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Abstract Chaos in nonlinear dynamics occurs widely in physics, chemistry,
biology, ecology, secure communications, cryptosystems and many scientific
branches. Anti-synchronization of chaotic systems is an important research prob-
lem in chaos theory. Sliding mode control is an important method used to solve
various problems in control systems engineering. In robust control systems, the slid-
ing mode control is often adopted due to its inherent advantages of easy realization,
fast response and good transient performance as well as insensitivity to parameter
uncertainties and disturbance. In this work, we derive a novel sliding mode control
method for the anti-synchronization of identical chaotic or hyperchaotic systems.
The general result derived using novel sliding mode control method is proved using
Lyapunov stability theory. As an application of the general result, the problem of anti-
synchronization of identical Vaidyanathan hyperjerk hyperchaotic systems (2015)
is studied and a new sliding mode controller is derived. The Lyapunov exponents
of the Vaidyanathan hyperjerk system are obtained as L1 = 0.1448, L2 = 0.0328,
L3 = 0 and L4 = −1.1294. Since the Vaidyanathan hyperjerk system has two posi-
tiveLyapunov exponents, it is hyperchaotic.Also, theKaplan–Yorkedimensionof the
Vaidyanathan hyperjerk system is obtained asDKY = 3.1573. Numerical simulations
using MATLAB have been shown to depict the phase portraits of the Vaidyanathan
hyperjerk system and the sliding mode controller design for the anti-synchronization
of identical Vaidyanathan hyperjerk systems.
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1 Introduction

Chaos theory describes the quantitative study of unstable aperiodic dynamic behav-
iour in deterministic nonlinear dynamical systems. For the motion of a dynamical
system to be chaotic, the system variables should contain some nonlinear terms
and the system must satisfy three properties: boundedness, infinite recurrence and
sensitive dependence on initial conditions [1].

A hyperchaotic system is defined as a chaotic system with at least two positive
Lyapunov exponents [1]. Thus, the dynamics of a hyperchaotic system can expand
in several different directions simultaneously. Thus, the hyperchaotic systems have
more complex dynamical behaviour and they have miscellaneous applications in
engineering such as secure communications [3, 9, 46], cryptosystems [5, 14, 50],
fuzzy logic [19, 49], electrical circuits [44, 47], etc.

The minimum dimension of an autonomous, continuous-time, hyperchaotic sys-
tem is four. The first 4-D hyperchaotic system was found by Rössler [15]. Many
hyperchaotic systems have been reported in the chaos literature such as hyperchaotic
Lorenz system [6], hyperchaotic Lü system [2], hyperchaotic Chen system [10],
hyperchaotic Wang system [43], hyperchaotic Vaidyanathan systems [28, 30, 31,
38, 40, 42], hyperchaotic Pham system [11], etc.

The synchronization of chaotic systems aims to synchronize the states of master
and slave systems asymptotically with time. There are many methods available for
chaos synchronization such as active control [7, 16, 17, 33, 35], adaptive control
[18, 20–22, 27, 32, 34], sliding mode control [23, 29, 37, 39], backstepping control
[12, 13, 24, 36], etc.

The design goal of anti-synchronization of chaotic systems is to use the output
of the master system to control the slave system so that the states of the slave sys-
tem have the same amplitude but opposite signs as the states of the master system
asymptotically [45, 48].

In this work, we use a novel sliding mode control method for deriving a general
result for the anti-synchronization of chaotic or hyperchaotic systems using sliding
mode control (SMC) theory. The sliding mode control method is an effective control
tool which has the advantages of low sensitivity to parameter variations in the plant
and disturbances affecting the plant.

This work is organized as follows. In Sect. 2, we discuss the problem statement
for the anti-synchronization of identical chaotic or hyperchaotic systems. In Sect. 3,
we derive a general result for the anti-synchronization of identical chaotic or hy-
perchaotic systems using novel sliding mode control. In Sect. 4, we describe the
Vaidyanathan hyperjerk system [41] and its dynamic properties. The Lyapunov
exponents of the Vaidyanathan hyperjerk system are obtained as L1 = 0.1448,
L2 = 0.0328, L3 = 0 and L4 = −1.1294, which shows that the Vaidyanathan hyper-
jerk system is hyperchaotic. In Sect. 5, we describe the slidingmode controller design
for the anti-synchronization of identical Vaidyanathan hyperjerk systems using novel
sliding mode control and its numerical simulations using MATLAB. Section6 con-
tains the conclusions of this work.
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2 Problem Statement

This section gives a problem statement for the anti-synchronization of identical
chaotic or hyperchaotic systems.

As the master or drive system, we consider the chaotic or hyperchaotic system
given by

ẋ = Ax + f (x) (1)

where x ∈ Rn denotes the state of the system, A ∈ Rn×n denotes the matrix of system
parameters and f (x) ∈ Rn contains the nonlinear parts of the system.

As the slave or response system, we consider the controlled identical system
given by

ẏ = Ay + f (y) + u (2)

where y ∈ Rn denotes the state of the system and u is the control.
The anti-synchronization error between the systems (1) and (2) is defined as

e = y + x (3)

The error dynamics is easily obtained as

ė = Ae + ψ(x, y) + u, (4)

where

ψ(x, y) = f (x) + f (y) (5)

Thus, the anti-synchronization problem between the systems (1) and (2) can be
stated as follows: Find a controller u(x, y) so as to render the anti-synchronization
error e(t) to be globally asymptotically stable for all values of e(0) ∈ Rn, i.e.

lim
t→∞ ‖e(t)‖ = 0 for all e(0) ∈ Rn (6)

3 A Novel Sliding Mode Control Method for Solving
Anti-synchronization Problem

This section details the main results of this work, viz. novel sliding mode controller
design for achieving anti-synchronization of chaotic or hyperchaotic systems.

First, we start the design by setting the control as

u(t) = −ψ(x, y) + Bv(t) (7)
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In Eq. (7), B ∈ Rn is chosen such that (A,B) is completely controllable.
By substituting (7) into (4), we get the closed-loop error dynamics

ė = Ae + Bv (8)

The system (8) is a linear time-invariant control system with single input v.
Next, we start the sliding controller design by defining the sliding variable as

s(e) = Ce = c1e1 + c2e2 + · · · + cnen, (9)

where C ∈ R1×n is a constant vector to be determined.
The sliding manifold S is defined as the hyperplane

S = {e ∈ Rn : s(e) = Ce = 0} (10)

We shall assume that a sliding motion occurs on the hyperplane S.
In sliding mode, the following equations must be satisfied:

s = 0 (11a)

ṡ = CAe + CBv = 0 (11b)

We assume that

CB �= 0 (12)

The sliding motion is influenced by the equivalent control derived from (11b) as

veq(t) = −(CB)−1 CAe(t) (13)

By substituting (13) into (8), we obtain the equivalent error dynamics in the sliding
phase as

ė = Ae − (CB)−1CAe = Ee, (14)

where

E = [
I − B(CB)−1C

]
A (15)

We note that E is independent of the control and has at most (n − 1) non-zero
eigenvalues, depending on the chosen switching surface, while the associated eigen-
vectors belong to ker(C).

Since (A,B) is controllable, we can use sliding control theory [25, 26] to choose
B and C so that E has any desired (n − 1) stable eigenvalues.

This shows that the dynamics (14) is globally asympotically stable.
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Finally, for the sliding controller design, we apply a novel sliding control law, viz.

ṡ = −ks − qs2 sgn(s) (16)

In (16), sgn(·) denotes the sign function and the SMC constants k > 0, q > 0 are
found in such a way that the sliding condition is satisfied and that the sliding motion
will occur.

By combining Eqs. (11b), (13) and (16), we finally obtain the sliding mode con-
troller v(t) as

v(t) = −(CB)−1
[
C(kI + A)e + qs2 sgn(s)

]
(17)

Next, we establish the main result of this section.

Theorem 1 The sliding mode controller defined by (7)achieves anti-synchronization
between the identical chaotic systems (1) and (2) for all initial conditions x(0), y(0)
in Rn, where v is defined by the novel sliding mode control law (17), B ∈ Rn×1 is such
that (A,B) is controllable, C ∈ R1×n is such that CB �= 0 and the matrix E defined
by (15) has (n − 1) stable eigenvalues.

Proof Upon substitution of the control laws (7) and (17) into the error dynamics (4),
we obtain the closed-loop error dynamics as

ė = Ae − B(CB)−1
[
C(kI + A)e + qs2 sgn(s)

]
(18)

We shall show that the error dynamics (18) is globally asymptotically stable by
considering the quadratic Lyapunov function

V(e) = 1

2
s2(e) (19)

The sliding mode motion is characterized by the equations

s(e) = 0 and ṡ(e) = 0 (20)

By the choice of E, the dynamics in the sliding mode given by Eq. (14) is globally
asymptotically stable.

When s(e) �= 0, V(e) > 0.
Also, when s(e) �= 0, differentiatingV along the error dynamics (18) or the equiv-

alent dynamics (16), we get

V̇(e) = sṡ = −ks2 − qs3 sgn(s) < 0 (21)

Hence, by Lyapunov stability theory [8], the error dynamics (18) is globally
asymptotically stable for all e(0) ∈ Rn. This completes the proof. �



148 S. Vaidyanathan and S. Sampath

4 Vaidyanathan Hyperjerk System and Its Properties

In this section, we describe the Vaidyanathan hyperjerk system [41] and discuss its
dynamic properties.

The Vaidyanathan hyperjerk system [41] is described by the 4-D dynamics

ẋ1 = x2
ẋ2 = x3
ẋ3 = x4
ẋ4 = −x1 − x2 − bx21 − ax3 − cx41x4

(22)

where x1, x2, x3, x4 are the states and a, b, c are constant, positive, parameters.
In [41], it was shown that the system (22) is hyperchaotic when the parameters

take the values

a = 3.7, b = 0.2, c = 1.5 (23)

For numerical simulations,we take the initial values of theVaidyanathan hyperjerk
system (22) as

x1(0) = 0.1, x2(0) = 0.1, x3(0) = 0.1, x4(0) = 0.1 (24)

For the parameter values in (23) and the initial values in (24), the Lyapunov
exponents of the Vaidyanathan hyperjerk system (22) are numerically obtained as

L1 = 0.1448, L2 = 0.0328, L3 = 0, L4 = −1.1294 (25)

Since there are two positive Lyapunov exponents in the LE spectrum given in
(25), it follows that the Vaidyanathan hyperjerk system is hyperchaotic.

Since the sum of the Lyapunov exponents in (25) is negative, the Vaidyanathan
hyperjerk system (22) is dissipative.

The Kaplan–Yorke dimension [4] of a chaotic system of order n is defined as

DKY = j + L1 + · · · + Lj

|Lj+1| (26)

where L1 ≥ L2 ≥ · · · ≥ Ln are the Lyapunov exponents of the chaotic system and j
is the largest integer for which L1 + L2 + · · · + Lj ≥ 0. (Kaplan–Yorke conjecture
states that for typical chaotic systems, DKY ≈ DL, the information dimension of the
system.)
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Fig. 1 3-D projection of the Vaidyanathan hyperjerk system on the (x1, x2, x3) space

Thus, the Kaplan–Yorke dimension of the Vaidyanathan hyperjerk system (22) is
calculated as

DKY = 3 + L1 + L2 + L3

|L4| = 3.1573, (27)

which is fractional.
It is easy to show that the Vaidyanathan hyperjerk system (22) has two equilibrium

points given by

E0 =

⎡

⎢
⎢
⎣

0
0
0
0

⎤

⎥
⎥
⎦ and E1 =

⎡

⎢
⎢
⎣

−5
0
0
0

⎤

⎥
⎥
⎦ (28)

In [41], it was shown that both E0 and E1 are saddle-focus points, and hence they
are unstable.

For the initial conditions given in (24), phase portraits of the Vaidyanathan
hyperjerk system (22) are plotted using MATLAB.

Figures1, 2, 3 and 4 show the 3-D projections of the Vaidyanathan hyperjerk sys-
tem (22) in (x1, x2, x3), (x1, x2, x4), (x1, x3, x4) and (x2, x3, x4) spaces, respectively.
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Fig. 2 3-D projection of the Vaidyanathan hyperjerk system on the (x1, x2, x4) space
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Fig. 3 3-D projection of the Vaidyanathan hyperjerk system on the (x1, x3, x4) space

5 Sliding Mode Controller Design for the
Anti-synchronization of Vaidyanathan Hyperjerk
Systems

In this section, we describe the sliding mode controller design for the anti-
synchronization of Vaidyanathan hyperjerk systems [41] by applying the novel
method described by Theorem 1 in Sect. 3.
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Fig. 4 3-D projection of the Vaidyanathan hyperjerk system on the (x2, x3, x4) space

As the master system, we take the Vaidyanathan hyperjerk system given by

ẋ1 = x2
ẋ2 = x3
ẋ3 = x4
ẋ4 = −x1 − x2 − bx21 − ax3 − cx41x4

(29)

where x1, x2, x3, x4 are the state variables and a, b, c are positive parameters.
As the slave system, we consider the controlled Vaidyanathan hyperjerk system

given by

ẏ1 = y2 + u1
ẏ2 = y3 + u2
ẏ3 = y4 + u3
ẏ4 = −y1 − y2 − by21 − ay3 − cy41y4 + u4

(30)

where y1, y2, y3, y4 are the state variables and u1, u2, u3, u4 are the controls.
The anti-synchronization error between the Vaidyanathan hyperjerk systems is

defined by

e1 = y1 + x1
e2 = y2 + x2
e3 = y3 + x3
e4 = y4 + x4

(31)
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Then the error dynamics is obtained as

ė1 = e2 + u1
ė2 = e3 + u2
ė3 = e4 + u3
ė4 = −e1 − e2 − ae3 − b

(
y21 + x21

) − c
(
y41y4 + x41x4

) + u4

(32)

In matrix form, we can write the error dynamics (32) as

ė = Ae + ψ(x, y) + u (33)

The matrices in (33) are given by

A =

⎡

⎢⎢
⎣

0 1 0 0
0 0 1 0
0 0 0 1

−1 −1 −a 0

⎤

⎥⎥
⎦ and ψ(x, y) =

⎡

⎢⎢
⎣

0
0
0

−b(y21 + x21) − c(y41y4 + x41x4)

⎤

⎥⎥
⎦ (34)

We follow the procedure given in Sect. 3 for the construction of the novel sliding
controller to achieve anti-synchronization of the identical Vaidyanathan hyperjerk
systems (29) and (30).

First, we set u as

u(t) = −ψ(x, y) + Bv(t) (35)

where B is selected such that (A,B) is completely controllable.
A simple choice of B is

B =

⎡

⎢⎢
⎣

1
1
1
1

⎤

⎥⎥
⎦ (36)

It can be easily checked that (A,B) is completely controllable.
The Vaidyanathan hyperjerk system displays a strange attractor when the para-

meter values are selected as

a = 3.7, b = 0.2, c = 1.5 (37)

Next, we take the sliding variable as

s(e) = Ce = [
15 8 −9 −13

]
e = 15e1 + 8e2 − 9e3 − 13e4 (38)

Next, we take the sliding mode gains as

k = 5, q = 0.2 (39)
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From Eq. (17) in Sect. 3, we obtain the novel sliding control v as

v(t) = −88e1 − 68e2 − 11.1e3 + 74e4 − 0.2s2 sgn(s) (40)

As an application of Theorem 1 to the identical Vaidyanathan hyperjerk systems,
we obtain the following main result of this section.

Theorem 2 The identical Vaidyanathan hyperjerk systems (29)and (30)are globally
and asymptotically anti-synchronized for all initial conditions x(0), y(0) ∈ R4 with
the sliding controller u defined by (35), where ψ(x, y) is defined by (34), B is defined
by (36) and v is defined by (40). �

For numerical simulations, we use MATLAB for solving the systems of differ-
ential equations using the classical fourth-order Runge–Kutta method with step size
h = 10−8.

The parameter values of the Vaidyanathan hyperjerk systems are taken as in the
hyperchaotic case, viz. a = 3.7, b = 0.2 and c = 1.5.

The sliding mode gains are taken as k = 5 and q = 0.2.
As an initial condition for the master system (29), we take

x1(0) = 1.7, x2(0) = 0.5, x3(0) = 1.8, x4(0) = 1.2 (41)

As an initial condition for the slave system (30), we take

y1(0) = 3.1, y2(0) = 2.4, y3(0) = 0.3, y4(0) = 0.5 (42)
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Fig. 5 Anti-synchronization of the states x1 and y1
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Figures5, 6, 7 and 8 show the anti-synchronization of the states of the identical
Vaidyanathan hyperjerk systems (29) and (30).

Figure9 shows the time-history of the anti-synchronization errors e1, e2, e3, e4.
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6 Conclusions

Chaos and hyperchaos have important applications in science and engineering.
Hyperchaotic systems have more complex behaviour than chaotic systems and they
havemiscellaneous applications in areas like secure communications, cryptosystems,
etc. In robust control systems, the sliding mode control is commonly used due to its
inherent advantages of easy realization, fast response and good transient performance
as well as insensitivity to parameter uncertainties and disturbance. In this work, we
derived a novel slidingmode control method for the anti-synchronization of identical
chaotic or hyperchaotic systems.We proved the main result using Lyapunov stability
theory. As an application of the general result, the problem of anti-synchronization of
identical Vaidyanathan hyperjerk hyperchaotic systems (2015)was studied and a new
sliding mode controller has been derived. Numerical simulations using MATLAB
were shown to depict the phase portraits of theVaidyanathan hyperjerk systemand the
slidingmode controller design for the anti-synchronization of identical Vaidyanathan
hyperjerk systems.
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