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Abstract This chapter introduces a novel reciprocal state space (RSS) system form.
The concepts and the need ofRSS form are comprehensively reviewed and explained.
It shows that in RSS form, control design using state derivative related feedback is
straightforward. Sliding mode control (SMC) is a nonlinear control design method
and a highly active area of research. Finite-time convergence due to discontinuous
control law, low sensitivity to plant parameter uncertainty and/or external perturba-
tion, and greatly reduced-order modeling of plant dynamics are the main advantages
of SMC. In the past, the majority of available SMC algorithms and the corresponding
switching conditions involved only state related variables. In this chapter, the advan-
tages of both RSS and SMC are combined to develop sliding mode control in RSS
form so that state derivate related feedback can be systematically applied in SMC
to handle wider range of control problems. To provide the theoretical foundation,
stability analysis in RSS form is first reviewed. Next, novel switching function and
approaching condition based on the derivative of sliding surface are proposed to carry
out SMCdesign approach in RSS formwith considerations of system uncertainty and
disturbance. In addition, algorithm of finding upper bound of system uncertainty is
developed for robustness analysis. To verify the proposed design algorithms, numer-
ical examples are provided. Finally, conclusions are drawn.

Keywords Reciprocal state space (RSS) form · State derivate related feedback ·
Sliding mode control · Nonlinear control

1 Introduction

In recent years, robust control is one of themost popular topics in control area. One of
the famousmethods is the so-called slidingmode control (SMC) or variable structure
control (VSC) [33, 35, 36] which is a nonlinear control and has been proven as an
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effectively robust control technology with many practical applications. Through this
chapter, the name of sliding mode control (SMC) is used for unification. The main
idea of sliding mode control is to design a controller rendering the trajectory of states
trapped on a predetermined sliding surface and remained on it thereafter. Sliding
mode control utilizes a high-speed switching control law to drive the state trajectory
staying on this sliding surface for all subsequence time such that the robust stability
of the system is assured. In the present, sliding mode control is a highly active area of
research. Finite-time convergence due to discontinuous control law, low sensitivity to
plant parameter uncertainty and/or external perturbation, and greatly reduced-order
modeling of plant dynamics are the main advantages of it. Therefore, based on SMC,
many works in state space form have been developed [7, 11, 12, 20, 39].

The majority of available SMC algorithms for linear systems is developed in state
space form and applies state feedback. However, in many applications, people face
the problems that either cannot be handled in state space form or cannot directly
apply state feedback in designs. More details are given in next section. To provide
supplementary design algorithms of state derivative feedback in state space form, a
direct state derivative feedback control scheme was developed in “Reciprocal state
space” (RSS) form [21–26] by the author of this chapter.

In this chapter, the algorithms of SMC design utilizing state derivative feedback
in RSS form are introduced [27, 28, 40]. The main purpose of this chapter is to
combine the advantages of both RSS and SMC so that state derivate feedback can be
systematically applied in SMC designs to handle wider range of control problems.

The rest of chapter is organized as follows. “Reciprocal state space” (RSS) form
is introduced and reviewed in Sect. 2. In Sect. 3, the design approach of sliding mode
control with state derivative feedback in RSS form is described and the method for
finding the upper bound of system uncertainty in RSS form is also developed. The
contribution of this chapter, discussion and suggested future research are given in
the conclusion section.

2 Reciprocal State Space (RSS) Form and State Derivative
Feedback Control Designs

The concepts and the needs of RSS form are first comprehensively reviewed and
explained in this section as follows.

In general, a dynamic linear continuous time invariant system using state variables
with physical meanings can be naturally expressed in the following equation under
the names of generalized state space form [38] or descriptor form [42] or singular
system form [2].

Eẋ = Fx + Nu (1)

where xn×1 and um×1 are state vector and control vector, respectively, and En×n , Fn×n

and Nn×m are known constant system matrices. Controllability and observability of
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generalized state space systems have been investigated in [2, 42]. The following is
the characteristic equation of open loop generalized state space system in (1).

det(s E − F) = 0 (2)

The degree r of characteristic equation in (2) is the number of system’s finite
eigenvalues while n − r is the number of system’s eigenvalues at infinity [5].
If E in (1) is nonsingular, the system has no eigenvalue at infinity but can have zero
eigenvalues. Such system can be expressed in the following standard state space
system form:

ẋ = E−1Fx + E−1Nu = Āx + B̄u. (3)

For state space system, state derivative vector can be explicitly expressed in terms
of state vector and control input vector.Most of control algorithms developed for state
space systems are related to state feedback such as full state feedback, state related
output feedback and estimated state feedback when estimators are implemented.
However, in many applications, the sensors directly measure state derivatives rather
than states. For instance, accelerometers [9] in micro and nano-electro-mechanical
systems (M/NEMS) and structural applications [10, 26] are such cases because accel-
eration signals can only be modeled as state derivatives [6, 10, 26]. Consequently,
abundant control algorithms with state related feedback developed in standard state
space form cannot be readily applicable in this situation.Additional integratorswhich
may increase the cost and complexity of the implementation are needed. Mathemat-
ically speaking, state derivative related feedback designs cannot be carried out as
straightforward as state related feedback for systems expressed in standard state
space form. For example, if we apply the following full state derivative feedback
control law

u = −K ẋ (4)

to the state space system in (3), the closed loop system becomes

ẋ = (I + B̄ K )−1 Āx (5)

In (5), since gain K is inside an inverse matrix (I + B̄ K )−1 which is further coupled
with the open loop system matrix Ā by multiplication, it is obvious that advanced
mathematics is needed to design gain K in (4). Therefore, in the past, the developed
algorithms of state derivative related feedback for systems in state space form were
very few and rarely used to control the system alone [6]. In a word, standard state
space system in (1) is the best system form for open loop systems without poles at
infinity in designing state related feedback control algorithms. However, standard
state space system is not the most suitable form to develop state derivative related
feedback control algorithms and cannot handle the systems with open loop poles at
infinity.
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If E in (1) is singular, the system has poles at infinity and is called generalized
state space system. In the past, the majority of control designs for system with poles
at infinity were directly developed in the generalized state space form in (1).

Extensive applications of generalized state space systems arise in many areas of
engineering such as electrical networks [16], aerospace systems [1], smart structures
[26, 41] and chemical processes [18]. Generalized state space systems also exist in
other areas such as the dynamic Leontief model for economic production sectors
[15] and biological complex systems [14]. A comprehensive review is available in
Yeh et al. [41]. In this paper, generalized state space system is used as the name
to represent such systems. In previous studies, generalized state space systems are
further categorized as impulse-free ones [3] and with impulse mode ones in analysis.
To explain that, singular value decomposition (SVD) is performed on the original
generalized state space system. This transfers the original system to the following
form. [

Ir 0
0 0

] [
q̇1

q̇2

]
=

[
F11 F12

F21 F22

] [
q1

q2

]
+

[
N1

N2

]
u (6)

where Ir is an r × r identity matrix.
When F−1

22 in (6) exists, the system is impulse free, one can further obtain

q2 = −F−1
22 F21q1 − F−1

22 N2u (7)

Substituting (7) to (6), we have

q̇1 = (F11 − F12F−1
22 F21)q1 + (N1 − F12F−1

22 N2)u (8)

To q1, (8) is a standard state space system, if it is controllable, one can design a
state feedback control law u = −kq1 to control (8). Consequently, q2 is stabilized
through the coupling equation in (7). Therefore, control designs for impulse-free
generalized state space systems can be handled and have been an active area in
research. Obviously, applying state feedback methods only can control part of the
states while the rest of states are just stabilized for impulse-free generalized state
space systems. Therefore, the closed loop performance is limited.

For impulse-free generalized state space systems, the available control design
algorithms which are usually carried out in augmented systems and require feed-
backs of both state and state derivative variables [3, 4, 13, 19, 37] are much more
complex than algorithms for the standard state space systems. Consequently, there
are difficulties for engineers without strong mathematical background to apply those
sophisticated control algorithms.

When F−1
22 in (6) does not exist, the generalized state space system has impulse

mode. In this case, further investigations of impulse controllable and the impulse
mode elimination [3] have to be analyzed in control designs. Therefore, this kind of
generalized state space system is considered to be difficult in control designs.

As mention before, when the state derivative coefficient matrix E in (1) is nonsin-
gular, the system can be expressed in standard state space form in (3). If the system
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is controllable, applying state feedback alone is sufficient to control the system.
Similarly, it is natural to ask if applying state derivative feedback alone is sufficient
to control the system when the state coefficient matrix F in (1) is nonsingular. To
answer this question and to provide supplementary design algorithms of state deriva-
tive feedback, a direct state derivative feedback control scheme was developed using
the “Reciprocal State Space” (RSS) methodology by the author of this chapter as
follows.

x = F−1Eẋ − F−1Nu = Aẋ + Bu (9)

For above reciprocal state space (RSS) systems, state vector can be explicitly
expressed in terms of state derivative vector and control input vector. The controlla-
bility and observability analyses for system in RSS form have been investigated in
Tseng et al. and Tseng [24, 25]. It shows that they turn out to be the same as their
counterparts in state space form. After apply full state derivative feedback control
law in (4), the closed loop system becomes

x = (A − BK ) ẋ = Acẋ (10)

The concept of RSS is based on a fact that for a nonsingular matrix, the eigen-
values of its inverse matrix must be the reciprocals of its eigenvalues. Therefore,
the eigenvalues of Ac in (10) are the reciprocals of the closed loop system poles. To
address this nature, the name of reciprocal state space form was given. If state deriv-
ative feedback gain K can be designed such that real parts of all eigenvalues of Ac

in (10) are strictly negative, the closed loop system in RSS form in (10) can achieve
globally asymptotically stable. When a controllable system has no open loop pole
at zero, it can be expressed in RSS form to carry out state derive related feedback
control designs.

It also shows that state derivative feedback designs can be carried out as straight-
forward in RSS form as state feedback designs in standard state space form in pole
placement, eigenstructure assignment, and linear quadratic regulator (LQR) designs
[21–26].

The following is an example for quick understanding why expressing system
in RSS form and applying state derivative feedback can easily accomplish control
designs for some systems that were once thought difficult to be controlled. For the
following generalized state space systemwith impulsemode [13], its state coefficient
matrix is invertible. Therefore, the open loop system has no open loop pole at zero
and the system can be expressed in RSS form.

⎡
⎣1 0 0
0 1 0
0 0 0

⎤
⎦ ẋ =

⎡
⎣0.5 0 0

−1 −1 −1
0 −1 0

⎤
⎦ x +

⎡
⎣1
1
1

⎤
⎦ u
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Suppose that we want to place the closed loop poles at −2,−2.5,−5. Using state
feedback control laws in generalized state space form cannot place all of the desired
closed loop poles. However, one can first express the system in RSS form as follows.

x =
⎡
⎣2 0 0
0 0 0
−2 −1 0

⎤
⎦ ẋ +

⎡
⎣−2
1
2

⎤
⎦ u = Aẋ + Bu

Then apply the state derivative feedback law u = −K ẋ to assign −0.5,−0.4
and −0.2 (the reciprocals of −2,−2.5 and −5, respectively) as the eigenvalues
of matrix (A − BK ). Using “place” command of Matlab, one can easily get
K = [−1.63 −0.2 0.02

]
. Therefore, for the systems without open loop pole at

zero, including difficult systems to be controlled such as generalized state space sys-
tems with impulse mode in this example, they can be expressed in RSS form in (9)
and properly controlled by applying state derivative feedback alone. Usually, han-
dling the same problem in generalized state space system form, both state feedback
and state derivative feedback are needed [13].

Put RSS form into consideration, to streamline the design processes and keep
the controller as compact as possible, the following control design procedure is
suggested: For an open loop system, if it has no pole at infinity, one can express the
system in state space form and apply state related feedback to control it. If it has
poles at infinity but has no pole at zero, one can express the system in RSS form and
apply state derivative related feedback to control it. If it has neither pole at infinity
nor pole at zero, based on the type of available sensors (state related sensors or state
derivative related sensors), one can make choice between state space form and RSS
form to carry out control design. Generalized state space system form and control
laws applying both state feedback and state derivative feedback might be considered
as the last resort to handle the systemwith poles at both infinity and zero. In a nutshell,
RSS form fills in the gap between standard state space system and generalized state
space system and provides additional flexibility in control designs.

3 Sliding Mode Control with State Derivative Feedback
in Reciprocal State Space Form

This section explains how slidingmode control is carried out in novel reciprocal state
space (RSS) form with state derivative feedback.

Beginning with Lyapunov stability analysis in RSS form in Sects. 3.1 and 3.2 is an
introduction to the proposed novel approach condition suitable for systems in RSS
form. SMC design approach for a simple nominal system in RSS form and numerical
examples to verify the proposed novel approach condition are presented in Sect. 3.3.
Section3.4 explains the process of finding the upper bound of system uncertainty
and SMC design approach for RSS systems with both uncertainty and disturbance.
Numerical example is also provided to verify the proposed methods.
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3.1 Lyapunov Stability Analysis in RSS Form

Since Lyapunov stability is the fundamental of sliding mode control, in this subsec-
tion Lyapunov stability analysis in RSS form is presented.

For a linear time invariant system, it is globally asymptotically stable if the real
parts of all system poles are strictly negative. Therefore, such system must have no
pole at infinity or pole at zero. Consequently, a globally asymptotically stable system
can be expressed in both state space form and RSS form as follows.

ẋ = Āx (11)

x = Aẋ (12)

where Ā = A−1 and both A and Ā are nonsingular. Furthermore, the eigenvalues of
A are the reciprocals of the eigenvalues of Ā which are the system poles. If the real
parts of all eigenvalues of Ā are strictly negative, so are all eigenvalues of A. Based
on the above discussion, the following Lyapunov equation can also test the stability
of RSS systems in (12).

P A + AT P = −Q (13)

The solution of P in Lyapunov equation (13) must be symmetric positive definite
to ensure RSS system matrix A is globally asymptotically stable when a symmetric
and positive matrix Q is used.

3.2 Novel Approaching Condition for SMC Designs in RSS
Form

In general, design of slidingmode control consists of two parts. The first part involves
the selection of an appropriate sliding surface and the second part is the design of a
controller to meet the approaching condition. To provide the fundamentals of SMC,
approaching condition and sliding mode are briefly reviewed as follows.

Approaching condition can force the system toward the predetermined sliding sur-
face s (t) which can stabilize the system (some studies call this “reaching condition”
or “hitting condition”), and we usually consider it as follows [8, 33].

sT (t) · ṡ (t) < 0 (14)

When the system in the predetermined sliding surface, the system will remain in
the neighborhood of sliding surface therefore slip toward the target with any external
disturbance.

There is a simple SMCmethod’smoving trajectory shown in Fig. 1. From t= 0, the
state x starts to approach the sliding surface s = 0 and lands on the sliding surface at
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Fig. 1 The state trajectory
of SMC

the finite time th . When t > th , this state remains on the sliding surface, and moves
toward the equilibrium point x = 0 (i.e. x (∞) → 0).

According to the matrix sizes specified in (1), suppose that the sliding surface
s (t) is selected by

s (t) = Cx (t) = 0 (15)

where s ∈ �m×1 and c ∈ �m×n .
Approaching condition is briefly explained as follows.Define aLyapunov function

candidate based on the sliding surface s (t) as follows.

V = 1

2
sT (t)s(t) (16)

The derivative of V with respect to time becomes

V̇ = sT (t) · ṡ (t) (17)

For SMC designs in RSS form with state derivative related feedback laws, given a
positive constant α, the following novel approaching condition is proposed.

V̇ = sT (t) · ṡ (t) < −α ‖ṡ‖ < 0 (18)

where ‖‖ denotes norm in this chapter.
Detailed discussion will be given in the following subsections.

3.3 Sliding Model Control Design for Nominal System
in RSS Form

In this subsection, sliding mode control design for nominal system in RSS form
without any system uncertainty is presented for readers to easily understand the
fundamental of SMC design approach carried out in RSS form. We first consider the
RSS system described as follows:
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x (t) = Aẋ (t) + Bu (t) + d (t) (19)

where x (t) ∈ �n , u (t) ∈ �m and d (t) ∈ �n×1 are states, control inputs, and
external disturbance respectively. Assuming that the pair (A, B) is known and their
dimensions are A ∈ �n×n and B ∈ �n×m .

The following assumptions are applied in this chapter.

• The nominal RSS linear system is unstable.
• The pair (A, B) is controllable; Rank

[
B AB A2B · · · An−1B

] = n.
• The d(t) is a matched external disturbance as follows.

d (t) = Bdr (t) (20)

where dr (t) ∈ �m×1 and has an upper bound δ such that ‖dr (t)‖ ≤ δ.
So, (19) can be rewritten as

x (t) = Aẋ (t) + B (u (t) + dr (t)) (21)

The sliding face to be selected is

s (t) = Cx (t) = 0 (22)

3.3.1 Selecting Sliding Surface with Modified Transfer Matrix Method
in RSS Form

In this subsection, we present a method to select a sliding surface for developing a
sliding mode controller for the system in RSS form (19). The proposed method is
modified from the popular transfer matrix method [34].

If matrix B is partitioned into

B =
[

B1

B2

]
, (23)

where B1 is (n − m) × m and B2 is m × m.
One can define the following transfer matrix

T =
[

I(n−m)×(n−m) −B1B−1
2

0m×(n−m) Im×m

]
, (24)

such that T · B = [
0 B2

]T
.

Please note that for a controllable system, one can always obtain a B matrix with
an invertible sub-matrix B2 by properly define the state variables and consequently
obtain T .
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Applying the following transfer,

q = T x (25)

(21) is transferred to
q1 = A11q̇1 + A12q̇2 (26)

q2 = A21q̇1 + A22q̇2 + B2u + B2 · dr (27)

where

q =
[

q1

q2

]
∈

[
Rn−m

Rm

]
, T AT −1 =

[
A11 A12

A21 A22

]
(28)

Now, the sliding surface can be expressed as follows.

s = Cx = CT −1q = [
S1 S2

]
q = [

S2k S2
]

q = S2
[

k Im
]

q = 0 (29)

where S1 ∈ �m×(n−m), S2 ∈ �m×m and k ∈ �m×(n−m).
In (29), S2 can be considered as any square matrix, and if we select S2 as an

identity matrix Im , we have sliding surface as follows.

s = [
k Im

]
q = kq1 + q2 = [

k Im
]

T x = 0. (30)

Solving for q2 with (30), we have

q2 = −kq1 (31)

Taking derivative of both sides of (31), we obtain

q̇2 = −kq̇1 (32)

Substituting (32) into (26), we have:

q1 = (A11 − A12k) q̇1 (33)

If (A11, A12) is controllable, designing k in (33) is just a pole placement problem
with full state-derivative feedback in RSS framework. Note that k in (33) should be
designed such that the eigenvalues of (A11 − A12k) are equal to the reciprocal of the
desired closed loop poles. After k is designed, the sliding surface in (30) is obtained.
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3.3.2 Sliding Mode Control Design in RSS Form

This subsection introduces a SMC control law to make the approaching condition
(sT (t) · ṡ (t) < 0) happen so that the system in (21) is guaranteed to reach and
maintain on the sliding surface consequently.

After sliding surface is selected, we have to find the equivalent control ueq (t)
which is the control law to let the system operates in the sliding mode.
Substituting (19) into (22), we have

s (t) = Cx (t) = C [Aẋ (t) + Bu (t) + d (t)] = 0 (34)

If we let u (t) = ueq (t) in (34), the equivalent control can be found as

ueq (t) = − (C B)−1 [C Aẋ (t) + Cd (t)] (35)

Here ueq is related to state derivative ẋ . Therefore, state derivative signals can be
directly used in SMC design. Physically, the equivalent control ueq (t) cannot obtain
the sliding motion if the initial state is not on the sliding surface. An ideal control law
for the RSS system in (19) to generate the approaching condition of sliding mode is
proposed as follows.

u (t) = −(C B)−1C Aẋ (t) − (C B)−1 · (γ + α) · sign (ṡ (t)) (36)

where γ and α are all positive scalars such that ‖γ ‖ = ‖C‖ · ‖B‖ · δ > ‖C Bdr (t)‖
and α > 0.

The matrix CB is nonsingular and sign(ṡi ) is a novel switching function proposed
as follows.

sign(ṡi ) =
⎧⎨
⎩
1 ṡi > 0
0 ṡi = 0
−1 ṡi < 0

(37)

Note that sign(ṡi ) is not a function of the sliding surface, but a function of the
derivative of the sliding surface.

Proof Substituting (19) and (36) into sliding surface (22), we get the following result.

s (t) = (38)

{C Aẋ (t) + C B[−(C B)−1C Aẋ (t) − (C B)−1(γ + α) · sign (ṡ (t))] + Cd (t)}

Taking transposes and multiplying ṡ (t) on both sides of (38) to get the equation of
approaching condition, we have
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sT (t) · ṡ (t) = {C Aẋ (t) + C B[− (C B)−1 C Aẋ (t) − (C B)−1 (γ + α) · sign (ṡ (t))]
+ C Bdr (t)}T ṡ (t)

=
[
(C Bdr )

T ṡ (t) − (γ + α)T · ‖ṡ (t)‖
]

= −α · ‖ṡ (t)‖ − γ · ‖ṡ‖
(
1 − (C Bdr )

T ṡ (t)

γ · ‖ṡ (t)‖
)

(39)

Since −1 < (C Bdr )
T ṡ(t)

γ ·‖ṡ(t)‖ < 1, consequently,
(
1 − (C Bdr )

T ṡ(t)
γ ·‖ṡ(t)‖

)
> 0. We can con-

clude the following result.

sT (t) · ṡ (t) = −α · ‖ṡ (t)‖ − γ · ‖ṡ (t)‖
(
1 − (C Bdr )

T ṡ (t)

γ · ‖ṡ (t)‖
)

< −α · ‖ṡ (t)‖ < 0

(40)

Therefore, applying the ideal controller in (36), the approaching condition (sT (t)·
ṡ (t) < 0) holds. Consequently, the motion in the sliding mode is asymptotically
stable. However, the ideal controller in (36) which using “sign” function may cause
“Chattering Phenomenon”. To avoid this problem, “sign” function is replaced by a
novel “sat” saturation function in the modified control law given as follows.

u (t) := −(C B)−1C Aẋ (t) − (C B)−1(γ + α)sat (ṡ (t) , ε) (41)

where “sat” is a novel saturation function to handle the switching as follows.

sat (ṡi , ε) =
⎧⎨
⎩
1 ṡi > ε
ṡi
ε

|ṡi | ≤ ε

−1 ṡi < −ε

=
{

sign (ṡi ) |ṡi | > ε
ṡi
ε

|ṡi | ≤ ε
(42)

Here ε is a small positive value as the bound of the differential sliding surface ṡ.

|ṡ| ≤ ε (43)

Although the control law (41) cannot completely eliminate the external disturbance,
it still can reduce the influence of the external disturbance and can ensure the conver-
gence of states in a boundary layer. It is still worth to avoid “Chattering Phenomenon”
by paying the price of losing small accuracy.

One may wonder that if ṡ is just bounded inside the differential sliding layer
|ṡ| ≤ ε, can the amplitude of the sliding surface s keeps increasing as time goes
by and finally become diverged? The answer is negative because when ṡ = Cẋ is
bounded, so is ẋ due to the fact that C is a constant matrix. When ẋ is bounded,
from the system equation in (19) and controller in (41), x which can be expressed
in term of ẋ must be bounded, too. Consequently, s = Cx must also be bounded.
Similarly, through the system constraint in (19), when the approaching condition
does not happen inside the differential sliding layer of |ṡ| ≤ ε, both |s| and |x | will
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be increased, so will |ṡ| and |ẋ |. When ṡ finally reach to the condition of |ṡ| > ε,
the controller will switch to (36) to push the system back to the differential sliding
layer of |ṡ| ≤ ε. In this manner, the controller can keep the ṡ inside the differential
sliding layer of |ṡ| ≤ ε in steady state. Consequently, through the system constraint
in (19), s and x should also be bounded in steady state.

Numerical Example 1
Theoretically, if no external disturbance is considered in (19), the system should be
driven toward the sliding surface and stuck on it when SMC law is applied. In the
other word, one should obtain s (∞) → 0 in simulation. The following is an example
to verify that the proposed SMC algorithm can achieve s (∞) → 0 for RSS systems
without external disturbance. The system matrices are given as follows.

A =
[
1 2
2 4

]
and B =

[
0
1

]
. Since A is singular, SMC design cannot be directly

carried out in standard state space form. The initial condition is given as:

x0 =
[
0
1

]
.

The first step is to select the sliding surface by applying the presented transfer matrix
method. If pole at −2 is selected, the corresponding sliding surface is found to be
s = [

1.5 1
]

x . The second step is to design the controller in (41). The following
parameter are used in the simulation ε = 0.5, γ = 0, and α = 5.

Figures2, 3 and 4 show the time responses of states, sliding surface, and con-
trol effort, respectively. In Fig. 2, we find that the trajectories of x1 (t) and x2 (t)
are asymptotically stable. In Fig. 3, the sliding surface response does converge to
zero when no external disturbance is considered. Therefore, the proposed approach
condition in (18) and control law in (41) are successfully verified.

Fig. 2 The state responses
of numerical example 1
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Fig. 3 The sliding surface
response of numerical
example 1
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Fig. 4 The control effort of
numerical example 1
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From the simulation results, we conclude that the controller design in (41) as well
as the proposed novel saturation switching function in (42) dose work effectively
for the RSS system in (19). It also shows that SMC design can directly utilize state
derivative feedback if the design is carried out in RSS framework. Furthermore,
for generalized state space system in (1), if matrix E is singular but matrix F is
nonsingular, it can be expressed in RSS framework to directly carry out SMC design.

Numerical Example 2
Here is another example with disturbance to verify the proposed SMC algorithm.
Consider a dynamic RSS system in (19) with following parameters:
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A =
⎡
⎣ 1 −0.5 0.25
0 0.5 −0.25
0 0 0.5

⎤
⎦ , B =

⎡
⎣−0.25

0.25
−0.5

⎤
⎦ , dr (t) = 0.2 sin (0.3333t)

and the initial condition is given as: x0 =
⎡
⎣ 1

−2
6

⎤
⎦.

Using (24), the transpose matrix is constructed as follows.

T =
⎡
⎣ 1 0 −0.5
0 1 0.5
0 0 −2

⎤
⎦ .

The first step is to select the sliding surface, and the transfer matrix method is
applied. If poles at −5 and −2.5 are selected, the obtained sliding surface is
s = [−84 −180 1

]
x . The second step is to design the controller given in (41).

ε = 0.5, γ = 2 and α = 4 are used in the simulation.
Figures5, 6 and 7 show the time responses of states x1 (t)−x3 (t), sliding surface,

and control effort, respectively. As expected, in Fig. 5, under the influence of distur-
bance, we find that the trajectories of states are still bounded, so is the sliding surface
response in Fig. 6. Therefore, the controller designed in (41) for the RSS system (19)
indeed works effectively.

Fig. 5 The state responses
of numerical example 2
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Fig. 6 Time response of the
sliding surface of numerical
example 2
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Fig. 7 Time response of
control effort of numerical
example 2
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3.4 Sliding Model Control Design for a System with System
Uncertainty and Disturbance in RSS Form

In this subsection, SMC design procedure for more realistic systems with system
uncertainty and external disturbance inRSS form is presented.Consider the following
RSS system:

x (t) = [A + �A (t)] ẋ (t) + Bu (t) + d (t) (44)

where x (t) ∈ �n , �A (t) ∈ �n×n , u (t) ∈ Rm and d (t) ∈ �n×1 are states, mis-
matched uncertainty, control inputs, and external disturbance respectively. Assuming
that the nominal RSS linear system pair (A, B) is known and matrix dimensions are
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A ∈ �n×n and B ∈ �n×m . The external disturbance is amatched one and is defined as

d (t) = Bdr (t) (45)

where dr (t) ∈ �m×1.
Therefore, applying (45), (44) can be rewritten as

x (t) = [A + �A (t)] ẋ (t) + B [u (t) + dr (t)] (46)

We assume that positive scalars, δA and δd , are the upper bounds of the uncertainty
and the external disturbance, respectively.

‖�A (t)‖ ≤ δA, and ‖dr (t)‖ ≤ δd (47)

3.4.1 Sufficient Condition for Finding the Upper Bound of System
Uncertainty to Guarantee the Stability in Sliding Surface

In this subsection,wewill provide a sufficient condition to determine the upper bound
of uncertainty �A so that the stability in sliding surface is still guaranteed.

Like we mentioned in subsection3.3.1, we can find the transfer matrix T in (25)
such that T B = [

0 B2
]T
.

Then (44) is transferred to the following equations.

q1 = (A11 + �A11) q̇1 + (A12 + �A12) q̇2 (48)

q2 = (A21 + �A21) q̇1 + (A22 + �A22) q̇2 + B2 (u + d) (49)

where every matrix with appropriate dimensions and B2 is nonsingular.
We may neglect the uncertainty �A and disturbance d in (44) and apply the

method in subsection3.3.1 to design the sliding surface.

s = [
k Im

]
q = kq1 + q2 = [

k Im
]

T x = 0 (50)

Consequently, the derivative of sliding surface in (50) with respect to time can also
be transferred to

ṡ = kq̇1 + q̇2 = 0 (51)

Consequently, we have
q̇2 = −kq̇1 (52)

Then substituting (52) into (48), we have

q1 = Aeq̇1 + �Aeq̇1 (53)

where Ae = A11 − A12k and �Ae = �A11 − �A12k.
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It has been proved that we also can apply Lyapunov equation to test the stability
of a RSS system [24]. Based on that, the following two theorems are introduced for
determining the upper bound of system uncertainty.

Theorem 1 Assuming that Ae is a stable matrix and the time-varying uncertainty
matrix �Ae in (53) is in a bounded value ζ such that ‖�Ae‖ < ζ , we have

‖�Ae‖ < ζ = min {ηi }
2λmax(Pe)

, i = 1, 2, . . . , (n − m) . (54)

where ηi are all eigenvalues in a selected positive symmetric definite matrix Qe

while Pe is a positive symmetric definite matrix solved from the following Lyapunov
equation.

AT
e Pe + Pe Ae = −Qe (55)

Proof Define the Lyapunov functional:

V = qT
1 Peq1 (56)

where Pe is symmetric positive definite matrix. It can be easily verified that V is a
positive function. The time derivative of V along the trajectory of the system (53) is
expressed as

V̇ = q̇T
1 Peq1 + qT

1 Peq̇1

= q̇T
1 Pe [Aeq̇1 + �Aeq̇1] + [Aeq̇1 + �Aeq̇1]

T Peq̇1

= q̇T
1 Pe Aeq̇1 + q̇T

1 Pe�Aeq̇1 + q̇T
1 AT

e Peq̇1 + q̇T
1 �AT

e Peq̇1

= q̇T
1 [Pe Ae + AT

e Pe]q̇1 + 2q̇T
1 Pe�Aeq̇1 (57)

Then, substituting (55) into (57), one obtains

V̇ = q̇T
1 [−Qe] q̇1 + 2q̇T

1 Pe�Aeq̇1 (58)

From (58), when the following condition holds, one can conclude that V̇ < 0.

q̇T
1 Qeq̇1 > 2q̇T

1 Pe�Aeq̇1 (59)

ByRayleigh principle, the lower bound of q̇T
1 Qeq̇1 in (59) can be obtained as follows.

q̇T
1 Qeq̇1 ≥ λmin(Qe)q̇

T
1 q̇1 = λmin(Qe) ‖q̇1‖2 = min {ηi } ‖q̇1‖2 (60)

The following inequality can also be obtained

2q̇T
1 Pe�Aeq̇1 ≤ 2 ‖�Ae‖ λmax(Pe)q̇

T
1 q̇1 = 2 ‖�Ae‖ λmax(Pe) ‖q̇1‖2 (61)



Sliding Mode Control with State Derivative Feedback … 177

From (60), (61) and (59), if we have

2 ‖�Ae‖ λmax(Pe) ‖q̇1‖2 < min {ηi } ‖q̇1‖2 (62)

and consequently,

‖�Ae‖ <
min {ηi }
2λmax(Pe)

= ζ, i = 1, 2, . . . , (n − m) , (63)

it implies that (58) is negative, namely, V̇ < 0 for t ≥ 0. Consequently, the system
with mismatched time-varying uncertainty �Ae in (44) in the sliding surface is
asymptotically stable. Next, we have to provide another condition to find the upper
bound of the mismatched uncertainty �A.

Theorem 2 Let the transform matrix T in (24) be partitioned as

T =
[

L1

L2

]
and T −1 = [

R1 R2
]

(64)

where L1 ∈ �(n−m)×n, L2 ∈ �m×n, R1 ∈ �n×(n−m), and R2 ∈ �n×m.
If the following condition holds,

‖�A‖ ≤ min {ηi }
2 (‖L1‖ · ‖R1‖ + ‖L1‖ · ‖R2‖ · ‖k‖) λmax (Pe)

(65)

where Pe and Qe are defined in (55) in Theorem1, the RSS system with mismatched
uncertainty �A in (44) is stable on the sliding surface.

Proof Since the transform matrix T in (24) can be partitioned as T =
[

L1

L2

]
and

T −1 = [
R1 R2

]
, the uncertain matrix �A11 and �A12 in (48) can be expressed as

�A11 = L1�AR1 and �A12 = L1�AR2. (66)

So the uncertainty �Ae given in (53) can be rewritten as:

�Ae = L1�AR1 − L1�AR2k (67)

Taking the norm of (67), one can obtain the following inequality.

‖�Ae‖ ≤ ‖L1�AR1‖ + ‖L1�AR2FC1‖ ≤ ‖�A‖ (‖L1‖ · ‖R1‖ + ‖L1‖ · ‖R2‖ · ‖k‖)

<
min {ηi }
2λmax (Pe)

(68)

Consequently, the upper bound of �A is obtained as follow.
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‖�A‖ <
min {ηi }

2 (‖L1‖ · ‖R1‖ + ‖L1‖ · ‖R2‖ · ‖k‖) λmax (Pe)
, i = 1, 2, . . . , (n − m)

(69)
This concludes our proof.

From the above proof, it is clear to find that if both (54) in Theorems1 and
(65) in Theorem2 hold, the system with the mismatched uncertainty �A is stable
in the sliding mode. Since the presented methodology is a sufficient condition for
determining the upper bound of system uncertainty, if (54) and (65) do not hold, it
does not mean that the system will definitely become unstable. Above procedure is
analogous to that in [17].

Remark In this remark, the procedure of finding the upper bound of the uncertainty
�A is summarized as follows.

Step 1: Select a T such that (44) is transferred to (48) and (49).
Step 2: Neglect the uncertainty�A and disturbance d in (48) and (49), then select

a sliding surface with the method introduced in this chapter.
Step 3: Calculate Ae in (53).
Step 4: Select a positive symmetric definitematrix Qe, then calculate Pe using (55).
Step 5: Calculate the upper bound of �Ae in Theorem1 by calculating the mini-

mum eigenvalue of Qe and the maximum eigenvalue of Pe.
Step 6: Finding L1, L2, R1, and R2 from T and T −1 in (64), then calculate the

upper bound of �A in Theorem2.

3.4.2 Design the SMC Controller for System with System Uncertainty
and External Disturbance

When the system operates in the sliding mode, it meets the approaching condition.
Applying (46), the sliding surface becomes

s (t) = Cx = C [(A + �A (t)) ẋ (t) + B (u (t) + dr (t))] = 0. (70)

If we choose u (t) = ueq (t) in (70), the equivalent control is found as

ueq (t) = − (C B)−1 (C Aẋ (t) + C�Aẋ (t) + C Bdr (t)) (71)

Physically, the equivalent control ueq (t) cannot obtain the slidingmotion if the initial
state is not in the sliding surface. The SMC control law for the dynamic system in
(44) must satisfy the approaching condition of slidingmode. Based on (71), the SMC
control law is selected as

u (t) := − (C B)−1 (C Aẋ (t)) − (C B)−1 (‖δ ẋ (t)‖ + γ + α) · sat (ṡ (t) , ε) (72)

where δ, γ , and α are positive scalars such that δ = ‖C‖ · δA > ‖C�A (t)‖,
γ = ‖C‖ · ‖B‖ · δd > ‖C Bdr (t)‖, and α > 0, respectively. Moreover, ε is a small
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positive value, and sat is a saturation function of the derivative of sliding surface ṡ
and is used to handle the switching and is described as

sat (ṡi , ε) =
⎧⎨
⎩
1 ṡi > ε
ṡi
ε

|ṡi | ≤ ε

−1 ṡi < −ε

=
{

sign (ṡi ) |ṡi | > ε
ṡi
ε

|ṡi | ≤ ε
(73)

As mention in Sect. 3.3, the control law in (72) which uses saturation function
cannot completely eliminate the external disturbance, but it can reduce the influence
of the external disturbance so that the states are bounded.

At first, we consider the controller as follow.

u (t) = − (C B)−1 (C Aẋ (t)) − (C B)−1 (‖δ ẋ (t)‖ + γ + α) · sign (ṡ (t)) (74)

where sign is a function of ṡ and is described as

sign(ṡi ) =
⎧⎨
⎩
1 ṡi > 0
0 ṡi = 0
−1 ṡi < 0

i = 1..m (75)

Then, substituting (46) and (74) into sliding surface s (t), we have

s (t) = {C�Aẋ (t) + C Bdr (t) − (‖δ ẋ (t)‖ + γ + α) · sign (ṡ (t))} (76)

Applying (76), approaching condition becomes

sT (t) · ṡ (t) = [
(C�Aẋ (t) + C Bdr (t))T ṡ − (‖δ ẋ (t)‖ + γ + α)T · ‖ṡ (t)‖]

= −α · ‖ṡ (t)‖ − (‖δ ẋ (t)‖ + γ ) · ‖ṡ (t)‖
(
1 − (C�Aẋ (t) + C Bdr (t))T · ṡ (t)

(‖δ ẋ (t)‖ + γ ) · ‖ṡ (t)‖
)

(77)
Since −1 < (C�Aẋ(t)+C Bdr (t))

T ·ṡ(t)
(‖δ ẋ(t)‖+γ )·‖ṡ(t)‖ < 1, we have

sT (t) · ṡ (t) = −α · ‖ṡ (t)‖ − (‖δ ẋ (t)‖ + γ )T · ‖ṡ (t)‖
(
1 − (C�Aẋ (t) + Cd (t))T · ṡ (t)

(‖δ ẋ (t)‖ + γ ) · ‖ṡ (t)‖

)
(78)

< −α · ‖ṡ (t)‖ < 0

Thus, the approaching condition (sT (t) · ṡ (t) < 0) satisfies the Lyapunov stability
theorem. Consequently, the motion in the sliding mode is asymptotically stable.
Since the controller in (74) may cause “Chattering Phenomenon”, “sign” function
is replaced by “sat” function in the applied control law given in (72).
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Numerical Example 3
Consider a dynamic RSS system (44) with following parameters:

A =
⎡
⎣ −0.0104 −0.0583 0.1945

0.9971 0.0162 0.07715
0 0 −0.1499

⎤
⎦ , �A (t) =

⎡
⎣ 0 0 0
0 0 0
0.001 sin (t) 0.0013 sin (t) 0

⎤
⎦

B =
⎡
⎣ −0.7114

−0.1969
1

⎤
⎦ , d (t) =

⎡
⎣ −0.3557

−0.0984
0.5

⎤
⎦ cos (2t) =

⎡
⎣ −0.7114

−0.1969
1

⎤
⎦ × 0.5 cos (2t) = Bdr (t).

The initial condition is given as:

x0 =
⎡
⎣−0.5

0
10

⎤
⎦

With above given matrices, the transfer matrix is then constructed as follows.

T =
⎡
⎣1 0 0.7114
0 1 0.1969
0 0 1

⎤
⎦ .

Therefore, L1, L2, R1, and R2 in (64) are then found from T .
If the poles of Ae in (53) are selected at−0.1 and−0.3, the sliding surface is selected
as s = [

0.6179 −0.5112 1
]

x .

Calculating Ae in (53), selecting Qe =
[
7 0
0 8

]
and then solving Pe from (55), we

have

Pe =
[
700.5910 35.5079
35.5079 11.9477

]
.

Consequently, the upper bound of uncertainty ‖�A‖ is calculated using (65) and is
obtained as 0.002. Since the spectral norm of given �A(t) is less than 0.0016, the
system with �A(t) as uncertainty still can guarantee the stability.

The following parameters are used for controller in (72):
ε = 0.5, α = 2, δA = 0.0025 and δd = 0.25.

In Fig. 8, we can find that the simulation trajectories of states are bounded in a
boundary layer. Therefore, the proposed controller works effectively as expected.
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Fig. 8 State responses of
example 3
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4 Conclusion

In this chapter, the needs for reciprocal state space (RSS) form and state derivative
related feedback control designs have been addressed. The fundamentals of state
derivative feedback design in RSS form have been introduced. Basically, for con-
trollable time invariant systems with no open loop poles at zero, the systems can
be expressed in RSS form. The main advantage of RSS form is that state derivative
feedback control designs can be systematically carried out in this form. Some once
though tough systems to be controlled such as generalized state space system with
impulse modes, can be fully controlled if it can be expressed in RSS form and apply
state derivative feedback as shown in this chapter.

To better handle systems with external disturbance and system uncertainty with
state derivative feedback control designs, novel slidingmode control design approach
with state derivative feedback in RSS form is then presented. For systems in RSS
form, nontraditional switching function utilizing the derivative of sliding surface is
proposed andproven to satisfy the approaching conditionof slidingmode. In addition,
algorithm of finding upper bound of system uncertainty has been developed for
robustness analysis. Simulation results successfully verify the proposed algorithms.
State derivative output feedback algorithm for SMC design in RSS form has also
been reported by author [31]. Our derivation is basically parallel to that for systems
in standard state space form. Experienced engineers or researchers can be quickly
familiar with the proposed design methods.

The contribution of this chapter is to provide SMC design approach by applying
direct state derivative feedback in nontraditional RSS form so that people can handle
more control problems without too much of mathematical overhead.

The future directions of research are suggested as follows:
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• Considering nonlinear constraint in control input: In implementation, actuators
that generate control inputs have various operating limitations such as saturation
and dead zone [29]. People should develop algorithms that put actuator limits into
consideration for more realistic considerations in design.

• Using state derivative space (SDS) form in control design for nonlinear system:
State derivative space (SDS) form [30, 32] is a more general system form which
can handle nonlinear systems. RSS form is a linear time invariant case of SDS
form. SDS form is described as follows.

x = f (ẋ, u, t) (79)

People may consider carrying out control design in SDS form with state derivative
related feedback for some nonlinear systems. Author is working on it.
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