
Chapter 3
Infinite Linear Equations

3.1 Introduction

In this chapter, we shall first review, in Sect. 3.2, certain results on infinite linear
systems whose “coefficient” matrices are diagonally dominant in some sense.
We treat these infinite matrices in their own right and also as operators over certain
normed linear spaces. These results show the extent to which results that are known
for finite matrices have been generalized. Next, in Sect. 3.3, we recall some results
on eigenvalues for operators mainly of the type considered in the second section.
We also review a powerful numerical method for computing eigenvalues of certain
diagonally dominant tridiagonal operators. Section 3.4 concerns linear differential
systems whose coefficient matrices are operators on either `1 or `1. Convergence
results for truncated systems are presented. The concluding section, viz., Sect. 3.5
discusses an iterative method for numerically solving a linear equation whose matrix
is treated as an operator on `1 satisfying certain conditions, including a diagonal
dominance condition.

3.2 Infinite Linear Systems

In this section, we shall take a look at considerations of diagonal dominance for
infinite matrices. In classical analysis, linear equations in infinite matrices occur
in problems including interpolation, sequence spaces, and summability theory. An
earlier notable result (considered till then) on the existence of a solution to such
an infinite system was given by Polya, which, however, excluded discussion of
uniqueness. Kantorovich and Krylov [54] state certain results (without proofs)
which provide sufficient conditions for the existence and uniqueness of bounded
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28 3 Infinite Linear Equations

solutions under the assumption that the infinite matrix under consideration is
invertible. One of the motivations for the results presented in this section is in
solving certain elliptic partial differential equations in multiply connected regions.

In what follows, we shall first review two works, viz., [113] and [101],
where infinite matrices were considered not as operators on some normed linear
spaces. Specifically, we are concerned here with the infinite system of linear
equations [113]:

1X

jD1

aijxj D bi; i 2 N; (3.1)

or alternatively

Ax D b; (3.2)

where the infinite matrix A D .aij/, is strictly “column” diagonally dominant, i.e.,
there exist numbers �i with 0 � �i < 1; i 2 N such that

�ijaiij D
1X

jD1

jaijj; (3.3)

where, of course, aii ¤ 0 for all i 2 N and the sequence fbig is bounded. One is
interested in sufficient conditions that guarantee the existence and uniqueness of a
bounded solution to the above system. The idea of the approach taken in [113] is to
use finite truncations and develop estimates for such a truncated system, viz.,

nX

jD1

aijxj D bi; i D 1; 2; : : : ; n: (3.4)

Using A.n/ to denote the matrix obtained from A by taking the first n rows and n
columns it may be shown that det.A.n// ¤ 0 for each n. Adopting a similar notation
for x.n/ and b.n/, the truncated system above could be rewritten as

A.n/x.n/ D b.n/: (3.5)

Let us denote the unique solution of this truncated solution by x.n/. The following
inequalities are established: for each j � 1 and n � j, one has

ˇ̌
ˇx.nC1/

j � x.n/
j

ˇ̌
ˇ � P�nC1 C Q

janC1;nC1j (3.6)
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for some positive constants P and Q. For any two positive integers p; q and for each
fixed j; j � p; q one also has

ˇ̌
ˇx.q/

j � x.p/
j

ˇ̌
ˇ � P

1X

iDpC1

�i C Q
qX

iDpC1

1

jai;ij : (3.7)

Using standard estimates for strictly row diagonally dominant finite systems, an
estimate for the solution of the truncated system is given by,

ˇ̌
ˇx.n/

j

ˇ̌
ˇ �

nY

kD1

1 C �k

1 � �k

nX

kD1

jbkj
jakkj.1 C �k/

; (3.8)

for each j with j � n. Turning the attention to the infinite system, let us assume that
one has the following for the entries aij:

1X

iD1

1

jaiij < 1; (3.9)

and for some M > 0 and all i 2 N

1X

jD1;j¤i

jaijj � M: (3.10)

Then Shivakumar and Wong show (Theorems 1 and 2, [113]) that the infinite system
considered above has a unique and a bounded solution. Let us observe that the
authors give a numerical example to show that a general infinite system which has
a unique bounded solution could still have unbounded solutions.

Shivakumar (Theorems 3 and 4, [101]), later relaxed the assumption on the
absolutely summability of the reciprocals of the diagonals of A, while retaining the
other assumptions to show that one could still recover similar results, like existence
and uniqueness. In the presence of another rather strong assumption, he shows that
A�1 is also strictly “row” diagonally dominant. It must be remarked that this is a
rather unusual result, especially for infinite matrices.

Now, we take the point of view of studying infinite matrices as operators over
certain Banach spaces. We will be discussing two specific instances of bounded
operators over Banach spaces. These are the spaces: `1, the space of absolutely
summable complex sequences and `1, the space of bounded complex sequences.
We shall review some recent results on certain classes of strictly (“row” or
“column”) diagonally dominant infinite matrices that turn out to be invertible.
Bounds on the inverses in these cases are given. The work reported here is due
to Shivakumar, Williams and Rudraiah [119].
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Given a matrix A D .aij/; i; j 2 N, a space of infinite sequences X over the real
or the complex field and x D .xi/; i 2 N, we define Ax by

.Ax/i D
1X

jD1

aijxj;

provided this series converges for each i 2 N. We define the domain of A by

D.A/ D fx 2 X W Ax exists and Ax 2 Xg:

Let us start with the case X D `1. Consider an infinite matrix A on `1. We
assume the following: Suppose that the “diagonals” of A are all nonzero and form
an unbounded sequence of real or complex numbers. Let A be uniformly strictly
“column” diagonally dominant in the sense that the following condition holds: There
exist numbers �; 0 � � < 1 and �j; 0 � �j � � such that one has

Qj D
X1

iD1;i¤j
jaijj D �jjajjj; j 2 N:

We further assume that

jaii � ajjj � Qi C Qj; for all i; j 2 N; i ¤ j

and

supfjaijj W j 2 Ng < 1 for all i 2 N:

For an operator A satisfying the first two conditions, Shivakumar, Williams, and
Rudraiah show (Theorem 2, [119]) that A is an operator with dense domain, is
invertible, and A�1 is compact. The following upper bound is also proved:

kA�1k1 � 1

.1 � �/.infi jaiij/ :

Similar results are also derived for operators on `1. For an operator A on `1
consider the following set of conditions which could be considered “dual” to the
assumptions that were made for an operator on `1 listed above. There exist numbers
�; 0 � � < 1 and �j; 0 � �j � � such that one has

Pi D
X1

jD1;j¤i
jaijj D �jjajjj; i 2 N;

jaii � ajjj � Pi C Pj; for all i; j 2 N; i ¤ j

and

supfjaijj W i 2 Ng < 1 for all j 2 N:
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Analogous to the case of `1, the first condition could be considered as a uniform
strict “row” diagonal dominance. Then, for an operator A on `1 satisfying the two
conditions given above, along with the condition that the main diagonal elements of
A are all nonzero and form an unbounded sequence, it is proved (Theorem 4, [119])
that A is a closed operator, A�1 exists, A�1 is compact, and

kA�1k1 � 1

.1 � �/.infi jaiij/ :

It is clear that this last inequality is a generalization of the inequality of Varah
mentioned in Sect. 2.2, for infinite matrices. It must be remarked here that there
is a departure from what one experiences in the finite matrix case for a diagonally
dominant matrix which is also irreducible. The authors of the work reported here
demonstrate by an example (Example 1, [119]) that there are infinite matrices
(considered as bounded operators on `1) which are irreducible and diagonally
dominant (meaning that one has � D 1 with all �i < 1) but are not invertible.

We close this section by mentioning some recent results on infinite matrices
that were obtained by Williams and Ye [138], which, however, do not concern
either diagonal dominance or invertibility. This work investigates conditions that
guarantee when an infinite matrix will be bounded as an operator on two weighted
`1 spaces and obtains a relationship between such a matrix and the given weight
vector. It is established that every infinite matrix is bounded as an operator between
two weighted `1 spaces for suitable weights. Necessary conditions and separate
sufficient conditions for an infinite matrix to be bounded on a weighted `1 space,
with the same weight for the domain and codomain, are presented.

3.3 Linear Eigenvalue Problem

In this section, we consider the eigenvalue problem for infinite matrices considered
as operators on certain Banach spaces. We also discuss results on the problem of
determining the location of eigenvalues for diagonally dominant infinite matrices
and determining upper and lower bounds for them. First, we report the results of
Shivakumar, Williams and Rudraiah [119].

If A D .aij/; i; j 2 N, and X is a space of infinite sequences, then the domain of
A denoted by D.A/ is defined as in the previous section. We define an eigenvalue
of A to be any scalar � (from the underlying field) for which Ax D �x for some
0 ¤ x 2 D.A/. We define the Gershgorin disks by considering A as an operator on
`1, by

Ci D fz 2 C W jz � aiij � Qig; i 2 N;
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where the numbers Qi are as defined in the previous section. Let us also recall
another assumption that was made there:

jaii � ajjj � Qi C Qj; for all i; j 2 N; i ¤ j:

We observe that this condition on A is equivalent to the (almost) disjointness of the
Gershgorin disks Ci, viz., the intersection of two disks consists of at most one point.
Finally, the condition on the boundedness of the suprema made as in the earlier
section implies that A is a closed linear operator on `1.

One of the main results of the work being reported here is in showing the
following for an operator A on `1 satisfying the three conditions of Sect. 3.2. This
result (Theorem 3, [119]) states that A consists of a discrete countable set of nonzero
eigenvalues f�k W k 2 Ng such that j�kj ! 1 as k ! 1.

For the case of `1, we assume that the entries aij satisfy those conditions that are
given in Sect. 3.2. We define the Gershgorin disks as

Di D fz 2 C W jz � aiij � Pig; i 2 N:

The authors also prove another result (Theorem 5, [119]) similar to the `1 case,
that the spectrum of A (satisfying all the three conditions listed above) consists of a
discrete countable set of nonzero eigenvalues f�k W k 2 Ng such that j�kj ! 1 as
k ! 1.

Let us mention certain interesting contributions and generalizations of the work
reported earlier in this section, that have been made by Farid and Lancaster [32]
and [33]. In the first work, certain Gerschgorin type theorems were established
for a class of row diagonally dominant infinite matrices by considering them as
operators on `p spaces, 1 � p � 1. The authors develop a theory analogous to
the work in [119]. They provide constructive proofs where a sequence of matrix
operators is shown to converge (in the sense of the gap for closed operators) to
the diagonally dominant operator that one started with. Utilizing eigenvalues and
eigenvectors of such a sequence of matrix operators, the problem of convergence
of these eigenvalues and the corresponding eigenvectors to a simple eigenvalue and
the corresponding eigenvector of the given operator, is investigated. Despite the
fact that the range of the value p was extended in this work, the results here for
p D 1 and p D 1 are weaker than the corresponding ones of [119]. However, in
the second work, the authors show how the earlier contributions of [119] could be
both strengthened and extended to more general values of p. Here, row diagonally
dominant infinite matrices are considered as closed operators with compact inverses
on `p spaces, 1 � p � 1. The authors extend the results of their earlier work for the
case of p D 1 and p D 1. Results for column diagonally dominant infinite matrices
are also derived (Theorems 2.1, 3.1 and 3.2, [33]).

Let us include some other contributions, as well. Farid [29] shows (Theorem 3.2)
that the eigenvalues of a diagonally dominant infinite matrix satisfying certain
additional conditions, acting as a linear operator in `2 approach its main diagonal.
He also discusses an application of this result to approximate the eigenvalues of
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the Mathieu’s equation. Malejki [70] studies a real symmetric tridiagonal matrix
A whose diagonal entries and off-diagonal entries satisfy certain decay properties.
It follows that such an operator A has a discrete spectrum. Let A.n/ be its n � n
truncation. The main result of the author is in showing the following: If the
eigenvalues of A are

�1 � �2 � : : :

and

�1;n � �2;n � : : : �n;n

are the eigenvalues of A.n/, then for every � > 0 and r 2 .0; 1/, there exists a
constant c such that

j�k;n � �kj � cn�� for all 1 � k � rn:

To conclude this section, we discuss a powerful computational technique for
determining the eigenvalues of the infinite system Ax D �x derived by using a
truncated matrix G.1;k/, to be defined below. The idea of this technique is to box the
eigenvalues and then use a simple bisection method to give the value of �n to any
required degree of accuracy.

Consider a matrix A D .aij/ acting on `1 satisfying all the four conditions given
earlier and satisfy in addition the following:

aij D 0; if ji � jj � 2; i; j 2 N

0 < aii < aiC1;iC1; i 2 N

and

ai;iC1aiC1;i > 0; i 2 N:

Observe that the first condition here means that A is a tridiagonal matrix, viz., the
entries not in the principal diagonal and the two immediate subdiagonals (the lower
and the upper) are zero.

Suppose that the scalar � satisfies

ann � Pn � � � ann C Pn; for all n 2 N;

where Pi are as defined above (in connection with the Gerschgorin circles). Let
G D A � �I. Let G.1;k/ denote the truncated matrix of A obtained from A by taking
only the first k rows and k columns. Denote ˇ1;k WD det G.1;k/. We then have the
following [119, Sect. 8]:

ˇ1;k D .a11 � �/ˇ2;k � a12a21ˇ3;k (3.11)

D Œ.a11 � �/.a22 � �/ � a12a21�ˇ3;k � .a11 � �/a23a32ˇ4;k

(3.12)
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so that

ˇ1;k D psˇs;k � ps�1as�1;sas;s�1ˇsC1;k; (3.13)

where the sequence ps is defined by p0 D 0; p1 D 1 and

ps D ps�1 .as�1;s�1 � �/ � ps�2 as�1;s�2 as�2;s�1:

If we set

Qs;k D ps

ps�1

� as�1;sas;s�1

ˇsC1;k

ˇs;k
; (3.14)

we then have

ˇ1;k D ps�1Qs;kˇs;k: (3.15)

We have the following cases:

Case (i): ps�1 and ps have opposite signs.
Then Qs;k < 0 and ˇ1;k has the same sign as �ps�1.

Case (ii): ps�1 and ps have the same sign and

ps

ps�1

>
as;s�1as�1;s

ass � � � jas;sC1j :

We then have Qs;k > 0 and ˇ1;k has the same sign as ps�1.
Case (iii): ps�1 and ps have the same sign and

ps

ps�1

<
as;s�1as�1;s

ass � � � jas;sC1j :

Then, Qs;k < 0 and ˇ1;k have the same sign as �ps�1.

We can use the method of bisection to establish both upper and lower bounds for �n

to any degree of accuracy.
Let us close this section by mentioning in the passing that in this work, the

authors (in [119], Sect. 6) establish some results concerning the convergence of the
sequence of solutions of the truncated systems and study error analysis in detail.
Application of the above technique to study Bessel functions forms the discussion
in Sect. 8.6 of Chap. 8.
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3.4 Linear Differential Systems

We consider the infinite linear system of differential equations:

d

dt
xi.t/ D

1X

jD1

aijxj.t/ C fi.t/; t � 0; xi.0/ D yi; i 2 N; (3.16)

where the functions fi and numbers yi are known. Using the notation x.t/ D .xi.t//,
y D .yi/ and f.t/ D .fi.t//, this equation can be rewritten as

Px.t/ D Ax.t/ C f.t/; Px.0/ D y: (3.17)

This equation is of considerable theoretical and applied interest. In particular, such
systems occur frequently in topics including the theory of stochastic processes,
perturbation theory of quantum mechanics, degradation of polynomials, and infinite
ladder network theory. Arley and Brochsenius [3], Bellman [7], and Shaw [100]
have made some notable contributions to the problem posed above. In particular,
if A is a bounded operator on `1, then convergence of a truncated system has
been established. However, none of these works yields explicit error bounds for
such a truncation. In what follows, we recall the results of Shivakumar, Chew and
Williams [118] for such error bounds, among other things. The analysis in this work
concerns A, being a constant infinite matrix defining a bounded operator on X, where
X is one of the spaces `1; `1, or c0, the latter being the space of complex sequences
converging to zero. Explicit error bounds are obtained for the approximation of the
solution of the infinite system by the solutions of finite truncation systems.

To begin with, we present the following framework for homogeneous systems
(f D 0): First, we assume that y 2 `1. Next, suppose that

˛ D supf
1X

iD1

jaijj W j 2 Ng < 1:

Set

�n D supf
1X

iDnC1

jaijj W j D 1; 2; : : : ; ng

and

ın D supf
nX

iD1

jaijj W j D 1; 2; : : : ; ng:

We assume that

�n ! 0 and ın ! 0; as n ! 1:
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In the above, the finiteness of the supremum is equivalent to the statement that A
is bounded on `1. The assumption involving �n states that the sums in the definition
involving ˛ converge uniformly below the main diagonal; it is a condition involving
only the entries of A below the main diagonal. On the other hand, the assumption
involving ın is a condition involving only the entries of A above the main diagonal.

For the sake of convenience and ease of use, let us adopt a notation used earlier
for denoting a different object. So, let us define the matrix A.n/ by: .A.n//ij D aij if
1 � i; j � n and .A.n//ij D 0, otherwise. One applies similar definitions for y.n/ and
f.n/. This leads to the definition

bij
.n/ D ..A.n//jy.n//i

using which we finally set

x.n/
i .t/ D

X1
jD1

tj

jŠ
bij

.n/; 1 � i � n:

In (Theorem 1, [118]) the following result is established: Suppose that the first
two assumptions on A as given above are satisfied together with one of the next two
conditions. Then

limn!1 x.n/.t/ D x.t/

in the l1 norm uniformly in t on compact subsets of Œ0; 1/. One also has explicit
error bounds as given below:

nX

iD1

jxi.t/ � x.n/
i .t/j � ˛te˛t

"
1

2
�nMt C

1X

kDnC1

jykj
#

(3.18)

and

1X

iDnC1

jxi.t/j � e˛t

"
�nMt C

1X

kDnC1

jykj
#

: (3.19)

Combining these, one has

kx.t/ � x.n/.t/k � e˛t

"�
1 C 1

2
˛t

�
�nMt C .1 C ˛t/

1X

kDnC1

jykj
#

;

corresponding to the condition on �n (with the right-hand side converging to zero as
n ! 1) and

Xn

iD1
jxi.t/ � x.n/

i .t/j � ınMte˛t;
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corresponding to the condition on ın (with the right-hand side converging to zero as
n ! 1).

For the nonhomogeneous system, one assumes that fi is continuous on Œ0; 1/; i 2
N and kf.t/k D

1P
iD1

jfi.t/j converges uniformly in t on compact subsets of Œ0; 1/. If

one defines L.t/ D supfkf .�/k W 0 � � � tg, it then follows that the condition on f
above is equivalent to the statement that f is continuous from Œ0; 1/ into `1 and so
one has L.t/ < 1 for all t � 0.

We also have the following result (Theorem 2, [118]): Suppose that one has the
assumptions ˛ < 1 and the condition on fi given as earlier. In addition, suppose
that either of the conditions on �n or ın hold. Then

lim
n!1 x.n/.t/ D x.t/

in the l1 norm uniformly in t on compact subsets of Œ0; 1/, with explicit error
bounds as given below:

kx.t/ � x.n/.t/k � 1

2
t2e˛t�nL.t/ C te˛t supf

1X

kDnC1

jfk.�/j W 0 � � � tg;

corresponding to the condition on �n (with the right-hand side converging to zero as
n ! 1) and

nX

iD1

jxi.t/ � x.n/
i .t/j � ınL.t/˛�2

�
˛te˛t C .1 � e˛t/

�
; (3.20)

corresponding to the condition on ın (with the right hand side converging to zero as
n ! 1).

Similar results hold for systems on l1 (Theorems 4 and 6, [118]) and for systems
on c0 (Theorems 3 and 5, [118]). We refer the reader to [118] for details.

3.5 An Iterative Method

Iterative methods for linear equations in finite matrices have been the subject of a
very vast literature. Since all these methods involve the nonsingularity of the matrix,
the various notions of diagonal dominance of matrices have played a major role, as
evidenced in our discussion in Chap. 2.2. The interest in this section is to discuss an
iterative method for certain diagonally dominant infinite systems which we believe
to be one of the first attempts towards such extensions.
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Let us recall that in Sect. 2.3, we reviewed the work of Shivakumar and Chew
where a certain notion of weakly chained diagonal dominance was discussed.
A convergent iterative procedure was also proposed in the work [104].

In this section, we consider an infinite system of equations of the form Tx D v,
where x; v 2 `1, and T is a (possibly unbounded) linear operator on `1. Suppose
that the matrix of T relative to the usual Schauder basis is given by T D .tij/.
Consider the following:

1. There exists 	 > 0 such that jtiij � 	 for all i 2 N.
2. There exist � with 0 � � < 1 and �i, 0 � �i < � < 1, i 2 N such that

1X

jD1; j¤i

jtijj D �ijtiij;

3.
i�1P
jD1

jtijj
jtiij ! 0 as i ! 1.

4. Suppose further that either the diagonals of T form an unbounded sequence or
that v 2 c0.

Shivakumar and Williams first prove the following result (Theorem 1, [112]):
Let v 2 `1 and let T satisfy the first two conditions listed above. Then T has a
(bounded) inverse and the equation Tx D v has a unique `1 solution. This solution
x satisfies the inequality (all the norms k : k denote k : k1/:

k x kDk T�1v k� k v k
	.1 � �/

:

It must be remembered that two results of a similar type from the work of [113]
were discussed in Sect. 3.2.

Let T D D C F, where D is the main diagonal of T , (which, by virtue of the
first assumption, is invertible) and F is the off-diagonal of T . Let A be defined by
A D �D�1F and b D D�1v. Then Tx D v is equivalent to the fixed-point system
x D Ax C b; b 2 `1, where A is a bounded linear operator on `1. If one considers
all the four conditions on A listed above, then one has the following consequences:

1. kAk D sup
i�1

1P
jD1

jaijj � � < 1,

2.
i�1P
jD1

jaijj ! 0 as i !; 1 and

3. b D .bi/ 2 c0.

Let us note that the fixed-point equation above leads naturally into the iterative
scheme:

x.pC1/ D Ax.p/ C b; x.0/ D b; p D 0; 1; 2; : : : (3.21)
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As before, let A.n/ D .a.n/
ij / be the infinite matrix obtained from A, where

aij
.n/ D

(
aij if 1 � i; j � n;

0 otherwise:
(3.22)

Thus A.n/ is the n � n truncation of A padded with zeros. Let x.p;n/ be such that

.x.p;n//i D bi whenever i > n:

By starting with x.0;n/ D b, we consider the following truncated iterations:

x.pC1;n/ D A.n/x.p;n/ C b; x.0;n/ D b (3.23)

for p D 0; 1; 2; : : : and n D 1; 2; 3 : : :. Then one has (Theorem 2, [112]): for certain
constants ˇ; ˇn; �n, and �n

kx.p/ � x.p;n/k � ˇ�n

p�1X

kD0

.k C 1/� k C ˇn�n

p�1X

kD0

� k; (3.24)

where the right-hand side converges to zero as n ! 1. It can also be shown that
the following result holds:

Corollary 3.5.1 (Corollary 2, [112]).

kx � x.p;n/k � �pC1.1 � �/�1ˇ C ˇ�n.1 � �/�2 C ˇn�n.1 � �/�1; (3.25)

where the right-hand side converges to zero as n ! 1.

An application of the above in the recurrence relations of the Bessel functions is
given in Sect. 8.6 in Chap. 8.
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