
Chapter 5
Generalized Inverses: Quaternions

5.1 Introduction

A quaternion algebra H was discovered by Sir Rowan Hamilton in 1843, which is a
four-dimensional non-commutative algebra over real number field R with canonical
basis f1; i; j; kg satisfying the conditions:

i2 D j2 D k2 D ijk D �1;

so that one has

ij D �ji D k; jk D �kj D i; and ki D �ik D j:

Any element ˛ 2 H can be written in a unique way: ˛ D aCbiCcjCdk, where
a; b; c, and d are real numbers, i.e., H D fa C bi C cj C dk j a; b; c; d 2 Rg. The
conjugate of ˛ is defined as N̨ D a � bi � cj � dk, and the norm j˛j is given by
j˛j D p

˛ N̨ : It is well-known that H is a skew field (or called a division ring).
The study of polynomials with quaternion coefficients may go back to Niven

[79, 80] in the early 1940s. In these two seminal papers, Niven established the
“Fundamental Theorem of Algebras” for quaternions, that is, xm C a1xm�1 C
a2xm�2 C� � �Cam D 0 .am ¤ 0/ with coefficients in a division ring D has a solution
in D if and only if the centre C of D is a real-closed field and D is the algebra of real
quaternions over C. Furthermore, Niven proved that there may be infinitely many
roots or a finite number, but in the latter case there are at most .2m � 1/2, which
shows the essential difference between the polynomials over division rings and over
commutative fields.

Unlike the polynomials over commutative fields, there are several forms of
quaternion polynomials depending on the positions of coefficients due to the non-
commutativity of H. For example, regular quaternion polynomials in [22] and
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50 5 Generalized Inverses: Quaternions

quaternion simple polynomials in [81]. Some properties of these polynomials have
been discussed (see, for example, [63, 86]). In this chapter, we will use the following
Definition 5.1.1, which places the coefficients on the left side of a variable x:

Definition 5.1.1. A quaternion polynomial f .x/ over H is defined as

f .x/ D anxn C � � � C a1x C a0; ai 2 H; an ¤ 0; i D 0; : : : ; n;

where x commutes with each element in H.

The set of all quaternion polynomials in x is denoted by HŒx�. The degrees,
leading terms, and leading coefficients are defined in a natural way. It is well-
known that HŒx� becomes a non-commutative domain under the usual polynomial
operations.

The quaternion polynomials and matrices with quaternion polynomial entries
have been widely studied with many applications in the past decades. For example,
in [145], the Fast Fourier Transform for the product of two quaternion polynomial
has been discussed with the complexity analysis. In [22], they studied Gröbner
basis theory for the ring of quaternion polynomials and explored how to compute
the module syzygy. Smith-McMillan forms of quaternion polynomial matrices
are defined and some applications to dynamical systems are given in [87]. Some
properties of Ore matrices can be found in [37, 144].

For matrices over commutative rings, it is well-known that the various gener-
alized inverses have been defined and explored for many years (see, for example,
[10, 85]). This motivates us to consider the generalized inverses questions for quater-
nion polynomial matrices. The numerical computations for generalized inverses
have been discussed for a long time. We will use the symbolic computational
methods which have attracted more and more attentions recently, for example,
[42, 45, 46, 89].

The structure of this chapter is as follows. In Sect. 5.2, we discuss f1g-inverses
of the quaternion polynomial matrices and present an algorithm to determine the
existence of f1g-inverses. Using one-sided greatest common divisors of quaternion
polynomials, we develop an efficient algorithm to compute f1g-inverses if they exist.
In Sect. 5.3, we give the definition of the Moore–Penrose inverse for quaternion
polynomial matrices and discuss some basic properties. This includes a necessary
and sufficient condition for the existence of the Moore–Penrose inverse. In Sect. 5.4,
the well-knownv Leverrier–Faddeev algorithm is extended to quaternion polynomial
matrices by using generalized characteristic polynomials. Finally, we discuss the
interpolation problems for quaternion polynomials and give an efficient algorithm
to compute the Moore–Penrose inverse in Sect. 5.5. We have implemented our
algorithms in Maple and some examples are also given in Sect. 5.6.
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5.2 f1g-Inverses of Quaternion Matrices

In this section, we first discuss some properties of f1g-inverses of quaternion
polynomial matrices, which will be used to formulate an algorithm for finding f1g-
inverses for quaternion polynomial matrices. Let HŒx�m�n be the set of all m � n
matrices over HŒx�. Recall that A 2 HŒx�m�n has a f1g-inverse G 2 HŒx�n�m if
AGA D A.

The main technical idea here is to use a well-known result: HŒx� is a non-
commutative principal ideal domain. From this point, we can define one-sided
greatest common divisors and least common multiples of quaternion polynomials
as follows:

Let f ; g 2 HŒx�nf0g. A greatest common right divisor (GCRD) of f and g, written
gcrd.f ; g/, is a nonzero monic d 2 HŒx� such that

(a) d is a common right divisor of f and g, namely f D f1d; g D g1d for some
f1; g1 2 HŒx�;

(b) If d1 2 HŒx� is a common right divisor of f and g, then d1 is a right divisor of d.

A least common right multiple (LCRM) of f and g, written lcrm.f ; g/, is a nonzero
monic s 2 HŒx� such that

(1) s is a common right multiple of f and g, namely s D ff1 D gg1 for some
f1; g1 2 HŒx�,

(2) If s1 2 HŒx� is a common right multiple of f and g, then s1 is a right multiple
of s.

It is easy to prove that GCRD and LCRM are unique. The greatest common left
divisor (GCLD) and the least common left multiple (LCLM) of f and g are defined
correspondingly. The following two lemmas can be proved by using the properties
of one-sided principal ideals.

Lemma 5.2.1. Let a1; a2; : : : ; an; d 2 HŒx� and d be monic. The following
statements are equivalent:

(i) HŒx�a1 C HŒx�a2 C � � � C HŒx�an D HŒx�d.
(ii) d D gcrd.a1; a2; : : : ; an/.

Lemma 5.2.2. Let a1; a2; : : : ; an; s 2 HŒx� and s be monic. The following state-
ments are equivalent:

(i) a1HŒx�
T

a2HŒx�
T � � �T anHŒx� D sHŒx�.

(ii) s D lclm.a1; a2; : : : ; an/.

There are several ways to compute the GCRD and LCLM (see, for example,
[22]). Here we use the following algorithm that is analogous to the traditional
extended Euclidean algorithm for commutative Euclidean domain ([135], Algo-
rithm 3.6). For f D qg C r, we denote q WD f quol g the left quotient of the division
of f by g.
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Algorithm 1 Extended Euclidean Algorithm (EEA)
Input f ; g 2 HŒx�, where deg.f / D n, deg.g/ D m, m � n, m; n 2 N.
Output k 2 N, ri; si; ti 2 HŒx� for 0 � i � k C 1, and qi 2 HŒx� for 1 � i � k, as computed

below.
1: r0  f , s0  1, t0  0, r1  g, s1  0, t1  1

2: i 1

3: while ri ¤ 0 do
qi  ri�1 quol ri, riC1  ri�1 � qiri,
siC1  si�1 � qisi, tiC1  ti�1 � qiti, i iC 1.

4: end while
5: k i� 1

6: return k; ri; si; ti for 0 � i � kC 1, and qi for 1 � i � k.

The correctness of the above algorithm follows the strictly decreasing degrees:
deg.r1/ > deg.r2/ > � � � > deg.rk/ � 0. Next, we shall verify that above algo-
rithm also produces some one-sided greatest common divisors and least common
multiples in quaternion polynomial case, which we shall use later.

Lemma 5.2.3. Let ri; si; ti for 0 � i � k C 1 and qi for 1 � i � k be as in
Algorithm 1. Consider the matrices

R0 D
�

s0 t0
s1 t1

�

; Qi D
�
0 1

1 �qi

�

for 1 � i � k

in M2�2.HŒx�/, and Ri D Qi � � � Q1R0 for 0 � i � k. Then

(a) Ri

�
f
g

�

D
�

ri

riC1

�

.

(b) Ri D
�

si ti
siC1 tiC1

�

.

(c) sif C tig D ri for all 1 � i � k C 1.
(d) gcrd.f ; g/ D rk.
(e) lclm.f ; g/ D skC1f D tkC1g.

Proof. (a) and (b) can be proved by mathematical induction on i and the relation
Ri D QiRi�1. (c) follows directly from (a).

To prove (d), from assumptions and (a)–(c), we have

�
rk

0

�

D Rk

�
f
g

�

D Qk � � � Q1R0

�
f
g

�

D Qk � � � Q1

�
r0

r1

�

D Qk � � � Q1

�
f
g

�

:

Note that for each i 2 f1; : : : ; kg, Qi has an invertible Q�1
i D

�
qi 1

1 0

�

over HŒx�.
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Hence

�
f
g

�

D Q�1
1 � � � Q�1

k

�
rk

0

�

;

which implies that rk is a common right divisor of f and g. On the other hand, by
(c), rk D skf C tkg implies that any common right divisor of f and g is also a right
divisor of rk. Therefore, gcrd.f ; g/ D rk.

Finally, since 0 D rkC1 D skC1f C tkC1g, we have h D skC1f D �tkC1g
is a left common multiple of f and g. Meanwhile, deg.h/ D deg.f / C deg.g/ �
deg.gcrd.f ; g//. Thus, h D lclm.f ; g/. ut

Our purpose is to use one-sided greatest common divisors and least common
multiples to compute f1g-inverses of quaternion polynomial matrices. Our algorithm
is based on recursively computing GCRDs and LCLMs. The following result is
well-known in commutative case.

Theorem 5.2.4. Let A D
"

a Eb
E0 B

#

2 HŒx�.mC1/�.nC1/ with 0 ¤ a 2 HŒx�, Eb D
�
b1 � � � bn

� 2 HŒx�1�n and B 2 HŒx�m�n.

(a) If A has a f1g-inverse over HŒx�, then gcld.a; b1; : : : ; bn/ D 1.

(b) Suppose A D
"

a E0
E0 B

#

. If A has a f1g-inverse over HŒx�, then a 2 H and B has a

f1g-inverse over HŒx�.

Proof. Let G D
"

g Eh
Ek H

#

be a f1g-inverse of A, where g 2 H, Eh D Œh1; : : : ; hn� 2

HŒx�1�n, Ek D �
k1 � � � km

�T 2 HŒx�m�1 and H 2 HŒx�n�m.
Since A D AGA, we have

"
a Eb
E0 B

#

D
"

a Eb
E0 B

#"
g Eh
Ek H

#"
a Eb
E0 B

#

D
"

aga C EbEka �
� BEkEb C BHB

#

: (5.1)

Then aga C EbEka D a, and thus .ag C EbEk � 1/a D 0. Since HŒx� is a principal
ideal domain, we have ag C EbEk � 1 D 0, i.e., ag C b1k1 C � � � C bnkn D 1. Therefore,
gcld.a; b1; : : : ; bn/ D 1.

To prove (b), let Eb D 0 in (5.1). Comparing the correspondent entries of matrices
on both sides, we have aga D a and BHB D B. Hence B has a f1g-inverse H over
HŒx�. aga D a implies that .ag � 1/a D 0, and either a D 0 or ag D 1 since HŒx� is
a domain. Note that both a and g are quaternion polynomials. Therefore a 2 H. ut
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Corollary 5.2.5. Let A D
"

1 E0
E0 B

#

2 HŒx�.mC1/�.nC1/. Then A has a f1g-inverse over

HŒx� if and only if B a f1g-inverse over HŒx�. Moreover, if C 2 HŒx�n�m is a f1g-

inverse of B, then

"
1 E0
E0 C

#

is a f1g-inverse of A over HŒx�.

Proof. If A has a f1g-inverse over HŒx�, then by Theorem 5.2.4(b), B has a f1g-
inverse over HŒx�. Conversely, suppose C 2 HŒx�n�m is a f1g-inverse of B, that is,

BCB D B. Let G D
"

1 E0
E0 C

#

. Then

AGA D
"

1 E0
E0 BCB

#

D
"

1 E0
E0 B

#

D A;

and so G is a f1g-inverse of A over HŒx�. Therefore, A has a f1g-inverse over HŒx�.
ut

Next we shall discuss the row and column transformations of quaternion polyno-
mial matrices. Unlike matrices over fields, we cannot use the usual three elementary
row (column) transformations freely since HŒx� is a non-commutative domain, not a
field. In the following, we will show how to use one-sided greatest common divisors
and least common multiples to make row (column) transformations.

Lemma 5.2.6. Let E; E1 2 HŒx�n�n. Then EE1 D I implies E1E D I.

Proof. Since HŒx� is a principal ideal domain and Noetherian, we know that HŒx� is
stably finite by Proposition 1.13 in [62]. Hence E1 is also a left inverse of E. ut

Lemma 5.2.7. Let A D
�

a11 a12

a21 a22

�

2 HŒx�2�2, gR D gcrd.a11; a21/ and gL D
gcld.a11; a12/. Then there exist invertible matrices E; F 2 HŒx�2�2, such that

EA D
�

gR �
0 �

�

; AF D
�

gL 0

� �
�

;

where each � stands for some element in HŒx�.

Proof. To design our algorithms, the following proof is constructive. If only one of
a11 and a21 is equal to zero, then we just simply switch two rows. If both of a11 and
a21 are equal to zero, then we will do nothing. Now we assume that both of a11 and
a21 are nonzero. Using the Extended Euclidean Algorithm 1 and Lemmas 5.2.3, we
can calculate s; t; k; l 2 HŒx�, such that

sa11 C ta21 D gR; lclm.a11; a21/ D ka11 D la21: (5.2)
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Compute b11; b21 2 HŒx� such that a11 D b11gR, a21 D b21gR. Then .sb11C
tb21 � 1/gR D 0, and .kb11 � lb21/gR D 0. Since HŒx� is a domain and gR ¤ 0,
we have

sb11 C tb21 D 1 and kb11 � lb21 D 0: (5.3)

Again, by (5.2), gcld.k; l/ D 1, and we can use the Extended Euclidean
Algorithm 1 to find p; q 2 HŒx� such that

kp � lq D 1: (5.4)

Now set

E D
�

s t
k �l

�

; E1 D
�

b11 p � b11sp � b11tq
b21 q � b21sp � b21tq

�

:

Then, by (5.2)–(5.4),

EA D
�

s t
k �l

� �
a11 a12

a21 a22

�

D
�

sa11 C ta11 �
ka11 � la21 �

�

D
�

gR �
0 �

�

and

EE1 D
�

s t
k �l

� �
b11 p � b11sp � b11tq
b21 q � b21sp � b21tq

�

D
�

sb11 C tb21 s.p � b11sp � b11tq/ C t.q � b21sp � b21tq/

kb11 � lb21 k.p � b11sp � b11tq/ � l.q � b21sp � b21tq/

�

D
�
1 sp � .sb11 C tb21/sp � .sb11 C tb21/tq C tq
0 kp � lq � .kb11 � lb21/sp � .kb11 � lb21/tq

�

D
�
1 0

0 1

�

:

Thus, E1 is a right inverse of E over HŒx�. By Lemma 5.2.6, E1 is also a left inverse
of E.

The construction for F can be done in a similar way. ut
Next we generalize this kinds of row/column transformations determined by

one-sided greatest common divisors and least common multiplies to matrices with
arbitrary sizes.
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Theorem 5.2.8. Let A D .aij/ 2 HŒx�m�n. Then we can compute two invertible
matrices, E 2 HŒx�m�m and F 2 HŒx�n�n, such that

EA D
"

gR �
E0 �

#

; AF D
"

gL E0
� �

#

;

where gR D gcrd.a11; : : : ; am1/, gL D gcld.a11; : : : ; a1n/, and each � stands for
some matrix with suitable size over HŒx�.

Proof. Using Lemma 5.2.7, we can compute an invertible matrix E1 2 HŒx�2�2 such
that

"
E1

E0
E0 Im�2

#

A D

2

6
6
6
6
6
4

gcrd.a11; a21/ � � � � �
0 � � � � �

a31 a32 � � � a3n
:::

:::
: : :

:::

am1 am2 � � � amn

3

7
7
7
7
7
5

:

It is easy to see that

"
E1

E0
E0 Im�2

#

is invertible over HŒx�. If a31 D 0, we will go to a41.

Otherwise, interchange row 2 and row 3 by multiplying an elementary matrix M on
the left side. Then applying Lemma 5.2.7 to the 2�2-matrix on the upper left corner
to compute an invertible matrix E2 2 HŒx�2�2 such that

"
E2

E0
E0 Im�2

#

M

"
E1

E0
E0 Im�2

#

A D

2

6
6
6
6
6
6
6
6
4

gcrd.a11; a21; a31/ � � � � �
0 � � � � �
0 � � � � �

a41 a42 � � � a4n
:::

:::
: : :

:::

am1 am2 � � � amn

3

7
7
7
7
7
7
7
7
5

:

Again, it is easy to verify that

"
E2

E0
E0 Im�2

#

M

"
E1

E0
E0 Im�2

#

is invertible over HŒx�.

Continuing on the same process, we can obtain an invertible matrix E 2 HŒx�m�m,

such that EA D
"

gR �
E0 �

#

.

The construction of the matrix F can be done in a similar way. ut
Based on the above results, we design an algorithm for computing a f1g-inverse

of a given matrix over the quaternion polynomial ring HŒx�.
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Algorithm 2 Computing a f1g-inverse of a given matrix over HŒx�

Input A D .aij/ 2 HŒx�m�n.

Output

(
a {1}-inverse of G 2 HŒx�n�m such that AGA D A;

“no {1}-inverse exist.”, otherwise
1: Computing g1  gcrd.a11; a21; : : : ; am1/

2: Computing an invertible matrices E 2 HŒx�m�m such that

EA D
"

g1 Eb
E0 �

#

, where Eb D �
b1 � � � bn�1

�
.

3: Computing g2  gcld.g1; b1; : : : ; bn�1/ and an invertible matrix F 2 HŒx�n�n such that

.EA/F D
"

g2
E0

� B

#

,

4: if g2 ¤ 1 then return “no {1}-inverse exist.”
5: else use usual column transformations and computing an invertible matrix M 2 HŒx�m�m such

that

M..EA/F/ D
"

1 E0
E0 B

#

Recursively call Algorithm 2 to determine (compute) if B has a f1g-inverse. If find a
f1g-inverse H of B over HŒx�,

return G F

"
1 E0
E0 H

#

ME

6: end if

Theorem 5.2.9. Algorithm 2 is correct.

Proof. Note that

MEAF D
"

1 E0
E0 B

#

; G D F

"
1 E0
E0 H

#

ME; BHB D B:

We have

.MEA/G.AF/ D MEAF

"
1 E0
E0 H

#

MEAF

D
"

1 E0
E0 B

#"
1 E0

0.n�1/�1 H

#"
1 E0
E0 B

#

D
"

1 E0
E0 BHB

#
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D
"

1 E0
E0 B

#

D MEAF:

Since E, F, and M are invertible over HŒx� (Theorem 5.2.8), we have AGA D A,
which completes the proof. ut

5.3 The Moore–Penrose Inverse

It is well-known that the Moore–Penrose inverse is the most famous generalized
inverse with numerous applications. In the following sections, we discuss the
Moore–Penrose inverse for matrices over HŒx�.

The conjugate of f .x/ D anxnC� � �Ca0 2 HŒx� is defined as f .x/ D NanxnC� � �CNa0.
For A 2 HŒx�m�n, the conjugate A of A is defined as A D .Aij/. Moreover, AT ; A� 2
HŒx�n�m denote the transpose and the conjugate transpose of A, respectively. More
properties can be found in, for example, [87, 88].

Lemma 5.3.1 ([88]). Let f ; g 2 HŒx�. Then (i) fg D NgNf (ii) f Nf D Nf f 2 RŒx� (iii) If
fg 2 RŒx�, then fg D gf .

Definition 5.3.2. A matrix in HŒx�n�m is called a Moore–Penrose inverse of A 2
HŒx�m�n if it is a solution of the following system of equations:

AXA D A; XAX D X; .AX/� D AX; .XA/� D XA:

It is easy to prove that if there is a solution, then it is unique. As usual, we denote
the Moore–Penrose inverse of A as A�. Using similar methods in commutative case,
we can get some properties for quaternion polynomial matrices, for example:

Proposition 5.3.3. Let A 2 HŒx�m�n with A�. Then

(i) .A�/� D �
A�
��

, A�
�
A�
��

A� D A� D A�
�
A�
��

A� and A�AA� D A� D A�AA�.

(ii) Let U 2 H
m�m is a unitary matrix, that is, UU� D U�U D Im. Then .UA/� D

A�U�.

Lemma 5.3.4. If E 2 H Œx�m�m and satisfies E D E2 D E�, then E 2 H
m�m.

Proof. Let f1, : : : , fm be the entries on the first row of E. From E D E�, without
loss of generality, we may assume that f1 D f1 ¤ 0. Then by E D E2, we have

f1 D f1f1 C
mX

iD2

fifi D f 2
1 C

mX

iD2

fifi:
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Since f1 D f1, the leading coefficient of f 2
1 is a positive real number. Note that the

leading coefficient of
Pm

iD2 fifi is also a positive real number. Thus,

deg
�
f 2
1

� � deg f1 D deg
�
f 2
1 CPm

iD2 fifi
�

D max
˚
deg

�
f 2
1

�
, deg

�Pm
iD2 fifi

�� � deg
�
f 2
1

�
:

This shows that f1 2 H. Furthermore, 0 D deg f1 D deg
�Pm

iD2 fifi
�

and the
leading coefficients of ffiNfig .fi ¤ 0/ are positive reals imply that fi 2 H for all
1 � i � m. The same discussion can be done for the other rows of E. Therefore,
E 2 H

m�m. ut
Note that we require that A� must be in HŒx�n�m. Therefore unlike matrices over

fields or skew fields, the Moore–Penrose inverses for some quaternion polynomial
matrices might not exist. Clearly, A� must be a f1g-inverse of A. Thus algorithms
in Sect. 5.2 provide a way to check that A� doesn’t exist. In general, we don’t have
efficient algorithms to verify the existence of A�.

Next we will give conditions for quaternion polynomial matrices to have Moore–
Penrose inverses. But the proofs are non-constructive.

It is easy to see that A 2 H
m�nŒx� induces an additive homomorphism from

H Œx�n�1 to H Œx�m�1, that is, for all P,Q 2 H Œx�n�1, A .P C Q/ D AP C AQ 2
H Œx�m�1. By the definition of Moore–Penrose inverses and Proposition 5.3.3, it is
easy to prove the following lemma:

Lemma 5.3.5. Let A 2 H Œx�m�n such that A� exists. Considering A as a homomor-
phism from H Œx�n�1 to H Œx�m�1, one has Image.A/ D Image.AA�/ D Image.AA�/

and Image.A�/ D Image.A�A/ D Image.A�A/.

It is well-known that there are two types of eigenvalues for a given quaternion
matrix Am�n: right eigenvalues and left eigenvalues, since H is a non-commutative
domain. Right eigenvalues have been studied extensively (see, for example, [4, 14,
64]). We shall work with right eigenvalues towards our main result, that is, find
a nonzero vector Ex 2 H

n�1 and a � 2 H such that AEx D Ex�. For simplicity, we
shall just use the term “eigenvalue” instead of right eigenvalue from now on. The
following result is well-known and very useful.

Lemma 5.3.6 ([141]). A 2 H
m�m is hermitian, that is, A D A�, if and only if there

exists a unitary matrix U 2 H
m�m such that U�AU D diag.�1; : : : ; �m/, where �i

are the eigenvalues of A.

Now we are ready to give conditions that quaternion polynomial matrices must
satisfy in order to have Moore–Penrose inverses. The following theorem is well-
known in some cases, see, for example, [10, 91]. Here is an analogue for quaternion
polynomial matrices.
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Theorem 5.3.7. Let A 2 H Œx�m�n. Then A� exists if and only if A D U

	
A1 A2

0 0




with U 2 H
m�m unitary and A1A�1 C A2A�2 a unit in H Œx�r�r with r � min fm, ng.

Moreover,

A� D
 

A�1
�
A1A�1 C A2A�2

��1
0

A�2
�
A1A�1 C A2A�2

��1
0

!

U�:

Proof. .H)/ If A has the Moore–Penrose inverse A�, then

AA� D .AA�A/A� D �
AA�

�2 D �
AA�

��
:

By Lemma 5.3.4, AA� 2 H
m�m. AA� is hermitian and hence, by Lemma 5.3.6, there

exists a unitary matrix U 2 H
m�m such that U�AA�U D D where D is diagonal.

Since

D2 D .U�AA�U/.U�AA�U/ D U�AA�AA�U D U�AA�U D D;

the diagonal entries of D are either 1 or 0. Therefore, we can rearrange the rows and

columns of U so that D D
	

Ir 0

0 0




with r � min fm, ng.

Set B D U�A. By Lemma 5.3.3, B has its own generalized inverse B� and BB� D	
Ir 0

0 0




. Write B as a blocked matrix form, that is, B D
	

A1 A2

A3 A4




, for some arbitrary

quaternion polynomial matrices A1 2 H Œx�r�r, A2 2 H Œx�r�.n�r/, A3 2 H Œx�
.m�r/�r,

and A4 2 H Œx�
.m�r/�.n�r/. Since B D BB�B D

	
Ir 0

0 0


	
A1 A2

A3 A4




D
	

A1 A2

0 0




, we

must have A3 D 0; A4 D 0, and thus BB� D
	

A1A�1 C A2A�2 0

0 0




. Similarly, B� D
	

B1 0

B2 0




for some B1 and B2. By Lemma 5.3.5,

Image.BB�/ D Image.B/ D Image.BB�/ D Image

	
Ir 0

0 0




:

This implies the surjectivity of A1A�1 C A2A�2 on H Œx�r�1. Therefore, A1A�1 C A2A�2
is a unit in H Œx�r�r and

A D UB D U

	
A1 A2

0 0




:
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Next, we have that:

B� DB�
�
B�
��

B� D B�
�
B�
��

B� D B�
�
BB�

��

D
	

A�1 0

A�2 0


 �
A1A�1 C A2A�2

��1
0

0 0

!

D
 

A�1
�
A1A�1 C A2A�2

��1
0

A�2
�
A1A�1 C A2A�2

��1
0

!

;

which gives

A� D
 

A�1
�
A1A�1 C A2A�2

��1
0

A�2
�
A1A�1 C A2A�2

��1
0

!

U�:

.(H/ The converse can be proved by direct computation. ut

5.4 Leverrier–Faddeev Algorithm

There are many algorithms for computing the Moore–Penrose inverse. In [26],
Faddeev provided an algorithm to compute the characteristic polynomial of an n � n
matrix over a field, which is a modification of a method of Levereier (1840). This
algorithm is not computational efficiency. But the proof is constructive in a rather
clear way. Now the Leverrier–Faddeev algorithm is one of the classical methods
that has been used to compute the Moore–Penrose inverse. We refer the reader to
[5, 23, 26, 51, 127] for more details.

For a given quaternion polynomial matrix A, our trick is to use a square matrix
AA� instead of A. First we define the characteristic polynomial for quaternion poly-
nomial matrix A by using AA�, and prove that the coefficients of this characteristic
polynomial are reals. Then we show that Leverrier–Faddeev algorithm works very
well for quaternion polynomial matrices.

Lemma 5.4.1. Let A 2 HŒx�m�n. Then the eigenvalues of AA� are real.

Proof. Let B D AA� and � 2 H be an eigenvalue of B with corresponding

eigenvector 0 ¤ Ex D �
x1 � � � xm

�T 2 HŒx�m�1 such that BEx D Ex�. Then Ex�BEx D Ex�Ex�.
Note that B D B�. We have that Ex�BEx D ��Ex�Ex, and thus

Ex�Ex� D ��Ex�Ex D �Ex�Ex�
��

;

that is,

.Nx1; � � � Nxm/

0

B
@

x1

:::

xm

1

C
A� D �Pm

iD1 Nxixi
�

� D ��Pm
iD1 Nxixi

�
�
��

D ��
�Pm

iD1 Nxixi
�� D ��

�Pm
iD1 Nxixi

�
:



62 5 Generalized Inverses: Quaternions

By Lemma 5.3.1, 0 ¤ Pm
iD1 Nxixi 2 R Œx�. The above equation gives � D ��,

which implies � 2 R. ut
The Cayley–Hamilton theorem for quaternion matrices has been extensively

studied. A survey can be found in [141]. For A 2 HŒx�m�n, if A D P C Qj with
P,Q 2 CŒx�m�n, then the complex adjoint of A is defined as

�A D
	

P Q
�Q P




2 CŒx�2m�2n:

Next, we define the characteristic polynomial for a quaternion polynomial matrix.

Definition 5.4.2. For A 2 HŒx�m�n, let B D AA� and �B be its complex adjoint.
Then fB .�/ D det .�I2m � �B/ is called the characteristic polynomial of A.

Remark 5.4.3. By Lemma 5.4.1, � can be assumed to be a real indeterminate that
enjoys the following: � D � and � commutes element-wise with H Œx�.

Theorem 5.4.4. Let A 2 H Œx�m�n and B D AA�. Then fB .�/ D g .�/2 where
g .�/ 2 .R Œx�/ Œ��, that is, a polynomial in one determinate � over polynomial
ring RŒx�.

Proof. We first show that fB .�/ 2 .R Œx�/ Œ��. Note that B D AA�. We have

det
�
.�I2m � �B/T� D det .�I2m � �B/ D det

�
.�I2m � �B/�

�
;

and thus

det .�I2m � �B/ D det.�I2m � �B/ D det .�I2m � �B/:

Therefore

det .�I2m � �B/ D fB .�/ 2 .R Œx�/ Œ�� : (5.5)

Next, we show that fB .�/ D g .�/2 where g .�/ 2 .C Œx�/ Œ��. Let B D P C Qj. It is
easy to check that PT D P and Q D �QT . Therefore,

�B D
	

P Q
�Q P




D
	

P �QT

�Q PT




H) �I2m � �B D
	

�Im � P QT

Q �Im � PT




:

Next, we have

	
Im �Im

0 Im


	
Im 0

Im Im


	
Im �Im

0 Im


	
�Im � P QT

Q �Im � PT




D
	

Q PT � �Im

�Im � P QT




:



5.4 Leverrier–Faddeev Algorithm 63

Therefore,

fB .�/ D det

	
�Im � P QT

Q �Im � PT




D det

	
Q PT � �Im

�Im � P QT




:

Note that

	
Q PT � �Im

�Im � P QT


T

D �
	

Q PT � �Im

�Im � P Q




;

which implies that

	
Q PT � �Im

�Im � P QT




is skew-symmetric. By [74], the determi-

nant of

	
Q PT � �Im

�Im � P QT




, also called its Pfaffian, can be written as the square

of a polynomial in its entries. Therefore, fB .�/ D g .�/2 where g .�/ 2 .C Œx�/ Œ��,
a polynomial in one determinate � over the polynomial ring CŒx�.

Finally we show that g .�/ 2 .R Œx�/ Œ��. Suppose otherwise. Then g .�/ D
a .�/ C b .�/ i where a.�/ and b.�/ 2 .R Œx�/ Œ�� with b .�/ ¤ 0. By (5.5),
g .�/2 D a.�/2 � b.�/2 C 2a.�/b.�/i 2 .R Œx�/ Œ��. Hence a .�/ D 0 and
fB .�/ D g .�/2 D .b .�/ i/2 D �b .�/2 where b .�/ 2 .R Œx�/ Œ��. For a fixed x 2 R,
let �0 2 R be large enough such that �0I2m � �B 2 C

2m�2m is diagonally dominant
with nonnegative diagonal entries and that .b .x// .�0/ ¤ 0. Since �0I2m � �B

is also hermitian, �0I2m � �B is positive definite [44]. But det .�0I2m � �B/ D
� ..b .x// .�0//2

< 0, a contradiction. Therefore, b.x/ D 0 and thus fB .�/ D g .�/2

where g .�/ 2 .R Œx�/ Œ��. ut
Corollary 5.4.5. Let A 2 H Œx�m�n, B D AA�, and fB .�/ D g .�/2. Then g .B/ D 0.
g .�/ is said to be the generalized characteristic polynomial of A.

Proof. Note that g .�/ 2 .RŒx�/ Œ�� by Theorem 5.4.4. Then �g.B/ D g .�B/. Next,
fB .�B/ D 0 by the Cayley–Hamilton theorem for complex polynomial matrices
[44]. Therefore g .�B/ D 0, and 0 D g .�B/ D �g.B/, that is, g .B/ D 0. ut

From the definition, it is easy to check the following lemma, which have
analogues in the complex case.

Lemma 5.4.6. Let A 2 HŒx�m�n such that A� exists. Set B D AA�. Then

(i) B� D .A�/� A� and B�B D AA�.
(ii) B�B D BB� and .B�B/2 D B�B.

(iii)
�
B�
�k D �

Bk
��

and .Bn�k/�Bn�k D B�B, for any k 2 N.

The following result is well-known for quaternion matrices and it is easy to check
that the result also holds for quaternion polynomials.

Lemma 5.4.7. Let A 2 H Œx�m�n, B 2 H Œx�p�q, and C 2 H Œx�m�q. If A� and B� both
exist, then the quaternion polynomial matrix equation AXB D C has a solution in
H Œx�n�p if and only if AA�CB�B D C, in which case the general solution is
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X D A�CB� C Y � A�AYBB�;

where Y 2 H Œx�n�p is arbitrary.

Theorem 5.4.8. Let A 2 H Œx�m�n such that A� exists and B D AA�. Suppose that
the generalized characteristic polynomial of A is

g .�/ D �m C a1�m�1 C � � � C ak�
m�k C � � � C am�1� C am;

where ai 2 R Œx�. If k is the largest integer such that ak ¤ 0, then the Moore–Penrose
inverse of A is given by

A� D � 1

ak
A�
�
Bk�1 C a1Bk�2 C � � � C ak�1I

�
:

If ai D 0 for all 1 � i � m, then A� D 0.

Proof. The proof is similar to the complex case in [23] by using Corollary 5.4.5,
Lemmas 5.4.6, 5.4.7, and 5.3.3. ut

From the above theorem, we can find the Moore–Penrose inverse A� of A
by computing its generalized characteristic polynomial. Fadeev [27] modified
Leverrier’s method and gave an algorithm to compute faig without computing g.�/.
Next, we extend this algorithm to quaternion polynomial matrices.

Lemma 5.4.9. Let A 2 H Œx�m�n such that A� exists and set B D AA�. Then for
1 � k � m,

tr
��

Bk C a1Bk�1 C � � � C ak�1B
�� D �kak;

where the ai
0s arise from the following generalized characteristic polynomial of A:

g .�/ D �m C a1�m�1 C � � � C ak�
m�k C � � � C am�1� C am 2 .R.�//Œx�:

Proof. Let Y D yI where y 2 R. We can write g .Y/ as:

g .Y/ D g.Y/ � g.B/

D .Y � B/
�
Ym�1 C .B C a1I/ Ym�2 C � � � C �

Bm�1 C a1Bm�2 C � � � C amI
��

:

As long as y is not an eigenvalue of B, yI � B D Y � B is nonsingular, so we can
write

.Y � B/�1 g .Y/ DYm�1 C .B C a1I/ Ym�2 C �
B2 C a1B C a2I

�
Ym�3 C � � �

C �
Bm�1 C a1Bm�2 C � � � C amI

�
:
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Taking the traces gives

tr
h
.Y � B/�1 g .Y/

i

D mym�1 C tr Œ.B C a1I/� ym�2 C � � � C tr
�
Bm�1 C a1Bm�2 C � � � C amI

�
:

Let C D .Y � B/�1 g .Y/. Since g .Y/ D g .yI/ D g .y/ I, we have C D
g .y/ .Y � B/�1. Therefore,

tr.C/ D g .y/ tr
h
.Y � B/�1

i
:

Let �1, � � � , �m0 , where m0 � m, be all the nonzero eigenvalues of B. tr
h
.Y � B/�1

i

is the sum of the eigenvalues of .Y � B/�1. We will show that these eigenvalues are
the fractions 1

y��1
, � � � , 1

y��m0

.

Let � be an eigenvalue of .Y � B/�1 with corresponding eigenvector Ev such that:

.Y � B/�1 Ev D Ev�:

� is real by Lemma 5.4.1, and hence

.Y � B/ Ev D Ev 1

�
H) BEv D Ev

	

y � 1

�




:

Therefore, y � 1
�

D �i implies � D 1
y��i

for some 1 � i � m0.
Since g .y/ D .y � �1/ .y � �2/ � � � .y � �m0/, we have that the first derivative

g0 .y/ D g .y/
�

1
y��1

C � � � C 1
y��m0

�
and tr.C/ D g0 .y/ : On the other hand, the

derivative of g is also equal to:

g0 .y/ D mym�1 C a1 .m � 1/ ym�2 C � � � C am�1:

Therefore,

mym�1 C a1 .m � 1/ ym�2 C � � � C am�1

D mym�1 C tr .B C a1I/ ym�2 C � � � C tr
�
Bm�1 C a1Bm�2 C � � � C amI

�
:

Comparing the coefficient of ym�k�1 on both sides, we obtain

ak .m � k/ D tr
�
Bk C a1Bk�1 C � � � C ak�1B C akI

�

D tr
�
Bk C a1Bk�1 C � � � C ak�1B

�C tr.akI/;
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and so

�kak D tr
�
Bk C a1Bk�1 C � � � C ak�1B

�
:

ut
Now the question is changed to find the coefficients of the generalized character-

istic polynomial in order to compute the Moore–Penrose inverse. Next, we present
the Leverrier–Faddeev algorithm for finding Moore–Penrose inverses of quaternion
polynomial matrices by recursively computing traces.

Proposition 5.4.10. Let A 2 H Œx�m�n such that A� exists and B D AA�. Suppose
that the generalized characteristic polynomial of A is

g .�/ D �m C a1�m�1 C � � � C ak�
m�k C � � � C am�1� C am;

where ai 2 R Œx�. Define a0 D 1. If p is the largest integer such that ap ¤ 0 and we
construct the sequence A0, � � � , Ap as follows:

A0 D 0 �1 D q0 B0 D I
A1 D AA�B0

trA1

1
D q1 B1 D A1 � q1I

:::
:::

:::

Ap�1 D AA�Bp�2
trAp�1

p�1
D qp�1 Bp�1 D Ap�1 � qp�1I

Ap D AA�Bp�1
trAp

p D qp Bp D Ap � qpI

then qi .x/ D �ai .x/ , i D 0, � � � , p.

Proof. We will show qi .x/ D �ai .x/ by mathematical induction. By the definition,
clearly q0 D �a0 holds.

Now we assume that qi .x/ D �ai .x/ holds for all 0 � i � k � 1. Then

Ak DAA�Bk�1

DBBk�1

DB .Ak�1 � qk�1I/

DB .B .Ak�2 � qk�2I/ � qk�1I/

� � �
DBk � q1Bk�1 � q2Bk�2 � � � � � qk�1B

DBk C a1Bk�1 C a2Bk�2 C � � � C ak�1B:

and thus

tr.Ak/ D tr
�
Bk C a1Bk�1 C � � � C ak�1B

�
;
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which, by Lemma 5.4.9, is equal to �kak. So qk D tr Ak
k D �ak. Therefore, qi .x/ D

�ai .x/ for all p � i � 0. ut
Now, combining Theorem 5.4.8 and Proposition 5.4.10, we have the following

algorithm to compute the Moore–Penrose inverse:

Algorithm 3 Leverrier–Faddeev algorithm for quaternion polynomial matrices
Input A 2 HŒx�m�n

Output The Moore–Penrose inverse A� of A in HŒx�n�m if exists
1: B0  Im; a0  1

2: for i D 1; : : : ; m do
Ai  AA�Bi�1; ai  � trAi

i ; Bi  Ai C aiIm

3: Find the maximal index p such that ap ¤ 0.

4: Return A� D
( � 1

ap
A�Bp�1; p > 0;

0; p D 0:

Note that we have to compute many matrix products in Algorithm 3, which
means that Leverrier–Faddeev method is not efficient. In the next section, we
will present a more efficient way by combining Theorem 5.4.8 and interpolation
methods.

5.5 Finding Moore–Penrose Inverses by Interpolation

Interpolation is an efficient method in many computational questions over commuta-
tive fields. In non-commutative case like H, the situation becomes very complicated
since some basic properties fail, for example, for a given quaternion polynomial,
there might have infinite roots and infinite factors. To overcome this difficulty, we
choose the interpolation at data points of real numbers and present an efficient
method to obtain the Moore–Penrose inverse of a quaternion polynomial matrix.

Recently, there are few papers regarding non-commutative interpolations and
applications (see, for example, [46, 67, 143]). Lets recall some important concepts
and properties. An element r 2 H is a root of a nonzero polynomial f D anxn C� � �C
a0 2 HŒx� if anrn C� � �Ca0 D 0. Since H is a principal idea domain, using Euclidean
Algorithm, it is easy to see that f .r/ D 0 if and only if x � r is a right divisor of f .
The set of polynomials in H Œx� having r as a root is the left ideal H Œx� � .x � r/. It is
worth mentioning that the evaluations of quaternion polynomials are quite different
from the commutative case. It is defined as following: let f , g and h 2 H Œx�, f D gh
and r 2 H. If h.r/ D 0, then f .r/ D 0. Otherwise, set ˇ D h .r/ ¤ 0. Then the
evaluation of f .x/ at x D r is

f .r/ D g
�
ˇrˇ�1

�
h .r/ : (5.6)
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In particular, if r is a root of f but not of h, then ˇrˇ�1 is a root of g. We refer the
reader to [63] for more details.

Although a quaternion could have infinite many roots, in [38], it is proved that if
f 2 H Œx� is of degree n, then the roots of f lie in at most n conjugacy classes of H.

It is well-known that Newton’s interpolation and Lagrange’s interpolation play
important roles in studying polynomials over fields. Unfortunately, one cannot
get similar nice formulas in quaternion case. Fortunately, we can still compute a
quaternion polynomial from a given set of pairs of quaternions.

Lemma 5.5.1. Let c1, : : : , cn be n pairwise non-conjugate elements of H. Then
there is a unique monic polynomial gn 2 H Œx� of degree n such that gn .c1/ D � � � D
gn .cn/ D 0. Moreover, c1; : : : ; cn are the only roots (up to conjugacy classes) of gn

in H.

Proof. We first show the existence of gn for all n � 1 by mathematical induction.
For n D 1, it is trivially true as g1 D x � c1.

Suppose the claim holds for all 1 � n � k � 1. Let c1, � � � , ck 2 H be pairwise
non-conjugate. Invoking the inductive hypothesis, there exists a monic polynomial
gk�1 of degree k � 1 with c2, � � � , ck as its only roots (up to conjugacy classes), that
is, gk�1 .c1/ ¤ 0. Construct gk as follows:

gk.x/ D
�

x � gk�1 .c1/ c1gk�1 .c1/�1
�

� gk�1.x/:

By Eq. (5.6), gk .c1/ D 0. Thus, the claim holds for k. Therefore this claim holds for
all n � 1.

We next show that gn is unique. For a fixed n, let g ¤ gn be a monic polynomial
of degree n such that g.c1/ D � � � D g .cn/ D 0, too. Then deg .gn � g/ � n � 1

but gn � g has roots c1, : : : , cn which lie in n different conjugacy classes of H, a
contradiction. Therefore, gn is unique for all n � 1. ut
Proposition 5.5.2. Let c1, : : : , cnC1 2 H be pairwise non-conjugate and let
d1, : : : ; dnC1 2 H. Then there exists a unique lowest degree polynomial f 2 H Œx�,
of degree p � n, such that f .ci/ D di for all 1 � i � n C 1.

Proof. For any 1 � s � n C 1, let S D f1, � � � , n C 1g n fsg. By Lemma 5.5.1, we
can find a unique monic hS 2 H Œx� of degree n such that hS .ci/ D 0; i 2 S and that
fci j i 2 Sg are the only roots (up to conjugacy class) of hS in H. Then hS .cs/ ¤ 0,
and thus we can construct a quaternion polynomial gS of degree n such that

gS .c˛/ D
(

0 ˛ 2 S;

1 ˛ D s;

as follows:

gS.x/ D hS .cs/
�1 hS.x/:
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Furthermore, we construct a quaternion polynomial f of degree at most n such that
f .ci/ D di for all 1 � i � n C 1 as follows:

f D
nC1X

sD1

dsgS:

Finally, we show that f is unique. Suppose we have f1 2 H Œx� of degree p1 � n such
that f1 ¤ f and that f1 .ci/ D di for all 1 � i � n C 1, too. Then f � f1 ¤ 0 is of
degree at most n. But f � f1 has roots c1, : : : , cnC1 which lie in n C 1 conjugacy
classes of H, a contradiction. Therefore, f is unique. ut

From above proof, we can see that it is impossible to construct the so-called
Newton divided difference formula for quaternion polynomials. Next we extend the
interpolation to quaternion polynomial matrices. Recall that the degree of a given
A 2 H Œx�m�n is defined as

deg A D max
˚
deg

�
Aij
� j 1 � i � m, 1 � j � n

�
:

The following lemma estimates the upper bound of the degree of its Moore–
Penrose inverse A� (if it exists).

Lemma 5.5.3. Let A 2 H Œx�m�n such that A� exists. Then

deg A� � .2m � 1/ deg A:

Proof. By Theorem 5.4.8,

deg A� � deg
�

A�
�
AA�

�m�1
�

� deg
�
A2m�1

� � .2m � 1/ deg A:

ut
For A D .Aij/ 2 HŒx� and c 2 H, the evaluation of A at c can be defined

as entrywise in a common sense, that is, A.c/ D .Aij.c//. One has to pay an
attention that the evaluations of quaternion polynomials have some special rules
as we explained at the beginning of this section.

Proposition 5.5.4. Let c1, � � � , ckC1 2 H be pairwise non-conjugate and let
A1; � � � ; AkC1 2 H

n�m. Then there is a unique lowest degree matrix A 2 H Œx�n�m of
degree p � k, such that A .ci/ D Ai for all 1 � i � k C 1.

Proof. For any 1 � n1 � n and 1 � m1 � m, by Proposition 5.5.2, there is
a lowest degree polynomial An1m1 .x/ determined by the values c1, � � � , ckC1 and
.A1/n1m1

, : : : , .AkC1/n1m1
. In fact, for any 1 � s � k C 1, let S D f1, � � � , k C 1g n

fsg. Then

An1m1 .x/ D
kC1X

sD1

.As/n1m1
gS.x/;



70 5 Generalized Inverses: Quaternions

where gS .c˛/ D
(

0 ˛ 2 S;

1 ˛ D s
. Since n1 and m1 are chosen randomly, the lowest

degree matrix A that satisfies A .ci/ D Ai for all 1 � i � k C 1 is determined by
A D .

PkC1
sD1 AsgS/.

Next we show that A is unique. Suppose C ¤ A of degree p0 � p also satisfies
C .ci/ D Ai for all 1 � i � k C 1. Then for some 1 � n2 � n and 1 � m2 � m,
.A � C/n2m2

¤ 0. But .A � C/n2m2
, of degree at most p � k, has roots c1, : : : , ckC1

which lie in k C 1 conjugacy classes of H, a contradiction. Therefore, A is unique.
ut

Let A 2 H Œx�m�n such that A� exists, and set B D AA�. Let p be the
largest integer such that ap ¤ 0. We can construct the sequence A0, : : : , Ap

as in Proposition 5.4.10. The next theorem presents the interpolation version of
Leverrier–Faddev algorithm.

Theorem 5.5.5. In the above setting, let k D .2m � 1/ deg A and c1; : : : ; ckC1 2 R

be k C 1 distinct real numbers such that qp .cs/ ¤ 0 for any 1 � s � k C 1. Let
S D f1, � � � , k C 1g n fsg. Then

A� D
kC1X

sD1

A .cs/
� gS

where

A .cs/
� D 1

qp .cs/
A .cs/

� hB .cs/
p�1 � q1 .cs/ B .cs/

p�2 � � � � � qp�1 .cs/ I
i

and

gS .c˛/ D
(

0 ˛ 2 S;

1 ˛ D s:

Proof. It follows from Theorem 5.4.8, Propositions 5.4.10 and 5.5.4. ut
The upper bound of degrees of A� in Lemma 5.5.3 is not sharp. In fact, in many

questions, one only needs to pick up a few real points. (see Example 5.6.1)

5.6 Implementations and Examples

The calculations of quaternions are very complicated and time-consuming. It
is almost impossible to do some calculations for quaternion polynomials and
quaternion polynomial matrices even for a small sized matrices by hand. There are
only few quaternion packages in the computer algebra system Maple. But none
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of these has commands for quaternion polynomials and quaternion polynomial
matrices. In [47], we developed a Maple package which includes all basic operations
for quaternion polynomials and quaternion polynomial matrices. In particular, all
the algorithms in this chapter were implemented. We give the following illustrative
example:

Example 5.6.1. Let us consider the problem of determining the Moore–Penrose
inverse of the following quaternion polynomial matrix:

A D

0

B
B
@

14xC 14C 76iC 70jC 56k 56� 28i� 70jC 70k 28j� 56k 14x� 56� 8i� 14j� 56k
�2x� 2� 43i� 10j� 8k �8C 4iC 10j� 10k �4jC 8k �2xC 8� 31iC 2jC 8k
�3x� 3C 3i� 15j� 12k �12C 6iC 15j� 15k �6jC 12k �3xC 12C 21iC 3jC 12k
�4x� 4C 4i� 20j� 16k �16C 8iC 20j� 20k �8jC 16k �4xC 16C 28iC 4jC 16k

1

C
C
A 2 H

4�4Œx�:

From Lemma 5.5.3, we know that the upper bound of the degree of A� is less than
.2m � 1/ deg A D .2 � 4 � 1/ � 1 D 7. In practice, we don’t need to start from the
upper bound. For this example, we may guess deg A� D 2, and choose c1 D 0 and
c2 D 1. Then using our Maple package, it is easy to do the following calculations:

A .c1/ D

0

B
B
@

14C 76iC 70jC 56k 56� 28i� 70jC 70k 28j� 56k �56� 8i� 14j� 56k
�2� 43i� 10j� 8k �8C 4iC 10j� 10k �4jC 8k 8� 31iC 2jC 8k
�3C 3i� 15j� 12k �12C 6iC 15j� 15k �6jC 12k 12C 21iC 3jC 12k
�4C 4i� 20j� 16k �16C 8iC 20j� 20k �8jC 16k 16C 28iC 4jC 16k

1

C
C
A

and

A .c2/ D

0

B
B
@

28C 76iC 70jC 56k 56� 28i� 70jC 70k 28j� 56k �42� 8i� 14j� 56k
�4� 43i� 10j� 8k �8C 4iC 10j� 10k �4jC 8k 6� 31iC 2jC 8k
�6C 3i� 15j� 12k �12C 6iC 15j� 15k �6jC 12k 9C 21iC 3jC 12k
�8C 4i� 20j� 16k �16C 8iC 20j� 20k �8jC 16k 12C 28iC 4jC 16k

1

C
C
A :

By the algorithm stated in Theorem 5.5.5, we calculate and obtain

A .c1/�
D A .0/�

D

1

230175
�

0

B
B
B
B
@

140 � 560i � 228j � 342k 355 C 1730i � 96j C 81k �255 � 870i C 126j C 54k �340 � 1160i C 168j C 72k

276 C 88i C 426j � 382k 282 C 416i � 93j � 149k �252 � 276i � 72j C 204k �336 � 368i � 96j C 272k

32 C 16i � 176j C 292k �176 � 88i C 68j C 194k 96 C 48i C 12j � 204k 128 C 64i C 16j � 272k

�140 � 122i C 228j C 342k �355 C 2021i C 96j � 81k 255 � 1176i � 126j � 54k 340 � 1568i � 168j � 72k

1

C
C
C
C
A

and

A .c2/�
D A .1/�

D

1

230175
�

0

B
B
B
B
@

152 � 550i � 244j � 330k 289 C 1675i � 8j C 15k �219 � 840i C 78j C 90k �292 � 1120i C 104j C 120k

268 C 104i C 406j � 402k 326 C 328i C 17j � 39k �276 � 228i � 132j C 144k �368 � 304i � 176j C 192k

32 C 16i � 160j C 300k �176 � 88i � 20j C 150k 96 C 48i C 60j � 180k 128 C 64i C 80j � 240k

�152 � 132i C 244j C 330k �289 C 2076i C 8j � 15k 219 � 1206i � 78j � 90k 292 � 1608i � 104j � 120k

1

C
C
C
C
A

:
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By Theorem 5.5.5, we have

2X

sD1

A .cs/� gS D A .0/� .1 � x/
C A .1/� x

D

1

230175
�

0

B
B
B
B
@

.12 C 10i � 16j C 12k/ x C 140 � 560i � 228j � 342k .
�66 � 55i C 88j � 66k/ x C 355 C 1730i � 96j C 81k

.
�8 C 16i � 20j � 20k/ x C 276 C 88i C 426j � 382k .44 � 88i C 110j C 110k/ x C 282 C 416i � 93j � 149k

.16j C 8k/ x C 32 C 16i � 176j C 292k .
�88j � 44k/ x � 176 � 88i C 68j C 194k

.
�12 � 10i C 16j � 12k/ x � 140 � 122i C 228j � 342k .66 C 55i � 88j C 66k/ x � 355 C 2021i C 96j � 81k

.36 C 30i � 48j C 36k/ x � 255 � 870i C 126j C 54k .48 C 40i � 64j C 48k/ x � 340 � 1160i C 168j C 72k

.
�24 C 48i � 60j � 60k/ x � 252 � 276i � 72j C 204k .

�32 C 64i � 80j C 80k/ x � 366 � 368i � 96j C 272k

.48j C 24k/ x C 96 C 48i C 12j � 204k .64j C 32k/ x C 128 C 64i C 16j � 272k

.
�36 � 30i C 48j � 36k/ x C 255 � 1176i � 126j � 54k .

�48 � 40i C 64j � 48k/ x C 340 � 1568i � 168j � 72k

1

C
C
C
C
A

:

It is easy to verify that
P2

sD1 A .cs/
� gS satisfies the four defining relations of the

Moore–Penrose inverse. Therefore it is the Moore–Penrose inverse of A.
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