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Abstract In this chapter, we discuss a project of the LIARA laboratory that
introduces a methodology to design and control smart homes dedicated to people
with disabilities. In this context, this project aims at improving the security of the
environment through a design methodology involving formal synthesis techniques.
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1 Introduction

Ubiquitous computing, making us more connected to our environment and other
people, is challenging the way we live through many different means, ranging from
anticipating our needs to securing our environment and automating routine physical
tasks. Contributions to ubiquitous computing has lead the scientific community to the
smart home era [1], which involves a wide range of these means to liberate us from
usually hard and repetitive work at home and to help us live more independently.

Enhancing independence is actually the core concept of smart homes dedicated
to disabled people. For example, such a house can be designed to help a human
resident suffering from a cognitive deficit to complete his activities of daily living
(ADL) [2] without the need of additional human assistance. De-signing this kind of
smart homes involves many challenges, including blending unobtrusively into the
home environment [3], recognizing the ongoing inhabitant activity [4], localizing
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objects [5], adapting assistance to the person’s cognitive deficit [6], and securing
the environment [7].

Given the high degree of vulnerability of people with cognitive deficiencies,
securing the house is a primary concern. Indeed, an adequately designed smart
home for disabled people should be able to provide both assistance and protection.
However, even if a smart home system is usually build to last, it might not be the
case for its very own components [8]: lights, screens, sound system, and many other
important equipment can fail during the lifetime of the system. In this context,
providing a viable security strategy over time requires to take failures into account
due to their high probability and potential harmful consequences if not taken
seriously [9].

To operate properly over time, the main concern of a fault tolerant smart home
system is, upon detection of a failure, knowing how to “react appropriately”. Let’s
suppose that a detected random failure affects an arbitrary component, is the system
still able to provide both protection and adequate assistance with respect to the
person’s disabilities?

Answering such a question usually requires to solve a non-trivial combinatorial
problem: a smart home is supposed to be composed of many dynamical compo-
nents (electrical shutters, lights, ventilation systems, etc.), each one having several
exclusive execution modes (opening, opened, on, off, disabled, failed, etc.) which
can be observed using sensors; These components are concurrently executed and
their execution modes can be influenced upon reception of events which can be
external to the system (e.g. the user pushes a button) and/or internal (e.g. a security
system prevents a hair dryer from powering on because it is too hot). Here lies the
complexity: ensuring that the system will respect a security property (e.g. being
able to provide assistance even if a component fails) requires to verify that this
property holds for each accessible combination of execution modes.

Now let’s introduce the notion of controllability, which happens when a com-
ponent offers an interface so that a control system—a program named controller—
can send events to constrain its behaviour. Controllability is very common in the
context of ubiquitous computing—smart home is no exception—where almost
every component provides such an interface so that it can be adapted to a situation.
A system is said to be controllable with respect to a temporal property whether
given its dynamicity and controllability, it exists a controller able to constrain the
system such that the temporal property holds for all possible executions.

Applied to smart homes for disabled people, a smart home has the capacity to
undertake a security constraint1 over time if and only if a control system can be
proven to keep the system in execution modes complying with the constraint. But
even if a system under control can be proven correct using verification techniques,
its controller is not guaranteed to be interesting. For example, let’s take a con-
trollable component which can be prevented to start, and a security constraint such
that this component must not be started when temperature is above 50 °C; now let’s

1Or, to be more general, a “quality of service constraint”.
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build a controller which always disables this component; then the system under
control can be verified to be correct, however we understand that the implemented
controller should be more permissive when temperature is lower than 50 °C.

Basically, in presence of controllability, the designer of a fault tolerant smart
home system has to face two non-trivial problems: building a permissive controller
and verifying the system under control. It happens that these two problems are the
specialty of a formal technique named Discrete Controller Synthesis (DCS) [10]:
given a system’s dynamicity, controllability, and temporal constraints, if a control
solution exists then DCS is able to provide automatically a controller which is both
correct by construction and maximally permissive, meaning that it valuates control
events tied to control interfaces of dynamic components only when the system has
to be constrained.

In [11], we made a contribution giving concepts on representing the behavior of
a smart home system dedicated to disabled people. DCS was shown to be applicable
using this representation to create a controller designed to keep the smart home in a
correct state. The contribution of the present study relies on the definition of a
design methodology around these concepts, and shows examples on how a smart
home system can be specified, so that DCS can be applied to solve concrete fault
tolerance related problems in smart homes for people with impairments.

The paper is organized as follows. Section 2 presents the related work about
security in the smart home domain and justifies the choice of DCS over other formal
techniques to provide a solution for the controllability problem. Section 3 describes
the synchronous framework which serves as a foundation for modeling and
applying DCS. Section 4 explains how to de ne a smart home model using this
synchronous framework. Section 5 shows the application of DCS on such a model.
Section 6 details the experiments we conducted using a partial model of our own
smart home equipment. The model is kept partial so that both DCS application and
controller execution remain easy to follow step by step. Finally, Sect. 7 concludes
the paper and outlines future developments of this work.

2 Related Work

The literature on which this study is based can be divided into three major domains.
The first one is smart home modeling [7, 12, 13]: this work aims to give a
framework to represent key aspects of a smart home (dynamicity, controllability,
and temporal constraints) so that formal techniques such as DCS can be applied;
these aspects are generic and need concrete definitions for the smart home context.
The second domain is smart home security [2, 6, 9, 14–18]: what makes a smart
home secure, especially a smart home for disabled people? What are the techniques
employed to provide some form of security in this context? Finally, the third
domain is formal techniques [11, 19–22]: failing to provide a correct smart home
behavior for all its possible executions could easily have harmful consequence for a
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vulnerable inhabitant, so how do we prove a smart home to be secure? And what is
the best technique to apply given the smart home properties?

2.1 Smart Home Modeling

Research projects related to modeling of smart homes for disabled people usually
share many concepts based on representing: the smart home elements (devices,
doors, lights, etc.) with their positions and execution modes, the person itself (its
state of mind, behavior, position, cognitive profile, etc.), and the global execution
model (how the smart home is supposed to run and process events in order to
provide both assistance and security using artificial intelligence).

In [7, 12], Pigot et al. present respectively (1) a meta-model containing generic
knowledge of a smart home system for elders suffering from dementia and (2) a
corresponding model showing cognitive assistance and telemonitoring concepts.
These works detail a pervasive infrastructure and applications to provide assistance
to elders with cognitive deficiencies using two kinds of interventions: one operating
inside the home to help the person to complete its ADL in case of difficulties, and
another one establishing communication outside the home to send message to
caregivers, medical teams or families.

In [13], Lat et al. give an overview of an ontology-based model of a smart home
dedicated to elderly in loss of cognitive autonomy. The ontological architecture is
partitioned into seven sub-domains: (1) Habitat, describing the home structure
(rooms, doors, windows, etc.); (2) Person, which can describe the patient itself
(medical history, behavior, etc.) and the various persons supposed to interact with
the patient and/or the habitat (medical actor, habitat-staff, friend, etc.);
(3) Equipment, which defines the various home appliances; (4) Software,
de-scribing reusable software modules of the smart home system; (5) Task,
detailing the observable tasks that the patient, the personal, and house itself, can
per-form; (6) Behavior, regrouping life habits and critical physiological parameters;
(7) Decision, related to the smart home adaptation behavior.

These works constitute the foundation of Sect. 4, which will synthesize and
show how to represent their ideas into a formal synchronous model, so that security
properties can be set and verified.

2.2 Smart Home Security

Due to its importance, security in the context of smart homes—especially those
dedicated to disabled people—has been widely covered in the literature. Methods
employed to secure a smart home target three main layers: (1) Fault tolerance, as a
smart home system is supposed to experience failures through its lifetime; (2) Smart
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sensing technology, so that ADL can be monitored accurately; (3) Appropriate
smart home behavior depending on the patient deficiencies.

Fault tolerance Failures in a smart home system may occur on several levels [9,
23]: a smart home is typically a set of hardware and software components com-
municating together, so failures can happen either happen at hardware, software or
communication level.

Sensors, actuators, displays, speakers, lights, etc. are traditional failure-prone
smart home hardware components. They wear over time, can be damaged, can go
down if they are battery powered, can cease to communicate because of limited
signal strength, can operate incorrectly because of a manufacturing defect, etc.
A single failure at this level can compromise the smart home security.

A smart home system also typically contains multiple software components
running together (operating systems, artificial intelligences, controllers, etc.),
including commercial applications (i.e. trusted black boxes). Unless formally
checked against security requirements, few assumption should be made about
applications. Even software verified by competent and credible experts can contain
bugs. The malfunction in the control software in Ariane 5 Flight 501 is an example
of such a bug, which remained undetected through several human-driven verifi-
cation processes [24].

Communication between hardware and software components happens through
wired and wireless channels. Communication failures are mainly caused by low
signal strength (e.g. two mobile wireless devices communicating together get
separated by a too long distance) or heavy traffic. They are not really hardware or
software related, but can be (wrongly) perceived as such because affected com-
ponents cease to communicate and become unavailable, making these failures
important to detect.

When a hardware, software or communication component failure is detected,
two common responses are (1) using an equivalent component (redundancy) [17]
and (2) executing the system in a degraded mode, allowing it to work correctly
through failures using a safe subset of its functionalities [25].

These methods will be used in Sects. 4 and 5 as a base to build a fault tolerant
smart home.

Smart sensing Increasing a smart home robustness also involves an effective
sensing system. Identifying ADL [4, 15], locating a person or mobile components
[5], recognizing the mood [26], etc. are examples of smart sensing features that can
be integrated into a smart home.

Section 4 takes the presence of these kinds of high level sensors (artificial
intelligences) into account, so that security rules can be based on their information.

In [17], Bouchard et al. give guidelines to integrate and execute artificial
intelligence modules into a generic smart home system. We will take advantage of
these guidelines to model a system that will comply with the same execution
principles.
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Impairment adaptation Knowing how to adapt a smart home for disabled people
to their impairments is a sensitive and complex problem largely discussed in the
literature. Smart homes usually contain technological devices aiming to provide
adapted cognitive assistance—or prompts—when needed. Typical prompts can be
based on sounds, music, spoken messages, photos, videos, lights, etc. Implementing
an adequate prompting system is actually the core concept or impairment adaptation
[6, 7, 15, 16].

In [6, 17], the authors provide experimental results on prompt efficiency
according to cognitive pro les. Section 4 shows how to represent these relations, so
that security properties can be defied for the prompting system.

Combined together, all these security layers bring a new question. If the house is
equipped with redundant critical equipment, if the prompting system can be adapted
in accordance with the severity and characteristics of the patient’s impairments, and
if the context (ADL, mood, position, etc.) can be accurately monitored: how do we
prove that, in case of a failure, the smart home system can still provide adequate
assistance if the failure impacts the prompting system or the way ADL can be
monitored?

Proving it for every allowed failure, every possible execution, every context, etc.
is essentially a combinatorial explosion problem that is very di cult to solve without
appropriate tools. This is where verification techniques come in.

2.3 Formal Methods

Many research work contribute to formal modeling and verification of user’s
in-teractions, hardware/software components and control algorithms in the smart
home domain [27–29]. However, formal verification suppose that a complete
system can be modeled before being applied. In the modeling methodology pro-
posed in [29], a modeling step named “control algorithm modeling” is explicitly
required. This step is about the definition of a module which, given (1) the system
current configuration, (2) incoming message from the system or its environment,
and (3) control rules, makes a reconfiguration decision and sends triggering mes-
sages to the associated devices for performing the required operations.

This step is precisely the part that is di cult to design because of the combina-
torial problem we are facing in this context. This is the reason why we are more
interested into an alternative method, DCS, which is able to both build the control
part automatically and perform formal verification of the system.

Regarding smart homes, a smart home system can be considered as a special-
ization of autonomic computing systems [30], which adapt and reconfigure them-
selves through the presence of a feedback loop. This loop takes inputs from the
environment (e.g. sensors), updates a representation (e.g. Petri nets, automata) of
the system under control, and decides to reconfigure the system if necessary. This
consideration is detailed in Sect. 3. Describing such a feed-back loop can be done in
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terms of a DCS problem. It consists in considering on the one hand, the set of
possible behavior of a discrete event system [31], where variables are partitioned
into uncontrollable and controllable ones. The uncontrollable variables typically
come from the system’s environment (i.e. “inputs”), while the values of the con-
trollable variables are given by the synthesized controller itself. On the other hand,
it requires a specification of a control objective: a property typically concerning
reachability or invariance of a state space subset. Such a programming makes use of
reconfiguration policy by logical contract. Namely, specifications with contracts
amount to specify declaratively the control objective, and to have an automaton
describing possible behavior, rather than writing down the complete correct control
solution. The basic case is that of contracts on logical properties i.e., involving only
Boolean conditions on states and events. Within the synchronous approach [19],
DCS has been defined and implemented as a tool integrated with synchronous
languages: SIGALI [20]. It handles transition systems with the multi-event labels
typical of the synchronous approach, and features weight functions mechanisms to
introduce some quantitative information and perform optimal DCS.

One of the synchronous languages it has been integrated with is BZR [22],
which is used in this work; BZR actually includes a DCS usage from Sigali within
its compilation. The compilation yields (if it exists) the code of a
correct-by-construction controller (here in C language), which can itself be com-
piled to be executed into the smart home system.

Based on the synchronous characteristics of a smart home system, Sect. 3 sets
the synchronous context and notations so that they can be applied to smart home
modeling in order to perform DCS.

DCS has already been successfully applied in various domains, e.g. adaptive
resource management [32], reconfigurable component-based systems [33], recon-
figurable embedded systems [11], etc. However, DCS in the context of smart homes
has not been seen until very recently, where it was introduced in [34] and [35]. Both
studies show preliminary results on how DCS could be applied to secure a smart
home, [34] having a general point of view, and [35] a specific one regarding fault
tolerance. They have a common perspective to show results with more types of
objectives and adaptive control in order to go beyond a demonstration of DCS
applicability and really show its relevance and efficiency in this context. This study
takes this perspective into account to give a contribution on actual usage of DCS to
solve concrete smart home problems—related to fault tolerance—through a mod-
eling methodology using BZR.

3 Synchronous Framework: Basic Notions

Synchronous languages are optimized for programming reactive systems, i.e. sys-
tems that react to external events. This section aims at presenting the similarities
between a reactive system under control and a controlled smart home, so that a
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synchronous framework—essentially adopted from [36, 37]—gets justified as
appropriate to specify smart home systems.

3.1 Execution Model

In [11], the execution model of a reactive system under control is depicted, cf.
Fig. 1. Such a system contains a global execution loop, which starts by taking
events from the environment. Then these events get processed by a task
(Reconfiguration controller), which chooses the system’s configuration. Finally,
this configuration order gets dispatched through the system’s tasks following its
model of computation, and another iteration of the loop can start again. If a system
can be represented within this execution model, then the proposition of this work
can help to design and formally obtain its Reconfiguration controller task.

In [17], guidelines to build the software architecture of a smart home system are
presented, cf. Fig. 2. Such a software follows a loop-based execution, in which a
database containing an updated system state and event values is read and processed
by eventual artificial intelligence (AI) modules to transform raw data into high level
information. This information can then be used by third party applications.

Immediately, we can see similarities arising from such an architecture com-pared
to the reactive system execution model. If we add a reconfiguration controller as a
third party application in this software architecture, then we obtain the same exe-
cution principle presented in Fig. 1: in each iteration of the execution loop a
controller can be designed to (1) take events and/or high level information provided
by the system and its environment, (2) perform a reconfiguration decision, and

Start

End

End of Loop

Receiving 
events

No

Yes

Yes

No

System

Tasks execution

Fig. 1 Configuration
processing flowchart
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(3) give this decision back to the system using some of its actuators (i.e. its con-
trollability) before the next iteration.

Designing the aforementioned controller by constraint so that it can be obtained
automatically through DCS becomes possible, but it requires the use of formal a
model to specify the behavior of the underlying system under control. Behavioural
modeling can be performed using various formal representations, e.g. State charts,
Petri-nets, Communicating Sequential Processes or other ways. The toolset we use
in this work—BZR and SIGALI—brings us to de ne our system in terms of syn-
chronous equations and Labelled Transition Systems.

3.2 Synchronous Equation

In a declarative synchronous language, semantic is expressed in terms of data flows:
values carried in discrete time are considered as infinite sequence of values, or flows.
At each discrete instant, the relation between input and output values is defined by an
equational representation between flows, it is basically a system of equations:
equations are evaluated concurrently in the same instant and not in sequence, the real
evaluation order being determined at compile-time from their interdependencies. For
example, let x and y be two data flows such that x = x0, x1, … and y = y0, y1, …
Evolution of y over time is given by the following system of equations:

y0 ¼ x0
yt ¼ yt�1 þ xt if t� 1

(

In this example, y is defined, amongst others, by a reference to its value at a
previous discrete instant. Each declarative synchronous language has a syntax to de
ne such a system. The corresponding BZR program is: y = x → pre(y) + x;
meaning that in the first step, y takes the current value of x, and for all next steps

Fig. 2 Smart home software
architecture
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y will take its previous value incremented by x. (Other syntactic features of BZR
can be found online2). To represent the system execution modes, BZR also allows
to de ne automata, or Labelled Transition Systems, each state encapsulating a set of
synchronous equations evaluated only when the state is activated.

3.3 Labelled Transition System (LTS)

A LTS is a structure S ¼ hQ; q0; I ;O; T i where Q is a finite set of states, q0 is the
initial state of S, I is a finite set of input events (produced by the environment), O is
a finite set of output events (emitted towards the environment), and T is the
transition relation, that is a subset of Q� Bool(IÞ � O� � Q, where Bool(IÞ is the
set of boolean expressions of I . If we denote by B the set {true, false}, then a guard
g belong to g 2 Bool(IÞ can be equivalently seen as a function from 2I into B.

Each transition has a label of the form g/a, where g 2 Bool(IÞ must be true for
the transition to be taken (g is the guard of the transition), and where a 2 O� is a
conjunction of outputs that are emitted when the transition is taken (a is the action
of the transition). State q is the source of the transition (q, g, a, q′), and state q′ is the

destination. A transition (q, g, a, q′) will be graphically represented by ðq�!g;a q0Þ.
The composition operator of two LTS put in parallel is the synchronous

product, noted ||, and a characteristic feature of the synchronous languages.
The synchronous product is commutative and associative. Formally Q1; q0;1;

�
I1;O1; T 1i k Q2; q0;2;

�
I 2;O2; T 2i = Q1 �Q2; q0;1; q0;2

� �
; I1 [ I2;

�
O1 [

O2; T i with T ¼ q1; q2ð Þ�!ðg1
^

g2Þ=ða1 ^ a2Þ q01; q
0
2

� �� �
jðq1�!

g1

=
a1q

0
1Þ 2 T 1;

�
ðq2�!

g2

=

a2q02Þ 2 T 2g: Note that this synchronous composition is the simplified one pre-
sented in [37], and supposes that g and a do not share any variable, which would be
permitted in synchronous languages like Esterel.

Here (q1, q2) is called a macro-state, where q1 and q2 are its two component
states. A macro-state containing one component state for every LTS synchronously
composed in a system S is called a configuration of S.

3.4 Discrete Controller Synthesis (DCS) on LTS

A system S is specified as a LTS, more precisely as the result of the synchronous
composition of several LTS. F is the objective that the controlled system must
fulfill, andH is the behavior hypothesis on the inputs of S. The controller C obtained
with DCS achieves this objective by restraining the transitions of S, that is, by
disabling those that would jeopardize the objective F , considering hypothesis H.

2http://bzr.inria.fr/pub/bzr-manual.pdf.
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Both F and H are expressed as boolean equations. The set I of inputs of
S is partitioned into two subsets: the set IC of controllable variables and the set IU

of uncontrollable inputs. Formally, I ¼ IC [IU and IC \ IU ¼ ;: As a conse-
quence, a transition guard g 2 Bool(IC [ IUÞ can be seen as a function from 2IC �
2IU into B. A transition is controllable if and only if (iff) there exists at least one
valuation of the controllable variables such that the boolean expression of its guard is
false; otherwise it is uncontrollable. Formally, a transition ðq; g; a; q0Þ 2 T is
controllable iff 9X 2 2IC such that 8Y 2 2IU , we have g(X, Y) = false. In the
proposed framework, the following function Sc = make_invariant(S, E) from SIGALI
is used to synthesize (i.e. compute by inference) the controlled system Sc = S||C
where E is any subset of states of S, possibly specified itself as a predicate on states
(or control objective) F and predicate on inputs (or hypothesis) H. The function
make_invariant synthesizes and returns a controllable system Sc, if it exists, such
that the controllable transitions leading to states qi 62 E are inhibited, as well as those
leading to states from where a sequence of uncontrollable transitions can lead to such
states qi 62 E. If DCS fails, it means that a controller of S does not exist for objective
F and hypothesisH. In this context, the present proposition relies on the use of DCS
to synthesize a controller C, which makes invariant a safe set of states E in a
LTS-based system where E is inferred by boolean equations defining a control
objective and an hypothesis on the inputs. The controller C given by DCS is said to
be maximally permissive, meaning that it doesn’t set values of controllable variables
that can be either true or false while still compliant with the control objective.
Actually, the BZR compiler defaults these variables to true. Optimization can be
done at this level if this type of decision is too arbitrary [11], but it goes beyond the
scope of this work, which focuses on security, so the standard decision behavior
given by BZR is kept. A smart home system, following the aforementioned exe-
cution principle, can now be designed using this framework.

4 Smart Home Model

From the various smart home presentations found in the related work, a smart home
system for people with disabilities can be abstracted as a hierarchy of hardware and
software components (dynamic or not), sensors, and effectors distributed among several
interconnected rooms, helping a person with impairments to perform ADL. Showing
how to specify all these features within a synchronous model is the aim of this section.

4.1 Dynamic Components

The top component of the hierarchy is the system itself. In accordance to the
synchronous execution model, let S be the LTS of the system, taking inputs I from
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its effectors (buttons, touchscreens, controllable interfaces, etc.) and producing
outputs O from its sensors (low level sensors, AI, any device producing notifica-
tions, etc.) each time it is triggered.

The smart home system is usually built upon several components, which can in
turn be defined as LTS or LTS compositions if they are dynamic (i.e. they have
multiple exclusive running modes) or as a set of synchronous equations if they have
only one execution mode. Some components may be redundant and should not be
specified more than once. For this case, BZR provides a node construct, in which
LTS and synchronous equations can be defined to be instantiated. Figure 3 shows
the graphical representation of such a node for a light bulb behavior definition.

Representing or not a component must be decided upon the following principle:
if a component is concerned by a security rule, or if it can directly or indirectly
influence a component concerned by a security rule, its behavior must be defined in
the synchronous model. Moreover, if a behavior is modeled, it must also be
observable. Regarding the example of the light bulb from Fig. 3, if its corre-
sponding switch is set to ON or OFF,3 then the bulb is supposed to respectively
light up or shut down. This abstraction can work for a system with a relatively short
life and built with new light bulbs. However, in the context of smart homes, a light
bulb may fail at some point. In this model, the light bulb failure is not observable,
so it does not correspond to reality. Being able to observe such a failure requires
another component, like an appropriate sensor represented in Fig. 4 by the boolean
variable lightIsOn. To keep track of the failure, it can be represented as an exe-
cution mode, cf. Fig. 5.

node LightBulb

switch

switch  lightIsOn

Off On

lightIsOn:bool

switch:bool

Fig. 4 Observable light bulb

node LightBulb

switch

switch

Off On

switch:bool

Fig. 3 Simple light bulb
model

3The state of the switch is itself supposed to be known by the system.
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4.2 Person

Any person interaction with the system can be observed through its various types of
sensors. However, in the very specific context of smart homes for disabled people,
some characteristics of the person’s behaviors and impairments can also influence
security rules, and thus, have to be both observable and represented in the syn-
chronous model.

As shown in the related literature, usual observable properties about a person are
its position, mood, ADL and impairments. Position can be trivially defined as a LTS
depending on how rooms are interconnected in the house. Let’s suppose there are
three rooms: a kitchen, connected to a bathroom and a bedroom. If sensors can
determine the current position of a person, then the position evolution over time can
be modeled by the LTS shown in Fig. 6. Observable behaviors in a smart home

node LightBulb

lightIsOn

lightIsOnswitch

switch  lightIsOn

switch lightIsOn

Off

failed=false

Fail

failed=true

On

failed=false

switch

lightIsOn:bool

failed:boolswitch:bool

Fig. 5 Light bulb failure model

node Position

A
I_InB

edroom

A
I_

In
K

itc
he

n

AI_InKitchen

AI_InBedroom

A
I_

In
B

at
hr

oo
m A

I_InK
itchen

Bathroom

Bedroom

Kitchen

AI_InBathroom

Fig. 6 Position model
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system are usually defined as a set of scenarios containing multiple steps and
conditions to go from a step to another, so as to be processed by AI—in combi-
nation of events coming from the system—which can infer which step of which
scenario the person is currently doing. Such a representation for scenarios makes
them easy to be defined as LTS. And because a scenario can be aborted at any time
by the person, modeling a scenario can follow the same principles presented for the
observable failure of the light bulb. Figure 7 shows a LTS example representing the
act of making coffee, evolving from step to step using AI notifications. Finally,
mood and impairments are usually represented by boolean or numerical attributes,
so they can be represented using synchronous equations. Evaluation of impairments
for example, can come from various assessments such as the Global Deterioration
Scale for Assessment of Primary Degenerative Dementia (GDSAPD) [38] which
allocates a number between 1 and 7 depending on the cognitive decline (7 being
very severe). We could also add additional disabilities such as “blind” or “deaf”
which can be associated to booleans, cf. Fig. 8. It should be noted that this
impairment model cannot evolve as it does not take inputs to influence the person’s

node MakeCoffee
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Fig. 7 ADL “Make Coffee”

node Disabilities

deaf = true;
blind = false;

GDSAPD = 7;

Fig. 8 Impairment model
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profile, so in the case this person is diagnosed with additional problems, this model
should be changed accordingly, and recompiled. But this evolution could be rep-
resented with LTS and inputs as usual.

Using all these specifications, a smart home model can be completed by specific
properties required by DSC, namely: designation of controllability within the
model, and security constraints definition.

5 Applying DCS

When the various components and properties of a system are defined as behavior
models (LTS, etc.) and synchronous equations, setting both the controllability and
execution constraints enables the use of DCS.

5.1 Controllability

Controllability occurs naturally in the smart home domain. In the synchronous
model, inputs are received each time the system is triggered, and these can come
from both the environment—uncontrollable inputs IU (e.g. a button is pressed by a
human)—and the system itself—controllable inputs IC (e.g. a device is forced to
shut down by control system which is part of the execution loop).

For example, let’s take a system allowing a third party application to control two
failure-prone light bulbs so that they can be forced to light up or remaining lit even
if their switch is turned off by a human. Figure 9 represents the designed by
constraint controller of this small system, instantiating two times the LightBulb
node (modified compared to Fig. 5 with a boolean variable c representing the
aforementioned controllability), which takes amongst others the switches values as
uncontrollable inputs switch1; switch2 2 IU and the values given by the third party
application as controllable boolean inputs c1; c2 2 IC. The statement with,
declaring controllable variables, is actually implemented in BZR, which also allows
to declare security constraints so that these variables can be valuated accordingly at
each instant of the synchronous execution.

node Controller

Contract
   assume( (fail1  fail2))

   enforce( (problem)  light1  light2)

   with(c1,c2)

fail1 = LightBulb(switch1,c1,lightIsOn1);
fail2 = LightBulb(switch2,c2,lightIsOn2);

problem:bool

lightIsOn1:bool

lightIsOn2:bool

switch1:bool

switch2:bool c1:bool

c1:bool

node LightBulb

lightIsOn

lightIsOnswitch  c

switch  lightIsOn  c

switch  lightIsOn

Off

failed=false

Fail

failed=true

On

failed=false

switch

lightIsOn:bool

failed:bool

c:bool

switch:bool

Fig. 9 Controllable light bulb model

Safe and Automatic Addition … 101



5.2 Constraints

We consider two types of security constraints expressed as boolean synchronous
expressions: (1) Hypothesis, which are supposed to remain true for all executions,
and (2) Guarantee, which are enforced to remain true using controllable variables if
and only if the Hypothesis stays true form the beginning of the execution.

For example, let’s say we want to be sure that, for all possible executions, at least
one light bulb is lit up if a problem (uncontrollable information coming from
observation) arises: this can be specified using the guarantee :problem _ light1 _
light2 (cf. enforce statement). However, the system is not controllable with this rule
alone: light bulbs can be in fail mode at the same time while the system receives a
problem, and thus the guarantee cannot be fulfilled for this specific execution. This
situation would be found automatically when applying DCS, which would fail to
build a controller.

Now, let’s say that the light bulbs can still fail but are supposed to be repaired
quickly enough so that they don’t fail at the same time. This is an example of fault
tolerance: ultimately everything can fail but if there is enough redundancy we can
safely state that not everything will fail at the same time. The hypothesis :ðfail1 ^
fail2Þ (cf. assume statement) represents this assumption in a synchronous boolean
expression. Applying DCS using the BZR toolset on such a model gives back the C
code of a controller taking IU as inputs and providing the computation of IC as
outputs so that the system can now be executed, receiving both IU and IC. DCS is
able in this example to find automatically the correct controller code so that c1 and
c2 can be valuated to true or false exactly when they should (e.g. when a problem
arises, and lights are off, and light1 has failed, then c2 will be forced to false, etc.).
From such a minimal example, we understand how DCS becomes interesting when
the system’s complexity in-creases while having to maintain its safety. If we add
other failure-prone devices, impairment models, security constraints, etc. both
designing and verifying the maximally permissive controller quickly start to be hard
without appropriate tools.

6 Experiment

This section shows the application of DCS on the model of a smart home system to
address various errors coming from the user’s behavior or the system itself (failure
of its components). The examples are built incrementally, i.e. they can be merged
together into a model of a system on which DCS can be applied to synthesize a
controller guaranteeing all user/component safety properties. They show four types
of control behavior: (1) adaptation and (2) usage limitation to anticipate a user
problem (known disabilities and potential behavior errors), and (3) adaptation and
(4) usage limitation to anticipate components related problems (hardware failure).
These types of control behavior are an answer to the smart home fault tolerance
problems identified in [9].
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6.1 Base Model

Before describing the aforementioned scenarios, let’s represent the base model of a
smart home system (cf Fig. 10). This model contains the elements concerned (di-
rectly or indirectly) by security constraints. Their behavioral definitions are given as
a set of automata and synchronous equations following the BZR concepts. The
model also specifies inputs and outputs, and follows the synchronous execution
definition: each execution step consumes all inputs and computes all outputs
through the specified equations and automata, the actual organization of compu-
tations inside a step being solved by the synchronous compiler. This specific view
of the smart home system (i.e. its control related information) con-stitutes the
designed-by-constraint definition of the controller that we will try to synthesize.

Point ① of this model represents the main node—the controller node—cen-
tralizing all incoming events and all necessary outputs. The first four inputs (fail and
repair) are related to the failure and repair events of specific elements named
islands, coming from a previous implementation of fault tolerance [17]. Islands are
independent system monitoring several sensors and effectors. Here we consider two
of them, instantiating (cf. Point③) the generic node island definition given in point
⑦. They manage respectively (1) an iPad, a speaker, and (2) a light bulb (cf. point
③).

Beyond island events, the controller node also receives a notification when
smoke is detected (smoke), when the kitchen room is in the dark (dark), when the
radio is activated (pushBtnRadio), when the range hood fan in the kitchen is acti-
vated (pushBtnRHF), when the person receives a telephone call (telephoneCall),
and when the stove burners 1 and 2 of the kitchen stove are set to then ON position
(activateSB1, activateSB2).

Fig. 10 Graphical representation of the defined by constraint controller
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Point ⑥ shows a simplified behavior for the kitchen stove, allowing the acti-
vation of the two aforementioned stove burners, and being able to go in a safety
mode if some problem is detected. When this mode is activated, the stove burners
are set to OFF and the controller is notified (through the variable named safety) for
actions to be derived.

Point ⑧ represents an abstract and simplified impairment model, which will be
filled with a person actual data; here we will see what happens with seven persons
given their information about their sight and hearing (integers from 0 to 2, meaning
respectively “completely impaired” to “normal”), and also on their GDSAPD
evaluation (integer from 1 to 7, meaning respectively “normal” to “severely men-
tally disabled”). These information will influence how the system should commu-
nicate—choosing between the iPad, the speaker, or the light—and when to
communicate or not—playMsg being true or false—cf. point ④.

This communication with the user will also take care of the cognitive load:
communicating with the person using the iPad, etc. increments the load by one unit,
cf. point ⑤; if the kitchen stove is in use, this will also increase the load by one or
two depending on the number of activated stove burners (cf. kitchenLoad from
point ⑥); and finally, receiving a telephone call and listening to the radio are also
considered as a cognitive loads. Thus, telephoneLoad and radioLoad (cf. point ⑤)
increments the load by one depending on their activation (respectively influenced
by the telephone input and the playRadio equation from point ④).

Finally, automata from ⑨ and ⑩ represent the activation behavior of the range
hood fan and the kitchen light.

Now the model just needs a contract (which will be detailed in the next parts), so
that DCS can be applied to eventually obtain an executable controller. This contract
is given in point ② where, first, we make assumptions about the uncontrollability
(assumptionScenario3), i.e. we define synchronous equations representing some
key parts of the environment’s behavior—this helps DCS to eliminate the verifi-
cation of events combinations and sequences that are not supposed to happen—.
And second, we specify rules that must remain true for all possible executions
(ruleScenario1,2,4), with the help of seven controllable variables representing here
the actual controllability of the system (i.e. they represent the real interface pro-
posed by the smart home so that it can be influenced through the use of a computing
system). These controllable variables are valuated internally by the synthesized
controller (obtained through DCS) and provided as outputs, so that the system can
react at each control step. When these variables are forced to false, cMsg(IPad/
Light/Speaker) indicate which prompting system has to be used (respectively the
iPad, the light, and the speaker), cRadio can force the radio to turn off, cK can set
the kitchen stove in a safety mode, cSB2 can prevent the use of the second stove
burner and cRHF can activate the range hood fan.

We will now incrementally set four types of safety rules to tolerate errors or to
adapt upon dangers, and detail their effects when the smart home system under
control is used by people with different disabilities and different levels of
impairments.
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6.2 Scenario 1: User Assistance (Adapted Prompting)

Description and objective This first scenario aims at showing the added value of
DCS when designing a controller to adapt the way the smart home communicates
with the user. Guaranteeing the safety of the controller (with respect to rules) is made
through the verification aspect of DCS, just like in classical formal verification
algorithms (e.g. Model Checking); but knowing if such a controller actually exists is
addressed by the very specific aspect of DCS: synthesis from constraints. Let’s
specify a first constraint, for example we want to be sure that when smoke is detected
in the kitchen (smoke variable is true), then the range hood fan activates and a
prompt information is provided through an adapted media (iPad, speaker or light-
bulb). To reflect this in the model, we set the following equation for ruleScenario1:

ruleScenario1 ¼ :ðsmokeÞ _ ðrhfon ^ playMsgÞ ð1Þ

We now take the cases of persons 1 and 2: will the smart home be controllable,
i.e. will it be able to cope with this constraint for all possible execution? Let’s apply
DCS with each user profile on this specification—containing the base model, the
user profile, and this first rule (the other ones being set to true for the moment)—
and let’s simulate a scenario where the user activates the two stove burners to start
cooking some food, but smoke gets detected when the food is starting to burn.

Comments on scenario execution DCS fails when applied with the profile of
person 2. This person is actually both blind and deaf, so there is no appropriate
communication media in case of a problem (e.g. when smoke is detected).
Technically: variables msg(IPad/Speaker/Light) can never be set to true what-ever
the values given to the controllable variables cMsg(IPad/Speaker/Light) because
blind and deaf are true; thus playMsg can never be true. This leads to the fact that
ruleScenario1 can be false if smoke—an uncontrollable variable given as input—is
true, which is of course not permitted (ruleScenario1 has to be enforced to true for
all executions). Because of this, the smart home system is not controllable for this
first rule and this is the reason why DCS fails, meaning that the system has to be
reworked (e.g. by adding adapted medias), before person 2 can actually use it safely.

However, DCS succeeds when applied with the profile of person 1, meaning that
a controller has been found so that ruleScenario1 will always remain true for all
possible execution. Figure 11 shows the simulation results, highlighting important
events. It has to be noted that only the relevant events and steps are represented:

Persson 1

Step 1 Step 2 Step 3 Step 4 Step 5 Step 6

smoke
activateSB1
activateSB2
pushBtnRHF

cMsgSpeaker
cRHF

0 0 1 1 0 0
1 1 1 1 1 1
0 1 1 1 1 1
0 0 0 1 0 1

1 1 0 0 1 1
1 1 0 0 1 1
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.

Fig. 11 Execution of
scenario 1 for person 1
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missing inputs are false, missing outputs are true, and a new step is represented
only when something changes from the previous one (new inputs/outputs or
internal state modification).

– Steps 1 and 2: Person 1 activates respectively the stove burners 1 and 2 to start
cooking.

– Step 3: Some smoke gets detected by a sensor that valuate the smoke input to
true; the controller reacts by setting the controllable variables cMsgSpeaker, cK
and cRHF to false, which has the following effects:

• the range hood fan activates
• a message about the smoke is played using the speaker; physically, the

system is able to select the appropriate message and media, knowing that
smoke is true and cMsgSpeaker is forced to false.

This way, ruleScenario1 remains true.

– Step 4: The person tries to deactivate the range hood fan, however, because
smoke is still detected, the fan has to stay activate; deactivation is actually
prevented by forcing cRHF to remain false in this step, avoiding to take the
transition from step RHFon to RHFoff.

– Step 5: No smoke is detected anymore, and no controllable variable has to be
forced to false; this has the following effect: the message about smoke is stopped
being played.

– Step 6: the person tries to deactivate the range hood fan, which is this time
permitted because cRHF is not forced to false.

This scenario has shown the interest of using DCS in this context to both verify
that the smart home is able to adapt to a person’s disabilities and generate a
controller to manage the smart home adaptation behavior.

6.3 Scenario 2: User Error Prevention (Simultaneous
Devices Usage Limitation)

Description and objective This second scenario shows the advantage of using
DCS to put limitations on how the various devices in a smart home can be used,
depending on the user’s profile. As an example of such a case, we will focus here
on the compound cognitive load, due to simultaneous device usage by a person, and
show how the smart home system gets configured to prevent a cognitive overload.
Let’s specify a second constraint, such that the cognitive load cannot exceed 2 and 3
units when the person’s GDSAPD is respectively evaluated to 5 and 3. Regarding
the adaptation possibilities, the radio can be turned o automatically and the kitchen
stove cannot be used on Elaborated mode (only the stove burner 1 can be activated
at most) to reduce the cognitive load when it is necessary. We set this as the
following equation for ruleScenario2:
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ruleScenario2 ¼ ð:ðgsdapd� 5Þ _ ðcognitiveLoad� 2ÞÞ^
:ðgdsapd� 3Þ _ ðcognitiveLoad� 3Þð Þ

ð2Þ

Like in the example given in the first scenario, if the smart home cannot be
adapted to a person (due to disabilities) for all possible executions, DCS will fail to
find a controller. So we will take the cases of persons 3, 4 and 5—for which DCS
succeeds—and simulate a scenario where the person is listening to the radio, then
activates the stove burners 1 and 2 to start cooking, but then receives a telephone
call (Fig. 12).

Comments on scenario execution Fig. 12 shows the simulation results, where we
can see how the smart home gets adapted to cope with the differences in abilities to
deal with cognitive load between the three persons. Person 5, having a GDSAPD
lower than 3, should be able to deal with a high cognitive load, but it is not the case
for persons 4 and 3, and this is why they experience some limitation when using
some devices simultaneously in this controlled smart home.

– Step 1: Persons 3, 4 and 5 start listening to the radio; cognitive load is then set to
1 unit, which is correct for everyone.

– Step 2: Persons 3, 4 and 5 activate the first stove burner; this increments the
cognitive load by 1 unit, which is now the acceptable limit for person 3, having
a GDSAPD equal to 5 units.

– Step 3: Person 4 and 5 activate the second stove burner, now the cognitive load
is set to 3 units, the acceptable limit for person 4 (having a GDSAPD equal to 3
units); but when person 2 tries to activate the second stove burner by setting the
activateSB1 switch to “on” (true), the radio goes o because the controller forces
cRadio to be false, thus keeping the cognitive load below the acceptable limit, as
required by ruleScenario2. It is interesting to note here that preventing the
second stove burner to start by forcing cSB2 to be false would also have been a
correct response from the controller. The order in which the controllable vari-
ables are set actually depends on the order they are declared in the BZR pro-
gram. Here cSB2 is declared before cRadio, so when a value is asked for cSB2 in
a step, the value of cRadio is not decided yet, and in this example cSB2 has no
reason to be forced to false, because there is still a solution to comply with the
rules (i.e. by setting cRadio to false). Inverting the declarations of cSB2 and
cRadio would have let the radio “on” and prevented the use of the second
kitchen stove for person 3 in this step.

Persson 3

Step 1 Step 2 Step 3 Step 4

pushBtnRadio
telephoneCall
activateSB1
activateSB2

cRadio
cSB2

1 0 0 0
0 0 0 1
0 1 1 1
0 0 1 1

1 1 0 0
1 1 1 0
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Persson 4

Step 1 Step 2 Step 3 Step 4

1 0 0 0
0 0 0 1
0 1 1 1
0 0 1 1

1 1 1 0
1 1 1 1

Persson 5

Step 1 Step 2 Step 3 Step 4

1 0 0 0
0 0 0 1
0 1 1 1
0 0 1 1

1 1 1 1
1 1 1 1

Fig. 12 Execution of scenario 2 for persons 3, 4 and 5
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– Step 4: a telephone call is received in this step, which increments the cognitive
load by one, and this cannot be prevented (there is no controllability on
receiving telephone calls for this smart home, at least in the model we have
defined). Person 5 can receive the call whilst continuing to cook and to listen to
the radio. However letting the cognitive load going to 4 units is not permitted for
person 4, so the smart home has to react to not let this happen: this is why the
radio gets deactivated (and not the stove burner 2 for the same reason explained
in step 3 for person 3). Finally, this telephone call impacts the smart home
usability for person 3 to keep the cognitive load to an acceptable level: the
controller forces cSB2 to be false here, thus deactivating the second stove burner
and keeping the cognitive load to 2 units.

This scenario has shown an example on how the person’s static profile can be used
to prevent user errors (here by keeping the cognitive load below an adapted level)
by configuring the smart home with the help of DCS which provided a corre-
sponding smart home controller.

6.4 Scenario 3: Component Failure (Redundancy)

Description and objective This third scenario shows the application of DCS to
solve a problem that could arise from a previous implementation of fault tolerance
in our smart home system: in our architecture presented in [17], we “did install
industrial grade material […] to avoid hazardous situations [for example where] the
resident cannot turn on the light due to a system failure.”; thus we connected our
various sensors and effectors to four independent fault-tolerant islands so that “if a
block falls, only the [connected equipments] will be affected”. Sensors and effectors
are critical safety elements, so if their connected island can fail, do we have enough
redundancy? To generalize, having enough redundancy in a given system means
that, for all possible execution of this system and in case of a failure, there is always
a solution to keep it running correctly; it means here that the smart home system
remains adapted to the person’s impairments. In order to keep the base model small
and visually clear, we consider a simplification of our own redundancy imple-
mentation where only islands can fail but not the other devices (lights, sensors,
etc.). Island failure is a kind of uncontrollable event (the system can do nothing to
prevent this), so it cannot be represented as a control rule. However we will assume
here that the case where two islands are disabled in the same step should never
happen, but we still want to tolerate one and only one failure at most. This
hypothesis can be represented in the assume part of the contract, by giving the
following equation to assumptionRule3:

assumptionRule3 ¼ islandfailures� 1 ð3Þ
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In this scenario, we will see that having an island failure may have different
impacts on the smart home behavior regarding who is actually living in. It starts
when the island number 1 fails. Then the user activates the two stove burners to
start cooking, but smoke gets detected which triggers a message (using an appro-
priate media) and the user deactivate the stove burners. At some point, no more
smoke is detected and the island number 1 gets repaired. Then the user re-starts
cooking, but smoke gets detected again and an new message has to be communi-
cated. We take persons 1 and 6 for this scenario and apply DCS (Fig. 13).

Comments on scenario execution As shown in Fig. 13 for person 1, DCS does
not find an appropriate controller. Indeed, if island number 1 fails, then the speakers
cannot be activated (cf. Point ③, island1IsOn being false means okSpeaker is false
too, and then msgSpeaker cannot be true); however this is the only acceptable
communication media when a person is blind (but not deaf) which is the case of
person 1 (cf. Point ④, if blind is true, then msgLight and msgIPad cannot be true);
so if msg(IPad/Speaker/Light) are all false, then playMsg becomes false and this
can be problematic: if a message has to be communicated to the user because of a
problem, such as a smoke problem as specified in ruleScenario1, there is no media
available and because this situation cannot be prevented by any available con-
trollability then DCS fails, meaning that the redundancy implementation has to be
reworked.

For person 6 however, DCS succeeds and the steps results of the aforementioned
scenario can be seen in Fig. 13. It has to be noted that if both islands fail at the same
time, then no media can be selected anymore, and in case of a smoke problem this
would violate ruleScenario1. But DCS ignores this case, as we have defined that a
double island failure should not happen at the same time in the assume part of the
contract.

– Step 1: The scenario starts when island number 1 fails; this disables the use of
the iPad and the speaker as communication devices.

– Steps 2 and 3: Person 6 activates the two stove burners to start cooking.
– Step 4: Smoke gets detected from the environment (this enables the range hood

fan but it is not relevant in this scenario), and a message has to be communicated
in order to keep ruleScenario1 to true. Person 6 being deaf, the iPad cannot be
used as it requires to have correct sight and hearing (cf. Point ④); so only the

Persson 6

Step 1 Step 2 Step 3 Step 4 Step 5 Step 6 Step 7 Step 8

fail1
repair1
smoke
activateSB1
activateSB2

cMsgLight
cMsgIPad
cMsgSpeaker

1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 1 1 0 0 1
0 1 1 1 0 0 1 1
0 0 1 1 0 0 1 1

1 1 1 0 0 1 1 1
1 1 1 1 1 1 1 0
1 1 1 1 1 1 1 1
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Fig. 13 Execution of scenario 3 for person 6
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light remains, and this is why cMsgLight is forced to false by the controller, this
way a message about the smoke problem can be communicated through the
light.

– Step 5: Person 6 sets the two stove burners’ switches to “off”.
– Step 6: No smoke is detected, so the controller does not continue to keep

cMsgLight to false (having smoke to false keeps ruleScenario1 to true) thus the
message about smoke can be stopped.

– Step 7: Island 1 has been repaired and the two stove burners are switched “on”
again.

– Step 8: Smoke is detected anew: This time, the message about smoke gets
communicated through the iPad, because (1) island number 1 is operational and
(2) the controllable variable cMsgIpad is declared after cMsgLight, explaining
why cMsgLight remains true (not forced by the controller), because cMsgIpad
can always be forced to false after (which is the case in this step), thus keeping
ruleScenario1 to true.

Usage of DSC in this scenario is especially powerful: instead of trying to define
redundancy generically for all types of users, we can reduce costs by defining more
or less redundant component combinations for different users and applying DCS to
guarantee that a specific redundant installation is safe for a specific user profile.
Moreover, adjusting hypothesis on the components’ quality is simply a question of
setting a boolean equation in the assume part. For example, if we have five islands
monitoring our components, and want to tolerate a maximum of three failures at the
same time and see if our system is still stable, we just have to set (islandfail-
ures ≤ 3) in the assume part and apply DCS to know if the smart home is actually
stable (controllable) in this context and get the associated controller.

6.5 Scenario 4: Component Adaptation (Degraded Mode)

Description and objective An alternative solution to cope with hardware failures,
besides using redundancy, is to modify the way the remaining operational com-
ponents can be used. If we take the islands failures example, and want to cope with
a double failure—which creates a communication problem when smoke is detected
-, then we can program a controller to degrade what can create smoke (i.e. the
kitchen stove by setting cK to false), and either remove ruleScenario1 or assume
that smoke remains false when Safety mode is active. But it would mean that the
kitchen stove would be forced to remain in Safety mode for all possible executions
just because smoke could happen, which is not acceptable. Instead, we want to find
an example showing how DCS can be useful to build a controller helping to
anticipate a hardware failure by modifying the remaining active components in the
case where no redundancy is available. Let’s say we only have one lightbulb in the
kitchen. At night, if the lightbulb fails—and whatever its controllability (i.e. the
lightbulb can be switched “on” or “off” automatically)—then the kitchen goes
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completely dark. Now let’s build an new safety rule such that, if the user has limited
sight, the kitchen stove cannot be used during the night when the lightbulb is not
activated. Of course, because the light bulb has no redundancy, we cannot create a
rule such that when the kitchen is used during the night, then the light should go
“on” if sight is limited: this model would not comply with the reality if we consider
that the lightbulb can fail (and thus cannot go “on” at some undetermined moment).
So instead, we use a light sensor providing the value of a variable named dark—
indicating if there is enough light in the room (false) or not (true)—and this value
explicitly impacts the way the kitchen can be used through the following syn-
chronous equation attributed to ruleScenario4:

ruleScenario4 ¼ :ðsight ¼¼ 1Þ _ ð:darkÞ _ ðkitchenLoad ¼¼ 0Þ ð4Þ

This means that if the user’s sight is evaluated to 1 (visually impaired but not
blind), and if the kitchen is in the dark, then the smart home has to adapt itself so
that the kitchen stove cannot be used (it is either in Off or Safety mode, the only
modes where kitchenLoad equals 0).

We now define a scenario where we start at night, the kitchen is in the dark, and
the user activates the stove burner 1; then the user presses the light button (this
event is not given to the controller because no information about the actual light-
bulb activation can be safely derived from it), but the lightbulb fails in the following
instant.

Depending on the user’s profile, different control results happen when this
scenario is played, as shown is Fig. 5 for persons 7 and 5 (for which DCS suc-
ceeded). This example relates to Scenario 1 regarding the explicit constraint defi-
nition on environment events (smoke value directly impacts the activation of the
range hood fan), to Scenario 2 regarding the dynamic adaptation to multiple users
profiles, and to Scenario 3 regarding the hardware failure example (islands can fail,
their failures impact the system’s behavior) (Fig. 14).

Comments on scenario execution Following Fig. 14, person 7 being visually
impaired, the smart home system adapts itself consequently. However, person 5
having a good sight, the smart home does not interfere with the kitchen stove usage,
whatever the light condition.

Persson 6

Step 1 Step 2 Step 3 Step 4 Step 5 Step 6 Step 7 Step 8

fail1
repair1
smoke
activateSB1
activateSB2

cMsgLight
cMsgIPad
cMsgSpeaker

1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 1 1 0 0 1
0 1 1 1 0 0 1 1
0 0 1 1 0 0 1 1

1 1 1 0 0 1 1 1
1 1 1 1 1 1 1 0
1 1 1 1 1 1 1 1
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Fig. 14 Execution of scenario 4 for persons 7 and 5
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– Step 1: Both users are in the kitchen, in the dark.
– Step 2: Both of them press a button to activate the stove burner 1, but the actual

activation is prevented for person 7: the controller forces cK to false, which
prevents the kitchen stove to go in Simple execution mode where kitchenLoad
would be equal to 1 instead of 0, thus violating ruleScenario4.

– Step 3: They both activate the lightbulb, and the light sensor reacts by setting
dark to false. This allows the actual activation of the stove burner 1 for person 7.

– Step 4: The kitchen returns in the dark, as indicated by the dark value (true),
even if neither person 7 nor 5 actually touched the light switch to turn it off: the
lightbulb has failed and the controller reacts on the dark value—instead of the
actual light switch position—for person 7 by setting the cK controllable variable
to false, thus placing the kitchen stove to its safety execution mode.

In the context of usage limitation to anticipate components related problems, this
example shows again the advantage of being able to define the system’s control-
lability by constraint, instead of giving its actual implementation: here the kitchen
stove is actually controllable in the sense that an internal system (the controller) can
act on it to prevent the activation of its stove burners, but the kitchen model does
not have to define explicitly under which conditions it has to react; the actual
control implementation (valuation of the controllable variables) is obtained by
synthesis given the global constraints defined by the programmer in the model of
the system’s components. States or behaviors of one or several components (e.g. the
light and impairment profile) can have an impact on the controllability of other
components (e.g. the kitchen stove) without requiring to define explicitly this
controllability.

6.6 Evaluation

Our approach is compared in Fig. 15 to the most relevant ones already discussed in
the “related work” section of this document. Beforehand, we had implemented
some redundancy mechanisms in our own smart home test lab [17], so that not all
sensors/effectors would be controlled by a single machine (an Island) because it
would have consisted in a single point of failure. However, we could not be exactly
sure that for every susceptible failure, the use of redundant elements (islands) would
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Fig. 15 Comparison to other approaches
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be sufficient to keep the smart home safe for a particular person (as several sensors
and/or effectors not managed by the new island would have been disabled). The
way we connect our sensors and effectors to multiple islands could actually be safe
for a person in case of a failure but not for another one with different disabilities,
and this could be hard to find and verify without appropriate tools able to solve this
combinatorial problem. Redundancy without verification was indeed not sufficient.

As we were trying to solve this failure problem, we compared our approach to
closely related ones regarding smart homes for disabled people, and learned—
especially from [9]—that failures could be of multiple types in this context and
redundancy itself was not the only solution to address them. This is why we became
interested in the more general problem of fault tolerance for this kind of smart
homes, and we would base our use cases on their studies to show how the different
types of failures could be addressed. But unlike these approaches, we would
complete ours by verifying it.

Designing smart home models models such that they can be verified has been
done several times. One of the most related approaches regarding modeling and
verification is [29], where a smart home is modeled using a formal representation
(State Charts), and safety properties defined so that formal verification tools can be
employed to guarantee that these properties are ensured for all possible execution.
However, we already discussed the problem of modeling the entire system to apply
verification. This why we kept the formal modeling approach, but took an approach
based on synthesis to address this combinatorial problem by solving it automati-
cally from constraints, instead of trying to find (and verify) a complete solution
manually. Our expertise with synthesis techniques comes from previous work in the
domain of reconfigurable hardware architectures, where DCS was proven useful to
build formal reconfiguration controllers. Still in the hardware context, DCS was
also employed to carry out computations on failure-prone processors, giving us
inspiration on how to actually use DCS to manage fault tolerant smart homes.

Usage of synthesis techniques in the smart home context is very recent. First
results can be seen in [34, 35] which present the use of DCS respectively from a
generic point of view (in the context of the Internet of Things) and from a specific
one regarding fault tolerance. However, being preliminary, they both lack of con-
crete use cases, implementation and results. This proposal makes a contribution
over them by giving these elements: it presents a detailed methodology to create
smart home controllers by synthesis, using BZR for smart home elements modeling,
and shows use cases with realistic scenarios that we tested in our lab to demonstrate
the relevance and advantages of using DCS for addressing the various fault toler-
ance problems (identified in [9]) that may occur in a smart home dedicated to
disabled people.
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7 Conclusion and Perspectives

Safety and security services are essential requirements for many pervasive com-
puting systems. This is especially true for smart homes dedicated to people with
disabilities, where security constraints prevail. They represent a pervasive systems
category where safety is actually a very critical property: the person living in such a
house is usually frail and is not supposed to be able to cope with errors; implication
of failures can range from user annoyance to hazardous situations.

Correct adaptation behavior—so that the smart home remains safe whatever the
conditions of execution—is both difficult to design and verify. While verification
has been addressed multiple times, uses of synthesis techniques in this context to
guarantee a safe behavior (employing formal verification) while simplifying the
design (which is derived from constraints) are still rarely encountered and lack of
examples showing how they can be used to solve practical problems. In this con-
text, this proposal makes a contribution by providing a design methodology, relying
on DCS, and backed by scenarios examples, to build smart home controller systems
guaranteeing safety properties.

The results validating the proposal present both modeling and executions parts
for different scenarios. They especially focus on fault tolerance as a safety property,
and show how to deal with four types of typical control needs in this context:
adaptation and usage limitation for users problems and components failures. With
these results, obtained by rigorous experiments (real scenarios, executed in our
smart home test lab), we demonstrated that the synchronous paradigm (on which
BZR is based) and DCS tools (such as Sigali) are a relevant to design and compute
the controller of a smart home system, in the context of fault tolerance.

In the end, the proposed methodology allows us to solve a simple but crucial
question: can this smart home be adapted to this person, for every failure situation
that can be derived from its model? A negative answer implies that a safety con-
straint (defined in the model) can be violated, and this cannot be prevented: the
smart home itself has to be modified (by adding more redundancy, removing
dangerous elements or executions modes, etc.) because no correct adaptation
controller exist. However, a positive answer to this question automatically gives
back the code of a correct control system, to be connected (inputs and outputs) and
executed within the corresponding smart home so that it can actually be adapted
dynamically.

As a perspective, the current methodology could be improved by defining an
adequate abstraction level so that smart home designers would not even have to
learn about BZR. For example, such an abstraction has been implemented in the
reconfigurable embedded systems domain (cf. [11]) to allow designers to specify
reliable reconfiguration controllers using only a UML profile (high level abstrac-
tion); models built with this profile could be transformed into a synchronous rep-
resentation based on BZR to make DCS applicable transparently, thus giving back
the executable code of their specified-by-constraints controllers.
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