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Abstract This paper investigates the problem of output regulation of the
Vaidyanathan 3-D jerk chaotic system (2014). Explicitly, state feedback control laws
to regulate the output of the Vaidyanathan jerk chaotic system have been derived
so as to track the constant reference signals as well as to track periodic reference
signals. The control laws are derived using the regulator equations of C.I. Byrnes
and A. Isidori (1990), who solved the problem of output regulation of nonlinear
systems involving neutrally stable exosystem dynamics. The output regulation of
the Vaidyanathan jerk chaotic system has important applications in Electrical and
Communication Engineering. Numerical simulations using MATLAB are shown to
illustrate the phase portraits of the Vaidyanathan jerk chaotic system and the output
regulation results for the Vaidyanathan jerk chaotic system.

Keywords Chaos · Chaotic systems · Output regulation · Nonlinear control sys-
tems · Feedback stabilization

1 Introduction

Output regulation of control systems is one of the very important problems in control
systems theory. Basically, the output regulation problem is to control a fixed linear
or nonlinear plant in order to have its output tracking reference signals produced by
some external generator (the exosystem).

For linear control systems, the output regulation problem has been solved by
Francis and Wonham [12]. For nonlinear control systems, the output regulation
problem has been solved by Byrnes and Isidori [5] generalizing the internal model
principle obtained by Francis and Wonham [12]. Byrnes and Isidori [5] have made
an important assumption in their work which demands that the exosystem dynam-
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ics generating reference and/or disturbance signals is a neutrally stable system
(Lyapunov stable in both forward and backward time). The class of exosystem sig-
nals includes the important particular cases of constant reference signals as well as
sinusoidal reference signals. Using Centre Manifold Theory [7], Byrnes and Isidori
have derived regulator equations, which completely characterize the solution of the
output regulation problem of nonlinear control systems.

The output regulation problem for linear and nonlinear control systems has been
the focus of many studies in recent decades [48]. In [21], Mahmoud and Khalil
obtained results on the asymptotic regulation of minimum phase nonlinear systems
using output feedback. In [13], Fridman solved the output regulation problem for
nonlinear control systems with delay using centre manifold theory [7]. In [11], Chen
and Huang obtained results on the robust output regulation for output feedback
systems with nonlinear exosystems. In [18], Liu and Huang obtained results on the
global robust output regulation problem for lower triangular nonlinear systems with
unknown control direction. In [88], Yang and Huang obtained new results on the
global robust output regulation problem for nonlinear plants subject to nonlinear
exosystems.

In [14], Immonen obtained results on the practical output regulation for bounded
linear infinite-dimensional state space systems. In [23], Pavlov, Van de Wouw
and Nijimeijer obtained results on the global nonlinear output regulation using
convergence-based controller design. In [87], Xi and Ding obtained results on the
global adaptive output regulation of a class of nonlinear systems with nonlinear
exosystems. In [37], Serrani and Isidori obtained results on the global robust output
regulation problem for a class of nonlinear systems.

In [39], Sundarapandian obtained results for the output regulation of the Lorenz
attractor. In [52],Vaidyanathanobtained results for the output regulationof the unified
chaotic system. In [51], Vaidyanathan derived results for the output regulation of the
Arneodo-Coullet chaotic system. In [56], Vaidyanathan derived results for the output
regulation of the Liu chaotic system.

Chaotic systems are defined as nonlinear dynamical systems which are sensitive
to initial conditions, topologically mixing and with dense periodic orbits. Sensitivity
to initial conditions of chaotic systems is popularly known as the butterfly effect.
Small changes in an initial state will make a very large difference in the behavior
of the system at future states. Chaotic behaviour was suspected well over hundred
years ago in the study of three bodies problem by Henri Poincaré [4], but chaos was
experimentally established by E.N. Lorenz [19] only a few decades ago in the study
of 3-D weather models.

Some classical paradigms of 3-D chaotic systems in the literature are Rössler
system [31], ACT system [1], Sprott systems [38], Chen system [9], Lü system [20],
Liu system [17], Cai system [6], Chen-Lee system [10], Tigan system [49], etc.

Many new chaotic systems have been discovered in the recent years such as Zhou
system [89], Zhu system [90], Li system [16],Wei-Yang system [86], Sundarapandian
systems [40, 45], Vaidyanathan systems [58, 59, 61–64, 66, 68, 71, 82, 85], Pehlivan
system [25], etc.
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Synchronizationof chaotic systems is a phenomenon that occurswhen twoormore
chaotic systems are coupled or when a chaotic system drives another chaotic system.
Because of the butterfly effectwhich causes exponential divergence of the trajectories
of two identical chaotic systems started with nearly the same initial conditions, the
synchronization of chaotic systems is a challenging research problem in the chaos
literature [2, 3].

Major works on synchronization of chaotic systems deal with the complete syn-
chronization of a pair of chaotic systems called the master and slave systems. The
design goal of the complete synchronization is to apply the output of the master
system to control the slave system so that the output of the slave system tracks the
output of the master system asymptotically with time.

Pecora and Carroll pioneered the research on synchronization of chaotic systems
with their seminal papers [8, 24]. The active control method [15, 32, 33, 44, 50, 73,
74, 77] is typically used when the system parameters are available for measurement.
Adaptive control method [34–36, 41–43, 54, 60, 67, 72, 75, 76, 81, 84] is typically
used when some or all the system parameters are not available for measurement and
estimates for the uncertain parameters of the systems.

Backstepping control method [26–30, 47, 78, 83] is also used for the synchro-
nization of chaotic systems, which is a recursive method for stabilizing the origin
of a control system in strict-feedback form. Another popular method for the syn-
chronization of chaotic systems is the sliding mode control method [46, 53, 55, 57,
65, 69, 70, 79, 80], which is a nonlinear control method that alters the dynamics of
a nonlinear system by application of a discontinuous control signal that forces the
system to “slide” along a cross-section of the system’s normal behavior.

In this work, the output regulation problem for the Vaidyanathan jerk chaotic
system [82] has been solved using the Byrnes-Isidori regulator equations [5] to
derive the state feedback control laws for regulating the output of the Vaidyanathan
jerk chaotic system for the important cases of constant reference signals (set-point
signals) and periodic reference signals.

This work is organized as follows. In Sect. 2, a review of the solution of the out-
put regulation for nonlinear control systems and Byrnes-Isidori regulator equations
has been presented. In Sect. 3, a dynamic analysis of the Vaidyanathan jerk chaotic
system [82] is detailed. In Sect. 4, output regulation problem for the Vaidyanathan
jerk chaotic system is discussed and new results are derived. In Sect. 5, numerical
simulations for the output regulation of the Vaidyanathan jerk chaotic system are
detailed. Section6 summarizes the main results obtained in this work.

2 Review of the Output Regulation for Nonlinear
Control Systems

In this section, we consider a multi-variable nonlinear control system modelled by
equations of the form

ẋ = f (x) + g(x)u + p(x)ω (1)
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ω̇ = s(ω) (2)

e = h(x) − q(ω) (3)

Here, the differential equation (1) describes theplant dynamicswith state x defined
in a neighbourhood X of the origin of Rn and the input u takes values in Rm subject
to the effect of a disturbance represented by the vector field p(x)ω. The differential
equation (2) describes an autonomous system, known as the exosystem, defined in
a neighbourhood W of the origin of Rk , which models the class of disturbance and
reference signals taken into consideration. The Eq. (3) defines the error between the
actual plant output h(x) ∈ Rp and a reference signal q(ω), which models the class
of disturbance and reference signals taken into consideration.

We also assume that all the constituent mappings of the system (1), (2) and the
error Eq. (3), namely, f, g, p, s, h and q are C1 mappings vanishing at the origin, i.e.

f (0) = 0, g(0) = 0, p(0) = 0, h(0) = 0 and q(0) = 0.

Thus, for u = 0, the system (1), (2) has an equilibrium state (x, ω) = (0, 0) with
zero error (3).

A state feedback controller for the composite system (1), (2) has the form

u = α(x, ω) (4)

where α is aC1 mapping defined on X × W such that α(0, 0) = 0. Upon substitution
of the feedback law (4) in the composite system (1), (2),we get the closed-loop system
given by

ẋ = f (x) + g(x)α(x, ω) + p(x)ω

ω̇ = s(ω)
(5)

The purpose of designing the state feedback controller (4) is to achieve both inter-
nal stability and output regulation. Internal stability means that when the input is
disconnected from (5) (i.e. whenω = 0), the closed-loop system (5) has an exponen-
tially stable equilibrium at x = 0. Output regulation means that for the closed-loop
system (5), for all initial states (x(0), ω(0)) sufficiently close to the origin, e(t) → 0
asymptotically as t → ∞. Formally, we can summarize the requirements as follows.

State Feedback Regulator Problem [5]:
Find, if possible, a state feedback control law u = α(x, ω) such that

(OR1) (Internal Stability) The equilibrium x = 0 of the dynamics

ẋ = f (x) + g(x)α(x, 0)

is locally asymptotically stable.
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(OR2) (Output Regulation) There exists a neighbourhood U ⊂ X × W of (x, ω) =
(0, 0) such that for each initial condition (x(0), ω(0)) ∈ U , the solution (x(t),
ω(t)) of the closed-loop system (5) satisfies

lim
t→∞ [h(x(t)) − q(ω(t))] = 0.

Byrnes and Isidori [5] have solved this problem under the following assumptions.

(H1) The exosystem dynamics ω̇ = s(ω) is neutrally stable atω = 0, i.e. the system
is Lyapunov stable in both forward and backward time at ω = 0.

(H2) The pair ( f (x), g(x)) has a stabilizable linear approximation at x = 0, i.e. if

A =
[
∂ f

∂x

]
x=0

and B =
[

∂g

∂x

]
x=0

,

then (A, B) is stabilizable, which means that we can find a gain matrix K so that
A + BK is Hurwitz. �

Next, we recall the solution of the output regulation problem derived by Byrnes and
Isidori [5].

Theorem 1 [5] Under the hypotheses (H1) and (H2), the state feedback regulator
problem is solvable if, and only if, there exist C1 mappings x = π(ω) with π(0) = 0
and u = φ(ω) with φ(0) = 0, both defined in a neighbourhod of W 0 ⊂ W of ω = 0
such that the following equations (called the Byrnes-Isidori regulator equations) are
satisfied:

(1) ∂π
∂ω

s(ω) = f (π(ω)) + g(π(ω))φ(ω) + p(π(ω))ω

(2) h(π(ω)) − q(ω) = 0

When the Byrnes-Isidori regulator equations (1) and (2) are satisfied, a control
law solving the state feedback regulator problem is given by

u = φ(ω) + K [x − π(ω)] (6)

where K is any gain matrix such that A + BK is Hurwitz. �

3 Dynamic Analysis of the Vaidyanathan Jerk
Chaotic System

The Vaidyanathan jerk chaotic system [82] is described by the 3-D dynamics

ẋ1 = x2
ẋ2 = x3
ẋ3 = x1 − a[sinh(x1) + sinh(x2)] − bx3

(7)
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In (7), a and b are constant, positive parameters.
The system (7) exhibits a chaotic attractor when the parameter values are taken

as
a = 0.4, b = 0.8 (8)

For numerical simulations, we take the initial conditions of the Vaidyanathan jerk
system (7) as

x1(0) = 0.8, x2(0) = 1.2, x3(0) = 0.5 (9)

Figure1 shows the 3-D phase portrait of the Vaidyanathan jerk chaotic system
(7). Figures2, 3, 4 show the 2-D projections of the Vaidyanathan jerk chaotic system
(7) on the (x1, x2), (x2, x3) and (x1, x3) coordinate planes respectively.

Also, the Lyapunov exponents of the Vaidyanathan jerk chaotic system (7) for the
parameter values (8) and the initial values (9) are numerically found as

L1 = 0.0771, L2 = 0, L3 = −0.8791 (10)

Since L1 + L2 + L3 = −0.802 < 0, the Vaidyanathan jerk chaotic system (7) is
dissipative and the asymptotic motion of the Vaidyanathan jerk chaotic system (7)
settles onto a strange attractor of the system.
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Fig. 1 3-D phase portrait of the Vaidyanathan jerk chaotic system
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Fig. 2 2-D projection of the Vaidyanathan jerk chaotic system on the (x1, x2) plane
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Fig. 3 2-D projection of the Vaidyanathan jerk chaotic system on the (x2, x3) plane
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Fig. 4 2-D projection of the Vaidyanathan jerk chaotic system on the (x1, x3) plane

Also, the Kaplan-Yorke dimension of the Vaidyanathan jerk chaotic system (7) is
calculated as

DK Y = 2 + L1 + L2

|L3| = 2.0877, (11)

which is fractional.

4 Output Regulation of Vaidyanathan Jerk Chaotic System

The Vaidyanathan jerk chaotic system [82] is a novel chaotic system described by
the dynamics

ẋ1 = x2
ẋ2 = x3
ẋ3 = x1 − a[sinh(x1) + sinh(x2)] − bx3 + u

(12)

where a, b are positive constants and u is an active feedback control.
In this work, we consider two important cases of output regulation for the

Vaidyanathan jerk chaotic system [82]:

(I) Tracking of Constant Reference Signals
(II) Tracking of Periodic Reference Signals
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4.1 Tracking of Constant Reference Signals

In this case, the exosystem is given by the scalar dynamics

ω̇ = 0 (13)

It is important to observe that the exosystem (13) is neutrally stable because the
solutions of (13) are only constant trajectories, i.e.

ω(t) ≡ ω(0) = ω0 for all t

Thus, the assumption (H1) of Theorem 1 (Sect. 2) holds trivially.
Linearizing the dynamics of the Vaidyanathan jerk chaotic system (12) at the

origin, we get the system matrices

A =
⎡
⎣ 0 1 0

0 0 1
1 − a −a −b

⎤
⎦ and B =

⎡
⎣0
0
1

⎤
⎦ (14)

Using Kalman’s rank test for controllability [22], it can be easily seen that the
pair (A, B) is completely controllable.

Since (A, B) is in Bush companion form, the characteristic equation of A + BK
is given by

λ3 + (b − k3)λ
2 + (a − k2)λ + (a − k1 − 1) = 0 (15)

where K = [
k1 k2 k3

]
.

By the Routh’s stability criterion [22], it can be easily shown that the closed-loop
system matrix A + BK is Hurwitz if and only if

k1 < a − 1, k2 < a, k3 < b, (b − k3)(a − k2) > a − k1 − 1 (16)

Thus, the assumption (H2) of Theorem 1 (Sect. 2) also holds.
Hence, Theorem 1 can be applied to solve the output regulation problem for the

Vaidyanathan jerk chaotic system (12) for the tracking of constant reference signals
(set-point signals).

4.1.1 Constant Tracking Problem for x1

Here, the tracking problem for the Vaidyanathan jerk chaotic system (12) is given by

ẋ1 = x2
ẋ2 = x3
ẋ3 = x1 − a[sinh(x1) + sinh(x2)] − bx3 + u
e = x1 − ω

(17)
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By Theorem 1, the regulator equations of (17) are obtained as

⎧⎪⎪⎨
⎪⎪⎩

π2(ω) = 0
π3(ω) = 0

π1(ω) − a[sinh(π1(ω)) + sinh(π2(ω))] − bπ3(ω) + φ(ω) = 0
π1(ω) − ω = 0

(18)

Solving the regulator equation (18), we get the unique solution

⎧⎪⎪⎨
⎪⎪⎩

π1(ω) = ω

π2(ω) = 0
π3(ω) = 0
φ(ω) = a sinh(ω) − ω

(19)

By Theorem 1, a state feedback control law solving the output regulation problem
is given by

u = φ(ω) + K [x − π(ω)] = a sinh(ω) − ω + k1(x1 − ω) + k2x2 + k3x3 (20)

where k1, k2 and k3 satisfy the inequalities (16).

4.1.2 Constant Tracking Problem for x2

Here, the tracking problem for the Vaidyanathan jerk chaotic system (12) is given by

ẋ1 = x2
ẋ2 = x3
ẋ3 = x1 − a[sinh(x1) + sinh(x2)] − bx3 + u
e = x2 − ω

(21)

By Theorem 1, the regulator equations of (21) are obtained as

⎧⎪⎪⎨
⎪⎪⎩

π2(ω) = 0
π3(ω) = 0

π1(ω) − a[sinh(π1(ω)) + sinh(π2(ω))] − bπ3(ω) + φ(ω) = 0
π2(ω) − ω = 0

(22)

The first and fourth equations in (22) contradict each other.
Thus, the regulator equation (22) are not solvable.
Hence, by Theorem 1, we conclude that the output regulation problem is not

solvable for this case.
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4.1.3 Constant Tracking Problem for x3

Here, the tracking problem for the Vaidyanathan jerk chaotic system (12) is given by

ẋ1 = x2
ẋ2 = x3
ẋ3 = x1 − a[sinh(x1) + sinh(x2)] − bx3 + u
e = x3 − ω

(23)

By Theorem 1, the regulator equations of (23) are obtained as

⎧⎪⎪⎨
⎪⎪⎩

π2(ω) = 0
π3(ω) = 0

π1(ω) − a[sinh(π1(ω)) + sinh(π2(ω))] − bπ3(ω) + φ(ω) = 0
π3(ω) − ω = 0

(24)

The second and fourth equations in (24) contradict each other.
Thus, the regulator equation (24) are not solvable.
Hence, by Theorem 1, we conclude that the output regulation problem is not

solvable for this case.

4.2 Tracking of Periodic Reference Signals

In this case, the exosystem is given by the planar dynamics

ω̇1 = ν ω2

ω̇2 = −ν ω1
(25)

where ν > 0 is any fixed constant.
Clearly, the assumption (H1) (Theorem 1) holds. Also, as established in Sect. 4.1,

the assumption (H2) of Theorem 1 also holds and that the closed-loop system matrix
A + BK will be Hurwitz if the constants k1, k2 and k3 of the gain matrix K satisfy
the inequalities (16).

Hence, Theorem 1 can be applied to solve the output regulation problem for the
Vaidyanathan jerk chaotic system (12) for the tracking of periodic reference signals.

4.2.1 Periodic Tracking Problem for x1

Here, the tracking problem for the Vaidyanathan jerk chaotic system (12) is given by
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ẋ1 = x2
ẋ2 = x3
ẋ3 = x1 − a[sinh(x1) + sinh(x2)] − bx3 + u
ω̇1 = ν ω2

ω̇2 = −ν ω1

e = x1 − ω1

(26)

By Theorem 1, the regulator equations of (26) are obtained as

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂π1
∂ω1

(νω2) + ∂π1
∂ω2

(−νω1) = π2(ω)
∂π2
∂ω1

(νω2) + ∂π2
∂ω2

(−νω1) = π3(ω)
∂π3
∂ω1

(νω2) + ∂π3
∂ω2

(−νω1) = π1(ω) − a[sinh(π1(ω)) + sinh(π2(ω))]
−bπ3(ω) + φ(ω)

π1(ω) − ω1 = 0

(27)

Solving the regulator equation (27), we get the unique solution

⎧⎨
⎩

π1(ω) = ω1

π2(ω) = νω2

π3(ω) = −ν2ω1

(28)

and
φ(ω) = −ν3ω2 − (

bν2 + 1
)
ω1 + a[sinh(ω1) + sinh(νω2) (29)

By Theorem 1, a state feedback control law solving the output regulation problem
is given by

u = φ(ω) + K [x − π(ω)] (30)

where π(ω) is given by (28), φ(ω) is given by (29) and k1, k2 and k3 satisfy the
inequalities (16).

4.2.2 Periodic Tracking Problem for x2

Here, the tracking problem for the Vaidyanathan jerk chaotic system (12) is given by

ẋ1 = x2
ẋ2 = x3
ẋ3 = x1 − a[sinh(x1) + sinh(x2)] − bx3 + u
ω̇1 = ν ω2

ω̇2 = −ν ω1

e = x2 − ω1

(31)
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By Theorem 1, the regulator equations of (31) are obtained as

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂π1
∂ω1

(νω2) + ∂π1
∂ω2

(−νω1) = π2(ω)
∂π2
∂ω1

(νω2) + ∂π2
∂ω2

(−νω1) = π3(ω)
∂π3
∂ω1

(νω2) + ∂π3
∂ω2

(−νω1) = π1(ω) − a[sinh(π1(ω)) + sinh(π2(ω))]
−bπ3(ω) + φ(ω)

π2(ω) − ω1 = 0

(32)

Solving the regulator equation (32), we get the unique solution

⎧⎨
⎩

π1(ω) = −ν−1ω2

π2(ω) = ω1

π3(ω) = νω2

(33)

and
φ(ω) = ν2ω1 + (

ν−1 + bν
)
ω2 + a

[− sinh
(
ν−1ω2

) + sinh(ω1)
]

(34)

By Theorem 1, a state feedback control law solving the output regulation problem
is given by

u = φ(ω) + K [x − π(ω)] (35)

where π(ω) is given by (33), φ(ω) is given by (34) and k1, k2 and k3 satisfy the
inequalities (16).

4.2.3 Periodic Tracking Problem for x3

Here, the tracking problem for the Vaidyanathan jerk chaotic system (12) is given by

ẋ1 = x2
ẋ2 = x3
ẋ3 = x1 − a[sinh(x1) + sinh(x2)] − bx3 + u
ω̇1 = ν ω2

ω̇2 = −ν ω1

e = x3 − ω1

(36)

By Theorem 1, the regulator equations of (36) are obtained as

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂π1
∂ω1

(νω2) + ∂π1
∂ω2

(−νω1) = π2(ω)
∂π2
∂ω1

(νω2) + ∂π2
∂ω2

(−νω1) = π3(ω)
∂π3
∂ω1

(νω2) + ∂π3
∂ω2

(−νω1) = π1(ω) − a[sinh(π1(ω)) + sinh(π2(ω))]
−bπ3(ω) + φ(ω)

π3(ω) − ω1 = 0

(37)
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Solving the regulator equation (37), we get the unique solution

⎧⎨
⎩

π1(ω) = −ν−2ω1

π2(ω) = −ν−1ω2

π3(ω) = ω1

(38)

and
φ(ω) = (

b + ν−2
)
ω1 + νω2 − a

[
sinh

(
ν−2ω1

) + sinh
(
ν−1ω2

)]
(39)

By Theorem 1, a state feedback control law solving the output regulation problem
is given by

u = φ(ω) + K [x − π(ω)] (40)

where π(ω) is given by (38), φ(ω) is given by (39) and k1, k2 and k3 satisfy the
inequalities (16).

5 Numerical Simulations

For numerical simulations, we take the parameter values a and b so that the
Vaidyanathan jerk system (12) is in the chaotic case, i.e.

a = 0.4, b = 0.8 (41)

For achieving the internal stability of the state feedback regulator problem, a gain
matrix K which satisfies the inequalities (16) must be used.

With the choice

K = [
k1 k2 k3

] = [−125.6 −74.2 −14.2
]
,

the matrix A + BK is Hurwitz with the eigenvalues −5,−5,−5.
In the periodic tracking output regulation problem, the value ν = 1 is taken in the

exosystem dynamics given by (25).

5.1 Tracking of Constant Reference Signals

5.1.1 Constant Tracking Problem for x1

Here, the initial conditions are taken as

x1(0) = 8.1, x2(0) = 5.4, x3(0) = 6.3, ω(0) = 2
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Fig. 5 Constant tracking of the state x1

The simulation graph is depicted in Fig. 5 from which it is clear that the state
trajectory x1(t) tracks the constant reference signal ω(t) ≡ 2 in 3 s.

5.1.2 Constant Tracking Problem for x2

As detailed in Sect. 4.1.2, the output regulation problem is not solvable for this case
because the Byrnes-Isidori regulator equations do not admit any solution.

5.1.3 Constant Tracking Problem for x3

As pointed out in Sect. 4.1.3, the output regulation problem is not solvable for this
case because the Byrnes-Isidori regulator equations do not admit any solution.

5.2 Tracking of Periodic Reference Signals

5.2.1 Periodic Tracking Problem for x1

Here, the initial conditions are taken as

x1(0) = 5.1, x2(0) = 4.7, x3(0) = −2.5, ω1(0) = 0, ω2(0) = 1
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Fig. 6 Periodic tracking of the state x1

Also, it is assumed that ν = 1. The simulation graph is depicted in Fig. 6 from
which it is clear that the state trajectory x1(t) tracks the periodic reference signal
ω1(t) = sin t in 3 s.

5.2.2 Periodic Tracking Problem for x2

Here, the initial conditions are taken as

x1(0) = 8.1, x2(0) = 3.4, x3(0) = −2.7, ω1(0) = 0, ω2(0) = 1

Also, it is assumed that ν = 1. The simulation graph is depicted in Fig. 7 from
which it is clear that the state trajectory x2(t) tracks the periodic reference signal
ω1(t) = sin t in 3 s.

5.2.3 Periodic Tracking Problem for x3

Here, the initial conditions are taken as

x1(0) = 3.4, x2(0) = 2.5, x3(0) = −6.9, ω1(0) = 0, ω2(0) = 1
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Fig. 8 Periodic tracking of the state x3

Also, it is assumed that ν = 1. The simulation graph is depicted in Fig. 8 from
which it is clear that the state trajectory x3(t) tracks the periodic reference signal
ω1(t) = sin t in 3 s.
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6 Conclusions

Output regulation problem is one of the important problems in the control theory,
which aims to control a fixed linear or nonlinear plant in order to have its output
tracking reference signals produced by some external generator or the exosystem.
Byrnes and Isidori (1990) solved the output regulation problem for a general class of
nonlinear systems under some stability assumptions. In this work, the output regu-
lation problem for the Vaidyanathan jerk chaotic system (2014)) has been studied in
detail and a complete solution for the output regulation problem for the Vaidyanathan
jerk chaotic system has been presented as well. Explicitly, using the Byrnes-Isidori
regulator equations (1990), state feedback control laws for regulating the output of
the Vaidyanathan jerk chaotic system have been derived. As tracking reference sig-
nals, constant and periodic reference signals have been considered and in each case,
feedback control laws regulating the output of the Vaidyanathan chaotic system have
been derived when the problem is solvable. Numerical simulations using MATLAB
are shown to verify the results.
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