
Chapter 8
Applications

8.1 Introduction

In this chapter, we collect many applications of the various ideas that were discussed
in the earlier chapters. In the second section, we show how the results for weakly
chained diagonally dominant matrices, discussed in Sect. 2.3, have been applied in
obtaining bounds for the `1 norm for the solutions of certain differential systems
and also in deriving bounds for a critical parameter in electric circuit design. In
Sect. 8.3, we review how a mapping problem could be reduced to an infinite system
of linear equations and then solved. In Sect. 8.4, a similar idea is employed to show
how the problem of the flow of fluids in and between two pipes could be handled.
In the next section, viz., Sect. 8.5, we recall how some special double points of
the Mathieu differential equation could be computed using techniques from infinite
matrices. In Sect. 8.6, we discuss how the iterative method described earlier could be
applied to obtain good approximate values of Bessel functions in certain intervals.
Section 8.7 reviews results for the minimal eigenvalue of the Dirichlet Laplacian
in an annulus. In the next section, an approximate solution providing the best
match for the hydraulic head in a porous medium is presented. The next section,
namely Sect. 8.9, considers eigenvalues of the Laplacian in an elliptic domain. The
penultimate section studies the problem of the possibility of “hearing” the shape of
a drum. The concluding section, Sect. 8.11, discusses how one could determine the
zeros of a Taylor series.

8.2 Two Applications of Weakly Chained Diagonally
Dominant Matrices

Let us recall that, in Sect. 2.3 the notion of weakly chained diagonal dominance for
certain classes of Z-matrices was discussed. Results for upper and lower bounds for
the minimal eigenvalue of A, and its corresponding eigenvector, and for the entries
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of the inverse of A were reviewed there. In what follows, we show how these results
have been applied to find meaningful two-sided bounds for both the `1-norm and
the weighted Perron-norms of the solution x.t/ to the linear differential system

Px D �Ax; x.0/ D x0 > 0:

Note that x.t/ D .x1.t/; x2.t/; : : : ; xn.t//T and Px D Px.t/ D .
dx1.t/

dt ; : : : ;
dxn.t/

dt /T . In
particular, these systems occur in R-C electrical circuits and a detailed analysis
of a model for the transient behavior of digital circuits is studied by Shivakumar,
Williams, Ye and Marinov [120].

In order to apply the results of Sect. 2.3, we assume that A is an irreducible
weakly chained diagonally dominant Z-matrix with positive diagonal entries. It is
proved (Theorem 5.1, [120]) that for all t � 0,

nX

iD1

zixi.t/ D e�qt
nX

iD1

zix0
i ; (8.1)

where q D q.A/ is the Perron root and z D .z1; z2; : : : ; zn/T is the unique normalized
positive eigenvector (the Perron vector) of AT corresponding to q.

If bounds for the Perron root are available, viz., 0 < qm � q � qM, then one has

zmin

zmax
kx0ke�qM � kx.t/k � zmax

zmin
kx0ke�qm ; (8.2)

where zmin � zi � zmax for all i D 1; 2; : : : ; n and k : k denotes the 1-norm.
References to results of similar nature which motivated the above are given in [120].

Let us turn our attention to a problem in electrical circuits which was also con-
sidered by the same authors. It is rather well-known that if v.t/ D .v1.t/; v2.t/; : : : ;

vn.t//T denotes the vector of node voltages, then under certain conditions, the
transient evolution of an R-C circuit is governed by the differential equation

C
dv.t/

dt
D �Gv C g; (8.3)

where C is a diagonal matrix with nonzero diagonal entries, g is a given vector, and
G is a given matrix of conductances. If v1 is the so-called stationary regime voltage
vector and if we set x.t/ D v.t/ � v1, then the differential equation given above
reduces to

dx.t/

dt
D �C�1Gx.t/: (8.4)

The matrix C�1G turns out to be an irreducible Z-matrix with positive diagonal
entries with certain further properties. The crucial performance of the digital circuit
is the high operating speed that is measured by the quantity
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T.�/ D sup

�
t W kx.t/k

kx0k D �

�
; (8.5)

where again, the norm is the 1-norm and 0 < � < 1. In practice one takes the value
� D 0:1. Finding an appropriate value of T.�/ is one of the primary objectives in a
design process. Using the inequalities given above, the authors of [120] show that
the following inequalities hold (again, the norms below are 1-norms):

zmin

zmax
e�qMT1.�/ � � D kx.T1.�//k

kx0k � zmax

zmin
e�qmT1.�/; (8.6)

for a certain delay T1.�/ > 0. This implies that

1

qM
ln

zmin

�zmax
� T1.�/ � 1

qm
ln

zmax

�zmin
: (8.7)

A simple numerical example is given to illustrate how these bounds are reasonably
tight. The bounds obtained above are expected to provide useful information in a
search for optimal parameters.

8.3 Conformal Mapping of Doubly Connected Regions

Solution of a large number of problems in modern technology, such as leakage of
gas in a graphite brick of a gas-cooled nuclear reactor, analysis of stresses in solid
propellant rocket grain, simultaneous flow of oil and gas in concentric pipes, and
microwave theory, hinges critically on the possibility of conformal transformation
of a doubly connected region into a circular annulus.

If D is a doubly connected region of the z-plane, then the frontier of D consists
of two disjoint continua C0 and C1. It is well known [19] that D can be mapped
conformally onto a circular annulus, in a one-to-one manner. Moreover, if a and b
are the radii of two concentric circles of the annulus, then the modulus of D given by
b=a is a number uniquely determined by D. The difficulties involved in finding such
a mapping function and estimating the modulus of D are described by Kantorovich
and Krylov [54]. In fact, studies concerning specific regions are very few in the
literature. In this section, we review how the mapping problem of the region between
a circle and a curvilinear polygon of n sides is reduced to an infinite system of linear
algebraic equations, by a direct method. The truncated system of linear algebraic
equations turns out to be strictly diagonally dominant.

Let the Jordan curves C0 and C1 bound externally and internally a doubly
connected region D in the z-plane. Then the mapping function

w.z/ D eŒ log zC�.z/ � ; z D x C iy D rei� ;
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which is unique except for an arbitrary rotation, maps D C @D onto the annulus
0 � a � jwj � b < 1, where the ratio b=a is unique and � is regular in D. If � has
the form �.z/ D P1

�1 cnzn, we then have

log.zNz/ C �.z/ C �.z/ D
(

log b2 ; if z 2 C0

log a2 ; if z 2 C1

The requirement that � satisfies the conditions given above is equivalent to solving
the system of infinite linear equations:

1X

qD1

apqxq D rp; p D 1; 2; : : : ;

for suitable numbers apq and rp (see Eq. (29) and the subsequent values in page 411,
[105]). It can be shown that the truncated system of linear equations:

nX

qD1

apqxq D rp; p D 1; 2; : : : ; n

has the property that the determinant of the coefficient matrix is nonzero for all n.
Thus the system has a unique solution for each n. Let x.n/ be the solution of the
truncated system for each n. It then follows from a general principle (see, for
instance, [54]) that lim

n!1 x.n/ exists and is a solution of the infinite system. We refer

to [105] for the details and numerical examples. We also refer to [102] for a similar
procedure for the solution of the Poisson’s equation describing a fluid flow problem.

8.4 Fluid Flow in Pipes

In this section, we consider the problem that arises from the idea that two fluids
could be transported with one fluid inside a pipe of cross-section E and the other
flowing in an annular domain D in the xy plane bounded internally by C2 and
externally by C1. The flow velocity w.x; y/ satisfies the Poisson’s equation:

wxx C wyy D �P=� in D; (8.8)

(P; � being positive constants), with the boundary conditions:

w D 0 on C1 and w D 0 on C2:
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In this problem we are concerned with the rate of flow given by

R D
Z Z

w dxdy: (8.9)

It can be shown that using the conformal mapping function

z D c

1 � �
; � D � C i	; (8.10)

we get

w D � P

u�
zNz C �.z/ C �.z/: (8.11)

We get an infinite series expression for w whose coefficients satisfy an infinite
system of algebraic equations. These equations have been shown to have a unique
solution. We refer to the work of Shivakumar, Chew, and Ji [102, 106] and [107] for
the details. In these the following cases are considered

(a) C0 and C1 being eccentric circles.
(b) C0 and C1 being confocal ellipses.
(c) C0 being a circle and C1 being an ellipse.
(d) C0 and C1 being two ellipses.

Calculation of the rate of the flow suggests that the flow is a maximum when
the inner boundary has the least perimeter and the outer boundary has the largest
perimeter for a given area of flow.

We refer to the work of Luca, Kocabiyik and Shivakumar [68] for an application
of the ideas given above in studying fluid flow in a pipe system where the inside of
the outer pipe has a lining of porous media. This, in turn, has been shown to have
applications in the cholesterol problem in arteries.

8.5 Mathieu Equation

Here we consider a Mathieu equation

d2y

dx2
C .
 � 2q cos 2x/y D 0; (8.12)

for a given q with the boundary conditions: y.0/ D y.�=2/ D 0. Our interest is
in the case when two consecutive eigenvalues merge and become equal for some
values of the parameter q. This pair of merging points is called a double point for
that value of q. It is well known that for real double points to occur, the parameter
q must attain some pure imaginary value. In [115], Shivakumar and Xue developed
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an algorithm to compute some special double points. Theoretically, the method can
achieve any required accuracy. We refer to [115] for the details. We briefly present
the main results, here.

Using a solution of the form

y.x/ D
1X

rD1

xrq
�r sin 2rx;

the Mathieu equation is equivalent to the system of infinite linear algebraic equations
given by Bx D 
x, where B D .bij/ is an infinite tridiagonal matrix given by

bij D

8
ˆ̂<

ˆ̂:

�Q if j D i � 1; i � 2

4i2 if j D i

1 if j D i C 1; i � 1:

Here Q D �q2 > 0. Shivakumar and Xue show (Theorem 3.1, [115]) that there
exists a unique double point in the interval Œ4; 16�. They also show that there
is no double point in the interval Œ16; 36�, (Theorem 4.1, [115]). They present
an algorithm for computing the double points. In fact, we have 
 � 11:20 and
Q � 48:09.

The problem of determining the bounds for the width of the instability intervals
in the Mathieu equation has also been studied in the particular case when q D h2,
by Shivakumar and Ye [116]. We present the main result here. We consider the
following boundary conditions: y0.0/ D y0.�=2/ D 0, and y.0/ D y0.�=2/ D
0, with the corresponding eigenvalues being denoted by fa2ng1

0 and fb2ng1
1 ,

respectively. In this connection, the following inequalities are well known: a0 <

b1 < a1 < b2 < a2 < b3 < a3 < : : :. The next result presents upper and lower
bounds for a2n � b2n.

Theorem 8.5.1 (Theorem 2, [116]). For n � max

�
h2 C 1

2
; 3

�
, set

pn D 8h4n

42nŒ.2n � 1/Š�2
:

Then one has

pn

kC

�
1 � h4

8.2n � 1 � h2/2

�
� a2n � b2n � pn

k�
;

for certain constants kC and k�.



8.7 Vibrating Membrane with a Hole 99

8.6 Bessel Functions

An iterative method developed by Shivakumar and Williams [112] was reviewed in
Sect. 3.5 of Chap. 3. The authors also present (Example 5.2, [112]) an approximate
method for determining the values of the Bessel functions Jn.x/ for all values of x
lying in an interval. Recall that these functions satisfy the well-known recurrence
relation:

JnC1.x/ D 2n

x
Jn.x/ � Jn�1.x/; n 2 N; 0 < x < 2:

Treating J0.x/ as given and setting for Jn.x/ D xn; n 2 N, we get a system of
equations whose coefficient matrix satisfies the conditions considered in Sect. 3.5.
For instance, choosing x D 0:6, yields the following system of equations:

10x1 � 3x2 D 3J0.0:6/;

�3xn�1 C 10nxn � 3xnC1 D 0; n � 2;

where 3J0.0:6/ ' 2:73601459, [1]. From Corollary 3.5.1, Sect. 3.5, it follows that

kx � x.p;n/k1 �
�

3

7
.0:3/.pC1/ C 9

49.n C 1/

�
J0.0:6/:

Thus for an error of less than 0:01, we choose n D 16 and p D 6. For the purpose
of comparison, if we take p D 16, then, for instance, we have the following:
9:99555051 E � 07 as against 9:9956 E � 07 in [1], 9:99555051 E � 07 as against
9:9956 E�07 in [1] for J6.0:6/ and 1:61393490 E�12 as against 1:61396824 E�12

in [1] for J10.0:6/. We refer to [112] for more details and comparison with known
results.

8.7 Vibrating Membrane with a Hole

In this section, we review certain interesting results relating to the behavior of the
minimal eigenvalue 
 of the Dirichlet Laplacian in an annulus. Let D1 be a disc
on R

2, with origin at the center of radius 1, D2 � D1 be a disc of radius a < 1,
the center .h; 0/ of which is at a distance h from the origin. Let 
.h/ denote the
minimum Dirichlet eigenvalue of the Laplacian in the annulus D WD Dh WD D1nD2.
The following conjecture was proposed in [93]:

Conjecture. The minimal eigenvalue 
.h/ is a monotonic decreasing function of h
on the interval 0 � h � .1 � a/. In particular, 
.0/ > 
.h/; h > 0.
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The following results (Lemmas 1 and 2, [93]) were proved as supporting
evidence to this conjecture:

Lemma 8.7.1. We have

d


dh
D
Z

S
u2

NN1ds;

where N is the unit normal to S D Sh, pointing into the annulus Dh, N1 is the
projection of N onto x1-axis, uN is the normal derivative of u, and u.x/ D u.x1; x2/

is the normalized L2.D/ eigenfunction corresponding to the first eigenvalue 
.

Let D.r/ denote the disc jxj � r and �.r/ be the first Dirichlet eigenvalue of the
Laplacian in D1nDr . Then we have

Lemma 8.7.2. �.a � h/ < 
.h/ < �.a C h/; 0 < h < 1 � a.

The conjecture was also substantiated by numerical results [93]. Subsequently,
the authors prove the above conjecture in an electronic version of their article
(https://www.math.ksu.edu/~ramm/papers/383.pdf). The argument of the proof is
presented in the third paragraph in page 4. It is noteworthy to point out that this
result has been now shown to be valid in all space dimensions by Kesavan [57].

8.8 Groundwater Flow

Here, we are concerned with the problem of finding the hydraulic head, � in a
nonhomogeneous porous medium, the region being bounded between two vertical
impermeable boundaries, bounded on top by a sloping sinusoidal curve and
unbounded in depth. The hydraulic conductivity K is modelled as K.z/ D eˇz,
supported by some data available from Atomic Energy of Canada Ltd. Here z is
a real variable and ˇ � 0. We recall a method that reduces the problem to that
of solving an infinite system of linear equations. This method yields a Grammian
matrix which is positive definite, and the truncation of this system yields an
approximate solution that provides the best match with the given values on the top
boundary. This is the work of Shivakumar, Williams, Ye and Ji [121], where further
details are available. We only present a brief outline here.

We require � to satisfy the equation:

r:.eˇzr�.x; z// D 0;

where r is the vector differential operator

Oi @

@x
C Oj @

@z
:

https://www.math.ksu.edu/~ramm/papers/383.pdf
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The domain under consideration is given by

0 < x < L; � 1 < z < g.x/ D �
�

ax

L
C V sin.

2�nx

L
/

�
; (8.13)

where L > 0; a � 0 and V are constants and n is a positive integer. The boundary
conditions are given by

@�

@x

ˇ̌
ˇ̌
xD0

D @�

@x

ˇ̌
ˇ̌
xDL

D 0; (8.14)

�.x; z/ is bounded on z � g.x/, and �.x; z/ D z on z D g.x/. The determination of �

reduces to the problem of solving the infinite system of linear algebraic equations:

1X

mD0

bkm˛m D ck; k D 0; 1; 2; : : : ; (8.15)

where bkm are given by means of certain integrals. The infinite matrix B D .bkm/

is the Grammian of a set of functions which arise in the study. The numbers bkm

become difficult to evaluate for large values of k and m by numerical integration.
The authors use an approach using modified Bessel functions, which gives analytical
expressions for bkm. They also present numerical approximations and estimates for
the error.

8.9 Eigenvalues of the Laplacian on an Elliptic Domain

The importance of eigenvalue problems concerning the Laplacian is well doc-
umented in classical and modern literature. Finding the eigenvalues for various
geometries of the domains has posed many challenges for which the methods of
approach include infinite systems of algebraic equations (as indicated in Sect. 8.5),
asymptotic methods, integral equations, and finite element methods. Let us review
the work of Shivakumar and Wu [114], where the details of earlier contributions
are discussed. The eigenvalue problems of the Laplacian is represented by the
Helmholtz equations, Telegraph equations or the equations of the vibrating mem-
brane and is given by:

@2u

@x2
C @2u

@y2
C 
2u D 0 in D; u D 0 on @D;

where D is a plane region bounded by a smooth curve @D. The eigenvalues kn

and corresponding eigenfunctions un describe the natural modes of vibration of the
membrane. According to the maximum principle, kn must be positive (for each n)
for a nontrivial solution to exist. Further kn; n 2 N are ordered such that
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0 < k1 < k2 < � � � < kn < � � � :

The method described here provides a procedure to numerically calculate the
eigenvalues.

Using complex variables z D x C iy; Nz D x � iy, the problem becomes

@2u

@z@Nz C 
2

4
u D 0 in D and u D 0 on C (8.16)

with u D u.z; Nz/, It is well known that the general solution to (8.16) is given by

u D
�

f0.z/ �
Z z

0

f0.t/
@

@t
J0

�


pNz.z � t/

�
dt

�
C conjugate; (8.17)

where f0 is an arbitrary holomorphic function which can be expressed as

f0.z/ D
1X

nD0

anzn (8.18)

and J0 is the Bessel function of the first kind of order 0, which is given by a series
representation as,

J0

�


pNz.z � t/

�
D

1X

kD0

�
�
2

4

	k Nzk.z � t/k

kŠ kŠ
: (8.19)

On substituting for f0, we obtain the general solution to the Helmholtz equation as

u D 2a0J0.

p

zNz/

C
1X

nD1

1X

kD0

An;k

0

@.z C Nz/n C
n=2X

mD1

˛m;n .z C Nz/n�2m .zNz/man

1

A .zNz/k;

where ˛m;n D .�1/m n

m

 
n � m � 1

m � 1

!
and An;k are constants determined in terms of

certain Beta functions. The expression on the right-hand side demonstrates that the
general solution of (8.16) without boundary conditions can be expressed in terms of
powers of zNz and .z C Nz/.

In our case, we consider the domain to be bounded by the ellipse represented by

x2

˛2
C y2

ˇ2
D 1;

which can be expressed correspondingly in the complex plane by
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.z C Nz/2 D a C bzNz; (8.20)

where a D 4˛2ˇ2

ˇ2 � ˛2
and b D 4˛2

˛2 � ˇ2
. After considerable manipulation, we get the

value of u on the ellipse as,

u D 2a0 C
1X

nD1

A2n;0b0;nan

C
1X

kD1

�
�
2

4

	k
2a0

kŠkŠ
.zNz/k

C
1X

kD1

"
kX

nD1

 
A2n;kb0;n C

nX

lD1

A2n;k�lbl;n

!
an

#
.zNz/k

C
1X

kD1

" 1X

nDkC1

 
A2n;kb0;n C

kX

lD1

A2n;k�lbl;n

!
an

#
.zNz/k; (8.21)

for certain constants bl;n defined in terms of a and b. For u D 0 on the elliptic
boundary, we equate the powers of zNz to zero where we arrive at an infinite system
of linear equations of the form

1X

kD0

dknan D 0; n 2 N; (8.22)

where dkn’s are known polynomials of 
2. In [114], the infinite system is truncated
to an n � n system and numerical values are calculated and compared to existing
results in the literature.

8.10 Shape of a Drum

A drumhead is conceived as a domain D in the plane whose boundary @D is clamped.
It is well known that if a membrane D, held fixed along its boundary @D, is set in
motion, its displacement obeys the wave equation

1

2
r2U C 
2U D 0; U D 0 on @U:

Mark Kac in 1966 [52] published an interesting article on the question: Can
one hear the shape of a drum? The phrasing of the title is due to Lipman Bers
but the problem itself is older and can be traced back all the way to Hermann
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Weyl. Similar questions can be asked for the Dirichlet problem for the Laplacian
on domains in higher dimensions or on Riemannian manifolds, as well as for other
elliptic differential operators such as the Cauchy–Riemann operator or the Dirac
operator.

In 1964, John Milnor with the help of a result of Ernst Witt showed that there
exist two Riemannian flat tori of dimension 16 with the same eigenvalues but
different shapes. However, the problem in two dimensions remained open until
1992, when Gordon, Webb and Wolpert [39] found examples of distinct plane
“drums” which “sound” the same. So, the answer to Kac’s question is: for many
shapes, one cannot hear the shape of the drum. However, some information can
be inferred. Moreover, the answer is known to be “yes” for certain convex planar
regions with analytic boundaries. A large number of mathematicians over four
decades have contributed to the topic from various approaches, both theoretical and
numerical.

In this section, we develop a constructive analytic approach to indicate how a
pre-knowledge of the eigenvalues leads to the determination of the parameters of the
boundary. This is based on a major contribution of Zelditch in 2000 [140], where a
positive answer “yes” is given for certain regions with analytic boundaries. We apply
this approach to a general boundary with biaxial symmetry, to a circle boundary, an
ellipse boundary, and a square boundary. In the case of a square, we obtain an insight
into why the analytical procedure does not, as expected, yield an answer. The work
reported here is due to Shivakumar, Wu and Zhang [122].

Let DL denote the class of bounded simply connected real analytic plain domains
with reflection symmetries across two orthogonal axes, of which one has length L.
Under generic conditions, if D1 and D2 are in DL and if the Dirichlet spectra coincide
then D1 D D2, up to a rigid motion [140].

So, mathematically the problem is, whether a pre-knowledge of the eigenvalues
of the Laplacian in a region D leads to the identification of @D, the closed boundary
of D. Specifically, we have

uxx C uyy C 
2u D 0 in D; (8.23)

u D 0 on @D: (8.24)

According to the maximum principle for linear elliptic partial differential
equations, the infinitely many eigenvalues 
2

n, n 2 N, are positive, real, ordered
and satisfy

0 < 
2
1 < 
2

2 < 
2
3 < � � � < 
2

n < � � � < 1:

Using complex variables z D x C iy, z D x � iy, Eqs. (8.23) and (8.24) become

uzz C 
2

4
u D 0 in D; (8.25)

u D 0 on @D: (8.26)
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By Vekua [134], the completely integrated form of the solutions to the above
equations are given by

u D
�

f0.z/ �
Z z

0

f0.t/
@

@t
J0

�


p

z .z � t/
�

dt

�
C conjugate; (8.27)

where f0.z/ is an arbitrary holomorphic function which can be formally expressed as

f0.z/ D
1X

nD0

anzn;

and J0 represents the Bessel function of first kind and order 0 given by

J0

�


p

z .z � t/
�

D
1X

qD0

�
�
2

4

	q
zq .z � t/q

qŠqŠ
: (8.28)

Now we consider the problem for five types of boundaries: a general boundary with
biaxial symmetry, a circular boundary, an elliptic boundary, a square boundary, and
an annulus.

Before we study these cases, we recall an identity given in Abramowitz and
Stegun [1], viz., when n is an even integer,

zn C zn D
n
2X

mD0

cm;n .z C z/.n�2m/ .zz/m ; (8.29)

for certain constants cm;n. Now we consider the parametrized analytical boundary
with biaxial symmetry to be given by

.z C z/2 D
1X

nD0

dn;1.zz/n (8.30)

which yields, on using Cauchy products for infinite series,

.z C z/2p D
1X

nD0

dn;p.zz/n (8.31)

where

dn;p D
nX

lD0

dl;p�1dn�l;1; p D 1; 2; : : : :
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For the specific problem at hand, we may assume that

f0.z/ D
1X

nD0

a2nz2n

so that one has

u D 2a0J0

�



p
zz
�

C
1X

nD1

a2n

1X

kD0

�
�
2

4

	k

A2n;k


z2n C z2n

�
.zz/k ;

for certain constants A2n;k. Upon substitution, this yields

u D 2a0J0

�



p
zz
�

C
1X

nD1

a2n

1X

kD0

�
�


2

4

	k

A2n;k

nX

mD0

�m;n.z C z/2.n�m/.zz/m;

where the constants �m;n are given by �m;n D .�1/m 2n.2n�m�1/Š

mŠ.2n�2m/Š
. After a rearrange-

ment of summations, we get

u D 2a0 CP
1

nD1 a2nDn;0;0;0 C
h
2a0

�
� 
2

4

�
CP

1

nD1 a2n

nP1
iD0

P1�i
pD0 Dn;p;1�i�p;i

oi
zz

C f P1

qD2 f 2a0

�
� 
2

4

�q
1

qŠqŠ
CPq�1

nD1 a2n

hPn
iD0

Pq�1
pD0 Dn;p;q�i�p;i

i

CP
1

nDq a2n

hPq
iD0

Pq�1
pD0 Dn;p;q�i�p;i

i
gg .zz/q:

Here, Dp;q;r;s are certain constants. For a circular boundary given by x2 C y2 D a2

we can consider the parametrization zz D a2. For an elliptic boundary given by

x2

˛2
C y2

ˇ2
D 1

we can consider

.z C z/2 D a C bzz; ˛ > ˇ

where

a D 4˛2ˇ2

ˇ2 � ˛2
; b D 4˛2

˛2 � ˇ2

and

˛2 D a

4 � b
; ˇ2 D �a

b
; a < 0; b > 0:
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A square boundary given by x D ˙a; y D ˙a can be parametrized as

z4 C z4 D 2.zz/2 � 16a2.zz/ C 16a4

or

z2 C z2 D 4 .zz � 2a/2 :

For such a (square) boundary, the authors demonstrate why their analytical approach
does not yield information of the boundary with sharp corners from a pre-knowledge
of eigenvalues. When the boundary of the drum is an annulus we can hear the shape
of the drum if the eigenvalues are known. In other words, for Eqs. (8.23) and (8.24),
D is a totally connected region with the boundary conditions

u D 0 on �1 W x2 C y2 D a2

u D 0 on �2 W x2 C y2 D b2 a > b;

we can show that if the eigenvalues of 
 are known, then the ratio of the annulus is
uniquely determined.

8.11 On Zeros of Taylor Series

We wish to express the zeros zn, n 2 N, of a Taylor series given by

y.x/ D
1X

nD0

cnxn D
1Y

nD1

.1 C anx/; (8.32)

where

c0 D 1; c1 D
1X

kD1

aky0.0/; (8.33)

and zn D � 1

an
. We assume that the zeros are positive and strictly increasing.

Shivakumar and Zhang [117] show that for the second order linear differential
equation [110]

y00.x/ D f .x/y.x/ (8.34)
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the formal Taylor series solution about x D 0 is given by

y.x/ D y.0/ C 1

2Š
f .0/y.0/x2 C

1X

kD1

1

.2k C 2/Š

� 1X

s1D0

kC1X

jD1

Pj.s1; 2k; 0/


x2kC2

C y0.0/x C 1

3Š
Œf 0.0/y.0/ C f .0/y0.0/



x3 C

1X

kD1

1

.2k C 3/Š

� 1X

s1D0

kX

jD1

Pj.s1; 2k C 1; 0/


x2kC3

(8.35)

where Pq.s1; k; x/ is given by

Pq.s1; k; x/ D
k�2.q�1/X

s2Ds1

k�2.q�1/X

s3Ds2

� � �
k�2.q�1/X

sqDsq�1

 
k

sq C 2.q � 1/

! 
sq C 2.q � 2/

sq�1 C 2.q � 2/

! 
sq�1 C 2.q � 3/

sq�2 C 2.q � 3/

!
: : :

 
s3 C 2

s2 C 2

! 
s2

s1

!

f .k�2.q�1/�sq/.x/f sq�sq�1 .x/f .sq�1�sq�2/.x/ : : : f .s2�s1/y.s1/.x/:
(8.36)

We note that

f .x/ D
 1X

nD1

an

1 C anx

!2

�
1X

nD1

a2
n

.1 C anx/2

satisfies (8.34) where y.x/ is given by (8.32) and the coefficients cn of the Taylor
series are given in equation (8.35). To facilitate evaluation for cn we need to find
f p.0/, p D 0; 1; 2; : : : . Using the notation

Qp D
1X

kD1

ap
k ; p D 1; 2; 3; : : : ;

we get

f .0/ D Q2
1 � Q2;

f p.0/ D .�1/pC1pŠ

8
<

:

pC1X

jD1

QjQpC2�j � .p C 1/QpC2

9
=

; :
(8.37)

Rewrite (8.32) as

y.x/ D
1X

nD0

yn.0/

nŠ
xn:
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From (8.37), we note that Q0s can be expressed in terms of derivatives of f .x/ at
x D 0 and using derivatives of y.x/ in (8.34) and comparing the coefficients of xn in
(8.35), one can obtain

Q1 D d1;

Q2 D d2;

: : :

Qk D dk;

where dk’s are functions of c1; c2; : : : ck�1. For roots zn D � 1

an
, an’s satisfy the

Vandermonde equation

1X

kD1

ap
k D dp:

Ran and Sereny [94] show that for a large class of infinite Vandermonde matrices the
finite section method converges in the l1 sense if the right-hand side of the equation
is in a suitably weighted l1.˛/ space.
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