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Preface

Roughly speaking, an infinite matrix is a twofold table A D .ai;j/, i; j 2 N, of
real or complex numbers. A general theory for infinite matrices commenced with
Henri Poincaré in 1844. Helge von Koch carried on the quest after Poincaré, and
by 1893, he had established “routine” theorems about infinite matrices. In 1906,
David Hilbert applied infinite matrices to solve certain integral equations. This
caught other mathematicians’ eyes. Since then, numerous applications of infinite
matrices appeared both in mathematics and in other sciences. In particular, in the
mathematical formulation of physical problems and their solutions, infinite matrices
stem more naturally than finite matrices.

Though there exist a rich literature and extensive texts on finite matrices, the
only major work focusing on the general theory of infinite matrices, to the best
of our knowledge, is the excellent text by Cooke [20]. Much of the material
presented in that book reflects early stages of development. Bernkopf [12] studies
infinite linear systems as prelude to Operator Theory. Since then, a lot of progress
has been achieved in the theory and applications of infinite matrices, through the
contributions of many mathematicians. The intention of this treatise is to introduce
and also to present an in-depth review of some of the recent aspects of infinite
matrices, together with some of their modern applications. The subject is abundant
in engaging research problems, and it is our hope that the present monograph
will motivate further research and applications. It may be mentioned here that the
coverage of the material is by no means exhaustive and reflect the mathematical
interests of the authors.

In the past, infinite matrices played an important role in the theory of summability
of sequences and series, whereas in this monograph, we are mainly concerned
with the theory of finite and infinite matrices, over the fields of real numbers,
complex numbers, and over quaternions. We emphasize topics such as sections or
truncations and their relationship to the linear operator theory on certain specific
separable and sequence spaces. Most of the matrices considered in this monograph
typically have special structures like being diagonally dominated, tridiagonal, and
possess certain sign distributions and are frequently nonsingular. Such matrices
arise, for instance, from solution methods for elliptic partial differential equations.
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vi Preface

We focus on both theoretical and computational aspects concerning infinite linear
algebraic equations, differential systems, and infinite linear programming, among
other topics. Recent results on the non-uniqueness of the Moore-Penrose and group
inverses are surveyed. Quaternions, well known as an extension of the complex
number field, play an important role in contemporary mathematics. They have
also been widely used in other areas like altitude control, 3D computer graphics,
signal processing, and quantum mechanics. Here, efficient algorithms for computing
f1g-inverses and Moore-Penrose inverses of matrices with quaternion polynomial
entries are presented. New results on extensions of matrix classes like P-matrix,
Q-matrix, and M-matrix to infinite dimensional spaces are surveyed. A finite
dimensional approximation scheme for semi infinite linear programs is proposed,
and its application to doubly infinite linear programs is considered.

Techniques like conformal mapping, iterations, and truncations are used to
derive precise estimates in some cases and explicit lower and upper bounds for
solutions of linear systems in the other cases. Topics such as Bessel’s and Mathieu’s
equations, viscous fluid flow in doubly connected regions, digital circuit dynamics,
and eigenvalues of the Laplacian are covered. The eigenvalues of the Laplacian
provide an explanation for the various cases when the shape of a drum cannot
be determined just by knowing its eigenvalues. To hear the shape of a drum is
to infer information about the shape of the drumhead from the sound it makes,
i.e., from the list of basic harmonics, via the use of mathematical theory. Other
applications include zeros of a Taylor series satisfying an infinite Vandermonde
system of equations and simultaneous flow of oil and gas.

Winnipeg, MB, Canada P.N. Shivakumar
Chennai, TN, India K.C. Sivakumar
Winnipeg, MB, Canada Yang Zhang
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Chapter 1
Introduction

In this chapter, first we provide a brief overview of some of the advances that have
been made recently in the theory of infinite matrices and their applications. Then we
include a summary of the contents of each chapter.

Infinite matrices have applications in many branches of classical mathematics
such as infinite quadratic forms, integral equations, and differential equations. As
illustrated in Chap. 8, this topic has applications in other sciences besides mathe-
matics, as well. A review of some of the topics of this monograph was recently
undertaken by Shivakumar and Sivakumar [111]. In this monograph, apart from
elaborating on some of the topics that are discussed in that review, we include other
interesting topics such as quaternion matrices and infinite dimensional extensions
of certain positivity classes of matrices.

Gaussian elimination, the familiar method for solving systems of finitely many
linear equations in finitely many unknowns, has been around for over two hundred
years. Unlike the matrix methods, matrices were not used in the early formulations
of Gaussian elimination, until the mid-twentieth century.

The word “matrix” was coined by James Sylvester in 1850. Roughly speaking, a
matrix over a field F is a two fold table of scalars each of which is a member of F.
A simple example of an infinite matrix is the matrix representing the derivative
operator which acts on the Taylor series of a function. In the seventeenth and
eighteenth centuries, infinite matrices arose from attempts to solve differential
equations using series methods. This method would lead to a system of infinitely
many linear equations in infinitely many unknowns. Therefore, a main source of
infinite matrices is solutions of differential equations.

As mentioned in the preface, a general theory for infinite matrices originated with
Henri Poincare in 1844. Infinite determinants were first introduced into analysis
in 1886 in the discussion of the well-known Hill’s equation. By 1893, Helge Von
Koch established standard theorems on infinite matrices. In 1906, David Hilbert
attracted the attention of other mathematicians to the subject by solving a Fredholm
integral equation using infinite matrices. Since then, many theorems, fundamental

© Springer International Publishing Switzerland 2016
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2 1 Introduction

to the theory of operators on function spaces were discovered although they were
expressed in special matrix terms. In 1929 John Von Neumann showed that an
abstract approach is more powerful and preferable rather than using infinite matrices
as a tool to the study of operators. Hence, the modern operator theory stems from the
theory of infinite matrices. Despite this, the infinite matrix theory remains a subject
of interest for its numerous and natural appearances in mathematics as well as in
other sciences. For example, in mathematical formulation of physical problems and
their solutions, infinite matrices appear more naturally than finite matrices. Some of
the recent applications include flow of sap in trees, leakage of electricity in coaxial
cables (attenuation problem), cholesterol problem in arteries, and simultaneous flow
of oil and gas.

Let us summarize the contents of this monograph. In Chap. 2, we consider the
notion of diagonal dominance of complex matrices and discuss the various results
that guarantee invertibility of such matrices. Possibly reducible matrices satisfying
a chain condition are discussed. Recent results on specially structured matrices like
tridiagonal matrices and matrices satisfying certain sign patterns are reviewed.

Given an infinite matrix A D .ai;j/, i; j 2 N, a space X of infinite sequences, and
x D .xi/, i 2 N, we define Ax by .Ax/i D P1

jD1 aijxj provided this series converges
for each i 2 N, and define the domain of A as fx 2 X W Ax exists and Ax 2 Xg. We
define an eigenvalue of A to be any scalar � for which Ax D �x for some nonzero x
in the domain of A. A matrix A is diagonally dominant if

jaiij �
X

j¤i

jaijj; for all i:

Let A D .aij/, i; j 2 N be an infinite matrix. The linear differential system

d

dt
xi.t/ D

1X

jD1

aijxj.t/ C fi.t/; t � 0; xi.0/ D yi; i D 1; 2; : : : ;

is of considerable theoretical and applied interest. In particular, such systems occur
frequently in the theory of stochastic processes, perturbation theory of quantum
mechanics, degradation of polynomials, infinite ladder network theory, etc. Arley
and Brochsenius [3], Bellman [7], and Shaw [100] are the notable mathematicians
who have studied this problem. In particular, if A is a bounded operator on l1,
then the convergence of a truncated system has been established. For instance,
Shivakumar, Chew and Williams [118] provide an explicit error bound for such
a truncation.

Diagonally dominant infinite matrices occur in solutions of elliptic partial differ-
ential equations as well as solutions of second order linear differential equations.
The eigenvalue problem for particular infinite matrices including diagonally domi-
nant matrices is studied by Shivakumar, Williams and Rudraiah [119]. A discussion
of these topics is presented in Chap. 3.
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In Chap. 4, first we provide a brief review of generalized inverses of matrices with
real or complex entries followed by a discussion on the Moore–Penrose inverses of
operators between Hilbert spaces. Certain non-uniqueness results for generalized
inverses of infinite matrices are reviewed later.

Chapter 5 considers the case of generalized inverses of matrices whose entries
are quaternionic polynomials. After a discussion on the theoretical aspects, some
algorithmic approaches are proposed. The contents report recent results in this area.

A vast literature exists for M-matrices for which more than fifty characterizations
are given. Relatively little is known for the case of infinite dimensional spaces.
Chapter 6 presents a review of M-operator results obtained recently, including some
results on extensions of two other matrix classes quite well known in the theory of
linear complementarity problems.

Infinite linear programming problems are linear optimization problems where, in
general, there are infinitely many (possibly uncountable) variables and constraints
related linearly. There are many problems arising from the real world situations
that can be modelled as infinite linear programs. Some examples include the
bottleneck problem of Bellman in economics, infinite games, and continuous
network flow problems [2]. A finite dimensional approximation scheme for semi-
infinite linear programming problems is presented in Chap. 7, where an application
to obtaining approximate solutions to doubly infinite programs is considered.

The importance of eigenvalue problems concerning the Laplacian is well doc-
umented in classical and modern literature. Finding the eigenvalues for various
geometries of the domains has posed many challenges for solution methods, which
have included infinite systems of algebraic equations, asymptotic methods, integral
equations, and finite element methods. The eigenvalue problems of the Laplacian
is represented by Helmholtz equations, Telegraph equations, or the equations of the
vibrating membrane and is given by

@2u

@x2
C @2u

@y2
C �2u D 0 in D; and u D 0 on @D;

where D is a plane region bounded by smooth curve @D. The eigenvalues kn

and corresponding eigenfunctions un describe the natural modes of vibration of
a membrane. The eigenvalues of the Laplacian provide an explanation for the
various cases when the shape of a drum cannot be determined just by knowing its
eigenvalues. To hear the shape of a drum is to infer information about the shape of
the drumhead from the sound it makes, i.e., from the list of basic harmonics, via the
use of mathematical theory. In 1964, John Milnor with the help of a result of Ernst
Witt showed that there exist two Riemannian flat tori of dimension 16 with the same
eigenvalues but different shapes. However, the problem in two dimensions remained
open until 1992, when Gordon, Webb, and Wolpert showed the existence of a pair
of regions in the plane with different shapes but identical eigenvalues. The regions
are non-convex polygons. Chapter 8 provides more information on this intriguing
problem, among other interesting applications.



Chapter 2
Finite Matrices and Their Nonsingularity

2.1 Introduction

Nonsingularity of matrices plays a vital role in the solution of linear systems,
matrix computations, and numerical analysis. A large variety of problems arising
in computational fluid mechanics, fluid dynamics, and material engineering that
are modelled using difference equations or finite element methods require that
the matrix under consideration is nonsingular, in order for the numerical schemes
to be convergent. In spite of the large scale availability of excellent software
for the computation of eigenvalues, there is always a growing need for new
results on invertibility of matrices and inclusion regions of spectra of matrices.
This is true especially due to the fact that in practical problems, matrices are
dependent on parameters. Further, bounds for eigenvalues of finite matrices usually
lead to derivation of bounds for the spectra of infinite matrices. Due to these
reasons, discovering new sufficient conditions for matrix invertibility and eigenvalue
inclusion regions are very relevant even today.

In this section, we give several different criteria for an n � n matrix A D .aij/ to
be nonsingular. We also present in most of these cases, estimates for the elements of

A�1

�

D Aji

detA

�

, where Aji represents the cofactor of aij and det A is the determinant

of A. In what follows j:j stands for the modulus. Let us recall that a (finite) linear
system

nX

jD1

aijxj D bi; i D 1; 2; : : : ; n (2.1)

could be succinctly written as

Ax D b;

© Springer International Publishing Switzerland 2016
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6 2 Finite Matrices and Their Nonsingularity

where A D .aij/ is the matrix obtained from the coefficients, x 2 R
n is the column

vector of the unknowns, and b 2 R
n is the right-hand side (requirement) vector.

Assuming that A�1, (the inverse of A) exists, we then have x D A�1b. Since det A ¤
0 one has by Cramer’s rule, the formula for the unknowns, given by:

xj D
nX

kD1

Akj

detA
bk; j D 1; 2; : : : ; n: (2.2)

Invertibility is the central theme of this chapter and the material here is organized
as follows. In the next section, we recall the notion of diagonally dominant
matrices and present many results including some classical ones with an intention
of providing a historical perspective. In Sect. 2.3, we present some recent results
on the invertibility of a diagonally dominant matrix which is possibly reducible.
A sufficient condition is given in terms of what we call as a chain condition. In the
next section, viz., Sect. 2.4, results for tridiagonal matrices are presented. Certain
improved bounds for the inverse elements are recalled here and bounds for the norm
of the inverse matrix are given. The concluding section of this chapter presents
invertibility results relating to two classes of matrices with given sign patterns on
their entries.

We close this introductory part by recalling the notion of M-matrices. These
matrices will be referred to in Sects. 2.2 and 2.3. A real matrix A of order n � n
is called a Z-matrix, if the off-diagonal entries of A are nonpositive. It is easy to
see that if A is a Z-matrix, then A could be written as A D sI � B, with s 2 R and
B is entrywise nonnegative, i.e., B � 0. A Z-matrix A with the representation as
above is called an M-matrix if one has the inequality s � �.B/, where �.B/ denotes
the spectral radius of B, namely the maximum of the moduli of the eigenvalues
of B. A very frequently used and well-known result for an M-matrix A (with
the representation as above) is that s > �.B/ if and only if A is invertible and
that all the entries of the inverse of A are nonnegative, i.e., A�1 � 0. Matrices
satisfying the last condition are called inverse positive matrices. Thus, an invertible
M-matrix is inverse positive. There are more than fifty equivalent conditions for
a real matrix to be an M-matrix. These are documented in the excellent book by
Berman and Plemmons [11]. We shall also have the opportunity to present some
very recent results on infinite M-matrices, albeit as particular cases of general results
on operators over infinite dimensional spaces. These appear in Sect. 6.5 of Chap. 6.

2.2 Diagonal Dominance

In this section, we discuss the rather classical notion of diagonal dominance. For
A D .aij/ 2 C

n�n, (with nonzero diagonals) aii ¤ 0 for 1 � i � n, suppose that the
following hold:



2.2 Diagonal Dominance 7

�ijaiij D
nX

jD1;j¤i

j aijj ; �i � 0; i D 1; 2; : : : ; n (2.3)

We say that A is row diagonally dominant, if �i � 1 for all i D 1; : : : ; n. A is
said to be strictly row diagonally dominant, if �i < 1 for all i D 1; : : : ; n. Similar
definitions apply for columns. The significance of the notion of row (or column)
diagonal dominance in the numerical solutions of partial differential equations is
well documented (see for instance [131]). Schneider [99] mentions that it was one
L. Levy who published the diagonal dominance theorem (for what we now call as
Metzler matrices, i.e., negative Z-matrices) in the late nineteenth century, showing
that a strictly diagonally dominant matrix is nonsingular. Desplanques later gave a
proof for the general case. Hence this result is referred to as the Levy–Desplanques
theorem. We shall not get into the historical details here, but merely point to the
excellent account of Schneider [99].

There are a number of proofs showing that A is nonsingular, if A is strictly row
diagonally dominant. Taussky credits a long list of contributors in [129]. We recall
only the most prominent ones. Let N D f 1; 2; : : : ; n g and

J D f i 2 N W jaiij >
X

j¤i

jaijj g: (2.4)

If J D N, then A is strictly row diagonally dominant. In this case, an application
of the Gerschgorin circle theorem shows that the determinant of A does not
vanish (pp. 106, [8] or Theorem 6.1.10, [44]). Interestingly, one could reverse this
argument. The nonsingularity of a strictly diagonally dominant matrix implies Ger-
schgorin theorem (see Exc. 5, pp. 24, [131]). Proofs were also given by Ostrowski
[82] and [83], Taussky (Theorem I, [129]), and Varga (Theorem 1.8, [131]). For
instance, let us state the following result, by Ostrowski [83], which will be referred
to a little later, in Sect. 2.4. He gave upper bounds for the inverse elements of a
strictly row diagonally dominant matrix A, which we state, next. As before, let
numbers �i; i D 1; 2; : : : ; n be defined by

�ijaiij D
X

j¤i

jaijj; (2.5)

so that �i < 1; i D 1; 2; : : : ; n. Set B D A�1. Using the usual convention of denoting
B D .bij/, one has the following bounds:

1

jajjj.1 C �j/
� ˇ
ˇbjj

ˇ
ˇ � 1

jajjj.1 � �j/
; j D 1; 2; : : : ; n:

jbijj � �jjbiij; i ¤ j; i; j D 1; 2; : : : ; n:
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Let us note that the entries of A and B, by definition, are related by the formula
bij D Aji

detA where, as mentioned in the beginning, Aji is the cofactor of the entry aij.
Observe also that, two sided bounds are presented for the diagonals of the inverse
matrix, whereas only one-sided bounds are given for the off-diagonal elements. In
Sect. 2.4, we shall review several results which present different lower bounds and
also recall how the upper bounds could be improved for matrices with a special
structure, viz., tridiagonal matrices.

It is noteworthy to observe that the proof (of the invertibility of a strictly
diagonally dominant matrix), by Taussky referred to as above, is reproduced in some
of the recent texts in linear algebra.

In the general case when J is not necessarily the whole of N, however, if A is
irreducible, then A is nonsingular, so long as J ¤ ;. This was shown by Taussky
(Theorem II, [129]). This is sometimes referred to as “Olga Taussky’s theorem.”
Nowadays, the importance of these results in the proof of the convergence of
Jacobi and Gauss-Seidel iterative methods is demonstrated even in a first course on
numerical analysis. In subsequent discussions, we show how most of the extensions
of diagonal dominance follow the trend that a certain strict diagonal dominance or
a mere diagonal dominance together with an irreducibility assumption guarantees
invertibility.

The infinity-norm condition number denoted by �1.A/ has an important role in
numerical linear algebra. This is defined as

�1.A/ D k A k1k A�1 k1:

Here k : k1 is the operator norm induced by the vector norm k : k1, where
k v kinfty WD maxfjvij W I 2 Ng.

For example, let x� denote an approximate solution of the linear equation Ax D b.
Then the relative size of the residual is given by

k Ax� � b k1
k b k1

:

It then follows that the relative error of the approximate vector x�, given by

k x � x� k1
k x k1

is bounded by the product of the relative size of the residual and �1.A/. It is for this
reason that bounds on the infinity norm of the inverse of a matrix A are important. In
this connection, let us turn our attention to results on finding bounds on the infinite
norm of the inverse of strictly row diagonally dominant matrices. Varah (Theorem 1,
[130]) proved the following result. In the notation as above, set ˛ D min

k
fjakk

.1 � �k/jg. Then



2.2 Diagonal Dominance 9

kA�1k1 D max
i

nX

kD1

jAkij
detA

� 1

˛
: (2.6)

A similar result gives an upper bound for the 1-norm of the inverse of a strictly
column diagonally dominant matrix. Using his results, Varah obtained a lower
bound for the smallest singular value of a matrix A which has the property that both
A and A� are strictly row diagonally dominant (Corollary 2, [130]). Let us observe
that in the particular case of a strictly row diagonally dominant matrix A, where all
the diagonal entries are equal to 1, by writing A D I � B, one has k B k1 < 1 and
so Varah’s result reduces to the classical result

k .I � B/�1 k1 � 1

1 � k B k1
;

which is proved even in a first course in numerical analysis and functional analysis.
Next, we recall a certain result of Varga obtained as a generalization of the result

of Varah in the previous paragraph. For A 2 C
n�n, define its comparison matrix by

.mij/ D MA 2 R
n�n:

mii WD jaiij and mij WD �jaijj; i ¤ j; i; j 2 N:

Then MA is a Z-matrix and coincides with A if A is a Z-matrix with nonnegative
diagonal elements. A will be referred to as a H-matrix if MA is a nonsingular
M-matrix (so that MA

�1 � 0, as mentioned in the introduction). In such a case
A is also nonsingular and one has the following relationship, which is attributed to
Ostrowski (see also [44]).

jA�1j � MA
�1:

Here, jBj denotes the matrix each of whose entries is the modulus of the correspond-
ing entry of the matrix B. Varga attributes the definition of a H-matrix to Ostrowski.
A little later, we include some recent results on H-matrices.

Proceeding with the general discussion, for an H-matrix A, define

UA WD fu > 0 W MAu > 0; kuk1 D 1g;

where kvk1 D maxfjvij W i 2 Ng and for w 2 R
n, we use the notation w > 0 to

denote the fact that all the entries of w are positive; w � 0 will denote that all the
entries of w are nonnegative. It follows that UA ¤ ;. Let e denote the vector all of
whose entries are 1. Define

u� WD MA
�1e

kMA
�1ek1
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and

fA.u/ WD minf.MAu/i W i 2 N; u 2 UAg:

Then fA.u/ > 0 and in particular, one has

fA.u�/ WD maxffA.u/ W u 2 cl.UA/g;

where cl.:/ denotes the topological closure. Varga shows that (Lemma 1 and
Theorem 1, [133])

kMA
�1k1 D 1

fA.u�/
� kA�1k1:

A lower bound for the smallest singular value of A is also obtained (Theo-
rem 2, [133]).

In what follows, we include some recently obtained results for H-matrices.
Define

Ri D
Xn

jD1;j¤i
jaijj; 1 � i � n:

Denote

N1 WD fi 2 N W 0 < jaiij � Rig

and its complement by

N2 WD fi 2 N W jaiij > Rig:

Suppose that both these sets are nonempty. Then a sufficient condition for a matrix
to be a H-matrix is proved by Gan and Huang (Theorem 1, [35]). Suppose that for
every i 2 N1 the following inequalities hold:

jaiij >
˛i

jaiij f
X

k2N1;k¤i

jakkj
˛k

jaikj C
X

k2N2

˛k

jakkj jaikjg;

where ˛k are certain positive constants. Then A is an H-matrix. Note that strict
inequalities are required to hold for indices from the index set N1. However, suppose
that at least one inequality is strict in N1 and not necessarily for all the indices, then
as in the case of the usual diagonal dominance, the irreducibility of A guarantees that
A is an H-matrix (Theorem 2). Another sufficient condition is presented in Theorem
4 and a necessary condition is given in Theorem 5. All these statements involve
complicated inequalities and are not included here. We refer to [35] for the precise
details.
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Huang and Xu proposed an extension of strict row diagonal dominance in
(Definition 1, [48]) and called it ˛-strict (row) diagonal dominance for ˛ 2
Œ0; 1�. We do not present the details here, but merely point out that they obtain
results similar to the strict row diagonal dominant matrices and show, for instance
(Theorem 1) that an ˛-strict (row) diagonally dominant matrix must be an H-
matrix. In the spirit of results discussed earlier, they show that a certain ˛-diagonally
dominant matrix which is also irreducible must be an H-matrix.

Let us also include an interesting generalization of Varah’s result, involving two
matrices. Let A be an n � n strictly row diagonally dominant matrix and B be an
n � m matrix, both with complex entries. Yong (Lemma 2.2, [139]) shows that the
following inequality holds:

kA�1Bk1 � maxi

Pm
jD1 jbijj

jaiij �P
j¤i jaijj :

When m D n and B D I, one has Varah’s inequality, at once.
Before moving on to the next set of ideas, let us turn our attention to another

generalization of strict diagonal dominance as proposed by Beauwens [6]. The
author calls A 2 C

n�n as lower semistrictly diagonally dominant if A is row
diagonally dominant and satisfies the following inequalities:

jaiij >
Xn

jD1;j¤i
jaijj; 1 � i � n:

A is called semistrictly diagonally dominant if there is a permutation matrix Q
such that QAQT is lower semistrictly diagonally dominant. The author shows that
this notion provides a way of separating the properties of diagonally dominant
matrices which depend on irreducibility from those which do not. It is shown
that (Theorem 2.1, [6]) A is irreducibly diagonally dominant if and only if it is
semistrictly diagonally dominant and irreducible. A diagonally dominant Z-matrix
with nonnegative diagonal entries is an invertible M-matrix if and only if it is
semistrictly diagonally dominant (Theorem 3.1, [6]).

As mentioned earlier, an immediate proof of the nonsingularity of a strictly row
diagonally dominant matrix is provided by the Gerschgorin circle theorem. Another
well-known theorem for eigenvalue localization is the theorem on the ovals of
Cassini.

Zhang and Gu [142] considered a condition weaker than diagonal dominance
and whose geometric interpretation concerns the location of the origin in relation
to the ovals of Cassini. Li and Tsatsomeros [66] later referred to such matrices as
doubly diagonally dominant. In what follows, we take a brief look at these results.
As before, for A 2 C

n�n, let

Ri D
Xn

kD1;k¤i
jaikj; 1 � i � n:
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A is said to be doubly diagonally dominant, if

jaiijjajjj � RiRj; i; j 2 N; i ¤ j:

If the inequalities are strict for all distinct i; j 2 N, then A is called strictly doubly
diagonally dominant. On the other hand, if A satisfies the inequalities as above with
at least one inequality holding strictly, and is irreducible, then A is called irreducibly
doubly diagonally dominant. Let us denote by G, the set of doubly diagonally
dominant matrices, by G1, the set of strictly doubly diagonally dominant matrices
and by G2, the set of irreducibly doubly diagonally dominant matrices.

We develop some terminology before stating the main result of Zhang and
Gu [142]. One can associate a directed graph �.A/ with A as follows: The vertices
of �.A/ are 1; 2; : : : ; n. There is a directed arc from vertex i to vertex j for every
aij ¤ 0; i ¤ j. Clearly this directed graph depends only on the off-diagonal entries
of A and has no loops. A circuit in the graph is a sequence of distinct vertices
i1; i2; : : : ; ipC1 with ipC1 D i1 and each pair of vertices ij; ijC1 is an arc. Then Brualdi
(Theorem 2.9, [17]) shows the following: Suppose that A is irreducible and

Y

i2�
jaiij �

Y

i2�
Ri.A/

for all circuits � in �.A/, with strict inequality for at least one circuit. Then A is
nonsingular.

It is noteworthy that Brualdi unified and generalized several classical results
concerning inclusion regions and estimates for the eigenvalues of matrices using
the notion of directed graphs. Let us now turn our attention to the result of Zhang
and Gu [142], referred to, as above. Zhang and Gu show that (Theorem 1, [142]) if
A is irreducible and satisfy

jaiijjajjj � RiRj; i ¤ j; i; j 2 �

for every circuit � in �.A/, with strict inequality for at least one circuit, then A is
nonsingular.

Li and Tsatsomeros [66] study further properties of doubly diagonally dominant
matrices. They observe the following: An analogue of the Levy–Desplanques
theorem holds, viz., that if A 2 G1, then A is nonsingular. If A 2 G2, then it
does not imply that A is an H-matrix, even not nonsingular, either. If A 2 G2,
then the comparison matrix MA is an M-matrix (possibly nonsingular). A is an H-
matrix if and only if MA is nonsingular. Among other things, they show that the
Schur complement of a doubly diagonally dominant matrix inherits this property,
which, however, does not inherit strict double diagonal dominance. They describe a
situation when this holds, too. We do not include the details here.

We mention briefly, the work of Tam, Yang and Zhang [128], who obtained
results that generalize, strengthen, and provide clarifications on the work of Brualdi,
Zhang, and Gu. The main results are new sufficient conditions for invertibility of an
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irreducible complex matrix. Statements on eigenvalues and eigenvectors that lie on
the boundary of spectrum inclusions of an irreducible matrix are also made.

Let us also take a look at the results of Farid [30]. Let A 2 C
n�n be diagonally

dominant and let us denote the rows of A by a1; a2; : : : ; an. Suppose that there exist
k 2 N and complex numbers z1; z2; : : : ; zn with zk D 1 such that

ak D
Xn

jD1;j¤k
zja

j:

Then one has jakkj D Rk, where Rk is the sum of the moduli of all the entries of the
kth row excluding the diagonal entry, defined as before. One also has the implication

m 2 J H) zm D 0;

in the representation for ak given above. On the other hand, if zm D 0 for some
m 2 N, then aim D 0 whenever zi ¤ 0. In particular, akm D 0. This is proved
in (Theorem 2.1, [30]). This result, along with certain properties of diagonally
dominant singular matrices, is used to establish a criterion for the nonsingularity
of a diagonally dominant matrix with nonzero diagonal entries, in (Theorem 4.1,
[30]). The statement of this result is too technical to be included here.

Farid, in [31], establishes relationships between some classes of matrices with
properties that are variations of diagonal dominance. Sufficient conditions are given
in order for a matrix to satisfy such generalized diagonal dominance properties. The
details are not included here.

Let us make a brief mention of an excellent unified approach to diagonal
dominance taken by Kostic [58]. Here, the author introduces the notion of diagonally
dominant-type (DD-type) matrices and shows that the maximal nonsingular DD-
type class is the class of (nonsingular) H-matrices. A new nonsingularity result that
defines a DD-type class of matrices is proved. This is motivated by the fact that,
using an infinity norm in the context of strictly diagonally dominant matrix may not
be appropriate and so some other p-norm could be used, instead. Subsequently, the
author discusses an equivalence principle for eigenvalue localizations, monotonicity,
compactness, isolation, inertia, and spectral radius principles. New upper bounds are
obtained for the spectral radius.

Let us next look at a certain invertibility condition which, however, has no
relevance to diagonal dominance. This refers to a certain result of Gil [36] and is just
a sample of the many results on invertibility and nonnegative invertibility that are
available in the literature. Our intention in including it in this section comes from
the fact that the matrices are invertible (in fact, inverse positive) and that an upper
bound for the inverse is given. We give the precise statement of the main result. Let
A be a complex square matrix of order n all of whose diagonal entries are nonzero.
Define

˛k WD max1�j�k�1jajkj; 2 � k � n
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and

ˇk WD maxkC1�j�njajkj; 1 � k � n � 1

using which one defines the quantities below:

gu WD
Yn

kD2
.1 C ˛k

jakkj /

and

gl WD
Yn�1

kD1
.1 C ˛k

jakkj/:

Finally, define

	 WD .gu � 1/.gl � 1/:

Then Gil (Theorem 2.1, [36]) shows that if 	 < 1, then A is invertible and one has

k A�1 k1 � gugl

˛0.1 � 	/
;

where ˛0 > 0 is the minimum of the moduli of the diagonal entries of A. It follows
that such a matrix A must be inverse positive, i.e., A�1 � 0. Note that the matrix
A above, in general, is neither diagonally dominant nor is an M-matrix. Let us also
give a reference to another work where a whole of class of symmetric circulant
matrices and symmetric pentadiagonal Toeplitz matrices with positive inverses have
been identified. These are the results (Theorems 1 and 2) of Meek [72] and again, the
matrices are neither diagonally dominant nor are M-matrices. We refer the reader to
the citation for details.

In this concluding paragraph, we present some results which use strict diagonal
dominance in certain other areas of mathematics. As before, given A 2 C

n�n, let
numbers �i; i D 1; 2; : : : ; n be defined by

�ijaiij D
X

j¤i

jaijj: (2.7)

Let A be strictly row diagonally dominant so that �i < 1. Define

lkk D jakkj �
X

j>k
�jjakjj

and

ukk D jakkj C
X

j>k
�jjakjj



2.2 Diagonal Dominance 15

with lnn D unn D jannj. Then Brenner [15] has shown that one has

lkk � jdet Aj � jukkj:

In what follows, we briefly present two interesting results on the bounds of the
values of certain important polynomials, obtained as an application of the bounds as
above. Recall that the Chebychev polynomial Tn is defined by the formula

Tn.x/ WD cos.n cos�1x/; x 2 R

and satisfies the three-term recurrence relation

Tn.x/ WD 2xTn�1.x/ � Tn�2.x/;

with T0.x/ D 1 and T�1.x/ D 0. Now, let Cn 2 C
n�n be the matrix, each of whose

super diagonal and sub diagonal entries equals 1, whose first n � 1 diagonals are
equal to 2x with the last diagonal equalling x; x 2 R being fixed. Observe that
det Cn D Tn.x/; x 2 R. Then Cn is strictly row diagonally dominant if and only
if jxj > 1. By computing the lower and upper bounds for det Cn (in place of the
matrix A) similar to the inequalities above, one has the following result: If jxj > 1

and n � 2, then (Theorem 4.05, [16])

.2jxj2 � 1/n�1

jxjn�2
� jTn.x/j � .2jxj2 C 1/n�1

jxjn�2
:

These results complement the well-known results for estimating Tn when jxj � 1.
Let us include bounds for one more polynomial, namely the Legendre

polynomials. These are given by the formula:

Pn.x/ WD 1

2nnŠ

dn

dxn
.x2 � 1/n; x 2 R:

Pn satisfies the recurrence relation

nPn.x/ D .2n � 1/xPn�1.x/ � .n � 1/Pn�2.x/;

with P0.x/ D 1 and P�1.x/ D 0, for all x. This time, let Fn 2 C
n�n be the

matrix, whose super diagonal and sub diagonal entries are the numbers 1 � 1
n ; 1 �

1
n�1

; : : : ; 1� 1
2

in that order and whose diagonals are x.2� 1
n /; x.2� 1

n�1
/; : : : ; x.2�1/

in that order, with x 2 R being fixed. Then det Fn D Pn.x/; x 2 R and Fn is strictly
row diagonally dominant if and only if jxj > 4

3
. It is shown (Theorem 6.02, [16]),

that when n � 2 and for jxj > 4
3

one has

jxj
Yn

jD2
f.2 � 1

j
/jxj � .1 � 1

j
/

1
2 g � jPn.x/j � jxj

Yn

jD2
f.2 � 1

j
/jxj C .1 � 1

j
/

1
2 g:
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2.3 A Chain Condition

In this section, let us recall another subclass of matrices still remaining in the
class of row diagonally dominant matrices. Any matrix in this class turns out to
be nonsingular, once again.

Suppose that the n � n matrix A D .aij/ is row diagonally dominant and J ¤ ;.
Assume that, there exists for each i 62 J, a sequence of nonzero elements of the
form ai;i1 ; ai;i2 ; : : : ; ai;ik with ik 2 J. Then A is nonsingular. This was established
by Shivakumar and Chew (Theorem, [103]). The proof of this statement uses an
interesting result by Fan [28], who has shown that for a matrix A D .aij/ and an
M-matrix B D .bij/ whose diagonal entries are related by the inequalities

jbiij � jaiij for all i 2 N

and whose off-diagonal elements satisfy the inequalities

jaijj � jbijj for i ¤ j; i; j 2 N;

the inequality detA � detB holds. We may observe that the nonsingularity result
stated above extends to cases where A (satisfies the chain condition and) is possibly
reducible.

An interesting special case is obtained if one considers the class of Z-matrices
all of whose diagonals are positive, satisfying the chain condition as above. It then
follows that (Corollary 4, [103]) A is nonsingular and that A�1 � 0, viz., A is an
invertible M-matrix.

In a subsequent work, the same authors studied an iterative procedure for
numerically solving linear systems. Let A D .aij/ be row diagonally dominant and
J ¤ ;. Suppose further that the chain condition described above holds. We seek to
solve numerically, the linear system Ax D b. Let A be decomposed as

A D D.I C L C U/;

where D is the diagonal part of A, L is the strictly lower part of A, U is the strictly
upper part of A, and I is the identity matrix. Let M be defined as

M D .1 C ˛!L/�1f.1 � !/I � .1 � ˛/!L � !Ug

for 0 < ! < 1 and 0 � ˛ � 1. In (Theorem 2, [104]) the authors show that
�.M/ < 1, thereby showing that the stationary iterative method x.kC1/ D Mx.k/ C g
is convergent to the unique solution of the equation Ax D b.

Let us now consider a generalization of the result of Shivakumar and Chew,
discussed above. This was achieved by Varga [132]. A matrix .bij/ D B 2 R

n�n

is of generalized positive type if there exists u 2 R
n such that
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u > 0; Bu � 0 and fi 2 N W .Bu/i > 0g ¤ ;

and further satisfies the following chain condition: for every i0 2 N with .Bu/i0 D 0,
there exist indices i1; i2; : : : ; ir 2 N with bikkC1

¤ 0; 0 � k � r � 1 such that
.Bu/ir > 0. It is now easy to observe that this idea generalizes both the strict (row
or column) diagonal dominance and irreducible diagonal dominance.

Let us recall that MA denotes the comparison matrix of any given A 2 C
n�n.

Given A, let 
.A/ denote the set of all matrices B which have the property that the
corresponding entries of A and B have the same moduli. Hence 
.A/ is referred to as
the equimodular set of matrices associated with A. It is helpful to observe that both A
and MA belong to 
.A/. Among other statements, Varga (Theorem 1, [132]) proves
that for any A 2 C

n�n the comparison matrix MA is of generalized positive type if
and only if there exists u 2 R

n such that u > 0 and MAu > 0. This, in turn, is shown
to be equivalent to the statement that every B 2 
.A/ is a nonsingular matrix. These
are among a list of eleven equivalent statements which are equivalent to, or sharper
than some of the extensions of diagonal dominance, obtained till then. The author
notes that certain results in the literature are captured among these. More pertinent
to the discussion at hand, one may now observe that the result of Shivakumar and
Chew mentioned in the second paragraph of this section is a particular case of the
result of Varga with u D e (the vector all of whose coordinates are 1) and is weaker
than the equivalence of the last two statements mentioned here.

Let us turn our attention to the chain condition stated in the beginning of this
section. This condition (in addition to diagonal dominance and the nonemptiness
assumption on J) is referred to as weakly chained diagonal dominance in [120].
We shall look at some pertinent results from this work. However, before doing
this, let us paraphrase the result (Corollary 4, [103]) stated earlier as: A weakly
chained diagonally dominant Z-matrix whose diagonals are positive is an invertible
M-matrix. We now consider the work reported in [120]. It is pertinent to point to a
couple of results, viz., one on upper bounds of the infinity norm of the inverse of a
weakly chained diagonally dominant M-matrix A and another, on lower bounds for
the entries of the inverse of A. Let B denote the principal submatrix obtained from
A by deleting the first row and the first column. Then the authors show that B is also
a weakly chained diagonally dominant M-matrix (Lemma 2.3, [120]).

Set

ri D 1

jaiij
Xn

jDiC1
jaijj; with rn D 0:

Note that these are partial right row sums. We may now state one of the main results
(Theorem 2.3, [120]). Let A be a weakly chained diagonally dominant M-matrix
such that for all k 2 N one has rk < 1. Then (the diagonal entries of A are positive
and)

kA�1k1 �
Xn

iD1

1

aii
Qi

jD1.1 � rj/
:
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In order to state the next result, define

di D 1

jaiij
Xn

jDiC1
jajij; where we set dn D 0:

Note that these quantities are partial lower column sums. We have the fol-
lowing result: Let A be a weakly chained diagonally dominant M-matrix and
.fij/ D F D A�1. Then (the diagonal entries of A are positive and) one has

minj;k fjk � 1

ann

Yn�1

iD1
minfdi; rig:

The authors also obtain upper and lower bounds for the least eigenvalue of A (the
Perron root of A�1) and also the corresponding normalized positive eigenvector (the
Perron vector of A�1).

We will later discuss an application of these results to a certain linear system of
differential equations and digital circuit dynamics. This will appear in Sect. 8.2 of
Chap. 8.

Let us include an improved result of the upper bound on the infinity norm of the
inverse matrix, given as above. We observe that this result, to follow, is applicable
to a subclass of the class of matrices considered above and was proved by Li [65].
Let A be a weakly chained diagonally dominant M-matrix. Set

sn D
Xn�1

kD1
jankj

and define recursively, for k D n � 1; n � 2; : : : ; 1

sk D
Xk�1

iD1
jakij C

Xn

iDkC1
jakij si

jaiij :

Set h1 D 1. Define ti D Pn
kD1 jaikj. Define recursively, for k D 2; 3; : : : ; n

hk D tk�1 � sk�1:

Suppose that for all k 2 N, we have jakkj C lk > sk, where lk are defined by the
equation jLje D .l1; l2; : : : ; ln/T . Here .jlijj/ D jLj, where L is the strict lower
triangular part of A (not including the diagonal). Li (Theorem 2.4, [65]) shows that

kA�1k1 �
Xn

iD1

Yi

kD1

hk

akk C lk � sk
:

Let us also report one more recent work, briefly. Huang and Zhu [49] obtained
a new upper bound (for, once again a subclass of weakly chained diagonally
dominant M-matrices) better than the result of Li mentioned above. The main result
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is Theorem 2, the details of which are too complicated to be included here. The
authors include numerical examples to show the effectiveness of the new bound.

In the literature, many improvements to the various bounds discussed above have
been presented. In this last part, we include one of the more recent results. Let A
be a strictly row diagonally dominant M-matrix. Let the numbers ri be defined as
before for i D 1; 2; : : : ; n � 1 with rn D 0. Define

pk D maxf
Pn

jD1 jaijj
jaiij W k � i � ng

with pn D 0. For certain specific constants !ij; i; j D 1; 2; : : : ; n, Wang, Sun and
Zhao (Theorem 2, [137]) have shown that

kA�1k1 � 1

a11 �Pn
kD2 ja1kj!k1

C
Xn

iD2
f 1

aii �Pn
kDiC1 jaikj!ki

Yi�1

jD1

1

1 � rjpj
g:

Numerical examples are used by these authors to illustrate that these are indeed
improvements to earlier results.

As we reported earlier in this section, some recent results on H-matrices were
obtained in the work [35]. Let us conclude this section with a passing remark that
in Theorem 3 of that work, the authors prove a result using a chain condition on the
entries of A ensuring that A is an H-matrix.

2.4 Tridiagonal Matrices

Tridiagonal matrices, finite or infinite, occur in a large number of applications.
Some of these include solution methods by finite difference approximations for
certain boundary value problems, cubic spline approximations, curve tracing, and
three-term difference equations. Infinite tridiagonal matrices arise specifically in the
solution of Mathieu’s equation [119] and three-term recurrence relations for Bessel
functions.

Here, A is a tridiagonal matrix denoted by fai; bi; cig, where bi; i D 1; : : : ; n
denote the diagonal elements, ai; i D 2 : : : ; n denote the lower diagonal elements
and ci; i D 1; : : : ; n � 1 denote the upper diagonal elements. We assume that A is
strictly row diagonally dominant with

�ijbij D jaij C jcij; ai; bi; ci ¤ 0; i D 1; 2; : : : ; n: (2.8)

We then have

0 � �i < 1; i D 1; 2; : : : ; n:
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A result of Ostrowski, as mentioned in Sect. 2.2, gives bounds on the inverse
elements of a strictly row diagonally dominant matrix. It was also stated that some
of these bounds could be improved for tridiagonal matrices. Shivakumar and Ji
obtained one such specific result (Theorem 2.1, [108]), which we recall next. It
is helpful to recall that the entries of the inverse of A are given by Aji

det A
. Among

other things, it was shown there that for the upper triangular entries (including the
diagonal entries) (i � j) one has

 
jY

kDiC1

jakj
jbkj.1 C �k/

!

jAiij � jAijj �
 

jY

kDiC1

�k

!

jAiij (2.9)

whereas for the lower triangular entries (i > j) the inequalities are given by

0

@
i�1Y

kDj

jckj
jbkj.1 C �k/

1

A jAiij � jAijj �
0

@
i�1Y

kDj

�k

1

A jAiij: (2.10)

One may verify now that these inequalities together improve upon the (lower and
upper) bounds of Ostrowski, stated earlier. It is further shown (Theorem 2.2, [108])
that

1

jbij C jaij�i�1 C jcij�iC1

�
ˇ
ˇ
ˇ
ˇ

Aii

detA

ˇ
ˇ
ˇ
ˇ � 1

jbij � jaij�i�1 � jcij�iC1

; (2.11)

where �0 D �nC1 D 0.
The authors then establish the following inequalities for the inverse F D .fij/ of

A (Theorem 2.3, [108]):

jY

kDiC1

jakj
jY

kDi

jbkj.1 C �k/

� ˇ
ˇfji
ˇ
ˇ �

jY

kDiC1

�k

jbij � jaij�i�1 � jcij�iC1

; i � j (2.12)

giving bounds for the entries in the lower triangular part including the diagonals.
For the upper triangular part one has

iY

kDj

�1jckj

iY

kDj

jbkj.1 C �k/

� ˇ
ˇfji
ˇ
ˇ �

i�1Y

kDj

�k

jbij � jaij�i�1 � jcij�iC1

; i > j: (2.13)
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As mentioned earlier, upper bounds for kA�1k1 are relevant in connection with
solutions of systems of linear equations. We present one more upper bound in what
follows. Set

� D max
k

f�kg and ı D min
k

fjbkjg:

Using the results obtained above, an upper bound (as in the proof of Theorem 2.4)
[108] is given by

kA�1k1 � 1

ı.1 � �/
:

Note that the inequality fails if at least one �i equals one. The following extension
is proved in that case. We quote the following (Theorem 2.5, [108]): Let A be a
tridiagonal matrix defined as above with �k < 1 for some k and �i D 1 whenever
i ¤ k. Set

q D min
l

� jalj
jblj ;

jclj
jblj

�

;

r D .1Cq/

q > 2 and ı D minkfjbkjg. Then

kA�1k1 <
2
�

rnC1 � r
nC1

2

�

ır3
: (2.14)

Next, we review some new upper and lower bounds for the entries of the
inverses of diagonally dominant tridiagonal matrices obtained by Nabben [75],
which improve the results of Shivakumar and Ji, described above. Let us state the
main results, here. As before, assume that A is a tridiagonal matrix denoted by
fai; bi; cig, where bi; i D 1; : : : ; n denote the diagonal elements, ai; i D 2 : : : ; n
denote the lower diagonal elements, and ci; i D 1; : : : ; n � 1 denote the upper
diagonal elements. Define

�i D jcij
jbi � ai�1j ; i D 1; 2; : : : ; n

and

!i D jai�1j
jbi � cij ; i D 2; 3; : : : ; n;

where we tacitly assume that all the denominators are strictly positive. Note that if
A is diagonally dominant, then one has �i � 1 and !i � 1 for each i. Again, let
us denote .fij/ D F D A�1. One has the following: (Theorem 3.1, [75]) Let A be
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a nonsingular tridiagonal matrix given as above. If A is diagonally dominant, then
(for the strictly upper triangular entries of F)

jfijj � jfjjj
Yj�1

kDi
�k; i < j

and (for the strictly lower triangular entries of F)

jfijj � jfjjj
Yi

kDjC1
!k; i > j:

Using this result, the following bounds are obtained (Theorem 3.2):

1

jbij C �i�1jai�1j C !iC1jcij � jfijj � 1

jbij � �i�1jai�1j � !iC1jcij ;

if the denominator of the upper bound is nonzero. The fact that these improve
upon the results stated above, among other things, follows from the discussion after
Theorem 4.1, where a comparative analysis is presented.

Further, the author studies an iterative refinement for upper bounds. He points out
that this iterative refinement gives the inverse of MA (the comparison matrix of A)
after n � 1 iterations. If A is an M-matrix, then the iterative refinement produces the
inverse of A. The author studies also the parallel implementation of the bounds and
their computation for tridiagonal Toeplitz matrices.

Let us also mention in the passing that Nabben [76] proves structural character-
izations for inverses of tridiagonal and banded matrices in the cases when A is an
M-matrix, positive definite, or is diagonally dominant. In this work it is observed
that certain entries along a row or column tend to decay in magnitude away from
the diagonal, but for certain specific class of matrices they do not. The author
investigates this phenomenon.

The results of Nabben above have been improved by Peluso and Politi [84].
We recall their main result (Theorem 4.1, [84]). Let A be a nonsingular tridiagonal
matrix with the notation as above and F D A�1. Then for certain specific constants
ıkl and �kl (which we do not define here) and for l D 1; 2; : : : ; n � 1, one has

jfjjj
Yj�1

kDi
ıkl � jfijj; i D 1; 2; : : : ; j � 1

and

jfjjj
Yi

kDjC1
�kl � jfijj; i D j C 1; j C 2; : : : ; n:

The authors include arguments to show how these are indeed improved bounds
for all the entries of the inverse and in particular much better bounds for the
diagonals of the inverse. Several numerical examples are presented to substantiate
these statements.
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2.5 Sign Patterns

It is observed that matrices resulting from many physical models have certain sign
distributions. It remains both an important and an interesting problem to study how
these distributions are related to nonsingularity.

We say that two matrices A; B 2 R
n�n have the same sign pattern if the signs of

their corresponding entries are the same. A is called sign nonsingular if every matrix
with the same sign pattern as A is nonsingular. This is obviously a much stronger
form of nonsingularity. Define

SA WD fA ı R W R > 0; R 2 R
n�ng;

where ı denotes the Hadamard entrywise product and R > 0 denotes that all the
entries of R are positive, as usual. It is now apparent that A is sign nonsingular if
and only if every matrix in SA is nonsingular. In what follows, we briefly review the
work of Drew, Johnson, and van den Driessche on sign nonsingular matrices [25].
For k D 1; 2; : : : ; n, define

Rn;k WD fR 2 R
n�n W R > 0; rank.R/ � kg

and

Ln;k WD fA 2 R
n�n W R 2 Rn;k H) det.A ı R/ ¤ 0g:

Observe that Ln;n is the set of all (n � n) sign nonsingular matrices and Ln;1 is the
set of all (usual) nonsingular matrices. The authors introduce a second sequence of
classes, which we recall below:

R0n;k WD fR 2 R
n�n W R > 0 and R has at least n � k C 1 rows of 1g

and

L0n;k WD fA 2 R
n�n W R 2 R0n;k H) det.A ı R/ ¤ 0g:

Among other things, it is shown that for n D 2; 3; 4 each class of the sequence Ln;k

is distinct (Theorem 4.4), L5;4 D L5;5 (Theorem 4.5) and Ln;2 D Ln;n, for n � 15

(Theorem 4.8). Let us also include another interesting result (Theorem 4.9) that was
proved: A 2 L0n;k if and only if A is nonsingular and the product A ı A�T is a doubly
stochastic matrix. A�T denotes inverse transposed.

Next, we turn our attention to two recently obtained nonsingularity criteria
based on sign distributions and some stated conditions on the elements of A [109].
These considerations were motivated by a study of Poisson’s equation for doubly
connected regions.
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Let us suppose that the sign distribution for the matrix A is given as one of the
following [109]: Let us refer to the first class as matrices of type I. These matrices
are defined by aij > 0 for i � j and

.�1/iCjaij > 0 for i > j; i; j D 1; 2; : : : ; n: (2.15)

Type II matrices are those that satisfy aij > 0 for i � j and

.�1/iCjC1aij > 0 for i > j; i; j D 1; 2; : : : ; n: (2.16)

Let us describe these matrices in words. First, observe that all the entries are
nonzero. Matrices of both types have the property that all the entries in the upper
triangular part including the diagonal are positive. To describe the lower triangular
entries, let us note that matrices of the first type satisfy the condition that the entries
in the first column alternate in sign (with the first entry being already positive),
the entries in the second column alternate in sign from the second diagonal entry
onwards (which is already positive, again), the entries in the third column alternate
in sign from the third (positive) diagonal element onwards, and so on. The lower
triangular entries for matrices of the second type follow an almost similar pattern
as the first type, but with a shift. Namely, the entries in the first column alternate in
sign, this time from the second row, entries in the second column alternate in sign
from the third row, and so on.

In order to state the result on nonsingularity, for convenience we define

�ij D aij �
mX

kDjC1

aik; i � j (2.17)

and

ij D aij �
i�1X

kD1

akj; i � j (2.18)

and for j < i < l < n,

!l
ij D min

(

jaijj �
ˇ
ˇ
ˇ
ˇ
ˇ

lX

kDiC1

akj

ˇ
ˇ
ˇ
ˇ
ˇ
;

ˇ
ˇ
ˇ
ˇ
ˇ

lX

kDiC1

akj

ˇ
ˇ
ˇ
ˇ
ˇ
� ˇ
ˇalC1;j

ˇ
ˇ

)

(2.19)

together with

ıl
ij D

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

lX

kDjC1

aik

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
� ˇ
ˇaij

ˇ
ˇ ; for j < l � i: (2.20)
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Now we state the main result (Theorem 2.1) of Shivakumar and Ji [109]. Let A
be a real matrix of one of the two types described as above. Suppose that one has

�ij > 0; (2.21)

ij >

nX

kDjC1

ik > 0; (2.22)

for i � j and

!l
ij > 0; .j < i < l/; (2.23)

ıl
ij >

nX

kDiC1

ıl
kj > 0; .j < l � i/; (2.24)

for i > j. Then A is nonsingular.
Informally, the positivity of �ij and !ij shows a decreasing absolute value for

the upper triangular entries of A along the horizontal direction and of the lower
triangular entries along the vertical downward direction, respectively. The other
inequalities may be interpreted as second order distribution properties, reflecting a
similar trend along the horizontal and the vertical directions, as above. Finally, one
may view all these inequalities as describing a certain scattering distribution along
the horizontal and the vertical directions for any element of A. Observe that these
conditions on a matrix can be verified easily and efficiently. Let us just mention in
the passing that the proof uses induction on the order of the matrix involving some
very complicated calculations!

Let us conclude this section with a numerical example. Let A D .aij/ be
the matrix whose upper triangular entries (including the diagonal entries) are
given by 1

2j�i and whose lower triangular entries are .� 1
2
/i�j. This is a matrix of

sign distribution of the first type and also satisfying the hypotheses of the result
given above. Hence it is nonsingular. Note, however, that it is not diagonally
dominant.



Chapter 3
Infinite Linear Equations

3.1 Introduction

In this chapter, we shall first review, in Sect. 3.2, certain results on infinite linear
systems whose “coefficient” matrices are diagonally dominant in some sense.
We treat these infinite matrices in their own right and also as operators over certain
normed linear spaces. These results show the extent to which results that are known
for finite matrices have been generalized. Next, in Sect. 3.3, we recall some results
on eigenvalues for operators mainly of the type considered in the second section.
We also review a powerful numerical method for computing eigenvalues of certain
diagonally dominant tridiagonal operators. Section 3.4 concerns linear differential
systems whose coefficient matrices are operators on either `1 or `1. Convergence
results for truncated systems are presented. The concluding section, viz., Sect. 3.5
discusses an iterative method for numerically solving a linear equation whose matrix
is treated as an operator on `1 satisfying certain conditions, including a diagonal
dominance condition.

3.2 Infinite Linear Systems

In this section, we shall take a look at considerations of diagonal dominance for
infinite matrices. In classical analysis, linear equations in infinite matrices occur
in problems including interpolation, sequence spaces, and summability theory. An
earlier notable result (considered till then) on the existence of a solution to such
an infinite system was given by Polya, which, however, excluded discussion of
uniqueness. Kantorovich and Krylov [54] state certain results (without proofs)
which provide sufficient conditions for the existence and uniqueness of bounded
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solutions under the assumption that the infinite matrix under consideration is
invertible. One of the motivations for the results presented in this section is in
solving certain elliptic partial differential equations in multiply connected regions.

In what follows, we shall first review two works, viz., [113] and [101],
where infinite matrices were considered not as operators on some normed linear
spaces. Specifically, we are concerned here with the infinite system of linear
equations [113]:

1X

jD1

aijxj D bi; i 2 N; (3.1)

or alternatively

Ax D b; (3.2)

where the infinite matrix A D .aij/, is strictly “column” diagonally dominant, i.e.,
there exist numbers �i with 0 � �i < 1; i 2 N such that

�ijaiij D
1X

jD1

jaijj; (3.3)

where, of course, aii ¤ 0 for all i 2 N and the sequence fbig is bounded. One is
interested in sufficient conditions that guarantee the existence and uniqueness of a
bounded solution to the above system. The idea of the approach taken in [113] is to
use finite truncations and develop estimates for such a truncated system, viz.,

nX

jD1

aijxj D bi; i D 1; 2; : : : ; n: (3.4)

Using A.n/ to denote the matrix obtained from A by taking the first n rows and n
columns it may be shown that det.A.n// ¤ 0 for each n. Adopting a similar notation
for x.n/ and b.n/, the truncated system above could be rewritten as

A.n/x.n/ D b.n/: (3.5)

Let us denote the unique solution of this truncated solution by x.n/. The following
inequalities are established: for each j � 1 and n � j, one has

ˇ
ˇ
ˇx

.nC1/
j � x.n/

j

ˇ
ˇ
ˇ � P�nC1 C Q

janC1;nC1j (3.6)



3.2 Infinite Linear Systems 29

for some positive constants P and Q. For any two positive integers p; q and for each
fixed j; j � p; q one also has

ˇ
ˇ
ˇx

.q/
j � x.p/

j

ˇ
ˇ
ˇ � P

1X

iDpC1

�i C Q
qX

iDpC1

1

jai;ij : (3.7)

Using standard estimates for strictly row diagonally dominant finite systems, an
estimate for the solution of the truncated system is given by,

ˇ
ˇ
ˇx

.n/
j

ˇ
ˇ
ˇ �

nY

kD1

1 C �k

1 � �k

nX

kD1

jbkj
jakkj.1 C �k/

; (3.8)

for each j with j � n. Turning the attention to the infinite system, let us assume that
one has the following for the entries aij:

1X

iD1

1

jaiij < 1; (3.9)

and for some M > 0 and all i 2 N

1X

jD1;j¤i

jaijj � M: (3.10)

Then Shivakumar and Wong show (Theorems 1 and 2, [113]) that the infinite system
considered above has a unique and a bounded solution. Let us observe that the
authors give a numerical example to show that a general infinite system which has
a unique bounded solution could still have unbounded solutions.

Shivakumar (Theorems 3 and 4, [101]), later relaxed the assumption on the
absolutely summability of the reciprocals of the diagonals of A, while retaining the
other assumptions to show that one could still recover similar results, like existence
and uniqueness. In the presence of another rather strong assumption, he shows that
A�1 is also strictly “row” diagonally dominant. It must be remarked that this is a
rather unusual result, especially for infinite matrices.

Now, we take the point of view of studying infinite matrices as operators over
certain Banach spaces. We will be discussing two specific instances of bounded
operators over Banach spaces. These are the spaces: `1, the space of absolutely
summable complex sequences and `1, the space of bounded complex sequences.
We shall review some recent results on certain classes of strictly (“row” or
“column”) diagonally dominant infinite matrices that turn out to be invertible.
Bounds on the inverses in these cases are given. The work reported here is due
to Shivakumar, Williams and Rudraiah [119].
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Given a matrix A D .aij/; i; j 2 N, a space of infinite sequences X over the real
or the complex field and x D .xi/; i 2 N, we define Ax by

.Ax/i D
1X

jD1

aijxj;

provided this series converges for each i 2 N. We define the domain of A by

D.A/ D fx 2 X W Ax exists and Ax 2 Xg:

Let us start with the case X D `1. Consider an infinite matrix A on `1. We
assume the following: Suppose that the “diagonals” of A are all nonzero and form
an unbounded sequence of real or complex numbers. Let A be uniformly strictly
“column” diagonally dominant in the sense that the following condition holds: There
exist numbers �; 0 � � < 1 and �j; 0 � �j � � such that one has

Qj D
X1

iD1;i¤j
jaijj D �jjajjj; j 2 N:

We further assume that

jaii � ajjj � Qi C Qj; for all i; j 2 N; i ¤ j

and

supfjaijj W j 2 Ng < 1 for all i 2 N:

For an operator A satisfying the first two conditions, Shivakumar, Williams, and
Rudraiah show (Theorem 2, [119]) that A is an operator with dense domain, is
invertible, and A�1 is compact. The following upper bound is also proved:

kA�1k1 � 1

.1 � �/.infi jaiij/ :

Similar results are also derived for operators on `1. For an operator A on `1
consider the following set of conditions which could be considered “dual” to the
assumptions that were made for an operator on `1 listed above. There exist numbers
�; 0 � � < 1 and �j; 0 � �j � � such that one has

Pi D
X1

jD1;j¤i
jaijj D �jjajjj; i 2 N;

jaii � ajjj � Pi C Pj; for all i; j 2 N; i ¤ j

and

supfjaijj W i 2 Ng < 1 for all j 2 N:
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Analogous to the case of `1, the first condition could be considered as a uniform
strict “row” diagonal dominance. Then, for an operator A on `1 satisfying the two
conditions given above, along with the condition that the main diagonal elements of
A are all nonzero and form an unbounded sequence, it is proved (Theorem 4, [119])
that A is a closed operator, A�1 exists, A�1 is compact, and

kA�1k1 � 1

.1 � �/.infi jaiij/ :

It is clear that this last inequality is a generalization of the inequality of Varah
mentioned in Sect. 2.2, for infinite matrices. It must be remarked here that there
is a departure from what one experiences in the finite matrix case for a diagonally
dominant matrix which is also irreducible. The authors of the work reported here
demonstrate by an example (Example 1, [119]) that there are infinite matrices
(considered as bounded operators on `1) which are irreducible and diagonally
dominant (meaning that one has � D 1 with all �i < 1) but are not invertible.

We close this section by mentioning some recent results on infinite matrices
that were obtained by Williams and Ye [138], which, however, do not concern
either diagonal dominance or invertibility. This work investigates conditions that
guarantee when an infinite matrix will be bounded as an operator on two weighted
`1 spaces and obtains a relationship between such a matrix and the given weight
vector. It is established that every infinite matrix is bounded as an operator between
two weighted `1 spaces for suitable weights. Necessary conditions and separate
sufficient conditions for an infinite matrix to be bounded on a weighted `1 space,
with the same weight for the domain and codomain, are presented.

3.3 Linear Eigenvalue Problem

In this section, we consider the eigenvalue problem for infinite matrices considered
as operators on certain Banach spaces. We also discuss results on the problem of
determining the location of eigenvalues for diagonally dominant infinite matrices
and determining upper and lower bounds for them. First, we report the results of
Shivakumar, Williams and Rudraiah [119].

If A D .aij/; i; j 2 N, and X is a space of infinite sequences, then the domain of
A denoted by D.A/ is defined as in the previous section. We define an eigenvalue
of A to be any scalar � (from the underlying field) for which Ax D �x for some
0 ¤ x 2 D.A/. We define the Gershgorin disks by considering A as an operator on
`1, by

Ci D fz 2 C W jz � aiij � Qig; i 2 N;
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where the numbers Qi are as defined in the previous section. Let us also recall
another assumption that was made there:

jaii � ajjj � Qi C Qj; for all i; j 2 N; i ¤ j:

We observe that this condition on A is equivalent to the (almost) disjointness of the
Gershgorin disks Ci, viz., the intersection of two disks consists of at most one point.
Finally, the condition on the boundedness of the suprema made as in the earlier
section implies that A is a closed linear operator on `1.

One of the main results of the work being reported here is in showing the
following for an operator A on `1 satisfying the three conditions of Sect. 3.2. This
result (Theorem 3, [119]) states that A consists of a discrete countable set of nonzero
eigenvalues f�k W k 2 Ng such that j�kj ! 1 as k ! 1.

For the case of `1, we assume that the entries aij satisfy those conditions that are
given in Sect. 3.2. We define the Gershgorin disks as

Di D fz 2 C W jz � aiij � Pig; i 2 N:

The authors also prove another result (Theorem 5, [119]) similar to the `1 case,
that the spectrum of A (satisfying all the three conditions listed above) consists of a
discrete countable set of nonzero eigenvalues f�k W k 2 Ng such that j�kj ! 1 as
k ! 1.

Let us mention certain interesting contributions and generalizations of the work
reported earlier in this section, that have been made by Farid and Lancaster [32]
and [33]. In the first work, certain Gerschgorin type theorems were established
for a class of row diagonally dominant infinite matrices by considering them as
operators on `p spaces, 1 � p � 1. The authors develop a theory analogous to
the work in [119]. They provide constructive proofs where a sequence of matrix
operators is shown to converge (in the sense of the gap for closed operators) to
the diagonally dominant operator that one started with. Utilizing eigenvalues and
eigenvectors of such a sequence of matrix operators, the problem of convergence
of these eigenvalues and the corresponding eigenvectors to a simple eigenvalue and
the corresponding eigenvector of the given operator, is investigated. Despite the
fact that the range of the value p was extended in this work, the results here for
p D 1 and p D 1 are weaker than the corresponding ones of [119]. However, in
the second work, the authors show how the earlier contributions of [119] could be
both strengthened and extended to more general values of p. Here, row diagonally
dominant infinite matrices are considered as closed operators with compact inverses
on `p spaces, 1 � p � 1. The authors extend the results of their earlier work for the
case of p D 1 and p D 1. Results for column diagonally dominant infinite matrices
are also derived (Theorems 2.1, 3.1 and 3.2, [33]).

Let us include some other contributions, as well. Farid [29] shows (Theorem 3.2)
that the eigenvalues of a diagonally dominant infinite matrix satisfying certain
additional conditions, acting as a linear operator in `2 approach its main diagonal.
He also discusses an application of this result to approximate the eigenvalues of
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the Mathieu’s equation. Malejki [70] studies a real symmetric tridiagonal matrix
A whose diagonal entries and off-diagonal entries satisfy certain decay properties.
It follows that such an operator A has a discrete spectrum. Let A.n/ be its n � n
truncation. The main result of the author is in showing the following: If the
eigenvalues of A are

�1 � �2 � : : :

and

1;n � 2;n � : : : n;n

are the eigenvalues of A.n/, then for every � > 0 and r 2 .0; 1/, there exists a
constant c such that

jk;n � �kj � cn�� for all 1 � k � rn:

To conclude this section, we discuss a powerful computational technique for
determining the eigenvalues of the infinite system Ax D �x derived by using a
truncated matrix G.1;k/, to be defined below. The idea of this technique is to box the
eigenvalues and then use a simple bisection method to give the value of �n to any
required degree of accuracy.

Consider a matrix A D .aij/ acting on `1 satisfying all the four conditions given
earlier and satisfy in addition the following:

aij D 0; if ji � jj � 2; i; j 2 N

0 < aii < aiC1;iC1; i 2 N

and

ai;iC1aiC1;i > 0; i 2 N:

Observe that the first condition here means that A is a tridiagonal matrix, viz., the
entries not in the principal diagonal and the two immediate subdiagonals (the lower
and the upper) are zero.

Suppose that the scalar � satisfies

ann � Pn � � � ann C Pn; for all n 2 N;

where Pi are as defined above (in connection with the Gerschgorin circles). Let
G D A � �I. Let G.1;k/ denote the truncated matrix of A obtained from A by taking
only the first k rows and k columns. Denote ˇ1;k WD det G.1;k/. We then have the
following [119, Sect. 8]:

ˇ1;k D .a11 � �/ˇ2;k � a12a21ˇ3;k (3.11)

D Œ.a11 � �/.a22 � �/ � a12a21�ˇ3;k � .a11 � �/a23a32ˇ4;k

(3.12)
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so that

ˇ1;k D psˇs;k � ps�1as�1;sas;s�1ˇsC1;k; (3.13)

where the sequence ps is defined by p0 D 0; p1 D 1 and

ps D ps�1 .as�1;s�1 � �/ � ps�2 as�1;s�2 as�2;s�1:

If we set

Qs;k D ps

ps�1

� as�1;sas;s�1

ˇsC1;k

ˇs;k
; (3.14)

we then have

ˇ1;k D ps�1Qs;kˇs;k: (3.15)

We have the following cases:

Case (i): ps�1 and ps have opposite signs.
Then Qs;k < 0 and ˇ1;k has the same sign as �ps�1.

Case (ii): ps�1 and ps have the same sign and

ps

ps�1

>
as;s�1as�1;s

ass � � � jas;sC1j :

We then have Qs;k > 0 and ˇ1;k has the same sign as ps�1.
Case (iii): ps�1 and ps have the same sign and

ps

ps�1

<
as;s�1as�1;s

ass � � � jas;sC1j :

Then, Qs;k < 0 and ˇ1;k have the same sign as �ps�1.

We can use the method of bisection to establish both upper and lower bounds for �n

to any degree of accuracy.
Let us close this section by mentioning in the passing that in this work, the

authors (in [119], Sect. 6) establish some results concerning the convergence of the
sequence of solutions of the truncated systems and study error analysis in detail.
Application of the above technique to study Bessel functions forms the discussion
in Sect. 8.6 of Chap. 8.
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3.4 Linear Differential Systems

We consider the infinite linear system of differential equations:

d

dt
xi.t/ D

1X

jD1

aijxj.t/ C fi.t/; t � 0; xi.0/ D yi; i 2 N; (3.16)

where the functions fi and numbers yi are known. Using the notation x.t/ D .xi.t//,
y D .yi/ and f.t/ D .fi.t//, this equation can be rewritten as

Px.t/ D Ax.t/ C f.t/; Px.0/ D y: (3.17)

This equation is of considerable theoretical and applied interest. In particular, such
systems occur frequently in topics including the theory of stochastic processes,
perturbation theory of quantum mechanics, degradation of polynomials, and infinite
ladder network theory. Arley and Brochsenius [3], Bellman [7], and Shaw [100]
have made some notable contributions to the problem posed above. In particular,
if A is a bounded operator on `1, then convergence of a truncated system has
been established. However, none of these works yields explicit error bounds for
such a truncation. In what follows, we recall the results of Shivakumar, Chew and
Williams [118] for such error bounds, among other things. The analysis in this work
concerns A, being a constant infinite matrix defining a bounded operator on X, where
X is one of the spaces `1; `1, or c0, the latter being the space of complex sequences
converging to zero. Explicit error bounds are obtained for the approximation of the
solution of the infinite system by the solutions of finite truncation systems.

To begin with, we present the following framework for homogeneous systems
(f D 0): First, we assume that y 2 `1. Next, suppose that

˛ D supf
1X

iD1

jaijj W j 2 Ng < 1:

Set

�n D supf
1X

iDnC1

jaijj W j D 1; 2; : : : ; ng

and

ın D supf
nX

iD1

jaijj W j D 1; 2; : : : ; ng:

We assume that

�n ! 0 and ın ! 0; as n ! 1:
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In the above, the finiteness of the supremum is equivalent to the statement that A
is bounded on `1. The assumption involving �n states that the sums in the definition
involving ˛ converge uniformly below the main diagonal; it is a condition involving
only the entries of A below the main diagonal. On the other hand, the assumption
involving ın is a condition involving only the entries of A above the main diagonal.

For the sake of convenience and ease of use, let us adopt a notation used earlier
for denoting a different object. So, let us define the matrix A.n/ by: .A.n//ij D aij if
1 � i; j � n and .A.n//ij D 0, otherwise. One applies similar definitions for y.n/ and
f.n/. This leads to the definition

bij
.n/ D ..A.n//jy.n//i

using which we finally set

x.n/
i .t/ D

X1
jD1

tj

jŠ
bij

.n/; 1 � i � n:

In (Theorem 1, [118]) the following result is established: Suppose that the first
two assumptions on A as given above are satisfied together with one of the next two
conditions. Then

limn!1 x.n/.t/ D x.t/

in the l1 norm uniformly in t on compact subsets of Œ0; 1/. One also has explicit
error bounds as given below:

nX

iD1

jxi.t/ � x.n/
i .t/j � ˛te˛t

"
1

2
�nMt C

1X

kDnC1

jykj
#

(3.18)

and

1X

iDnC1

jxi.t/j � e˛t

"

�nMt C
1X

kDnC1

jykj
#

: (3.19)

Combining these, one has

kx.t/ � x.n/.t/k � e˛t

"�

1 C 1

2
˛t

�

�nMt C .1 C ˛t/
1X

kDnC1

jykj
#

;

corresponding to the condition on �n (with the right-hand side converging to zero as
n ! 1) and

Xn

iD1
jxi.t/ � x.n/

i .t/j � ınMte˛t;
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corresponding to the condition on ın (with the right-hand side converging to zero as
n ! 1).

For the nonhomogeneoussystem, one assumes that fi is continuous on Œ0; 1/; i 2
N and kf.t/k D

1P
iD1

jfi.t/j converges uniformly in t on compact subsets of Œ0; 1/. If

one defines L.t/ D supfkf .�/k W 0 � � � tg, it then follows that the condition on f
above is equivalent to the statement that f is continuous from Œ0; 1/ into `1 and so
one has L.t/ < 1 for all t � 0.

We also have the following result (Theorem 2, [118]): Suppose that one has the
assumptions ˛ < 1 and the condition on fi given as earlier. In addition, suppose
that either of the conditions on �n or ın hold. Then

lim
n!1 x.n/.t/ D x.t/

in the l1 norm uniformly in t on compact subsets of Œ0; 1/, with explicit error
bounds as given below:

kx.t/ � x.n/.t/k � 1

2
t2e˛t�nL.t/ C te˛t supf

1X

kDnC1

jfk.�/j W 0 � � � tg;

corresponding to the condition on �n (with the right-hand side converging to zero as
n ! 1) and

nX

iD1

jxi.t/ � x.n/
i .t/j � ınL.t/˛�2

�
˛te˛t C .1 � e˛t/

	
; (3.20)

corresponding to the condition on ın (with the right hand side converging to zero as
n ! 1).

Similar results hold for systems on l1 (Theorems 4 and 6, [118]) and for systems
on c0 (Theorems 3 and 5, [118]). We refer the reader to [118] for details.

3.5 An Iterative Method

Iterative methods for linear equations in finite matrices have been the subject of a
very vast literature. Since all these methods involve the nonsingularity of the matrix,
the various notions of diagonal dominance of matrices have played a major role, as
evidenced in our discussion in Chap. 2.2. The interest in this section is to discuss an
iterative method for certain diagonally dominant infinite systems which we believe
to be one of the first attempts towards such extensions.
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Let us recall that in Sect. 2.3, we reviewed the work of Shivakumar and Chew
where a certain notion of weakly chained diagonal dominance was discussed.
A convergent iterative procedure was also proposed in the work [104].

In this section, we consider an infinite system of equations of the form Tx D v,
where x; v 2 `1, and T is a (possibly unbounded) linear operator on `1. Suppose
that the matrix of T relative to the usual Schauder basis is given by T D .tij/.
Consider the following:

1. There exists � > 0 such that jtiij � � for all i 2 N.
2. There exist � with 0 � � < 1 and �i, 0 � �i < � < 1, i 2 N such that

1X

jD1; j¤i

jtijj D �ijtiij;

3.
i�1P

jD1

jtijj
jtiij ! 0 as i ! 1.

4. Suppose further that either the diagonals of T form an unbounded sequence or
that v 2 c0.

Shivakumar and Williams first prove the following result (Theorem 1, [112]):
Let v 2 `1 and let T satisfy the first two conditions listed above. Then T has a
(bounded) inverse and the equation Tx D v has a unique `1 solution. This solution
x satisfies the inequality (all the norms k : k denote k : k1/:

k x kDk T�1v k� k v k
�.1 � �/

:

It must be remembered that two results of a similar type from the work of [113]
were discussed in Sect. 3.2.

Let T D D C F, where D is the main diagonal of T, (which, by virtue of the
first assumption, is invertible) and F is the off-diagonal of T. Let A be defined by
A D �D�1F and b D D�1v. Then Tx D v is equivalent to the fixed-point system
x D Ax C b; b 2 `1, where A is a bounded linear operator on `1. If one considers
all the four conditions on A listed above, then one has the following consequences:

1. kAk D sup
i�1

1P
jD1

jaijj � � < 1,

2.
i�1P

jD1

jaijj ! 0 as i !; 1 and

3. b D .bi/ 2 c0.

Let us note that the fixed-point equation above leads naturally into the iterative
scheme:

x.pC1/ D Ax.p/ C b; x.0/ D b; p D 0; 1; 2; : : : (3.21)
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As before, let A.n/ D .a.n/
ij / be the infinite matrix obtained from A, where

aij
.n/ D

(
aij if 1 � i; j � n;

0 otherwise:
(3.22)

Thus A.n/ is the n � n truncation of A padded with zeros. Let x.p;n/ be such that

.x.p;n//i D bi whenever i > n:

By starting with x.0;n/ D b, we consider the following truncated iterations:

x.pC1;n/ D A.n/x.p;n/ C b; x.0;n/ D b (3.23)

for p D 0; 1; 2; : : : and n D 1; 2; 3 : : :. Then one has (Theorem 2, [112]): for certain
constants ˇ; ˇn; �n, and n

kx.p/ � x.p;n/k � ˇ�n

p�1X

kD0

.k C 1/�k C ˇnn

p�1X

kD0

�k; (3.24)

where the right-hand side converges to zero as n ! 1. It can also be shown that
the following result holds:

Corollary 3.5.1 (Corollary 2, [112]).

kx � x.p;n/k � �pC1.1 � �/�1ˇ C ˇ�n.1 � �/�2 C ˇnn.1 � �/�1; (3.25)

where the right-hand side converges to zero as n ! 1.

An application of the above in the recurrence relations of the Bessel functions is
given in Sect. 8.6 in Chap. 8.



Chapter 4
Generalized Inverses: Real or Complex Field

4.1 Introduction

The main objective of this chapter is to review certain recent results that were
obtained in the context of generalized inverses of infinite matrices. These are pre-
sented in Sect. 4.2. We take this opportunity to review the basic ideas in the theory of
generalized inverses of matrices and also operators acting between Hilbert spaces.
This will be presented in the next section. We do not attempt at being exhaustive in
our presentation. The intention is to give a brief idea of the notion of generalized
inverses. Several excellent texts have been written on this topic. For matrices, for
instance, we refer to the books by Ben-Israel and Greville [10], Meyer [73], and the
classic text by Rao and Mitra [95]. For operators on general infinite dimensional
spaces, see the book by Groetsch [41] and Nashed [77], where the latter includes
extensive discussions on many algebraic as well as topological spaces. Let us note
that in the next chapter, certain very new results on generalized inverses of matrices
over quaternion polynomial rings are presented. For generalized inverses of matrices
over commutative rings, an excellent source is the book by Bhaskara Rao [13].

For A 2 C
m�n, consider the following four matrix equations for X 2 C

n�m:

AXA D A; XAX D X; .AX/� D AX and .XA/� D XA:

There are many ways of showing that these equations have a solution and that such a
solution must be unique. Let us assume for the moment that a solution exists, denote
this unique solution by A� and call this the Moore–Penrose (generalized) inverse of
A [85]. Clearly, if A is nonsingular, then A�1 satisfies these four equations and so
one has A� D A�1. It is for this reason that the Moore–Penrose inverse is frequently
referred to as the pseudo inverse or a generalized inverse. Note that if A D 0, then
A� D 0T . There are several ways of computing the Moore–Penrose inverse. One
of the more stable methods is by using the singular value decomposition of the
matrix under consideration. Let us suppose that the singular value decomposition

© Springer International Publishing Switzerland 2016
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of A 2 C
m�n is given by A D U†V�, where the columns of U 2 C

m�m are
mutually orthonormal eigenvectors of AA�, the columns of V 2 C

n�n are mutually
orthonormal eigenvectors of A�A and † 2 C

m�n is a block matrix given by

† D
�

D 0

0 0

�

:

In the above representation, the matrix D 2 R
r�r is a diagonal matrix whose

diagonal entries are given by the positive square roots of the positive eigenvalues
of (the hermitian and positive semidefinite matrix) AA� (or A�A) and r D rank.A/.
These entries are referred to as the singular values of A. We assume that these
singular values are arranged in the decreasing order as they appear in D. It then
follows that the Moore–Penrose inverse †� of † is given by

†� D
�

D�1 0

0 0

�

;

where the zero blocks are understood to be the transposes of the appropriate zero
blocks of †. The expression for A� is now immediate, viz.,

A� D V†�U�:

It may easily be verified that this expression for A� satisfies the four equations above.
Next, let us look at some formulae. If 0 ¤ x 2 C

n, then x� D 1

kxk2 x�, where, of

course, the norm is the Euclidean norm. For A 2 C
m�n with full column rank (all the

columns are linearly independent), one has

A� D .A�A/�1A�;

while a dual argument shows that if A has full row rank (all the rows are linearly
independent), then

A� D A�.AA�/�1:

More generally, we have

A� D .A�A/�A� D A�.AA�/�:

The following properties are also useful in many computations involving the
Moore–Penrose inverse: Let PM denote the orthogonal projection of C

m onto a
subspace M along M?. Then AA� D PR.A/ and A�A D PR.A�/.

Next, we recall another factorization, which exists for any matrix and is useful in
providing an explicit formula for the Moore–Penrose inverse, among other things.
For instance, this factorization is also relevant for another type of generalized inverse
called the group inverse, which will be discussed a little later.



4.1 Introduction 43

Let A 2 C
m�n with r D rank.A/ > 0. Then there exist F 2 C

m�r and G 2 C
r�n

such that A D FG and rank.F/ D r D rank.G/. A factorization defined as above is
called a full-rank factorization due to the reason that the two factors have full ranks.
The full-rank factorization of a matrix is not unique. One way of showing this is by
describing a method of obtaining it. Consider a basis (consisting of r vectors in C

m)
for R.A/. Let F be the matrix of order m�r whose columns are these r basis vectors.
Then R.F/ D R.A/, by definition and hence rank.F/ D r. Each column of A is a
unique linear combination of the columns of F. The coefficients in each such linear
combination are r in number and form a vector in R

r. There are n such vectors. Let
G be the matrix whose columns are these n vectors. Then by construction, A D FG.
It now follows that rank.G/ D r.

Now, let A D FG be a full-rank factorization so that F has full column rank and G
has full row rank. It then follows from the discussion above, that F� D .F�F/�1F�
and G� D G�.GG�/�1. It now follows that a “reverse order law” for the Moore–
Penrose inverse of A holds, viz.,

A� D G�F� D G�.GG�/�1.F�F/�1F�:

Note, however, that if A D BC, then it is in general, not true that A� D C�B�. There
is a nice summary for “solutions” of linear equations of the form Ax D b, in terms
of the Moore–Penrose inverse. Consider the vector x� D A�b. If the system has a
unique solution, it is given by x�; if it has infinitely many solutions, then the solution
with the minimum norm is given by x�. If the system is inconsistent, then x� is the
least squares solution of the system; if the system has infinitely many least squares
solution, then x� is the least squares solution of the least norm.

Next, we turn our attention to two other types of generalized inverses, one of
which always exists and the other type exists only for a specific subclass of matrices.
In order to describe these, we need the notion of the index of a square matrix. Let A 2
C

n�n. Then the index of A is the smallest nonnegative integer k such that rank.Ak/ D
rank.AkC1/, if it exists. For a nonsingular matrix A, we set the index to be zero. By
considering the range spaces of positive integral powers of A and by using a finite
dimensionality argument, one can show that the index exists for any (square) matrix.
Now, let k be the index of a singular matrix A such that r D rank.Ak/. Then there
exist Q 2 C

n�n and C 2 C
r�r both being invertible, such that

Q�1AQ D
�

C 0

0 N

�

;

where N is a nilpotent matrix of (nilpotent) index k. This is called the core-nilpotent
decomposition of A. A proof could be found, for instance, in [73]. Given such a
decomposition, let us define

AD D Q

�
C�1 0

0 0

�

Q�1:
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Then the matrix AD is called the Drazin inverse of A [24]. AD satisfies

ADAAD D AD; ADA D AAD and AkC1AD D Ak:

It can be shown that the three equations above with k being the index of A have a
unique solution. It now follows that AD is unique.

Let us now consider the particular case, namely the index being one. So, suppose
that A has index 1. Thus rank.A/ D rank.A2/. In this case, AD is denoted by A#, and
is called the group inverse of A. We might emphasize that the Drazin inverse exists
for all square matrices while the group inverse exists only for square matrices with
index 1. In fact, one has the following result (Exercise 5.10.12, [73]): For A 2 C

n�n

the following statements are equivalent:

(a) A belongs to a matrix group G.
(b) R.A/ \ N.A/ D 0.
(c) R.A/ and N.A/ are complementary subspaces.
(d) index .A/ D 1.

(e) Q�1AQ D
�

C 0

0 0

�

;

for some invertible Q 2 C
n�n and C 2 C

r�r, r D rank.A/. One has the following
formula:

A# D Q

�
C�1 0

0 0

�

Q�1:

An explicit formula for the group inverse also could be given from the full-rank
factorization, which in the first place even tells us if the group inverse of A exists.
Let us state that result. Let A D FG be a full-rank factorization of A. Then A# exists
if and only if GF is invertible. In such a case,

A# D F.GF/�2G;

where the superscript �2 denotes “inverse squared.”
At this juncture, one could ask if the Moore–Penrose inverse and the group

inverse are the same for any class of (square) matrices. In this connection let us
recall that a (square) matrix is called range hermitian, if R.A/ D R.A�/. It is well
known [10] that a matrix A is range hermitian if and only if A� D A#. As a corollary,
if A 2 R

n�n is symmetric, then its Moore–Penrose inverse and the group inverse
coincide.

In the final part of this section, we review the notion of the Moore–Penrose
inverses of operators in the setting of Hilbert spaces. Our treatment follows the
approach that was adopted by Groetsch [41].

Let X; Y be Hilbert spaces and A 2 B.X; Y/, where B.X; Y/ is the space of all
bounded linear operators from X into Y. We shall restrict our attention to the case
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when R.A/ is a closed subspace of Y. For a given b 2 Y, consider the operator
equation Ax D b. If b … R.A/, then the equation does not have a solution and
if N.A/ ¤ f0g, then a solution will not be unique, if it exists. Let PR.A/ denote the
orthogonal projection of Y on to R.A/ along N.A�/. Thus, even if the equation above
does not have a solution, it seems reasonable to accept any solution of the equation
Ax D PR.A/b (which is always consistent) as a generalized solution of Ax D b, in
some sense. This notion is justified by another approach, this time geometric. Let
u 2 X be any minimizer of the functional

�b.x/ Dk Ax � b k; x 2 X

(assuming that such a minimizer exists). Then it is plausible to call such a u as
a generalized solution. In fact these two definitions imply each other and also are
equivalent to another condition. We recall this result next.

Theorem 4.1.1 (Theorem 2.1.1 [41]). Let X; Y be Hilbert spaces and A 2 B.X; Y/

with R.A/ closed. For b 2 Y, the following conditions are equivalent:

.a/ Au D PR.A/b.

.b/ k Au � b k�k Ax � b k for all x 2 X.

.c/ A�Au D A�b.

A vector u 2 X which satisfies any of the conditions above is called a least
squares solution of the equation Ax D b. We may now denote the set of all least
squares solutions of Ax D b by

Cb DW fu 2 X W A�Au D A�bg:

Then Cb is a closed and convex set and so it contains a unique vector of minimal
norm which we denote by ub. Define

A� W Y ! X by A�.b/ WD ub; b 2 Y:

One can show that A� is a bounded linear map and that it is the unique solution of
the equations: AXA D A; XAX D X; .AX/� D AX and .XA/� D XA. As in the
matrix case, A� is called the Moore–Penrose inverse of A. We refer the reader to
[41] for proofs of these statements and other considerations.

4.2 On the Non-uniqueness of the Moore–Penrose Inverse
and Group Inverse of Infinite Matrices

Our intention here is to review some interesting results discovered very recently.
Sivakumar [123] gives an example of an invertible infinite matrix V which has
infinitely many usual inverses (which are automatically Moore–Penrose inverses)
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and also has a Moore–Penrose inverse which is not a classical inverse. Thus it
follows that there are infinitely many Moore–Penrose inverses of V . In a subse-
quent work [124], Sivakumar shows that the very same infinite matrix considered
earlier has group inverses that are Moore–Penrose inverses, too. These results are
interesting in that, for infinite matrices, it follows that the set of generalized inverses
is properly larger than the set of usual inverses. It might be remembered that these
are not true for finite matrices with real or complex entries. It also follows that for
a “symmetric” infinite matrix, the Moore–Penrose inverse need not be the group
inverse, unlike the finite symmetric matrix case, where they coincide.

First we give the definitions. It is well known that for infinite matrices multiplica-
tion is non-associative. Hence we also impose associativity in the first two Penrose
equations (considered in the previous section) and rewrite them as

.AX/A D A.XA/ D A

.XA/X D X.AX/ D X

We call X as a Moore–Penrose inverse of an infinite matrix A if X satisfies the
two equations as above and the last two Penrose equations. Similarly, for group
inverses of infinite matrices, we demand associativity in the first two equations in
its definition.

Suppose that the infinite matrix A can be viewed as a bounded operator between
Hilbert spaces. Then it is well known that A has a bounded Moore–Penrose inverse
A� if and only if its range, R.A/ is closed [78]. For operators between Banach spaces
we have a similar result. However, in such a case, the last two equations involving
adjoint should be rewritten in terms of projections on certain subspaces. (See [77]
for details.)

In this section, our approach will be purely algebraic, in the sense that infinite
matrices are not viewed as operators on some vector spaces. We use the “basis” fen W
n 2 Ng, where en D .0; 0; : : : ; 1; 0; : : :/ with 1 appearing in the nth coordinate. With
this notation we consider the infinite matrix V such that V.e1/ D e2 and V.en/ D
en�1 C enC1; n � 2. The next result states that V has infinitely many algebraic
inverses.

Theorem 4.2.1 (Theorem 0.1 [123]). Let U and W be infinite matrices defined by

U.e1/ D e2 � e4 C e6 � e8 C : : : I U.e2/ D e1

and

U.enC1/ D en � U.en�1/; n � 2

and

W.e1/ D .e2 � e4 C e6 � e8 C : : :/ � .e1 � e3 C e5 � e7 C : : :/I W.e2/ D e1
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and

W.enC1/ D en � W.en�1/; n � 2:

Then UV D VU D I; WV D VW D I and V has infinitely many algebraic inverses.

The fact that V has a Moore–Penrose inverse which is not a usual inverse is the
next result.

Theorem 4.2.2 (Theorem 0.3 [123]). Let Z be the infinite matrix defined by

Z.e1/ D e4 � 2e6 C 3e8 � 4e10 C � � � ; Z.e2/ D e1

and

Z.enC1/ D en � Z.en�1/; n � 2:

Then Z is not a usual inverse of V but Z is a Moore–Penrose inverse of V.

Remark 4.2.3. It follows that the matrix Z defined above satisfies ZV D I, whereas,
we have VZ.e1/ ¤ e1, so that ZV ¤ VZ. Thus Z is not a group inverse of V . As
mentioned earlier, if A 2 R

n�n is symmetric, then its Moore–Penrose inverse and
the group inverse coincide. Theorem 4.2.2 shows that the situation is different in
the case of infinite matrices. We have a Moore–Penrose inverse that is not a group
inverse, even though the infinite matrix V is “symmetric.”

The next two results show that there are group inverses of V that also turn out to
be Moore–Penrose inverses.

Theorem 4.2.4 (Theorem 3.6 [124]). For ˛ 2 R, let Y˛ be the infinite matrix
defined by

Y˛.e1/ D ˛.e2 � 2e4 C 3e6 � � � / C .e4 � 2e6 C 3e8 � � � � /;
Y˛.e2/ D ˛.e1 � e3 C e5 � � � � / C .e3 � e5 C e7 � � � � /;

Y˛.e2n/ D .�1/nf.e3 � e5 C � � � C .�1/ne2n�1/ C .n � 1/e1 � nY˛.e2/g; for n � 2

and

Y˛.e2nC1/ D e2n � Y˛.e2n�1/; n � 1:

For the sake of convenience, let Y denote Y˛ . Then Y is a group inverse of V, but not
a usual inverse.

Theorem 4.2.5 (Theorem 3.7 [124]). Let Y be defined as above. Then Y is a
Moore–Penrose inverse of V.
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Next, let us briefly review some recent results that were obtained in connection
with certain embedding problems. We do not include the precise statements here.
Let M1.Z/ denote the set of countably infinite square matrices whose entries are
integers. Then M1.Z/ forms a non-associative groupoid. It is known that every
finite or countable groupoid embeds in M1.Z/. Roberts and Drazin consider the
associated question of �-embedding of groupoids with an involution. The main
results are proved in (Theorems 2.3 and 3.7, [96]). In the present context, it must be
mentioned that these embedding results are used to construct much simpler and
more general ways of finding examples like the ones that were constructed by
Sivakumar, discussed as above. We refer the reader to the details in [96].

In this last part, we review the work of Campbell [18] on the Drazin inverses of
infinite matrices. First, we recall some definitions. Let A be an infinite matrix. An
infinite matrix X is referred to as a C-(2) inverse of A if

AX D XA and X.AX/ D .XA/X D X:

X is called a C-(1,2) inverse of A if X is a C-(2) inverse of A and

A.XA/ D .AX/A D A:

Let X; Y be C-(2) inverses of A such that

X.AY/ D .XA/Y D X

and

Y.AX/ D .YA/X D X:

Then we write X � Y. The two conditions given above may be described in words,
as follows. The “null space” of Y is contained in the “null space” of X and the “range
space” of X is contained in the “range space” of Y. If X � Y for all C-(2) inverses X,
we call Y maximal. The author proposes the following definition: A unique maximal
C-(2) inverse for an infinite matrix A, if it exists, is called the Drazin inverse of A.
It is denoted by AD. If AD exists and is a C-(1,2) inverse of A, then it is also called
the group inverse of A and is denoted by A#. For finite matrices, these reduce to the
corresponding definitions given earlier. It is shown that (Corollary 2, [18]) if A has
a maximal C-(2) inverse then AD exists. The author also discusses applications to
Markov chains and infinite systems of differential equations.



Chapter 5
Generalized Inverses: Quaternions

5.1 Introduction

A quaternion algebra H was discovered by Sir Rowan Hamilton in 1843, which is a
four-dimensional non-commutative algebra over real number field R with canonical
basis f1; i; j; kg satisfying the conditions:

i2 D j2 D k2 D ijk D �1;

so that one has

ij D �ji D k; jk D �kj D i; and ki D �ik D j:

Any element ˛ 2 H can be written in a unique way: ˛ D a CbiCcj Cdk, where
a; b; c, and d are real numbers, i.e., H D fa C bi C cj C dk j a; b; c; d 2 Rg. The
conjugate of ˛ is defined as N̨ D a � bi � cj � dk, and the norm j˛j is given by
j˛j D p

˛ N̨ : It is well-known that H is a skew field (or called a division ring).
The study of polynomials with quaternion coefficients may go back to Niven

[79, 80] in the early 1940s. In these two seminal papers, Niven established the
“Fundamental Theorem of Algebras” for quaternions, that is, xm C a1xm�1 C
a2xm�2 C� � �Cam D 0 .am ¤ 0/ with coefficients in a division ring D has a solution
in D if and only if the centre C of D is a real-closed field and D is the algebra of real
quaternions over C. Furthermore, Niven proved that there may be infinitely many
roots or a finite number, but in the latter case there are at most .2m � 1/2, which
shows the essential difference between the polynomials over division rings and over
commutative fields.

Unlike the polynomials over commutative fields, there are several forms of
quaternion polynomials depending on the positions of coefficients due to the non-
commutativity of H. For example, regular quaternion polynomials in [22] and

© Springer International Publishing Switzerland 2016
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quaternion simple polynomials in [81]. Some properties of these polynomials have
been discussed (see, for example, [63, 86]). In this chapter, we will use the following
Definition 5.1.1, which places the coefficients on the left side of a variable x:

Definition 5.1.1. A quaternion polynomial f .x/ over H is defined as

f .x/ D anxn C � � � C a1x C a0; ai 2 H; an ¤ 0; i D 0; : : : ; n;

where x commutes with each element in H.

The set of all quaternion polynomials in x is denoted by HŒx�. The degrees,
leading terms, and leading coefficients are defined in a natural way. It is well-
known that HŒx� becomes a non-commutative domain under the usual polynomial
operations.

The quaternion polynomials and matrices with quaternion polynomial entries
have been widely studied with many applications in the past decades. For example,
in [145], the Fast Fourier Transform for the product of two quaternion polynomial
has been discussed with the complexity analysis. In [22], they studied Gröbner
basis theory for the ring of quaternion polynomials and explored how to compute
the module syzygy. Smith-McMillan forms of quaternion polynomial matrices
are defined and some applications to dynamical systems are given in [87]. Some
properties of Ore matrices can be found in [37, 144].

For matrices over commutative rings, it is well-known that the various gener-
alized inverses have been defined and explored for many years (see, for example,
[10, 85]). This motivates us to consider the generalized inverses questions for quater-
nion polynomial matrices. The numerical computations for generalized inverses
have been discussed for a long time. We will use the symbolic computational
methods which have attracted more and more attentions recently, for example,
[42, 45, 46, 89].

The structure of this chapter is as follows. In Sect. 5.2, we discuss f1g-inverses
of the quaternion polynomial matrices and present an algorithm to determine the
existence of f1g-inverses. Using one-sided greatest common divisors of quaternion
polynomials, we develop an efficient algorithm to compute f1g-inverses if they exist.
In Sect. 5.3, we give the definition of the Moore–Penrose inverse for quaternion
polynomial matrices and discuss some basic properties. This includes a necessary
and sufficient condition for the existence of the Moore–Penrose inverse. In Sect. 5.4,
the well-knownv Leverrier–Faddeev algorithm is extended to quaternion polynomial
matrices by using generalized characteristic polynomials. Finally, we discuss the
interpolation problems for quaternion polynomials and give an efficient algorithm
to compute the Moore–Penrose inverse in Sect. 5.5. We have implemented our
algorithms in Maple and some examples are also given in Sect. 5.6.
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5.2 f1g-Inverses of Quaternion Matrices

In this section, we first discuss some properties of f1g-inverses of quaternion
polynomial matrices, which will be used to formulate an algorithm for finding f1g-
inverses for quaternion polynomial matrices. Let HŒx�m�n be the set of all m � n
matrices over HŒx�. Recall that A 2 HŒx�m�n has a f1g-inverse G 2 HŒx�n�m if
AGA D A.

The main technical idea here is to use a well-known result: HŒx� is a non-
commutative principal ideal domain. From this point, we can define one-sided
greatest common divisors and least common multiples of quaternion polynomials
as follows:

Let f ; g 2 HŒx�nf0g. A greatest common right divisor (GCRD) of f and g, written
gcrd.f ; g/, is a nonzero monic d 2 HŒx� such that

(a) d is a common right divisor of f and g, namely f D f1d; g D g1d for some
f1; g1 2 HŒx�;

(b) If d1 2 HŒx� is a common right divisor of f and g, then d1 is a right divisor of d.

A least common right multiple (LCRM) of f and g, written lcrm.f ; g/, is a nonzero
monic s 2 HŒx� such that

(1) s is a common right multiple of f and g, namely s D ff1 D gg1 for some
f1; g1 2 HŒx�,

(2) If s1 2 HŒx� is a common right multiple of f and g, then s1 is a right multiple
of s.

It is easy to prove that GCRD and LCRM are unique. The greatest common left
divisor (GCLD) and the least common left multiple (LCLM) of f and g are defined
correspondingly. The following two lemmas can be proved by using the properties
of one-sided principal ideals.

Lemma 5.2.1. Let a1; a2; : : : ; an; d 2 HŒx� and d be monic. The following
statements are equivalent:

(i) HŒx�a1 C HŒx�a2 C � � � C HŒx�an D HŒx�d.
(ii) d D gcrd.a1; a2; : : : ; an/.

Lemma 5.2.2. Let a1; a2; : : : ; an; s 2 HŒx� and s be monic. The following state-
ments are equivalent:

(i) a1HŒx�
T

a2HŒx�
T � � �T anHŒx� D sHŒx�.

(ii) s D lclm.a1; a2; : : : ; an/.

There are several ways to compute the GCRD and LCLM (see, for example,
[22]). Here we use the following algorithm that is analogous to the traditional
extended Euclidean algorithm for commutative Euclidean domain ([135], Algo-
rithm 3.6). For f D qg C r, we denote q WD f quol g the left quotient of the division
of f by g.
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Algorithm 1 Extended Euclidean Algorithm (EEA)
Input f ; g 2 HŒx�, where deg.f / D n, deg.g/ D m, m � n, m; n 2 N.
Output k 2 N, ri; si; ti 2 HŒx� for 0 � i � k C 1, and qi 2 HŒx� for 1 � i � k, as computed

below.
1: r0  f , s0  1, t0 0, r1  g, s1  0, t1 1

2: i 1

3: while ri ¤ 0 do
qi  ri�1 quol ri, riC1  ri�1 � qiri,
siC1  si�1 � qisi, tiC1 ti�1 � qiti, i iC 1.

4: end while
5: k i� 1

6: return k; ri; si; ti for 0 � i � kC 1, and qi for 1 � i � k.

The correctness of the above algorithm follows the strictly decreasing degrees:
deg.r1/ > deg.r2/ > � � � > deg.rk/ � 0. Next, we shall verify that above algo-
rithm also produces some one-sided greatest common divisors and least common
multiples in quaternion polynomial case, which we shall use later.

Lemma 5.2.3. Let ri; si; ti for 0 � i � k C 1 and qi for 1 � i � k be as in
Algorithm 1. Consider the matrices

R0 D



s0 t0
s1 t1

�

; Qi D


0 1

1 �qi

�

for 1 � i � k

in M2�2.HŒx�/, and Ri D Qi � � � Q1R0 for 0 � i � k. Then

(a) Ri



f
g

�

D



ri

riC1

�

.

(b) Ri D



si ti
siC1 tiC1

�

.

(c) sif C tig D ri for all 1 � i � k C 1.
(d) gcrd.f ; g/ D rk.
(e) lclm.f ; g/ D skC1f D tkC1g.

Proof. (a) and (b) can be proved by mathematical induction on i and the relation
Ri D QiRi�1. (c) follows directly from (a).

To prove (d), from assumptions and (a)–(c), we have



rk

0

�

D Rk



f
g

�

D Qk � � � Q1R0



f
g

�

D Qk � � � Q1



r0

r1

�

D Qk � � � Q1



f
g

�

:

Note that for each i 2 f1; : : : ; kg, Qi has an invertible Q�1
i D



qi 1

1 0

�

over HŒx�.
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Hence



f
g

�

D Q�1
1 � � � Q�1

k



rk

0

�

;

which implies that rk is a common right divisor of f and g. On the other hand, by
(c), rk D skf C tkg implies that any common right divisor of f and g is also a right
divisor of rk. Therefore, gcrd.f ; g/ D rk.

Finally, since 0 D rkC1 D skC1f C tkC1g, we have h D skC1f D �tkC1g
is a left common multiple of f and g. Meanwhile, deg.h/ D deg.f / C deg.g/ �
deg.gcrd.f ; g//. Thus, h D lclm.f ; g/. ut

Our purpose is to use one-sided greatest common divisors and least common
multiples to compute f1g-inverses of quaternion polynomial matrices. Our algorithm
is based on recursively computing GCRDs and LCLMs. The following result is
well-known in commutative case.

Theorem 5.2.4. Let A D
"

a Eb
E0 B

#

2 HŒx�.mC1/�.nC1/ with 0 ¤ a 2 HŒx�, Eb D
�
b1 � � � bn

	 2 HŒx�1�n and B 2 HŒx�m�n.

(a) If A has a f1g-inverse over HŒx�, then gcld.a; b1; : : : ; bn/ D 1.

(b) Suppose A D
"

a E0
E0 B

#

. If A has a f1g-inverse over HŒx�, then a 2 H and B has a

f1g-inverse over HŒx�.

Proof. Let G D
"

g Eh
Ek H

#

be a f1g-inverse of A, where g 2 H, Eh D Œh1; : : : ; hn� 2

HŒx�1�n, Ek D �
k1 � � � km

	T 2 HŒx�m�1 and H 2 HŒx�n�m.
Since A D AGA, we have

"
a Eb
E0 B

#

D
"

a Eb
E0 B

#"
g Eh
Ek H

#"
a Eb
E0 B

#

D
"

aga C EbEka �
� BEkEb C BHB

#

: (5.1)

Then aga C EbEka D a, and thus .ag C EbEk � 1/a D 0. Since HŒx� is a principal
ideal domain, we have ag C EbEk � 1 D 0, i.e., ag C b1k1 C� � �C bnkn D 1. Therefore,
gcld.a; b1; : : : ; bn/ D 1.

To prove (b), let Eb D 0 in (5.1). Comparing the correspondent entries of matrices
on both sides, we have aga D a and BHB D B. Hence B has a f1g-inverse H over
HŒx�. aga D a implies that .ag � 1/a D 0, and either a D 0 or ag D 1 since HŒx� is
a domain. Note that both a and g are quaternion polynomials. Therefore a 2 H. ut
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Corollary 5.2.5. Let A D
"

1 E0
E0 B

#

2 HŒx�.mC1/�.nC1/. Then A has a f1g-inverse over

HŒx� if and only if B a f1g-inverse over HŒx�. Moreover, if C 2 HŒx�n�m is a f1g-

inverse of B, then

"
1 E0
E0 C

#

is a f1g-inverse of A over HŒx�.

Proof. If A has a f1g-inverse over HŒx�, then by Theorem 5.2.4(b), B has a f1g-
inverse over HŒx�. Conversely, suppose C 2 HŒx�n�m is a f1g-inverse of B, that is,

BCB D B. Let G D
"

1 E0
E0 C

#

. Then

AGA D
"

1 E0
E0 BCB

#

D
"

1 E0
E0 B

#

D A;

and so G is a f1g-inverse of A over HŒx�. Therefore, A has a f1g-inverse over HŒx�.
ut

Next we shall discuss the row and column transformations of quaternion polyno-
mial matrices. Unlike matrices over fields, we cannot use the usual three elementary
row (column) transformations freely since HŒx� is a non-commutative domain, not a
field. In the following, we will show how to use one-sided greatest common divisors
and least common multiples to make row (column) transformations.

Lemma 5.2.6. Let E; E1 2 HŒx�n�n. Then EE1 D I implies E1E D I.

Proof. Since HŒx� is a principal ideal domain and Noetherian, we know that HŒx� is
stably finite by Proposition 1.13 in [62]. Hence E1 is also a left inverse of E. ut

Lemma 5.2.7. Let A D



a11 a12

a21 a22

�

2 HŒx�2�2, gR D gcrd.a11; a21/ and gL D
gcld.a11; a12/. Then there exist invertible matrices E; F 2 HŒx�2�2, such that

EA D



gR �
0 �

�

; AF D



gL 0

� �
�

;

where each � stands for some element in HŒx�.

Proof. To design our algorithms, the following proof is constructive. If only one of
a11 and a21 is equal to zero, then we just simply switch two rows. If both of a11 and
a21 are equal to zero, then we will do nothing. Now we assume that both of a11 and
a21 are nonzero. Using the Extended Euclidean Algorithm 1 and Lemmas 5.2.3, we
can calculate s; t; k; l 2 HŒx�, such that

sa11 C ta21 D gR; lclm.a11; a21/ D ka11 D la21: (5.2)
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Compute b11; b21 2 HŒx� such that a11 D b11gR, a21 D b21gR. Then .sb11C
tb21 � 1/gR D 0, and .kb11 � lb21/gR D 0. Since HŒx� is a domain and gR ¤ 0,
we have

sb11 C tb21 D 1 and kb11 � lb21 D 0: (5.3)

Again, by (5.2), gcld.k; l/ D 1, and we can use the Extended Euclidean
Algorithm 1 to find p; q 2 HŒx� such that

kp � lq D 1: (5.4)

Now set

E D



s t
k �l

�

; E1 D



b11 p � b11sp � b11tq
b21 q � b21sp � b21tq

�

:

Then, by (5.2)–(5.4),

EA D



s t
k �l

� 

a11 a12

a21 a22

�

D



sa11 C ta11 �
ka11 � la21 �

�

D



gR �
0 �

�

and

EE1 D



s t
k �l

� 

b11 p � b11sp � b11tq
b21 q � b21sp � b21tq

�

D



sb11 C tb21 s.p � b11sp � b11tq/ C t.q � b21sp � b21tq/

kb11 � lb21 k.p � b11sp � b11tq/ � l.q � b21sp � b21tq/

�

D


1 sp � .sb11 C tb21/sp � .sb11 C tb21/tq C tq
0 kp � lq � .kb11 � lb21/sp � .kb11 � lb21/tq

�

D


1 0

0 1

�

:

Thus, E1 is a right inverse of E over HŒx�. By Lemma 5.2.6, E1 is also a left inverse
of E.

The construction for F can be done in a similar way. ut
Next we generalize this kinds of row/column transformations determined by

one-sided greatest common divisors and least common multiplies to matrices with
arbitrary sizes.
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Theorem 5.2.8. Let A D .aij/ 2 HŒx�m�n. Then we can compute two invertible
matrices, E 2 HŒx�m�m and F 2 HŒx�n�n, such that

EA D
"

gR �
E0 �

#

; AF D
"

gL E0
� �

#

;

where gR D gcrd.a11; : : : ; am1/, gL D gcld.a11; : : : ; a1n/, and each � stands for
some matrix with suitable size over HŒx�.

Proof. Using Lemma 5.2.7, we can compute an invertible matrix E1 2 HŒx�2�2 such
that

"
E1

E0
E0 Im�2

#

A D

2

6
6
6
6
6
4

gcrd.a11; a21/ � � � � �
0 � � � � �

a31 a32 � � � a3n
:::

:::
: : :

:::

am1 am2 � � � amn

3

7
7
7
7
7
5

:

It is easy to see that

"
E1

E0
E0 Im�2

#

is invertible over HŒx�. If a31 D 0, we will go to a41.

Otherwise, interchange row 2 and row 3 by multiplying an elementary matrix M on
the left side. Then applying Lemma 5.2.7 to the 2�2-matrix on the upper left corner
to compute an invertible matrix E2 2 HŒx�2�2 such that

"
E2

E0
E0 Im�2

#

M

"
E1

E0
E0 Im�2

#

A D

2

6
6
6
6
6
6
6
6
4

gcrd.a11; a21; a31/ � � � � �
0 � � � � �
0 � � � � �

a41 a42 � � � a4n
:::

:::
: : :

:::

am1 am2 � � � amn

3

7
7
7
7
7
7
7
7
5

:

Again, it is easy to verify that

"
E2

E0
E0 Im�2

#

M

"
E1

E0
E0 Im�2

#

is invertible over HŒx�.

Continuing on the same process, we can obtain an invertible matrix E 2 HŒx�m�m,

such that EA D
"

gR �
E0 �

#

.

The construction of the matrix F can be done in a similar way. ut
Based on the above results, we design an algorithm for computing a f1g-inverse

of a given matrix over the quaternion polynomial ring HŒx�.



5.2 f1g-Inverses of Quaternion Matrices 57

Algorithm 2 Computing a f1g-inverse of a given matrix over HŒx�

Input AD .aij/ 2 HŒx�m�n.

Output

(
a {1}-inverse of G 2 HŒx�n�m such that AGAD A;

“no {1}-inverse exist.”, otherwise
1: Computing g1  gcrd.a11; a21; : : : ; am1/

2: Computing an invertible matrices E 2 HŒx�m�m such that

EA D
"

g1
Eb
E0 �

#

, where Eb D �
b1 � � � bn�1

	
.

3: Computing g2  gcld.g1; b1; : : : ; bn�1/ and an invertible matrix F 2 HŒx�n�n such that

.EA/F D
"

g2
E0

� B

#

,

4: if g2 ¤ 1 then return “no {1}-inverse exist.”
5: else use usual column transformations and computing an invertible matrix M 2 HŒx�m�m such

that

M..EA/F/ D
"

1 E0
E0 B

#

Recursively call Algorithm 2 to determine (compute) if B has a f1g-inverse. If find a
f1g-inverse H of B over HŒx�,

return G F

"
1 E0
E0 H

#

ME

6: end if

Theorem 5.2.9. Algorithm 2 is correct.

Proof. Note that

MEAF D
"

1 E0
E0 B

#

; G D F

"
1 E0
E0 H

#

ME; BHB D B:

We have

.MEA/G.AF/ D MEAF

"
1 E0
E0 H

#

MEAF

D
"

1 E0
E0 B

#"
1 E0

0.n�1/�1 H

#"
1 E0
E0 B

#

D
"

1 E0
E0 BHB

#
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D
"

1 E0
E0 B

#

D MEAF:

Since E, F, and M are invertible over HŒx� (Theorem 5.2.8), we have AGA D A,
which completes the proof. ut

5.3 The Moore–Penrose Inverse

It is well-known that the Moore–Penrose inverse is the most famous generalized
inverse with numerous applications. In the following sections, we discuss the
Moore–Penrose inverse for matrices over HŒx�.

The conjugate of f .x/ D anxnC� � �Ca0 2 HŒx� is defined as f .x/ D NanxnC� � �CNa0.
For A 2 HŒx�m�n, the conjugate A of A is defined as A D .Aij/. Moreover, AT ; A� 2
HŒx�n�m denote the transpose and the conjugate transpose of A, respectively. More
properties can be found in, for example, [87, 88].

Lemma 5.3.1 ([88]). Let f ; g 2 HŒx�. Then (i) fg D NgNf (ii) f Nf D Nf f 2 RŒx� (iii) If
fg 2 RŒx�, then fg D gf .

Definition 5.3.2. A matrix in HŒx�n�m is called a Moore–Penrose inverse of A 2
HŒx�m�n if it is a solution of the following system of equations:

AXA D A; XAX D X; .AX/� D AX; .XA/� D XA:

It is easy to prove that if there is a solution, then it is unique. As usual, we denote
the Moore–Penrose inverse of A as A�. Using similar methods in commutative case,
we can get some properties for quaternion polynomial matrices, for example:

Proposition 5.3.3. Let A 2 HŒx�m�n with A�. Then

(i) .A�/� D �
A�
�

, A�
�
A�
�

A� D A� D A�
�
A�
�

A� and A�AA� D A� D A�AA�.
(ii) Let U 2 H

m�m is a unitary matrix, that is, UU� D U�U D Im. Then .UA/� D
A�U�.

Lemma 5.3.4. If E 2 H Œx�m�m and satisfies E D E2 D E�, then E 2 H
m�m.

Proof. Let f1, : : : , fm be the entries on the first row of E. From E D E�, without
loss of generality, we may assume that f1 D f1 ¤ 0. Then by E D E2, we have

f1 D f1f1 C
mX

iD2

fifi D f 2
1 C

mX

iD2

fifi:
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Since f1 D f1, the leading coefficient of f 2
1 is a positive real number. Note that the

leading coefficient of
Pm

iD2 fifi is also a positive real number. Thus,

deg
�
f 2
1

 � deg f1 D deg
�
f 2
1 CPm

iD2 fifi


D max
˚
deg

�
f 2
1


, deg

�Pm
iD2 fifi

� � deg
�
f 2
1


:

This shows that f1 2 H. Furthermore, 0 D deg f1 D deg
�Pm

iD2 fifi


and the
leading coefficients of ffiNfig .fi ¤ 0/ are positive reals imply that fi 2 H for all
1 � i � m. The same discussion can be done for the other rows of E. Therefore,
E 2 H

m�m. ut
Note that we require that A� must be in HŒx�n�m. Therefore unlike matrices over

fields or skew fields, the Moore–Penrose inverses for some quaternion polynomial
matrices might not exist. Clearly, A� must be a f1g-inverse of A. Thus algorithms
in Sect. 5.2 provide a way to check that A� doesn’t exist. In general, we don’t have
efficient algorithms to verify the existence of A�.

Next we will give conditions for quaternion polynomial matrices to have Moore–
Penrose inverses. But the proofs are non-constructive.

It is easy to see that A 2 H
m�nŒx� induces an additive homomorphism from

H Œx�n�1 to H Œx�m�1, that is, for all P,Q 2 H Œx�n�1, A .P C Q/ D AP C AQ 2
H Œx�m�1. By the definition of Moore–Penrose inverses and Proposition 5.3.3, it is
easy to prove the following lemma:

Lemma 5.3.5. Let A 2 H Œx�m�n such that A� exists. Considering A as a homomor-
phism from H Œx�n�1 to H Œx�m�1, one has Image.A/ D Image.AA�/ D Image.AA�/

and Image.A�/ D Image.A�A/ D Image.A�A/.

It is well-known that there are two types of eigenvalues for a given quaternion
matrix Am�n: right eigenvalues and left eigenvalues, since H is a non-commutative
domain. Right eigenvalues have been studied extensively (see, for example, [4, 14,
64]). We shall work with right eigenvalues towards our main result, that is, find
a nonzero vector Ex 2 H

n�1 and a � 2 H such that AEx D Ex�. For simplicity, we
shall just use the term “eigenvalue” instead of right eigenvalue from now on. The
following result is well-known and very useful.

Lemma 5.3.6 ([141]). A 2 H
m�m is hermitian, that is, A D A�, if and only if there

exists a unitary matrix U 2 H
m�m such that U�AU D diag.�1; : : : ; �m/, where �i

are the eigenvalues of A.

Now we are ready to give conditions that quaternion polynomial matrices must
satisfy in order to have Moore–Penrose inverses. The following theorem is well-
known in some cases, see, for example, [10, 91]. Here is an analogue for quaternion
polynomial matrices.
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Theorem 5.3.7. Let A 2 H Œx�m�n. Then A� exists if and only if A D U

�
A1 A2

0 0

�

with U 2 H
m�m unitary and A1A�1 C A2A�2 a unit in H Œx�r�r with r � min fm, ng.

Moreover,

A� D
 

A�1
�
A1A�1 C A2A�2

�1
0

A�2
�
A1A�1 C A2A�2

�1
0

!

U�:

Proof. .H)/ If A has the Moore–Penrose inverse A�, then

AA� D .AA�A/A� D �
AA�

2 D �
AA�

�
:

By Lemma 5.3.4, AA� 2 H
m�m. AA� is hermitian and hence, by Lemma 5.3.6, there

exists a unitary matrix U 2 H
m�m such that U�AA�U D D where D is diagonal.

Since

D2 D .U�AA�U/.U�AA�U/ D U�AA�AA�U D U�AA�U D D;

the diagonal entries of D are either 1 or 0. Therefore, we can rearrange the rows and

columns of U so that D D
�

Ir 0

0 0

�

with r � min fm, ng.

Set B D U�A. By Lemma 5.3.3, B has its own generalized inverse B� and BB� D�
Ir 0

0 0

�

. Write B as a blocked matrix form, that is, B D
�

A1 A2

A3 A4

�

, for some arbitrary

quaternion polynomial matrices A1 2 H Œx�r�r, A2 2 H Œx�r�.n�r/, A3 2 H Œx�
.m�r/�r ,

and A4 2 H Œx�
.m�r/�.n�r/. Since B D BB�B D

�
Ir 0

0 0

��
A1 A2

A3 A4

�

D
�

A1 A2

0 0

�

, we

must have A3 D 0; A4 D 0, and thus BB� D
�

A1A�1 C A2A�2 0

0 0

�

. Similarly, B� D
�

B1 0

B2 0

�

for some B1 and B2. By Lemma 5.3.5,

Image.BB�/ D Image.B/ D Image.BB�/ D Image

�
Ir 0

0 0

�

:

This implies the surjectivity of A1A�1 C A2A�2 on H Œx�r�1. Therefore, A1A�1 C A2A�2
is a unit in H Œx�r�r and

A D UB D U

�
A1 A2

0 0

�

:
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Next, we have that:

B� DB�
�
B�
�

B� D B�
�
B�
�

B� D B�
�
BB�

�

D
�

A�1 0

A�2 0

� �
A1A�1 C A2A�2

�1
0

0 0

!

D
 

A�1
�
A1A�1 C A2A�2

�1
0

A�2
�
A1A�1 C A2A�2

�1
0

!

;

which gives

A� D
 

A�1
�
A1A�1 C A2A�2

�1
0

A�2
�
A1A�1 C A2A�2

�1
0

!

U�:

.(H/ The converse can be proved by direct computation. ut

5.4 Leverrier–Faddeev Algorithm

There are many algorithms for computing the Moore–Penrose inverse. In [26],
Faddeev provided an algorithm to compute the characteristic polynomial of an n �n
matrix over a field, which is a modification of a method of Levereier (1840). This
algorithm is not computational efficiency. But the proof is constructive in a rather
clear way. Now the Leverrier–Faddeev algorithm is one of the classical methods
that has been used to compute the Moore–Penrose inverse. We refer the reader to
[5, 23, 26, 51, 127] for more details.

For a given quaternion polynomial matrix A, our trick is to use a square matrix
AA� instead of A. First we define the characteristic polynomial for quaternion poly-
nomial matrix A by using AA�, and prove that the coefficients of this characteristic
polynomial are reals. Then we show that Leverrier–Faddeev algorithm works very
well for quaternion polynomial matrices.

Lemma 5.4.1. Let A 2 HŒx�m�n. Then the eigenvalues of AA� are real.

Proof. Let B D AA� and � 2 H be an eigenvalue of B with corresponding

eigenvector 0 ¤ Ex D �
x1 � � � xm

T 2 HŒx�m�1 such that BEx D Ex�. Then Ex�BEx D Ex�Ex�.
Note that B D B�. We have that Ex�BEx D ��Ex�Ex, and thus

Ex�Ex� D ��Ex�Ex D �Ex�Ex�
�

;

that is,

.Nx1; � � � Nxm/

0

B
@

x1

:::

xm

1

C
A� D �Pm

iD1 Nxixi


� D ��Pm
iD1 Nxixi


�
�

D ��
�Pm

iD1 Nxixi
� D ��

�Pm
iD1 Nxixi


:
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By Lemma 5.3.1, 0 ¤ Pm
iD1 Nxixi 2 R Œx�. The above equation gives � D ��,

which implies � 2 R. ut
The Cayley–Hamilton theorem for quaternion matrices has been extensively

studied. A survey can be found in [141]. For A 2 HŒx�m�n, if A D P C Qj with
P,Q 2 CŒx�m�n, then the complex adjoint of A is defined as

�A D
�

P Q
�Q P

�

2 CŒx�2m�2n:

Next, we define the characteristic polynomial for a quaternion polynomial matrix.

Definition 5.4.2. For A 2 HŒx�m�n, let B D AA� and �B be its complex adjoint.
Then fB .�/ D det .�I2m � �B/ is called the characteristic polynomial of A.

Remark 5.4.3. By Lemma 5.4.1, � can be assumed to be a real indeterminate that
enjoys the following: � D � and � commutes element-wise with H Œx�.

Theorem 5.4.4. Let A 2 H Œx�m�n and B D AA�. Then fB .�/ D g .�/2 where
g .�/ 2 .R Œx�/ Œ��, that is, a polynomial in one determinate � over polynomial
ring RŒx�.

Proof. We first show that fB .�/ 2 .R Œx�/ Œ��. Note that B D AA�. We have

det
�
.�I2m � �B/T D det .�I2m � �B/ D det

�
.�I2m � �B/�


;

and thus

det .�I2m � �B/ D det.�I2m � �B/ D det .�I2m � �B/:

Therefore

det .�I2m � �B/ D fB .�/ 2 .R Œx�/ Œ�� : (5.5)

Next, we show that fB .�/ D g .�/2 where g .�/ 2 .C Œx�/ Œ��. Let B D P C Qj. It is
easy to check that PT D P and Q D �QT . Therefore,

�B D
�

P Q
�Q P

�

D
�

P �QT

�Q PT

�

H) �I2m � �B D
�

�Im � P QT

Q �Im � PT

�

:

Next, we have

�
Im �Im

0 Im

��
Im 0

Im Im

��
Im �Im

0 Im

��
�Im � P QT

Q �Im � PT

�

D
�

Q PT � �Im

�Im � P QT

�

:
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Therefore,

fB .�/ D det

�
�Im � P QT

Q �Im � PT

�

D det

�
Q PT � �Im

�Im � P QT

�

:

Note that

�
Q PT � �Im

�Im � P QT

�T

D �
�

Q PT � �Im

�Im � P Q

�

;

which implies that

�
Q PT � �Im

�Im � P QT

�

is skew-symmetric. By [74], the determi-

nant of

�
Q PT � �Im

�Im � P QT

�

, also called its Pfaffian, can be written as the square

of a polynomial in its entries. Therefore, fB .�/ D g .�/2 where g .�/ 2 .C Œx�/ Œ��,
a polynomial in one determinate � over the polynomial ring CŒx�.

Finally we show that g .�/ 2 .R Œx�/ Œ��. Suppose otherwise. Then g .�/ D
a .�/ C b .�/ i where a.�/ and b.�/ 2 .R Œx�/ Œ�� with b .�/ ¤ 0. By (5.5),
g .�/2 D a.�/2 � b.�/2 C 2a.�/b.�/i 2 .R Œx�/ Œ��. Hence a .�/ D 0 and
fB .�/ D g .�/2 D .b .�/ i/2 D �b .�/2 where b .�/ 2 .R Œx�/ Œ��. For a fixed x 2 R,
let �0 2 R be large enough such that �0I2m � �B 2 C

2m�2m is diagonally dominant
with nonnegative diagonal entries and that .b .x// .�0/ ¤ 0. Since �0I2m � �B

is also hermitian, �0I2m � �B is positive definite [44]. But det .�0I2m � �B/ D
� ..b .x// .�0//2

< 0, a contradiction. Therefore, b.x/ D 0 and thus fB .�/ D g .�/2

where g .�/ 2 .R Œx�/ Œ��. ut
Corollary 5.4.5. Let A 2 H Œx�m�n, B D AA�, and fB .�/ D g .�/2. Then g .B/ D 0.
g .�/ is said to be the generalized characteristic polynomial of A.

Proof. Note that g .�/ 2 .RŒx�/ Œ�� by Theorem 5.4.4. Then �g.B/ D g .�B/. Next,
fB .�B/ D 0 by the Cayley–Hamilton theorem for complex polynomial matrices
[44]. Therefore g .�B/ D 0, and 0 D g .�B/ D �g.B/, that is, g .B/ D 0. ut

From the definition, it is easy to check the following lemma, which have
analogues in the complex case.

Lemma 5.4.6. Let A 2 HŒx�m�n such that A� exists. Set B D AA�. Then

(i) B� D .A�/� A� and B�B D AA�.
(ii) B�B D BB� and .B�B/2 D B�B.

(iii)
�
B�
k D �

Bk
�

and .Bn�k/�Bn�k D B�B, for any k 2 N.

The following result is well-known for quaternion matrices and it is easy to check
that the result also holds for quaternion polynomials.

Lemma 5.4.7. Let A 2 H Œx�m�n, B 2 H Œx�p�q, and C 2 H Œx�m�q. If A� and B� both
exist, then the quaternion polynomial matrix equation AXB D C has a solution in
H Œx�n�p if and only if AA�CB�B D C, in which case the general solution is
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X D A�CB� C Y � A�AYBB�;

where Y 2 H Œx�n�p is arbitrary.

Theorem 5.4.8. Let A 2 H Œx�m�n such that A� exists and B D AA�. Suppose that
the generalized characteristic polynomial of A is

g .�/ D �m C a1�
m�1 C � � � C ak�

m�k C � � � C am�1� C am;

where ai 2 R Œx�. If k is the largest integer such that ak ¤ 0, then the Moore–Penrose
inverse of A is given by

A� D � 1

ak
A�
�
Bk�1 C a1Bk�2 C � � � C ak�1I

	
:

If ai D 0 for all 1 � i � m, then A� D 0.

Proof. The proof is similar to the complex case in [23] by using Corollary 5.4.5,
Lemmas 5.4.6, 5.4.7, and 5.3.3. ut

From the above theorem, we can find the Moore–Penrose inverse A� of A
by computing its generalized characteristic polynomial. Fadeev [27] modified
Leverrier’s method and gave an algorithm to compute faig without computing g.�/.
Next, we extend this algorithm to quaternion polynomial matrices.

Lemma 5.4.9. Let A 2 H Œx�m�n such that A� exists and set B D AA�. Then for
1 � k � m,

tr
��

Bk C a1Bk�1 C � � � C ak�1B
	 D �kak;

where the ai
0s arise from the following generalized characteristic polynomial of A:

g .�/ D �m C a1�
m�1 C � � � C ak�

m�k C � � � C am�1� C am 2 .R.�//Œx�:

Proof. Let Y D yI where y 2 R. We can write g .Y/ as:

g .Y/ D g.Y/ � g.B/

D .Y � B/
�
Ym�1 C .B C a1I/ Ym�2 C � � � C �

Bm�1 C a1Bm�2 C � � � C amI
	

:

As long as y is not an eigenvalue of B, yI � B D Y � B is nonsingular, so we can
write

.Y � B/�1 g .Y/ DYm�1 C .B C a1I/ Ym�2 C �
B2 C a1B C a2I


Ym�3 C � � �

C �
Bm�1 C a1Bm�2 C � � � C amI


:
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Taking the traces gives

tr
h
.Y � B/�1 g .Y/

i

D mym�1 C tr Œ.B C a1I/� ym�2 C � � � C tr
�
Bm�1 C a1Bm�2 C � � � C amI


:

Let C D .Y � B/�1 g .Y/. Since g .Y/ D g .yI/ D g .y/ I, we have C D
g .y/ .Y � B/�1. Therefore,

tr.C/ D g .y/ tr
h
.Y � B/�1

i
:

Let �1, � � � , �m0 , where m0 � m, be all the nonzero eigenvalues of B. tr
h
.Y � B/�1

i

is the sum of the eigenvalues of .Y � B/�1. We will show that these eigenvalues are
the fractions 1

y��1
, � � � , 1

y��m0
.

Let � be an eigenvalue of .Y � B/�1 with corresponding eigenvector Ev such that:

.Y � B/�1 Ev D Ev�:

� is real by Lemma 5.4.1, and hence

.Y � B/ Ev D Ev 1

�
H) BEv D Ev

�

y � 1

�

�

:

Therefore, y � 1
�

D �i implies � D 1
y��i

for some 1 � i � m0.
Since g .y/ D .y � �1/ .y � �2/ � � � .y � �m0/, we have that the first derivative

g0 .y/ D g .y/
�

1
y��1

C � � � C 1
y��m0

�
and tr.C/ D g0 .y/ : On the other hand, the

derivative of g is also equal to:

g0 .y/ D mym�1 C a1 .m � 1/ ym�2 C � � � C am�1:

Therefore,

mym�1 C a1 .m � 1/ ym�2 C � � � C am�1

D mym�1 C tr .B C a1I/ ym�2 C � � � C tr
�
Bm�1 C a1Bm�2 C � � � C amI


:

Comparing the coefficient of ym�k�1 on both sides, we obtain

ak .m � k/ D tr
�
Bk C a1Bk�1 C � � � C ak�1B C akI



D tr
�
Bk C a1Bk�1 C � � � C ak�1B

C tr.akI/;
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and so

�kak D tr
�
Bk C a1Bk�1 C � � � C ak�1B


:

ut
Now the question is changed to find the coefficients of the generalized character-

istic polynomial in order to compute the Moore–Penrose inverse. Next, we present
the Leverrier–Faddeev algorithm for finding Moore–Penrose inverses of quaternion
polynomial matrices by recursively computing traces.

Proposition 5.4.10. Let A 2 H Œx�m�n such that A� exists and B D AA�. Suppose
that the generalized characteristic polynomial of A is

g .�/ D �m C a1�
m�1 C � � � C ak�

m�k C � � � C am�1� C am;

where ai 2 R Œx�. Define a0 D 1. If p is the largest integer such that ap ¤ 0 and we
construct the sequence A0, � � � , Ap as follows:

A0 D 0 �1 D q0 B0 D I
A1 D AA�B0

trA1

1
D q1 B1 D A1 � q1I

:::
:::

:::

Ap�1 D AA�Bp�2
trAp�1

p�1
D qp�1 Bp�1 D Ap�1 � qp�1I

Ap D AA�Bp�1
trAp

p D qp Bp D Ap � qpI

then qi .x/ D �ai .x/ , i D 0, � � � , p.

Proof. We will show qi .x/ D �ai .x/ by mathematical induction. By the definition,
clearly q0 D �a0 holds.

Now we assume that qi .x/ D �ai .x/ holds for all 0 � i � k � 1. Then

Ak DAA�Bk�1

DBBk�1

DB .Ak�1 � qk�1I/

DB .B .Ak�2 � qk�2I/ � qk�1I/

� � �
DBk � q1Bk�1 � q2Bk�2 � � � � � qk�1B

DBk C a1Bk�1 C a2Bk�2 C � � � C ak�1B:

and thus

tr.Ak/ D tr
�
Bk C a1Bk�1 C � � � C ak�1B


;
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which, by Lemma 5.4.9, is equal to �kak. So qk D tr Ak
k D �ak. Therefore, qi .x/ D

�ai .x/ for all p � i � 0. ut
Now, combining Theorem 5.4.8 and Proposition 5.4.10, we have the following

algorithm to compute the Moore–Penrose inverse:

Algorithm 3 Leverrier–Faddeev algorithm for quaternion polynomial matrices
Input A 2 HŒx�m�n

Output The Moore–Penrose inverse A� of A in HŒx�n�m if exists
1: B0 Im; a0  1

2: for i D 1; : : : ; m do
Ai  AA�Bi�1; ai  � trAi

i ; Bi  Ai C aiIm

3: Find the maximal index p such that ap ¤ 0.

4: Return A� D
( � 1

ap
A�Bp�1; p > 0;

0; p D 0:

Note that we have to compute many matrix products in Algorithm 3, which
means that Leverrier–Faddeev method is not efficient. In the next section, we
will present a more efficient way by combining Theorem 5.4.8 and interpolation
methods.

5.5 Finding Moore–Penrose Inverses by Interpolation

Interpolation is an efficient method in many computational questions over commuta-
tive fields. In non-commutative case like H, the situation becomes very complicated
since some basic properties fail, for example, for a given quaternion polynomial,
there might have infinite roots and infinite factors. To overcome this difficulty, we
choose the interpolation at data points of real numbers and present an efficient
method to obtain the Moore–Penrose inverse of a quaternion polynomial matrix.

Recently, there are few papers regarding non-commutative interpolations and
applications (see, for example, [46, 67, 143]). Lets recall some important concepts
and properties. An element r 2 H is a root of a nonzero polynomial f D anxn C� � �C
a0 2 HŒx� if anrn C� � �Ca0 D 0. Since H is a principal idea domain, using Euclidean
Algorithm, it is easy to see that f .r/ D 0 if and only if x � r is a right divisor of f .
The set of polynomials in H Œx� having r as a root is the left ideal H Œx� � .x � r/. It is
worth mentioning that the evaluations of quaternion polynomials are quite different
from the commutative case. It is defined as following: let f , g and h 2 H Œx�, f D gh
and r 2 H. If h.r/ D 0, then f .r/ D 0. Otherwise, set ˇ D h .r/ ¤ 0. Then the
evaluation of f .x/ at x D r is

f .r/ D g
�
ˇrˇ�1


h .r/ : (5.6)
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In particular, if r is a root of f but not of h, then ˇrˇ�1 is a root of g. We refer the
reader to [63] for more details.

Although a quaternion could have infinite many roots, in [38], it is proved that if
f 2 H Œx� is of degree n, then the roots of f lie in at most n conjugacy classes of H.

It is well-known that Newton’s interpolation and Lagrange’s interpolation play
important roles in studying polynomials over fields. Unfortunately, one cannot
get similar nice formulas in quaternion case. Fortunately, we can still compute a
quaternion polynomial from a given set of pairs of quaternions.

Lemma 5.5.1. Let c1, : : : , cn be n pairwise non-conjugate elements of H. Then
there is a unique monic polynomial gn 2 H Œx� of degree n such that gn .c1/ D � � � D
gn .cn/ D 0. Moreover, c1; : : : ; cn are the only roots (up to conjugacy classes) of gn

in H.

Proof. We first show the existence of gn for all n � 1 by mathematical induction.
For n D 1, it is trivially true as g1 D x � c1.

Suppose the claim holds for all 1 � n � k � 1. Let c1, � � � , ck 2 H be pairwise
non-conjugate. Invoking the inductive hypothesis, there exists a monic polynomial
gk�1 of degree k � 1 with c2, � � � , ck as its only roots (up to conjugacy classes), that
is, gk�1 .c1/ ¤ 0. Construct gk as follows:

gk.x/ D
�

x � gk�1 .c1/ c1gk�1 .c1/
�1
�

� gk�1.x/:

By Eq. (5.6), gk .c1/ D 0. Thus, the claim holds for k. Therefore this claim holds for
all n � 1.

We next show that gn is unique. For a fixed n, let g ¤ gn be a monic polynomial
of degree n such that g.c1/ D � � � D g .cn/ D 0, too. Then deg .gn � g/ � n � 1

but gn � g has roots c1, : : : , cn which lie in n different conjugacy classes of H, a
contradiction. Therefore, gn is unique for all n � 1. ut
Proposition 5.5.2. Let c1, : : : , cnC1 2 H be pairwise non-conjugate and let
d1, : : : ; dnC1 2 H. Then there exists a unique lowest degree polynomial f 2 H Œx�,
of degree p � n, such that f .ci/ D di for all 1 � i � n C 1.

Proof. For any 1 � s � n C 1, let S D f1, � � � , n C 1g n fsg. By Lemma 5.5.1, we
can find a unique monic hS 2 H Œx� of degree n such that hS .ci/ D 0; i 2 S and that
fci j i 2 Sg are the only roots (up to conjugacy class) of hS in H. Then hS .cs/ ¤ 0,
and thus we can construct a quaternion polynomial gS of degree n such that

gS .c˛/ D
(

0 ˛ 2 S;

1 ˛ D s;

as follows:

gS.x/ D hS .cs/
�1 hS.x/:
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Furthermore, we construct a quaternion polynomial f of degree at most n such that
f .ci/ D di for all 1 � i � n C 1 as follows:

f D
nC1X

sD1

dsgS:

Finally, we show that f is unique. Suppose we have f1 2 H Œx� of degree p1 � n such
that f1 ¤ f and that f1 .ci/ D di for all 1 � i � n C 1, too. Then f � f1 ¤ 0 is of
degree at most n. But f � f1 has roots c1, : : : , cnC1 which lie in n C 1 conjugacy
classes of H, a contradiction. Therefore, f is unique. ut

From above proof, we can see that it is impossible to construct the so-called
Newton divided difference formula for quaternion polynomials. Next we extend the
interpolation to quaternion polynomial matrices. Recall that the degree of a given
A 2 H Œx�m�n is defined as

deg A D max
˚
deg

�
Aij
 j 1 � i � m, 1 � j � n

�
:

The following lemma estimates the upper bound of the degree of its Moore–
Penrose inverse A� (if it exists).

Lemma 5.5.3. Let A 2 H Œx�m�n such that A� exists. Then

deg A� � .2m � 1/ deg A:

Proof. By Theorem 5.4.8,

deg A� � deg
�

A�
�
AA�

m�1
�

� deg
�
A2m�1

 � .2m � 1/ deg A:

ut
For A D .Aij/ 2 HŒx� and c 2 H, the evaluation of A at c can be defined

as entrywise in a common sense, that is, A.c/ D .Aij.c//. One has to pay an
attention that the evaluations of quaternion polynomials have some special rules
as we explained at the beginning of this section.

Proposition 5.5.4. Let c1, � � � , ckC1 2 H be pairwise non-conjugate and let
A1; � � � ; AkC1 2 H

n�m. Then there is a unique lowest degree matrix A 2 H Œx�n�m of
degree p � k, such that A .ci/ D Ai for all 1 � i � k C 1.

Proof. For any 1 � n1 � n and 1 � m1 � m, by Proposition 5.5.2, there is
a lowest degree polynomial An1m1 .x/ determined by the values c1, � � � , ckC1 and
.A1/n1m1

, : : : , .AkC1/n1m1
. In fact, for any 1 � s � k C 1, let S D f1, � � � , k C 1g n

fsg. Then

An1m1 .x/ D
kC1X

sD1

.As/n1m1
gS.x/;
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where gS .c˛/ D
(

0 ˛ 2 S;

1 ˛ D s
. Since n1 and m1 are chosen randomly, the lowest

degree matrix A that satisfies A .ci/ D Ai for all 1 � i � k C 1 is determined by
A D .

PkC1
sD1 AsgS/.

Next we show that A is unique. Suppose C ¤ A of degree p0 � p also satisfies
C .ci/ D Ai for all 1 � i � k C 1. Then for some 1 � n2 � n and 1 � m2 � m,
.A � C/n2m2

¤ 0. But .A � C/n2m2
, of degree at most p � k, has roots c1, : : : , ckC1

which lie in k C 1 conjugacy classes of H, a contradiction. Therefore, A is unique.
ut

Let A 2 H Œx�m�n such that A� exists, and set B D AA�. Let p be the
largest integer such that ap ¤ 0. We can construct the sequence A0, : : : , Ap

as in Proposition 5.4.10. The next theorem presents the interpolation version of
Leverrier–Faddev algorithm.

Theorem 5.5.5. In the above setting, let k D .2m � 1/ deg A and c1; : : : ; ckC1 2 R

be k C 1 distinct real numbers such that qp .cs/ ¤ 0 for any 1 � s � k C 1. Let
S D f1, � � � , k C 1g n fsg. Then

A� D
kC1X

sD1

A .cs/
� gS

where

A .cs/
� D 1

qp .cs/
A .cs/

� hB .cs/
p�1 � q1 .cs/ B .cs/

p�2 � � � � � qp�1 .cs/ I
i

and

gS .c˛/ D
(

0 ˛ 2 S;

1 ˛ D s:

Proof. It follows from Theorem 5.4.8, Propositions 5.4.10 and 5.5.4. ut
The upper bound of degrees of A� in Lemma 5.5.3 is not sharp. In fact, in many

questions, one only needs to pick up a few real points. (see Example 5.6.1)

5.6 Implementations and Examples

The calculations of quaternions are very complicated and time-consuming. It
is almost impossible to do some calculations for quaternion polynomials and
quaternion polynomial matrices even for a small sized matrices by hand. There are
only few quaternion packages in the computer algebra system Maple. But none
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of these has commands for quaternion polynomials and quaternion polynomial
matrices. In [47], we developed a Maple package which includes all basic operations
for quaternion polynomials and quaternion polynomial matrices. In particular, all
the algorithms in this chapter were implemented. We give the following illustrative
example:

Example 5.6.1. Let us consider the problem of determining the Moore–Penrose
inverse of the following quaternion polynomial matrix:

A D

0

B
B
@

14xC 14C 76iC 70jC 56k 56� 28i� 70jC 70k 28j� 56k 14x� 56� 8i� 14j� 56k
�2x� 2� 43i� 10j� 8k �8C 4iC 10j� 10k �4jC 8k �2xC 8� 31iC 2jC 8k
�3x� 3C 3i� 15j� 12k �12C 6iC 15j� 15k �6jC 12k �3xC 12C 21iC 3jC 12k
�4x� 4C 4i� 20j� 16k �16C 8iC 20j� 20k �8jC 16k �4xC 16C 28iC 4jC 16k

1

C
C
A 2 H

4�4Œx�:

From Lemma 5.5.3, we know that the upper bound of the degree of A� is less than
.2m � 1/ deg A D .2 � 4 � 1/ � 1 D 7. In practice, we don’t need to start from the
upper bound. For this example, we may guess deg A� D 2, and choose c1 D 0 and
c2 D 1. Then using our Maple package, it is easy to do the following calculations:

A .c1/ D

0

B
B
@

14C 76iC 70jC 56k 56� 28i� 70jC 70k 28j� 56k �56� 8i� 14j� 56k
�2� 43i� 10j� 8k �8C 4iC 10j� 10k �4jC 8k 8� 31iC 2jC 8k
�3C 3i� 15j� 12k �12C 6iC 15j� 15k �6jC 12k 12C 21iC 3jC 12k
�4C 4i� 20j� 16k �16C 8iC 20j� 20k �8jC 16k 16C 28iC 4jC 16k

1

C
C
A

and

A .c2/ D

0

B
B
@

28C 76iC 70jC 56k 56 � 28i� 70jC 70k 28j� 56k �42� 8i� 14j� 56k
�4 � 43i� 10j� 8k �8C 4iC 10j� 10k �4jC 8k 6� 31iC 2jC 8k
�6C 3i� 15j� 12k �12C 6iC 15j� 15k �6jC 12k 9C 21iC 3jC 12k
�8C 4i� 20j� 16k �16C 8iC 20j� 20k �8jC 16k 12C 28iC 4jC 16k

1

C
C
A :

By the algorithm stated in Theorem 5.5.5, we calculate and obtain

A .c1/�
D A .0/�

D
1

230175
�

0

B
B
B
B
@

140 � 560i � 228j � 342k 355 C 1730i � 96j C 81k �255 � 870i C 126j C 54k �340 � 1160i C 168j C 72k

276 C 88i C 426j � 382k 282 C 416i � 93j � 149k �252 � 276i � 72j C 204k �336 � 368i � 96j C 272k

32 C 16i � 176j C 292k �176 � 88i C 68j C 194k 96 C 48i C 12j � 204k 128 C 64i C 16j � 272k

�140 � 122i C 228j C 342k �355 C 2021i C 96j � 81k 255 � 1176i � 126j � 54k 340 � 1568i � 168j � 72k

1

C
C
C
C
A

and

A .c2/�
D A .1/� D

1

230175
�

0

B
B
B
B
@

152 � 550i � 244j � 330k 289 C 1675i � 8j C 15k �219 � 840i C 78j C 90k �292 � 1120i C 104j C 120k

268 C 104i C 406j � 402k 326 C 328i C 17j � 39k �276 � 228i � 132j C 144k �368 � 304i � 176j C 192k

32 C 16i � 160j C 300k �176 � 88i � 20j C 150k 96 C 48i C 60j � 180k 128 C 64i C 80j � 240k

�152 � 132i C 244j C 330k �289 C 2076i C 8j � 15k 219 � 1206i � 78j � 90k 292 � 1608i � 104j � 120k

1

C
C
C
C
A

:
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By Theorem 5.5.5, we have

2X

sD1

A .cs/
� gS D A .0/� .1 � x/ C A .1/� x

D
1

230175
�

0

B
B
B
B
@

.12 C 10i � 16j C 12k/ x C 140 � 560i � 228j � 342k .�66 � 55i C 88j � 66k/ x C 355 C 1730i � 96j C 81k

.�8 C 16i � 20j � 20k/ x C 276 C 88i C 426j � 382k .44 � 88i C 110j C 110k/ x C 282 C 416i � 93j � 149k

.16j C 8k/ x C 32 C 16i � 176j C 292k .�88j � 44k/ x � 176 � 88i C 68j C 194k

.�12 � 10i C 16j � 12k/ x � 140 � 122i C 228j � 342k .66 C 55i � 88j C 66k/ x � 355 C 2021i C 96j � 81k

.36 C 30i � 48j C 36k/ x � 255 � 870i C 126j C 54k .48 C 40i � 64j C 48k/ x � 340 � 1160i C 168j C 72k
.�24 C 48i � 60j � 60k/ x � 252 � 276i � 72j C 204k .�32 C 64i � 80j C 80k/ x � 366 � 368i � 96j C 272k

.48j C 24k/ x C 96 C 48i C 12j � 204k .64j C 32k/ x C 128 C 64i C 16j � 272k

.�36 � 30i C 48j � 36k/ x C 255 � 1176i � 126j � 54k .�48 � 40i C 64j � 48k/ x C 340 � 1568i � 168j � 72k

1

C
C
C
C
A

:

It is easy to verify that
P2

sD1 A .cs/
� gS satisfies the four defining relations of the

Moore–Penrose inverse. Therefore it is the Moore–Penrose inverse of A.



Chapter 6
M-Matrices over Infinite Dimensional Spaces

6.1 Introduction

The intention here is to present an overview of some very recent results on three
classes of operators, extending the corresponding matrix results. The relevant
notions that are generalized here are that of a P-matrix, a Q-matrix, and an M-matrix.
It is widely known (in the matrix case) that these notions coincide for Z-matrices.
While we are not able to prove such a relationship between these classes of operators
over Hilbert spaces, nevertheless, we are able to establish a relationship between
Q-operators and M-operators, extending an analogous matrix result. It should be
pointed out that, in any case, for P-operators, some interesting generalizations of
results for P-matrices vis-a-vis invertibility of certain intervals of matrices have
been obtained. These were proved by Rajesh Kannan and Sivakumar [92]. Since
these are new, we include proofs for some of the important results. The last section
considers a class of operators that are more general than M-operators. In particular,
we review results relating to the nonnegativity of the Moore–Penrose inverse of
Gram operators over Hilbert spaces, reporting the work of Kurmayya and Sivakumar
[61] and Sivakumar [125]. These results find a place here is due to the reason
that they extend the applicability of results for certain subclasses of M-matrices
to infinite dimensional spaces.

A real square matrix A is called a P-matrix if all its principal minors are positive.
Such a matrix can be characterized by what is known as the sign non-reversal
property. Taking cue from this, the authors of [92] introduced the notion of a P-
operator for infinite dimensional spaces as the first objective. Relationships between
invertibility of some subsets of intervals of operators and certain P-operators were
then established. These generalize the corresponding results in the matrix case.
The inheritance of the property of a P-operator by the Schur complement and
the principal pivot transform was also proved. If A is an invertible M-matrix, then
there is a positive vector whose image under A is also positive. As the second goal,
this and another result on intervals of M-matrices were generalized to operators

© Springer International Publishing Switzerland 2016
P.N. Shivakumar et al., Infinite Matrices and Their Recent Applications,
DOI 10.1007/978-3-319-30180-8_6
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over Banach spaces. Towards the third objective, the concept of a Q-operator is
proposed, generalizing the well-known Q-matrix property. An important result,
which establishes connections between Q-operators and invertible M-operators, is
proved for Hilbert space operators.

6.2 Preliminary Notions

In this section, we recall some preliminary notions and results that will be referred
to in the sequel. We also make a short survey of the literature on relevant results.

We shall be interested in certain matrix classes. Let us start with the first one.
As mentioned in the introduction, a real square matrix is called a P-matrix if all its
principal minors are positive. It is well known that A 2 R

n�n is a P-matrix if and
only if A does not reverse the sign of any nonzero vector, viz.,

xi.Ax/i � 0; i D 1; 2; : : : ; n H) x D 0:

Fiedler and Ptak [34] proved this result and also established other results for
P-matrices, especially in the class of Z-matrices. The first objective of this article is
to introduce the notion of P-operators for infinite dimensional Banach spaces with
a Schauder basis. We generalize well-known relationships between P-matrices and
certain specific subsets of intervals of matrices to intervals of operators over certain
Banach spaces. These are presented in Sect. 6.3.

We will be dealing with the notion of the linear complementarity problem. Let
us recall that, for A 2 R

n�n and q 2 R
n, the linear complementarity problem written

as LCP.A; q/ is to find a vector x 2 R
n such that

x � 0; Ax C q � 0 and hx; Ax C qi D 0:

In the context of the linear complementarity problem, it is a well-known fact that A
is a P-matrix if and only if LCP.A; q/ has a unique solution for all q 2 R

n. Another
class is defined next. A 2 R

n�n is called a Q-matrix if LCP.A; q/ has a solution for
all q 2 R

n. Using the characterization mentioned just now, it follows that a P-matrix
must be a Q-matrix, but the converse is not true.

A frequently used result for identifying Q-matrices is the famous Karamardian
theorem (Theorem 7.3.1), [56]. We state this result next. Let K be a solid and closed
cone in R

n, and K� its dual cone (the precise definitions are given below). Let A 2
R

n�n. If the complementarity problem LCP.A; q/ has a unique solution (namely,
zero) for q D 0, and for some q 2 int.K�/, then it has a solution for all q 2 R

n.
The third class of matrices are M-matrices. This notion was discussed briefly in

Chap. 2, Sect. 2.1. For M-matrices, the following result is widely known:
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Theorem 6.2.1 (Theorem 2.3, Chap. 6, [11]). For a Z-matrix A 2 R
n�n, the

following statements are equivalent:

(a) A D sI � B, for some B � 0 with s > �.B/.
(b) There exists x > 0 such that Ax > 0.
(c) A�1 exists and A�1 � 0.

Let us recall that the condition A�1 � 0 was referred to as inverse positivity in
Sect. 2.1. We refer the reader to the excellent books by Berman and Plemmons [11]
and by Cottle et al. [21] for more details and the relationships between the various
matrix classes in the context of the linear complementarity problem.

Let us recall another result for M-matrices, this time, in connection with matrix
intervals. For A; B 2 R

m�n with A � B, let J.A; B/ WD ŒA; B� be the set of all
matrices C such that A � C � B, where we denote X � Y if X � Y � 0. Let us now
state a particular case of a result of Rohn (Theorem 1) [97]. Let A; B 2 R

n�n with
A � B. Then A and B are invertible M-matrices if and only if every C 2 J.A; B/ is
an invertible M-matrix.

In what follows, we present a brief survey of some extensions of M-matrices.
First, we consider the finite dimensional case. For the past decade and a half,
generalizations of M-matrices have been studied quite extensively in certain non-
associative objects called Euclidean Jordan algebras. We just mention that the real
Euclidean space and the space of all real symmetric matrices are examples of such
an algebraic structure. In this connection, an interesting result was proved by Gowda
and Tao [40] (Theorem 7), which characterizes M-matrices, in terms of Q-matrices.
The main result of this chapter, viz., Theorem 6.5.1, is motivated by this result.

In order to study extensions of the results discussed above, we recall the notion
of cones in vector spaces. Let X be a real linear space. Then X is called a partially
ordered vector space if there is a partial order “�” defined on X such that the
following compatibility conditions are satisfied:

x � y H) x C z � y C z for all z 2 X

and

x � y H) ˛x � ˛y for all ˛ � 0:

A subset XC of a real linear space X is said to be a cone if, XC C XC � XC,
˛XC � XC for all ˛ � 0, XC \ �XC D f0g and XC ¤ f0g. A vector x 2 X is said
to be nonnegative, if x 2 XC. This is denoted by x � 0. We define x � y if and only
if y � x 2 XC. Then “�” is a partial order (induced by XC) on X. Conversely, if X is
a partially ordered normed linear space with the partial order “�”, then the set

XC D fx 2 X W x � 0g

is a cone, called the positive cone of X. By a partial ordered real normed linear
space X we mean a real normed linear space X together with a (topologically) closed
positive cone XC. Let X0 denote the space of all continuous linear functionals on X.
The dual cone X�C of XC is defined as follows:



76 6 M-Matrices over Infinite Dimensional Spaces

X�C D ff 2 X0 W f .x/ � 0 for all x 2 XCg:

A partially ordered real normed linear space which is also a Banach space is called a
partially ordered Banach space. A partially ordered real normed linear space which
is also a Hilbert space is called a partially ordered Hilbert space.

A cone XC on a real normed linear space X is said to be generating, if X D
XC � XC, normal if there exists ı > 0 such that jjx C yjj � ıjjxjj for all x; y 2 XC
and solid if int.XC/ ¤ ;, where int.XC/ denotes the set of all interior points of XC.
If X is a Hilbert space, then a cone XC is said to be self-dual, if XC D X�C.

Let us include some examples. The real Euclidean space X with the usual norm
and XC D R

nC, the nonnegative orthant is a solid, generating, and normal cone.
The usual cones of nonnegative sequences in the space c (of all convergent real
sequences), the space c0 (of all convergent real sequences converging to zero) as
subspaces of `p; 1 � p � 1, and the latter spaces are normal. Here the space `p is
endowed with the usual cone

`
p
C WD fx D .x1; x2; : : :/ 2 `p W xi � 0 for all ig:

`
p
C is not solid for 1 � p < 1, while `1C is a solid cone. Let X D C.T/ be the

space of all real-valued continuous functions on a compact Hausdorff space T. Let
XC be the cone of all nonnegative functions on C.T/. Then XC is solid, generating,
and normal. The cone of all functions on Œ0; 1� nonnegative almost everywhere in
the space Lp.Œ0; 1�/ has properties similar to the case of `p. Consider the space
C1.Œ0; 2��/ with the norm k f kD k f k1 C k f 0 k1, f 2 C1.Œ0; 2��/, where
the prime denotes the derivative and both the norms on the right-hand side denote the
supremum norm. Let XC be the cone of nonnegative functions which also belong
to C1.Œ0; 2��/. Then XC is not a normal cone. Let us also list a few relationships
between these specialized cones which will be useful in our discussion. If a cone
in a normed linear space has nonempty interior, then it is generating. If a cone in
a Banach space is generating, then its dual cone is normal in the dual space. For
proofs of these results, we refer to [136].

Let us recall that if X is a partially ordered real normed linear space with
the positive cone XC, then an operator T 2 B.X/ is said to be XC-nonnegative
(nonnegative), if TXC � XC. In this case, we write T � 0. Also, for T1; T2 2 B.X/,
by T1 � T2 we mean that T1 � T2 � 0. In order to view the results for the case of
infinite dimensional spaces in a proper perspective, we consider a reformulation of
Theorem 6.2.1. XC D R

nC is a cone in X. The equivalence of statements (a) and (c)
can now be paraphrased as: s > �.B/, with B nonnegative if and only if sI � B is
invertible and

.sI � B/�1.XC/ � XC

(or the same thing, sI � B is inverse positive). Schaefer proved an analogue of
Theorem 6.2.1 for operators over Banach spaces. Apparently, the term M-operators
was not used. Let B.X/ denote the space of all bounded linear operators on the



6.2 Preliminary Notions 77

normed linear space X. We then have the following (Proposition 2) [98]: Let X be a
partially ordered Banach space with the positive cone XC such that XC and X�C are
normal and T 2 B.X/ satisfy T.XC/ � XC. Then ˛ > �.T/ if and only if

.˛I � T/�1 2 B.X/

and

.˛I � T/�1.XC/ � XC:

The first use of the term M-operators in the context of infinite dimensional spaces
seems to have been made by Marek and Szyld [71]. We recall this next. Let X be a
partially ordered Banach space with the positive cone XC. An operator T 2 B.X/ is
said to be a Z-operator if T D sI � P, with s � 0; P.XC/ � XC. A Z-operator is
said to be an M-operator if s � �.P/. The set of all invertible M-operators will be
denoted by Minv .

A bounded linear operator A on X is said to have property “p” if every number
� 2 �.A/ with j�j D �.A/ is a pole of the resolvent operator R.; A/ WD .I �A/�1.

Let us now recall a result of Marek and Szyld, which presents sufficient
conditions under which an M-operator is inverse positive (Lemma 4.2) [71]. Let
X be a partially ordered normed linear space with the positive cone XC. Suppose
that a bounded linear operator A on X could be written as A D U � V with U; V also
bounded and linear. Suppose, further that

U�1V � 0 and A�1V � 0

and that both have property “p”. Then B D I � U�1V is inverse positive.
There is at least one more definition of an M-operator (different from the one

above and also a weaker version) that has been proposed in the infinite dimensional
case by Kalauch (Chap. 2, Sect. 2.4, [55]). Both these reduce to the notion of an
invertible M-matrix, when applied to the real Euclidean space and when the cone
is taken to be the nonnegative orthant. For the reader interested in situations when
these two concepts coincide, we refer to Corollary 2.4.5 in [55]. For our purposes,
we consider the stronger version of the definition of an M-operator as given in
[71]. For such operators, in Theorem 6.4.3, a generalization of Theorem 6.2.1 over
Banach spaces is presented, and in Theorem 6.4.6, an extension of the result on
intervals of M-matrices of [97] to operator intervals in Banach spaces.

As the third broad objective, the authors of [92] extended the definition of a
Q-matrix to the infinite dimensional case. In fact, two classes of Q-operators were
considered, one just named a Q-operator and another called a Qs-operator. It is
shown that for Z-operators, the former is stronger than the latter. More importantly,
they demonstrated that a Z-operator which is also a Q-operator must be inverse
positive. This is the main result of Sect. 6.5 and is proved in Theorem 6.5.1.

We organize this chapter as follows. In the next section, we consider P-operators
and review certain important results for such operators, derived recently. In the
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fourth section, we prove some interesting results on M-operators. In the fifth
section, we introduce the notion of Q-operators and study their relationship with
M-operators. In the concluding section, we present a characterization theorem for
the nonnegativity of the Moore–Penrose inverse of a Gram operator on a Hilbert
space.

6.3 P-Operators

In this section, we make a review of some relationships between certain operators
having the P-property and invertibility of some specific subsets of intervals of
operators, that were proved recently. Certain partial results were reported in this
work. The precise statements are given in this section. The matrix case has been
investigated by Johnson and Tsatsomeros [50].

We begin with the notion of a P-operator (Definition 6.3.1, [92]). Let X be a
real Banach space. A sequence fzn W n 2 Ng in X is said to be a Schauder basis
for X if for each x 2 X, there exists a unique sequence of scalars f˛n.x/g such that
x D P1

nD1 ˛n.x/zn. In such a case, we denote xn D ˛n.x/; n 2 N. For the Banach
spaces lp.N/ with 1 � p < 1, by the standard Schauder basis we mean the set
fen W n 2 Ng, where ei denotes the vector whose ith entry is one and all other entries
are zero.

Definition 6.3.1. Let X be a Banach space with a Schauder basis. A bounded linear
operator T W X �! X is said to be a P-operator relative to the given Schauder basis,
if for any x 2 X, the inequalities xi.Tx/i � 0 for all i imply that x D 0.

For 1 � p < 1, consider the linear operator T W lp.N/ �! lp.N/ defined by

T.x/ D .x1;
x2

2
;

x3

3
; : : :/; x 2 lp.N/:

Then T is a P-operator with respect to the standard Schauder basis. Let T be a
positive definite operator on l2.N/, viz., hTx; xi > 0 for all 0 ¤ x 2 l2.N/. Then T
is a P-operator with respect to the standard Schauder basis. That the converse is not
true is illustrated by the following example. Let T W l2.N/ �! l2.N/ be defined by

T.x1; x2; x3; � � � / D .x1 C x2; x2; x3; � � � /; x 2 l2.N/:

Then T is a P-operator relative to the standard Schauder basis but not a positive
definite operator.

In the finite dimensional case, the definition of a P-operator coincides with that
of a P-matrix due to the sign non-reversal property. In this situation, A is a P-matrix
if and only if A�1 exists and A�1 is also a P-matrix. But unlike the matrix case,
over infinite dimensional spaces, a P-operator need not be invertible, for instance,
the first example given above. However, we have the following result. Let T 2 B.X/
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be an invertible P-operator relative to a given Schauder basis of X. Then T�1 is a
P-operator relative to the same Schauder basis.

Next, we develop some notation. Let X be a Banach space with a Schauder basis
B. For A; B 2 B.X/, let

h.A; B/ WD fC 2 B.X/ W C D tA C .1 � t/B; t 2 Œ0; 1�g:

Let T be a fixed diagonal operator relative to B with diagonal entries in Œ0; 1�. Let

c.A; B/ WD fC 2 B.X/ W C D AT C B.I � T/g

and

r.A; B/ WD fC 2 B.X/ W C D TA C .I � T/Bg:

Let GL.X/ denote the set of bounded linear invertible operators on X. The next
result gives a characterization for the inclusion h.A; B/ � GL.X/ to hold. This
generalizes a matrix result (Observation 3.1, [50]). Let A; B 2 B.X/ be invertible.
Then h.A; B/ � GL.X/ if and only if BA�1 has no negative spectral value.

For matrices, it is known that any matrix in the subset r.A; B/ is invertible if
and only if BA�1 is a P-matrix [50]. In the next result, a partial generalization is
considered. Let X be a Banach space with a Schauder basis B D fzn W n 2 Ng and
A; B 2 B.X/ be invertible. If r.A; B/, relative to B, satisfies r.A; B/ � GL.X/, then
BA�1 is a P-operator with respect to B. Conversely, if BA�1 is a P-operator with
respect to B, then 0 … �p.C/ for all C 2 r.A; B/.

In a similar way, the following result can be established.
Let X be a Banach space with a Schauder basis B D fzn W n 2 Ng and A; B 2

B.X/ be invertible. If c.A; B/, relative to B, satisfies c.A; B/ � GL.X/, then B�1A
is a P-operator relative to B. Conversely, if B�1A is a P-operator relative to B, then
0 … �p.C/ for all C 2 c.A; B/. For proofs, we refer to [92].

Let us conclude this section by pointing out to the fact that, just as in the matrix
case, the Schur complement and the principal pivot transformation preserve the P-
property of an operator. The proofs of these results are given in Sect. 3.2 of the
work [92].

6.4 M-Operators

In this section, we consider M-operators. Our intention is to review an extension of
Theorem 6.2.1 to infinite dimensional spaces, which was proved recently. Towards
this objective, we introduce the notion of a Stiemke operator. Using this, we present
the desired characterization in Theorem 6.4.3. Our next goal is to extend the interval
result for M-matrices and this is given in Theorem 6.4.6, under certain conditions
on the cone. We would like to remark that in a recent work of Sivakumar and Weber
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(Theorem 6.4.2, [126]), necessary and sufficient conditions were presented for an
operator interval to contain only invertible operators. This interval is more general
(and much larger) than what we have considered in Theorem 6.4.6. However, the
result of [126] is applicable for rather restricted classes of cones. Let us also add
that whereas their proof uses the notion of splittings of operators, the argument in
the proof of Theorem 6.4.6 uses only the monotonicity of the spectral radius.

We start with the definition of a Steimke operator.

Definition 6.4.1 (Definition 4.1, [92]). Let X be a partially normed linear space
with a solid cone XC. An operator A 2 B .H/ is called a Stiemke operator if
A.int.XC// \ int.XC/ ¤ ;.

In the next result, we provide a sufficient condition for an operator to be a Stiemke
operator.

Theorem 6.4.2 (Theorem 4.1, [92]). Let X be a partially ordered normed linear
space where the positive cone XC is solid. If A 2 B.X/ is invertible and A�1 � 0,
then A is a Stiemke operator.

Proof. Let q 2 int.XC/ and p D A�1q. Then p 2 XC and Ap 2 int.XC/. Now,
we shall show that p 2 int.XC/. Since Ap 2 int.XC/, there exists � > 0 such that
the open ball (with center Ap and radius �) U.Ap; �/ � XC. Since A is bounded
there exists ı > 0 such that A.U.p; ı// � U.Ap; �/. Since A�1.XC/ � XC, it
follows that U.p; ı/ � A�1.U.Ap; �// � A�1.XC/ � XC. Thus p 2 int.XC/. Hence
A.int.XC// \ int.XC/ ¤ ; and so A is a Stiemke operator. ut

We are now in a position to discuss the main result of this section. This result
presents two equivalent conditions for a Z-operator to be an invertible M-operator.
Part of this result was already established by Schaefer [98], as recorded earlier. As
mentioned there, this extends Theorem 6.2.1 to infinite dimensional spaces.

Theorem 6.4.3 (Theorem 4.2, [92]). Let X be a Banach space, XC be a solid
and normal cone, and A be a Z-operator. Then the following statements are
equivalent:

.a/ A 2 Minv .

.b/ A is an invertible Stiemke operator.

.c/ A is invertible and A�1 � 0 .

Let us consider a few examples, next.

Example 6.4.4. Consider the Hilbert space H D R ˚ l2.N/ D f.�; x/ W � 2 R; x 2
l2.N/g with the inner product defined in the following way:

h.�1; x1/; .�2; x2/i D �1�2 C hx1; x2i:
Then the norm induced by the inner product is jj.�; x/jj D p

�2 C jjxjj2. Consider
the cone

HC D f.�; x/ 2 H W � � 0; � � jjxjjg
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on H called the hyperbolic cone [69]. This is an extension of the definition of the
ice-cream cone to infinite dimensional normed linear spaces. It may be shown that
int.HC/ ¤ ;. Let B W l2.N/ ! l2.N/ be defined by

B.x/ D .t1x1; t2x2; t3x3; � � � / with
1

2
< ti � 1 for all i:

Consider the operator D on H defined by D D
�

1 0

0 B

�

. Then D is a bounded linear

operator on H. Also, jjBxjj � jjxjj for all x 2 l2.N/. If .�; x/ 2 HC, then � � jjxjj so
that � � jjBxjj. Hence D is nonnegative, i.e., D.HC/ � HC. It is clear that �.D/ � 1.
Define A W H �! H by A D 2I � D. Then A 2 Minv .

Example 6.4.5. Consider the Banach Space X D l1.N/ and the cone

XC D fx D .xi/ 2 X W xi � 0 for all ig:

Then XC is solid and normal. Consider the operator T whose entries .tij/, relative
to the standard Schauder basis fe1; e2; � � � g, satisfy the conditions tij � 0 andP1

jD1 tij � 1. Then T 2 B.X/ and T.XC/ � XC. It is clear that e D .1; 1; 1; � � � / 2
int.XC/ and Te � e. We then have �.T/ � 1. Thus �I � T 2 Minv for all � > 1.

Next, we turn our attention to intervals of operators. We begin with the following
definition. Let X be a partially ordered Banach space and XC be the positive cone in
X. For A; B 2 B.X/, with A � B, define J.A; B/, an interval of operators by

J.A; B/ D ŒA; B� D fD 2 B.X/ W A � D � Bg:

The following result is an extension of the result of Rohn for an interval of M-
matrices:

Theorem 6.4.6 (Theorem 4.3, [92]). Let X be a Banach space and XC be a normal
and generating cone in X. Let A; B 2 B.X/ with A � B. Then A; B 2 Minv if and
only if J.A; B/ � Minv .

Proof. Sufficiency is obvious. We prove the necessity part. Let D 2 J. Consider
A D sI � E; B D sI � F with E � 0; F � 0; s > �.E/ and s > �.F/. It follows
that D can be represented as D D sI � G with G � 0. Since E � G � F � 0,
by the monotonicity of the spectral radius, we have �.E/ � �.G/ � �.F/, so that
s > �.G/. Hence D 2 Minv . ut
Remark 6.4.7. The result of [126] mentioned in the beginning of this section
is applicable for cones with nonempty interior. This assumption is not made in
Theorem 6.4.6. The assumptions that XC is generating and normal are indispensable
in Theorem 6.4.6, as shown in [92].
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6.5 Q-Operators

In this section, we recall the concept of Q-operators as introduced in [92] and their
relationships with M-operators. Let us recall that in the matrix case, the statement
that a Z-matrix is a Stiemke matrix is equivalent to the condition that the given
matrix is inverse positive or that it is a Q-matrix. This result is quite well known in
the theory of linear complementarity problems [11, 21]. We show that a Q-operator
which is also a Z-operator must be an (invertible) M-operator, so that it is inverse
positive. This statement is included in Theorem 6.5.1, which is the main result of
this section.

Let H be a real Hilbert space, HC be a cone in H, and H�C denote the dual cone of
HC. For a given vector q 2 H and an operator A 2 B.H/ the cone complementarity
problem, written as LCP.A; q/, is to find a vector z 2 HC such that AzCq 2 H�C and
hz; Az C qi D 0. By taking z D 0, it follows that LCP.A; q/ has solution whenever
q 2 H�C. For H D R

n, HC D R
nC and q 2 R

n the cone complementarity problem
reduces to the linear complementarity problem.

The definition of a Q-operator is now immediate, as in the case of matrices. An
operator A 2 B.H/ is said to be a Q-operator if LCP.A; q/ has a solution for all
q 2 H.

In the finite dimensional case with the usual cone, the definition of Q-operators
coincides with the notion of Q-matrices. Consider the Hilbert space l2.N/ with the
usual cone l2.N/C. Then l2.N/�C D l2.N/C. The identity operator I on l2.N/ is a
Q-operator. More generally, any “diagonal” operator on l2.N/ whose diagonals are
all greater than or equal to 1 can be shown to be a Q-operator.

Next, we consider a subclass of Stiemke operators (Definition 6.4.1), in this
instance, over Hilbert spaces. Let H be a real Hilbert space with a solid cone HC
and A be a Stiemke operator. Then A is called a Qs-operator if for some q 2 int.HC/

with Aq 2 int.HC/ the problems LCP.A�; tq/ for t D 0; 1 have only one solution,
viz., zero.

Let us consider an example. Let H D R ˚ l2.N/ D f.�; x/ W � 2 R; x 2 l2.N/g
and HC be as in Example 6.4.4. Let D be defined on H by D D

�
1 0

0 B

�

, where

B W l2.N/ ! l2.N/ is given by B D diag. 1
2
; 1

3
; 1

4
; � � � /. Then D is a Qs-operator. We

omit the details of the proof.
For any Z-matrix A, it is not difficult to show that if A is a Qs-matrix, then it is a

Q-matrix. Now, we turn to the main result of this section as well as this chapter. As
mentioned in the introduction, this is motivated by Theorem 7 in [40]. As this is an
important result, we include a complete proof.

Theorem 6.5.1 (Theorem 5.4, [92]). Let H be a real Hilbert space with a solid,
normal, and self-dual cone HC. Let A 2 B.H/ be a Z-operator. Consider the
following statements:

.a/ A 2 Minv .

.b/ A is an invertible Stiemke operator.
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.c/ A is invertible and A�1 � 0.

.d/ A is injective and is a Q-operator.

.e/ A is injective and is a Qs-operator.

Then we have .a/ , .b/ , .c/ and .d/ ) .c/ ) .e/.

Proof. The equivalence of .a/; .b/, and .c/ follows from Theorem 6.4.3.

.d/ H) .c/ W Let q 2 HC and consider LCP.A; �q/. Since A has the Q-property,
there exists x 2 HC such that

x 2 HC; y D Ax � q 2 HC and hx; yi D 0:

Since A is a Z-operator, we have A D sI � T where s � 0 and T � 0. Consider

hAx; yi D h.sI � T/x; yi D shx; yi � hTx; yi:

Since THC � HC, HC is self-dual and hx; yi D 0, we have hAx; yi � 0. So,
0 � hAx; yi D hy C q; yi D jjyjj2 C hq; yi. The second term is nonnegative since
HC is self-dual. This means that y D 0 and so Ax D q. What we have shown
is that for every q 2 HC there exists x 2 HC such that q D Ax. Since HC is
generating, this implies that A is surjective. Already, A is injective. Hence, A�1

exists and so A 2 Minv . It now follows that A�1 � 0.
.c/ H) .e/ W Since (c) is equivalent to (b), A is an invertible Stiemke operator.

Now, let q 2 int.HC/ with Aq 2 int.HC/. Let ut be a solution for LCP.A�; tq/

for t D 0; 1. Then

ut 2 HC; vt WD A�ut C tq 2 HC and hut; vti D 0:

Since A is a Z-operator, as shown earlier, we have hAvt; uti � 0. Thus, 0 �
hAvt; uti D hvt; A�uti D hA�ut C tq; A�uti D k A�ut k2 C thAq; uti. Since
both the terms on the extreme right-hand side are nonnegative, we conclude that
A�ut D 0. Since A is invertible, we then have ut D 0. Thus A is a Qs-operator.

ut
The concluding result of this chapter is an important consequence of Theo-

rem 6.5.1, where we obtain the following well-known result for Z-matrices. We
omit the details and refer the reader to [92].

Corollary 6.5.2. Let A 2 R
n�n be a Z-matrix. Then the following statements are

equivalent:

.a/ A 2 Minv .

.b/ There exists p > 0 such that Ap > 0.

.c/ A is invertible and A�1 � 0.

.d/ A is a Q-matrix.
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6.6 Nonnegative Moore–Penrose Inverses of Gram Operators

Let us recall that a matrix A 2 R
n�n is called monotone if

Ax � 0 H) x � 0;

where the ordering of vectors is the usual component wise order. Collatz proposed
this notion and studied monotone matrices in his investigations on solving certain
differential equations by applying finite difference methods. He studied many
properties of such matrices and gave sufficient conditions for a matrix to be
monotone. In particular, he showed that A is monotone if and only if A is invertible
and that the inverse of A is (entrywise) nonnegative. In other words, a monotone
matrix is inverse positive in the terminology that we had adopted in Sect. 2.1,
Chap. 2. As discussed there, any M-matrix is monotone. One of the class of
monotone matrices that has received considerable attention in recent years is the
class of Gram matrices of a given matrix. Recall that for A 2 R

m�n, the matrix A�A
(or AA�) is referred to as the Gram matrix corresponding to A. These matrices are
important in convex optimization problems and a lot of attention has been paid to
their characterizations. In this section, our intention will be to review a rather recent
work of Kurmayya and Sivakumar [61], where some of the characterizations for
monotonicity of Gram matrices have been extended to the case of Gram operators
between Hilbert spaces. Inverse positivity is extended to the nonnegativity of the
Moore–Penrose inverse.

In order to state their result, we need some preliminaries. A cone C in an inner
product space is said to be acute if hx; yi � 0 for all x; y 2 C. C is said to be obtuse,
if C \ sp fCg is acute, where sp fCg denotes the linear subspace spanned by C and
sp fCg denotes is topological closure. The lexicographic cone in `2 is an example
of a (nonclosed) acute cone. In particular, if H and K are real Hilbert spaces, A 2
B.H; K/ and C D AHC, where HC is a cone in H, then the obtuseness of C is the
same as the acuteness of C� \ R.A/, where as before, C� denotes the dual cone of
C. For A 2 B.H; K/ we shall refer to A�A as the Gram operator corresponding to A.

We are now in a position to state the aforementioned characterization. Let
A 2 B.H; K/ be such that R.A/ is closed. Let HC � H be a closed cone such that
A�A.HC/ � HC. Set C D AHC and D D .A�/�H�C. Then Kurmayya and Sivakumar
(Theorem 6.4.6, [61]) show that the following statements are equivalent:

.a/ .A�A/�.H�C/ � HC.

.b/ C� \ R.A/ � C.

.c/ D is acute.

.d/ C is obtuse.

.e/ A�Ax 2 PR.A�/.H�C/; x 2 R.A�/ H) x 2 HC.

.f / A�Ax 2 H�C; x 2 R.A�/ H) x 2 HC.
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The following consequences are obtained. For H D R
n ; K D R

m and
HC D R

nC \ R.A/, the conditions .b/–.f / above are equivalent to the statement
(Corollary 3.7, [61]):

.A�A/�.RnC/ � R
nC;

viz., the (entrywise) nonnegativity of .A�A/�. It must be mentioned that, in addition
to the assumptions made as above, if the matrix A has a full column rank, then the
conditions .b/–.f / above are equivalent to the statement (Corollary 3.8, [61]):

.A�A/�1 � 0:

It may be verified that some prominently known characterizations of inverse
positivity follow as a particular case of this result. Sivakumar also obtained a
new characterization of the nonnegativity of the Moore–Penrose inverse of Gram
operators (Theorem 13.7, [125]) using a completely different proof approach. Let
us conclude this section by briefly mentioning that, in that work, it is shown that an
additional statement of equivalence for the inclusion .A�A/�.H�C/ � HC to hold is
given by:

for every x 2 H; there exists y 2 K such that y ˙ x 2 AHC with k y k�k x k :



Chapter 7
Infinite Linear Programming

7.1 Introduction

Infinite linear programming problems are linear optimization problems where, in
general, there are infinitely (possibly uncountably) many variables and constraints
related linearly. There are many problems arising from real world situations that
can be modelled as infinite linear programs. These include the bottleneck problem
of Bellman in economics, infinite games, and continuous network flows, to name a
few. We refer to the excellent book by Anderson and Nash [2] for an exposition of
infinite linear programs, a simplex type method of solution and applications. Semi-
infinite linear programs are a subclass of infinite programs, wherein the number
of variables is finite with infinitely many constraints in the form of equations or
inequalities. Semi-infinite programs have been shown to have applications in a
number of areas that include robot trajectory planning, eigenvalue computations,
vibrating membrane problems, and statistical design problems. For more details we
refer to the two excellent reviews by Hettich and Kortanek [43] and Polak [90] on
semi-infinite programming.

We shall be making use of the notion of a partially ordered Hilbert space, which
was discussed in Chap. 6. Let H1 and H2 be real Hilbert spaces with H2 partially
ordered, A W H1 ! H2 be bounded linear, c 2 H1 and a; b 2 H2 with a � b. Consider
the linear programming problem called interval linear program ILP.a; b; c; A/ W

Maximize hc; xi
subject to a � Ax � b:

Such problems were investigated by Ben-Israel and Charnes [9] in the case
of finite dimensional real Euclidean spaces and explicit optimal solutions were
obtained using the techniques of generalized inverses of matrices. These results were
later extended to the general case and several algorithms were proposed for interval
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linear programs. Some of these results were extended to certain infinite dimensional
spaces by Kulkarni and Sivakumar [59, 60].

The objective of this chapter is to present an algorithm for the countable semi-
infinite interval linear program denoted SILP.a; b; c; A/ of the type:

Maximize hc; xi
subject to a � Ax � b;

where c 2 R
m, H is a real separable partially ordered Hilbert space, a; b 2 H with

a � b and A W Rm �! H is a (bounded) linear map. Finite dimensional truncations
of the above problems are solved as finite dimensional interval programs. This
generates a sequence fxkg with each xk being optimal for the truncated problem
at the kth stage. This sequence is shown to converge to an optimal solution of the
problem SILP.a; b; c; A/. We also show how this idea can be used to obtain optimal
solutions for continuous semi-infinite linear programs and to obtain approximate
optimal solutions to doubly infinite interval linear programs.

7.2 Preliminaries

Let us briefly recall the necessary definitions and results that are needed in the
subsequent discussion. We will state our results generally and then specialize later.
Let H1 and H2 be real Hilbert spaces with H2 partially ordered, A W H1 ! H2 be
linear, c 2 H1 and a; b 2 H2 with a � b. Consider the interval linear program
ILP.a; b; c; A/ W

Maximize hc; xi
subject to a � Ax � b:

Definition 7.2.1. Set F D fx W a � Ax � bg. A vector x� is said to be feasible for
ILP.a; b; c; A/ if x� 2 F. The problem ILP.a; b; c; A/ is said to be feasible if F ¤ ;.
A feasible vector x� is said to be optimal if hc; .x� � x/i � 0 for every x 2 F.
ILP.a; b; c; A/ is said to be bounded if supfhc; xi W x 2 Fg < 1. If ILP.a; b; c; A/ is
bounded, then the value ˛ of the problem is defined as ˛ D supfhc; xi W x 2 Fg.

We will assume throughout the paper that F ¤ ;. Boundedness is then
characterized by Lemma 7.2.2, to follow. Let A W H1 �! H2 be linear. A linear
map T W H2 �! H1 is called a f1g-inverse of A if ATA D A. One may recall that this
equation is just one of the equations that the Moore–Penrose inverse is required to
satisfy and so the Moore–Penrose inverse of A is one choice for a f1g-inverse. In this
regard, let us also remember that a bounded linear map A has a bounded f1g-inverse
if R.A/, the range space of A is closed [77].
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Lemma 7.2.2 (Lemma 2, [59]). Suppose H1 and H2 are real Hilbert spaces, H2 is
partially ordered, and ILP.a; b; c; A/ is feasible. If ILP.a; b; c; A/ is bounded then
c ? N.A/. The converse holds if A has a bounded f1g-inverse and Œa; b� D fz 2 H2 W
a � z � bg is bounded.

7.3 Finite Dimensional Approximation Scheme

Let H be a partially ordered real Hilbert space with an orthonormal basis
fun W n 2 Ng such that un 2 HC for all n, where HC is the positive cone in H. Let
fSng be a sequence of subspaces in H such that fu1; u2; � � � ; ung is an orthonormal
basis for Sn. Then [1nD1Sn D H. Let Tn W H �! H be the orthogonal projection of
H onto Sn. Then for x D .x1; x2; � � � / 2 H, one has

Tn.x/ D .x1; x2; � � � ; xn; 0; 0; � � � /:
Then the sequence fTng converges strongly to the identity operator on H.

Consider the semi-infinite linear program SILP.a; b; c; A/. Suppose that
this problem is bounded and that the columns of A are linearly independent.
Then SILP.a; b; c; A/ is bounded, by Lemma 7.2.2. Define the kth subproblem
SILP.Tka; Tkb; c; TkA/ denoted by SILPk by:

Maximize hc; xi
subject to Tka � TkAx � Tkb:

SILPk has k interval inequalities in the m unknowns xi, i D 1; 2; � � � ; m. In view of
the remarks given above, it follows that SILP.Tka; Tkb; c; TkA/ is bounded whenever
k � m.

We now state a convergence result for the sequence of optimal solutions of the
finite dimensional subproblems. The proof will appear elsewhere [53].

Theorem 7.3.1. Let fxkg be a sequence of optimal solutions for SILPk. Then fxkg
converges to an optimal solution of SILP.a; b; c; A/.

Next, we present a simple example to illustrate Theorem 7.3.1. A detailed
study of various examples showing how the above theorem can be used to obtain
optimal solutions even for a continuous semi-infinite linear program is presently
underway [53].

Example. Let H D `2, A W R2 ! `2 be defined by

A D

0

B
B
B
B
B
@

1 0

1 1
1
2

1
4

1
3

1
9

:::
:::

1

C
C
C
C
C
A
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a D .0; �1; � 1
4
; � 1

9
; � � � /; b D .1; 0; 0; � � � /, and c D .1; 0/. Consider the semi-

infinite program SILP.a; b; c; A/ given by

Maximize x1

subject to 0 � x1 � 1;

�1

k2
� x1

k
C x2

k2
� 0; k D 1; 2; 3; � � � (7.1)

Clearly, c ? N.A/, as N.A/ D f0g and so the problem is bounded by Lemma 7.2.2.
Rewriting the second set of inequalities, we get

�1

k
� x1 C x2

k
� 0; k D 1; 2; 3; � � �

Then x1 D 0, by passing to limit as k ! 1. Thus .0; ˛/; �1 � ˛ � 0 is an optimal
solution for SILP.a; b; c; A/ with optimal value 0.

Now we consider the finite truncations. Let Sk D fe1; e2; � � � ; ekg where
fe1; e2; e3; � � � g is the standard orthonormal basis for `2. Define

Tk D
�

Ik 0

0 0

�

where Ik is the identity matrix of order k � k, k � 2. Thus R.TkA/ D Sk. The
subproblem SILP.Tka; Tkb; c; TkA/ is

Maximize x1

subject to 0 � x1 � 1;

�1

.l � 1/2
� x1

l � 1
C x2

.l � 1/2
� 0; l D 2; 3; � � � ; k:

Clearly, the subproblem SILP.Tka; Tkb; c; TkA/ is bounded and the optimal solution
is xk D . 1

k�2
;
�.k�1/

k�2
/. This converges to .0; �1/ in the limit as k ! 1.

7.4 Approximate Optimal Solutions to a Doubly Infinite
Linear Program

In this section, we show how we can obtain approximate optimal solutions to
continuous infinite linear programming problems. With the notation adopted as
earlier, assume that ILP.a; b; c; A/ is bounded. Let c.k/ denote the vector in H whose
first k components are the same as the vector c and whose other components are
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zero. Let Ak denote the matrix with k columns and infinitely many rows whose k
columns are precisely the same as the first k columns of A in that order. Consider
the problem:

Maximize < c.k/; u >

subject to a � Aku � b;

for u 2 R
k. This problem is SILP.a; b; c.k/; Ak/ for each k. Suppose that the columns

of Ak are linearly independent for all k. Denoting SILP.a; b; c.k/; Ak/ by Pk, we solve
Pk using Theorem 7.3.1. Let uk D .u1; u2; � � � ; uk/

T be an optimal solution for Pk.
Let u D .uk; 0/T 2 H. Then AkC1u D Akuk. Since a � AkC1u � b, the vector u 2 H
is feasible for PkC1. Let v.Pk/ denote the value of problem Pk, viz.,

v.Pk/ WD supfhc.k/; ui W a � Aku � b:g

Then

v.PkC1/ � v.Pk/ as hc.kC1/; ui � hc.k/; ui:

Let xk D .uk; 0; 0 � � � / 2 H. Then xk is feasible for ILP.a; b; c; A/ and hc; xki D
hc.k/; xki, the value of Pk. Thus the sequence fhc; xkig is an increasing sequence
bounded above by the value of ILP.a; b; c; A/ and is hence convergent. It follows
that fxkg is weakly convergent. However, unlike the semi-infinite case, it need not
be convergent. (In the following example, it turns out that fxkg is convergent.) So,
we have optimal value convergence but not optimal solution convergence. Hence
our method yields only an approximate optimal solution for a continuous linear
program. It will be interesting to study how good is this approximation.

Example. Let A W `2 ! `2 be defined by

A D

0

B
B
B
@

1 0 0 0

1 1
2

0 � � �
1 1

2
1
3

� � �
:::

:::
:::

: : :

1

C
C
C
A

:

Let c D .1; 1
4
; 1

9
; � � � /, a D 0, and b D .1; 1

2
; 1

3
; � � � /. The problem ILP.a; b; c; A/ is

Maximize x1 C x2

4
C x3

9
C � � �

subject to 0 �
lX

iD1

xi

i
� 1

l
; l D 1; 2; 3; � � � :
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Clearly, A 2 BL.`2/ and N.A/ D f0g. Therefore c ? N.A/, i.e., the problem
ILP.a; b; c; A/ is bounded. Consider the kth subproblem Pk:

Maximize hc.k/; ui
subject to a � Aru � b; r D 1; 2; � � � ; k

where c.k/ D .1; 1=4; 1=9; � � � ; 1=k2; 0; 0; : : :/, and Ak W Rk ! `2 is defined by

A D

0

B
B
B
B
B
B
@

1 0 � � � 0

1 1
2

� � � � � �
:::

::: � � � :::

1 1
2

� � � 1
k

:::
::: � � � :::

1

C
C
C
C
C
C
A

:

Clearly, the subproblem is bounded. By the finite dimensional scheme, the optimal
solution of the subproblem Pk is found to be

x.k/ D .1; �1; �1

2
; �1

3
; � � � ; � 1

k � 1
; 0; 0; : : :/

which converges to x� D .1; �1; � 1
2
; � 1

3
; � � � /. The optimal value converges to

6:450. We conclude by observing that since A is invertible, it is possible to solve
the original problem by the methods in [59], directly.



Chapter 8
Applications

8.1 Introduction

In this chapter, we collect many applications of the various ideas that were discussed
in the earlier chapters. In the second section, we show how the results for weakly
chained diagonally dominant matrices, discussed in Sect. 2.3, have been applied in
obtaining bounds for the `1 norm for the solutions of certain differential systems
and also in deriving bounds for a critical parameter in electric circuit design. In
Sect. 8.3, we review how a mapping problem could be reduced to an infinite system
of linear equations and then solved. In Sect. 8.4, a similar idea is employed to show
how the problem of the flow of fluids in and between two pipes could be handled.
In the next section, viz., Sect. 8.5, we recall how some special double points of
the Mathieu differential equation could be computed using techniques from infinite
matrices. In Sect. 8.6, we discuss how the iterative method described earlier could be
applied to obtain good approximate values of Bessel functions in certain intervals.
Section 8.7 reviews results for the minimal eigenvalue of the Dirichlet Laplacian
in an annulus. In the next section, an approximate solution providing the best
match for the hydraulic head in a porous medium is presented. The next section,
namely Sect. 8.9, considers eigenvalues of the Laplacian in an elliptic domain. The
penultimate section studies the problem of the possibility of “hearing” the shape of
a drum. The concluding section, Sect. 8.11, discusses how one could determine the
zeros of a Taylor series.

8.2 Two Applications of Weakly Chained Diagonally
Dominant Matrices

Let us recall that, in Sect. 2.3 the notion of weakly chained diagonal dominance for
certain classes of Z-matrices was discussed. Results for upper and lower bounds for
the minimal eigenvalue of A, and its corresponding eigenvector, and for the entries

© Springer International Publishing Switzerland 2016
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of the inverse of A were reviewed there. In what follows, we show how these results
have been applied to find meaningful two-sided bounds for both the `1-norm and
the weighted Perron-norms of the solution x.t/ to the linear differential system

Px D �Ax; x.0/ D x0 > 0:

Note that x.t/ D .x1.t/; x2.t/; : : : ; xn.t//T and Px D Px.t/ D .
dx1.t/

dt ; : : : ;
dxn.t/

dt /T . In
particular, these systems occur in R-C electrical circuits and a detailed analysis
of a model for the transient behavior of digital circuits is studied by Shivakumar,
Williams, Ye and Marinov [120].

In order to apply the results of Sect. 2.3, we assume that A is an irreducible
weakly chained diagonally dominant Z-matrix with positive diagonal entries. It is
proved (Theorem 5.1, [120]) that for all t � 0,

nX

iD1

zixi.t/ D e�qt
nX

iD1

zix0
i ; (8.1)

where q D q.A/ is the Perron root and z D .z1; z2; : : : ; zn/T is the unique normalized
positive eigenvector (the Perron vector) of AT corresponding to q.

If bounds for the Perron root are available, viz., 0 < qm � q � qM, then one has

zmin

zmax
kx0ke�qM � kx.t/k � zmax

zmin
kx0ke�qm ; (8.2)

where zmin � zi � zmax for all i D 1; 2; : : : ; n and k : k denotes the 1-norm.
References to results of similar nature which motivated the above are given in [120].

Let us turn our attention to a problem in electrical circuits which was also con-
sidered by the same authors. It is rather well-known that if v.t/ D .v1.t/; v2.t/; : : : ;

vn.t//T denotes the vector of node voltages, then under certain conditions, the
transient evolution of an R-C circuit is governed by the differential equation

C
dv.t/

dt
D �Gv C g; (8.3)

where C is a diagonal matrix with nonzero diagonal entries, g is a given vector, and
G is a given matrix of conductances. If v1 is the so-called stationary regime voltage
vector and if we set x.t/ D v.t/ � v1, then the differential equation given above
reduces to

dx.t/

dt
D �C�1Gx.t/: (8.4)

The matrix C�1G turns out to be an irreducible Z-matrix with positive diagonal
entries with certain further properties. The crucial performance of the digital circuit
is the high operating speed that is measured by the quantity
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T.�/ D sup

�

t W kx.t/k
kx0k D �

�

; (8.5)

where again, the norm is the 1-norm and 0 < � < 1. In practice one takes the value
� D 0:1. Finding an appropriate value of T.�/ is one of the primary objectives in a
design process. Using the inequalities given above, the authors of [120] show that
the following inequalities hold (again, the norms below are 1-norms):

zmin

zmax
e�qMT1.�/ � � D kx.T1.�//k

kx0k � zmax

zmin
e�qmT1.�/; (8.6)

for a certain delay T1.�/ > 0. This implies that

1

qM
ln

zmin

�zmax
� T1.�/ � 1

qm
ln

zmax

�zmin
: (8.7)

A simple numerical example is given to illustrate how these bounds are reasonably
tight. The bounds obtained above are expected to provide useful information in a
search for optimal parameters.

8.3 Conformal Mapping of Doubly Connected Regions

Solution of a large number of problems in modern technology, such as leakage of
gas in a graphite brick of a gas-cooled nuclear reactor, analysis of stresses in solid
propellant rocket grain, simultaneous flow of oil and gas in concentric pipes, and
microwave theory, hinges critically on the possibility of conformal transformation
of a doubly connected region into a circular annulus.

If D is a doubly connected region of the z-plane, then the frontier of D consists
of two disjoint continua C0 and C1. It is well known [19] that D can be mapped
conformally onto a circular annulus, in a one-to-one manner. Moreover, if a and b
are the radii of two concentric circles of the annulus, then the modulus of D given by
b=a is a number uniquely determined by D. The difficulties involved in finding such
a mapping function and estimating the modulus of D are described by Kantorovich
and Krylov [54]. In fact, studies concerning specific regions are very few in the
literature. In this section, we review how the mapping problem of the region between
a circle and a curvilinear polygon of n sides is reduced to an infinite system of linear
algebraic equations, by a direct method. The truncated system of linear algebraic
equations turns out to be strictly diagonally dominant.

Let the Jordan curves C0 and C1 bound externally and internally a doubly
connected region D in the z-plane. Then the mapping function

w.z/ D eŒ log zC�.z/ � ; z D x C iy D rei	 ;
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which is unique except for an arbitrary rotation, maps D C @D onto the annulus
0 � a � jwj � b < 1, where the ratio b=a is unique and � is regular in D. If � has
the form �.z/ D P1

�1 cnzn, we then have

log.zNz/ C �.z/ C �.z/ D
(

log b2 ; if z 2 C0

log a2 ; if z 2 C1

The requirement that � satisfies the conditions given above is equivalent to solving
the system of infinite linear equations:

1X

qD1

apqxq D rp; p D 1; 2; : : : ;

for suitable numbers apq and rp (see Eq. (29) and the subsequent values in page 411,
[105]). It can be shown that the truncated system of linear equations:

nX

qD1

apqxq D rp; p D 1; 2; : : : ; n

has the property that the determinant of the coefficient matrix is nonzero for all n.
Thus the system has a unique solution for each n. Let x.n/ be the solution of the
truncated system for each n. It then follows from a general principle (see, for
instance, [54]) that lim

n!1 x.n/ exists and is a solution of the infinite system. We refer

to [105] for the details and numerical examples. We also refer to [102] for a similar
procedure for the solution of the Poisson’s equation describing a fluid flow problem.

8.4 Fluid Flow in Pipes

In this section, we consider the problem that arises from the idea that two fluids
could be transported with one fluid inside a pipe of cross-section E and the other
flowing in an annular domain D in the xy plane bounded internally by C2 and
externally by C1. The flow velocity w.x; y/ satisfies the Poisson’s equation:

wxx C wyy D �P= in D; (8.8)

(P;  being positive constants), with the boundary conditions:

w D 0 on C1 and w D 0 on C2:
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In this problem we are concerned with the rate of flow given by

R D
Z Z

w dxdy: (8.9)

It can be shown that using the conformal mapping function

z D c

1 � �
; � D � C i�; (8.10)

we get

w D � P

u
zNz C �.z/ C �.z/: (8.11)

We get an infinite series expression for w whose coefficients satisfy an infinite
system of algebraic equations. These equations have been shown to have a unique
solution. We refer to the work of Shivakumar, Chew, and Ji [102, 106] and [107] for
the details. In these the following cases are considered

(a) C0 and C1 being eccentric circles.
(b) C0 and C1 being confocal ellipses.
(c) C0 being a circle and C1 being an ellipse.
(d) C0 and C1 being two ellipses.

Calculation of the rate of the flow suggests that the flow is a maximum when
the inner boundary has the least perimeter and the outer boundary has the largest
perimeter for a given area of flow.

We refer to the work of Luca, Kocabiyik and Shivakumar [68] for an application
of the ideas given above in studying fluid flow in a pipe system where the inside of
the outer pipe has a lining of porous media. This, in turn, has been shown to have
applications in the cholesterol problem in arteries.

8.5 Mathieu Equation

Here we consider a Mathieu equation

d2y

dx2
C .� � 2q cos 2x/y D 0; (8.12)

for a given q with the boundary conditions: y.0/ D y.�=2/ D 0. Our interest is
in the case when two consecutive eigenvalues merge and become equal for some
values of the parameter q. This pair of merging points is called a double point for
that value of q. It is well known that for real double points to occur, the parameter
q must attain some pure imaginary value. In [115], Shivakumar and Xue developed
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an algorithm to compute some special double points. Theoretically, the method can
achieve any required accuracy. We refer to [115] for the details. We briefly present
the main results, here.

Using a solution of the form

y.x/ D
1X

rD1

xrq
�r sin 2rx;

the Mathieu equation is equivalent to the system of infinite linear algebraic equations
given by Bx D �x, where B D .bij/ is an infinite tridiagonal matrix given by

bij D

8
ˆ̂
<

ˆ̂
:

�Q if j D i � 1; i � 2

4i2 if j D i

1 if j D i C 1; i � 1:

Here Q D �q2 > 0. Shivakumar and Xue show (Theorem 3.1, [115]) that there
exists a unique double point in the interval Œ4; 16�. They also show that there
is no double point in the interval Œ16; 36�, (Theorem 4.1, [115]). They present
an algorithm for computing the double points. In fact, we have � 	 11:20 and
Q 	 48:09.

The problem of determining the bounds for the width of the instability intervals
in the Mathieu equation has also been studied in the particular case when q D h2,
by Shivakumar and Ye [116]. We present the main result here. We consider the
following boundary conditions: y0.0/ D y0.�=2/ D 0, and y.0/ D y0.�=2/ D
0, with the corresponding eigenvalues being denoted by fa2ng10 and fb2ng11 ,
respectively. In this connection, the following inequalities are well known: a0 <

b1 < a1 < b2 < a2 < b3 < a3 < : : :. The next result presents upper and lower
bounds for a2n � b2n.

Theorem 8.5.1 (Theorem 2, [116]). For n � max

�
h2 C 1

2
; 3

�

, set

pn D 8h4n

42nŒ.2n � 1/Š�2
:

Then one has

pn

kC




1 � h4

8.2n � 1 � h2/2

�

� a2n � b2n � pn

k�
;

for certain constants kC and k�.
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8.6 Bessel Functions

An iterative method developed by Shivakumar and Williams [112] was reviewed in
Sect. 3.5 of Chap. 3. The authors also present (Example 5.2, [112]) an approximate
method for determining the values of the Bessel functions Jn.x/ for all values of x
lying in an interval. Recall that these functions satisfy the well-known recurrence
relation:

JnC1.x/ D 2n

x
Jn.x/ � Jn�1.x/; n 2 N; 0 < x < 2:

Treating J0.x/ as given and setting for Jn.x/ D xn; n 2 N, we get a system of
equations whose coefficient matrix satisfies the conditions considered in Sect. 3.5.
For instance, choosing x D 0:6, yields the following system of equations:

10x1 � 3x2 D 3J0.0:6/;

�3xn�1 C 10nxn � 3xnC1 D 0; n � 2;

where 3J0.0:6/ ' 2:73601459, [1]. From Corollary 3.5.1, Sect. 3.5, it follows that

kx � x.p;n/k1 �
�

3

7
.0:3/.pC1/ C 9

49.n C 1/

�

J0.0:6/:

Thus for an error of less than 0:01, we choose n D 16 and p D 6. For the purpose
of comparison, if we take p D 16, then, for instance, we have the following:
9:99555051 E � 07 as against 9:9956 E � 07 in [1], 9:99555051 E � 07 as against
9:9956 E�07 in [1] for J6.0:6/ and 1:61393490 E�12 as against 1:61396824 E�12

in [1] for J10.0:6/. We refer to [112] for more details and comparison with known
results.

8.7 Vibrating Membrane with a Hole

In this section, we review certain interesting results relating to the behavior of the
minimal eigenvalue � of the Dirichlet Laplacian in an annulus. Let D1 be a disc
on R

2, with origin at the center of radius 1, D2 
 D1 be a disc of radius a < 1,
the center .h; 0/ of which is at a distance h from the origin. Let �.h/ denote the
minimum Dirichlet eigenvalue of the Laplacian in the annulus D WD Dh WD D1nD2.
The following conjecture was proposed in [93]:

Conjecture. The minimal eigenvalue �.h/ is a monotonic decreasing function of h
on the interval 0 � h � .1 � a/. In particular, �.0/ > �.h/; h > 0.
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The following results (Lemmas 1 and 2, [93]) were proved as supporting
evidence to this conjecture:

Lemma 8.7.1. We have

d�

dh
D
Z

S
u2

NN1ds;

where N is the unit normal to S D Sh, pointing into the annulus Dh, N1 is the
projection of N onto x1-axis, uN is the normal derivative of u, and u.x/ D u.x1; x2/

is the normalized L2.D/ eigenfunction corresponding to the first eigenvalue �.

Let D.r/ denote the disc jxj � r and .r/ be the first Dirichlet eigenvalue of the
Laplacian in D1nDr . Then we have

Lemma 8.7.2. .a � h/ < �.h/ < .a C h/; 0 < h < 1 � a.

The conjecture was also substantiated by numerical results [93]. Subsequently,
the authors prove the above conjecture in an electronic version of their article
(https://www.math.ksu.edu/~ramm/papers/383.pdf). The argument of the proof is
presented in the third paragraph in page 4. It is noteworthy to point out that this
result has been now shown to be valid in all space dimensions by Kesavan [57].

8.8 Groundwater Flow

Here, we are concerned with the problem of finding the hydraulic head, � in a
nonhomogeneous porous medium, the region being bounded between two vertical
impermeable boundaries, bounded on top by a sloping sinusoidal curve and
unbounded in depth. The hydraulic conductivity K is modelled as K.z/ D eˇz,
supported by some data available from Atomic Energy of Canada Ltd. Here z is
a real variable and ˇ � 0. We recall a method that reduces the problem to that
of solving an infinite system of linear equations. This method yields a Grammian
matrix which is positive definite, and the truncation of this system yields an
approximate solution that provides the best match with the given values on the top
boundary. This is the work of Shivakumar, Williams, Ye and Ji [121], where further
details are available. We only present a brief outline here.

We require � to satisfy the equation:

r:.eˇzr�.x; z// D 0;

where r is the vector differential operator

Oi @

@x
C Oj @

@z
:

https://www.math.ksu.edu/~ramm/papers/383.pdf


8.9 Eigenvalues of the Laplacian on an Elliptic Domain 101

The domain under consideration is given by

0 < x < L; � 1 < z < g.x/ D �



ax

L
C V sin.

2�nx

L
/

�

; (8.13)

where L > 0; a � 0 and V are constants and n is a positive integer. The boundary
conditions are given by

@�

@x

ˇ
ˇ
ˇ
ˇ
xD0

D @�

@x

ˇ
ˇ
ˇ
ˇ
xDL

D 0; (8.14)

�.x; z/ is bounded on z � g.x/, and �.x; z/ D z on z D g.x/. The determination of �

reduces to the problem of solving the infinite system of linear algebraic equations:

1X

mD0

bkm˛m D ck; k D 0; 1; 2; : : : ; (8.15)

where bkm are given by means of certain integrals. The infinite matrix B D .bkm/

is the Grammian of a set of functions which arise in the study. The numbers bkm

become difficult to evaluate for large values of k and m by numerical integration.
The authors use an approach using modified Bessel functions, which gives analytical
expressions for bkm. They also present numerical approximations and estimates for
the error.

8.9 Eigenvalues of the Laplacian on an Elliptic Domain

The importance of eigenvalue problems concerning the Laplacian is well doc-
umented in classical and modern literature. Finding the eigenvalues for various
geometries of the domains has posed many challenges for which the methods of
approach include infinite systems of algebraic equations (as indicated in Sect. 8.5),
asymptotic methods, integral equations, and finite element methods. Let us review
the work of Shivakumar and Wu [114], where the details of earlier contributions
are discussed. The eigenvalue problems of the Laplacian is represented by the
Helmholtz equations, Telegraph equations or the equations of the vibrating mem-
brane and is given by:

@2u

@x2
C @2u

@y2
C �2u D 0 in D; u D 0 on @D;

where D is a plane region bounded by a smooth curve @D. The eigenvalues kn

and corresponding eigenfunctions un describe the natural modes of vibration of the
membrane. According to the maximum principle, kn must be positive (for each n)
for a nontrivial solution to exist. Further kn; n 2 N are ordered such that
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0 < k1 < k2 < � � � < kn < � � � :

The method described here provides a procedure to numerically calculate the
eigenvalues.

Using complex variables z D x C iy; Nz D x � iy, the problem becomes

@2u

@z@Nz C �2

4
u D 0 in D and u D 0 on C (8.16)

with u D u.z; Nz/, It is well known that the general solution to (8.16) is given by

u D
�

f0.z/ �
Z z

0

f0.t/
@

@t
J0

�
�
pNz.z � t/

�
dt

�

C conjugate; (8.17)

where f0 is an arbitrary holomorphic function which can be expressed as

f0.z/ D
1X

nD0

anzn (8.18)

and J0 is the Bessel function of the first kind of order 0, which is given by a series
representation as,

J0

�
�
pNz.z � t/

�
D
1X

kD0

�

��2

4

�k Nzk.z � t/k

kŠ kŠ
: (8.19)

On substituting for f0, we obtain the general solution to the Helmholtz equation as

u D 2a0J0.�
p

zNz/

C
1X

nD1

1X

kD0

An;k

0

@.z C Nz/n C
n=2X

mD1

˛m;n .z C Nz/n�2m .zNz/man

1

A .zNz/k;

where ˛m;n D .�1/m n

m

 
n � m � 1

m � 1

!

and An;k are constants determined in terms of

certain Beta functions. The expression on the right-hand side demonstrates that the
general solution of (8.16) without boundary conditions can be expressed in terms of
powers of zNz and .z C Nz/.

In our case, we consider the domain to be bounded by the ellipse represented by

x2

˛2
C y2

ˇ2
D 1;

which can be expressed correspondingly in the complex plane by
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.z C Nz/2 D a C bzNz; (8.20)

where a D 4˛2ˇ2

ˇ2 � ˛2
and b D 4˛2

˛2 � ˇ2
. After considerable manipulation, we get the

value of u on the ellipse as,

u D 2a0 C
1X

nD1

A2n;0b0;nan

C
1X

kD1

�

��2

4

�k
2a0

kŠkŠ
.zNz/k

C
1X

kD1

"
kX

nD1

 

A2n;kb0;n C
nX

lD1

A2n;k�lbl;n

!

an

#

.zNz/k

C
1X

kD1

" 1X

nDkC1

 

A2n;kb0;n C
kX

lD1

A2n;k�lbl;n

!

an

#

.zNz/k; (8.21)

for certain constants bl;n defined in terms of a and b. For u D 0 on the elliptic
boundary, we equate the powers of zNz to zero where we arrive at an infinite system
of linear equations of the form

1X

kD0

dknan D 0; n 2 N; (8.22)

where dkn’s are known polynomials of �2. In [114], the infinite system is truncated
to an n � n system and numerical values are calculated and compared to existing
results in the literature.

8.10 Shape of a Drum

A drumhead is conceived as a domain D in the plane whose boundary @D is clamped.
It is well known that if a membrane D, held fixed along its boundary @D, is set in
motion, its displacement obeys the wave equation

1

2
r2U C �2U D 0; U D 0 on @U:

Mark Kac in 1966 [52] published an interesting article on the question: Can
one hear the shape of a drum? The phrasing of the title is due to Lipman Bers
but the problem itself is older and can be traced back all the way to Hermann
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Weyl. Similar questions can be asked for the Dirichlet problem for the Laplacian
on domains in higher dimensions or on Riemannian manifolds, as well as for other
elliptic differential operators such as the Cauchy–Riemann operator or the Dirac
operator.

In 1964, John Milnor with the help of a result of Ernst Witt showed that there
exist two Riemannian flat tori of dimension 16 with the same eigenvalues but
different shapes. However, the problem in two dimensions remained open until
1992, when Gordon, Webb and Wolpert [39] found examples of distinct plane
“drums” which “sound” the same. So, the answer to Kac’s question is: for many
shapes, one cannot hear the shape of the drum. However, some information can
be inferred. Moreover, the answer is known to be “yes” for certain convex planar
regions with analytic boundaries. A large number of mathematicians over four
decades have contributed to the topic from various approaches, both theoretical and
numerical.

In this section, we develop a constructive analytic approach to indicate how a
pre-knowledge of the eigenvalues leads to the determination of the parameters of the
boundary. This is based on a major contribution of Zelditch in 2000 [140], where a
positive answer “yes” is given for certain regions with analytic boundaries. We apply
this approach to a general boundary with biaxial symmetry, to a circle boundary, an
ellipse boundary, and a square boundary. In the case of a square, we obtain an insight
into why the analytical procedure does not, as expected, yield an answer. The work
reported here is due to Shivakumar, Wu and Zhang [122].

Let DL denote the class of bounded simply connected real analytic plain domains
with reflection symmetries across two orthogonal axes, of which one has length L.
Under generic conditions, if D1 and D2 are in DL and if the Dirichlet spectra coincide
then D1 D D2, up to a rigid motion [140].

So, mathematically the problem is, whether a pre-knowledge of the eigenvalues
of the Laplacian in a region D leads to the identification of @D, the closed boundary
of D. Specifically, we have

uxx C uyy C �2u D 0 in D; (8.23)

u D 0 on @D: (8.24)

According to the maximum principle for linear elliptic partial differential
equations, the infinitely many eigenvalues �2

n, n 2 N, are positive, real, ordered
and satisfy

0 < �2
1 < �2

2 < �2
3 < � � � < �2

n < � � � < 1:

Using complex variables z D x C iy, z D x � iy, Eqs. (8.23) and (8.24) become

uzz C �2

4
u D 0 in D; (8.25)

u D 0 on @D: (8.26)
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By Vekua [134], the completely integrated form of the solutions to the above
equations are given by

u D
�

f0.z/ �
Z z

0

f0.t/
@

@t
J0

�
�
p

z .z � t/
�

dt

�

C conjugate; (8.27)

where f0.z/ is an arbitrary holomorphic function which can be formally expressed as

f0.z/ D
1X

nD0

anzn;

and J0 represents the Bessel function of first kind and order 0 given by

J0

�
�
p

z .z � t/
�

D
1X

qD0

�

��2

4

�q
zq .z � t/q

qŠqŠ
: (8.28)

Now we consider the problem for five types of boundaries: a general boundary with
biaxial symmetry, a circular boundary, an elliptic boundary, a square boundary, and
an annulus.

Before we study these cases, we recall an identity given in Abramowitz and
Stegun [1], viz., when n is an even integer,

zn C zn D
n
2X

mD0

cm;n .z C z/.n�2m/ .zz/m ; (8.29)

for certain constants cm;n. Now we consider the parametrized analytical boundary
with biaxial symmetry to be given by

.z C z/2 D
1X

nD0

dn;1.zz/n (8.30)

which yields, on using Cauchy products for infinite series,

.z C z/2p D
1X

nD0

dn;p.zz/n (8.31)

where

dn;p D
nX

lD0

dl;p�1dn�l;1; p D 1; 2; : : : :
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For the specific problem at hand, we may assume that

f0.z/ D
1X

nD0

a2nz2n

so that one has

u D 2a0J0

�
�

p
zz
�

C
1X

nD1

a2n

1X

kD0

�

��2

4

�k

A2n;k
�
z2n C z2n


.zz/k ;

for certain constants A2n;k. Upon substitution, this yields

u D 2a0J0

�
�

p
zz
�

C
1X

nD1

a2n

1X

kD0

�
�

�2

4

�k

A2n;k

nX

mD0

�m;n.z C z/2.n�m/.zz/m;

where the constants �m;n are given by �m;n D .�1/m 2n.2n�m�1/Š

mŠ.2n�2m/Š
. After a rearrange-

ment of summations, we get

u D 2a0 CP1

nD1 a2nDn;0;0;0C
h
2a0

�
� �2

4

�
CP1

nD1 a2n

nP1
iD0

P1�i
pD0 Dn;p;1�i�p;i

oi
zz

CfP1

qD2 f 2a0

�
� �2

4

�q
1

qŠqŠ
CPq�1

nD1 a2n

hPn
iD0

Pq�1
pD0 Dn;p;q�i�p;i

i

CP1

nDq a2n

hPq
iD0

Pq�1
pD0 Dn;p;q�i�p;i

i
gg .zz/q:

Here, Dp;q;r;s are certain constants. For a circular boundary given by x2 C y2 D a2

we can consider the parametrization zz D a2. For an elliptic boundary given by

x2

˛2
C y2

ˇ2
D 1

we can consider

.z C z/2 D a C bzz; ˛ > ˇ

where

a D 4˛2ˇ2

ˇ2 � ˛2
; b D 4˛2

˛2 � ˇ2

and

˛2 D a

4 � b
; ˇ2 D �a

b
; a < 0; b > 0:
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A square boundary given by x D ˙a; y D ˙a can be parametrized as

z4 C z4 D 2.zz/2 � 16a2.zz/ C 16a4

or

z2 C z2 D 4 .zz � 2a/2 :

For such a (square) boundary, the authors demonstrate why their analytical approach
does not yield information of the boundary with sharp corners from a pre-knowledge
of eigenvalues. When the boundary of the drum is an annulus we can hear the shape
of the drum if the eigenvalues are known. In other words, for Eqs. (8.23) and (8.24),
D is a totally connected region with the boundary conditions

u D 0 on �1 W x2 C y2 D a2

u D 0 on �2 W x2 C y2 D b2 a > b;

we can show that if the eigenvalues of � are known, then the ratio of the annulus is
uniquely determined.

8.11 On Zeros of Taylor Series

We wish to express the zeros zn, n 2 N, of a Taylor series given by

y.x/ D
1X

nD0

cnxn D
1Y

nD1

.1 C anx/; (8.32)

where

c0 D 1; c1 D
1X

kD1

aky0.0/; (8.33)

and zn D � 1

an
. We assume that the zeros are positive and strictly increasing.

Shivakumar and Zhang [117] show that for the second order linear differential
equation [110]

y00.x/ D f .x/y.x/ (8.34)
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the formal Taylor series solution about x D 0 is given by

y.x/D y.0/C 1

2Š
f .0/y.0/x2 C

1X

kD1

1

.2kC 2/Š

� 1X

s1D0

kC1X

jD1

Pj.s1; 2k; 0/
	
x2kC2

C y0.0/xC 1

3Š
Œf 0.0/y.0/C f .0/y0.0/

	
x3 C

1X

kD1

1

.2kC 3/Š

� 1X

s1D0

kX

jD1

Pj.s1; 2kC 1; 0/
	
x2kC3

(8.35)

where Pq.s1; k; x/ is given by

Pq.s1; k; x/ D
k�2.q�1/X

s2Ds1

k�2.q�1/X

s3Ds2

� � �
k�2.q�1/X

sqDsq�1

 
k

sq C 2.q� 1/

! 
sq C 2.q� 2/

sq�1 C 2.q� 2/

! 
sq�1 C 2.q� 3/

sq�2 C 2.q� 3/

!

: : :

 
s3 C 2

s2 C 2

! 
s2

s1

!

f .k�2.q�1/�sq/.x/f sq�sq�1 .x/f .sq�1�sq�2/.x/ : : : f .s2�s1/y.s1/.x/:
(8.36)

We note that

f .x/ D
 1X

nD1

an

1 C anx

!2

�
1X

nD1

a2
n

.1 C anx/2

satisfies (8.34) where y.x/ is given by (8.32) and the coefficients cn of the Taylor
series are given in equation (8.35). To facilitate evaluation for cn we need to find
f p.0/, p D 0; 1; 2; : : : . Using the notation

Qp D
1X

kD1

ap
k ; p D 1; 2; 3; : : : ;

we get

f .0/ D Q2
1 � Q2;

f p.0/ D .�1/pC1pŠ

8
<

:

pC1X

jD1

QjQpC2�j � .p C 1/QpC2

9
=

;
:

(8.37)

Rewrite (8.32) as

y.x/ D
1X

nD0

yn.0/

nŠ
xn:
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From (8.37), we note that Q0s can be expressed in terms of derivatives of f .x/ at
x D 0 and using derivatives of y.x/ in (8.34) and comparing the coefficients of xn in
(8.35), one can obtain

Q1 D d1;

Q2 D d2;

: : :

Qk D dk;

where dk’s are functions of c1; c2; : : : ck�1. For roots zn D � 1

an
, an’s satisfy the

Vandermonde equation

1X

kD1

ap
k D dp:

Ran and Sereny [94] show that for a large class of infinite Vandermonde matrices the
finite section method converges in the l1 sense if the right-hand side of the equation
is in a suitably weighted l1.˛/ space.
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