are higher dimensional extensions to partially ordered spaces
and classic theorems of Doeblin [19], Harris [25], Nummelin [30], and Athreya and Ney
[2]. The problem of finding sufficient conditions for metric completeness of P(S ) with re-
spect to dA naturally presents itself and will also be discussed from the perspective of [15].
Some illustration of the martingale approach to fluctuation laws and functional limit theo-
rems will be taken up in Section 9.4. This article will be concluded with a brief overview
of some related alternative methods that have proven to be successful for this general class
of problems, especially where splitting fails, in Section 9.5. The latter will be illustrated
with a previously unpublished application arising in mathematical biology/ecology. Over-
all this is a survey article. Further elaborations, including proofs of the statements and
results, are either in the cited papers by Rabi and his co-authors, or can be found in the
reference books [6, 11].

9.2 A Splitting Theorem

In an important paper [5], coauthored with Mukul Majumdar, a classic result of Lester
Dubins and David Freedman, [21] is generalized with the following substantial extension.

Theorem 2 (Bhattacharya and Majumdar 1999). Let P(S ) denote the set of prob-
abilities on (S ,S). For a subcollection A ⊂ S of measurable subsets of S , define
dA : P(S ) × P(S )→ [0, 1] by

dA(μ, ν) = sup
A∈A
|μ(A) − ν(A)|, μ, ν ∈ P(S ).

Assume
1. dA defines a complete metric on P(S ).
2. There is a positive integer N such that for any (γ1, . . . , γN) ∈ ΓN,

dA(μ ◦ γ̃−1, μ ◦ γ̃−1) ≤ dA(μ, ν), ∀μ, ν ∈ P(S ),

where γ̃ = γN ◦ γN−1 ◦ · · · ◦ γ1,
3. There is a χ > 0 such that for the same value of N and every A ∈ A, one has
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P((αN ◦ · · · ◦ α1)−1(A) = S or ∅) ≥ χ.

Then there is a unique invariant probability π for the Markov process Xn = αn ◦ · · · ◦
α1(X0), n ≥ 1, where X0 is independent of α1, α2, . . . and has arbitrary distribution μ ∈
P(S ). Moreover,

dA(T nμ, π) ≤ (1 − χ)[ n
N ],

where T nμ is the distribution of Xn, and [ n
N ] denotes the integer part of n

N .

The essential and clever point of Theorem 2 is to render the map μ(dy) → T ∗μ(dy) =∫
S
μ(dx)p(x, dy) a contraction on the complete metric space (P(S ), dA), from which fixed

point theory can take over.
A couple specific topologies defined by a metric of the form dA are as follows:

1. [Kolmogorov metric dK :] S ⊂ R,A = {(−∞, x] ∩ S : x ∈ R}.
2. [Total variation metric:]A = S.

Related results and applications relative to the basic questions will be surveyed in sec-
tions to follow.

9.3 Related Results and Applications

In the case that S = [0, 1] and Γ is the set of continuous, monotone maps of S into
itself, Dubins and Freedman [21] introduced the following notion of splitting on P(S ):
A probability on a sigmafield Σ of subsets of Γ splits if there is an x0 ∈ S such that
{γ ∈ Γ : 0 ≤ γ(x) ≤ x0,∀x ∈ S } and {γ ∈ Γ : x0 ≤ γ(x) ≤ 1,∀x ∈ S } are each measurable
and have positive probability. Taking A to be the subintervals of the form [0, x] ⊆ [0, 1],
one sees that this definition of splitting is a special case of that given in the hypothesis
of Theorem 2. For this class of sets the metric dA ≡ dK is the Kolmogorov metric and
implies weak convergence. It is well known that P(S ) is complete for the Prohorov met-
ric of weak convergence (on separable metric spaces). Moreover P(S ) is complete for the
Kolmogorov metric whenever S is a nondegenerate subinterval of R (or even R

k). Thus,
if splitting occurs for this class A of subsets then Theorem 2 applies, and one gets ex-
ponential convergence to a unique invariant probability in the (stronger than Prohorov)
Kolmogorov metric.

A yet stronger metric d1, under which completeness could be established for nondegen-
erate subintervals S of R, was introduced in [8] as

d1(μ, ν) = sup{|
∫

S
f dμ −
∫

S
f dν| : f ∈ G1}, μ, ν ∈ P(S ), (9.4)

where G1 is the set of nonnegative, nondecreasing Borel measurable functions on S
bounded above by one. In addition it was subsequently shown in [15] that complete-
ness of (P(S ), d1) also holds in the case S = R

k, k ≥ 1, with the monotonicity of
f = ( f1, . . . , fk) : R

k → [0, 1]k ⊂ R
k defined coordinatewise for each fi (1 ≤ i ≤ k)

with respect to the usual partial order � on R
k; namely, (x1, . . . , xk) � (y1, . . . , yk) if and

only if x j ≤ y j, 1 ≤ j ≤ k. These latter authors refer to d1 as the Bhattacharya metric, and
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provide a characterization of Borel subsets S ⊆ R
1 for which d1 defines a complete metric

on P(S ). However, such a characterization is delicate and generally open in higher dimen-
sions than one. Nonetheless completeness of P(Rk), together with insightful examples of
S ⊆ R

2 such that P(S ) is complete, can be found in [15].
Dubins and Freedman [21] had shown that for strictly increasing, continuous maps on

an interval in R or an arbitrary closed set, their splitting condition is also necessary for the
existence of a unique invariant probability. Rabi and his student, Osook Lee, extended this
necessity to nondecreasing maps on compact subsets of Rk. Moreover, continuity of the
maps is not required for this conclusion, see [8].

The role of splitting in the context of monotone nondecreasing maps is best understood
in terms of Furstenberg’s [22] backward iteration; a powerful idea introduced for i.i.d.
products of random matrices, but of independent interest throughout the study of random
dynamical systems and including the Propp-Wilson algorithm for perfect simulations [32].
The essential feature of nondecreasing maps on an interval [a, b], say, is that the backward
iterations α1 ◦ · · · ◦αn(a), n ≥ 1, and α1 ◦ · · · ◦αn(b), n ≥ 1, are respectively nondecreasing
and nonincreasing sequences, therefore having limits and squeezing all other such iterates
starting from x ∈ [a, b]. On the other hand, this is not the case for nonincreasing maps, and
Rabi and Mukul Majumdar, [5], showed that splitting was not necessary for the existence
of unique invariant probability when the maps are assumed nonincreasing. Moreover this
has nothing to do with the continuity of the maps, nor connectivity of S .

I can vividly recall Rabi’s enthusiasm for splitting that he shared with me on an ex-
tended visit to Indiana University over the summer of 2001. The enthusiasm was conta-
gious and we tried to find a still more widely applicable version of splitting. A modest goal
was to at least have a broader understanding of the equilibrium theory from a perspective
of splitting. In [10] we built on minorization ideas of Doeblin [19], recurrence theory of
Harris [25], splitting ideas of Nummelin [30], regenerative ideas of Athreya and Ney [2],
and drift conditions of Foster and Tweedie [28]. This resulted in notions of localized split-
ting and strict splitting that proved to be useful for analyzing certain quadratic maps. The
localization is analogous to the localization of Doeblin’s minorization condition in terms
of small sets and small measures, e.g., see [30, 31]. The strictness simply refers to the use
of half-open intervals (strict inequalities) in defining the splitting classA.

Random iterations of the quadratic maps γθ(x) := θx(1 − x), for 0 ≤ θ ≤ 4, on the unit
interval S = [0, 1] according to i.i.d. selections of the parameter θ ∈ [0, 4], provides a rich
and intriguing class of examples with which to test many aspects of the general theory.
Rabi’s initial work in collaboration with B.V. Rao in [9] involved applications when the
distribution of the parameter θ is supported on two points θ1, θ2, say. There it was dis-
covered that there are values of the parameters in the range 1 < θ1 < θ2 < 2, each well
below the critical value for the transition to chaos for the respective deterministic dynami-
cal system, for which the invariant probability could be a continuous singular distribution
supported on a Cantor set; specifically for parameter values in this range and satisfying

1

θ2
2

− 1

θ3
2

<
1

θ2
1

− 1

θ3
1

, 1 < θ1 < θ2 ≤ 2. (9.5)
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Rabi once remarked to me that overall he and I seemed to be attracted to very different
mathematical structures, his generally being toward smooth, and mine toward singular; but
there is something here for everyone. The entire Lebesgue spectrum from atomic to con-
tinuous singular to absolutely continuous may show up for the invariant measures for this
class of random dynamical systems, and the task of sorting this out for iterated quadratic
maps continues to be a substantial open problem; see [4] for another interesting example
in this vein.

For quadratic maps, even the existence of a unique invariant probability on (0, 1) is not
fully understood. In an important paper [1], Athreya and Dai produce an example satisfy-
ing 1 < θ1 < θ2 < 4 for which there is not a unique invariant probability on (0, 1). The
characterization of pairs (θ1, θ2) for which this phenomena occurs remains a challenging
open problem.

9.4 Fluctuation Laws and Limit Theorems

The central limit theorem of Gordin and Lifšic [23] for a discrete parameter Markov pro-
cess provides a fluctuation law for averages 1

n

∑n
j=1 g(X j) for a large class of functions

g : S → R of an ergodic Markov process X having a unique invariant probability. It is
based on the Billingsley-Ibragimov central limit theorem for martingales and is especially
important from the perspectives of both applicability to non-irreducible Markov processes,
and the formula for variance. Rabi’s paper [7] provides the central limit theorem for con-
tinuous parameter Markov processes together with a beautiful formula for the variance pa-
rameter in a general functional central limit theorem for (continuous parameter) Markov
processes. A functional law of the iterated logarithm is also obtained in [7]. This the-
ory has also found numerous applications outside of random dynamical systems by Rabi
and others. Further applications to random dynamical systems with special structure, e.g.,
monotone maps, were developed in [8]. A simple illustrative theorem in this context may
be stated as follows; in fact, a functional clt is proven with weak convergence to Brownian
motion.

Theorem 3 (Bhattacharya-Lee 1988). Assume that Γ consists of monotone nondecreas-
ing maps on a closed set S ⊆ R

k, k ≥ 1. Assume the splitting conditions hold for the
splitting class A given by the collection of subsets of S of the form {y ∈ S : γ(y) � x},
for γ ∈ Γ and the usual partial order � on R

k. Let π be the corresponding unique in-
variant probability. Then, regardless of the initial distribution X0, assumed independent of
{αn : n ≥ 1}, one has for every function h : S → R expressible as the difference f1 − f2 of
two nondecreasing measurable functions f1, f2 ∈ L2(π),

1
√

n

n−1∑

m=0

(
h(Xm) −

∫

S
hdπ
)
⇒ N(0, σ2),

where

σ2 =

∫

S
g2(x)π(dx) −

∫

S
(Tg(x))2π(dx),
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for Tg(x) = Exg(X1) =
∫

S
g(y)p(x, dy), and g defined by

(I − T )g = h ≡ h −
∫

S
hdπ.

9.5 Other Approaches, Problems, and Directions

As noted earlier, in certain instances splitting is precisely the right tool, but this is not
always the case. Within the framework of random dynamical systems as iterated i.i.d.
random maps, special advantage can be obtained from maps that tend to contract on a
complete and separable metric space. For example, Dubins and Freedman [21] obtain the
existence of a unique invariant probability π for i.i.d. iterations of contractive maps on a
compact metric space S whose distribution Q is defined on the Borel sigmafield of the set
Γ of contractions on S with the uniform metric, under the assumption that the support of
Q contains a strict contraction. Moreover they prove convergence in distribution to π in
this setting. A slightly more general variant for complete and separable metric spaces, and
for which this follows as a corollary is given in [6, p. 282, Proposition 7.1]; however, the
authors explicitly acknowledge that this is an amplification of the proof given in [21]; see
[6, p. 284, Remark 7.4]. Indeed it adds clarity with which one can understand the basic
nature of such results.

Diaconis and Freedman [18] also relaxed the topological assumptions on S to that of a
complete and separable metric space, and introduced the beautiful idea of “contraction on
average” to obtain the existence of a unique invariant probability π. The following variant
appears in [6, p. 277, Thereom 7.2] with the added virtue of a relaxed condition on the
Lipschitz order of the contraction, but without the exponential rate of convergence in the
total variation metric given in [18].

Theorem 4 (Diaconis-Freedman 1999; Bhattacharya-Majumdar 2007). Let S be a
complete and separable metric space with metric d. Define an r−th order random Lip-
schitz coefficient by

Lr = sup
x,y∈S ,x�y

d(αr ◦ · · · ◦ α1(x), αr ◦ · · · ◦ α1(y))
d(x, y)

,

and assume −∞ ≤ E log Lr < 0 for some r ≥ 1. Suppose there is an x0 ∈ S such that

E log+ d(αr ◦ · · · ◦ α1(x0), x0) < ∞.

Then the Markov process Xn(x) = αn ◦ · · ·α1(x), n ≥ 1, X0(x) = x, has a unique invariant
probability π. Moreover, one has convergence in distribution of Xn(x) to π.

Finally, we note an important result of Brandt [14] regarding the stability of iterations
of i.i.d. affine linear maps; see also [6, 11] for a variety of related results in the context of
linear autoregressive time series.
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Theorem 5 (Brandt 1986). Suppose that (Cn,Dn), n ≥ 1, is a stationary, ergodic sequence
in R

2 such that for some r ≥ 1

E log+ |C1| < ∞, −∞ ≤ E log |C1 · · ·Cr | < 0, E log+ |Dn| < ∞.

Then the Markov process Xn+1 = Cn+1Xn +Dn+1, n ≥ 0, has a unique invariant probability
π. Moreover Xn converges in distribution to π.

Remark 2. Generalizations to higher dimensions S = R
k obtained by [14] were also ob-

tained by Berger[3]. A new proof is given in [6, p. 304, Theorem 3.1].

We conclude this section with an illustration of the use of these last two theorems in a
play on the topologies of S to resolve the lack of irreducibility in a problem of interest for
mathematical biology; see [17].

Proposition 1 (DeLeenheer, Peckham, Waymire 2015). Consider the Markov process
on S = [0,∞) defined by

Xn+1 = Bn+1
Xn

An+1 + Xn
, n ≥ 0,

where (A1, B1), (A2, B2) . . . is an i.i.d. sequence of random vectors having a.s. positive
components such that E log+ An < ∞, and E log+ Bn < ∞.
• i If E log B1

A1
< 0 then π = δ0 is the unique invariant probability and Xn converges to δ0

in distribution as n→ ∞.
• ii If E log B1

A1
> 0 then there are two mutually singular invariant distributions, δ0 and

ρ(dx). Moreover, in this case, if P(X0 > 0) = 1, then Xn converges in distribution to
ρ(dx) as n→ ∞.

Proof. S = [0,∞) is a complete and separable metric space. Since 0 is a sure fixed point,
if there is to be a unique invariant probability then it must be δ0. Using the mean value
theorem from calculus, one may easily check that the contraction on average property
(Theorem 4) applies under the asserted condition, making δ0 unique, and the process stable
in distribution. To explore the possible existence of an invariant probability on the non-
complete metric space (0,∞), we consider the homeomorphic image defined by Yn =

1/Xn, n ≥ 1, on [1,∞). The dynamics of this Markov process is precisely that of i.i.d.
iterations of affine linear maps of the form

Yn+1 = Cn+1Yn + Dn+1, n = 0, 1, 2, . . . ,

where Cn =
An
Bn
,Dn =

1
Bn
, n ≥ 1. Thus, it follows from Brandt’s theorem that under the

stated conditions there is a unique invariant probability for the reciprocal process. The
result follows by continuity of x → 1/x on (0,∞), and its inverse.

Perhaps the apparent reciprocity between the bounds on the “random Lipschitz co-
efficient,” of Diaconnis and Freedman, and the “random Liapounov growth rate” of the
homeomorphic inverse map, implicit in Brandt’s theorem, is not an accident but occurs for
a more general class of non-irreducible Markov processes. For another relatively recent
exploration of ideas of random dynamical systems in the context of random contractions
the reader is referred to [1, 34] and references therein.
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9.6 Concluding Remarks

The general equilibrium theory for discrete parameter random dynamical systems will
clearly remain a rich and vibrant framework for mathematical research for years to come.
Both the depth of the foundational theory and the scope of applications continue to rapidly
evolve. The contributions by Rabi and by many others too numerous to mention in this
brief survey provide a solid foundation on which to continue to build new approaches
to equilibrium and stability theories that can accommodate non-irreducible Markov pro-
cesses. Such developments seem far from complete but, as illustrated by his efforts in this
area, Rabi has provided a solid vision for what can be possible in this most intriguing area
of probability theory.

Acknowledgements This was prepared with partial support of the National Science Foundation Grant
DMS- 1408947.
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ASYMPTOTICS OF A CLASS OF MARKOV PROCESSES 
WHICH ARE NOT IN GENERAL IRREDUCIBLE 

BY RABIN. BHATTACHARYA1 AND 0ESOOK LEE 

Indiana University 

Let «n be a sequence of iJ.d. nondecreasing random maps on a subset S of 
IRk into itself and let X0 be a random variable with values in S independent 
of the sequence «n· Then xn"" «n ... u1Xo is a Markov process. Conditions 
for the existence of unique invariant probabilities are obtained for such 
Markov processes which are not in general irreducible, extending earlier 
results of Dubins and Freedman to multidimensional and noncompact state 
spaces. In addition, a functional central limit theorem is obtained. These 
yield new results in time series and economic models. 

1. Introduction. One way to study discrete parameter Markov processes is 
the following [Kifer (1986)]. Let (S, Y') be a measurable space, r a set of 
measurable maps on S into itself. Endow r with a a-field C(J such that the map 
(y, x) ~ -y(x) on r X s into sis C(/® Y'IY-measurable. Let p be a probability 
measure on (f, C(i). On some probability space (n, §, Q) define a sequence of 
i.i.d. random maps cx1, cx2 , • • • with common distribution P. For a given random 
variable Xo, independent of the sequence cxn, define x1 = cxlXO, ••• ' xn = 
cxnXn-l = cxn • · • cx1X0 • • • • Then Xn is a Markov process with transition 
probability p(x, dy) given by 

(1.1) p(x, B)= P({y E r: y(x) E B}), XEs, BEY'. 

We shall often write Xix) for Xn in case X 0 = x. Denote by pn the joint 
distribution of cx1, ••• , cxn, i.e., pn = P X P X · • • X P on (fn, C(J ®n). 

Let IIJ(S) denote the linear space of all real-valued bounded measurable 
functions on S. The transition operator Ton IIJ(S) is defined by 

(1.2) (Tf )(x) = j f(y)p(x, dy), f E IIJ(S). 

Its adjoint is T * defined on the space vlt(S) of all finite signed measures on 
(S, Y') by 

(1.3) (T*p.)(B) = jp(x, B)p.(dx), p. E vlt(S). 

Let f!P(S) c vlt(S) denote the set of all probability measures on (S, Y'). Recall 
that a probability measure ., on (S, Y') is said to be invariant for p if it is a fixed 

point ofT*: T*'TT = "'· 
We shall write p<n>(x, dy) for the n-step transition probability, with p<1> = p. 

Then p<n>(x, dy) is the distribution of cxn • • • cx1x. 

Received October 1986; revised November 1987. 
1 Research supported in part by NSF Grant DMS-85-03358. 
AMS 1980 subject classifications. Primary 60F05, 60J05. 
Key words and phrases. Invariant probability, nondecreasing maps, central limit theorems, fixed 

points. 
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The transition probability p may not be cp-irreducible for any nonzero a-finite 
measure cp. Recall that p is cp-irreducible if cp(B) > 0 implies that for each x 
there exists n such that p<n>(x, B)> 0. There is an extensive literature on the 
asymptotic properties of Markov processes with cp-irreducible transition prob
abilities. See, e.g., Jain and Jamison (1967), Orey (1971), Tweedie (1974), (1975) 
and Revuz (1984). There is, however, no general theory for the nonirreducible 
case. In the present context, the latter arises, for example, when P is discrete. 
For some examples of nonirreducible models in biology and economics, see Reed 
(197 4), Bhattacharya and Majumdar (1984), (1988) and Rosenblatt (1980). Our 
main interest in this article is to look at one such class of Markov processes, to 
find general conditions under which there exist unique invariant probabilities ., , 
to study the stability of such measures and to identify broad classes of functions 
f in L 2(S, 'TT) for which the functional central limit theorem (FCLT) holds, i.e., 
the sequence of stochastic processes 

Yn(t) 

(1.4) 
= n-v•[~: (/(X;)- ftd+ ( t- [:] )( t(x,.,,+,) ~ J fd~)] 

converges in distribution to a Brownian motion under every initial distribution. 
In the class of problems considered in this article, S is a topologically 

complete subspace of IRk, i.e., the relativized topology on S may be metrized so 
as to makeS complete. The Borel a-field of Sis !!#(S). For r one takes a set of 
measurable monotone nondecreasing functions y = ( y(l>, ... , y<k>) on S into 
itself. In other words, y(i>(x<1>, •.. , x<k>) is monotone nondecreasing in each 
coordinate x(l), ••. , x<k>. Make the assumption on P: 

There exists x 0 and a positive integer m such that 

(1.5) 

It is then shown that there exists a unique invariant probability to which 
p<n>(x, dy) converges exponentially fast in a metric stronger than the Kolmogorov 
distance; this convergence is uniform for all x E S (Theorem 2.1 ). This gener
alizes an earlier result of Dubins and Freedman (1966) and Yahav (1975) who 
considered the case k = 1, S a compact interval. A necessary condition for 
compact S and arbitrary k is given by Lemma 2.6. Theorem 3.1 provides an 
FCLT of the type mentioned earlier. Section 4 contains two applications, one to 
mathematical economics and the other to nonlinear autoregressive models; both 
are new results. 

2. Existence of a unique invariant probability. Let S c IRk be topologi
cally complete in its relativized Euclidean topology and let r be a set of 
measurable monotone nondecreasing maps y = ( y<1>, ... , y<k>) on S into S. We 
shall often write yx for y( x ). 

Let ~ be a a-field on r such that the map (y, x) ~ yx is measurable on 
(f X S, ~ ® !!#(S)) into (S, !!#(S)). 
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Let .91 be the class of all sets A c S of the form 

(2.1) A= {yES: y(y):::;; x}, 

where y varies over the class of all continuous monotone nondecreasing func
tions on S into itself and x varies over 11\tk. 

On the space 9(S) of all probability measures on (S, !JI(S)), define the 
distance d by 

(2.2) d(p,,v)=sup{Jp,(A)-v(A)J:AE.s#}, p,,vE9(S). 

This defines a topology on 9(S) that is stronger than the weak-star topology. 
Our first main result is 

THEOREM 2.1. Suppose there exists a positive integer m and some x 0 E S 
such that (1.5) holds. Then there exists a unique invariant probability 'TT and 

(2.3) sup{d(p<nl(x, dy), 'TT(dy)): XES} ~ 0 

exponentially fast as n ~ oo. 

First let us show 

LEMMA 2.2. The space 9(S) is complete under the distance d defined by 
(2.2). 

PROOF. It is known that 9(S) is topologically complete under the weak-star 
topology [see Parthasarathy (1967), page 46], which is weaker than its topology 
under d. Hence if !Ln is a sequence in 9(S) such that d(p,n, !Lm) ~ 0 as 
n, m ~ oo, then there exists p, E 9(S) such that !Ln converges weak-star to p,. 
Fix a continuous monotone nondecreasing y on S into S and write Fn and F for 
the cumulative distribution functions of !Ln o y- 1 and p, o y- \ respectively. Then 
Fn(x) converges to F(x) at all points x of continuity of F. On the other hand, 
sup{iFn(x) - Fm(x)j: X E ~k} :S: d(p,n, !Lm). Hence Fn converges uniformly to a 
function that is necessarily right continuous. This implies that this limit func
tion is F and that Fn(x) converges to F(x) uniformly for all x. This being true 
for every continuous nondecreasing y, !Ln(A) converges to p,(A) for every A E .91. 
But !Ln converges uniformly on .91. Hence d(p,n, p,) ~ 0. 0 

We now introduce a distance d 1 stronger than d. For a~ 0, let '§a denote the 
class of all real-valued Borel measurable nondecreasing functions f on S satisfy
ing 0 :::;; f(x) :::;; a for all x E S. Define 

(2.4) p,, p E 9(S). 

Clearly, da(JL, v) = adlp,, v) for all a~ 0. 
Let the linear map T*n = (Tn)* be defined on A(S) by 

n ~ 1, p, E A(S), BE !?I(S). 
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In order to state the next lemma, fix x0 E S and a positive integer m. Write 

(2.6) 
fl = { ( Yw · ·, Ym) E rm: Ym · · · Y1X ~ Xo 'f/ X}, 

LEMMA 2.3. If f 1, f 2 are defined by (2.6), then 

(2.7) 

where 
(2.8) 

If (1.5) Jwlds, then 8 < 1. 

PRooF. Let f E <§1" Then 

0 ~ h1(x) = 1 f(ym · · · y1x)Pm(dy1 · · · dym) 
r,\(r,nr2 ) 

~ f(x 0 )(Pm(f1)- pm(f1 n f 2)), 

0 ~ hix) = 1 (1- f(Ym · · · Y1x))Pm(dy1 · · · dym) 
r 2\(r,nr2 ) 

{2.9) ~ (1- f(x 0 ))(Pm(f2 )- pm(r1 n f 2)), 

0 ~ ha{x) = 1 f( Ym · · · Y1X )Pm( dyl · · · dym) 
r\(r,ur2 ) 

~ 1- pm(rl u r2), 

1 f{ym · · · y1x)Pm(dy1 · · · dym) = f(x 0 )Pm(f1 n f 2 ). 
r,nr2 

Now, 

jfdT*mp.- jfdT*mll 

{2.10) = jh1(x)p.(dx)- jh1(x)11(dx) + jh 2(x)11(dx) 

- jh2(x)p.(dx) + jh3(x)p.(dx)- jh 3(x)11(dx). 

Let a 1, a 2 , a 3 denote the constants appearing on the right sides in (2.9) bounding 
h 1, h 2 , h3• Then, h 1, a2 - h2 , h3 belong to <§a , i = 1, 2, 3. Therefore, . 
d1(T*mp., T*m11) ~ sup [{f{x0)(Pm{f1)- pm(f1 n f 2)) 

fe'Y1 

+ (1- f(x 0 ))(Pm(f2 )- pm(f1 n f 2)) 

{2.11) +(1- pm(rl u r2))}dl(p., 11)] 

~ [max{ pm(rl) - pm(rl n r2), pm(r2) - pm(rl n r2)}

+1- pm(rl)- pm(r2) + pm(rl n r2)]dl(p., 11) 

= max{1 - pm(f2), 1 - pm(f1) }dl{p., 11 ). 



295

ASYMPTOTICS OF SOME MARKOV PROCESSES 1337 

For the last equality, if pm(f1) ~ pm(f2), then 

max{ pm(rl) - pm(rl () r2), pm(r2) - pm(rl () r2)} 

= pm(rl) - pm(rl () r2). 

Thus (the sum on) the left side of the equality in (2.11) is 1 - pm(f2). But the 
right side also equals 1 - pm(f2) in this case. The case pm(f2) > pm(f1) is 
exactly similar. Hence 

(2.12) 

Also, 

d 1(T*p., T*v) = sup{IJ[J f(y)p(x, dy)]p.(dx) 

(2.13) 
- J[jf(y)p(x,dy)]v(dx)\: f E ~1} 

~ t;ll(p., v ). 

Combining (2.12) and (2.13) one arrives at (2.7). If (1.5) holds, it is trivial to check 
that~< 1. 0 

Since d(p., v) ~ d 1(p, v) ~ 1, the following is immediate from Lemma 2.3: 

(2.14) d(T*np., T*nv) ~ 8[n/ml, n = 1,2, .... 

Corollary 2.4 is a consequence of Lemma 2.2 and (2.14). 

CoROLLARY 2.4. If (1.5) lwlds for some x 0 E S and some positive integer m, 
then there exists a unique probability measure 7T on (S, £!4(8)) such that 

(2.15) supd(p<n)(x, dy), 7r(dy)) ~ .S[n/m]-+ 0 as n-+ oo. 
xeS 

PROOF. For n' > n, one has 

(2.16) d( p<n)(x, dy ), p<n')(x, dy)) = d(T *np., T *nv) ~ 8[n/ml, 

with JL = 8x (point mass at x) and v = T*<n'-n)8x. Hence p<n)(x, dy) is a Cauchy 
sequence in the metric d. Let 7T be its limit, which exists by Lemma 2.2. Letting 
n' -+ oo in (2.16) one arrives at (2.15). 0 

If the probability measure 7T in Corollary 2.4 can be shown to be invariant, 
then the proof of Theorem 2.1 would be complete. The next result shows this. 

LEMMA 2.5. (i) Suppose there exist a= ( a<1), ••• , a<k)) and b = ( b<1), ••• , b(k)) 

inS such that a~ x ~ b for aU xES. If, in this case, p<n)(x, dy) converges 
weakly to the same probability measure 77( dy) on S for every x E S, then 7T is the 
unique invariant probability for p. 

(ii) The probability measure 7T in Corollary 2.4 is the unique invariant 
probability for p, whether or not there exist a and b as in part (i). 
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PROOF. (i) Let 

(2.17) X (x) = « .. · « x n n 1 ' 
Y (x) = « .. · « x n 1 n ' xES, 

where «, «1, «2 , ••• is an i.i.d. sequence of random maps (on S into S) with 
common distribution P and defined on some probability space(~,$, Q). The 
distribution of Yn(x) is the same as that of Xn(x), namely, p<n>(x, dy). Now 
Yn( a) increases and Yn( b) decreases, respectively, to X and Y, say. Since Yn( a) ::5: 

Yn( b) for all n, X ::5: Y. Under the hypothesis, however, the distributions of X 
andY are the same, namely,"'· Hence X= Y, almost surely. Therefore, 

p<n+l>(a, S n [a, x]) = Q(«Yn(a) ::5: x)::::: Q(«X ::5: x) 

(2.18) 
= jp(z,Sn [a,x]).,(dz) 

= Q( ClY ::5: X) ;::: Q( «Yn( b) ::5: X) 

= p(n+l)( b, 8 (I [a, X]). 

If xis a point of continuity of the cumulative distribution function (c.d.f.) of.,, 
then the two extreme sides of (2.18) have the same limit 'TT(S n [a, x]). Hence 
one must have the equality 

(2.19) .,(sn [a,x]) = jp(z,Sn [a,x]).,(dz). 

Since the class of sets S n [a, x] for which (2.19) holds is closed under finite 
intersections and generates PA(S), it follows that [see, e.g., Billingsley (1979), 
Theorem 3.3, page 34] ' 

(2.20) .,(B)= jp(z, B).,(dz) 'r:/ BE PA(S), 

i.e., ., is invariant for p. If .,, is also invariant, then 

(2.21) 'TT'(Sn [a,x]) = jp<n>(z,Sn [a,x]).,'(dz) 'r;j x. 

In particular, for points x of continuity of the c.d.f. of.,, one may take limits to 
get 'TT'(S n [a, x]) = 'TT(S n [a, x]). This implies.,,=.,, proving uniqueness. 

(ii) First consider the case m = 1. In case there do not exist a andjor bas in 
part (i), reduce the problem to that of a bounded S, by an increasing homeomor
phism. Let now a<i> = inf{x(i>: x E S} and b(i) = sup{x<i>: x E S}, 1 :::;: i:::;: k. 
Write a= (a<1>, ... , a<k>), b = (b<1>, ... , b<k>). LetS= S u {a, b}. For y E f 1, 

set y(a) =a and y(b) = x0; for y E f 2 , set y(a) = x0 and y(b) = b; for 
y fE f 1 U f 2 , set y(a) =a and y(b) =b. Then the hypothesis (1.5), with m = 1, 
still applies on the new state space S. Therefore, by Corollary 2.4 and the 
preceding part (i), there exists a unique invariant probability ii(dy) to which 
p<n>(x, dy) converges in the d-metric, for all xES. Since p<n>(x, dy) converges to 
'TT( dy) for all x E S, iiT = "'· 
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To deal with the case m > 1, take for f the set r<m> of all compositions 
Ym · · · y1 with Y; E f, 1 ~ i ~ m. For the a-field ~(m) on r<m>, take the class of 
all sets B whose inverse images under the map ( y1 • · · Ym) ~ Ym · · · y1 are in 
~m. Let p<m> be the induced probability measure on (r<m>, ~<m>). The (one-step) 
transition probability arising from the map (y, x) ~ yx on r<m) into sis then 
p<m>(x, dy), with the associated adjoint operator T*m. By the preceding para
graph, '7T is the unique fixed point of T*m: T*m'TT = 'TT. Also, one has 

in the d-metric. Hence T*'TT = 'TT. D 

This completes the proof of Theorem 2.1. 

REMARK 2.5.1. If one can show that £li'(S) is complete in the metric d 1 

defined by (2.4), then the contraction mapping theorem immediately yields 
T *'TT = 'TT. This is true fork = 1 and we are uncertain for k > 1. 

REMARK 2.5.2. Theorem 2.1 and its proof go over to a topologically complete 
S C ~ 00 • 

In case k = 1 and S is compact, the hypothesis of Theorem 2.1 is also 
necessary, leaving aside the case P({y(M) = M}) = 1 for some unique M [see 
Dubins and Freedman (1966) for the continuous case]. 

More generally, one has the following result. As before, S is always taken to 
be topologically complete. 

LEMMA 2.6. Lets c ~ k' r a set of measurable nondecreasing functions on s 
and let P be a probability measure on (f, ~) such that p<n>(x, dy) converges 
weakly for each x to the same probability 'TT(dy). Assume that there are two 
points a, b E S such that a ~ x ~ b for aU x E S. Then (1.5) holds for some x 0 

and some m, provided there are two points c = ( c<1>, .•• , c< k >) and d = 
( d(l>, ... , a<k>) in the support of 'TT( dy) such that c<i) < a<i> for 1 ~ i ~ k. 

PROOF. Let Yn(a)i X, Yn(bH Y [see (2.17)]. Since p<n>(a, dy) and p<n>(b, dy) 
converge weak-star to the same limit, X= Y a.s. Choose (} > 0 such that 
c<i> + (} < d(i) - (} for 1 ~ i ~ k. Writing e = (1, 1, ... , 1), there exists a positive 
integer m such that prob(Xm(b) ~ c + Oe) = prob(Ym(b) ~ c + Oe) > 0 and 
prob(Xm(a) :2:: d-Oe)= prob(Ym(a);;::: d-Oe)> 0. Then (1.5) holds for this m 
and any x 0 E [c + Oe, d-Oe]. D 

3. A functional central limit theorem. One of the principal objectives in 
this article is to obtain functional central limit theorems for 

(3.1) 0 ~ t < oo, 
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or its polygonal version defined by (1.4), for broad classes of functions f in 
L 2(S, '1T) under the general assumptions made in Section 2. In many situations, 
especially when Pis discrete, the Markov processes Xn considered here are not 
<p-irreducible with respect to any nontrivial a-finite measure <p. As a consequence, 
the processes, even though ergodic, are not even strongly mixing. Indeed, the tail 
a-field may be nontrivial [see Rosenblatt (1980) for an example]. 

The process Yn defined by (3.1) or (1.4) takes values in the space D[O, oo) of 
real-valued right continuous functions on [0, oo) having left-hand limits with the 
Skorohod topology. The distribution of Yn is then a probability measure on the 
Borel a-field of D[O, oo ), and its convergence in distribution to a Brownian 
motion means the weak-star convergence of this sequence of distributions to a 
Wiener measure [see, e.g., Parthasarathy (1967), Chapter 7]. 

THEOREM 3.1. Let the hypothesis of Theorem 2.1 hold. 

(a) Then for every f that may be expressed as the difference between two 
monotone nondecreasing functions in L 2( S, '7T ), f - f f d'7T belongs to the range of 
T-L . 

(b) Whatever the initial distribution, the functional central limit theorem 
holds iff is as in part (a), and the variance parameter of the limiting Brownian 
motion is given by fg 2 d'7T- f(Tg) 2 d'7T, where g is an element of L 2(8,'1T) 
satisfying (T- I)g = f- ffd'7T. 

For the proof let us begin with two simple but crucial lemmas. Let II· 11 2 

denote the norm in L2(S, '1T). 

LEMMA 3.2. Let p. be a probability measure on (R\ at(R 1)) such that 
fx 2p.(dx) < oo. Then 

PRooF. Expand the right-hand side and integrate. D 

LEMMA 3.3. Let f E L 2(S, '1T) and write 

(3.2) j = jfd'1T. 

If ~:'=oii(Tn( f- /))11 2 < oo, then f- f belongs to the range ofT- I; indeed, 
(T - I)g = f - j, where 

00 

(3.3) g = - L Tn(f - /). 
n=O 

PRooF. Apply T - I to the right side of (3.3). D 
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PROOF OF THEOREM 3.1. Let f E L 2(S, 7T) be monotone nondecreasing. By 
Lemma 3.2, 

IITm( f -1)11: 

= !( f (t( y) -l)p<m>(x, dy) r 7T( dx) 

(3.4) = J[j(f(y) -1)2p<ml(x, dy) 

- ~ j j (f( Y) - f(z ))2 p<ml(x, dy )p<ml(x, dz)] 7T( dx) 

= llf -111~- ~J[J j( f(y)- f(z))2p<ml(x, dy)p<ml(x, dz)]7T(dx). 

Now 

j j( f(y)- f(z))2p<ml(x, dy)p<ml(x, dz) 

~ j j ( f(y)- f(x 0 ))2p<ml(x, dy)p<m>(x, dz) 
{z:2:x0 } {y:>x0 } 

(3.5) 

where f 1 and f 2 are defined by (2.6). Hence 

J[J j(f(y)- f(z))2p<ml(x, dy)p<ml(x, dz)]7T(dx) 

(3.6) 
~ min{Pm(f1), pm(f2 )} J[j( f(y)- f(x 0 ))2p<m>(x, dy)]7T(dx) 

= min{Pm(f1), pm(r2 )} j( f(y)- f(x 0 ))27T(dy) 

~min{ pm(r1), pm(f2 ) }II f -111~ ~ (1 - 8)11 f -1 IlL 
where 8, defined by (2.8), is less than 1. Using (3.6) in (3.4) one gets 

(3.7) 
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where 

(3.8) c = (1- t{1- 8))112 < 1. 

Next note that if f is monotone nondecreasing, so is Tf and therefore Tmf. 
Hence iteration of (3.7) yields 

(3.9) j=1,2, .... 

Since Tis a contraction on L 2(S, w), one has, finally, 

(3.10) V n. 

It now follows from Lemma 3.3 that f - 1 belongs to the range of T - I. This 
proves part (a). 

In order to prove part (b), let (T- I)g = f -/.Then 
n n 

L ( f(Xi) -1) = L (Tg(XJ- g(XJ) 
j=O j-0 

(3.11) n+l 
= L (Tg(Xi-1)- g(Xi)) + (g(Xn+1)- g(Xo)). 

j=1 

Since Tg(Xi_ 1)- g(X), j ~ 0, is (under the initial distribution w) a stationary 
ergodic sequence of martingale differences, the functional central limit theorem 
follows [see Billingsley (1968), Theorem 23.1; Gordon and Lifsic (1978) and 
Bhattacharya (1982), Theorem 2.1]. In this case the variance parameter of the 
limiting Brownian motion is E(Tg(Xi_ 1)- g(X))2 = llgll~ -IITgll~· 

It remains to prove the functional central limit theorem starting from an 
arbitrary initial state x. Let f E L 2(S, w) be monotone nondecreasing. Let {Xj} 
denote the process with initial distribution w. Write 

m' 

Sm,m'(x) = n- 112 L ( t(X)x)) -1), 
j=m 

(3.12) m' 

Sm,m' = n- 112 L ( f(XJ -1). 
j=m 

(3.13) So,n0 - 1(x)- 0 a.s. as n- oo. 

Also, for all r E IR I, 

where Q is the probability measure on the basic probability space and 

(3.15) 
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is an increasing function of y. Hence, by Lemma 2.3, 

(3.16) :~~Jjhn(y)p<no>(x, dy)- jhn(Y)'IT(dy) I~ 0 as n 0 ~ oo. 

Therefore, given e > 0, one may choose n 0 = n 0( e) such that the left side of 
(3.16) is less than ej3. Then choose n(e) such that for all n ~ n(e), 

(3.17) 
IQ(Sn0 ,n(x) > r)- Q(So,n(x) > r)l < e/3, 

IQ(So,n > r)- Q(So,n-no > r)l < ej3. 

It follows that 

(3.18) 'rJ n ~ n(e). 

Hence the distribution of 80 n(x) converges in the weak-star topology to the 
appropriate Gaussian law. In' this manner one proves convergence of the finite 
dimensional distributions of Yit) to those of a Brownian motion when the 
initial state is x. It remains to prove that the distributions of Yn, n = 1, 2, ... , 
form a precompact set. To prove the latter, for an arbitrary set of positive 
integers n 0 < n 1 < · · · < nN+l =nand a positive number r, write 

(3.19) 
A(y) = {[ max Sn -n n -n -l(y)] > r}, 

O<i<N I 0' 1+1 0 

B(y) = {[ max Sn -n n -n -l(y)] ~ -r}. 
O~i~N , o, l+l o 

Let A, B denote the corresponding events for the sequence {Xj}. Since Q(A(y)) 
and Q(B(y)) are increasing in y, Lemma 2.3 may be used again to show that, as 
n 0 ~ oo, 

(3.20) 
Q[[O~i~xNSn,,n,+,-l(x)] > r]- Q[[O~i~xNSn,.n,+,-1] > r] 

= J Q(A(y))p<no>(x, dy)- J Q(A(y))'IT(dy) ~ 0, 

uniformly for all N, n; and r. A similar relation holds for the min and B(y). 
Since the partial sum process under the initial distribution 'IT converges to a 
Brownian motion, it now follows by Prohorov's theorem [see Billingsley (1968), 
Section 15] that Yn converges in distribution to the same Brownian motion. 

Finally, in case f = / 1 - / 2 with /; monotone nondecreasing and in L 2(S, 'IT), 
i = 1, 2, the preceding argument easily extends to the joint distribution of the 
processes Y2> and Y~2) associated with / 1 and /2 , respectively. Instead of the 
function (3.15), one now looks at Q(SJ1~-n (y) > r11 SJ2~-n (y) > r2 ), where S(l) 
and S<2) are partial sums correspondingo to / 1 and' /2 , o respectively. Hence 
Yn = Y~1) - Y~2) converges in distribution to the appropriate Brownian motion 
when X 0 = x. It follows, on integration with respect to x, that this convergence 
holds under an arbitrary initial distribution. D 
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4. Two examples. 

EXAMPLE 4.1. We shall write vectors in bold face in this example in order to 
distinguish them from scalars. In mathematical economics it is quite common to 
take S = (0, oo )k, r a set of nondecreasing and continuously differentiable maps 
y = ( y<1>, y<2>, ... , y<k>) such that each y<i)' is strictly concave, which may indi
cate, e.g., a law of diminishing returns. For simplicity, we take P to have finite 
support f. Assume, in addition, that for each y E f, (i) y(x),l,O as x~O, 
(ii) limxJ.ODiy<i>(x) > 1, 1 ~ i ~ k, (iii) lim Diy<i>(x) < 1 as xU> too for all j, 
1 ~ j ~ k, 1 ~ i ~ k, (iv) lim Diy<i'>(x) = 0 for i =I= i ', as xU> t oo for all j, 
1 ~j ~ k, 1 ~ i =I= i' ~ k. Here Di = a;ax<i). 

Let us show that for each y E r there exist two points x 1 < x 2 E S such 
that the range of y on [x1, x 2 ] is contained in [x1, x 2]. First note that y<i>(x) = 

y<i>(x) - y<i>(O) ;;:: I:,xU>Diy<i>(x), which is greater than x<i> for all sufficiently 
small x in view of (ii). Hence y(x) > x for all sufficiently small x. Choose 
x 1 such that y(x) > x for all x ~ xl" Next, let the limit in (iii) be {Ji < 1 and take 
fJ = max{{J1, ••• , {Jk}· Let 0 < e < (1 - /J)/2. Choose a > 0 so that Diy(i>(x) < 
fJ + ej2k and Diy<i>(x) < e/2k for i =I= j, if x ;;:: (a, a, ... , a). For all b > a, one 
has 8 = 8(a, b) E [0, 1] so that 

(4.1) 

(i)( b b) - (i)( ) y , .•. , - y a, a, •.. , a 

+ ( b - a) }2Diy<i>( a + 8( b - a), ... , a + 8( b - a)) 
j 

~ y<i>( a, a, ... , a) + ( b - a )(fJ + ej2) 

~ y<i>(a, a, ... , a)+ b({J +e) 

~ y(i>( a, ... , a) + b(1 + /J)/2, 

which is smaller than b for all sufficiently large b. Hence y( b, b, ... , b) < 
( b, b, ... , b) for all large b. Let x 2 = ( b, ... , b) for such a large b. Then x 1 and 
x 2 satisfy the requirement mentioned previously. 

Using the Brouwer fixed point theorem on [x1, x 2 ], it follows that y has a 
fixed point x 1 E [x1, x 2]. If x* ~ x 1 and x* = (b, b, ... , b);;:: x 2 for all y E r, 
then every y maps [x., x*] into itself. In particular, x 1 E [x., x*] for all y E r. 
Since the range of ymon [x.,x*] is contained in [ym(x.), ym(x*)] and ym(x.)tx1 

and ym(x*)ix1 as m too, the distance between the range of ym and {x1 } goes 
to zero as m-+ oo. Here we have used the fact that a strictly concave y cannot 
have more than one fixed point in [x1, x 2 ] since y(O) = 0. 

Assume finall~ that (v) there are y, y' E r such that x~i) < x~~> for 1 ~ i ~ k. 
It follows from the preceding paragraph that if x 0 is any given point in (x1 , x 1 , ), 

then the ranges of ym and y'm are contained in [x.,x0 ] and [x0 ,x*], respec
tively, for all sufficiently large m. Thus (1.5) holds. Hence, by Theorem 2.1, there 
exists a unique invariant probability won the new state space [x., x*] such that 
T *np, converges in the d-metric to w uniformly for all probability measures p, on 
[x.,x*]. Since x* can be taken arbitrarily small and x* arbitrarily large, the 
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invariant measure 7T is unique on S = (0, oo )k and T * np. converges weakly to 7T 

for every p. on S, although an exponential rate of convergence may not hold in 
general, unless the support of p. is compact. 

The assumption of finite r may be easily relaxed to the assumption of 
compactness of the support of P, where the topology on r is that of uniform 
convergence on compact subsets of (0, oo)k. In particular, it is enough to require, 
in addition to (i)-(v), that (vi) for some xES the set {y(x): y E r} is bounded 
and (vii) the sets {Djy<i>: y E r}, 1 :s; i, j :s; k, are bounded on every compact 
subset of (0, oo )k. 

The case k = 1 and r finite is known in mathematical economics and is 
described in Bhattacharya and Majumdar (1984) and Mirman (1980). 

We now turn to nonlinear autoregressive models. An autoregressive process of 
order q ~ 1 is a sequence of random variables Un with values in 1R r satisfying a 
relationship of the form 

(4.2) n = 0,1, ... , 

where cp is a measurable function on (!Rr)q into !Rr and 'lin• n = q, q + 1, ... , is 
an i.i.d. sequence with values in IR r independent of the initial variables 
U0 , U1, ••• , Uq_ 1. Then the process Xn =(Uno Un+ 1, .•. , Un+q- 1), n = 0, 1, ... , is 
a Markov process on the state space S = (IR r)q. 

EXAMPLE 4.2 (Nonlinear autoregressive models with cp nondecreasing). Sup
pose cp = ( cp<1>, ... , cp<r>) is a bounded nondecreasing function of its arguments 
and that a<i) :s; cp<i) :s; b<i>, 1 :s; i :s; r. Assume 

(4.3) 
prob( 'lin :s; ( c(l), ... , c<r>)) > 0, 

prob( 'lin ~ ( d(l), ... , d(r))) > 0, 

where the constants c<i) and d(i} satisfy 

( 4.4) d<i> - c<i) ~ b(i) - a<i), 1 :s; i :s; r. 

Write a, b, c, d for ( a(l), ... , a<r>), ( b(l>, ... , b<r>), ( c<1>, ... , c<r>), ( d(l>, ... , d<r>). 
Let us show that the Markov process Xn = (Un, ... , Un+q- 1) then admits a 
unique invariant probability and Theorems 2.1 and 3.1 apply. For q = 1 condi
tion (1.5) applies with m = 1, since prob(X1(x) :s; b + c 'il x) > 0, prob(Xix) ~ 
a + d 'il x) > 0 and one may take any x 0 E [b + c, a + d]. In general it may be 
shown that (1.5) holds with m = q. For example, in the case q = 2, 

(4.5) xn+1 = (Un+1• un+2) = l[l(Xn) + En+1• 

where l[l(x<1>, x<2>) = (x<2>, cp(x)) for x = (x(l), x<2>) E !Rr X Rr 

(0, '11n+ 1). Hence 

X0(x) = x = (x<1>,x<2>), 

X 1(x) = (x<2>,cp(x) + '11 2), 

Xix) = (cp(x) + 1J2,cp(X1(x)) + '113) 
(4.6) 

= (cp(x) + 'IJ2,cp(x<2>,cp(x) + '112) + '113), 

and 



304

1346 R.N. BHATTACHARYA AND 0. LEE 

so that 

prob( X2( x) ::::;; (b + c, b + c) '<:/ x) 

~ prob( 'IJz ::::;; c, 'IJa ::::;; c) = (prob( 'IJz ::::;; c) )2 > 0 

and 

prob(X2(x) ~(a+ d,a +d)'<:/ x) ~ (prob('IJ 2 ~ d))2 > 0. 

Thus one may take x 0 to be any point of (1Rr)2 in 

[(b + c,b +c), (a+ d,a +d)]= (b + c,a + d]2. 

The general case is now clear. 
Since Un is a nondecreasing function of Xn, it follows that for every integer 

s ~ 0, as n ~ 00 the Goint) distribution of (Un, un+l• ... ' un+s) under an arbi
trary initial distribution of (U0 , ••• , Uq_ 1) converges in the d-metric on (IR ry to 
its steady state distribution (i.e., its distribution when the initial distribution is 
the invariant distribution 7T ). 

If, in addition to (4.3) and (4.4), one assumes that E1'11n1 2 < oo', then by 
Theorem 3.1 applied to the function f(x) = x<1>, x = (x(l), x<2>, .•• , x<ql) E (!Rr)q, 
the functional central limit theorem holds for the summands un' 

It may be noted that ( 4.4) means that the error distribution is well spread out. 
Indeed, if '11n has a distribution whose support is unbounded in each coordinate 
(e.g., if it has full support !Rr), then this hypothesis is automatically satisfied and 
the support of the invariant probability in (IR r)q is noncom pact. 

Acknowledgments. The authors wish to thank the referee and the Associ
ate Editor for a careful reading of the manuscript and for pointing out a number 
of misprints. 

Note added in proof. A recent unpublished manuscript by H. Hopenhayn 
and E. Prescott entitled "Invariant distributions for monotone Markov processes" 
has come to our attention. In this, the authors prove a result similar to our 
Theorem 2.1. 
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Random Iterations of Two 
Quadratic Maps 

Rabi N. Bhattacharya* and B.V. Rao 

Abstract. We study invariant measures of Markov processes obtained 
by the action of successive independent iterations of a map chosen at ran
dom from a set of two quadratic maps. 

1. Introduction. 
Markov processes may be viewed as random perturbations of dynam

ical systems. Indeed , if the state space S is a Borel subset of a Polish 
space one may represent a Markov process with any prescribed t ransition 
probability and an arbitrary initial distribution as CtnCtn - 1 · · · a 1Xo, where 
{ Ctn : n ~ 1} is an i.i.d. sequence ofrandom maps on S into itself and Xo is 
Independent of {an : n ~ 1} (see Kifer (7), p.S). In the case of a dynamical 
flystem Ctn is degenerate, i.e., P(an = f) = 1 for a given single map f 
on S. This point of view of a Markov process is useful for the study of 
Markov processes as well as dynamical systems. Often a chaotic dynamical 
aystem admits uncountably many ergodic invariant probabilities only one 
of which, the so-called Kolmogorov measure, is physically relevant. This 
measure is the limit of the invariant probabilities of Markov processes ob
tl\ined as appropriate random per turbations of the dynamical system, as 
the distribution of a 1 approaches the Dirac measure at f (see Kifer (8], 
H.uelle [9), and Katok and Kifer [6]). This, however, is not the focus of the 
t)resent article. 

Consider the quadratic family offunctions {F~' : 0 ~ J-l ~ 4}, where F~' 
l11 the map on [0,1] defined by 

( 1.1) F~'(x) := J-lX(l - x), O~x~l. 

l)ynamical systems with f = F~' , and similar ones, have been extensively 
1tudied in the literature (see, e.g., Devaney [4] and Collet and Eckman (3]). 
(liven a pair of parameter values J-l < .A and a number; E (0, 1) we consider 

11 i.i.d. sequence of maps {an : n ~ 1} with P(a1 = F~') = ;,P(a1 = 
/ 1'>.) = I - ;. For certain choices of J-l, .A, we study the uniqueness and other 
properties of invariant probabilities of the resulting Markov processes. It 
turuH out that even for those F~' (and F>.) which are simple as dynamical 
l)'lltc•ms, the above randomization often leads to Markov processes with 
l11t11rc·Hting invariant probabilities some t imes supported on Cantor sets of 
l llhc•lll( ll <' mrnsure zero. 

• Hc·:·warch wa.-; s11pporlC'd in pa.rl by NSF C:ra.nl DMS 9206937 



308

14 R.N. BHATTACHARYA AND B.V. RAO 

Section 2 on iterated random monotone maps on [0, 1) is based largely 
on Dubins and Freedman [5), and provides the basic tool for deriving the 
main results. In Section 3 we review certain aspects of the quadratic maps 
F~'(O ~ J..l ~ 1 + v'5), such as attracting and repelling fixed points and 
period-two orbits, and identify pairs Fp, F>. which have a common invariant 
interval on which they are both monotone. Section 4 contains the main 
results, summarized in Theorem 4.1. It will be clear from the proofs that 
some of the results extend to more general classes of maps than the family 
{1.1), but we do not pursue such extensions in this article. 

2. Iterations of i.i.d monotone maps. 
Let a < b be given reals, and (n, F, P) a probability space on which 

is defined a sequence of i.i.d. continuous maps o:n(n ~ 1) on [a, b] into 
[a, b]. This means (i) for each w E n, x ---+ o:n(w )x is continuous (for all 
n ~ 1), (ii) for each B belonging to the Borel sigmafield 8 on [a, b], {( w, x) : 
an(w )x E B} E F ® 8, and (iii) for every finite set { x1, x2, . .. , xk} C [a, b], 
the sequence of random vectors (o:nXl, O:nX2, ... , O:nXk), n ~ 1, are i.i.d. If 
X 0 is a random variable (with values in [a,b]) independent of {an: n ~ 1} 
(i.e., of u{anx: x E [a,b],n ~ 1}), then Xo,Xn = O:n ... o:1Xo(n ~ 1), is a 
Markov process on [a, b] having transition probability p(x, B) := P(o:1x E 
B) and initial distribution JJ(B) := P(Xo E B), B E B. In particular, if 
X 0 = x then we write Xn(x) for this Markov process. Then-step transition 
probability may then be expressed as pn(x, B)= P(Xn(x) E B). Note that 
the continuity of o:1(w) implies x---+ p(x,dy) is weakly continuous. For 
weakly continuous transition probabilities (on some metric space) a well 
known elementary criterion for the existence of an invariant probability for 
p is the following: If for some x and some sequence of integers n1 < n2 < 
... < nk < ... , there exists a probability measure 1r such that 

(2.1) ...!.._ I: pm(x, dy) w~ly1r(dy), 
nk m=l 

then 1r is invariant. If for some x, the sequence~ L~=l pm(x,dy) is tight, 
then (2.1) holds for some sequence nk(k ~ 1) and some probability measure 
7r. 

We now state a basic result due to Dubins and Freedman [5) for mono
tone maps on [a, b]. For this case the splitting condition is said to hold if 
there exist x 0 and a positive integer m such that 

(2.2) P(Xm(x) ~ zo'Vz) > 0, P(Xm(x) ~ xo'Vx) > 0. 

Let p* denote the adjoint operator on the space of all finite signed measures 
on [a, b], 

(2.3) (p*v)(B) := j p(x, B)v(dx), BE 8, 
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with norm 

(2.4) 11 1111: = sup{l11((a,x])l: a~ x ~ b}, 

llp*11ll = sup{l J p(y;[a,x])11(dy)l: a~ x ~b). 

PROPOSITION 2.1. (Dubins and Freedman (5]). Suppose o:n(n ;::: 1) are 
i. i. d. monotone continuous maps on (a, b] into (a, b]. (a) If the splitting 
condition holds then IIP*nllt- p•n112ll = IIP*n(llt- 112) ll goes to/ zero expo
nentially fast as n ---. oo, uniformly for every pair of probability measures 
111> 112; and there exists a unique invariant probability 1r which is the limit of 
p•n11 for every probability 11. (b) If a 1 is strictly increasing a.s., and there 
is no c such that P(a1(w)c =c)= 1, then splitting is also necessary for the 
conclusion in (a) to hold. 

REMARK 2.1.1. Under the hypothesis of part (a) the invariant probability 
is nonatomic, i.e., its distribution function is continuous. For this take 
v1 nonatomic and 112 = 1r in the statement and note that the continuous 
distribution functions of p•n111 converge uniformly to that of 71". 

REMARK 2.1.2. Part (a) of the theorem holds if the state space is an 
Mbitrary interval not necessarily compact . Indeed, this result can be ex
tended to appropriate subsets of IRk and coordinatewise monotone maps 
(see Bhattacharya and Lee (2]). 

For our purposes a different version of this result will be useful. To 
llta.te it define Yn(x) := a1 · ·anx. If a1 is increasing on (a, b) then Yn(a) j 
11.nd Yn(b)! as n j. Let Y, Y denote the respective limits. Note that Xn(x) 
1\fld Yn(x) have the same distribution, namely, pn(x,dy). A proof of part 
{b) of Proposition 2.1 is included in the proof of the following result. 

PROPOSITION 2.2. Let o:1 be a.s. continuous and increasing on [a, b]. 
Consider the following statements: (i) Y = Y a.s. (ii) There exists a 
llnique invariant probability. (iii) Splitting holds. (iv) Y = Y a.s. and 
-' i.~ not constant a. s. ( v) There exists a unique invariant probability and 
et is nonatomic. (a) The following implications hold: (v) => (iv) => (iii) 

> (ii) ~ (i). (b) If a 1 is strictly increasing a.s. then (iii)~ (iv) ~ (v). 

Proof. (a) By criterion (2.1), the distributions of Y and Y are both 
luvnriant. Since y ~ Y, these invariant probabilities are the same if and 
only if i: = Y a.s. Also, Y.,(a) ~ Yn(x) ~ Yn(b) for all x . Therefore, Y = 
V 1\.H. i111plica Y,.(x) -+ .l:. a.s., so that pn(x, dy) converges weakly to the 
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common distribution of Y and Y, for all x. This easily implies uniqueness of 
the invariant probability. Hence (i) ¢> (ii). Also, (iii) => (ii) by Proposition 
2.1(a). 

Now assume (iv) holds. Then there exists x 0 such that P(Y < x0)( = 
P(Y < x0 )) > 0 and P(.le > xo) > 0. This implies (2.2) for all sufficiently 
large m. Thus (iv) => (iii). Since (ii) => (i), clearly (v) => (iv). 

(b) Assume (iii) holds. Then (i) holds. If Y = Y = c a.s. for some 
constant c then the Dirac measure De is invariant, which implies P(o:1c = 
c) = 1. This in turn implies P(Xn(c) = c) = 1 for all n ~ 1. Since 0:1 
is strictly increasing, so is x -+ Xn(x) (for every n ~ 1). Therefore, if 
a ~ xo ~ c < b then P(Xn(b) ~ xo) = 0, and if a < c ~ xo ~ b then 
P(Xn(a) ~ x0) = 0. Hence splitting does not occur. Thus (iii)=> (iv), so 
that (by (a)) (iii)=> (iv). By Remark 2.1.1, (iii)=> (v), so that (iii)¢> (v). 
D 

Suppose now that 0:1 is decreasing a.s. Then 0:10:2 is increasing a.s. 
and Z := limY2n(a), Z := limY2n(b) (as n -+ oo) exist. Proposition 2.2 
then holds for the two-step transition probability p2 (in place ofp), ifY and 
Y are replaced by Z.. and Z, respectively. Since every invariant probability 
for pis invariant for p2, the following corollary is immediate. 

COROLLARY 2.2. Suppose o:1 is continuous and either strictly increasing 
a.s. or strictly decreasing a.s. on [a, b]. In addition assume that there does 
not exist a c such that P(o:1c =c) = 1. Then splitting is a necessary and 
sufficient condition for the existence of a unique invariant probability. This 
probability is nonatomic. 3. Quadratic maps. 

We will henceforth confine our attention to the family of maps F11 (0 ~ 
I' ~ 4) defined by (1.1). If J..l :f. 0, F11 is strictly increasing on [0, !J and 
strictly decreasing on(!, 1] attaining its maximum value p/4 at x = !· 

If 0 ~ J..l ~ 1, then F11 (x) < x for x E (0, 1] . Hence F;(x) l as n j. 
The limit must be a fixed point. But the only fixed point is x = 0. Hence 
0 is an attracting fixed point: F;(x)-+ 0 as n-+ oo, for all x E [0,1]. 

If 1 < J..l ~ 4, then F11 has a second fixed point p11 = 1 - t£. Suppose 
1 < p ~ 2. Then F 11 (x) > x for x E (O,p11 ) and F11 is increasing on 
(O,p11 ). Hence F;(x) increases to the fixed point p11 as n increases. For 
x E (pp, 1), Fp(x) < x. Thus either F;:(x) decreases to Pp as n increases, or 
there exists n0 such that F;: 0 (x) E (O,pp] and F;:(x)F;:"(x) j Pp as n j. 
Therefore, F;:(x) -+ p11 for all x E (0, 1), so that p11 is an attracting fixed 
point. 

For p > 2 one has p11 > 1/2, and the above approach fails. Let us try 
to find an interval [a, b] on which F11 is monotone, and which is left invariant 
by Fp : F11 ([a, b]) C [a, b]. One must have t ~ a ~ b ~ 1. It is simple to 
check that (t,J.l/4] is such an interval provided l'~,(Jt/4) = I~~~(t) ~ 1/2. 
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This holds iff 2 ~ J1. ~ 1 + v'5. For such a JJ., F,.. is strictly decreasing, and 
F; strictly increasing, on [t,J-L/4]. Hence F;1n(l/2) j and F;1n(J-L/4) ! as 
n j . Let a = a(J-L), f3 = f3(J-L) be the respective limits. Then F;;n(x) ~ a 
for X E rt. a],F;1n(x) ~ f3 for X E [/3, JJ./4]. In particular, 0' ~ f3 are fixed 
points of F;1. Since, for 2 < J1. ~ 3, F;1 has no fixed points other than 0, p,.., 
it follows that in this case a= f3 = p,.., so that F;(x) ~ p,.. for all x E (0, 1). 

Consider 3 < J1. ~ 1 + v'5. In this case IF~(p,..)l = J1.- 2 > 1. Therefore, 
p11 is a repelling fixed point, so that a < p,.. < f3. This implies that {a, /3} is 
an attracting period- two orbit of F11 • Since F; is a fourth degree polynomial, 
{0, a,p11 ,f3} are the only fixed points for it. Since O,p11 are repelling, it 
follows that F;1n(x) ~a or f3 for all x =f 0,1 or a preimage of Pw Note 
that F;1(x) - x does not __shange sign on (a,p,..) or on (p,..,f3) . This analysis 
does not extend beyond 1 + ..;5. We conjecture that for J1. > 1 + v'5 a stable 
period- four orbit appears, while the period-two orbit (as well as the fixed 
points) becomes unstable. 

For later purposes we consider intervals [a, b] contained in [0, tJ or 
[t, 1) and the set I(a,b) := {JJ. E [0,4): F11 ([a ,b]) C [a, b)}. Straightforward 
calculations show 

(3 .1a) 

(3.1b) 

(3.1c) 

I(O,b) = [o, 1 ~b] ifO~b~ ~· 
I(a,b)= [l~a'l~b]ifO<a~b~ ~· 
I(a,b) = [b(l ~b) , a(l ~a)] if~~ a~ b ~land 

a2(1- a)~ b2(1- b). 

'l'he second requirement in (3.lc) may be expressed as 

(:l .1c)' 

which implies the further restriction 

(!I.Lc)" 
1 2 -<a<-. 2 - - 3 

'l'h maximum value of J1. E [0, 4) in the union of the sets I(a,b) in (3.1c) 
(111bjoct to (3.l c)', (3.lc)") is J1. = 1 + v'5. In particular, 

(
l ~-') [ 8 ] I - , - = , J-L , 
2 4 I'( I! - I') 

2 < /J ~ 1 + v'5. 
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4. Main results: random iterations of two quadratic maps. 
In this section we consider the Markov process Xn as defined in section 

2, with P(a:1 = F") = 1 and P(a:1 = F>.) = 1 - 1 for appropriate pairs 
IJ < .X and 1 E (0, 1). If 0 ~ p, .X ~ 1, then it follows from Section 3 that 
Yn(x)- 0 a.s. for all x E (0, 1], so that the Dirac measure 60 is the unique 
invariant probability. Now take 1 < IJ < A ~ 2, and let a =pi' = 1 - 1/ jJ 

and b = P>. in (3.1b). Then F", F>. are both strictly increasing on [p", P>.] 
and leave this interval invariant. Since p", P>. are attracting for Fp, F>., 
respectively, (2 .2) holds for any x0 E (pp,P>.) if m is large enough. It 
follows from Proposition 2.1 (or, Proposition 2.2) that there exists a unique 
invariant probability 11" on [p",P>.] . Since P(Xn(x) E [p",P>.] for some n) = 1 
for all x E (O,pp) U (P>., 1) it follows that the Markov process has a unique 
invariant probability, namely, 11" on the state space (0, 1) and that 11" is 
nonatomic. It is clear that both pi' and P>. belong to the support S( 11") of 11" 
as do the set of all points of the form 

( 4.1) Fc 1c~ .. ·ckPJJ := fcJc~ · · · fckPIJ (/o := FIJ, ft := F>.), 

Fc1c~ .. ·ckP>. (k ~ 1), 

for all k- tuples (c1 ,c2, ... ,ck) of O's and 1's and for all k ~ 1. Write 
Orb(x;p,.X) = {Fe 1erckX: k ~ O,c; = 0 or 1Vi} (k = 0 corresponds to x) . 
It is easy to see that if x E S( 11") then S( 11") = Orb(x; J..L, .X). This support, 
however, need not be [p",P>.]. Indeed, if F>.(P11 ) > Fp(P>.), i.e., 

(4.2) 
1 1 1 1 ---<---

_A2 _A3 J..L2 J..L3 (1 < p < .X ~ 2), 

then S( 11") is a Cantor subset of [p", P>.]. Before proving this assertion we 
identify pairs J..L, A satisfying ( 4.2) . On the interval (1 , 2] the function g(x) := 
x- 2 - x- 3 is strictly increasing on [1, 3/2] and strictly decreasing on [3/2, 2], 
and g(1) = O,g(3/2) = 4/27,g(2) = 1/8. Therefore, (4.2) holds iff 

(4.3) .X E (3/2, 2) and p E [A, .X) , 

where A~ 3/2 is uniquely defined for a given A E (3/2, 2) by g(.X) = g(.X). 
Since the smallest value of .X as A varies over (3/2, 2] is v'5- 1 which 
occurs when A = 2 (g(2) = 1/8), it follows that jJ can not be smaller than 
v'5- 1 if (4.2) (or, (4.3)) holds. 

To show that S(11") is a Cantor set (i.e., a closed, no where dense 
set having no isolated point) for J..L, .X satisfying (4.2), or (4.3) , write I = 
[pp,p>.], Io = FJJ(I), It = F>.(I), !, , ,~ ... ,~ = Fc 1 c ~ · .. c~(I) for k ~ 1 and k
tuplcs (eJf::l"''k) ofO 's and l 's. ll r rc F, ,,J ' • f,J ,, ... f, ,. aa dcfincd 
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in (4.1). Under the present hypothesis F;~..(pp) > Fp(p;~..) (or, (4.2)), the 2k 
intervals Ie1 e 2 ···ek are disjoint, as may be easily shown by induction, using 
the fact that Fp,F;~.. are strictly increasing on (pp , p;~..] . Let Jk = Ul,

1
,

2 
... ,k 

where the union is over the 21: k-tuples (c1 ,c2, · · · ,ck)· Since X~:(x) E Jk 
for all x E J, and J~: ! as k j, S(1r) C lA: for all k, so that S(1r) C J := 
nf= 1]l;. Further, F~' is a strict contraction on [pp,P>.] while Ff(J)! {P>.} 
as n i oo. Hence the lengths of 1,1 , 2 . .. ek go to zero as k -+ oo, for a 
sequence (c1 ,c2, ·· ·)which has only finitely many O's or finitely many 1's. 
If there are infinitely many O's and infinitely many 1's in (c1 ,cz , ···)then 
for large k with ek = 0 one may express f,J,, · · · f," as a large number of 
compositions of functions of the type F;: or Ff Fp ( n 2: 1). Since for all p., A 
satisfying ( 4.2) the derivatives of these functions on [pi', p;~..] are bounded 
by F{(pp)F~(pp) < 1 (use induction on nand the estimate FHF>.Pp) < 1) 
it follows that the lengths of the nested intervals le1 e 2 . .. e" go to zero as 
k-+ oo (for every sequence (c1 ,c2,· · ·)). Thus, J does not contain any 
(nonempty) open interval. Also, J C Orb(pp;p. , A) = Orb(p;~..;p.,A) by the 
8ame reasoning, so that J = S(1r). Since 1r is nonatomic, S(1r) does not 
Include any isolated point, completing the proof that S( 1r) is a Cantor set. 

Write IAI for the Lebesgue measure of A . If, in addition to (4.2), 

( 4.4) (
p. - 1) 

A< 2- p. p., 

then IJI = 0. Indeed, for any subinterval J' of I one has IF.x(I')I ~ 
P'H pi')II'I, IFI'(I') I ~ F~(Pp)II'I, from which it follows that IJk+ll ~ 
(2 - p.)( l + Ajp.) IJkl· If (4.4) holds then c = (2- p.)(l + Ajp.) < 1, so 
that IJI = 0 if ( 4.2), ( 4.4) hold. 

Note that the proof that 11,1,, ... ,"1-+ 0 depends only on the facts that 
on [pp,P>.], (i) Fp is a contraction, (ii) Ff(I)! {p;~..} , and (iii) FHF>.Pp) < 
I , F{(pp)F~(pp) < 1. The last condition (iii) may be expressed as 

If (4.5) holds, but (4.2) does not, then the 2k intervals I, 1cr·<k cover I= 
~J141 P>.]. Since the endpoints of 1,1,, ... ," are in S(1r), it follows that S(1r) = 
[tJ,,, P>.]. 

A point of additional interest is that if ( 4.2) (or ( 4.3)) holds then the 
MMkov process Xn restricted to the invariant set J = S(1r) is isomorphic 
Lo one on {0, 1}-"' having the transition probability 

{ 

(O, c 1 ,c2 , · • · ) with probability /, 
(~ . 6) (c J, €2 , · · ·) -+ 

(1 ,c1 ,!2, · · ·) willa proh~thi lity I - I· 
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The isomorphism is defined by y --+ (c:1,€2, ···)where 

In this representation for a fixed 1 E (0, 1) the Markov processes on J = Jp.,>. 
are the same for all p., >. satisfying ( 4.2) . 

Next consider the case 2 < p. < >. ~ 3. If p. E I(t, >./4) = [8/>.(4 -
>.), >.) (see (3.2)) then Fp. , F>. may be restricted to [1/2, >./4] and are strictly 
decreasing on it. Since pp.,P>. are attracting for Fp.,F>., respectively, (2.2) 
holds for any xo E (pp., P>.) if m is sufficiently large. It follows from Sec
tion 2 that there exists a unique invariant probability in [pp., P>.] and it is 
nonatomic. 

Finally, if 2 < p. ~ 3 < >. < 1 + /5 and p. E I(1/2, >./4) = [8/ >.( 4 -
>.), >.) , then PP. is attracting for Fp. and f3 = {3(>.) (see Section 3) is an at
tracting fixed point for Ff. It follows that (2.2) holds on [pp., P>. ] in this case 
also if x0 E (P>., {3) and m is even and sufficiently large, so that the invariant 
probability on [pp.,P>.] (and also on (0, 1)) is unique and nonatomic. 

We state the main results proved above as a theorem. Note that 6o is 
invariant on [0, 1] for all 0 S p. < >. S 4. 

THEOREM 4.1. (a) lfO s p. < >. s 1, then 6o is the unique invariant prob
ability on [0, 1]. (b) If 1 < p. < >. s 2 then there exists a unique invariant 
probability 1r on (0, 1). This probability is nonatomic. If p., >. satisfy ( 4.2) 
{or (4.3)} then the support S(1r) of7r is a Cantor subset J = Jp.,>. of[pp. ,P>.]. 
If, (4.2) and (4.4) both hold, then Ill= 0. (c) If the inequality (4.2) does 
not hold, but (4.5) holds, then S(1r) = [pp.,P>.] . (d) Jf2 < p. < >. < 1 + /5 
and p. E [8/ >.( 4- >.), >.) then there exists a unique invariant probability on 
(0, 1), which is nonatomic and has its support contained in [1/2, >./4]. 

EXAMPLES. 
1. If p. = /5- 1 = 1.232 · · ·, >. = 2, then ( 4.2) holds, but ( 4.4) does not, 
and S( 1r) = J is a Cantor set. 

2. If>.= 2, - t + tv'l7 < p. < 2, then (4.2), (4.4) both hold, and S(1r) is a 
Cantor set of Lebesgue measure zero. 

3. If>. = 3/2, 6/(3 + /5) < p. < 3/2, then ( 4.2) does not hold, but ( 4.5) 
does, and S(1r) = [pp.,p>.] · 

4. Suppose 0 < p. < 1,1 < >. < 2. Theorem 4.1 does not apply. But 
if 1 E (0, 1) is such that p.'Y >. 1- -r < 1, then 60 is the unique invariant 
probability (see Barnsley and Elton [1]). 

We conclude with two remarks. 
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Remark 4 .1.1 If (a, b) is an invariant interval under FIJ and F>.(J.l < ~) , 

then (a, b] is invariant under F..., for all 1 E [J.L, ~). In particular, if 1 ~ J.L < 
~ ~ 2, then the maps F,( 1 E [J.L, ~]) are all increasing on the invariant in
terval (pJJ, P>.J. and the splitting condition is satisfied by the Markov process 
on (pJJ, P>.] corresponding to every randomization of F..., 's, 1 E [J.L, ~). Thus 
there exists a unique invariant probability in this case on (pJJ,P>.] (and on 
(0, 1)). If the support of the distribution of the random parameter 1 is 
[!-' , ~], then the support of the invariant probability is (pJJ,P>.]. A similar 
consideration applies to 2 < J.L < ..\ < 1 + Y5 if J.L E [8/~(4- ~).~]. 

Remark 4.1.2. Let 1 < J.L < 2 < ..\ < 4 be arbitrary. The interval (1- ;, ~] 
Is invariant under F..., for all 1 E (!-', ~). Let F, be chosen at random such that 
the distribution of 1 has a positive density with respect to Lebesgue measure 
In on [!-', ~]. One may then show that the coresponding Markov process is 
m- irreducible on [1-;, ~] . It follows from standard Markov process theory 
that in this case there exists a unique invariant probability. If, moreover, 
.\ > , - !~ + 4, then one can show that the transition probability density 

Jl{:t, y) is no smaller than a nonzero, non-negative function f(y) for all :t 
111 [1- ;, ~). It is then easy to check that then- step transition probability 

ll l'nsity p(n)(x, y) converges in L 1 to the invariant probability uniformly in 
r , 

Acknowledgment. Remark 4.1.2 is in response to a question raised by 
I ho referee. We wish to thank the referee for his comments. 
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Under a notion of "splitting" the existence of a unique invariant probability. 
and a geometric rate of convergence to it in an appropriate metric. are estab
lished for Markov processes on a general state space S generated by iterations 
of i.i.d. maps on S. As corollaries we derive extensions of earlier results of Dubins 
and Freedman;il71 Yahav;< 301 and Bhattacharya and Lee<61 for monotone maps. 
The general theorem applies in other contexts as well. It is also shown that the 
Dubins~Freedman result on the "necessity" of splitting in the case of increasing 
maps does not hold for decreasing maps, although the sufficiency part holds 
for both. In addition, the asymptotic stationarity of the process generated by 
i.i.d. nondecreasing maps is established without the requirement of continuity. 
Finally, the theory is applied to the random iteration of two (nonmonotone) 
quadratic maps each with two repelling fixed points and an attractive period
two orbit. 

KEY WORDS: Iteration of i.i.d. maps; monotone maps; quadratic maps; 
Markov processes; asymptotic stationarity. 

1. INTRODUCTION 

A familiar method of construction Markov processes on a measurable state 
space ( S, .Cf') is by means of a sequence of i.i.d. random maps o:n ( n = 1, 2, ... ) 
on S into S, defined on some probability space (Q, F, P). For a given initial 
state x E S one defines the Markov process 

X0 =x, 

(n~ I) 

1 The research by the first named author was supported by NSF Grant OMS 9504557. 
2 Department of Mathematics, Indiana University, Bloomington, Indiana 47405. 
3 Department of Economics, Cornell University, Ithaca, New York 14853. 
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( 1.1 ) 
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Here, for each wE Q, an( w) is a map on Sand an( w) xis the value of an( w) 

at x. Also, anan-J · · · a 1 denotes the random composition whose realization 
at WEQ is 1Xn(w)oan-l(w)o ... oa 1(w). 

Markov processes defined in this manner commonly occur in the con
text of linear and nonlinear autoregressive and ARMA models [See e.g., 
Bhattacharya and Waymire;<9 l pp. 166-184; and Tong<27l]. For some other 
applications, see Athreya;<l) Barnsley and Demko;(3) Barnsley and Elton;<4 l 

Mirman;<25 ) Majumdar et at.;<22 ) Bhattacharya and Majumdar<7 l and other 
references listed. It may be noted that a Markov process with any given 
transition probability p(x, B) (xES, B Borel) may be constructed in this 
manner, provided the state spaceS is a Borel subset of a Polish space [see 
e.g., Kifer, <19) p. 8; or Bhattacharya and Waymire, <9 ) p. 228 ], although such 
a construction is not unique. 

The main focus of the present article is the class of Markov processes 
generated, as in ( 1.1 ), by i.i.d. monotone maps on a state space S c R An 
important result of Dubins and Freedman< 17 l for i.i.d. monotone con
tinuous maps an ( n ~ 1) on a compact interval S = [a, b] is the following. 
Suppose the so-called splitting condition (H) is satisfied: 

(H) There exist a number x 0 , a positive integer N, and a constant 
6 > 0, such that 

P(aNaN-I"'a 1x:::;;x0 lfxES)~6, 

P(aNaN-I · .. a 1 x~x0 lfxES) ~6 
( 1.2) 

Theorem (5.10) in Dubins and Freedman°7 l then asserts that there exists 
a unique invariant probability n for the Markov process and that the 
n-step transition probability p<nl(x, B):= P(Xn(x) E B) converges ton expo
nentially fast in the Kolmogorov distance, uniformly for all initial states x: 

sup lp<nl(x, ( -oo, y] nS)-n(( -oo, y] nS)I 
xeS, ye IR: 

( 1.3) 

where [n/N] is the integer part of n/N. 
For the case i.i.d. monotone nondecreasing maps an on a compact 

intervalS= [a, b], Yahav< 30l proved the existence of a unique invariant 
probability n, without the requirement of continuity of an. These results 
were extended to multidimensional state spaces S in Bhattacharya and 
Lee<6l [also see Correction, ibid., (1997)], assuming (H) holds; here ( i) S 
is an arbitrary closed subset of an Euclidean space, or an open or semi
closed rectangle, and ( ii) an ( n ~ 1 ) are i.i.d. monotone non decreasing 
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measurable maps on S. It is shown that p<n>(x, dy) converges exponentially 
fast in a Kolmogorov type distance to a unique invariant probability n, 
uniformly for all initial states x. 

In Section 2 we extend the Dubins-Freedman result by (a) allowing 
S c IR 1 to be an arbitrary interval or an arbitrary closed set, and 
(b) dispensing with the requirement of continuity of the monotone i.i.d. 
maps rxn. This is obtained as a corollary (Corollary I ) of a general result 
Theorem I on an abstract measurable space (S, .'/') on which are defined 
a sequence of i.i.d. maps satisfying a splitting type condition. A second 
corollary (Corollary 2) considers continuous i.i.d. maps on S c IR\ and 
extends the main result in Bhattacharya and Lee< 6 > to monotone maps on 
S c IRk which may be nondecreasing and nonincreasing, each with positive 
probability. Example I provides a derivation of the Doeblin-type geometric 
ergodicity based on Theorem I. It would be interesting to explore the 
connection between Theorem 1 and Tweedie's useful criteria for geometric 
ergodiciry. [See Tweedie;< 28• 291 Meyn and Tweedie, <241 Chap. 15]. 

Dubins and Freedman<61 have also shown that for the case of strictly 
increasing and continuous ( i.i.d.) xn on S = [a, b] such that there is no 
common fixed point of cx. 1(w), wEQ, the splitting condition (H) is also 
necessary for the existence of a unique invariant probability n. This 
"necessity" was extended to compact subsets S of an Euclidean space in 
Bhattacharya and Lee< 61 for nondecreasing cx.n, again without the require
ment of continuity. A natural question is: what happens if 'Xn are monotone 
nonincreasing? We show that the splitting condition (H) is no longer 
necessary for the existence of a unique invariant probability, even for 
S = [a, b] and continuous rxn- (See the example in Section 4.) 

Section 3 deals with the following question on the asymptotic station
arity of the Markov process Xn(x) (n~O) in (l.l). Does the process 
x,::;(x) := (Xm(x), Xm+ 1(x), ... ) converge in distribution, as m---> x, to the 
distribution of the stationary Markov process (X0 , X 1 , ••• ),where X0 has the 
invariant distribution? The point is that x---> p(x, dy) is not necessarily 
weakly continuous here without the requirement of continuity of xn, and 
there are examples (we provide one of Liggett) in which the n-step transi
tion probability p<n 1(x, dy) of a Markov process on a compact state space 
converges to a probability n as n---> x for every x, and yet rc is not 
invariant. Theorem 3 says that if the xn (n ~ 0) are i.i.d. monotone non
decreasing on Sc IR (but not necessarily continuous), Xn(x), n~O. is 
asymptotically stationary. Although this is a result for a one-dimensional S, 
the proof of this seems nontrivial and requires the use of the multidimen
sional results of Bhattacharya and Lee.<6 > 

The final Section 4 deals with an example in which two quadratic maps 
F0,(x):=O;x(l-x) (i=l,2) on S=(O,l), 3<0 1 <02 <1+)5, are 
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chosen at random with probabilities rt and I -ry ( 0 < 71 < I). Each map has 
an attractive period-two orbit encompassing a repelling fixed point. 
Although these maps are not monotone, the asymptotics of the Markov 
process X"(x), 11 > 0, can be completely analyzed by the theory for 
monotone maps. It may be shown that after an a.s. finite number of transi
tions the process X 11(X) (xE(O, 1)) lands in an invariant interval[!, 02/4]. 
On this interval both Fe are monotone decreasing. But the splitting con
dition does not hold fo~ this process, restricted now to [ &. 82 /4]. This 
Markov chain has a periodic behavior with cyclic transitions from one 
interval / 1 to another / 2 , 11 n / 2 = ¢. The n-step transition probability 
pi"l(x, dy) converges in Caesura mean to a unique invariant n, exponen
tially fast in the Kolmogorov distance. 

Random iterations of two quadratic maps have been studied in 
Bhattacharya and Rao<8 l for cases where the splitting condition does hold 
on an invariant compact subintervalS of (0, I) on which F0 are monotone 
(i = I, 2 ). The invariant probabilities here are often of th~ Cantor type. 
Further examples, with applications to economics, are considered in 
Bhattacharya and Majumdar.< 7 J The present example is the first one 
studied in which both Fe have period-two orbits. Recently interesting 
necessary conditions for the existence of invariant probabilities on (0, I) 
have been obtained by Athreya and Dai.<2 l 

2. A GENERAL THEOREM UNDER A SPLITTING 
TYPE CONDITIONS 

Let (S, /!') be a measurable space. Let rx" (n >I) be a sequence i.i.d. 
random maps on S defined on a probability space (Q, .#', P), with a com
mon distribution Q on (T, L'). Here r is a set of maps on S (into itself), 
L' is a sigmafield on T, and the map (x,y)-->yx=y(x) is measurable on 
(SxT,Y&;;L') into (S,/1'). For y=(y 1 , ... ,y11 )ET", write y for the com
position 

(2.1) 

Suppose there exists a class of sets s/ c Y such that the following set of 
conditions (H d hold. Define the (pseudo) metric don the set :'?II(S) of all 
probability measures on ( S, .'/') by 

d(fl, v) :=sup lfl(A)-v(A)I (fl, v E .'?ll(S)) (2.2) 
A Ed 
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( H 1 ) ( I ) ( .:11'( S ), d) is a complete metric space; 

(2) there exists a positive integer N such that for all }' E TN, one 
has 

(!J, I' E .:f'( S)) (2.3) 

( 3) there exists 6 > 0 such that 'r/ A E .c:/, and with N as in ( 2) one 
has 

(2.4) 

Theorem I. Assume the hypothesis ( H d- Then there exists a unique 
invariant probability 7[ for the Markov process xn := (ln' ''a_ I Xo, where Xo 
is independent of { a_n: n ~ I}. Also, one has 

( fJ E ,:;I'( S) ) (2.5) 

where T*nf' is the distribution of Xn when X0 has distribution 11. 

Proal Let A Ed. Then ( 2.4) holds. which one may express as 

(2.6) 

Then, 'ri!J, I' E .:f'(S), 

Denoting the set in curly brackets in ( 2.6) by T 1 , one then has 

I( T*NJL )(A)- ( T*Nv)(A )I 

=I I (tJ(}"'-1 A)- v(y-I A)) QN(dy) +I (!J(Y-1 A)- 1'( j;-1 A)) QN(dy) I 
r 1 rN\r1 

(2.8) 

since on T 1 the set ;~- 1 A isS or rp, so that tJ(f- 1A)=i=v()'- 1A), or 
tJ(j'- 1A)=0=v(y- 1A). Hence, using (2.3) and (2.4) 

(2.9) 
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Thus 

( 2.10) 

Since ( &/'( S), d) is a complete metric space by assumption (H 1 )( 1 ), and 
T*N is a strict contraction on .0'l(S) by (2.10), there exists a unique .fixed 
point n of T*N, i.e., T*Nn = n [see Friedman,<'8l p. 119], and 

d(T*kNp, n) =d(T*N(T*<k-I)Np), T*Nn) 

:S; (I- (5) d( T*(k-l) Np, n) :S; ... :S; (I- o)k d(p, v) ( 2.11 ) 

Also, 

d( T*n, n) = d( T*T*kNn, n) = d( T*kNT*n, n) 

:S;(I-o)kd(T*n,n)--->0 as k--->oo 

Hence d( T*n, n) = 0, which implies T*n = n. Thus n is a fixed point ofT*. 
If n 1 is another fixed point of T* then n 1 is a fixed point of T*N. By the 
uniqueness of the fixed point of T*N, n 1 = n. Finally, since d(p, v) :S; 1 one 
has, with 11 = [n/N] N + r, 

(2.12) 
D 

For (2.4 ), we have assumed the set within parentheses to be 
measurable. If it is not, then assume that there exists FA E :!Ji, with 
P(FA)?;r5, on which ctN .. ·ct[ 1A=S or rp. 

We now derive two corollaries of Theorem 1 applied to i.i.d. 
monotone maps. Corollary I extends a result of Dubins and Freedman, <I 7J 

[ Thm. ( 5.10)], to more general state spaces in IR and relaxes the require
ment of continuity of ct11 • The set of monotone maps may include both non
decreasing and nonincreasing ones. 

Corollary 1. Let S be an interval or a closed subset of IR. Suppose ct11 

(n?:; 1) is a sequence of i.i.d. monotone maps on S satisfying the splitting 
condition (H) in Section 1. Then there exists a unique invariant probability 
n for the Markov process Xn generated by ct11 (n;;:; 1) and ( 1.3) holds for the 
n-step transition probabilities p<nl(x, dy). 

Proof First let S be a closed set. To apply Theorem 1, let .w be the 
class of all sets A = (- oo, y] n S, y E IR. Completeness of (.o/(S), d) may 
be established directly, but also follows from a more general result in 
Bhattacharya and Lee<6 J [Correction (1997)]. Hence the condition (I) of 
(H 1) holds. 

To check condition ( 2) of ( H 1) note that if y is monotone nondecreas
ing and A= (- oo, y] n S, then y- 1((- oo, y] n S) = (- oo, x] n S or 
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(-rx;,x)IIS, where x=sup{z:y{z)~y}. Thus \,u(y- 1A)-v(y- 1A)\= 
\,u((- OCJ, x] 11 S)- v((- CXJ, x] 11 S)\ or, \,u((- x, x) 11 S)- v((- ex:;, x) 
11 S)\. In either case, \,u( }·- 1A)- v(}·- 1 A)\~ d(,u, v ), since ,u( (- OCJ, x- 1/n] 
11 S) i ,u( ( - x, x) 11 S) (and the same holds for v ). If y is monotone nonin
creasing, then y -I A is of the form [ x, oo) n S or (x, x) 11 S, where x : = 
inf { z: y( z) :( y}. Again it is easily shown, \,u( y -I A) - v( y -I A) 1 :( d(,u, v l. 
Finally, ( 2.4) holds for all A = ( - rx;, y] 11 S, by ( 1.2 ). 

If S is an interval which is not closed then there is a strictly increasing 
(continuous) homeomorphism h on S onto one of the following closed sub
sets of IR: ( - oo, oo ), (- oo, a], [a, oo ), depending on whether S is an open 
interval or semi-closed ( c, d], [ c, d). Since h preserves both the order and 
the topology of S, one may lift the state space to the closed set h(S). D 

To state the next corollary, let S be either a closed subset of IRk or 
a homeomorphic image of a closed subset by a strictly increasing 
(continuous) map h. Define .01 to be the class of all sets of the form 

A = { y: r/J( y) :( x}, rjJ continuous and monotone on S, x E IRk (2.13) 

Also, we will mean by ":("the partial order: x = (x 1 , ... , xk) ~ y = ( y 1 ,. .. , Jik) 
iff x 1 :( y 1 Vi= 1, 2, ... , k. In the following corollary we will interpret (H) 
(i.e., ( 1.2)) to hold with this partial order ~, and with "x;::: y" meaning 
y~x. 

Corollary 2. Let S and d be as before. If rx.n (n;::: I) is a sequence of 
i.i.d. monotone maps which are continuous a.s., and the splitting condition 
(H) holds, then there exists a unique invariant probability n and 

'if ,U E ?J>( S ), n?I (2.14) 

where d(,u, v) :=sup{ \,u(A)- v(A )\: A E .w}. 

Proof As in the proof of Corollary I, it is enough to prove the result 
for S closed. Then the completeness of ( .?!'( S ), d) follows from Bhattacharya 
and Lee,< 6 l [Correction (1997)], where the proof of completeness does not 
depend on whether the rjJ in ( 2.13) are only monotone nondecreasing, or 
simply monotone. Condition (2) in (HJl is immediate. For if A= {y: r/J(y) 
:( x}, and y is continuous and monotone, then y- 1 A = { y: ( rjJ a)') y :( x} E .c/ 
since rjJ ·~ y is monotone and continuous. 

It remains to verify ( H Jl( 3 ). Let A in ( 2.13) be such that rjJ is mono
tone nondecreasing. If r/J( x0 ) :( x, then, by the splitting condition (H), ( 1.2 ), 

fJ :( P( rx. N' · · :X 1 ::: :( X o 'if::: E S) :( P( r/Jrx_ N · · • X 1 Z :::;:; r/J( X 0 ) 'if Z E S) 

:::;:; P( r/Jx N · · · rx 1 z :( x V z E S) = P( rx N .. · x 1 ::: E A V::: E S) ( 2. 15 ) 
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If x in the definition of A in ( 2.13) is such that cp(x0 ) ~ x (i.e., at least one 
coordinate of cp( x 0 ) is larger than the corresponding coordinate of x ), then 

i5 ~ P( ex N · · · cx 1 Z ;? X 0 \:1 Z E S) ~ P( cpa N · .. CX 1 Z ;? cp( X o) \:1 Z E S) 

~ P(cpcxN' · · cx 1z ~X VzE S) ~P(cxN· · ·CX 1ZE Ac VzE S) (2.16) 

Now let cp in the definition of A in (2.13) be monotone decreasing. If 
cp(x0 ) ~ x, then 

i5~P(cxN···cx 1 z;?x0 VzES) 

~ P(cpcxN' · · a1 z ~ (/J(x0 ) Vz E S) ~ P(cpcxN· · · cx 1 z ~ x Vz E S) 

=P(cxN···cx 1 zEA VzES) 

If cp(x0 ) ~ x, then 

i5~P(cxN···cx 1 z~x0 VzES) ~P(cpcxN ... cx 1 z;?cp(x0 ) VzES) 

~ P( cpa N' · · a 1 z ~ x V z E S) = P( ex N · · · cx 1 z E A c V z E S) 

Thus (H 1)(3) is verified for all A Es#. 

( 2.17) 

( 2.18) 

D 

Remark 1. Corollary 2 extends the main theorem in Bhattacharya 
and Lee<6 l [Correction, ibid, (1997)] to i.i.d. monotone maps which may 
include both types-increasing as well as decreasing. 

Remark 2. For a deeper study of the completeness of 91-l{S) under a 
metric somewhat stronger than d see Chakraborty and Rao. < 12) 

As an indication that Theorem 1 may be applied in contexts other 
than those of monotone maps, we give the following example. 

Example 1. Let p(x, A) be a transition probability on a Borel subset 
S of a Polish space with Y as the Borel sigmafield on S. Suppose there 
exists a nonzero measure Jc on S and a positive integer m such that 

( 2.19) 

Then it is known that there exists a unique invariant probability n for 
p( ·, ·) such that 

sup lin)( X, A)- n(A)I ~ (I- i5)[n/mJ, i5:=Jc(S) (2.20) 
x,A 



326

Dubins-Freedman Theorem for Markov Processes 1075 

For a proof of this result of Doeblin and for some applications see 
Doob< 16l [p. 197], or Bhattacharya and Waymire<9 l [pp. 180, 181, 198, 
199]. We now show that (2.20) is an almost immediate consequence of 
Theorem I. For this express p<ml(x, A) as 

p<ml(x, A)= A.( A)+ (p<ml(x, A)- },(A))= c5A..,(A) + (I -c5) q.,(x, A) 

(2.21) 

where 

p<ml(x, A)- },(A) 
c:j 0(x,A)= l-c5 (2.22) 

Let fln(n:;::: 1) be an i.i.d. sequence of maps on S constructed as follows. For 
each n, with probability c5 let flnx = zn where zn is a random variable with 
values in S and distribution ;,.,; and with probability I - c5, let fln = cx.n 
where rx.n is a random map on S such that P( cx.nx E A) = q .,( x, A) [see 
Kifer, 09 l p. 8; or Bhattacharya and Waymire, <9l p. 228, for constructing !XnJ. 
Then Theorem 1 applies for the transition probability p<ml(x, A) (for 
p(x,A)), and with .s:l=.'l', N=i. Note that P(fJ! 1A=S or rp):;;, 
P( fJ 1 ( · ) = Z 1 ) = c5. Hence ( 2.4) holds. Since .<# = //' in this example, com
pleteness of (.~(S), d) and the condition (2.3) obviously hold. It would be 
interesting to explore the connections between the present approach and 
Tweedie's general criteria for geometric ergodicity. [See Tweedie;<28• 29 l 

Meyn and Tweedie,<24 l Chap. 15]. 
As this example and corollaries indicate, the significance of Theorem 1 

stems form the fact that it provides geometric rates of convergence in 
appropriate metrics for different classes of irreducible as well as non
irreducible Markov processes. The metric d depends on the structure of the 
process. 

We now turn to the necessity of the splitting condition (H) for the 
existence of a unique invariant probability. For cx.n (n:;::: 1) i.i.d. nondecreasing 
and continuous on S= [a, b] it was proved by Dubins and Freedman< 16 l 

[Thm. (5.17)], that, barring the case of a.s. all maps having a common 
fixed point, the splitting condition (H) is necessary for the existence of a 
unique invariant probability. An extension to compact S c IRk and measur
able nondecreasing maps is given in Bhattacharya and Lee, <6l [Lemma 2.6]. 
It turns out that !l the maps are a.s. nonincreasing then splitting is not in 
general necessary for the existence of a unique invariant probability, even in the 
case S = [a, b] and cx.n continuous. In Section 4, we construct an example 
in which two continuous decreasing maps F01' F02 on an interval [a, b] are 
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randomly chosen with probabilities 11 and I -IJ, respectively (0 < 11 < I). 
The corresponding Markov process has a period-two cycle and a unique 
invariant probability, but the splitting condition (H) does not hold. 

3. ASYMPTOTIC STATIONARITY OF MONOTONE STOCHASTIC 
DYNAMICAL SYSTEMS 

Let ( S, p) be a metric space, .CI' its Borel sigmafield. Let p( x, dy) be a 
transition probability on S, i.e., (i) for every xES, B-+ p(x, B) (BE .cr) is 
a probability measure on (S, [;;) and (ii) for every BE .cr, x-+ p(x, B) is 
Borel measurable. Suppose that, for every x, the n-step transition probabil
ity p<n)(x, dy) converges weakly to a probability measure n on (S, 9") as 
n-+ oo, n being independent of x. It is well known that if, in addition, 
x-+ p(x, dy) is weakly continuous, then rc is invariant and is the unique 
invariant probability for p(x, dy). The following simple counter example 
due to Liggett, (ZI) communicated to us by E. Waymire, shows that the 
provision of weak continuity of p(x, dy) can not in general be omitted in 
the last statement. 

Example 2. (Liggett). Consider the compact state space S = { 0, 1} u 
{ m/( m + 1 ): m = 1, 2, ... }, 9" the Borel sigmafield ( [;; = class of all subsets). 
Let p(O, {!}) = 1, p(m/(m + 1 ), { (m + 1 )/(m + 2)}) = 1 \fm = 1, 2, ... , p(l, { 0}) 
= 1. Then p<n)(x, dy) converges weakly to <:5 1 (the point mass at 1) as 
n-+ oo, irrespective of the initial x. But <:5 1 is not invariant and, indeed, 
there does not exist any invariant probability. This is of course a degener
ate Markov process, where starting at any XES, xn converges (pointwise) 
to 1. However, it is easy to modify the example so that the transition prob
ability is not degenerate. For example, p(O, {!}) = B, p(O, { n) = 1- B, 
p(m/(m+1), {(m+1)/(m+2)})=B, p(m/(m+1), {(m+2)/(m+3)})= 
1- B \fm = 1, 2, ... , and p(l, { 0}) = B, p(l, {!})=I- B (0 ~ B ~I). 

Remark 3. It is simple to check that if, for all x in a metric space S, 
(1/n) L~ = 1 p<m)(x, B) -+ n(B), as n-+ oo, for all Borel B, then n is invari
ant. Breiman(ll), [pp. 133-135], gives a proof in the case p<n)(x, B)-+ n(B) 
for a! Borel B as n-+ oo. Essentially the same proof applies to the case of 
the convergence of the Caesaro mean (1/n) L~ = 1 p<m)(x, B). 

It may be noted that in Theorem I no topological assumption is made 
on S. In Corollary 1 Sis a metric space but x-+ p(x, dy) is in general not 
weakly continuous. The existence (and uniqueness) of an invariant prob
ability in these cases is established by showing that T*N is a strict contrac
tion (and T* is a contraction) on the complete metric space (f!P(S), d). 
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In the present section we investigate the asymptotic stationarity of the 
Markov process X,. (n ~ 1 ). 

Let ( S, p) be a metric space, .'i' its Borel sigmafield, and p(x, dy) a 
transition probability on S. Let X,. (n ~ 0) be a Markov spaces with transi
tion probability p(x, (~J') and an arbitrary initial distribution (of X(O)). We 
will say X,. (n~O) is asymptotically stationary if x;:; :=(Xm, Xm+ 1 , ... , 

X m + 1 , ... ) converges in distribution to a stationary Markov process, as 
m----. ex. 

Note that the distribution of x;:; is a probability measure, say Q;:;, on 
(S 00 , .'f 000 ), where sec is the space of all sequences (Xo, XI, ... ) in S, and 
.'i' 0 oo is the usual product sigmafield on S 00 • The product topology on soo 
is metrized by 

(x=(X0,x 1, ... ), y=(J'o,J'I, ... )) 

( 3.1 ) 

On the question of asymptotic stationary, the following result is 
perhaps well known. We therefore omit its proof. 

Theorem 2. Let ( S, p) be a separable metric space, and p( x, dy) a 
weakly continuous transition probability on it. Suppose p("l(x, dy) con
verges weakly to a probability measure n as n----> oc, irrespective of x. Then 
n is invariant, and the Markov process starting at an arbitrary initial 
distribution is asymptotically stationary. 

Our main result in this section says that Markov processes generated 
by i.i.d. monotone maps on an interval S, and satisfying the splitting condi
tion (H), (see ( 1.2)) are asymptotically stationary. This is significant since 
p(x, dy) may not be weakly continuous. In certain classes of models arising 
in optimization problems in economics, the maps rx, are increasing but not 
continuous [see Majumdar et a/. (22l]. 

Theorem 3. Let S be either an interval or a closed subset of ~. and 
let rx., (n ~ I) be a sequence of i.i.d. monotone nondecreasing maps on S. 
If the splitting condition (H) in ( 1.2) holds, then the Markov process 
X,.:= rx.,. · · · rx 1 x (n ~ I), X0 = x, is asymptotically stationary, no matter 
what the initial state x may be. 

Two main components in the proof of Theorem 3 are (I ) the fact that 
the weak convergence of finite dimensional distributions implies weak con
vergence on 2fl(Sc.o) (see Lemma 1) and (2) an extension of the Dubins-
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Freedman theorem to measurable monotone nondecreasing maps on arbi
trary closed subsets S of Euclidean space [Bhattacharya and Lee, (6 ) 

Correction, ibid., ( 1997)]. For (2) the splitting condition ( 1.2) reads the 
same, provided one uses the partial order: "(x 1 , x 2, ... , xk)::::; (y 1 , Jl, ... , yk)" 
if xi:::;yi Vi= 1, 2, ... , k. 

Lemma 1. Let (S, p) be a separable metric space, and soo the space 
of all sequences x = (x0 , x,, x 2, ... ) of elements of S, with the product topol
ogy. Let Cf(S 00 ) be the set of all real-valued bounded continuous functions 
on S oo depending only on finitely many coordinates. If P n ( n ~ 1 ), P are 
probability measures on the Borel a-field fl' 0 oo such that 

f h dP n ---+ f h dP as n---+ oo ( 3.2) 

then P n converges weakly to P. 
Lemma I is well known and its proof is therefore omitted [see 

Billingsley,0°l p. 22, Problem 7]. 

Proof of Theorem 3. For specificity, write Xn(x) :=rxn ···rx 1x. In view 
of Lemma 1 it is enough now to show that for every k ~ 0, the distribution 
Qn,k(x), say, of Zn,k(x) := (Xn_k(x), Xn-k+ 1(x), ... , Xn(x)) converges weakly 
to the distribution Qk of Zk := (X0 , X,, ... , X~c), as n---+ oo. Here X 0 has the 
invariant distribution n, so that (X0 , X1 , ... ) is the stationary Markov pro-
cess with Xn := rxn · · · rx 1 X 0 (n ~ 1 ). Fix k ~ 0. Define the following sequence 
of i.i.d. maps fJn on sk+l into sk+i. 

(n ~ 1) (3.3) 

Then 

(J,(yo, y, , ... , Yk) = ( Y1, Jl, ... , Y~n rx, Yk), 

fJ2(J,(yo, Y1 , ... , Yk) = ( Jl, YJ, ... , Y~n rx, Y~n rx2rx1 Yk), 

fJk+l···fJ,(yo,YJ·····Yk)=(rx,y~nrx2rx,yk, ... ,rxk+l ···rx,yk), 

fJn · · · fJ,(yo, Y1 , ... , Yk) = (rxn-k · · · rx, Yk•···• rxn · · · rx, Yk) (n~k+l) 

(3.4) 

Note that the map ( 3.3) is ( a.s.) monotone nondecreasing on sk+ 1 into 
s"+', and that 

(xES,n~k+I) ( 3.5) 
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Now, with x 0 and N as in (H), 

where o:=P(XN(y)?::xo\iyES)>O by (H), and 01=P(aN+1Xo?::Xo)= 
· · · = P(rxN+kxo?:: x 0 ). Note that if P(rxN+ 1 x 0 ?:: x 0 ) = 0 then P(rxN+ 1 x 0 < x 0 ) 

=I, so that P(rx;x 0 <x0 )= I \fi and P(aN .. ·rx1x 0 <x0 ) =I, contradicting 
(H). Thus o 1 > 0. Similarly, 

P(/iN+k ... f]1(J'o, Y1, ... , J'k) 

~ (Xo, Xo, ... , Xo) \f( Yo· .1'1 , ... , J'k) E sk+ 1) > 0 (3.7) 

Now (3.6) and (3.7) imply the splitting condition for the maps {fin}n? 1 , 

with ~!o := (x0 , x 0 , ... , x 0 ), N + k and o · o~ in the role of x 0 , N, and o respec
tively, in (H). Hence, by fact ( 2) mentioned after the statement of 
Theorem 3 [see Bhattacharya and Lee, i6J Thm. 2.1, and Correction, ibid. 
(1997)], Qn.k(x)->Qkweaklyasn->x. D 

4. RANDOM ITERATION OF TWO QUADRATIC MAPS WITH 
PERIOD-TWO ORBITS 

There are many examples in the literature of Markov processes 
generated by i.i.d. monotone random maps. They may arise in economics 
as models of survival or growth, or as models of optimal transition of stocks 
from one period to the next under uncertainty ( Mirman;;zsJ Majumdar and 
Radner;< 23 J Majumdar et a/.i 22 l) An exposition of these classes of problems 
in economics may be found n Bhattacharya and Majumdar. r7J 

A different kind of application related to the generation of random con
tinued fractions is provided by the decreasing maps Fe(x) : = c + (I jx) on 
S = (0, ex), where c is chosen at random according to any given distribu
tion on [0, ·X). Interesting invariant distributions have been computed 
in this case for special distributions of c [see Letac and Sheshadri;i 20 l 

Chassiang et af.;i 14 l Chamayou and Letac;(l 3 l and Bhattacharya and 
Goswamii 5l]. 

Another interesting application is to the study of Markov processes 
on S = ( 0, I) obtained by the random iteration of two quadratic maps 
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F0 (x) = O;x( I - x) (i = I, 2 ), choosing F8 with probability 1J and F0 with 
I . I 2 

probability 1-tJ. 0<17<l. Although F0 is not monotone (i=l,2), for 
certain classes of pairs ( 0 1 , 02 ) of pararr{eter values the Markov process 
enters an interval I c ( 0, 1) after a finite ( a.s.) number of steps with the 
properties: ( 1 ) I is invariant under F0 (i = 1, 2, ) and ( 2) F 8 is monotone on 
I ( i = I, 2, ). One may then study the 'asymptotics of the M~rkov process on 
I as the new state space, since for large times the process will be in I 
a.s. Various interesting aspects of these asymptotics have been studied in 
Bhattacharya and Raor 8 J and Bhattacharya and MajumdarYl In the pre
sent section we analyze the asymptotics for a pair ( 0 1 , 02 ) not covered 
earlier. Here F 8 . ( i = I. 2) both have attractive period-two orbits. Among 
other things, it 'is shown below that the resulting Markov process has a 
unique invariant probability, but does not satisfy the splitting condition 
(H). Thus, unlike the case of i.i.d. increasing maps, for Markov processes 
generated by i.i.d. iterations of decreasing maps splitting is not necessary for 
the existence of a unique invariant probability. 

Assume that 3 < 0 1 < 02 :( I + j5. It is know [see Devaney;05 l 
pp. 31-39; or Sandefur, <26 ) pp. 172-181] that in this case F0 has an 

I 

unstable, or repelling, fixed point q8 :=I- o;- 1 encompassed by an attrac-
tive, or stable, period-two orbit {p 8 ', r8 }, ~<p8 <q8 <r8 <0;/4 (i= I, 2). 
The interval I= U, 02 j4] is easily s~en 'to be inv~rian't under each F8 , and 
F8 . is decreasing on U. 02 /4] (i= I, 2). To be specific, one has' [see 
S~ndefur,< 26 l p. 201] 

~(JO;+l-~) I Pe, =yu;-r t 20; <Cfe,= 1- 0; <ro, 

=JO;+l(JO;+l2~;~) (i=l,2) (4.1) 

For our main example take 

01=3.15, (4.2) 

and consider the Markov process generated by i.i.d. random iterations of 
Fr11 and F82 , chosen with probabilities Yf and I -1], respectively, 0 < 1J <I. 
It follows from (4.1) and (4.2), that the fixed points of F~ := F0 "F8 

(i = I, 2) are (up to four decimal points) ' ' ' 

I 
-<Po =0.5130<p8 =0.5335<q8 =0.6825<q8 =0.6875 2 2 I I 2 

02 
< r 111 = 0.7840 < r 82 = 0.7994 < 4 = 0.8 ( 4.3) 
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To clearly specify the stochastic dynamics the following features of the 
maps F 0 should be noted (see Figs. 1-5) 

I 

(a) . [ I 02l F0; decreases stnctly on l' 4 

(b) . . [I 02l Fe, F0 mcreases stnctly on -,-
1 2 4 

and (see Figs. 3-5) 

{

>X 

<x 
F~(x) = 

' >x 
<x 

on [ ~, Po,), 

on(Pt,,Cfo,l, 

on (Cfo,' ro, ), 
on (r 0,, 02 /4 ], 

(i =I, 2), 

( 4.4) 

(i, j =I, 2) 

(4.5) 

(i= I, 2) 

As a consequence of ( 4.4) and ( 4.5 ), writing F~ for the n-th iterate of F 11 , 

one has ' ' 

{ 1 p, 
as n jon[~, Po;], 

F~~(x) = t ~:· as n i on (Po,• Cfo, ), 
(4.6) 

as n i on (Cfe,• re,J, 

l r as n jon (r 0,, 02 /4], (i= I, 2) li, 

Denote / 1 = [p02 , p 01 ], 12 = [ r01 , r0). Since Fe, (p 0,) = r0 , and F0 , (r 11,) = Po,• 
it follows that (1) F0 (1Jlcl2 , F0 (12 )c/1 (i=1,2), so that (2) F0 oF0 

I I I J 

leaves each of the intervals / 1 and 12 invariant, for every pair (i, j), 
i, j = 1, 2. Thus the Markov process X2n ( n = 0, 1, 2, ... ) may be restricted to 
the state space / 1 , and the first two relations in ( 4.6) imply that this process 
satisfies the splitting condition (H) with an arbitrary x 0 E ( p 02 , p 01 ), N suf
ficiently large, 6 =min { 17N, (I - 17 )N}. Let n 1 denote the unique invariant 
probability for X 2n (n?: 0) on / 1 • Similarly, X2n (n?: 0) is a Markov process 
on 12 which, in view of the last two relations in (4.6), satisfies the splitting 
condition for any x 0 E ( r 01 , r 02 ) and N sufficiently large. Let n 2 denote the 
unique invariant probability of X2n (n?O) on 12 . Note that / 1 nl2 =(p, 
/ 1 u / 2 c [1, 02 /4]. Then X2n (n?: 0 ), considered as a Markov process on 
[1, 02 /4 ], has two ergodic invariant probabilities n 1 and n 2 . This, of course, 
implies that X 2n (n?: 0) on [ ~, 02 /4] does not satisfy the splitting condi
tion. Also note that, no matter what the initial state of X2n (n?: 0), a.s. after 
a finite time the process enters / 1 u / 2 • Thus it has no ergodic invariant 
probability other than n 1 and n2 . 
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0.8 

0.6 

0.4 

0.2 

X 
0.2 0.4 0.6 0.8 

Fig. I. Graph of f(x) = 3.2x(l - x). 

0.8 

0.6 

0.2 0.4 0.6 0.8 

Fig. 2. Second Iterate of f(x) = 3.2x( I - x). 
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0.8 f(x) = 8x(1-x) 

0.75 

0.7 

0.65 

0.6 

0.55 

0.55 0.6 0.65 0.7 0.75 0.8 

Fig. 3 Second Iterate off 

Consider now the Markov process Xn (n ~ 0) on U, 0214]. This 
process does not satisfy the splitting condition. One way to see this is to note 
that p(2n)(x, Ij) = 0 if x E Ii (i * j), p(2n)(x, /i) = 1 if x E Ii (i = 1, 2), 
p(2n+ l)(x, Ij) = 1 if x E Ii (i * j), p(2n+ l)(x, /i) = 0 if x E h The Markov pro
cess Xn (n ~ 0) on[!, 02/4] is, however, ergodic with a two-period cycle 
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0.74 f(x) = 8x(1-x) 

0.72 

0.7 

0.68 

0.66 

0.64 

Fig. 4. Second Iterates of /(0.65 < x < 0.73). 

and has the unique invariant probability n = ~n 1 + ~n2 • To see this use the 
fact that X2n (n ~ 0) satisfies the splitting condition one each of / 1 , 12 and, 
therefore, 

sup I p(2n)(x, (- oo, y] n I;)- 7rz((- oo, y] n I;)l 
XE]l 

)"EJI?. 

:::; (I - o)[niNJ (i=1,2;n~l) (4.7) 
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Arrows show directions of trajectories depending upon 
the position of the initial point 

Fig. 5. Schematic Diagram 

Therefore, on the state space So:= !1 u /2 one has 

sup 1-1- ~ [pCn) (x, (- oo, y] n So)- n((- oo, y] n S)] I 
xES0 2M n= 1 
yER 

::o:; (1 _ o)lMIN] (M ~ 1) 

In particular, 

1 n ( ) weakly 1 1 - L P m (x, dy) -- n = -2 7rl + -2 7r2 
n m= 1 

1085 

(4.8) 

(4.9) 
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Because x-+ p(x, dy) is weakly continuous (since Fe. are continuous), (4.9) 
implies n is the unique invariant probability for xn (n;:?: 0) on So= II u I2. 
Since it is easy to see (use ( 4.6)) that, whatever the initial state 
X E [ !. 02/4 ], the process x2n (and, therefore, Xn) enters II u I2 =So after 
a finite ( a.s.) time, it follows that the weak convergence in ( 4.9) holds for 
all x E [!, 02/4]. Thus we have an example, where rxn (n;:?: 1) are i.i.d. 
monotone decreasing and continuous on a compact interval [a, b] = 

(!, 02 /4 ], the corresponding Markov process Xn (n::?: 0) has a unique 
invariant probability n, but the splitting condition does not hold. 

To conclude the asymptotic analysis in this example, note that the 
Markov process Xn (n;:?: 0) on the state space S = (0, 1) generated by the 
(nonmonotone) quadratic maps Fe;' F 62 on (0, 1) (chosen with probabilities 
17, 1 - '1· respectively) has the unique invariant probability n = !n 1 + !n2 • 

For no matter what the initial state x E (0, 1) may be, the process Xn enters 
the invariant interval [!, 02/4] after a finite (a.s.) number of steps. If one 
takes S = [ 0, 1], then the Markov process starting at 0 remains at 0 for all 
times; if it starts from 1 then it moves to 0 in the next step. Thus 0 is an 
absorbing state, and 60 (the point mass at 0) is trivially an ergodic 
invariant probability of Xn (n::?: 0), in addition to n. If the Markov process 
starts at any x ;60, 1, then {1/n) 2:;;,= 1 p(ml(x, dy)-+ n weakly as n-+ oo. 
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AN APPROACH TO THE EXISTENCE OF UNIQUE 

INVARIANT PROBABILITIES FOR MARKOV PROCESSES* 

R.N. BHATTACHARYA and E. C. WAYMIRE 

A notion of localized splitting is introduced as a further extension of the splitting 
notions for iterated monotone maps introduced earlier by Dubins and Freedman 
[16] and more generally by Bhattacharya and Majumdar [5]. We will see that 
under quite general conditions, localized splitting theory is a natural extension 
of the minorization theory [15], [14], recurrence theory [18], splitting theory of 
Nummelin [22] and regeneration theory of Athreya and Ney [3], under which 
we can prove the existence of a unique invariant probability. The paper is 
concluded with some new applications of splitting theory to random iterated 
quadratic maps. 

1. INTRODUCTION AND SOME BACKGROUND RESULTS 

The focus of this paper is the ergodic theory of Markov processes on a 
general state space viewed as actions of iterated random maps. In the case 
that S is a Borel subset of a Polish space a Markov process {Xn}~=O on 
(S, S) with arbitrarily prescribed transition probability p(x, dy) and initial 
state x E S may be represented by means of a sequence of i. i. d. random 
maps an on S into S, n ;:::: 1, defined on some probability space (D, :F, P) 
as: 

(1) 

* AMS 1991 subject classifications. Primary 60J05, 92D25; Secondary 60F05. Key 
words and phrases: Markov process, iterated maps, backward iteration, ergodic invariant 
probability. 
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Here an(w) is a map on S, for each w E n, whose value at x E S is 
denoted anx under the usual probability convention of suppressing w. Also 
an··· a1 denotes then-fold composition of the maps an, ... , a1. 

Although the representation is not unique, the familiar "inverse distri
bution function method" used to generate simulations from a given distri
bution on the real number line lies at the heart of this representation; see 
[20] or [7, p. 228]. However another way in which Markov processes on 
a general state space with such representation occur, and which need not 
involve topological conditions on the state space, is simply as a model in 
some specific context, e.g., linear/nonlinear autoregressive and ARMA mod
els, Markov Chain Monte Carlo, Bayesian statistics, economics, temporal 
discretization of diffusion, fractal image compression, etc. For an expository 
orientation to the breadth of applications accommodated by this viewpoint 
see the excellent recent article by Diaconis and Freedman [13], as well as 
Bhattacharya and Waymire [7], Bhattacharya and Waymire [8]. The ar
ticle by Diaconis and Freedman [13] differs from the present approach in 
exploiting contractive properties of the maps on average, whereas our fo
cus is on certain splitting properties of the maps which occur with positive 
probability. 

So one may either assume at the outset that S is a Borel subset of a 
Polish space, or assume that one is given a Markov process on a measurable 
state space (S,S) with the representation (1). It is most convenient for 
exposition to simply make the former assumption, which we will set as the 
framework for this paper. 

Let us now attempt to give some background from the general ergodic 
theory for Markov processes for perspective on the framework being devel
oped here. The reader is referred to Meyn and Tweedie [21] for a thorough 
and state of the art account of general minorization and small set theory, 
to Diaconis and Freedman [13] for the contractive mapping theory, and 
to Bhattacharya and Majumdar [5] for the recent splitting theory which 
spawned the present work. 

When applicable Doeblin's minorization condition provides a power
ful approach to check for the existence of a unique invariant probability, 
which also gives uniform exponential rates of convergence in total variation 
distance. In fact, Doeblin's minorization is also necessary for uniform expo
nential rates in total variation distance; see [23, Theorem 6.15], [25, Propo
sition 2], [21, Theorem 16.2.3]. Doeblin's minorization requires a probability 
measure von (S, S), a positive integer N, and a positive real number o such 
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that 

(2) p(N>(x, B) 2: ov(B), xES, BE S, 

where p(m)(x,dy) denotes them-step transition probability defined induc
tively by 

Theorem 1.1 (Doeblin's Minorization). Under Doeblin's minorization 
condition (2) there is a unique invariant probability 1r on (S, S). More
over, for all xES and BE S, 

We will derive Theorem 1.1 as a special case of Theorem 1.4 below 
involving a notion of splitting (see Remark 1.2 following the statement of 
Theorem 1.4). 

The notion of a small set Ao provides a localized minorization condition 
defined by a subset Ao E S of the state spaceS, a probability measure von 
(A0 , A0 n S), a positive integer N, and a positive real number o such that 

(4) p(N}(x, B) 2: ov(B), x E Ao, BE Ao n S; 

see [21] for a treatment of small sets. These are also the so-called C-sets 
in [24]. We simply refer to (4) as local minorization on A0 , where we will 
assume further that this occurs on a recurrent set Ao in the sense that 

(5) 

Here and elsewhere Px denotes probability, and Ex denotes expectation, 
when Xo = x. It was pointed out to the authors by K. B. Athreya (personal 
communication) that local minorization on a recurrent set is an equivalent 
condition for Harris' familiar notion of cp-recurrence whenever Sis countably 
generated; necessity is proved in [24] and sufficiency is straightforward to 
check. 

A formulation in terms of iterated maps may be obtained along the 
lines introduced by Athreya and Ney [3] to identify regeneration structure 
in locally minorized Markov processes on a recurrent set Ao. 
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Proposition 1.2 (Local Minorization). The local minorization condition 
( 4) on a recurrent set Ao is equivalent to the existence of a representation 
by i.i.d. maps a1, a2, ... , of the form (1) such that aN ... a1 is a constant 
map on A0 into Ao with probability 6. 

Proof. One may restrict attention to the case N = 1. Otherwise p(N) (x, B) 
is treated as a one-step transition probability. First observe that if such 
maps exist then for x E Ao, BE S, one has 

where r c denotes the collection of constant maps on Ao into Ao. Conversely, 
suppose that local minorization holds on a recurrent set Ao. Let an be a 
representation by i. i. d. maps and define an alternative representation by 
i.i.d. maps f3n, n 2: 1 constructed as follows: Toss a coin with probability 6 
of heads. If head occurs then select a random point in Ao distributed as v 
and define (31x as this constant value for all x E Ao, but if tail occurs then 
for each X E Ao let f3Ix be distributed as (1- o)-1 (p(x,dy)- 6v(dy)). If 
x E S- A0 , then define (31x = a 1x. Now let f3n be an i.i.d. sequence of 
maps distributed. Then by such a construction 

p(x, dy) = P(f3nx E dy), xES. 

We leave the detailed construction of the probability space etc. to the reader; 
or see [9]. 11 

The following theorem is a centerpiece of general Markov process theory 
based on various notions of Harris recurrence by Orey [24), regeneration by 
Athreya and Ney [3], or so-called Nummelin splitting [22]; see [21] for a 
comprehensive treatment. In Remark 3.3 in Section 3 we derive Theorem 1.3 
as a special case of our Theorem 2.1 (and Lemma 2.3). 

Theorem 1.3. Assume the local minorization condition ( 4) on a recurrent 
set A0 . In addition assume that 

sup ExT Ao < oo, 
xEAo 

where Ex denotes expectation when Xo = x, and 

TAo = inf { n 2: 1 : Xn E Ao}. 
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Then there is a unique invariant probability 1r on ( S, S). Moreover for all 
XES, 

sup I_! t p(m)(x, B) -1r(B)I-+ 0 as n--+ oo. 
BES n m=l 

Remark 1.1. Recurrence of Ao and the finiteness of the expected time to 
renew a visit to Ao may often be checked by Foster-Tweedie drift conditions, 
or equivalently, stochastic Lyapunov conditions; see [21]. 

Finally let us record a generalization of the [16] splitting condition for 
monotone maps given by Bhattacharya and Majumdar [5]. This condition 
is defined by a sub-collection A of S, a positive integer N and a positive 
real number o such that 

We will refer to this condition as full splitting and to the parameter N as 
a splitting scale. The sub-collection A of S will be called the splitting class 
of sets. 

With a remarkably simple proof, Bhattacharya and Majumdar [5] ob
tained the following theorem. Denote by Q the distribution of a1 on an 
appropriate spacer of measurable maps 'Y of S into S. 

Theorem 1.4. Assume the full splitting condition (6). 

(i) Assume that (P(S), d) is a complete metric space under 

d(J.L,ll) = sup I J.L(B) -v(B)j, J.L,ll E 'P(S), 
BEA 

where P(S) denotes the space of probability measures on (S, S). 

(ii) Also with N as the splitting scale, assume that for every N -tuple of 
maps ( 'YI, ... , 'YN) outside a QN -null set, 

Then there is a unique invariant probability 1r on (S, S). Moreover 

sup jp<n>(x, B)- 1r(B) I :5 (1- o)[:N-1. 
xeS,BeA 

Remark 1.2 (Proof of Theorem 1.1). To derive Theorem 1.1 from 
Theorem 1.4 it is enough to consider the case N = 1. (Otherwise treat 
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p(N)(x, dy) as a one-step transition probability). Write p(x, B) = 6v(B) + 
(1-o)q(x,B), whereq(x,B) = (p(x,B)-ov(B))/(1-o). Let {Zn: n 2:: 1} 
be an i.i.d. sequence with common distribution v. Define an i.i.d. sequence 
of maps {an : n 2:: 1} such that (i) anx = Zn with probability 6, and 
(ii) with probability 1- 6, anx has distribution q(x, dy). Then (6) holds 
with A = S and Theorem 1.4 applies. 

Remark 1.3. It is known that the sufficient condition in Theorem 1.3 is 
necessary if the process is aperiodic ([21, p. 384]). Also, in the aperiodic 
case one may replace the Caesaro mean* I:~=1 p(m)(x,B) by p(n)(x,B) by 
making use of the renewal theorem. 

This is the starting point for the present paper. The remainder is 
organized as follows. In Section 2 we introduce a localized version of splitting 
and state our main theorem (Theorem 2.1) asserting the existence and 
uniqueness of an invariant probability under localized splitting conditions. 
This is followed by the proof of existence. The proof of uniqueness is taken 
up in Section 3. In the end we have a generalization of Theorem 1.4. 
Also, Theorem 1.4 and/ or the Dub ins and Freedman theory have found 
interesting applications to random iterations of (nonmonotone) quadratic 
maps, eg. see [6), [5], [1), [11]. These results are essentially obtained by 
finding an invariant set on which the maps are monotone, but may involve 
some delicate considerations of a splitting class of sets. This is illustrated in 
Section 4 with the introduction of a notion of strict splitting in the context 
of quadratic maps to extend previously known results significantly. 

2. A LOCALIZED SPLITTING AND EXISTENCE 

Let us begin by introducing a localized version of the splitting condition (6). 

Definition 2.1. The Markov process {Xn}~=O on (S,S) is said to have a 
locally splitting representation by i.i.d. maps a 1, a2, ... if there is a recurrent 
set Ao E S, a sub-collection A of S, and a positive real number 8 such that 
for each A E Ao = Ao n A, 

(7) 

Here TAo is the first return time to Ao so that, for wE {TAo= n}, f31(w) := 

(arA0 • • • a1)(w) = an(w)an-l(w) · · · a1(w). The collection Ao is the local 
splitting class. 
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One may easily check from Proposition 1.2 that local minorization on 
a recurrent set Ao implies local splitting on Ao with A= S, i.e., with local 
splitting class Ao = Ao n S. We will consider a localization of splitting 
which generalizes this framework. We will require the local splitting class 
to be such that the space P(Ao) of probability measures on (Ao, A0 n A) is 
a complete metric space under 

(8) do(~-t,v)= sup 1~-t(B)-v(B)I, ~-t,vE'P(Ao). 
BEAo 

Our main objective in this section and in Section 3 is to prove 

Theorem 2.1. Assume the local splitting condition (7) with local splitting 
class Ao = A0 n A such that Ao is a recurrent set and (P(Ao),do) is a 
complete metric space. If, in addition, 

sup ExTAo < oo, Px(TAo < oo) = 1 for all x E AS, 
xEAo 

then there is a unique invariant probability 1r on (S, S). 

To prepare for the proof define 

{9) r~~ := 0, r~:+l) := inf { k > rt> : Xk E Ao}, n = 0, 1, 2, .... 

Also we write r Ao = r~~. The process viewed only on its returns to Ao will 
be denoted 

(10) Xn =X (n), n = 1,2, .... 
TAo 

Define the kernelpA0 (x,B), xES, BE S, by 

00 

{11) PA0 (x,B) = LPx(Xn E B, Xk E A(), 1:::; k < n). 
n=l 

It is well-known that the process {Xn}~=O is a Markov process with transi
tion probabilities obtained frompA0 (x,B) by restricting x to Ao, and B to 
S n A0 (e.g. see [24]). 

For x E A0 , B E SnAo, let p~1 (x, B) denote then-step transition prob
ability for the process on Ao (with one-step transition probability PA0 ). For 
generalB E S, we will writep~0+1)(x,B) for JA0 PA0 (y,B)p~~(x,dy)(n 2:: 1), 

withp~~(y,B) =:pA0 (y,B) as defined in {11). 
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It will be important to observe that for each x E S, the kernel 
B ~ PA0 (x,B) defines a measure on the sigma-fieldS. The probabilistic 
interpretation is that PAo (x, B) is the expected number of visits to B E S 
prior to revisiting Ao. In particular under the assumption 

(12) 

one sees that 

sup ExT Ao < oo, 
xEAo 

(13) PA0 (x,S) = ExTA0 < oo, x E Ao. 

Remark 2.1. One may check, as a warm-up exercise to Lemma 2.2, that if 
p(x,dy) satisfies local minorization (4) on Ao then PA0 (x,dy), x E Ao, will 
satisfy Doeblin minorization (2) on Ao. 

Lemma 2.2. Under the conditions of Theorem 2.1, the process {Xn}::O=o> 
started at Xo = x E Ao, has a unique invariant probability 7rA0 on (Ao, Ao n 
S). Moreover, 

Proof. In view of Theorem 1.4 it suffices to show that the process {Xn}::O=o• 
started at Xo = x E Ao, has a full splitting representation on Ao. For this 
first let {an} ~=l denote a localized splitting representation of { Xn} ~=O. 
Define a random map (31 on A0 as follows: For w E n, define f31(w) : 
Ao ~ Ao, as before, by 

y E Ao. 

Now let f3t,f32, ... be an i.i.d. sequence of maps. This provides a repre
sentation since both { Xn} ::O=o and the process generated by the i. i. d. maps 
/3r, /32, ... are Markov processes with the same transition probabilities. To 
see that this is a full splitting representation on Ao simply note that by (7), 

(14) VAEAo=AonA. 

The other required conditions for Theorem 1.4 follow, with N = 1, imme
diately from the conditions of Theorem 2.1, since A= S. • 
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Remark 2.2. One may notice from the proof of Lemma 2.2 that it is the 
condition (ii) of Theorem 1.4 that is the reason for our restriction on the local 
splitting class. Nonetheless, as will be seen, this localization significantly 
extends the applicability of Theorem 1.4. 

With Lemma 2.2 the proof of the existence part of Theorem 2.1 may 
be completed by spreading 7rA0 to S by defining 

(15) 1r(B) = c { PA0 (x, B)nA0 (dx), BE S, 
lAo 

where 
c-1 = E?TAo TAo > 0, 

and E1TAo denotes expectation when Xo has distribution 1l"Ao· Note that on 
A0 , 1r = C1l"Ao· Now the proof of existence is completed by virtue of the 
following straightforward lemma. 

Lemma 2.3. Under the conditions of Theorem 2.1, (15) defines an invari
ant probability on (S, S) for p(x, dy). Moreover, if A= S, then for x E Ao, 
BE S, a:= csup {EyTA0 : y E Ao}, 

I cp~o+l) (x, B) - 7r(B) I ~ a(1 - ot' n ~ 1. 

Proof. Let B E S. Then using Lemma 2.2, 

(16) fsp(y,B)1r(dy) 

= [ p(y,B)c [ PA0 (x,dy)7rA0 (dx) 
ls lAo 

=c 11 fp(y,B)Px(Xn E dy,Xk E Ag for 1 ~ k < n)7rA0 (dx) 
S Ao n=l 

=c 1 f=Px(Xn+l E B,Xk E Ag for 1 ~ k.<. n)7rA0 (dx) 
Ao n=l 

=c Lo {PA0 (x,B)- p(x,B) 

+ f Px(Xn+I E B,Xn E Ao,Xk E Ag for I~ k < n) }1rA0 (dx) 
n=l 
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=1r(B)- c { p(x, B)1rA0 (dx) 
lAo 
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+ c { { p(y, B)PA0 (x, dy)7rA0 (dx) = 1r(B). 
lAo lAo 

In addition, ii A= S, note that for x E A0 , BE S, 

!cp~0+1)(x,B) -1r(B)j = lc Lo PA0 (y,B){p~~(x,dy) -1rA0 (dy)} I 
~ sup IP~)(x,B) -1rA0 (B)j, 

BEAonS 0 

so the convergence follows from Lemma 2.2, since cpA0 (y,B) ~ CPA0 (y,S) 

~a. • 

3. LOCALIZED SPLITTING AND UNIQUENESS 

Let us suppose that 1r is an arbitrary invariant probability. The following 
lemma will be useful for extrapolating from stationarity on A0 with respect 
to P1rAo· Let :F denote the sigmafield of events u{Xn : n ~ 0}. 

Lemma 3.1. Suppose 1rAo is the unique invariant probability for the pro
cess {Xn}::O=o on the recurrent set A0 • Also assume (12) holds. If 1r is any 
invariant probability for p(x, dy) then 1r = c11rAo on Ao n S with c' = 7r(Ao). 
In particular, 

E E :F, 

i.e., P'lrA is absolutely continuous with respect to Prr. 
. 0 

Proof. In view of recurrence it follows from [21, Theorem 10.4.7, p. 243] 
that 1r restricted to Ao is invariant under p Ao ( x, dy). Thus the first assertion 
follows from the uniqueness of 1r Ao, and the second by 

Proof of Uniqueness in Theorem 2.1. Without loss of generality 
assume that 1r is an ergodic invariant probability; else, in view of the 
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topological structure of S, one may take an ergodic component in the 
ergodic decomposition. The idea for proving uniqueness is to use the ergodic 
theorem to show that for bounded measurable functions f : S -+ R, fs f d1r 
is determined by f and expected values with respect to 1fAo· In particular, 
first note that by ergodicity ,of the process { Xn} ~=O under P1r one has P1r-a.s. 
that 

(17) 1 n 1 lim - "'""'f(Xj) -+ f d1r. 
n~oo n L...J s 

j=1 

In particular, taking f = l[Ao], one has P1r-a.s. 

(18) lim Nn = 7r(Ao), 
n~oo n 

where 

n 

(19) Nn = Ll[Xj E Ao) 
j=1 

denotes the number of visits to Ao during [1, n]. Now, for arbitrary bounded 
measurable functions f : S -+ R we have P1r-a.s. 

(20) 

as n-+ oo, where, for times r(m) := r~7) (r(o) = 0) defined by (9), 

(21) Z ·-m·- m~l. 

It follows from (17), (18) and (20) that the limit limn~oo Jn L:~~1 Zm exists 
P1r-a.s. and is given by 7r(1o) f8 jd1f. But {Zm}:'=1 is a stationary process 

under P'lrAo, and therefore the sequence { k L:~=1 Zm} ;=1 will converge 
P1fAo -a.s. and in L1 to E1rA0 Z1. On the other hand, in view of Lemma 3.1, 
these imply that P1fAo -a.s. 

(22) 
1 N 1 Nn 1 1 

E1fA z1 = lim N L Zm = lim-N. L Zm =-(A) jd1f. 
0 N ~oo n~oo n 1f 0 S m=1 m=1 
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Taking f = 1 in (22) identifies 7r(Ao) as 

(23) 
1 

7r(Ao) = c = -E--
11"Ao TAo 

Thus we finally arrive at the unique determination of 1r via the formula 

(24) { jd1r = cE11"A Z1 ls 0 · 

for all bounded measurable functions f on S. • 

Remark 3.1. To prove (20), note that the magnitude of the left side is 
no more than M(r(k+l)- T(k)) fr(k) with k = Nn and M =sup {I f(x)l 
XEs}. Now 

T(k+l) - T(k) _ ( k k + 1 ) T(k+l) T(k+l) k 1 
r(k) - r(k) - r(k+l) . k + 1 + k + 1 · 7 (k) ·k--+ 0 a.s. 

as k -+ oo, taking n = r(k) and n = r(k+l), respectively, in (17) with 

f = l[Ao]. 

Remark 3.2. It is not necessary to use the ergodic decomposition in the 
above proof. For any invariant probability 1r, the convergence in (17) is 
replaced by convergence to a random variable a.s. and in L1 (w.r.t. P1r ). 
Hence one may take expectations on both sides to arrive at (24). 

Remark 3.3 {Proof of Theorem 1.3.). Under the hypothesis of The
orem 1.3, and using a representation by i.i.d. it.erated random maps an 
(n 2: 1) (See Proposition 1.2), the assumptions of Theorem 2.1 are satisfied 
with Ao = A0 n S (or, A = S). Hence the existence and uniqueness of 
an invariant probability follows from Theorem 2.1. The convergence 1r(B) 
of o=~=1 p(m)(x,B)) fn uniformly for all B E Sis easily derived by the 

convergence to the invariant probability 7rA0 ofp~j(x,dy) (on (Ao,Ao)) in 
total variation distance given by Lemma 2.3. 

Remark 3.4. Suppose Ao is a closed, or invariant, set, i.e., anx E Ao 
V x E Ao (a.s.). Then TAo= 1 (a.s. Px) V x E Ao, and fJn is the restriction of 
an to Ao. One may then apply Theorem 1.4 directly with N = 1, localized to 
Ao, to derive the conclusion of Theorem 2.1. In this case 1r(B) = 7rA0 (BnAo) 
VB E S. On the other hand if, for some constant N > 1, aN··· a1x E Ao 
V x E Ao (a.s.), one may replace the local splitting condition (7) by 

(25) V A E Ao = Ao n A. 
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Then the conclusion of Theorem 2.1 holds, i.e., there exists a unique invari
ant probability. If the constant N > 1 is the smallest such integer for which 
(25) holds, then typically the Markov process has aN-period cycle, (7) and 
(25) are the same with TAo= N. This is the case in Example 4 in Section 4. 

5. APPLICATIONS TO QUADRATIC MAPS 

In this section Theorem 1.4 is applied to iterations of i.i.d. quadratic maps 
an = F11n ( n ;::: 1), where 1Jn ( n ;::: 1) are i. i. d. random variables taking values 
in the parameter space [0, 4] and, for each (} E [0, 4], 

(26} Fe(x) = 9x(1- x), O~x~l. 

Since 0 is a common fixed point of all Fo, the Dirac measure Oo is always an 
invariant probability for the Markov process Xn(x) :=an··· a1x (n ;::: 1), 
Xo(x) = x, on the state space [0, 1]. We focus on the existence and 
uniqueness of an invariant probability other than 80 • The appropriate state 
space is then S = (0, 1) left invariant by all Fe. 

We begin by recalling a few basic facts about the quadratic family { Fo : 
(} E [0, 4]} , shared by other unimodal families as well; see [10] and [12] for 
proofs and further properties. It is easily checked that for 0 ~ (} ~ 1 the map 
Fo has the unique attracting fixed point 0. For (} > 1, 0 is repelling for Fe 
and a new fixed point Po = 1 - k appears, which is attractive for 1 < (} ~ 3, 
and repelling for(}> 3. A period two orbit for Fe appears for(}> 3, which 
remains attractive for 3 < (} ~ 1 + y'6, becoming repelling for(}> 1 + y'6, 
at which point a period-four orbit appears. In this manner period-doubling 
bifurcations take place for all periods 2n(n ;=:: 0). Beyond this, other periods 
appear each with a period doubling sequence of its own. For (} !::::: 3.8284 
there appears an attractive period-three orbit. A well-known theorem of 
Sarkovskii (see [12, p. 60]) says that a continuous map with a period-three 
orbit has periodic orbits of all periods. Beyond the period-three regime, 
there are (}values which have no attractive periodic orbits, and chaos sets 
in. Although the set of O's for which Fe has an attractive periodic orbit is 
dense in [0, 4], the set of (}'s for which Fo is chaotic or even has an absolutely 
continuous invariant probability, has positive Lebesgue measure ([19], [17]). 

Turning to the Markov process Xn := an··· a1Xo(n ;::: 1), with Xo 
independent of {an = Fe.. : n ;::: 1}, the following lemma allows one to 
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extend earlier results of Bhattacharya and Rao [6] and Bhattacharya and 
Majumdar [5]. In order to state it, we will recast the splitting class as 
A = { [c,x] : c ~ x ~ d} for the case of i.i.d. monotone maps {an : 
n ~ 1} on an interval [c,d) as follows. The Markov process Xn(x), (n ~ 1), 
Xo(x) = x, x E [c, d) is said to have the splitting property if there exists 
8 > 0, xo E [c, d), and an integer N such that 

(27) P(XN(x) ~ xoVx E [c,d) or XN(x) ~ xo\::fx E [c,d)) ~ 8. 

It is shown in [16] that (27) implies the existence and uniqueness of an 
invariant probability 1f on [c, d); i.e. Theorem 1.3 holds. If the inequalities 
'~ xo' and'~ xo' appearing within parenthesis in (27) are replaced by strict 
inequalities'< xo' and'> xo', respectively, then the above property will be 
referred to as a strict splitting property. Note that (27), or its strict version, 
is a property of the distribution Q of 'T'fn· Denote by QN the (product) 
probability distribution of ( rt1, ... , 'f/N). 

Lemma 4.1. Let fh < fh and m ~ 1 be given. 

(a) If, for all (]i E {fh, 62}, 1 ~ i ~ m, the range of F81 • • • Fom on an 
interval h = [u1 , v1] is contained in I2 = [u2, v2], then. the same is true for 

all Oi E [01, 02]. In particular, if F01 • • • Fom leaves an interval [c, d) invariant 
for all Oi E {011 02}, 1 ~ i ~ m, then the same is true for all Oi E [01,02), 

1 ~ i ~ m. 

(b) Suppose, for all Oi E { 011 02}, 1 ~ i ~ m, F01 • • • Fom leaves invariant 
an interval [c, d]. Assume also that the strict splitting property above holds, 
with N = km a multiple of m, for a distribution Q = Q0 whose support is 

{lh, 62}. Then (i) Fo1 · · · Fom leaves (c, d] invariant for all Oi E (61, 62), and 
(ii) the strict splitting property holds for an arbitrary Q = Q whose support 

has 01 as the smallest point and 02 as its largest. 

Proof. (a) The proof is by induction on m. The assertion is true form= 1, 
sinceinthiscaseu2~min{Fo1 (y): yE[ur,v1]} ~Fo(x)~max{Fo2 (y): 
y E [u1, v1]} ~ v2 , for all x E [u1, vl]. Assume the assertion is true for some 
integer m ~ 1. Let a = min { Fo2 · · · FomH ( x) : Oi E { 01, 02}, 2 ~ i ~ m + 1, 

x E [u1,v1]}, and b = max{Fo2 · ··Fom+l(x) : Oi E {01102}, 2 ~ i ~ m+ 1, 
X E [u1' v1]}. By the induction hypothesis, for arbitrary 02 ' ••• 'om+1 E 
[Ob 02], the range of F02 • • • Fom+l on [u1, v1] is contained in [a, b]. On the 
other hand, u2 ~ min{Fo1 (y): y E [a, b)}, v2 ~ max{Fo2(y): y E [a, b)}. 
Hence, for arbitrary 01, ... , om+l E (61, 62], the range of F81 • • • F8m+l on 
[u1, vl] is contained in (u2, v2], thus completing the induction argument. 
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(b)(ii) Suppose a strict splitting property holds with 8 > 0, x0 , N. 
Define the continuous functions L, l on [lh, 02]N by 

(28) { 
L(Ol, ... ,ON) :=max Fo1 ···F0N(x), 

c<x<d 

l(01' ... 'eN) := min Foi ... FoN (x) 
c~x~d 

By hypothesis, the open subset u of [01' 02]N defined by u := { (01' ... 'eN) 

E [81, 02t : L(Ol, ... , ON) < xo}, includes a p~int (OJ, ... , 0~) E { Ot, 82}N. 
Therefore U contains a rectangle R = R1 x · · · x RN where 14. is of the form 

Ri = [81, 81 +hi) or 14. = (02-hi, 82] for some hi> 0(1::; i::; N), depending 
on whether Ob = 81 or Ob = 82. By the hypothesis on Q, 81 := (JN (R) = 
Q(R1) · · · Q(RN) > 0. Hence the first inequality within parentheses in 
(27) (with'< xo') holds with probability at least 81 . Similarly, the second 

inequality in (27) holds (with '> xo') with some probability 82 > 0, since 
V := {(01, ... ,0N) E [01,02JN : l(01, .•• ,0N) > x0 } is an open subset 

of [Ot, 02]N, which includes a point (OJ, ... , 0~) E {01, 02}N. Now take 
the minimum of 8t, 82 for 8 in (27). Finally, the invariance of [c, d) under 

F01 • • • F0N for all Oi E [81, 82], 1 ::; i ::; N, follows from (a). • 

In Examples 1-4 below the invariant interval [ c, d) is either contained in 

( 0, ~ J or in [ ~, 1) to insure monotonicity of an = FTJn, so that the theorem 

of [16], i.e. Theorem 1.4 with A= { [c, x] : c::; x ::; d}, can be applied to 

the process {Yk := Xkm}~0 • The distribution Q of On in the case m = 1 in 
Lemma 4.1, or Qm in case m > 1, is assumed to have support with 01,82 
its smallest and largest points, respectively. This generalizes the case of 

support precisely {81, 82} considered in [6] and [5]. It is also true in these 
examples that the probability of reaching [c, d] in finite time, starting from 
any x E (0, 1) is one. One may then show, by Theorem 2.1 (see Remark 3.4), 
that there is a unique invariant probability on S = {0, 1). 

Example 1. Take 1 < 81 < 82 ::; 2, m = 1. Then Foi has an attractive fixed 

point Poi = 1- #i(i = 1, 2). 'Here [c, d) = [pouPo2 ] C (o, ~] _, xo E (c, d), and 

N is a sufficiently large integer such that Fl[ Po2 < xo, and Fl:.po1 > xo. The 
Markov process on S = (0, 1} then has a unique invariant probability 1r and 

Xn(x) converges in distribution to 1r geometrically fast in the Kolmogorov 

distance, as n -too, for every x E (0, 1). 

Example 2. Take 2 < 81 < 82 ::; 3, m = 1. Then Foi has an attractive 

fixed point Poi = 1- i (i = 1, 2} and [c, d] = [popPo2 ] C [ ~' 1). The same 
conclusion as in Example 1 holds in this case as well. 
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Example 3. Take 2 < fh ::; 3 < fh ::; 1 + v'5, fh E [ Oa( 4~62 ), 82), m = 1. 

Then Fo1 has an attractive fixed point po1 = 1-l1 , and Fo2 has an attractive 

period-two orbit { Q1, q2}, Q1 < q2. The interval [ c, d) = [!, ~ J is invariant 
under Fo;(i = 1, 2), and strict splitting occurs with xo E {po2 , q2) and N 
a sufficiently large even integer. Also with probability one, the Markov 
process { Xn(x)} :'=o reaches [ ~' tJ;] in finite time, whatever be x E (0, 1). 
Thus there is a unique invariant probability 1r on S = (0, 1) and Xn(x) 
converges in distribution to 1r as n-+ oo, for every x E {0, 1). 

Example 4. Take 81 = 3.18, 82 = 3.20, m = 2. Then Fo; has an 
attractive periodic orbit {q1i, Q2i}, Qli < Q2i {i = 1, 2). One may choose 
[c, d) = [q21 - c, Q22 + c] with c > 0 sufficiently small and show that 
F61F62 { Oi E {81, 82}) leaves [c, d) invariant, and a (strict) splitting occurs for 
x0 E (q21, Q22) and N a sufficiently large even integer. Also with probability 
one, the Markov process { Xn(x)} ::o reaches [c, d) in finite time, whatever 
be x E (0, 1). Thus there is a unique invariant probability 1r on S = (0, 1). 

Examples 1-4 may be derived as special cases of the following result. As 
before, Q denotes the common distribution of the i. i. d. sequence 'Tln ( n ~ 1) 
and Xn(x) = F11n • • • F711 X (n ~ 1). 

Theorem 4.2. Let 01 , 82 denote the smallest and largest points of the 
support of Q, 1 < 81 < 82 < 4. Assume that Fo; has an attractive periodic 
orbit of period mi ~ 1 ( i = 1, 2). Assume that { Qb q2} are points of the 
attractive orbits of Fo1 , Fo2 with the following properties: 

(i) There is an interval I containing { q1, q2} which is contained either 
in ( 0, ~ J or in [!, 1) such that FO: leaves I invariant for some multiple m 
of both m1 and m2 (i = 1, 2), 

(ii) F~mi-+ {qi} ask-+ oo (i = 1,2), and 

(iii) Px(ri < oo) = 1 for all x E (0, 1). Then the Markov process {Xn}~=O 
has a unique invariant probability on S = (0, 1). 

Proof. By Lemma 4.1(a), the Markov process {Yk := Xkm}k"=o may be 
defined on the state space I, on which it is generated by i.i.d. monotone 
maps f3k := akm · · · a(k-1)m+l(k ~ 1). Let xo belong to the interior of the 
line segment joining q1, Q2· Then the (strict) splitting condition (28) holds, 
with Y N in place of X N, if N is sufficiently large, by virtue of assumption 
(ii). Hence there exists a unique invariant probability 1ro, say, of {Yk}~0 
on I. Under P7r0 , by considering the proportion of times spent in a set by 
{Xn}~=O in the first M stationary blocks (X(k-1)m' X(k-1)m+ll ... ,Xkm-1), 
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1 ~ k ~ M, as M---+ oo, one obtains an invariant probability 1f for {Xn}~=O 
on S given by 1r(B) = 7k 2:.::::::::-l Pn0 (Xn E B). In view of (iii), the invariant 
probability 1f is unique. On may also mimic the proof of Theorem 2.1; 
however the steps are simpler here (Also see Remark 3.4). • 

Remark 4.1. Given any integer n ~ 0, there exist (h < fh so that F01 , 

Fo2 have attractive periodic orbits of period 2n. One may choose 01 , 02 

sufficiently close so that the largest points in their orbits, q1, q2, say, have 
no other periodic (or fixed) point of Fo; between them (i = 1, 2), and so 
that q1, q2 both lie in G, 1) (or, (o, ~), in some cases with n = 0). The 
hypothesis of Theorem 4.2 hold in this case. 

Suppose next that Q has a density component. Then under broad 
conditions one can show the existence of a unique invariant probability on 
S = (0, 1), as the following theorem shows. 

Theorem 4.3. Let 1 < 1-L < A < 4. Suppose Q([f-L, .Xl) = 1 and Q has 
a nonzero absolutely continuous component with a density bounded away 
from zero on some open interval (I-Ll, /-L2) (I-Ll < f-t2) containing a parameter 
value () for which Fo has an attractive periodic orbit of some period 2n 
(n ~ 0). Then the Markov process has a unique invariant probability on 
S= (0,1). 

We first need a preliminary lemma. 

Lemma 4.4. Let 1 < f-L < ,\ < 4. Let u = min{1- t,FJ.t(~) }, v = ~· 
Then for every() E [f-t, .X], [u, v] is invariant under Fe. 

Proof. We need to prove that (i) max { Fe(x) : u ~ x ~ v} ~ v for 
() E [f-t, .X] and (ii) min { Fe(x) : u ~ x ~ v} ~ u for() E [f-t, .X]. The first of 
these follows from the relations max { Fe(x) : u ~ x ~ v} ~max { F>,(x) : 
u ~ x ~ v} ~ ~· For (ii) note that by unimodality, min { Fe(x) : u ~ x ~ 
v} = min{Fo(u),Fo(v)} ~ min{FJ.t(u),FJ.t(v)}. Ifu = 1- t ~FI-t(~), 
then the last minimum is FJ.t(u) = 1- t = u. If u =FI-t(~) < 1- t' then 

min { FJ.t(u),FJ.t(~)} =FI-t(~) = u, since on (0, 1- t), FJJ.(x) > x. 11 

Proof of Theorem 4.3. We will sketch only the main ideas behind the 
proof. Under the hypothesis there exist n ~ 0 and an interval ['yr, 12] C 
(f-LI, /-L2), /I < 12, such that for every e E ['YI, 12], Fe has an attractive 
periodic orbit of period m = 2n. For simplicity assume that Q is absolutely 
continuous with a continuous density h which is positive on [81, 82]. Let q1, 

q2 be the largest points on the attractive orbits of Pn and F72 , respectively. 
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One may choose ')'1, 'Y2 sufficiently close to each other so that (1) there is 
no other periodic (or fixed) point of Fy; in the line segment joining q1, q2, 

and (2) there is an interval I containing { q1, q2} which is left invariant by 
F!f: and F~m I ---+ { qi} as k ---+ oo ( i = 1, 2). It follows from Lemma 4.1 (a) 
that I is left invariant by F01 • • • Fom for all (Ji E ['Yl, 'Y2], 1 ~ i ~ m. 

Them-step transition probability density p(m)(x, y) of the Markov pro
cess {Xn}~=O is easily shown to be given by 

(2) ( ) - 1 l. 1 h ( y ) h ( z ) d 
p x,y - x(1- x) [u,v] z(1- z) z(1- z) x(1- x) z, 

p(n+l)(x, y) = l. 1 h ( - y ) p(n)(x, z) dz 
[u,v] z(1- z) z(1- z) 

(n 2 1), (u ~ x, y ~ v). 

Here u, v are as in Lemma 4.4. Using the fact that F[Jq = q for a point q on 
the attractive 2n- periodic orbit of Fo, with(} E ['Yl, 'Y2], one may show that 
p( m) ( x, y) > 0 for all x, y E I (if 'Yl, ')'2 are sufficiently close). This implies 
that the restriction {Xn}~=O of the process {Xn}~=O to I at times of visits to 
I satisfies Doeblin's local minorization. Also, using the compactness of [u, v] 
and the fact that every point in [u, v] belongs to an interval of attraction to 
a point in the attractive orbit of some Fo with (} E (')'1, ')'2), one can show 
sup {ExTJ : x E I} < oo. Similarly one proves Px ( TJ < oo) = 1 for all 
xES=(0,1). 11 

Remark 4.2. It has recently been shown by Dai [11], generalizing an earlier 
result of Bhattacharya and Rao [6, Remark 4.1.2), that if Q has an absolutely 
continuous component with a positive density on a subinterval of (1, 3) 
then the Markov process is Harris recurrent and, therefore, the invariant 
probability is unique. One may arrive at this by an application of Theorem 
1.2. 

Remark 4.3. Lemma 4.2 corrects an oversight in [6] and in [11], where u 
is taken to be 1- fL. 

Remark 4.4. Finally, in a recent article Athreya and Dai [1] have proved 
the existence (but not uniqueness) of an invariant probability on S = (0, 1) 
under the assumption that E In 1J1 > 0, E lin ( 4 - 111) I «: oo. Athreya and 
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Dai [1] also have shown that 'E ln 111 > 0' is a necessary condition for the 
existence of an invariant probability 1r on {0, 1), by using the functional 
equation Xn+l = 1Jn+1Xn(1 - Xn) to point out that an invariant 1r must 
satisfy the equation- Jln(1- x)1r(dx) = Eln171. 

Remark 4.5.· In view of Theorem 4.2, and the density of the set of f)'s 

such that Fo has an attractive periodic orbit, one may conjecture that if 
the Athreya-Dai sufficiency condition holds and Q has a nonzero absolutely 
continuous component with a density which is positive on some interval 
{1, 4), then there exists a unique invariant probability on S = (0, 1). 

Remark 4.6. Recently, Athreya and Dai [2] have produced an example of 
a Q with a two-point support for which the Markov process has more than 
one invariant probability on S = (0, 1). 
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Chapter 11
Stability Analysis for Random Dynamical Systems
in Economics

Takashi Kamihigashi and John Stachurski

Abstract Random dynamical systems encountered in economics have certain distinctive
characteristics that make them particularly well suited to analysis using the tools for study-
ing Markov processes developed by Rabi N. Bhattacharya and his coauthors over the last
few decades. In this essay we discuss the significance of these tools for both mathemati-
cians and economists, provide some historical perspective, and review some recent related
contributions.

11.1 Introduction

The foremost concern within the field of economics is allocation of scarce resources
among alternative and competing uses. Such resources must be allocated not only con-
temporaneously but also across time. Allocating resources over time necessarily involves
uncertainty over possible future states of the world. These facts have led economists to
maintain a deep interest in the properties of random dynamical systems.

The random processes of interest to economists have a special characteristic: Their laws
and properties are generated to a large extent by the decisions of economic agents—the
choices of human beings. These choices are made according to a variety of concerns, such
as profit maximization by firms, utility maximization by households and consumers and
social welfare maximization by policy makers (should they be so inclined).
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Putting humans in models is inherently problematic. Nonetheless, a broad approximation
to many kinds of human behavior can be obtained by assuming that agents respond to in-
centives, which in the language of mathematics means that they optimize (taking into
account the constraints they face, their predictions of future outcomes, and perhaps their
bounded knowledge and information processing capabilities). As a result, economic mod-
els almost always contain agents who optimize given their constraints, and the random
dynamic systems economists analyze are determined partly by their resulting policy func-
tions. (A “policy function” in this context usually means a map from current state to current
actions.) In particular, the policy functions of the agents combine with other elements of
the system (equilibrium constraints, physical laws of motion, exogenous shocks, etc.) to
determine the evolution of the state variables.

Policy functions are often the solution to complex optimization problems and are typ-
ically nonlinear. (One example is threshold behavior caused by fixed costs or indivisibil-
ities, as seen in the lumpy investment behavior of firms or oscillations in asset prices.) In
many settings their exact properties are difficult to discern. If the law of motion for a given
system depends on a policy function that is formally defined as the solution to a dynamic
programming problem but has no analytical solution, then pinning down the exact proper-
ties of the law of motion (continuity, smoothness, etc.) becomes a difficult problem. Hence
the approach to studying economic dynamics sometimes differs from methods adopted for
other kinds of systems.

One particular problem associated with the issues described above is that many models
either fail to be irreducible or cannot be shown to be irreducible under standard assump-
tions. For example, in the nonlinear models on continuous state spaces routinely treated
in economics, systematic approaches to irreducibility require a considerable amount of
smoothness (see, e.g., Chapter 4 of [33]). It can be almost impossible to extract such fine
grained information from our limited knowledge of policy functions that are defined in a
formal sense but cannot be written down explicitly.

Without irreducibility, many results from the classical theory of Markov processes (see,
e.g., [33, 24]) cannot be applied. Given this scenario, it is perhaps not surprising that Rabi
Bhattacharya’s seminal work on Markov processes without the irreducibility assumption
and his subsequent research with his coauthors on these and related topics [3, 4, 14, 10,
7, 6, 9, 8, 12, 11] have turned out to be ideally suited to the study of random dynamical
systems in economics.

In the rest of this essay we discuss the significance of Rabi Bhattacharya’s contribu-
tions through the lens of economic applications. We begin by introducing two canonical
applications, extensions of which serve as workhorse models for economic research. Next
we turn to theory. We also fill in some of the historical background of related work in
economics, as well as subsequent developments.1

1 We focus on discrete time systems since they are more commonly observed in models of economic
dynamics. Analysis of continuous time systems can be found, for example, in [13, 2].
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11.2 Basic Economic Models

In this section we review two standard economic models that are routinely employed in
economic applications (after adding in frictions or additional features that the modelers
wish to study). We strip the models down to their most essential features for expositional
convenience. While this eliminates some of the complications mentioned in the introduc-
tion, references are included for those who wish to dig deeper.

11.2.1 Optimal Growth

Foundational models in the field of growth theory analyze the dynamics of output, income,
savings, and consumption in a setting where growth is driven through the accumulation of
productive capital [15, 34]. These models have been extended in many directions, in order
to account for the role of research and development, the impact of precautionary savings,
dynamics of labor through the business cycle, and so forth. We present only a classical one-
sector optimal growth model, where a representative agent chooses a policy for consuming
and saving in order to solve

max
{ct}∞t=0

E

∞∑

t=0

δtu(ct) (11.1)

s.t. ct + kt ≤ yt, yt = ξt f (kt−1), k0 given. (11.2)

Here u : (0,∞)→ R is a utility function, δ is a subjective discount factor taking values in
(0, 1), f is a production function, ct is consumption, kt is capital (which equals savings in
our simple model), yt is output, and all variables are nonnegative. The stochastic sequence
{ξt} is taken to be iid with distribution φ having support on some subset of (0,∞). As is
standard in the literature, we take u to be bounded, increasing, and strictly concave, with
u′(0) = ∞. The function f is also assumed to be strictly increasing and strictly concave
with f ′(0) = ∞, f (0) = 0 and f ′(∞) = 0.

Under these conditions it is well known that a unique optimal savings policy σ exists.
Optimality means that if we let income evolve according to yt+1 = f (σ(yt))ξt+1 and con-
sume according to ct = yt−σ(yt), then the resulting consumption process maximizes (11.1)
under the stated constraints [15, 27, 36]. In general no analytical expression exists for the
optimal policy σ.

The slope conditions on u and f at zero are used partly to ensure stability and partly to
generate interior choices. Regarding the first point, if f ′(0) < ∞, then it is possible that
output converges to zero with probability one. We return to this point below. Regarding
interiority, the slope conditions at zero are enough to imply that 0 < σ(y) < y for all y > 0,
and, as a consequence, that σ satisfies the Euler equation

u′ ◦ c(y) = δ
∫

u′ ◦ c[ f (σ(y))z] f ′(σ(y))zφ(dz) (y > 0) (11.3)
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where c(y) := y − σ(y). For a proof, see, for example, [42, Prop. 12.1.24]. This equation is
very useful for inferring properties of σ and the optimal income dynamics.

To study the dynamics of the optimal process, we take yt as the state variable, and con-
sider the process yt+1 = f (σ(yt))ξt+1. A natural state space is (0,∞) or some subinterval.
Key questions are the existence and uniqueness of stationary distributions for the state
variable, convergence of marginal distributions to the stationary distribution under some
suitable topology, and ergodicity and central limit theorems for the time series. Answering
these questions is of fundamental importance when comparing predictions with data.

11.2.2 Stability Arguments

In the simple version of the model we have presented, irreducibility can be established after
assuming enough smoothness on φ, the distribution of the shock process. This is because
the shock ξt+1 appears outside the policy function in the law of motion yt+1 = f (σ(yt))ξt+1.
However, this property is easily lost if we alter the timing or include additional compli-
cations such as correlated productivity shocks or elastic labor supply (see, e.g., [25, 17]).
Although we omit such complications here, their existence implies that general stability
results need to be built on top of more robust features of the dynamics.

Two such features are continuity and monotonicity. For example, consumers typically
save more when income goes up. In the context of our optimal growth model, it is certainly
true that the optimal savings function y �→ σ(y) is continuous and increasing, and, since
f preserves these properties, the associated Markov process yt+1 = f (σ(yt))ξt+1 is both
stochastically monotone and Feller [43, 15, 34].

These properties were exploited in the first proof of stability for the model discussed
above, due to Brock and Mirman [15]. They showed that the model has a unique and stable
stationary distribution whenever the shocks have compact support [a, b] with 0 < a < b.
The same properties were also exploited in subsequent related work by Mirman and Zilcha
[34] and Razin and Yahav [40]. A summary of the approach that combines monotonicity
and continuity can be found in [43].2

However, continuity is not a robust feature that can be relied upon for stability proofs
in more general cases. For example, if we drop the concavity assumption on f , the opti-
mal policy can contain jumps [21, 25, 36]. Seminal work by Rabi Bhattacharya and his
coauthors showed that for existence, uniqueness, and stability in models such as this one
sector stochastic optimal growth model, continuity of the optimal policy is unnecessary:
it is sufficient to require the optimal policy to be monotone and to satisfy an appropriate
mixing condition, as we discuss in Section 11.3.

2 Subsequently the stability analysis was extended to the case of unbounded shocks by [41, 37, 28, 47].
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11.2.3 Overlapping Generations

Another foundational class of models in economic theory is the models of production and
growth with overlapping generations. Here we discuss a simple example loosely based on
Galor and Ryder [23] and Wang [45]. The framework is as follows. Agents live for two
periods, working in the first and living off savings in the second. Savings in the first period
forms capital stock, which in the following period will be combined with the labor of a new
generation of young agents for production under the technology yt = F(kt, "t)εt. Here yt is
income, kt is capital, and "t is the number of young agents, all of whom supply inelastically
one unit of labor. For convenience we assume that population is constant ("t = " = 1), and
set f (k) = F(k, 1). Following Galor and Ryder [23, p. 362] we assume that f : R+ → R+
has the usual properties f (0) = 0, f ′ > 0, f ′′ < 0, f ′(0) = ∞, f ′(∞) = 0, as well as the
extended Inada condition

lim
k↓0

[−k f ′′(k)] > 1. (11.4)

The shocks {εt} are iid on R+ according to density φ.
As Galor and Ryder point out [23, Lemma 1, p. 365], restrictions on the utility function

are necessary to obtain unique self-fulfilling expectations. Here we assume that young
agents maximize utility

U(ct, c
′
t+1) = ln ct + βE(ln c′t+1), β ∈ (0, 1), (11.5)

subject to the budget constraint

st = wt − ct, c′t+1 = stRt+1,

where s is savings from wage income, c (respectively, c′) is consumption while young
(respectively, old), w is the wage rate, and R is the gross rate of return on savings. Com-
petitive markets imply that firms pay inputs their marginal factor product. Thus, the gross
interest rate and wage rate are

Rt(kt, εt) = f ′(kt)εt, wt(kt, εt) = [ f (kt) − kt f ′(kt)]εt. (11.6)

At time t, households choose st to maximize

ln(wt(kt, εt) − st) + βE ln[stRt+1(kt+1, εt+1)], (11.7)

using their knowledge of the distribution φ of εt to evaluate the expectations operator,
as well as their current belief that next period capital stock will be kt+1. In self-fulfilling
expectations equilibrium their beliefs are realized, with

kt+1 = st =
β

1 + β
h(kt)εt, (11.8)
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where h(k) = [ f (k) − k f ′(k)]. The role of condition (11.4) is to ensure that h′(0) > 1,
implying that capital will not collapse to zero as long as the distribution of the shock is
sufficiently favorable.

The first aim of dynamic analysis is to establish existence of a unique and stable sta-
tionary distribution for capital {kt} under reasonable assumptions on the shock process {εt}.
The most notable property of h is monotonicity, as follows directly from concavity of the
production function f . This makes the system amenable to analysis using the methods of
Bhattacharya and Lee [3] described below.

11.2.4 Other Applications

We have mentioned only two simple applications. For more applications amenable to anal-
ysis using related stability conditions, see, for example, the infinite horizon incomplete
market models typified by [26], stochastic endogenous growth models such as that found
in [20], a wide variety of OLG models, such as those as found in [1, 39, 38] and [35], and
industry models such as [16] and [19].

11.3 Stability Conditions

In this section we discuss sufficient conditions for stability, starting with the monotonicity
and “splitting” conditions introduced by Bhattacharya and Lee [3].3

11.3.1 Splitting

The framework adopted by Bhattacharya and Lee [3] consists of a sequence of iid random
maps {γt}t≥1 on some probability space (Ω,F ,P), each map γt sending a subset S of Rn

into itself, and an S -valued process {Xt}t≥0 generated by

Xt = γtXt−1 = γt ◦ · · · ◦ γ1(x)

where x ∈ S is the initial condition. The key assumption of their stability analysis is the
existence of a c ∈ S and m ∈ N such that
(S1) P{γm ◦ · · · ◦ γ1(x) ≥ c, ∀x ∈ S } > 0; and
(S2) P{γm ◦ · · · ◦ γ1(x) ≤ c, ∀x ∈ S } > 0.
The order ≤ here is the usual pointwise order for vectors in Rn.

Conditions (S1) and (S2) are often referred to collectively as a “splitting condition.”
They have a natural interpretation of mixing in an order-theoretic sense. Under this split-

3 The work of Bhattacharya and Lee builds to some degree on earlier work by Dubins and Freedman [22]
and Yahav [46].
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ting condition and the assumption that all maps γt are increasing, it was shown that the
Markov process {Xt} has a unique invariant distribution and is globally asymptotically sta-
ble; see [3, 5, 18]. Stability is with respect to a metric that is weaker than total variation
convergence but equivalent to the Kolmogorov metric in one dimension (and implies weak
convergence in higher dimensions under mild restrictions).

These simple and intuitive conditions can easily be applied to the optimal growth model
described in Subsection 11.2.1 whenever the shock is bounded. No continuity is required,
so variations that induce jumps in the policy function can also be treated. Monotonicity is
known to hold, as already discussed.

Conditions (S1) and (S2) can also be used to prove stability for the overlapping gener-
ations model described in Subsection 11.2.3. In particular, provided that the shock distri-
bution is chosen to be supported on a bounded subset of (0,∞), the state space S for kt can
be taken to be a bounded closed interval [Ka,Kb] ⊂ (0,∞). The splitting condition (S1)
can then be checked by showing that, starting from k0 = Ka, sufficiently positive shocks
can drive the state km above some point c ∈ [Ka,Kb] with positive probability. In view of
monotonicity, the same shocks will drive the state above c in m periods from any initial
condition. A proof along these lines gives (S1), and (S2) can be checked in a similar way.

Further results pertaining to the splitting conditions (S1) and (S2) were obtained by
Rabi Bhattacharya and coauthors in a sequence of studies subsequent to the original pa-
per by Bhattacharya and Lee [3]. These relate to processes that are monotone but not
necessarily increasing, to the connections between splitting and classical minorization
conditions, and to the implications of splitting for ergodicity and central limit theorems
[4, 6, 7, 10, 12]. For example, Theorem 3.1 of Bhattacharya, Majumdar, and Hashimzade
[12] tells us that when the overlapping generations model satisfies the splitting conditions
as described above, the equilibrium capital stock process {kt} satisfies

√
n

⎧⎪⎪⎨
⎪⎪⎩

1
n

n∑

t=1

g(kt) −
∫

g(x)μ(dx)

⎫⎪⎪⎬
⎪⎪⎭

d→ N(0, σ2)

for some σ ≥ 0 where
d→means convergence in distribution. Here μ is the stationary distri-

bution of the process (11.8) and g : [Ka,Kb]→ R is any function of bounded variation (and
therefore representable as the difference between two monotone increasing functions).

11.3.2 Monotone Mixing

The existence of many economic models lacking irreducibility but possessing a certain
monotone structure led to considerable interest in understanding the stability properties of
non-irreducible random dynamical systems arising from economic models.

One well-known example in the economic literature is due to Hopenhayn and Prescott
[25]. They studied monotone processes that exist on a compact metric space with a closed
partial order. The space S is assumed to contain a least element a and greatest element b.4

4 That is, a ≤ x ≤ b for all x ∈ S .
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Monotonicity means that the stochastic kernel

P(x, B) := P{Xt+1 ∈ B | Xt = x}

has the property that x �→ P(x, B) is increasing for every measurable increasing set B in
S . They require a “monotone mixing condition,” which states that there exists a c ∈ S and
m ∈ N such that Pm(a, [c, b]) > 0 and Pm(b, [a, c]) > 0. This condition, combined with
monotonicity, implies the splitting conditions (S1) and (S2) discussed above. Thus, al-
though the proofs are rather different, the work of Hopenhayn and Prescott can be thought
of as extending at least some of the results of Bhattacharya and Lee to abstract compact
metric spaces.

11.3.3 Order Mixing

Recently there has been a surge of interest in developing results analogous to Bhattacharya
and Lee [3] but with weaker mixing assumptions (paired, of course, with weaker conclu-
sions in terms of uniformity and rates of convergence). To see why this might be useful,
consider, for example, the stochastic optimal growth model yt+1 = f (σ(yt))ξt+1 and sup-
pose now that the productivity shock ξ is lognormal, say, or has any other unbounded
distribution. In such a setting, the splitting conditions (S1) and (S2) are too strict. To see
this, recall that the map y �→ f (σ(y)) is continuous and zero at y = 0. Hence if we fix any
c > 0 and any m ∈ N, the probability that ym ≥ c conditional on y0 can be made arbitrarily
small by taking y0 ↓ 0.

Weaker mixing conditions maintaining an order theoretic flavor were introduced by
Bhattacharya and Waymire in [14], who studied local splitting conditions in conjunction
with a recurrence condition ensuring drift back to the set where splitting occurs. An alter-
native but related approach was suggested by Szeidl in [44].

An even weaker mixing condition was considered in [29], called order mixing. Loosely
speaking, a Markov process on a partially ordered set (S ,�) is defined to be order mixing
if, given any two independent sequences {Xt}t≥0 and {X′t }t≥0 generated by the model, we
have

P{∃t ≥ 0 s.t. Xt � X′t } = 1. (11.9)

The initial conditions X0 and X′0 are permitted to be distinct, but both processes are updated
according to the same transition law.5 While order mixing is not strong enough to imply
existence of a stationary distribution, it does imply uniqueness and convergence, where
convergence means that if {Xt} and {X′t } are two copies of the process with different initial
conditions then

|Eh(Xt) − Eh(X′t )| → 0 as t → ∞ (11.10)

for any bounded measurable increasing function h.
Order mixing is implied by the splitting conditions (S1) and (S2). These conditions

tell us that Xt � X′t occurs once over m periods with positive probability. Hence Xt � X′t

5 Note that P{∃t ≥ 0 s.t. X′t � Xt} = 1 must also hold by interchanging the two processes.
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eventually with probability one by the Borel-Cantelli lemma. To see that order mixing is
strictly weaker than (S1) and (S2), consider two processes generated by the same Markov
model, in this case AR(1) processes on R defined by Xt+1 = ρXt + ξt+1 with X0 = x and
X′t+1 = ρX′t +ξ

′
t+1 with X′0 = x′. Here {ξt} and {ξ′t } are iid, standard normal, and independent

of each other. While (S1) and (S2) fail, it is easy to see that P{X1 ≤ X′1} is strictly positive,
regardless of (x, x′). Hence the process is order mixing.

11.3.4 Order Reversing

A still weaker mixing condition was introduced in [31]. This condition combined with a
technical condition implies order mixing.

To be more precise, a Markov process {Xt} on a partially ordered set (S ,�) is called
order reversing if, for any given x and x′ in S with x ≥ x′, and any independent copies
{Xt} and {X′t } of the process starting at x and x′ respectively, there exists a t ∈ N with
P{Xt ≤ X′t } > 0. In other words, there exists a point in time at which the initial ordering
is reversed with positive probability. Evidently, order reversing is considerably easier to
check than order mixing in applications.

A Markov process {Xt} is called bounded in probability if, for any initial condition
x ∈ S and any ε > 0, there exists a compact set C ⊂ S such that P{Xt ∈ C} ≥ 1 − ε for all
t; see, e.g., [33] or [31] for a more precise definition. If the state space itself is compact,
then any stochastic process is bounded in probability. Hence this condition allows for non-
compact state spaces since a Markov process on a non-compact space can be bounded in
probability.

Boundedness in probability is itself not trivial to show for models like the optimal
growth model discussed above, but it can be established under reasonable assumptions by
exploiting the Euler equation (11.3). For example, if we take w1 := (u′ ◦ c)1/2, where c is
the consumption policy as in (11.3), then some manipulations of the Euler equation lead
us to ∫

w1[ f (σ(y))z]φ(dz) ≤
[∫

1
δ f ′(σ(y))z

φ(dz)

]1/2
w1(y).

This is a kind of drift condition, which can be used to check boundedness in probability.
In this case it tells us that when income is small, the value of w1 tends to decline (recall
our assumption that f ′(0) = ∞). Since w1 is large near zero, this means that the state
moves away from zero—which is one half of boundedness in probability in this context.
See [27, 36] for further discussion of these issues.

It has been shown [31, Lemma 6.5] that for monotone processes that are bounded in
probability, order reversing implies order mixing. One advantage of this approach is that,
at least for monotone processes, once we have boundedness in probability and order revers-
ing, existence of a stationary distribution requires only mild additions to the assumptions.
For example, if, in addition, the stochastic kernel of the process has either a deficient or an
excessive distribution (where the marginal distribution of the state is shifted up or down
in the stochastic dominance ordering over one unit of time), then a stationary distribution
exists, is unique, and is globally stable in a topology stronger than the weak topology [31,
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Theorem 3.1]. The essence of this fixed point argument was explored in [30] in an abstract
setting.

One can introduce still simpler mixing conditions that imply order reversing. For exam-
ple, in [31] a Markov process {Xt} is called upward reaching if, given any initial condition
x and any other point c in S , there exists a t ∈ N such that P{Xt ≥ c} > 0. The process
is called downward reaching if given any initial condition x and any other point c in S ,
there exists a t ∈ N such that P{Xt ≤ c} > 0. It can be shown [31, Proposition 3.2] that
if a monotone process is bounded in probability and either upward or downward reaching,
then it is order reversing. Related ideas are presented in [32].

11.4 Conclusion

The tools for studying possibly non-irreducible Markov processes introduced and refined
over the past few decades by Rabi Bhattacharya and his coauthors have significantly raised
the ability of economists to elicit sharp predictions from their models and compare them
with data. Much interesting work remains to be done. For example, it seems likely that a
more unified approach to the various order-theoretic mixing conditions discussed above
can be obtained. Further, the relationship between the weaker mixing conditions and prop-
erties like laws of large numbers and central limit theorems are only starting to be inves-
tigated. On the applied side, economists are continuously generating interesting random
dynamical systems and seeking the input of experts to determine their asymptotic proper-
ties.
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Chapter 12
Some Economic Applications of Recent Advances
in Random Dynamical Systems

Santanu Roy

12.1 Introduction

The analysis of resource allocation over time under conditions of uncertainty occupies a
central place in economics. A very widely used framework for the study of such dynamic
resource allocation problems is one where stocks of “capital” or other assets accumulate
over time through investment, and the accumulation process is subject to random “shocks.”
Important economic problems studied in this framework include economic growth under
productivity shocks, household accumulation of wealth with uncertain returns on savings,
depletion of renewable and other natural resources whose natural growth is subject to envi-
ronmental or climate related shocks, and the growth of pests and other invasive biological
species whose expansion rates are affected by uncertainty. Though the economic models
used to study these problems can be fairly elaborate, they often generate random dynam-
ical systems where the intertemporal transition of capital or a related stock variable is
determined by a “transition” function that depends on the previous period’s capital as well
as the realizations of an exogenously specified stochastic process of “shocks.” The impor-
tant problem for the economist is to then understand the asymptotic or limiting behavior of
this dynamical system and how it depends on initial conditions, the nature of the transition
function and the distribution of shocks. This naturally leads to the question of existence
and (local or global) stability of a stochastic steady state i.e., an invariant distribution of the
random dynamical system. Economists tend to view the limiting stochastic steady state of
the dynamical system as a long run “equilibrium.” The rate of convergence to the limiting
steady state is important for the strength of predictions made on the basis of this long run
equilibrium. It is also important to be able to estimate the long run distribution of capital
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or resource stocks on the basis of finite data. Finally, whether or not similar economic
systems that differ only in initial conditions may exhibit very different long run behavior
depends on global stability of the steady state.

The purpose of this chapter is to provide a brief exposition of the manner in which some
recent advances in random dynamical systems and in particular, some of the contributions
made by Prof. Rabi Bhattacharya and his coauthors, have provided useful tools of analysis
and insights for economists studying problems of capital accumulation under uncertainty.
I will focus on applications related to random dynamical system generated by iterated
i.i.d. monotone maps.

12.2 A Simple Economic Model of Capital Accumulation
under Uncertainty

Time is denoted by t = 0, 1, 2 . . .. The model is one with a single good. The total stock of
“output” available at the beginning of each period t, denoted by yt, depends on the size of
capital (input) at the end of the previous period. Let {rt}∞t=1 be a sequence of independent
and identically distributed random variables with common distribution function G. The
distribution G is nondegenerate and the support of the distribution is an interval [a, b], a <
b < ∞. Further, G(r) = 0 for all r < a,G(r) = 1 for all r > b and 0 < G(r) < 1 for all
r ∈ (a, b).We interpret the random variable rt as a “shock” that affects the output realized
from any input of capital in period (t − 1).

A (time stationary) production function f (x, r) determines how the capital stock x
and realization r of the current random shock generates output next period. In particu-
lar, f (x, r) : R+ × [a, b]→ R+ is assumed to be strictly increasing in x. Further, f (0, r) = 0
for all r ∈ [a, b]. To rule out unbounded expansion of output, it is assumed that there exists
K > 0 such that for all r ∈ [a, b], f (K, r) ≤ K and f (x, r) < x for all x > K. The economic
system begins with an initial stock

y0 ∈ (0,K]. (12.1)

In every period t, an amount xt, 0 ≤ xt ≤ yt , is invested in capital accumulation. Assume
that capital depreciates fully every period. As a result, xt is also the size of capital at the
end of period t. This generates output yt+1 in period t + 1:

yt+1 = f (xt, rt+1) (12.2)

(to be clear, rt+1 is realized after investment is made in period t). Though this is by no
means necessary, for ease of exposition we will assume that for each x ≥ 0, f (x, r) is
nondecreasing in r on [a, b].

This simple framework has been used to study a variety of economic problems. In mod-
els of economic growth under uncertainty, xt represents the investment in physical capital
and yt − xt is the amount of available output used for current consumption in period t; the
production function f represents the production technology and rt is the random shock that
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captures fluctuations in exogenous factors that affect productivity of capital.1 In stochastic
models of renewable resource harvesting, yt is the resource stock or biomass of a specie at
the beginning of period t, yt− xt is the part of the stock that is harvested in period t, xt is the
part of the stock that remains after harvesting and is allowed to regenerate or grow to next
period’s stock, f captures the natural growth (renewal or biological reproduction) process
of the resource, and the random shock rt captures environmental and other exogenous fluc-
tuations that affects this process.2 In models of control and spread of invasive species or
pests, yt is the biomass of the specie or the size of invasion (for instance, area covered)
at the beginning of period t, yt − xt is the part that is removed through various “controls”
in period t, xt is the stock of the specie or the size of invasion that remains after current
control, f captures the natural expansion or growth of the invasion size or biomass and the
random shock rt captures fluctuations that affect the expansion process.3 In a large class of
these models, it is natural to assume (as we have done in our simple framework) that the
expansion process is bounded above; for instance, natural resource expansion is bounded
above by the carrying capacity of the ecosystem and economic growth may be bounded
because of technological limitations.

Let x(y):R+ → R+, x(y) ≤ y denote a (time stationary) investment function which spec-
ifies current investment as a function of current output. Then, using the fact that xt = x(yt),
we have from (12.2)

yt+1 = f (x(yt), rt+1). (12.3)

In descriptive models of capital accumulation, the investment function is specified ex-
ogenously as being one of the fundamentals of the economic system and the focus is then
on understanding how the properties of the investment function x(y), the production func-
tion f , and distribution of shocks G determine the dynamics generated by (12.3). In these
models, “plausible” assumptions are directly imposed on the function x(y) and one of the
common assumptions is that x(y) is nondecreasing on R+.

In other positive and normative economic models of capital accumulation, the function
x(y) is generated endogenously through the behavior of economic agents, their preferences,
their interaction structure, and the nature of economic institutions. While these latter el-
ements often vary according to the specific economic problem that the model wishes to
address, in a very large class of these models with a single capital good (and under reason-
able assumptions on the structure of the model), one can show that the investment function
x(y) generated by the model is nondecreasing on R+. However, in many of these settings,
one cannot ensure that x(y) is continuous.

In models of optimal economic growth under uncertainty as well as models of optimal
resource management, x(y) is generated as the optimal policy function of a stochastic
stationary dynamic optimization problem of maximizing the expected discounted sum of
immediate returns from consumption or resource harvests over time. Depending on the
context, the immediate return can be viewed as social welfare, the consumption utility of
a representative agent or the net profit of a private firm that harvests the resource. Under
strict concavity and other reasonable restrictions on the immediate return function, one can

1 See, for instance, the survey by Olson and Roy [17].
2 See, for instance, Olson and Roy [15], Mitra and Roy [13].
3 See, for instance, Olson and Roy [16].
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show that the optimal investment policy function x(y) is nondecreasing. However, if the
production function f is not concave in capital input, then the feasible set for the dynamic
optimization problem is non-convex and in that case, one cannot ensure continuity of the
optimal policy function. Non-concavity of the production function f in capital input is
necessary to allow for important features such as increasing returns to scale in production
technology and “depensation” in resource growth (for instance, the growth rate of a specie
may decline if the stock size is reduced below a threshold).4

In models of optimal control of pests and invasive species, x(y) is generated as the op-
timal decision rule in a dynamic optimization problem where one minimizes the expected
discounted sum of control costs over time; once again, x(y) can be shown to be increasing
under some restrictions on the cost of controlling the invasion but without requiring addi-
tional restrictions on f . However, continuity of the optimal decision rule x(y) cannot be
ensured if f (x, r) is not convex in x.5

In dynamic games of common property resource harvesting by multiple economic
agents, each agent decides on her own harvest of the commonly owned resource stock
over time so as to maximize her own expected discounted sum of net benefit from resource
harvests. The amount of the stock left over in each period after all agents have harvested,
is the current investment. In a Markov-perfect equilibrium of such a game, each agent uses
a time stationary decision rule that depends only on the size of the resource stock y at the
beginning of the period, and this generates the equilibrium investment function x(y). Un-
der certain assumptions, one can show the existence of Markov-perfect equilibria where
x(y) is increasing. However, one cannot in general ensure continuity of x(y) even if one
assumes that the production f is concave.6

So, let us assume that x(y) is nondecreasing on R+. For y ∈ R+ and r ∈ [a, b], let h
be the transition function that determines the output next period as a function of current
output y and realization r of the random shock, and defined by

h(y, r) = f (x(y), r).

Using (12.3), the stochastic process of output {yt} is now determined by the random dy-
namical system

yt+1 = h(yt, rt+1). (12.4)

Observe that for every r ∈ [a, b], as f (., r) is increasing and x(.) is nondecreasing, h(., r)
is nondecreasing on R+. In other words, the random dynamical system (12.4) is one gen-
erated by iterates of a monotone map. Also, note that

h(y, r) = f (x(y), r) ≤ f (y, r) ≤ f (K, r) ≤ K for all y ∈ [0,K].

Thus, given (12.1), for all t = 0, 1, 2, . . . .

yt ∈ [0,K] with probability one.

4 See, among others, Majumdar, Mitra, and Nyarko [11], Olson and Roy [15], and Mitra and Roy [13].
5 Olson and Roy [16].
6 See, for instance, Sundaram [18].
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Observe that h(0, r) = 0 for all r ∈ [a, b] so that 0 is an absorbing state for the stochastic
process {yt}. As f (x, r) has been assumed to be nondecreasing in r, h(y, r) is nondecreasing
in r for any y > 0.

Finally, note that the function h(y, r) is not necessarily continuous in y either because,
as discussed above, the investment function x(y) is not continuous in y or because the
production function f (x, r) is not necessarily continuous in capital input x; the latter may
reflect features such as lumpiness, indivisibility, and threshold effects in the production
technology.

12.3 Long Run Behavior of the Economic System

Consider the Markov process {yt} defined by the law of motion (12.4) on the state space
[0,K]. As zero is an absorbing state, the degenerate distribution at zero is an invariant
distribution. If the process {yt} converges in distribution to this degenerate distribution at
zero, then we have long run extinction. In this case, it is impossible for the economic
system to sustain consumption or harvests above any fixed threshold ε > 0 in the long run.
Therefore, in models of economic growth or resource harvesting, we are often interested
in a limiting invariant distribution whose support is a subset of R++ (a so-called “regular”
invariant distribution).

Suppose there exists a closed interval S = [y, y], 0 < y < y ≤ K such that:

h(y, a) ≥ y, and h(y, a) < y for all y ∈ (y, y] (12.5)

h(y, b) ≤ y, and h(y, b) > y for all y ∈ [y, y). (12.6)

This implies that for any y ∈ S and for all r ∈ (a, b)

y ≤ h(y, a) ≤ h(y, a) ≤ h(y, r) ≤ h(y, b) ≤ h(y, b) ≤ y

so that y0 ∈ S implies that yt ∈ S for all t with probability one.
Consider the random dynamical system defined by (12.4) on the state space S = [y, y].

In a series of research papers, Prof. Rabi Bhattacharya and his coauthors have developed
various sufficient conditions for the existence of a unique and stable invariant distribution
for a Markov process defined by i.i.d. random monotone maps on some suitably defined
subset of Rk. In particular, when the state space is an interval such as S and the i.i.d. maps
are nondecreasing, it has been shown that there is a unique stable invariant distribution (on
S ) if, and only if, a certain “splitting condition” is satisfied. This splitting condition is due
to Dubins and Freedman [9] who showed that it ensures a stable and unique invariant dis-
tribution when the state space is a compact interval and the Markov process is generated
by i.i.d. monotone and continuous maps; further, it ensures that the n-step transition proba-
bility converges to the invariant probability exponentially fast in the Kolmogorov distance,
uniformly for all initial states. Yahav [19] showed the existence of a unique invariant distri-
bution even if the maps are not continuous as long as they are increasing. Bhattacharya and
Lee [3] extend this result to a broader class of multidimensional state spaces and show that
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the exponential convergence result in Dubins and Freedman [9] holds. Independently and
using a somewhat less general notion of “splitting,” Hopenhayn and Prescott [10] establish
similar results on existence and stability; however they do not establish any result on the
speed of convergence. Bhattacharya and Majumdar [4, 5] show that the Dubins-Freedman
result can be established for monotone i.i.d. maps (increasing or decreasing) when the state
space is either an arbitrary interval or an arbitrary closed set in R.7

Now, suppose that the probability distribution G of the random shocks assigns strictly
positive probability to a and b. Then for any fixed z ∈ (y, y), (12.5) and (12.6) imply that
there exists N ≥ 1 such that starting from initial state y, the process reaches a state below
z if the worst realization a of the random shock occurs for the first N consecutive periods
and further, starting from initial state y, the process reaches a state above z if the best
realization b of the random shock also occurs for the first N consecutive periods. Let δ > 0
be the minimum of the probability of these two events. This implies that starting from any
initial state in the interval S , we can show that in N steps, the process reaches a state below
z and a state above z with probability at least as large as δ. This allows us to establish the
splitting condition.

In the argument outlined in the previous paragraph, one can easily dispense with the
requirement of having strictly positive probability mass on the best and worst shocks under
slightly stronger restrictions on the function h(y, r). Further, though we have assumed the
function f (x, r), and therefore the function h(y, r), to be strictly increasing in r this is by
no means necessary; the argument can easily be extended to the case where the transition
functions h(., r) are not necessarily ordered by the realization r of the shock.

The existence of a unique invariant distribution on the set S implies that the dynamical
system has a strictly positive stochastic steady state. In particular, for any initial stock
y0 ∈ [y, y], the economic system eventually attains the limiting stochastic steady state and
it is one where output and capital are bounded away from zero i.e., the system is capable
of sustaining (with probability one) a strictly positive level of consumption in the long run.
If, in addition to (12.5) and (12.6),

h(y, a) > y for all y ∈ (0, y), (12.7)

then from any initial stock y0 ∈ (0, y), the stochastic process {yt} eventually enters and re-
mains in the interval [y, y] with probability one; therefore, the unique invariant distribution
on [y, y] is also the limiting distribution of yt’s for any initial state in (0, y]. If, further,

h(y, b) < y for all y > y, (12.8)

then from any initial stock y0 > y, the stochastic process {yt} eventually enters and remains
in the interval [y, y] with probability one. Thus, under (12.5)–(12.8), the unique invariant
distribution on [y, y] is globally stable on (0,K], i.e., the long run (or limiting) behavior
of yt’s is independent of initial state. In the classical optimal growth framework where the

7 See also, Athreya [1] and Bhattacharya et al. [8].
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production function f (x, r) is assumed to be concave in x and the optimal investment rule
x(y) is derived by maximizing the discounted sum of utility or net benefits from consump-
tion where the utility function is strictly concave, it has been shown that (12.5)–(12.8) are
satisfied under certain restrictions on the behavior of f (., r) near zero.8

If (12.7) does not hold then output need not be bounded away from zero with probability
one in the long run and, in some cases, may converge to zero (the extinction outcome).9 In-
deed, in nonclassical models of optimal economic growth that allow for technological non-
convexities and in models of optimal renewable resource management where the growth
function of the resource may be characterized by depensation, it has been shown that (12.7)
may not hold and extinction may occur from small initial stocks though from initial stocks
above a critical level, the system converges to a strictly positive steady state.10 Further,
in these models, (12.8) may not hold and in particular, there may be multiple nonover-
lapping intervals like [y, y] that satisfy (12.5) and (12.6) so that the splitting condition is
satisfied and there is distinct unique invariant distribution on each of these intervals. This
corresponds to a situation of multiple nontrivial (strictly positive) long run steady states of
the economy and a situation where the long run destiny depends on the initial condition.11

These are situations where there is an economic case for policy intervention to modify
initial conditions so that the system can be guided to a preferred long run steady state.

The contributions by Bhattacharya and his coauthors have made it possible to analyze
and characterize long run properties of a rich class of dynamic economic models that gen-
erate random dynamical systems of i.i.d. iterated monotone maps where the maps are not
necessarily continuous. Further, their results on exponential convergence has strengthened
the extent to which we can rely on predictions based on these long run properties. How-
ever, there are some problems that remain. For instance, even for the simple framework
described above, we may often have a situation where

h(y, a) < y for all y > 0

but (12.6) holds. A natural question that arises here is whether there is a unique invariant
distribution on (0, y] in which case one think of a long run steady state that is not bounded
away from zero that assigns zero probability mass at zero. However, because h(y, a) → 0
as y → 0, the number of steps it takes to cross any fixed positive stock can be arbitrarily
large if one starts from stocks close enough to zero (zero itself is of course an absorbing
state). It is then difficult to verify a condition like the “splitting condition.” Some recent
advances in the study of global stability suggest alternative conditions that may be useful
in addressing this kind of question.12

8 See, for instance, Brock and Mirman [2].
9 See, Mitra and Roy [14].
10 See, Mitra and Roy [13].
11 See, Majumdar et al. [11].
12 See, for instance, Kamihigashi and Stachurski [12].
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Finally, it is important to extend the analysis to the case where the exogenous random
shocks {rt} are not necessarily independent over time. For many of the economic appli-
cations, it is natural to allow {rt} to be any “well-behaved” stationary Markov process,
while retaining the monotone structure of the transition function h. It will be useful to de-
velop conditions for existence of a unique stable invariant distribution that generalize the
splitting condition for i.i.d. monotone maps to such settings.

Acknowledgements I thank Mukul Majumdar for his comments and suggestions.

References

[1] Athreya, K.B.: Stationary measures for some Markov chain models in ecology and
economics. Econom. Theor. 23(10, 107–122 (2004).

[2] Brock, W.A. and Mirman, L.J.: Optimal economic growth and uncertainty: The dis-
counted case. J. Econom. Theor. 4(3), 479–513 (1972).

[3] Bhattacharya, R.N., Lee, O.: Asymptotics of a class of Markov Processes which are
not in general irreducible. Ann. Probab. 16(3), 1333–47 (1988).

[4] Bhattacharya, R.N., Majumdar, M.: On a theorem of Dubins and Freedman. J. Theor.
Probab. 12, 1067–1087 (1999).

[5] Bhattacharya, R.N., Majumdar, M.: On a class of stable random dynamical systems:
theory and applications. J. Econom. Theor. 96, 208–229 (2001).

[6] Bhattacharya, R.N., Majumdar, M.: Random Dynamical Systems: Theory and Appli-
cations. Cambridge University Press, Cambridge, 2007.

[7] Bhattacharya, R.N., Majumdar, M.: Random iterates of monotone maps. Rev. Econ.
Design 14, 185–192 (2010).

[8] Bhattacharya, R.N., Majumdar, M., Hashimzade, N..: Limit theorems for monotone
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1 Preface 

In his influential article Frisch (1933) suggested alternative routes for research on 
macrodynamics and remarked: 

"One way which I believe is particularly fruitful and promising is to study what 
would become of the solution of a deterministic dynamic system if it were exposed 
to a stream of erratic shocks that constantly upsets the ... evolution, and by so doing 
introduce into the system the energy necessary to maintain the swings. If fully 
worked out, I believe that this idea will have an interesting synthesis between the 
stochastical point of view and the point of view of rigidly determined dynamical 
laws." 

The pioneering efforts of Goodwin, Hicks, Samuelson, Tin bergen, Metzler and 
others (see the collection by Gordon and Klein, 1965) led to a class of deterministic 
models for "explaining" the cyclical behavior ("swings") of an economy, often with 
a particular emphasis on processes described by second order difference or differen
tial equations, or with nonlinear processes with reflecting boundaries. There were 
also a few articles in which random shocks were explicitly introduced. Samuel
son's brief summary of stochastic models in his Foundations (1947, pp. 342-349), 
referred to Slutsky's pioneering paper and other work on time series by Davis, 
Wold and Haavelmo. The difficulties in dealing with nonlinear systems were duly 
stressed, and their potential in developing formal models capable of providing a 
firm theoretical foundation for policy-oriented empirical research was also clearly 
recognized by him. 

Advances in the study of dynamic processes described by a "simple" first or
der nonlinear difference equation have resulted in a better understanding of the 
possibilities of complex behavior and the difficulties of long run prediction and of 
deriving results on comparative dynamics. The collection of articles in this Sym-

Correspondence to: M. Majumdar 
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posium can be best viewed as an attempt to continue with the important direction 
of research so clearly suggested by Frisch some seventy years ago, and to bring 
together a number of relatively recent mathematical results that add to the toolbox 
of economic theorists. 

Consider a random dynamical system (S, r, Q) where Sis the state space, 
r an appropriate family of maps on S into itself (interpreted as the family of all 
possible laws of motion) and Q is a probability distribution on (some o--field ot) 
r. The evolution of the system is described as follows: initially, the system is in 
some state x of S. Tyche chooses an element a 1 of r according to the probability 
distribution Q, and the system moves to the state X 1 = a 1 ( x) in period one. Again, 
independently of a 1 , an element a 2 of r is chosen according to Q, and the state of 
the system in period two is given by x2 = a2( al (x) ). In general, starting from X 

inS, one has 

(1.1) 

where the maps (an) are independent and identically distributed according to the 
distribution Q. The initial state x can also be chosen (independently of (an)) as 
a random variable X 0 . The sequence (Xn) of states obtained in this manner is a 
Markov process with a stationary transition probability 

p(x,A) = Q({rEF: r(x)EA}) (1.2) 

The formulation (1.1) has been particularly convenient for modeling dynamic pro
cesses subjected to random shocks in a variety of contexts in economics and other 
disciplines. On the other hand, every discrete time Markov process on a 'standard' 
state space admits a representation of the form (1.1) (see Kifer, 1986, p. 8, or 
Bhattacharya and Waymire, 1990, p. 220). 

It is worthwhile to comment on the significance of the study of random dynam
ical systems from several perspectives. First, by endowing (S, r, Q) with some 
special structures (for example, S = [0, 1], r a family of monotone maps ... ), one 
hopes to throw light on the long run behavior and steady states of the system. 
Secondly, as has been stressed by Eckmann and Ruelle (1985), physical systems 
are often "stochastically excited", and in such situations, a randomly perturbed 
dynamical system as a stochastic process is a more relevant object of study than a 
deterministic system. Neither the law of motion nor the initial state may be known 
with certainty, when we model an economic process, and there is, quite justifiably, a 
rich literature in economics -both at the micro and macro levels -in which random 
exogenous shocks are explicitly introduced. The process (1.1) can be interpreted as 
a descriptive stochastic model. Alternatively, one may start with a stochastic dy
namic programming model of optimization under uncertainty, and directly arrive at 
a stationary optimal policy function, which together with the given law of transition 
describes the optimal evolution of states in the form ( 1.1 ). Of particular interest in 
this context are some results on the "inverse optimal problem under uncertainty" 
due to Mitra (1998) and Montrucchio and Privileggi ( 1999) which assert that a 
broad class of random dynamical systems ( 1.1) can be so generated. 

Thirdly, random dynamical systems figure prominently in a vast and unavoid
ably technical literature on the search for the Kolmogorov - SRB measure for 
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chaotic dynamic systems. A chaotic dynamical system f with a compact state space 
K c JR.d, by definition, has sensitive dependence on initial conditions (Devaney, 
1989, p. 50). Since an "exact" measurement of a state at some point of evolution 
(call it the 'initial state') is virtually impossible, states in the distance future are 
unpredicdtable. For most applications, however it is enough to know the long run 
statistical behavior of the trajectory : {fnx : n ?: 0}. That is, one needs to know 

if the empirical process ~ 2..:~::::~ 5 fnx converges as n -+ oo to some limit, say {3, 
independent of x for almost all x (with respect to the Lebesgue measure), and, if 
so, what this limit is. If it exists, this limit is necessarily an invariant probability 
for the dynamical system: {3f- 1 = {3, and it is ergodic. But there are infinitely 
many ergodic invariant probabilities for a chaotic dynamical system. In particular, 
the uniform distribution on a (necessarily repelling, or unstable) periodic orbit is 
an ergodic, i.e., extremal, invariant probability, and there are infinitely many such 
invariant probabilities on distinct periodic orbits (Devaney, 1989, pp. 49, 50), none 
of which can be {3. Long time ago Kolmogorov suggested that one should randomly 
perturb the dynamical system by adding an absolutely continuous noise component 
so that the resulting Markov process has a unique invariant probability, say Jr. The 
limit of 1r, as the noise goes to zero, should be {3. Kolmogorov's conjecture has been 
proved for Axiom A diffeomerphisms independently by Sinai, Ruelle and Bowen 
(see Eckmann and Ruelle, 1985, or Kifer, 1988, for a precise statement), and the 
limit {3 is called the SRB measure in this case. We will refer to it more generally 
as the Kolmogorov measure. In the context of quadratic maps Fe = Bx(1- x) on 
[0, 1], where BE[O, 4], the existence of such a measure has been proved by Katok 
and Kifer (1986) for those values of e which satisfy the Misiurewicz condition: Fe 
has no stable periodic orbit and ~ does not belong to the closure of the trajectory 
{ Yf ~ : n ?: 1}. It was shown by Misiurewicz ( 1981) that under this condition Fe 
has a unique absolutely continuous invariant probability {3, and that this condition is 
satisfied by uncountably many parameter values e. Indeed, Jakobson (1981) proved 
that the set of such parameter values has positive Lebesgue measure.lt may be noted 
that, except in special cases, {3 is virtually impossible to compute analytically. On 
the other hand viewed as an apwoximation of {3, 1r is more tractable and, at the 
least, has approximations -If l..:n=lp(nl(x,dy) where p(n) [then-step transition 
probability of { Xn, n ?: 0}] may be expressed analytically by recursion. 

2 Basic issues and criteria for stability in distribution 

Consider a random dynamical system (S, r, Q) where the state space is a metric 
space (denote this meteric by p), and let P(S) be the set of all probability measures 
on (the Borel a-field S of) S. Now, for any fLcP(S), letT* tt be the probability 
distribution obtained as (using 1.2) 

T*tt(A) = fsp(x,A)tL(dx) = £tt(r- 1 (A))Q(&y) (2.1) 

An element 1r of P(S) is an invariant distribution for p(x, A) (or, for the Markov 
process X n generated according to ( 1.1)) if 1r is a fixed point ofT*, i.e., 

1r is invariant iff T*1r = 1r (2.2) 
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Denote by p(n) (x, dy) then-step transition probability generated by p(x, dy ). Write 
T*n as the n-th iterate ofT*, i.e., for n ~ 2 

T*n 1-1 is the distribution of Xn when X 0 has distribution 1-1· 
One can think of an invariant distribution as a steady state or equilibrium of the 

process Xn generated according to ( 1.1 ). A major thrust of the present Symposium 
is on criteria for a form of stability of the random dynamical system (1.1) which 
allows one to predict the long-run future based on past data: the system ( 1.1) or 
the process (Xn) is stable in distribution if it converges in distribution to a steady 
state distribution 1r, irrespective of the initial state X 0 . If this convergence is for 
the time averages of the distributions of X 1 , ... , Xn, then the process is said to be 
stable in distribution on the average. There exists a comprehensive theory for a 
stronger form of stability for the so-called "Harris irreducible processes", in which 
the convergence is in total variation distance, i.e., is uniform over all measurable 
sets in the state space (see, e.g., the books by Orey, 1971, Nummelin, 1984, and 
Meyn and Tweedie, 1993). Typically, this holds if the transition probabilities have 
appropriate densities with respect to some reference measure such as the Lebesgue 
measure. It is true that in many interesting situations it is quite non-trivial to verify 
Harris-irreducibility (see, e.g., Bhattacharya and Majumdar, 2002, which deals 
with random iterations of quadratic maps). But the criteria described in the present 
collection apply to processes (1.1) which may not be irreducible, as typically is the 
case when Q has a finite support {h, h, ... , fk}. Two important classes of random 
dynamical systems for which the criteria for stability in distribution may be derived 
without requiring Harris irreducibility arise tfom random iterations of ( 1) Lipschitz 
maps on a metric space satisfying an average (in geometric mean) contraction 
criterion (see the articles by Bhattacharya-Majumdar (B-M) and Carlsson), and (2) 
monotone maps satisfying a "splitting" condition (see (B-M) and Goswami). 

Another important problem is to understand the nature of the steady state distri
bution 1r, since it is rarely the case that 1r can be computed or specified analytically 
(two surprising exceptions are provided in the article by Goswami). It is of inter
est to know, for example, if 1r is absolutely continuous with respect to Lebesgue 
measure, or singular, when the transition probabilities do not have densities. In 
particular, this turns out often to be a difficult problem even in the case when Q has 
the support {h, h}, i.e., one randomly picks one ofthe two functions h, h (with 
probabilities p > 0 and 1 - p respectively) in every period. It is astonishing that, 
in what may appear to be the simplest of cases, the determination of whether 1r is 
absolutely continuous or singular when the randomization is between two affine 
contractions ai + bix(i = 1, 2) on S = [0, 1], had been a famous open prob
lem for more than half a century, until a breakthrough was achieved by Solomyak 
( 1995). Solomyak's theory is reviewed in this Symposium by Mitra, Montrucchio 
and Privileggi who also provide recent extensions including their own. 

Finally, a basic question that precedes any consideration of stability in distribu
tion is whether there exists an invariant probability for (Xn) at all. A well known 
general result is that in the case of a compact state space and a weakly (Feller) 
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continuous transition probability function p( x, ·), there exists at least one invariant 
probability. The proof is by a fixed point argument. The Feller continuity is guar
anteed if, with Q-probability one, the functions in r are continuous. To point out 
the inadequacy of this otherwise useful result, consider the case of r consisting of 
quadratic or logistic maps Fg(x) = Bx(1- x), X f s = [0, 1], e f [0, 4]. The point 
mass at 0, 50 , is obviously invariant, since 0 is a fixed point of every element of r. 
An important question then is: if the state space is restricted to the open interval 
S = (0, 1 ), does there exist an invariant probability 1r on S? The article by Athreya 
deals with the problem of existence of an invariant 1r on open intervals such as 
S = ( 0, 1) for a general class of maps including the logistic family. 

3 Sufficient conditions for uniqueness and stability of the steady state 

The general theory of Markov processes alerts us of the possibilities of multiple 
steady states, and of the complexity of the long run behavior. A landmark paper on 
identifying conditions under which uniqueness and stability hold on compact state 
spaces is that of Dubins and Freedman (1966). In this section we will review in 
some detail two important cases discussed by them. 

3.1 Iteration of Random Lipschitz maps 

Let ( S, p) be a complete separable metric space, r a set of Lipschitz maps on S 
(into S) and Q a probability measure on an appropriate sigmafield g on r. On 
a basic probability space ( [2, :F, P) are defined a sequence of i.i.d. random maps 
{an : n ?: 1} with (common) distribution Q. A general criterion for the existence 
of a unique invariant probability for (Xn) defined by (1.1) and for the stability in 
distribution is given by the following two conditions, which only require an to be 
continuous and not necessarily Lipschitz (see the proof of Theorem 3.3 in B-M): 

(a) sup{p(anan-l···alx, anan-l···aly): p(x, y) <::: M}--+ 0 in prob-
abilit)~ as n --+ oo,for eve!}' !vi > 0, and 

(b) for some XoES, the sequence of distributions of p(Xn(xo), xo) = 
p(an···alxo, xo) is relatively weakly compact. 

For simplicity, assume that S is compact. Then (b) is automatic, since the 
sequence p(Xn(xo), xo) is bounded by the diameter of S, whatever be xo and n. 
We now show that in this case (a) implies stability in distribution. Obviously here 
one may simplify the statement of (a) by taking just one lvi, namely, the diameter 
of S: 

(a)' : diam ( anan-l···alS) --+ 0 in probability as n --+ oo. 
It is to be proved that in the case of a compact metric space (S, p), (a)' is 

sufficient for stability in distribution. This follows immediately if one lets X 0 be 
a random variable independent of the sequence {an} and considers an invariant 
distribution Jr, which exists due to the compactness of S and continuity of an. 
Then Xn(Xo) = an ... a 1X 0 has the distribution 1r for all n, and (a)' implies that 
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for every real-valued Lipschitz f on S, with Lipschitz constant£, one has 

IEJ(Xn(x))- J fd7TI = IE{f(an···a1x)- f(an···a1Xo)}l 

:S: £Ep(an···a1x,an···a1Xo) :S: £E diam(an···a1S)--+ 0,(3.1) 

as n--+ oo, whatever x f S. This implies the weak convergence of Xn(x) to 7T for 
every x (see, e.g., Dudley, 1989, p. 317). 

For i.i.d. random Lipschitz maps an on a compact metric space ( S, p ), Theorem 
3.2 in B-M verifies (a)' under the assumption of contraction on the (geometric) 
average in the following sense: 

-oo::.; E log L~ < 0, for some r-::;:, 1, (3.2) 

where L1 is the random Lipschitz constant of a 1a 2 ... ar : 

The criterion (a)' may also be used to prove the following basic result ofDubins 
and Freedman (1966). Here 1 is defined to be a contraction if p( {X, !Y) ::.; p(x, y) 
for all x, yES, and it is a strict contraction if there is strict inequality p(!x, IY) < 
p(x, y) for all x cJ y. 

Proposition 1 Let ( S, p) be compact metric and r the set of all contractions on S. 
Let Q be a probability measure on the Borel sigmafield of r (w.r.t. the 'supremum' 
distance) such that the support ofQ contains a strict contraction. Then the Markov 
process Xn defmed by ( 1.1) has a unique invariant probability and is stable in 
distribution. 

Proof Let 1 be a strict contraction in the support of Q, i.e., p(!x, !Y) < 
p(x, y)\fx cJ y. The j-th iterate of 1 is denoted lj. Since lj+lS = lj (IS) c lj S, 
it follows that lj S decreases as j increases. Indeed 

lj S decr-eases to n~1 lj S = a singleton { x 0 }. (3.3) 

To see this, first note that the limit is nonempty, by the finite intersection prop
erty of ( S, p). Assume, if possible, that there are points x 0 , y0 in the limit set, 
x 0 cJ y0 . Let 6 := p(x0 , y0). The continuous function (x, y)--+ p(!x, !Y)I p(x, y) 
on the compact set lC0 = {(x,y) : p(x,y) ::;:, 6}(c S x S) attains a 
maximum c < 1. Let x 1 , y1 be two pre-images of x 0 , y0 , respectively, under 
1 i.e., (x1q-1{xo}, Y1f!- 1{yo}), {X1 = xo,/Y1 = Yo· Since 1 is a con
traction, p(x1,y1) ::;:, p(!x1,1Yd = p(xo,Yo) = 6. Therefore, p(xo,Yo) :S: 
cp(x1, y1), or-, p(x1, yl) ::;:, 6lc. In general, let Xj, Yj be two pre-images under 
1 of Xj- 1, Yj- 1, respectively. Then, by induction, p(xj, Yj) ::;:, p(xj- 1, Yj-d I c ::;:, 
... ::;:, p( x 0 , y0) I cJ --+ oo as j --+ oo, which contradicts the fact that S is bounded. 

By the same kind of reasoning one shows that 

diam(1j S) ..[_ 0 as j too. (3.4) 
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For, if (3.4) is not true, there exists r5 > 0 such that diam( lj S) > r5 > 0 for 
all j. Thus there exist Xj,YjEfjS such that p(xj,yj) ?: r5 which implies, using 
pre-images, that there exist x 0 , y0 ES satisfying p(x0 , y0 ) ?: r5 / cj --+ oo as j --+ oo, 
a contradiction. 

Now fix j and let 11, 12 , ... , {n, n > j, be such that li+1, ... , /i+j are within 
a distance E from{, i.e., lhi+k -llloo < E, k = 1, ... ,j, where 1 <::: i + 1 < 
i + j <:: n. We shall show: 

diam( {n/n-1···/15) <::: diam( {j S) + 2jE (3.5) 

For this note that the contraction In /n- 1 .. ·li+J+ 1 does not increase the diameter 
of the set /i+j ···li+l/i···/15. Also, /i+j ···/i+1 bi···/15) c /i+j ···/i+1S. Hence 
the left side of (3.5) is no more than diam(!i+j···li+ 1S). Now, whatever be x, y, 
one has, by the triangle inequality, 

Applying the same argument with {X, /Yin place of x, y, and replacing li+2 by 
{, and so on, one arrives at (3.5). 

We are now ready to verify (a)'. Choose r5 > 0 arbitrarily. Let j be such that 
diam(!j S) < r5j2. Let E = r5f4j, so that the right side of (3.5) is less than r5. 
Define the events 

Am= {llaj(m-1)+k -~~~ 00 < E \:lk = 1, 2, ... ,j}(m = 1, 2, ... ) (3.6) 

Note that P(Am) = !Jl, where b := P(lla1 -llloo < c). Since 1 is in the 
support of Q, b > 0. The events Am(m = 1, 2, ... ) form an independent se
quence, and 2..::= 1 P(Am) = oo. Hence, by the second Borel-Cantelli Lemma, 
P(Am occurs for some m) ?: P(Am occurs for infinitely many m) = 1. 
But on Am, diam(amjO:mj-1···amj-j+1S) < r5 so that, with probability one, 
diam( an ... a 1S) < r5 for all sufficiently large n. Since r5 > 0 is arbitrary, (a)' 
holds. 

The proof given above is merely an amplification of the rather terse derivation 
given in the original article by Dubins and Freedman (1966). It may be noted that 
this result does not follow from Theorem 3.2 (or Theorem 3.3) in B-M, since one 
may easily construct strict contractions with Lipschitz constant one. On the other 
hand, Theorems 3.2 and 3.3 in B-M apply to sets r which contain (noncontracting) 
maps with Lipschitz constant larger than one in the support of Q, but still satisfies 
the criterion (a) and (b) for stability in distribution. An important case in point is 
the model Xn+1 = An+1Xn + Bn+1 on S = ~k, with (An, Bn), n ?: 1, i.i.d., An 
being a random (k x k)-matrix and Bn a k-dimensional random vector. Theorem 
4.2 in B-M (originally proved by Berger, 1992, by a different method) provides 
a criterion for stability based on (a) and (b), extending an earlier result of Brandt 
( 1986). The autoregressive model of order k follows as a special case of this. 

Finally, Carlsson provides another interesting criterion involving average con
traction. 
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3.2 Random iteration of monotone maps and a spliting condition 

In addition to the preceding theory concerning random dynamical systems governed 
by random contractions or by random Lipschitz maps with an average (geometric 
mean) contraction, there exists a fairly general theory for iterations of random 
monotone maps. 

Its study was also pioneered by Dubins and Freedman (1966). In their work 
S = [0, 1], r a family of continuous monotone maps, and the process satisfies the 
'splitting' condition (H): 

(H) there exist a finite positive integer N, some zoES and positive numbers 
81 , 82 such that: 

P(aN .... a 1x <::: z0 V XES)?: 81 

P(aN .... a 1x?: z0 V XES)?: 82 

Let dK(f.L, v) be the Kolmogorov distance on P(S), i.e., if FM and Fv are the 
distribution functions of p.,, v then 

dK(f.L, v) =sup IFM(x)- Fv(x)l =sup IFM(x)- Fv(x)l 
XES XER 

We now have the following: 

Proposition 2 LetS = [0, 1], and r be a family of monotone maps. Assume that 
the splitting condition (H) holds. 

Then, (i) the distribution T*n p., of Xn converges to a probability 1r: 

(3.7) 

where 8 =min (81 , 82 ) and [n/N] is the integer part of njN. 
(ii) 1r is the unique invariant distribution. 
A contraction mapping theorem can be used to prove this result. The main steps 

are: 

(a) show that (P(S), dK) is a complete metric space and dK(T*p.,, T*v) <::: 

dK(f.L, v) 
(b) using the splitting property verify that dK(T*N p.,, T*N v) < (1- 8)dK(f.L, v) 

(c) Then, some calculation leads to:Vn ?: N 

(d) T*N is a uniformly strict contraction, hence there is a unique 1r such that 
T*N 1r = 1r, but T*N (T*1r) = T* (T*N 1r) = T*1r, i.e., T*1r is invariant under 
T*N. So 1r = T*1r,. This means that 1r is an invariant distribution. But every 
fixed point 1r1 ofT* is also a fixed point of T*N. Hence 1r is the unique fixed 
point ofT*. Taking z; = 1r in (c) we get (3.7). 
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To generalize the result one needs to find some meetric d relative to which (a) 
holds. Moreover, one also must verify relative to this metric d that (b) holds when 
dK is replaced by d. Finally, while it is easy to show that convergence in dK implies 
weak convergence, one must ensure that convergence in d ensures weak or some 
other meaningful convergence of (Xn). Such generalizations are reviewed in detail 
in B-M along with applications to random quadratic maps Fe = 8x(1 - x) on 
S = (0, 1), with appropriate conditioins on the parameter e, which allow one to 
restrict attention to an invariant interval (either contained in (0, 1/2] or [1/2, 1)) 
on which each Fe is monotone and the splitting condition holds. 

4 The nature of the steady state 

As mentioned in the Preface, understanding the nature of steady states of random 
dynamical systems is of theoretical as well as practical interest. More often than 
not, however, this is a difficult enterprise. 

Consider, for example, the apparently simple case of randomly choosing one 
of two affine linear strict contractions on S = [0, 1] : f 0 (x) = r-x, h(x) = 
r-x + (1- r-), p = Q({fo}) = P(a1 =fa), 1- p = Q({h}) = P(a1 =.h). 
Here 0 < r- < 1, 0 < p < 1. By Proposition 3.1, or Proposition 3.2, in the previous 
section, there exists a unique steady state or invariant probability 1r r for the random 
dynamical system (1.1 ). It follows from the uniform convergence of the distribution 
function of Xn to that of 1r n irrespective of the initial distribution fJ of X 0 (see 
3.7), that 1r is nonatomic , i.e., it has a continuous distribution function. To go 
further, note that the range of fo is J0 = [0, r-] and that of .his h = [1- r-, 1]. 
If 0 < r- < 1/2, I 0 and h do not overlap, and the range of X 1 is contained in 
I 0 U h. The range of X 2 is contained in the union of four nonoverlapping closed 
intervals Ioo = fo(Io) and Im = fo(h) both contained in Io, and ho = .h(Io) 
and I 11 = .h (h) both contained in h. The range of X 3 is contained in 23 , or eight, 
nonoverlapping closed intervals obtained by splitting each one of the preceding 
four into two nonoverlapping closed intervals, and so on. As is familiar in analysis, 
there arises in this fashion a limiting Cantor set as the support of 7rr (0 < r- < 1/2). 

What happens in this example if r- = 1/2? In the symmetric case p = 1/2, a 
simple computation verifies that the uniform distribution is invariant and, because 
of the guaranteed stability, it is the unique steady state 1r1; 2 . This is, however, just 
a lucky occurrence, since for 1/2 < r- < 1 even the basic question of whether 
1r r is absolutely continuous (with respect to Lebesgue measure) or singular had 
remained open for more than half a century. Finally, in a breakthrough, Solomyak 
(1995) proved an old conjecture that, if p = 1/2, 1r r is absolutely continuous 
for all r- in [1/2, 1) outside a set of Lebesgue measure zero. It has been known 
for many years that there are infinitely many values of r- in (1/2, 1) for which 
7rr is singular. One such value is r- = (VS- 1)/2 = .617 .... It is not known 
if the latter set is countable. The article by Mitra, Montrucchio and Privileggi 
provides an overview of this deep theory and its more recent extensions, especially 
to the case p i= 1/2. They also prove some interesting new results, including the 
mutual singularity of 7rn for a given r-, asp ranges over (0, 1). They point out that 
the random dynamical system considered in the preceding paragraphs governs an 
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affine logarithmic transformation of the optimal (growth in) production {Xn} in 
a dynamical optimization problem in a one-sector Cobb-Douglas economy with a 
logarithmic utility function. 

One may inquire about the nature of steady states of nonlinear random dynam
ical systems, especially those for which the support of Q has only two functions. 
Not a great deal is known here. In the case of quadratic maps Fe(x) = ex(1- x), 
with the support of Q as { Fe 1 , Fe2 }, under stringent restrictions such as 1 < e1 < 
e2 :::; 2, e.g., one can prove that the unique invariant probability 1r on S = (0, 1) 
is singular and its support is a Cantor set (Bhattacharya and Rao, 1993). The proof 
of singularity here is analogous to that outlined for the case of affine contractions 
above. 

Next, consider the random continued fractions on S = (0, oo) considered in 
the article by Goswami, with r ={fa, h}, p = Q( {fa}), 1- p = Q( Ud ), 0 < 
p < 1, and fa(x) = ~, .h (x) = ~+e. The parameter eE(O, oo ). One may express 
the process { Xn} recursively as Xn+l = ~:L + En+l, n :::: 0, where {En : n :::: 1} 
is an i.i.d. Bernoulli type sequence, P(sn = 0) = p, P(sn = e) = 1 - p. The 
maps fi(i = 0, 1) are monotone decreasing on S = (0, oo) and the hypotheses 
of Proposition 3.2 in Section 3 are satisfied. Hence there exists a unique invariant 
probability 1re, and one has stability in distribution. It is shown that the support of 
1re is (i) full (i.e., (0, oo)) if 0 < e :S 1, and (ii) a Cantor set if e > 1. Amazingly, 
1r1 has been explicitly computed (originally by Chassaing et al., 1984, and by a 
different method by Bhattacharya and Goswami, 1999). The distribution function 
of 1r1 is given by (see Theorem 5.2 in Goswami) 

(4.1) 

Here, for 0 < x :S 1, the sequence of positive integers a 1 , a 2 , . . . are the ones that 
occur in the classical continued fraction expansion of x, i.e., x = [a1 , a 2 , ... ].For 
rational x, such an expansion terminates after a finite number of steps and (4.1) 
reduces to a finite sum. This is an interesting example of a singular probability 
measure with full support on S = (0, oo). Whether for some eE(O, 1), or almost 
all such e, 1re is absolutely continuous with respect to Lebesgue measure is an 
interesting open problem. 

As a final remark, note that in case of stability in distribution, the random dynam
ical system ( 1.1) has the unique invariant probability 1r characterized as follows: If 
X has distribution 1r, then a(X) has distribution 1r where a has distribution Q and is 
independent of X. The derivation ( 4.1) may be arrived at using this relation, which 
in this case reads: X has the same distribution ( 1r) as :k- + c where c is Bernoulli 
(with P(s = 0) = p, P(s = 1) = 1- p), and is independent of X. The only 
other distribution of c for which 1r has been computed explicitly, is a two-parameter 
gamma distribution. In this case 1r turns out to have a two-parameter inverse Gaus
sian distribution (for this result of Letac and Seshadri, 1983, see Theorem 5.1 in 
Goswami). 
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5 Estimation of long-run averages 

Ostensiby, the practical goal in studying criteria for stability in distribution of a time 
series such as (1.1) is to estimate long-run averages of some characteristics v(Xn) of 
Xn based on past data. If the process { Xn} is stable in distribution (on the average) 

and J I vi d1r < oo then, according to the ergodic theorem, Vn := ~ 2..:7~g v(Xj) 
converges to (the long-run average) J vd1r with probability one, for Jr-almost all 
initial states X 0 = x. But one does not know 1r and, in general, there is no apriori 
guarantee that the initial state x belongs to the distinguished set. Indeed, we have 
seen in Sections 2 and 4, the support of 1r may be quite small, e.g., a Cantor set 
of Lebesgue measure zero. If 1r is widely spread out, as is the case, e.g., if 1r has 
a strictly positive density with respect to Lebesgue measure on an Euclidean state 
space S, then one may be reasonably assured of convergence. 

A second important problem is to determine the speed of convergence of Vn to 
J vd1r. One knows from general considerations, such as the central limit theorem, 
that this convergence is no faster than Ov(n- 112 ). Is this optimal speed achieved, 
irrespective of the initial state? An approach towards resolving these issues is illus
trated in B-M, which follows a general method given in Bhattacharya and Majumdar 
(2001) and Athreya and Majumdar (2002). Consider, for specificity, S to be Jl{k or 
a closed subset of Jl{k, and {an} a sequence of i.i.d. continuous increasing maps 
on S, and assume that 'splitting' holds.lt is shown in Bhattacharya and Lee (1988) 
that if vis a real-valued function of bounded variation on Sand J I vi d1r < oo, 
then 

Vn = J vd1r + Op(n- 112 ), (5.1) 

whatever be the initial state X 0 = x. The condition J I vi d1r < oo is satisfied, in 
particular, if vis bounded. Thus, if Sis compact and vis continuously differentiable, 
then (5.1) holds. 
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Abstract In this paper we prove the existence, uniqueness and stability of the invari
ant distribution of a random dynamical system in which the admissible family of laws 
of motion consists of monotone maps from a closed subset of a finite dimensional 
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1 Introduction 

This paper is dedicated to Leonid Hurwicz. Hurwicz (1 944) was a contributor to the 
literature on stochastic models of growth and cycles. In collaboration with Kenneth 
Arrow he also set the tenor of research on multi-sector dynamic models [see Part III 
of Arrow and Hurwicz (1977)]. We focus on a class of stochastic or random dynamic 
processes that have been of particular interest in the context of optimization problems 
in-to use his tenninology-"non-classical" environments. A formal statement of the 
main result is in Sect. 2. But we begin with a few informal remarks to provide the 
motivation. The mathematical model of discounted stochastic dynamic programming 
has become the basic tool in exploring optimal decision making under uncertainty both 
at the micro- and macro-levels. In "classical" models, by imposing approptiate (strict) 
convexity, continuity and monotonicity properties on the primitives (technological 
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constraints involved in specifying the law of motion, return functions ... ), one is able 
to assert that the optimal policy function is monotone and continuous. Once, how
ever, one attempts to step out of the "classical" environment (for example, to allow for 
a Knightian S-shaped production function that exhibits an initial phase of increasing 
returns), the standard proof of continuity of the optimal policy function fails. Indeed, 
even in a deterministic non-classical model of intertemporal optimization, an example 
of discontinuity (in which the production function is S-shaped, the return function is 
linear) was given in Majumdar and Mitra ( 1983 ). However, in a large class of stochastic 
models one can still prove that there is an optimal policy function that is monotonic 
[see Majumdar et al. (1989) for an elaboration of the finer points of selection and a 
comprehensive account of dynamic optimization under uncertainty with non-concave 
production functions]. This monotonicity property turns out to be crucial in making 
significant progress in understanding the evolution of an optimal process, and in estab
lishing some long run convergence properties. The analysis is simpler when the state 
space is an interval (in the real line). Exploring the implications of monotonicity (with 
possible discontinuity) when the state space is a closed subset of a finite dimensional 
Euclidean space is the point of departure of this paper. Consider a random dynamical 
system (S, r, Q) where Sis the state space (for example, a closed subset ofJR.k, ran 
appropriate family of maps on S into itself and Q is a probability measure on (some 
()-field of) r. 

The evolution of the system can be described as follows: initially, the system is 
in some state x; an element a1 of r is chosen randomly according to the probability 
measure Q and the system moves to the state X 1 = a1 (x) in period one. Again, inde
pendently of a1, an element a2 of r is chosen according to the probability measure Q 
and the state of the system in period two is obtained as X2 = a2 (a! (x )). In general, 
starting from some x in S, one has 

( 1.1) 

where the maps (an) are independent and identically distributed according to the mea
sure Q. The initial point x can also be chosen (independently of (an)) as a random 
variable Xo. The sequence X 11 of states obtained in this manner is a Markov process 
and has been of particular interest in economics (and other disciplines). 

For describing "convergence to a long run steady state", perhaps the most widely 
used results identify conditions under which there is some time invariant probability 
measure n such that, no matter what the initial xo is, X 11 converges in distribution ton. 
In this case we say that the (Markov) process is stable in distribution. 

2 The main result 

In this section we extend an important old result of Dubins and Freedman ( 1966) on 
i.i.d. iterations of monotone maps to multi -dimensional state spaces, and improve upon 
some recent results in Bhattacharya and Majumdar ( 1999, 2007), by dispensing with 
the requirement of continuity of the maps. The state spaces of the Markov process we 
consider is assumed to be a subset of JR.k (k ~ 1) satisfying the following assumption: 
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(A. I) Sis either a closed subset of[{k. or a Borel subset which can be made homeo
morphic to a closed subset of[{k, by means of a strictly increasing continuous 
map on S into [{k. 

It may be noted that every rectangle xJ=l IJ, where Ii 's are arbitrary nondegen
erate sub-intervals of the real line [{satisfies the assumption (A.l). For, an interval 
(a, b)( -oo :Sa < b :S oo) is homeomorphic to ( -oo, oo) by an appropriate strictly 
increasing continuous map. An interval (a, b](-oo :S a < b < oc) is similarly 
homeomorphic to ( -oc, 0], etc. 

To define the Markov process, let r be a set of measurable monotone maps y = 
(Y1, y2, ... , Yk) on S into S, under the partial order: x :S y if x J :S YJ for I :S j :S k; 
x= (x1, ... , Xk),y= (y1, y2, ... , Yk) E [{k (or S). Thatis,eithery is monotone increas-
ing: y(x) :S y(y) if x :S y, or y is monotone decreasing: y( y) :S y(x) if x :S y; 
x, y E S. Let r be endowed with a cr-field C, and let Q be a probability measure on 
(f, C). Consider a sequence of i.i.d. maps {an : n ~ 1} with common distribution 
Q, defined on a probability space (Q, ::5, P). For purposes of measurability, assume 
that the map (y, x) ---+ y (x) on r X S into S is measurable with respect to the product 
cr-field C 0 B(S) on r X Sand the Borel cr-field B(S) on S. For each y E S, define the 
Markov process {Xn : n ~ 0} by 

Xo = y, X1 = a1Xo, ... , Xn = anXn-1 = anan-1 .. . a1Xo, (2.1) 

where anan-1 ... a1 denotes composition of maps in the indicated order. In gen
eral, Xo can be any random variable with values in S, independent of the sequence 
{a11 : n ~ I}. The transition probability of the Markov process is p(x, B) = P(a1x 
E B) = Q({yEf : yx E B}). In general, then-step transition probability is given by 
the distribution of X11 (x) = a 11 a 11 _1 ... a1x, and is denoted by p(nl(x, .). It may also 
be expressed as 

p(n)(x, B)= Qn ({y Ern: yx E B}), (xES, BEB(S)), n ~I, (2.2) 

where Qll is the product probability on the product space ern, C'Zln), and y is the 
composition 

Y X= YnYn-1 · · · YJX (y = (Yt, Y2, · · ·, Yn) E f"). (2.3) 

Recall that n is an invariant probability for the Markov process, or for the transition 
probability p, if n is a probability measure on (S, B(S)) satisfying 

n(B) =.! p(x, B)n(dx) VBEB(S). (2.4) 

In turn, (2.4) implies that n(B) = J p(11l(x, B)n(d x) V BEB(S), and Vn ~ 1. If one 
denotes the distribution of X 11 as T*11 !J, where tt is the distribution of Xo, then T* 11 is 
then-fold composition ofT* : T* 11 = T*T*(n-ll(n ~ 2), T* 1 = T*. Note that T* 
(as well as T*n) is a map on the space &J (S) of all probability measures on (S, B(S)): 
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(T*n J.L)(B) = J p(n)(x, B)J.L(dx) (J.LEg;; (S), BEB(S)). (2.5) 

Clearly, an invariant probability n is just a fixed point ofT* = T* 1, in which case it 
is a fixed point of T*n for every n. 

On the space g;; (S), define, for each a > 0, the metric 

da(J.L, v) = sup If gdJ.L- J gdvl, (J.L, VE g;;(S)), (2.6) 
gEQa 

where 9a is the class of all Borel measurable monotone (increasing or decreasing) 
functions g on S into [0, a]. It is simple to check that (i) da = ad1, and (ii) the 
distance (2.6) remains the same if 9a is restricted to monotone increasing Borel mea
surable functions on S into [0, a]. The following result is due to Chakraborty and Rao 
( 1998), who derived a number of interesting results on the metric space (g;; (S), da). 
One can show that convergence in the metric da implies weak convergence if (A I) 
holds (Bhattacharya and Majumdar 2007, pp. 287-288). 

Lemma 1 Under the hypothesis (A.I ), (g;; ( S), da) is a complete metric space. 

The following splitting condition generalizes that in Dubins and Freedman ( 1966). 

To state it, let y be as in (2.3), but with n = N : y = YNYN-1 ... YI for y = (yJ, 
y2, ... , YN)ErN. 

(A.2) There exist FiE C'SJN (i = 1, 2) for some N :=::: 1, such that 
(i) Oi = QN (Fi) > 0 (i = 1, 2), and 

(ii) for some xoE S, one has 

ji(x)=sxo 'v'xES, 'v'yEFJ, 

j/(x) C::: xo 'v'xES, 'v'y E F2, 

Also, assume that the setH+ = {yErN : yis monotone increasing} E C0 N. 

Readers interested in the verification of the splitting condition in dynamic models 
in economics may turn to Bhattacharya and Majumdar (2007). 

Our main result is the following: 

Theorem 2 Let {an : n :=::: I} be a sequence of i. i.d. measurable monotone maps 
with a common distribution Q. Assume (A.1), (A.2) hold. Then there exists a unique 
invariant probability n for the Markov process (2.1) and 

supd1 (P(n) (x, ·), n) ::S (1- 8)[-Rr l (n :=::: 1), 
XES 

(2.7) 

where 8 = min{81, 82}, and [ N] is the integer part of N· 
Proof The proof uses Lemma 1 and two steps. The first involves detailed calculations. 
Step 1. T*N is a uniformly strict contraction on (g;; (S), dJ). 
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Let F;+ = F; n H+, Fi- = F; n H_, where H+ is defined in (A.2), and H_ = 
rN\H+(i = I' 2). Define, for any given g E Qj, the functions 

h;+(x) = J g(jix)QN (dy), 

F;+ \(F;+nF1) 

hi_(x)= J g(jix)QN(dy), (i=1,2;jf=i); 

F;_ \(F;_nFJ) 

h3+(x) = J g(jix)QN (dy), (2.8) 

H~n(Fl UF2)C 

h3_(x) = J g(jix)QN (dy), 

h4(x) = J g(jix) QN (dy ). 

F1nF2 

Then the functions h;±Ci = 1, 2, 3), are monotone. To see this, let g be monotone 
increasing, then hi+(i = 1, 2, 3) are monotone increasing while h;_(i = 1, 2, 3) are 
monotone decreasing. If g is monotone decreasing, then the reverse holds. Now, for 
g monotone increasing (g E QJ), 

Also, write 

hJ+(X) ::S g(xo) (QN(FJ+)- QN(Fl+ n F2)) = aJ+, 

hJ_(x) :::: g(xo) ( QN (FJ-)- QN (F1- n F2)) = a1-, 

h2+(x) 2:: g(xo) (QN(F2+)- QN(F2+ n F1)), (2.9) 

h2_(x) 2:: g(xo) (QN(F2_)- QN(F2- n F1)), 

h3+(x) ::S QN (H+ n (F1 U F2)') = a3+, 

h3_(x) ::S QN (H- n (FJ U F2)') = a3-· 

h~+(x) = J (1- g(jix))QN (dy), 

F2+ \(F2+nFJ) 

h~_(x) = J (1- g(jix))QN (dy). 

F2- \ ( F2- nFJ) 

(2.10) 

~Springer 
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Then h~±(x) are monotone and satisfy 

(2.11) 

If h2±(X)J1(dx)- f h2±(x)v(dx)l =If h~±(x)Jl(dx)- f h~±(x)v(dx)l, 
(2.12) 

and 

f h4(x)tt(dx) - f h4(x)v(dx) = 0 (ft, VEs;J (S)). (2.13) 

The last relation follows from the fact that h4(x) = g( xo)QN (F1 n F2), a constant 
function on S. For, on F1 n F2, ji(x) = xo\fxES. Hence 

If gd(T*N Jl)- f gd(T*N v)l 
~ tV hi+(x);<(dx)- f hi+(x).,(dx)+ j h;-(x)JL(dx)- j h;-(xMdxj 

:S .L II7i+(x)tt(dx)-fhi+(x)v(dx)l +L lfhi_(x)t.J(dx)-f hi_(x)v(dx)l 
1=1,3 1=1.3 

+If h~+(X)Jl(dx)- f h~+(x)v(dx)l +If h~_(X)Jl(dx)- f h~_(x)v(dx)l 
:S (a!++ a1- + a2+ + a2- + a3+ + a3_)d1 (Jl, v) = bd1 (Jl, v), say. (2.14) 

Note that 

al+ + a1- = g(xo) ( QN (FJ)- QN (F1 n F2)), 

a2+ + a2- = (I - g(xo)) ( QN CF2) - QN (FJ n F2)), 

a3+ + a3- = QN ((FJ U F2/) = 1- QN (FJ)- QN (F2) + QN (F1 n F2), 

so that, adding these terms, one gets 

~Springer 

b = 1 - [ (1 - g(xo)) QN (FJ) + g(xo) QN (F2) J 

:S I -min { QN (F1), QN (F2)} = I - 8. (2.15) 
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Taking the supremum over all monotone increasing g E ~IJ on the left in (2.14 ), one 
arrives at the inequality 

(2.16) 

Note that, the supremum in (2.6) over all of 9a is the same as the supremum over 
the subset of all monotone increasing functions in 9a, since a - g E 9a and is mono
tone increasing if g is monotone decreasing, g E 9a· Thus T*N is a uniformly strict 
contraction on (p(S), dJ). 
Step 2. Application of the Contraction Mapping Theorem. 

From (2.16) and Lemma 1, it follows by the contraction mapping theorem that T*N 
has a unique fixed point n in p ( S) and that, writing n = [ N] N + r, one has 

d1(T*"t~, n) =dt (r*[N]NT*rft, T*[NJNn) :S: (l-8)[N]d 1(T 8 rft,n) 

::;(l-8)[NJ V'fL,VEp(S). (2.17) 

In particular, (2.7) follows by letting fL = D[x}- the Dirac measure at x in (2.17). Note 
that T*N (T*n) = T* (T*N n) = T*n, so that T*n is also a fixed point of T*N. By 
uniqueness of the fixed point, T*n = n. D 

Remark 2.1 In order to derive confidence regions of (or tests for) useful functionals of 
n (e.g., the mean or dispersion), based on a finite set of observations X j (1 :S: j ::; n ), 
one needs to derive asymptotic distributions of the corresponding functionals of the 
empirical distribution ~ LJ= 1 8 x 1 . As in Bhattacharya and Majumdar (2007, Sections 
5.3, 5.4), one can show that, under the assumptions (A.1), (A.2), for every bounded 
function g on S which may be expressed as the difference g 1 - gz of two bounded 
measurable monotone functions (or, equivalenty, for every finite linear combination 
of monotone functions), the central limit theorem (CLT) holds for its empirical mean 
~ L.'J=1 g(Xj), whatever the initial state. That is, 

(2.18) 

where~ denotes convergence in law, or distribution, and N(O, o- 2) is the Normal 
distribution with mean 0 and variance o- 2 • The variance parameter may be expressed 
as 

(2.19) 

where Tis the transition operator: T h(x) = J h( y) p(x, dy) and f solves the Poisson 
equation in L2 (S, n) 

~Springer 



407

192 R. Bhattacharya, M. Majumdar 

(I- T)f = g- j gdn. (2.20) 

Here L 2 ( S, n) is the Hilbert space of functions on S which are square integrable (with 
respect to IT). See Bhattacharya and Majumdar (2007, Chap. 5) for more details on this 
general theme. In the caseS is non-compact and g is unbounded (e.g., g(x) = Xj for 
x = (XJ, ... , Xk)), one requires that there exist a solution f to the Poisson equation 
(2.20). Certain broad conditions for this solvability may be found in Bhattacharya and 
Lee ( 1988), for the case of i.i.d. monotone increasing maps. 

Remark 2.2 Instead of the metric d 1, one may use a somewhat weaker metric dA 
defined by 

dA(Jl, v) = sup IJl(A)- v(A)I (Jl, v E g;J(S)), 
AEA 

where A comprises all sets of the form 

A = {y E S : cp (y) :S x}, x E S, cp monotone measurable. 

(2.21) 

(2.22) 

One may prove the completeness of (g;J (S), dA) more or less following the steps of 
the proof of Lemma C5.1, p. 287, in Bhattacharya and Majumdar (2007), where A is 
restricted to the class of sets A in (2.22) with cp continuous and monotone increasing. 
The analog of Theorem 2.2, with dA in place of d 1, may then be proved roughly along 
the lines of the proof of Corollary 5.1, pp. 257-258, in Bhattacharya and Majumdar 
(2007). 
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Chapter 14
Advection-Dispersion in Fluid Media and Selected
Works of Rabi Bhattacharya

Enrique A. Thomann and Edward C. Waymire

Abstract In its broadest sense, understanding the dispersion of particles suspended in fluid
media is a classic problem that has motivated a tremendous amount of laboratory and field
experimentation as well as mathematical and physical theory for centuries. The theory
traces back to celebrated work of such historically eminent scientists as Adolf Fick, Al-
bert Einstein, Marian Smoluchowski, Jean Perrin, and Geoffrey I. Taylor, to name a few of
the most prominent historic figures. The richness of the problem is reflected in the devel-
opment of new mathematical, statistical, and computational tools that have resulted from
continued explorations of this phenomena beyond the framework of advection-dispersion
in a pure liquid. The work of Rabi Bhattacharya, in collaboration with hydrologist Vijay
Gupta, stands out for the important theoretical insights provided to contemporary under-
standing of this phenomena in heterogeneous media over a range of space-time scales.
This chapter is an attempt to provide some overview and context for the salient features of
these contributions.

Keywords Diffusion, Dispersion Brownian motion, Multi-scale, Homogenization, Markov
processes, Parabolic partial differential equations, Central limit theorems

14.1 Introduction

In its broadest sense, understanding the dispersion of particles suspended in fluid media
is a classic problem that has motivated a tremendous amount of laboratory and field ex-
perimentation as well as mathematical and physical theory for centuries. The theory traces
back to celebrated work of such historically eminent scientists as Adolf Fick, Albert Ein-
stein, Marian Smoluchowski, Jean Perrin and Geoffrey I. Taylor, to name a few of the most
prominent historic figures. The richness of the problem is reflected in the development of
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new mathematical, statistical, and computational tools that have resulted from continued
explorations of this phenomena beyond the framework of advection-dispersion in a pure
liquid. The work of Rabi Bhattacharya, in collaboration with hydrologist Vijay Gupta,
stands out for the important theoretical insights provided to contemporary understanding
of this phenomena in heterogeneous media over a range of space-time scales.

From the point of view of continuum mechanics, the modern theoretical understand-
ing of dispersion of a dilute concentration of particles suspended in a fluid domain G is
generally viewed (defined) as the solution to a linear parabolic partial differential equation
governing particle concentration c(y, t) at location y and time t of the general form

∂c
∂t
= L∗c(y, t) ≡

1
2
∇(D∇c) − ∇ · vc, t > 0, y ∈ G, (14.1)

for a positive-definite symmetric matrix D (dispersion coefficient), fluid velocity vector
field v (drift coefficient), and some initial concentration c0(y) = c(y, 0+), and suitable
boundary condition on ∂G, e.g., Dirichlet or Neumann. Here ∇ = ( ∂

∂x j
)1≤ j≤k, and we have

taken the liberty of a k-dimensional mathematical formulation. For practical purposes one
is generally interested in k = 1, 2 or 3. In general D and/or v may be both space-time
dependent; however, for the purposes of this chapter we restrict to the time-homogenous
(autonomous) cases in which the dependence is at most on spatial variables. This class of
equations is generally accepted as the result of mass conservation together with a localized
linear phenomenological law governing particle flux (Ficks law) as being proportional to
the gradient of particle concentration.

From the point of view of probability theory, the same phenomena can be viewed (de-
fined) in terms of the stochastic processes Xx = {Xx(t) : t ≥ 0} governing particle motions
as defined by corresponding stochastic differential equations of the form

dXx(t) = μ(Xx(t))dt +
√

D(Xx(t))dB(t), t > 0, x ∈ G, (14.2)

initiated at Xx(0) = x ∈ G and stopped or reflected at the boundary of G, where B = {B(t) :
t ≥ 0} is standard Brownian motion started at the origin, and

μ j = v j + ∇De j, 1 ≤ j ≤ k. (14.3)

A relationship between these two views is most succinctly expressed in the case of
free space G = R

k with the aid of Itô’s lemma by the property that for a large class of
sufficiently smooth functions g

g(Xx(t)) −
∫ t

0
Lg(Xx(s))ds = Mx

t (g), t ≥ 0, x ∈ Rk, (14.4)

is a martingale, in fact a stochastic integral with respect to B. Here Lg= 1
2∇ · D∇g + μ · ∇g

is the elliptic operator (formally) adjoint to L∗ given in (14.1) via integration by parts. In
particular, it follows upon taking g = c0

g(x, t) = Ec0(Xx(t)) =
∫

Rk
c0(y)p(t, x, dy), t ≥ 0, x ∈ G = R

k, (14.5)
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where p(t, x, dy) is the transition probability for the Markov processes Xx, and/or the
fundamental solution to the adjoint to (14.1).

While the above sketch takes liberties with some technical conditions, the Stroock-
Varadhan use of Itô’s stochastic calculus in the formulation of the martingale problem
for diffusions establishes this mathematical perspective as a powerful connection be-
tween (14.1) and (14.2) under very general conditions, see [27]. Of course there are other
approaches, some heuristic and some rigorous. From the point of view of partial differen-
tial equations perhaps the greatest testimony to such connections of the latter type was cap-
tured by the late John Nash [22] in connection with his celebrated results on the existence
of a smooth transition density p(t, x, y) as a function of y under remarkably general condi-
tions on the coefficients: “The methods used here were inspired by physical intuition, but
the ritual of mathematical exposition tends to hide this natural basis. For parabolic equa-
tions, diffusion, Brownian movement, and flow of heat or electrical charges all provide
helpful interpretations.”

In the case of constant drift and dispersion coefficients, Donsker’s functional central
limit theorem firmly establishes Brownian motion as the appropriate model of stochastic
particle motions in the sense of a scaling limit as anticipated by Einstein, Smoluchowski
and an inspiration to Nash. As will be elaborated somewhat, this is a perspective clearly
shared by Rabi in his efforts to understand and explain some specific dispersive phenomena
of interest to hydrologists in multi-scale heterogeneous media.

Specifically for the case of homogeneous, dispersion matrix DIk×k for a positive scalar
D, and constant drift vector v, one may arrive at the representation

Xx(t) = x + vt +
√

DB(t), t ≥ 0, (14.6)

via the central limit theorem applied to rescaled random walks in the limit of large fre-
quency of collisions, e.g., see [16]. The appeal to “dilute” systems of particles is a formal
appeal to weak interactions so that the law of large numbers may be applied to connect the
probability density of an individual particle with particle concentrations.

The Ornstein-Uhlenbeck process provides an alternative approach to obtain a stochas-
tic evolution of a heavy particle undergoing collisions with many relatively lighter fluid
molecules based on considerations of velocity in place of position. For example, Hol-
ley [20] considered a motion in one coordinate direction of a solute particle of mass M
bombarded by a Poisson distribution of lighter molecules of density ρ(M) > 0 moving
independently according to (one-dimensional) velocities governed by simple symmetric
random walk; i.e., velocity ±v(M) with equal probabilities, and assuming conservation of
momentum and energy upon collision with the heavy particle. Molecules simply exchange
velocities in collisions with one another. Denote the velocity process for the solute parti-
cle by VM = {VM(t) : t ≥ 0} with VM(0) = 1. For a sufficiently high density and rate of
collision with the lighter molecules relative to the size of the large solute particle, one has
the following.



414 E.A. Thomann and E.C. Waymire

Theorem 1 (Holley). Let v(M) =
√

(M+1)D
β

, and ρ(M) = β
4

√
(M+1)β

D . Then VM converges

in distribution to V as M → ∞, where V is the Gaussian process defined by the unique
solution to the Langevin equation

dV(t) = −βV(t)dt +
√

DdB(t),V(0) = 0.

Using Itô’s lemma, for example, one arrives at the corresponding velocity process
given by

Vv(t) = ve−βt +
√

D
∫ t

0
e−β(t−s)dB(s), t ≥ 0. (14.7)

Integration by parts yields (for a deterministic integrand)

Vv(t) = ve−βt +
√

DB(t) −
√

Dβ
∫ t

0
e−β(t−s)B(s)ds, t ≥ 0. (14.8)

In particular Vv is a Gaussian Markov process with EVv(t) = ve−βt and cov(Vv(s),Vv(t)) =
D
2βe−β(t−s) − D

2βe−β(t+s), 0 < s < t. For initial conditions v = 0, x and integrating one obtains
the (non-Markov) position process

Xx(t) = x +
√

D
∫ t

0
e−β(t−s)B(s)ds, t ≥ 0. (14.9)

Integration by parts provides the alternative formula by a stochastic integral

Xx(t) = x +

√
D
β

B(t) −
√

D
β

∫ t

0
e−β(t−s)dB(s) (14.10)

Taking
√

D = β
√

D0, one obtains convergence in distribution to Brownian motion with
zero drift and diffusion coefficient D0 in the limit as β→ ∞. In particular, in this case one
has from Itô isometry that

E|Xx(t) − x −
√

D0B(t))|2 = (2β)−1(1 − e−2βt) <
1

2β
. (14.11)

Alternatively, on large time scales the Brownian motion is essentially equivalent to the
integrated Ornstein-Uhlenbeck process in the sense that for

Xx
n(t) = n−

1
2 βXx(nt) = n−

1
2 βx + n−

1
2

∫ nt

0
βV(s)ds (14.12)

one has convergence in distribution

Xx
n ⇒

√
DB (14.13)

as n → ∞. Although this particular (Gaussian) case may be treated by more elementary
methods, it provides a simple illustration of a central limit theorem for ergodic Markov
processes by Rabi [9] that has enjoyed remarkable applications to problems in hydrol-
ogy and geophysics that will be elaborated upon in forthcoming sections. We quote his
general theorem for the general context of progressively measurable ergodic Markov pro-
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cesses Y with arbitrary state space (S ,S) having unique invariant probability π. Let (A,DA)
denote the infinitesimal generator of the corresponding Markov process semigroup acting
on L2(S , π).

Theorem 2 (Bhattacharya). Let p be a transition probability of a Markov process Y ad-
mitting an invariant initial distribution π. Assume that ||p(t, x, ·) − π(·)|| → 0 as t → ∞
for all x ∈ S . Let h : S → R ∈ L2(π) and assume h belongs to the range of A.
Then regardless of the initial distribution of Y, the sequence of stochastic processes
n−

1
2

∫ nt

0
h(Y(s))ds, t ≥ 0, n = 1, 2, . . . , converges weakly to a Brownian motion σB hav-

ing zero drift and diffusion coefficient σ2 given by

σ2 = −2〈h, g〉 = −2
∫

S
h(y)g(y)π(dy)

for any g ∈ DA such that Ag = h.

Returning to (14.13), Y = V is the Ornstein-Uhlenbeck process whose generator is
of the form A = −βy ∂

∂y +
√

D ∂2

∂y2 . It is also easy to check that V has Gaussian invariant

probability π with mean zero and variance D
2β . For h(y) = βy in (14.12), one may take

g(y) = −y, to compute σ2 = D as asserted in (14.13).

Remark 1. Deeper understanding of distinguished particle systems has been a subject of
considerable interest from the point of view of hydrodynamic limits, but is outside the
scope of the present essay, e.g., see [21]. The purpose here is simply to indicate the role of
the Ornstein-Uhlenbeck process as the physical description of velocities of solute particles
immersed in pure liquid; also see [29] for a perspective from physics.

14.2 Brownian Motion in Porous Media and Taylor-Aris Dispersion

Among Rabi’s earliest considerations of dispersion of solutes in a porous media one finds
the paper [13] involving an investigation of pore scale effects on the otherwise limiting
Brownian dispersion of a dilute system of particles. More specifically, the authors consider
a dilute suspension of particles in a homogeneous isotropic porous medium saturated by
a pure fluid such as water. As typical in the framework for Brownian motion, the mass
of the solute molecule is assumed to be much larger than that of a liquid molecule, and
the particle’s interactions are sufficiently weak to be viewed as statistically independent.
Roughly, the particle suffers collisions with the solid phase (sometimes referred to as the
“pore wall”) at successive times, but in between collisions the velocity process is governed
by the Ornstein-Uhlenbeck process; the effect of collision with the solid phase is to scatter
the particle in a random direction.
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Theorem 3 (Bhattacharya and Gupta). Suppose that V = {V(t) : t ≥ 0} is the velocity
process defined by

dV(t) = −β(V(t) − u0)dt + gdt + σdB(t), τ j < t ≤ τ j+1, j = 0, 1, 2 . . . ,

V(τ+j ) = ρO jV(τ j), i ≥ 1,

where τ0 = 0, τ j+1−τ j, j ≥ 0, is an i.i.d. sequence of nonnegative random variables having
finite fourth moments such that μ = Eτ1 is a scale parameter for their common distribution,
and O1,O2, . . . is an i.i.d. sequence of random orthogonal matrices distributed uniformly
according to Haar measure over the group of all 3 × 3 real orthogonal matrices. Also
0 ≤ ρ ≤ 1, and g is the (constant) gravitational acceleration vector. Let

Xx(t) = x +
∫ t

0
V(s)ds, t ≥ 0.

Then, letting μ ↓ 0 such that βμ → δ > 0, and σ2/β2 → D1 > 0, one has that√
μ(X(tμ−1) − tμ−1), 0 ≤ t ≤ 1, converges weakly to Brownian motion with zero drift and

diffusion coefficient matrix g(δ)D1, where

g(δ) = 1 − 1
δ

∫ ∞

0
{2(1 − e−δs) − 1

2
(1 − e−2δs)}P(τ1 ∈ ds).

As noted in [13], at times far apart compared to μ, the position process X is (approximately)
governed by a Brownian motion with drift (u0 + β

−1g)(1− (βμ)−1
∫ ∞

0
(1− e−βμs)P(τ1 ∈ ds))

and diffusion coefficient g(βμ)
β2 σ

2. In general, the basic parameters β,D, μ are regarded as
functions of the convective flux u0. In case u0 = 0 and β and D are the same as in the
classical case of diffusion in pure liquids, it follows that the diffusion coefficient in the
porous medium is smaller than that in the pure liquid and in accordance with experimental
observations; see [13] for references and further discussion.

G.I. Taylor’s [28] determination of the time-asymptotic equation governing the disper-
sion of particles immersed in a pure cylindrical flow containing a pure fluid with con-
stant advective velocity U in the longitudinal direction ranks among the most important
practical results in the theory of advection-dispersion. While the formula was derived by
somewhat formal asymptotic expansions applied to the governing pde, the derivation was
eventually made mathematically rigorous by Rutherford Aris [2]. However, an extremely
simple explanation1 in terms of Rabi’s central limit theorem (Theorem 2) was developed
in [15, 14].

1 It was not long after the publication of [15] that Rabi, and his coauthor Vijay Gupta, received a note of
acknowledgment and congratulations from Rutherford Aris on finding the “right” approach. This idea was
used in [24] to cover an application involving a discontinuous diffusion coefficient as well.
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Theorem 4. Let X = (X, Y, Z) be a Markov process having continuous paths in R
3 and

transition probabilities given by the fundamental solution to satisfying Kolmogorov’s for-
ward equation

∂c
∂t
= D0Δc − u0 f (y, z)

∂c
∂x
, (x, y, z) ∈ R × E0 ⊂ R

3,

with Neumann boundary condition

∂c
∂n
= 0, (x, y, z) ∈ R × Γ,

where E0 = {(y, z) : y2 + z2 ≤ a2} is the interior of a two-dimensional region E = E0 ∪ Γ
bounded by the smooth curve Γ = {(y, z) : y2 + z2 = a2}, D0 is a positive constant, and
f (y, z) = 1 − y2+

a2 is the parabolic flow rate obtained from incompressible Navier-Stokes
equations in the cylinder such that ( f (y, z)u0, 0) is the fluid velocity (drift). Let u = 1

2 u0.
Then,

Xn(t) = n−
1
2 (X(nt) − unt), t ≥ 0.

Then Xn converges in distribution to Brownian motion with zero drift and diffusion coeffi-
cient

D = 2D0 +
a2u2

0

96D0
.

Note that D0 =
1
2 (2D0) in the Kolmogorov equation makes 2D0 the dispersion rate in the

stochastic formulation (14.2). While we have stated the above theorem for the case of the
cylinder, the general result of [15] allows for arbitrary shaped cross sections E0 bounded
by a smooth curve Γ. The limiting diffusion, suitably centered, remains a Brownian mo-
tion with zero drift and positive (effective) diffusion coefficient. For example, motivated
by considerations of the stability of a viscous liquid to two-dimensional disturbances in
a porous medium, Wooding [30] considered the Taylor-Aris analysis to obtain the corre-
sponding formula for dispersion of a solute in a unidirectional parabolic flow between two
parallel planes separated by a distance 2a. This can be readily computed from Theorem 4
adapted to this geometry; related calculations will be given in 14.4.

14.3 Multiscale Dispersion

Rabi expressed a vision with regard to multi-scaling phenomena being reported by field
hydrologists early on in collaborations with hydrologists Vijay Gupta and Garrison Spos-
ito [19]: “The principal outcome of this construction is the fact that, in an appropriate
asymptotic sense, the position process {X(t); t > 0}, as a time integral of the constructed
velocity process, is asymptotically Markovian (a Brownian motion) with a mean drift vec-
tor, μ(U), and the dispersion matrix, D(U). Because this result is asymptotic in nature it is
valid at the time and space intervals over which a solute molecule undergoes a very large
number of collisions with both the liquid molecules and the grains of the solid phase, i.e.,
at the macroscopic space and time scales. The Markovian nature of the position process,

z2
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along with the assumption of weak interaction among solute molecules, then may be used
to show rigorously that the macroscopic solute concentration, c(x, t), is a solution of a
parabolic partial differential equation. This equation differs from (14.1) in that the mean
convective velocity of the solute, μ(U), which appears in it is not necessarily equal to U,
the mean fluid velocity.”

This was formulated primarily in response to laboratory and field experiments involv-
ing the growth of dispersion with velocity U. Much of the early thinking was by way of
mathematical scaling/averaging principles that should hold and should explain the empir-
ical observations. Quoting from [10]: “A commonly used experimental methodology is to
fit Gaussians to the concentration c(t, y) as a function of y, for successively larger scales of
t. One may think of this as different Brownian motion approximations at different scales
of time. It has been widely observed that the diagonal dispersion coefficients, or variances
per unit time, increase steadily with the time scale, especially in the direction of flow. This
phenomenon has been called the scale effect in dispersion.” However it took a concentrated
effort to develop the new mathematical theory that would precisely illustrate this thinking.
The results are truly remarkable and perhaps even beyond expectations, [11, 12, 10, 8]. We
include here a simple example to partially illustrate the theory.

From a mathematical perspective, Rabi [10] introduced the following considerations of
two spatial scales of heterogeneity embodied in the flow velocity v,

v(y) = b(y) + β(y/a), (14.14)

where a is a large positive scalar. The term b(·) represents the drift velocity at the local
scale and β( ·a ) the large scale velocity in the defining k-dimensional stochastic differential
equation

dX(t) = v(X(t))dt + σ(X(t))dB(t), (14.15)

where b, β, σ are essentially assumed Lipschitz continuous, and the eigenvalues of σσ′

are bounded away from zero and infinity. Here fluctuations in b represent the effect of a
local (or small) scale heterogeneity in the aquifer geometry and soil characteristics, while
fluctuations in v which manifest only at a larger scale of distance (of the order a) are rep-
resented in β(a). It is assumed that the fluid media is stratified to the extent that the large
scale velocity β(x1, . . . , xk) does not depend on x1 and there is no small scale velocity in di-
rections other than the x1 direction, i.e., b j(x) = 0, j ≥ 2. In this context precise time scales
(t  a

2
3 , t  a, or t  a

4
3 ) are computed over which the local scale b dominates and large

scale fluctuations may be ignored. The significance is that, regardless of the larger scale
effects β, whenever a Gaussian approximation holds for the concentration corresponding
to flow velocity b(·) + β(x0), for an initial point injection at ax0 the same holds over this
time scale. That is, on this time scale the large scale effect is essentially felt as an additive
constant. Beyond this the possibilities are fascinating, ranging from Brownian motion to
possible non-Gaussian intermediate and larger scale effects. The reader is invited to con-
sult [10] to appreciate the scope of this theory illustrating Rabi’s multiscale theory in terms
of a more comprehensive selection of theorems and examples.
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Toward explaining the more specific scale effect (growth) of dispersion problem Rabi
[10] obtains the following key result. Take b = 0 and assume that β is continuously differ-
entiable, periodic with period lattice Z

k, and divergence-free (zero divergence), the latter
corresponding to an incompressible fluid. Assume σ is a constant non-singular matrix. X
is defined by

dX(t) = u0β(X(t))dt + σB(t), t ≥ 0, (14.16)

where u0 is a large parameter scaling the magnitude of the (periodic) drift velocity. In view
of the periodicity assumptions X is an ergodic diffusion on the k-dimensional torus having
uniform invariant distribution π(dx). Then, in the limit as t → ∞, t−

1
2 (X(t) − X(0) − tβ) is

asymptotically Gaussian with mean zero and dispersion coefficient K = K(u0), depending
on the parameter u0. Here

β =

∫

[0,1]k
β(x)π(dx)

is simply the average of β over the torus, and

K =
∫

[0,1]k
(∇φ − Ik)(∇φ − Ik)′dx, (14.17)

for the unique mean zero solution φ ∈ L2(π) of

Aφ j = u0(β j − β j), 1 ≤ j ≤ k. (14.18)

Theorem 5. Assume the above conditions on the drift and diffusion coefficients defining
X. Let D = σσ′ and D = 1

2

∑
i, j Di, j

∂2

∂xi∂x j
as an operator on the Sobolev space H2. Then

iD−1β · ∇ is a skew symmetric compact and self-adjoint operator on H1 with null space N.
Denoting projections of f ∈ H1 onto N by fN,
1. If (D−1(β j − β j))N � 0, then limu0→∞

K j j

u2
0
= 2||(D−1(β j − β j))N ||21 > 0

2. If β j − β j belongs to the range of β(·) · ∇, say, β(·)∇h = β j − β j for some h ∈ H1, then
limu0→∞ Kj j = 2||h0||21 + D j j, where h0 is the projection of h onto N⊥.

In particular, under the hypothesis of the first part of this theorem one sees that the
dispersion coefficient Kj j grows quadratically with u0. Such behavior is in fact consistent
with field observations; see [10] and references therein.

14.4 Discontinuous Coefficients and Skew Dispersion

In recent years there has been an interest in models of advection-dispersion in media under
which interfaces defined by discontinuities in the diffusion coefficient occur; see [26] for
rather comprehensive survey of applications. In the context of dispersion in porous media
[6], for example, includes results of experiments on breakthrough times of an inert dye
injected in a water saturated column of glass beads of two distinct sizes and separated by
an interface. The results indicate a clear asymmetry in the time required to traverse one end
of the column to the other, depending on the injection point. Such experiments prompted
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the development of new non-Fickean models in efforts to explain such phenomena; e.g.,
see [17]. Observations of this type prompted more thorough general analysis of the effect
of discontinuities in the dispersion coefficient as reported in [6] and references therein.
This includes an explanation for the breakthrough asymmetry within a Fickean diffusive
framework as well as exploration of other phenomena such as Taylor-Aris dispersion;
[1, 24].

While Rabi has laid out a robust approach to dispersion in heterogenous‘ media, the
techniques are largely (although not exclusively) limited to continuous (Lipschitz) drift
and dispersion coefficients. For example Theorem 2 could be used to compute the formula
for the Taylor-Aris effective dispersion coefficient, but the stochastic calculus involves
methods from semi-martingale theory, especially local time, not needed for the case of
smooth coefficients.

As an illustration, consider the (interfacial) Taylor-Aris problem (Theorem 4) for
Wooding’s geometry (see [30]) of two parallel planes separated by 2a but assuming

D0(x, y) =

⎧⎪⎪⎨
⎪⎪⎩

D+0 if 0 ≤ y ≤ h

D−0 if − h ≤ y < 0.
Then, using Theorem 2 one finds that the first term of

the effective dispersion involves an arithmetic average Da = (D+0 + D−0 )/2, while the sec-

ond term involves a harmonic average 1
Dh
=

1
D+0
+ 1

D−0
2 given by

D = 2Da +
8u2

0h2

945(2Dh)
= 2Da +

2u2h2

105(2Dh)
. (14.19)

The details of the stochastic calculus needed to extend Theorem 4 to this setting are given
in [24].2

While the manifestation of small scale discontinuities in the diffusion coefficients has
been shown to manifest on larger scales in quite interesting ways, e.g., in occupation and
first passage (breakthrough) times, this has largely involved applications that could be
reduced to one-dimensional mathematical considerations. The technical limitations are
tied to the use of local time in the analysis; see [25] for some other recent developments in
this regard.

14.5 Concluding Remarks

The subject of solute transport in porous media is vast, and the survey of select results
presented here represents a small but important approach to understanding upscaling in this
context; see [18] for a much broader survey of mathematical approaches and perspective.

2 There is a typo in the general formula of Corollary 2.2 in [24]. The integral in (2.12) should be with
respect to Lebesgue measure in place of π(dz) there.
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The essential parameters that determine the model of advection-dispersion of solute
concentrations are a drift rate μ and a dispersion rate D = σσ′, together with some spec-
ification of initial conditions and possible boundary behaviors. However, these rates can
be used to describe the phenomena in different ways: (i) to define local fluxes of solute
concentration for (14.1), or (ii) to define local mean and variance-covariances of stochas-
tic displacements of individual particles for a model of the type (14.2). In case (i) it is
natural to refer to the factor D that, in addition to the drift, defines the flux locally in pro-
portion to the concentration gradient as the dispersion rate, while in case (ii) for the same
D, 1

2 D is a local measure of the rate of spread in the distribution of particles. Beyond this,
one may elect to analyze the phenomena of advection-dispersion from either mathematical
perspective. For this Rabi generally selects the latter.

Regardless of the class of models, the questions generally involve approaches to un-
derstand how the rates defining models of type (i) or (ii) should be modified in passing to
larger scale descriptions; a process known as homogenization. As illustrated by the results
surveyed in the previous sections, the larger scale answer generally depends on various
scales intrinsic to the defining model.

As evident in the theorems surveyed here, and all the more so in the comprehensive
articles themselves, a key feature of the problems amenable to Rabi’s approach is that
of a finite number of separated scales; for contrast in which new phenomena occur for
infinitely many separated scales see [3] and the discussion in [7]. Moreover, problems of
homogenization are also of interest for models in which there is no such separation of
scales; e.g., see [23, 5, 4].

Acknowledgements This was prepared with partial support of the National Science Foundation Grant
DMS-1408947.
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Chapter 15
Cascade Representations for the Navier–Stokes
Equations

Franco Flandoli and Marco Romito

15.1 Introduction

The basic equations governing the motion of a fluid are well understood. For simplicity,
we shall refer to the case of an incompressible, constant density, viscous Newtonian fluid;
the velocity vector field u (t, x) and pressure scalar field p (t, x) satisfy the classical Navier–
Stokes equations (in dimension 3) with viscosity ν > 0

∂tu + (u · ∇)u + ∇p = νΔu,

div u = 0,
(15.1)

with appropriate initial and boundary conditions depending on the problem. For relatively
simple fluid motions, these equations give us a very good tool for simulations and physical
understanding. But there are complex fluid motions, those usually called turbulent, where
special features are experimentally or numerically observed which do not have a clear
explanation yet from the Navier–Stokes equations. In a sense, there is something at the
foundation of fluid dynamics that is still unclear. For later reference, let us mention that
this happens when a certain parameter R, called Reynolds number, is very large.

Andrej Nikolaevič Kolmogorov, in his celebrated paper on turbulence [18], where he
exposed very innovative ideas referred to as the K41 theory, used the following sentences
to describe something which is a sort of idealization of experimental observations: “on
the averaged flow are superposed the ‘pulsations of the first order’ consisting in disorderly
displacements of separate fluid volumes [. . . ] of diameters of the order of magnitude l(1) =

l [. . . ]. The pulsations of the first order are for very large R in their turn unsteady, and on
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them are superposed the pulsations of the second order with mixing path l(2) < l(1). [. . . ] the
pulsations of the first order absorb the energy of the motion and pass it over successively
to pulsations of higher orders.”

This is an intuitive description of the so-called direct cascade. Kinetic energy flows
from larger scale structures (the “pulsations,” often called eddies, which may be also thin
vortex tubes or patches) to smaller ones, due to dynamical instabilities. Mathematics fur-
ther idealizes these structures by means of the concept of Fourier component. So, opposite
to regular fields, where Fourier components with small wave number k contain most of the
energy and it decays very fast for large k’s, in a turbulent fluid energy is distributed in a
distinguished fashion between Fourier modes, with a sort of “long tail,” also related to a
poor regularity (at least in the limit of zero-viscosity).

At the same time, mostly in fluids with a 2D symmetry, it is experimentally observed
that an inverse cascade takes place: energy contained in small scale structures cumulates
to increase the energy of larger scale structures. Strictly speaking, in every nontrivial fluid
there are both kind of cascade, direct and inverse, but their intensity may be different. We
suggest to read U. Frisch [13] for an extensive discussion of cascade models, Kolmogorov
theory, and turbulence.

The problem, thus, may be summarized as the question of understanding the interaction
between modes, the exchange of energy between them, starting from the Navier–Stokes
equations.

Without claiming that it solves this problem, we however like to review some “cascade
representation” formulae for solutions to the Navier–Stokes equations, which are clearly
based on the interaction between modes. Rabi Bhattacharya contributed to develop this
interesting approach that we shall review in next pages.

15.2 Fourier Formulation of the Navier–Stokes Equations

For simplicity, let us consider equations (15.1) on the torus [0, 2π]3. Write the Fourier
series u (t, x) =

∑
k∈Z3 uk (t) eik·x, p (t, x) =

∑
k∈Z3 pk (t) eik·x where uk (t) takes values in

C
3. The divergence-free condition div u = 0 reads in Fourier variables as k · uk (t) = 0.

By replacing the Fourier series into equations (15.1) and by projecting onto the plane
orthogonal to k to get rid of the pressure, we get

d
dt uk(t) + i

∑

m+n=k

(um(t) · k) πkun(t) = −ν |k|2 uk(t), (15.2)

where the projection is defined as πkv =
(
I− k⊗k

|k|2
)
v, for v ∈ R3, and we have used the identity

uk1 (t) · k2 = uk1 (t) · k, following from the divergence free condition. These equations are
already full of information about the interaction between modes. The difficulty lies in the
nature of the bilinear map

(um, un) �−→ bk(um, un) := i
(
um · k

|k|
)
πkun
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which fulfills the easy bound |bk(um, un)| ≤ |um| |un| but certainly has other more hidden
algebraic properties of major importance, however not easy to exploit. From (15.2) one
deduces the energy balance

1
2

d
dt |uk|2 + |k|

∑

m+n=k

cu
k,m,n|uk| |um| |un| = −ν|k|2|uk|2

where the coefficients cu
k,m,n(t), depending on the solution, are given by

cu
k,m,n(t) = bk (̃um(t), ũn(t)) · ũk(t)

where for any k we write ũk =
uk
|uk | . We have written the energy balance in this peculiar

form for comparison with the identity (15.4) below. The difficulty here is that it is not
clear when the energy flux is stronger in a direction more than another. As a comparison,
let us mention the following simplified model (called dyadic model of turbulence, see
[11, 3, 2]), made of scalar valued equation

d
dt Xn (t) = −νkαn Xn (t) + kn−1X2

n−1 (t) − knXn (t) Xn+1 (t) (15.3)

where it is possible to understand very well the flux of energy between components, at
least when all Xn (t) are positive. Indeed here

1
2

d
dt |Xn (t)|2 = −νkαn |Xn (t)| + kn−1X2

n−1 (t) Xn (t) − kn |Xn (t)|2 Xn+1 (t) (15.4)

and thus, for solutions with all positive components, the energy 1
2 |Xn (t)|2 of mode n in-

creases due to mode n − 1 and decreases due to mode n + 1. The energy flux is from large
scale to small scale structures.

For equations (15.2) this is still obscure. There are brilliant rigorous examples, however,
in the literature, where something has been said. Let us mention A. Shnirelman [28], who
uses the fact that Fourier pairs of modes (k1, k2), of the form k2 ∼ −k1, or more precisely
k2 = −k1 + k0, with small k0 ∈ Z

3, produce an effect bk0

(
uk1 , uk2

)
at mode k0 close to

the origin. For large |k1| (hence large |k2|) we have a sort of inverse cascade, we have
small scale structures which transfer energy to large scale structures. In [28] the inviscid
equations are considered

d
dt uk (t) + |k|

∑

m+n=k

bk (um, un) = f N
k (t) , uk (0) = 0

with f N =
(

f N
k

)
k∈Z3

having high amplitude Fourier components at some k1 and k2 = −k1 +

k0 with |k1| ∼ N and |k0| ∼ 1 (and f N
k = 0 for the other k’s). As N → ∞ the forcing

term converges weakly to zero and the solution uN maintains, due to the inverse cascade,
a nonzero amplitude at k0, producing in the limit a nonzero solution which started from
the zero initial condition, without forcing term (in particular, that solution is not energy
preserving). The precise construction in [28] is obviously more elaborated than the short
description given here.
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15.3 Picard Iteration and Deterministic Cascade Representation

We may rewrite equation (15.2) as

uk (t) = e−ν|k|
2tuk (0) +

∫ t

0
e−ν|k|

2(t−s) |k|
∑

m+n=k

bk (um (s) , un (s)) ds. (15.5)

A natural scheme to prove for instance existence of solutions, or for the numerical approx-
imation etc., is the iteration

un+1
k (t) = e−ν|k|

2tuk (0) +
∫ t

0
e−ν|k|

2(t−s) |k|
∑

m+"=k

bk

(
un

m (s) , un
" (s)
)

ds, (15.6)

with u0
k (t) := e−ν|k|

2tuk (0). We follow here the presentation given by Gallavotti [14], Ch. 1,
Section 12. Advanced results on this approach can be found in the paper by Bhattacharya
et al. [4]. Since bk is bilinear, one can substitute un

k1
(s) and un

k2
(s) given in terms of un−1

· (·)
and u0

· (·) and so on, arriving at a series development based only on u0
· (·). For instance,

just to have a rough idea, u2
k(t) is the sum of five terms, three of which are (the first one in

place of the dots is just u0
k(t) but it is omitted for comparison with the picture below)

u2
k(t) = . . . + |k|

∫ t

0
e−ν|k|

2(t−s)
∑

k1+k2=k

bk(u0
k1

(s), u0
k2

(s)) ds (15.7)

+ |k|
∫ t

0
e−ν|k|

2(t−s)
∑

k1+k2=k

|k2|
∫ s

0
e−ν|k2|2(s−r)·

· bk

( ∑

k21+k22=k2

bk2 (u0
k11

(r), u0
k12

(r)), u0
k2

(s)
)

dr ds + . . .
(15.8)

+ |k|
∫ t

0
e−ν|k|

2(t−s)
∑

k1+k2=k

|k1| |k2|
∫ s

0

∫ s

0
e−ν|k1|2(s−r)e−ν|k2|2(s−r′)·

· bk

(∑

k11+k12=k1

bk1 (u0
k11

(r), u0
k12

(r)),
∑

k21+k22=k2

bk2(u
0
k21

(r′), u0
k22

(r′))
)
,

(15.9)

all given explicitly as suitable multi-linear combinations of u0
· . Figure 15.1 shows a (very

rough) graphical representation of the three terms in equations (15.7), (15.8), and (15.9).
In [14] the expansion is written symbolically as

un
k (t) = u0

k (t) +
∑

1≤m≤2n

∑

Θ∈m-trees

Θ
(
k, t, u0
)

with a suitable definition of the set of all m-trees and of the operationΘ
(
k, t, u0
)
. Therefore,

if a suitable limit takes place, we have the representation

uk (t) =
∑

m≥0

∑

Θ∈m-trees

Θ
(
k, t, u0
)
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Fig. 15.1 Trees associated with the terms (15.7), (15.8), and (15.9).

where, by convention, we write Θ
(
k, t, u0
)
= u0

k (t) if Θ is the 0-tree. For conceptual com-
parison with the probabilistic representations detailed below, we see here that, under proper
conditions, one can express the solution as a series in terms of the initial condition.

Beside [4], let us also mention the classical work of T. Kato [17] and the recent approach
of Y. Sinai [30], see also [1, 29] and [15], which share something with the arguments above.

15.4 Stochastic Cascade and Majorizing Kernels

In the expressions above we see (up to a factor |k|) the function ν |k|2 e−ν|k|
2t which is the

exponential density with average 1
ν|k|2 . Along with the splitting structure of modes k ←→

k1 + k2, this resembles a probabilistic approach to PDEs, with exponential waiting times
and random branching. The idea of using branching processes as the underlying engine of
probabilistic representations is not new, let us mention H. P. McKean pioneering work [21],
as well as [31, 16]. In these papers branching is coupled with diffusion, and the stochastic
representation is derived directly in the physical space, so that the linear operator is limited
to generators of diffusions and the nonlinearity is polynomial.

15.4.1 The Stochastic Cascade of Le Jan and Sznitman

Le Jan and Sznitman [19] have seen in these ingredients the opportunity to develop a prob-
abilistic representation formula, which they have called stochastic cascade representation.

Let us give a brief outline of the method. Here we borrow the presentation of [6].
Consider PDEs on R

d with periodic boundary conditions, possibly vector valued with
values in R

r , of the type
∂tu = Au + F(u) + f , (15.10)

where A is an operator with a complete set of eigenfunctions, F is a polynomial nonlinear-
ity (that for simplicity here we assume quadratic) in u and its derivatives, and f is a given
driving function. The case of full space can be considered with similar ideas.
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In short, the solution u is expanded into Fourier series, and the PDE is transformed
into a system of countably many ODEs for the possibly rescaled1 Fourier coefficients
χ(t) : Zd → C

r that solve an infinite dimensional system of Cr-valued ODEs

χ̇k = λk

[
− χk + Cb

∑

m,n∈Zd

qk,m,nBk,m,n(χm, χn) + dkγk(t)
]
. (15.11)

with k ∈ Zd. The constants λk > 0 (that will determine the rate of particle evolution), qk,m,n,
dk ∈ [0, 1] (which will determine the probabilities of branching and dying), and Cb ≥ 0
(the branching constant) are fixed, as are bilinear operators Bk,m,n : Cr×Cr → C

r satisfying

|Bk,m,n(χ, χ′)| ≤ |χ| |χ′|

for all χ, χ′ ∈ Cr . In view of the probabilistic representation we assume

qk + dk = 1, k ∈ Zd, and qk → 0, as |k| → ∞

where qk =
∑

m,n∈Zd qk,m,n, and we consider the system above in its mild formulation. There
is considerable flexibility when choosing the coefficients of the ODE system, and one can
adjust the probabilities qk,m,n, and dk by adjusting the constant Cb and considering rescaled
forcing data γ. In particular, in an equation where the probabilities qk, dk do not add up
to 1, it is always possible to adjust dk and the forcing data so that this constraint holds.
Similarly, an equation with Cb replaced by bounded functions of k can be recast into the
same form by forcing the k dependence into the probabilities qk and dk.

We describe first the branching tree. Fix k ∈ Zd, a tree rooted at k is a system of particle
positions, birth, branch, and death times, defined inductively over the particles. At the root
the birth time is zero, and the branching and death times are exponential with rate λk. Given
a tree, each particle, with position say k′, either dies with probability dk′ , or disappear
giving raise to two new independent particles, with positions m and n with probability
qk′mn. The new particles will have a lifespan distributed as independent exponential random
variables with rates λm and λn. Notice that by construction, given a branching particle
giving raise to two particles at positions m and n, and conditional to its genealogy, the two
sub-trees generated are independent and with the same distribution of trees rooted at m and
n. To ensure that the tree has only finitely many branches before a given time t, a sufficient
condition is that qk ≤ dk.

The solution of the system is represented by the expectation of a recursive functional R
over a tree of branching particles. A branching event triggers the multiplication by Bk,m,n

of the two functionals corresponding to the two branches rooted at m, n, and a death event
the evaluation of the external force. For instance if r = 1 and all the bilinear forms Bk,m,n

coincide with the usual product in C, then the evaluation over a tree T rooted at k is

Rt(T ) = CBt

b

∏

α∈Dt

γkα(t − tα)
∏

α:t∈[sα,tα)

χkα(0),

1 For instance, following Le Jan and Sznitman [19], for the three-dimensional Navier–Stokes we set χk(t) =
|k|2uk(t).
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where Bt and Dt are the number of particles that have branched and died, respectively,
before time t. If χ(0) ∈ "∞(Cr) and γ ∈ L∞([0, T ], "∞(Cr)), the representation formula for
χk is given by the expectation of the functional on all trees rooted at k,

χk(t) = Ek[Rt],

whenever the expectation converges absolutely.
The Navier–Stokes equation in dimension three fit into the general scheme given above,

with d = r = 3, and a suitable choice of the kernels qkmn and of the products Bk,m,n (here we
take zero driving force). In particular, as we have already mentioned, Le Jan and Sznitman
[19] take χk = |k|2uk.

15.4.2 Majorizing Kernels

Rabi Bhattacharya and his group have considerably contributed to the analysis with a
generalization of the stochastic cascade introduced above, see among others the papers
[4, 5] and [24, 26, 33, 32, 10, 25], adding in particular a degree of freedom of conceptual
importance, namely the majorizing kernels.

Let h : Z3\{0} → (0,∞) be a function such that (h∗h)(k) ≤ C|k|h(k) for some C > 0. Up
to other details and some additional generality, a function h with the previous property is
called a majorizing kernel (with exponent one). It generalizes the case h(k) = 1/|k|2 treated
by [19]. Following [4], given such h, setting χk (t) := uk (t) /h (k), from (15.5) we get

χk(t) = e−ν|k|
2tχk(0) +

∫ t

0
ν|k|2e−ν|k|

2s
∑

m+n=k

h(m)h(n)
ν|k|h(k)

bk(χm(t − s), χn(t − s)) ds.

We introduce the Markov kernel Hk(m, n) := h(m)h(n)
(h∗h)(k) with support on the set of pairs (m, n)

such that m + n = k. Setting m(k) := (h∗h)(k)
ν|k|h(k) we have

χk(t) = e−ν|k|
2tχk(0) + ν|k|2

∫ t

0
e−ν|k|

2sm(k)
∑

k1+k2=k

Hk(k1, k2)bk(χk1 (t − s), χk2(t − s)).

The property of majorizing kernel guarantees that m(k) ≤ 1. Recall also that |bk(χm, χn)| ≤
|χm| |χn|, already mentioned above. These two properties are of basic importance to control
the convergence of the expected values described below.

When the stochastic cascade probabilistic scheme is applied to the last equation above,
the solution is given by

uk(t) = h(k)Ek[Rt].

Up to details, the main result of [4] states that when supk∈Z3\{0}
|uk(0)|
h(k) is small enough (de-

pending on ν), a unique solution exists of the Navier–Stokes equations, given by the proba-
bilistic representation formula above. These theorems are competitive with those obtained
by various authors using harmonic analysis tools, see for instance [9], and allow to capture
several possible spaces of initial conditions, other than the pseudo-measures space of [19].
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15.5 Pruning the Trees

The major limitation of the previous two approaches (the deterministic and stochastic cas-
cade representations) is that they apply only for relatively small (in suitable norms) initial
conditions, since the series or the expected values have to converge similarly to a geo-
metric series. There are cancellations, but it is very difficult to use them. Thus one has to
majorize the complex multi-linear expressions by products of positive quantities; at the
end this requires restrictive assumptions on data.

For a very simple model of those problems, namely a one-dimensional differential equa-
tion with quadratic nonlinearity, it has been shown by F. Morandin [23] that Borel summa-
bility applies, a form of renormalization theory which takes advantage of cancellations.
This approach allows one to treat arbitrary initial conditions. Unfortunately, at present,
this technique did not find a proper extension even to two-dimensional ordinary differen-
tial equations.

The paper [6] provides both an explanation of the issue through a comparison equation,
whose finiteness implies integrability of the recursive functional, and a way to avoid non-
integrability by suitably pruning the tree.

15.5.1 The Comparison Equation

The comparison equation for the infinite dimensional system of ODEs is obtained essen-
tially by neglecting any geometric information about the (vector) directions of the data in
the system, namely, we consider a new infinite dimensional system by taking the norm of
the data |χk(0)|, γk and for the system (15.11), where each product Bk,n,m is replaced by the
standard product in C

r, namely

˙̃χk = λk
(
−χ̃k +Cb

∑

m,n∈Zd

qk,m,nχ̃mχ̃n + dk |γk|
)
,

and let R̃ be the evaluation operator associated with the above equation. We now look for
nonnegative real solutions χ̃k, so that there is no issue in the definition of the expectation
of R̃, as it takes values in the positive real numbers. Clearly, when the expectation of R̃ is
finite, it provides a mild solution of the comparison equation. A sort of converse holds, as
given in the following comparison theorem, see [6, Theorem 4.1].

Theorem 1. If the expectations of R̃ are finite for all t ∈ [0, T ] and k ∈ Z
d, then the

expected values define a mild solution of the comparison equation.
Conversely if there exists a finite mild solution of the comparison equation on [0, T ],

then the expectations of the evaluation operator are finite for all t ∈ [0, T ] and k ∈ Zd.
Moreover, the probabilistic representation is the smallest positive solution of the com-

parison equation. Finally, the comparison Ek[|Rt|] ≤ Ek[R̃t] holds, with equality whenever
|Bk,m,n(χ, χ′)| = |χ| |χ′|.
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In other words the comparison equation essentially governs the convergence of the expec-
tation of the original system (15.11), but not the finiteness of the solutions of the original
system (15.10).

Let us consider a few examples. The first example is the most elementary, namely the
one-dimensional ODE ẋ = −x + x2. The comparison equation is the same ODE, but with
positive initial data only. Now we see immediately why the probabilistic representation
blows up for initial data below −1, while the solution is global for the same initial data.

For a PDE example, consider the one-dimensional Burgers equation

∂tu − Δu + (u · ∇)u = f ,

with periodic boundary conditions and zero mean, where f is an external forcing. If we
expand the solution in its Fourier coefficients uk, define the weights wk = |k|α, and set
χk = wkuk, λk = |k|2 for k � 0, qk,m,n = C−1

b
|n|wk
λkwmwn

, and Bk,m,n(χ, χ′) = −i(χ · n
|n| )χ

′,
whenever m + n = k (and zero otherwise), then the Burgers system can be recasted in the
general form (15.11), if we choose α > 1, Cb sufficiently large that qk < 1 and define
dk = 1 − qk and γk = ( fkwk/λkdk) for k ∈ Zd, k � 0.

Let us obtain now the comparison equation associated with the Burgers system. By
defining ũk = w−1

k χ̃k, we obtain a comparison equation that in spatial coordinates reads

∂tũ = Δũ + ũ(−Δ)
1
2 ũ + f̃

where f̃ has Fourier coefficients | fk |. Notice that this scalar comparison PDE is independent
of the choice of weights, so in particular no majorizing kernel, as defined in the previous
section, can fix the divergence. Similar conclusions can be given for the Navier–Stokes
equations, but with a comparison equation that has a less simple and evocative comparison
equation.

The scalar comparison equation associated with the Burgers system has quadratic
growth and it is not difficult to show that, for instance with zero forcing and large enough
initial data, solutions blow up in finite time, see for example [20] and the references therein
for the case of branching with diffusion. Notice finally that, at least for d = 1, the equality
in the last part of the theorem above holds. This implies that the stochastic representation
is well defined if and only if the corresponding comparison equation has a solution with
finite Fourier coefficients.

15.5.2 Pruning the Tree

To understand the idea of pruning introduced in [6], we consider the seemingly simple
example ẋ = −x+x2. The probabilistic representation of the solutions of this ODE is x(t) =
E[u(0)Nt], where Nt is the number of particles at time t of a simple rate one branching
process starting from a single particle at time 0. The representation is well defined for
all time t ≥ 0 if and only if |x(0)| ≤ 1, and is non-well defined if x(0) < −1, where the
ODE has global solutions. The underlying reason is that the absolute convergence of the
expectation destroys the possible cancellations.
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In order to try to take into account those cancellations, we try to keep the number
of particles finite, so to approximate the expectation with a finite sum. To this aim we
formulate a first modification of the branching process. Assign to each particle a label from
the positive integers. Whenever a particle branches, the two offspring have label n − 1. A
particle with label 0 dies if tries to branch. Notice that this approximation is already given
in [19] for their uniqueness proof (see also [4]). Let xn be the expectation of the evaluation
operator for these pruned trees. It turns out that the functions (xn)n≥0 satisfy the explicit
iterative scheme

ẋn = −xn + x2
n−1,

that is the one-dimensional counterpart of (15.6). Unfortunately, the limit as n→ ∞ of the
above explicit iterative scheme fails to exist for large t if x(0) < −1.

To fully take into account the cancellations, we formulate a second and more effective
modification. A branching particle with label n gives raise to two particles, one with label
n−1 and one with the same label of its parent.2 The expectation of the evaluation operator
this time leads to the semi-implicit iterative scheme

ẋn = −xn + xn−1xn,

and it is straightforward to check that xn(t) is well defined for all n and t. Moreover, xn

converges to the solution x(t) of the original ODE problem for each initial condition u(0) ≤
1. In other words we have the stochastic representation

u(t) = lim
n→∞

E
[
x(0)Nt(n)],

where Nt(n) is the number of particles at time t originated by a root particle with label n.
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ON A STATISTICAL THEORY OF SOLUTE TRANSPORT 
IN POROUS MEDIA* 

R.N. BHATTACHARYAt AND V. K. GUPTM 

Abstract. Consider the motion of a solute molecule in a homogeneous isotropic porous medium 
saturated with a pure liquid. The following assumptions are made on the velocity of the molecule: the time 
intervals between successive collisions of the molecule with the solid matter of the medium are i.i.d. random 
variables; the molecule is scattered by these collisions in random directions which are i.i.d. uniform and 
independent of the collision times; in between two successive collisions with the solid phase the velocity of the 
molecule is governed by the Langevin equation. Under these and mild additional assumptions it is proved that 
the position {X(t): t ~ 0} of the molecule is approximately a Brownian motion. If the solute molecules are 
weakly interacting among themselves, then the above result leads to a macroscopic parabolic equation (1.14) 
governing solute concentration. If the successive collision times with the solid phase are assumed to be 
exponential, then the velocity {v(t): t ~ 0} as well as {(v(t), X(t)): t ~0} are Markovian. This leads to laws of 
mass, momentum, and energy conservation for solute transport. 

1. Introduction and main results. The point of view adopted in this article is 
essentially that of kinetic theory. The physical problem treated here may be described 
as follows. Solute molecules are carried by a pure liquid (say, water) moving with a 
constant macroscopic velocity u0 (=flux divided by porosity) through a homogeneous 
isotropic porous medium. The different solute molecules are assumed to be in weak 
interaction among themselves, so that immiscible substances (like oil) or very high 
concentrations of miscible substances are not considered. The medium is assumed to be 
saturated with the liquid. The mass of the solute molecule is assumed to be much larger 
than that of a liquid molecule. The magnitude of the macroscopic velocity u0 is assumed 
to be moderate. Under these circumstances the concentration of the solute, as a 
function of time and space coordinates, is generally taken to satisfy a parabolic equation 
with constant coefficients (see Fried and Combarnous (1971), where references to 
earlier literature may also be found). In this article such an equation will be derived 
from molecular considerations. The mathematical assumptions on the velocity v(t) = 
(v<1l(t), v<2>(t), v<3>(t)), t>O, of the solute molecule are described in the following 
paragraph. Roughly, the particle suffers collisions with the solid phase (some times 
referred to as the 'pore wall') at successive times 7t. 72, · · · ; in between collisions the 
velocity process is governed by a Langevin equation; the effect of collision with the solid 
phase is to scatter the particle in a random direction. 

1.1. Assumptions. Consider a probability space (D, .sd, P,J on which are defined 
three independent stochastic processes: 

(1.1) 

(i) a three dimensional standard Brownian motion B(t) = (B< 1J(t), B<2J(t), B<3 > 

(t)), t~O; 
(ii) a sequence of independent and identically distributed (i.i.d.) nonnegative 

random variables { 1);};,1 having finite fourth moments and such that f..L = E17; is 
a scale parameter for the common distribution function F,..; 

(iii) a sequence of i.i.d. random orthogonal matrices {0;};,1 whose common 
distribution is the normalized Haar measure on the group of all real 3 x 3 
orthogonal matrices. Define 

i 

7; = I 11i 
i=l 

(i ~ 1), 7o = 0. 

* Received by the editors. This research was supported by the National Science Foundation under Grants 
Eng 76-09081 and Eng 78-05155. 

t Department of Mathematics, University of Arizona, Tucson, Arizona 85281. 
:j: Department of Civil Engineering, University of Mississippi, University, Mississippi 38677. 
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It is assumed that, conditionally given {Tn}ne;b { On}ne;b in the time interval ( T;, Ti+ 1] the 
velocity v (t) evolves as an Ornstein-Uhlenbeck process, i.e., it satisfies the following 
stochastic differential equation (also known as a Langevin equation) in the usual sense 
(see McKean (1969) or Nelson (1967)): 

(1.2) dv(t)= -{3(v(t)- u0 ) dt+ gdt+O'dB(t) 

where {3 is a positive constant, g is the acceleration (vector) due to gravity, and 0' is a 
constant 3 x 3 nonsingular symmetric matrix. Also, assume that there is a constant p, 
0 ~P ~ 1, such that 

(1.3) v(T; +) = pO;v(T;) (i ~ 1), 

where v(T; +) = limdoV(T; + t). Finally, assume that 

(1.4) v(O) = v(O+) = Vo, 

where v 0 is a random vector independent of the three stochastic processes (i)-(iii) 
mentioned above. 

1.2. Main results. Write 

Wo = uo+ g/ {3, 

(1.5) 

f(z) = 1-.!_ ('"' (1-e-zs)Fl(ds), 
z Jo 

where F 1 is the distributing function of rtd p.,. Let wbwo denote the matrix whose (i, j) 
element is w~lw~l. Also write 

g(z)=1-_!_ feo {2(1-e-zs)-!(1-e-zzs)}F1(ds), 
z Jo 

(1.6) h(z) =leo { s -;(1-e -zs) r F 1(ds)- (leo {s -!(1- e -zs)}F1(ds)r 

~ 1 I 

D = g({3p.,) 2 D + p.,h({3p.,)wowo. 
{3 

The position process X(t) = (X<ll(t), x<2l(t), X(3)(t)), t ~ 0, is defined by 

(1.7) X(t) =X0 + r v(s) ds (t~O), 

where X 0 is any random vector. Also define 

(1.8) 
Y; = r v(s) ds 

Ti-l 

(i ~ 1), 

where [a] is the integer part of a. The P,.- distribution of S,. (·)is a probability measure on 
D[O, 1]-the space of all right continuous functions on [0, 1] into R 3 having left limits, 
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endowed with the Skorokhod topology (see Billingsley (1968, Chap. 3)). Define 

(1.9) 8 = /3/L. 
1 

D1 = {3 2 D, 

and regard 8, D1o IL as independent parameters. This reparametrization (of {3, D, and IL) 
amounts (physically) to an appropriate choice of scales for time and distance, as we 
argue after the statement of Theorem 1. 

PROPOSITION 1. As IL~O, while 8 and D 1 remain fixed, the P,.- distribution of S,.(·) 
converges weakly to the Wiener measure with zero drift vector and diffusion matrix 
g(8)D1. 

Our first main result, Theorem 1, is deduced from this. 
THEOREM 1. As IL~O, while 8 and D1 remain fixed, the P,.- distribution of the 

stochastic process IL 11\X(t'IIL)-(t'IIL)a), O~t'~1. converges weakly to the Wiener 
measure with zero drift vector and diffusion matrix g(8)D1. 

It is important to understand the physical significance of the parametrization (1.9). 
Suppose we introduce new scales for time and distance: 

(1.10) t' = ct, (c >0), 

or, equivalently, consider the new stochastic processes 

(1.11) v(t') = !!:__ X{t') = c - 112v(t' 1 c) 
dt' 

Then the Langevin equation (1.2) becomes 

(1.12) dv(t')= -{i(v(t')- uo) dt' + g dt' +iJdB(t') 

(t' ~0). 

where B(t') = c 112B (t' I c), t' ~ 0, is again a standard Brownian motion, and 

ti=f3lc, uo=uolc 112, g=glc312, iJ=a/c, ji=c/L, 
(1.13) 

jj = iJ2= u2lc2. 

Note that /3/L = /3/L is independent of c. Hence if we take c = IL and let IL~O, /3/L does not 
change. The same is true of Dl{i2 • Theorem 1 implies that, when observed at time 
points far apart compared to /L, X(·) is approximately a diffusion with drift a and 
diffusion matrix g(f3/L)/3-2D. The multiplication by IL 112 (in Theorem 1) of [X(t' I /L)
(t'l /L)a] merely prevents the latter from blowing up (i.e., brings it back to scale) as /L~O. 
In order that the theorem be of physical significance the neglected term in D (namely, 
/Lh(/3/L)wbwo) should be very small compared to D. It may be shown that in the typical 
physical problem D (or, its smallest eigenvalue) is of the order of 10-4 while 
jw0 j2 h(/3/L)/L is of the order of 10-8 , when cgs units are used (see Gupta et al. (1979)). 

To deduce the macroscopic equation governing solute concentration c(t, x) assume 
now that the velocity processes of the different solute molecules are independent 
(although, in reality, they are weakly dependent-due to the diluteness of the concen
tration). Since given a fixed set of initial positions (i.e., given an initial concentration) 
the position processes are independent, one may invoke the law of large numbers (see, 
e.g., Bhattacharya et al. (1976, p. 506)) to assert that the concentration is macroscopic
ally stable and satisfies the parabolic Fokker-Planck (or, forward) equation 

ac(t,x) g(/3/L) a2c(t,x) 
(1.14) --=-(o:,gradxc(t,x))+-2 2 LDkl (k) (I)· 

at /3 k,l ax ax 
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In general, the basic parameters {3, D, f.J- should be regarded as functions of the 
convective flux u0 • In case u0 = 0 it is reasonable to assume that {3 and D are the same as 
in the classical case of diffusion in pure liquids (see Nelson (1967) and Chandrasekhar's 
article in Wax (1954)). Then, for u0 = 0, D =dol where d0 is a scalar and I is the 3 x 3 
identity matrix. Hence for this case the second order terms in (1.14) reduce to 
g(f3J.~-)(d0/{3 2) times the Laplacian of c. Thus the 'diffusion coefficient' in the porous 
medium is g(f3f.J-) times that in pure liquid. But, from (1.6), 0 < g(z) < 1; for if z > 0, then 
2(1- e -zs)- ~(1- e - 2 zs) is strictly positive for all s > 0. This leads to the conclusion that 
the diffusion coefficient in the porous medium is smaller than that in the pure liquid; this 
is in accordance with experimental observations (see, e.g., Fried and Cambarnous 
(1971, Fig. 12, p. 193)). 

The assumption that the common distribution of O;'s is the Haar measure 
essentially means that the unit vector giving the direction cosines of the velocity of the 
solute molecule after collision (with the solid phase) is equidistributed on the unit 
sphere. This may be justified by a strict interpretation of isotropy of the porous medium. 
It should be noted that all we require of the common distribution is that 

(1.15) 

for every constant vector v. If the distribution is the Haar measure, then (1.15) follows 
from the fact that 0; and -0; = (-/)0; have the same distribution (since -/ is an 
orthogonal matrix). 

The assumption that f..l- = E17; is a scale parameter is also quite reasonable on 
physical grounds. 

In case of diffusion in pure liquids a dynamical derivation of the Langevin equation 
for the case u0 = 0 has been given by Mazur and Oppenheim (1970) starting from 
equations of motion and Gibbs distribution on the phase space of liquid molecules, 
under the assumption that certain correlation functions are short lived in time. 

It is a significant feature of the present theory that the parameter p does not appear 
in (1.14) (or in the parameters of the limiting process occurring in Proposition 1 and 
Theorem 1). The concentration of the solute is thus insensitive to the nature of collision 
(elastic or inelastic) with the solid phase. 

Turning to the velocity process, one may show without much difficulty that, 
conditionally given 17;'s and O;'s it is Gaussian and Markovian with nonhomogeneous 
transitions. One may show that, under the additional assumption that 1J; 's are exponen
tially distributed with parameter 1/ f.J-, the velocity process is (unconditionally) Marko
vian with homogeneous transitions. Although it is simple to establish this directly, we 
shall use an interesting and useful representation of the process (v(t), X(t)), t ~ 0, as the 
solution of a generalized Ito equation (see Gihman and Skorohod (1972, pp. 288-300)). 
For this purpose let v1( ·,·)be a Poisson random measure which 

(a) is independent of {B(t): t ~ 0} and 
(b) is a Poisson process over (i.e., indexed by) the Borel sigma field of [0, oo) x R 3 

such that 

(1.16) 

where 1T1 == f.J- - 1 H h H1 denoting the uniform distribution on S2 = { v E R 3 : I vI = 1}. The 
statement (b), of course, implies that the process v1 ( ·,·)has independent increments, 
each of which is a Poisson random variable with a parameter specified by (1.16). One 
may check without difficulty (see Gihman and Skorohod (1972)) that the unique 
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nonanticipative solution of the stochastic differential equation 

(1.17) 
dv(t) = -{3(v(t)-u0 - g//3) dt+udB(t) 

+ r (pjv(t)!a1-v(t))v1(dt, dad, 
J{la1l~ 1} 

v(O) = Vo, 

has the same law as that of the velocity process constructed earlier (with exponentially 
distributed 1'7; 's). One may represent the {(v(t), X(t)): t ~ 0} process also by 

d( v (t)) = (-/3 (v (t)- Uo- g/ /3)) dt + Y. dB(t) 
X(t) v(t) 

(1.18) + l (pjv(t)!a1- v(t)) v(dt, da), 
{a~(a, O)ER 3xR 3} 0 

v(O) = v0 , X(O) = x 0 , 

where %=(~g) is a 6 x 6 matrix, {B(t): t ~ 0} is a six dimensional standard Brownian 
motion, and v( ·,·)is a Poisson random measure on [0, oo)xR 3 x{O} withE(v([t1 , t2 ], 

B) X {O}) = (t2- t1hr1(B). 
THEOREM 2. Assume, in addition to the hypothesis of Theorem 1, that 17;'s are 

exponentially distributed with common parameter p, - 1 • 

(a) Then the processes {v(t): t ~ 0}, {(v(t), X(t)): t ~ O} are both Markovian having 
homogeneous transition probability functions. 

(b) If!{; is a function on R 3 x R 3 having bounded continuous derivatives of second 
and smaller orders, then the function 

(1.19) h(t, v', x') =Ev·.x·l/J(v(t), X(t)) 

satisfies the backward equation 

(1.20) ah h ~ ,(i) ah -lh h -=Lh =L1 + L... v --;m-p, +B , 
at ;~1 ax 

where Ev',x' denotes expectation when the initial state is (v', x') and 

(1.21) 
1 3 ih 

L1h (t, v', x') = -2 I D;i ,ul . ,w 
i,i~l av av 

/3 ~ ( ,(i)- (i)) _!!!:_ 
L... v Wo ,(il• 
i~l av 

and 

(1.22) Bh(t, v', x') = p, -l J h(t, pjv'la1. x')H1(da1). 
s2 

Remark. In case p = 0, the transition probability of the velocity process has the 
density 

(1.23) 
-t ro-t (t/~-trf'nsn-l 

q(t,v!v')=e 1'"qo(t,v!v')+ I e 1'"--1- --n-qo(t-s,vjO)ds, 
n~l n 0 0 t 

where q0 is the transition density of the Ornstein-Uhlenbeck process, i.e., qo(t, v!v') is 
the Gaussian density (at v) with mean e - 13'(v'- w0 ) + w0 and dispersion matrix (1/(2/3)) 
· ( 1 - e - 213')D. The relation ( 1.23) is obtained by conditioning with respect to the number 
of collisions in a time interval of length t. Given that this number is n, the conditional 
distribution of the time of the last collision has the density nsn-1/ tn, 0 ~ s ~ t (see Karlin 
and Taylor (1975, p. 160)). 
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Section 2 contains proofs of Theorems 1, 2. In § 3 we derive the formal adjoint of 
the backward operator appearing on the right side of (1.20) and show how important 
conservation laws may be obtained, in case the transition probability is sufficiently well 
behaved. 

2. Proofs. Throughout E( ··I{··}) will denote conditional expectation given the 
sigma field (determined by){··}. 

Proof of Theorem 1. Write 

(2.1) wo= uo+ g/{3, w(t) = CT - 1(v(t)- wo), 

and rewrite (1.2), (1.3) and (1.4) as, 

dw(t) =- {3w(t) dt + dB(t) (Ti-l< t ~ Ti) 

(2.2) w(ri +) = pCT - 1 Oi(CTw( Ti) + w0)- CT - 1 w0 (i ~ 1) 

w(O +) = CT - 1(vo- wo). 

It follows from the mathematical assumptions that conditionally given the sequences 
{r;}i;,;1, { Oi}i;,;I. the process w(t), t > 0, is Markovian having a transition density q1 given 
by (see Nelson (1967, pp. 55, 56)) 

q 1(t, w; s, w') =Gaussian density (in w) with mean vector 

(2.3) c(t-s)w' and covariance matrix (1/(2{3)) (1-c2(t-s))J 

(Ti-l <s <t~Ti+h or s = 0+ and 0< t ~r1) 

where I is the 3 x 3 identity matrix and 

c(t) = e-13'. 

Also, in view of the "boundary condition" in (2.2), one has, fort in (Ti-l. ri], i ~2. 

q 1 (t, w; Ti-l. w') =Gaussian density with mean vector 

(2.4) c(t- Ti-l){pCT -loi-1 (CTW 1 + w0)- CT - 1wo} and covariance 

matrix (1/(2{3))(1- c\t- Ti-l))J (Ti-l< t < ~ Ti). 

Now in view of (2.1), conditionally given {r;}i;,;l and { O;}i"'I. {v(t); t > 0} is also a 
Markov process whose transition density pis obtained on transformation of (2.3), (2.4) 
as 

(2.5) 

Write 

(2.6) 

p 1 (t, v; s, u) =Gaussian density (in v) with mean vector 

c(t-s)(u- w0)+ w0 and covariance matrix 

(1/(2{3))(1- c2(t- s ))D if Ti-l< s < t ~ Ti, 

p1 (t, v; Ti, u) =Gaussian density with mean vector 

pc(t- r;)Oiu + (1-c(t- r;))w0 , and covariance matrix 

(1/(2{3))(1- c 2(t- Ti))D if Ti < t ~ Ti+l· 

N(t) =sup {n ~ 0: T, ~ t}, t~O. 

and let 'jg, denote the sigma field generated by {(B(s), N(s)):O~s~t}. Then Ti is a 
stopping time relative to {'jg,: t ~ 0}. Let 'jgr, be the pre Ti sigma field. Finally, le~ :Yii 
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denote the sigma field generated by ~T., T/i+1 and ob ... '0;-1 (i ~ 1), where Oo==l. 
Then by (2.5) and the facts that 

(i) 0; is independent of :Ji;, 
(ii) EO;v = 0 for every constant vector v, 

one has 

(2.7) 
E (I{T1_ 1 <s,;T1)V (s )I:Ji;-1) = (1- C (s- T;-1))I{T,_ 1 <s,;T,} Wo, 

E(Y;[~-1) = (t'' (1-c(s)) ds) wo = ( T/; -~(1-e-13"•)) w0 • 

Here IA denotes the indicator function of the set A. Since Y1, · · · , Y; _1 are measurable 
with respect to :Jf;_1 and are independent ofT/;, (2.7) leads to 

E(Y;[Yt. · · ·, li-1)=E( T/;-~(1-e-13"•)) Wo 

(2.8) 

= (JL -~ ( 1- ro e-13sF,.(ds))) w 0 =BY;. 

Thus, for every unit vector x, 

(2.9) X= (x, JL - 112( Y;- EY;)) (i ~ 1), 

is a sequence of martingale differences. The relations (2.5) also lead to 

E(I {T1_ 1 <s,;T1}V (k)(s )v (l)(t)I:Ji;-1) 

= E(I{Tj-l<s<t,;T,}V (k\s )[c (t- s )(v <n(s)- w~l) + w~) JI:Ji;-1) 

{c(t-s) 2 (k) lu;;; 
=I{T,_,<s<t,T,} ~(1-c (s-T;-1))Dkl+c(t-s)E(v (s).';fr;-1) 

· E(v<n(s )1~-1) + (1- c(t- s ))w~l E(v<k\s )1~-1)} 
(2.10) {c(t-s) 2 (kl 

= I{T,_,<s<t,;T,) ~ (1- c (s- 7;-1))Dkl + c(t -s)(1- c(s- 7;-tl)wo 

· (1- c(s- T;-1))w~l + (1- c(t- s ))w~l · (1- c(s- 7;-1))w6k)} 

{c(t-s) 2 
=f{T1_ 1 <s<t,;T1} ~(1-c (S-7;-1))Dkl 

+(1-c(s-7H))(1-c(t-7;-1)) · w6klw~l} 
From this on integration one obtains 

(s<t;'?;7;). 

E(Y(k) y<n I:Ji- ) = Dkl [71 -~ (1- e -13"') +__!__ e -213,,] 
I I I 1 13 2 'II f3 2{3 

(k) (I)( 1 ( -13'1·)) 2 +wo Wo rt;-fj 1-e ' . 

(2.11) 

Again, since Y1, · · · , Y;-1 are measurable with respect to :J';-1 and independent ofT/;, 
E( Y)kl y)n [ Y1. · · · , Y;-1) is the expected value of the last expression in (2.11). From 
this fact and (2.8) it immediately follows that the dispersion matrix of the conditional 
distribution of Y; (given Y1. · · · , Y;-1) is the same as its unconditional dispersion 
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matrix and that this common matrix is JLD (see (1.6)). Therefore, 

B(X~ I yh ... ' Yi-t) = L DktX(k\(l) 

(2.12) k,l 

Also, 

(2.13) 

However, 

(2.14) 

=I g(8)(Dthtx<k\<0 +JLh(8) I (whwohtx<k>x<0 • 
k.l k,l 

X;= IL - 112(x, Y;- BY;)= 1L - 112(x, Y;- B( Y1[.?F;-1)) 

+ 1L - 112(x, B( Yd.?F;-1)- BY;), 

Xi~23JL - 2[(x, Y;- B(Y;[.?F;-1))4 +(x, B(Y;[fF1_t)-BY1) 4 ]. 

~(T;-T;-1)4(r;-T;-1)-1 r (X, v{s)-E(v(s)[fF;-1))4 ds 
'Ti-l 

~71~ r [v{s)-E{v(s)[.?F;-1t ds. 
'Ti-1 

Conditionally given .?F;-h v(s) is Gaussian with mean E(v(s)[.?F;-1) and dispersion 
matrix (2{3)-1(1-c2(s-r1))D for T;-1 <s~r; (see (2.5)). Hence 

E(x, Y;-B(Y;[.?F;-1))4 ~B[ 11; r a2[[D[[2(1-c\s-r;-1))2 ds] 
'Ti-l (3 

(2.15) 

where a, a' are absolute constants (i.e., not depending on the parameters 8, Dh JL). 
Further, by (2.7), 

(2.16) B(x, E(Y;\.?1;-1)- EY;)4 =E(x, { 11; -~(1-e-13";) }wo-BYir ~bJL4, 

where b does not depend on IL· Using (2.15), (2.16) in (2.13) one gets 

(2.17) BXi ~ 23 (a'[[D1[[282 + biL 2) (i ~ 1). 

We shall now apply the functional central limit theorem of Drogin (1972, Thm. 1(a)) to 
{X; : 1 ~ i ~ [JL - 2]}, where [y] is the integer part of y. The fact that for each IL (sufficiently 
small) we require a new probability space (0, .sti, P,J to define a row of X 1 's does not 
cause any difficulty, since the conditional second moment of X 1, given Yh · · · , Y1_ 1 (or 
given Xt, · · ·, X;-1), is nonrandom (see (2.12)) and since we are interested only in weak 
convergence. To make the correspondence with Drogin's result explicit one may let 
IL =n-112, Vm =m:Lk,IDktX<k>xm, and replace Tn by 

(2.18) 

where 

(2.19) 
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The condition 2(a) in Drogin's theorem is verified using Schwarz and Chebyshev 
inequalities and (2.17): 

(2.20) [!/ JL2] 

~lim tL 2 l: (EJLX'~) 112 ·(EJLXi) 112(e/ tL 2)-1 = 0, 
JLto ;~1 

for every e > 0. Since D...,. g(8)D1 as t.t-~0, and since x is an arbitrary unit vector, the 
proof of Proposition 1 is complete. 

In order to deduce theorem 1 from Proposition 1, write 

i=l 
(2.21) 

t'/ JL 

+t.t 112 J v(s) ds (O~t'~ 1). 
TN(t'/~) 

= Z1(t') + t.t 112 Z2(t')a + Z3(t'), 

say. By first conditioning with respect to :Ji;-1 and then using a Chebyshev inequality 
involving the fourth moment to estimate PJL(t.t 112 J;;_,l!v(s )II ds > t:) one easily shows 
that the PJL distribution of Z 3 (t'), O~t'~1, converges weakly (with respect to the 
uniform topology on D[O, 1] or C[O, 1]) to the probability measure degenerate at the 
zero function, as t.t-~0. Next note that the PIJ. distribution of Z 2 (·) is the same as the P 1 

distribution of 

(2.22) O~t'~ 1, 

where M(·) denotes the renewal process (the same as N(·)) corresponding to indepen
dent interarrival times having the common distribution function F 1 (i.e., with tJ. = 1). By 
Theorem 17.3 in Billingsley (1968), the P 1 distribution of the stochastic process (2.22) 
converges weakly to a (nondegenerate) one-dimensional Brownian motion as t.t-~0. 
Hence the PIJ. distribution of tL 112Z 2(·)a converges weakly to the probability measure 
degenerate at zero (function) as tJ.~O. It also follows from the convergence of the PIJ. 
distribution of Z 2 ( ·) that 

(2.23) PJL(supo"''''a!N(t'/t.t-)-t'/tJ. 2!> t-1-~+e)...,.o as t.t-~0, 
for every e > 0 and, in particular, fort:=!. Combining this with Proposition 1 shows 
that the PJL-distribution of Z 1(·) is asymptotically (as t.t-~0) the same as that of 
tL 112 Z:\~{" 21 ( Y;- t.tet ), and that this latter distribution converges weakly to that of a 
Brownian motion with drift zero and diffusion matrix g(8)D1. 

Proof of Theorem 2. Part (a) (i.e., the Markovian property) follows from Theorem 
1, p, 288, in Gihman and Skorohod (1972), although it may be deduced directly. The 
backward equation (1.20) follows from Theorem 4, p. 296, of the same monograph. 
One may also derive it by first deriving the backward equation for the velocity process, 
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using the relation 

g1(t, v')==J t:/>(v)q(t,dvlv') 
R3 

(2.24) 
= e-'1"' J t:/>(v)qo(t, vlv') dv +e-'1"'(t/p,) 

R3 

· L3 t:/>(v)[~ l~o {L3 qo(s, ulv')Eoqo(t-s, vlpOu) du} ds] dv 

In (2.24) tf> is an arbitrary function on R 3 having continuous and bounded second and 
lower order derivatives, q(t, dvlv') is the transition probability function of the velocity 
process, q0 is the transition density of the Ornstein-Uhlenbeck process, and Eo denotes 
expectation with respect to the distribution (Haar measure) of a random orthogonal 
matrix 0. In deriving (2.24) one uses the following facts: 

(i) given that N(t) = 1, the jump time is uniformly distributed in [0, t]; 
(ii) given that this jump time iss, v (s) = u, and given 0, the conditional probability 

density of v (t) is q0 (t- s, v jpOu); 
(iii) the probability of two or more jumps in [0, t] is O(t2 ) as dO. From (2.24) it is 

easy to check that the backward operator of the velocity process is L 1 + B
p, - 1 . This and a little semigroup theory provide an alternative derivation of 
(1.20). Q.E.D. 

3. Conservation laws. The formal adjoint of the backward operator L is L * = 
L!+B*-p,-r, where 

(3.1) 

and 

if p >0, 

(3.2) 

if p = 0. 

Here l{; is infinitely differentiable and has compact support, 80 ( ·) is the Dirac delta 
function with pole at zero, and H 1 is the uniform distribution on the sphere S2 = 

{a1 E R 3 : la1i = 1}. The expression for L! appearing in (3.1) is standard. To derive (3.2), 
let t:/>1, 1{;1 be arbitrary functions on R 3 which are infinitely differentiable and have 
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compact supports. Then, if p > 0, 

(3.3) 

If p = 0, then 

= f..L - 1 1:
0 

cr2 (L c/>1(pradH1(da1)) 

· (L !/11(raDH1(daD) dr 

=f..L-tp-3 I,~r~o cr'2 (L !/J1(p-1r'aDH1(daD) 

· (L c!>1(r'at)Ht(da1)) dr' 

= f..L - 1P - 3 L3 (L !/11CP - 1 /v/aDH1(da D) c/>1(v) dv 

= ( c/>1(v)B*!/It(v) dv. 
JR3 

(3.4) ( (Bc/>1(v))!{l1(v) dv = f..L - 1c/>1(0) f !/11(v) dv = f c/>t(v)B*!/It(v) dv. 
JR3 R3 R3 

495 

The last integral is merely a formal way of writing the integral with respect to the Dirac 
measure. 

Under the hypothesis of Theorem 2, one may show that (see Gihman and Skorohod 
(1972, relation (20), p. 297, and the relation below (25), p. 299)) 

(3.5) ~ J !{l(v, y)p(t, dv, dyjv', x') = J (L!{I(v, y))p(t, dv, dy/v', x'), at R3xR3 R3xR3 

for every !{! which is Ceo and has compact support. Here p denotes the transition 
probability function of the {(v(t), X(t)): t ~0} process. If p had a density 1r (i.e., p(t, dv, 
dy /v', x') = 1r(t, v, y /v', x') dv dy) which is continuously differentiable, once with respect 
tot, twice with respect to v, and once with respect toy, then one could use integration by 
parts to get (at least for p > 0) 

(3.6) a7T =L*7T 
at ' 

where 1r is treated as a function oft, v, y. While it is likely that this is the case for p > 0 
the chances are even better for the regularization 

(3.7) 

where K, is a probability measure on R 3 (the 'position' space) having a density k, which 
is Ceo and vanishes outside a ball of radius s, and 8{o} is the probability measure (in the 
'velocity' space) degenerate at 0 ( E R 3), and* denotes convolution of measures. For the 
rest of the section we assume, unless otherwise specified, that the regularized transition 
probability p has a density iT(t, v, yjv', x') with respect to Lebesgue measure on 
R 3 X R 3 , and that iT is continuously differentiable-at least once with respect to t, twice 
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with respect to v, and once with respect toy. Since a measurement (on concentration of 
solute) may be viewed as a 'local average', pis an appropriate approximation of p if e is 
small. For the computations which follow it will also be assumed that iT and its 
derivatives are well behaved near infinity, i.e., 

(i) lvi3 7T is integrable in v, and goes to zero as lvi-HX); 
(ii) lv l2iJiT/iJvu\ 1 ~ i ~ 3, are integrable in v and go to zero as lv 1-Ho; 

(iii) lv l2 iJ2 iT/ avUlav<il; 1 ~ i, j ~ 3, are integrable in v and go to zero as lv I..,.. ro, 
(iv) for every compact subset .l of R 3 the functions lv 1

2 sup {iJiT/ ay<n: y E .l}, are 
integrable in v; 

(v) for every compact subset r of (0, ro) the function lv 1
2 sup {iliT/ at: t E f} is 

integrable in v. 
These conditions allow one to integrate by parts, neglecting the values at infinity, and to 
interchange orders of differentiation (with respect to t or y) and integration (with 
respect to v ). The computations are otherwise straightforward and we shall omit details. 

Since the coefficients in L and L * depend only on the velocity coordinates, and not 
on the position coordinates (consequently convolution by 8{o} x K, commutes with L *), 
it is simple to check that iT (as a function of v and y) satisfies the Fokker-Planck 
equation: 

(3.8) iliT L* ... -= 7T. 
ilt 

This equation leads to important conservation laws. To state these we need some 
definitions. First, write 

(3.9) fJ(t, v, y) = J iT(t, v, y lv', x')c0 (x') dx', 
R3 

where co(·) is a nonnegative and nonzero Coo function on R 3 having compact support. 
The function coO will be referred to as the initial concentration. The concentration 
c (t, y) at y and at time t is defined by 

c(t,y)=J fJ(t,v,y)dv. 
R3 

(3.10) 

The volumetric flux density vector[(·)= (f<1l(·), [(2)(·), [(3)(·)) is defined by 

fn(t,y)=J vUlfJ(t,v,y)dv 
R3 

(3.11) (j = 1, 2, 3). 

Also write u(·) = (u<1l(·), u<2\·), u(3)(·)), where 

(3.12) 
0 {fn(t, y)/c(t, y) if c(t, y)>O, 

u 1 (t, y) = 
0 ifc(t,y)=O,(j=1,2,3). 

The internal energy density d (t, y) is defined by 

(3.13) 1 f 2 d(t,y)=2 R
3

1v-u(t,y)i fJ(t,v,y)dv. 

The energy flow vector J( ·) = (f1l( · ), f 2l( · ), f 3l( ·))is defined by 

(3.14) fil(t, y) = ~ L
3 
(vlil- u<n(t, y ))iv- u(t, y )i2 £J(t, v, y) dv (j = 1, 2, 3). 
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Finally, define the pressure tensor matrix ((p;i( · ))) by 

(3.15) P;i(t, y) = r (vU>_u<;>(t, y))(v<i)_u<i)(t, y))fJ(t, v, y) dv, JR3 
In view of (3.10), fJ satisfies the Fokker-Planck equation 

()f) 
-=L*fJ. 
at 

(3.16) 
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1-;;f, i,j';;i; 3. 

Integrating both sides with respect to v one obtains the law of mass conservation: 

ac 3 a(u<nc) 
(3.17) -+ 2: --<j)-=0. 

at i=1 ay 

The equations for momentum conservation are obtained on differentiating both sides of 
(3.11) with respect tot: 

(3.18) :t (u u> c)=- .f ~am (p;i + u u>uU> c)- (J.t - 1 + {3)uu> c + {3w~> c, 
u •=1 uy 

(j = 1, 2, 3). 

Finally, differentiating both sides of (3 .13) with respect to t and using (3 .16) one obtains 
the energy conservation law 

(3.19) 
3 a u> (i) 3 3 aum 

-2: -m(J +u d(t,y))- 2: 2: Pik--u<)· 
i=1 ay i=1 k=1 ay 

For a discussion of the importance of the conservation laws for the dynamics of 
solute transport and for their derivation in the classical case of diffusion in pure liquids 
we refer to the book by DeGroot and Mazur (1962) (especially, pp. 188-190). If one 
takes J.t - 1 = 0, w0 = 0 and D = d0I, then our results reduce to the classical equations. 

The concentration c and the other quantities above may be defined for p itself (and 
not for p); in this case they have to be treated as generalized functions (or distributions); 
the equations (3.17)-(3.19) may then be established in the generalized sense; although 
this would eliminate the necessity to impose regularity assumptions (like those imposed 
on p), the results are physically more meaningful when stated in the classical sense. 

4. MisceUaneous comments. There is no doubt that one may extend Theorem 1 so 
as to apply to nonhomogeneous isotropic porous media under nonconstant convective 
fluxes. Although the additional technicalities involved in such an extension appear to be 
nontrivial, it is clear that one would use (2.1) locally, i.e., allow {3, u, J.t, p to depend on x, 
but treat them as approximately constant within a macroscopically small volume. In the 
same vein one may extend the theory to apply to solute transport through unsaturated 
porous media. In this case {3, u will depend on the concentration of the liquid (even in a 
homogeneous medium) and, therefore, on t and x (see Bhattacharya et al. (1976)). 
Also, under the additional assumption that 71;'s are 'locally exponential' (i.e., take the 
parameter J.t - 1 in the definition of the Poisson random measure to depend on x ), 
Theorem 2 may be extended to show that {(v(t), X(t)):t~O} is Markovian in all the 
above cases. The proof of this extension may be based on the theory of the generalized 
Ito stochastic differential equations developed in Gihman and Skorohod (1972) 
(specifically, Theorem 1, p. 288, and Theorem 4, p. 296). This last extension may be 
carried through even for nonisotropic media. 
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Under the hypothesis of Theorem 2 one may attempt to derive Theorem 1 from 
Theorem 2. The natural route here would involve first showing that the velocity process 
is ergodic (thereby admitting a unique steady state), and then using a result such as the 
continuous time analogue of Theorem 21.1 in Billingsley (1968). However, even with 
the extra hypothesis, this procedure would not be simpler. 

Finally, it may be shown by a fairly simple symmetry argument that the matrix Dis 
diagonal (see Gupta et al. (1979)). 

Acknowledgement. We are indebted to Professor G. Sposito for helpful dis
cussions. We also thank Professor H. Chernoff and the referee for helpful comments on 
an earlier draft. 
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16.2 “On the Taylor-Aris theory of solute transport in a capillary”

On the Taylor-Aris theory of solute transport in a capillary. SIAM Journal on Applied
Mathematics 44 (1984), 33–39 (with V.K. Gupta).

c© 1984 Society for Industrial and Applied Mathematics. Reprinted with permission.
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ON THE TAYLOR-ARIS THEORY OF SOLUTE 
TRANSPORT IN A CAPILLARY* 

R.N. BHATIACHARYAt AND VIJAY K. GUPTA:j: 

Abstract. A new simple derivation is given of G. I. Taylor's classic theory of solute transport in a 
straight capillary through which a liquid is flowing in a steady nonturbulent flow. The results derived are 
stronger, and an explicit representation is provided for the displacement of a solute molecule as the sum 
of a Brownian motion and the integral of an ergodic Markov process which is asymptotically a Brownian 
motion. Two curious identities involving zeros of the Bessel function of order one are obtained as a 
by-product. 

In the classic work of Taylor (1953), as completed by Aris (1956), it was shown 
that when a solute in low concentration is injected in a liquid flowing through an 
infinite straight capillary of uniform cross-section with a steady convective velocity, 
then the concentration along the capillary (averaged over the cross-section) is 
asymptotically Gaussian. 

Let the x-axis be taken to be a line inside the capillary parallel to its length; the 
cross-section E is the (y, z )-plane bounded by a smooth curve r. Let C(x, t) denote 
the solute concentration at the point x = (x, y, z) at time t. Taylor's starting equation 
is the Fokker-Planck equation 

(1) 

ac ac 
-=Doi1C- Uof(y, z)- forxE IR1 XE0 , t>O, at ax 
ac 1 
-=0 forxEIR Xf, t>O. 
av 

Here (i) Do is Einstein's molecular diffusion coefficient, (ii) 11 is the Laplacian, (iii) 
(Uof(y, z), 0, 0) is the velocity field of the liquid, U0 being the maximum velocity in 
the direction of flow, (iv) ajav denotes differentiation along the outward normal to 
the capillary boundary. Also E 0 denotes the interior of the cross-section E (so that 
E = E 0 U f). The case explicitly dealt with by Taylor (1953) is that of a circular 
cross-section E = {y 2 + z 2 ;;.;; a}, in which case a linearized N avier-Stokes equation 
yields 

(2) 
y2+z2 

f(y, z) = 1---2-· 
a 

Aris (1956) extended the results to an arbitrary cross-section and to the case when 
the molecular diffusion coefficient is a smooth function of the transverse coordinates. 

Aris (1956) in his treatment obtains asymptotic (i.e., for large t) expressions for 
moments of the average concentration C(x, t) (averaged over the cross-section) in 
order to establish its asymptotic Gaussian behavior. A different analytical derivation 
using perturbation techniques has been given by Fife and Nicholes (1975). Since the 
basis of (1) is Einstein's kinetic theory of diffusion (see Einstein (1905-1908), Nelson 
(1967)), it is more natural from a physical (or statistical-mechanical) point of view to 
look at the position process X(t) = (X(t), Y(t), Z(t)) of a single solute molecule whose 

*Received by the editors July 14, 1982, and in revised form March 7, 1983. 
t Department of Mathematics, Indiana University, Bloomington, Indiana, 47405. The research of this 

author was supported by the National Science Foundation under grants MCS 8243649 and CME 8004499. 
:j: Department of Civil Engineering, University of Mississippi, University, Mississippi 38677. The 

research of this author was supported by the National Science Foundation under grant CME 8004498. 
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transition probability density function satisfies the Kolmogorov forward equation (1). 
The Taylor-Ads result is then mathematically equivalent to the asymptotic Gaussian 
nature of X(t), with (half) the variance parameter giving the dispersion coefficient 
computed by them. Since the solute is in low concentration, the different solute 
molecules may be assumed to move independently, so that one may apply a law of 
large numbers to go from the asymptotic distribution of X(t) to that of concentration 
in the x-direction. It also turns out that this approach is mathematically much simpler, 
at least from a probabilist's point of view. 

In a series of remarks it is pointed out that this approach yields a stronger result 
than the Taylor-Aris result. 

In the theorem below iJ denotes the average off on E. 
THEOREM. Let X(t) = (X(t), Y(t), Z(t)) be a Markov process having continuous 

sample paths and a transition probability density function satisfying Kolmogorov 's 
forward equation (1). Then, as n ~ oo, the stochastic process {Xn(t) = 
n - 112[X(nt) -iJU0 nt]; t ~ 0} converges in distribution to a Brownian motion with zero 
drift and a positive variance parameter u 2 • In case the cross-section is circular, one has 

(3) 2 a2U~ 
u =2Do+96Du' 

Proof. Let (Y(t), Z(t)) be a reflecting two-dimensional Brownian motion on 
E=E0 Uf, with zero drift and variance parameter 2D0 • Let B(t) be a standard 
one-dimensional Brownian motion independent of {(Y(t),Z(t)): t~O} and a given 
random variable X(O). Define X(t) by 

(4) X(t)-X(O) = .J2DoB(t)+ U0 rf(Y(s), Z(s)) ds. 

Then x(t) = (X(t), Y(t), Z (t)) is a Markov process satisfying the hypothesis of the 
theorem. Rewrite (4) as 

(5) X(t)- X(O)-!Uot = .J2DoB(t) + Uo r [f(Y(s), Z(s))-!] ds. 

Now (Y(t), Z(t)) is an ergodic Markov process whose transition probability converges 
in (variation) norm exponentially fast to the uniform distribution on E (see, e.g., 
Bhattacharya and Majumdar (1980, Thm. 4.4(c))). Hence a general functional central 
limit theorem (FCLT) for ergodic Markov processes (Bhattacharya {1982)) yields an 
FCLT for the integral in (5). Since .J2DoB(t) is independent of this integral, the 
desired FCLT follows. The variance parameter of the limiting Brownian motion is 

(6) 

where D1 may be computed by the formula given in Bhattacharya (1982). 
For the special case of a circular cross-section, 

(7) f(Y(s), Z(s)) = 1-R 2(s), 

where R (s) is the radial process 

(8) R (s) = .!_( Y 2(s) + Z 2(s ))112, 
a 
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whose differential generator is 

(9) A=Do(~+!!!..) for0<r<1, 
a 2 dr2 r dr 

!!_I = 0 
dr r=l • 

Thus one may apply the results in Bhattacharya (1982) to h (r) = !- r 2 (i.e., to the 
integrand in (5)) to compute D 1 as 

(10) D 1 = -(h, g)U~ = (-r h(r)g(r)2rdr) U~, 

where ( ·, ·) is the inner product on L 2((0, 1], 2r dr), and g is a (any) solution of the 
equation 

(11) Ag(r)=h(r) forO<r<l, g'(l) = 0, 

satisfying (g, g)= J~ g\r)2r dr <oo. Note that the invariant distribution of R(s) is 2rdr. 
It is elementary to show that 

(12) 
a2 (r2 r4) 

g(r)=- --- +c 
4D0 2 4 ' 

where c is a constant of integration. Any value of c will suffice for (10), e.g., c = 0. 
One then obtains from (10), 

(13) Q.E.D. 

Remark 1. Note that the theorem is proved for an arbitrary (initial) distribution 
of X(O), i.e., for an arbitrary initial concentration. 

Remark 2. The theorem says that, when observed over nonoverlapping large 
time intervals, the displacements of a solute molecule in the x-direction are approxi
mately independent and Gaussian. Such a functional result (FCLT) is stronger than 
a central limit theorem. 

Remark 3. The representation (5) of X(t) as the sum of a process which is 
asymptotically a Brownian motion and an independent Brownian motion implies that 
the probability density function of n - 112[X(nt)- iiUont] exists, is continuous, and 
converges pointwise (as n ~ oo) to the Gaussian density function with mean zero and 
variance tu 2• It follows by Scheffe's theorem (Scheffe (1947)) that the convergence is 
also in L 1 • 

Remark 4. The differential operator defined by (9) is self-adjoint on L 2((0, 1], 
2rdr) and has eigenvalues -An (n =0, 1, 2, ···),where 

(14) 

f3n being the nth zero of the Bessel function lt of first order (see Courant and Hilbert 
(1953, Chap. V), or Duff and Naylor (1966, Chap. 8)). The corresponding (complete 
system of) normalized eigenfunctions are 

(15) 1/Jo = 1, 
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where J0 is the Bessel function of order zero. Since the integral in the denominator of 
1/Jn in (15) equals J~(f3n) (see Duff and Naylor (1966, p. 308)), one may rewrite (15) 
as 

(16) 1/Jo= 1, (n = 1, 2, · · ·). 

Using (14) and (16) we give another computation of D 1 for the case of the circular 
cross-section. For this express h and gas 

00 00 00 

(17) h = L (h, 1/Jn }1/Jn = L (h, 1/Jn}t/Jn, g =- L A -;.1 (h, 1/Jn)t/Jn• 
n=O n=l n=l 

Then, by (10), 

(18) 

But 

{19) 

Since (see Courant and Hilbert (1953, p. 484)) 

00 (-1)m({3"02m 
lo({3nr)= L -( !)2 - 2 , m=O m. 

(20) 

it follows, on term by term integration of (19), that 

The last equality (J2 is the Bessel function of order two) follows again from Courant 
and Hilbert (1953, p. 484). Hence 

2 ( 16) Ji (f3n) 16 
(22) (h, 1/Jn) = ~ J~ (f3n} = (3~' 

Since, lo({3n)+h(f3n)=(2/f3n)Jl(f3n)=O (Duff and Naylor (1966, p. 304)), J~(f3n)= 
Ji (f3n). Substituting (22) into (18) one gets, 

(23) 

By comparing with (13) we arrive at the curious result (which appears to be new) 

(24) 

By a formal manipulation, which we are unable to justify rigorously, one also gets 

(25) 
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A numerical check leaves little doubt about the validity of (25). The most compre
hensive treatise on Bessel functions is Watson (1966). 

Remark 5. The representation (5) or (4) is true for all times, and should lead to 
useful expressions for C(x, t) for small t, given any initial concentration. Although we 
have not been able to carry this out adequately, note that the moment generating 
function 

f/l(t; r, A) =E[ exp {A r h(R(s)) ds }IR(O) =r] 

is, by the Feynman-Kac formula, the solution of 

iJr/J (t~/' A) Ar/l + Ahr/l for t > 0, 0 < r < 1, 

(26) 
iJtj)l =0 
ar r=l ' 

tj)(O;A,r)=1 forO<r~l. 

Remark 6. The method given here applies to arbitrary uniform cross-sections. 
Also, one may replace Do by any positive and continuous function rfo(y, z) of the 
transverse coordinates. In general, assume that the velocity field is 
(U0 f(y, z), b1(y, z), b2(y, z)), where b1 and b2 are continuously differentiable functions 
on E. The starting Fokker-Planck equation is then, 

ac ac a a 
-=~(f/JC)-Uo[---(btC)--(bzC) forxeR 1 xE0, t>O 
at a.•. ay az 

(27) 

j_(tj)C)-C(b · v)=O forx:eR 1 xf, t>O, 
av 

where b · v = htVt + b2v2 is the drift at the boundary in the direction of the unit normal 
(see Bhattacharya and Majumdar (1980, eq. (4.21))). Equation (1) is a special case 
of (27). Instead of (5), one now has 

(28) X(t)- X(O)- U0 ii = r J2rfo(Y(s), Z(s)) dB(s)+ U0 r (f(Y(s), Z(s))-ii] ds, 

where (Y(t), Z(t)) is a two-dimensional diffusion onE whose transition probability 
density q(t; y, z) satisfies the forward equation, 

(29) 

aq (;/ a2 ) a a 
-= ::--z+-2 (r/Jq)--(btq)--(b2q) onE0 for t>O, at ay az ay az 
a 
-(rfoq)-q(b · v)=O onr fort>O. 
iJv 

Let 1r(y, z) dy dz denote the invariant distribution of the ( Y(t), Z (t)) process, obtained 
by solving 

(30) 
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In general, 1r is not a constant. The constant v appearing in (28) is given by 

(31) v = JEf(y, z)1r(y, z) dydz, 

and U0v is the "average" velocity in the x-direction. To show that the central limit 
theorem holds for X(t), one may compute the characteristic function YnUA; t) of 
Wn (t) = n - 112[X(nt)-X(O)- nU0vt] using (28). First take the conditional expectation 
given the process {(Y(s), Z(s)): s ;:;;;O}, and then take expectation of this conditional 
expectation. Since conditionally Wn(t) is Gaussian with mean 

l nt 

Uon- 112 
0 

[f(Y(s),Z(s))-v]ds 

and variance 

1 nt 

n-1 
0 

21(>(Y(s),Z(s))ds, 

one has 

'Yn (iA ; t) = E (e j}, W"(t)) 

(32) { 1 nt ,\ 2 1 nt } 
=Eexp iAU0n-112 

0 
[f(Y(s),Z(s))-v]ds- 2n 

0 
21(>(Y(s),Z(s))ds. 

Applying the strong law of large numbers (i.e., the ergodic theorem) to the second 
term in the exponent and the central limit theorem to the first term, one gets 

2 

(33) !~ YnUA; t) = exp {- \ t(2D2 + 2cb) J, 
where 

(34) cb = t l(>(y, z )1r(y, z) dy dz, 

and 

(35) D2 = -((f -v, g))U~. 

Here the inner product (( ·, ·)) is the one on the space L 2 (E, 1r dy dz ), i.e., 

(36) «t-v, g))= L (f(y, z)- v)g(y, z )1r(y, z) dy dz 

with g a (any) solution in L 2 of 

(37) 

and 

(38) 

4> -2+_2 g +h1 ..-£+h2..-£= t-v ( ;/ ()2) () () 
iJy iJz ily iJz 

iJg =0 on r. 
()p 

Sometimes, as in the case of a circular cross-section, this may be simplified by separation 
of variables. In the more general case above the X(t) process is asymptotically a 
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Brownian motion with drift UoiJ and dispersion coefficient 

(39) 

Notice that neither iJ nor tfo is, in general, an average with respect to the normalized 
Lebesgue measure on E. Aris (1956) considered the special case of a self-adjoint 
operator in (29). In this case the invariant distribution is the normalized Lebesgue 
measure on E. Finally, the above method easily extends to the case of a nonscalar 
3 x 3 diffusion matrix of the form 

(~u(y,z) ~(y,z)= 0 
0 

0 
~22(y, z) 

~23(y, z) 

The appropriate Fokker-Planck equation along with the boundary condition for this 
case may be obtained from Bhattacharya and Majumdar (1980, pp. 32-33). 
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16.3 “Asymptotics of solute dispersion in periodic porous media”

Asymptotics of solute dispersion in periodic porous media. SIAM Journal on Applied
Mathematics 49 (1989), 86–98 (with V.K. Gupta and H. F. Walker).
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ASYMPTOTICS OF SOLUTE DISPERSION 
IN PERIODIC POROUS MEDIA • 

R. N. BHAITACHARYAt, V. K. GUPTA*, AND H. F. WALKER§ 

Abstract. The concentration C(x, t) of a solute in a saturated porous medium is governed by a 
second-order parabolic equation ac;at = - U0b · V C +!I Dua2C/ ax, ax1• In the case that b is periodic and 
divergence free, and 0 11 are constants and ((Du)) positive definite, the concentration is asymptotically 
Gaussian for large times. This article analyzes the dependence of the dispersion matrix K of the limiting 
Gaussian distribution on the velocity parameter U0 and the period "a." It is shown that each coefficient K 11 

is asymptotically quadratic in aU0 if b1 - 6, has a nonzero component in the null space of b · V, and 
asymptotically constant in aU0 if b1 - 6, belongs to the range of b · V. It is shown in a more general context 
that K depends only on aU0 • An asymptotic expansion of the Cramer-Edgeworth type is derived for 
concentration refining the Gaussian approximation. 

Key words. Markov process, large scale dispersion, eigenfunction expansion, singular perturliation, 
range, null space 

AMS(MOS) subject classificatioDs. primary 60J70, 60F05; secondary 41A60 

1. Introduction. Consider a nonreactive dilute solute injected into a porous 
medium saturated with a liquid under nonturbulent flow. Suppose the following 
parabolic equation governing solute concentration C(x, t) at position x at time t holds 
at a certain space-time scale: 

(1.1) 

ac =.!. £ ._t_(v .. (~)c)- £ .i..(uob·(~)c) 
at 2 ~j=l ax; axj I) a ·f= J ax; I a > 

x=(x1 ,x2 , • • • ,xn) E!Jln, t>O. 

In (1.1), U0b(x/ a)= U0(b.(x/ a), b2(x/ a),· · ·, bn(x/ a)) denotes the solute drift veloc
ity vector, D(x/ a)= ((DiJ(x/ a))) is a positive-definite symmetric matrix, and U0 , a 
are positive scalars. The parameters U0 and a scale liquid velocity and spatial length, 
respectively. Although in the physical context n = 3, for mathematical purposes we let 
n be arbitrary. 

The solution C(x, t) of (1.1) is given by (Friedman (1975, pp. 139-144)), 

(1.2) C(x, t) = f h(z)p(t; z, x) dz, 
J 91" 

where h is the continuous, bounded, initial concentration, and p(t; z, x) is the funda
mental solution of (1.1 ). Conditions on the coefficients b,(x), Dy(x) that guarantee the 
uniqueness and necessary smoothness of the fundamental solution are assumed 
throughout. Now p(t; z, x) is also the transition probability density function of the 
Markov process X(t) defined by Ito's stochastic differential equation 

(1.3) 
dX(t)= U0b(X(t)/a) dt+a(X(t)/a) dB(t), 

X(O) = z, 
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where u(x) is the positive-definite matrix the square of which is D(x) and B(t) = 

(B1(t), B2(t), · · ·, Bn(t)) is an n-dimensional standard Brownian motion process. 
Analyzing the asymptotic behavior of C(x, t) for large tis equival~nt to analyzing 

the asymptotic behavior of X(t) for large t. To be more specific, suppose that the 
stochastic process 

(1.4) 

converges in distribution, as e ~ 0, to a Brownian motion with zero mean and a dispersion 
matrix K= ((Kii)). Here b= (bt. · · ·, bn) is a suitable constant vector interpreted as 
the large scale average of b(x). In other words, suppose that a central limit theorem 
(CLT) holds for X(t). Now the probability distribution of z.(t) has the density (at x) 
e-"p(e-2 t;z, e-1x+e-2 tU0b) if X(O)=z. Hence the CLT asserts that 
e-"p(e-2t;z,e-1x+e-2tU0b)dx converges weakly, as e~O, to the Gaussian distri
bution: 

(1.5) 4>(t, x) dx = (2?Tt)-"12(Det K)-112 exp {-_!_ I Kiix;xi} dx. 
2t ~j=1 

Here Kii is the (~j) element of the matrix K-1• Thus as dO we obtain 

(1.6) 

where C0 is the total initial concentration. 
From here on we will refer to ((Dii)) as the small scale dispersion matrix and 

(( Kii)) as the large scale dispersion matrix. 
CLTs such as described above have been derived for periodic coefficients Dii, b; 

in Bensoussan, Lions, and Papanicolaou (1978) and Bhattacharya (1985). Under the 
assumption that the elliptic operator on the right-hand side of (1.1) is self-adjoint, 
Kozlov (1979), (1980), and Papanicolaou and Varadhan (1979) have proved such CLTs 
for the case where the coefficients are stationary, ergodic random fields. An extension 
to the nonself-adjoint case for almost periodic coefficients, when the large scale velocity 
b is nonzero, is given in Bhattacharya and Ramasubramanian (1988). Papanicolaou 
and Pironeau (1981) also deal with a nonself-adjoint case when the coefficients 
constitute a general ergodic random field and b = 0. 

Such problems arise in analyzing the movement of contaminants in saturated 
porous media such as aquifers as well as in laboratory columns. The dependence of 
K on U0 has been studied experimentally in laboratory columns (see, e.g., Fried and 
Combamous (1971)). The spatial scale parameter a is fixed in such experiments. In 
aquifers, on the other hand, the main interest from the point of view of long term 
prediction lies in the analysis of K as a function of the scale parameter a for a fixed 
velocity field, and therefore for a fixed U0 (Gupta and Bhattacharya, (1986)). Field 
scale dispersions in aquifers have been analyzed for the ergodic random field case 
(when 5 is nonzero) in, e.g., Gelhar and Axness (1983), Winter, Newman, and Neuman 
(1984), and Dagan (1984). For certain classes of periodic coefficients, the dependence 
of K on a and U0 has been analyzed in Gupta and Bhattacharya (1986) and Guven 
and Molz (1986). A more detailed survey of the hydrologic literature is given in Sposito, 
Jury, and Gupta (1986). 

The dependence of K on U0 has been treated in the literature separately from its 
dependence on a because of the physical contexts in which these arise. As we shall 
see in § 2, the roles of U0 and a in this respect are interchangeable. Indeed K depends 
only on the product aU0 • 
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In § 3 we analyze the dependence of K on a V 0 for the class of periodic coefficients 
such that Dij's are constants and b has zero divergence. It is shown that for one broad 
class of periodic coefficients, the K;;'s grow quadratically as aV0~ oo, and that the 
Kii's approach asymptotic constancy for another class. 

Section 4 provides a refinement of the Gaussian approximation (1.6) in the form 
of an asymptotic expansion in powers of e. In probability theory such an expansion 
is called a Cramer- Edgeworth expansion. In the differential equations literature it is 
referred to as a singular perturbation expansion. For prediction of concentration C(x, t) 
in aquifers over time scales that are not very large, such expansions provide better 
approximations than the Gaussian. The importance of predictions over such time scales 
has been discussed, for example, by Guven and Molz (1986) and Dagan (1984). 

2. Interchangeability of velocity and spatial scale parameters in K. Write, 

(2.1) K(V0 , a) =K, 

indicating the dependence of the large scale dispersion matrix K on the velocity and 
scale parameters V0 and a. 

PROPOSITION 2.1. If the central limit theorem holds for the solution X(t) of (1.3), 
then K depends on V0 and a only through their product aV0 • In particular, 

(2.2) K( V0 , a)= K(a, Vo) = K(aV0 , 1). 

To prove this, express the solution of ( 1.3) as X( t; a, V0 ) to indicate its dependence 
on a and V0 • Define the stochastic process 

(2.3) Y( t; a, V0 ) =aX( t/ a2 ; 1, V0 ). 

Then Y( t; a, V0 ) satisfies the Ito equation 

(2.4) 

dY(t; a, V0 ) = aV0b(X(t/ a2 ; 1, V0 )) d~ + au(X(t/ a2 ; 1, V0 )) dB(t/ a 2) 
a 

~ -=-b(Y(t; a, V0)/a) dt+u(Y(t; a, V0)/a) dB(t), 
a 

where B(t) is defined by 

(2.5) dB(t) =a dB(t/ a2 ), B(O) = B(O) = 0. 

Note that B(t) is, like B(t), a standard n-dimensional Brownian motion. It now follows 
from (2.4) that Y(t; a, V0 ) has the same distribution as X(t; a, V 0 / a) (with the initial 
value Y(O; a, V0 ) = az). Hence 

(2.6) . VarY(t;a,V0 ) • VarX(t;a,Vo/a) ( / ) 
hm = hm = K V0 a, a , 
t-+00 ( (--"'00 ( 

where Var stands for the variance-covariance matrix. Now, from (2.3), 

I. VarY(t; a, V0 ) 1. 2 VarX(t/a2 ; 1, V0 ) 
1m tm a 

t-+CO t 1400 ( 

(2.7) 
I. VarX(t/a2 ; 1, V0 ) 

= tm K( V0 , 1). 
,_.co t/ az 

Relations (2.6) and (2.7) yield, 

(2.8) K( V0 / a, a)= K( V0 , 1). 
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Write a = U0/ a, {3 =a. Then (2.8) becomes 

(2.9) K(a, {3) = K(a{3, 1) for all a> 0, {3 > 0. 

This proves the proposition. 
It may be remarked that in a periodic model a is simply the period (Gupta and 

Bhattacharya (1986)). In an ergodic random field model (see Gelhar and Axness (1983), 
Winter et al. (1984)), a may be taken to be the characteristic correlation length. Fried 
and Combarnous (1971) give an account of the fairly extensive laboratory experiments 
that have been done to study the effect of increase in velocity on dispersion in porous 
media. A broad mathematical justification of these experimentally observed relation
ships appears in Bhattacharya and Gupta (1983). In these studies the spatial scale is 
held fixed at the so-called Darcy level, while velocity. is increased. On the other hand, 
dependence of dispersion on large spatial scales has been analyzed in field situations 
for various models of heterogeneous porous media. The above proposition shows that 
the two relationships are mathematically equivalent. For this reason, in the next section 
the spatial scale a is held fixed at a= 1, while the velocity parameter U0 is allowed 
to vary. 

3. An expansion of the large scale dispersion in the periodic model. In ( 1.1), take 
Dij's to be constants and b/s continuously differentiable periodic functions satisfying 
the divergence condition 

(3.1) div b=O. 

In view of proposition (2.1), we take the period of b1 to be one in each coordinate 
without loss of generality. Let L denote the elliptic operator 

(3.2) Lg(x) = Dg(x) + U0b(x) · V g(x), x E ffi" 

where 

(3.3) 

Let T=[O, 1r. Define 

(3.4) ~ = L b;(x) dx, i = 1, 2, · · ·, n, 

and let g1 be a periodic function satisfying 

(3.5) Lg1 = b1 - ~. 

Then it follows from Bhattacharya (1985) that the large scale dispersion coefficients 
are given by 

(3.6) 2J - 2J -Kij = D 1j- U 0 T g1(x)(bj(x)-bj) dx- U 0 T gj(x)(b;(x)-b1) dx. 

It is convenient to work with the following spaces of (equivalence classes of) 
complex-valued functions on T: 

H 0 = { h: L ih(xW dx < oo, L h(x) dx = 0, 

and h satisfies periodic boundary conditions}, 

H 1 ={hE H 0 : L !Vh(xW dx<oo }. 
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H 2={hEH1 : f I l_t_h(x)l
2 

dx<oo}. 
T i,j~l ax; axj 

Here, 1·1 denotes both absolute value and Euclidean norm. For conyenience, we take 
the norm and inner product on H 1 to be 

2 f n a a -
llhll~ = T ;,~ 1 Dij ax; h(x) axj h(x) dx, and 

f n a a 
(h, w)1 = I Dij-h(x) -w(x) dx 

T i,j~l ax; axj 

for h, wE H 1• This is allowed, since ((Dij)) is a real, positive-definite, symmetric matrix 
and 

L h(x)dx=O 

for hEH 1• 

For a given set j; (i = 1, 2, · · · , n) in H 1 let g; be the solutions in H 2 of 

(3.7) Lg; = j;. 
Standard results in the theory of elliptic partial differential operators imply that (3.7) 
has a unique solution g; E H 2 for each j; E H 1• 

Throughout we shall write 

(3.8) Eij = Eij( Uo) =- u~ L g;(x)jj(x) dx. 

In this notation, Kij = Dij + E;j + Eji with j; = b;- 6;. 
Note that the operator D is one to one on H 2 onto H 0 • To obtain useful 

eigenfunction expansions we note that for fEH0 and gEH2, Lg=f if and only if 
[I+ U0 H]g = D-1/, where Hg(x) = D-1b(x) · V g(x). We can consider Has an operator 
from H 1 to itself; as such, it is compact and skew-symmetric. Then H has eigenfunctions 
{<f>kh~ 1 ,2,... and corresponding eigenvalues {.J=l Akh~ 1 ,2,. .. with the following 
properties: 

(i) Each Ak is real and limk-.co Ak = 0. 
(ii) {<f>kh~!,2,. .. is a complete orthonormal set on H 1 n N\ where N = 

{hE H 1 : Hh = 0} is the null space of H in H 1 and .l denotes orthogonal complement. 
(iii) Each hEH 1 can be represented as 

co 

(3.9) h = hN + I ak<f>ko 
k~l 

where hN EN and for k = 1, 2, · · · , ak = (h, <f>k) 1 • Note that 
co 

II hili= lihNIIi+ I lakl2, and 
k~l 

co 
Hh = I .J=T .Akak<f>k· 

k~! 

Suppose that for g E H 2 and f E H 0 , the representation (3.9) becomes 
co 

g = gN + I ak<f>k, and 
k~l 

co 
v- 1/=(D- 1f)N+ I f3k<f>k· 

k~l 
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Then Lg = f if and only if [I+ U0H]g = D-1/, i.e., 
00 00 

gN+ I (l+H UoAk)akcf>k=(D- 1f)N+ I {3kcf>k. 
k~l k~l 

i.e., 

(3.10) 

Suppose that the given set of functions /; is real valued and contained in H 0 • If 
we have 

00 

v-1/; = cv-ln N + I f3ikcf>k 
k~l 

for each i, then (3.10) gives 

. = L-lr. = (D-11".) + ~ f3ik -~.. 
g, Ji Ji N k~l 1 +R UoAk '1-'k· 

It follows that for general i and j 

Eij( Uo) =- u~ f T gi(x)DD-1jj(x) dx = U~(gi, D-1jjh 

(3.11) 

= u2{<cv-lr.) cv-lr.) > + ~ f3ik~k }· 
0 Ji N• Jj N 1 k~11+.J=I UoAk 

If i = j, a sharper result can be obtained. We have 

Eii( U0 ) = -U~ L gi(x)D[I + U0H]g1(x) dx 

= U~{jjg~lli+ Uo(gi> Hg1)1}. 

Since H is skewsymmetric on H 1 and g1 is real-valued, (g1, Hg)1 = 0. Consequently, 

(3.12) Eii(Uo)= u~{II(D- 1/;)NIIi+ J11 1_!3~rA~} 
It may not be apparent how to obtain (3.12) by takingj = i in (3.11). The two formulas 
can be reconciled by noting the following: 

(i) Since ( ( Dij)) and b1 are real, for each eigenfunction-eigenvalue pair cf>k. 

R Ak there is a complex conjugate pair c/>1 = (i)k, R A1 = -R Ak. 
(ii) For such conjugate pairs, 

f3ik = (/;, cf>k)l = (/;, ¢1)1 = ifu 

since /; is real. 
(iii) Then for such pairs, 

lf3ikl 2 + lf3ul 2 lf3ikl 2 + lf3ul 2 

1 + R UoAk 1 + R U 0 A1 1 + U~A ~ 1 + U~A 7 · 
3.1. Applications and examples. Expressions (3.11) and (3.12) are our basic tools 

for analyzing the behavior of the Eij 's and Kij 's. In the following, we show how these 
expressions can be applied to the examples of Gupta and Bhattacharya {1986) as well 
as to new examples, and we give some results that illustrate how they can be used to 
obtain general statements. 
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It is obvious from (3.11) and (3.12) that Eii( U0) = O( U~) if ((D-1};) N, (D-1Jj) N ) 1 ~ 
0 and Eii( U0 ) = o( U~) otherwise. In particular, E;;( U0 ) = 0( U~) if (D-1};) N ~ 0 and 
E;;( U0 ) = o( U~) otherwise. We note that N ={hE H 1: Hh = 0} is just the null space of 
b · V in H\ i.e., the set of hE H 1 such that b(x) · V h(x) = 0 almost everywhere in T. 
This is to say that N is the set of elements of H 1 that are constant along the flow 
curves determined by b. By a flow curve, we mean a characteristic of the partial 
differential operator b · V, i.e., a solution of the autonomous system x = b(x). 

LEMMA 3.1. Suppose that}; E H 1 is constant along each flow curve. Then either 
/; = 0, in which case Eii( U0 ) = 0 for each j, orE;;( U0) = 0( U~). 

Proof We have that}; EN and 

(};, D-1/;)1 =-L _t;(x? dx. 

It follows that if/;~ 0, then (D- 1};) N ~ 0 and Eu( U0 ) = O( U~). 
Example 3.2 (Gupta and Bhattacharya (1986)). Taken =3, and, 

b(x) = (1 +sin 21rx3 , sin 21rx3 , 0), 

Then it is simple to check that for i = 1, 2, /; = b;- b; satisfies the hypothesis of Lemma 
3.1.and Eu and K;; are O(U~). In fact,f1 andf2 depend only on x 3 , and so D-1f 1 and 
D- 1fz depend only on X]. Then v-lfl and D- 1fz are in N, and since 

(D-1fh D- 1fz)l =-f T sin 27TX3D-I sin 21TX] dx > 0, 

it follows that E 12 , E21 , and K 12 are 0( U~). 
As an operator on H 1, b · V has range 

R={fEH0:f=b·Vh for some hEH 1} 

in H 0 • This range R, as well as the null space N, can be helpful in determining the 
behavior of the By's and Ky's. 

LEMMA 3.3. Suppose that}; E R. Then 

lim E;;( Uo) =II h; IIi, 
U0 -)ooo 

where h; is the unique element of H 1 n Nj_ such that};= b · V h;. Also for i ~ j, 

(3.13) 

(3.14) 

for large U0 • 

Eii( Uo) = 0( Uo) = U0(h;, D-1Jj)1 , and 

Ej;( Uo) = 0( U0 ) =-U0(D- 1Jj, h;)1 , 

Remark. In (3.13) and (3.14), = means that after division by U0 , both sides 
approach the same limit as U0 approaches infinity. In particular, if the inner products 
in (3.13) and (3.14) are zero, then Eii( U0 ) and Ej;( U0 ) are o( U0). 

Proof It is clear that h; exists, and we write 

Then 

00 

v- 1/; = Hh; = I R Ak 'Y;kc/>k. 
k~i 
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and (3.12) gives 

Thus 

00 

lim E;;( Uo) = L I /';kl 2 =II h; IIi. 
Uo-;..oo k=l 

For j ¥> i, we write 

00 

v-lfj = (D-1Jj) N + I f3Jkcf>ko 
k~J 

and (3.11) gives 

(3.15). 

Then for large U0 , 

Similarly, 

(3.16) 
00 

=- Uo L f3JkYik = ~ Uo(D- 1Jj, h;)1 
k~i 

for large U0 • 

It is interesting to note the behavior of Kij when/;= b1 - ii; belongs to R. From 
(3.15), (3.16), and an extension of the reasoning after (3.12); we obtain 

00 R UoAk -
Eij ( U0 ) + EJi ( Uo) = 2 Uo L U 2 2 'Yikf3Jk · 

k~l 1+ oAk 
(3.17) 

Since the sum on the right-hand side of (3.17) approaches zero as U0 grows large, Kij 
is o( U0 ) for large U0 when/; E R. More can be said if Jj as well as/; is in R. Suppose 
fjE Rand 

00 

is the unique element of H 1 n Nj_ such thatfj =b. Vhj. Taking f3jk = R Ak/'jk in (3.17) 
gives 

and so 

= DiJ- 2(h;, h)1 • 
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Unfortunately, we cannot characterize the range R without making restrictive 
assumptions about b. We can imagine many applications in which one of the b/s never 
vanishes on T, and so to be specific we assume for the remainder of this section that 
b1 > 0 on T. This allows us to parameterize the flow curves in terms of x 1 • Indeed, if 
we write xEffi" as x=(x~>x) for x=(x2 , • • ·, xn)Effi"-\ then the flow curves are just 
the curves (t, x(t)), where x(t) solves the nonautonomous system 

At- A( A)- (bz(t, x) • • • bn(t, x)) 
X - b t, X - b ( A)' , b ( A) . 

1 t,x 1 t,x 

In fact, for each value ofx(O)Effin-1, this system determines a unique curve (t,x(t)) 
in the strip s = [0, 1] X mn-l' which is defined for 0 ~ t ~ 1; furthermore, each X E T 
can be uniquely written as x = (x1 , x(x1), a point on such a curve. (The periodicity 
assumption on b implies that b is defined and bounded everywhere.) We identify 
functions on T satisfying periodic boundary conditions with periodic functions on S 
in the obvious way. 

LEMMA 3 .4. Suppose f E C 1 is a function on T that satisfies 

(3.18) Jl f(t,x(t)) dt=o 
o b1(t, x(t)) ' 

for every flow curve (t, x(t)), 0~ t~ 1. ThenfE R. 
Proof For each xE T, we write uniquely x=(x1 ,x(x1)) for a flow curve (t,x(t)) 

and define 

h(x) = Jx' f(t, ~(t)) dt. 
o b1(t, x(t)) 

Since f and b1 are C\ so is h. Furthermore, for x E T, 

b(x) · Vh(x) = b1(x) dd h(x~> x(x1)) = f(x). 
X1 

Clearly, h(O, x) = 0 for all x and h(x~> x) satisfies periodic boundary conditions in x 
for O<xl < 1. Also, (3.18) implies that h(1, x) = 0 for all X. Then hE H 1 and fER. 

COROLLARY 3.5. Suppose that}; E C 1 and satisfies 

J
l J;(t,x(t)) dt=o 

o b1(t,x(t)) 

for every flow curve (t, x(t)), 0~ t ~ 1. Then the conclusions of Lemma 3.3 hold. 
Example 3.6 (Gupta and Bhattacharya (1986)). Take n = 3, and. 

b(x) = (5~> 1 +sin 21TX~> sin 21rx1). 

Then};= bi- 5i, i = 1, 2, 3, satisfy the hypothesis of Lemma 3.4, and each Eu and Ku 
is 0( 1 ). It follows from the remarks after the proof of Lemma 3.3 that each Kij is 0( 1 ). 

In Example 3.2, each Eij and Kij is O( U~) for i,j = 1, 2; in Example 3.6, each Eij 
and Kij is 0(1). We give an additional example in which E 22 and K 22 are 0( U~) and 
all other Eij's and Ky's are 0(1). 

Example 3.7. Let n = 3, and b3(x) = 2+ (cos 21TX1)(cos 21rx2 ), b1(x) = 2+sin 2?TXJ. 
b1(x) = 0. Then E 11 = 0 and K 11 = D 11 • Also, clearly, E 12 = E13 = E21 = E31 = 0 and Kl3 = 
D 13 , K 12 =D12 • Since b·Vb2 =0, E22 and K 22 are O(U~) by Lemma 3.1. Now the 
coefficients of L do not involve x3 • Hence, the solution of Lg3(x) = b3(x)- 53 is of the 
form g3(x) = g(x~> x2 ) where 

1 2 ,:ig ag 
(3.19) - l: Dij--+ U0(2+sin 21TX1) -=(cos 21TX2 )(cos 2?Tx1). 

2 i,j=1 axi axi axz 
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Since b2 > 0, it follows from Lemma 3.4 (with n = 2) applied to the function f on the 
right-hand side of (3.19) that E 33 is 0(1) and K 33 = D 33 + 0(1). A direct computation 
shows that E23 = E32 = 0 and K23 = D23 • 

The above examples subtly reflect the influence of the geometry of the flow curves 
on the asymptotic behavior of the Eif's and Kif's. The tools developed here can be 
used to bring out this geometrical influence. In the remainder of this section, we 
illustrate how this can be done by making assumptions about the geometry of the flow 
curves and obtaining statements about the asymptotic behavior of the By's and Kg's. 
While these statements apply only to somewhat specialized situations, they and their 
proofs suggest promising directions for future work. They also show the type of 
asymptotic behavior that is possible in situations that come naturally to mind. Our 
first result is another corollary of Lemma 3.4. 

CoROLLARY 3.8. Suppose that for some i,-2 ;;£ i ;;£ n, every flow curve is periodic in 
the ith component, i.e., x;(O) = x;{l) for every flow curve (t, x(t)) = (t, x2(t), · · ·, xn(t)), 
0 ;;£ t ;;£ 1. Then 6, = 0 and the conclusions of Lemma 3.3 hold. 

Proof. We have 

0 = X;{1)- x;{O) = [ x:( t) dt = [ b;( t, x( t))j b1( t, x( t)) dt 

for every flow curve (t,x(t)), 0;;£t;;£l. It follows from Lemma 3.4 that b;ER, i.e., 
b; = b · V h for some h E H 1• Then 

6, = L b(x) · V h(x) dx = 0, 

which implies /; = b; - b; = b; E R. 
The examples given previously have the property that each Eif and Kif is either 

0( U~) or 0(1). An important unresolved question is whether any other behavior is 
possible in general. We show now that under an additional restriction on the flow 
curves, i.e., on b, each Eii and Kii must be either 0( U~) or 0(1). 

We assume not only that b1 > 0 in T but also that the difference between any two 
flow curves is constant as x 1 varies. This is equivalent to assuming that for i = 2, · · · , n, 
the ratio b;(x)/ b1(x) depends only on x1 • Under this assumption, the flow curves can 
be conveniently described as follows: Let ( t, x( t)), 0 ;;£ t ;;£ 1, be the flow curve passing 
through the origin, i.e., such that x(O) = 0; then every other flow curve can be written 
as (t,x0 +x(t)), 0;;£t;;£1, for an appropriate x0 • 

PROPOSITION 3.9. Under the present assumptions, b1 is constant along each flow 
curve and either b1 ==fit. in which case E 11 ( U0 ) = 0, or E 11 ( U0 ) = 0( U~). 

Proof. We have that 

x'(xl)=(b2(x)/bl(x), ... 'bn(x)/bl(x)), 

and so b(x) = b1(x)(1, x'(x1)). Then the assumption that V · b(x)= 0 implies 

(l,x'(x1)) ·Vb1(x)=O. 

But this is to say that the directional derivative of b1 along each flow curve is zero, 
and the proposition follows from Lemma 3.1. 

THEOREM 3.10. Under the present assumptions, either Eu( U0 ) = 0( U~) or/; E R 
and the conclusions of Lemma 3.3 hold. 

Proof. If (D-1/;)N ¢. 0, then Eu( U0 ) = 0( U~). Suppose (D-1/;)N = 0, i.e., that 
(h, D-1/;h = 0 for every hEN. We show that}; E R. 
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Set T = {i= (xz, . .• 'x .. ) E m"-1: -::-!;a;xi ;a;!,.. 2;a; i~ n}, and denote by 8 the restric
tion of the Dirac delta distribution on m"-1 to T. Let { 1/!k} k=t <t ••• be a sequence of Coo 
functions on T such that each $k has support in the interio; ~f T and 

lim $k=8 
k->00 

in the distributional sense. Extend 8 and each $k to be periodic with period one in 
each variable over all m"-1. ' 

Let (t, x0 +x(t)), o;a; t;a; 1, be an- arbitrary flow curve. For x= (x1 , x) E S, define 

.Pk(x)=$k(x-xo-x(x1)), k=d,2,···. 

Each 1/Jk is constant along every flow curve and so belongs to N. Also, for x = (x1 , x), 

(3.20) lim 1/Jk(x) = 8(x-x0 -x(x1)) 
k->00 

in the sense of distributions on m"-1. Then 

o =lim (1/Jb D-1};)1 
k->00 

(3.21) =lim-J 1/Jk(x)J;(x) dx 
k-+oo T 

==-ffi(t,io+x(t)) dt. 

The last equality follows from (3.20) by periodicity even when the flow curve is not 
contained in T. Since b1 is constant along the flow curve by Proposition 3.9, (3.21) 
implies 

f1 .t;(t, io+x(t)) d =o 
o b1(t,io+x(t)) t · 

Since the flow curve is arbitrary, it follows from Corollary 3.5 that/; E R. 
We offer a final example on which Corollary 3.8, Proposition 3.9, and Theorem 

3.10 are applicable. 
Example 3.11. Let g be any C 2 function on !R1 that is periodic with period one 

and such.that g(O)=g(l)=O. We take n=2 and construct b:iR2 ~iR2 such that the 
flow curves in S are the curves 

(3.22) (t, xz(t)) = (t, xz(O) + g(t)), 0 ;a; t ;a; 1. 

Let 7J be any C 1 function on ffl 1 that is periodic with period one and that is always 
positive. For X= (xl' x2) E !R2, set 

b1(x)=7J(g(x1)-x2) and b2(x)=f(x1)7Ja(x1)-x2). 

Then V · b(x) = 0 for x E !R2. Also b2(x)/ b1 (x) = f(x1), and so the flow curves are given 
by (3.22). Note that every flow curve is periodic in the second component, i.e., 
xiO) := xz(1) for every flow curve. As a concrete example, ta~e 

b1(x) = 2+sin (2n-(sin (2?TX1)-x2)), bz(x) = 2?T cos (2?TX1)b1(x). 

According to Theorem 3.10, each E;; and K;; is either 0( U~) or 0(1). In fact, 
Proposition 3.9 implies that E11 and K11 are 0( U~), and Corollary 3.8 implies that 
E22 and K 22 are 0(1). It follows from the remarks after the proof of Lemma 3.3 that 
K 12 is o( U0). With some effort, we can show that the inner products in (3.13) and 
(3.14) are zero, and so E12 and B21 are also o( U0). 
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Remark. Suppose the flow Y(t,y) generated by b · V (i.e., (d/dt)Y(t,y)=b(Y), 
Y(O, y) = y) is ergodic on T, with the normalized Lebesgue measure as the invariant 
measure. This is true if and only if the null space N is {0}. Since M Y(t, · )) - ii; is 
then ergodic, we may expect a smaller value of E;; and, therefore, of the dispersion 
K;; = D;; + 2Eii. Lemma 3.3 shows that this expectation is justified. The precise mathe
matical connection between the topological dynamics ofb and the asymptotic behavior 
of the effective dispersion K( U0 ), as U0~ oo, appears complicated. 

4. An asymptotic expansion of concentration. Assume that D;j{ ·) and bi( ·) are 
continuously differentiable and periodic (with period one in each coordinate), 
((Dii( ·))) positive definite. Write X(t) = (X1(t)(mod 1), · · ·, Xn(t)(mod 1)). Then 
X(t) is a Markov process on the torus [0, tr. Let p(t; i, y) denote the transition 
probability density of X(t) and 1r(y) the corresponding invariant probability density: 
f 1r(i) p(t; i, y) di = 1r(y). If the probability density ofX(O) is '7T (the entire probability 
mass being on [0, lY), then for any t>O the sequences Yj=X(jt)-X((j-l)t) and 
( Yj, X(jt)) (j = 1, 2, · · ·) are stationary and ¢-mixing with an exponentially decaying 
¢-mixing rate, the latter being also Markovian (see Bhattacharya (1985)). Also, Yj has 
a density and finite moments of all orders. Hence Theorem (2.8) of Gotze and Hipp 
(1983) applies (see Example (1.13) in that article), and we have an asymptotic expansion 
for the distribution of [X(Nt)- X(O)- NtU0b]/ N 112 = D::;::, 1 ( Yj- EYj)]/ N 112• More 
precisely we have, for every positive integer s, 

(4.1) 
Prob ( (X(Nt)- X(O)- NtU0b)/ N 112 E B) 

=f ¢(t,x)dx+ ± N-'12 f tf!r{t,x)dx+o(N-s/2) 

B r~l B 
(N ~oo), 

uniformly over every class fYJ of Borel sets B satisfying 

supJ ¢(t,x)dx=0(8a) 
BE 00 (a B)" 

(4.2) (8~0), 

for some a> 0, (aB)Ii being the 8-neighborhood of the boundary aB of B. Here ¢(t, x) 
is the Gaussian density with mean zero and dispersion matrix tK, K being the large 
scale dispersion. The functions tf!,(t, x) are polynomial multiples of ¢(t, x). For the 
classical case of independent summands the details of the construction of such poly
nomials may be found in Bhattacharya and Ranga Rao (1976, § 7). For the present 
case the formalism is entirely analogous once the cumulants of the normalized sum 
I,~ ( Yj- EYj)/ N 112 are expanded in powers of N-112 (see Gotze and Hipp (1983)). 
Note that (4.2) holds, e.g., for the class of all Borel measurable convex sets (see 
Bhattacharya and Ranga Rao (1976, p. 24)). 

In the case the initial concentration is proportional to '7T, (4.1) may be expressed 
as (see (1.6)), 

(4.3) 

L s-nc(s-1x+ s-2 tU0b, s-2 t) dx 

=Cot [ ¢(t,x)+ t s'tf!,(t,x) J dx+o(ss) (dO), 

where C0 is the total solute mass. On the other hand, if the initial concentration is 
arbitrary, say an integrable function or a point mass, the distribution of X(O) must be 
taken to be this concentration normalized. In this case Yj is not stationary, but only 
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asymptotically so, and the functions 1/J,(t, x) must involve e (or, N-112) reflecting the 
nonstationarity of the moments, etc. Thus we have 

L e-nC(e-1X+e-2tU0b, e-2 t) dx 

(4.4) 

=CoL [ cf.>(t, x) + t e'!/J,(t, x, e) J dx+ o(es) (dO), 

uniformly over BE 9lJ satisfying (4.2). It is very likely that (4.4) holds uniformly over 
the class of all Borel sets, i.e., the expansion holds in L1 (~W, dx); however, a proof 
of this does not seem to be available. 

The expansion (4.4) provides a better approximation to concentration than the 
Gaussian approximation cf.>. This improvement is particularly significant for relatively 
small times, i.e., in the so-called preasymptotic zone. By computing the first three 
moments of observed concentration, we may approximately calculate the expansion 
(4.4) for s = 1. The fourth- and higher-order cumulants only contribute to terms O(e 2). 

Acknowledgment. The authors thank the referees for a comment that led to the 
remark at the end of § 3. 
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MULTISCALE DIFFUSION PROCESSES WITH PERIODIC 
COEFFICIENTS AND AN APPLICATION TO SOLUTE 

TRANSPORT IN POROUS MEDIA1 

BY RABI BHATTACHARYA 

Indiana University 

Consider diffusions on lRk, k > 1, governed by the Ito equation dX( t) = 
{b(X(t)) + f3(X(t)ja)} dt + udB(t), where b, f3 are periodic with the same 
period and are divergence free, u is nonsingular and a is a large integer. 
Two distinct Gaussian phases occur as time progresses. The initial phase 
is exhibited over times 1 « t « a213 . Under a geometric condition on the 
velocity field {3, the final Gaussian phase occurs for times t » a 2 (loga)2 , 

and the dispersion grows quadratically with a. Under a complementary 
condition, the final phase shows up at times t » a 4 (log a)2 , or t » a 2 log a 
under additional conditions, with no unbounded growth in dispersion as a 
function of scale. Examples show the existence of non-Gaussian intermedi
ate phases. These probabilisitic results are applied to analyze a multiscale 
Fokker-Planck equation governing solute transport in periodic porous me
dia. In case b, {3 are not divergence free, some insight is provided by the 
analysis of one-dimensional multiscale diffusions with periodic coefficients. 

1. Introduction. In this article we consider phase changes with time for 
diffusions on JRk with multiple scale periodic drifts b(x) + f3(xja), 

(1.1) X(t) = X(O) +fat {b(X(s)) + [3(X(s)ja)} ds +fat O"(X(s)) dB(s), 

with O"( ·) a nonsingular matrix-valued function, a being a large spatial scale 
parameter. Computations of these phase change and their time scales are 
carried out directly for some examples in Section 6, without requiring the 
machinery needed for the general case, and the reader may perhaps take a 
look at these first. 

It may be shown that for times t « a 213 the large scale fluctuations may be 
ignored, that is, the function f3 ( x j a) in ( 1.1) may be replaced by the constant 
drift [3(X(O)ja). This holds generally, without the assumptions of periodicity 
of b, f3 (Theorem 2.1). As a consequence, if b is periodic and f3 is arbitrary 
Lipschitz, then for times 1 « t « a213 the process X ( t) is asymptotically a 
Brownian motion (Theorem 2.2). This first phase analysis is carried out in 
Section 2. 

If b(-), [3(-) are both periodic with the same period lattice, say 7!}, O"(-) = O" 

is a constant matrix, and a is a positive integer, then, for a fixed a, X(t) := 
X(t)moda is a diffusion on the big torus Ya := {xmoda: x E JRh}, and a central 

Received August 1998; revised January 1999. 
1Supported in part by NSF Grant DMS-95-04557. 
AMS 1991 subject classifications. Primary 60F60, 60J05; secondary 60H10, 60J70. 
Key words and phrases. Diffusion on a big torus, speed of convergence to equilibrium, initial 

and final Gaussian phases, growth in dispersion. 
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limit theorem holds for X(t) as t ~ oo [Bensoussan, Lions and Papanicolaou 
(1978), Chapter 3; Bhattacharya (1985)]. For large a, that is, as a ~ oo, how 
large must t be for this approximation to take hold? This Gaussian law is re
ferred to as the final phase in this article. Under the divergence-free condition 
div b( ·) = 0 = div [3(-) (incompressibility), the Gaussian approximation for a 
set of k1 coordinates X 1(t), 1 :"': j :"': k1 , holds at times t » a 2(loga)2 pro
vided an appropriate geometric condition holds on {3(-) (Theorem 5.2). Under 
a different geometric condition the time scales for this final phase of Gaus
sian approximation are t » a 4(log a )4 in Theorem 5.3 and t 2: a 2 log a in 
Theorem 5.4. 

Two crucial ingredients for this final phase analysis are (1) the speed at 
which X(t) approaches the uniform (equilibrium) distribution on Ya (as a~ 
oo), and (2) the asymptotic relation between a and the dispersion matrix of the 
limiting Gaussian in the final phase. By spectral methods analogous to those 
of Diaconis and Stroock (1991) and Fill (1991), the £ 1-distance between the 
distributions of X(t), with arbitrary X(O), and the equilibrium distribution is 
bounded above by cak12 exp{ -c'tja2 } for some positive constants c and c' (The
orem 4.5). For the analysis of final phase dispersion as a function of the scale 
parameter, it is convenient to look at the related process Y(t) = X(a 2 t)ja. 
Then Y(t) := Y(t) mod 1 is a diffusion on the unit torus .9i with gener
ator Aa := ~ + a(b(a·) + [3(-)) · V, with~= (1/2)'£ 1,/Dii';P;(axj"Jxf) 
( ( ( D ii')) := 0'0'1 ) and V = grad. Since b( a·) is rapidly oscillating, one may 

approximate Aa by A := ~ + a(b + [3(-)) · V, where b = (b1 , ... , b") is the 
mean of b(-) w.r.t. the uniform distribution on .9]". According to the central 
limit theorem for X(t), with a fixed, the asymptotic dispersion (or variance) 
per unit time of Y 1(t) is given by D 11 - 2llg111i, where g 1 is the mean-zero 

solution of Aag1(x) = bj(ax) + f3j(x)- 61 -731. Here llg1 11 1 is the norm in 
the complex Hilbert space H 1 = {h mean-zero, periodic: lhl 2 and 1Vhl2 in
tegrable w.r.t. uniform distribution on .91} endowed with the inner product 
(g, f)r = fro. 1l"(V g(x))' DVf(x)- dx, f- being the complex conjugate of f. 
One may replace g i by the solution hi to Ah i = f3 i - 73 J. The last equation 

may be expressed as ( .f +a~-1(b+ [3( ·) )· V}h J = ~-1 ({3 i -73 J ), or ( .f +aS)h J = 

~-1 ({3 1 -731), with .f as the identity operator, and S = ~-1 (b+f3(-))· V. Since 

Sis a skew-symmetric compact op~ator on H 1 (Proposition 3.2), one may now 
use the spectral decomposition of S to express hi in an eigenfunction expan
sion, arriving at llh111i r-, llg1 11i- This gives an asymptotic relation between a 
and the dispersion of X 1( t) as that of a 2 times that of Y 1( t). The dominant 

term in this expansion of the dispersion is 2a2 11(~- 1 ({3 i -731)}N.IIi where f!!.. is 

the projection off in H 1 onto the null space N ofS. Thus, if(~- 1 ({3 1-731))l!.. of 
0, the dispersion of X 1(t) per unit time grows with a quadratically and is 
asymptotically bounded away from 0 and oo if (~-1 ({3 J- 73))l!.. = 0 (Theo
rems 3.7, 3.8). 

The Gaussian approximations derived in this paper may be readily strength
ened to their functional forms (see Remark 5.2.1). In other words, under ap-



478

MULTISCALE DIFFUSIONS 953 

propriate scaling, the diffusion process X(-) in (1.1) has different Brownian 
motion approximations in the first and final phases. 

Multiscale phenomena occur commonly in nature. The present study was 
motivated in part by the so-called scale effect in the dispersion of solute mat
ter such as a chemical pollutant injected at a point in an underground water 
system, called an aquifer, saturated with water. It has been widely observed 
that for the solute concentration profile different Gaussian approximations 
with increasing dispersivity, or variance per unit time, hold at successively 
larger time scales [Fried and Combarnous (1971); Garabedian, LeBlanc, Gel
har and Colin (1991); Gelhar and Axness (1983); Guven and Molz (1986); 
LeBlanc, Garabedian, Hess, Gelhar, Quadri, Stollenwerk and Wood (1991); 
Sauty (1980); Sudicky (1986)]. The concentration c(t, y) is governed at a local 
scale by a second-order linear parabolic (Fokker-Planck) equation with a drift 
term u( ·) given by the velocity of water and diffusion coefficients which are of 
a somewhat larger order than the molecular diffusion coefficient of the solute. 
Since u( ·)does not depend on time in a saturated aquifer under isothermal con
ditions, the root cause for the observed increase in dispersivity is the existence 
of multiscale heterogeneities in the medium [Bhattacharya and Gupta (1983) 
and Sposito, Jury and Gupta (1986)]. For the understanding ofthis it is enough 
to consider only two such scales of heterogeneity, reflected in the flow velo
city as 

(1.2) u(y) = b(y) + {3(yja), 

with a large. Here b and {3 are functions whose derivatives are of the same 
order, so that the derivatives of {3(-/a) are small, namely, 0(1/a). Thus the 
fluctuations of {3( ·I a )-the large scale fluctuations-are manifested only over 
large distances. Note that the solute concentration c( t, y) corresponding to 
a unit local initial injection at x is simply the transition probability density 
p(t; x, y) of a diffusion process X(t) governed by the Ito equation (1.1). 

It follows that the asymptotics of t ----'7 c( t, y) are given by the asymptotic 
distribution of X(t). The proper way to look at this, when a is very large 
compared to the local scale, is to let a ___,. oo and let t ___,. oo at slower to higher 
rates relative to a. Initially, for a period of time t « a 213 (i.e., tja213 ___,. 0), 
the fluctuations of {3(-/a) may be ignored and {3(X(s)/a) may be replaced 
by its initial value {3(X(O)ja). Theorem 2.1 says that this new process, say 
Y(-), approximates the X(-) process up to such times t well in total variation 
distance. In particular, if Y(-) is asymptotically Gaussian, then so is X(-) for 
times 1 « t « a 213 • This holds, for example, if b(.) is periodic (Theorem 2.2). 

The preceding analysis of dispersion of X j( t) as a function of the distance 
scale parameter a is formally the same as that for the dispersion of a diffusion 
X(t) with drift a(b + {3(-)) [or a{3(-), absorbing bin {3(-)] and diffusion matrix 
D = ur.r'. For the latter, one may regard a = u 0 as the velocity parameter. 
This enables one to study dispersion at a single scale as a function of u 0 (see 
Proposition 3.1). This latter analysis is also of importance in hydrology, and 
has been studied experimentally at the laboratory (or Darcy) scale extensively 
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[Fried and Combarnous (1971)]. This is discussed, along with the scale effect, 
in greater detail in Section 7. 

Although the major emphasis in this article is on the case of divergence-free 
velocity fields, we also consider general one-dimensional multiscale diffusions 
with periodic coefficients. Here the speed of convergence to equilibrium may 
be either of the same order as in the divergence-free case (k > 1), or may be 
exponentially slow in a, requiring times t » exp{ ca} to approach equilibrium 
(Theorems 4.6, 4.7, 4.9). The dispersion per unit time in the final phase is 
always asymptotically constant in a. In the time-reversible case this dispersion 
actually goes to zero exponentially fast with a. This study throws some light 
on the general nondivergence-free case. 

It would be interesting and challenging to extend this study to the case 
of multiscale diffusions whose coefficients constitute an ergodic random field, 
or are almost periodic. For central limit theorems with such coefficients see 
Papanicolaou and Varadhan (1979), Kozlov (1979, 1980), Bhattacharya and 
Ramasubramanian (1988). 

The present article provides a synthesis as well as an exposition of ear
lier work, often done in collaboration with Vijay Gupta, Homer Walker, and 
Friedrich Gotze [Bhattacharya and Gotze (1995); Bhattacharya and Gupta 
(1979, 1983); Bhattacharya, Gupta and Walker (1989)], although a number of 
results are either modified versions of earlier results or new. To facilitate ex
position, detailed proofs are given for the most part. They also serve to remove 
some lacunae in Bhattacharya and Gotze (1995). 

A word on notation. The constants c, c' appearing in this article, with or 
without subscripts or superscripts, are all independent of the parameter a. 
The process YO in Section 2 is different from the process Y(-) in Sections 3, 
4, 5. 

2. First phase of asymptotics. Consider a k-dimensional diffusion ( k 2: 
1) governed by the stochastic integral equation, 

X(t) = X(O) +fat {b(X(s)) + {3(X(s)/a)} ds 

+ l u(X(s)) dB(s), t 2: 0. 

(2.1) 

Here b(.) = (b1(-), ... , bk(-)), {3(.) = ({31(-), ... , f3k(·)) are Lipschitzian func
tions on JR." to JR.", u(-) is a ( k x k )-matrix valued Lipschitzian function on JR.", 
B(-) is a standard k-dimensional Brownian motion and the initial state X(O) 
is independent of B( · ). The spatial scale parameter a is assumed to be "large." 
One may think of b(-) as the drift velocity at the local scale, while {3(-/a) is 
the large scale drift velocity. Since the vector field x---'.> {3(xja) changes very 
slowly, the large scale fluctuations are manifested only at large distances and, 
therefore, not experienced by the process X ( ·) over an initial stretch of time. 
Over this time period one would then expect X ( ·) to behave like the process 
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governed by the Ito equation 

Y(t) = X(O) + l {b(Y(s)) + {3(X(O)ja)} ds 

+ l (J"(Y(s))dB(s), t:::: 0. 

(2.2) 

Note that the large-scale drift velocity {3(-/a) in (2.1) is replaced by its initial 
value {3(X(O)ja) in (2.2). As an appropriate initial condition we will scale the 
initial state X(O) as 

(2.3) X(O) = ax0 , Xo E JR". 

This is merely to avoid the artificial importance of the origin that would arise 
from the assignment X(O) = x 0 , since in the latter case {3(X(O)ja)---+ {3(0) as 
a-+=· 

Our first result identifies the time period over which YO is a good approx
imation to X(·). In order to state it, let .9'1 denote the Borel sigma-field of 
£'[0, t]-the set of all continuous functions on [0, t] into JR", and let P0 1 and 
Pl,t denote the distributions ofY~ := {Y(s): 0 S sSt} and X~:= {X(s,): 0 S 
s S t}, respectively, on §f. The total variation distance between two measures 
p, and v is denoted 111-L- viiTV· 

THEOREM 2.1. Assume that b(-) and its first-order derivatives are bounded, 
{3 ( ·) is bounded and has continuous and bounded derivatives of orders one and 
two, (]"(-) is Lipschitzian, and the eigenvalues of (]"(-)(]"( · )' are bounded away 
from zero and infinity. 

(a) Then there exist constants c; (i = 1, 2, 3) which do not depend on "a" or 
t such that, uniformly for all x0 , 

(2.4) 

(b) If b1(x) = 0 and {3 1(x 0 ) = 0 for 2 S j S k, and 

a{3 1(x) 
(2.5) -- = 0 for 1 S j S k, ax1 

then one may take c1 = 0 in (2.4). 
(c) If, in addition to the hypothesis in (b), one has 

(of3·) ~ (x0 ) = 0 for 1 S j S k, 2 SiS k, 
dX· 

' 
(2.6) 

then one may take c1 = c2 = 0 in (2.4). 

Before proving the theorem we make a few remarks on the time scales 
under (a)-(c) for the validity of the approximation of X(-) by Y(-), and on the 
physical significance of the conditions (2.5), (2.6). 
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REMARK 2.1.1. Condition (2.5) means that the large-scale velocity does not 
depend on the first coordinate x1 . This condition is satisfied by the so-called 
stratified media (see Sections 6 and 7). The condition b j( x) = 0 for 2 ::; j ::; k of 
course means that there is no small scale velocity in directions other than that 
in the x1-direction. The conditions f3 j(x0 ) = 0 (2 :S j::; k) and (rJ/3 j;ax;)(x0 ) = 
0 (1 :S j :S k, 2 :S i ::; k) are specific requirements on the initial point. 

REMARK 2.1.2. It follows from (2.4) that 

(2.7) 
t3!2 

as----+ 0, 
a 

that is, Y ( ·) is a good approximation of X ( ·) for times 

(2.8) 2/3 t t « a or for a 213 small. 

Under the additional assumptions in part (b) of Theorem 2.1, 

(2.9) 

that is, Y(-) provides a good approximation to X(-) over a period of time 

(2.10) t «a. 

Under the hypothesis of part (c), 

(2.11) 
t 

as a4/3 ---+ 0, 

that is, the initial phase of asymptotics governed by Y(-) holds over times 
satisfying 

(2.12) t « a413. 

Examples in Section 6 show that the estimates in Theorem 2.1 are, in general, 
optimal. 

REMARK 2.1.3. The assumption that {3(-) is bounded is only used in part 
(a) of Theorem 2.1. In the absence of this assumption, only the constants 
c~, c{ in (2.4), (2.2) need to be changed to c1(1 + llf3(x0 )11) and c{(1 + llf3(x0 )11), 
respectively. 

PROOF OF THEOREM 2.1. By the Cameron-Martin-Girsanov theorem [see, 
e.g., Ikeda and Watanabe (1981), pages 176-181 or Friedman (1975), pages 
164-169], 

(2.13) j]Po,t- Pl.tjJTv = Ejexp{Z(t)} -1j, 
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where, with Y(O) = X(O), 

(2.14) 
Z(t) = l 0'-1(Y(s)){f3(Y(s)/a)- f3(Y(O)/a)} dB(s) 

- ~ l10'-1(Y(s)){f3(Y(s)/a)- f3(Y(O)/a)} 12 ds. 

By Ito's lemma [Ikeda and Watanabe (1981), pages 66 and 67, Bhattacharya 
and Waymire (1990), page 585], 

f3 j(Y(s)/a)- f3 j(Y(O)!a) 

(2.15) = f (L0 {3 j(·!a))(Y(s')) ds' 

+ .( (V(f3 j(·/a)))(Y(s'))O"(Y(s')) dB(s'), V :=grad, 

where, writing D(x) := O'(X)O''(x) = ((DiJ(x))), 

(2.16) 

Thus, 

(2.17) 
(L0(f3J(-/a)))(Y(s')) = 2~2 L,Dii'(Y(s'))(~~~~})(Y(s')!a) 

'·' 
1 + - (b(Y( s')) + {3( x0 )) · (v f3 j(-) )(Y ( s')! a). 
a 

Denoting the Reimann integral on the right side of (2.15) by I 1i(s) and the 
stochastic integral by I 21 (s), we have 

(2.18) E(f3 i(Y(s)/a)- f3 j(Y(O)/a))2 :::: 2EIL(s) + 2EIL(s). 

Letting A. denote the infimum (over x E J:Rl.") of the smallest eigenvalue of D(x), 
one has 

(2.19) 

1 ( t " ) 1/2 
E[Z(t)[ :S -JI fo ]; E(f3 1(Y(s)/a)- f3 1(Y(O)/a)) 2 ds 

1 t " 2 + -J L E(f3 j(Y(s)/a)- f3 J(Y(O)/a)) ds. 
2A. 0 i=l 
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Also, denoting by II · lloo the supremum ofthe Euclidean norm of a real-, vector-, 
or matrix-valued function, one has 

(2.20) 

so that 

(2.21) 

+ :211 (bO + f3(xo)) · (Vf3 J)(.;a)ll~ }, 

EI~/ s) ::: 82 II D(.) II CX) II v f3 j(.) II~' a 

::: ~: c~ IIDOII~[J~J (~~:-I~~~~·/ I) [J 
2t3 k 2 

+ 3a2 E1ll(b0 + f3(xo)) · (Vf3J)(.;a)lloo 

+ 2~2IIDOIIoo(EIIvf3 J{-) 11~). 
Using the last inequality in (2.19), we get 

( 
t3 t2 t3 ) 1/2 1 

EIZ(t)l < c"- + c"- + c"- -- 1 a2 2 a2 3 a4 -/X 
(2.22) 

Here the constants c7 (i = 1, 2, 3) do not depend on a, tor x 0 . Next note that 
exp{ Z ( t)}, t 2': 0, is a martingale and, in particular, E exp{ Z ( t)} = 1, or 

(2.23) 
0 = E(l- exp{Z(t)}) = E(l- exp{Z(t)}t- E(l- exp{Z(t)}r, 

Ell- exp{Z(t)}l = 2E(l- exp{Z(t)}t::: 2[E(IZ(t)l A 1)). 

The last inequality follows from the relation 1- ex :=: lxl 1\ 1 for x :=: 0. The 
desired result (2.4) is now a consequence of (2.22) and (2.23). 

To prove part (b), note that the second term on the right of (2.21) now 
vanishes. It remains to prove part (c). Under the additional assumption (2.6), 
one may express Yi(-), 2 :=: i :=: k, as 

(2.24) 
t k 

Yi(t) = Y;(O) + fo L a-i,.(Y(s)) dB,.(s), 
r=1 

2 ::: i ::: k, 
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so that the expected square of the stochastic integral in (2.15) may be esti
mated as 

(2.25) 

1 [" s(a{3)(Y(s')) " ]2 EIL(s) = 2 E L 1 - 1 -- L a;,.(Y(s')) dB,.(s') 
a i=2 0 ax, a r=l 

:S c~ { t E[(a{3 J) (Y(s'))Jz ds'. 
a o i=2 ax, a 

In view of (2.6), (a{3 1;ax;)(Y(O)ja) = (a{3 }lax;)(x0 ) = 0 fori::::: 2. Thus 

(2.26) 

E[ (:~) (Y~s')) r 
= E[ (:~)(Y~s')) _ (:J(Y~O)) r 
= E[ (Y~s') - Y~O)). ( v:J(Y ja) r 

[¥lying in the line segment joining Y(O) and Y(s')] 

[ 1 " az{3 {) ]2 
= E a it=l (Y;,(s')- YAO)) ax;,~X; (Y ja) 

1 [" , ( a a{3 1(-)) _ ] 2 
= 2 E L (Y;,(s)- Y;,(O)) --- (Yja) 

a i'=2 ax; ax;, 

c" 
:S -% s' by (2.24). 

a 

Use this and (2.25) to get 

(2.27) 
k cl' 

.L EIL(s) :s -%s2 . 
J=l a 

Using this estimate in place of the estimate of EI~/s) in (2.20), the last term 
on the right side involving t2 ja2 may be replaced by c~ t 3 ja4 . Since the second 
term on the right of (2.21) (involving t3 I a2 ) vanishes, as for part (b), the proof 
of part (c) is complete. D 

REMARK 2.1.4. The significance of Theorem 2.1 is that it identifies the time 
scale for a change in the behavior of X(·), and shows that, prior to this thresh
old, X(-) and YO are close in total variation distance. This is especially im
portant in those cases in which Y ( ·) has interesting analyzable behavior. For 
example, if b(-) = 0 and a(-) is a constant matrix, then Y(-) is a Brownian 
motion, so that X ( ·) is approximately a Brownian motion for times t « a~. 
More important, Theorem 2.2 below identifies a class of coefficients b( ·) such 
that Y (-) is asymptotically a Brownian motion and, for 1 « t « a213 , so is 
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X(·). One may also consider a class of (nonperiodic) coefficients b(-), f3(x 0 ), 

such that Y(-) is ergodic, that is, Y(-) has a unique invariant probability and 
is Harris recurrent. 

For Theorem 2.2 below, assume b(·), u(-) are periodic having the same pe
riod lattice. Since by an appropriate nonsingular linear transformation of X ( · ), 
the period lattice of the transformed coefficients becomes the standard lattice 
1£1', we will assume without loss of generality that b( · ), u(-) are periodic with 
period one in each coordinate, that is, 

(2.28) b(x + r) = b(x), u(x + r) = u(x) 

In this case the process Y ( ·) defined by 

(2.29) Y(t) := Y(t) mod 1 = (Y 1(t) mod 1, ... , Y k(t) mod 1), 

is a Markov process, a diffusion on the unit torus 

.9]_ := { x mod 1: x E Rk} = {(x1 mod 1, ... , xk mod 1): x = (xb ... , xk) E ~k} 

[see, e.g., Bhattacharya and Waymire (1990), page 518]. Given that the transi
tion probability density of Y(-) [and, therefore, of Y(-)] is positive, it is simple 
to check that Y (-) has a unique invariant probability 1r( x) dx and that YO 
has an exponentially decaying phi-mixing rate. Also, as shown in Bensoussan, 
Lions and Papanicolaou [(1978), Chapter 3] and Bhattacharya (1985), Y(-) is 
asymptotically a Brownian motion, in the sense that the sequence of processes 

(2.30) 
Y(nt)- Y(O)- nt(b + f3(x 0 )) 

~ 
converges in distribution, as n -+ oo, to a Brownian motion with zero drift 
and dispersion matrix K. Here 

b = (bb b2, ... 'bk), 

(2.31) bj := f b j(X)7T(X) dx, 1 _:S j _:S k, 
.9i 

K = J:li (grad lf!(x) -I k)D(x)(grad lf!(x)- I k)' 1r(x) dx, 

Ik being the k x k identity matrix and!/!= (!/1 1 , !/12 , ... , lf!k)' being the unique 
mean-zero periodic solution of 

(2.32) 1 .::: j .::: k. 

Recall that L 0 is the generator of Y(-) [see (2.16)], and therefore of Y(-) when 
restricted to periodic functions. The existence and uniqueness of the solution 
of (2.32) follows from a general theorem for ergodic Markov processes [see 
Bhattacharya (1982)]. Indeed, the solution is given by (2.37) below. A proof of 
the convergence in distribution of (2.30) is sketched in the course of the proof 
of the theorem below. We will occasionally write -+ J' to denote convergence in 
law, or in distribution. 
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The normal distribution on JR'.k having mean vector zero and dispersion 
matrix K will be denoted by <I>K or .#(0, K). 

THEOREM 2.2. Assume that b(-) is continuously differentiable, and u(-) is 
Lipschitzian, and b(-) and u(-) are periodic as shown in (2.28). Assume also 
that f3( ·)has continuous and bounded derivatives of orders one and two. Let the 
diffusion X(-) be as defined in (2.1) with initial value (2.3). Then, as n---* oo, 
a ---* oo, such that 

(2.33) 

the process 

(2.34) 

n 
a2/3 ---* 0, 

X(nt)- X(O)- nt(b + f3(x 0)) 

fo 
0 :s t :s 1, 

converges in distribution to a Brownian motion with zero drift and dispersion 
matrix K. In particular, 

(2.35) 
X(t)- X(O)- t(b + f3(xo)) rh 

---* J 'JJK 
~ 

as t---* oo, a ---* oo such that 

(2.36) 
t 

a2/3 ---* 0. 

PROOF. In view of Theorem 2.1(a) (also see Remark 2.1.3), it is enough 
to prove that the process (2.30) converges to a Brownian motion, as n ---* oo. 
Although the latter is proved in Bensoussan, Lions and Papanicolaou [(1978), 
Chapter 3] and Bhattacharya (1985), we will sketch the arguments here for 
completeness and for later use. First note that 

(2.37) 

is well defined as an element of ,£2(91, 1r), where T 1 is the transition operator 

(2.38) (Ttf)(y) := E[f(Y(t)) I Y(O) = y ], 

Note that Ttf---* f, exponentially fast as t---* oo, in the ,£2-norm. By applying 
T h to both sides of (2.37), one obtains (T hlji 1 - ljJ 1); h---* b 1 - b J in ,£2 (91, 1r). 
In other words, (2.32) holds. By Ito's lemma, 

ljJ j(Y(t))- ljJ 1(Y(O)) 

(2.39) = l L 0 1ji 1(Y(s))ds + l grad ljJ 1(Y(s)) · u(Y(s)) dB(s) 

= l (b 1(Y(s))- b1) ds + l grad ljJ 1(Y(s)) · u(Y(s)) dB(s). 
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Hence, 

Y(t)- Y(O)- t(b + {3(x0 )) 

(2.40) = f (b j(Y(s))- b) ds + f u(Y(s)) dB(s) 

= !fi(Y(t))- !fi(Y(O))- f (grad !fi(Y(s))- I 1,)u(Y(s)) dB(s). 

On dividing both sides of (2.40) by ~ and letting t --+ oo, one shows that 
the asymptotic distribution of c 112(Y(t)- Y(O)- tb- t{3(x0 )) is the same as 
that of 

(2.41) 1 rt ( . ) . 
- ~ fo grad 1/l(Y(s))- I" u(Y(s)) dB(s). 

But the integrand in (2.41) is stationary and ergodic. Thus if Y(O) has distri
bution 7T' then, by the Billingsley-Ibragimov central limit theorem for martin
gales [Billingsley (1968), page 206], (2.41) converges in law to <I>K = J//(0, K). 
Since the transition probability density j;( t; z, y) converges to 7r(Y) exponen
tially fast as t --+ oo, uniformly in z and y, the limit law of (2.41) under 
Y(O) = x 0 is the same as under the initial distribution 7T'. D 

RElVIARK 2.2.1. Under the hypothesis of Theorem 2.2, a Berry-Esseen type 
bound may be derived for the process Y(t) defined by (2.2), namely, 

(2.42) suplip(Y(t)- Y(O)- t(b + {3(xo)) E c)- <I>K(C)I::: ~' 
CEC ~ ~ 

where g is the class of all Borel measurable convex sets in JR." and c4 is a 
positive constant which depends only on b(-), {3(-) and D(-); in particular, c4 is 
independent of a [see, e.g., Nagaev (1961) or Tikhomirov (1980)]. Combining 
(2.4) and (2.42), we get the following refinement of (2.35): 

~~~~p( X(t)- X(O)~t(b + {3(xo)) E C)_ <I>K(C)I 

(2.43) 
t3!2 t t3!2 c4 

:S cl- + c2- + cs- + -. 
a a a 2 ~ 

This goes to zero as t--+ oo and tja213 --+ 0. Indeed, one may bound the right 
side by c5 1: 2 + }t, if t I a213 < 1, a > 1. Assuming that this is the precise order 
of the error of normal approximation, the approximation by ci> K improves as t 
(» 1) increases to an order such that 1: 2 = 0( )t ), that is, t = O(a112 ) (a large), 

the minimum error being 0( a-114 ). After this time, this normal approximation 
worsens, and it breaks down for t of order a 213 or larger. Under the special 
assumptions in part (b) of Theorem 2.1, in addition to the assumptions of 
Theorem 2.2, one may use (2.9), instead of (2.4), to take c1 = 0 in (2.43), so 
that the error may be bounded by c5 (tja) + (c4 /~), which has its smallest 
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value O(a-113 ) at a time t = O(a213 ). If, in addition, the assumption in part 
(c) of Theorem 2.1 holds, then one may take c1 = 0 = c2 in (2.43) to get an 
error bound c3 (t213 ja2 ) + c4 j.}t, which becomes minimum for t = O(a), the 
minimum error being O(a-112). 

REMARK 2.2.2. Central limit theorems for a process such as Y ( ·) in (2.2) 
have been studied in the literature under assumptions other than periodicity 
of b(-), u(-). For example, one may take b(-), u(·) to be (i) almost periodic, or 
(ii) stationary ergodic random fields [see Papanicolaou and Varadhan (1979), 
Kozlov (1979, 1980) and Bhattacharya and Ramasubramanian (1988)]. If a 
is sufficiently large, so that these Gaussian approximations for Y ( t) hold for 
1 « t « a 213 , then they hold for X(t) over the same time scale. 

3. Analysis of dispersion in the final phase: the divergence-free 
case. In this section we first analyze the functional dependence of the asymp
totic dispersion of a diffusion with periodic coefficients on a large velocity pa
rameter u0 • This is of importance in itself, and has been studied extensively 
in the hydrology literature [see, e.g., Fried and Combarnous (1971)]. More 
important for us is the fact (see Proposition 3.1 below) that the asymptotic 
dispersion matrix is the same function of the spatial parameter "a" in the 
absence of u 0 , as it is of u 0 in the absence of "a." We will use this fact later 
in the section to analyse the dispersion in the final phase. Consider then the 
k-dimensional diffusion X(t) governed by the Ito equation, 

(3.1) X(t) = X(O) + u0 t f3(X(s)) ds + t u(X(s)) dB(s), 

where {3(-) is continuously differentiable and periodic with period lattice £}, 
u( ·) is a Lipschitzian matrix-valued periodic function of period one whose 
eigenvalues are bounded away from zero, X(O) is independent ofthe k-dimen
sional standard Brownian motion B(·), and u0 is a "large" parameter scaling 
the velocity magnitude. We have seen in Section 2 that (X(t)- X(O)- tf3)!-Jf 
converges in distribution to a Gaussian uf/(0, K) with mean zero and disper
sion matrix K = K(u 0 ), say. On the other hand, one may consider the diffusion 
X ( ·) governed by 

(3.2) X(t) = X(O) + t f3(X(s)ja) ds + l u(X(s/a)dB(s), 

with the same assumptions on {3(-), u(-) as above, B(-) a standard Brownian 
motion independent of X(O), and a a "large" parameter scaling distance. Let 
K(a) denote its asymptotic dispersion matrix as computed in Section 2. 

PROPOSITION 3.1. Under the above assumptions, K(-) = K(-). 

PROOF. Define the process 

(3.3) 
A A 2 
Y(t) := u0 X(t/u 0 ), t 2: 0. 
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Then 

(3.4) dY(t) = f3(Y(t)ju 0 ) dt + u(Y(t)ju 0 ) dB(t), 

where B(t) u0 B(t!u5) is again a k-dimensional standard Brownian mo
tion. Thus, with a = u0 , Y(-) and X(-) have the same law, if their initial 
states are the same. However, irrespective of initial states, the scaled pro
cesses converge weakly to the same Gaussian law. Finally, the asymptotic 
dispersion matrix of Y(-) is the same as that of X(-). For limt-HXJ var Y(t)jt = 
lim~-+oo var X(t/u5)!(t!u5) = limt---+oo var X(t)jt = K(u 0 ). Therefore, K(-) = 
K(-). D 

The analysis of the asymptotic dispersion of X(-) [governed by (3.1)] will 
be carried out under the additional assumptions, 

(3.5) 
" rJf3 (x) 

div f3(x) = L _J_ = 0 
)=1 ax j 

Vx 

and 

(3.6) u(x) = u, 

where u is a constant nonsingular k x k matrix. An extension to nonconstant 
u is indicated later (see Remark 4.5.2). We will write D = ((DJJ')) for uu'. 
The divergence-free condition (3.5) means that the medium through which 
the transport (of a solute, e.g.) is taking place is incompressible. The spectral 
method of this section does not extend to velocity fields which are not diver
gence free. The latter are treated in Section 5 by direct calculations for the 
case of dimension one. 

Under the assumptions that /3( ·)is periodic with period lattice 71}, and (3.5), 

(3.6) hold, the diffusion X(t) := X(t)modl on the torus .91 := {xmodl: x E 

Ifkk} has the normalized Lebesgue measure dx as the invariant distribution. 
To see. this check that £*1 = 0, where L* is the formal adjoint of the generator 

L of X, 

(3.7) 

The last equality follows from (3.5). 
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It follows from Section 2 [see (2.30)-(2.32)] that 

(3.8) 

where 73 = (/31 , ... , /31,), with 73j given by 

(3.9) 

and 

(3.10) 
K = 1 (grad l/f(x)- I k)D(grad l/f(x)- I k)' dx 

[0. 1)" 

= ((K jf )). 

965 

Here 1/JO = (l/1 1(·), ... , l/11,(-)) is the unique mean-zero solution in the domain 
of L [in J'2(SJ., dx)], 

(3.11) 1 ::s j ::s k. 

Further, one has 

(3.12) 
K jf = E jf + D jf, 

Ejf := 1 gradl/fj(x) · Dgradl/ff(x)dx. 
[0,1]1' 

This follows from (3.10) using periodic boundary conditions, namely, 

(3.13) 1 rJl/fJ( x) 
-"---dx = 0, 

ro, 1J" ax,. 
1:::; j,r:::; k. 

To analyze E jf let us introduce the complex Hilbert space, 

(3.14) 

where dx denotes Lebesgue measure, or the uniform distribution on the unit 
torus 3'1, and J'2 (5'1, dx) = J'2 is the space of complex-valued square inte
grable ( w.r. t. dx) functions on SJ.. Here 1 j_ is the subspace of J'2 orthogonal 
to constants, that is, the set of all mean-zero elements of J'2 • This identifies 
H 0 and its inner product as 

(3.15) 
H 0 = {h periodic: 1 lh(x)l2 dx < oo, 1 h(x) dx = o}, 

[0, 1]k [0, 1]h 

{(, g) 0 := 1 f(x)g-(x) dx. 
[0, 1]" 
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Here g- is the complex conjugate of g. The spectral expansion of E Ji' is carried 
out on the Hilbert space H 1 defined by 

H 1 = {hE H 0 : 1 1Vhl2 (x) dx < oo}, \7 :=grad, 
[0, 1]" 

(3.16) 
1 " af ag-

(f,gh:=- L Dfi.J --dx. 
2 . '-1 [0, 1]" OX)· OX;·· ), J-

Note that for all twice continuously differentiable periodic f and once contin
uously differentiable periodic g, integration by parts yields 

(3.17) 

where 

1 " ;;2 
g; := - L D JJ' • 

2 }.}'=1 ax ]ax J' 
(3.18) 

The Sobolev space Hl, given in (3.16), is the closure in the norm llfll 1 := 
( (f, fh) 112 of the space of all twice continuously differentiable periodic func
tions in H 0 , and the elements of H 1 are those elements of H 0 which have 
square integrable derivatives on [0, 1 ]". Finally let H 2 be the subspace of H 1 

having square integrable derivatives of order two. The operator 9J maps H 2 

onto H 0 and is in fact invertible. Indeed, if g E H 2 is such that 9Jg = f, then 
the Fourier transforms g, f of g and fare related, on integration by parts, by 

(3.19) 

/(r) = 1 f(x)exp(-21Tir · x)dx 
[O.l]k 

= 1 (9Jg)(x)exp(-21Tir · x)dx 
[0, 1Ji' 

1 " 1 ;;2g(x) 
=- L Dii' exp(-21Tir · x)dx 

2 J, i'=1 [o, 1Jk ax 1ax i' 

1 " 
=- L D 1i'(21Tir1)(21Tiri') 1 g(x)exp(-21rir · x)dx 

2 . '-1 [0, 1]" ], J-

= -2172 ( t D1i'rJri')g(r), 
j, i'=1 

Thus g is given by 

(3.20) g(O) = 0, 

Note that 

(3.21) 

r E z". 

r E Z"\{0}. 

r E Z"\{0}, 
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where a 1 is the smallest eigenvalue of D and a 2 is the largest. We will show 
that the operator g-- 1: H 0 ---+ H 1 is compact. For this, let {, (k = 1, 2, ... ) be a 
bounded sequence in H 0 , say II f k llo :S 1 V k. Then there exists a subsequence 
f k' (k = 1, 2, ... ) which converges weakly to some element f 0 of the unit ball 
of H 0 . In particular, 

(3.22) 
fk,(r)---+ / 0(r) ask'---+ oo (r E Z"\{0}), 

fk,(O) = 0 = / 0 (0) V k'. 

Let 

(3.23) 

We now show that llgk'- g 0 11 1 ---+ 0 ask' ---+ oo. For this write [see (3.17)-(3.21)j 

llg",- go II~= -(9(g",- go), g~,- go)0 = -(fk'- fo, g-l(f"'- fo))0 

1 ,~ ~ 2 1 
= 27T2 ,'!iolfJAr)- fo(r)! "iDjJ'rjrJ' 

(3.24) 1 I ~ ~ l2 1 
:S -2 2 L l k'(r)- fo(r) -

1 
l2 

a11T r'fO r 

1 { ~ ~ 2 1 ~ ~ 2} 
2 2a 7T2 L !f~e,(r)- fo(r)i + R 2 L !fk,(r)- fo(r)! 

1 lri::::R lri>R 

1 { I ~ ~ 
1
2 4 } 2 -2 2 L fk,(r)- fo(r) + R 2 ' 

al7T lri::::R 

since llfdo :S 1, llfollo :S 1. Given & > 0, choose Re such that (1/2a1 7T2 ) 

((4/R2 )) < &/2 for R :::: R,. Now choose k~ large so that Llri::::R,Ifk,(r)

/ 0(r)l 2 < &/2 V k':::: k~. Then 

v k':::: k~. 

Thus gk' ---+ g0 in Hl, proving the compactness of g--l. 
We may now express (3.11) as 

(3.25) 1 :s j :s k. 

Rewrite (3.25) as 

(3.26) 1 :s j :s k, 

where .f is the identity operator on H 1, and S is the linear operator 

(3.27) 
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acting on H 1 . Note that, for f, g E H 1, 

(9-1/30 · Vf, g)l = -(/30 · Vf, g)o 

k { af(x) 
=- L lr f3 j(x)-- g-(x) dx 

i=l [0, l]k ax j 

k a 
= J f(x) L -(!3 1(x)g-(x)) dx 

[0, 1]k )=1 ax j 
(3.28) 

= 1 f(x){g-(x)(div f3)(x) + t f3 j(x) ag-(x)} dx 
[0, 1]k )=1 ax j 

= { f(x)(/30 · \lg)(x)dx = (f, /30 · Vg}o 
lro, 1J" 

= -(Fr1f, /30. v gh. 
Thus Sis skew symmetric. Noting that f3(·) · \1: H 1 __,. H 0 is bounded, while 
g-1 : H 0 __,. H 1 is compact, we have the following result [see Reed and Simon 
(1980), page 200]. 

PROPOSITION 3.2. Let f30 be continuously differentiable and periodic and 
(3.5), (3.6) hold. Then S := g-1/3(·) · \1 is a skew symmetric compact operator 
on H 1 and, therefore, may be expressed asS= iG where G is a compact and 
self-adjoint operator on H 1 . 

Applying the spectral theorem for compact self-adjoint operators [see Reed 
and Simon (1980), page 203], it now follows that G has a sequence of nonzero 
eigenvalues An __,. 0 with corresponding eigenfunctions 'Pn (n 2:: 1) such that 
{'Pn: n 2:: 1} form a complete orthonormal sequence for Nj_, the subspace of 
H 1 orthogonal to the null space N of G or S. Hence one has the eigenfunction 
expansion, 

00 

(3.29) fE H\ 
n=l 

where f N is the orthogonal projection off onto N. Also, 
cc 

(3.30) 
n=l 

Taking f = 1{1 i in (3.29), (3.30), one may now express the equation (3.26) in 
spectral form 

(3.31) 

Hence, 

(3.32) 

(!{! J)N = uo(!.tl'-1(!3 i -{3i))N, 

(1 + iuoAn) ( !{! j, 'Pnh = uo(!.tl'-1 (/3 j - 73 y), 'Pn) 1 , 

( } Uo/3 jn 
!/J j• 'Pn 1 = 1 + · , ' 

lUolln 

n2:1. 

n2:1. 
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Thus the components E if of the dispersion matrix ( (Kif)) arising from the 
heterogeneity of the medium of transport may be expressed as [see (3.12), 
(3.16)] 

00 

(3.33) n=1 

In particular, 

(3.34) 1:::: j:::: k. 

THEOREM 3.3. Suppose the assumptions in Proposition 3.2 hold. 

(a) lf(9-1 ({31 -73))N -=1- 0, then 

(3.35) . K jj . E jj II ' -1 - 112 hm - 2 = hm - 2 =2 (9 (f3 1 -{31))N 1 >0. 
uo--+oo Uo "o__,.coo Uo 

(b) If {3 J- 731 belongs to the range of {3(·) · \7, say, {3(-) · Vh = {3 J- 731 for 
some h E H 1, then 

(3.36) 

where h0 is the projection of h on Nl_ or, equivalently, h0 is the unique element 
in Nl_ such that {3(-) · \7h0 = {3 J- 731. 

PROOF. (a) If (9-1({3 J- 731))N -=1- 0, then (3.35) is an immediate conse
quence of (3.12) and (3.34). 

(b) In this case, 9-1 ({3 J- 73) = 9-1{3(·) · Vh = Sh belongs to the range of 
S and is, therefore, orthogonal to N. Writing 

00 cc 

h = L (h, 'Pn) 1 'Pn + hN, Sh = L iAn(h, 'Pn) 1 'Pn, 
n=1 n=1 

one has [see (3.32), (3.34)] 

f3 jn = (!ir 1 ({3 j- 73 j), 'Pn)1 = (Sh, 'Pnh = iAn (h, 'Pnh, 

E _ 2 2 ~ A~(h, 'Pn)i 
il - uo ~ 2 2 

n=1 1 + UoAn 
00 

--+ 2 L (h, 'Pn)i = 2llholli. 
n=1 

0 
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REMARK 3.3.1. Under the hypothesis of part (a) of Theorem 3.3, the dis
persion coefficient K ii = E ii + D ii [see (3.12)] grows quadratically with u 0 . 

Experimental studies have shown a similar growth pattern for solute dis
persion in saturated porous media. See Fried and Combarnous (1971), and 
Figures 1 and 2 in Section 7. 

Consider now the diffusion X(t) governed by the Ito equation (3.2) involving 
a spatial scale parameter a. Then X(t) mod a is a diffusion on the torus /Y~ := 
{xmoda: x E JRk} and therefore X(t) is asymptotically Gaussian. Indeed, 
in view of Proposition 3.1, the matrix ((K1i')) of dispersion coefficients ofthis 

asymptotic distribution is the same as that of X(t), namely, ((K Ji' )) for u0 =a. 
The following is then an immediate consequence of Theorem 3.3. 

COROLLARY 3.4. Suppose the hypothesis of Proposition 3.2 holds for the 
coefficients of the diffusion X ( t). 

(a) If ( g-1 ([3 J - 73 J)) N =/= 0, then 

. K jj II '-1 - 11 2 hm - 2 = 2 (9 ([3 1 - [3 1))N 1 > 0. 
a--+oc a 

(3.37) 

(b) If f3 i - 73 J belongs to the range of [3( ·) · \7, f3 J - 73 J = f3 · \7 h, then, with 
h0 as the projection of h on N j_, 

(3.38) 

We now turn to the multiscale process of interest, namely [see (2.1)], 

(3.39) X(t) = X(O) + l {b(X(s)) + [3(X(s)/a)} ds + (J"B(t), 

where it is assumed that 

(3.40)(A1) b(-), [3(-) are continuously differentiable, divergence free and peri-
odic with period lattice zk; 

(3.40)(A2) IJ" is a constant k x k nonsingular matrix; 
(3.40)(A3) a is a positive integer. 

Then 

(3.41) X(t) := X(t)moda = (X1(t)moda, ... ' x,,(t)moda) 

is a diffusion on the torus ~ := { x mod a: x E JRk}, whose unique invariant 
probability is the uniform distribution on ~- It is convenient to scale this 
process to bring it to the unit torus .9J. = { x mod 1, x E JR"}. For this, define 

(3.42) Y(t) := X(a2t), 
a 

. X(a 2 t) 
Y(t) := Y(t) mod 1 = . 

a 

Note that apart from the scaling of distance, in which one unit of length in 
the Y -scale equals "a" units of length in the original X -scale, one unit of time 
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for Y equals a 2 units of time for X. The process Y(t) is governed by the Ito 
equation 

(3.43) Y(t) = Y(O) +fat a{b(aY(s)) + {3(Y(s))} ds + CTB(t), 

where B(t) := B(a2 t)ja is a standard Brownian motion on rn;_k. The infinitesi
mal generator of Y(t) is given by Aa = !» + a(b(a·) + {3) · V, that is, 

1 k a2 {(x) 
Aaf(x) =- L DJJ' + a(b(ax) + {3(x)) · Vf(x) 

2 . ''-1 ax) ax,., 
j, J- . 

(3.44) 

for smooth functions which are periodic: f(y + r) = f(y) for all r E z", all 
y E IR"; that is, Aa acts on (a dense subspace of) .£2(,9J., dx). Let g 1 (1::: j::: k) 
be the unique solution in 1 _l of 

(3.45) 

By Ito's lemma [see (2.40)], writing g = (g1 , ... , gk)', 

Y(t)- Y(O)- at(b + {3) 

(3.46) = g(Y(t))- g(Y(O)) -l a{grad g(Y(s))- I}CTdB(s) 

(gradg(x) := ((a!~~~)))). 
Hence, for a fixed "a," 

(3.47) 
Y(t)- Y(O)- at(b + {3) <P 

.jt -+/ K as t-+ oo, 

where 

(3.48) 
K JJ' = E JJ' + D JJ', 

EJJ' := a 2 ((gJ, gJ'h + (gJ', g)1), 1::: j, j'::: k. 

Since the function x -+ b( ax) is rapidly oscillating for large a, one may think 
of approximating Aa by A = 9 + a(b + {3) · V, 

- 1 " a2{(x) -
Af(x)=- L DJJ' +a(b+f3)·Y'f(x). 

2 j, J'=l ax }ax j' 
(3.49) 

Correspondingly, define on H 1 the skew symmetric compact operators 

(3.50) 

Let N denote the null space of S. We will denote by f N the orthogonal pro
jection of an element f of H 1 on N. The following result-provides preliminary 
estimates of the norms of the solution g J of the equation (3.45) in H 0 and H 1. 



497

972 R. BHATTACHARYA 

LEMMA 3.5. Under assumptions (A1)-(A3) in (3.40) one has 

(3.51) sup llgJIIi < oo, 
a 

where a 1 is the smallest eigenvalue of the diffusion matrix D = fJ(J1 • 

PROOF. The operators Sa, S are skew symmetric so that 

(3.52) (Saf, fh = 0, (Sf, fh = o 
Therefore, 

(3.53) 

Rewrite the defining equation (3.45) for g i as 

(3.54) 

It now follows from (3.53) [also see (3.17)] that 

(3.55) 
llgJIIi::: il~-l[b j(a·)- bi + f3 j(-)- 73JJ II~ 

Writing r = (r1, ... , rk) E z", and using Parseval's relation and (3.20), one 
has for all f E H 0 , 

(-~- 1 f, f)0 = L (21r2 2..:, D 1i'riri') -ll/(r)l2 
rEZk\{0} J, J 

(3.56) ::: L (2172allrl2r11/(r)l2 

Therefore, (3.55) leads to the first inequality in (3.51). The second inequality 
in (3.51) follows from 

2 , 2( ) A 2 llfll1 = (-~f, f)o = Lr,co21T LJ,J' Dii'r/i' lf(r)l 

(3.57) 2: L 21T2allrl21/(r)l2 2: 21T2al L i/(r)l2 
r,CO 

D 

The next lemma enables one to estimate the error in replacing b(a·) by b 
in variance calculations. 

LEMMA 3.6. Suppose f E H 0 and "a" is a positive integer. 
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(a) If c# is a relatively compact subset of H 1 then 

(3.58) supl(f(a·), g) 0 l =a(~) as a--+ oo, 
gE& a 

(b) If.§ is a relatively compact subset of H 0 , then 

(3.59) supi(f(a·), g)0 1 = o(1) as a--+ oo. 
gEe# 

PROOF. Assume first that f is continuously differentiable of all orders up 
to at least [k/2] + 1 = k 0 , say. Then 

(3.60) (f(a·), g)o = L f(a·) (r)g-(r), 
rEZ"\{0} 

Now 

(3.61) 

L 1/(r)l = L lrl"ol/(r)l 
lrl"o riO riO 

( ) 
1(2 ( 1 ) 1/2 

::=: L lrl2hol/(r)l2 L lrl2ho < oo. 
riO riO 

It follows that the Fourier series for f, namely LriO /(r)exp{21Tir · x}, con
verges uniformly to f(x) so that 

(3.62) f(ax) = L /(r) exp(21Tir ·ax)= L /(r) exp(21Tiar · x). 

In particular, 

(3.63) ( 
0, 

f(af'(r) = A 

f(rja), if r E aZ"\{0}. 

if r ¢ aZ"\{0}, 

Using this in (3.60) we get 

I (f(a·), g)ol = I L f(rja)g-(r)l 
rEaZ"\{0} 

(3.64) 
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To prove (3.58), note that if.§ is a relatively compact subset of H 1 then 

( )
1/2 

sup L lrl 2 lg(r)l 2 ---+ 0 as a---+ oo. 
gE.§ [r[~a 

(3.65) 

To prove part (b), use the first inequality in (3.64) to get 

(3.66) ( )
1/2 

i(f(a·), g)ol _::: llfllo [l~a lg(r)l2 , 

and note that the right side goes to zero as a ---+ oo, uniformly for g belonging 
to a relatively compact subset of H 0 . 

Since the final estimates in (3.64), (3.66) involve only the H 0-norm of {, 
and the set of all infinitely differentiable functions in H 0 is dense in H 0 , the 
proof of the lemma is complete. c 

We are now ready to prove two of the main results of this section. The 
following technical condition will be made use of in the proof 

Consider the "approximation" of g J provided by the solution h J in H 1 to 
the equation 

(3.67) 
Ah · = f3 · - -/3 · or 

J J J 

(J + aS)h J = 9-1 (/3 J- f3J), 

and let iAn be the eigenvalues of S corresponding to normalized eigenfunctions 
Cf!n (n 2:: 1). We assume 

(3.68)(A4)j (i) {g{ a 2:: 1}, {g-;a;ax 8 (9-1(f3 J- {3j))l'f_: a 2:: 1} (1 _::: s _::: k) are 
relatively compact subsets of H 1 , and 

(ii) {cpnagj jax8 : a 2:: 1} (1 _::: s _::: k, n 2:: 1) are relatively compact 
in H 0 • 

See Remark 3.7.1 for some simpler conditions which guarantee (A4)j. 
For the statement of the theorem below recall that K Ji' = E Ji' + D Ji' are the 

elements of the dispersion matrix of the limiting Gaussian distribution of the 
scaled Y(t) process (3.47) [see (3.48)]. 

THEOREM 3.7. Assume (A1)-(A3) in (3.40), and (A4)j in (3.67). Then 

(3.69) . Kjj II ,-1 - 11 2 hm - 2 = 2 (9 (!3 1 - f3))N 1 . 
a--+XJ a -

PROOF. Since [see (3.48)] 

(3.70) 

it is enough to show that 

(3.71) 
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Now gJ solves (3.45) or (3.54). Hence [see (3.52) and Lemma 3.6], 

llgJIII = (gj, (J + aSa)gj)1 = (gj, g-1 [bj(a·)- bj + f3 j -73J)1 

(3.72) = -(gJ, b j(a·)- bJ + {3 J -73)0 ::: -(gJ, f3 J -{3J)o 

= (gj, g-\{3 j -{3j))1. 

Here ::: indicates that the difference between its two sides goes to zero as 
a ---+ oo. As in the proof of Theorem 3.3(a), letting iAn be the eigenvalues of 
S corresponding to eigenfunctions 'Pn (n ::::_ 1), one may express the second 
equation in (3.67) as 

(3.73) 

Hence 

(3.74) 

(h ) {3 jn 
)' 'Pn 1 = 1 + · , ' lalln 

n::::_l. 

as a ---+ oo, 

since the sum on the right is bounded above by L~=1 f3]n :::: 119-1({3 J - 73) III 
for all a. Hence, 

(3.75) hJ---+ (9-1({3J -{3J))l'f_ in H 1-norm, as a---+ oc. 

Now, using (J + aSa)gj = 9-1[bj(a·)- bJ + f3J- {3J] and (J + aS)hj = 
9-1(f3J -{3J), one gets 

- . -1 - . -1 -
(3.76) (J+aS)(gj-hJ)=9 (bj(a·)-bj)-a9 (b(a·)-b)·VgJ. 

Therefore, 

(3.77) 

and 

(3.78) 
n::::_l. 

The first term on the right in (3.78) goes to zero by (3.58) or (3.59). To 
evaluate the second term, express the inner product as 

(9-1(b(a·)- b)· \1 gj, cp,)1 = (-(b(a·)- b)· \1 gj, 'P J)o 

k - agJ 
=- L(Cbs(a)- bs) ax , 'Pn)o 

S=1 S 

(3.79) 

as a ---+ oo, 
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using the assumption that {'Pnt3gj jt3x 8 : a ::=: 1}, 1 _::: s _::: k, are relatively 
compact subsets of H 0 [see (A4)j and Lemma 3.6(b)]. Thus 

(3.80) {gj- hj, 'Pnh---+ 0 as a---+ oo (n = 1, 2, ... ). 

Since {g J - h 1: a = 1, 2, ... } is relatively compact in H 1 , (3.80) implies (g J -

h1)Nj_---+ 0 weakly in H 1, that is, (gj)Nj_---+ 0 weakly in H 1. Now use (3.72) 
to write -

(3.81) 

llgJIIi:::: (gj, g-1 Cf3 1 -73))1 

= (gj, (9-1(f3j -73j))!j_)l +(gj, (9-1(f3j -73j))l'{_~)l 

:::: (gj, (!»-1(f3 j -73j))!j_)l 

= (hJ, (9-1(f3J -73))H)1 + (gJ- hi, (!:»-1(f3J -73J))H)1 

:::: llcg-1Cf3 j -73j))!j_ll~ + ((gj- h j)!j_, g-1cf3 j -73j))1. 

Now, by (3.77) and Lemma 3.6, 

(3.82) 

((gj- h j)!j_, g-1({3 j- 73j))l 

:::: -a{(!»-1[(b(a·)- b)· 'Vgj])!j_, g-1(f3J -731))1 

= -a(!»-1[(b(a·)- b)· 'V g 1], (l»-1({3 J -731))lf_)1 

= a((b(a·)- b)· 'V g 1, (!»- 1({3 J- 731))H)o 

=a t(a~ {(bs(a·)- bs)gj}, (l»-1({3 J -73J))!j_) 
s=1 s 0 

=-a t(Cbs(a·)- bs), gj _!!___(9-1({3 1 -73)1))H) ---+ o, 
s=1 dXs 0 

since {gj(t3jt3x 8 )(9-1(f3 J- 73))H_: a ::=: 1}, 1 _::: s _::: k, are relatively compact 
subsets of H 1. Relations (3.81) and (3.82) imply (3. 71). D 

REMARK 3.7.1. Assumption (A4)j is probably redundant, in the presence of 
assumptions (A1)-(A3), for the proof of the theorem above. But we are unable 
to dispense with it. 

A set of sufficient conditions for (A4)j to hold are 

(3.83) sup sup IV g1(x)l < oo, 
a::::l x 

lim 'V g 1( x) exists a.e. 
a--+oo 

and 

(3.84) (!»-1({3 J -73))H_ have bounded first, and second-order derivatives. 
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Indeed, (3.83) guarantees that g 1 converges in H 1 to some q, say. One may 
then use the inequality 

(3.85) 

with u g 1 - q and u = a;ax 8 (!g- 1(f3 J - {31)h·!_· One also has the more 
symmetric inequality, 

(3.86) [[uu[[I :S c'([[u[[I[[u[[~ + [[u00 [[ 2 [[u[[f). 

It may be noted in this connection that the inequality (3.86) corrects a careless 
error in Bhattacharya and Gotze [(1995), relation (4.86)]. Finally, it may be 
noted that (3.83), (3.84) hold in the examples in Section 6. 

The next result deals with the case 

(3.87) 

We will make use of the following assumption, in addition to (Al)-(A3): 

(3.88)(A5)j There exists a twice continuously differentiable solution p E H 1 of 
the equation 

Note that (A5)j says that !2-1 ({3 J- {3y) belongs to the range ofS, so that 
(3.87) holds. 

THEOREM 3.8. Assume (Al)-(A3), (A5)j. Then 

(3.89) D ·· < liminf K ··<lim sup K ·· < oo. 
JJ - a-->oo JJ - a-->oo JJ 

PROOF. In view of (3.48) [see (3. 70)], it is enough to show that 

(3.90) limsupa2 [[g1[[i < oo. 
a-->oo 

Letting p be as in (3.88) one has, by the last inequality in (3.64), 

(3.91) 

[[gj[[I = (gj, (J + aSa)gj)1 

= (g1, !2-1(by(a·)- bJ))1 + (gJ, g-1(f3J -{3)))1 

c1[[gj[[Ii[b1 llo + ( -8 ) :s gj, p 1· 
a 
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(gJ, Sp)1 = (gJ, SaPh- (gJ, (Sa- S)p)1 

=-(Sag}, p)1 - (gj, g-1(b(a·)- b)· Vp)1 

= -~(-gJ + 9-1(b J(a·)- bJ) + g-1 ({3 J -{3), P)1 

- (gJ, g-1(b(a·)- b)· Vp)1 

1 1 -
= -(gJ, Ph+ -(bJ(a·)- bJ, p)0 a a 

1 - -1 -
- -(Sp, Ph- (gJ, 9 (b(a·)- b)· Vp)1 . 

a 

Since (S p, Ph= 0, and p E Hl, (3.91) and (3.92) lead to 

(3.93) 

By Lemma 3.6(a), 

(3.94) 

The last inequality follows from (3.58) using the fact that [see (3.85)] 

(3.95) 

From (3.93), (3.94), one derives the relation 

(3.96) 

where c6 and c7 do not depend on "a." It is clear from (3.96) that {affgJff 1 : a= 
1, 2, ... } is a bounded sequence, that is, (3.90) holds. D 

REMARK 3.8.1. The assumption ofboundedness of derivatives of pin (A5)j 
is probably redundant. In any case, it is satisfied in Example 2 of Section 6. 
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4. Speed of convergence to equilibrium of diffusions on a big torus. 
A crucial element in the analysis of the asymptotic behavior of multiscale 
diffusions with periodic coefficients, such as X(t) in (3.39), is the estimation 
of the total variation distance between the distribution at large times t of the 
corresponding diffusion X(-):= X(-) mod a on the big torus .5; = {x mod a: x E 

IRk} and its equilibrium distribution uniformly with respect to all initial states 
of X(-). To derive such an estimate we first obtain an analogue of a result of 
Fill (1991) [also see Diaconis and Stroock (1991) for the time-reversible case], 
which holds for general Markov processes in continuous time. 

Let U(t), t 2:: 0, be a Markov process on a measurable state space (M, vA'), 
having a transition probability density r(t; x, y) with respect to a sigma
finite measure v. Suppose r admits a unique invariant probability n( dx) = 
n(x)v(dx). Let J'2 = J'2(M, n) be the real Hilbert space of square integrable 
(w.r.t. n) functions on M and T 1 (t > 0) the semigroup of transition operators 
onJ'2 , 

( 4.1) (Ttf)(x) = J f(y)r(t; x, y)v(dy), 

Define also the transition probability density q(t; x, y) of the time-reversed 
Markov process, by 

( 4.2) q(t; x, y) = r(t; y, x)n(y)/n(x) 

if n(x) > 0 [and arbitrarily, measurably, if n(x) = 0]. Let T0 t > 0, denote the 
corresponding transition semigroup, 

( 4.3) (T1g)(x) = J g(y)q(t; x, y)v(dy), 

It is simple to check that T1 is the adjoint of T 1, that is, 

(4.4) 

where ( , ) is the inner product on J'2 . Let B and B denote the infinitesimal 
generators of the semigroups T 1 (t > 0) and T1 (t > 0), respectively, and DB, 
DB their domains. Let 1 _j_ denote the subspace of J'2 orthogonal to constants 
and write II · II for the norm in J'2 . 

PROPOSITION 4.1. Assume that DB is dense in J'2, and define 

(4.5) A= inf{ (-Bf, f): f E 1_]_ nDil, llfll = 1}. 

Then i{U(O) has a probability density YJ w.r.t. v, the density YJt ofU(t) satisfies 

(4.6) 

where ifio is given by 

(4.7) ,,, ( ) = YJ(Y)- n(y) 
'PO y n(y) a.e., w.r.t. n(dy). 
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PROOF. Without loss of generality, assume lllfio II < oo, that is, lfio E 1 _[_. 
Now if g E 1 _[_ n DiJ, then Ttg E 1 _[_ n Dil V t > 0 so that, by (4.5), 

d - 2 d- - - --
dt IITtgll = dt (Ttg, Ttg) = 2(Ttg, BTtg) 

(4.8) 

leading to 

(4.9) gE1_!_nDil. 

Note that 1_[_ n Dil is dense in 1_[_, since Dil is dense in 1 2 • Hence (4.9) holds 
for all g E 1 _!_. Now one may write 

(4.10) 

- (Y)) J YJ(X) Tt ;. (y) = 7T(x) q(t; y, x)v(dx) 

J YJ(X) 7T(X) YJt(Y) 
= 7T(x) r(t; x, y) 7T(y) v(dx) = 7T(y), 

which implies 'i\!fio = YJtf1T -1. Therefore, by the Cauchy-Schwarz inequality 
and (4.9), 

( 4.11) 

j IYJ 1(y) -?T(Y)Iv(dy) = J! ~g; -117T(y)v(dy) 

= /I Ttlfio(Y)i1T(y)v( dy) 

:S ll'i'tlfioll :S e-Atlllfioll· D 

REMARK 4.1.1. If B is self-adjoint, that is, if B = B, A defined in (4.5) is the 
spectral gap of B. Note that in this case the spectrum of B lies on the negative 
half of the real-axis (in the complex plane), with 0 as the simple eigenvalue 
corresponding to the eigenspace of constants in 1 2(M, 7T). The point of the 
rest of the spectrum closest to 0 is -A, if A > 0. If B is not self-adjoint then, 
assuming that the symmetric operator B + B is closed with a domain dense in 
1 2(M, 7T), the quantity A in (4.5) is the spectral gap of ~(B+B). For notational 
purposes, we will often write AB for A in (4.5). 

The following simple lemma shows the change in A that occurs under a 
change in the time scale. 

LEMMA 4.2. Assume the hypothesis of Proposition 4.1 and consider the 
Markov process V(t) := U(ct), t 2:: 0. 

(a) Then V ( ·) has invariant probability 1T and for its infinitesimal generator 
Be, say, one has 

(4.12) AB, := inf{(-BJ, f): llfll = 1, f E 1_!_ n DilJ =cAB. 
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(b) Also, if V(O) has a probability density YJ w.r.t. v, and V(t) has the cor
responding density YJt, then one has 

(4.13) 

where !fJo(Y) = (YJo(Y)- 7r(y))/7r(y). 

PROOF. Clearly, V(-) has the same invariant probability as U(-). Also, the 
infinitesimal generator of V(-) is Be = cB (with domain Dn, = Dn), so that 

Be= cB and An, is given by 

(4.14) inf{(-cBf, f): llfll = 1, f E 1j_ n Ds} =cAn. 

This proves part (a). Part (b) follows from (4.7). D 

We now apply this lemma to the scaled diffusion Y on the unit torus and 
its generator Aa on 1 2 (31, dx) [see (3.42), (3.44)]. Recall that, under the 
divergence-free assumption in (3.40), dx is the unique invariant probability 
of Y. The adjoint operator Aa is then easily seen to be 

- 1 k a2 
Aa=- L Djj' -a(b(a·)+,B)·\7 

2 . ,_1 Jx1·Jx1, 
],] -(4.15) 

= ~- a(b(a·) + ,8). V. 

Denote by X the infimum in (4.5) for the case B = Aa, B = Aa. That is, X is 
the spectral gap of ~(~ + a(b(a·) + ,8) · V) + ~(_q- a(b(-) + ,8) · V) = ~ on 
1 2(31, dx). 

PROPOSITION 4.3. Under assumptions (A1)-(A3) in (3.40), writing a 1 for 
the smallest eigenvalue of the matrix ( ( D Jf)), and A 1 = min { D J/ 1 :::; j :::; k}, 
one has 

( 4.16) 

PROOF. Denote by D the domain of~ on 1 2(31, dx). As before, let f 
denote the Fourier transform off on 1 2(31, dx). Then one has 

( 4.17) 

X= inf{ -(f, ,qf): llfll = 1, f E 1j_ n D} 

= inf(27T2 L i/(r)l 2 
( ~ D Jfr jr 1) l 

rE:lk\{0} J, 1' 

=::: 27r2 inf{ L i/(r)l 2 a 1 lrl2 } =::: 27T2a1. 

rE:Z/'\{0} 

On the other hand, letting f ( x) = .J2 cos 27r x 1, one gets - ( f, !2 f) = 27r2 D JJ. 

Hence X:::; 27T2 A1 . D 
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By using Lemma 4.2, one arrives at the following corollary of Proposition 
4.3. To state it, assume (A1)-(A3). Let L denote the generator of the diffusion 
X(t) on the big torus~= {x mod a: x E R"}, and let m denote the normalized 
Lebesgue measure or the uniform distribution on~· Note that m is the unique 
invariant probability of X and that ~(L +L) = !.Z on 12(~, m). Let D denote 
the domain of!.» in 12(~, m). 

COROLLARY 4.4. Assume (A1)-(A3) in (3.40). Then the quantity AL 
inf{ -(f, Lf): Iff[[ = 1, f E 1 _j_ n DL} satisfies 

( 4.18) 

where a 1 , A1 are as in Proposition 4.3. 

PROOF. First note that V(t) := X(a2 t), t =::: 0, has the generator a 2 L on 
12(~, m). The generator Aa of Y(t) = V(t)ja has the same spectrum on 
1 2 (.9]_, dx) as that of V(t) on 12(~, m ). Therefore, A= AazL E [c1 , c2 ], where 
c1 , c2 are as in ( 4.16). On the other hand, by Lemma 4.2, Aaz L = a 2 A L. Hence 
A£= 1ja2 AazL E [cda2 , c2ja2]. D 

One of the main results of this section may now be stated and proved. 

THEOREM 4.5. Assume (A1)-(A3) in (3.40), and let Pa(t; x, y) denote the 
transition probability density of X(t) with respect to Lebesgue measure on 
[0, a)". Then there exists a positive constant c5 independent of a such that 

( 4.19) sup 1 IPa( t; x, y)- ~I dy .:::; c5 a"12 exp{ -2?T2a 1 tja2 }, 
x [0, a)" a? 

a 1 being the smallest eigenvalue of the matrix ( ( D jf) ). 

PROOF. By Corollary 4.4 and Proposition 4.1 one has, for every initial den
sity 17 of X, 

( 4.20) 

where if;0 (y) = ( 17(y)- a-");a-", and 1/t is the density of X(t). Now 

lli/Jo[[ 2 = a2" 1 (172(y) + a-2"- 2a-"17(Y))a-" dy 
[0, a)h 

( 4.21) =a" 1 rhy)dy- 1 
[O,a)" 

.:::; a" sup{'Y/(y): y E [0, a)"}. 

Since Pa(t; x, y) is the density of X(t), when X(O) has the degenerate distri
bution ox, we will apply (4.20), (4.21) to 17(y) = Pa(1; x, y) and with t replaced 
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by t- 1 to get 

( 4.22) 
1 

'
Pa(t;x,y)- \ldy 

[0, a)k a 

To estimate the supremum on the right side we apply a result of Aronson 
(1967), which implies that the transition probability density f(1; x, y) of the 
process X(t) satisfies 

( 4.23) {(1; x, y) ::S c' exp{ -c[x- y[ 2 }, 

where c and c' are positive constants not depending on a. Now 

Pa(1; X, y) = :L {(1; X, y + ar), X, y E [O,a)k 

( 4.24) 
rEZh 

::S c' :L exp{-c[x- y- ar[ 2 }:::: c", 
rEI!/' 

where c" does not depend on a. Therefore, (4.22) and (4.24) lead to (4.19). D 

REMARK 4.5.1. It follows from the above proof that the transition density 
qa(t; x, y), say, of Y(t) satisfies the inequality 

(4.19)' 

REMARK 4.5.2. One may extend Theorem 4.5 by relaxing the assumptions 
(A1)-(A3) to the case of diffusions X(t) with generators of the form 

1 " a a k a 
L =- :L -(Djf(x))- + :L {bj(x) + f3 j(xja)}-, 

2 j, /=1 ax j ax f }=1 ax j 
( 4.25) 

where the assumptions (A1), (A3) hold for b i• f3 i and a, but (A2) is replaced 
by 

(A2)' ( ( D if( x))) is a (positive definite)-matrix valued continuously differen-
tiable periodic function with period lattice zk. 

In this case the diffusion X ( t) = X ( t) mod a on the big torus Ya has again 
as its unique invariant probability the normalized Lebesgue measure m = 
a-" dx, whose generator on 1'2 (Ya, m) is £-restricted to periodic functions. 
Also, !(L + L) = ~1 := ! LJ,J' (ajaxi) (Djf(x)) (ajaxp) is self-adjoint on 
1'2 (Ya, m) and has a spectral gap 0(1ja2 ). This last statement is a conse
quence of the fact that for the generator Aa of Y(t) := X(a2 t)ja one has 
!(Aa + Aa) = ~1 on 1'2 (.91, dx), and the latter has a spectral gap indepen
dent of a. Thus under the hypotheses (A1), (A2)', (A3) the transition probability 
density Pa(t; x, y) of X(t) satisfies (4.19). 
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We next turn to a special class of diffusions with periodic diffusion coef
ficients whose drift terms are not divergence free. This is the class of one
dimensional multiscale diffusions with periodic coefficients. But, first, some 
general facts concerning diffusions on the unit circle S 1 = { x mod 1: x E IR?.1 } 

are needed. For detailed derivations see Bhattacharya, Denker and Goswami 
(1999). Consider the one-dimensional Ito equation 

(4.26) Z(t) = Z(O) +lot fL(Z(s)) ds +lot (T(Z(s)) dB(s), 

where fLO, (TO are continuously differentiable periodic functions with pe
riod one, 0"2(x) > 0 V x, B(t) is a standard one-dimensional Brownian motion 
independent of Z(O). The diffusion Z(t) := Z(t) mod 1 on S 1 has a unique 
invariant probability with density 1T given by 

( 4.27) 1r(x) = dexp(I(O, x))j0"2(x), 
t 2{L(y) 

J(O, x) := lo 0"2(y) dy, 

provided one has 

( 4.28) 
[ 1 fL(Y) 

lo 0"2(y) dy = 0. 

If (4.28) does not hold, then 

( 4.29) 

( ) = d' exp(I(O, x)) { exp(I(O, 1)) [ 1 (-I( )) d 
1T x 0"2(x) exp(I(O, 1))- 1 lo exp O, Y Y 

-f exp( -J(O, y)) dy }· 

The constant din (4.27) is the normalizing constant, as is the constant d' in 
(4.29). The infinitesimal generator A of Z(t) on 1 2(81 , 1r) is ~0"2 (x)(d2jdx2 )+ 
fL(x)(djdx) acting on periodic functions. One can show that A is self-adjoint, 
that is, A = A, if and only if ( 4.28) holds. Write A for the adjoint of A. 
Then, irrespective of whether A is self-adjoint or not, one can show on direct 
integration, using integration by parts and periodic boundary conditions [see 
Bhattacharya, Denker and Goswami (1999)] that 

( 4.30) 

where 

( 4.31) 

(-f, An= ~ll(TOf'll 2 V f E DJ, 

AA :=inf{-(t,Af): llfll = 1,{ E 1_j_nnA} 

1 
>-
-2M' 

M :=sup{ ((T2(y)7T(y)r1 f X1T(X) dx: 0 <S y < 1} 

<S ( m~n 0"2(y)1r(y)) -
1 

( m;x 1r(y)) I 2. 
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Now consider a general multi scale one-dimensional diffusion with periodic 
coefficients, 

( 4.32) 

Assume 

X(t) = X(O) + l(b(X(s)) + f3(X(s)ja)} ds 

+ l c:r(X(s)) dB(s), 

X(O) = ax0 . 

(4.33)(B1) b(-), f3(-), c:r(-) are continuously differentiable and periodic with 
period one, 

(4.33)(B2) cr(x) does not vanish for any x, 
( 4.33)(B3) "a" is a positive integer. 

Also, without any essential loss of generality, assume 

1 
(4.34)(B4) fo (b(x)jcr2(x)) dx = 0, 

by adding a constant to f30 if necessary. As before, X(t) := X(t)moda is a 
diffusion on the big circle S1z := { x mod a: x E R1 }, which we identify with [0, a) 
for purposes of integration. Let iTa denote the unique invariant probability 
density of X(t). The infinitesimal generator of X(t) on .£'2(S1z, iTa) is 

( 4.35) 
1 d 2 d 

L = 2c:r2(x) dx2 + {b(x) + f3(xja)} dx 

acting on periodic functions. The diffusion Y(t) := X(a 2t)ja is governed by 
the ItO equation 

( 4.36) 
Y(t) = Y(O) + l a(b(aY(s)) + f3(Y(s))} ds + l cr(aY(s)) dB(s), 

Y(O) = x 0 , 

where B(t) := B(a2t)ja is a standard Brownian motion. Also, Y(t) := Y(t) 
mod 1 is a diffusion on the unit circle 8 1 having the invariant probability 
density 7Ta related to the invariant density of X(t) by rra(Y) = aiTa(ay). Note 
that the generator of Y(t) is given by 

( 4.37) 
1 d 2 d 

Aa = 2 c:r2(ax) dx2 + a{b(ax) + f3(x)} dx. 

Assume now that f30 is bounded away from zero. Then, in the presence of 
(B4) in (4.34), the relation (4.28) does not hold for the drift of Y(t). Hence in 
this case the invariant density 7Ta is given by (4.29) with 

( 4.38) lx b(ay) lx f3(y) 
l(O,x)=a ~( )dy+a ~( )dy, o c:r ay o c:r ay 
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and the generator Aa is not self-adjoint. In order to estimate AA using (4.30), 
(4.31), assume f3(x) > 0 Vx. [The case f3(x) < 0 V x is entirely analogous.] 
Write 

( 4.39) 

1 

0 = fo lb(y)l dy, 

f3* = minf3(y), f3* = maxf3(y). 
y y 

By direct calculation one may now show [Bhattacharya, Denker and Goswami 
(1999)] 

( 2~~*) exp( -48/d1)( 1- exp ( -~:/3*)) 
(T 2(ax)1Ta(x) < _ _:____:.____::__:__--'-

- d' 
( 4.40) 

:S (~) [exp((28jd1) + (1 + ~) exp(48jd1)]. 
2af3* 2af3* 

From (4.40), (4.30), (4.31), one arrives at 

where c6 is independent of "a." To get an upper bound, let f(x) = sin 21TX -
fsin21T(Y)1Ta(y)dy to get [see (4.30)] (-f,Af) = (-f,Af) = ~(T2 IIf'll 2 :S 
c~ II f 11 2 for some c~ independent of a. Thus one obtains 

( 4.41) 

For the generator L of X(t) one then has, by the same argument as given in 
the proof of Corollary 4.4, 

(4.42) 

Using this together with the Aronson estimate (4.23), and the relation (4.24), 
as in the proof of Theorem 4.5, one arrives at the following result. 

THEOREM 4.6. Assume (B1)-(B4) in (4.33), (4.34). In addition, assume f3(x) 
> 0 for all x. Then: 

(a) (4.42) holds, and 
(b) TheL 1-distance between the transition probability density Pa(t; x, y) of 

X(t) and its invariant density iTa(Y) is estimated by 

sup 1 \Pa(t; x, y)- iTa(y)l dy :S c7a 112 exp{ -c~tja2 }, 
x [0, a) 

( 4.43) 

where c7 and c~ are positive constants independent of a. 
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The next result concerns the self-adjoint case. For this we assume that the 
diffusion coefficient u 2(-) is a (positive) constant u 2 > 0, so that (B4) in (4.34) 
becomes 

1 

(4.44)(B4)' fa b(x) dx = 0. 

The generator Aa of Y(t) is then self-adjoint if and only if 
1 

(4.45)(B5) fa f3(x) dx = 0. 

As stated earlier, the invariant probability density 7Ta of Y( t) in this case 
is given by (4.27), with I(O, x) = 2aju2{f; b(ay)dy + J; f3(y)dy}. A fairly 
straightforward calculation [see Bhattacharya, Denker and Goswami (1999)] 
yields 

( 4.46) 

exp( -28/ u 2) .( ) (2ae*) 
d 7Ta x :S exp ~ , 

exp( 28~t)) 7Ta(x) c exp( 2:~*). 
where o = f0

1 lb(x)l dx and 

(4.47) e* = minjx f3(y)dy, 
X 0 

8* =max Jx f3(y) dy. 
X 0 

From (4.46) one gets 

( 4.48) maxx 7Ta(x) (48) ( ~ 2) . ( ) .:::: exp 2 exp 2a(e - e~)fu . 
m1nx 7Ta X 0" 

Using this in (4.30) one obtains 

( 4.49) ( ( -48)) (-2a(8*- e)) AAa c u 2 exp ~ exp 172 * , 

so that the spectral gap AL of the generator L of the diffusion X(t) on the big 
circle s; = { x mod a: x E :R;1 } is estimated by 

( 4.50) 1 ( 2 (-48)) 1 -2a(8*- e*)) 
AL = a2 AAa c O" exp ~ a2 exp( u2 . 

Proceeding as in the proof of Theorem 4.5, or Theorem 4.6, one arrives at the 
following estimate of the speed of convergence to equilibrium in this case. 

THEOREM 4.7. In the self-adjoint case (B4)', (B5) with constant u 2 > 0, the 
L 1-distance between the transition probability density of X( t) and its equilib
rium density if a is estimated by 

(4.51) 
sup 1 \Pa(t; X, y)- ifa(Y)\ dy 

x [O,a) 

.:::: c8a 112 exp{ c9aj2} exp{ -( c~j a 2) exp( -c9 a )t} 

where c8 , c~ c9 = 2( 8* - 8*)/ u 2 are positive constants independent of "a." 
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REMARK 4.7.1. The speed of convergence to equilibrium as estimated in 
Theorem 4. 7 is exceedingly slow and, going by it, the process may take times 
t » ( a 2 log a) exp{ c9a} to be close to equilibrium. This is in contrast to the 
nonself-adjoint case considered in Theorem 4.6, where for times t » a 2 log a, 
the process is near equilibrium. The estimate (4.51) concerns the "worst case" 
scenario such as holds under the hypothesis of part (b) ofTheorem 4.9 below. 
On the other hand, under the hypothesis of part (a) of Theorem 4.9, the speed 
of convergence is shown to be as fast as in the case of Theorem 4.6. 

An important difference in the asymptotic behavior between the two classes 
of diffusions considered in Theorems 4.6 and 4. 7 is provided by the following 
result. 

PROPOSITION 4.8. (a) Under the hypothesis of Theorem 4.6, the invariant 
probability density 7Ta of the diffusion Y(t) = X(a 2t)ja on S 1 is bounded away 
from zero uniformly in a. 

(b) Assume the hypothesis ofTheorem 4.7. If the ''potential function" lji(x) := 
J; [3(y) dy has its maximum attained at a single point x*, then the invariant 
probability 7Ta(x) dx converges weakly to the point mass ox* as a---+ oo. More 
generally, if the maximum of t/J is attained at a finite number of points, then 
all weak limit points of 7Ta(x) dx have support contained in this finite set. 

PROOF. Part (a) follows from the estimate miny 7Ta(Y)/maxy 7Ta(Y) C:: c6 /d1 

[see (4.41)]. To prove part (b), let xl> x2 , •.• , xm be the distinct points in [0, 1) 
where the maximum of 1jJ is attained. Since Ia J; b(ay) dyl = I J;x b(y) dyl = 
I J[~:l b(y)dyl:::; o = J0

1 lb(y)l dy [in view of (4.44)], it is simple to check that 
7Ta(x)jmaxy 7Ta(Y) ---+ 0 if x 9{ {x1 , x2 , ... , X 11J. It follows that for any s > 
0, however small, the 7Ta-probability of the s-neighborhood of the finite set 
{x1 , x2 , ... , xm} goes to one as a---+ oo. D 

The next result provides a dichotomy of the class of time-reversible diffu
sions on the big circle into (1) those for which the speed of convergence to 
equilibrium is the same as in the nonself-adjoint case considered in Theo
rem 4.6 and (2) those for which the convergence is exceedingly slow, requiring 
times t » eca. For this we need a result of Holley, Kusuoka and Stroock (1989) 
specialized to the circle. Consider the self-adjoint case with b(-) = 0, that is, 

( 4.52) 
1 fo [3(y) dy = 0. 

In this case, according to Theorem 1.14 in Holley, Kusuoka and Stroock (1989), 
there exist constants c(l) > 0, c(2) c::_ 0, independent of a, such that 

(4.53) c(1)a-2 exp{-c(2la}:::; "-Aa:::; c(lla6 exp{-c(2la}. 

The constant cC2) is computed as follows. Let U ( x) = ( (}* - lji( x)) I u 2 , where (}* 

is given by (4.47) and lji(x) = J; [3(y) dy. For any given pair ofpoints x, yin S 1 

and a continuous curve y joining x andy, let Hy(x, y) denote the maximum 
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value of U on (the image of) y. Define H(x, y) to be the infimum over all 
such y. Then 

(4.54) c<2l = sup{H(x, y)- U(x)- U(y)}. 
x,y 

THEOREM 4.9. Consider the self-adjoint case (B4)', (B5) with CJ2 > 0, and 
assume that the number of zeros of f3 on [0, 1) is finite. 

(a) If rjJ(x) = f0~ f3(y)dy has a unique maximum, then there exists a positive 
constant c< 3l independent of a such that 

( 4.55) 

(b) If rjJ has more than one maximum then there exist positive constants c<2l, 
c<4l, c<5l independent of a, with c< 2l as in (4.54), such that 

( 4.56) 

PROOF. (a) Consider the generator Aa of Y(t) on J 2 (S1 , 7Ta)· Let 7T denote 
the probability density on [0, 1] given by 

( 4.57) 7r(x) = d' exp{ !~ rjJ(x) }• 0 _::::X_:::: 1, 

d' being the normalizing constant. Since I J0" ab( ay) dy I _:::: 8 = J~ I b( y) I dy [see 
(4.44)] one has 

( 4.58) xE(0,1]. 

Now let f E D.4.a n 1~. Then, writing en= exp(88jCY2 ), 

=~cn(JJ +JJ )(f(x)-f(y))27T(X)7r(y)dxdy 
{x<y} {y<x} 

(4.59) = cnjj (f(x)- f(y)?7r(x)7r(y) dx dy 
{x<y} 

1 y ( y )2 
=en fo fo i f'(z) dz 7r(X)7r(y) dx dy 
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:Sent f (y- x){ .{ (f'(z))2 dz} ?T(x)?T(y) dx dy 

=en t (f'(z))2 [{ { f (y- x)?T(x) dx }?T(y) dy] dz. 

By translation, if necessary, we may assume that the minimum of 1/J is at 0, 
and the maximum is at x*. Then 1/J( x) increases from x = 0 to x = x* and 
decreases from x = x* to x = 1. One thus has, for z :::: x*, 

( 4.60) 

For z > x*, 

{ { f(y- x)?T(x) dx }?T(y) dy 

:::= { { foz (y- x)?T(z) dx }?T(y) dy 

= ?T(z) { {t(y- x) dx }?T(y) dy 

= ?T(z) { (yz- ~) ?T(y) dy 

:::= ?T(z)z. 

{ { t (y- x)?T(x) dx }?T(y)dy 

( 4.61) 

= t{{(y- x)?T(y)dy}?T(x)dx 

:::= t { { (y- x)1r(z) dy }?T(x) dx 

=7T(z)foz{1 2z2 -x(1-z)}7T(x)dx:S?T(z)(1 2z2). 

Using (4.60), (4.61) in (4.59) we get [see (4.30)] 

11 en -
(4.62) 11!11 2 :::=en (f'(z))2 7T(z)dz = - 2 {-{, Af), 

0 (J 

so that A Aa ~ rJ2 I en and, as a consequence, the spectral gap A L of the gener

ator L of X(t) satisfies 

( 4.63) 

where e12 = rJ2 I e11 does not depend on a. 
For part (b), first make the additional assumption b(·) = 0. Let x be a 

point where 1/J attains its absolute maximum value 8* and let y be another 
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maximum of lji. Then U(x) = 0 andy is a minimum of U, U(y) ::::_ 0. Every 
continuous curve y joining x and y contains (in its range) a maximum of U, 
that is, Hy(x, y) ::::_ U(z)- U(x)- U(y) = U(z)- U(y) > 0, where U(z) = 
min{U(z1 ), U(z2 )}, and zl> z2 are the two points on the two arcs joining x 
and y at which U attains its maximum values. Hence cC2l defined by ( 4.54) is 
positive, and (4.56) is just (4.53) in this case. For the general case under (b), 
one shows, as in part (a) above, that the ratio of the invariant density to that 
with b(-) = 0 is bounded away from zero and infinity. Hence, using (4.30), one 
derives (4.53) with cC 1l replaced by a smaller constant cC4l on the left and by 
a larger constant cC5l on the right. Since AL = AA)a2 , (4.56) follows. D 

Using Lemma 4.2 and an estimate of Aronson (1967), exactly as in the proof 
of Theorem 4.6, we derive the following theorem. 

THEOREM 4.10. In addition to the hypothesis of Theorem 4.7, assume that 
the potential function lji(x) = J0~ f3(y) dy on [0, 1) has a unique maximum and 
a unique minimum. Then 

(4.64) 

where c10 and c; 0 are independent of a. 

EXAMPLE 4.10.1. Let b(-) be arbitrary (periodic and differentiable) satis

fying J~b(y)dy = 0. Let f3(x) = 7TCOS7TX, so that lji(x) = sin7Tx. Then, on 
the unit circle, the flow dx(t)jdt = f3(x(t)) has one stable equilibrium x = ~' 
where ljJ is maximum, and one unstable equilibrium x = 0, where ljJ is mini
mum. Thus Theorem 4.9 applies. One may expect a relatively fast convergence 
to equilibrium here for Y(t), since from every initial point x i- 0 the flow 
approaches the stable equilibrium fast. 

EXAMPLE 4.10.2. Let b(-) be arbitrary, as above, and f3(x) = 47Tcos47Tx. 
Then lji(x) = sin47TX attains its maximum value at x = ~ and x = i; these 
are the stable equilibria of the flow dx(t)jdt = f3(x(t)). The minimum value 
of lji(x) is attained at x = ~ and x = ~;these are the unstable equilibria of the 
flow. In this case one would expect a relatively slow convergence to equilibrium 
of Y(t) starting from any point x, and Theorem 4.9(b) applies. The spectral 
gap in this case is exponentially small, namely, O(e-"a), for some a> 0 which 
does not depend on a, and a slow convergence to equilibrium such as provided 
for by Theorem 4. 7 results. 

5. Final phase of asymptotics. 

5.1. The divergence-free case. Consider again the multiscale diffusion on 
~h with periodic coefficients as given in (3.39), namely, 

(5.1) X(t) = X(O) + l {b(X(s)) + f3(X(s)ja)} ds + uB(t), 
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and its scaled version Y(t) = X(a 2 t)ja satisfying the Ito equation (4.36). 
Recall the diffusion X ( t) = X ( t) mod a on the big torus .9;,. and the diffusion 
Y(t) = Y(t) mod 1 on the unit torus .9j". We first derive a simple consequence of 
Theorem 4.5. To state it, write Ex for expectation under X(O) = x or Y(O) = x, 
as the case may be, and E as the expectation under equilibrium, that is, the 
invariant distribution. Also, "cov/ denotes covariance under X(O) = x [or 
Y(O) = x], while "cov" denotes covariance under equilibrium. As before, llflloc 
denotes the supremum of lf(x)l over all x for some measurable real-valued 
function f. The constants ci c; below are positive and independent of a. 

PROPOSITION 5.1. Assume (A1)-(A3) in (3.40). There exist positive con
stants ci, c; (i = 13, 14) not depending on "a" such that for all bounded mea
surable f, g on :7;,, one has 

(5.2) 

IE.J(X(t))- Ef(X(t))i 

:S C13ak12 ll flloo exp{ -c'13t I a 2 }, 

icovx{f(X(s)), g(X(t))}i 

t 2:: 0, 

:S c14ah12 llflloollglloo exp{ -c~3(t- s)/a2}, 0 :s s :s t. 

Similarly, for all bounded measurable f, g on .9i, one has 

IEyf(Y(t))- Ef(Y(t))i 

t 2:: 0, 
(5.3) 

icovy{f(Y(s)), g(Y(t))}i 

:S C14a"12 ll flloo II g lloo exp{ -c~3( t - s )}, 0 :s s :s t. 

PROOF. The first relation in (5.2) is an immediate consequence of Theo
rem 4.5 with c13 = c5 and c~3 = 21T2 a 1 . For the second relation, use condition
ing given CT{X(u): 0:::; u:::; s} to write 
(5.4) 

covx{f(X(s)), g(X(t))} = Ex[{f(X(s))- E.J(X(s))} 

X {Ezg(X(t- s))z=X(s)- Exg(X(t))}]. 

Applying the first inequality in (5.2) to the second factor in (5.4), one gets the 
second relation in (5.2). Relations (5.3) follow from those in (5.2), noting that, 
for functions f, g on .91, f(Y(t)) = f(X(a 2 t)ja), g(Y(t)) = g(X(a2 t)ja) so 
that (5.2) may be applied to functions x---+ f(xja), g(xja) with times a 2 t, a 2 s 
in place oft, s. D 
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An immediate consequence of (5.2) and (5.3) is 

icov{f(X(s)), g(X(t))}l 

(5.5) 
S c~4a''12 [[fffooffgffoo exp{ -c~3(t- s)/a2}, 

icov{f(Y(s)), g(Y(t))}i 

0::::: s::::: t. 

For this, simply replace covX' Ex in (5.4) by cov and E, respectively. 

993 

We are now ready to prove one of the main results of this article. Below, 
---+ 1 denotes convergence in law or distribution. 

THEOREM 5.2. Assume (A1)-(A3) in (3.40). Also assume that (A4)j in (3.68) 
holds for 1 s j s k1 for some k1 s k. If, in addition, the assumption 

(5.6)(A6) (!il-1({3 J - 73))!!_, 1 s j s k1 , are linearly independent elements 
of H 1 , holds, then for t » a 2 (log a )2 , that is, as 

(5.7) a ---+ oo, 

one has 

(5.8) {a~( X 1(t)- X 1(0)- t(b1 + 731)): 1 s j s k1 }---+ J ff(O, 4, 1), 

(5.9) 

no matter what the initial state X(O) may be. Here 4,1 = ((O'ij)) is 
given by 

PROOF. One needs to prove that an arbitrary non-zero linear combination 
ofthe random variables in (5.8), with coefficients ~ 1, say, converges in distribu-

tion to a normal law ./f/(0, y) where y = 2...:;',11= 1 O';J~i~J· To avoid a somewhat 
messy notation, we will prove the result for the case ~J = 1, ~i = 0 fori =f. j. 
The proof in the general case is entirely analogous. We will prove that for 
times t satisfying (5. 7), 

1 - -
(5.10) 0 (X J(t)- X J(O)- t(bJ + f3 j))---+ 1 uf/(0, 0'11), 

avt 

under the assumptions (A1)-(A4) and (9-1(f3i -73))!!_ =f. 0. This assertion is 
equivalent to 

(5.11) 

under the same assumptions, but for times t » (log a )2 , that is, 

t 
(5.12) a---+ oo, (loga)2 ---+ oo. 
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Recalling that the left side of (5.11) equals [see (3.43)] 

(5.13) 
1 jt{ . . - _ (CTB(t))j 

- b ·(aY(s)) + f3 (Y(s))- b ·- f3 ·} ds + , 
-Jt o 1 1 1 1 av't 

where (CTB(t))1 is the jth component of the vector CTB(t), (5.11) is equivalent 
to 

(5.14) ~ l {b 1(aY(s)) + f3 j(Y(s))- b1 -731 }ds -+ J ..,f/(0, u11 ). 

By Ito's lemma, the left side of (5.14) equals [see (3.45), (3.46)] 

(5.15) ~ { g 1(Y(t))- g 1(Y(O))}- ~ l grad g 1(Y(s))CT dB(s). 

Therefore, one has 

~ ft{b (aY(s)) + f3 (Y(s))- b.- 73 ·} ds 
-Jt lo 1 1 1 1 

(5.16) - ~{g (Y(t))- g (Y(O))} -Jt J J 

1 rt . -
=- -Jt lo gradg1(Y(s))CTdB(s). 

Assume first that Y(O) has the uniform (equilibrium) distribution. Then, by 
Lemma 3.5, 

(5.17) 

Letting t = 'P( a) » (log a )2 , 'P( a) integral, one may express the left side of 
(5.14) as 

(5.18) 

rp(a) 

LV,., 
r=l 

V,. := 1
1 Jr {b1(aY(s))+f31(Y(s))-b1 -731}ds (1::Sr::S'P(a)). 

y 'P(a) r-l 

In view of (5.16), (5.17) and Theorem 3.7, one has 

(5.19) (
rp(a) ) 2 

EVr = 0, E ,E V,. -+ Ujj as a-+ oo. 

We will prove the asymptotic normality of L:"~a~ V,. by representing it approx
imately as the sum of a number of nearly independent block sums. For this 
purpose, define 

(5.20) 
8 = o(a) := 'P(a)/(loga)2 , 

1/J = 1/J(a) := [o318 loga], 

7J = YJ(a) := [o118 Ioga], 

'P(a) 
m = m(a) := [--], 

YJ+l/J 
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where [z] denotes the integer part of z. Consider the "big" block sums 

~~(a) 1{1( a) 11( a) 

(5.21) Z1 = L v,., 
r=1 

z2 = L v,.+ifr+rJ'. ·., 
r=1 

Zm = L vr+(m-1)(~1+1)) 
r=1 

and the "little" block sums 

(5.22) 

Then 

(5.23) 

1J(a) 

~1 = L v,.+,rn 
r=1 
ry(a) 1J(a) 

~2 = L v,.+21/1+1J' ... , ~m = L v,.+m('''+ry)-ry· 
r=1 r=1 

so(a) m(a) m(a) 

L v,.::::: L z,. + L ~,.. 
r=1 r=1 r=1 

To verify this, note that the right side of (5.23) is missing at most 1/J + YJ terms 
V,. from the left. By applying the convergence in (5.19), but with 1/J + YJ in place 
of cp, it follows that the expected value of the squared sum of the missing terms 
is no more than 0((1/J + YJ)Jcp(a))---+ 0. Next, by a similar argument, 

m 

(5.24) L E~;.::: c; 5 mYJ/cp(a)---+ 0. 
r=1 

Also, for r1 2: 1, 

1) 1) 

E~r~r+r' = L L E(Vi+,P vi'+(r'+1)(ifr+1))-ry) 

(5.25) 
i=1 i'=1 

1 1) 1 

= -( ) L [ (h, Ti'-i-l+r'(11+1J)+sf) ds, 
cp a i, i'=1 ° 

where h(y) := bj(ay) + {3 1(y)- b1 -{31, f(y) = Eyf01 h(Y(s))ds, and T, is 
the transition operator of Y (u 2: 0). By Proposition 5.1, the integral on the 
right in (5.25) is bounded in magnitude by c16 [[h[[~ak12 exp{-cl_3 r'I/J}, so that 

YJ2akf2 
JE~r~r+r'J ::S c'16 cp(a) exp{-c'1sr'I/J}, 

m m-r m1)2akf2 
1 

,E_,_E1 JE~,.~r+r'J ::S C17 cp(a) exp{-c13 1jf}---+ 0 

(5.26) 

as a---+ oo. 

Thus E('£;~=1 ~,.? ---+ 0 as a ---+ oo, and we get from (5.23) the relation 

so(a) m 
(5.27) L v,.::::: L zr. 

r=1 r=1 
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We next show that the characteristic function of the right side of (5.27) is 
asymptotically the same as that of the sum of m i.i.d. random variables, each 
having the same distribution as Z 1. For this write, for any fixed g E lEE\ 
f(y) := E[exp{igZ 1 } I Y(O) = y], to derive the following approximation using 
Proposition 5.1: 

- E(exp{i<t: z,.})E(exp{igZm})l 

(5.28) 

= IE[exp{i<t: Z,. }(T~f(Y(r')) -7)]1 
x (r' := (m- 1)(1/1 + YJ)- YJ) 

< c ah12 exp{-c' YJ}. - 18 13 

Telescoping this process one arrives at 

(5.29) 

::: c18 mah/Z exp{ -c~3 YJ} ----+ 0 as a ----+ oo. 

We will now verify Lindeberg's condition for the sum m = m(a) i.i.d. random 
variables Z,.. Note that, for each e > 0, 

(5.30) 

for all sufficiently large a, since I Z 1 1 ::: ctj; I J 'P( a) ----+ 0 as a ----+ oo. This proves 
(5.11) under the invariant initial distribution [of Y(O)]. 

It remains to consider the case of an arbitrary initial distribution [of Y(O)]. 
Let t = 'P( a) » (log a )2 , s = !f!( a) = o318 log a as in (5.20). Write 

(5.31) 

y j(t)- t(bj + {3j) 

avft 

Y J(s)- s(bi + {3j) 

avft 

+ Yi(t)- Yi(s)-(t-s)(bi+Pi) 
avft . 

Using the integral representation of YO [see (3.43), (5.13)], it follows that 

(5.32) 
- - 2 2 

( Yi(s)-s(bi+f3j)) c19s 
E vft < -- ----+ 0 as a ----+ oo. 

a t - t 

Now the conditional distribution of Y(t)- Y(s), given {Y(u): 0 ::: u ::: s}, 
depends only on Y ( s) and is, in fact, the same as the distribution of Y ( t- s)- z 
with an initial state z = Y(s). Therefore, by Theorem 4.5 and Proposition 4.3 
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(see Remark 4.5.1), the total variation distance between the distribution of 
Y(t)- Y(s) under an arbitrary Y(O) and that under a uniformly distributed 
Y(O) goes to zero as a ---+ oo. Using this fact and (5.32) in (5.31), it follows 
that the left side of(5.31) converges in law to JV(O, 7i11 ) as a---+ oo, no matter 
what the initial distribution may be. C 

REMARK 5.2.1. Theorem 5.2 may be strengthened to the following func
tional form under the given hypothesis: for any given sequence of integers 
'P (a) such that 

one has 

J 1 {x j('P(a)t)- X 1(0)- 'P(a)t(b1 + 731): 1::::: j::::: k1} 
a 'P( a) to:_ a 

---+ 1 {W(t)L:::o as a---+ oc, 

where {W(t)}t>O is a Brownian motion on 6"([0, oo)---+ JRl.") having the disper
sion coefficients (5.9). To prove this, one first uses the negligibility of g,.'s to 
reduce the problem to that of the asymptotic distribution of the polygonal pro
cess corresponding to the partial sums of Z,. (r ::::_ 1). We then show that the 
total variation distance between the distribution of (Z1 , Z 2 , ... , Zm) under 
equilibrium and the product measure GZ', where G a is the distribution of Z 1, 

goes to zero as m ---+ oo. To establish the latter, consider a real-valued bounded 
measurable function f on JRl.m and show, by using the Markov property, Propo
sition 5.1, and telescoping [as in (5.28), (5.29)], that 

1Ef(Z1, Zz, ... , Z 11,)-J fdGZ': S C1
18 m[[f[[ 00 ah!Z exp{ -c~3 1)}. 

Hence the proof of the functional limit theorem stated above boils down to that 
for triangular arrays of i.i.d. summands, making use of Linde berg's condition 
(5.30) [Billingsley (1968), page 77]. The argument when X(O) or Y(O) is not in 
equilibrium remains the same as given at the end of the proof of Theorem 5.2. 

The next result complements Theorem 5.2 by analyzing the case where 
!2-1 ({3 i -73 j) belongs to the range ofS = !2- 1(b+ {3). \1 for certain j's. Dramatic 
differences in the growth of dispersion in the two cases (see Theorems 3. 7, 3.8) 
lead to significantly different scalings in Theorems 5.2 and 5.3. 

For the statement of the following theorem, recall that K = ((K ii' )) where 
Kii' = 2a2 (g1, gi'h +Dii' [see (3.48)]. For a set of k2 coordinates, 1 S j S k 2 , 

let K 2 denote the k2 x k2 submatrix of K comprising elements belonging to 
the first k2 rows and to the first k2 columns of K. Also write I hz for the k2 x k2 

identity matrix. 

THEOREM 5.3. In addition to (A1)-(A3) in (3.40), assume that (A5)j in 
(3.88) holds for 1 S j S k 2 and that the functions pi in H 1 satisfying 
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(b + {3) · \1 p J f3 J - f3 1, 1 :::::: j :::::: k2 , are linearly independent. Then for 
t » a 4(log a? one has 

(5.33) 

as a ~ oo, whatever be the initial distribution. 

PROOF. As in the proof of Theorem 5.2, we will prove that fort » a 4 (log a )2 

one has 

(5.34) 
1 - -J (X 1(t)- X 1(0)- t(b J + {3 j)) ~ J vf/(0, 1), 

t KJJ 

as a ~ oo. The proof for an arbitrary linear combination of Xjs (1 :::::: j :::::: k 2 ) 

is analogous. 
First assume X(O) has the uniform (equilibrium) distribution. Let w J be 

the solution in H 1 of the equation 

(5.35) 

where Lis the generator of X(t) on J'2(g;;, a-kdx). Then w 1(x) = a 2 g 1(xja), 
g i being as in (3.45). By Ito's lemma, with t = 'P( a) » a 4(log a?, 'P( a) integral, 

1 - -
ltK .. (Xj(t)- X 1(0)- t(b1 + {31)) 

y JJ 

= Jt~ JJ [ w j(X(t))- w 1(X(O)) 

-l grad w 1(X(s))udB(s) + (uB(t))j] 

(5.36) <P(a) 

=LV,., 
r=l 

v,,~) 1 [[ {b1(X(s))+f3j(X(s)Ja)-b1 -731 }ds 
'P(a)K jj r-1 

+ (uB(r)- uB(r -1))1]. 

Since Ew](X(t)) = Ew](X(O)) = a 4 Eg](Y(O)):::::: c20 a 2 by Theorem 3.8 (also 
see Lemma 3.5), one has 

(5.37) E( 1 
1 (w 1(X(t))- w j(X(0))))

2 ~ 0 as a~ oo. 
v tK11 
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Therefore, 

(
'P(a) ) 

var ,E V,. 

(5.38) 
_ (<p(a) )2 
=E LVr 

r=1 

~lim var( I 1 { rt gradwj(X(s))(J'B(s)+((J'B(t))j}) = 1. 
a-+oo V tK jj lo 

Indeed, the variance on the right is exactly 1. We will now prove the asymptotic 

normality ofz=;.~a{ V,. by representing it approximately as the sum of a number 
of nearly independent block sums. For this purpose, define 

(5.39) 

Define the "big" and "little" block sums as in (5.21), (5.22), respectively, but 

with V,. as in (5.36). The rest ofthe proof that z=;.~a{ V,. ~ J' Jf/(0, 1) is entirely 
analogous to the corresponding proof for Theorem 5.2. The only changes are in 
replacing lfi by lfi ja2 and 1J by 7J/a2 in the exponents in (5.26), and (5.28), (5.29) 
respectively. The reason for this adjustment is that we are directly considering 
the X ( ·) process, and not its scaled version Y ( · ). To check that the Linde berg 
condition holds, as a ~ oo, for the sum of m i.i.d. random variables each 
having the same distribution as Z 1 , write 

U1 = f'{bj(X(s)/a)+f3j(X(s)/a)-b1 -731 }ds, 

u~ = (fa"/(}' dB( s)) / 
(5.40) 

Then Zi ::S (2/cp(a))(Ui + U?), so that 

mE(Zi JL{IZJ!>e}) ::S :(:)E(Ui JL{IU1 1>(e/2)~}) 
2m E(ut2 JL ) + cp(a) 1 {IU;I>(e/2)~} 

2m E(uzJL ) + cp(a) 1 {IU'1 I>(e/2)~} 

(5.41) 

+ :(:)E(U? Ji{IUJ!>e/2fo(a)})· 

Since I U 1 1 :::; clfi :::; ( e/2)) cp( a) for all sufficiently large a, the first and last 
terms on the right side of (5.41) vanish for large a. Also, the second term is 
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estimated by 

2m E(U'2 li ) 
'P( a) 1 {IU; 1 >(s/2)~} 

(5.42) ::: :(:) (EU~4)1!2(p(IU~I > ~j cp(a)) r/2 

2m 12 2 112 , m!Ji312 

=:: cp(a)(c21 !Ji)(EU1 jc: cp(a)) =:: c21 e'f!312 (a)---+ 0 

as a ---+ oo. Finally, the third term on the right side of (5.41) is estimated by 

(5.43) c22 'P~) lji2 P(IU~I > ~j cp(a)) 
112 

=:: c;2 :c~; exp{ -c23e2 ~}---+ 0 

as a ---+ oc. We have used an exponential bound for the tail probability of a 
Gaussian random variable for the last inequality. This completes the proof 
when X(O) has the uniform distribution on :7;,. 

The proof of (5.34) under an arbitrary (initial) distribution of X(O) is anal
ogous to that given for Theorem 5.2. Once again one takes t = cp(a), s = !Ji(a) 
as in (5.39) and makes use of Theorem 4.5 and the fact that s2 jt ---+ 0 as 
a ---+ oc. o 

REMARK 5.3.1. An example in the next section shows that the time scale 
for large scale asymptotics in Theorem 5.2 cannot be smaller than t » a 2 

in general. The time scale t » a 4 (log a )2 in Theorem 5.3, however, seems 
too large. To understand the nature of technical difficulty encountered in 
trying to bring down the scale, one may attempt a "more straightforward" 
martingale CLT using the first equality in (5.36). Leaving aside the term 
R := (tK 11 )- 112 [w 1(X(t))- w 1(X(O))], one needs to show that the CLT ap
plies to the term M, say, involving the stochastic integral [including ( u B( t)) ). 
The proof of the conditional Lindeberg condition [see, e.g., Bhattacharya and 
Waymire (1990), page 508] requires an estimate of the growth of the stochas
tic integrand grad w J beyond its second moment. Even under equilibrium, we 
are unable to obtain a precise estimate ofthis growth. Note that grad w j( x) = 
a(grad g 1)(xja). Thus under equilibrium [[w2 lli = a 2 [[g1 lli is bounded by The
orem 3.8. If one could show that grad w J is bounded in sup norm (not just 
in L 2 ) then, at least under equilibrium, the martingale term M is asymp
totically normal for t » a2 . Similarly, under equilibrium, the £ 2-norm of 
w 1(x) = a2 g1(xja) is of the order O(a2 ), so that R ---+ 0 in probability for 
t » a 2 . However, a direct estimate of the sup norm of w J using the identity 

w 1(x) = - J0
00 T 8 (b 1(·) + {3 1(-!a)- 61 ~ {31 )(x) ds (with Ts as the transition 

operator of X), yields a value of order larger than a 2 log a, if one applies the 
rate of decay of the integrand given by (5.2). Thus, if X(O) is an arbitrary 
state, then to show R ---+ 0 in probability using this last estimate, we need 
vt » a 2 log a. If one could show that ag J and a grad g J are bounded in sup 
norm, then the above arguments would lead to an improvement of the time 
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scale in Theorem 5.3 to t » a 2 log a. It is worthwhile to write this out as a 
theorem. 

THEOREM 5.4. If, in addition to the hypothesis in Theorem 5.3, one assumes 
that the functions ag J and a grad g J (1 ::: j ::: k2 ) are bounded in sup norm, 
then (5.33) holds for t » a 2 log a. 

REMARK 5.4.1. Functional versions of Theorems 5.3 and 5.4 may be de
rived by arguments analogous to those given under Remark 5.2.1. 

5.2. Final phase of asymptotics for vector fields which are not divergence 
free-the one-dimensional case. Since the general case of multiscale diffu
sions with periodic nondivergence-free vector fields is intractable, we will con
sider only one-dimensional diffusions. This will provide some insight into the 
nature and diversity of phenomena in the general case. Let X ( ·) be a one
dimensional diffusion governed by the Ito equation (2.1) whose coefficients 
satisfy the assumptions (B1)-(B3) in (4.33). Following the treatment of these 
processes given in the last part of Section 4, we will consider the nonself
adjoint and the self-adjoint cases separately. Once again, without any essen
tial loss of generality, we will assume that (B4) in (4.34) also holds, that is, 
J~(b(x)ju2 (x)) dx = 0. Using the notation in Section 4, let ira and 1Ta de
note the invariant probability densities of X(t) = X(t) mod a, and Y(t) = 
Y(t) mod 1 (Y(t) := X(a 2t)ja), respectively. Write 

(5.44) b = f b(x)iia(x) dx, /3 = f f3(x/a)iia(x) dx. 

Note that unlike the case where iia and 1Ta are uniform densities, in general 
7J i= J; f3(x)iia(x) dx. Let L be the generator of X(t), as given by (4.35), and 
let h be the unique mean-zero solution in L 2 (S;, iia) of 

(5.45) Lh(x) = b(x) + f3(xja)- b- (J. 

Define 

(5.46) 

Note that, by Ito's lemma, 

X(t)- X(O)- t(b + {J) = h(X(t))- h(X(O)) 
(5.47) 

+ t u(X(s))(1- h 1(X(s))} dB(s), 

so that, for a fixed a, 82 is the variance of the asymptotic normal distribu
tion of c 112(X(t)- X(O)- t(b + {J)). The proof of the following theorem is 
based on Theorem 4.6 and a direct computation of h and is given in detail in 
Bhattacharya, Denker and Goswami (1999). 
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THEOREM 5.5. In addition to (B 1)-(B4) in ( 4.33), ( 4.34 ), assume that {3(-) 
is bounded away from zero. Then fort» a 2 log a one has, for all X(O), 

(5.48) X(t)-X(O)-t(b+{3) d/(O 1) 
8--/t --+ J' ui ' as a --+ oc. 

Here 8 = 8( a) is bounded away from zero and infinity. 

Note that the time scale as well as the growth in dispersion here are com
parable to those in Theorem 5.3. The next theorem is dramatically different 
in these respects. For the case f0

1 f3(y) dy = 0, write 

(5.49) 8* =max t f3(y)dy, 8* =mint f3(y)dy. 
x }0 x } 0 

THEORE::vr 5.6. In addition to (B1)-(B4) in ( 4.33), ( 4.34), assume that iT(-) 
is a constant, {3(-) is nonconstant and f0

1 f3(y)dy = 0. 

(a) Then 8 = 8( a) defined by (5.46) goes to zero exponentially fast as a --+ oo. 
(b) If t » a 2 exp{(18aj0"2(8*- 8*)}, one has, for arbitrary initial states 

X(O) = ax0 , 

X(t)- ax0 
(5.50) -Jt --+ 1 Jf/(0, 1) as a--+ cx:J. 

O"a8 

(c) If t « a-4 exp{(2a/ 0"2)( 8*- 8*)} then (5.50) does not hold, unless X(t)
ax0 --+ 0 in probability. 

Part (a) follows from a direct computation of 8 in this case, while part (b) 
uses this computation of 8 and Theorem 4. 7 [see Bhattacharya, Denker and 
Goswami (1999) for details]. For part (c), one shows that, for the given range of 
t, a8--/t--+ 0 [Bhattacharya, Denkar and Goswami (1999)]. Therefore, if (5.50) 
is to hold, (X(t)- ax)jax must go to zero in probability. 

REMARK 5.6.1. With regard to the centering in (5.50), it may be shown that 
b + {3 = 0 for all a. 

REMARK 5.6.2. Part (a) of Theorem 5.6 shows that the asymptotic vari
ance parameter or dispersion per unit time goes to zero exponentially fast, 
in dramatic contrast to the divergence-free case (Theorems 5.2, 5.3) and the 
one-dimensional nonself-adjoint case (Theorem 5.5). A heuristic explanation 
is that the invariant probability 7Ta either converges to a point mass or at least 
gets confined to a small set in the limit, as a --+ :::x:J. 

REMARK 5.6.3. The exponentially large time needed for the final Gaussian 
phase to take hold, as indicated in parts (b), (c) of Theorem 5.6, is not really 
due to the slow convergence to equilibrium as estimated in Theorem 4.7 for 
the "worst case scenario." Note that Theorem 5.6 holds under the hypothesis of 
Theorem 4.9 where relatively speedy convergence to equilibrium takes place. 
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REMARK 5.6.4. Consider the possibility of X(t) - ax0 converging to 0 in 
probability as indicated in part (c) of Theorem 5.6. For the scaled version of 
X(t), namely, the Y(t) process, this means Y(t) ---+ x 0 as a ---+ oo, t ---+ oc, 
but t « a-6 exp{(2a/ <T2 )( 8*- e.)}. Under the hypothesis of Theorem 5.6, this 
is impossible unless i.f;(x) =fox f3(y) dy has a maximum at x 0 . To show this, 
consider x 0 where 1./J does not have a maximum. By using standard formulas 
[see, e.g., Bhattacharya and Waymire (1990), page 422, equation (10.12)], it 
is not difficult to check that if x 1 < x 0 < x 2 are such that 1{1 does not have a 
maximum in [x1 , x2], then the exit timeT of Y(-) from (x1 , x2 ) has an expected 
value EyT which satisfies sup{EyT: y E [x1 , x 2 ], a:::-_ 1} < oc. 

REMARK 5.6.5. Although Theorems 5.5, 5.6 address the case of one-dimen
sional multiscale diffusions with periodic coefficients, they point to a range of 
diverse behavior in the final phase for the general multidimensional nondi
vergence-free case. Theorems 4.7, 4.10 similarly indicate widely different time 
scales for approach to equilibrium on the big torus for the latter case. For 
example, if the invariant density 7ra of the scaled diffusion Y(t) = X(a2 t)ja 
on .91 converges to a point mass as a ---+ oo, one would expect the dispersion 
(per unit time) in the final phase to decay as a ---+ oo and the time scale for 
the final Gaussian approximation to be very large. This ought to be true, for 
example, in the case that the diffusion matrix is <T2 ! 1, (<T2 a positive constant) 
and b(x) =grad 1.f; 1(x), (3(x) =grad 1.f;2 (x), where (1) the "potential" functions 
1.f; 1 and 1.f;2 are periodic with period lattice zk, (2) 1.f;1(n) = 0 = 1.f;2 (n) for all 
n E zk and (3) on [0, 1)k, 1.f;2 has a unique maximum at x*. In this case, the 
invariant probability d(a) exp{(2/ <T2 )( 1.f; 1( ay) + a1{!2(y))} dy of Y(t) converges 
to the point mass 8x*(dy) as a---+ oc; one would expect for this case an analog 
of Theorem 5.6 to hold. 

6. Examples. In this section we provide two examples to illustrate the 
theory presented in Sections 2-5. Example 6.1 satisfies the hypotheses of The
orems 4.5 and 5.2, while Example 6.2 satisfies the hypotheses of Theorems 4.5 
and 5.4. 

EXA.lVIPLE 6.1. Consider the diffusion on JR2 defined by 

dX 1 (t) = { c0 + c1 sin(27r(X 2 (t)) + c2 cos(27T X 2 ( t)ja)} dt + dB 1 (t), 

dX2 (t) = dB2 (t), X(O) =ax= (ax 1 , ax2 ). 
(6.1) 

Assume c1 , c2 are nonzero and 

(6.2) 

Table 1 shows the phase changes that occur along with their time scales. Here 
J(U) denotes the law, or distribution of a random variable U. The sign± in 
(ii) is + or - according as cos 27T x 2 = -1 or + 1. 

Table 1 is a modification of one derived in Bhattacharya and Gotze (1995) 
under the initial condition X(O) = x = (x1 , x 2 ). The latter initial condition 
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implies X(O)/a-+ 0 as a-+ oo, thereby essentially requiring that the process 
start at the origin. This issue becomes more important in the case (6.2) fails, 
as we show in a modification of Table 1 in Remark 6.1.1 below. The first row in 
the table is a consequence of Theorem 2.1(c), and Theorem 2.2. An alternative 
derivation may be given along the lines of case (i) of Example 6.2 below. To 
derive the second row, write 

X 1(t)- X 1(0)- t(c0 + c2 cos 27Tx2 ) 

t2ja2 

(6.3) cl Jt = 22 sin(27T(ax2 + B 2(s))) ds 
t /a o 

cz Jt{ ( ( B 2(s))) } B 1(t) + 22 cos 27T x2 + -- - cos27Tx2 ds + 22. 
t ja o a t ja 

Note that a 413 « t {} t 2 ja2 » t 112 . Therefore, B 1 (t)/( t2 ja2) -+ 0 in probability. 
Now use Ito's lemma to get 

t 
fo sin(27T(ax2 + B 2(s))) ds 

(6.4) 
1 

=- 2772 {sin(27T(ax2 + B 2(t)))- sin27Tax2} 

lit +- cos(27T(ax2 + B 2(s))) dB2 (s). 
7T 0 

From this it is clear that the first term on the right in (6.3) goes to zero. It 
remains to show that the middle term on the right in (6.3) has the asymptotic 
distribution 1(±2c2 7T2 J0

1 B~(s)ds). By a Taylor expansion, 

(6.5) 

TABLE 1 

Phase changes in Example 6.1 

Time scale Asymptotic law 

(1) 1 « t « a413 

(2) a 413 « t « a 2 

(3) tja2 ---> r > 0 

(4) t » a 2 
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where 8 is a random variable, 181 :::: 1. The first term on the right is zero by 
assumption (6.2). Also, EIB~(s)i :::: cs312 , so that 

(6.6) I 
t 8 3 I I I tl/2 

~ J ....!!.___ B 3 (s)8dsl < 5_t512 = _c---+ 0 
t2 ja2 o 6a3 2 - t2a a ' 

since t « a 2 • Thus the middle term on the right in (6.3) has the same asymp
totic distribution as 

(6.7) 

For the last equality in law we use the fact that, for every t > 0, the distribu
tions of the processes {vt B2(s/t): s:::: 0} and {B2 (s): s:::: 0} are the same. To 
derive the third row in the table use the representation with a denominator 
t, instead of t 2 I a 2 , and omit the centering term c2 cos 21r x2 from both sides, to 
get the desired asymptotic distribution the same as that of 

c2 J1 ( ( B 2(s))) t 0 cos 21T x2 + -a- ds 

(6.8) 

The final phase (iv) in Table 1 follows from Theorem 5.2 for time scales 
t » a 2(log a?. By explicit computation we now show that it holds for times 
t » a 2 . As above, since avt » vt, one only needs to evaluate the asymptotic 
distribution of 

(6.9) a~ l cos( 21r( x2 + B~s))) ds. 

Since the function f(y) = -(c2a 2 /21T2 )cos(21T(x2 + %)) satisfies ~f"(y) 
c2 cos(21r(x2 + yja)), Ito's lemma shows that (6.9) equals 

(6.10) 
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say. To show that the last expression is asymptotically normal, note that its 
quadratic variation is 

Q(t) ( c2 
) 1 (t ( ( B ( s) ) ) := Tr; t lo sin2 2Tr x2 + ~ ds 

(6.11) 
c2 1 tja2 --%-2 ( sin2(2Tr(x2 + B2(u))) du 
Tr tja lo 

2 1 2 
c2 1 . 2 c2 ---+ - 2 sm (2Try)dy = --2 a.s., 
7r 0 27r 

since tja2 ---+ oo, and the process U(t) := (x 2 + B 2(t)) mod 1 is a positive recur
rent Markov process on 8 1 = {x mod 1: x E IR} having the uniform distribution 
as its invariant probability. One may now check that the martingale central 
limit theorem [see, e.g., Bhattacharya and Waymire (1990), page 508] holds 
for the last expression I(t) in (6.10), with the asymptotic variance c§j2Tr2. An 
alternative derivation may be given by noting that E exp{i~1(t)+~2 j2Q(t)} = 

1 V ~ and V t. By (6.11), Q(t) ---+ c~j2Tr2 a.s., as a ---+ oo, t » a2 . Since 
I Q( t) I ::: c§; Tr 2 for all t and a, one may now easily show that E exp{ i 0 ( t)} ---+ 

exp{-~2/2u-2 } with u 2 = c§j2Tr2. 

REMARK 6.1.1. The above example shows that the time scale for the first 
phase of asymptotics derived in Theorem 2.1(c), Theorem 2.2, is exact, namely, 
1 « t « a413 . Indeed, with an additional calculation one may show that if 
a---+ oo, tja413 ---+ r > 0, then 

(6.12) 

X 1(t)- X 1(0)- t(c0 + c2cos2Trx2) 

.Ji 
c2 J~ { cos(27r( x2 + (B2 (s )Ia ))) -cos 2Trx2} ds 

.Ji 

---+ J' uv( o, 1 + 2~2 ). 
Now, by (6.5), and (6.6), (6.7) (with t2 ja2 replaced by ../t), one shows that 

-:Jt lot {cos( 2Tr( x2 + B 2ds)))- cos 2Trx2} ds 

---+ J J( 2Tr2c2r 312(cos2Trx2) [ B~(u) du). 

(6.13) 

The limiting law in (6.13) is that of a strictly positive or a strictly negative 
random variable (depending on whether c2 cos 2Trx2 is positive or negative). 
From this it follows that for tja413 ---+ r > 0, the asymptotic law in Table 1(1) 
does not hold. 
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REMARK 6.1.2. If in Example 6.1 we drop the assumption (6.2), and instead 
assume 

(6.14) sin 27Tx2 # 0, 

then the hypothesis of part (b) of Theorem 2.1 is satisfied, but not that of 
part (c). Therefore, the time scale for case (1) is 1 « t «a. The arguments for 
cases (3) and (4) remain unchanged. Case (2), however, changes drastically. 
For a « t « a 2 one has, using (6.3) with t2 ja2 replaced by t312 ja, and noting 
that t312 1 a » t 112, 

(6.15) 

X 1(t)- X 1(0)- t(c0 + c2 cos27Tx2) 
t3!2 /a 

"--' - 27TC2 sin 27TX2 [1 B ( ) d 
- t3!2 lo 2 s s, 

since the expected value of the magnitude of the 0-term is 0(1jat312 t2 ) = 
0( t 112 1 a) ---+ 0 for t « a 2 . Now the last expression in ( 6.15) has the same 
distribution as 

1 

(6.16) -27Tc2 sin27Tx2 fo B 2(s) ds, 

which is Jf/(0, ( 47T2cV3) sin2 27Tx2). Thus, under (6.14), the first two rows of 
Table 1 change to 

Time scale 

(1)' 1 « t « a 

(2)' a « t « a 2 

Asymptotic law 

X 1(t)- X 1(0)- t(c0 + c2 cos27Tx2) 

-It 

->JA"(0,1+ 2~2 ) 

X 1(t)- X 1(0)- t(c0 + c2 cos27Tx2) 

t3/2 fa 

Once again, if a ---+ oo, tja ---+ r > 0, then the asymptotic law in (1)' can
not hold. To see this note that in the integral representation of c 112 ( X 1 ( t) -
X 1 (0)- t( c0 + c2 cos 27Tx2)) [see (6.3)], t-112 J~ c1 sin 27T(ax2 + B 2( s)) ds + C 112 · 
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B1(t) converges in law to Jf/(0, 1 + ci/21T2 ), as in (1)'. However, here the 
middle term t-112 f~ c2{cos(21T(x2 + B 2(s)/a))- cos 21Tx2 } ds converges in law 

to -r(21Tc2 sin21Tx2)J0
1 B 2(u)du = rZ 2 , say, by essentially the same argu

ment as given for (2)' above [see (6.15), (6.16)]. Thus if the asymptotic law in 
(1)' is to hold for tja --+ r > 0 (a --+ oo), then one would have in the limit 
Z 1 + r Z 2 = J Z 1 , where Z 1 and Z 2 are nondegenerate normal. This can not 
hold if r is sufficiently large. Therefore, the time scale given in Theorem 2.1(b) 
cannot be improved upon in general. The preciseness of the time scale t « a 213 

in part (a) of Theorem 2.1 will be shown in Remark 6.2.1 below. 

REMARK 6.1.3. The time scale for the final phase in Example 6.1 is t » a 2 , 

whereas Theorem 5.2 gives a time scale t » a 2(log a )2 in the general case. We 
do not know if, in general, the logarithmic factor can be dropped altogether. 
Recall that our estimation for the time scale to equilibrium on the big torus 
is already t » a 2 log a (Theorem 4.5). 

EXAMPLE 6.2. Consider the same equation for X 1(t) as in Example 6.1 [see 
(6.1)], but for X 2(t) take a Brownian motion with a nonzero drift o, 

(6.17) 

The initial condition is as in (6.1), namely, X(O) = ax = (ax 1 , ax2 ), but we 
assume sin 21Tx2 # 0 [i.e., (6.14)]. With this seemingly minor change, the 
asymptotic behavior and time scales are dramatically different at larger scales, 
as shown in Table 2. 

Case (1) follows from Theorem 2.1(a) and Theorem 2.2, or one can directly 
use the integral representation (6.3), but with a different denominator, namely, 

TABLE 2 
Phase changes in Example 6.2 

Time scale Asymptotic law 

(1) 1 « t « a 213 

t 
(2) a2/3 --> r > 0 

(3) t » a 2 
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t112 (instead of t2 ja2), 

X 1(t)- X 1(0)- t(c0 + c2 cos21rx2) 

vt 
(6.18) = )tl sin21T(ax2 +so+B2(s))ds 

+ Ytf{cos(21T(x2 + ~ + B~s))) -cos217x2}ds+ Bj;). 

Now sin21T(ax2 +so+ B2(s)) = sin21rZ(s), where Z(s) = X 2(s)mod 1 is 
the Brownian motion on the unit circle with a drift. Since the distribution of 
Z ( s) approaches equilibrium (uniform distribution) exponentially fast in total 
variation distance, uniformly with respect to the initial state, it follows from a 
central limit theorem for Markov processes [see Bhattacharya (1982)] that the 
first term on the right in (6.18) converges in distribution to .fi/(0, u 2) where 

(6.19) u 2 = -2 r f(y)u(y) dy, 
l[o, 1) 

f(y) = c1 sin21Ty, 

u(y) being the mean zero solution of 

(6.20) ~u''(y) + ou'(y) = f(y). 

A direct computation shows 

(6.21) c1o {cos21Ty 1 . } 
u(y) = -1T2 + o2 21T + 2o sm21Ty ' 

leading to 

(6.22) (]"2 = 1 - r sin2 21Ty dy = 1 . 2c2o ( 1 ) c2 

1r2 + o2 2o l[o, 1) 2( 1r2 + o2) 

The third term on the right in (6.18) is independent of the first, and its dis
tribution is .fi/(0, 1). Thus the sum of the first and third terms converges in 
distribution to Jf/(0, 1 + ci/2(1T2 + o2)) as t--+ oo (uniformly w.r.t. a). If, in 
addition a --+ oo, tja213 --+ r > 0 then, using a Taylor expansion such as in 
(6.5), the middle term on the right in (6.18) may be expressed as 

(6.23) 21Tc2 {t (- sin21Tx2)(Bz(s) +so) ds + o(2_ {t(B2(s) + so)2 ds) 
vt lo a a V'f lo a 

The expected value of the 0-term is of the order O(t3 1 vt a 2) = O(t512 ja2) --+ 0, 
since t512 = O(a513 ). Since EIB2(s)l = c's112, the dominant contribution in the 
first term in (6.23) comes from 

21TC2 ( . 2 ) 011 d 21TC20 sin 21TX2 t 2 
-- - S1n 1TX2 - S S = - --"----=:----"-

Vf a o vta 2 

t3!2 
= ( -c21ro sin21Tx2)---+ ( -c21ro sin21Tx2)r312 . 

a 
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Thus (2) is established. In particular, this shows, along with Example 6.1, that 
the time scales in Theorems 2.1, 2.2 are in general precise. 

To derive case (3) in Table 2, we will use Ito's lemma to write 

(6.24) 

X 1(t)- X 1(0)- te0 

v't 

where w 1 is a periodic solution of 

(6.25) ~w{(y) + 8w~(y) = e1 sin27Ty + e2 cos(27Ty/a). 

By direct computation, w 1 is given by [apart from an additive constant which 
does not affect the right side of (6.24)] 

( ) _ e18 { cos27Ty sin27Ty} 
wl y - - 7T2 + 82 27T + 28 

+ e28a3 { sin(27Tyja) _ cos(27Tyja)} 
82a 2 + 7T2 27T 28a . 

(6.26) 

Note that w 1 is O(a). Therefore, if t » a 2 , the first term on the right side in 
(6.24) goes to zero a.s. The integrand in the stochastic integral term is 

(6.27) 

, ( ) _ e1 8 { . 7T cos 27T y } w1 y - 2 2 sm27Ty- ----
7T + 8 8 

Neglecting the 0(1/a) term whose contribution in the stochastic integral ob
viously goes to zero in probability, one may then write 

X l(t)- ~(0)- teo ::::-~ l { Il(X2(s)) + I2(X2(s))} dB2(s) 

B 1(t) 
+ v't ' 

(6.28) 

where 

(6.29) 

I ( ) _ e1 8 { . 2 7T cos 27T y } 
1 Y - 7T2 + 82 sm 7T Y - 8 , 

e28a2 (27Ty) I 2 ( y) = 2 2 2 cos -- . 
8 a + 7T a 

The stochastic integral in (6.28) is a martingale and its quadratic variation 
(divided by t) is 

(6.30) 
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As argued for case (1), I 1(X2 (s)) = I 1(Z(s)) CZ(s) X 2(s)mod1), when 
Z(s) is a Brownian motion on the unit circle with a constant drift o, which 
approaches equilibrium exponentially fast in t, 

(6.31) 
~ kt Ir(X2(s))ds ~fro. I) I1(y)dy = (7i2c~:2)2 { ~ + ;,22} 

ci as t ~ oo. 

For the second term in (6.30), write 
(6.32) 

1 t 
- ( I§(X2(s)) ds ~ 
t lo 

= J ( c;) 
2 ~ l cos2 277( B2(s/a2) + s: + x 2 ) ds 

(
c2)2 1 lt/a2 
- --2 cos2 21T(B2(s')+as'o+x 2 )ds'. 
o tja o 

Once again one may replace B2(s') +as' 8 + x2 by its value mod 1 and use the 
fact that the latter is a Brownian motion on the unit circle with a drift ao. 
This Brownian motion on the circle approaches equilibrium as s' ~ oo, uni
formly w.r.t. the drift ao since the Brownian motion on the unit circle without 
drift approaches equilibrium (exponentially fast in total variation distance) 
uniformly with respect to the initial state. Thus, as t I a2 ~ oo, 

(6.33) ~ (t I§( X 2 ( s)) ds ~ c§2 in probability. 
t lo 28 

We now show that the product term in (6.30) goes to zero in probability. For 
this note that 

~ (t sin27T(B2(s)+so+ax2)cos27T(B2 (s) +so +x2 )ds 
t lo a a 

(6.34) 

1 lt/a2 
= J --2 sin21r(aB2(s) + a2 so + ax2) 

tja o 

x cos 27i(B2(s) + aso + x2) ds 

1 lt/a2 
= - 2 sin27i(aZ2(s))cos277(Z2 (s))ds, 

tja o 

where Z 2(s) = (B2(s) +sao+ x2)modl. Since, as argued earlier, Z(s) := 
(B2(s) + y) mod 1 approaches equilibrium (exponentially fast in total varia
tion distance) uniformly w.r.t. y, as s ~ oo, the last expression in (6.34) is 
asymptotically the same in distribution as 

(6.35) 
1 lt/a2 

--2 sin27i(aZ(s))sin277Z(s)ds, 
tja o 
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where {Z(s): s ::_ 0} is the stationary standard Brownian motion on the unit 
circle. One may rewrite (6.35) as 

(6.36) 
1 tja2 

--2 j {sin(217(a + 1)Z(s)) + sin(217(a- 1)Z(s))} ds. 
2tja o 

Now, uniformly for all a= 1, 2, ... , 

(6.37) ( 1 A )2 
E A fo sin(217(a + 1)Z(s)) ds -+ 0 as A-+=· 

To see this, note that Z( s) is exponentially cp-mixing, and z-+ sin(217(a + 1)z) 
is uniformly bounded. Hence the covariance E sin(217(a + 1)Z(s)) sin(217( a+ 
1)Z(s')) -+ 0 exponentially fast, uniformly in a, as ]s- s'] -+ =· One may 
replace a+ 1 in (6.37) by a- 1 and thus show that (6.36) goes to zero in mean 
square as tja2 -+ =· It follows that (6.34) -+ 0 in mean square. The same 
proof applies to the other term in I 1 (X 2 ( s) )I 2 ( X 2 ( s)) involving cos 217( X 2 ( s)) 
cos217(X2(s)/a) [see (6.29)]. Thus the average quadratic variation (6.30) con
verges in probability to ci/2( 172 + 82 ) + c§l 82 [see (6.31), (6.33)]. One may 
now easily apply the martingale central limit theorem to the stochastic inte
gral term in (6.28), verifying the Lindeberg-type condition using the fact that 
]I1(y) + I 2 (y)] is bounded (uniformly in a) [see Bhattacharya and Waymire 
(1990), page 508]. Alternatively, one may also show that the characteristic 
function oft-~ J~ I(X2 (s)) dB2 (s) converges to that of the appropriate Gaus
sian, by using the exponential martingale property, as in the proof of case ( 4) 
of Example 6.1. 

REMARK 6.2.1. To show that the time scale t » a 2 for the final phase in 
Example 6.2 is precise, let a -+ =, tja2 -+ r > 0. Then, if r is sufficiently 
large, there exists a positive constant c (independent of a, t and r) such that 
E(c112(w1(X2(t))- w 1(X2(0))? ::_ cr [see (6.26)]. On the other hand, the 
mean square of the sum of the two remaining terms on the right side of 
(6.24) is bounded by an absolute constant c'. Therefore, the first term will 
be dominant for large r. This shows that (3) in Table 2 does not hold if the 
time scale is extended toinclude t = O(a2 ). 

REMARK 6.2.2. The hypothesis of Theorem 5.4 is satisfied by Example 6.2, 
with k2 = 1. 

REMARK 6.2.3. The Gaussian convergences in Examples 6.1 and 6.2 may 
be strengthened to their functional versions (i.e., convergence to Brownian 
motions) by standard results such as given in Theorem 7.1.4 in Ethier and 
Kurtz (1986) [also see Hall and Heyde (1980), page 99]. The non-Guassian 
convergences in these examples may also be expressed in functional forms. 

7. An application to solute transport in porous media. Suppose a 
chemical pollutant, or some solute, is injected at a point in a saturated aquifer 
-an underground water system. How will it spread over large times? There 
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is a vast engineering literature on this subject [see Adams and Gelhar (1992); 
Bhattacharya and Gupta (1983); Cushman (1990); Dagan (1984); Fried and 
Combarnous (1971); Garabedian, LeBlanc, Gelhar and Celia (1991); Gelhar 
and Axness (1983); Gupta and Bhattacharya (1986); Guven and Molz (1986); 
LeBlanc, Garabedian, Hess, Gelhard, Quadri, Stollenwerk and Wood (1991); 
Sauty (1980); Sposito, Jury and Gupta (1986); Sudicky (1986)]. It is generally 
accepted [Fried and Combarnous (1971)], and laboratory scale experiments 
have confirmed it, that the solute concentration c(t, y) at y at timet at a local 
scale, say the laboratory scale, satisfies a Fokker-Planck equation, 

ac 1 3 a2 3 a 
_1 t =- L (D Ji'c)- L -(v j(y)c), 
u 2 J, J'=l ay 1ay i' J=l ay 1 

(7.1) 

with v(y) = (v 1(y), v2(y), v3(y)) representing the velocity of water at y, and 
satisfying the incompressibility condition 

(7.2) divv(y)=O Vy. 

The positive definite symmetric matrix ( ( D Ji')) may represent something akin 
to Einstein's molecular diffusion 0"2 I 3 at a scale somewhat larger than the hy
drodynamical scale [see, e.g., Bhattacharya and Gupta (1979), where this is 
erroneously called the "Darcy scale"], or an enhanced dispersion due to hetero
geneities in the porous medium at the laboratory, or the so-called Darcy scale 
[Fried and Combarnous (1971)]. A commonly used experimental methodology 
is to fit Gaussians to the concentration c(t, y) as a function of y, for succes
sively larger scales of t. One may think of this as different Brownian motion 
approximations at different scales of time. It has been widely observed that the 
diagonal dispersion coefficients, or variances per unit time, increase steadily 
with the time scale, especially in the direction of flow. This phenomenon has 
been called the scale effect in dispersion. A different kind of study has focussed 
on the increase in dispersion at the laboratory-, or Darcy-, scale with the in
crease in the velocity magnitude of the flow [Fried and Combarnous (1971)]. 

As is well known [see, e.g., Friedman (1975), pages 144-150, or Bhat
tacharya and Waymire (1990), pages 377-380], the solution to (7.1) with a 
point initial input c0 at xis given by the function (t, y)--+ c0 p(t; x, y), where 
p( t; x, y) is the transition probability density of a diffusion X ( t) with drift ve
locity v and diffusion coefficients D JJ'· In general, for an arbitrary compactly 
supported and continuous initial concentration c0(x), the solution to (7.1) is 

(7.3) c(t, y) = J c0(x)p(t; x, y) dx. 

It follows that the asymptotic behavior of c( t, y) for large t is given by the 
asymptotic distribution of X( t). The present article provides these asymp
totics assuming v to be periodic. For the physical problem at hand, the initial 
concentration is always taken to be localized at a point. 

To study the effect of velocity on dispersion, let v = u 0 f3 where u 0 is a scalar 
and f3 is periodic. It is shown in Section 3 that X(t) is asymptotically Gaussian 
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for large t [and therefore so is c(t, ·)],but with two extreme behaviors of dis
persivity (i.e., asymptotic variance per unit time) depending on the nature of 
the flow velocity. If 9-1({3 i -73 i) has a nonzero component in the null space N 
of S = 9-1 {3'17 in H 1, then the dispersivity of X 1( t) grows quadratically with 

u 0 [Theorem 3.3(a)]. In the complementary case, 9- 1({3 i - {3 i) belong to the 

closure 92 of the range 92 of S, since H 1 = NtB92. If 9-1 ({3 1-731) E 92, then the 
dispersivity of X 1( t) grows from D ii to a larger constant value, as u 0 increases 
[Theorem 3.3(b)]. The boundary case, where 9-1({3 i -73) E .92\92, seems dif
ficult to analyze. For two-dimensional flows (i.e., k = 2), more information on 
this may be found in Fannjiang and Papanicolaou (1994). Figures 1 and 2 rep
resent observed functional relationships between velocity and dispersivity in 
certain laboratory experiments as presented by Fried and Combarnous (1971). 

We now turn to the scale effect in dispersion. As pointed out in Bhattacharya 
and Gupta (1983), different Gaussian approximations accompanied with in-

Kyo • 
•)[,/ .. , 
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~ 

to4 .J 
II'-
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eo' ~ ~ 
to' •• 1/ 
10 / v i" I • 
-• • . - •• w,o 

to·' t 10 to1 •o' 104 

FIG. 1. Laboratory experiments showing the growth in the dispersion coefficient K L in the di· 
rection of flow with the velocity U. In order to make the coordinates dimensionaless, K Ll D is 
plotted against the Peclet number Ud/ D, where D is the molecular diffusion coefficient and d is 
the diameter of a typical gain of the porous medium. Taken from Fried and Combarnous (1971). 
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FIG" 2. Laboratory experiments for the growth in the dispersion coefficient K T in a direction 
transverse to the flow. The dotted line represents a fitted curve for K Ll D in the same experiment. 
Tahen from Fried and Combarnous (1971). 

crease in dispersivity at successively larger time scales can only occur in a 
medium (aquifer) with new heterogeneities appearing at higher scales. To 
understand this, it is enough to consider two spatial scales of heterogeneity 
embodied in the flow velocity v, 

(7.4) v(y) = b(y) + f3(yja), 

where "a" is a large scalar. Here fluctuations in b represent the effect of a local 
(or small) scale heterogeneity in the aquifer geometry and soil characteristics, 
while fluctuations in v which manifest only at a larger scale of distance (of the 
order a) are represented in [3(-ja). Theorem 2.1 provides precise time scales 
( t « a213 , t « a or t « a413 ) over which the local scale b dominates and large 
scale fluctuations may be ignored. Here no specific assumptions are needed 
on b(-) or f3(·), not even (7.2). The significance of this is that, irrespective of 
the nature of {3, whenever a Gaussian approximation holds for the concen
tration corresponding to flow velocity b(-) + [3( x 0 ) (assuming an initial point 
injection at ax0 ) and diffusion matrix D(x) = ((D1l(x) )), the same holds 
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for the concentration with the actual flow velocity (7.4) and dispersion D(x), 
provided t « a213 (or t « a, t « a413 , as the case may be). Since Gaussian 
approximations for a single scale of fluctuations are known to be valid under 
assumptions of periodicity and almost periodicity of the coefficients, as well 
as under the assumption of their being an ergodic random field [see Bensous
san, Lions and Papanicolaou (1978); Bhattacharya (1985); Bhattacharya and 
Ramasubramanian (1988); Gelhar and Axness (1985); Kozlov (1979, 1980); 
Papanicolaou and Varadhan (1979); Winter, Newman and Neuman (1984)], a 
Gaussian approximation at the initial phase (1 « t « a 213 ) is expected to hold 
rather broadly in the present context (Theorem 2.2, Remark 2.1.3). Beyond 
this scale, as the effect of the large scale fluctuations gradually becomes man
ifest, this initial phase will break down. Under additional assumptions (on {3), 
a different Gaussian approximation takes hold at a larger time scale. The 
latter approximation, along with its time scale, is provided in Theorems 5.2-
5.4 for periodic flows satisfying assumptions (A1)-(A4), (A6) (Theorem 5.2), or 
(A1)-(A3), (A5), (A7) (Theorems 5.3, 5.4). 

Under the hypotheses of Theorems 5.3, 5.4, the dispersivity grows from 
one constant D JJ to a larger constant, so that it is asymptotically a constant. 
Under the hypothesis of Theorem 5.2, the asymptotic growth in dispersivity 
is O(a2 tjt) = O(a2 ) = o(t) (since t » a 2 at the larger scale). Thus although 
dispersivity grows in the latter case, the growth is sublinear with time. In 
between the final and initial phases other intermediate phases appear. Exam
ples 6.1, 6.2 in Section 6 illustrate this, along with a precise specification of 
the time scales for the initial, intermediate and final phases. A computation 
of dispersivity d(t) in Example 6.1 through all these phases show a mostly 
sublinear growth, 

c2 
d(t) = 1 (t = 0(1)), d(t) = 1 + 2 \ (1 « t « a413 ), 

Ti (7.5) 

1 « d(t) « t(a413 « t « a 2), d(t) « t(t » a 2 ). 

For the physical problem at hand, these are examples of multiscale versions 
of stratified media considered in Gupta and Bhattacharya (1986) and Guven 
and Molz (1986). 

Because of the importance of the problem of solute transport in porous me
dia in hydrology and environmental engineering, a number of field studies 
have been undertaken over the past two decades to monitor solute dispersion 
in aquifers [see, e.g., Adams and Gelhar (1992); Garabedian, LeBlanc, Gelhar 
and Celia (1991); LeBlanc Garbedian, Hess, Gelhar, Quadri, Stollenwerk and 
Wood (1991); Sauty (1980); Sudicky (1986)]. Such experiments are necessarily 
complex. They require the digging of many properly placed wells to monitor the 
solute concentration profile, often over a span of several years. The theoretical 
model most commonly fitted to the data is based on the important work ofGel
har and Axness (1983), where it is assumed that the coefficients ofthe Fokker
Planck equation governing solute concentration are ergodic random fields. An 
independent alternative mathematical approach under the same assumptions 
is given in Winter, Newman and Neuman (1984). Proofs of the validity of the 
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Gaussian approximation, along with a computation of its dispersion, may be 
found in Kozlov (1980) and Papanicolaou and Varadhan (1979) for the special 
case of the generator in divergence form. It seems that for the general case 
considered by Gelhar and Axness (1983) some mathematical details still need 
to be worked out, both for the CLT and for the analysis of the dispersion. As 
shown in Papanicolaou and Varadhan (1979), the periodic and almost periodic 
cases may be considered as special cases of the ergodic random field model. 

The main thrust of the theoretical studies in the hydrology literature on 
solute dispersion in aquifers has been to explain the scale effect, that is, the 
increase in dispersivitiy with spatial scale. For example, the dispersivity at 
the field scales are observed to be larger by orders of magnitude from that at 
the laboratory scale. As pointed out in Bhattacharya and Gupta (1983), the 
validity of a hierarchy of Gaussian approximations at the laboratory and field 
scales, with increase in dispersivity with scale, can only be explained by the 
presence of multiple scales of heterogeneity in the medium. A single central 
limit theorem, such as mentioned in the preceding paragraph, cannot explain 
this phenomenon in a saturated aquifer whose dynamics are independent of 
time. The points of departure in the present article, following Bhattacharya 
and Gotze (1995), are (1) the explicit introduction of multiple scales of het
erogeneity in the velocity field and (2) determination of the time scales for 
changes from one Gaussian phase to the next. Although it is not claimed here 
that natural aquifers have periodic velocity fields, the detailed analysis of the 
periodic case with multiple scales provides a qualitative understanding of the 
scale effect in dispersion in general. Since under a random translation the 
periodic velocity field becomes an ergodic random field, the present study also 
provides an avenue for testing the validity of some of the informal theories 
and intuition on the nature of multiscale dispersion. 

8. Final remarks. In the following series of remarks we mention some 
unresolved issues and research problems. 

REMARK 8.1. The examples in Section 6 show that the time scale for the 
final Gaussian phase cannot in general be less than t » a 2 for divergence-free 
b and {3. The additional logarithmic factors (log a? and log a in Theorems 5.2 
and 5.4, respectively, are needed to offset the factor ah12 appearing in Theo
rem 4.5 in our estimate of the speed of convergence to equilibrium for diffu
sions on the big torus ~· We do not know if this factor ah/2 can be removed 
in general. Among important recent methods for the estimation of the speed 
of convergence to equilibrium of Markov processes we would like to mention 
those of Chen and Wang (1994, 1997), and Diaconis and Saloff-Coste (1996). 

The seemingly excessively large time scale t » a 4(log a? in Theorem 5.3 
may be reduced to that given in Theorem 5.4, namely, t » a 2 log a if ag J 
and a grad g1 can be shown to be bounded in sup norm rather than in the 
H 1-norm. We do not know if this is achievable in general. 
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RKVIARK 8.2. One may conjecture that the technical condition (A4)j in 
(3.68) is redundant for the validity of the conclusion of Theorem 5.2. We would 
also conjecture that, for Theorems 5.3 and 5.4, the assumption of continuity 
of the derivatives of pi in (A5)j is redundant. 

REMARK 8.3. It is easy to see that the condition that "a ---+ oo through inte
ger values" maybe relaxed to "a---+ oo through a sequence ofrational numbers 
with a bounded denominator." Can we relax this further in Theorem 5.2? Note 
that in Example 6.1 in Section 6 no restriction on "a" is needed (except that 
a---+ oo). 

REMARK 8.4. As indicated by Theorems 5.5, 5.6 (also see Theorems 4.6, 4. 7) 
for the one-dimensional case, multiscale multidimensional diffusions with pe
riodic nondivergence-free velocity fields offer a rich diversity of behavior that 
needs to be explored further. 

RE::WARK 8.5. An important problem, both from the point of view of mathe
matics and that of applications, is the analysis of multiscale diffusions whose 
coefficients constitute ergodic random fields. Methods employed in this article 
seem inapplicable for a general asymptotic analysis of such diffusions. 
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ABSTRACT. A general method is developed to obtain conditions on initial data 

and forcing terms for the global existence of unique regular solutions to incom

pressible 3d Navier-Stokes equations. The basic idea generalizes a probabilistic 

approach introduced by LeJan and Sznitman (1997) to obtain weak solutions 

whose Fourier transform may be represented by an expected value of a stochas

tic cascade. A functional analytic framework is also developed which partially 

connects stochastic iterations and certain Picard iterates. Some local existence 

and uniqueness results are also obtained by contractive mapping conditions on 

the Picard iteration. 

1. IKTRODUCTION A'\D PRELIMINARIES 

vVe develop two related approaches to obtain global and local existence, unique

ness and regularity, including spatial analyticity, of solutions to 3-dimensional in

compressible Navier-Stokes (::\8) equations governing fluid velocities 

au 
(1) at + u. \lu = vb..u- \lp + g, v. u = 0. 

One approach is probabilistic and involves the construction of a multiplicative cas

cade solution to a related stochastic recursion in wave number Fourier space. The 

other approach is based on Picard iterations. Each of these approaches involves the 

notion of a Fourier multiplier which we formalize as follows. 

Definition 1.1. Let h: Wh ~ Rn\{0}--+ (0, oo) be a Lebesgue measurable func

tion such that the closure of Wh is a semigroup and h = 0 on Wh' with 

(2) 0 < h * h(~) < oo, 

The reciprocal function 1 j h is referred to as a Fourier multiplier. 

The probabilistic approach is based upon an interpretation of the integral equa

tion governing Fourier transformed velocities scaled by a multiplier 1/h. This is 
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achieved in terms of expectation values of multiplicative cascade solutions to sto

chastic recursions generated by certain multi-type branching random walks in 

Fourier space. The transitions in wave-number are of the form~ --+ (6, 6), 6 +6 = 

~,with a transition probability kernel h(~l)h(6)/h * h(~). This generalizes branch

ing random walks in the sense of LeJan and Sznitman [17] for n = 3 dimensions 

where h(~) = 1~1- 2 ,~ E Wh = R 3 \{0}. The essential requirement for this approach 

is that the above indicated expected values exist. Existence of these expected values 

is obtained in the present paper by constructions of a particular class of the Fourier 

multipliers, referred to as majorizing kernels, defined below. 

The second approach is a purely analytic approach in which the Fourier multiplier 

1/h is used to identify a Banach space norm for which iterations of the expected 

values may, under slightly more restrictive conditions, be interpreted as Picard 

iterates of successive approximations on a suitably identified function space defined 

via particular control of the Fourier transform by a majorizing Fourier multiplier, 

e.g. u E S' such that lu(~, t) I S h(~). In particular, the Picard iteration may be 

expressed in terms of a contraction operator on such a space. It may be noted that 

a different function space for Picard iteration was identified by Kato [15] in efforts 

to obtain existence and uniqueness for Navier-Stokes equations. 

As noted above, the probabilistic approach gives a representation of the Fourier 

transform u(~, t) of the solution of the evolution equation in the LeJan-Sznitman 

form of an expected value 

(3) u(~, t) = h(~)Et,e=t,X (e, t). 

Here X is a random multiplicative functional of scalar values m(-) and Fourier trans

formed initial data and/or forcing (vector) values over the vertices of a multi-type 

branching random walk tree re (t) initiated in timet from a single progenitor of type 

t;e = ~. In general the scalar and vector value factors are evaluated at the wave

number (type) of the respective vertices appearing in the tree re ( t), with the initial 

and forcing terms appearing at the end-nodes. The holding times between branch

ings are determined from the principal part of the equation, while the branching 

probabilities depend on the lower order and forcing terms of the equation. 

The framework developed here is also more generally applicable to diverse classes 

of evolution equations, including certain linear parabolic and fractional diffusion 

equations, semilinear reaction-diffusions, and some quasilinear equations such as in

compressible ::"Javier-Stokes equations in dimension n 2: 2, as well as one-dimensional 

Burgers' equations. The following extremely simple example is selected to illustrate 

some of the most basic graph theoretic and probabilistic ideas involved in this ap

proach. It is so simple, however, that the notion of a Fourier multiplier is not 

required. Consider 

(4) Ut = a6u + b · \lu, u(x, 0) = u0 (x), 

inn 2: 1 dimensions, where a > 0, and b E Rn are constants. To quickly get the 

flavor of the method, define the spatial Fourier transform of an integrable function 

j, or its distributional extension, by}(~)= (27r)-~ J;. e-ix f, f(x)dx, ~ERn. Then, 

from ( 4) one has 
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Now consider the random linear tree Te ( t) rooted at a vertex e of type ~e = ~ which, 

after an exponential length of time, is replaced by a single vertex (1) of the same 

type ~(l) = ~- Proceeding in this manner one may calculate that the solution 

exp( -al~l 2 + ib · ~)u0 (~) is the expectation of the random product X (e, t) initial

ized by ~e = ~ and consisting of factors m(~) = ib · ~/al~l 2 at each vertex until 

termination, where one attaches the end factor u0 (~), i.e. X (e, t) = m(~)N(tlu0 (~), 

and 

(6) 

where N(t) is the Poisson process with parameter .A(~) := al~l 2 which counts the 

number of times the exponential clocks ring before time t. In particular the Pois

son process occupies a natural dual role to that played by the standard Brownian 

motion in the real space expectation formula. Similarly one may obtain a dual 

Feynman-Kac formula under the complex measure condition on coefficients given 

by Ito [14]; see Chen, Dobson, Guenther, Orum, Ossiander, Thomann, w·aymire 

[7]. In particular this approach makes Ito's complex measure condition completely 

natural from a probabilistic point of view. One may also obtain a dual version 

of McKean's [18] branching Brownian motion formula for KPP, as well as other 

interesting equations which will be treated in a forthcoming monograph by the au

thors (in preparation). These also include, for example, the generalized fractional 

Burgers' equation of the type considered by Woyczynski, Eiler, and Funaki [22], 

and the so-called "cheap N avier-Stokes equation" discussed by l\·1ontgomery-Smith 

[19] from the point of view of real-space iterative methods. 

The primary focus of this paper is the 3d incompressible N avier-Stokes equation 

which may be expressed in the Fourier domain as follows: 

(FNS) 

u(~, t) = e-vl~l2tuo(~) +lot e-vl~12s{l~l(27i)-~ 
r u(1], t- s) @~ u(~ -1], t- s)d7] + §(~, t- s) }ds, 

}R3 
where, for complex vectors w, z, 

(7) 
~ 

w @~ z = -i(e~ · z)11e. w, e~ = RT' and 7i"~.l w = w- (e~ · w)e~ 

is the projection of w onto the plane orthogonal to ~' and v > 0 is the viscos

ity parameter. For ~ f. 0, LeJan and Sznitman [17] rescale the equation (FNS) 

to normalize the integrating factor e-vl~l 2 s to the exponential probability density 

vl~l 2 e-vl~l 2 s. Then they observe that the resulting equation is precisely the form for 

a branching random walk recursion for x(~, t) := vl~l 2 u(~, t), for which the tran

sition kernel I~- 771- 2 1771- 2 is naturally constrained by integrability to dimensions 

d ::;:, 3 for normalization to a probability. 

Given a Fourier multiplier 1/h we consider the Fourier transformed equation 

(FNS) rescaled by factors 1/h(~), for ~ E Wh· Namely, we consider the equation 

(FNS)h defined by 

(FNS)h 

X(~, t) = e-vtl~l2 Xo(~) + {t vl~l2e-vl~l2s { ~m(~) { X(1Jl, t- s) 
Jo 2 lwh xwh 

1 
@~ X(1]2, t- s)H(~, d171 x d772) + 2 ~r?(~, t- s) }ds, ~ E Wh. 
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uo(~) 
xo(C;") = h(~) , 

and H(( d771 X d772) is for (;" E wh the transition probability kernel, with support 

contained in the set {(171,772) E Wh X Wh: 771 +772 = o, defined by 

1 1 h(~-77)h(17) 
T !(771, 772)H(~, d771 X d7]2) = T !(~- 77: 77) h * h(~) d1] 

w,xH, H, 
(9) 

for bounded, Borel measurable f : H1h x Vf!h --+ R. Finally we include the following 

additional exterior condition in defining (FNS)h : 

(10) x(~, t) = 0, ~ E Wh', t 2' 0. 

Remark 1.1. One may easily check, using the semigroup requirement on T¥h, that 

the exterior condition makes the equations (FNS) and (FNS)h equivalent if and only 

if uo(~) = 0 and cp(~, t) = 0 for a.e. ~ E Wh', t 2' 0. In many examples of interest to 

the present paper one has T¥h = Rn \ { 0}. It should also be noted that the re-scaled 

functions x(~, t), cp(~, t) provide a convenient notational device for presenting the 

essential calculations. However, in the end the conditions and results are stated in 

terms of the respective functions u(~, t) = h(~)x(~, t), and!)(~, t) = ~~~1 2 h(~)cp(~, t). 

A first order approach to obtain finite expected values of the branching random 

walk cascade will be seen to result from the observation that the product ®~ satisfies 

lw®~ zl <.::: lwllzl, w, z E en, and the coefficients m(~) may be controlled by selecting 

Fourier multipliers such that m((;") <.::: 1. We refer to such a Fourier multiplier h as 
3 

a majorizing kernel (with exponent one and constant B = v( 2;) 2 ). The following 

slightly more general definition is suitable for extensions to generalized Navier

Stokes equations with fractional Laplacian and, as will be seen more fully in Section 

4, for considerations of local solutions. 

Definition 1.2. A positive locally integrable function h on Wh c Rn\ {0} whose 

closure 1¥ h is a semigroup and such that (i) h is continuous on Wh, (ii) h * h > 0 

a.e. on Wh, and (iii) h * h(~) <.::: Bl~l 8 h(~), for~ E Wh and some real exponent e 
and some B > 0, will be referred to as an FNS-admissible majorizing kernel wdh 

constant B and exponent e. l\Iajorizing kernels with a unit constant will be called 

standard kernels. \iVe define h = 0 on Wh' and refer to Wh as the support of h. 

Since the focus of this paper is exclusively the Navier-Stokes equations, we will 

drop the prefix FNS-admissible in reference to majorizing kernels. Note that if h 

is a majorizing kernel with constant B, then ~ is a standard majorizing kernel. 

Alternatively, if his a standard majorizing kernel, then h = Bh has constant B. If 

his a majorizing kernel, then h/ B, where B = sup{h * h(~)/1~1 8 h(~) : ~ E Wh}, will 

be referred to as the standardized choice of h. Those majorizing kernels h(~) which 

are defined and positive for all ~ # 0 are said to be fully supported. Some sense of 

the class of majorizing kernels may be derived by noting from Holder's inequality 

that the set of fully supported majorizing kernels with a given exponent is a log

convex set. Also if h(~) is a majorizing kernel, then so is cea·~h(~) for arbitrary 

fixed vector a and positive scalar c; note Theorems 2.1-2.4 in the next section in 

this general regard. Finally let us note that an exceptional role of~ = 0 is linked to 

the use of the wave number~ in defining the exponential waiting time distribution 

with mean 1/vl~l 2 . 
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Formulated in these terms, the results of LeJan and Sznitman [17] may be inter
preted in terms of two exponent one, standardized majorizing kernels, 1r3 /1~1 2 and 

ae-<>1~1 /27rl~l- These kernels are respectively non-integrable and integrable, with 
equality in (iii) of Definition 1.2. One may check that the only fully supported 
homogeneous majorizing kernels in n 2: 3 dimensions are those of degree n - 1. 
Development of majorizing kernels is somewhat generally treated in Section 2. As 
will be demonstrated in subsequent Sections 3 and 4, apart from their role in ex
istence, uniqueness and expected value representations, the majorizing kernels also 
play a role in constraining such structure of the solutions as regularity, support 
size, complexification, etc. 

Now let us define a Banach space :Fh,-y,T with a norm that depends on a Fourier 
multiplier 1/h as the completion of the set 

(11) {v E S': v(~,t) = 0,~ E Wh',lv~.h.-y.r = sup lvj;,t)l < oo} 
I;EWh e-'Y tl~lh(~) 
o::;t<T 

under the indicated norm, where "Y E { 0, 1} serves to conveniently index two differ
ent norms we wish to consider. Here S' is the space of tempered distributions on 

Rn. Also, implicit to the definition of the Banach space :Fh,-y,T is the requirement 
that tempered distributions belonging to this space have Fourier transforms which 
are functions. In the case h(~) = 1~1- 2 , :Fh,O,T is the Besov type space introduced 
by Cannone and Planchon [4]. We will refer to such spaces :Fh,-y.T as majorizing 
spaces in the case when his a majorizing kernel. The spaces :Fh,l,T generalize those 
introduced by Lemarie-Rieusset [16] to obtain conditions for spatial analyticity of 
solutions found by LeJ an and Sznitman [17]. 

Note that if h is a majorizing kernel of exponent 8 :S: 1 and u(x, t) E :Fh,-y,T n 
C1 ([0, T], S') is such that u(~, t) is a solution of the (FNS), u = il is a mild solu
tion of the N avier-Stokes. Indeed, the definition of majorizing kernel and of the 

function spaces :Fh,-y,T imply that the product of distributions in :Fh,-y,T is itself a 
distribution. To see this, note that if u and v are elements of :Fh,-y,T for a stan

dard majorizing kernel h of exponent 8, lu * v(~)l::; Mh * h(~)::; Ml~l 11 h(~), where 
A1 = lul.rh.-y,rlvl.h,-y,T. Using the definition of a majorizing kernel, it follows that 

U*V(~) is locally integrable. Thus, in particular one has~)(~, t) = B(u, u)(~, t) 
as needed, where B(u, v) = J~ evAs P(u · \lv)ds for the Leray projection P on 
divergence-free vector fields and 

B(u, v)(~, t) :=fat e-vl~l 2 "1~1(27r)-~ j { u(~ -17, t- s) 09~ v(17, t- s) }d17ds; 

see Galdi [12], Temam [21]. Consequently, working in these function spaces, a direct 
relation between solutions obtained using the stochastic representation of Section 
3 and the solutions obtained using Picard iteration methods can be seen. This is 
described in Section 4. 

Remark 1.2. In order to restrict the solutions to correspond to (real) vector-valued 
incompressible flows, one may simply replace the Banach space :Fh,-y,T by the closed 
subset 

(12) 

(ih,1 ,T = { v E :Fh,,,T : ~ · v(~, t) = 0, v( -~, t) = v(~, t), ~ E Wh, 0 :S: t :S: T}. 
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The main results of the paper use majorizing kernels of different exponents to 

establish existence, uniqueness and regularity properties of the solutions of the 

(FNS). Moreover these solutions have an expected value representation in terms of a 

suitably defined multiplicative stochastic functional X (8, t) of a multi type branching 

random walk in Fourier wavenumber space. In the statements of these results, 

( -6-)a denotes the fractional power of the Laplacian defined as the singular integral 

operator with symbol 1~1 2a. For example, using a majorizing kernel h of exponent 

1, and working on the space :Fh,o,T, existence of solutions can be obtained for small 

enough initial data and forcing on a time interval that is solely constrained by the 

length of time for which the forcing remains small. Specifically one has the following 

theorem. 

Theorem 1.1. Let h(~) be a standard majorizing kernel with exponent 8 = 1. 

Fix 0 < T :S: +oo. Suppose that ~uoll.hor :S: (v21fiv/2 and l(-6_)-1giiFhC,r :S: 

( vf:27T)3v2 /4. Then there is a unique solution u in the ball B0 (0, R) centered at 0 of 

radius R = ( vf:27T)3 v /2 in the space :Fh,O,T· Moreover the Fourier transform of the 

solution is given by u(~, t) = h(~)Et,e=E,X (8, t), ~ E Wh. 

It should be remarked that regularity properties of the solutions can be inferred 

from the particular majorizing kernel being used. For example, note that the ma

jorizing kernel ho(~) = 1r3 /1~1 2 gives existence and uniqueness, but no control over 

regularity of the solution. However, solutions obtained using the majorizing kernels 

h~a) = ~~~P- 2 calt,lil, 0 < j3 :::; 1, a > 0, maintain the same coc-regularity of the 

initial data, as can be seen from the bound on the Fourier transform of the solution. 

Moreover j3 < 1 permits smooth compactly supported initial data. 

On the other hand, working in the function spaces :Fh,LT it is possible to use 

majorizing kernels to obtain spatial analyticity of the solution. However, it should 

be remarked that the size constraints imposed on the initial data and forcing are 

substantially more severe that those required in Theorem 1.1. Specifically one has 

Theorem 1.2. Let h(~) be a standard majorizing kernel with exponent 8 = 1. Fix 

0 < T :::; +oo. Assume that 

and that 

I( -6.)-lg(x, t)IFu r :::; ( v::)3 pv2e-lf2v 

for some 0 :::; p < 1. Then there is a unique solution u in the ball B1 (0, R) centered 

at 0 of radius R = (p/2)( vf:21T) 3ve-~ in the space h,1,T· 

Under the conditions of Theorem 1.2 the asserted solution satisfies the following 

decay condition: 

ev'tlt,llu(~, t)l 
sup sup < oo. 

O<O;t<T E,ER3 h(~) 
(13) 

Thus Theorem 1.2 provides another approach generalizing that of Lemarie-Rieusset 

[16] to obtain conditions for regularity in the stronger form of spatial analyticity. 

More specifically, for example, if exp( -dl~l)h(~) E £ 1 for some dE R, then one may 

conclude that u(x+ iy, t) is complex analytic for IYI < Vt- d. Thus the generalized 

Lemarie-Rieusset estimate (13) may be applied to obtain spatial analyticity for 



553

MAJORIZING KERNELS AND STOCHASTIC CASCADES 5009 

suitable majorizing kernels with exponent 1. In particular, Theorem 1.2 extends 

the results of Lemarie-Rieusset since there are majorizing kernels that are larger 

than ho(~) = 1r3 /1~1 2 as (26) shows. 
One may also obtain local existence and uniqueness from more relaxed conditions 

on the majorizing kernels as illustrated by the following. 

Theorem 1.3. Let h(~) be a standard majorizing kernel with exponent e < 1. Fix 

0 < T::::; +oo,')' E {0, 1}. Assume evtlluo(x) E :h,-y,T and for some 1 :::::: (3::::; 2, 

(-b.)-~ g(x, t) E :Fh,-y,T· Then there is a 0 < T* ::::; T for which one has a unique 

solution u E :Fh,-y,T •. 

Remark 1.3. Fujita and Kato [11] obtain global smooth solutions for initial veloc

ities in L2 with sufficiently small norm. In particular these results require finite 

energy conditions. Majorizing kernels can permit infinite energy and provide global 

smooth solutions if the initial data is sufficiently small in the norm I · lh· Kato [15] 

assumes initial velocity fields in L3 , and proves existence of smooth global solu

tions if the L3 norm of the initial velocity is suitably small. While these results 

allow infinite energy, they do not cover the cases obtained under majorization by 

h~, 0:::::: (3:::::: 1. 

Remark 1.4. Another variation on the general approach presented here leads to 

conditions for a local existence and uniqueness theory in all dimensions. Here one 

can use a particular perturbation to obtain results as follows: For a given v > 0 

there is a time T*, depending on v, such that one has existence and uniqueness in 

a ball of C:h,r. which does not otherwise depend on v; see Orum [20]. 

The organization of this paper is as follows. In Section 2 we identify various 

majorizing kernels, including kernels applicable to Navier-Stokes in n :;::: 2 dimen

sions. In Section 3 the stochastic recursion is defined and Theorem 1.1 is proved. 

In Section 4 the Picard iteration is defined and proofs of Theorems 1.2 and 1.3 are 

given. Conclusions and final remarks are presented in Section 5. 

2. FNS-MAJORIZING KERNELS 

The FNS-admissible majorizing kernels play an important role in the develop

ment of our results. Recall that h : Wh --> (0, oo) is a standardized majorizing 

kernel with support Wh c Rn of exponent e:;::: 0 if 

The family of standard majorizing kernels of exponent eon Rn is denoted by 

Hn,e = {h: Wh--> (O,oo): h*h(~)::::; 1~1°h(~) for all ~ E Wh c Rn}. 

The first part of this section gives some building block structure of the sets Hn,e of 

majorizing kernels. The second part provides constructions of useful sub-families 

of Hn,e- The main emphasis is on examples in 1i3,e for e = 0, 1, although some 

examples are given in a more general setting. The section will close with some 

classes of examples of divergence-free vector fields which are majorized by specific 

kernels. 
We begin by showing that the Hn,e's are logarithmically convex for fixed dimen

sion n. 
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Theorem 2.1. Suppose that {qj : 1 ~ j ~ m} satisfies qj > 0, and L~ qj = 1. 

Then for hj E Hn,B;, j = 1, ... , m, 

m 

h(~) = II h~1 (~) E Hn;Dj'= 1 q;B; 

j=l 

with support wh = n;l wh;. 
Corollary 2.1. Suppose that { qj : 1 ~ j ~ m} satisfies qj > 0, and L~ qj = 1. 

Then for hj E Hn,B, j = 1, ... , m, 
m 

h(~) = II h~1 (~) E Hn,B 
j=l 

with support wh = n;l wh,. 
Pmof. Take q1, q2 > 0 with ql + q2 = 1. Take h1 E Hn,B 1 and h2 E Hn,B 2 and let 

h(~) = h'f_1 (~)h~2 (~). Using Holder's inequality, 

h * h(~) i (hl(TJ)hl(~- 'TJ))q 1 (h2('TJ)h2(~- 'TJ))q2 d'T} 

< (hl * hl)q1 (~)(h2 * h2)q2 (~) 

< ~~~q1B1 +q2B2 h'f_l (~)h~2 (~) = ~~~q1B1 +q2ll2 h(~). 

The complete result follows by induction. D 

In addition, relationships between the Hn,o 's as both n and (} vary are governed 

by a similar logarithmic convexity. 

Theorem 2.2. Fix n ~ 1. Suppose that k1, ... , km is a partition of n and for each 

j = 1, ... , m, hj is in Hk1 ,o1 . Then 

m 

h(~) = II hj(~j), 
j=l 

is in Hn ""' II· with wh = whl X ... X wh . 
'L.....;=l 1 rn 

Pmof. For h as defined, taking 'T} = ( 'TJl, ... , 'TJm) with 'T}j E R k;, 

h*h(~) = 1 fi.hj('T}j)hj(~j-'T}j)d'T} 
ryERn j=l 

m 

j=l 

j=l 

D 
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Theorem 2.3. If A is an n x n invertible matrix and h E Hn,e, then defining 
jjAjj = sup{jAxj: jxj = 1}, 

hA(~) := jdetAJ· jjAjj- 8h(A~) E Hn,e 

with support WhA = {A- 1 ~: ~ E Wh}· 

Proof. Take A and h as given and define hA as above. Then whA 
h(A~) < oo} = {A- 1 ~: 0 < h(~) < oo} and 

hA * hA(~) = jdetAj 2 jjAjj-28 ln h(Ary)h(A(~ -77))dry 

jdetAJ·IIAII-28 ln h(77)h(A~- ry)d77 

< jdetAJ· jjAjj-28 jA~j 8h(A~) 

<:::: jdetAJ· jjAjj-8 j~j 8 h(A~) 

j~j 8 hA(~). 

{~: 0 < 

D 

The Hn,e 's are also closed under logarithmic translation both linearly and in 
norm. 

Theorem 2.4. If hE Hn,e and 1/J: Rn--+ [0, oo) satisfies 1/J(~) <::; 1/J(T/) + 1/J(~- 77) 
for all TJ, ~ E Wh, then 

h'</J(~) = e-'</J(Oh(~) E Hn,e· 

Proof. h'</J * h'</J(~) <::; e-'</J(Oh * h(O <::; j~j 8 h'<f;(~). 

Corollary 2.2. If hE Hn,e, then 
(i) ea ~h(~) E Hn,e for any fixed a E Rn, 

and, for any pseudo-metric p on a subset of R 3 containing T:Vh, 
(ii) e-ap(~o.Oh(~) E Hn.e for any a> 0 and ~o fixed. 

D 

Note. The example e-al~l 8 h(~) E Hn,e for any a > 0 and 0 < (3 <::; 1 is a noteworthy 
special case of part (ii) of Corollary 2.2. 

The question of existence of majorizing kernels is non-trivial. For example, it 
can be shown that any piecewise continuous h E H1,1 must have T:Vh = (0, oo) or 
Wh = ( -oo, 0). This illustrates the tradeoff between n and e; if exponent e > 0, 
the existence of majorizing kernels with support Rn\ {0} is problematic for smaller 
values of n. There are however fully supported majorizing kernels of exponent e = 0 
for all n ::::> 1. 

Example 2.1. Let 
1 

h1(~) = 21r(1 +e) for~ E R. 

Then 
1 

h1 *h1(~) = 27r(4 +e) <:::: h1(~) 

for all ~ E R, so h1 E H 1,0 with 1¥h1 = R. Using Theorem 2.2, it is easy to see 
that for n > 1, 

n 

hn(~) = (211')-n II(l +~J)- 1 E Hn,O 
j=1 
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with Wh = Rn. The following rotationally invariant extension of h1 is often more 
attractive: 

Then again 

for all 

(See Folland [9], page 247, for an indication of the necessary computation.) 

Propositions 2.1 and 2.2 below provide some examples of majorizing kernels in 
Hs,1· 

Proposition 2.1. Suitably normalized, each of the following kernels h~a) are in 
H3,1 with support W = R 3 \{0}: 

h~a:)(~) = l~lt3- 2 e-a:lel 13 , ~=f. 0, 0 :s; (3 :s; 1, a> 0. 

Using Theorem 2.1 the following is immediate. 

Corollary 2.3. Suitably normalized, for each e E (0, 1), 0 :S (3 :S 1, and a> 0, 

h(a:) _ I~IB(/3-2le-a:elei 13 
0 

B,/3(~)- (27r)3(1-B) n~=1 (1 + ~J)C1-B) '~=f. ' 

and 
-cal 1~1ec,a-2) e-a:Biel 11 

he,,a(~) = (1 + 1~12)2(1-B) , ~ =1- 0, 

are both in H 3.e with support W = R3\{0}. 

The following lemma is sometimes useful for computing the convolution of two 
radially symmetric (rotationally invariant) functions, especially in dimension 3, due 
to the simplification of the integrand. It will be used in the proof of Proposition 
2.1 below. Let O"n = 27r(n+l)/2 /r(n!1) be the n-dimensional surface volume of a 
unit sphere sn' and let 

k(x, y, IW = J(x + Y + IW(-x + y+ IW(x- Y + l~l)(x + Y -IW 

be 4 times the area of a triangle with side lengths x, y, and 1~1-

Lemma 2.1. Suppose n ~ 2, and that h1 , h2 : Rn ---+ C are each rotationally 
invariant, i.e. h1(~) = g1(IW and h2(~) = g2(IW- Then the convolution h1 *h2(~), 
if it exists, may be computed for 1~1 =f. 0 as 

(14) h1 *h2(~) = 2n~~~~~-2 J J g1(x)g2(y) xy [k(x, y, IWt-3 dxdy, 

Tl<l 

where 'llel = {(x,y) E R 2 : y ~ -x+ l~l,x -1~1 :S y :S x+ 1~1}. 

Proof. The integrand in h1 *h2 (~) = J h1(ry)h2(~- ry)dry is invariant under rota
tions around the axis defined by ~ (or reflection if n = 2). Such rotations leave 
invariant the unit sphere sn-2 centered at the origin in the hyperplane orthogo
nal to ~- The following coordinates are therefore natural: x = ITJI, y = I~- ryj, 
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w E sn-2 . We transform to this coordinate system by first passing to ordinary 
spherical coordinates: 

(15) 

771 
772 
173 

17n-1 
17n 

r cose1, 
r sin e1 cos e2, 
r sin e1 sin e2 cose3, 

r sin e1 ° 0 0 sin en-2 sin en-1' 
r sin el 0 0 0 sin en-2 cos en-1, 

o s e1 s 7!', 
o s e2 s 7!', 
o s e3 s 7!', 

0 s en-2 s 7!', 
0 s en-1 < 27!'. 

Here r = 1771, and e1 is the angle between 17 and ~· The n-dimensional volume 
element is 

rn-1dr sinn-2 e1 sinn-3 e2 ° 0 0 sin en-2de1 ° 0 0 den-1 

rn-1dr sinn-2 e1de1dw 

where dw is the surface element for the sphere sn-2 . Using spherical coordinates 
and performing the integration over sn-2 gives, withe= e1, 

h1 *h2(~) = un-2fo"' laoo g1(r)g2 ( Jr2 + 1~1 2 - 2rl~l cos e )rn-1 sinn-2 edrde. 

Let x = r = 1771 andy = Jr2 + 1~1 2 - 2rl~l cose = I~- 771· The new region of 
integration becomes the set llel of all possible ordered pairs of triangle side lengths 
when the third side of the triangle has length 1~1· The Jacobian is 

hence, 

(16) 

I EJ(r, e) I = I EJ(x, y) 1-1 = I 
EJ(x,y) EJ(r,e) 

EJxfEJr 

* 
0 

EJyfEJe 
y 0 

xl~l sine' 

h1*h2(~) = u~~2 j j g1(x)g2(y)xy [xsinet-3 dxdy. 

T1.;1 

Expressed in terms of x andy, xsine = l2~l- 1 k(x,y, 1~1), giving (14). 0 

Proof of Proposition 2.1. The cases f3 = 0 and f3 = 1 are treated by LeJan and 
Sznitman [17]. They are included for completeness here. The case f3 = 0 is treated 

first. Clearly hba) * hba) (~) is finite for all 1~11- 0. From Lemma 2.1, 

hba) * hba)(~) = 27re-2al~l-1 J J x1y dxdy 

Tl<l 

27re-2al~l-1 !! x1y dxdy 

T1 

27re-a J J x1y dx dy 1~1 h~a) (~). 
T1 

For a> 0 and f3 E (0, 1] fixed we have h~a)(~) = g(IW where g(r) = rf3-2e-<>r 13 • 

Note that for r, x > 0, (x + r)f3-1 - xf3-l S 0 and for 0::::; x S r, xf3 + (r- x)f3 2:: r!3. 
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For 1~1 = r then 

h * h(~) 211-r-1 JJ xg(x)yg(y)dxdy 

< 

+ 

< 

0 

One may also show that certain Bessel kernels and similar transforms provide 
further interesting examples of majorizing kernels in 1tn,1 for n ;::: 3, as in the 
following proposition. These kernels are closely related to the Bessel kernels of 
Aronszajn and Smith [2]. They can also be combined with the kernels of Example 
2.1 to construct kernels in Hn,o for 0 < e < 1. 

Proposition 2.2. For n ;::: 3 and ((3, "!) with 0 :::; (3 :::; 1 and 1 :::; "( :::; 1 + (3, 
suitably normalized, each of the following radially symmetric functions is in 1tn,1 
with support Rn\{0}: 

h (<=) = 1 t-y2n-1e-tf3-1~12/tdt cERn. 
n~n~ '~ 

t>O 

Remark 2.1. One may apply the Laplace method for estimating integrals to show 
that the Bessel type kernels h = hn,f3,1 are also regularizing kernels in the sense 
that the distributions in the corresponding function space :Fh,O,T are 0 00-functions. 

The following lemma provides a comparison between the kernels of Propositions 
2.1 and 2.2. 

Lemma 2.2. (i) For each a E (0, 1), there exists a constant c(<>) with 

h (~) < c(<>)h(a)(<=). 
3,1,2 2 - 1 ~ 

(ii) For each a > 0 and (3 E [0, 1], there exists a constant c~a) with 
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Proof. Fix (3 E (0, 1] and choose 5 E (0, 1). Then 

h (~) 1 t!i'-2e-~~\2 -t dt 3,1,1+;3 2 
t>O 

-<51"11 /i_z - (1-ii2JI<I2 (v't-"ill)2 
e ' t 2 e 4' 2v1 dt 

t>O 

< -51"11 fi_z - (1-o2JI<I2 d e ' t 2 e 41 t 
t>O 

( (1- 52)1.;12 )!i'-1e-51~11 s-;3/2e-s ds 
4 s>O 

( (1 - 52)) !i' -1 r(1 - (3 /2) ~~~;3-2e-JI~I. 
4 

5015 

For I~ I 2' 1, trivially e- 5 1~1 .:::; e-5 1~1a. For 1.;1 < 1, 1~1;3 -1~1.:::; (1- (3)(3 1 ~13. Taking 
5 =a, this gives, for 0 < (3 .:::; 1 and 0 < a< 1, 

h3,1,1+;3(~) .:::; c~a) h~a) (~) 
(0 

for c~a) = 22-i3r(1- ~)(1- a 2 )!i'-1ea(1-;3);J1-il. 
For 0 < (3 < 1, 0 < 5 < 1 and a 2' 1, 

For 1~1 < (~) 1: 5 , -51~1 + ai~I;J is maximized at 1~1 = (af) 1:1, with a maximum of 
1 f3 /3 

(1 - P)a H' ( '3-) 1-,e. This gives 

h3,1,1+;3 ( ~) .:::; c~a) h~a) (~) 

0 

The majorizing kernels of Proposition 2.2 arise as weighted integrals of the func-
2 

tion t- '§' e-.LSf--. The method of deriving these kernels can also be used to derive 
families of non-radial kernels as follows. Fix a E (0, 2] and define 

fa(x) = J__ { e-1.\la+i.\x d).. for x E R. 
27T J .\ER 

These fa's correspond to the symmetric stable densities; for example, h (x) = 

(1r(1 + x2 ))- 1 and h(x) = 2~e-x2 /4 . The convolution and scaling properties of 

the fa's give 

(17) 

(s + t)-!; fa((s + t)- 11ax) = 1 (st)- 1/a fa(s- 11a(x- y))fa(t-11ay) dy 
yER 

for s, t > 0, x E R. 
For n 2' 1, 0 < a.:::; 2, and g : R+ ---+ R define 

Tn,ag(x) = 1 g(s)s-nfa IT fa(s- 11axi) ds 
s>O i=1 

for all x E Rn such that this integral converges. 
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Lemma 2.3. Suppose g1, 92 : R+ --> R such that Tn,a g1, 'l'n,a g2, 91 * 92 and 
Tn,a91 * Tn.a92 each exist a. e. with respect to Lebesgue measure. Then 

Tn.a 91 * Tn,a 92(x) = 1'n,a(91 * 92)(x) a. e. 

Proof. Use Fubini's Theorem and (17) above to check the result. D 

Proof of Proposition 2.2. For~ ERn, hn,(3.,(e) = 2n7rni2Tn,2hf3.1 (e) where 

( ) :l_1 -t/3 ( ) hf3.1 t = t 2 e · leo,=) t . 

Note that since uf3 + (1 - u)f3 2: 1 for 0 <S; u <S; 1 and 0 <S; ;5 <S; 1, 

h h ( ) l t s3' -1 (t - s) 3' -1e-sfl-(t-s)~' ds (3., * (3,, t = 
s=O 

e-111 u3'-1(1- u)3-1e-tl3(ui3+(1-u)~') du 
u=O 

< e-1e-t"11 u3'-1(1- u)3'-1 du 
u=O 

I I B( 2, 2)hp.21 (t). 

This gives, for (3 E [0, 1] and 1 > 0, 
I /' 

hn,(3,1 * hn,(3,1 (E;) 'S: B( 2' 2 )hn,(3,21 (e) 

for all e such that hn,(3,,(~) exists. 
We proceed by showing that, for ((3, 1) in the range given, the hn,(3,1 's exist and 

the ratio 

(18) hn,f3,21 (e) 

lelhn,p,,(e) 
is bounded uniformly in e ERn. For z > 0 and (3 E [0, 1] define 

() 1ootcr-1-2-tf3dt 
9(3,a z = e ' . 

0 

For 1e1 = z we have 

and 

hn,f3,21 (e) = 9(3,1 -I,J (z). 
The following lemma is usefuL 

Lemma 2.4. For (3 E (0, 1] and z > 0, 

(i) For a> 0, ga,a(z) <S; *r(~). 
(ii) For a= 0, 9(3,o(z) <S; *e-1 + fs":z 2 s-1e-s ds. 

(iii) For a< 0, z- 2ag{3,a(z) -s; r( -a) with limzlO z- 2cxg{3,a(z) = r( -a). 

Proof of Lemma 2.4. Both 9[3, ..,;" and 9{3,,-!,j are continuous functions on (0, oo) 

for all ((3, 1) with 0 <S; (3 <S; 1 and 1 <S; 1 <S; 1 + ,6. For any a E Rand 0 < (3 <S; 1, the 
2 

charge of variables x = zt gives 

(19) 
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In particular z-2ag{3,a(z) is continuous and strictly decreasing in z > 0. For o: < 
0, limz",.O z-2agf3,a(z) = r( -o:). Thus we see immediately that g13, -r;n is a contin

uous and decreasing function of z specified by fJ and"(, and 9{3,-y-~ is a continuous 

and decreasing function of z for"( < -lj-. Next consider the case n = 3, fJ E [~, 1] 

and"(=~: 

-e-1 + s-1 e-s ds. 1 100 

fJ z2 

The case n = 3, "( E (~, 1 + fJ) for fJ E (~, 1] is handled as follows. Foro: > 0, 
the change of variables s = t!3 gives 

< 

1 100 2 _l -13a-1 -s-z s f3 d - s e s 
fJ 0 
1 0: 
73r( 73). 

D 

Returning to the proof of Proposition 2.2 we see that the key to bounding (18) 
uniformly in~ ERn is showing that 

1. 9{3,-y-~ (z) 
1m sup 

z",.O zg"' =(z) 
~'• 2 

and 

l . 9{3,-y-~ (z) 
1m sup 
z/oo zg"' -r-n (z) 

~'• 2 

are both finite. 
First consider the case (fJ, "f)= (0, 1). From (19), for all n 2: 3, 

go 1--" (z) f(Tic- 1) 
, 2 - 2 < 

( ) - 1 00. 
zgo 1-n z r(n-2 ) 

, 2 

Next consider fJ E (1, 2] and "( E [1, 1 + fJ] n [1, -lj- ). From (iii) of Lemma 2.4 

zn-2-yg/3 n (z) 
limsupz7 - 1 ,-y- 2 

z",.O zn--ygf3,:s"(z) 
l . 9{3,-y-~ (z) 
1m sup 

z",.O zg"'=(z) 
~'• 2 

{ r(~-1) _ 
rcn;-1)' "(-1, 

o, "f E (1, 1 + fJ] n (1, -lj- ). 

For n = 3, "f = ~' and fJ E [~, 1], using (ii) and (iii) of Lemma 2.4, 

. 9{3,o(z) 1 . 1 
hmsup ( ) -(3 ) hm z2g{3,o(z) 

z",.O Z9f3,-! Z f 4 z",.O 

< 1 11 !00 -(3 ) limsup(z~ s-1 ds + z~ e-s ds) 
f 4 z",.O z2 1 

2 1 

-(3 ) lim z2lnz = 0. 
f 4 z",.O 
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For n = 4, 1 = 2 and .B = 1, again using (ii) and (iii) of Lemma 2.4 

lim sup gi,o(z) :::; lim zg1.0(z) = 0. 
z"O zgL-l(z) z"O · 

For n = 3, ,6 E (~, 1] and 1 E (~, 1 + P], 

< 
r('-~) 

/3 lim z 2 - 1 

i')r( 3;') z"O ' 

{
1 fori'J=1, 1=2, 

0 fori']E(~,1], 1E(~,1+i1]n(~,2). 

Now consider the limit of the ratio as z / oo. Fix p E (0, 1] and 1 E [1, 1 + i'J]. 
For the minute fix z ::;> 1 and consider f(t) = 2t2 + tf3. Then f is minimized at 

2 1 2 1 

to= ( 7J) !3+ 1 , decreases on (0, t0 ) and increases to oo on (to, oo). Fix r ::;> 2n-"' p- !3+ 1 

sufficiently large to satisfy 

In particular this gives 

(20) 

2 

and rz !'+ 1 ::;> t0 . Then 

gf3, ~;" (z) 

(21) > 

and 

(22) 

n-J' 

i'J2(!3+1) o-n -f(· ~ ---z !3+1 e r,__ 
n~l 

Combining (20), (21) and (22), 

(23) 

For 1:::; 1 + i'), this goes to 0 as z-----+ oo. 
2 

For z ::;> 1, t:::; r 2 zi3+ 1 gives 
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so that 

Using (23) and (24), for (3 E (0, 1] and 'Y E [1, 1 + (3], 

D 

The same general technique that gave the kernels of Proposition 2.2 gives families 
of non-radial kernels that are not fully supported. These are the larger kernels that 
permit broader existence and uniqueness results for given initial data u6 of (FNS); 
see Remark 2.2 below. 

Proposition 2.3. For each a E (0, 1] and n;::: 3, 

is suitably normalized in 1tn,1 with support Wn,a = { ~ ERn : 2::~ 1[€;=0] < ~+'J.1 }. 

Proof. Fix a E (0, 1] and n;::: 3. Let g"'(t) = p- 1 for"(, t > 0 and set 

for all ~ E Rn for which Tn.a91. (~) converges. The convolution g"' * g"'(t) 

B('Y,"()g2"f(t), so from Lemma 2.3~ 

In order to check convergence of Tn,a9"1(~) for 'Y = ~' ~' a E (0, 1], we rely on a 
series expansion of fa(x) for a E (0, 1] and lxllarge given by Feller [8], p. 583: 

f, ( ) =-1-"f(ka+1)(-1)k+1 ll-ak. (kmr) 
a x 7rlxl ~ k! x sm 2 . 

k2:1 

In particular, using this expansion it is straightforward to show that for a E (0, 1] 

and lxl > 2i:, fa(x) < calxl_1_" where Ca is a constant depending on a. In 
addition, it is easy to see that fa(x) is maximized at x = 0. 

Fix n;::: 3 and x ERn with lxl > 0. The change of variables s = tlxl-a gives 

(25) 
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Let J(x) = {i : x; # 0}, j = j(x) = L~ l[x,=O] and r(x) = minH( 1 [~ 1 1 )" : j E 

J(x)}. Then 

j r(x) n x· 1 
~-"-liT! ( z --)d s I c.: o: -s c.o: s 

s=O 1 lxl 
j r(x) . lx·l 1 

< f~(O) s~-~-l IT Ca(-' s-")_1_" ds 
s=O iEJ(x) lxl 

f~(O)c~-j II ( l:2.l )-1-o: 
iEJ(x) lxl 

j r(x) . n-(n-.i)(l+o) 1 
. sl- "' ds. 

s=O 

For "( = ~' ~ this integral converges for j < n;'+i1 . Also for"(< ~' 

1oo s'-;;-1 IT !o:( xl il s--fq ds < J:;(o) 1= s~-~-1 ds < oo. 
r(x) 1 X r(x) 

Together these give 
X 

Tn,a9,( j;T) < 00 

for"(= ~' ~ and L~ l[x,=O] < :o::11 . From (25) we see that to verify that Hn,o: is 
a majorizing kernel, we need to show that for a constant Cn,a E (0, oo ), 

1'n.a.92 ( _lXI) S Cn.aTn.a9.L ( _lXI) 
o: X ~ , o. X 

for all x with 2..:~' l[x,=O] < naa:11 . Fix n 2 3, a E (0, 1], andy ERn with IYI = 1 
d '\'n l na.+1 F . _ 1 2 1 t an L.d [y,=O] < a+l . or I - a' a e 

and 

Immediately 

Using Yamazato [23] we see that fa(x) is uni-modal and strictly decreasing on 
(0, oo). This gives 

IC{l(y) 2j /;:;"-l IT!a(1)ds = ___!!____ J-;;(1) 
" s>1 1 n- 1 

and 

( ) I I ( ) 'or Cn.~· = n- 1 (fa(O) )nB(~, ~). Tn.a92 X S Cn.a X 1'rz.a9.L X 1 ~ ( ) 
" · · " · n- 2 fo: 1 'Y 'Y 

D 

Remark 2.2. In the case n = 3, a= 1 the kernel H3 ,1 can be written as 

(26) 1 ~ 
H3,1 (~) = lij2G( IZf ), 
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where G is defined a..e. on the unit sphere with G(e) -+ oo as e approaches the points 
(0, 0, ±1), (0, ±1, 0), and (±1, 0, 0), respectively. In particular the growth of H3,l 

along particular directions is much larger than ho(~) = 1/1~1 2 . Transforming H3,1 

via. a rotation as suggested in Theorem 2.3 permits such growth in any direction. 

In view of the role of ma.jorizing kernels in providing bounds on the Fourier 
transformed forcing and/ or initial data, the theory contains a dual problem which 
is to identify classes of divergence-free vector fields in physical space which are so 
dominated. 

The first example is a class of divergence-free vector fields on R 3 whose Fourier 
transforms are dominated by h3,(3,"'!(~). 

Example 2.2. Fix 0:::; (3:::; 1 and 1:::; 1:::; 1+(3. For 1:::; j:::; 3let mj(t) be measur

able functions on [0, oo) such that lmj(t)l:::; f7-le-t'3 and ft>O r 312 lmj(t)ldt < oo. 
Let v(x) be the vector field whose components Vj(x) are the Laplace transforms of 
mJ(t) evaluated at lxl 2 /4; that is, 

Vj(x) = Lcoo e-tlx1 214mj(t)dt. 

Let u(x) be the divergence-free projection of v(x). Then the following calculation 
shows that 

After using Tonelli's Theorem to check integrability, Fubini's Theorem gives 

lvj(.;)l c I r r. e-i~xe -I~T 12 mj(t)dxdtl 
lt>O JR" 

< c r c3/21mj(t)le-1~12/tdt 
lt>O 

:::; c h3,(3,"'((~). 

The projection of the vector field v(x) onto the divergence-free component u(x) 
becomes, on the Fourier side, u(~) = f:(~)- 1 ~ 1 (D(~)· 1 ~ 1 ) = 11~_]_ D(~). This contraction 
gives 

for all 

For the next example we consider majorization by the kernels h~cx). 

Example 2.3. Let M denote the space of finite signed measures on R 3 with total 
variation norm II II· Let 0 < (3 :::; 1 and denote the "Fourier transformed Bessel 

. 1+~ . 
kernel' of order (3 by Gf3(x) = (1 + lxl 2 )-~. Then for each g = Gf3 * J-L, J-L E A1, 
one has for (3 = 1, a E (0, 1) and for (3 E (0, 1), a> 0, 

19(~)1:::; c~cx)h~cx)(~)IIJ-LII, ~ =J o, 

for a constant C~cx) > 0. In particular, if v E L 1 is a. divergence-free vector field, 
then g = Ga * v is also a. divergence-free vector field whose Fourier transform is 

dominated by h~cx). To verify this class of examples it suffices to check that 

(27) 
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for some constant Cho:). For this we take the Fourier transform of (1 + lxl 2)- 111' 

and then use Lemma 2.2. First notice that for any a > 0, 

-- =a 2 t 2 e t. r ·(f-)+1) !3+11= !3-1 -atd 
2 0 

. ~1 2 
Solvmg for a---o and then taking a= 1 + lxl , we obtain 

Ge(x) = --- t-2-e- 1+ x t dt 1 1= /3-1 ( I 12l 
r(3tl) 0 

and 

The following example uses the h~o:) majorizing kernels to give smooth divergence
free vector fields, including some with compact support. 

Example 2.4. Let mj(t), t > O,j = 1, 2, 3, be measurable functions such that 

j 0
00 e-lxl 2 tlmj(t)!dt < oo,x E R 3 ,j = 1,2,3. Define a vector field with components 

Vj,J = 1,2,3, by 

Vj(x) =~a= e-lxl 2tmj(t)dt,x E R 3 . 

Let u be the divergence-free projection of v. Then, 

(i) If lmJ(t)l :S cC~, then luJ(~)I :S c'h~o:)(~) for some c' > O,j = 1,2,3. 

(ii) If lmJ(t)l :S ce-2o:2 t, then luJ(~)I :S c'h~o:)(~) for some c' > O,j = 1,2,3. 
(iii) For arbitrary E > 0 there is a smooth probability density function k< sup-

ported on [-E, Ej3 such that 

lk<(~)l :S c(;3,E)exp{-lc~l 13 },~ E R 3 ,c(;3,E) > 0. 

Let v be any divergence-free integrable vector field such that lv(~)l :S cl~l- 2 , ~ # 0. 
Then the componentwise perturbation ·u = k< * v is a divergence-free infinitely 

differentiable vector field such that iuJ(OI :S c'h~o:)(~), for a= E;3 and some c' > 
O,j = 1, 2,3. 

To verify (i) and (ii) first recall that 

and therefore 

(211)-~ { e-ixHxl 2 tdx = (2t)-~e- 1 ~~2 , 
}Rs 
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luj(~)l < cT~ { C2e- 1 ~~2 dt 
lt>O 

c2~1~1-2 

c2~e"'h~"')(~) 

for j = 1, 2, 3. For lmj(t)l :::; ce-2"'\ using the change of variables s = ~~r, 

luj(~)l < cT~ { C~e-2"'2t-~ dt 
lt>O 

1 1 a 2 1<1 2 

cl~l-1 s-2 c2s-~ ds 
s>O 

cl~l-le-al~IJ s-~e-s-(ft-~)z ds 
s>O 

< cr(.!. )hi"')(~). 
2 

5023 

To check (iii) one may apply Theorem 10.2 of Bhattacharya and Rao [3] to see that 
for any fixed f3 E (0, 1) there exists a probability measure on (R, B) with density k 
whose support is contained in [-1, 1] and 

Without loss of generality we can assume that k is symmetric and infinitely differ
entiable. FixE> 0 and take k, to be the density of the probability measure on R 3 

given by 

K,(A) = j jj k(xl)k(xz)k(x3) dx1 dxz dx3 

A, 

where A,= { ~ : x E A}. Then k, has support contained in [-E, EjS and 

using Jensen's inequality in the exponent. If v is an integrable divergence-free 
vector field on R 3 with lv(~)l :::; cl~l- 2 , then u = k, *vis both divergence-free and 
infinitely differentiable with 

lk,llilj(~)l 
< c3 (f3)e-'13 1~1 13 min{cl~l-2 , lilj(~)l}. 

For 1~1 2: 1 then 

luj(~)l::::: c'(f3)h~'13 )(~) 
with c'(/3) = c · c3 (f3). For 1~1 :::; 1, 

luj(~)l::::: c"(f3)h~'13 )(~) 

for c"(/3) = c3 (/3)11vjll, where llvjll denotes the L1-norm of Vj. 
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v = (2. 1, 2 .... ) E AV 

(112) (212) (222) 

(11) (21) (22) 

(1) (2) 

B 

FIGURE 1. Full binary tree with index set V and boundary oV. 
The path v = (2, 1, 2, ... ) E oV is indicated in bold, with viO = e, 
vl1 = (2), vl2 = (21), and vl3 = (212). 

3. STOCHASTIC RECURSION 

The vertex set V of a complete binary tree rooted at e may be coded as (see 
Figure 1) 

00 

(28) v = u{l, 2}j = {e, (1), (2), (11), ... }, 
)=0 

where {1, 2} 0 = {e}. Also let av = IT.~o{1, 2} = {1, 2}N. 
A stochastic model consistent with (FNS)h is obtained by consideration of a 

multitype branching random walk of non-zero Fourier wavenumbers ~' thought of 
as particle types, as follows: A particle of type~# 0 initially at the root e holds for 
an exponentially distributed length of time Se with holding time parameter A.(~) = 

vl~l 2 ; i.e. ESe = vl~l 2 • \Vhen this exponential clock rings, a coin "'B is tossed and 

either with probability ~ the event [K:e = OJ occurs and the particle is terminated, 
or with probability ~ one has [ "'B = 1] and the particle is replaced by two offspring 
particles of types 171 ,-172 selected from the set 1]1 + 1]2 = ~ according to the probability 
kernel H(~, d1]1 x d172 ) defined by (9). This process is repeated independently for 
the particle types 171 , 172 rooted at the vertices (1), (2), respectively. 

A more precise mathematical description of the stochastic model requires a bit 
more notation. For v = (v1,V2, ... ,vk) E V, let vlj = (v1, ... ,vj),j:::; k. Also 
let lvl = k, 1e1 = 0, denote the geneological length of the vertex v E V. For 
v = (vi, v2, ... ) E av, and J = 0, 1, 2, ... let vlj = (vl, ... Vj), viO =e. That is, 
for v E 8V, viO, vl1, vj2, ... may be viewed as a non-terminating path through 
vertices of the tree starting from the root viO = e. For u, v E oV, or in V, let 
lull vi= inf {m ~ 1: ulm #vim}. 
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The following requirements provide the defining properties of the underlying 
stochastic model. The model depends on the initial frequency (wave number)~ and 
the choice of majorizing kernel h. Fix hand let Wh <:;; R 3 \ {0} denote the support of 
h. Let Bh denote the Borel subsets of H'h· For fixed~ E Wh, let {(~v, K;v): v E V} 
be the tree-indexed stochastic process starting at ( ~e, K;g) with ~e = ~ E vVh, K;g E 

{ 0, 1}, taking values in the state space Wh X { 0, 1}, and defined on a probability 
space (rl, :F, Pc.) by the following properties: 

(29) 

(1) Pd~e E B, Ke = K.) = ~5~(B), BE Bh, K. E {0, 1}. 
(2) For any fixed v E av, the sequence (~viOl 1\;viO), (~vlll "'vld, (~vl2' Kvl2), ... 

is a Markov chain with transition probabilities 

(3) 

(4) 

P~(~vln+l E B, Kvln+l = KICT({(~u,Ku): lui :'S: n})) 

= ~ r h(~vln- TJ)h(TJ) dT) 
2 } B h * h(~vln) 

forB E Bh, K E {0, 1}. In particular, for v E V, ~v1 + ~v2 = ~v P~:,-a.s., 
where vj = (v1 ... vn)j := (v1 · · · Vn,j), j = 1, 2, ... is the concatenation 
operation. 
For any u, v, E av, {(~ulml 1\;ulm)}~=O and {(~vlml Kvlm)}~=O are condi
tionally independent given CT({(~w,Kw): lwl :S: lui\ vi}). 
Let {Sv : v E V} be a sequence of iid mean one exponentially distributed 
random variables defined on (rl, :F, Pc.) and independent of { (~v, Kv) : v E 

V}. Define )..(17) = viTJI 2 for TJ E vh and 

Sv = A(~v)- 1 · Sv, V E V. 

Conditionally given {~v : v E V}, the collection {Sv : v E V} consists of inde
pendent exponentially distributed random variables having respective conditional 
means {A(~v )-1 : v E V}. 

Remark 3.1. The above properties, although not an explicit construction, define the 
stochastic model; see Harris [13] for an approach to construction of the underlying 
probability space. 

Our objective now is to use the stochastic branching model represented by the 
collection of random variables { ~v, Kv, Sv : v E V} to recursively define a random 
functional related to (FNS) through its expected value. Namely, for measurable 
functions xo : T;Vh -+ C 3 and ip : wh X [0, 00) -+ C 3 ' and for ~IJ = ~ E Hlh, t ::::: 0, 
the stochastic functional X ( (}, t) is recursively defined by 

{ 
xo(~e), ifSe>t, 
IP(~e, t- Se), if Se::; t, Ke = 0, 
m(~e)X(\1), t-Se)®~8 X((2),t-Se), otherwise, 

(30) X (e, t) 

where the product ®t, and factors m(~) are defined in (7) and (8), respectively, and 
where (1) and (2) are root vertices of the shifted full binary trees 

(31) v(i) := { (i), (i, 1), (i, 2), (i, 1, 1), (i, 1, 2), (i, 2, 1), ... }, 

types ~(i), i = 1, 2, respectively. 
For evaluation of the stochastic functional X (e, t), for a given ~e = ~' it is useful 

to identify a particular tree structure intrinsic to the stochastic branching model 
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(21) (22) 

"'(2) = 1 

"'(1) = 0 
s<2> 

s<l> 

(1) I Se, Ke = 1 
. (2) 

~(1) ~(2) 

Tg(t) 

FIGURE 2. Schematic of a tree indexed branching random walk 
with Te( < t) denoted in bold lines 

by (see Figure 2) 

lvl-1 
(32) Te(t) = {v E V: II kviJ = L Bv-<::; t} 

J=O 

where 
lvl-1 

(33) Be= 0, Bv = L SviJ' () cJ V E V. 
J=O 

It is helpful to have a bit more notation and further decompose Te(t) into sets of 
vertices of two types. We say that v E V, born at time Bv, survives for a time 

Sv until the clock ring at time Rv := Bv + Sv = 2:::;:!0 SviJ· In this way we can 
partition re(t) into the vertices born before timet with clock rings before and after 
time t; see Figure 2. Namely, 

where 

re( < t) 
Te(> t) 

Tg(t) = Tg( < t) UTe(> t) 

{v E Tg(t): Rv-<::; t}, 

{v E Te(t): Bv-<::; t < Rv}· 
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Since the discrete branching process defined by { v E V : !1~~0 K:viJ 1} is 
a critical binary Galton-Watson process, the recursion will terminate in a finite 
number of iterations with probability one. In particular, X (B, t) is simply a finite 
product of values of xo and/or 'P· For example, the functional evaluation of the 
sample tree in Figure 2 is given by 

X (B, t) = m(~e)m(~\2))'-P(~(l), t- R(l)) @~e [xo(~(21)) @~(2 ) xo(~(22))]. 

In particular, the product is over vertices v E Te(t) with evaluations of factors at 
the leaves v of Te(< t) as ~.p(~v, t- Rv) and a.t the leaves v of Te(> t) as xo(~v); 
here a leaf refers to a terminal vertex, while a non-terminating vertex is referred 
to as a branch point. ~o essential use of graph theoretic notions is made beyond 
their descriptive role in this development. 

Remark 3.2. The branching random walk constructed here differs from that intro
duced by LeJan and Sznitman [17] in that by constructing the process forward in 
time we eliminate the dependence of the model (~, :F, Pe) on t. Secondly, a larger 
class of transition probabilities is furnished by the respective class of majorizing 
kernels. In order to relate the stochastic framework to (FNS) and/or (FNS)h, we 
require a notion of solution. The first is a variant on one formulated by LeJan and 

Sznitman [17] for solutions to (FNS)h in the special case h = h~a). Since we do not 
wish to exclude the analysis of complex valued solutions, we do not include their 
condition h(~)x(~,t) = h(-~)x(-(t) in the definition of solution, but choose to 
consider it as a possible subsequent property of solutions. 

Definition 3.1. A function X: wh X [0, T]-+ C 3 which is 

(1) continuous in t E [0, T] for each fixed~ E Wh, 
(2) measurable in ~ E Wh for each fixed t E [0, T], 

and satisfies 
T 

(3) fo fwhxwh lx(6, s) · e~l·l7r~j_x(6, s)IH(~, d6 x d6) < oo for a.e. ~ E Wh, 
and 

(4) x(~, t). ~ = o, o-::;. t-::;. T, 

will be called a solution to (FNS)h for initial data Xo: Wh-+ C 3 , xo(~) ·~ = 0, and 

forcing !.p : wh X [0, T] -+ C3 ' I: I'P(~, t) idt < oo, 'P(~, t) . ~ = 0, provided (FNS)h 
holds for a.e. ~ E Wh· 

Remark 3.3. Global solutions are defined by requiring the conditions of the defini
tion for all T > 0. In the case that a solution to (F~S)h also satisfies 

h(~)x(( t) = h( -~)x( -~, t), 

we will say that x(( t) is a solution in the sense of LeJan-Sznitman. 

Although our focus is on majorizing kernels, the stochastic model may be con
structed for any measurable h : Wh -+ (0, oo) such that h * h(~) < oo. With this in 
mind we make the following definition. 

Definition 3.2. Let 1/h be a Fourier multiplier on Wh. We say that the pair (u0 , g) 
is (FNS)h-admissible if 

(1) uo(~) = g(( t) = 0 for a.e. ~ E Wh, t 2: 0. 
(2) E~e=~IX (B, t)l < 00 for a.e. ~ E wh, t 2: 0, 

where xo(~) = u0 (~)/h(~), and ~.p(~, t) = 2§(~, t)/(vl~l 2 h(~)), t 2: 0, as in (8). 
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Theorem 3.1 (Existence). If (u0 ,g) is (FNS)h-admissible for a given Fourier 
multiplier 1/h, then 

u(t;, t) 

is a solution to (FNS). 

{ h(t;)E.;e=(X (B, t), if t; E Wh, t ~ 0, 
0, ift; E Wh'. t ~ 0, 

Proof. As noted in Remark 1.1, it suffices to consider (FNS)h· To verify that 
(FNS)h is satisfied, decompose X (B, t) as 

X (B, t) = X (B, t)l[Se > t] +X (B, t)l[Se:::; t, "'e =OJ 
+X (B, t)l[Se:::; t, "'e = 1], 

take expectation starting at t;, and use the strong Markov property and conditional 
independence in the recursive definition of X (B, t) on [Se:::; t, "'e = 1]. Specifically, 

E~;e=d m(t;e) X ( (1), t- Se) 129ee X ( (2), t- Se )l [Se :::; t,"' = 1]} 
m(t;)E~;e=dl[Se :S: t, "'e = 1]E{X ( (1), t - Se) 

0 Ee X ( ( 2) , t - S e) It; ( 1) , E ( 2) , S e, "'e}} 
m(t;)Eee=dl [Se :S: t, "'e = 1]x(t;(l), t- Se) 0.;8 x(t;(z), t- Se)} 

~m(t;) {t .A(E)e-,\(E)s { X(1Jl, t- s) 0.; X(1J2, t- s)H(t;, d1]1 X d172)ds. 
2 Jo Jwhxwh 

The continuity requirement in (1) of Definition 3.1 is evident in the representation 
of x(t;, t) by (FNS)h. The measurability (2) may be obtained from the measure 
theoretic construction of the stochastic branching model. The condition (3) is 
contained in the (FNS)h-admissibility definition. To check the incompressibility 
condition ( 4) simply observe that samplepointwise one has 

by the definition of X (B, t), orthogonality of 1TO-, and corresponding hypothesis on 
Xo(t;) and <p(t;, t). D 

The proof of the existence part of Theorem 1.1 stated in the Introduction now 
follows as a corollary to Theorem 3.1 as follows: 

Proof of existence in Theorem 1.1. Defining Cv = v(27r) ~ /2, the conditions of The
orem 1.1 state that 

(i) h * h(t;):::; lt;lh(t;), (ii) lu0 (t;)l:::; cvh(t;), (iii) l§(t;, t)l:::; vcvlt;l 2 h(t;)/2. 

Thus one may define a majorizing kernel hv with constant Cv by 

The conditions (i)-(iii) may then be expressed with respect to the majorizing kernel 
hv as 

(i) m(t;) = hv * hv(t;)/(cvlt;lhv(E)) :S: 1, (ii) lxo(E)I S 1, (iii) I4?(E, t)l :S: 1, 

where xo(O = iLo(E)/hv(E), and <p(( t) = 2§(E, t)/viEI 2 hv(E). In particular it follows 
that IX ( e, t) I :::; 1 for this choice of majorizing kerneL and hence Theorem 3.1 applies. 
Now one may check that cancellations make the formula defining the solution iL(E, t) 
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invariant under rescalings of h by constants. Specifically, it follows from the defining 
stochastic recursion (30) that for any positive constant c > 0 one has 

(34) eX ch(e, t) =X h(e, t) a.s., 

where X h denotes the functional corresponding to the Fourier multiplier h. Note 
that the stochastic functional is always a.s. finite since the stochastic recursion 
terminates in a finite number of steps a.s. 0 

Remark 3.4. Note that for a Fourier multiplier 1/h induced by a majorizing kernel 
h with constant B > 0, the corresponding factor m(~) is bounded by one provided 
that this constant is sufficiently small, i.e. B S Cv = v(21r)~ /2. In this case one 
sees that (u0 , g) is (FNS)h-admissible under the condition that luo(~)l S Bh(~), and 
1§(~, t)l S Bvl~l 2 h(~)/2 by virtue of the implied a.s. unit bound on the functional 
X. In particular there is an implied competition over the size of the majorizing 
constant B in this approach. Recently Chris Orum [20] has shown that one may 
further exploit incompressibility as reflected in the geometry of the product @e 

to obtain (FNS)h-admissible majorizing kernels with constants which are twice as 
large as these. 

Under the additional hypothesis that h(~) = h( -~) one may check that 

X (e, t)lee=E dgt X (e, t)l.~e=-E· 
As a result it will follow that x(~, t) = Eee=eX (e, t) is also a solution in the sense 
of LeJan-Sznitman under this additional condition. However, we shall also see in a 
later section that this assumption is not necessary for the expected value. 

The above proof of the existence part of Theorem 1.1 provides a global solution 
in the ball Bo(O, R) in the space :h,o,T, T > 0, of radius R = Cv = v(21r) ~ /2. For 
uniqueness of solutions within this ball an argument along the lines of that used by 
LeJan and Sznitman [17] may be applied to obtain the following. 

Theorem 3.2 (Uniqueness). Let h(~) be a standard majorizing kernel with ex
ponent (J = 1. Fix 0 < T S +oo. Suppose that iuo!.F, 0 T S v( ~)3 /2 and 

~~- 1 giiF,or S v2 (~)3 /4. Then the solution 

'(c ) = { h(~)Eee=eX (e, t), if~ E wh, t?:. 0, 
11 "'t 0, if~ E W£,t ?:_ 0, 

is unique in the ball B0 (0, R) centered at 0 of radius R = v( ~)3 /2 in the space 

:Fh,O,T· 

Proof. Suppose that w(( t) is another solution to (FNS) with lu'(~, t)l s Rh(~). 
As in the proof of Theorem 1.1, without loss of generality one may replace h by 
hv = cvh, where Cv = R = v(21r)~ /2 and define 

Then 

1(~, t) = w(~, t)/hv(~). 

sup lr(~,t)l S 1. 
t;EV\'h 
o:=;t.:SJ' 

Define a truncation of Te(t) by 

T~n)(t) = {v E Te(t): lvl S n}, n = 0, 1, 2, .... 
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Let Y ( T~ n) ( t)) be the recursively defined random functional given by 

Y(T~n)(t)) = cp(~o,t-So) ifSo:::;t,~>:o=O, { 
xo(~o) if So > t, 

m(~o)YHD- 1 ) (t- So)) c>9e9 Y(T(~- 1 ) (t- So)), otherwise, 

for n = 1, 2, ... ' where xo(~) = uo(~)/hv(~), cp(~, t) = 2§(~, t)j(vl~l 2 hv(~)), m(~) = 
2hv * hv(~)/(v(27r)312 l~lhv(~)):::; 1, and 

{ 
xo(~o) if So> t, 

Y(T~0)(t)) = cp(~o,t-So) ifSo:::;t,~>:o=O, 
m(~o )'y(~(1), t- So) c>9e9 1'(~( 2) ,t- So), otherwise. 

Observe that since w(~, t) is an assumed solution to (FNS) it follows directly from 
(FNS)hv that 

Ee.=eY(T~0\t)) = !'(~, t). 
Moreover, using (FNS)hv and conditioning on 

Fn = a-({Sv,~v,Kv: lvl:::; n}), 

this extends by induction to yield 

!'(~, t) = Ee.=eY(T~n) (t)) for n = 0, 1, 2, .... 

Specifically, one has 

Ee.=eY(T~n+l) (t)) 

xo(~)e->-(e)t +~it >.(~)e->-Ce)s'P(~, t- s)ds 

+m(~)Eee=dYHD) (t- So)) c>9e Y(T(~) (t- So))l[So:::; t, ~>:o = 1]} 

xo(~)e->-(e)t + ~ {t cp(~, t- s)>.(~)e->-(e)sds + m(~)~ {t >.(~)e->-(e)s 
2 lo 2 lo 

· j Ee(l) YHDl (t- s)) c>9e Ee(2> Y( T(~l (t- s))H(~, d~( 1 J x d~(2)) ds. 

Now observe that 

Y(T~0)(t)) =X (B, t) on [T~0)(t) = To(t)], 

and more generally, since the terms l'(~v, t- Rv) appear in Y only at truncated 
vertices, 

Thus, since 

and 
EIX (B, t)l :::; 1 for all n 

we have 

II'(~, t) -EX (B, t) I IE{Y( T~n) (t)) -X (B, t)l[T~n) (t) # To(t)]} I 

< 2P(T~n\t) # To(t))--> 0 as n--> oo. 

0 



575

MAJORIZING KERNELS AND STOCHASTIC CASCADES 

Corollary 3.1. Under the conditions of the theorem one has 

Y(TJnl (t)) = Ee.=dX (e, t)!Fn}, n = 0, 1, 2, ... , 

where 

(1) Fn = lT({Sv,~vl,~v2,K:v: !vi :S: n}), 
(2) 

{ 
xo(~o) if So> t, 
cp(~o, t- So) if Sg :S: t, K:!J = 0, 
m(~g)E~;< 1 ) X ( (1), t- Sg) 

@~;9 E~;<2)X ((2), t- So), otherwise. 

5031 

In particular, {Y(TJnl(t)): n = 0,1,2, ... } is a martingale with respect to the 
filtration {Fn: n ~ 0}. 

Proof. First note from the recursive definition of the functional Y( TJn) (t)) that for 
any N ~ n, 

E(Y(TJN)(t))!Fn) = Y(TJnl(t)), N ~ n. 

Let G = G(Sv, ~vl, ~v2, K:v : !vi :S: n) be a bounded Fn-measurable function. Then, 
for N ~ n, 

E{G · E{Y(Tt)(t))!Fn}} 

E{E{G · Y(TJN)(t))!Fn}} 

E{G · Y(Tt)(t))} 

lim E{GY(TJN)(t))} 
N-+oo 

E{ lim GY(Tt)(t))l[TJN\t) = Tg(t)]} 
N-+oo 

E{GX(O,t)}. 

4. PICARD ITERATIONS OF A CONTRACTION MAP 

0 

In this section we show how majorizing kernels can be used to obtain local or 
global solutions of the Navier-Stokes equations following a contraction mapping 
argument. At the same time, relations of the stochastic cascade theory with a 
Picard iteration scheme are established. 

Recall that the (FNS) equations are 

(35) 

where 

u(~, t) = e-vl!;l 2 tuo(~) + B(u, u)(( t) 

+fat e-vl1;1 28g(~, t- s)ds := Q[u; uo, §](~, t) 

B(u, v)(~, t) :=fat e-vl~;l 2 sl~l(27r)-~ 

J { u(~- TJ, t- s) @e v(ry, t- s) }dryds. 
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Consider the Picard iteration scheme naturally associated with the (projected) 
Navier-Stokes equation 

(36) Un+l (x, t) = F(x, t) + B(un, un)(x, t) 

where F(x, t) = etvt>u0 (x) + J~ esvt>g(x, t- s )ds, u(O) (x, t) = etvt>uo(x) and u 1 (x, t) 

= F(x, t)+B(u(0l,u(0l)(x, t). The convergence of the iterates follows from showing 
that Q is a contraction in an appropriate ball in Fh,,,T. 

Remark 4.1. In the case 1 = 1 the smaller ball for existence and uniqueness is 
related to the increased regularity, namely spatial analyticity, implied by the decay 
on the Fourier transform in this case. Existence and uniqueness results in the larger 
balls obtained with 1 = 0 are aimed at c=-smoothness. 

The following lemmas summarize some of the technical details. 

( ) 1 -.>. 
Lemma 4.1. Let 0 :0::: ,8 :0::: 2, f.L > 0 and !vf f3 = SUP>.>o >J~_e3 J;z. Then 

fat l~li3e-MI~I2sds :0::: t(2-i3)/2J.L-$/2 M(f3). 

t(2-i3)/2 1- e-.\ 

J.L(3/2 >,(2-$)/2 

where A = J.LI~I 2 t and the result follows immediately. 0 

In the spirit of Foias and Temam [10] and Lemarie-Rieusset [16], one has the 
following estimate. 

Lemma 4.2. Let~' TJ ERn, 0 :0::: s :0::: t. Then 

e -vsiEI 2 -vit=SIE -ryl-v't=-81771 :0::: el/ (2v) e -v'tiEI e -vsiEI2 /2. 

Proof. Using the triangle inequality, it suffices to show that 

1 1 
f(IW := 2v + 2vl~l 2 s + vit=SI~I- Vii~ I 2 o. 

A simple calculation shows that f(r) achieves its minimum value at 

r = (Vt- vit=S)j(vs) = 1/[v(Vt + vit=S)] 
of 

1 ,;r=s 
-;;Vi+ ,;r=s 

which is non-negative for 0 :0::: s :0::: t. 0 

Using the above lemmas, it is possible to estimate the bilinear form B(u, v). 
When considering the majorizing kernel of exponent 1, it is the size of the data 
that is used to show that Q is a contraction on a small ball centered at the origin. 
For this pointwise estimates of B will be needed. 

Proposition 4.1. Let h be a standard majorizing kernel of exponent e = 1. For 
1 = 0 or 1, let C(1, 1) = (2n)- 312 21 . Then for u(x, t), v(x, t) E Fh.,,T, and 0 :0::: t :0::: 

T, 

, 1 - e-viEI2t/21' 
IB(u, v)(~, t)l:::: lulh")',TiviiFh -y,Th(~)e-,v'tiEic(1,1) v e1 1(2vl. 
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Proof. Considering the case 1 = 0 first one has 

IB(u,f,)(( t)l < ~ull.:h o rllvlho.r fat[e-vli;l 2 sl~l(2rr)-~ J h(~ -1])h(17)d17]ds 

:S: luiF, o rlviF,,u.h(~)(2rr)-~ fat e-vli;l 2 sl~l 2 ds 
_;?. 1 -viE1 2 t :S: !ulhorlvlho 1 h(~)(2rr) 2 ~(1-e ). 

Similarly, for 1 = 1 and using Lemma 4.2, 

IB(u, v)(( t)l < I 1 1 ,I t [ -vli;l 2slcl(? )-~ IIU F1LI.T 'GIFh.l.T lo e <, ~Jr -

J h(~ -J7)h(J7)e-v't=SIE-77Ie-v't=SI77Id17] ds 

< luiFu.r lv!h. 1 r h(~)e-v11Eie1/(Zv) (2rr )- ~ fat e-vli;l 2 s/2 1~1 2 ds 

< luiiFhl rlviF,. 1rh(~)e-v11Eie 1 /( 2v)(2rr)-~ ~(1- e-vli;l 2 t/2 ). 
v 

D 

When using majorizing kernels of exponent e < 1, estimates on the norm of the 
bilinear form B ( u, v) are obtained using the time integral as follows. 

Proposition 4.2. Let h be a standard majorizing kernel of exponent e < 1 and 
let C(e, 1) = M(e + 1)(2rr)-31221 (11+1l12 where Ji.I(e + 1) is defined in Lemma 4.1. 
Then for u, v E :Fh.;,T, 

( 
1) (11+1)/2 

IB(u, v)IF, o.T ::; lulFh 0 rlvlh, Tc(e, 1)1'(1-0)/2 ~ ei/(Zv). 

Proof. Considering 1 = 0 one has 

IB(u, v)l(~, t) < (2rr)-3; 2lulho rlvlh,o 7 fat I~ I [e-viEI 2 s j h(~ -17)h(J7)d17] ds 

< (2rr)-312 lulh,orlvlho, 7 h(() faT I~I 1He-viEI 28 dS 

( ) 
(11+1)/2 

< (2rr)- 312 lulho.rlviF,o,Th(~)M(1 +e) ~ T(1-0)/ 2 . 

Similarly, for 1 = 1 use Lemma 4.1 and Lemma 4.2 to get 

IB(u, v)l(~, t) ::; (2rr)-3/21ulh,lrlvlh lT fat l~le-vli;l2s J e-yft-sli;-ryle-v't=SI771 

h(~ -1])h(1J)d1JdS 

< (2rr)-3/2e1/(2v)luiF" 'rlvlh,Lrh(~)e-vltli;lfat l~ll+Oe-vli;l2s/2ds 

< (2rr)-312e11(2vlluiF" ,rlvlF" ,rh(~)e-vltli;l 

(
?)(0+1)/2 

·M(1 +e) ~ r(l-OJ/2. o 
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The first result on global existence is an immediate consequence of these propo
sitions assuming that the initial data and forcing are smalL As noted in the Intro
duction, the solution determined by this theorem exists for the same time interval 
on which the forcing remains smalL 

Theorem 4.1. Let h be a standard majorizing kernel of exponent (} = 1. For 
1 = 0 or 1, let p1 = p1 (v) < min{1, (v/2)(1/C(1,1))} where C(1,1) is defined in 
Proposition 4.1. Then, if ievtll.uo(x)ih,-y.r ::::; p,e--yf(Zv) and i(,6_)- 1g(x, t)l.r.,')',r ::::; 

p1 (v/2)e--yf(Zv)2-', the Navier-Stokes equations have a unique solution u(x, t) E 

:Fh,-y,T satisfying lulh,-y,r ::::; p1 . 

Proof. Let F(~, t) = e-vlel 2tu0 (~) + J~ e-v!el 28g(~, t- s)ds. 
Consider the case 1 = 0 first. Then 

(37) 

Also, if luiFh.o,r ::::; po, it follows from the choice of Po and Proposition 4.1 that 

(38) 

Thus, using (37) and (38), one has 

IQ[u;ilo,§](~,t)l::::; IF(~,t)l + IB(u,u)(~,t)l::::; poh(~). 

Also if ~viFh.o.r ::::; po, using Proposition 4.1 one has 

IB(u, u)- B(v, v)IFh,o r = iB(u, u- v) + B(u- v, v)IFh,o,r 

::::; poC(1,0)(2/v)(lu-viFhor)· 

The result follows by the contraction mapping theorem since poC(1, 0)(2/v) < 1. 
Considering 1 = 1, note that lilo(~)l/h(~)::::; p1e-l/(2v) so 

(39) e-vlel 2 tlilo(~) 1 ::::; Plh(~)e-1/(2v) e-vle1 2 t ::::; Plh(~)e-v'tlele-vl€1 2t/2 

where in the last step, Lemma 4.2 with s = t was used. Similarly, 

(40) 

where in the last step, Lemma 4.2 with 1J = 0 was used. Thus, from (39) and (40) 
it follows that 

(41) IF(~,t)l::::; p1 h(~)e-v'tlel [e-vlel 2 t/2 + ~( 1 - e-vlel 2 t/2)]. 

As before, if luiFh,r,r ::::; p1, it follows from the choice of Pl and Proposition 4.1 
that 

(42) 
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Thus, using (41) and (42), one has for lul.rh.l.T :S P1, 

IQ[u; uo,g](~, t)l::; Plh(~)e-v'tl€1. 

Also if lvlh,LT ::; Pl, 

IQ[u; uo, .§](~, t)- Q[v; uo, .§](~, t)lhl.T IB(u,u)- B(v,v)~.ruT 

5035 

IB(u, u- v) + B(u- v, v)l.rh.l.T 

2 
< P1C(1, 1)-(lu- vlh aT), v .. 

and as before the proposition follows by the contraction mapping theorem. 0 

It is possible to show that solutions exist locally in time when the forcing satisfies 

a bound involving fractional powers of the Laplace operator. A result along this 

line is given by the following theorem. 

Theorem 4.2. Let h be a standard majorizing kernel of exponent () = 1 and let 

P-y be as in Theorem 4.1. Then if levt.6.uo(x)l.rh,-y,T ::; P-y and for some 0 ::; j3 < 2, 

(-t::..)-f3!2g(x, t) E :Fh,-y,T, then there exists T* and u(x, t) E :Fh,-y,T. satisfying the 

Navier-Stokes equation and lullh.-y.T* :S PT 

Proof. New estimates are required for the forcing term. Considering "( = 0 first, 

note that 0 ::; t ::; T: 

1fat e-viEI2•g(~, t- s)dsl ::; lgl.rh,o.Th(~) fat e-vl€12sl~lf3ds 
::; ~glho,Th(~)M(j3)t(2-f3)f2v-f3f2 

where in the last step, Lemma 4.1 was used. 
As in the proof of Theorem 4.1 one has for 0 ::; t ::; T 

I Q[u; uo, .§](~, t)l < h(~) [~evt.6.uolho Te-vl€12t 

+lgllho.TM(j3)tC2-!3)/2v-f3!2 + lul}h,o T (27r)-312 ~ (1 - e-viE1 2 t)] . 

The result follows by choosing T* small enough so that Q is a contraction of the 

ball of radius P-y centered at the origin into itself. 
Similarly, for"(= 1, one has 

1fat e-viE12•g(~, t- s)dsl < lgl.rh,l,Th(~) fat e-viEI2sl~lf3e-v't=SIEids 

Thus, 

< lglh.l,Th(~)e-v't1Eiel/(2v) fat e-viEI2s/21~1!3ds 

< lglh, 1 ,Th(~)e-v'tiEI M(j3)tC2-!3)/2(v /2) -!3/2. 

I Q[u; uo, g] (~, t) I < h(~)e-v'tiEI [!evt.6.uolh,l,T e-viEI2t 

+l9i.rh,l,TM(j3)t(2-f3)/2v-f3/2 + lulh,l,T (27r)-3/2 ~ (1 - e-viEI2t)] . 
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As before, the result follows by choosing T. small enough so that the contraction 
mapping theorem can be applied to Q as a mapping on the ball or radius p1 centered 
at the origin. D 

Finally, a further local existence result can be obtained if majorizing kernels of 
exponent () < 1 are considered. 

Theorem 4.3. Let h be a standard majorizing kernel of exponent () < 1. Assume 
that for some 1 :::; fJ:::; 2, 

(43) 

Then, for any initial data such that e"t~uo(x) E :Fh,,,T and forcing satisfying (43) 
there exists T. :::; T and a unique u(x, t) E :Fh,,,T. satisfying the Navier-Stokes 
equation. 

Proof. A straightforward calculation shows that 

F(t;,, t) = e-vle12tuo(f.) + lt e-vlel2sg(f;, t- s)ds 

satisfies 

Wl.h.-y,T:::;M 

for an appropriate M. 
Using Proposition 4.2, it follows for suitable constants C, independent ofT, 

IQ[u; uo,.§]- Flh,-r.r < IB(u, u)lh.-r.r 

(44) :::; Du- Fl.rh.-y,r + IFih-r.r ] 2 CT(l-0)/2. 

Similarly, 

IQ[u;uo,.§]-Q[v;uo,.§llh.-r.r < IB(u,u)-B(v,v)l.rh,-,,r 

< IB(u, (u- v)) + B(u- v, v)!h.-r,r 

< C(iuih,-r,r + ~vl.rh,-,,r) 
(45) . ~u- vi r(l-0)/2_ 

! Fh.-y,T 

Now, use (44) and (45) to choose T. :::; T such that if for some p > 0, 

lu- Flh.-r,r. < p, 

Q is a contraction in the ball centered at F of radius p. D 

Remark 4.2. Theorem 4.3 establishes uniqueness and regularity for solutions to 
(FNS) on a finite time interval [0, T.) for all initial u0 E :Fh,r,T. without further 
restricting ~uo~h.-r,r •. Here T. -+ 0 as v-+ 0. This is consistent with other known 
local existence and uniqueness theorems; e.g. see Temam [21] and Kato [15]. 

Remark 4.3. Recall that a Banach space X is called a limit space for the Navier
Stokes equations iff lulx = lu>-!x where U>, = A.u(A.x, A.2t). If his a majorizing kernel 
with exponent()= 1, then h>,(t;) = >..-2 h(f;/A.) is also a majorizing kernel of the 

same exponent. :tvforeover, if u E :Fh,,,T, U>, E :Fh>.,,,T and iu!.rh,-,,r = lu>-i.rh>.,-,,r· 
Thus an exponent one majorizing kernel h such that h = h>, defines a limit space 
X= :Fh,,,T in the usual sense, whereas the relation ~u~.rh,-r,r = lu>-l.rh>.,-r.r defines a 
slightly more general version of this notion. Nonetheless the global existence result 
of Theorem 4.1 is in agreement with the similar results known for the usual limit 
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spaces; cf. Cannone and Meyer [5], Cannone and Planchon [4], and Chen and Xin 
[6]. 

Finally, the relation between the iteration scheme and the expected value rep
resentation of the solution obtained in Section 3 is established in the following 
proposition. For reference, recall that the replacement time of a vertex v is defined 
as 

]v] 

Rv = I:;sv]k· 
k=O 

Introduce 

An(8, t) = [lvl:::; n \fv E Te(t)] n [Rv > t \fv E {u E Te(t): lui= n}], 

and let l[n; e, t] be the indicator of the event An(e, t). Observe that the definition 
of the event An(8, t) and its indicator extends to An((i), t- Se), i = 1, 2, and 
inductively to An ( v, t - Bv), using the shifted binary tree defined by ( 31) and the 
time shift t - Se. 

Proposition 4.3. Let 

h(~)Xk(~, t) 

h(.;)Edl[k: ~' t]X (e, t)} 

and denote by uk(~, t) the Fourier transform of the kth iterate of the iteration 
scheme defined in (36). Then vk(~, t) = u.k(( t). 

Proof. The proof is by induction on k. Note that 

vo(~, t) h(~)Eee=dl[O; e, t]X (e, t)} 
h(~)Ee.=dX (e, t)ISe > t}P[Se > t] 
h( ~) Xo ( ~)e -v]e]2t 

u(o) (~). 

The proof for the general case rests on the following identity: 

(46) 

h(~)Et;e=E {Et;e=E {l[k + 1; 8, t]l[Ke = 1]1[Se < t]m(~e) 
· X ( (1), t- Se) ®t;e X ( (2), t- Se) 1~(1), ~(2), Se}} 

= t e-v]E] 2 sl~l(27r)-~ { Xk(7), t- s) @t, Xk(~- 17, t- s)h(l])h(~ -r7)drr Jo }Rs 

To see this, recall that P[Ke = 1] = 1/2 as well as both the recursive definition ofthe 
X functional together with the following factorization on the event [Ke = 1, Se < t]: 

( 47) l[k + 1; e, t] = l[k; (1), t- Se]l[k; (2), t- Se]. 

Also recall the exterior condition (10) and the definitions of m given in (8) and of 
the transition probability kernel given in (9). With these in mind, the left-hand 
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side of ( 46) can be computed as 

h(~)-21 te-vlel 28 v[~[ 2 2h:h(~) f Ee.=dl[k;(1),t-s]X((1),t-s) 
lo v(21r) 2[~[h(~) JR3 

h(~- TJ)h(TJ) 
@el[k; (2), t- s]X ( (2), t- s)[~( 1 ) = TJ, ~(2) = ~- TJ} h * h(~) drJds 

= re-vlei 2s[~[(27r)-~Ee.=d f l[k;(1),t-s]X((1),t-s) 
h ~3 

@e l[k; (2), t- s]X ( (2), t- s) [~(1) = TJ, ~( 2 ) = ~- TJ}h(TJ)h(~ - TJ)dTJds. 

Thus, using the conditional independence of the recursive functional it follows that 
the last equation can be written as 

t e-vtei 2 s[~[(27r)-~ f [h(TJ)Ee(l)=77 {X ((1), t- s)l[k; (1), t- s]}] 
lo JR3 

@e [h(~- TJ)Ee< 2 )=e- 71 {X ((2), t- s)l[k; (2), t- s]}] drJds 

as needed to establish (46). 
To complete the proof, with condition on the value of the first clock ring So, 

recall the definitions of m and <p given in (8) and use (46) to get 

vk+1(~, t) = h(~)Ee.=dEe.=dl[k + 1; e, tJX (e, t)[~(1)' ~(2), So}} 

= h(~) [ xo(~)e-vlel2t + ~fat e-vlel2sv[~[2'P(~, t- s )ds] 

+ h(~)Ee.=e {Eee=e {l[k + 1; e, t]l[Ko = 1]1[So < t]m(~)X ((1), t- So) 

@e. X ( (2), t - So) [~(1), ~(2), So}} 

= U(O)(~) +fat e-v[e[2sg(~, t- s)ds 

+ {te-v1Ei 28 [~[(27r)-~ { vk(TJ,t-s)@evk(~-T},t-s)drJds 
Jo JR3 

= F(~, t) + t e-vlel 28 [~[(27r)-~ r Uk(TJ, t- s) @e Uk(~- TJ, t- s)dTjdS 
lo JR3 

by the induction hypothesis and the definition of F. This last equation is Uk+1 (~, t) 
as claimed. D 

A consequence of the proposition is that the convergence of the iteration scheme 
(36) and the existence of the expected value in Theorem 3.1 are essentially equiva
lent. 

5. CONCLUSIONS AND REMARKS 

The Introduction and identification of majorizing kernels provides a way to ob
tain existence and uniqueness of mild solutions of N avier-Stokes equations and track 
regularity of initial data to solutions. The same methods may be applied to the 
Fourier coefficients in the case of periodic initial data and forcing. In fact the iden
tification of majorizing kernels is somewhat simpler here due to the fact that on 
the integer lattice the origin need not be a singularity of the majorizing kernel. 
One may use a lattice version of the theory for constructions of majorizing kernels 
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(e.g. Theorems 2.1-2.2) to construct fully supported majorizing kernels on the in
teger lattice in all dimensions d :::;> 2. In the case d = 1 one also obtains cascade 
representations of solutions to Burgers' equation by these techniques. For example 
majorizing kernels supported on the positive half-line, h(~) = 1[~ > 0], also appear 
naturally and yield an existence/uniqueness theory for complex-valued solutions in 
Hardy spaces HP. 

As emphasized in the Introduction, in principle the theory may be approached 
from the perspective of identifying Fourier multipliers for which Eee=eiX (e, t)l < oo. 
'iVhile majorizing kernels are sufficient for this purpose, this neither exploits the 
geometric structure of the product ®e nor the "size" (number of vertices) of the 
underlying stochastic tree structure beyond simple first order considerations. 
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Stochastic Foundations in Applied

Sciences III: Statistics



Chapter 17
Nonparametric Statistical Methods on Manifolds

Ian L. Dryden, Huiling Le, Simon P. Preston, and Andrew T.A. Wood

Abstract One of the many fundamental contributions that Rabi Bhattacharya, together
with his coauthors, has made is the development of a general nonparametric theory of sta-
tistical inference on manifolds, in particular related to both intrinsic and extrinsic Fréchet
means of probability distributions thereon (cf. Bhattacharya and Bhattacharya 2012, Bhat-
tacharya, Patrangenaru 2013 and 2005). With the increasing importance of statistical anal-
ysis for non-Euclidean data in many applications, there is much scope for further advances
related to this particular broad area of research. In the following, we concentrate on two
particular important themes in data analysis on manifolds: nonparametric bootstrap meth-
ods and nonparametric curve fitting.

17.1 Bootstrap Methods

A major application of the central limit results in [4] and [5] for intrinsic and extrinsic
means on general manifolds is to statistical inference, e.g., the construction of confidence
regions and multi-sample tests via bootstrap methods.

The bootstrap, see [8], provides a way of estimating, on the basis of an observed sample,
the sampling distribution of a statistic T (S ; F), where S = {X1, . . . , Xn} is an independent
random sample from a probability distribution F. Here we will assume that F is a distribu-
tion on a Riemannian manifoldM and that the target for inference is a population location
parameter μ = μ(F) ∈ M. Let F̂ denote the empirical distribution function (EDF) based
on the sample S ; so for A ⊂ M,

F̂(A) = n−1
n∑

i=1

δXi (A),
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where δXi(A) = 1 if Xi ∈ A and zero otherwise. Let S ∗ = {X∗1, . . . , X
∗
n} denote a sample of

size n drawn randomly with replacement from the original sample S , with corresponding
EDF F̂∗. Then Efron’s bootstrap principle is that the distribution of μ̂ = μ(F̂) based on
an i.i.d. sample {X1, . . . , Xn} from F is approximately the same as the distribution of μ̂∗ =
μ(F̂∗) based on an i.i.d. sample {X∗1, . . . , X

∗
n} from F̂. The usefulness of this result is that

the distribution of μ̂∗ can be approximated with arbitrary accuracy by simulation and hence
used as a basis for inference about μ.

Two very basic but commonly arising inference problems concerning μ are as follows:
(i) given a sample S = {X1, . . . , Xn}, construct a confidence region for μ ∈ M; and (ii)
given k ≥ 2 independent samples S 1, . . . , S k, test the hypothesis that μ1 = · · · = μk, where
μi = μ(Fi) and Fi is the population distribution from which the sample S i =

{
Xi,1, . . . , Xi,ni

}

is drawn.
There are many possible ways to construct bootstrap procedures to address (i) and (ii),

but doing so using pivotal statistics has well-known advantages; see, for example, [10] and
[12]. A pivotal statistic is one whose asymptotic distribution does not depend on unknown
parameters. Pivotal statistics for bootstrapping in the setting where μ is an extrinsic mean
and M is the unit sphere were devised in [10], and the approach was generalized in [4]
and [5] to generalM.

Consider the following strategy for constructing a pivotal statistic for an extrinsic mean.
Suppose that {X1, . . . , Xn} is an i.i.d. sample from a subset of a finite-dimensional linear
space, represented as Rq or Cq, in whichM is embedded. Assume that a location parameter
of interest can be written as

μ = φ(Ξ) where Ξ = E[X1],

where φ(Ξ) is a smooth map with codomain of dimension t, say. Typically, extrinsic means
can be written in this form.

Suppose that the sample mean Ξ̂ = n−1
n∑

i=1
Xi satisfies a central limit theorem, so that as

n→ ∞,

n1/2(Ξ̂ − Ξ)→ Nq(0,V)

in distribution. Since φ(·) is smooth, then, by the delta method,

n1/2{φ(Ξ̂) − φ(Ξ)} ≈ L(Ξ̂ − Ξ),

where L is a matrix of derivatives, and

n1/2{φ(Ξ̂) − φ(Ξ)} → Nt(0, LVL$)

in distribution. Then, provided LVL$ has full rank,

n{φ(Ξ̂) − φ(Ξ)}$(LVL$)−1{φ(Ξ̂) − φ(Ξ)}

converges in distribution to χ2
t when Ξ = E[X1]. In practice it is convenient to replace

LVL$ with its asymptotically equivalent sample analogue L̂V̂ L̂$, leading to the pivotal
statistic

T (μ) = n{φ(Ξ̂) − μ}$(L̂V̂ L̂$)−1{φ(Ξ̂) − μ}. (17.1)
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A bootstrap version of this statistic is

T ∗(μ) = n{φ(Ξ̂∗) − μ}$(L̂∗V̂∗L̂∗$)−1{φ(Ξ̂∗) − μ}, (17.2)

which can be used to construct bootstrap algorithms to address problems (i) and (ii) as
follows.

Algorithm 1: Bootstrap confidence region for μ ∈ M.

Step 1. Starting with the original sample S = {X1, . . . , Xn}, calculate μ̂ = μ(F̂).

Step 2. Generate B bootstrap resamples S ∗1, . . . , S
∗
B randomly with replacement from the

original sample S . For b = 1, . . . , B, calculate cb = T ∗b (μ̂), the value of the bootstrap
version of the pivotal statistic based on resample S ∗b evaluated at μ̂.

Step 3. Order the c-values to obtain c(1) ≤ . . . ≤ c(B).

Step 4. Return the approximate 100(1 − α)% confidence region

{μ ∈ M : T (μ) ≤ c([B(1−α)]+1)},

where T (μ) is the pivotal statistic based on the original sample S .

Algorithm 2: Bootstrap test for equality of means μ1 = · · · = μk.

Step 1. Given samples S 1, . . . , S k, calculate the quantities needed to evaluate the pivotal
statistics T1(μ), . . . , Tk(μ).

Step 2. Find μ̂pooled to minimize
k∑

j=1
T j(μ) over μ, and write

τ̂ =
k∑

j=1

T j(μ̂pooled).

Step 3. Set up the bootstrap null hypothesis HBoot by adjusting the empirical distribution
functions F̂1, . . . , F̂k to F̂adj

1 , . . . , F̂
adj
k , in such a way that

μ(F̂adj
1 ) = · · · = μ(F̂adj

k ) = μ̂pooled.

One can adjust the F̂ j either by transforming the samples in some way, or by resampling
with nonuniform resampling probabilities, or maybe a combination of the two.

Step 4. Generate B independent resamples under the bootstrap null hypothesis HBoot to
obtain resamples {S ∗11, . . . , S

∗
k1}, . . . , {S

∗
1B, . . . , S

∗
kB}. For b = 1, . . . , B, perform Step 2 to

obtain μ̂pooled,b, and calculate



590 I.L. Dryden et al.

τ∗1 =

k∑

j=1

T ∗j1(μ̂∗pooled,1), . . . , τ∗B =
k∑

j=1

T ∗jB(μ̂∗pooled,B),

where T ∗jb is the pivotal statistic based on S ∗1b, . . . , S
∗
kb.

Step 5. Calculate the bootstrap p-value

1
B

#{b : τ̂ > τ̂b}.

Types of manifold-valued data for which bootstrap algorithms of this kind have been
developed include directions and axes and 2D and 3D shape (cf. [1, 2, 10, 23] and [24]).
In 2D shape analysis, for example, preshapes (configurations of landmarks with location
and scale information removed) can be written as complex unit vectors Z1, . . . , Zn. Taking
Xi = ZiZ∗i , where ∗ denotes conjugate transpose, further removes rotation information, then
the space of all possible Xi can be identified with 2D similarity shape space (cf. [5]). The
population and sample extrinsic mean shapes are the unit eigenvectors corresponding to
the largest eigenvalues of Ξ = E(X1) and Ξ̂ = n−1∑ Xi, respectively. Defining φ(Ξ̂) as
the maximum eigenvalue of Ξ̂ leads to straightforward calculations for L̂ and V̂ in (17.1)
(cf. [2]). In 3D shape analysis with p landmarks, preshapes can be written as 3-by-(p− 1)
matrices, Zi, satisfying trace (Z$i Zi) = 1. Taking Xi = Z$i Zi removes rotation (as well
as reflection) information. A map φ(Ξ̂) defined to project Ξ̂ onto the space of positive-
definite matrices of rank ≤ 3 can be interpreted as an extrinsic mean reflection shape (cf.
[7]). Calculations for L̂ and V̂ are lengthier but tractable. An important issue, however,
is that the limiting χ2 distribution of (17.1) has 3p − 7 degrees of freedom, and unless
sample sizes are very large then L̂∗V̂∗L̂∗$ can be singular or ill-conditioned under bootstrap
resampling. This leads to poor coverage accuracy even with reasonably large sample sizes.
Using regularized test statistics, such as (17.1) and (17.2) with adjustments made to the
smaller eigenvalues of LVL$, appears necessary, and numerical evidence suggests such an
approach is very effective (cf. [23] and [24]).

In summary, the pivotal statistic for Algorithms 1 and 2 requires: a central limit theorem
for the extrinsic mean (as provided by [5] in a general manifold setting), and a smooth map
φ(·) that defines a meaningful location parameter, for which the calculations of L and V are
tractable. If any ingredient is missing, one may still develop bootstrap approaches which
are nonpivotal; see examples for analysis of projective shape in [21], and planar curves
in [9].

A broadly applicable nonpivotal bootstrap approach addressing problem (i) above is the
following, in which d is a metric onM.



17 Nonparametric Statistical Methods on Manifolds 591

Algorithm 3: Nonpivotal bootstrap confidence region for μ ∈ M.

Step 1: Starting with the original sample S = {X1, . . . , Xn}, calculate μ̂ = μ(F̂).

Step 2: Generate B independent resamples

S ∗1 = {X
∗
11, . . . , X

∗
1n}, . . . , S

∗
B = {X∗B1, . . . , X

∗
Bn},

sampled randomly with replacement from the original sample S , and calculate μ̂∗b = μ(F̂∗b),
where F̂b is the empirical distribution function based on resample S ∗b.

Step 3: order the values d(μ̂, μ̂∗1), . . . , d(μ̂, μ̂∗B) to obtain c(1) ≤ c(2) ≤ · · · ≤ c(B).

Step 4: return the (approximate) 100(1 − α)% confidence region

Rα = {μ ∈ M : d(μ, μ̂) ≤ c([B(1−α)]+1)},

where [.] denotes integer part.

It remains an open question how best to develop effective bootstrap algorithms on more
general spaces, such as stratified manifolds and, more generally, various types of metric
space of potential interest in applications. For the example of “open books” (disjoint copies
of half-spaces glued along their boundary hyperplanes), the central limit theorem has a
limit distribution which is a mixture of components (cf. [16]), which is a nonstandard
setting from a bootstrap perspective.

17.2 Curve Fitting

Other classical statistical methodology, such as the widely used method of principal com-
ponent analysis, can be adapted and developed to analyze the variability of manifold-
valued data further. The most straightforward way to apply principal component analysis
to manifold-valued data is to perform the standard principal component analysis on the
tangent space at the Fréchet mean of the data, i.e., obtain the eigendecomposition of the
sample covariance of tangent coordinates, with eigenvectors giving the principal compo-
nents ordered by the corresponding eigenvalues. In other words, the data are first trans-
ferred, using the inverse exponential map or other similar maps, to the tangent space at
their Fréchet mean, and then principal component analysis is applied to the transferred
data to find the lower dimensional subspace in that tangent space that maximizes the vari-
ance of the projection of the transferred data. This method, combined with generalized
Procrustean analysis, is widely used in statistical shape analysis (cf. [6]). If the first prin-
cipal component obtained in this way has a sufficiently high eigenvalue, a unit vector in
the resulting 1-dimensional sub-tangent space determines a geodesic which often gives a
good approximation to indicate the variability of the data.
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This idea of using geodesics to model the variability of the data can be refined by
replacing the use of the tangent space by working directly on the manifold, leading to the
concept of principal geodesic component analysis, as introduced in [14]. Applications of
principal geodesic component analysis so defined to Kendall’s shape spaces can be found
in [13] & [15], and to medially defined anatomical shapes can be found in [11]. For a set
of data {X1, . . . , Xn} in a given Riemannian manifold M with induced metric d, the first
principal geodesic γ0 to this set of data is defined to be

γ0 = arg minγ∈G(M)

n∑

i=1

d(Xi, γ)2,

where G(M) denotes the set of all possible maximal geodesics in M and the distance
between a given point and a geodesic is defined as the minimum of the distances between
that given point and points on the geodesic. To find such an optimal γ0, we note that, up
to re-parametrization and translation along its curve, any geodesic γ can be expressed,
using the exponential map, in terms of a point x on γ and a unit tangent vector v at x
as γ(t) = expx(tv). Then, the above minimization problem can be expressed in a more
tractable way as

min
x∈M,v∈Tx(M),‖v‖=1

n∑

i=1

d(Xi, γ)2

= min
x∈M,v∈Tx(M),‖v‖=1

n∑

i=1

min
ti∈R

d(expx(tiv), Xi)2

= min
x∈M,v∈Tx(M),‖v‖=1,ti∈R

n∑

i=1

d(expx(tiv), Xi)2.

This will allow us to use iterative computer algorithms to approximate the first princi-
pal geodesic. However, on account of the ambiguity in the choice of reference point x,
mentioned above, the solution to such a minimization problem is no longer unique.

We can also consider searching for an optimal curve among other prescribed sets of
curves to capture the main features of the data, for example the use of the set of small cir-
cles for data lying on a sphere. The method of principal nested spheres (PNS), proposed in
[17], introduces a general framework for a novel non-geodesic decomposition of variabil-
ity of data lying on high-dimensional spheres. Instead of searching for an optimal small
circle directly, it decomposes a high-dimensional sphere into a sequence of sub-manifolds
with decreasing intrinsic dimensions, which can be interpreted as an analogue of principal
component analysis. The procedure for finding the PNS involves iterative reduction of the
data dimension. To describe it more explicitly, we assume that {X1, . . . , Xn} is a sample in
the unit m-sphere Sm, where m > 1. Then the best fitting sub-sphere for this set of data
is defined as the sub-sphere of dimension m − 1 in Sm minimizing, among all possible
such sub-spheres, the sum of the squares of the distances of the data points to it. Since any
sub-sphere Am−1 of dimension m−1 can be characterized by an r ∈ (0, π/2] and a direction
x ∈ Sm as
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Am−1(x, r) = {x′ ∈ Sm | d(x, x′) = r},

where d denotes the intrinsic distance on Sm, the problem of finding the best fitting sub-
sphere becomes searching for (x̂, r̂) which solves

arg minx∈Sm ,r∈(0,π/2]

n∑

i=1

(d(Xi, x) − r)2.

Then, each step of the iterative procedure for fitting principal nested spheres repeats this,
after rescaling to standardize the radius of the spheres, for the (orthogonally) projected
data onto the best fitting sub-sphere obtained in the previous step. If r̂ = π/2, then the best
fitting sub-sphere is a great sub-sphere, so that this method generalizes the method of find-
ing principal geodesics, similar to those from previous approaches to manifold principal
component analysis.

The procedure for implementing PNS makes it clear that the method can also be used
for dimension reduction of spherical data. Moreover, although the PNS method is primar-
ily proposed for data lying on spheres as suggested by its name, the idea could possibly be
generalized to fit more general manifold-valued data using principal nested sub-manifolds
defined by a sequence of constraints. For example, [17] did include principal nested 2D
shape spaces, which is a simple generalization. This would expand the range of techniques
for the analysis of variability of such data. Nevertheless, this would require the understand-
ing of the geometry of the underlying manifold. One of the challenging issues here is the
careful choice of the class of sub-manifolds so that it is possible to implement the method
and the interpretation is meaningful.

The methods mentioned above all use some form of orthogonal projection from the
observed data to an estimated curve. However, this is not always adequate for the interpo-
lation of time-indexed observed data on manifolds, so that it is necessary to adapt other
classical techniques, such as generalizing Euclidean cubic spline fitting. Recall first that,
for a given data set {X1, . . . , Xn} in R

m, where X j is observed at time t j ∈ T , j = 0, . . . , n,
the cubic spline in R

m fitted to this dataset with smoothing parameter λ is the function
f (·, λ) : T → R

m that minimizes

n∑

i=0

‖ f (t j, λ) − X j‖2 + λ
∫

T
‖ f ′′(t, λ)‖2dt, (17.3)

among all C2-functions, where T is a time interval containing all the time points.
One way to generalize the Euclidean cubic spline to manifolds is to use parallel trans-

port to transfer data to tangent spaces, preserving the inter-relationships among the data as
much as possible, and then to use the known procedure in Euclidean space to find the cubic
spline for the transported data. More precisely, for a given dataset S = {X1, · · · , Xn} in a
manifoldM, where X j is observed at time t j, and smoothing parameter λ, theM-valued
smoothing spline fitted to S with parameter λ is defined to be the C2-function

γ(·, λ) : [t0, tn]→M
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such that its unrolling γ† onto the tangent space of M at γ(t0, λ) is the cubic smoothing
spline fitted to the data S † obtained by unwrapping S at times t j, with respect to γ, into the
tangent space ofM at γ(t0, λ). For a more formal definition, see [18]. The terms unrolling
and unwrapping are both intuitive descriptions of moving the curve and general points
on the manifold using the concept of parallel transport. TheM-valued smoothing spline
defined in this way is, except at the data times, the solution to the 4th order differential
equation

∇4 f = 0,

where ∇ denotes the covariant derivative (cf. [18]). For a given data set, the search for
the M-valued smoothing spline involves a straightforward iterative algorithm: given an
estimate γ(i) at the ith stage, fit a Euclidean smoothing spline (γ(i+1))† with parameter λ,
in the tangent space at γ(i)(t0), to the unwrapped data S † with respect to γ(i); and then
wrap (γ(i+1))† at the corresponding times back onto the manifold with respect to γ(i) to
define γ(i+1). This method was introduced in [18] for solving a nonparametric smoothing
problem on the sphere. Subsequent developments have included applications to regression
problems and extensions to more complicated manifolds (cf. [19] and [20]). However,
for the construction of M-valued splines of this type to be feasible, it is crucial to have
knowledge of parallel transport in the manifoldM.

A more direct generalization of the Euclidean spline to manifold-valued data {X1, . . . , Xn}
inM, where Xi is observed at time ti, is to find the solution to the analogue for manifolds
of the minimization problem (17.3), i.e., to find the solution to the problem of minimizing

E(γ) =
n∑

i=0

d(γ(t j, λ), X j)2 + λ

∫

T

∥∥∥∥∥∥
∇2γ(t, λ)

dt2

∥∥∥∥∥∥

2

dt

within a certain set of C2-curves on M. Then, the minimizing function is four-times dif-
ferentiable and satisfies the differential equation

∇4 f + ‖∇ f ‖2∇2 f − 〈∇2 f ,∇ f 〉∇ f = 0,

except at the data times. Clearly, this differential equation is heavily entangled with the
geometry of the manifold, and so to find the minimizing curve requires full knowledge
of that geometry. Rather than directly solving such a, usually complicated, differential
equation, it is possible to search for the minimizer using the steepest-descent direction
iteratively (cf. [25]): at each step γ is replaced by γτ, where

γτ(t) = expγ(t)(−τ grad(E(γ))(t))

and τ is a predetermined positive constant. To be able successfully to implement this pro-
cedure, the crucial feature is the use of the second order Palais metric defined by



17 Nonparametric Statistical Methods on Manifolds 595

〈〈v,w〉〉γ = 〈v(0),w(0)〉γ(0) +

〈
∇v
dt

(0),
∇w
dt

(0)

〉

γ(0)

+

∫ T

0

〈
∇2v
dt2

,
∇2w
dt2

〉

γ(t)

dt,

for any tangent vector fields v and w along γ. With this metric, the gradient of E has a rel-
atively simple closed expression in terms of the curvature tensor, together with the parallel
transport. Compared with the previous method, this requires more detailed knowledge of
the geometry of manifolds. However, it has proved possible to carry it out (cf. [26]). In
general, the model choice appropriate to the problem needs to take into account the bal-
ance between the need to respect to geometry of the manifold in order to preserve the
inter-relation among the data and the requirement to know that geometry in detail.

If the data points are not indexed in some natural order, it is also possible to fit a curve
to capture patterns of nonlocal variation by using the differential equations, as implied by
the method of principal flows in [22]. The idea behind the method is that, at each point
on the curve, the derivative of the fitted curve is the first principal component generated
by a local tangent principal component, so that the curve always follows the direction of
maximal variability. For a given set of data {X1, . . . , Xn} in M, the method relies on the
introduction of the localized version of the tangent covariance matrix which is a tensor on
a suitably restricted open set ofM defined by

Σλ(x) =
1

n∑
i=1
κλ(Xi, x)

n∑

i=1

{
exp−1

x (Xi) ⊗ exp−1
x (Xi)
}
κλ(Xi, x).

The positive constant λ is used to control the size of the neighborhood and κλ(Xi, x) =
K(λ−1d(Xi, x)) for a smooth nonincreasing univariate kernel K on [0,∞). Then, the local
tangent principal component is the vector field W(x) defined to be the first principal unit
eigenvector of Σλ(x). Assuming that Σλ is defined and has distinct first and second eigen-
values on an open set containing the Fréchet mean x̂ of the data set, then the principal flow
is the curve γ that solves

γ̇(t) = W(γ(t)), γ(0) = x̂.

The principal flow γ can be extended in both directions at x̂ by choosing the opposite sign
for W(x̂): otherwise the sign of W is determined by requiring γ̇ to be smooth. Note that
W(x) so defined is always tangent to the manifold and so the solution γ lies in M. The
rigidity or flexibility of the principal flows can be controlled by varying λ.

Over the last decade there have been many models proposed for curve fitting techniques
on manifolds: the preceding selection is by no means complete. On the other hand, al-
though some statistical analysis, such as inference, has been carried out for the estimated
curves (cf. [19]), their asymptotic properties have so far been relatively less explored.
Whereas similar behavior to their Euclidean counterparts is expected, the extent of the
role played by the geometry of the underlying manifolds and its effect on that behavior
is certainly unclear. Methodology based on extensions of the work of Rabi Bhattacharya,
e.g., the bootstrap in [4] and [5], is one plausible avenue to explore.
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Chapter 18
Nonparametric Statistics on Manifolds and Beyond

Stephan Huckemann and Thomas Hotz

Abstract We review some aspects of the Bhattacharya-Patrangenaru asymptotic theory for
intrinsic and extrinsic means on manifolds, some of the problems involved, many of which
are still open, and survey some of its impacts on the community.

18.1 Before “Large Sample Theory of Intrinsic and Extrinsic
Sample Means on Manifolds”

Let us start with a famous quote by [16]:

The theory of errors was developed by Gauss primarily in relation to the needs of astronomers
and surveyors, making rather accurate angular measurements. Because of this accuracy it was
appropriate to develop the theory in relation to an infinite linear continuum, or, as multivariate
errors came into view, to a Euclidean space of the required dimensionality. The actual topological
framework of such measurements, the surface of a sphere, is ignored in the theory as developed,
with a certain gain in simplicity.

Indeed, this “certain gain in simplicity” is huge. In Euclidean spaces, measurements can
be averaged, error (co)variances are well defined, and in consequence, over time, a rich
toolbox of parametric and nonparametric descriptive and inferential statistics has been de-
veloped and applied with grand success. In contrast, already on the sphere, which is one
of the very simplest non-Euclidean spaces, where there is no concept of adding and sub-
tracting points, the notions of averages, typical points, means, and covariances are neither
trivial nor canonically uniquely defined.
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In the second half of the last century, a new challenge arose, when statistics of shape
became of interest. Although the problem of relating shape to tractable covariates dates
back to antiquity, e.g., when Aristotle’s student Theophrast of Eresos in Lesbos (ca. 371–
287 BC) in his περί φυτών α�ίτιών (On the Causes of Plants) discusses some views of
Democritos (ca. 460–370 BC) on the relationship of a tree’s shape and its speed of growth
(see [55, I.8.2 and II.11.7]), a scientific treatment of the topic had only comparatively
recently been undertaken in the context of biological allometry, the phrase having been
coined by [33], cf. [18].

Statistical analysis of shape then followed several approaches. One is to consider only
certain parameters describing either shape or size and the discovery that in principle only
one size variable can be statistically independent of a specific shape variable (see [49])
may be quite surprising. A more holistic approach takes into account that the underlying
data space is essentially a Euclidean space modulo a group action. For landmark based
similarity shape, this is a matrix space of landmark configurations modulo the similarity
group. The naïve quotient, however, gives a non-Hausdorff space – all configurations can
be rescaled to arbitrary size, in any neighborhood of the shape Δ of configurations with
all landmarks coinciding – a dead end to statistical ambition. In consequence, some con-
figurations may have to be removed, and the canonical quotient structure would have to
be suitably altered. In Generalized Procrustes analysis, Δ is removed and shape repre-
sentatives are picked via a constrained minimization procedure, cf. [19]. This provides the
concept of a Procrustes mean and a corresponding (co)variance. Asymptotics for such Pro-
crustes coordinates, however, remained in the dark for some time. In fact, it took a while
to realize that centers of a perturbation model in the configuration space cannot always be
consistently estimated by Procustes means (e.g., [46, 41, 45, 30]).

In the approach initiated by [11], for similarity shape of d-dimensional configurations
(d ∈ N), say, only those configurations were considered, the first d−1 landmarks of which
provide for a (d−1)-dimensional frame. The resulting data space of Bookstein coordinates
is Euclidean, allowing in particular, for asymptotic inferential statistics. As there is no rose
without thornes, the usually undesirable price to be paid is that statistically obtained results
may hinge on the order of landmarks.

The need for statistical inference under the lack of a satisfying nonparametric theory
led to the blossoming of parametric models, among others, for spheres and shape spaces
(overviews in [12, 47]). Also, it was realized that Procrustes coordinates can be viewed as
coordinates in some tangent space. In fact, [37] showed that the spaces of planar similarity
shapes without Δ can be given the manifold structure of complex projective spaces. In
this context, without exploiting a possible manifold structure though, a first nonparametric
two-sample test for equality of two shape distributions was proposed by [58].

It was near the turn of the millennium when [25] considered nonparametric asymp-
totics of the mean direction on spheres. Since every manifold has a second order spherical
approximation, [23, 24] showed that on a manifold embedded in a Euclidean space the
asymptotic distribution of the corresponding mean location – the usual average in the am-
bient space orthogonally projected to the embedded manifold, the projection not being
defined on a negligible set only [21, 22] – follows a 1/

√
n Gaussian Central Limit Theo-

rem (CLT) supported in the tangent space with higher order terms confined to the normal
space.



18 Nonparametric Statistics on Manifolds and Beyond 601

At this point, Rabi Bhattacharya enters the stage with Vic Patrangenaru, who was his
PhD student at that time, originally trained as a geometer.

18.2 “Large Sample Theory of Intrinsic and Extrinsic
Sample Means on Manifolds”

Underlying their seminal twin papers [6, 7] is the notion of a Fréchet mean of a random
variable X on a manifold M with respect to a metric d : M × M → [0,∞)), given by
minimizers μ of the Fréchet functional

M → [0,∞), p �→ F(p) = E[d(p, X)2] ,

cf. [17]. Of special interest are the intrinsic geodesic distance d = dI due to a Riemannian
structure on M, and the chordal or extrinsic distance dE(p, q) = ‖p − q‖ (p, q ∈ M) due
to some embedding of M in a Euclidean space R

D of dimension D ∈ N with norm ‖ · ‖.
(The extrinsic distance had been the subject of the work of Hendriks and collaborators
above). Although [6, 7] only consider these distances, their asymptotic theory easily ex-
tends to other distances, e.g., to Ziezold or Procrustes distances (cf. [30, 31]). The concept
of extrinsics is pushed further by [15] when they embed infinite dimensional planar shape
spaces in a Hilbert space.

The first stop on the road towards a CLT for these Fréchet means is consistency. To this
end consider a sample X1, . . . , Xn ∼ X on M and define the sets of sample and population
Fréchet means

E(d)
n = arg min

p∈M

1
n

n∑

j=1

d(p, X j)2, E(d) = arg min
p∈M

E[d(p, X j)2] .

For the more general case of random variables on separable metric spaces, [57] derived
a version of strong consistency (actually, he required a quasi-metric on a separable space
only):

if F(p) < ∞ for at least one p ∈ M then
∞⋂

n=1

∞⋃

k=n

E(d)
k ⊂ E(d) a.s.

Notably, Ziezold’s version of the Strong-Law does not prevent a.s. that cluster points of
sample means may diffuse to “infinity.” To ensure this, [6] showed under additional con-
ditions that

for every ε > 0 there is a random number n ∈ N such that
⋃∞

k=n E(ρ)
k ⊂ {p ∈ P : d(E(d), p) ≤ ε} a.s. ,

the Bhattacharya-Patrangenaru Strong-Law.
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For a 1/
√

n-Central-Limit-Theorem (CLT) to hold we require several conditions. First
a conditions in equation:

(A) uniqueness: E(d) = {μ}.
For the intrinsic geodesic distance d = dI , with a local chart (U, φ) near μ ∈ U ⊂ M,

φ : U → R
D, φ(μ) = 0, [7] show that under additional conditions one has

√
nφ(μn) → N(0, Σφ) as n→ ∞ for every measurable choice μn ∈ E(d)

n (18.1)

with a covariance matrix that depends on the choice of the chart. With the function

fX : U → [0,∞), x �→ d(X, φ−1(x))2

and xn = φ
−1(μn) the reasoning behind (18.1) is the Taylor expansion

0 =
1
√

n

n∑

j=1

grad fX j (xn)

=
1
√

n

n∑

j=1

grad fX j (0) +

⎛
⎜⎜⎜⎜⎜⎜⎝

1
n

n∑

j=1

Hess fX j (0)

⎞
⎟⎟⎟⎟⎟⎟⎠
√

nxn (18.2)

+

⎛
⎜⎜⎜⎜⎜⎜⎝

1
n

n∑

j=1

(
Hess fX j (yn) − Hess fX j (0)

)
⎞
⎟⎟⎟⎟⎟⎟⎠
√

nxn (18.3)

with some random yn ∈ R
D on the line segment between 0 and xn. This Taylor expansion

is valid a.s. under the additional condition
(B) a.s. local twice continuous differentiability: fX is a.s. twice continuously differen-

tiable at x = 0.
From the “Euclidean” CLT we have that the first term in (18.2) tends to

N(0, Cov[grad fX(x)]) in distribution, and from the Strong-Law that the first factor of
the second to E[Hess fX(0)] a.s. while the first factor of the first term in (18.3) tends to zero
a.s. under the following additional conditions

(C) finite second moments: Cov[grad fX(x)],E[Hess fX(x)] exist at x = 0.
(D) continuous expectation of the Hessian: E[Hess fX(x)] exists near x = 0 and is con-

tinuous there.
Finally, to obtain the limiting covariance for

√
nxn it is required to invert the expected

Hessian, i.e., we require
(E) positive definite expectation of the Hessian: E[Hess fX(0)] > 0 .

Let us now discuss the above conditions. To this end we need the notion of the cut locus
C(p) of p ∈ M comprising all points q such that the extension of a length minimizing
geodesic joining p to q is no longer minimizing beyond q. Note that cut loci are void on
manifolds with non-positive sectional curvatures.
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Uniqueness (A).
If M has non-positive sectional curvatures then there is a unique Fréchet mean, cf. [35].
This is the case for the space of positive definite matrices with one of the canonical struc-
tures (e.g., [42]) which in applications is the similarity shape space of simplices (e.g., [44])
or that of diffusion matrices (e.g., [14]). If M also features positive sectional curvatures,
there are examples of nonuniqueness. For example, E(d) = M if M is a sphere on which
X is uniformly distributed. Uniqueness could be shown only if the support of X is suffi-
ciently concentrated. In fact, in a series of publications [35, 39, 43, 20], the condition on
concentration could be, among others, relaxed to that of a geodesic half sphere due to [1].
Realistically in many applications, as is also the case for most parametric models (von
Mises, Fisher, Bingham, etc.) one would have to assume a support on the entire sphere,
however. Only for the circle (which features no sectional curvatures) exhaustive results
with respect to uniqueness of intrinsic means are known. One of such is that for X with a
density g with respect to arc measure, intrinsic means are unique if the circle decomposes
into two subintervals sharing only the endpoints, in the interior of one of which g > 0 and
g < 0 in the other, cf. [26].

A.s. local twice continuous differentiability (B) and continuous expectation of the Hes-
sian (D).
This is the case if there is a neighborhood V of the cut locus C(μ) of the unique intrinsic
mean μ such that X � V a.s. It seems, however, that this is in general not necessary for a
1/
√

n-CLT to hold, as examples on the circle teach, cf. [26].

Finite second moments (C).
This is a natural condition for a CLT that cannot be relaxed.

Positive definite expectation of the Hessian (E).
This is again a conditions in equation, for otherwise in directions of eigenvectors of van-
ishing eigenvalues, higher order Taylor expansions are necessary, yielding slower rates of
convergence than those of (18.1). In violation of this condition, as exemplified in [26],
arbitrarily slow rates of convergence may result.

18.3 Beyond “Large Sample Theory of Intrinsic and Extrinsic
Sample Means on Manifolds”

Although the Bhattacharya-Patrangenaru asymptotic CLT (BP-CLT) covers many impor-
tant cases as a suite of subsequent publications show (e.g., [51, 14, 56, 28, 9, 40]), cases
with non-manifold data-spaces, however, are not covered. As such the spaces of phyloge-
netic trees (cf. [10]) have recently gained attention (e.g., [2, 50, 53]), also Kendall’s shape
spaces Σk

m [36] for higher dimensional (m ≥ 3) objects with k landmarks are no longer
manifolds. In fact for the latter at singularities, some sectional curvatures are unbounded
(cf. [38] and [29]). While for m = 2 the popular Procrustes means turn out to be extrinsic
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means (or equivalently, mean locations) of the Veronese-Whitney embedding, cf. [6, 7], for
m ≥ 3 the asymptotics of Procrustes means – notably being neither intrinsic nor extrinsic
– remained open until [30].

All these non-manifold spaces mentioned above are manifold stratified spaces. In fact,
the general shape space Q = M/G is such, as it is the canonical quotient of a compact Rie-
mannian manifold M modulo a smooth, proper (hence all orbits are closed), and isometric
action of a Lie group G, cf. [52, Theorems 1.3.16 and 4.3.7]. For Σk

m, the rotational group
acts on unit size centered configurations. Recall from [48, pp. 3,4] that a space

Q = ∪
1≤ j≤J

Q j ⊂ R
D

for some D, J ∈ N is a stratified space if all strata Q j are disjoint manifolds satisfying the
axiom of the frontier

if cl(Qi) ∩ Qj � ∅ then Qj ⊂ cl(Qi).

It is a Whitney stratified space if additionally the Whitney condition “b” is fulfilled:

if xk ∈ Qi, yk ∈ Qj, with xk, yk → y ∈ Qj as k → ∞, 1 ≤ i � j ≤ J and Lk = xk − yk → L then
L ∈ limk→∞ Txk Qi.

Let us call a stratified space Q as above a Riemannian stratified space if all strata are Rie-
mannian manifolds with metrics induced by R

D. The stratum with the highest dimension
is the top stratum Q∗, also called the manifold part of Q.

In order to directly apply the BP-CLT one would have to make sure that the following
additional condition holds.

(F) Manifold stability: E(d) ⊂ Q∗ for all random variables with support not disjoint
from Q∗.

Manifold stability (F)
holds for general shape spaces with the intrinsic geodesic distance, but in case of Kendall’s
shape spaces Σk

m, m ≥ 3, there are counterexamples for the full Procrustes distance (cf.
[32]). On phylogenetic tree spaces, although being stratified non-positive curvature spaces
thus featuring unique means (cf. [54]), “worse” things can happen for the canonical in-
trinsic distance. We have not only μ = 0 ∈ Q \ Q∗ for distributions that are symmetric
about the origin 0 (which stands for the “star tree” having no interior edge), minor arbi-
trary perturbations of this distributions do not move the mean away from the origin: The
mean sticks to the origin giving rise to degenerate limiting sample mean distributions that
cannot be assessed via the BP-CLT and that reach the population mean in finite random
time, cf. [27, 4].

For suitable embeddings Q ⊂ R
D manifold stability may also be given with respect

to the extrinsic distance. Since extrinsic means are orthogonal projections of averages in
the ambient space, one would have to make sure that singular strata are not protruding
into the ambient space. For Kendall’s reflection shape space (which is obtained from unit
size centered configurations modulo the full orthogonal group), among others, Rabi Bhat-
tacharya’s student [5] showed manifold stability of the extrinsic mean, cf. also [13, 3].

(Semi-)intrinsic statistical analysis.
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In all of the previous considerations, data descriptors namely Fréchet means have been
taken from the data space. In view of dimension reduction, data descriptors have become
of interest that live in separate spaces, such as geodesics on Σk

m (cf. [29, 31]) in the space of
geodesics or principal nested small-spheres on spheres by [34] in the corresponding spaces
of small spheres. It turns out that Ziezold’s Strong Law as well as the BP Strong Law and
BP-CLT can be suitably adapted to this more general scenario of a Fréchet ρ-mean

arg min
p∈P

E[ρ(X, p)2]

on a descriptor space P due to random data X ∈ Q where the spaces are linked via a con-
tinuous function ρ : Q × P → [0,∞) conveying the notion of a distance between a datum
and a descriptor (the orthogonal distance of a data point to a geodesic, say). This analy-
sis is intrinsic because intrinsic data descriptors are sought for, it may be semi-intrinsic if
for asymptotic considerations extrinsic embeddings are considered that facilitate compu-
tations considerably, cf. [8].

18.4 Conclusion

This short survey covers a detail of Rabi Bhattacharya’s recent work and its impact on
statistics on non-Euclidean spaces which is an active field of research now. In fact, the
general viewpoint taken by [6, 7], considering the strong laws of large numbers for Fréchet
means on manifolds with intrinsic and extrinsic means as special cases, utilizing these for
statistical inference of shapes by deriving confidence regions via the bootstrap, consoli-
dated this research area and provided it with a new impetus. Indeed, the several hundreds
of citations of these articles bear witness to the amount of research to which they led. By
exposing extrinsic and intrinsic methods side-by-side, they further highlighted the ana-
lyst’s freedom to choose the metric on the manifold, immediately raising questions such
as which metric one “ought” to choose which go beyond mere mathematical statistics but
have to be answered for each application anew, based on the mathematical properties that
have been shown.

When the two authors of the present manuscript returned to academia about a decade
ago, rather free to choose future fields, we were struck by these two seminal papers which
not only proposed a new approach filling a long-standing gap but also paved the way
for further research in ample exciting directions, along some of which we gladly traveled
ourselves. We are truly grateful for this inspiring work.
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LARGE SAMPLE THEORY OF INTRINSIC AND EXTRINSIC 
SAMPLE MEANS ON MANIFOLDS. I 
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Sufficient conditions are given for the uniqueness of intrinsic and 
extrinsic means as measures of location of probability measures Q on 
Riemannian manifolds. It is shown that, when uniquely defined, these are 
estimated consistently by the corresponding indices of the empirical Qn. 
Asymptotic distributions of extrinsic sample means are derived. Explicit 
computations of these indices of Qn and their asymptotic dispersions are 
carried out for distributions on the sphere sd (directional spaces), real 
projective space JRpN- 1 (axial spaces) and cpk-Z (planar shape spaces). 

1. Introduction. The aim of this article is to develop nonparametric statis
tical inference procedures for measures of location of distributions on general 
manifolds, which are complete as metric spaces. Although the main applications 
are to distributions on (i) spheres sd (spaces of directions), (ii) real projective 
spaces JRpN- 1 (axial spaces) and (iii) complex projective spaces rJ:pk-2 (planar 
shape spaces), a general theory for both compact and noncompact manifolds is 
sought. In this introduction a summary of the main results is presented, along with 
a brief review of the literature on the subject. 

A natural index of location for a probability measure Q on a metric space M 
with the distance p is the so-called Frechet mean which minimizes F (p) = 
J p2(p, x)Q(dx), if there is a unique minimizer. In general, the set of all 
minimizers is called the Frechet mean set. In the case M is a d -dimensional 
connected C00 Riemannian manifold with a metric tensor g and geodesic 
distance dg, we will assume that (M, dg) is complete and we will refer to the 
Frechet mean (set) as the intrinsic mean (set). We say that the intrinsic mean 
exists if there is a unique minimizer, and denote it by JLr(Q). It is shown in 
Theorem 2.1 that (i) the intrinsic mean set is compact, (ii) for each point m in 
the intrinsic mean set, the Euclidean mean of the distribution on the tangent space 
at m of the inverse of the exponential map is zero and (iii) in the case of simply 
connected M of nonpositive curvature, the intrinsic mean exists if F is finite; a 
particular case of this result, when M is a Bookstein's shape space of labeled 
triangles, with a Riemannian metric of constant negative curvature is due to Le and 
Kume (2000). From a result of Karcher (1977) it follows that if the distribution is 
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sufficiently concentrated then the intrinsic mean exists. For planar shape spaces 
cpk-2, a useful necessary and sufficient condition for the existence of an intrinsic 
mean is proved by Le (1998) for distributions Q which are absolutely continuous 
(w.r.t. the volume measure) with a density that is a function only of the distance 
from a given point. 

An important question on the estimation of location is that of consistency. 
Theorem 2.3 says that if M is a metric space such that all closed bounded subsets 
of M are compact then, with probability 1, given any 8 > 0, the Frechet sample 
mean set based on a random sample from Q will be within a distance less than 8 

from the Frechet mean set of Q for all sufficiently large sample sizes. Thus 
if M is a complete Riemannian manifold and if the intrinsic mean exists then, 
almost surely, all measurable choices from the intrinsic sample mean set converge 
uniformly to the intrinsic mean of Q. In particular, this generalizes and strengthens 
the strong consistency result for compact M that follows from an earlier result of 
Ziezold (1977). [Also see Kent and Mardia (1997) and Le (1998).] 

Much of the literature in the field deals with special cases of what we call the 
extrinsic mean, perhaps because of the technical difficulties involved in proving the 
existence of an intrinsic mean and in computing the intrinsic sample mean, even 
when it exists. To define an extrinsic mean of Q with respect to an embedding j 
of M in a Euclidean space (JRk, do), consider first the set of all points p of JR.k 
such that there is a unique point x in j (M) having the smallest distance from p, 
that is, satisfying do (p, j ( M)) = do (p, x). Such points p are called nonfocal, 
and points which are not nonfocal are called focal. For example, the only focal 
point of sd in JRd+I is the origin. For an embedding j of Min JRk a probability 
measure Q on M is said to be nonfocal if, when viewed as a measure on JR.k 
via j, its mean fJ is a nonfocal point. The extrinsic mean fJE(Q) of a nonfocal Q 
is the j-preimage of the projection Pj(M)(tJ) of fJ on j(M), that is, }(tJE(Q)) 
is the point of j (M) closest to fL. One may show that the set of all focal points is 
closed and has Lebesgue measure zero in JRk (Theorem 3.2). Being thus guaranteed 
that most probability measures on A;! are nonfocal, one proceeds to show that the 
extrinsic sample mean XE = fJE(Qn) based on a random sample is a strongly 
consistent estimate of the (population) extrinsic mean fJE(Q) of a nonfocal Q 
(Theorem 3.4). Here Qn is the empirical distribution of the random sample. As 
far as the estimation of the intrinsic mean /JJ(Q) is concerned, Theorem 3.3(b) in 
the present article proves that under an equivariant embedding one has /JJ(Q) = 

fJE(Q) provided M is a compact two point homogeneous space other than a round 
sphere, and Q is nonfocal and invariant under the subgroup of isometries leaving a 
given point fixed. In particular, under the assumed symmetries, the extrinsic sample 
mean is a strongly consistent estimator of the intrinsic mean fJI(Q) if the latter 
exists. 

As indicated above, for an embedding of M in an Euclidean space JRk, 
the extrinsic mean fJE(Q) exists under broad verifiable conditions. The next 
important task, beyond consistency, is to derive the asymptotic distribution of the 
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extrinsic sample mean and use this to construct confidence regions for f.LE(Q) and, 
therefore, of f.Lr(Q) when the intrinsic and extrinsic means coincide. A general 
method is presented for this. Let X be the sample mean, when the observations Xi 
are viewed as points in the ambient space JRk. In Theorem 3.6, the projection H (X) 
of X on the tangent space to M at f.LE(Q) is shown to be asymptotically normal 
centered at f.lE(Q), and a computation of the asymptotic dispersion is given. One 
derives bootstrap-based confidence regions for f.LE(Q) (Corollary 3.7) by Efron's 
percentile method [Efron (1982)] with a coverage error Op (n- 112) for general Q, 
which is particularly useful in those cases where the asymptotic dispersion matrix 
is difficult to compute. Note once again that, under the hypothesis of symmetry 
in Theorem 3.3(b), if the intrinsic mean exists then the above confidence regions 
apply to it. 

Finally, Section 4 applies the preceding theory to (i) real projective spaces 
ffi.pN-I, or the axial spaces, and to (ii) complex projective spaces cpk-2, or 
the planar shape spaces. Under the so-called Veronese-Whitney embedding, the 
explicit formulas for the extrinsic mean of a nonfocal distribution on an axial 
space are given in Theorem 4.2. For planar shape spaces the corresponding 
results are presented in Theorem 4.4. It is also pointed out in Example 4.3 that 
inconsistent Procrustes estimators in some parametric models arise when Q is 
focal, thus clarifying an issue raised in Dryden and Mardia (1998), page 280. 
As an application both intrinsic the extrinsic (Procrustean) sample means are 
computed using some data from Bookstein (1991) on children with the so-called 
Apert syndrome. This is presented in graphical form. Also, the extrinsic sample 
mean of 13 complete observations of Apert data is used to estimate a missing 
landmark in one incomplete observation. The data here are quite concentrated, 
which makes the extrinsic sample mean almost indistinguishable from the intrinsic 
sample mean. 

We now briefly mention some of the earlier literature on statistical inference 
on Riemannian manifolds. In parametric statistical inference, the information 
matrix has been used as a Riemannian metric on the parameter space ever 
since Rao (1945). For more recent treatments and advances in this direction, 
we refer to Amari (1985), Barndorff-Nielson and Cox (1994), Burbea and 
Rao (1982), Efron (1975) and Oller and Corcuera (1995). Pioneering work on 
directional analysis was carried out by G. S. Watson beginning in the 1950s [see 
Watson (1983) and Mardia and Jupp (1999) and the references in both]. Some 
classes of semiparametric models were analyzed by Beran (1979), Watson (1983) 
and others. Statistical analysis for axial and shape spaces similar in spirit to the 
inference for extrinsic means presented here may be found in Kent (1992), Kent 
and Mardia (1997), Le (1998) and Prentice and Mardia (1995). Nonparametric 
bootstrap methods for inference on extrinsic means of axes have been employed 
in Beran and Fisher (1998) and in Fisher, Hall, Jing and Wood (1996). The recent 
books by Dryden and Mardia (1998) and Kendall, Barden, Carne and Le (1999) 
are good sources for readable accounts of various methodologies in the field, 
emphasizing their applications. 
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2. Intrinsic means and moments of a probability measure on a Rie
mannian manifold. Let (M, g) bead -dimensional connected and complete Rie
mannian manifold, that is, M is a d -dimensional C 00 connected manifold with a 
complete Riemannian metric g. Denote by dg the (geodesic) distance under g. We 
consider M -valued random variables X, that is, measurable maps on a probability 
space (Q, A, P) into (M, :B), where :B denotes the Borel sigma-algebra of M. 
All probability measures on M below are defined on :B. Note that every closed 
bounded subset of M is compact [do Carmo (1992), pages 146-149]. 

For the following definition we consider, more generally, a metric space (M, d) 
and a probability measure Q on the Borel sigma-algebra :B of M. 

DEFINITION 2.1. Let Q be a probability measure on the metric space (M, d). 
The Frechet mean set of Q is the set of all minimizers of the map F on M defined 
by 

(2.1) F(p) = J d 2(p, x)Q(dx), pEM. 

If there is a unique minimizer, this is called the Frechet mean of Q. If M is a 
Riemannian manifold, the Frechet mean (set) w.r.t. the geodesic distanced= dg 
is defined to be the intrinsic mean (set) of Q; if the minimizer is unique, the 
intrinsic mean will be labeled f.II(Q). If X is an M-valued random variable having 
distribution Q, then the above are also referred to as the Frechet, or intrinsic mean 
(set) of X, as the case may be. 

Riemannian manifolds are "curved," so that geodesics starting at a point p may 
meet for a second time in the cut locus of p. Technical details on cut locus and 
normal coordinates are as follows. If the manifold is complete, the exponential map 
at q is defined on the tangent space TqM by expq v = y(l), where y: t--+ y(t) is 
the geodesic with y(O) = q, y(O) = v. An open set U C M is said to be a normal 
neighborhood of q ( E U), if expq is a diffeomorphism on a neighborhood V ofthe 
origin of Tq M onto U, with V such that tv E V for 0 ~ t ~ 1, if v E V. Suppose 
U = expq V is a normal neighborhood of q. Then (x 1, x 2, ... , xd) are said to be 
the normal coordinates of a point p E U w.r.t. a fixed orthobasis (vi, v2, ... , VJ) 

of TqM if p = expq (xI VI+ x 2v2 + · · · + XdVct). 

Let v E TqM be such that g(v, v) = 1. The set of numbers s > 0, such that 
the geodesic segment { expq tv : 0 ~ t ~ s} is minimizing is either (0, oo) or 
(0, r(v)], where r(v) > 0. We will write r(v) = oo in the former case. If r(v) 
is finite, then expq r(v)v is the cut point of q in the direction v [Kobayashi and 
Nomizu (1996), page 98]. Let SqM = {v E TqM:g(v, v) = 1}; then the largest 
open subset of M in which a normal coordinate system around q is defined is 
expq(V(q)), where V(q) = {tv: 0 ~ t < r(v), v E SqM}. The cut locus of q 
is C(q) = expq{r(v)v: v E SqM, r(v) finite} [Kobayashi and Nomizu (1996), 
page 100]. Note that C(q) has volume measure 0, and M is the disjoint union 
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of expq(V(q)) and C(q). The injectivity radius at the point q is rq = inf{r(v): 
v E SqM}. 

EXAMPLE 2.1. For the d-dimensional unit sphere, M = §d = {p E JRd+l: 
II p II = 1}, with the Riemannian metric induced by the Euclidean metric on JRd+ 1, 

the exponential map is given by 

(2.2) expp(v) = cos(llvll)p + sin(llv[[)llvll- 1 v, 

Also, V(p) = {v E TpSd: llvll < n} and C(p) = -p. We may now determine 
the exponential map when M is a real (complex) projective space JRpd (!Cpd/2 

for d even) of constant (constant holomorphic) curvature. In this case M is a 
quotient of a round sphere S, and the projection map n: S----+ M is a Riemannian 
submersion. If we denote by exp the exponential map for both the sphere and 
projective space, we have expn(p) dn(v) = n(expp(v)). If p E §d, then since JRpd 

is homogeneous, for [p] E JRpd, we may assume without loss of generality that 
p = (1, 0, ... , 0). Then C([p]) = {[q]: q = (0, q 1, ... , qd) E §d} = JRpd- 1 is the 
projective hyperplane from infinity of the point [p]. Similarily, we may assume 
that the point [p] E rc_pd/2 is represented by p = (1, 0, ... , 0) and in this case 
C ([p]) is rc_pd/2- 1, the complex projective hyperplane at infinity of the point [p ]. 

If Q(C(q)) = 0, we will denote by AQ = AQ,q the image measure of Q under 
expq- 1 on M\C(q). We will suppress q in AQ,q· 

THEOREM 2.1. Assume (M, g) is a complete connected Riemannian mani
fold. Let I (Q) be the intrinsic mean set of Q and set C(Q) = UqEI(Q) C(q). (a)ff 
there is a point p on M such that F (p) is finite, then the intrinsic mean set is a 
nonempty compact set. (b) If q E I (Q) and Q(C(Q)) = 0, then 

(2.3) f VAQ(dv) = 0. 
lv(q) 

(c) Suppose (M, g) has nonpositive curvature, and M is simply connected. Then 
every probability measure Q on M has an intrinsic mean, provided F (p) is finite 
forsome p. 

PROOF. (a) It follows from the triangle inequality (ford g) that ifF (p) is finite 
for some p, then F is finite and continuous on M. To show that a minimizer exists, 
let l denote the infimum ofF and let Pn EM be such that F(pn)----+ las n----+ oo. 
By the triangle and the Schwarz inequalities, and by integration w.r.t. Q, one has 

2 2 2 dg (pn, PI)~ 2dg (pn, x) + 2dg (x, PI) 

d~(pn, PI)~ 2(F(pn) + F(pJ)). 

VxEM, 
(2.4) 

Hence since F (pn) (n 2: 1) is a bounded sequence, so is Pn (n 2: 1 ). By 
completeness of M, Pn has a subsequence converging to some point p*. Then 
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F(p*) = l, so that p* is a minimizer. Also the inequalities (2.4) applied this time 
to p* and an arbitrary minimizer m show that di(m, p*) .::=: 4l. In other words, 
the set of minimizers is bounded. It is also a closed set, since its complement 
is clearly open, proving compactness of the intrinsic mean set. To prove (b), note 
that expq (V (q )) has Q-probability 1. Consider an arbitrary point x in expq (V (q )); 
then with probability 1 there is a unique geodesic, say Yx.tL joining x and JL with 
Yx. 11(0) = x, Yx. 11 (1) = JL. Also let JLv(t) be the geodesic starting at JL [JLv(O) = JL] 
with tangent vector v [(dJLvCt)fdt)(O) = v]. Let av.x be the angle made by the 
vectors tangent to these geodesics at JL. Then [see Helgason (1978), page 77, and 
Oller and Corcuera (1995), Proposition 2.1 0] 

(2.5) d11 F(v) = 2 J dg(x, JL)IIvll cos(au.x)Q(dx). 

Select a point q E I ( Q) and write the integral in (2.5) in normal coordinates 
on TqM. If JL E /(Q), then JL is a critical point of F. Then we select JL = q, 

and evaluate the right-hand side of (2.5) at v =Vi = .Ja;. Note that given that expq. 
rx 

is a radial isometry, the right-hand side of (2.5) in this case is 2 f xi AQ (dx ), where 
xi are the normal coordinates of an arbitrary point of expq(V(q)). Then in such 
coordinates, (2.5) becomes (2.3). 

For part (c) of the theorem, we adapt the proof of Kobayashi and Nomizu 
(1996), Theorem 9.1, to our situation as follows. By part (a) there is a point q 
in the intrinsic mean set. By a classical result due to J. Hadamard [see Helgason 
(1978), page 74], since M is simply connected and complete, C(q) = 0, and we 
define a map G on M by 

(2.6) 

Since on a simply connected manifold of nonpositive curvature expq is expanding, 
we have G(p) .::=: F(p). On the other hand by part (b), G(p) = G(q) + 
II expq- 1 (p) 11 2 and, since expq is a radial isometry, F (q) = G(q). Therefore, q is 
in fact the unique minimizer of F. D 

REMARK 2.1. If M has nonpositive curvature and is not simply connected, 
the intrinsic mean does not exist in general. If M is flat a sufficient condition 
for the existence of the intrinsic mean is that the support of Q is contained in 
a geodesically convex open normal neighborhood of M and F (p) is finite for 
some p. In general, ifthe infimum of the injectivity radii is a positive number r(M) 
and the scalar curvature of (M,g) is bounded from above by (njr(M)) 2 and 
if the support of Q is contained in a closed geodesic ball B P of radius p = 
r ( M) j 4, then the intrinsic mean exists. To see this note that, when restricted to 
the closed geodesic ball B2p, F has a unique minimum at some point in B P [see 
Karcher (1977), Theorem 1.2]. Clearly, this minimum value is no more than p2. 

On the other hand, if p E (B2p)c, then F(p) :::::_ di(p, Bp) > p2. This proves the 
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uniqueness of the minimum of F in M, when the support of Q is contained 
in B P. Necessary and sufficient conditions for the existence of the intrinsic mean 
of absolutely continuous radially distributed probability measures on c_pd/2 are 
given in Le (1998) and Kendall, Barden, Came and Le (1999). 

REMARK 2.2. Mean values of a random variable on a manifold were defined 
in Oller and Corcuera (1995) and previously in Emery and Mokobodzki (1991), 
as exponential barycenters. The mean values in the sense of Oller and Corcuera 
( 1995) tum out to be critical points of F, while the intrinsic means defined here 
are minimizers ofF. This explains, for example, why in Oller and Corcuera (1995) 
the von Mises distribution on set is found to have two mean values, while in fact 
there is only one intrinsic mean. Note that the density at x E set of the von Mises 
distribution w.r.t. the volume form is a constant multiple of exp(mx ). 

In the case of a Riemannian manifold, the points in the intrinsic mean set are 
points of local minima ofF and are therefore Karcher means [Kendall (1990) and 
Le (1998)]. 

REMARK 2.3. If C(q) has Q-measure zero, for some q EM, an intrinsic 
moment w.r.t. a given set of normal coordinates of an arbitrary order s = 
(s 1, ... ,sd) E Z~ can be defined by fxsAQ(dx) where xs = (x 1)s 1 • • · (xd)sd, if 
the latter is finite. 

REMARK 2.4. As the proof shows, part (a) of Theorem 2.1 holds for the 
Frechet mean set of a probability measure Q on any metric space M with the 
property that all closed bounded subsets of Mare compact. 

For the structure of probability measures which are invariant under a group of 
isometries one has the following simple result. 

PROPOSITION 2.2. Suppose K is a group of isometrics of (M, g) which 
leaves the measure Q invariant. Then the intrinsic mean set is left invariant by K. 
In this case Q induces a quotient measure on the space of orbits M / K and the 
mean set of Q is a union of orbits. 

PROOF. An isometry r of (M, g) is a diffeomorphism of M such that 
g(dr(v), dr(v)) = g(v, v) for all v E TqM. Since dg(p, q) = dg(r(p), r(q)) for 
all p, q EM, if Q is invariant under r then one has F(r(p)) = F(p) [see (2.1)]. 
In particular, this is true when p is a minimizer of F and r E K. The claim follows 
from these observations. D 

EXAMPLE 2.2. If Q is rotationally symmetric on set (such as the von Mises 
measure), then the intrinsic mean set of Q is a union of parallel (d - I)
dimensional spheres or poles of the axis of rotation, since the space of orbits is one
dimensional. Let SO(d) be the special orthogonal group (or group of rotations). 
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The SO( d) invariant measures on sd depend on one function of one real variable, 
as shown in Watson [(1983), Section 4.2]. The uniform distribution on a compact 
Riemannian manifold whose density is 1/ vol(M) w.r.t. the volume measure is 
an example of an invariant distribution. Recall that the volume measure of a 
Riemannian manifold in a local chart is given by 

(2.7) vol(A) = f det(gx (~. ~) 112
)A.(dx), 

A 3xt 3x.J 

where A. is the Lebesgue measure. The intrinsic mean set of the uniform 
distribution is M. 

DEFINITION 2.2. Let X1, ... , Xn be independent random variables with a 
common distribution Q on a metric space (M, d), and consider their empirical 
distribution fln = * Lk=l 8xk. The Frechet sample mean (set) is the Frechet mean 

(set) of Qn, that is, the (set of) minimizer(s) m of p--+ * LJ=l d 2 (X;, p). If M is 

a Riemannian manifold, then the Frechet sample mean (set) of fln for the distance 
d = dg is called the intrinsic sample mean (set). 

The following result establishes the strong consistency of the Frechet sample 
mean as an estimator of the Frechet mean of the underlying distribution. 

THEOREM 2.3. Let Q be a probability measure on a metric space (M, d) 
such that every closed bounded subset of M is compact. Assume F is finite on M. 
(a) Then, given any s > 0, there exist a P -null set N and n(w) < oo V w E Nc, 
such that the Frechet (sample) mean set of Qn = Qn,w is contained in the 
s-neighborhood of the Frechet mean set of Q for all n ::::_ n(w). (b) If the Frechet 
mean of Q exists then every measurable choice from the Frechet (sample) mean 

set of Qn is a strongly consistent estimator of the Frechet mean of Q. 

PROOF. (a) We will first prove that for every compact subset K of M one has 

(2.8) 

sup IFn,w(P)- F(p)l--+ 0 
pEK 

a.s. as n --+ oo, 

J 2 A 1~ 2 
Fn,w(P) := d (x, p)Qn,oJ(dx) =- L d (X;, p). 

n J=l 

To prove (2.8) first observe that for a given Po E K one has, in view of the strong 
law of large numbers (SLLN) applied to* LJ=I d(X;, po), 

1 n I n 
sup- L d(Xj, p)::::::- L d(X;, po) +sup d(p, po) 

(2.9) pEK n j=l n j=l pEK 

:::::: J d(x,po)Q(dx)+l+diam(K)=A, say, 
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which holds for all n 2:: n1(w), where n1(w) < oo outside a P-null set N1. Fix 
c:' > 0. From (2.9) one obtains, using the inequality ld2(Xj, p) - d 2(Xj, p') I _:::: 
{d(Xj, p) + d(Xj, p')}d(p, p'), the bound 

sup IFn,w(P)- Fn,rvCP')I _:::: 2A8, = 8 1/3 
(2.1 0) (p,p' EK: d(p,j/)<8J} 

where 81 := Aj6c:'. For the next step in the proof of (2.8), let 82 > 0 be such that 
IF(p) - F(p') I < c:' /3 if p, p' E K and d(p, p') < h Let 8 = min{81, 82}, and 
{q1,q2, . .. ,qr} be a 8-net inK, that is, V p E K, there exists q(p) E {q1, ... , qr} 
such that d(p, q(p)) < 8. By the SLLN, there exist a P-null set N2 and n2(w) < oo 
V w tj. N2 such that 

(2.11) 

Note that by (2.10), (2.11) and the fact that IF(q(p))- F(p)l < c:'/3 V p E K, 
one has 

sup IFn,o>(p)- F(p)l 
pEK 

_::::sup IFn,co(P)- Fn,oJ(q(p))l +sup IFn.co(q(p))- F(q(p))l 
pEK pEK 

+ sup IF(q(p))- F(p)l 
pEK 

< 8 1/3 + 8 1/3 + 8 1/3 = 8 1 

outside the P-null set N3 = N, U N2. This proves (2.8). 
To complete the proof of (a), fix c: > 0. Let C be the (compact) Frechet mean set 

of Q, l := min{F(p): p E C}. Write c~: := {p: d(p, C) < c: }. It is enough to show 
that there exist e ( c:) > 0 and n ( w) < oo V w, outside a P -null set N such that 

(2.12) 
Fn,w(P) _:::: l + 8(c:)j2 

Fn.oJ(p) 2:: l + 8(c:) 

VpEC, 

V p E M\C~:, Vn 2:: n(w) (w tj. N). 

For (2.12) implies that min{Fn,co(P): p E M} is not attained in M\C 8 and, 

therefore, the Frechet mean set of Qn,w is contained in C 8 , provided n :=::: n(w) 
(w tj. N). To prove (2.12) we will first show that there exist a compact set D 

containing C and n3(w) < oo outside a P-null set N3 such that both F(p) and 

Fn.w(P) are greater than l + 1 V p E M\D, for all n 2:: n3(w) (w tj. N3). If M is 
compact then this is trivially true, by taking M =D. So assume M is noncom pact. 
Fix poE C and use the inequality d(x, q) :=::: ld(q, po)- d(x, po)l to get 

J d 2(x, q)Q(dx) 2:: J {d2(q, po) + d 2(x, po)- 2d(q, po)d(x, po) }Q(dx) 
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or 

(2.13) F(q):::: d 2(q, po) + F(po)- 2d(q, po)F 112 (po). 

Similarly, using Qn,uJ in place of Q, 

(2.14) 

Since M is unbounded, one may take q at a sufficiently large distance .6. from C 
such that, by (2.13), F(q) > t + 1 on M\D, where D := {q :d(q, C)~ .6.}. Since 
Fn,w(Po)---+ F(po) a.s., by (2.14) one may find a P-null set N3 and n3(cv) < oo 
such that Fn.uJ(q) > f + 1 on M\D V n ::::_ n3(cv) (cv tf. N3). This proves the 
italicized statement above. 

Finally, let D8 := {p E D: d(p, C) ::::_ .s }. Then D8 is compact and f 8 := 
min{F(p): p E De} > f, so that there exists e = e(.s), 0 < e(.s) < 1, such 
that f 8 > f + 2e. Now apply (2.8) with K = D to find n4(cv) < oo outside a 
P-null set N4 such that Vn ::::_ n4(cv), one has (i) Fn,uJ(p) ~ f + e;2 V p E C 
and (ii) Fn,w(P) > f + e V p E D 8 • Since Fn,w(P) > f + 1 on M\D Vn ::::_ n3(cv) 
(V cv tf. N3), one has Fn,w(P) > f + e V p E D 8 U (M\D) = M\C 8 if n ::::_ n(cv) := 
max{n3(cv), n4(cv)} for cv tf. N, where N = N3 U N4. This proves (2.12), and the 
proof of part (a) is complete. 

Part (b) is an immediate consequence of part (a). D 

REMARK 2.5. A theorem of Ziezold (1977) for general separable (pseudo) 
metric spaces implies the conclusion of part (b) of Theorem 2.3 for compact 
metric spaces M, but not for noncompact M. In metric spaces such that all closed 
bounded subsets are compact, the present theorem provides (i) strong consistency 
for Frechet sample means and (ii) uniform convergence to the Frechet mean of Q 
of arbitrary measurable selections from }he sample mean set. This applies to both 
intrinsic and extrinsic means of Q and Qn on manifolds. 

REMARK 2.6. Under the hypothesis of Theorem 2.3(a), the Hausdorff 
distance between the intrinsic sample mean set and the intrinsic mean set does 
not in general go to 0, as the following example shows. Consider n independent 
random variables X 1, ... , Xn with the same distribution on the unit circle, that is, 
absolutely continuous w.r.t. the uniform distribution. Then with probability 1, we 

may assume that fori =I= j, Xi =I= X;. Assume X; = ei 11J and let Xj = eillj = -X;, 

where the arguments e; are in the increasing order of their indices. F(ei 11 ) is 
periodic with period 2rr and is a piecewise quadratic function; on each interval 
[ej,ef+l], F(ei 11 ) = Lk=1(2rrE'k,j + (-1) 8k.J(e- ek))2 where E'k,j E {0, 1}. 

Therefore, the points of local minima have the form * Lk=l (ek + 2rr E'j,k( -1 )8J,k) 
and each local minimum value mi = mi (ei, e2, ... , en) is a quadratic form 
in e1, ... , en. Since E'k,j E {0, 1}, there are at most 2n such possible distinct 
quadratic polynomials. Given that the each of the variables e; is continuous, the 
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probability that there is a fixed pair of indices i =1- j' such that mi (el' ... 'en) = 
m;(el, ... , en) is 0. This shows that, with probability 1, all the local minima are 
distinct and the intrinsic sample mean exists. On the other hand, the intrinsic mean 
set of the uniform measure on the circle is the whole circle, proving that in this 
case the Hausdorff distance between the intrinsic sample mean set and the intrinsic 
mean set is rr with probability 1. 

REMARK 2.7. The computation of the intrinsic mean set of a probability mea
sure on a nonftat manifold M often involves nonstandard numerical algorithms, 
even if M has a Riemannian metric of maximum degree of mobility. For this rea
son, in the next section we will focus on a different approach to indices of location 
of probability measures on manifolds. 

3. Extrinsic means of distributions on submanifolds. Since most of the 
literature on directional and shape analysis is concerned with parametric inference 
(e.g., MLEs, likelihood ratios, etc.), there has not been much emphasis on intrinsic 
analysis. For purposes of nonparametric or semiparametric inference, however, 
statistical analysis of intrinsic indices such as the intrinsic mean is very important. 
But it is generally not easy to prove the existence (i.e., uniqueness) ofthe intrinsic 
mean. Also intrinsic means, when they exist, are often very difficult to compute. 
On the other hand, a manifold can be also looked at as a submanifold of some 
Euclidean space, and a probability measure on it can be regarded as a probability 
measure in that ambient linear space. Such an approach has been employed in 
directional analysis in Mardia and Jupp (1999), Watson (1983) and Fisher, Hall, 
Jing and Wood (1996), and in shape analysis in Kent (1992), Dryden and Mardia 
(1993) and Le (1998). 

In this section we give a general treatment of the notion of an extrinsic mean, 
and of statistical inference for it. We will also show that under special structures of 
invariance and symmetry the intrinsic and extrinsic means coincide, and therefore 
the extrinsic sample mean, which is easier to compute, can be used as a consistent 
estimator of the intrinsic sample mean. 

Assume M is a closed submanifold of the Euclidean space JEk = (l~k, do) where 
do denotes the Euclidean distance, do(x, y) = IIY- xll. Let Q be a probability 
measure on M. Let Gc be the set of nonfocal points of M in Ek. The projection 
map PM: Gc---+ M is defined as PM(P) = x if do(p, M) = do(p, x). 

In this case, the Frechet function is defined on M by 

(3.1) Fo(p) = JM liP- xii2Q(dx). 

DEFINITION 3.1. The extrinsic mean set of Q is the set of all minimizers 
of Fo on M. If there is a unique minimizer, this is called the extrinsic mean of Q 
and will be labeled JLE(Q). 
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PROPOSITION 3.1. Assume fJ is the mean of Q as a probability measure 
on JRk. Then (a) the extrinsic mean set is the set of all points m E M, with 

do(tJ, m) = do(tJ, M), and (b) if fJE(Q) exists then fJ exists and is nonfocal and 

fJE(Q) = PM(tJ). 

PROOF. (a) If p, x EM, then liP- xf =liP- tJII 2 + 2(p- fJ, fJ- x) + 
lltJ -x f and if we integrate this identity over M w.r.t. Q, given that fM x Q(dx) = 
JJFI.k xQ(dx) = fJ, we get 

(3.2) Fo(p)=llp-tJII2 + [ lltJ-xii2Q(dx). JM 
In particular, for any points p, m EM, Fo(p)- Fo(m) = df;(tJ, p)- df;(tJ, m) 
and (a) follows by selecting m to be a minimizer of Fo. (b) If /JE(Q) exists then 
fJ exists and from part (a) it follows that the distance from an arbitrary point 
on M to fJ has the unique minimizer fJE(Q), that is, fJ is nonfocal and since 
do(tJE(Q), tJ) = do(tJ, M), fJE(Q) = PM(tJ). D 

THEOREM 3.2. The set of focal points of a submanifold M of Ek is a closed 
subset ofJF} of Lebesgue measure 0. 

PROOF. A point p is nonfocal, with do(p, M) = r, if and only if the 
(hyper)sphere S (p, r) of radius r centered at p has a unique point x in common 
with M. In this case the interior of the ball B(p, r) is included in JEk\M and 
TxM s; T_,S(p, r); x is the point of absolute minimum of the function Lp 

defined on M by Lp(y) = d{;(p,y). Let u = (u 1, ••• ,ud) be coordinates of 
points y = y(u) on M, with y(O) = x. In Milnor [(1963), page 36] it is 
shown that x is a degenerate critical point of L p if and only if p is a focus. 
Moreover, from the computations in Milnor [(1963), page 35] it follows that if 
K1, K2, ... , K.1 are the nonzero principal curvatures of M at the point x and 
It I < min{IK1I-I, IK2I-I, ... , IK.1·1-I} for any unit vector v in vxM, the normal 
space at the point x, the matrix 

((a y ;aui (0)) (a y ;aui (0)) -tv( a2 y ;aui aui (0))) 

is positive definite. In particular, since r < min{ I K 11-1, I K 21-1, ... , I K.1 1-1}, the 
matrix 

is positive definite. There are a neighborhood N of p and an open neighborhood 
U of 0 such that, for any u E U and q E N, the matrix of the second partial 
derivatives of Lq(y(u)), namely, 

((ay;aui(u))(ay;aui(u))- (q- y(u))(a2yjauiaui(u))) 
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is positive definite. Since the manifold topology of M coincides with the induced 
topology, one may assume that there is a ball B(x, E), such that y(U) = M n 
B(x, E). Let E be as small as necessary. Since x is the only common point 
of M and S(p, r), and the set M\IntB(x, E) is closed, there is a number o, 
r > o > 0, such that d0 (p, M\IntB(x, E))= r + o. Let q E IntB(p, o/2) and 
z EM\ IntB(x, E). Then do(q, z) > [do(q, p) -do(p, z)[ > r+o -o/2 > do(q, x). 
It follows that do(q, M) = do(q, M n IntB(x, E)). If y E IntB(x, E)\{x} is such 
that d{j(q, y) = d{j(q, M), it follows by the positive definiteness of the displayed 
matrix above that y is an isolated point of minimum of Lq, proving that the set of 
nonfocal points is open. 

Let G ( oo) be the set of foci of M, and let G be the set of focal points. It is 
known [Milnor (1963), page 33] that G(oo) has Lebesgue measure zero. If xis a 
point on M, we define G (x) to be the set of all points f in Ek such that there is at 
least another point x' (# x) on M with do(x, f)= do(x', f)= do(f M). Another 
description of G(x) is as the set of all centers f of spheres of Ek that are tangent 
to M at least at two points, one of which is x, and whose interiors are disjoint 
from M. The tangent space T_,M is included in the tangent space at x to such a 
sphere. Therefore the normal line at x to such a sphere is included in the normal 
space VxM, which means that a point in G(x) is in VxM. We show that on each 
ray starting at x in vxM (x is the zero element, if vxM is regarded as a vector 
space) there is at most one point in G(x). Indeed if !1, h are two distinct points 
on such a ray starting at x, assume !1 is closer to x than h. Let x', x" be such that 
do(x', fl) = do(x, !1) = do(JJ, M), do(x", h) = do(x, h) = do(fz, M). Then 
x' is a point of Min the interior of S(fz, do(fz, M)), a contradiction. Given that 
G(x) intersects the radii coming out of x in vxM at most at one point, the Lebesgue 
measure of G (x) in Vx M is zero. 

Let N M be the disjoint union of VxM, x E M. N M is the normal bundle 
of M and it is a manifold of dimension k. We define the map N: N M--+ JRk by 
N(x, vx) = x + Vx. One may show [Milnor (1963)] that the critical values of N 
are the foci of M. Therefore if f = N (x, Vx) is a focal point that is not a focus, 
f is a regular value of N. Thus, if A. represents the Lebesgue volume form in IRk, 
then N*A. is a volume form on N- 1 (JRk\G(oo)), and the Lebesgue measure of 
G\G(oo) is 

A.(G\G(oo)):::: { N*A.. 
}NM\G(oo) 

If we apply Fubini's theorem integrating over the base M the integral in each fiber 
(normal space vxM), we see that the integrand in vxM is a volume form that is a 
multiple C(x) of the Lebesgue measure in vxM. Therefore 

{ N*A.= { C(x)(f 'Ax(dv))volM(dx), 
jNM\G(oo) jM Jc(-v:) 



626

14 R. BHATTACHARYA AND V. PATRANGENARU 

which is zero since 

{ "Ax(dv) = "Ax(G(x)) = 0. 
lo(x) D 

Now we extend the notion of extrinsic means to embeddings of manifolds. 

DEFINITION 3.2. Assume Q is a probability measure on M and j: M---+ JR!.k 
is an embedding, such that j (M) is closed . We say that Q is nonfocal w.r.t. j if 
Q regarded as a measure j(Q) on JR!.k has a mean f.L(j(Q)) = fJR.k x(j(Q))(dx) 

which is a nonfocal point of j (M). The extrinsic mean of a probability measure Q 

which is nonfocal w.r.t. j is Mk(Q) := j- 1 (Pj(M)(f.L(j (Q)))). 
Since the embedding j is assumed to be given, we will normally drop the 

superscript j and write f.LE(Q) for Mk(Q). 

DEFINITION 3.3. A Riemannian embedding is an embedding j: M ---+ JR!.k 
which pulls back the induced Riemannian structure on j (M) to the Riemannian 
structure of M. A Riemannian embedding is said to be equivariant at a point p 
of M, if every isometry of j (M) that keeps j (p) fixed is the restriction of an 
Euclidean isometry. A two point homogeneous space is a Riemannian manifold 
such that for each two pairs of its points (p, q), (p', q ') with d g (p, q) = d g (p', q '), 
there is an isometry r with r (p) = p' and r (q) = q'. 

To simplify notation, we will often write p for j (p) and M for j (M), in case 
of a Riemannian embedding j. It is known that M is a two-point homogeneous 
space if and only if, for each p E M, the isotropy group Hp of all isometries 
of M which keep p fixed is transitive on every geodesic sphere S(p, r) := 
{x E M:dg(x,p) =r}, r > 0 [Chavel (1993), page 147]. That is, given q, q' E 

S(p, r), there exists hE Hp such that h(q) = h(q'). 
The following theorem links the intrinsic mean of Q on a Riemannian manifold 

with its extrinsic mean under an embedding which is equivariant at a point p. Note 
that for every h E Hp the differential dh maps TpM into itself. 

THEOREM 3.3. Let j: M ---+ JR!.k be a Riemannian embedding which is 
equivariant at p. Assume that 0 = (p, 0) is the only fixed point of TpM under 
the family of maps {dh: hE Hp}. Assume also that Q is a probability measure 
on M which is invariant under Hp, and f.L(j (Q)) is finite and nonfocal. (a) Then 
either f.LE(Q) = p or f.LE(Q) E C(p), the cut locus of p. The same holds for the 
intrinsic mean f.LI(Q) if it exists. (b) If, in addition to the hypothesis above, M is 
a compact two point homogeneous space other than the round sphere and /LJ(Q) 
exists, then f.LI(Q) = f.LE(Q) = p. 
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PROOF. (a) The mean f.L(j(Q)) of j(Q), regarded as a measure on the 
ambient Euclidean space, is invariant under each Euclidean isometry h, say, which 
extends h E Hp. For Q, as a measure on the Euclidean space, is invariant under h 
V h E H1h due to the equivariant embedding at p and the invariance of Q on M 
under Hp. It now follows that f.LE(Q) is invariant under Hp. Suppose now that 
f.LE(Q) #- p. We will show that in that case f.LE(Q) E C(p). If this is not so then 
f.LE(Q) E expp(V(p)). Then there exists a unique minimizing geodesic joining 
p and f.LE(Q). Because of uniqueness this geodesic, say, y, is left invariant by the 
isometries h E Hp. Then y (0) is invariant under dh V h E H1h contradicting the 
hypothesis that 0 is the only invariant vector in Tp M under { d h : h E Hp}. 

Suppose next that f.Lr(Q) exists. Then f.Lr(Q) is invariant under H1h smce 
F(y) = F(hy), V h E H1h due to the invariance of Q under Hp. The same 
argument as above now shows that either f.Lr(Q) = p or f.Lr(Q) E C(p). 

(b) It follows from a classification theorem due to Wang (1952) that besides the 
round spheres, there are only four types of two-point homogeneous spaces, namely, 
the real projective spaces, complex projective spaces, quaternionic projective 
spaces and the Cayley projective planes [see also Helgason (1978), page 535]. 
It is known from Warner (1965) that for any point p E M, C(p) is a strong 
deformation retract of M\ { p}, and, in particular, C (p) has the homotopy type 
of M\ { p}. On the other hand, if M is one of the two-point homogeneous spaces 
other than a sphere given by Wang's classification, then the cohomology of M\ {p} 
is not trivial. This shows that in this case M\ {p} is not homotopically trivial and 
therefore C (p) is also not homotopically trivial. This implies that if M is not a 
sphere, C (p) has at least two points q, q'. Moreover, since the isotropy group Hp 
is transitive on the geodesic sphere S(p, dg(p, q)), we may assume that dg(p, q) = 
dg(p, q') = r. Hence if f.LE(Q) E C(p) there exists q' E C(p)\{ME(Q)} such 
that dg(p, f.LE(Q)) = dg(p, q'). By the transitivity of Hp on S(p, r), there exists 
hE Hp such that h(ME(Q)) = q', contradicting the invariance of f.LE(Q). By (a), 
f.LE(Q) = p. 

The same argument applies to f.LI(Q) if it exists. D 

EXAMPLE 3.1. Let Q be a probability measure on a sphere, with 
f.I(j (Q)) #- 0, such that the group leaving Q invariant is the stabilizer of a given 
point p. Then f-IE (Q) is either p or the antipodal point of p on the sphere. The same 
is true of Mr(Q) if it exists. Such examples of probability distributions are given 
in Watson [(1983), page 136] and Fisher (1993), including the von Mises distribu
tions. Another example of an invariant distribution is given by the Dimroth-Watson 
distribution on the real projective plane .1Ri.P2 , whose Radon-Nykodim derivative 
at the point [x] w.r.t. the volume measure of a constant curvature Riemannian 
structure on .1Ri.P2 is proportional to exp[k(p. x)2], x E s2 , and is 0(2) invariant. 
A general 0 (2) invariant measure with a density on .1Ri.P2 has the Radon-N ykodim 
derivative W.r.t. the volume form at the point [X] proportional to f ( (p ·X )2), X E 52 , 
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where f is a density of an absolutely continuous positive measure on a finite inter
val. An example of equivariant embedding of JRP 2 furnished with a Riemannian 
structure with constant curvature into the space of symmetric matrices S(3, JR) 
is provided by the Veronese-like map j[u] = uut. The Euclidean distance do on 
S(3, JR) is given by diJ(A, B) := Tr((A- B)(A- B)). As such if u, v are in § 2, 

diJ(j[u], j[v]) = Tr(uut- vvt)(uut- vvt) = Tr(uutuut- 2uutvvt + vvtvv') = 

2(1 - (u · v) 2). The fact that the embedding is equivariant follows from the action 
of isometries of 0(3) on S(3, JR), by simultaneous left and right multiplication. By 
Theorem 3.3(b), if the intrinsic mean direction of a rotationally invariant measure 
on JRP 2 (the space of directions in the three-dimensional Euclidean space) exists, it 
is the same as the extrinsic mean. Note that proportional distances yield the same 
Frechet mean set, and therefore the intrinsic mean sets of a probability measure 
on JRP 2 obtained after scaling § 2 to different radii are all the same. Finally, note 
that Kobayashi (1968) gave a general construction of an isometric embedding of a 
compact symmetric space, which can be used to provide an equivariant embedding 
of any two-point homogeneous space (including the Cayley plane) into a Euclidean 
space. 

DEFINITION 3.4. Assume X = (XI, ... , X17 ) are i.i.d. M-valued random 
variables whose common distribution is a nonfocal measure Q on (M, j) and 
the function p---+ L~=I JJj(p)- j(Xr)ll 2 has a unique minimizer on M; this 
minimizer is the extrinsic least squares sample mean. If the mean j (X) of the 
sample j(X) = (j(X,), ... , j(X17 )) is anonfocalpoint, the extrinsic sample mean 
is 

(3.3) 

where Q17 = * L.:?=I ox; is the empirical distribution. 
From now on, we will occasionally omit the embedding, that is we assume 

M is a submanifold of the Euclidean space and j is the inclusion map. To ease 
notational complexity in this case, we will often write Xi for j (Xi) and X for 

j (X) = * L.:7=I j (Xi). 

THEOREM 3.4. Assume Q is a nonfocal probability measure on the mani
fold M and X= {X1, ... , X17 } is a random sample from Q. (a) If the sample mean 
X is a nonfocal point then the least squares sample mean equals the extrinsic 
sample mean XE. (b) XE is a strongly consistent estimator of ME(Q). 

PROOF. (a) If X is a nonfocal point then by Proposition 3.1, applied to the 
empirical Q17 , the extrinsic least squares sample mean is the extrinsic sample mean. 
(b) By the SLLN, X converges to MU (Q)] almost surely. Since Fe is open, by 
Proposition 3.2, and the projection PM from Fe toM is continuous, j-1 (PM(X)) 
converges to ME(Q) almost surely. D 

In particular, from Theorem 3.4 we get the following consequence. 
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REMARK 3 .1. If Q is focal, the extrinsic mean set has at least two points. 
Therefore by Theorem 2.3(a) the extrinsic sample mean set may have more than 
one point, and a selection from the extrinsic sample mean set sequence may not 
have a limit. 

COROLLARY 3.5. Assume M, Q and the equivariant embedding j are as 
in Theorem 3.3(b). Then the extrinsic least squares sample mean is a strongly 
consistent estimator of the intrinsic mean of Q. 

We now consider a method for constructing confidence regions for extrinsic 
means f.IE(Q) on regular submanifolds. For the formulas below we omit summa
tion symbols for any repeated index in the same monomial. 

Let H be the projection on the affine subspace f.IE(Q) + T11EM. We would 
like to determine the asymptotic distribution of H (X). While H (X) is not the 
same as PM(X), its asymptotic distribution is easier to compute. For large 
samples the extrinsic sample mean is close to the extrinsic mean and, therefore, 
H(X) and PM(f.l) will be close to each other. When M is a linear variety, the 
two maps coincide. Thus for concentrated data the delta method for H gives 
a good estimate of the distribution of the extrinsic sample mean. Assume that 
around PM (M) the implicit equations of M are F 1 (x) = · · · = p: (x) = 0, where 
F 1, ... , Fe are functionally independent. Then X- H(X) is in vpM(t1 )M, the 
orthocomplement of T PM(ti) M; thus it is a linear combination of the gradients 
gradpM(t1 ) F 1, ... , gradpM(t1 ) p:. We need to evaluate the differential of the map 

Hat f-1, in terms of F 1, ... . , p:. Set Va =II gradPM(ti) Fall- 1 gradPM(ti) Fa (a= 
1, ... , c) and 

hafo(M) = VaVfJ, 

(haf-l(M))a.fJ=l ..... c = ((hatJ(M))a.fJ=l .... .J-l. 

Then x- H (x) = tfl (x, f.I)VfJ where tfl (x, M) = hafl (f.I)(X- PM(f.l) )va. Therefore, 
H(x) = x + hafl(M)((PM(f.l)- x)va)Vf-J, d11 H(v) = v- hafl(M)(vva)VfJ, that is, 

· aHJ . 
G 1 = --(M) = 8· ·- haf-l(f.l)Vi v1 

f a xi fJ a fJ' (3.4) 

where 8ii = 1 or 0 according as i = j or i -=f=. j. By the delta method we arrive at 
the following theorem. 

THEOREM 3.6. Let {Xk}k=l ..... n be a random sample from a nonfocal 
distribution Q on the submanifold M, given in a neighborhood of f.IE(Q) by 
the equations F 1 (x) = · · · = Fe (x) = 0. Assume Q has mean f-1 and covariance 
matrix I: as a distribution in the ambient numerical space. If G is the matrix 
given by (3.4), then n 112(H(X)- PM(M)) converges weakly to N(O, GI:G1) in 
the tangent space of Mat the extrinsic mean f.IE(Q) = PM(f.l) of Q. 



630

18 R. BHATTACHARYA AND V. PATRANGENARU 

Sometimes the matrix r = G I: at may be difficult to compute and one may use 
nonpivotal bootstrap, that is, Efron's percentile bootstrap to obtain a confidence 
region for f.LE(Q). We state this as follows [see Efron (1982)]: 

COROLLARY 3. 7. Under the hypothesis of Theorem 3.6, one may construct 
an asymptotic (1 -a)-confidence region for f.LE(Q) = PM(f.L), using the boot
strapped statistic n 112(H(X*)- H(X)). Here H is the projection on the affine 
subspace XE + Tx. M and x* is the mean of a random sample with repetition of 

E A 

size n from the empirical Qn considered as a probability measure on the Euclidean 
space in which M is embedded. 

REMARK 3.2. Suppose F is finite and Q is nonfocal. By Theorem 3.2, there 
exists 6 > 0 such that X is nonfocal if IIX- fJII < 6. Since P(IIX- Mil::: 6) = 
0 (n - 1 ), one may define X E to be any measurable selection from the sample 
extrinsic mean set if X is focal. Theorem 3.6 and a corresponding version of 
Corollary 3.7 hold for this XE. 

EXAMPLE 3.2. Let M = sd, j the usual embedding (inclusion) in JRd+1 and 
Q a nonfocal probability measure on Sd, that is, fL = fRd+J x Q(dx) #- 0. Let 
m = PM!L· Then H(X) - m =X- m -{(X- m) · m}m =X- (X· m)m = 
X- fL- {(X- f.L) · m}m. Hence ~(H(X)- m) converges in distribution to a 
d-dimensional normal distribution supported by the tangent space TmSd identified 
with {x E JRd+1 :xm = 0}. As a measure on JRd+1 this normal distribution has 
mean 0 and covariance matrix r := I: + (mti:m)mmt - 2I:(mmt), where I: 
is the covariance matrix of Q viewed as a measure on JRd+1. An asymptotic 
(1 -a)-confidence region form may now be constructed using the estimate of r 
obtained by replacing in its expression (i) I: by the sample covariance matrix S 
and (ii) m by X j I X 1. Alternatively, one may use the bootstrap procedure of 
Corollary 3.7. 

4. Means of distributions on axial spaces, planar shape spaces and their 
Veronese-Whitney embeddings. The space of all directions in ffi.N, or axial 
space, is an (N - I)-dimensional real projective space. 1t is the space ffi.pN- 1 

of equivalence classes on a round sphere in ffi.N with antipodal points identified. 
As such this space carries a Riemannian structure of constant positive curvature, 
since the antipodal map is an isometry of the round sphere. This is the space of 
elliptic geometry, and the total group of isometries SO(N) has maximum mobility. 
Given that this elliptic space is locally isometric with a round sphere, if the support 
of a distribution w.r.t. the stabilizer of a point [which is a subgroup of SO(N) 
isomorphic to SO(N - I)] has small diameter, then the intrinsic mean exists (see 
Remark 2.I ). 
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In this section we would like to consider the general situation when the 
distribution is not concentrated. Note that for N odd, ]]{P N - 1 cannot be embedded 
in ]]{N. 

Usually, in directional statistics, one regards an axial distribution as one 
corresponding to an §N- 1-valued random variable X such that X and -X have 
the same distribution [Watson (1983), Chapter 5; Fisher, Hall, Jing and Wood 
(1996); and Beran and Fisher (1998)]. One may show that the Veronese-Whitney 
map defined in Section 3 for N = 3, and given for arbitrary N by the same 
formula j([u]) = u u1 (llull = 1), is an equivariant embedding of ]]{pN- 1 into 
a ~ N (N + 1 )-dimensional Euclidean space. To see this, let S(N, ]]{) denote the set 
of all real N x N symmetric matrices. Since the Euclidean distance do between 
two symmetric matrices is 

(4.1) do(A, B)= Tr((A- B)(A- B)t) = Tr((A- B)2), 

the group O(N) acts as a group of isometries of (S(N, ]]{),do) via 

(4.2) T(A) = T AT1 

and leaves M = j (]]{PN - 1) invariant. It is known that 0 (N) acts transitively 
on §N-1, that is, if u, v E ]]{N, llull = llvll = 1, there is a T E O(N) such 
that Tu = v. Then T(j[u]) = TuutTt = vv 1 = j([v]), showing that O(N) acts 
transitively on M. The stabilizer of this action is O(N- 1). Therefore ]]{pN-I 

with the Riemannian metric induced by j is a homogeneous space, with a group of 
isometry of largest dimension. From Theorem 3.1 in Kobayashi (1972), it turns 
out that with this metric ]]{pN-I has constant positive curvature, and j is an 
equivariant embedding of ]]{pN- I into S(N, ]]{).Also M = j (l!{PN -I) is included 
in the set S+(N, ]]{) of symmetric nonnegative definite N by N real matrices. 
S+ (N, ]]{) is convex, so the mean under Q of matrices in S+ (N, ]]{) is a matrix 
in S+(N, ]]{). Therefore, we are interested in determining only the projection of 
a semipositive matrix on M. If A is in S(N, ]]{) and T is an orthogonal matrix, 
then do(A, M) = do(T(A), M). Given A in S+(N, ]]{),there is T in O(N) such 
that T(A) = diag(rya)a=l, .... N = D, and the entries of D are all nonnegative, 
in increasing order. Let x = (xa) be a unit vector in ]]{N. After elementary 
computations we get 

(4.3) d6(D, j ([x])) = 1 + L ry~- 2 L 1Ja(xa)2 :=: d6(D, j ([eN])), 

where eN is the eigenvector of D of unit length corresponding to the highest 
eigenvalue. Note that if lJN has multiplicity two or more, then for any t E [0, 2rr] 
and for any unit vector x = (xa) E ]]{N, we have 

d6(D, j [x]) :=: d6(D, }[cos teN- I +sin teN]) = d6(D, j [eN]) 

and Dis focal. If lJN is simple, that is, has multiplicity one, then d6(D, j[x]) :=: 
d6(D, }[eN]) and the equality holds only if [x] =[eN]. In this last case, Dis a 
nonfocal and PM(D) =}([eND· We will call such an eigenvector of length 1 a 
highest eigenvector of D. One then obtains the following: 
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PROPOSITION 4.1. The set F of the focal points of M = j (Yif,.PN -l) 

in S+ (N, rif,.) is contained in the set of matrices in S+ (N, rif,.) whose largest 
eigenvalues are of multiplicity at least 2. The projection PM: S+(N, Yif,.)\F--+ M 
associates to each nonnegative definite symmetric matrix A with a highest 
eigenvalue of multiplicity one, the matrix j ([m]) where m is a highest unit 
eigenvector of A. 

If Q is a probability measure on Yif,.pN-I, assume [X], IIXII = 1 is a Yif,.pN-I_ 
valued random variable with distribution Q. As a consequence of Corollary 3.5 
and Proposition 4.1 we obtain the theorem: 

THEOREM 4.2. Assume [Xr], IIXr II = 1, r = 1, ... , n, is a random sample 
from a probability measure Q on rif,.pN-I_ Then (a) Q is nonfocal if the highest 
eigenvalue of E[X1XiJ is simple and in this case ttE(Q) = [m], where m is 
a unit eigenvector of E[X1XD corresponding to this eigenvalue. (b) Under the 
hypothesis of (a) the extrinsic sample mean [X]E is a strongly consistent estimator 
of /LE(Q). 

Note that when it exists, [X]E is given by [X]E = [m], where m is a unit 
eigenvector of Sn = k L~=l XrX~. It may be noted that in this case [X]E is 
also the MLE for the mean of a Bingham distribution [Prentice (1984) and Kent 
(1992)] and for the mean of the Dimroth-Watson distribution, whose density 
function at [x] is proportional to exp(k(tt · x )2), where k is a constant. For these or 
more general parametric families, MLE asymptotics or bootstrap methods [Fisher 
and Hall (1992)] are commonly used. Nonparametric techniques of estimation of 
extrinsic means will be presented in a forthcoming second part of this article. 

We tum now to planar shape spaces [see Kendall (1984)]. 

DEFINITION 4.1. A planar k-ad is an ordered set (Zl, z2, ... , Zk) of k points 
in the Euclidean plane at least two of which are distinct. Two k-ads (z 1, Z2, ... , Zk) 

and (z;, z;, ... , z~) are said to have the same shape if there is a direct similarity 
T in the plane, that is, a composition of a rotation, a translation and a homothety 
such that T (z j) = < for j = 1, ... , k. Having the same shape is an equivalence 
relationship in the space of planar k-ads, and the set of all equivalence classes of 
k-ads is called the planar shape space of k-ads, or the space L~· Without loss of 
generality one may assume that two k-ads that have the same shape also have the 
same center of mass, that is, L z; = L z'i = 0, and they have the same shape if 
there is a composition of a transformation T which keeps the origin fixed, and is a 
rotation followed by a homothety such that T (Zj) = z'i for j = 1, ... , k - 1. Such 
a transformation T is determined by a nonzero complex number, that is to say, the 
two k-ads with center of mass 0 have the same shape if there is a z E C\ {0} such 
that ZZj = zj for j = 1, ... , k - 1. Thus the shape equivalence class of a planar 
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k-ad is uniquely determined by a point in rr:_pk-2, that is to say, L~ is identified 
with rr:_pk-2. Kendall (1984) pointed out that there is no unique way to identify 
L~ with rr:_pk-2 and indeed our method of identification differs from Kendall's 
method. 

Tests appropriate for mismatch of shapes of k-ads were introduced in Sibson 
(1978) based on the so-called Procrustes statistic. The Procrustean distance, in 
our terminology, is the distance induced by the Euclidean distance on rr:_pk-2 via 
a quadratic Veronese-Whitney embedding into a unit sphere of the linear space 
S(k - I, C) of selfadjoint complex matrices of order k - 1. In order to define 
j : rr:_pk-2 ---+ S(k - 1, C) it is useful to note that rr:_pk-2 = § 2k- 3 j§1, where 
§ 2k-3 is the space of complex vectors rr:_k-I of norm 1, and the equivalence 
relation on § 2k-3 is by multiplication with scalars in § 1 (complex numbers of 
modulus 1). If z = (z 1, z 2 , ... , zk-I) is in § 2k-3 , we will denote by [z] the 
equivalence class of z in rr:_pk-2. The Veronese-Whitney (or simply Veronese) map 
is in this case j ([z]) = z z* where, if z is considered as a column vector, z* is the 
adjoint of z, that is, the conjugate of the transpose of z. The Euclidean distance 
in the space of Hermitian matrices S(k- 1, C) is d5(A, B)= Tr((A- B) x 

(A- B)*)= Tr ((A- B)2). 

Kendall (1984) (see his Theorem 1) has shown that the Euclidian distance in 
S(k - 1, C) induces via j a Riemannian structure on rr:_pk-2, which is known 
in literature as the Fubini-Study metric and has a highest dimensional group of 
isometries on rr:_pk-2 among all the Riemannian metrics on this manifold. The 
isometry group is the special unitary group SU (k - 1) of all (k - 1) x (k - 1) 
complex matrices A, with A* A = I, det(A) = 1. By analogy with the action of 
the orthogonal group in the real projective space, one may show that the group 
SU (k - I) acts transitively as a group of isometries and up to a scaling factor, 
j is an equivariant embedding of rr:_pk-2 into the space of self adjoint matrices 
S(k-1,C). 

Since M = j (Cpk-2) is SU (k - 1) invariant, the techniques used for 
j(f?i.pN-I) can be adapted to determine the focal points of Min S+(k- 1,C), 
the space of nonnegative definite self-adjoint (k - 1) x (k - 1) complex matrices. 
We are then led to the following: 

PROPOSITION 4.3. The focal points of M = j(CPN-l) in S+(k- 1, C) 
are the nonnegative definite symmetric matrices with the highest eigenvalue of 
multiplicity at least 2. The projection PM : S+ (k - I, C) \F ---+ M associates to 
each matrix A E S+ (k - 1, C) with a highest eigenvalue of multiplicity 1, the 
matrix j (fm l), where m is a highest unit eigenvector of A. 

The following result, which follows from Theorem 3.4 and Proposition 4.3, 
addresses the question of consistency of Procrustes estimators [see Dryden and 
Mardia (1998), page 280]. 
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THEOREM 4.4. Let Q be a probability distribution on c_pk-2 and let {[Zr ], 
II Zr II = 1 }r=I, ... ,n be a random sample from Q. (a) Q is nonfocal iff A, the largest 
eigenvalue of E[Z1Zj], is simple and in this case fLE(Q) = [m], where m is an 
eigenvector of E[Z1ZtJ corresponding to A, with llmll = 1. (b) The extrinsic 

sample mean [Z]E is a consistent estimator of fLE(Q) iff A is simple. 

EXAMPLE 4.1. The Dryden-Mardia distribution on c_pk-2 is induced by a 
c_k- I -valued random variable Z which has a multivariate normal distribution with 
mean v and covariance matrix a 2 hk-2· The variable X on c_pk-2 corresponding 
to Z is X= [Z] = {AZ, A E C*}. Kent and Mardia (1997) showed that E(j(X)) = 
ah-1 + fJvv*, where a> 0, a+ f3 > 0. If we write this quadratic form w.r.t. 
orthogonal coordinates with the first axis along v, we notice that as a matrix, 
E (j (X)) is conjugate with a diagonal matrix whose diagonal entries are all a 
except for the entry a + f3 in the upper left comer, showing that E (j (X)) 
is nonfocal for j. By Theorem 4.4 the extrinsic mean of the Dryden-Mardia 
distribution exists and the extrinsic sample mean is a consistent estimator of the 
extrinsic mean. 

EXAMPLE 4.2. The complex unit sphere is csk-2 = {z E c_k- I I liz II = 1 }. 
Kent (1994) defines on csk-2 the complex Bingham distribution associated with 
a Hermitian matrix as a parameter by the probability density function 

(4.4) fA(Z)=C(A)-Iexp(z*Az), zECSk-2 . 

This density is constant along the orbit of z via the action of CS0 given by 
(ei 11 , z) r-+ ei 11 z. The space of orbits is c_pk-2 and the image of the volume measure 
of csk-2 on c_pk-2 in this projection is the volume measure associated with the 
Fubini-Study metric. Therefore fA (z) induces a probability density function on 
c_pk-2, which we call the density of the complex Bingham distribution for planar 
shapes, given by 

(4.5) gA ([z]) =!A (z), [zJ E csk-2. 

Assume AA is the largest eigenvalue of A and let VA be the eigenspace 
corresponding to AA. Then the extrinsic mean set of the complex Bingham 
distribution for planar shapes is the set {[fL] I fL E VA \0}. The extrinsic mean 
exists only if VA has dimension one over C. Therefore if dime VA ~ 2, even if 
the Procrustes estimate (extrinsic sample mean) exists, it is inconsistent. 

In general, if [zr] = [(z 1~, ••• ,z~- 1 )], llzrll = 1, r = 1, ... ,n, are independent 
observations from a random variable on c_pk-2, the extrinsic sample mean [z]E 
is [m], where m is a highest unit eigenvector of 

(4.6) 
1 n 

K :=- LZrz;. 
n r=l 
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Note that [z]E is the full Procrustes estimate for parametric families such as 
Dryden-Mardia distributions or complex Bingham distribution for planar shapes 
[Kent (1992)]. Unlike other authors [Kent (1994) and Kendall (1984)], in our 
computations we do not make any use of the so-called Helmert transform. We 
simply center the raw landmark data Ur = (u;, ... , u~), r = 1, ... , n, get Wr = 

( w!, ... , w~) with w} = u}- Ur and rescale the first k -1 transformed coordinates 
by taking Zr = llilir ll- 1ilir, where Wr = (w;, w~). Then we evaluate Kin (4.6) and 
take the highest eigenvector of K as a representative of [Z]E· As noted before, 
given that our identification of 2:~ to fCpk- 2 differs from Kendall's identification, 
the values of [z]E using the two identification methods may differ. This difference 
will be small in the case of a highly concentrated distribution, as in the example 
below. 

REMARK 4.1. The extrinsic sample mean can be used to determine missing 
coordinates when most of the landmarks in a new observation are known. We 
consider the case of one missing landmark although for more missing landmarks 
the same principle works. Assume [z]£ = [s], s E rcsk-2, is the sample mean of a 
number of complete observations and o = (z 1, ... , zk-1, z) are the raw coordinates 
of a new observation, with z unknown (we may assume w.l.o.g. that the missing 
landmark is the last one). After centering and rescaling we get 

Minimizing do([o], [s]) amounts to maximizing 

(4.8) 
(Lk=I lwisil2) 

h( ) - j-1 z - _---"---ck------,-1--.-2-, 

L;:1 lw1 1 

where wi are given in (4.7), and the solution gives the mrssmg landmark z 
conditionally on the sample data and the other landmarks in o. We will call this the 
XM method of retrieval for a single missing landmark. 

If z, w E Csk-2, the Fubini-Study distance dg([z], [w]) is proportional to 
arccoslztwl. Therefore the intrinsic mean [z]r of the sample [zr], llzrll = 1, 
r = I, ... , n, is a minimizer of 

n 

(4.9) g([S"]) = L arccos2 (1z~fl), 11s-11 = 1. 
r=l 

The minimizer can be determined by selecting s = (s 1, ... , s-k- 1) with s-k- 1 > 0. 

If for r = 1, ... , n and j = 1, ... , k - 1 , we have s i = ~ i + i 17i and zJ = xf + i yj, 
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such a minimizer is obtained by using numerical methods for the objective function 
of 2(k - 2) real variables 

(4.10) 

g(~ 1' ~2' ... '~k-2' 171' 172' ... '17k-2) 

n 

= L arccos2 z~-l 
r=1 

k-2 k-2 

1- L ((~1)2 + (171)2) + L:zft;i 
J=1 J=1 

Because the intrinsic distance is larger than the extrinsic distance (chord < arc) 
outliers have more influence on the intrinsic sample mean, which makes the use 
of the extrinsic mean preferable in practice if strong outliers are present. For 
concentrated data the two means are very close to each other. 

We close with an example to compute the meanApert syndrome upper midface, 
and to use it to estimate a missing landmark. In our example, based on data from 
Bookstein (1991 ), we determine the extrinsic mean of a group of 8 landmarks 
on the A pert syndrome upper midface. The data set represents coordinates of the 
following landmarks: the Anterior nasal spine, Sella, Spheno-ethmoid registration, 
Nasion, Orbitale, Inferior zygoma, Pterygomaxillary fissure and Posterior nasal 
spine taken from lateral X-rays of a group of 14 children suffering from the 
Apert syndrome. The data are displayed in Figure 1. Note that the coordinates of 
landmark 7 from "child 9" are missing. The shape variable (in our case, shape 
of the 8 landmarks on the upper face) is valued in a planar shape space CP 6 

(real dimension = 12). The usual statistical methods fail when applied to cpk-2 

because, as a Riemannian manifold, cpk-2 is not locally Euclidean, whatever the 
metric we consider on it. As a special case of Theorem 3.3(b ), one may show that 
if the i.i.d. cpk-2-valued observations have a Dryden-Mardia distribution, then 
the intrinsic and extrinsic means are the same. Thus the extrinsic sample mean is 
a consistent estimator of the intrinsic mean of Q, by Theorem 2.3 or by Ziezold 
(1977). This result is due to Kent and Mardia (1997) and Le (1998). 

Using MINITAB, from the 13 complete observations, after rescaling, we found 
the following representative for the extrinsic sample mean shape conesponding to 
WE=[zi :z2:z3:z4:z5:z6:z7] ECP6: 

z1 = -0.174205 + 0.351359i, 

z3 = -0.112506- 0.233028i. 

z5 = -0.117264 + 0.1 09873i. 

z 7 = 0.279319 + O.OOOOOOi, 

z2 = 0.258564- 0.431477i, 

z4 = -0.527492- 0.069521i, 

z6 = 0.113351 + 0.209546i, 

z8 = 0.280233 + 0.063249i. 
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FIG. 1. Apert data. 

Using MATHEMATICA for the function gin (4.10), we obtained a represen
tative for the intrinsic sample mean shape corresponding to [z]I = [z 1 : z2 : z3 : z4 : 

z5 : z6 : z 7] E CP6 , which after rescaling, is given by 

z 1 = -0.174180 + 0.351085i, 

z3 = -0.112757- 0.232802i, 

z5 = -0.117257 + 0.109764i, 

z7 =0.279347 + O.OOOOOOi, 

z2 = 0.258289- 0.431400i, 

24 = -0.527627- 0.069441i, 

z6 = 0.113449 + 0.209658i, 

z8 = 0.280736 + 0.063136i. 
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0.2 

FIG. 2. Extrinsic sample mean of the 13 complete Apert observations. 

The representative of the intrinsic sample mean, including the resulting coor
dinate z8 = - L:j=1 zi, is displayed in Figure 3; it cannot be distinguished from 
the extrinsic sample mean (cf. Figure 2) since the coordinates of corresponding 
landmarks are identical to the third decimal. 

As explained above, we used a different method of identification of a shape with 
a point in CP 6 . For this reason our result slightly difers from the extrinsic mean 
obtained using Kendall's method of identification. We also include a representative 
of the extrinsic sample mean, using Kendall's method of identification [for details 
on Kendall's method see Kendall (1984)], provided by one of the referees: 

z1 = -0.1764454 + 0.3503738i, z2 = 0.2619642- 0.4296601i, 

z3 = -0.1109860- 0.2335313i, 

z5 = -0.1178114 + 0.1094137i, 

z 7 = 0.2771263 + O.OOOOOOOi, 

-Q_t, -0.2 

z4 = -0.5270207- 0.0731476i, 

z6 = 0.1123381 + 0.21 08623i, 

z8 = 0.2808349 + 0.0656893i. 

00 0.2 

FIG. 3. Intrinsic sample mean of the 13 complete Apert observations. 
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FIG. 4. Retrival of landmark 7 in observation 9. 

Finally, in Figure 4 we display observation 9 completed by various methods. 
Our XM method, from formulas (4.7)-(4.8), yields for the missing landmark 
the coordinate Z7 = 9.59 + 8.57i. Unlike the empirical method which yields 
Z7 = 10.46 + 9.02i, the XM method places landmark 7 to the left of landmark 8, 
in agreement with 9 out of the complete 13 observations. 

However, when applied to the Apert data, both the empirical method and the 
XM method perform worse than the TPS (thin-plate spline) method [see Dryden 
and Mardia (1998), page 206]. We owe to one of the referees of this paper the 
value of Z7 = 9.88 + 9.307i based on the TPS method, thus putting landmark 7 
above landmark 8, which is the case for 12 out of 13 observations. 

For work on missing landmark data see Bookstein and Mardia (2000). 

REMARK 4. 2. While the computations for A pert data are only illustrative, we 
believe that similar computations for random samples of clinically normal children 
from various groups of populations, may be useful in reconstructive plastic surgery. 
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This article develops nonpara.metric inference procedures for esti
mation and testing problems for means on manifolds. A central limit 
theorem for F\·echet sample means is derived leading to an asymptotic 
distribution t heory of intrinsic sample means on Riemannian mani
folds. Central limit theorems are also obtained for extrinsic sample 
means w.r.t. an arbitrary embedding of a dift'erentiable manifold in 
a Euclidean space. Bootstrap methods particular ly suitable for t hese 
problems are presented. Applications are given to distributions on 
the sphere 8'1 (directional spaces), real projective space IRPN-t (ax
ial spaces), complex projective space cpk-2 (planar shape spaces) 
w.r.t. Veronese-Whitney embeddings and a three-dimensional shape 
space I:~ . 

1. Introduction. Statistical inference for distributions on manifolds is 
now a broad discipline with wide-ranging applications. Its study has gained 
momentum in recent years, especially due to applications in biosciences and 
medicine, and in image analysis. Including in the substantial body of litera
ture in this field are the books by Bookstein [10], Dryden and Mardia [15], 
Kendall, Barden, Carne and Le [33], Mardia and Jupp [41], Small [49] and 
Watson [52]. While much of this literature focuses on parametric or semi
parametric models, the present article aims at providing a general framework 
for nonparametric inference for location. This is a continuation of our ear
lier work [7, 8] where some general properties of extrinsic and intrinsic mean 
sets on general manifolds were derived, and the problem of consistency of the 
corresponding sample indices was explored. The main focus of the present 
article is the derivation of asymptotic distributions of intrinsic and extrinsic 
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sample means and confidence regions based on them. We provide classical 
CLT-based confidence regions and tests based on them, as well as those 
based on Efron's bootstrap [17]. 

Measures of location and dispersion for distributions on a manifold M 
were studied in [7, 8] as Frechet parameters associated with two types of 
distances on M. If j : M --+ JRk is an embedding, the Euclidean distance 
restricted to j ( M) yields the extrinsic mean set and the extrinsic total vari
ance. On the other hand, a Riemannian distance on M yields the intrinsic 
mean set and intrinsic total variance. 

Recall that the Prechet mean of a probability measure Q on a complete 
metric space (M, p) is the minimizer of the function F(x) = J p2(x, y)Q(dy) , 
when such a minimizer exists and is unique [21]. In general the set of min
imizers ofF is called the Frechet mean set. The intrinsic mean J.tJ(Q) is 
the Frechet mean of a probability measure Q on a complete d-dimensional 
Riemannian manifold M endowed with the geodesic distance d9 determined 
by the Riemannian structure g on M . It is known that if Q is sufficiently 
concentrated, then J.LI(Q) exists [see Theorem 2.2(a)]. The extrinsic mean 
J.Le(Q) = /-Lj ,E(Q) of a probability measure Q on a manifold M w.r.t. an em
bedding j : M --+ JRk is the F\·echet mean associated with the restriction to 
j(M) of the Euclidean distance in JRk . In [8] it was shown that the extrinsic 
mean of Q exists if the ordinary mean of j(Q) is a nonfocal point of j(M), 
that is, if there is a unique point x0 on j(M) having the smallest distance 
from the mean of .i(Q). In this case /-Lj,E(Q) = j-1(x0). 

It is easier to compute the intrinsic mean if the Riemannian manifold has 
zero curvature in a neighborhood containing supp Q [45]. In particular this 
is the case for distributions on linear projective shape spaces [42]. If the 
manifold has nonzero curvature around suppQ, it is easier to compute the 
extrinsic sample mean. It may be pointed out that if Q is highly concentrated 
as in our medical examples in [8] and in Section 5, the intrinsic and extrinsic 
means are virtually indistinguishable. 

We now provide a summary of the main results in this article. Section 2 
is devoted to nonparametric inference for the Frechet mean of a probability 
measure Q on a manifold M for which there is a domain U of a chart 
¢ : U -+!Rd such that Q(U) = 1. In Theorem 2.1 it is shown that in this case, 
under some rather general assumptions, the image of the F\·echet sample 
mean under ¢ is asymptotically normally distributed around the image of 
the Frechet mean of Q. This leads to the asymptotic distribution theory 
of the intrinsic sample mean on a Riemannian manifold M (Theorems 2.2, 
2.3). In Corollaries 2.3 and 2.4 bootstrap confidence regions are derived for 
the F\·echet mean, with or without a pivot. 

Section 3 is devoted to asymptotics of extrinsic sample means. The ideas 
behind the main result here are essentially due to Hendriks and Landsman 
[27] and Patrangenaru [44]. The two approaches are somewhat different. 
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We present in this article an extension of the latter approach. Extrinsic 
means are commonly used in directional, axial and shape statistics. In the 
particular case of directional data analysis, that is, when M = Sd-l is the 
unit sphere in ~d, Fisher, Hall, Jing and Wood [19] provided an approach for 
inference using computationally efficient bootstrapping which gets around 
the problem of increased dimensionality associated with the embedding of 
the manifold M in a. higher-dimensional Euclidean space. In Corollary 3.2 
confidence regions are derived for the extrinsic mean /-lj ,E ( Q). Non parametric 
bootstrap methods on abstract manifolds are also derived in this section 
(Theorem 3.2, Proposition 3.2). 

If one assumes that Q has a nonzero absolutely continuous component 
with respect to the volume measure on M, then from some results of Bhat
tacharya and Ghosh [6], Babu and Singh [1], Beran [2] and Hall [24, 25], one 
derives bootstrap-based confidence regions for JiB( Q) with coverage error 
Op(n- 2) (Theorem 3.4) (also see [5, 9]) . One may also use the nonpivotal 
bootstrap to construct confidence regions based on the percentile method of 
Hall [25] for general Q with a coverage error no more than Op(n-d/(d+ l )), 
where d is the dimension of the manifold (see Remark 2.4 and Proposition 
3.2). This is particularly useful in those cases where the asymptotic disper
sion matrix is difficult to compute. 

Section 4 applies the preceding theory to (i) real projective spaces ~N-1-
the axial spaces, and (ii) complex projective spaces cpk-2- the shape spaces. 
Another application to products of real projective spaces (~Pm)k-m- 1 , or 
the so-called pr·ojective shape spaces, will appear in [42]. 

As an application of Corollary 3.3, large sample confidence regions for 
mean axes are described in Corollary 4.2. A similar application to projective 
shape spaces, combining bootstrap methods for directional data from [3], 
appears in [42]. Other applications to axial spaces are given in Theorem 4.3 
and Corollary 4.4, and to planar shape spaces in Theorem 4.5. 

Finally in Section 5 we apply the results of Sections 2 and 4 to construct 
(1) a 95% large sample confidence region for the intrinsic mean location 
of the magnetic South Pole from a directional data set given in [20], (2) 
simultaneous confidence intervals for the affine coordinates of the extrinsic 
sample mean shape in a medical application and (3) a test for the difference 
between three-dimensional mean shapes in a glaucoma detection problem. 

2. A central limit theorem for Frechet sample means and bootstrap
ping. A d-dimensional differentiable manifold is a locally compact sepa
rable Hausdorff space M , together with an atlas A M comprising a family 
of charts (Uc, cf>et) of open sets Uet covering M , and for each a a home
omorphism cf>et of Uet onto an open subset of JRd for which the t ransition 
maps cf>et · c/>p1 : c/>(3(Uet n U(3 )--+ cf>et(Uet n Uf3) are of class C00

. The sets Uet 
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are often called coordinate neighborhoods. One may show that a differen
t iable manifold is metrizable. We briefly recall some basic notion associated 
with Riemannian manifolds. For details the reader may refer to any stan
dard text on differential geometry (e.g., [13, 26], or [38]). A Riemannian 
metric g on a differentiable manifold M is a coo symmetric positive defi
nite tensor field of type (2, 0), that is, a family of inner products gp = (·, ·)p 
on the tangent spaces TpM,p EM, which is differentiable w.r.t. p. A Rie
mannian manifold M is a connected differentiable manifold endowed with 
a Riemannian metric g. The distance p9 induced by g is called the geodesic 

distance. For p, q EM, pg(p, q) is the infimum of lengths I: (x(t), x(t))!~;) dt of 
all C1-curves x(t), a:::; t:::; b, with x(a) = p, x(b) = q. The minimizer satisfies 
a variational equation whose solution is a geodesic curve. There is a unique 
such geodesic curvet--+ 'Y(t) for any initial point 'Y(O) = p and initial tangent 
vector 1'(0) = v . A classical result of Hopf and Rinow states that (M, p9 ) is 
complete as a metric space if and only if (M,g) is geodesically complete [i.e., 
every geodesic curve ')'(t) is defined for all t E !RJ. These two equivalent prop
erties of completeness are in turn equivalent to a third property: all closed 
bounded subsets of (M,p9 ) are compact ([13], pages 146 and 147). 

Given q EM, the exponential map Expq : U--+ M is defined on an open 
neighborhood U of 0 E TqM by the correspondence v--+ "Yv(1), where l'v(t) 
is the unique geodesic satisfying 1'(0) = q, i'(O) = v, provided ')'(t) extends at 
least to t = 1. Thus if ( M, g) is geodesica.lly complete or, equivalently, ( M, p9 ) 

is complete as a metric space, then Expq is defined on all of TqM. In this 
article, unless otherwise specified, all Riemannian manifolds are assumed to 
be complete. 

Note that if 1'(0) = p and l'(t) is a geodesic, it is generally not true that 
the geodesic distance between p and q = ')'(tl), say, is minimized by ')'(t), 0:::; 
t :::; t 1 (consider, e.g., the great circles on the sphere S2 as geodesics) . Let 
to= to(p) be the supremum of all t1 > 0 for which this minimization holds. 
If to< oo, then ')'(to) is the cut point of p along I'· The cut locus C(p) of p 
is the union of all cut points of p along all geodesics ')' starting at p [e.g., 
C(p) = {-p} on 8 2]. 

In this article we deal with both intrinsic and extrinsic means. Hence we 
will often consider a general distance p on a differentiable manifold M, but 
assume that (M,p) is complete as a metric space. We consider only those 
probability measures Q on AI/ for which the Frechet mean J.t:F = J.t:F( Q) exists. 
Moreover we assume that there is a chart ( U, <P) such that Q ( U) = 1, and 
J.t:F E U. 

REMARK 2.1. The assumption above on the existence of a chart (U, <P) 
such that Q(U) = 1 is less restrictive than it may seem. If g is a Riemannian 
structure on M and Q is absolutely continuous w.r.t. the volume measure, 
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then, for any given p, the complement U of the cut locus C(p) is the domain 
of definition of such a local coordinate system (the coordinate map being the 
inverse of ExpP, the exponential map at p) (see [38], page 100, for details). 

EXAMPLE 2.1. For the d-dimensional unit sphere, M = Sd = {p E JRd+l :llpll = 
1}, with the Riemannian metric induced by the Euclidean metric on ~d+I, 
the exponential map at a. given point p E Sd is defined on the tangent space 
TpM and is given by 

(2.1) Expp(v) = cos(llvii)P + sin( llv ll )llv ll - 1v 

If X E sd, X =f. -p, then there is a unique vector u E TpM such that X= 
ExpP u , and we will label this vector by u = LogP x. Since TpSd = { v E 
JRd+1, v . p = 0} , it follows that 

(2.2) Logp x = (1- (p · x)2)-112 a.rccos(p · x)(x - (p · x)p) . 

In particular, ford= 2 we consider the orthobasis e1 (p), e2(p) E TpS2, where 
p = (Pt,P2 ,P3)t E S2\ {N, S} [N = (0, 0, 1), S = (0, 0, - 1)]: 

et(P) = ((pt)2 + (P2)2)-112(-p2,Pt,O)t, 
(2.3) e2(p) = ( -((pt)2 + (p2)2)- 112PtP3, 

-(x2 + y2) - t f2P2P3, ((Pt)2 + (p2)2)1/2t 

The logarithmic coordinates of the point x = (xt,X2,x3f are given in this 
case by 

(2.4) u1(p) = e1 (p) · Logp x, 
u 2 (p) = ez(1J) · LogP x . 

For computations one may use a· b =at b. 

Now the image measure Qif> of Q under <P has the Frechet mean f.1. = <P(f..l.:F) 
w.r.t. the distance pif>(u,v) := p(<jJ- 1(u),<P- 1(v)),u,v E <P(U) . Similarly, if Xi 
(i = 1, ... , n) are i.i.d. with common distribution Q and defined on a prob
ability space (0, A, P), let J.l.n,:F be a measurable selection from the Fnkhet 
mean set (w.r.t. p) of the empirical Qn = ~ 2:~1 8xi. Then J.l.n = <P(!kn,:F) 
is a measurable selection from the Frechet mean set (w.r.t. pif>) of Q~ = 
~ 2:~1 8xi' where Xi= <P(Xi) · Assuming twice continuous differentiability 
of B ---+ (pif>)2 ( u, B) , write the Euclidean gradient as 

(2.5) w(u;B) =gra.do(Pif>) 2(u, B) = (8~1.(pif>)2 (u,B)):=t = (wr(u;B))~=t· 
Now f.1. is the point of minimum of 

(2.6) Fif>(B) := j (pif>) 2(u, B)Qif>(du) 
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and f..Ln is a local minimum of 

F:f(e) := j(P<I>?(u, e)Q~(du). 
Therefore, one has the Taylor expansion 

1 n -
0= Vn~ \lfT (XiiJ.tn) 

1 n 
= ;;;;- .l::>V(Xi;J.t) 

vn i=l 
(2.7) 

1 n d 

+- L L Dr'iiJT(Xi; f..L)Vn(J.t~- p,r') + R~ 
n i=lr'=l 

where 

(2.8) 

and en lies on the line segment joining p, and f..Ln (for sufficiently large n). 
We will assume 

(2.9) E l'll(Xiif..L)I 2 < oo, 
E IDr''V(Xiif..L)I

2 < 00 (Vr, r'). 

To show that R~ is negligible, write 

U
1·,r' (x,c) := sup IDr,'lfr(x; e)- Dr,'lfr(x; f..L) I 

{8: 118-ttll~~} 

and assume 

(2.10) as c l 0 (1 $; r, r' $; d). 

One may then rewrite (2.7) in vectorial form as 

(2.11) 
1 n -

0 = ;;;;- L w(Xi; p,) +(A+ 8n)Vn(f..Ln- f..L) , 
vn i=l 

where 

(2.12) 

and bn ---7 0 in probability as n ---7 oo, if f..Ln ---7 f..L in probability. If, finally, we 
assume A is nonsingular, then (2.11) leads to the equation 

C - 1 ( 1 ~ - ) I (2.13) vn(P,n -p,)= A Jn6'l!(Xi;f..L) + 8n , 

where 8~ goes to zero in probability as n ---7 oo. We have then arrived at the 
following theorem. 
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THEOREM 2.1 (CLT for Frechet sample means) . Let Q be a probability 
measur-e on a differ-entiable manifold !VI endowed with a metric p such that 
ever-y closed and bounded set of (M,p) is compact. Assume (i) the Prechet 
mean f.LF exists, (ii) ther-e exists a coor-dinate neighbor-hood (U, ¢) such that 
Q(U) = 1, (iii) the map 8---+ (pif>) 2(8, u) is twice continuously differentiable on 
<P(U), (iv) the integrability conditions (2.9) hold as well as the relation (2.10) 
and (v) A, defined by (2.12), is nonsingular. Then (a) ever-y measurable 
selection f.Ln from the (sample) Prechet mean set of Q~ = ~ 2:::~1 Oxi is a 

consistent estimator of f.L , and (b) Jri(J.Ln - J.L) ~N(o,A-1C(At)- 1 ), wher-e 
c is the covariance matrix 0 f iJ! (xi ; f.L). 

PROOF. Part (a) follows from Theorem 2.3 in [8). The proof of part (b) 
is as outlined above, and it may also be derived from standard proofs of the 
CLT forM-estimators (see, e.g. , [29), pages 132- 134). 0 

As an immediate corollary one obtains: 

COROLLARY 2.1. Let (M,g) be a Riemannian manifold and let p= p9 be 
the geodesic distance. Let Q be a probability measure on M whose support 
is compact and is contained in a coordinate neighborhood (U, ¢) . Assume 
that (i) the intrinsic mean f.LI = f.LF exists, (ii) the map ()---+ (ptP) 2(B, u) is 
twice continuously differentiable on <P(U) for each u E ¢(U) and A, defined 
by (2.12), is nonsingular. Then the conclusions of Theorem 2.1 hold for the 
intrinsic sample mean f.Ln,I = f.Ln ,F of CJn = ~ L:f=l o x i, with f.L = ¢(f.LI) . 

We now prove one of the main results of this section. 

THEOREM 2.2 (CLT for intrinsic sample means) . Let (M,g) be a Rie
mannian manifold and let p = p9 be the geodesic distance. Let Q be a prob
ability measure on M whose support is contained in a closed geodesic ball 
Br = Br(xo) with center xo and radius r which is disjoint from the cut locus 
C(xo) . Assume r < 4[<, where K 2 is the supremum of sectional curvatures 
in Br if this supremum is positive, or zero if this supremum is nonposi
tive. Then (a) the intrinsic mean f.LI (of Q) exists, and (b) the conclusion 
of Theorem 2.1 holds for the image f.Ln = ¢(J.Ln,r) of the intrinsic sample 
mean f.Ln,r of CJn = ~ 2:::~1 Oxu under the inverse¢ of the exponential map, 
¢ = (Expxo )-1. 

PROOF. (a) It is known that under the given assumptions, there is a 
local minimum /-LI , say, of the Frechet function F which belongs to Br and 
that this minimum is also the unique minimum in B 2r [30, 34, 40). We now 
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show that J.ti is actually the unique global minimum of F. Let p E (B2r)c. 
Then p(p,x) > r, \1 x E Br. Hence 

(2.14) F(p) = ~ p2(p, x)Q(dx) > ~ r 2Q(dx) = r 2
. 

}Br }Br 
On the other hand, 

(2.15) F(J.ti) :SF(xo) = /s,. p2(x0,x)Q(dx) :Sr2
, 

proving F(p) > F(J.ti ). 
(b) In view of Corollary 2.1, we only need to show that the Hessian matrix 

A= A(J.t) ofF o q;-1 at J.t := ¢(J.tJ) is nonsingula.r , where¢= Exp;;-
0
1 . Now 

according to [30L Theorem 1.2, for every geodesic curve 1(t) in Br , t E (c, d) 
for some c < O,d > 0, 

(2.16) (c< t <d). 

Let 'ljJ = ExpJ.I-
1 

denote the exponential map at J.ti , and let 1 (t) be the unique 
geodesic with 1 (0) = f..ti and i'(O) = v, so that 1(t) = 'lj;(tv). Here we identify 
the tangent space Tlk1 M with ~d . Applying (2.16) to this geodesic (at t = 0) , 
and writing G = F o 'lj;, one has 

(2.17) (Vv # 0) , 

that is, the Hessian of G is positive definite at 0 E ~d. If xo = J.ti, this 
completes the proof of (b). 

Next let xo # f..tl · Now Fo ¢ - 1 =Go ('lj;- 1 o¢ - 1) on a domain that includes 
J.t = ¢(J.ti) = (Expx

0
)-

1(J.tJ) . Write 'lj;-1 o ¢-1 =f. Then in a neighborhood 
of J.t , 

(2.18) 

o2(G of) ofJ ofj' 

0 0 
, (u) = "'(DjD3·,G)(f(u))~(u)~(u) 

ur ur ~ uu1 uu1 

J,J 
02 fj 

+ 2;-(DjG)(f(u)) our our' (u) . 
J 

The second sum in (2.18) vanishes at u = J.t , since (DjG)(f(J.t)) = (DjG)(O) = 
0 as f(J.t) = 'lj;-1q;-1(J.t) = 'lj;-1(J.t£) = 0 is a local minimum of G. Also f is a 
diffeomorphism in a neighborhood of f..t· Hence, writing Ar,r' (J.t) as the (r, r1

) 

element of A(J.t) , 

o2 (Fo ¢-1) ofJ ojj' 
Arr·'(J.t) = 

0 
. 
0 1 (J.t) = "'(DjDj'G)(O)~(J.t)!.)f(J.t) . 

' U7 ur L....., uur uur j,j' 

This shows, along with (2.17), t hat A= A(J.t) is positive definite. 0 
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REMARK 2. 2. If the supremum of the sectional curvatures (of a complete 
manifold M) is nonpositive, and the support of Q is contained in Br, then 
the hypotheses of Theorem 2.2 are satisfied, and the conclusions (a), (b) 
hold. One may apply this even with r = oo. 

REMARK 2.3. The assumptions in Theorem 2.2 on the support of Q for 
the existence of f.LJ are too restrictive for general applications. But without 
additional structures they cannot be entirely dispensed with, as is easily 
shown by letting Q be the uniform distribution on t he equator of S2 . For the 
complex projective space lf:_pd/2 , d even, necessary a.nd sufficient condit ions 
for the existence of the intrinsic mean f.LI of an absolutely continuous (w.r.t. 
the volume measure) Q with radially symmetric density are given in [33, 39]. 

It may be pointed out that it is the assumption of some symmetry, that 
is, the invariance of Q under a group of isometries, that often causes the in
trinsic mean set to contain more than one element (see, e.g., [8], P roposition 
2.2) . T he next result is, therefore, expected to be more genera.lly applicable 
than Theorem 2.2. 

THEOREM 2.3 (CLT for intrinsic sample means). Let Q be absolutely 
continuous w.r.t. the volume measure on a Riemannian manifold (M,g) . 
Assume that (i) J.LI exists, (ii) the integrability conditions (2.9) hold, (iii) the 
Hessian matrix A ofF o ¢-1 at p, = <P(J.Lr) is nonsingular and (iv) the co-

variance matrix C of w(Xi; p,) is nonsingular. Then fo(J.Ln - p,) ~ N(O, r), 
wher·e r =A - 1C(At)-1 . 

This theorem follows from Theorem 2.1 and Remark 2.1. 
In order to obtain a confidence region for f.J-:F using the CLT in Theo

rem 2.1 in the traditional manner, one needs to estimate the covariance 
matrix r =A -lc(At)-1 . For this one may use proper estimates of A a.nd C, 
namely, 

(2.19) 
A A</> 
C= CovQn, 

['-1 = A_t(;-1 A. 

The following corollary is now immediate. Let X~ 1_a denote the (1 - a)th 
quantile of the chi-square distribution with d deg1:ees of freedom. 

COROLLARY 2.2. Under the hypothesis of Theorem 2.1 , if Cis nonsin
gular, a confidence region for f.J-:F of asymptotic level1- a is given by Un,a := 

<P - 1 ( Dn,a), where Dn,a = { V E <P(U) : n(JJ-n - V) t :f-l (J.Ln - V) :::; X~,1-a} · 
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EXAMPLE 2.2. In the case of the sphere 8 2 from Example 2.1 , it fol
lows that if we consider an arbitrary data point u = ( u1, u2), and a second 
point e = LogP). = (B1 , B2) , and evaluate the matrix of second-order partial 
derivatives w.r.t. el, e2 of 

(2.20) G(u, B)= arccos2 (cos llu ll + si~~~ll (u1B1 + u2B2
)- ~ IIB I I 2 cos llull), 

then 

(2.21) EJ2G (u· 0 _ 2u1·us ( 1 _ llull ) 2<51·s llull 
aer aes ) ) - ll 'ttll2 tanllull + tan llull ) 

where brs is the Kronecker symbol and llull2 = (u1) 2 + (u2 ) 2 . The matrix 
A= (.Arr' )r,T'=1,2 has the entries 

(2.22) 

Assume 6 is the sample covariance matrix of Uj, j = 1, . .. , n; a large sample 
confidence region for the intrinsic mean is given by Corollary 2.2 with J.Ln = 0. 

We now turn to the problem of bootstrapping a confidence region for 
f..L:F· Let Xtn be i.i.d. with common distribution CJn (conditionally, given 

' 
{Xi : 1 ::; i ::; n}) . Write Xi n = ¢(Xi n), 1 ::; i ::; n, and let J.L~ be a measurable 

selection from the Frechet mean s~t of Q;:cf> := ~ 2:::~1 bx~ . Let E~ a: be a 
t ,n ' 

subset of <P(U), such that P* (J.L~- J.Ln E E~,a:) ~ 1 -a in probability, where 

P * denotes the probability under CJn · 

COROLLARY 2.3. In addition to the hypothesis of Theorem 2.1, assume 
C is nonsingular. Then ¢- 1 ( { (J.Ln- E~ a:) n <P(U)}) is a confidence region for 
f..L:F of asymptotic level (1- a) . ' 

PROOF. One may write (2.7) and (2.8) with J.L and J.Ln replaced by 
J.Ln and j.L~, respectively, also replacing xi by Xt in (2.8). To show that a new 
version of (2.11) holds with similar replacements (also replacing A by A), 
with a <5~ (in place of 8n) going to zero in probability, one may apply Cheby
shev's inequality with a first-order absolute moment under CJn , proving 
that A* -A goes to zero in probability. Here A*=~ L~l(Grad w)(Xi;J.L~). 
One then arrives at the desired version of (2. 7), replacing J.Ln, J.L, A, Xi by 
J.L~ , J.Ln, A, Xi, respectively, and with the remainder (corresponding to 8~) 
going to zero in probability. 0 
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REMARK 2.4. In Corollary 2.3 , we have considered the so-called per
centile bootstrap of Hall [25] (also see [17]), which does not require the com
putation of the standard error A. For this as well as for the CLT-based 
confidence region given by Corollary 2.2, one can show that the coverage 
error is no more than Op(n-df(d+l)) or O(n-d/(d+ l )), as the case may be 
[4]. One may also use the bootstrap distribution of the pivotal statistic 
n(f.Ln - f.L )Tf'-l (f.Ln - f.L) to find c~ a such that 

' 

(2.23) 

to find the confidence region 

(2.24) D~,a = {v E </>(U) :n(f.Ln- vff'- 1(!-Ln- v):::; c~ ,a}· 

In particular, if Q has a nonzero absolutely continuous component w.r.t. the 
volume measure on !Yf, then so does Q4> w.r.t. the Lebesgue measure on <f>(U) 
(see [13], page 44) . Then assuming (a) c~a is such that the ?*-probability 
in (2.23) equals 1- a+ Op(n- 2) and (b), some additional smoothness and 
integrability conditions of the third derivatives of \]! , one can show that the 
coverage error [i.e., the difference between 1- a and P(f.L E D~,a)l is Op(n- 2) 

(see [5, 6, 12, 24, 25]). It follows that the coverage error of the confidence 
region <f>- 1 (D~,a n </>(U)) for f.L:F is also O(n-2). We state one such result 
precisely. 

COROLLARY 2.4 (Bootstrapping the intrinsic sample mean). Suppose 
the hypothesis of Theorem 2.3 holds. Then 

supiP*(n(f.L~- f.Lnff'*- 1 (!-L~- f.Ln):::; r) 
r>O 

- P(n(f.Ln- ~-Lff'-1 (!-Ln- f.L):::; r)l = Op(n- 2
), 

and the coverage error of the pivotal bootstrap confidence region is= Op(n-2 ). 

REMARK 2.5. The assumption of absolute continuity of Q in Theorem 
2.3 is reasonable for most applications. Indeed this is assumed in most para
metric models in directional and shape analysis (see, e.g., [15, 52]). 

REMARK 2.6. The results of this section may be extended to the two
sample problem, or to paired samples, in a fairly straightforward manner . 
For example, in the case of pajred observations (Xi, Yi), i = 1, . .. , n, let Xi 
have (marginal) distribution Q, and intrinsic mean f.LI , and let Q2 and VJ 

be the corresponding quantities for }i. Let </> = Exp;
0
1 for some xo, and let 

f.L, v and f.Ln, Vn be the images under </> of the intrinsic population and sample 
means. Then one arrives at the following [see (2.13)] : 

(2.25) Vn(f.Ln- f.L)- v/n(vn- v) £ N(O, r), 
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where r is the covariance matrix of A!1\lf(Xi; J.t) - A21W(fi; v). Here Ai is 
the Hessian matrix ofF o ¢-1 for Qi (i = 1, 2). Assume r is nonsingular. 
Then a CLT-based confidence region for 1 := J.t- v is given in terms of 
In := J.tn- vn by { v E JRd : n( In- v )r -l (In- v) ~ X~,l-oJ . Alternatively, one 
may use a bootstrap estimate of the distribution of Vn(ln - 1) to derive a 
confidence region. 

In Section 5 we consider two applications of results in this section (and 
one application of the results in Sections 3 and 4). Application 1 deals with 
the data from a paleomagnetic study of the possible migration of the Earth's 
magnetic poles over geological time scales. Here M = S 2 and the geodesic 
distance between two points is the arclength between them measured on the 
great circle passing through them. 

Application 3 analyzes some recent three-dimensional image data on the 
effect of a (temporary) glaucoma-inducing treatment in 12 Rhesus monkeys. 
On each animal k = 4 carefully chosen landmarks are measured on each 
eye-the normal eye and the treated eye. For each observation (a set of 
four points in JR3) the effects of translation, rotation and size are removed 
to obtain a sample of 12 points on the five-dimensional shape orbifold :Ej. 
We use the so-called three-dimensional Bookstein coordinates to label these 
points (see [15], pages 78- 80) . In order to apply Theorem 2.3 (i.e. , its analog 
indicated above), a somewhat fiat Riemannian structure is chosen so that 
the necessary assumptions can be verified. 

3. The CLT for extrinsic sample means and confidence regions for the 
extrinsic mean. From Theorem 2.1 one may derive a CLT for extrinsic 
sample means similar to Corollary 2.1. In this section, however, we use an
other approach which, for extrinsic means, is simpler to apply and generally 
less restrict ive. 

Recall that the extrinsic mean /-lj,E(Q) of a nonfocal probability measure 
Q on a manifold M w.r.t. a.n embedding j : M --t JR\ when it exists, is given 
by /-lj ,E(Q) = j-1(Pj(J.t)) , where /-lis the mean of j(Q) a.nd Pj is the projec
t ion on j(M) (see [8], Proposition 3.1, e.g.). Often the extrinsic mea.n will 
be denoted by J.LE(Q) , or simply J-lE, when j and Q are fixed in a particular 
context. To ensure the existence of the extrinsic mean set, in this section we 
will assume that j(M) is closed in JRk . 

Assume (X1 , ... , Xn) are i.i.d. M-valued ra.ndom objects whose common 
probability distribution is Q, and let XE := J.LE(Qn) be the extrinsic sample 
mean. Here Qn = ~ LJ=l bxi is the empirical distribut ion. 

A CLT for the extrinsic sample mean on a submanifold M of JRk (with j 
the inclusion map) was derived by Hendriks and Landsman [27] and, inde
pendently, by Patrangenaru [44] by different methods. Differentiable man
ifolds that are not a priori submanifolds of JRk arise in new areas of data 
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analysis such as in shape analysis, in high-level image analysis, or in signal 
and image processing (see, e.g., [15, 16, 22, 31, 32, 33, 42, 51]) . These man
ifolds, known under the names of shape spaces and projective shape spaces, 
are quotient spaces of submanifolds of JR.k (spaces of orbits of actions of Lie 
groups), rather than submanifolds of JR.k . Our approach is a generalization of 
the adapted frame method of Patrangenaru [44] to closed em beddings in JR.k . 
This method leads to an appropriate dimension reduction in the CLT and, 
thereby, reduces computational intensity. This method extends the results 
of Fisher et al. [19] who considered the case M = Sd. We expect that with 
some effort the results of Hendriks and Landsman [27] may be modified to 
yield the same result. 

Assume j is an embedding of a d-dimensional manifold M such that 
j(M) is closed in JR.k, and Q is a j -nonfocal probability measure on M 
such that j(Q) has finite moments of order 2 (or of sufficiently high order 
as needed). Let J..L and E be, respectively, the mean and covariance ma
trix of j(Q) regarded as a probability measure on JR.k . Let F be the set of 
focal points of j(M), and let Pj :Fe~ j(M) be the projection on j(M). 
Pj is differentiable at J..L and has the differentiability class of j(M) around 
any nonfocal point. In order to evaluate the differential d14Pj we consider 
a special orthonormal frame field that will ease the computations. Assume 
p ~ (h(x) , ... , !d(x)) is a local frame field on an open subset of M such that, 
for each x EM, (dj(JI(x)), ... ,dj(Jd(x))) are orthonormal vectors in JR.k . A 
local frame field ( e1 (p), e2 (p), ... , ek (p)) defined on an open neighborhood 
U ~ JR.k is adapted to the embedding j if it is an orthonormal frame field 
and V'xEy-1(U), (e1.(j(x))=dpj(fr(x)), T=1, ... ,d. Let e1,e2, .. . ,ek be 
the canonical basis of JR.k and assume ( e1 (p), e2 (p), ... , ek (p)) is an adapted 
frame field around Pj(J..L) = j(J..Le). Then dJ.LPj(eb) E TP;(J.L) j(M) is a linear 
combination of e1 (Pj(J..L)), e2(Pj(J..L) ), ... , ed(Pj(J..L)) : 

(3.1) dJ.LPj(eb) = L (dJ.LPj(eb)) · ea(Pj(J..L))ea(Pj(J..L)) . 

By the delta method, n112(Pj(j(X))- Pj(J..L)) converges weakly to N(O, f:
14
), 

where j(X) = ~ L:;~1 j(Xi) and 

(
3
.
2
) ~ = [~ d"P;( eo) · e,.( P;(l' ))e..( P; (!')) Ll, .• J: 

X [LdJ.LPj(eb) · ea(Pj(J..L))ea(Pj(J..L))J:=l, ... ,k· 

Here f:is t he covariance matrix of j(X1) w.r.t. the canonical basis e1 , e2, ... , ek· 
The asymptotic distribution N(O, f:J.L) is degenerate and can be regarded as 
a distribution on TP;(J.L).i(M), since the range of d14Pj is TP;(J.L)j(M). Note 
that 

for a = d + 1, ... , k . 
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REMARK 3.1. An asymptotic distribution of the extrinsic sample mean 
can be obtained as a particular case of Theorem 2.1. The covariance matrix 
in that theorem depends both on the way the manifold is embedded and 
on the chart used. We provide below an alternative CLT, which applies to 
arbitrary embeddings, leads to pivots and is independent of the chart used. 

The tangential component tan(v) of v E JRk w.r.t. the basis ea(Pj(f..l)) E 
Tpj(JJ.)j(M) ,a = 1, ... , d, is given by 

(3.3) 

Then the random vector (dJ.I-6j)-1(tan(Pj(j(X))- Pj(f..l))) = l::~=l X~ fa has 
the following covariance matrix w.r.t. the basis h(f..lE) , . . . ,Jd(f..lE): 

Ej,E = ea(Pj(f..l))tEJJ.eb(Pj(f..l)h<a,b<d 

(3.4) = [:~= dJJ.Pj(eb) · ea(Pj(f..l))la=~, ... ,d~ 
x [2.: dJ.LPj(eb) · ea(Pj(f..l)) J:=l, ... ,d 

DEFINITION 3.1. The matrix Ej,E given by (3.4) is the extrinsic co
variance matrix of the j-nonfocal distribution Q (of X1 ) w.r.t. the basis 
fi(f..lE) , · · ·, fd(f..lE)· 

When j is fixed in a specific context, the subscript j in Ej,E will be 
omitted. If, in addition, rank ~J.L = d, Ej,E is invertible and we define the 
j-standardized mean vector 

(3.5) - . - · 1/2 . - 1/2 -1 -d 1' ZJ,n - . n EJ,E (Xj, .. . ,Xj) . 

PROPOSITION 3.1. Assume {Xr }r=l, ... ,n is a random sample from the 
j -nonfocal distribution j(Q), and let f..l = E(j(X1)) and assume the extrin
sic covariance matrix Ej,E of Q is finite. Let ( e1 (p) , e2 (p), .. . , ek (p)) be an 
orthonormal frame field adapted to j . Then (a) the extrinsic sample mean 
X E has asymptotically a normal distribution in the tangent space to M at 
f..lE(Q) with mean 0 and covariance matrix n-1Ej,E, and (b) ifEj,E is non
singular, the j -standardized mean vector Zj,n given in (3.5) converges weakly 
to N(O,Id)· 

As a particular case of Proposition 3.1, when j is the inclusion map of a 
submanifold of JRk, we get the following result for nonfocal distributions on 
an arbitrary closed submanifold M of JRk: 

COROLLARY 3.1. Assume M ~ JRk is a closed submanifold of JRk . Let 
{Xr }r=l, ... ,n be a random sample from the nonfocal distribution Q on M , 
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and let!-"= E(X1) and assume the covariance matrix + of j(Q) is finite. 
Let ( e1 (p), e2 (p), .. . , ek (p)) be an orthonormal frame field adapted to M . Let 
L:E := L:j,E, where j : M -JRk is the inclusion map. Then (a) n 112 tan(j(X E)
j(f-"E)) converges weakly to N(O, L:E), and (b) if+ induces a nonsingular bi
linear form on Tj (J.Le) j(M), then 11Zj,nll2 converges weakly to the chi-square 
distribution X~ . 

EXAMPLE 3.1. In the case of a hypersphere in JRk, j(x) = x and Pj = 
PM. We evaluate the statistic 11Zj,nll2 = nii:Ej,E- 112 tan(PM(X)- PM(!-"))112 . 

The projection map is PM(x) = xfllxll. PM has the following property: if 
v =ex, then dxPM(v) = 0; on the other hand, if the restriction of dxPM to 
the orthocomplement of lRx is a conformal map, that is, if v · x = 0, then 
dxPM(v) = llxll-1v. In particular, if we select the coordinate system such 
that x = llx llekl then one may take ea(PM(x)) = ea, and we get 

Since ek(PM(!-")) points in t he direction of f-J, , dJ.LPM(eb) ·f-J, = 0,\::1 b = 1, ... , k-
1, and we get 

(3.6) L:E = 111-"11-2 E([X · ea(l-"/111-"ll)]a=l, ... ,k- l[X · ea (I-"/111-"II)J~=l, ... ,k-1) 

which is the matrix Gin formula (A.1) in [19]. 

REMARK 3.2. The CLT for extrinsic sample means as stated in Propo
si tion 3.1 or Corollary 3.1 cannot be used to construct confidence regions 
for extrinsic means, since the population extrinsic covariance matrix is un
known. In order to find a consistent estimator of L:j,E, note that j(X) is 
a consistent estimator of f-J,, dj(X) Pj converges in probability to dJ.tPj , and 

ea(Pj(j(X))) converges in probability to ea(Pj(!-")) and, further, 

is a consistent estimator of +· It follows that 

(3.7) 

is a consistent estimator of :EJ.L, and tanPj(j(X)) vis a consistent estimator of 
tan(v) . 
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If we take the components of the bilinear form associated with the ma
trix (3. 7) w.r.t. e1 (Pj(j(X))), e2(P7(j(X))), ... , ed(Pj(j(X) )), we get a con
sistent estimator of "Ej,E given by 

(3.8) 
G(j,X) = [[L:>j(x)Pj(eb) · e(t(Pj(j(X)))L=1, .. ,dJ · Sj,n 

x [[L dj(X)Pj(eb) · e(t(Pj(j(X)))L=1, ... ,J. 
and obtain the following results. 

THEOREM 3.1. Assume j: M-+ JRk is a closed embedding of M in JRk . 
Let {Xr }r=1, ... ,n be a random sample from the j -nonfocal distribution Q, and 
let p, = E(j(X1 )) and assume .i(X1 ) has finite second-order moments and the 
extrinsic covariance matrix Ej,E of X1 is nonsingular. Let (e1(p), e2(p), .. . , ek(p)) 
be an orthonormal frame field adapted to j . If G(j , X) is given by (3.8), then 
for n large enough G(j, X) is nonsingular (with probability converging to 1} 
and (a) the statistic 

(3.9) 

converges weakly to N(O,Id) , so that 

(3.10) 

converges weakly to x~, and (b) the statistic 

(3.11) n 112G(j, X)- 112 tanP;(j(X)) (Pj(j(X))- Pj(f.t)) 

converges weakly to N(O, Id) , so that 

(3.12) n ii G(j, X)-ll2tanP;(j(X))(Pj(j(X))- Pj(f.t))ll2 

converges weakly to X~ · 

COROLLARY 3.2. Under the hypothesis of Theorem 3.1 , a confidence re
gion for p, E of asymptotic Levell - a is given by (a) Cn,rx : = r 1 ( U n,o:), where 
Un,a = {p, E j(M) :n!IG(j,X)-112 tan(Pj(j(X))- Pj(f.t))lf ~ X~,1_0J, or by 
(b) Dn,rx := ;-1(Vn,a-), where Vn,rx = {p, E j(M) : niiG(j, X) - 112 X tanP;(j(X))(Pj(j(X)) 

Pj(l.t)) ll2 ~ X~,l-a-} · 

Theorem 3.1 and Corolla1·y 3.2 involve pivotal statistics. The advantages 
of using pivotal statistics in bootstrapping for confidence regions a1·e well 
known (see, e.g., [1, 2, 5, 9, 24, 251) . 

At this point we recall the steps that one takes to obtain a bootstrapped 
statistic from a pivotal statistic. If {Xr }r=l, . . ,n is a random sample from 
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the unknown distribution Q, and { X;}r=l, .. ,n is a random san1ple from the 
empirical Qn, conditionally given {Xr }r=1, ... ,n, then the statistic 

given in Theorem 3.1(a) has the bootstrap analog 

T(X*, Qn) = niiG(j, X*)-112 tanPj(j(X))(Pj(j(X*))- Pj(j(X)))f 

Here G(j, X *) is obtained from G(j, X) by substituting Xi , . . . , X~ for X1 , ... , Xn , 
and T(X*, Qn) is obtained from T(X, Q) by substituting Xi , .. . , X~ for 
X1 , ... , Xn, j(X)) for J.L and G(j,X *) for G(j,X ). 

The same procedure can be used for the vector-valued statistic 

V(X, Q) = n 112G(j, X)- 112 tan(P1(j(X)) - Pj(J.L)) , 

and as a result we get the bootstrapped statistic 

V*(X*, Qn) = n112G(j, X*)-112 tanPj(j(X)) (Pj(j(X*))- Pj (j(X) )) . 

For the rest of this section, we will assume that j(Q) , when viewed as 
a measure on the an1bient space ~k, has finite moments of sufficiently high 
order. If M is compact, then this is automatic. In the noncompact case finite
ness of moments of order 12, along with an assumption of a nonzero abso
lutely continuous component, is sufficient to ensure an Edgeworth expansion 
up to order O(n- 2) of the pivotal statistic V(X, Q) (see [5, 6, 12, 19, 24]) . 
We then obtajn the following results: 

THEOREM 3.2. Let {Xr }r=l, ... ,n be a random sample from the j-nonfocal 
distribution Q which has a nonzero absolutely continuous component w. r. t. 
the volume measure on M induced by j . Let J.L = E(j(X1)) and assume the 
covariance matrix f: of j(X1) is defined and the extrinsic covariance matrix 
Ej,E is nonsingular and let (e1 (p), e2(p) , ... , ek(p)) be an orthonormal frame 
field adapted to j . Then the distribution function of 

niiG(j,x) - 112 tan(Pj(j(X))- Pj(J.L))II 2 

can be approximated by the bootstrap distribution function of 

niiG(j, X*)-112 tanPj(j(X)) (Pj (j(X*))- Pj(j(X) ))112 

with a coverage error Op(n-2) . 

One may also use nonpivotal bootstrap confidence regions, especially 
when G(j, X) is difficult to compute. The result in this case is the following 
(see [4]). 
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PROPOSITION 3.2. Under the hypothesis of Proposition 3.1, the distribu
tion function of n il tan(Pj(j(X))- Pj(J.L)) II2 can be approximated uniformly 
by the bootstrap distribution of 

nlltanP
1
(j(X))(Pj(j(X*)) - Pj(j(X)))II

2 

to provide a confidence region for f.LE with a coverage error no more than 
Op(n-d/(d+l)) . 

REMARK 3.3. Note that Corollary 3.2(b) provides a computationally 
simpler scheme than Corollary 3.2(a) for large sample confidence regions; but 
for bootstrap confidence regions Theorem 3.2, which is the bootstrap analog 
of Corollary 3.2(a), yields a simpler method. The corresponding 100(1 - a)% 
confidence region is C~,o: := r1 (U~,o:) with U~,o: given by 

(3.13) 
where ci- a is the upper 100(1 - a)% point of the values 

(3.14) niiG(j, X*)-112 tanP
1
(j(X)) (Pj(j(X*)) - Pj (j(X))) 112 

among the bootstrap resa.mples. One could also use the bootstrap analog 
of the confidence region given in Corollary 3.2(b) for which the confidence 
region is D* :=J'-1(\1:* ) with V.* o-iven by n,o: n,a n,o: t> 

Vr:' a:= {J.L E j(M): 
(3·15) , nllG(j, X)-112 tanPj{j{X)) (Pj (j(X)) - Pj (J.L)) 112 :S d!-o:} , 

where di-a is the upper 100(1 - a)% point of the values 

(3.16) n llG(j, X*)- 112 tan Pj(j(X*)) (Pj (j(X*)) - Pj(j(X) )) 112 

among the bootstrap resamples. The region given by (3.13)- (3.14) has cov
erage error Op(n-2 ) . 

4. Asymptotic distributions of sample mean axes, Procrustes mean shapes 
and extrinsic mean planar projective shapes. In this section we focus on 
the asymptotic distribution of sample means in axial data analysis and 
in planar shape data analysis. The axial space is the ( N - 1 )-dimensional 
real projective space M = ~pN-l which can be identified with the sphere 
sN- l = {x E JR!VIIIxll2 = 1} with antipodal points identified (see, e.g., [41]). 
If [x] = {x, - x} E ~pN-l, llxll = 1, the tangent space at [x] can be described 
as 

(4.1) 
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We consider here the general situation when the distribution on ~pN-1 

may not be concentrated. Note that for N odd, ~pN- 1 cannot be embedded 
in ~N, since for any embedding of ~pN- 1 in ~k with N odd, the first Stiefel
Whitney class of the normal bundle is not zero ([43], page 51). 

The Veronese- Whitney embedding is defined for arbitrary N by the for
mula 

(4.2) llxll = 1. 

The embedding j maps ~pN-I into a (!N(N + 1) - !)-dimensional Eu
clidean hypersphere in the space S(N, ~)of real N x N symmetric matrices, 
where the Euclidean distance do between two symmetric matrices is 

do(A,B) = Tr((A- B)2
). 

T his embedding, which was already used by Watson [52], is preferred over 
other embeddings in Euclidean spaces because it is equivariant (see [35]). 
This means that the special orthogonal group SO(N) of orthogonal matrices 
with determinant + 1 acts as a group of isometries on ~pN-1 with the metric 
of constant positive curvature; and it also acts on the left on S+(N,~), 

the set of nonnegative definite symmetric matrices with real coefficients, by 
T · A= TATt . Also, j(T · [x]) = T · j([x]), \IT E SO(N), \f[x] E ~pN-l . 

Note that j(~pN-l) is the set of all nonnegative definite matrices in 
S(N,~) of rank 1 and trace 1. The following result appears in [8]. 

PROPOSITION 4.1. (a) The set :F of the focal points of j(~pN- 1 ) in 
S+(N, R) is the set of matrices in S +(N, R ) whose largest eigenvalues are 
of multiplicity at least 2. (b) The projection Pj : S+(N,~)\:F ---t j(~pN-l) 
assigns to each nonnegative definite symmetric matrix A with a highest 
eigenvalue of multiplicity 1, the matrix j([m]), where m(llmll = 1) is an 
eigenvector of A corresponding to its largest eigenvalue. 

The following result of Prentice [46] is also needed in the sequel. 

PROPOSITION 4 .2 ([46]). Assume [XrJ, IIXr ll = 1, r = 1, . . . , n, is a ran
dom sample from a j -non focal probability measure Q on ~pN - 1 . Then the 
j -extrinsic sample covariance matrix G(.j,X) is given by 

(4.3) 
G(j, X)ab = n - 1(7JN -1Ja) - 1(7JN -7]&) -

1 

X 'L)ma · Xr)(mb · X r)(m · X r)2
, 

r 

where 1Ja, a= 1, . . . , N, are eigenvalues of K := n-1 2::~=1 X 7.x; in increas
ing order and ma, a= 1, .. . , N , are corresponding linearly independent unit 
eigenvectors. 
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Here we give a proof of ( 4.3) based on the equivariance of j to prepare the 
reader for a similar but more complicated formula of the analogous estimator 
given later for e,pk- 2. 

Since the map j is equiva.riant, w.l.o.g. one may assume that j(XE) = 
Pj(j(X)) is a diagonal matrix, X E = [mN] =[eN] and the other unit eigen
vectors of j(X) =D are ma = ea, 'if a= 1, ... , N -1. We evaluate doPj . Based 
on this description of 1(x1IRPN-l, one can select in TP;(o)J(JRPN-l) the or
thonormal frame ea(Pj (D))= d[eNJj(ea)· Note that S(N, R) has the orthoba
sis Fk, b S a, where, for a < b, the matrix Fg has all entries zero except for 
those in the positions (a, b), (b, a) that are equal to 2-112; also F: = j([eaD · 
A straightforward computation shows that if 'f/a , a= 1, ... , N, are the eigen
values of D in their increasing order, then doPj(Fg) = 0, 'if b Sa< N and 
doPj(F/!) = ('IJN- Tfa)-1ea(Pj(D)); from this equation it follows that, if 
.i(X) is a diagonal matrix D, then the entry G(j,X)ab is given by 

G(j, X)ab = n -l(1JN - 7Ja)- 1(7JN -'IJb) - 1 LX~ x:(x/.")2
. 

1' 

Taking j(X) to be a diagonal matrix and ma = ea, (4.3) follows. 
Note that JJ-E,j = [vNJ, where (va),a = 1, ... ,N, are unit eigenvectors of 

E(XXt) = E(j(Q)) corresponding to eigenvalues in their increasing order. 
Let T([v]) = niiG(j,x)-112 tan(Pj(j(X))- Pj(E(j(Q))))II2 be the sta.tistic 
given by (3.10) . We can derive now the following theorem as a special case 
of Theorem 3.1(a) . 

THEOREM 4.1. Assume j is the Veronese- Whitney embedding of JRpN- 1 

and {[X.,.J, JJ X.,.JJ = 1,7' = 1, ... ,n} is a random sample from a j-nonfocal 
probability measure Q on JRpN- 1 that has a nondegenerate j-extrinsic vari
ance. Then T([v]) is given by 

( 4.4) T([v]) = nvt[(va)a=1, ... ,N -1]G(j, X) - 1 [ (va)a=1, ... ,N -l]tv, 

and, asymptotically, T([v]) has a X~-l distribution. 

PROOF. Since j is an isometric embedding and the tangent space T[v,v 1JRPN -l 
has the orthobasis 111, . .. , IlN - I; if we select the first elements of the adapted 
moving frame in Theorem 3.1 to be ea(Pj(IIE,j)) = (d[v,vjj)(va) , then the ath 
tangential component of Pj(j(X)) - Pj(v) w.r.t . this basis ofTP;(E(j(Q)})j(JRPN-1) 
equals up to a sign the ath component of m- liN w.r.t . the orthobasis 
111, ... , liN-1 in T(v,v]IRRN- 1 , namely v~m. The result follows now from The
orem 3.1(a) . 0 

REMARK 4.1 . If we apply Theorem 3.1(b) to the embedding j, we obtain 
a similar theorem due to Fisher, Hall, Jing and Wood [19], where T([v]) is 
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replaced by T([m]). Similar asymptotic results can be obtained for the large 
sample distribution of Procrustes means of planar shapes, as we discuss be
low. Recall that the planar shape space M = 2:~ of an ordered set of k points 
in C at least two of which are distinct can be identified in different ways 
with the complex projective space cpk-2 (see, e.g., [8, 31]). Here we regard 
(:pk - 2 as a set of equivalence classes ([:pk - 2 = S 2k- 3 jS1 where S 2k - 3 is the 
space of complex vectors in ck-1 of norm 1, and the equivalence relation on 
S 2k-3 is by multiplication with scalars in 8 1 (complex numbers of modu
lus 1). A complex vector z = ( z1 , z2 , .. . , zk-1) of norm 1 corresponding to a 
given configuration of k landmarks, with the identification described in [8], 
can be displayed in the Euclidean plane (complex line) with the superscripts 
as labels. If, in addition, r is the largest superscript such that zr # 0, then 
we may assume that zr > 0. Using this representative of the projective point 
[z] we obtain a unique graphical representation of [z], which will be called 
the spherical representation. 

The Veronese- Whitney (or simply Veronese) map is the embedding of 
cpk-2 in the space of Hermitian matrices S(k- 1, C) given in this case by 
j([z]) = zz*, where, if z is considered as a column vector, z* is the adjoint of 
z, that is, the conjugate of the transpose of z . The Euclidean distance in the 
space of Hermitian matrices S(k-1, C) is d~(A, B ) = Tr((A - B )(A - B )*) = 
Tr((A- B)2). 

Kendall [31] has shown that the Riemannian metric induced on j(Cpk-2) 

by do is a metric of constant holomorphic curvature. The associated Rie
mannian distance is known as the Kendall distance and the full group of 
isometries on c p k-2 with the Kendall distance is isomorphic to the special 
unitary group SU(k- 1) of all (k- 1) x (k - 1) complex matrices A with 
A* A= I and det(A) = 1. 

A random variable X= [Z], liZ II= 1, valued in ([:pk - 2 is j -nonfocal if the 
highest eigenvalue of E[Z Z*] is simple, and then the extrinsic mean of X is 
P,j,E = [v], where v E ck- 1, llvll = 1, is an eigenvector corresponding to this 
eigenvalue (see [8]) . The extrinsic sample mean [z]j,E of a random sample 
[zr] = [(z;, . . . , z:-1 )], IIZr·ll = 1, r = 1, .. . , n, from such a nonfocal distribution 
exists with probability converging to 1 as n ---7 oo, and is the same as that 
given by 

(4.5) [z]j,E = [m], 

where m is a highest unit eigenvector of 
n 

(4.6) K -1 """"' * := n ~ZrZ1 • • 

r = 1 

This means that [z]j ,E is the full Procrustes estimate for parametric fami
lies such as Dryden- Mardia distributions or complex Bingham distributions 
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for planar shapes [35, 36]. For this reason, J..lj,E = [m] will be called the 
Procrustes mean of Q. 

PROPOSITION 4 .3. Assume Xr = [ZrJ, IIZ7·11 = 1, r = 1, . . . , n, is a ran
dom sample from a .i -nonfocal probability measure Q with a nondegenerate 
j-extrinsic covariance matrix on <epk-2. Then the j-extrinsic sample co
variance matrix G(j, X) as a complex matrix has the entries 

G(j,X)ab = n-1(f!k-1- fla)- 1('Tlk-1- 'Tlb)- 1 
n 

X 2:)ma. Zr)(mb. z,.)* lmk- 1. Zr l2 . 
(4.7) 

r=1 

The proof is similar to that given for Proposition 4.2 and is based on the 
equivariance of the Veronese-Whitney map j w.r.t. the actions of SU(k -1) 
on <epk-2 and on the set S+(k-1, <C) of nonnegative semidefinite self-adjoint 
(k- 1) by (k - 1) complex matrices (see [8]). Without loss of generality 
we may assume that K in (4.6) is given by K = diag{f!a}a=1, ... ,k- 1 and 
the largest eigenvalue of K is a simple root of the characteristic polyno
mial over <C, with mk- l = ek- l as a corresponding complex eigenvector of 
norm 1. The eigenvectors over IR corresponding to the smaller eigenvalues 
are given by ma = ea, m~ = iea, a= 1, ... , k - 2, and yield an orthobasis for 
T [mk_

1
Jj(<Cpk- 2). For any z E S2k- l which is orthogonal to mk_1 in <ek- 1 

w.r.t. the real scalar product, we define the path lz (t) = [costmk- 1 +sintz] . 
Then Tpi(I<)J(<CPk-2 ) is generated by the vectors tangent to such paths 
lz(t) at t = 0. Such a vector, as a matrix in S(k- 1,<C), has the form 
zmt:_1 + mk_1z* . In particular, since the eigenvectors of K are orthogo
nal w.r.t. the complex scalar product, one may take z = ma, a= 1, ... , k - 2, 
or z = ima, a= 1, ... , k- 2, and thus get an orthobasis in Tpj(I()j(M). When 
we norm these vectors to have unit lengths we obtain the orthonormal frame 

ea(Pj(K)) = d[mk_ 1Jj(ma) = T 112 (mamk-1 + mk- 1m;) , 

e~(Pj(K)) = dlmk_1 Jj(ima) = i2- 112 (mamt:_1 - mk-1m~). 

Since the map j is equivariant we may assume that K is diagonal. In this 
case ma = ea, ea(Pj(K)) = 2- 112 E~-l and e~(Pj(K)) = 2- 112 F~-1, where 
E~ has all entries zero except for those in the positions (a, b) and (b,a) that 
are equal to 1, and Fg is a matrix with all entries zero except for those 
in the positions (a,b) and (b,a) that are equal to i, respectively -i. Just 
as in the real case, a strajghtforward computation shows that di< Pj (E~) = 
dg Pj(Fg) = 0, Va ~ b < k- 1, and 

di<Pj(E~- 1 ) = (7Jk- 1- 'Tla) - 1ea(Pj(K)), 

dgPi(F:- 1
) = (f!k-1- 'Tla)- 1 e~(Pj(K)) . 



665

INTRINSIC AND EXTRINSIC MEANS- II 23 

We evaluate the extrinsic sample covariance matrix G(j, X) given in (3.8) 
using the real scalar product in S(k- 1, C) , namely, U · V = Re'n:( UV*) . 
Note that 

and 

dgPj(Et-1) · ea(Pj(K)) = (TJk-l - TJa)-1800, 

dgPj(Ei- 1) · e~(Pj(K)) = 0 

dgPj(F;-1
) · e~(PJ(K))t = (TJk-l - TJa)- 1Doa. 

dKPJ(Fbk- 1
) · ea(Pj(K)) = 0. 

Thus we may regard G(j, X) as a complex matrix noting that in this case 
we get 

G(j,X)ab = n- 1(1Jk-1 - TJa) - 1(1Jk-1 - TJb) - 1 

(4.8) 
n 

X ~(ea · Zr)(eo · Zr)*lek- 1 · Zrl2 , 

··=1 

thus proving (4.7) when J( is diagonal. The general case follows by equiv
ariance. We consider now the statistic 

T( (X) E • ME)= niiG(j, X) - 112 ta.n(Pj(j(X))- PJ(tLE)) II 2 

given in Theorem 3.1 in the present context of random variables valued in 
complex projective spaces to get: 

THEOREM 4.2. Let Xr = [ZrJ, liZ,. II= 1, 1· = 1, ... , n, be a random sam
ple fr-om a Veronese-nonfocal probability meaS1lTe Q on cpk- 2. Then the 
quantity (3.10) is given by 

(4.9) T([m], [vJ) = n [(m · va)a=I, ... ,k-2]G(j, X)-1 [(m · va)a=I, ... ,k-2]* 

and asymptotically T([m], [vJ) has a X~k-4 distribution. 

PROOF. The tangent space T [vk_
1
JCP"'-2 has the orthobasis v1, ... , vk-2, vi, ... , vz_2. 

Note that since j is an isometric embedding, we may select the first el
ements of the adapted moving frame in Corollary 3.1 to be ea(Pj(tL)) = 
(d[vk_

1
Jj)(va) , followed by e~(Pj(tL)) = (d[vk_ 1 Jj)(v~) . Then the ath tangen

tial component of Pj(j(X)) - Pj(tL) w.r.t. this basis ofTp (tL) .i(CPk-2) equals 
up to a sign the component of m- 1/k-I w.r.t. the orthobasis v1, ... , vk-2 in 
Tfvk_t]cpk- 2 , which is v~m; and the a*th tangential components are given 
by v~tm, and together (in complex multiplication) they yield the complex 
vector [(m · 1/a)a=I, ... ,k-2] · The claim follows from this and from (4.3), as a 
particular case of Corollary 3.1. 0 

We may derive from this the following large sample confidence regions. 
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COROLLARY 4.1. Assume Xr = [Z7.], JIZr II = 1, 1' = 1, ... , n, is a random 
sample from a j-nonfocal pro~ability measure Q on c_ p k-2. An asymptotic 
(1- a) -confidence region for t.t'b( Q) = [v] is given by Ra(X ) = {[v] : T([m], [v]) ::; 
X~k-4,a }, where T (lm], [v]) is given in ( 4.9) . If Q has a nonzero absolutely 

continuous component w. r. t. the volume measure on c_pk- 2 , then the cover
age error of Ra(X ) is of order O(n- 1). 

For small samples the coverage error could be quite large, and a bootstrap 
analogue of Theorem 4.2 is preferable. 

THEOREM 4.3. Let j be the Veronese embedding of c_pk-2 , and let 
Xr = [Zr J, IIZrll = 1, r = 1, ... ,n, be a random sample from a j-nonfocal 
distribution Q on c,pk-2 having a nonzero absolutely continuous component 
w.r.t . the volume measur·e on c.pk-2. A ssume in addition that the restric
tion of the covariance matrix of j(Q) to l[vj](C.Pk- 2 ) is nondegenerate. Let 
J.tE( Q) = [v] be the extrinsic mean of Q. For a resample { Z;}r=l, ... ,n from 
the sample consider the matrix J(* := n-1 2::: z; z;•. Let (ry~)a=l, ... ,k-1 be the 
eigenvalues of I<* in their· increasing order, and let (m~)a=1 , ... ,k- 1 be the 
corresponding unit complex eigenvectors. Let G* (j, X)* be the matrix ob
tained from G(j, X) by substituting all the entries with *-entries. Then the 
bootstrap distribution function of 

T([m]*, [m]) := n[(mk-1 · m~)a=1, ... ,k- 2]G*((j, X)*)-1[(mk- 1 · m~)a=1, ... ,k- 2]* 

approximates the true distribution function of T([m], [v]) given in Theo
rem 4.2 with an error of order Op(n- 2). 

R EMARK 4.2 . For d istributions that are reasonably concentrated one 
may determine a nonpivotal bootstrap confidence region using Corollary 
3.1(a) . The chart used here features affine coordinates in c,pk- 2. Reca ll that 
the complex space c_k-2 can be embedded in c,pk-2, preserving collinearity. 
Such a standard affine embedding, missing only a hyperplane at infinity, is 
( z1 , .. . , zk- 2) --+ [z 1 : .. . : zk- 1 : 1]. This leads to the notion of affine coordi
nates of a point 

to be defined as 

1 2 k-2 z z 
( 

1 k-2) 
(w ,w , .. . ,w ) = zk- 1, .. . , zk- 1 . 

To simplify the notation the simultaneous confidence intervals used in the 
next section can be expressed in terms of simultaneous complex confidence 
intervals. If z = x + iy, w = u + iv, x < u, y < v, then we define the complex 
interval (z, w) = { c =a+ ibla E (x, u), b E (y, v )}. 
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5. Applications. In this last section we consider three applications. 

APPLICATION 1. Here we consider the data set of n =50 South magnetic 
pole positions (latitudes and longitudes) , determined from a paleomagnetic 
study of New Caledonian laterities ([20], page 278). As an example of appli
cation of Section 2, we give a large sample confidence region for the mean 
location of the South pole based on this data. The sample points to a non
symmetric distribution on S2 ; the extrinsic sample mean and the intrinsic 
sample mean are given by 

X E = (0.0105208, 0.199101, 0.979922)t 

and, using X E as the initial input of the necessary minimization for con
structing X I , 

X I= p = (0.004392, 0.183800, 0.982954)t 0 

From Examples 2.1 and 2.2, select the orthobasis e1(p),e2(p) given in (2.3) 
and the logarithmic coordinates u 1, u 2 w.r.t . this basis in TpS2 defined in 
(2.4). Then compute the matrix A given in (2.22), to get, using Corollary 
2.2 , the following 95% asymptotic confidence region for /-LI: 

U = {E>-'Pp(u1e1(P) + u2e2(p)) l 

16.6786(u1 )2 - 2.9806u1u2 + 10.2180(u1 )2 ::; 5.99146}. 

Note that Fisher, Lewis and Embleton ([20], page 112) estimate another 
location parameter, the spherical median. The spherical median here refers 
to the minimizer of the expected geodesic (or, arc) distance to a given point 
on the sphere. For this paleomagnetism data, their sample median is at 
78.9° , 98.4°, while the extrinsic sample mean is 78.5°, 89.4° and the intrinsic 
sample mean is 79.4° , 88.6°. These estimates differ substantially from the 
current position of the South magnetic pole, a difference accounted for by 
the phenomenon of migration of the Earth's magnetic poles. 

APPLICATION 2. As an application of Section 4, we give a nonpivotal 
bootstrap confidence region for the mean shape of a group of eight landmarks 
on the skulls of eight-year-old North American children. The sample used 
is the University School data ([10], pages 400- 405). The data set represents 
coordinates of anatomical landmarks, whose names and position on the skull 
are given in [10]. The data are displayed in Figure 1. (The presentation of 
raw data is similar to other known shape data displays such as in [15], page 
46.) The shape variable (in our case, shape of the eight landmarks on the 
upper mid face) is valued in a planar shape space CP6 (real dimension= 12). 
A spherical representation of a shape in this case consists of seven marked 
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points; in Figure 2 we display a spherical representation of this data set. A 
representative for the extrinsic sample mean (spherical representation) is 

( - 0.67151 + 0.66823i , 0.76939 + 1.05712i, - 1.03159 - 0.15998i, 

- 0.57776 - 0.87257i, 0. 77871 - 1.36178i, 

- 0.17489 + 0.82106i, 1.00000 + O.OOOOOi). 

We derived the nonpivotal bootstrap distribution using a simple program in 
S-Plus4.5, that we ran for 500 resamples. A spherical representation of the 
bootstrap distribution of the extrinsic sample means is displayed in Figure 
3. Here we added a representative for the last landmark (the opposite of the 
sum of the other landmarks since data is centered at 0) . 
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University School Data - Spherical Representation 
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FIG. 2. 

ote that the bootstrap distribution of the extrinsic sample mean is very 
concentrated at each landmark location. This is in agreement with the the
ory, that predicts in our case a spread of about six times smaller than the 
spread of the population. It is also an indication of the usefulness of the 
spherical coordinates. Vve determined a confidence region for the extrinsic 
mean using the six 95% simultaneous bootstrap complex intervals for the 
affine coordinates, as described in Remark 4.2, and found the following com
plex intervals: 
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( -0.677268 + 0.666060i, -0.671425 + 0.672409i), 

(0.767249 + 1.051660i,0.775592 + 1.058960i), 

( -1.036100- 0.161467i, -1.029420- 0.154403i), 

( -0.578941- 0.875168i, -0.574923- 0.871553i), 

(0.777688- 1.366880i, 0.782354- 1.358390i), 
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for w6: 

( -0.177261 + 0.820107i, -0.173465 + 0.824027i). 

APPLICATION 3. This example is relevant in glaucoma detection. Al
though it is known that increased intraocular pressure (lOP) may cause a 
shape change in the eye cup, which is identified with glaucoma, it does not 
always lead to this shape change. The data analysis presented shows that 
the device used for measuring the topography of the back of the eye, as 
reported in [11], is effective in detecting shape change. 

We give a nonpivotal bootstrap confidence region for the mean shape 
change of the eye cup due to IOP. Glaucoma is an eye disorder caused by 
IOP that is very high. Due to the increased lOP, as the soft spot where 
the optic nerve enters the eye is pushed backwards, eventually the optic 
nerve fibers that spread out over the retina to connect to photoreceptors 
and other retinal neurons can be compressed and damaged. An important 
diagnostic tool is the ability to detect, in images of the optic nerve head 
(ONH), increased depth (cupping) of the ONH structures. Two real data
processed images of the ONH cup surface before and after the lOP was 
increased are shown in Figure 4. 

The laser image files are, however, huge-dimensional vectors, and their 
sizes usually differ. Even if we would restrict the study to a fixed size, there 
is no direct relationship between the eye cup pictured and the coordinates 
at a given pixel. A useful data reduction process consists in registration 
of a number of anatomical landmarks that were identified in each of these 
images. Assume the position vectors of these landmarks are X1 , ... , Xk , k 2:: 
4. Two configurations of landmarks have the same shape if they can be 
superimposed after a translation, a rotation and a scaling. The shape of the 
configuration x = (x1 , . . . ,xk) is labelled o(x) and the space E~ of shapes 

.,. 

.. ,,. 
.;y_ 

""' 
~ot 

•• 

JJ' 
· ~~ 

,_....,!0 J)O 

FIG. 4. Change in the ONH topography from normal (left) to glaucomatous (right). 
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of configurations of k points in JRm at least two of which are distinct is the 
shape space introduced by Kendall [31]. 

We come back to the shape of an ONH cup. This ONH region resembles a 
"cup" of an ellipsoid and its border has a shape of an ellipse. In this example 
four landmarks are used. The first three landmarks, denoted by S, T and 
N, are chosen to be the "top, left and right" points on this ellipse, that is 
(when referring to the left eye), Superior, Templar and Nose papilla. The 
last landma1·k V that we call vertex is the point with the largest "depth" 
inside the ellipse area that determines the border of the ONH. Therefore, in 
this example the data analysis is on the shape space of tetrads ~j, which 
is topologically a five-dimensional sphere (see [33], page 38); however, the 
identification with a sphere is nonstandru·d. On the other hand, it is known 
that if a probability distribution on ~~ has small support outside a set of 
singular points, the use of any distance that is compatible with the orbifold 
topology considered is appropriate in data analysis ([15], page 65) since 
the data can be linearized. Our choice of the Riemannian metric (5.3) is 
motivated by considerations of applicability of Theorems 2.2 and 2 .3 and 
computational feasibility. Dryden ru1d Mardia ([15], pages 78- 80) have in
troduced the following five coordinates defined on the generic subset of ~j 
of shapes of a nondegenerate tetrad that they called Bookstein coordinates: 

(5.1) 

v1 = (WI2'WI3 + W22W23 + W32W33)ja, 

v
2 = ((w12W23- wzzw13)

2 

+ (w12W33- W32W13)
2 

+ (w22W33- W23W32)
2

)
112 fa, 

v3 = (w12w14 + w22W24 + W32W34)ja, 

v4 = (ab
112

)-
1
(wf2(wz3W24 +w33W34) +w~z(wl3Wl4 +w33W34) 

+ W~z(WI3'W14 + W23W24)- WI2WI3(WzzW24 + W32W34) 

- W22W32(W23W34 + W33W24) 

- W12'W14 ( WzzW23 + W32W33)), 

V
5 = ( W12W23W34 - W12W33W24 - W13W22W34 

+ W13W32W24 + Wz2W33W14 - W32W23'W14)j(2ab)
1

fZ, 

where 

a= 2(wf2 + W~z + w~2), 
(5.2) b = wf2w~3 + wf2w~3 - 2w12'WI3W22w23 + wf3w~2 + wf3w~2 

- 2w12W13W32W33 + w~3w~2 + wi3w5z- 2wzzw32W23W33 

and 

Wri = xr- (xi+ x2)/2, r = 2, 3,4. 
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These coordinates carry useful geometric information on the shape of the 
4-ad; v1 and v3 give us information on the appearance with respect to the bi
sector plane of [X1X2], v2 and v4 give some information about the "flatness" 
of this 4-ad and v5 measures the height of the 4-ad (X1, X2, X3, X4) relative 
to the distance II X1 - X2 ll - Assume U is the set of shapes o(X) such that 
(X1,X2, X3, X4) is an affine frame in JR3 , and ¢: U--+ JR3k-7 is the map that 
associates to o(X) its Bookstein coordinates. U is an open dense set in E~ , 
with the induced topology. In the particular case k = 4, E~ is topologically 
a five-dimensional sphere and, from a classical result of Smale [48], E~ has 
a differentiable structure diffeomorphic with the sphere S5 . Moreover, if L 
is a compact subset of U, there are a finite open covering U1 = U, . . . , Ut of 
E3 and a partition of unity ¢1, . .. , <Pt, such that ¢1 (o(X)) = 1, l;f o(X) E L. 

We will use the following Riemannian metric on E~ : let (y1, . . . , Y5) be the 
Bookstein coordinates of a shape in U1 and let g1 = dyr + · · · + dyg be a flat 
Riemannian metric on U1 , and for each j = 2, ... , t we consider any fixed 
Riemannian metric gj on Uj . Let g be the Riemannian metric given by 

t 
(5.3) g = "L <Pj9j . 

j = l 

The space (E~,d9) is complete and is flat in a neighborhood of L . In this 
example the two distributions of shapes of tetrads before and after increase 
in lOP are close. Hence L, which contains supports of both distributions, 
consists of shapes of nondegenerate tetrads only. 

Computations for the glaucoma data yield the following results. The p-
value of the test for equality of the intrinsic means was found to be 0.058, 
based on the bootstrap distribution of the chi square-like statistic discussed 
in Remark 2.6. The number of bootstrap resamples for this study was 3000. 
The chi square-like density histogram is displayed in Figure 5. A matrix plot 
for the components of the nonpivotal bootstrap distribution of the sample 
mean differences 'Y; in Remark 2.6 for this application is displayed in Figure 
6. The nonpivotal bootstrap 95% confidence intervals for the mean differ-
ences 'Yj ,j = 1, ... , 5, components of 'Y in Remark 2.6 associated with the 
Bookstein coordinates Vj ,j = 1, ... , 5, are: ( -0.0377073, -0.0058545) for 'Y1, 
(0.0014153, 0.0119214) for "f2, ( -0.0303489, 0.0004710) for 73 , (0.0031686, 0.0205206) 
for 74, ( -0.0101761, 0.0496181) for 'Y5 · ote that the individual tests for 
difference are significant at the 5% level for the first , second and fourth 
coordinates. However, using the Bonferroni inequality, combining tests for 
five different shape coordinates each at 5% level leads to a much higher 
estimated level of significance for the overall shape change. 

APPENDIX 

The data set in Application 3 consists of a library of scanning confocal 
laser tomography (SCLT) images of the complicated ONH topogTaphy [11]. 
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Those images are the so-called mnge images. A range image is, loosely speak
ing, like a digital camera image, except that each pixel stores a depth rather 
than a color level. It can also be seen as a set of points in three dimensions. 
The range data acquired by 3D digitizers such as optical scanners commonly 
consist of depths sampled on a regular grid. In the mathematical sense, a 
range image is a 2D array of real numbers which represent those depths. 
All of the files (observations) are produced by a combination of modules in 
C++ and SAS that take the raw image output and process it. The 256 x 256 
arrays of height values are the products of this software. Another byproduct 
is a file which we will refer to as the "abxy" file. This file contain the fol
lowing information: subject names (denoted by: 1c, 1d, 1e, lf, 1g, 1i, 1j, 1k, 
11, 1n, 1o, 1p ), observation points that distinguish the normal and treated 
eyes and the 10° or 15° fields of view for the imaging. The observation point 
"03" denotes a 10° view of the experimental glaucoma eye, "04" denotes a 
15° view of the experimental glaucoma eye, "11" and "12" denote, respec
tively, the 10° and the 15° view of the normal eye. The two-dimensional 
coordinates of the center (a, b) of the ellipses that bound the 0 H region, 
as well as the sizes of the small and the large axes of the ellipses (x, y), are 
stored in the so-called "abxy" file. To find out more about the LSU study 
and the image acquisition, see [11]. Fi le names (each file is one observa
tion) were constructed from the information in the "abxy" file. The list of 
all the observations is then used as an input for the program (created by 
G. Derado in C++) which determines the three-dimensional coordinates of 
the landmarks for each observation considered in our analysis, as well as for 
determining the fifth Bookstein coordinate for each observation. Each image 
consists of a 256 x 256 array of elevation values which represent the "depth" 
of the ONH. By the "depth" we mean the distance from an imaginary plane, 
located approximately at the base of the ONH cup, to the "back of the ONH 
cup." 

To reduce the dimensionality of the shape space to 5, out of five landmarks 
T, S, N, I , V recorded, only four landmarks (X1 = T, X2 = S , X3 = N, 
X4 = V) were considered. 

The original data were collected in experimental observations on Rhesus 
monkeys, and after treatment a healthy eye slowly returns to its original 
shape. For the purpose of IOP increment detection, in this paper only the 
first set of after-treatment observations of the treated eye is considered. 

Acknowledgments. We are thankful to Hilary W. Thompson for provid
ing us with the glaucoma data library and to Sylvie Bogui, Gordana Derado 
and Jennifer Lefor their assistance with part of the computations in Section 
5. Thanks are also due to the referees for their thoughtful and constructive 
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and Ruymgaart [28]. 
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ABSTRACT. In this article a nonsingular asymptotic distribution is derived 
for a broad class of underlying distributions on a Riernarmian rnanifold in 
relation to its curvature. Also, the asymptotic dispersion is explicitly related 
to curvature. These results are applied and further strengthened for the planar 
shape space of k-ads. 

1. INTRODUCTION 

Statistical analysis of a probability measure Q on a differentiable manifold Jvf 
has diverse applications in directional and axial statistics, morphometries, medical 
diagnostics and machine vision ([1, 2, 3, 4, 6, 7, 8, 11, 15]) . .:Vlost of this analysis 
focuses on nonintrinsic Frechet means of Q. In this article we provide a distribution 
theory for the non parametric analysis of intrinsic means which can be directly used 
for the one- and two-sample problems. To be precise, let (Nl, g) be a Riemann
ian manifold with metric tensor g and geodesic distance d9 . Define the Frechet 
function F of Q as 

(1.1) F(p) = { d~(p, m)Q(dm), p EM. JM 
Assume F to be finite. We consider probability measures Q whose support supp( Q) 
are contained in geodesic balls B(p,r) = {m: d9 (p,m) < r}. If the Frechet 
function, restricted to such a ball B(p, r), has a unique minimizer /1I in B(p, r), we 
call it the intrinsic mean of Q in B(p, r). The sample intrinsic mean ILni in 
B(p, r) is the intrinsic mean of Qn = ~ "L7=1 5xJ in B(p, r), where X 1 ,X2 , ... ,Xn 
are independent and identically distributed (iid) observations from the underlying 
distribution Q. Crucial to nonparametric analysis is the asymptotic distribution 
of fLni· Our main goals are (i) to derive this asymptotic distribution, assuring its 
nonsingularity, under as broad a condition on supp( Q) as possible, (ii) to explicitly 
compute the asymptotic dispersion, and (iii) to apply and refine the general theory 
to the particularly important planar shape space ~~ of k landmarks introduced 
by Kendall [11]. 
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To indicate the role curvature plays in this endeavor, let r* = min{inj(M), ~}, 

where C is an upper bound of sectional curvatures of M if this upper bound is 
positive, and C = 0 otherwise. Also, inj(M) = inf{dg(p, C(p)) : p E M} is the 
injectivity radius of M, where C(p) is the cut locus of p, i.e., the set of points 

of the form !'(to), where 'Y is a geodesic and t 0 is the supremum of all t > 0 such 
that the geodesic from p to !'(t) is distance minimizing. The exponential map 
expp is injective on {v E Tp(M) : Jvl < r} if and only if r :S: r* (Do Carmo [5], 
p. 271 ). It follows that a geodesic ball B(p, r) with r :S: ri is strongly convex, i.e., 
for every pair q, q' E B (p, r) there exists a unique geodesic connecting q, q', entirely 
contained in B(p, r), this geodesic being distance minimizing. By Proposition 2.1 

and Theorem 2.2, if supp(Q) ~ B(p, ri ), then Q has a unique intrinsic mean f1I in 
B(p, ri ). If in addition, supp(Q) ~ B(f1I, 3" ), then the sample intrinsic mean has 
asymptotic normal distribution. Further, in the case of manifolds with constant 
sectional curvature, the asymptotic dispersion can be explicitly expressed in terms 
of curvature. 

It may be noted that our results are not related to those of Pennec [16] who has 
a number of interesting results on distributions on manifolds, including one that 
provides an expansion of the density of the (analog of) normal distribution on the 
manifold in terms of its variance, for the case of small variance. 

For background in differential geometry used here, we refer to Do Carmo [5] and 
Lee [14]. 

2. ASYMPTOTIC DISTRIBUTION AND CURVATURE 

Let (M, g) be a Riemannian manifold. We continue to use the notation of Sec
tion 1. Let Q be a probability measure, supp(Q) ~ B(p, 3") for some p. Then there 
is a unique (local) intrinsic mean /1I in B(p, ri) (Kendall [12]). This substantially 
extends Karchar's result on the existence and uniqueness of a local mean ([9]), but 
not his important result on the strict convexity of F. We are able to circumvent 
this difficulty in the case supp(Q) ~ B(f1I, ri ). Denote by f1ni the intrinsic mean of 

Qn in B(p, ri ). The inverse of the exponential map¢= exp;1 is a diffeomorphism 

on B(p, ri) onto its image, say U, in Tp(M). The image Q = Q o ¢-1 of Q under¢ 
is a probability measure in Tp(M), and the image f1 = ¢(f1I) of f1I is the minimizer 
of 

(2.1) F(x) = fu d~(¢- 1 x, ¢-1y)Q(dy), x E U. 

Similarly f1n = ¢(!1ni) is the corresponding minimizer when Q is replaced by Qn = 
~ 'L7=l Oq,(X;)· As proved in [3], Theorem 2.1, a central limit theorem for theM
estimator f1n may be derived and used to obtain the following result. The normal 
coordinates x, y used here are with respect to a chosen orthonormal basis in TpM. 

Proposition 2.1. Suppose the support of Q is contained in the geodesic ball B = 
B(p, ri ). Let¢ = exp;1 : B -----+ ¢(B). Define h(x, y) = d~(¢- 1 x, ¢-1y); x, y E 

¢(B). Let ((Drh))~=l and ((DrDsh))~,s=l be the matrices of first and second order 

derivatives ofy f--+ h(x,y). Let Xj = ¢(Xj);j = 1, ... ,n, X1, ... ,Xn being iid 
observations from Q. Define 
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If A is nonsingular, then 

(2.2) 

The natural candidate for p in Proposition 2.1 is the intrinsic mean of Q in 

B(p, ri ), namely f.LI· Then we get expressions for A and ~ using an orthonormal 

basis in TMM. Theorem 2.2 below gives a lower bound on A and an exact expression 

when M has constant sectional curvature. The lower bound gives a condition on the 

nonsingularity of A. The nonsingularity of ~ is a milder condition which holds, for 

example, when Q has a density with respect to the volume measure on M. In the 

statement of the theorem, the usual partial order A 2: B between d x d symmetric 

matrices A, B, means that A- B is nonnegative definite. 

Theorem 2.2. Assume supp(Q) s;; B(p, ri ). Let ¢ = exp-;;} : B(p, ri) ----+ 

TI"1 M(~ JRd), and let C denote an upper bound of all sectional curvatures. Then 

in normal coordinates with respect to a chosen orthonormal basis in TI" 1 M, 

(2.3) Drh(x, 0) = -2xr, 1 :S r :S d, 

(2.4) [DrDsh(x, 0)] 2: [ 2( ( 1 -~~~~lxl)) Xr X 8 + f(lxi)Jrs)] 1 ~r,s~d' 
where lxl = J (x1 )2 + (x2)2 + ... + (xd)2, 

(2.5) f(x) = vex:~~~~:~ if c > 0, {
1 ijC = 0, 

~Xcosh(FCx) iJC < O. 
sinh( FOx) 

There is equality in (2.4) when M has constant sectional curvature C, and in this 

case A has the expression 

(2.6) A = 2E( ( 1 - ~(IX1 1)) xrxs +(!(IX I))J ) 1 < < d 
rs IX112 1 1 1 rs' _r,s_' 

A being positive definite if Q has support in B(f.LI, ri). 

Proof. Let 1'(s) be a geodesic, 1'(0) = f.LI· Define c(s, t) = expm(texp;;.1')'(s)), 

8 E [0, E], t E [0, 1], as a smooth variation of 1' through geodesics lying entirely in 

B(p, ri ). LetT= ftc(8, t), S = ff8 c(8, t). Since c(8, 0) = m, S(8, 0) = 0, and since 

c(8,1) = 1'(8), S(8,1) = ')'(8). Also (T,T) = d~(1'(8),m) is independent oft, and 

the covariant derivative DtT vanishes because t f-> c(8, t) is a geodesic (for each s). 
Then 

(2.7) d~('/'(8), m) = (T(8, t), T(8, t)) = 11 
(T(8, t), T(8, t))dt. 

Hence d~ ('/'( 8), m) is coo smooth, and using the symmetry of the connection on a 

parametrized surface (see Lemma 3.4, p. 68 in Do Carmo [5]), we get 

d 2 {1 {1 d 
d8d9 (1'(s),m)=2 Jo (D8 T,T)dt=2 Jo dt(T,S)dt 

(2.8) = 2(T(8, 1), S(8, 1)) = -2(exp~(~)m, ')'(8)). 
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Substituting s = 0 in (2.8), we get expressions for Drh(x, 0) as in (2.3). Also 
d2 . 

(2.9) ds 2 d~('y(s), m) = 2(D8 T(s, 1), S(s, 1)) 

(2.10) = 2(DtS(s, 1), S(s, 1)) = 2(Dtls(1), J 8 (1)), 

where J8 (t) = S(s, t). Note that J8 is a Jacobi field along c(s, .) with J8 (0) = 0, 
J 8 (1) = i'(s). Let J~ and J; be the normal and tangential components of J8 • The 
relations (2.13)-(2.15) below may be obtained from Jost [10], p. 197, and Lee [14], 
Lemma 10.8. For the sake of exposition, we indicate the arguements here. Let T) be 
a unit speed geodesic in M and J a normal Jacobi field along T), J(O) = 0. Define 

(2.11) u(t) = sin~t) if C > 0, {

t if c = 0, 

sinh( ~t) if C < O. 
~ 

Then u"(t) = -Cu(t) and 

(2.12) (IJI'u- IJiu')'(t) = (IJI" + CIJI)u(t). 

By exact differentiation and Schwartz inequality, it is easy to show that IJI" + 
CIJI 2:: 0, hence (IJI'u- IJiu')'(t) 2:: 0 whenever u(t) 2:: 0. This implies that 

IJI'u-IJiu' 2:: 0 if t::; to, where u is positive on (0, to). Also IJI' = <~](). Therefore 

(J(t), Dtl(t)) 2:: :g] IJ(t)IZ V t < t0 • If we drop the unit speed assumption on TJ, 

we get 

(2.13) 

Here t0 = oo if C ::; 0 and equals .Jc if C > 0. When M has constant sectional 

curvature C, J(t) = u(t)E(t), where E is a parallel normal vector field along TJ· 

Hence 

(2.14) 
u'(t) 

(J(t),DtJ(t)) = u(t)u'(t)IE(t)l 2 = u(t) IJ(t)l 2 . 

If we drop the unit speed assumption, we get 

(2.15) 

Since J~ is a normal Jacobi field along the geodesic c(s, .), from (2.13) and (2.15) 
it follows that 

(2.16) (J~(1),Dtl~(1)) 2:: f(d(r(s),m))IJ~(1)1 2 

with equality in (2.16) when M has constant sectional curvature C, f being defined 
in (2.5). 

Next suppose J is a Jacobi field along a geodesic 7], J(O) = 0 and let J- (t) 
be its tangential component. Then J-(t) = :Abj(t) where >.t = (J(f~,l~(t)),).. being 

independent of t. Hence 

(Dtl)-(t) = (Dtll~i~ ri(t)) ri(t) 

(2.17) = .:!._ ( (J(t), ri(t))) ri(t) = >.r,(t) = D (r)(t) 
dt ITJI2 t 
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and 

which implies 

(2.18) (D J(1) J-(1)) = 2 (J(1),1)(1))2 -IF(1)12 = (J(1),1)(1))2. 
t ' 11)(1)1 2 11)(1)12 

Apply (2.17) and (2.18) to the Jacobi field J8 to get 

(2.19) D (J-)(1) = (D J )-(1) = J-(1) = (Js(1), T(s, 1)) T(s 1) 
t s t s s IT(s, 1)12 ' ' 

(2.20) (D J (1) J-(1)) = (Js(1),T(s, 1))2 
t s ' s IT(s, 1)12 . 

Using (2.16), (2.19) and (2.20), (2.10) becomes 

d2 
ds2 d~('y(s),m) = 2(DtJ8 (1),J8 (1)) 

= 2(DtJ8 (1), J;(1)) + 2(DtJs(1), Jj-(1)) 

= 2(DtJ8 (1), J;(1)) + 2(Dt(Jj-)(1), Jj-(1)) 

(2.21) ~ 2 (Jsii(s~g~21)) 2 + 2/(IT(s, 1)I)IJ1-(1W 

= 2 (Jsii(s~g~21)) 2 + 2/(IT(s, 1)1)1Js(1)12 

- 2/(IT( 1)1) (Js(1), T(s, 1))2 
8 ' IT(s, 1)12 
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. 2 ('Y(s), exp~(~)m) 2 
(2.22) = 2f(d9('Y(s), m))b(s)l + 2(1- f(d9('Y(s), m)) d~(!(s),m) 

with equality in (2.21) when Jv[ has constant sectional curvature C. Substituting 
s = 0 in (2.22), we get a lower bound for [DrDsh(x, 0)] as in (2.4) and an exact 
expression for DrDsh(x, 0) when M has constant sectional curvature. To see this, 
let 'Y(O) = v. Then writing m = ¢-1 (x), 'Y(s) = ¢-1 (sv), one has 

d2 2( I d2 2 -1( ) -1 I 
ds2d9 'Y(s),m) s=O = ds2d9(¢ x ,¢ (sv)) s=O 

(2.23) 
d2 d 

= ds 2 h(x,sv)ls=O = L VrVsDrDsh(x,O). 
r,s=l 

Since d2 ('Y(s), m) is twice continuously differentiable and Q has compact support, 
using the Lebesgue DCT, we get 

d2 J d2 
(2.24) ds2F('y(s))ls=O = ds2 d2 ('y(s),m)ls=oQ(dm). 

Then (2.6) follows from (2.22). If supp(Q) <:;; B(flr, T ), then the expression in 
(2.22) is strictly positive at s = 0 for all mE supp(Q), hence A is positive definite. 
This completes the proof. D 
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Under the assumptions of Theorem 2.2, it follows that E(X1) 

4E(X1X{). This is also stated in Theorem 2.1 in Bhattacharya [2]. 
0 and~ 

Remark 2.1. It may be noted that the spaces Sd, JR.pd have constant positive 

curvature. One may also endow the projective shape space with a metric which 

makes it a space of constant positive curvature, since it is diffeomorphic to a product 

of real projective spaces ([15]). In the next section we turn to~~, whose sectional 
curvatures range from 1 to 4. 

3. APPLICATION TO THE PLANAR SHAPE SPACE ~~ 

Consider the planar shape space ~~ of k-ads in JR.2 . An element of ~~ is a set 
of k landmarks, or points in the plane (not all equal), modulo translation, rotation 

and scaling. Let S~ be the pre-shape sphere which is the space of column vectors 
in <ek with mean 0 and norm 1. Its tangent space is 

TzS~ = {v E <Ck: v'lk = Re(z1v) = 0}. 

Here lk denotes the column vector of ones of size k. To apply Proposition 2.1 

to carry out nonparametric inference on ~~, we need to identify the exponential 

and inverse exponential maps on ~~. For that we consider their lifts to S~ as in 

Section 4 in Le [13], and Kendall [11]. The map 1r: S~--+ ~~, 

z ~--+ 1r(z) = [z] = {>..z: >. E <C, 1>-1 = 1}, 

is a Riemannian submersion. So the tangent space T[z] ~~ is isometric with a sub

space of TzS~ called the horizontal subspace Hz which is 

Hz = { v E <Ck : Z
1 v = 0, v'lk = 0}. 

Denote the corresponding isometric mapping by X[z] : T[z]~~--+ Hz. Then exp[z] = 
1r o expz o X[z], and 

(3.1) 

(3.2) 

X[z] o exp[~]l : ~~ \ C([z])--+ Hz, [w]~-+ ___;c_{ -zcosr + ei8w }, 
stnr 

I 

I 7r iB z w 
r = d9 ([z], [w]) = arccos(lz wl) E [0, 2 ), e = lzl wl" 

In (3.1), C([z]) is the cut-locus of [z], which is 

C([z]) = {[x] E ~~ : d9 ([x], [z]) = ~} = {[x] : Z 1 x = 0}. 

~~ has all sectional curvatures bounded between 1 and 4, and its injectivity radius 

is ~- From a result due to Kendall [12], Q has an intrinsic mean if its support 

is contained in a geodesic ball of radius %· Suppose supp(Q) <:;;; B(p, %) and let 
/-l>I = [p,] be the intrinsic mean of Q in the support, with p, being one of its pre

shapes. The following theorem gives the expression for A in Theorem 2.2 and 

derives a sufficient condition for its nonsingularity. 

Theorem 3.1. Let¢: B(p, %) --+ <ek-2 (~ JR.2k-4 ) be the coodinates ofX~-t1 oexpp,}: 

B(p, %) --+HI-' with respect to some orthonormal basis { v1, ... , Vk-2, iv1, ... , ivk-d 

for Hw Define h(x, y) = d~(¢- 1 x, ¢-1y). Let ((Drh));~14 and ((DrDsh));~~i be 

the matrix of first and second order derivatives of y ~--+ h(x, y). Let X1 = ¢(X1) = 
(XJ, .. . , .XJ-2 )'; j = 1, ... , n, X 1 , ... , Xn being iid observations from Q. Define 
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A = E((DrDsh(Xl, O)));~:oi_. Then A is positive definite if the support of Q is 
contained in B(J.Lr,R), where R is the unique solution oftan(x) = 2x, x E (0, ~). 

Proof. For a geodesic 1 starting at f.LI, write 1 = 1r o i, where i is a geodesic in S~ 
starting at f.L· From the proof of Theorem 2.2, form= [z] E B(p, ~), 

(3.3) 

(3.4) 

: 8 d~(r(s), m) = 2(T(s, 1), "f(s)) = 2(T(s, 1), ~(s)), 
d2 2 . - .: 
ds2 d9 (1(s), m) = 2(DsT(s, 1), 1(s)) = 2(DsT(s, 1), 1(s)), 

where T(s, 1) = X,(s)(T(s, 1)). From (3.1), this has the expression 

(3.5) T(s, 1) = . p(s) [-cos(p(s))i(s) + eiO(s)z], 
szn(p(s)) 
z'i(s) 

where eiO(s) = , p(s) = d9 (r(s),m). 
cos(p(s)) 

The inner product in (3.3) and (3.4) is the Riemannian metric on TS~ which is 
(v,w) = Re(v'w). Observe that D8 T(s, 1) is j8 T(s, 1) projected onto Hy(s)· Since 

(J.L, ~(0) l = 0, 

(3.6) 

From (3.5) we have 

(3.7) .!!._T(s, 1)ls=O = (.!!._(p(s~cos(p(s))) I -) f.L + (p(s)~os(p(s)) I -) ~(0) 
ds ds szn(p( s)) s-O sznp( s) s-O 

-(.!!._( p(s) )1-o)(z'J.L)z 
ds sin(p(s))cos(p(s)) s-

- Cin(p(~~:~s(p(s)) ls=O) (z'~(O))z, 
and along with (3.3), we get 

(3.8) 
d -1 .: z'J.L 
-d p(s)ls=D = -.-(-) (1(0), -(-) z/ (r := d9 (m, f.LI )). 

s szn r - cos r 

Hence 

d - .: cos(r) .: 2 ( 1 cos(r)) 2 
(-d T(s, 1)ls=o,I(O)) = r-.-(-) II1(0)jj - -.-2 - r~( ) (Rex) 

s szn r szn r szn r 

(3.9) + . r (Imx) 2 , 
szn(r)cos(r) 

where 

(3.10) 

The value of x in (3.10), and hence the expression in (3.9), depends on z only 
through m = [z]. Also if 1 = 1r(r1) = 1r(12), 11 and 12 being two geodesics on 
S~ starting at f.Ll and J.L2 respectively, with [J.Ld = [J.L2] = [J.L], then 11 (t) = Al2(t), 
where J.L2 = AJ.L1 , ,\. E <C. Now it is easy to check that the expression in (3.9) depends 
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on M only through [M] = MI· 1\'ote that lxl 2 < 1- cos2 r. So when I..Y(O)I = 1, (3.9) 
lS 

r--- -- -r-- ex + mx cos(r) ( 1 cos(r)) (R )2 r (I )2 
sin(r) sin2r sin3r sinrcosr 

(3.ll) > r cos(r) _ (-1- _ r cos(r)) sin2r = 2r- tanr. 
sin(r) sin2 r sin3 r tanr · 

which is> 0 if r:::; R where tan(R) = 2R, R E (0, ~). Thus if supp(Q) c:;;; B(Mr, R), 

then j 5
2
2 d2 (r(s),m)ls=O > 0, and hence A is positive definite. D 

Remark 3.1. It can be shown that R E (~, 2;). It is approximately 0.371017r. 

Remark 3.2. The nonsingularity of ~ defined in Theorem 2.2 is a mild condition 
which holds in particular if Q has a density (component) with respect to the volume 
measure on ~~. 

From Proposition 2.1, Theorem 3.1 and Remark 3.2, we conclude that if supp( Q) 
c:;;; B(Mr, R) and if~ is nonsingular (e.g., if Q is absolutely continuous), then the 
sample mean from an iid sample has an asymptotically normal distribution with 
nonsingular dispersion. To get the expressions for ~ and A, note that the coordinate 
¢in Theorem 3.1 has the form 

Hence 

(3.12) 

and 

¢( ) _ (- 1 - k~2)' - J _ _ r_ ie -,-' _ nl- 1n , ... ,m , nl- sinre ?;J ""· 

~(2k~4) X (2k~4) = [ ~t~ ~~~ ] 1 

(~n)iJ = 4E(Re(xnRe(Xi)), (~l2)i1 = 4E(Re(xnrm(Xi)), 

(~22)iJ = 4E(Im(xnim(Xi)), 1:::; i,j:::; k- 2, 

(3.13) A(2k~4) X (2k~4) = [ ~t~ ~~~ ] , 
where if-);(O) = "'L,;~;xJv1 +"L,;~;y1(iv1 ), x = [x1 ... xk~2]', y = [y1 ... yk~2]', 
then 

E ( ::2 d~(r(s), X1)) ls=o = x' Anx + y' Az2Y + 2x' A12Y· 

This gives for 1 :::; r, s :::; k - 2, 

[ (1-d1cot(dl)) -r -s 
(An)rs = 2£ d1cot(d1)0rs- d2 (ReX1)(ReX1) 

1 

+ tm~~dl) (Imxr)(ImXf) ], 

[ (1-d1cot(dl)) -r -s 
(A22)r-s = 2£ d1cot(d1)0rs- d2 (ImX1)(ImX1) 

1 

+ tm~~dl) (ReXr)(ReXf) ], 

(Al2)rs = -2£ [ (1 - d1~ot(dl)) (ReXD(ImXf) + tan(dl) (ImXD(ReXf) ] ' 
di d1 
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Statistics on Manifolds with Applications to Shape Spaces 

Rabi Bhattacharya and Abhishek Bhattacharya 

ABSTRACT. This article provides an exposition of recent developments on the 
analysis of landmark based shapes in which a k-ad, i.e., a set of k points or 
landmarks on an object or a scene, are observed in 2D or 3D, for purposes of 
identification, discrimination, or diagnostics. Depending on the way the data 
are collected or recorded, the appropriate shape of an object is the maximal 
invariant specified by the space of orbits under a group G of transformations. 
All these spaces are manifolds, often with natural Riemannian structures. The 
statistical analysis based on Riemannian structures is said to be intrinsic. In 
other cases, proper distances are sought via an equivariant embedding of the 
manifold NI in a vector space E, and the corresponding statistical analysis is 
called ex[r·insic. 

1. Introduction 

Statistical analysis of a probability measure Q on a differentiable manifold 11;1 

has diverse applications in directional and axial statistics, morphometries, medical 
diagnostics and machine vision. In this article, we are mostly concerned with the 
analysis of landmark based data, in which each observation consists of k > m points 
in m-dimension, representing k locations on an object, called a k-ad. The choice of 
landmarks is generally made with expert help in the particular field of application. 
The objects of study can be anything for which two k:-ads are equivalent modulo 
a group of transformations appropriate for the particular problem depending on 
the method of recording of the observations. For example, one may look at k:-ads 
modulo size and Euclidean rigid body motions of translation and rotation. The 
analysis of shapes under this invariance was pioneered by Kendall (1977, 1984) and 
Bookstein (1978). Bookstein's approach is primarily registration-based requiring 
two or three landmarks to be brought into a standard position by translation, ro
tation and scaling of the k:-acl. For these shapes, we would prefer Kendall's more 
invariant view of a shape identified with the orbit under rotation (in m-dimension) 
of the k-ad centered at the origin and scaled to have unit size. The resulting shape 
space is denoted ~k'. A fairly comprehensive account of parametric: inference on 
these manifolds, with many references to the literature, may be found in Dryden 
and Mardia (1998). The nonparametric methodology pursued here, along with the 
geometric and other mathematical issues that accompany it, stems from the earlier 

Key words and phrases. shape space of k-ads, Frechet mean, extrinsic and intrinsic means, 
nonparametric analysis. 

Research supported in part by NSF Grant DMS 0406143. 

1 
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work of Bhattacharya and Patrengenaru(2002, 2003, 2005). 

Recently there has been much emphasis on the statistical analysis of other 
notions of shapes of k-ads, namely, affine shapes invariant under affine transfor
mations, and projective shapes invariant under projective transformations. Recon
struction of a scene from two (or more) aerial photographs taken from a plane is 
one of the research problems in affine shape analysis. Potential applications of 
projective shape analysis include face recognition and robotics-for robots to visu
ally recogni11e a scene. (Mardia and Patrangenaru (2005), Bandulasiri et a1.(2007)). 

Examples of analysis with real data suggest that appropriate nonparametric 
methods are more powerful than their parametric counterparts in the literature, for 
distributions that occur in applications (Bhattacharya and Bhattacharya ( 2008a)). 

There is a large literature on registration via landmarks in functional data anal
ysis (see, e.g., Bigot (2006), Xia and Liu (2004), Ramsay and Silverman (2005)), in 
which proper alignments of curves are necessary for purposes of statistical analysis. 
However this subject is not closely related to the topics considered in the present 
article. 

The article is organized as follows. Section 2 provides a brief expository de
scription of the geometries of the manifolds that arise in shape analysis. Section 
3 introduces the basic notion of the Fnichet mean as the unique minimizer of the 
Frechet function F(p), which is used here to nonparametrically discriminate dif
ferent distributions. Section 4 outlines the asymptotic theory for extrinsic mean, 
namely, the unique minimizer of the Frechet function F(p) = J111 p2 (p, x )Q( dx) 
vvhere p is the distance inherited by the manifold NI from an equivariant embed
cling J. In Section 5, we describe the corresponding asymptotic theory for intrinsic 
means on Riemannian manifolds, where p is the geodesic distance. In Section 6, 
we apply the theory of extrinsic and intrinsic analysis to some manifolds including 
the shape spaces of interest. Finally, Section 7 illustrates the theory with three 
applications to real data. 

2. Geometry of Shape Manifolds 

Many differentiable manifolds AI naturally occur as submanifolds, or surfaces 
or hypersurfaces, of an Euclidean space. One example of this is the sphere Sd = 
{p E JFtd+ 1 : liP II = 1 }. The shape spaces of interest here are not of this type. They 
are generally quotients of a Riemannian manifold N under the action of a transfor
mation group. A number of them are quotient spaces of N = Sd under the action 
of a compact group G, i.e., the elements of the space are orbits in Sd traced out 
by the application of G. Among important examples of this kind are axial spaces 
and Kendall's shape spaces. In some cases the action of the group is free, i.e., 
gp = p only holds for the identity element g = e. Then the elements of the orbit 
OP = {gp: g E G} are in one-one correspondence with elements of G, and one can 
identify the orbit with the group. The orbit inherits the differential structure of 
the Lie group G. The tangent space TpN at a point p may then be decomposed 
into a vertical subspace of dimension that of the group G along the orbit space to 
which p belongs, and a horizontal one which is orthogonal to it. The projection 
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1r, 1r(p) = Op is a Riemannian submersion of N onto the quotient space NjG. In 
other words, (d1r(v), d1r(w))1r(p) = (v, w)p for horizontal vectors v, wE TpN, where 
d1r: TpN----+ Trr(p)N/G denotes the differential, or Jacobian, of the projection Jr. 

\Vith this metric tensor, N /G has the natural structure of a Riemannian manifold. 
The intrinsic analysis proposed for these spaces is based on this Riemannian struc
ture (See Section 5). 

Often it is simpler both mathematically and computationally to carry out an 
extrinsic analysis, by embedding NI in some Euclidean space Ek ;:::o Jl{k, with the 
distance induced from that of Ek. This is also pursued when an appropriate Rie
mannian structure on 1'v1 is not in sight. Among the possible embeddings, one seeks 
out equivariant embeddings which preserve many of the geometric features of NI. 

DEFI:"JITIOK 2.1. For a Lie group H acting on a manifold 1'v1, an embedding J: 
J\1[----+ Jl.{k is H-eq1Livariant if there exists a group homomorphism¢: H----+ GL(k, ]]{) 
such that 

(2.1) J(hp) = cp(h)J(p) '1:/p EM, '1:/h E H. 

Here GL(k, ]]{) is the general linear group of all k x k non-singular matrices. 

[~ote: Henceforth, BP ( ... ) stands for Bhattacharya and Patrangenaru ( ... ) 
and BB ( ... ) stands for Bhattacharya and Bhattacharya ( ... ) .] 

2.1. The Real Projective Space Jl.{pd. This is the axial space comprising 
axes or lines through the origin in Jl{d+l. Thus elements of Jl.{pd may be represented 
as equivalence classes 

(2.2) [x] = [x1 : x2 : .. . xm+l] = {>-x: A =f 0}, x E Jl{d+l \ {0}. 

One may also identify Jl.{pd with Sd jG, with G comprising the identity map and the 
antipodal map p f---+ -p. Its structure as a d-dimensional manifold (with quotient 
topology) and its Riemannian structure both derive from this identification. Among 
applications are observations on galaxies, on axes of crystals, or on the line of a 
geological fissure (Watson (1983), Mardia and Jupp (1999), Fisher et al. (1987), 
Beran and Fisher (1998), Kendall (1989)). 

2.2. Kendall's (Direct Similarity) Shape Spaces L~,. Kendall's shape 
spaces are quotient spaces Sd jG, under the action of the special orthogonal group 
G = SO(m) of m x m orthogonal matrices with determinant + 1. For the important 
case m = 2, consider the space of all planar k-ads (z1 , z2 , ... , zk) (zj = (xj, Yj)), 
k > 2, excluding those with k identical points. The set of all centered and normed k
ads, say 'U = (n1 , n 2 , ... , nk) comprise a unit sphere in a (2k- 2)-dimensional vector 
space and is, therefore, a (2k - 3)-dimensional sphere S 2k- 3 , called the preshape 
sphere. The group G = 50(2) acts on the sphere by rotating each landmark by 
the same angle. The orbit under G of a point n in the preshape sphere can thus be 
seen to be a circle 5 1 , so that Kendall's planer shape space L~ can be viewed as the 
quotient space S 2k- 3 /G ~ S 2k- 3 I 5 1 ' a (2k -4)-dimensional compact manifold. An 
algebraically simpler representation of L~ is given by the complex projective space 
((pk- 2, described in Section 6.4. For many applications in archaeology, astronomy, 
morphometries, medical diagnosis, etc., see Bookstein (1986, 1997), Kendall (1989), 
Dryden and Mardia (1998), BP (2003, 2005), BB (2008a) and Small (1996). 
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2.3. Reflection (Similarity) Shape Spaces RL..~,. Consider now the re
flection shape of a k-ad as defined in Section 2.2, but with SO( m) replaced by the 
larger orthogonal group O(m) of all m x m orthogonal matrices (with determinants 
either +1 or -1). The reflection shape space R'5:;~, is the space of orbits of the 
elements v, of the preshape sphere whose columns span JH:m. 

2.4. Affine Shape Spaces A'5:;~,. The affine shape of a k-ad in IR'.m may 
be defined as the orbit of this k-ad under the group of all affine transformations 
x c-+ F(x) =Ax+ b, where A is an arbitrary m x m non-singular matrix and b is an 
arbitrary point inlR'.m. Note that two k-ads x = (x1, ... ,xk) andy= (y1,····Yk), 
(xj, YJ E IR'.m for all j) have the same affine shape if and only if the centered k-ads 
n = ( n1, n2, ... , nk) = (x1 -x, ... , Xk -x) and v = ( 1.'1, 1'2, ... , vk) = (Y1 -y, ... , Yk
y) are related by a transformation Au ~ (Au1, ... , Auk) = v. The centered k-ads 
lie in a linear subspace of IR'.m of dimension m(k- 1). Assume k > m + 1. The 
affine shape space is then defined as the quotient space H(m,k)/GL(m,R), where 
H(m,k) consists of all centered k-ads whose landmarks span IR'.m, and GL(m,IR'.) 
is the general linear group on IR'.m (of all m x m nonsingular matrices) which has 

the relative topology (and distance) of IR'.m2 and is a manifold of dimension m 2 . It 
follows that A'5:;~ is a manifold of dimension m( k - 1) - m 2 . For u, v E H (m, k), 
since Au = v iff n' A' = v', and as A varies u' A' generates the linear subspace L of 
H ( m, k) spanned by the m rows of n. The affine shape of n, (or of x), is identified 
with this subspace. Thus AL~ may be identified with the set of all m dimensional 
subspaces of JRk- 1 , namely, the Grassrnannian Gm(k -1)-a result of Sparr (1995) 
(Also see Boothby (1986), pp. 63-64, 362-363). Affine shape spaces arise in certain 
problems of bioinformatics, cartography, machine vision and pattern recognition 
(Berthilsson and Heyden (1999), Berthilsson and Astrom (1999), Sepiashvili et al. 
(2003), Sparr (1992, 1996)). 

2.5. Projective Shape Spaces PL~. For purposes of machine vision, if im
ages are taken from a great distance, such as a scene on the ground photographed 
from an airplane, affine shape analysis is appropriate. Otherwise, projective shape is 
a more appropriate choice. If one thinks of images or photographs obtained through 
a central projection (a pinhole camera is an example of lhis), a ray is received as a 
point on the image plane (e.g., the film of the camera). Since axes in 3D comprise 
the projective space IR'.P2 , k-ads in this view are valued in IR'.P2 . ~ote that for a 
3D k-ad to represent a k-ad in IR'.P2 , the corresponding axes must all be distinct. 
To have invariance with regard to camera angles, one may first look at the original 
noncollinear (centered) 3D k-ad v, and achieve affine in variance by its affine shape 
(i.e., by the equivalence class Au, A E G£(3, IR'.) ), and finally take the corresponding 
equivalence class of axes in IR'.P2 to define the projective shape of the k-ad as the 
equivalence class, or orbit, with respect to projective transformations on IR'.P2 . A 
projective shape (of a k-ad) is singular if the k axes lie on a vector plane (IR'.P1 ). 

For k > 4, Lhe space of all non-singular shapes is Lhe 2D projective shape space, 
denoted P0 '5:;~. 

In general, a projective (general linear) transformation a on JR'.pm is defined in 
terms of an (m + 1) x (m + 1) nonsingular matrix A E GL(m + 1,IR'.) by 

(2.3) 
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where x = (x1, ... ,xm+l) E JFtm+l \ {0}. The group of all projective transforma
tions on JFtpm is denoted by PG L ( m). Now consider a k-ad (Yl, ... , Yk) in JFtpm, 
say yj = [xJ] (j = 1, ... , k), k > m + 2. The projective shape of this k-ad is 
its orbit under PGL(rn), i.e., {(ay1 , ... , ayk): a E PGL(rn)}. To exclude singu
lar shapes, define a k-ad (yr, ... , Yk) = ([xr], ... , [xk]) to be in general po8ition 
if the linear span of {Yr, ... , Yk} is JFtpm, i.e., if the linear span of the set of k 
representative points { x1, ... , xk} in JFtm+l is JFtm+l. The space of shapes of all 
k-ads in general position is the projective shape space PoL~. Define a projective 
frame in JFtpm to be an ordered system of m + 2 points in general position. Let 
I = i 1 < ... < im+2 be an ordered subset of { 1, ... , k}. A manifold structure on 
PJL~, the open dense subset of PoL~, of k-ads for which (JJir, ... , Yim+ 2 ) is a pro
jective frame in JFtpm, was derived in Mardia and Patrangenaru (2005) as follows. 
The standard frame is defined to be ([er], ... , [em+l], [e1 + e2 + ... + em+l]), where 
ej E JFtm+l has 1 in the j-th coordinate and zeros elsewhere. Given two projec
tive frames (pr, ... ,Pm+2) and (qr, ... , qm+2), there exists a unique a E PGL(rn) 
such that a(pJ) = q1 (j = 1, ... , k). By ordering the points in a k-ad such that 
the first m + 2 points are in general position, one may bring this ordered set, say, 
(pr, ... ,Pm+2), to the standard form by a unique a E PGL(m). Then the ordered 
set of remaining k - rn - 2 points is transformed to a point in (IFtPm )k-m- 2 . This 
provides a diffeomorphism between PI L;;,. and the product of k - rn - 2 copies of 
the real projective space JFtpm. 

We will return to these manifolds again in Section 6. Now we turn to nonpara
metric inference on general manifolds. 

3. Frechet Means on Metric Spaces 

Let (!vi, p) be a metric space, p being the distance, and let f :2: 0 be a given 
continuous increasing function on [0, oo). For a given probability measure Q on 
(the Borel sigmafield of) M, define the Frechet function of Q as 

(3.1) F(p) = JM f(p(p,x))Q(dx), p EM. 

DEFINITION 3.1. Suppose F(p) < oo for some p E NI. Then the set of all p for 
which F(p) is the minimum value ofF on M is called the Frechet Mean 8et of Q, 
denoted by CQ. If this set is a singleton, say {MF}, then JLF is called the Frechet 
Mean of Q. If Xr, X2, ... , Xn are independent and identically distributed (iid) M
valued random variables defined on some probability space (D, F, P) wiLh common 
distribution Q, and Qn ~ ~ L-;'=1 i5xj is the corresponding empirical distribution, 
then the Frechet mean set of Qn is called the 8ample Frechet mean 8et, denoted by 
CQn. If this set is a singleton, say {ttF"}, then flF" is called the 8ample Frechet 
mean. 

Proposition 3.1 proves the consistency of the sample Frechet mean as an esti
mator of the Frechet mean of Q. 

PROPOSITI0.\1 3.1. Let NI be a compact metric 8pace. Con8ider the Frechet 
function F of a probability mea8ure given by (3.1). Given any E > 0, there exi8t8 
an integer-valued random variable N = N(w, E) and a P-mLll 8et A(w, E) 81Lch that 

(3.2) CQn c CQ = {p E 1v1: p(p, CQ) < E}, \:In :2: N 
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outside of A(w, E). In particular, if Cq = {tLF }, then every measurable selection, 
fLFn from Cqn is a strongly consistent estimator of !LF. 

PROOF. For simplicity of notation, we write C = CQ, Cn = Cq,, 11 = !LF and 
Mn = ILK. Choose E > 0 arbitrarily. If CE = M, then (3.2) holds with N = 1. If 
D = "~;f \ cc is nonempty, write 

(3.3) 

l = min{F(p): p EM}= F(q) '1/q E C, 

l + 5(E) = min{F(p): p ED}, 5(E) > 0. 

It is enough to show that 

(3.4) max{IFn(P)- F(p)l : p EM}______, 0 a.s., as n----+ ex:;. 

For if (3.4) holds, then there exisLs N 2 1 such thaL, outside a P-null set A(w, E), 

5( E) 
min{Fn(P): p E C} '<::: l + 3' 

(3.5) 
5( E) 

min{Fn(P): p ED} 2 l + - 2-, 'lin 2 N. 

Clearly (3.5) implies (3.2). 
To prove (3.4), choose and fix E1 > 0, however small. Note that '1/p,p',x E l'vf, 

Hence 

lp(p,x)- p(p',x)l '<::: p(p,p'). 

IF(p)- F(p')l '<::: max{lf(p(p,x))- f(p(p',x))l: x EM} 

'<::: max{lf(n)- f(u')l: In- n'l '<::: p(p,p')}, 

(3.6) IFn(P)- Fn(P')I '<::: max{lf(n)- f(u')l: In- n'l '<::: p(p,p')}. 

Since f is uniformly continuous on [0, R] where R is the diameter of NI, so are F 
and Fn on "~;f, and there exists 5(E') > 0 such that 

(3.7) 
E1 E1 

IF(P)- F(p')l '<::: 4' IFn(P)- Fn(P')I '<::: 4 

if p(p,p') < 5(E'). Let {q1 , ... , qk} be a 5(E')-net of M, i.e., 'If p E l'v! there exists 
q(p) E { q1 , ... , qk} such that p(p, q(p)) < 5( E1). By the strong law oflarge numbers, 
there exists an integer-valued random variable N(w, E1 ) such that outside of a P-null 
set A(w, E1), one has 

(3.8) 
E' 

IFn(qi)-F(qi)l '<::: 4Vi=1,2, ... ,k; ifn2N(w,E1). 

From (3.7) and (3.8) we get 

IF(p)- F,(p)l '<::: IF(p)- F(q(p))l + IF(q(p))- Fn(q(p))l + IFn(q(p))- Fn(P)I 

3E1 
1 , 

'<::: 4 < E , 'lip E M, 

if n 2 N(w, E1 ) outside of A(w, E1). This proves (3.4). D 

REMARK 3.1. l:"nder an additional assumption guaranteeing the existence of a 
minimizer ofF, Proposition 3.1 can be extended to all metric spaces whose closed 
and bounded subsets are all compact. \Ve will consider such an extension elsewhere, 
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thereby generalizing Theorem 2.3 in BP (2003). For statistical analysis on shape 
spaces which are compact manifolds, Proposition 3.1 suffices. 

REMARK 3.2. One can show that the reverse of (3.2) that is "Cq C CQ, \:1 
n :_::, N(w, e)" does not hold in general. See for example Remark 2.6 in BP (2003). 

REMARK 3.3. In view of Proposition 3.1, if the Fn?chet mean f-LF of Q exists as 
a unique minimizer ofF, then every measurable selection of a sequence /-LFn E Cq, 
(n :_::, 1) converges to fLF with probability one. In the rest of the paper it therefore 
suffices to define the sample Fn?chet mean as a measurable selection from Cq, 
(n :_::, 1). 

Next we consider the asymptotic distribution of /-LF,. For Theorem 3.2, we 
assume M to be a differentiable manifold of dimension d. Let p be a distance 
metrizing the topology of NI. The proof of the theorem is similar to that of Theorem 
2.1 in BP (2005). Denote by Dr the partial derivative w.r.t. the rth coordinate. 
(r = 1, ... , d). 

THEORE:vl 3.2. Suppose the following assumptions hold: 
Al Q has support in a single coordinate patch, (U, ¢). {¢: U-----+ JRd smooth.] Let 
Yj = ¢(XJ), j = 1, ... ,n. 
A2 Frechet mean /-LF of Q is unique. 
A3 \:fx, y---+ h(x, y) = (p¢?(x, y) = p2 (¢- 1x, ¢-1 y) is twice continuously differen
tiable in a neighborhood of ¢(f-LF) = f-L· 
A4 E{Drh(Y, f-L)} 2 < oo \:Jr. 
A5 E{ sup IDsDrh(Y,v)- D8 Drh(Y,u)l}---+ 0 as E---+ 0\:1 r,s. 

]u-v]<:;E 

A6 A= (( E{DsDrh(Y,f-L)} )) is nonsingular. 
A7~ = Cov[grad h(Yl,f-L)] is nonsingular. 
Let fLF.n be a measurable selection from the sample Frechet mean set. Then under 
the assumptions A 1-A 7, 

(3.9) 

4. Extrinsic Means on Manifolds 

From now on, we assume that A! is a Riemannian manifold of dimension d. Let 
G be a Lie group acting on NI and let J: NI ---+lEN be a H-equivariant embedding 
of AI into some euclidean space lEN of dimension N. For all our applications, II is 
compact. Then J induces the metric 

( 4.1) p(x, y) = IIJ(x)- J(y)ll 

on iVJ, where 11·11 denotes Euclidean norm (llull 2 = L~: 1 ui 2 \:fu = (ul,u2, .. ,uN)). 
This is called the extrinsic distance on J;J. 

For the Frechet function F in (3.1), let f (r) = r 2 on [0, oo). This choice of the 
Frechet function makes the Frechet mean computable in a number of important 
examples using Proposition 4.1. Assume J(NI) = Jt! is a closed subset oflEN.Then 
for every u E lEN there exists a compact set of points in J"(:f whose distance from u 
is the smallest among all points in iii. We denote this set by 

( 4.2) 
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If this set is a singleton, u is said to be a nonfocal point of lEN (w.r.t. 1\/J), otherwise 
it is said to be a focal point of lEN. 

DEFINITION 4.1. Let (AI, p), J be as above. Let Q be a probability measure 
on 1\11 such that the Frechet function 

(4.3) F(x) = J p2 (x,y)Q(dy) 

is finite. The Frechet mean (set) of Q is called the extrinsic mean (set) of Q. If X 1, 

i = 1, ... , n are iid observations from Q and Qn = ~ =~=1 6x,, then the Frechet 
mean(set) of Qn is called the extrinsic sample mean,(set). 

Let Q and CJn be the images of Q and Q 71 respectively in lEN: Q = Q o J- 1 , 
~ -1 

Qn = Qn ° J · 

PROPOSITI0:'-1 4.1. (a) If jL = JJEN nQ(du) is the mean ofQ, then the extrinsic 

mean set of Q is given by J- 1 (PA-:rfL). (b) If jL is a nonfocal point of lEN then the 
extrinsic mean of Q exists (as a unique minimizer ofF). 

PROOF. See Proposition 3.1, BP (2003). D 

COROLLARY 4.2. If jL = JJEN uQ(du) is a nonfocal point ofiEN then the extrinsic 
sample mean /Ln (any measurable selection from the extrinsic sample mean set) is 
a strongly consistent estimator of the extrinsic mean 11 of Q. 

PROOF. Follows from Proposition 3.1 for compact 1\11. For the more general 
case, see BP (2003). D 

4.1. Asymptotic Distribution of the Extrinsic Sample Mean. Although 
one can apply Theorem 3.2 here, we prefer a different, and more widely applicable 
approach, which does not require that the support of Q be contained in a coor
dinate patch. Let Y = ~ 2:?= 1 Yj be the (sample) mean of Yj = P(Xj)· In a 
neighborhood of a nonfocal point such asp, P(.) is smooth. Hence it can be shown 
that 

(4.4) 

vvhere dflP is the differential (map) of the projection P(.), which takes vectors in 
the tangent space of lEN at jL to tangent vectors of Jtf at P(fL). Let fr, h, ... , fd 
be an orthonormal basis ofTP(fl)J(Al) and e1 ,e2 , ... ,eN be an orthonormal basis 
(frame) for TIE N ;:::: IE N. One has 

(4.5) 

N 

Fn(Y- P) = 2:)vn(Y- p), e1 )e1 , 

j=1 
N 

dilP( fn(Y- P)) = 2:)vn(Y- p), eJ)dilP(e1) 
j=1 

N d 

= 2)vn(Y- jL),eJ) ~(dflP(e1 ),fr)fr 
j=1 r=1 

d N 

= ~[~(dflP(ej),fr)(vn(?- jL),ej)lfr· 
r=1 j=1 
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Hence fo[P(Y) - P({L)] has an asymptotic Gaussian distribution on the tangent 
space of J(lvl) at P({L), with mean vector zero and a dispersion matrix (w.r.t. the 
basis vector Ur : 1 <::: r <::: d}) 

L = A'VA 

where 
A= A({L) = ( ({dp,P( Cj ), JT}) hScjScN,lScTScd 

and V is theN x N covariance matrix of Q = Q o J- 1 

j <::: N}). In matrix notation, 

(4.6) 
- £ 

ylnT _____, N(O, L) as n ----t oo, 

where 

and 

f = T(ti) = ~ tTj({L). 
n 

j=l 

(w.r.t. the basis {ej: 1 <::: 

This implies, writing XJ for the chisquare distribution with d degrees of freedom, 

(4.7) nT1L- 1T ~ XJ, as n ___, oo. 

A confidence region for P({L) with asymptotic confidence level 1 - a is then 
given by 

(4.8) {P({L): nf'"t-11' <::: XJ(1- a)} 

where "t = "t({L) is the sample covariance matrix of {Tj (fl)}j=l· The corresponding 
bootstrapped confidence region is given by 

(4.9) {P({L): nf'f,-lf <::: c(l-a)} 

where c(l-a) is the upper (1 -a)-quantile of the bootstrapped values U*, U* = 
nT* 1"t*- 1T* and T*, "t* being the sample mean and covariance respectively of the 
bootstrap sample {lj(Y)}j'=l· 

5. Intrinsic Means on Manifolds 

Let ( 1\!1, g) be a complete connected Riemannian manifold with metric tensor 
g. Then the natural choice for the distance metric p in Section 3 is the geodesic 
distance d9 on lvl. L"nless otherwise stated .. we consider the function .f(r) = r 2 

in (3.1) throughout this section and later sections. However one may take more 
general .f. For example one may consider .f(r) = ra, for suitable a .2 1. 

Let Q be a probability distribution on 1Vf with finite Frechet function 

(5.1) F(p) = !
111 
d~(p,m)Q(dm). 

Let X1, ... , Xn be an iid sample from Q. 

DEFI)JITION 5.1. The Frechet mean set of Q under p = d9 is called the intrinsic 
mean set of Q. The Fnkhet mean set of the empirical distribution Qn is called the 
sample intrinsic mean set. 

Before proceeding further, let us define a few technical terms related to Rie
mannian manifolds which we will use extensively in this section. For details on 
Riemannian Manifolds, see DoCarmo (1992), Gallot et al. (1990) or Lee (1997). 
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(1) Geodesic: These are curves 1 on the manifold with zero acceleration. They 
are locally length minimizing curves. For example, consider great circles 
on the sphere or straight lines in JR.d. 

(2) Exponential map: For p E l\!1, v E TplV1, we define expP v = ~t(1), where~~ 

is a geodesic with 1(0) = p and ry(O) = v. 
(3) Cut locus: For a point p E 1\11, define the cut locus C(p) of p as the set 

of points of the form 1(t0 ), where 1 is a unit speed geodesic starting at 
p and t0 is the supremum of all t > 0 such that ~~ is distance minimizing 
from p to 1(t). For example, C(p) = { -p} on the sphere. 

( 4) Sectional Curvature: Recall the notion of Gaussian curvature of two di
mensional surfaces. On a Riemannian manifold 1V1, choose a pair of lin
early independent vectors u, v E Tpl\11. A two dimensional submanifold of 
1\!1 is swept out by the set of all geodesics starting at p and with initial 
velocities lying in the two-dimensional section 7r spanned be u, v. The 
Gaussian curvature of this subrnanifold is called the sectional curvature 
at p of the section Jr. 

(5) Injectivity Radius: Define the injectivity radius of l\!1 as 

inj(N1) = inf{d9 (p, C(p)): p E l\!1}. 

For example the sphere of radius 1 has injectivity radius equal to Jr. 

Also letT* = rnin{inj(l\1!), ~},where Cis the least upper bound of sectional cur-
ve 

vatures of N1 if this upper bound is positive, and C = 0 otherwise. The exponential 
map at pis injective on { v E Tv(lv!) : I vi < r*}. By B(p, r) we will denote an open 
ball with center p E 1V1 and radius r, and B(p, r) will denote its closure. 

In case Q has a unique intrinsic: mean f-LI, it follows from Proposition 3.1 and 
Remark 3.1 that the sample intrinsic mean flnJ (a measurable selection from the 
sample intrinsic: mean set) is a consistent estimator of f-LI. Broad conditions for the 
existence of a unique intrinsic mean are not known. From results due to Karchar 
(1997) and Le (2001), it follows that if the support of Q is in a geodesic ball of 
radius r4, i.e. supp( Q) c:;; B(p, r4), then Q has a unique intrinsic: mean. This result 
has been substantially extended by Kendall (1990) which shows that if supp( Q) c:;; 
B(p, 1~* ), then there is a unique local minimum of the Frec:het function F in that 
ball. Then we redefine the (local) intrinsic: mean of Q as that unique minimizer 
in the ball. In that case one can show that the (local) sample intrinsic mean is a 
consistent estimator of the intrinsic: mean of Q. This is stated in Proposition 5.1. 

PROPOSITION 5.1. Let Q have support in B(p, r2) for some p EM. Then (a) 
Q has a unique (local) intTinsic mean fli in B(p, r2*) and (b) the sample intrinsic 
mean f-Lni in B(p, r2*) is a strongly consistent estimator of f-LI. 

PROOF. (a) Follows from Kendall (1990). 
(b) Since supp(Q) is compact, supp(Q) c:;; B(p,r) for some r < r2. From Lemma 
1, Le (2001), it follows that f-LI E B(p, T) and f-LI is the unique intrinsic mean of Q 
restricted to B(p, r). Now take the compact metric: space in Proposition 3.1 to be 
B(p, T) and the result follows. D 

For the asymptotic: distribution of the sample intrinsic: mean, we may use Theo
rem 3.2. For that we need to verify assumptions A1-A7. Theorem5.2 gives sufficient 
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conditions for that. In the statement of the theorem, the usual partial order A ::;:, B 
between d x d symmetric matrices A, B, means that A- B is nonnegative definite. 

THEOREC..1 5.2. Assume supp( Q) s;;; B(p, ri). Let ¢ = exp~} : B(p, ri) -----+ 

T 11 r1\!J(r:o:; JRd). Then the map y c--+ h(x, y) = d~(¢- 1 x, ¢-1y) is twice continuously 
differentiable in a neighborhood of 0 and in terms of normal coordinates with respect 
to a chosen orthonaormal basis for T11r l'vi, 

(5.2) Drh(x,0)=-2xr, 1:::;r:::;d, 

(5.3) [DrDsh(x, 0)] ::;:, [ 2{ ( 1 -1 f1~1xl)) Xr X8 + f(lxl)5rs}] 1::;r,s:Sd · 

H _ ( 1 d)' 1 1 _ I( 1)2 ( 2)2 ( d)2 and ere X - X , ... , X , X - y X + X + . . . X 

(5.4) _ ~~~o:~y) ifC > 0 
f(y) - sin(yCy) 

yCCycosh(yC'Cy) if C < 0 
sinh(yC'Cy) 

There is equality in (5.3) when 1\!I has constant sectional C1Lrvature C, and in this 
case A has the expression: 

(5.5) (
1- f(IX1I)) -r ~s ~ 

Ars = 2E{ ~ X 1 X 1 + f(IX11)5rsL 1 :::; r, s:::; d. 
IX11 2 

A is positive definite ifsupp(Q) E B(fli, ~). 

PROOF. See Theorem 2.2., BB (2008b). D 

From Theorem 5.2 it follows that~= 4Cov(Yl) where Y7 = ¢(X7), j = 1, ... , n 
are the normal coorinates of the sample X 1, ... , X n from Q. It is nonsingular if 
Q o ¢-1 has support in no smaller dimensional subspace of JRd. That holds if for 
example Q has a density with respect to the volume measure on l'vi. 

6. Applications 

In this section we apply the results of the earlier sections to some important 
manifolds. We start with the unit sphere Sd in JRd+1. 

6.1. Sd. Consider the space of all directions in JRd+1 which can be identified 
with the unit sphere 

Sd = {x E IR'.d+ 1 : llxll = 1}. 

Statistics on 5 2 , often called directional statistics, have been among the earliest 
and most widely used statistics on manifolds. (See, e.g., Watson (1983), Fisher 
et al. (1996), Mardia and Jupp (1999)). Among important applications, we cite 
paleomagnetism, where one may detect and/or study the shifting of magnetic poles 
on earth over geological times. Another application is the estimation of the direction 
of a signal. 

6.1.1. Extrinsic Mean on Sd. The inclusion map i : sd ____, JRd+1' i(x) =X 
provides a natural embedding for Sd into JRd+1. The extrinsic mean set of a proba
bility distribution Q on sd is then the set Ps<i{L on sd closest to {L = JJRd-1 xQ(dx), 

where Q is Q regarded as a probability measure on JRd+1. ::"Jote that {L is non-focal 
iff {L # 0 and then Q has a unique extrinsic mean f1 = 11 ;~ 11 • 
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6.1.2. Intrinsic Mean on Sd. At each p E Sd, endow the tangent space 
TpSd = {v E JRd+ 1 : v.p = 0} with the metric tensor gp : Tp x Tp ---+ lR as the 
restriction of the scaler product at p of the tangent space of JRd+1 : gp( v1 , v2 ) = 
v1 .v2 . The geodesics are the big circles, 

(6.1) 
. v 

/p,v ( t) = (cos tlvi)P + (sm tlvl) ~. 

The exponential map, expP : TPSd ____, Sd is 

(6.2) 
v 

expp(v) = cos(lvi)P + sin(lvl)~, 

and the geodesic distance is 

(6.3) d9 (p, q) = arccos(p.q) E [0, 11-j. 

This space has constant sectional curvature 1 and injectivity radius Jr. Hence if Q 
has support in an open ball of radius ~'then it has a unique intrinsic mean in that 
ball. 

6.2. JRpd. Consider the real projective space JRpd of all lines through the 
origin in JRd+ 1 . The elements of JRpd may be represented as [u] = { -u, v} (v E Sd). 

6.2.1. Extrinsic Mean on JRpd. JRpd can be embedded into the space of k x k 
real symmetric matrices S(k, JR), k = d + 1 via the Veronese- Whitney embedding 
J: JRpd ____, S(k, JR) which is given by 

(6.4) 

As a linear subspace of JRk 2
, S(k, JR) has the Euclidean distance 

(6.5) IIA- Bll 2 = L (aij- bij? = Trace(A- B)(A- B)'. 
1<;i,j<;k 

This endows JRpd with the extrinsic distance p given by 

(6.6) 

Let Q be a probability distribution on JRpd and let t'l be the mean of Q = Q o J- 1 

considered as a probability measure on S(k, JR). Then [1 E s+(k, JR)-the space 
of k x k real symmetric nonnegative definite matices, and the projection of [1 into 
J(JRPd) is given by the set of all uv.' where vis a unit eigenvector of [1 corresponding 
to the largest eigenvalue. Hence the projection is unique, i.e. 1"L is nonfocal iff its 
largest eigenvalue is simple, i.e., if the eigenspace corresponding to the largest 
eigenvalue is one dimensional. In that case the extrinsic mean of Q is [u], u being 
a unit eigenvector in the eigenspace of the largest eigenvalue .. 

6.2.2. Intrinsic Mean on JRPd. JRpd is a complete Riemannian manifold 
with geodesic distance 

(6.7) 
7r 

d9 ([p], [q]) = arccos(lp.ql) E [0, 2]. 

It has constant sectional curvature 4 and injectivity radius ~. Hence if the support 
of Q is contained in an open geodesic ball of radius :;f, it has a unique intrinsic 
mean in that ball. 



702

STATISTICS OJ'\ 'v!AJ'\IFOLDS 13 

6.3. ~~'. Consider a set of k points in .!Rm, not all points being the same. Such 
a set is called a k-ad or a configuration of k landmarks. We will denote a k-ad by 
the m x k matrix, x = [x1 ... xk] where xi, i = 1, ... , k are the k landmarks from 
the object of interest. Assume k > m. The direct similarity shape of the k-ad is 
what remains after we remove the effects of translation, rotation and scaling. To 
remove translation, we substract the mean x = f 2..:~= 1 X; from each landmark to 
get the centered k-ad w = [x1 - x .. . Xk - x]. We remove the effect of scaling by 
dividing w by its euclidean norm to get 

(6.8) 

This 'U is called the preshape of the k-ad X and it lies in the unit sphere s~ in the 
hyperplane 

k 

(6.9) H,~, = {v E .!Rkm: L Vj = 0}. 
j=1 

Thus the preshape space S~ may be identified with the sphere skm-m-1 . Then 
the shape of the k-ad x is the orbit of z under left multiplication by m x m rotation 
matrices. In other words ~~ = skrn-m- 1 I SO(m). The cases of importance are 
m = 2, 3. ~ext we turn to the case m = 2. 

6.4. ~~. As pointed out in Sections 2.2 and 6.3, ~~ = S 2k- 3 I 50(2). For a 
simpler representation, we denote a k-ad in the plane by a set of k complex numbers. 
The preshape of this complex k-vector xis z = ll~=~ll' x = (x1, ... ,xk) E c_k, 

- 1 "'k l h l l x = k L..i= 1 Xi· z ies in t e comp ex sp 1ere 

k k 

( 6.10) s1 = {z E ck: L [zj[ 2 = 1, LZj = 0} 
j=1 j=1 

which may be identified with the real sphere of dimension 2k- 3. Then the shape 
of x can be represented as the orbit 

(6.11) 

and 

(6.12) ~~ = {cr(z): z E 51}. 

Thus ~~ has the structure of the complex projective space c_pk- 2 of all complex 
lines Lhrough Lhe origin in c_k- 1 , an imporlanL and well sludiecl manifold in diiTer
ential geometry (See Gallot et al. (1993), pp. 63-65, 97-100, BB (2008b)). 

6.4.1. Extrinsic Mean on~~. ~~ can be embedded into S(k, C)-the space 
of k x k complex Hermitian matrices, via the Veronese- Whitney embedding 

(6.13) J: ~~---+ S(k,C), J(cr(z)) = zz*. 

J is equivariant under the action of SU(k)-the group of k x k complex matrices 
r such that f*f = I, det(f) = 1. To see this, let r E SU(k). Then r defines a 
diffeorrnorphisrn, 

(6.14) r: ~~---+ ~~' f(cr(z)) = cr(f(z)). 

The map ¢r on S(k, q defined by 

(6.15) ¢r(A) = r Ar* 



703

14 RABI BHATTACHARYA AND ABHISHEK BHATTACHARYA 

preserves distances and has the property 

(6.16) (¢r)- 1 = <Pr-1, ¢r1r 2 = ¢r1 ° ¢rz· 

That is (6.15) defines a group homomorphism from SU(k) into a group of isometries 
of S(k, C). Finally note that J(f(()(z))) = ¢r(J(()(z))). Informally, the symme
tries SU(k) of I;~ are preserved by the embedding J. 

S(k, <C) is a (real) vector space of dimension k2. It has the Euclidean distance, 

(6.17) 2"'"' 2 2 [[A- B[[ = L.Jaij- bij II =Trace( A- B) . 
i.j 

Thus the extrinsic distance p on I;~ induced from the Veronese-Whitney embedding 
is given by 

(6.18) p2 ((}(x),(}(y)) = [[uu*- vv*[[ 2 = 2(1-[u*v[ 2 ), 

where x and y are two k-ads, v. and v are their preshapes respectively. 

Let Q be a probability distribution on I;~ and let jj be the mean of Q = QoJ- 1 , 

regarded as a probability measure on <Ck2
• Then jj E S+(k, <C): the space of k x k 

complex positive semidefinite matrices. Its projection into J(I;~) is given by P(jj) = 
{ v.v.*} where v. is a unit eigenvector of jj corresponding to its largest eigenvalue. 
The projection is unique, i.e. jj is nonfocal, and Q has a unique extrinsic mean f-LE, 
iff the eigenspace for the largest eigenvalue of jj is (complex) one dimensional, and 
then /-LE = (}(v.), 'U(cj' 0) E eigenspace of the largest eigenvalue of ft. Let xl, ... Xn 
be an iid sample from Q. If jj is nonfocal, the sample extrinsic mean fLnE is a 
consistent estimator of f-LE and J(f-LnE) has an assymptotic Gaussian distribution 
on the tangent space TP(il)J(I;~) (see Section 4), 

(6.19) vn(J(f-LnE)- J(f-LE)) = yindflP(X- jj) + op(1) ~ N(O, I;). 

Here X1 = .J(X1), j = 1, ... ,n. In (6.19), dilP(X- p.) has coordinates 

(6.20) 

with respect to the basis 

(6.21) {(),k- >.a)-1Uvf:p*, (>.k- >.a)- 1 UwkU*}~;:~ 

for TP(fl)J(I;~) (see Section 3.3, BB (2008a)). Here U = [U1 ... Uk] E SO(k) is such 
that U* jjU = D = Diag( >.1, ... , )..k), >.1 <:: ... <:: )..k-1 < )..k being the eigenvalues 
of jj. {vi,' : 1 <:: a <:: b <:: k} and {wl,' : 1 <:: a < b <:: k} is the canonical orthonormal 
basis frame for S(k, C), defined as 

a_ { ~(eaeg + ebe~), a< b 
vb - t 

eaea, a= b 

( ) ,a _ l ( t t ) b 6.22 wb - J2 eaeb - ebea , a < 

where {ea: 1 <::a<:: k} is the standard canonical basis for IRk. 

Given two independent samples X 1, ... Xn iid Q1 and Y1, ... Yrn iid Q2 on I;~, 
we may like to test if Q1 = Q2 by comparing their extrinsic mean shapes. Let 
/-LiE denote the extrinsic mean of Qi and let /-Li be the mean of Qi o J- 1 i = 1, 2. 
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Then ftiE = J-1 P(tti), and we wish Lo lesl Ho: P(ttd = P(tt2)· LeL XJ = J(Xj), 
j = 1, ... ,n and }j = J(lj), j = 1, ... ,m. Let Tj,SJ denote the asymptotic 
coordinates for Xj, }j respectively in T?cfl)J('B~) as defined in (6.20). Here f1 = 

n~-:;_~Y is the pooled sample mean. \Ve use the two sample test statistic 

(6.23) Tnm = (T- s)' ( ~f=1 + ~f=2)- 1 (T- S). 
n m 

A A L 
Here L;1, 'B2 denote the sample covariances ofTJ, SJ respectively. Under H 0 , Tnm ______, 
Xik- 4 (see Section 3.4, BB (2008a)). Hence given level a, we reject Ho if Tnm > 
Xik-4(1- a). 

6.4.2. Intrinsic Mean on 'B~. Identified with c_pk-2, 'B~ is a complete con
nected Riemannian manifold. It has all sectional curvatures bounded between 1 
and 4 and injectivity radius of~ (see Gallot et al. (1990), pp. 97-100, 134). Hence 
if s·upp( Q) E B(p, :;f), p E L;~, iL has a unique intrinsic: mean /LJ in Lhe ball. 

Let X1, ... Xn be iid Q and let ftni denote the sample intrinsic: mean. Cnder 
the hypothesis of Theorem 5.2, 

(6.24) 

However Theorem 5.2 does not provide an analytic computation of A, since 'B~ 
does not have constant sectional curvature. Proposition 6.1 below gives the precise 
expression for A. It also relaxes the support condition required for A to be positive 
definite. 

PROPOSITION 6.1. With respect to normal coordinates, ¢ : B(p, :'f) ----+ c_k- 2 ( ~ 
JR2k- 4 ), A as defined in Theorem 3.2 has the following expression: 

(6.25) 

where for 1 <:: r, s <:: k - 2, 

[ {1-d1 c:ot(dl)} - -
(All)rs = 2E dr cot(dl)5rs- d2 (ReXr,r)(ReXr,s) 

1 

tan(dl) - - ] + i (ImX1,r)(ImX1,s) , 
G1 

[ {1-d1 c:ot(dl)} - -
(A22)rs = 2E d1 c:ot(dl)ilrs- d2 (ImX1,r)(ImX1,s) 

1 

+ tar~\dl) (ReXr,r)(ReXr,s)], 

[ {1- d1cot(d1)} - - tan(dr) - - ] 
(Adrs = -2E dt (ReX1,r)(ImX1,s) + d1 (ImX1,r)(ReX1,s) 

where d1 = d9 (X1 ,tti) and XJ = (XJ, 1 , ... ,XJ,k-2) = ¢(XJ), j = 1, ... ,n. A is 
positive definite ifsupp(Q) E B(ttJ,0.377r). 

PROOF. See Theorem 3.1, BB (2008b). D 

:'\ ote that with respect to a chosen orthonormal basis {vr, ... , Vk-2} for TM ""Bt 
¢ has the expression 
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where 

' - r ie -' ' - ie zoz (6.26) mj = -.-e Vj z, r = d9(m, fLI) = arccos(lz0 zl), e = -
1 

, _

1

. 

sm r z0 z 

Here z, z0 are the preshapes of m, p,1 respectively (see Section 3, BB (2008b)). 

Given two independent samples X1, ... Xn iid Q1 and Y1, ... Ym iid Q2, one 
may test if Q1 and Q2 have the same intrinsic mean fLI· The test statistic used is 

(6.27) 

Here fLni and fLmi are the sample intrinsic means for the X and Y samples respec
tively and fl is the pooled sample intrinsic mean. Then¢ = exp ~ 1 gives normal coor-

A ( 1 A 1 A A 1 1 A 1 A A 1) 
dinates on the tangent space at P,, and I;= (m+n) r;:A1 I;1A1 + ;;nA2 I;2A2 , 

where (A1, I;1) and (A2 , I; 2 ) are the parameters in the asymptotic distribution of 
fo( cP(tLni) - ¢(p,r)) and vm( ¢(tLrni - ¢(p,r)) respectively, as defined in Theorem 
3.2., and (A1 , f;l) and (A2 , f; 2 ) are consistent sample estimates. Assuming H 0 to 

be true, T;,m _!-__, Xik- 4 (see Section 4.1, BB (2008a)). Hence we reject Ho at 
asymptotic level1- a if T~m > X~L4 (1- a). 

6.5. RL;';:,. For m > 2, the direct similarity shape space I;~, fails to be a 
manifold. That is because the action of SO(m) is not in general free (see, e.g., 
Kendall et al. (1999) and Small (1996)). To avoid that one may consider the shape 
of only those k-ads whose preshapes have rank at least m - 1. This subset is a 
manifold but not complete (in its geodesic distance). Alternatively one may also 
remove the effect of reflection and redefine shape of a k-ad x as 

(6.28) cr(x) = cr(z) = {Az: A E O(m)} 

where z is the preshape. Then RL;';:, is the space of all such shapes where rank of 
z is m. In other words 

(6.29) RL;':n = {cr(z): z E S~, rank(z) = m}. 

This is a manifold. It has been shown that the map 

(6.30) J: RL;~,---+ S(k,JR), J(cr(z)) = z'z 

is an embedding of the reflection shape space into S(k, JR) (see Dandulasiri and 
Patrangenaru (2005), Bandulasiri et al. (2007), and Dryden et al. (2007)) and is 
H-equivariant where H = O(k) acts on the right: Acr(z) ~ cr(zA'), A E O(k). 

Let Q be a probability distribution on RL;~, and let P, be the mean of Q o J- 1 

regarded as a probability measure on S(k,JR). Then P, is positive semi-definite with 
rank atleast m. Let P, = U DU' be the singular value decomposition of P,, where 
D = Diag()q, ... , Ak) consists of ordered eigenvalues A1 2 ... 2 Arn 2 ... 2 Ak 2 0 
of t'L, and U = [fh ... Uk] is a matrix in SO(k) whose columns are the corresponding 
orthonormal eigen vectors. Then we may define the mean reflection shape set of Q 
as the set 

(6.31) 
"'m ).. u u~ 

{ E RL;k . J( ) = L..,J=1 J J J } 
fL m · fL "'m ).. 

L..,j=1 J 
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The set in (6.31) is a singleton, and hence Q has a unique mean reflection shape p, 
iff Am> Am+l· Then p, = a(u) where 

(6.32) u=[ Am U ]' 
"'m A rn 
L..,J=1 J 

6.6. A~~. Let z be a centered k-ad in H(m, k), and let a(z) denote its affine 
shape, as defined in Section 2.4. Consider the map 

(6.33) J: A~~---+ S(k,IR), J(a(z)) = P = FF' 

where F = [hh ... frn] is an orthonormal basis for the row space of z. This is an 
embedding of A~~ into S(k, IR) with the image 

(6.34) J(A~;;,) ={A E S(k, IR): A2 =A, Trace( A)= m, Al = 0}. 

It is equivariant under the action of O(k) (see Dimitric (1996)). 

PROPOSITION 6.2. Let Q be a pTobability d'istT'ibution on A~~' and let~~ be the 
mean of Q o J- 1 in S(k, IR). The pmjection of {L into J(A~~) is given by 

m 

(6.35) P(tl) = {L u1u;} 
j=1 

wheTe U = [U1 ... Uk] E SO(k) is such that U't~U = D = Diag(A1, ... , Ak), A1 :2: 
. . . :2: Am :2: . . . :2: Ak. [L is non focal and Q has a unique extTinsic mean tt B iff 
Am > Am+1· Then Ji,E = a(F') wheTe F = [U1 ... Um]· 

PROOF. See Sughatadasa (2006). D 

6.7. P0~~. Consider the diffeomorphism between PI~~' and (.!RPm)k-m- 2 as 
defined in Section 2.5. Using that one can ernbedd PI~~ into S(m + 1, JR)k-m-2 
via the Veronese vVhitney embedding of Section 6.2 and perform extrinsic analysis 
in a dense open subset of Po~;;,. 

7. Examples 

7.1. Example 1: Gorilla Skulls. To test the difference in the shapes of 
skulls of male and female gorillas, eight landmarks were chosen on the midline 
plane of the skulls of 29 male and 30 female gorillas. The data can be found in 
Dryden and :VIardia (1998), pp. 317-318. Thus we have two iid samples in~~' 
k = 8. The sample extrinsic mean shapes for the female and male samples are 
denoted by fl1E and fl2E where 

fl 1E =a[- 0.3586 + 0.3425i, 0.3421 - 0.2943i, 0.0851 - 0.3519i, -0.0085- 0.2388i, 

- 0.1675 + 0.0021i, -0.2766 + 0.3050i, 0.0587 + 0.2353i, 0.3253]' 

fl 2E =a[- 0.3692 + 0.3386'i, 0.3548- 0.2641i, 0.1246- 0.3320'i, 0.0245- 0.2562i, 

- 0.1792 - 0.0179i, -0.3016 + 0.3072i, 0.0438 + 0.2245i, 0.3022] 

The corresponding intrinsic mean shapes are denoted by /lll and flu. They are 
very close to the extrinsic means ( d9(fl1E,flll) = 5.5395 x 10-7 , d9(fl2E,flu) = 

1.9609 x 10-6 ). Figure 1 shows the preshapes of the sample k-ads along with that 
of the extrinsic mean. The sample preshapes have been rotated appropriately so 
as to minimize the Euclidean distance from the mean preshape. Figure 2 shows 
the preshapes of the extrinsic means for the two samples along \vith that of the 
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FIGURE 1. la and lb show 8 landmarks from skulls of 30 female 
and 29 male gorillas, respectively, along with the mean shapes. * 
correspond to the mean shapes' landmarks. 

FIGURE 2. The sample extrinsic means for the 2 groups along with 
the pooled sample mean, corresponding to Figure 1. 

pooled sample extrinsic mean. In BB (2008a), nonparametric two sample tests are 
performed to compare the mean shapes. The statistics (6.23) and (6.27) yield the 
following values: 

Extrinsic: Tnm = 392.6, p-value = P(X[2 > 392.6) < 10- 16 . 

Intrinsic: Tnm = 391.63, p-value = P(X[2 > 391.63) < 10- 16 . 

A parametric F-test (Dryden and Mardia (1998), pp. 154) yields F = 26.47, p
value = P(Ft2,46 > 26.47) = 0.0001. A parametric (Normal) model for Bookstein 
coordinates leads to the Hotelling's T 2 test (Dryden and Mardia (1998), pp. 170-
172) yields the p-value 0.0001. 
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FIGURE 3. 3a and 3b show 5 landmarks from treated and un
treated eyes of 12 monkeys, respectively, along with the mean 
shapes. * correspond to the mean shapes' landmarks. 

7.2. Example 2: Schizophrenic Children. In this example from Bookstein 
(1991), 13 landmarks are recorded on a midsagittal two-dimensional slice from a 
Ylagnetic Resonance brain scan of each of 14 schiwphrenic children and 14 norrnal 
children. In BB (2008a), nonparametric two sample tests are performed to compare 
the extrinsic and intrinsic mean shapes of the two samples. The values of the two
sample test statistics (6.23), (6.27), along with the p-values are as follows. 

Extrinsic: Tnm = 95.5476, p-value = P(X:j2 > 95.5476) = 3.8 X w- 11 . 

Intrinsic: Tnrn = 95.4587, p-value = P(X:j2 > 95.4587) = 3.97 x 10- 11 . 

The value of the likelihood ratio test statistic, using the so-called offset normal 
shape distribntion (Dryden and Mardia (1998), pp. 145-146) is -2log A = 4:U24, 
p-value = P(X:j2 > 43.124) = 0.005. The corresponding values of Goodall's F
statistic and Bookstein's Monte Carlo test (Dryden and Mardia (1998), pp. 145-
146) are Fz2,572 = 1.89, p-value = P(F22,572 > 1.89) = 0.01. The p-value for 
Bookstein's test = 0.04. 

7.3. Example 3: Glaucoma detection. To detect any shape change due 
to Glaucoma, 3D images of the Optic Nerve Head (ONH) of both eyes of 12 rhe
sus monkeys were collected. One of the eyes was treated while the other was left 
untreated. 5 landmarks were recorded on each eye and their reflection shape was 
considered in R~~, k = 5. For details on landmark registration, see Derado et al. 
(2004). The landmark coordinates can be found in BP (2005). Figure 3 shows the 
preshapes of the sample k-ads along with that of the mean shapes. The sample 
points have been rotated and (or) reflected so as to minimize their Euclidean dis
tance from the mean preshapes. Figure 4 shows the preshapes of the mean shapes 
for the two eyes along with that of the pooled sample mean shape. In Bandulasari 
et al. (2007), 4 landmarks are selected and the sample mean shapes of the two eyes 
are compared. Five local coordinates are used in the neighborhood of the mean to 
compute Bonferroni type Bootstrap Confidence Intervals for the difference between 
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FIGURE 4. T he sample means for the 2 eyes along with the pooled 
sample mean, corresponding to Figure 3. 

the local reflection similarity shape coordinates of the paired glaucomatous versus 
control eye (see Section 6.1 , Bandulasari et al. (2007) for details) . It is found that 
the means are different at 1% level of significance. 
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