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Abstract The tire is an essential element for road holding, comfort and safety of a
vehicle. Nevertheless, under inflation will cause rapid tire wear and increases fuel
consumption. It is therefore important to develop Tire pressure Monitoring Systems
(TPMS).One approach, called “direct”, consisting in using pressure sensors proves to
be expensive and unreliable (possibility of breakdowns). New generations of TPMS
favor “indirect” methods without pressure sensor. Supervision is carried from phys-
ical quantities related to the pressure. The drop in pressure results a decrease in
effective radius of wheel and an increase in rolling resistance force. We study in the
context of this chapter, the possibility to use the models of longitudinal and rotational
dynamics of the two front wheels and the vehicle for the implementation of nonlinear
observer, which variables depend on the pressure. The observer is based on a higher
order slidingmode approach, allowing finite time convergence of the estimation error
and robustness face disturbance. The originality of the presented results consists in
providing a joint estimation of three variables, namely, the effective radii of wheels
and rolling resistance force of the front axle, without use of additional sensors.

Keywords Wheels’ effective radii · High order sliding mode observer · Rolling
resistance force · Tire monitoring system

1 Introduction

The tires are the only physical link between the vehicle and the road, their impact
on safety is crucial. Their physical properties that affect its dynamic behavior are
largely related to its pressure. A drop in pressure has a direct impact on characteristics
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such as damping, stiffness and rigidity of the tire. Any unsuitable inflation leads to
increase fuel consumption, accentuate the risk of explosion and cause rapid wear of
the tire. In addition, the chassis configuration of current vehicles, designed to provide
optimum road holding, tends to mask the effects of inflation problem. For the driver,
the behavior of the car seems to remain in a normal situation until it is faced with an
emergency or more radically to an incident [7]. It is therefore important to inform the
driver of any anomaly by displaying a message on the dashboard. It is the vocation
of the tire pressure monitoring system.

The tire pressure monitoring system is intended to improve the safety of the
equipped vehicle. Over the years, various statistics have shown that over 40% of
vehicles are driven with tires under inflated by an average 0.6 bars and that many
accidents are due to a failure primarily caused by pressure loss [5].

These accidents have led to the development of Tire PressureMonitoring Systems
(TPMS) to supervise permanently the pressure. A European regulation which comes
into force in 2012 requires the presence of such systems on all new vehicles. The
constraint is that theminimum pressure loss that these systemsmust be able to detect,
is 25% of the hot pressure. In addition, a pressure drop on a wheel must be detected
in less than 10min and more wheels in less than 1h [5].

Many research aims to improve the performance of existing systems and to design
innovative solutions (especially without pressure sensors) corresponding to new reg-
ulations. Two techniques are proposed to measure the physical parameters of tires:
The first strategy (direct approach) is to directly measure the pressure in each tire,
thanks to pressure sensors installed at the inflation valve [25]. Nevertheless, the pres-
ence of the sensors may have disadvantages such as a reduction in the reliability of
the system caused by the risk of damage of sensors in case of shock intervening
during rolling or when the wheels are removed, furthermore, the need to add addi-
tional cabling thus a significant price increase. To overcome these disadvantages, an
alternative is to favor methods without pressure sensor for reasons of economy and
reliability, and also for monitoring in case of sensor failure in a direct approach.

The indirect approach can detect a fall pressure from physical measurements
already used by the central computer of the vehicle (angular wheels speeds, acceler-
ation, useful torque, steering wheel angle) without adding sensors for measuring the
tire pressure. The underlying idea is to use the effect of pressure on certain physical
variables to detect its variations. Indeed, the drop in tire pressure leads for example
by a decreased in effective radii of wheels, an increase in their angular velocities and
an increase in rolling resistance force. It would be sufficient, thanks to appropriate
tools, using these physical quantities as indicators of the state of the pressure [21].

2 Motivation, Related Work, and Objectives

A variation in the pressure in the tire leads to decrease in its effective radius and
increase in rolling resistance force. Thus, first key information related to the wheel
is its effective radius. In fact, knowledge of effective radius has several advantages:
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the estimated effective radius in real time can be used to inform the driver of tire
pressure level and its evolution in order to emit an alarm [19]. There is therefore a
great interest in trying to estimate the effective radius. An assessment of the value
of this radius may be obtained from the vehicle speed, the angular velocity of the
wheel and the slip-ratio [22].

Another feature providing information about the tire pressure is the rolling resis-
tance force. The variation of this force is in fact indicative of the general state of the
vehicle in terms of load, tire pressure or road type. Moreover, the rolling resistance
force acts not only on the longitudinal dynamics of the vehicle, but also, and very
significantly, on the fuel consumption [26]. As it will be seen later in this chapter, the
rolling resistance force is much more sensitive to pressure variation than the radius
(larger relative variations) but the vehicles are not equipped with rolling resistance
sensor, so there is a real interest in assessing this force. In addition to detect pres-
sure loss, the estimation of rolling resistance force can detect a vehicle overload and
improve vehicle control strategies in this type of situation.

Studies have already focused on the estimator design for vehicle wheels radii [19]
and have proposed to use this estimation for the diagnosis of pressure in tires [3]. The
used models consider that the rolling resistance force can be measured a priori under
normal driving conditions, and then connected to the vehicle speed and the load by
using empirical models. Nevertheless, according to [8], the rolling resistance force
is heavily dependent on the tire parameters, e.g., pressure and temperature, type of
road and the vehicle speed. Consequently, such approaches cannot be used in driving
conditions and online estimation of the rolling resistance force is necessary. Note that
in [27], the longitudinal stiffness and the effective radius assumed as being constant
are identified from the correction terms of a sliding mode observer. An estimation of
the pressure in the tire is deduced from the identified value of the radius. This observer
considers the angular position, angular velocity of the wheel and the vehicle speed as
state variables. It uses the measurement of the angular position of the wheel provided
by the ABS encoders and the measuring speed vehicle. The unknown terms of the
observation model are written as a function of the longitudinal stiffness and the
effective radius in order to identify those parameters.

The work on the assessment of the rolling resistance force has been, to our knowl-
edge, mainly based on tests using laboratory measurement benches and static models
of finite elements [1]. This allows establishing the characteristic curves of the rolling
resistance based on road type, vehicle load and tire temperature. The rolling resis-
tance force is determined offline. In addition, these tests are carried out in very
specific experimental conditions versus actual driving conditions. Note finally that
much work has also been made on the synthesis of observers for the purpose to
estimate other variables of the wheel or the vehicle (longitudinal stiffness coefficient
of adhesion between tire and the soil and lateral speed of the vehicle; forces and
parameters required for controlling the vehicle [27]; differential between the useful
torque and braking torque applied to the wheel [24]; tire-soil friction).
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The contribution of this chapter is to apply an online evaluation of effective radii
of the front wheels and the rolling resistance of the whole axle, in order to analyze
the unknown variations of the pressure. The originality is located in:

• observation model using nonlinear dynamics and consideration of the effective
radius and the rolling resistance force as state variables,

• observation strategy “by sliding mode” which main features are the robustness
opposite to uncertainty and disturbance and convergence in finite time.

In this chapter is proposed the synthesis of a nonlinear observer based on technical
of high order sliding mode [4]: an observer, applied on the front axle, the effective
radii of the wheels and the global rolling resistance force of the whole axle. As will
be seen later in this chapter, these estimated values are all dependent on the pressure;
their variations, thus, allows to evaluate the variation of the pressure. This observer
is designed to reconstruct unmeasured variables (effective radii and the rolling resis-
tance force) of the wheels based on available measurements of mechanical quantities
(angular speeds provided by ABS encoders and useful torque).

The remaining parts of this chapter are structured as follows. Section3 presents the
notions of observability of nonlinear systems, and the canonical form of observability
of such systems. Section4 presents solutions for the observation of nonlinear systems,
with particular emphasis on high order sliding mode observer. Section5 presents the
physical model of longitudinal and rotational dynamics of a vehicle coupled with
the model of the vertical dynamics. From this model will be carried out, in Sect. 6,
a study of the influence of the pressure drop in the front tires on three parameters:
the effective radius of each wheel and the rolling resistance force of the whole axle,
being based on the synthesis of a nonlinear sliding mode observer. Section7 presents
conclusions and future research directions of the work presented in this chapter.

3 Observability and Observers

The synthesis of an observer for a physical system begins by the following question:
Is it the system observable, that means, is it possible to estimate the overall state
of the system from the measurements performed? The corollary to this question is:
which outputs measured use to make the system observable? In addition, in the case
where the systems are represented by nonlinear models, analysis of observability
should highlight the presence of possible singularities. Indeed, a notable difference
between the observability of nonlinear and linear dynamic systems lies in the fact
that the observability of nonlinear systems potentially depends of the input of the
system and the state and it may therefore be losses observability according borrowed
trajectories.
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3.1 Observability: Concept and Criteria

Consider the nonlinear system of the form:

{
ẋ = f (x, u)

y = h(x)
(1)

where x ∈ R
n represents the state, u ∈ R

m the input and y ∈ R
p the output. f (: ; :)

and h (:) are analytic functions. It is assumed that the functions f (: ; :) and h (:) are
meromorphic functions of x and u. We also assume that u(t) is admissible, that is to
say, measurable and bounded. According to [10], observability is defined from the
notion of indistinguishability.

Definition 3.1.1 Two initial states x(t0) = x1 and x(t0) = x2 are indistinguishable
for the system (1) if, ∀t ∈ [t0, t1] the corresponding outputs y1(t) and y2(t) are the
same regardless of the allowable input u(t) of the system.

Definition 3.1.2 The nonlinear system (1) is said observable, if it does not admit
indistinguishable pair. This means that the system is said observable if there is no
distinct initial state that cannot be separated by review of the system output.

Definition 3.1.3 Considering the system (1), space observability H, is defined by
the smallest vector space containing the outputs; h1, h2, . . . , hp and closed under the
operation of the derivation Lie to the vector field f (x, u), u being fixed. We denote
dH the space of differential elements H.

Definition 3.1.4 The space dH(x0) characterizes the local low observability x0 of
system (1).

System (1) is said to satisfy the observability rank condition x0 if : dim(dH(x0))
= n.

The system (1) satisfies the rank condition of observability if ∀x ∈ R
n, dim

(dH(x)) = n.

Definition 3.1.5 For system (1), the space generic observability [23] is defined by
O = X ∩ (Y + U), with:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

X = SpanK {dx}
Y = SpanK

{
d(j)

u

}
, j ≥ 0

U = SpanK

{
d(q)

y

}
, q ≥ 0

(2)

or K is the set of meromorphic functions and SpanK is the space generated on K of
meromorphic functions of x and of a finite number of derivatives of u. System (1) is
said generically observable if:

dimO = n (3)
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A property is generically satisfiedwhen it is locally satisfied around a point x0 ∈ M ⊂
R

n. An equivalent algebraic definition can also be given. A system is generically
observable if the whole state can be expressed as a function of y, of u and a finite
number of their derivatives (with j ∈ N, q ∈ N):

x = X(y, ẏ, . . . , y(j), u, u̇, . . . , u(j)) (4)

In the nonlinear context, observability depends clearly of u and state x. The generic
aspect is that we are not interested in any singularities.

Suppose that condition (3) is satisfied, and then we can check the equivalent
condition of this definition. This ultimately amounts to analyzing the observability
of a local perspective that is to say in an area defined by physical constraints.

Definition 3.1.6 System (1) is said locally observable if for any x ∈ M ⊂ R
n and

u ∈ U ⊂ R
p (M and U being respectively open in R

n and R
p):

RangK

[
dy dẏ . . . dy(n−1)

]T = n (5)

An equivalent criterion focuses on the analysis of vector �

� = [
dy dẏ . . . dy(n−1)

]T
(6)

Definition 3.1.7 System (1) is said locally observable if for x ∈ M and u ∈ U:

det

(
∂�

∂x

)
�= 0 (7)

The last property implies that � defines a transformation of state on this consider
field. In the following, the term “observable” will mean “locally observable”. If
there is a singularity of observability, it obviously causes problems for the proper
functioning of the observers. A first solution is to pass the observer, in estimator
mode (this means to putting the observer in “open loop”: there are no correction
term). Another solution is to switch to another observer structure, e.g. by using
different indices of observability [17].

3.2 Canonical Forms of Observability and Observer

Based on the form of the dynamic system of the tire used in the rest of this chapter,
we consider the following nonlinear system:

{
ẋ = f (x) + �f (x, t) + χ(y, u)

y = h(x)
(8)
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with x ∈ M and u ∈ U the additive uncertainty term �f (x, t) sufficiently derivable
and the additive terms which only depends on well-known variables (measurements
and control) grouped in the vector called “input–output injection” χ(y, u).

Consider the following assumptions:

Assumption 3.2.1 The additive uncertainty term �f (x, t) does not change the
observability of (8):

i.e. ‖�f ‖ ≤ FH < ∞,∀x ∈ M and t ≥ 0.
Like the goal is to synthesize an observer, and �f is unknown and verified this

assumption, therefore consider the nonlinear system (8) without any uncertainty
(�f = 0). {

ẋ = f (x) + χ(y, u)

y = h(x)
(9)

Assumption 3.2.2 The input–output injection χ(y, u) does not change the observ-
ability of the system [2].

The main idea is simple: for the purpose to analyze the observability, then to
synthesize the observer, the system (8) is transformed into a simple system and well
known from which observability will be analyzed, and observer designed. Adding to
the observer the input–output injection term, we obtain an observer for (9). Remains
to propose an adequate solution for that this observation is sufficiently robust to
provide a good estimate of the uncertain system (8). Via an input–output injection
defined by χ(y, u), the nonlinear system (9) can be transformed into:

{
ẋ = f (x)
y = h(x)

(10)

Assumption 3.2.3 Consider the system (10) and p integers
{
k1, k2, . . . , kp

}
defined

such that [14]:
p∑

i=1
ki = n and k1 ≥ k2 ≥ · · · ≥ kp after numbering of output components if nec-

essary.
The function �(x) defined by:

�(x) =
⎡
⎢⎣

[y1(x) · · · y(k1−1)
1 (x)]T

...

[yp(x) · · · y
(kp−1)
p (x)]T

⎤
⎥⎦

x∈M

(11)

verifies:

det

(
∂ψ(x)

∂x

)
�= 0 (12)

The function ζ = �(x) is thus a state transformation. The integers
{
k1, k2, . . . , kp

}
are called observability indices.
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Proposition 3.2.1 Given the Assumptions3.2.1; 3.2.2 and 3.2.3, the system (8) is
observed for x ∈ M and u ∈ U.

Consider again the system (8) verifying the Assumptions3.2.1 and 3.2.3. By asking
ζ = [

y ẏ · · · y(n−1)
]T

, is obtained by:

ζ̇ = Aζ +

⎡
⎢⎢⎢⎢⎢⎣

0
0
0
...

�(ζ)

⎤
⎥⎥⎥⎥⎥⎦

y = Cζ

(13)

with:

A =

⎡
⎢⎢⎢⎢⎢⎣

0 1 0 0 · · · 0
0 0 1 0 · · · 0
...

...
...

...
...

...

0 0 0 0 · · · 1
0 0 0 0 · · · 0

⎤
⎥⎥⎥⎥⎥⎦

, C = [
1 0 0 · · · 0 ] and�(ζ) = y(n) (14)

The representation (13) is called “canonical form of observability”. Given system
(8), it is clear that the term �(ζ) is uncertain; is assumed to be written:

�(ζ) = �n + �� (15)

with �n the “nominal” part (composed of parameters and dynamics known derived
from the term f (x)) and “uncertain” part �� (derived from �f (x, t)). Is thus
obtained:

ζ̇ = Aζ +

⎡
⎢⎢⎢⎢⎢⎣

0
0
0
...

�n(ζ)

⎤
⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎣

0
0
0
...

��

⎤
⎥⎥⎥⎥⎥⎦

(16)

Proposition 3.2.2 An observer for the system (16) is written in the form:

˙̂
ζ = Aζ̂ +

⎡
⎢⎢⎢⎢⎢⎣

0
0
0
...

�n(ζ)

⎤
⎥⎥⎥⎥⎥⎦

+ k(y, ζ̂) (17)

The function k is the correction term which ensures convergence of the estimated
state to the actual state ζ̂ → ζ.
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The term k(y, ζ) can be obtained by variousmethods (high gains, slidingmode,…)
and must ensure convergence (exponentially or in finite time) of the observer to the
real system, i.e., it ensures that ζ̂ → ζ exponentially or in finite time despite the
presence of uncertain term ��. In addition, it depends only on the measured output
y and the estimated state vector ζ̂. To summarize, knowing that the dynamics of the
estimation error is written:

ė = Ae +

⎡
⎢⎢⎢⎢⎢⎣

0
0
0
...

�n(ζ̂) − �n(ζ)

⎤
⎥⎥⎥⎥⎥⎦

−

⎡
⎢⎢⎢⎢⎢⎣

0
0
0
...

��

⎤
⎥⎥⎥⎥⎥⎦

+ k(y, ζ̂) (18)

with e = (ζ − ζ̂) → 0
It is necessary to choose that the correction term k(y, ζ) such that the observer

converges to the real system despite the initial error e(0) and the uncertain term ��.
From (17), twomethods can be used to obtain the vector x̂, representing the estimated
x.

• When the inverse of the transformation �, i.e. �−1, can be analytically calculate,
the estimated state x̂ is deduced from ζ̂ by:

x̂ = �−1(ζ) (19)

• In many cases of applications [17], it is very difficult to calculate the inverse of
� (including with formal calculation software). In this case, using an approach
based on the calculation of the inverse Jacobian of �. As ζ̂ = �(x̂), we can write:

˙̂
ζ = ∂�

∂x̂
˙̂x → ˙̂x =

[
∂�

∂x̂

]−1 ˙̂
ζ (20)

According to (17) and (20), is obtained

˙̂x =
[
∂�

∂x̂

]−1

⎛
⎜⎜⎜⎜⎜⎝

Aζ̂ +

⎡
⎢⎢⎢⎢⎢⎣

0
0
0
...

�n(ζ̂)

⎤
⎥⎥⎥⎥⎥⎦

+ k(y, ζ̂)

⎞
⎟⎟⎟⎟⎟⎠

(21)

Then, from (17) and (21), an observer for the system (10) can be written by:

˙̂x = f (x̂) +
[
∂�

∂x

]−1

k(y, x̂) (22)
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Applying the inverse transform of the input–output injection χ(y, u) allows to obtain
the observer for the system (9):

˙̂x = f (x̂, y) + χ(y, u) +
[
∂�

∂x̂

]−1

k(y, x̂) (23)

In the following section, an observer of the type (23) is proposed to estimate “suf-
ficiently” a precise state x of the system (8) despite the uncertain term �f , and this
thanks to a judicious choice of k. In the following, we consider:

Assumption 3.2.4 For every ζ ∈ Mζ(Mζ being the area of application in the state
space ζ, corresponding to M in which evolves x):

|�n(ζ)| ≤ L� (24)

with L� being known Lipschitz positive constant. Furthermore:

|��| ≤ L�� (25)

with 0 < L�� < ∞.

4 Observation Technique Using Sliding Mode

Many techniques of observation of nonlinear systems exist: the observers based on
linearization by input–output injection [23], high gains observers [9], continuous
observer with finite time convergence [20], and sliding mode observers [4]. Each
of these observation strategies is applied to a more or less broad class of nonlinear
systems. In this section sliding mode observers are studied and then applied for tire
pressure monitoring.

4.1 Sliding Mode Observers

One of the known classes of nonlinear robust observers is that of sliding mode
observer. Among the different observation methods, sliding mode observers have
been widely studied for their robust qualities [12]. The main features of observer
type are:

• finite time convergence of the estimation error,
• robustness face to disturbances and uncertainties.

Sliding mode observer is characterized by discontinuous functions in their
correction terms. The principle of sliding mode observer involves to constrain the
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dynamics of the estimation error, of dimension n, to evolve in finite time on a variety
S, corresponding to a null estimation error. The attractiveness and the invariance of
this surface are ensured by conditions called sliding conditions. If these conditions
are satisfied, the observer converges to S and remains there.

In the next section, will be presented an observation solution based on sliding
mode approach of first order and high order [16].

4.2 First Order Sliding Mode Observer

The first solutions were based on the approach of the first order sliding mode. In this
case, the variety S is defined S = {

y − ŷ = 0
}
with ŷ the estimate of themeasure. The

discontinuous corrective terms depend on the estimation error of y. This observer is
applicable for systemswith observability indices equal to 1. For observability indices
2, this observer does not allow to perfectly cancel the estimation error of x2. Another
drawback is the phenomenon of “chattering”. This phenomenon is not desirable
as it deteriorates the accuracy of the observation. Many studies have been work
done in order to reduce or eliminate this problem. One solution is the introduction
of new dynamics to act on higher order derivatives of the estimation error of y.
This technique is the basic concept of higher order sliding mode which reduces the
“chattering” retaining the qualities of robustness and finite time convergence of the
approach first order sliding mode [11].

4.3 High Order Sliding Mode Observer

The concept of high order sliding mode was introduced in the 80s by Emelyanov
[6], the principle involves acting via discontinuous corrective terms, on higher order
derivatives of the measurement error y. The main advantages are:

• improving robustness and convergence in finite time,
• reducing the effects of chattering,
• improving the observer performance (precision), the application to systems with
indices of observability higher than 1.

4.3.1 Second Order Sliding Mode Differentiation

The problem here is to constrain the estimation error to evolve in finite time on the
sliding surface:

S =
{

y − ŷ = 0
ẏ − ˙̂y = 0

(26)



638 N. Ouasli and L. El Amraoui

In this way, the estimation error is now continuous and the chattering is eliminated.
In this framework: The “Super Twisting algorithm” is proposed. This algorithm
has been developed, to the base, for control systems (output feedback sliding mode
of order 2) and is based on the technique of differentiation, hence its adequacy in
observing systems written under canonical form of observability. This method is
robust and does require only knowledge of it (no derivative calculation) but its use
is limited to an index of observability equal to 2 [15].

4.3.2 High Order Sliding Mode Differentiation

For a given observability indices k, the objective here is to force the quantity (y − ŷ)
and its first (k − 1) derivatives to zero in finite time [16]. Observers based on differen-
tiation technique of high order slidingmode are offered in this context. This technique
will be presented in detail since it was adopted in this chapter. In fact, according to its
robustness and convergence in finite time it can be applied to a wide class of observ-
able nonlinear systems. Considering system (16) with ζ = [

ζ1 ζ2 ζ3 ζ4 . . . ζn
]T

in
this case, a single output y is measured; the observability indices k then being equal
to k1. Is obtained:

ζ̇1 = ζ2
ζ̇2 = ζ3
ζ̇3 = ζ4

...

ζ̇n = �(ζ)

y = ζ1

(27)

When assumptions of Sect. 3.2 are satisfied, the observer is described by form (17).
The correction term k must ensure the convergence of e to 0, despite the initial
error e(0) and the uncertain term ��. A possible choice of observer based on the
differentiation of higher order [16]:

˙̂
ζ1 = ζ̂2 + a1L

1
n+1

∣∣∣ζ1 − ζ̂1

∣∣∣
n

n+1
sign(ζ1 − ζ̂1)

˙̂
ζ2 = ζ̂3 + a2L

1
n |γ1| n−1

n sign(γ1)˙̂
ζ3 = ζ̂4 + a3L

1
n−1 |γ2| n−2

n−1 sign(γ2)
...

˙̂
ζi = ζ̂i+1 + aiL

1
n+2−i |γi−1| n+1−i

n+2−i sign(γi−1)
...

˙̂
ζn = �(ζ̂) + anLsign(γn−1)

(28)

with L > L� + L�� and a1 . . . an coefficients fixed according to Table1 [16].
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Table 1 ai coefficients ai for
sliding modes order 2 and 3

Coefficient n = 2 n = 3

a1 1.5 2

a2 1.1 1.5

a3 – 1.1

Thus, from (23) a finite time convergence observer is developed for the initial
system (8). It can be written:

˙̂x = f (x̂, y) + χ(y, u) +
[
∂�

∂x̂

]−1

⎡
⎢⎢⎢⎢⎢⎣

γ1
γ2
γ3
...

γn

⎤
⎥⎥⎥⎥⎥⎦

(29)

with:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

γ1
γ2
...

γi
...

γn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1L
1

n+1
∣∣y − x̂1

∣∣ n
n+1 sign(y − x̂1)

a2L
1
n |γ1| n−1

n sign(γ1)
...

aiL
1

n+2−i |γi−1| n+1−i
n+2−i sign(γi−1)
...

anLsign(γn−1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(30)

5 Vehicle Front Axle Modeling

This section presents themodel of longitudinal and rotational dynamics of the vehicle
front axle wheels. This model and its coupling with the vertical vehicle dynamic are
the basis of wheels behavior description. With consideration of rolling resistance
force and effective radii of the wheels.

5.1 Dynamics of the Front Axle

The suspension system is composed of mechanical components that connect the
wheels to the main structure of the vehicle. The suspension provides an elastic con-
nection to absorb and transmit smoothly the irregularities. There are several types of
suspension, the most common are steel suspensions (called mechanical) and pneu-
matic suspensions.Currently the vehicles are equipped, inmost cases,with pneumatic
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Fig. 1 Vertical vibration
model of a half vehicle

suspension that provide better dynamic stability and are less aggressive for the road
[28]. This study considers a simplified air suspension mechanism described by a
mass-spring-damper system. The front axle model of the vehicle is used to describe
the vertical dynamics of the vehicle and those of the wheels shown in Fig. 1.
with

mc : suspended mass brought on two wheels,
mr : unsprung mass,
Ksr : stiff right suspension,
Ksl : stiff left suspension,
Kvr : vertical stiffness of the right tire,
Kvl : vertical stiffness of the left tire,
Cs : suspension damping,
Cv : vertical pneumatic damping,
R0 : nominal radius,
R : tire radius,
Cf : viscous friction coefficient,
zc : vertical position of the suspended mass,
zr : vertical position of the unsprung mass,
zpro : profile of the wheel surface,
dpro : road profile.

Referring to a fixed vertical position referenced by o, Zpro0 on the initial contact
(between the wheel and the ground) is located by vertical axis z shown on Fig. 1.
Zc0 is the vertical distance in the static state of the vehicle body and Zr0 the vertical
distance in the static state from the center of the wheel.

The relative positions of wheel-ground contact zpro, wheel center zr and vehicle
body zc given by:
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dpro = zpro − Zpro0 (31)

dr = zr − Zr0 (32)

dc = zc − Zc0 (33)

The application of the second Newton’s law can write the equations of the vertical
dynamics of a half vehicle and of the wheel [29] according to:

⎧⎨
⎩

mcd̈c = −Ksl(dc − dr) − Csl(ḋc − ḋr) − Ksr(dc − dr) − Csr(ḋc − ḋr)

mrd̈r = Ksl(dc − dr) + Csl(ḋc − ḋr) + Ksr(dc − dr) + Csr(ḋc − ḋr)

−Kvl(dr − dprol) − Kvr(dr − dpror) − Cv(ḋr − ḋpro)

(34)

The damping of the tires is assumed to be negligible compared to other variables
(Cv = 0).
Thus, taking as a state vector (x1, x2, x3, x4)T = (dc, ḋc, dr, ḋr)

T and as input u =
(dprol, dpror), the state model of the pneumatic is written in the form:

⎡
⎢⎢⎣

ḋc

d̈c

ḋr

d̈r

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

0 1 0 0
−a1 −a2 a1 a2
0 0 0 1
a3 a4 −a5 −a4

⎤
⎥⎥⎦

⎡
⎢⎢⎣

dc

ḋc

dr

ḋr

⎤
⎥⎥⎦ +

⎡
⎢⎢⎣

0 0
0 0
0 0
a6 a7

⎤
⎥⎥⎦
[

dprol

dpror

]
(35)

with

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a1 = Ksl+Ksr
mc

a2 = Csl+Csr
mc

a3 = Ksl+Ksr
mr

a4 = Csl+Csr
mr

a5 = Kvl+Kvr
mr

a6 = Kvl
mr

a7 = Kvr
mr

(36)

Tire/road contact forces are obtained from the tire model, which we will present
in the next section. These forces are transmitted to the chassis (sprung mass) via the
suspension. They depend on the characteristics of the latter and axle configuration.

5.2 Dynamics of Wheels

The application of the second Newton’s law to the forces acting on two wheels of
front axle allows writing their rotational and longitudinal dynamics as (Fig. 2):

⎧⎨
⎩

Jl�̇l = Tl − RlFxl − Cf �l

Jr�̇r = Tr − RrFxr − Cf �r

M1/2v̇x = Fxl + Fxr − Fd1/2 − Frg

(37)
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Fig. 2 Forces and torques
acting on the front wheels

where indexes l and r respectively refer to the front left and rights wheels, � is the
wheel angular velocity, R is the effective radius, vx the vehicle’s linear velocity, Cf

the viscous friction coefficient of the wheel, J and M1/2 are respectively the inertia
and the half-vehicle mass. T is the torques applied to the wheel.
The complete model of the front axle of a vehicle can be obtained from the model
(37) coupled to themodel of the vertical dynamics (34). The coupling is done through
the normal force Fz (38).

• Normal force: This force depends mainly on the half-vehicle mass and the
vertical displacement of the tire-road point contact [5], it is defined by the following
relationship:

Fzi = Mg − Kvi(Rlib − (dr − dproi)) − Cv(ḋr − ḋproi) (38)

where i ∈ {l, r} and g the gravitational acceleration.
A simplifying assumptionmay be considered to reduce themodel of normal force.

This assumption is formulated by Eq. (39):

Kvi(Rlib − (dr − dproi)) − Cv(ḋr − ḋproi)〈〈Mg (39)

The expression of the normal force becomes:

Fzi = Mg (40)

• Aerodynamic drag force: This force is proportional to the square of the vehi-
cle’s velocity [8].

Fd1/2 = 1

2
(ρAd1/2Cd1/2v2x) (41)
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Fig. 3 Friction coefficient
versus slip ratio

with ρ the air density, Ad1/2 the frontal area of the half-vehicle and Cd1/2 the drag
coefficient.

• Tractive forces: These forces are expressed according to friction wheel-ground
coefficient μ(λi) [8] as:

Fx(λi) = Fziμ(λi) (42)

with λi the slip ratio defined by:

λi = − (νx − Ri�i)

Ri�i
= − νx

Ri�i
+ 1 (43)

Figure3 shows the friction coefficient evolution slip ratio for different road types.
The friction coefficient μi is theoretically given by semi-empirical formulas. An

acceptable approximation [13] is expressed as a function of λi by:

μi(λ) = 2μ0

(
λ0λi

λ2
0 + λ2

i

)
(44)

where λ0 is the optimal slip ratio, leading to the maximum friction value μ0 = μ(λ0).
The tractive forces are then given by:

Fxi = 2μ0

λ0

(
1 − νx

�iRi

)

λ2
0 +

(
1 − νx

�iRi

)2 M1/2g (45)
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Fig. 4 f0 and fs evolution of
according to pressure

• Global rolling resistance force: It is related to the normal force Fz by:

Frg(vx) = Frl(vx) + Frr(vx) = 2Fzifr(vx) (46)

with fr the rolling resistance coefficient. This coefficient depends mainly on the tire
inflation pressure, temperature, velocity, and road surface type then this assumption
can be made for heavy vehicles and is valid on light vehicles only for low speeds [8].

In the case of light vehicles with higher speeds, another equation must be consid-
ered by:

fr(νx) = f0 + 3.24fs (3.6vx/100)
5/2 (47)

This expression will be used for the model of half vehicle. The coefficients f0 and fs
of the rolling resistance force vary for a given tire, with the pressure according to the
characteristic shown in Fig. 4.

5.3 Global Model Coupling

The completemodel of the vehicle front axle is elaborated fromassociation of the ver-
tical axle andwheels dynamicmodeling. The considered state variables are expressed
as: [

x1 x2 x3 x4 x5 x6 x7
]T = [

�l �r vx dc ḋc dr ḋr

]T

Then, the global model, is written as follows:
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ẋ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
Jl
[Tl − RlFx − Cf �l]

1
Jr

[Tr − RrFx − Cf �r]
1

M1/2
[Fxl + Fxr − Fd1/2 − Frg]

x5

1
mc

[−Ksl(x4 − x6) − Csl(x5 − x7) − Ksr(x4 − x6) − Csr(x5 − x7)]
x7

1
mr

[Ksl(x4 − x6) + Csl(x5 − x7) + Ksr(x4 − x6) + Csr(x5 − x7)

−Kvl(x6 − dprol) − Kvr(x6 − dpror)]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(48)

6 Observer of Wheels’ Effective Radii and Rolling
Resistance Force of the Front Axle

In this section, will first be developed the sliding mode observer for only estimation
of wheel effective radii and rolling resistance force. This observer uses, in addition,
measures of the angular velocity of each wheel and the wheel applied torque.

The physical area of work is defined by:

M =
{
0 < � ≤ 175 rds−1; 0 < νx ≤ 200 kmh−1; 0.29 ≤ R ≤ 0.32m; 80 ≤ Frg ≤ 800N

}

Since the aim is pressure drop detection, the knowledge of the twowheels radii gives
information about pressure state in the tire of each wheel and the rolling resistance
force. Therefore it seems to be judicious to develop joint estimation observers using
the effective radius and the rolling resistance force.

6.1 Observation Model

In order to simplify the study, only the longitudinal dynamics of the front axle and
the rotational dynamics of the two front wheels are considered. The state variables
considered in this case are x = [

�l �r vx
]T
, with:

ẋ =

⎡
⎢⎢⎢⎣

1
Jl

(
Tl − RlFxl(x) − Cf x1

)
1
Jr

(
Tr − RrFxr(x) − Cf x2

)
1

M1/2

(
Fxl(x) + Fxr(x) − Fd1/2(x) − Frg

)

⎤
⎥⎥⎥⎦ (49)
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with M1/2 the mass of the two wheels, Fd1/2(x) the aerodynamic drag force on the
train, Tl and Tr couples applied to each wheel. Frg = Frl + Frr is the global rolling
resistance force on the train. The force Fxl(x) and Fxl(x) are written:

Fxl = 2μ0

λ0

(
1 − x3

x1Rl

)

λ2
0 +

(
1 − x3

x1Rl

)2 Mg (50)

Fxr = 2μ0

λ0

(
1 − x3

x2Rr

)

λ2
0 +

(
1 − x3

x2Rr

)2 Mg (51)

The aerodynamic drag force for the half of vehicle is written:

Fd1/2 = 1

2
(ρAd1/2Cd1/2x23) (52)

The effective radii Rl and Rr and the global rolling resistance force Frg of the front
axle are unknown and may change due to loss of pressure in both wheels.

⎧⎨
⎩

Ṙl = ηl(t)
Ṙr = ηr(t)
Ḟrg = ηg(t)

(53)

with ηl(t), ηr(t) and ηF(t): unknown and bounded functions,
u = [

u1 u2
]T = [

Tl Tr
]T : control input,

x = [
x1 x2 x3 x4 x5 x6

]T = [
�l �l vx Frg Rl Rr

]T : state vector of the observa-
tion model.

The dynamic behavior of the whole axle is given by:

ẋ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− 1
Jl

(
x5Fxl(x) + Cf x1

)
− 1

Jr

(
x6Fxr(x) + Cf x2

)
1

M1/2

(
Fxl(x) + Fxr(x) − Fd1/2(x) − x4

)

ηl

ηl

ηg

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎣

1
Jl

0
0
0
0
0

0
1
Jr

0
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎦

u (54)

with measurements y = [
y1 y2 y3

]T = [
x1 x2 x3

]T
. The structure of the effective

radii of the observer and the global force of rolling resistance, from the knowledge
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of the angular velocities �l and �r and torques applied to each wheels Tl and Tr ,
is based on the observation model and the strategy of higher order sliding modes
[16]. The terms−Cf

Jl
x1 + 1

Jl
u1,−Cf

Jl
x2 + 1

Jl
u2 depend only of known variables. Thus,

system (54) can be written as:

ẋ = f (x) + �f + χ(y, u) (55)

where

f (x) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− 1
Jl

x5Fxl(x)

− 1
Jr

x6Fxr(x)

1
M1/2

(Fxl(x) + Fxr(x) − Fd1/2(x) − x4)

0

0

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(56)

�f = [
0 0 0 ηl(t) ηr(t) ηF(t)

]T
(57)

χ(y, u) =
[
−Cf

Jl
x1 + 1

Jl
u1 −Cf

Jr
x2 + 1

Jr
u2 0 0 0 0

]T
(58)

Assumptions3.2.1 and 3.2.2 are satisfied for this system.

6.2 Observability Analysis

In order to analysis the observability of the studied system, the function ψ(x) is
defined by:

ψ(x) =

⎡
⎢⎢⎢⎢⎢⎢⎣

y1
ẏ1
y2
ẏ2
y3
ẏ3

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1

− 1
Jl

x5Fxl(x)

x2

− 1
Jr

x5Fxr(x)

x3

1
M1/2

(Fxl(x) + Fxr(x) − Fd1/2(x) − x4)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(59)
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Themeasured variables are thewheels’ velocities and the vehicle’s longitudinal speed
y = [

x1 x2 x3
]T
. If the determinant of the Jacobian of the functionψ(x) is in all cases

different from 0 on the operating trajectories, this implies that the transformationψ is
invertible and the system (54) is locally observable [5]. In this case, the observability
indices vector is equal to [2 2 2]T .

6.3 Observer Design

According to Sect. 3, the application of the inverse input–output injection transfor-
mation χ(y, u) allows the observer synthesis for system (54). The observer proposed
as part of this problem is based on differentiation of a second order sliding mode.
Thus, an observer of (54) is written as:

˙̂x = f (x̂, y) + χ(y, x) +
[
∂ψ

∂x

]−1

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1.5L1/2
1

∣∣y1 − x̂1
∣∣1/2 sign(y1 − x̂1)

1.1L1sign(γ1)

1.5L1/2
2

∣∣y2 − x̂2
∣∣1/2 sign(y2 − x̂2)

1.1L2sign(γ3)

1.5L1/2
3

∣∣y3 − x̂3
∣∣1/2 sign(y3 − x̂3)

1.1L3sign(γ5)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(60)

L1 = 6, L2 = 5 and L3 = 4 are observer gains.

6.4 Simulation Results and Discussion

To verify and validate the effectiveness of the observer in more general case, sim-
ulation are carried out with full model (48) of the vehicle front axle based on the
coupling between the vertical dynamic and front axle wheels modeling. The initial
state of the system x(0) is given by:

x(0) = [
�l �r vx dc ḋc dr ḋr

]T

= [
17
0.3

17
0.3 17 0 0 0 0

]T (61)

From (61) it is assumed that at starting time, the vehicle vertical displacements dc

and dr as well as wheels positions with their first derivatives are null. The parameters
used for the front axle provided by Renault of the system (48) and the observer (60)
are summarized in Table2 [5].
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Table 2 Wheels and vehicle
model parameters for the axle
model

Coefficient n = 2 n = 3

Jl 1.6 Kg.m2

Jr 1.6 Kg.m2

R0 0.32 m

M1/2 880 Kg

Ad1/2 0.65 m2

ρ0 1.205 Kg/m3

g 9.807 m/s2

Cf 0 Kg.m2/s

Cd1/2 0.25 –

Cs 7722 Kg/s

Ks 19,960 Kg/s2

μ0 0.9 –

λ0 0.25 –

R 0.3 m

vx 17 m/s

dpro 1 mm

The Observer (60) allowing joint estimation of the two wheel effective radii the
global rolling resistance forces is initialized by:

x̂(0) = [
�̂l �̂r v̂x F̂rg R̂l R̂r

]T

= [
17
0.3

17
0.3 17 128 0.302 0.302

]T (62)

A case of pneumatic pressure fall of 40% according to nominal value of 2.3 bar
between instants t1 = 20 s and t2 = 30 s is simulated. It is therefore assumed, at the
initial time, that there is an error of 8mm between actual and estimated radii and an
error of 2.6 rad/s between actual and estimated angular velocities of each wheel. The
control strategy imposes low variable speed.

vd
x = vd(1 + 0.01sin(ωt)) (63)

with: f = 2π
ω

= 0.05Hz and vd = 40 km/h
The controller output is then:

z = Ri�i − υd
x (t) (64)

From (49) and (64) it comes:
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ż = Ri
Ji

(Ti − RiFx − Cf �i) + Ṙi�i − υ̇d
x

= −Ri

Ji
(RiFx + Cf �i) + Ṙi�i − υ̇d

x︸ ︷︷ ︸
α(x,t)

+ Ri

Ji︸︷︷︸
β(x,t)

Ti

= −k z

(65)

where i ∈ {l, r}.
Therefore the torque applied to each wheels can be written as follow:

Ti = 1

βi

[−αi(x, t) − (Ri�i − υd
x (t))

]
(66)

Figure5 shows the schematic diagram for the simulation of the system and the
observer effective radii and the rolling resistance force of the front axle.

The estimation of the left wheel radius, the right wheel radius and the rolling
resistance force of the front axle are respectively shown in Figs. 6, 7 and 8. The
designed observer ensures a simultaneous control of the two front wheels. It appears
that when the pressure is decreased in the tire of the front left wheel, the observer
gives a lower value of the left wheel radius and a very high value of rolling resistance
force of the whole axle.

It also presents a convergence time (around 10s) compatible with the objectives of
Automobile Manufacturers (European standard requires the pressure fall detection
on a wheel in less than 10min). The radius of the right front wheel is also estimated,
this estimation is constant (Fig. 7).

The increase in the global rolling resistance force can detect a pressure drop;
however, this information alone does not allow us to establish which tire presents a
pressure fall. The radii of the both wheels are directly connected to their pressure.
These graphical representations allow us to establish that the pressure fall comes
from the left wheel.

Controller Simulation model

Constant parametersAnalytical relations

Observer

Variable pressure

+

-

( )d
x tυ

, ,l r rgR R F
lΩ

xυ

rRlR rgF

rΓ

lΓ

rΩ

Fig. 5 Simulation diagram
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Fig. 6 Estimated left wheel radius for two tire pressure
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Fig. 7 Estimated right wheel radius for two tire pressures

Consequently, the joint estimation of three parameters: left effective radius, right
effective radius and rolling resistance force appears to be an adequate tool for mon-
itoring tire pressure.
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Fig. 8 Estimated rolling resistance force of the front axle for two tire pressures

7 Conclusions

In this chapter, different notions of observability have been recalled, emphasizing
mainly on nonlinear systems. Then, the longitudinal and rotational dynamics of
the wheels and their coupling with the vertical dynamics of the front axle of the
vehicle were studied. This coupling model is used for validation of observer design.
The model of longitudinal and rotational dynamics was used for nonlinear observer
design which constitutes a major contribution of our work.

The synthesis of a sliding mode observer seeks on non-measurable quantities
estimation (left effective radius, right effective radius and rolling resistance force of
the whole axle) using onlymeasured quantities (angular speed of each wheel, vehicle
speed and useful torque) was designed. The choice of high order sliding modes
observer was made for its well-known characteristics of robustness and precision.
The results show a satisfactory estimation of effective radii and rolling resistance
force for the vehicle front axle.

The future directions of research include:

• Real-time implementation of the observer studied taking into account the various
constraints, in particular the complexity and computation time.

• Suggest of adequate strategy for observer gain determination or design of adaptive
sliding mode observer.

• Elaboration of a global model of the complete vehicle for the extension of the
study to an observation model taking into account simultaneous operation of the
4 wheels.

• Use of one or two pressure sensors for indirect approach elaboration [18].
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