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Abstract In this work, we focus on the stabilization issue of a class of non-minimum
phase switched nonlinear systems where the internal dynamics of each mode may be
unstable and uncontrollable. We develop a hybrid nonlinear control technique based
on the coupling between bounded nonlinear feedback controllers and the switching
laws designed to stabilize the transitions between the stability regions associated to
each modes arising from the limitations imposed by the input constraints. The key fea-
ture of the proposed approach is based on the formalism of the input–output feedback
linearization. The performed developments largely rely on Hauser’s approximation
and multiple Lyapunov functions. In summary, the synthesized controllers can guar-
antee the stability of individual modes while switching law that will be generating
ensures overall system stability. The differences between the switching strategies,
and their implications on the switching logic, are discussed. A non-minimum phase
Continuously Stirred Tank Reactor (CSTR) illustrates the efficiency of the proposed
approach
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1 Introduction

There are numerous examples of chemical processes include both continuous
dynamics and discrete events. Continuous behavior of a process caused by some
factors, such as momentum, mass, and energy conservation, can be modeled more
conveniently as discrete events by continuous-time differential equations.

However discrete phenomena is ubiquitously multifaceted and can originate from
physical constraints or manufacturing distinct phases such as discontinuous actua-
tors, phase changes, flow reversals, shocks, and transitions; the use of measurement
sensors and control actuators with discrete settings/positions or filling/emptying a
reactor [7, 14].

The overall process behavior in all of these instances is characterized by the inter-
action of continuous and discrete dynamics that they cannot be decoupled effectively,
and is modeled by hybrid systems.

A class of hybrid systems that have drawn considerable attention in the past
decade is the class of switched systems which consists of a family of subsystems and
a switching signal, which defines a specific subsystem that is active at each instant
of time. For a survey on switched systems we refer to [6, 10, 11, 18, 21, 23, 24].

The study of stability analysis and stabilization of switched systems is an important
problem that has been the subject of significant research works in control theory [1–4,
20, 22, 28, 29, 32, 35]. In this framework one of these problems is the stabilization
of non-minimum phase nonlinear switched systems.

This system control, however, is a delicate task. Some contributions have been
devoted to non-minimum phase switched nonlinear systems where each nonlinear
mode may be non-minimum phase. In [34], H∞ control goal is achieved for a
class of non-minimum phase cascade switched nonlinear systems where the internal
dynamics of each mode is assumed to be asymptotically stabilizable. Output tracking
of non-minimum phase switched nonlinear systems has been considered in [26],
where an approximated minimum phase model is utilized. The same problem is also
investigated in [8] by means of an inversion based control strategy. In [33], a switching
control methodology for non-minimum phase nonlinear switched systems with the
control law which has singularities was developed. However, it is well known that
the stabilization of non-minimum phase nonlinear systems is quite difficult, and is
even impossible to achieve if the unstable zero dynamics is uncontrollable.

Motivated by these considerations, we present in this work a nonlinear control
methodology for a class of non-minimum phase nonlinear switched systems with
input constraints.

The main feature of the proposed approach is not only to synthesize the bounded
nonlinear feedback controllers of the individual subsystems, but also to design an
appropriate switching scheme that organizes the transitions between the different
non-minimum phase modes and keeps all the system stable. The controller synthesis
procedure yields also an explicit characterization that coupling the switching strat-
egy and the stability regions associated for each mode arising from the limitations
imposed by the input constraints.
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The proposed method involves the integration of Input–output feedback lineariza-
tion control and Hauser’s approximation [17] in the particular case where the relative
degree coincides with the system order.

To this end, we Use Multiple Lyapunov Functions [13, 36], one for each mode, a
family of feedback controllers was synthesized for the individual closed-loop approx-
imate modes and has provided an explicit characterization of the corresponding sta-
bility regions in terms of the input constraints. Then for the synthesis of a family
of feedback controllers that enforce the desired stability and performance properties
within each individual dynamical mode in the presence of input constraints. Finally
we derive a set of switching rules that organize stabilizing transitions between the
output feedback stability regions of the non-minimum phase modes.

The outline of this chapter is as follows: In Sect. 2, we introduce a motivating
example. Section 3 provides the system description and preliminaries. The problem
formulated is solved in Sect. 4. The proposed method is successfully applied to the
switched exothermic chemical reactor [27] example in spite of to the fact that it is a
nonlinear non-minimum phase system and that it is also characterized by a dynamic
that leads to the instability of the dynamic of zero. Finally, a conclusion is drawn in
Sect. 6.

2 Motivating Example: A Continuously Stirred Tank
Reactor with Two Modes

Chemical reactors are known to be ones of the most important plants in chemical
industry. The process in the reactor is usually exhibit complex behavior, so it is
necessary to control their operation. In recent years, various nonlinear design tools
have been proposed to provide global stabilization [5, 15, 16, 30]. One of the major
control problems which has attracted the attention of researchers for a long time deal
with the temperature regulation under input constraints of exothermic irreversible
reaction in a continuously stirred tank reactor (CSTR).

Consider a general class of a constant-volume, non-isothermal CSTR system
with a hybrid behavior, in which the reaction A → B takes place in the liquid phase.
The reactor has two inlet streams: the first continuously feeds pure A at flow rate
Fr = 0.45 m3/min, concentration CA0 = 12 kmol m−3 and TA0 = 300 K, while the
second can be turned on or off (by means of an on/off valve) during reactor operation.
When turned on, the second stream feeds pure A at flow rate F∗

r = 0.7 m3/min,
concentration C∗

A0
= 14 kmol m−3 and T ∗

A0
= 320 K. For the parameters given in

Table 1 under standard modeling assumptions, the mathematical model of the process
takes the following form:
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Table 1 Parameter values of the non-isothermal reactor

Parameter Value Unit

Zr Reaction rate pre-exponential factor 5 × 108 S−1

V0 Reactor volume 0.1 m3

Ea Activation energy 49.884 kJ/mol

Rr Ideal gas constant 8.31 × 10−3 kJ/mol ◦C

CA0 Inlet concentration of reactant A 12 kmol/m−3

γ Reactor model parameter 3.9

⎧
⎪⎪⎨

⎪⎪⎩

dCA

dt
= −Zr exp

(

− Ea

Rr T

)

CA + (
CA0 − CA

) Fr

V0
+ (i − 1)

(
C∗

A0
− CA

) F∗
r

V0

dT

dt
= γr Zr exp

(

− Ea

Rr T

)

CA + (
TA0 − T

) Fr

V0
+ (i − 1)

(
T ∗

A0
− T

) F∗
r

V0
+ Qr

(1)

If the variable i is equal to 1 then the second inlet stream is turned off and it is
turned on when i has the value of 2. Initially, it is assumed that i = 1. The control
objectives are to stabilize the reactor temperature at the unstable steady state of
mode 1 (xe = 302.0 K), and to maintain this temperature at this steady state when
the reactor switches to mode 2 subject to the constraint |Qr | ≤ 10 × 10−2 K s−1.

3 System Description and Preliminaries

We consider a class of single-input single-output switched nonlinear systems of the
following state-space equation:

⎧
⎪⎨

⎪⎩

ẋ = fi (x) + gi (x) ui

y = h (x)

i ∈ I = {1, 2, . . . , N }
(2)

where x = [x1 . . . xn]T ∈ �n denote the vector of continuous state variables, ui =
[

u1
i . . . um

i

]T
is the vector of manipulated inputs taking values in a nonempty com-

pact convex subset U = {
ui ∈ �m : ‖ui‖ ≤ umax

i

}
with ui

max ≥ 0 denotes the bound
on the manipulated inputs, the notation ‖·‖ will be used to denote the standard Euclid-
ean norm of a vector ui . The nonlinear vector functions fi (.), gi (.) and the scalar
function h(x) are assumed to be sufficiently smooth which gives rise to the switched
nonlinear system (2). The index i represent a discrete state that takes values in a finite
index set I which specifies the active subsystem. The number N of the switches is
finite on every bounded time interval. Throughout the paper, we use the notations t k

i
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and t k+1
i to denote the t th times that the i th subsystem is switched in and out. We

can assume, in the rest of the study, that the continuous state of the i th active mode
evolves according to the state equation and the output equation governed for each
t k
i < t < t k+1

i .
In order to provide the necessary background for our main results in Sect. 3,

we will briefly review in the remainder of this section the stability properties of
the system viewed as a finite collection of continuous-time nonlinear systems with
discrete events that direct the transition between them. One of the main tools for
stability analysis of switched systems is Multiple Lyapunov Functions (MLFs). In
fact, its principle lies in the use of a family of functions named pseudo-Lyapunov
functions {Vi : i ∈ I } associated with each field of vectors ẋ = fi (x), to demonstrate
stability.

Definition 1 ([19] Pseudo-Lyapunov function) A pseudo Lyapunov function for the
system (2), around an operating point in a stability region of the space (xn ∈ �i ⊂ �n)

is a real-valued function Vi (x) defined in a region �i satisfying the following con-
ditions:

• Positive definite: Vi (xn) = 0 and Vi (x) > 0 for xn �= x ∈ �i

• Derivative defined non-positive: for all x included in the stability region �i

dV (x)

dt
= (∂Vi (x)/∂x) [ fi (x) + gi (x) ui ] ≤ 0 (3)

We can, then, write the following result proving the sufficient conditions for
stability:

Theorem 1 ([9, 11]) Suppose that ∪�i = �n and each vector field fi has an asso-
ciated Lyapunov like function Vi in the region �i , neighborhood xn.

For the N switched nonlinear system (1), with ui ≡ 0, i ∈ I , the switching
sequence can take the value of i only if x ∈ �i , then the value of Vi decreases
on each interval when the i th subsystem is active, more specifically

Vi
(
x
(
t k

i

)) ≤ Vi
(
x
(
t k−1

i

))
(4)

We pose t k
i

the kth switching instant for the sequence. Then, the adjacent of the
operating point xe of the system (2), is Lyapunov stable.

As shown above in Theorem 1, The Multiple Lyapunov Function approach, usually
one for each of the individual subsystems being switched, can be used to determine
the stability of switched systems without input signals; such that if for every i the
value of Vi , at the end of each such interval exceeds the value at the end of the next
interval on which the i th subsystem is active, the switched system can be shown to be
asymptotically stable. However it cannot inquire about the existence of a stabilizing
feedback law for the switched control system (2). Here we introduce the notion of
control Lyapunov function for feedback controller synthesis. The idea is to expect
the MLFs method to play an important role for designing the feedback controllers.
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Referring to the system (2), the concept of Control Lyapunov Function (CLF)
introducing as follows:

Definition 2 ([31] Control Lyapunov Function) A smooth, proper, and Positive-
Definite function V : �n → �+ is called a CLF for a nonlinear control system of
the form ẋ = f (x) + g (x) u when there is an admissible value u1, . . . , um for the
controls such that:

in f
{

L f V + Lg1 V u1 + · · · + Lgm V um
}

< 0 (5)

where L f V = [∂V /∂x] f (x) , gk is the kth column of the matrix g.

We can generalize the Definition 1 to a switched nonlinear system as shown in
this assumption:

Assumption 1 For every i ∈ I = {i = 1, . . . , N }, a Control Lyapunov Function,
Vi , exists for system (2).

By Assumption 1; if we can find a family of CLF for the switched System (2),
one for each subsystem, then for the solution of (2) we can derive a control signal u
such that family of CLF monotonically decreases.

4 Main Results

4.1 Problem Formulation

In order to clear presentation of the main results of this paper, we will start in this
section by reviewing the state feedback control problem.

Consider the class of nonlinear systems that has been represented by Eq. (2). We
need to assume that for all i ∈ I , there exists an integer r (this assumption is made only
to simplify notations and can be readily relaxed to allow a different relative degree
ri for each subsystem) and a set of coordinates (see [19] for a detailed treatment of
feedback linearizable nonlinear systems)

�i (x) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

�i,1 (x)

�i,2 (x)
...

�i,ri (x)

�i,ri +1 (x)
...

�i,n (x)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

h (x)

L fi h (x)
...

Lri
fi

h (x)

χi,1 (x)
...

χi,n−ri (x)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(6)

where χi,1 (x) , . . . , χi,n−ri (x) are nonlinear scalar functions of x .
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The coordinate change φi (x) allows transforming the subsystem of Eq. (1) into a
partially linear form such that the system takes the form:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ξ̇1 = ξ2
...

ξ̇ri −1 = ξri

ξ̇ri = Lri
fi

h(x) + Lgi L
ri −1
fi

h(x)ui

η̇i,1 = Qi,1 (x)
...

η̇i,n−ri = Qi,n−ri (x)

y = ξ1

(7)

where Lgi L
r−1
fi

h(x) �= 0 for all x ∈ �n, i ∈ I and Q1,i (x) , . . . , Q(n−r),i (x) are non-
linear functions of their arguments describing the evolution of the inverse dynamics
of the i th mode.

4.2 Theory and Design

In this section, we present a technique that combines the multiple Lyapunov functions
and Hauser’s [17] approximation to develop a nonlinear control strategy for the
stabilization of a switched nonlinear system where each mode may be non-minimum
phase. The key component of this methodology is to use a family of control Lyapunov
functions, one for each subsystem, to:

1. Synthesize the bounded nonlinear feedback controllers of the individual subsys-
tems.

2. Design an appropriate switching scheme that organizes the transitions between
the different modes and keeps all the system stable.

Owing to the presence of the unstable zero dynamics, the problem becomes more
challenging not only in the synthesizes of the control laws but also in the design of
an appropriate switching scheme that guarantees stability in the presence of non-
minimum phase modes. To present the solution, we will first define the notion of
robust relative degree.

Consider the system (2), we assume that x = xe is an equilibrium point, that is
fi (xe) = 0 , and without loss of generality we assume that h (xe) = 0 .

If we will also assume the following “controllability” rank condition: Rank{
gi , ad ( fi gi ) , . . . , adn−1 ( fi gi )

} = n for each mode i ∈ I = {i = 1, . . . , N } at
x = xe, we will impose the following assumptions on the system (2).

Assumption 2 The nonlinear system (7) has a robust relative degree γi , for all for
each mode i(i ∈ I ), in the neighborhood of xe if there is a set of smooth functions
�̂i, j (x) as the following one:
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

y = h (x) = �̂i,1 (x) + ψi,0 (x, ui )

y( j) = �̂i, j+1 (x) + ψi, j (x, ui )
...

y(γi −1) = �̂i,γi (x) + ψi,γi −1 (x, ui )

y(γi ) = Lγi

fi
h(x) + Lgi L

γi

fi
h(x)ui

i = 1, . . . , N
j = 0, . . . , γi

(8)

where the functions ψi, j (x, ui ), are sums of terms O(x)2, O(x, ui ), or O (ui )
2,

Lγi

fi
h (x) and Lgi L

γi

fi
h (x) are smooth, and Lgi L

γi

fi
h (xe) �= 0.

Let us note that that a function δ(x) is O(x)n if lim|x |→0
(|δ(x)| / |x |n) �= 0 . Moreover,

the functions known as O(x)0 will be indicated by O(1).
The determination of the robust relative degree γi of a nonlinear system shows

that the latter arises in a way similar to the case of the classic relative degree ri .
Indeed, one also obtains: γi < n.

The study of the properties of the approximately linearized system on a parame-
terized family of operating envelopes can be defined as follows:

Definition 1 For all i ∈ I , we call Bi
εi

⊂ �n for some εi > 0, a family of operating
envelopes provided that Bi

δi
⊂ Bi

εi
, whenever δi < εi and sup

{
δ : Bi

δi
⊂ Bi

εi

} = εi

where Bi
δi

, is a ball of radius δi centered at the origin.

Then, for the approximation in a larger region, we will impose following assump-
tion

Assumption 3 For all i ∈ I , a function ψi : �n × � → � is said to be of uniformly
high order on Bi

εi
× Bi

σi
if for some εi > 0, σi > 0 there exists a monotone increasing

function of εi , λi (εi ) , such that:

{ |ψi (x, ui )| ≤ εiλi (εi ) (|x | + |ui |)
∀x ∈ Bi

εi
,∀ui ∈ Bi

σi

(9)

where Bi
εi

is a ball of radius εi centered at xe, and Bi
εi

is a ball of radius σi centered
at the origin.

Now, we return to the original problem. We assume that system (1) has robust
relative degree γi . Adopting the notation of [17], we define new coordinates ξ with
ξ j = �̂i, j (x) , j = 0, . . . , γi . Thus, we obtain the new representation of the system
(1) which is written in mixed ξ and x coordinates as follows:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ξ̇1 = ξ2 + ψi,1 (x, ui )
...

ξ̇γi −1 = ξγi + ψi,γi −1 (x, ui )

ξ̇γi = Lγi

fi
h(x) + Lgi L

γi −1
fi

h(x)ui

(10)
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Consider the switched nonlinear system of Eq. (10). Our Objective now is twofold.
The first is to synthesize an output feedback controller from where the requested
closed-loop properties for each mode Then the second objective is to design an
appropriate set of switching scheme that organizes the transitions between constituent
modes and their respective controllers and keeps all the system stable.

In order to proceed with the controller synthesis task, we will impose the following
assumption on the on the process of Eq. (10). This assumption allows constructing
bounded controls using the Lyapunov function [12, 25].

Assumption 4 For each i ∈ I , there exists a family of N bounded nonlinear state
feedback controllers of the form:

ui = −ki (x)
(
Lgi Vi (x)

)T
, i = 1, . . . , N (11)

where Vi is a CLF for the i th mode and Lgi Vi is the Lie derivatives of the control
Lyapunov function Vi for the i th mode along the column vectors of the matrix gi .

Theorem 2 that follows provides the explicit synthesis formula for the desired
bounded nonlinear state feedback controllers and states precise switching conditions
that guarantee closed-loop stability.

Theorem 2 Consider the switched nonlinear system (10), for which a family of
CLFs Vi , i = 1, . . . , N has been founds, using each control Lyapunov function, we
construct the following family of bounded nonlinear feedback controllers:

ui = −ki
(
x, umax

i

) (
Lgi Vi (x)

)T
, i = 1, . . . , N (12)

where

ki
(
Vi , umax

i

) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

βi (x)+
(

β2
i
(x)+

(
umax

i

∥
∥
∥

((
Lgi Vi

)T
(x)

)∥
∥
∥

)4
) 1

2

∥
∥
∥

((
Lgi Vi

)T
(x)

)∥
∥
∥

2

⎛

⎝1+
(

1+
(

umax
i

∥
∥
∥

((
Lgi Vi

)T
(x)

)∥
∥
∥

)2
) 1

2

⎞

⎠

(
Lgi Vi

)T
(x) �= 0

0
(
Lgi Vi

)T
(x) = 0

with βi (x) = L fi Vi (x) + ρi Vi (x) , ρi > 0.

Let ϒi
(
umax

i

)
be the largest set of x, containing the origin, such that βi (x) ≤

umax
i

∥
∥
∥
(
Lgi Vi (x)

)T
∥
∥
∥. Also, let �∗

i

(
umax

i

) := {
x ∈ �n : Vi (x) ≤ ςx,i

}
be a level set

of Vi , completely contained in ϒi , for some ςx,i > 0, and assume, without loss
of generality, that x (0) ∈ �∗

i

(
umax

i

)
for some i ∈ I . If, at any given time, T , the

following conditions hold:

{
x (T ) ∈ �∗

l

(
umax

l

)

Vl (x (T )) < Vl (x (tl∗))
(13)
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For some l ∈ I , l �= i , where tl∗ < T is the time when the lth subsystem was last
switched in, i.e., for t ≥ T +, guarantees that the origin of the switched closed-loop
system is asymptotically stable.

The stability requirement of Theorem 2, on the other hand, the behavior is
globally input–output linearized according to the previous design as it is allowed
to synthesize controllers ensuring the stability of the closed loop system. For
this reason, we adopt the following notation ek = ξk − xk

e = [
e1 e2 . . . ek

]T
, x̄e =

[

xe x (1)
e . . . x (γi −1)

e

]T
, where x̄ k

e , kth time derivative of the reference input xe which

is assumed to be a smooth function of time. Consequently, one may prove that the
ξ -subsystem of Eq. (10) will be equivalent to the following more compact form:

ė = f̄i (e, x̄e) + ḡi (e, x̄e) ui , i = 1, . . . , N (14)

where f̄i (e, x̄e) = Ai e + bi Lγi

fi
h (x) , ḡi (e, x̄e) = bi Lgi L

γi −1
fi

h (x) are γi × 1 vector
functions, and

Ai =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0 1 0 . . . 0
0 0 1 . . . 0
...

...

0 0 0 . . . 0
0 0 0 . . . 0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

, bi =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0
0
...

0
1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

(15)

are γi × γi matrix and γi × 1 vector, respectively.
We use the above normal form to construct a control Lyapunov Function for each

mode of the switched system. A sufficient condition to construct CLF is provided in
the following theorem.

Theorem 3 Consider the system (2) with the form (14), a simple choice for a Control
Lyapunov Function is a quadratic function:

Vi = eT Pi e (16)

where Pi is a positive definite matrix chosen so that AT
i Pi + Pi Ai − Pi bi bT

i Pi < 0.
We must note that the Lyapunov functions V̄i used in designing the controllers

are equal to the Lyapunov functions Vi used in implementing the switching rules
because the robust relative degree γi is equal to order n of the system.

Using these quadratic CLFs, a controller can be designed for each mode using
(12) applied to the system (14). By means of a standard Lyapunov argument, it can
be shown that each controller asymptotically stabilizes the e-states in each mode.
This result with the Assumptions 3 and 4 can then show that the closed-loop system
(14), for each individual mode, is asymptotically stable.
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5 Results and Discussion

In this section, we show the applicability and effectiveness of our approach on the
CSTR example illustrating the main results of the paper. Let’s revisit the CSTR
system (1) presented in Sect. 2.

Defining x = [
x1 x2

] = [
CA T

]
, u = [Qr ] , and y = [T ] . The model of CSTR

(1) can be written under the same form of system (2). Hence, we have:

fi (x) =
⎡

⎢
⎣

−Zr exp
(
− Ea

Rr x2

)
x1 + (

CA0 − x1
) Fr

V0
+ (i − 1)

(
C∗

A0
− x1

) F∗
r

V0

γr Zr exp
(
− Ea

Rr x2

)
x1 + (

TA0 − x2
) Fr

V0
+ (i − 1)

(
T ∗

A0
− x2

) F∗
r

V0

⎤

⎥
⎦ ,

gi (x) =

⎡

⎢
⎢
⎣

0

1

⎤

⎥
⎥
⎦ and h (x) = x2

We apply the approach presented in Sect. 3, the system given by (1) satisfying the
Assumptions 2 and 3 is transformed by the two following modes:

• Mode 1:

⎧
⎪⎪⎨

⎪⎪⎩

ξ̇1 = γr Zr exp

(

− Ea

Rr x2

)

x1 + (
TA0 − x2

) Fr

V0
︸ ︷︷ ︸

ξ2

+ u1︸︷︷︸
ψ1,1(x,u1)

ξ̇2 = L2
f1

h (x) + Lg1 L f1 h (x) u1

(17)

where

⎧
⎪⎪⎨

⎪⎪⎩

L2
f1

h (x) =
[
γr Zr exp

(
− Ea

Rr x2

)]
×

[
Zr x1 exp

(
− Ea

Rr x2

)
+ (

CA0 − x1
) Fr

V0

]

+
[(

γr Zr Ea x1

Rr x2
2

)

exp
(
− Ea

Rr x2

)
+ Fr

V0

]

×
[
γr Zr x1 exp

(
− Ea

Rr x2

)
− (

TA0 − x2
) Fr

V0

]

and Lg1 L f1 h (x) =
(

γr Zr Ea x1

Rr x2
2

)
exp

(
− Ea

Rr x2

)
+ Fr

V0

• Mode 2:

⎧
⎪⎪⎨

⎪⎪⎩

ξ̇1 = γr Zr exp

(

− Ea

Rr x2

)

x1 + (
TA0 − x2

) Fr

V0
+ (

T ∗
A0

− x2
) F∗

r

V0
︸ ︷︷ ︸

ξ2

+ u2︸︷︷︸
ψ2,1(x,u2)

ξ̇2 = L2
f2

h (x) + Lg2 L f2 h (x) u2

(18)

where

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

L2
f1

h (x) =
[

γr Zr exp

(

− Ea

Rr x2

)]

×
[

Zr x1 exp

(

− Ea

Rr x2

)

+ (
CA0 − x1

) Fr

V0
+ (

C∗
A0

− x1
) F∗

r

V0

]

+
[(

γr Zr Ea x1

Rr x2
2

)

exp

(

− Ea

Rr x2

)

+ Fr

V0
+ F∗

r

V0

]

×
[

γr Zr x1 exp

(

− Ea

Rr x2

)

− (
TA0 − x2

) Fr

V0
+ (

T ∗
A0

− x2
) F∗

r

V0

]
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and

Lg2 L f2 h (x) =
(

γr Zr Ea x1

Rr x2
2

)

exp

(

− Ea

Rr x2

)

+ Fr

V0
+ F∗

r

V0

with e = [
e1 = ξ1 − xe e2 = ξ2 − ẋe

]T
, a scalar system under the same form of

system (14), describing the approximate input–output dynamics, can be obtained for
controller design:

• For mode 1:
ė = f̄1 (e, x̄e) + ḡ1 (e, x̄e) u1 (19)

where f̄1 (e, x̄e) = A1e + b1 L2
f1

h(x), ḡi (e, x̄e) = b1Lg1 L f1 h(x),

A1 =
[

0 1
0 0

]

and b1 =
[

0
1

]

• For mode 2:
ė = f̄2 (e, x̄e) + ḡ2 (e, x̄e) u2 (20)

where f̄2 (e, x̄e) = A2e + b2 L2
f2

h(x), ḡ2 (e, x̄e) = b2 Lg2 L f2 h(x), A2 =
[

0 1
0 0

]

and

b2 =
[

0
1

]

.

For each mode i(i = 1, 2) the relative degree γi = 2 , then the choice Vi = V̄i is
sufficient.

We construct the controllers and for each mode i(i = 1, 2) under the same form
of Eq. (14) satisfying the Theorem 3, we choose the following quadratic Lyapunov
functions:

• V1 = V̄1 for mode 1:

V1 = V̄1 = 1

2
c1e2

1 + 1

2
c2e2

2 (21)

• V2 = V̄2 for mode 2:

V2 = V̄2 = 1

2
c3e2

1 + 1

2
c4e2

2 (22)

The stabilizing controller u1 is:

u1 = − (
Lḡ1 V̄1

) ×
⎛

⎜
⎝

L f̄1
V̄1 + 1.2V1 +

((
L f̄1

V̄1 + 1.2V̄1
)2 + (

umax
1 Lḡ1 V̄1

)4
) 1

2

(
Lḡ1 V̄1

)2
(

1 + (
umax

1 Lḡ1 V̄1
)2
) 1

2

⎞

⎟
⎠

(23)
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The stabilizing controller u2 is:

u2 = − (
Lḡ2 V̄2

) ×
⎛

⎜
⎝

L f̄2
V̄2 + 2.3V2 +

((
L f̄2

V̄2 + 2.3V̄2
)2 + (

umax
2 Lḡ2 V̄2

)4
) 1

2

(
Lḡ2 V̄2

)2
(

1 + (
umax

2 Lḡ2 V̄2
)2
) 1

2

⎞

⎟
⎠

(24)

In order to validate the performance of the proposed approach, we have performed
the simulations on Matlab.

A first simulation study is shown in Figs. 1 and 2. In these figures (solid
lines) we respectively represent the evolution of the reaction temperature and the
evolution of the control variable when the reactor is initialized at x (0) = x0 =[

13 kmol m−3 293 K
]

and is operating in mode1 for all times (without switching).
We observe that for this mode the controller successfully stabilizes the reactor tem-
perature at the desired steady-state (xe = 302.0 K).

Figures 1 and 2 (dashed lines) depict the result when the reactor (initialized at
x0 within) switches to mode 2 at a randomly chosen time t = 1.1 min. It is clear
that in this case the controller is unable to stabilize the temperature at the desired
steady-state. The reason is the fact that at t = 1.1 min, the state of the system lies

Fig. 1 Evolution of the
reactor temperature when the
reactor is initialized and
operates in mode 1 (solid),
when the reactor switches to
mode 2 at t = 1.1 min
(dashed)
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Fig. 2 Evolution of the
controller when the reactor is
initialized and operates in
mode 1 (solid), when the
reactor switches to mode 2 at
t =1.1 min (dashed)
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Fig. 3 Evolution of the
reactor temperature while
applying the Theorem 2
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Fig. 4 Evolution of the
controller while applying the
Theorem 2
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outside the stability region of mode 2 and, therefore, the available control action is
insufficient to achieve stabilization.

To avoid this instability, we used the switching scheme proposed in Theorem 2
in a second study. The simulation results representing the evolution of the reaction
temperature and the evolution of the control variable are respectively given by Figs. 3
and 4. It appears in these figures that the controllers successfully drive the reactor
temperature to the desired steady-state (xe = 302.0 K) and maintain it there with the
available control action.

6 Conclusions

In this chapter, we have considered the global stabilization problem of a class of non-
minimum phase switched nonlinear systems where the global stabilization problem
of individual subsystems is not assumed to be solvable when applying the formalism
of the input–output feedback linearization.

Based on the MLFs method and the Hauser’s approximation, we have designed
state feedback controllers of subsystems and constructed a switching law, which
guarantees global asymptotic stability of the corresponding closed-loop system.
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The main idea is the coupling between the switching strategy and the stabil-
ity regions arising from the limitations imposed by the input constraints. A set of
switching rules is designed to stabilize the transitions between the stability regions
associated for each mode. We demonstrated the efficiency of the proposed approach
through a non-minimum phase CSTR example.
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