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Abstract In general, the diving dynamics of an autonomous underwater vehicle
(AUV) has been derived under various assumptions on the motion of the vehicle
in vertical plane. Usually, pitch angle of AUV is assumed to be small in maneu-
vering, so that the nonlinear dynamics in the depth motion of the vehicle could be
linearized. However, a small-pitch-angle is a somewhat strong restricting condition
and may cause serious modeling inaccuracies of AUV’s dynamics. For this reason,
many researchers concentrated their interests on the applications of adaptive control
methodology to the motion control of underwater vehicle. In this chapter, we directly
resolve the nonlinear equation of the AUV’s diving motion without any restricting
assumption on the pitch angle in diving model. The proposed adaptive neuro-fuzzy
sliding mode controller (ANFSMC) with a proportional + integral + derivative (PID)
sliding surface is derived so that the actual depth position tracks the desired trajectory
despite uncertainty, nonlinear dynamics and external disturbances. In the proposed
control structure, the corrective term is approximated by a continuous fuzzy logic
control and the equivalent control is determined by a feedforward neural network.
The weights of the neural network are updated such that the corrective control term
of the ANFSMC goes to zero. The adaptive laws are employed to adjust the output
scaling factor and to compute PID sliding surface coefficients. Finally, the lyapunov
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theory is employed to prove the stability of the ANFSMC for trajectory tracking
of diving behaviors. Simulation results show that this control strategy can attain
excellent control performance.

Keywords Autonomous underwater vehicle · Adaptive neuro-fuzzy sliding mode
control · Fuzzy logic control and Neural network

1 Introduction

Underwater robotic vehicles (URV’s) have experienced remarkable growth in their
emerging applications, such as scientific inspection of deep sea, oceanographic map-
ping, long range survey, underwater structure maintenance, oil and gas exploration,
underwater pipelines tracking, rescue operation, underwater precision-guided muni-
tions and so on. The area of URV’s currently falls into two basic categories such
as Manned Underwater Vehicles and Unmanned Underwater Vehicles (UUVs).
Again, UUVs is classified in to Remotely Operated Underwater Vehicles (ROVs)
and Autonomous Underwater Vehicles (AUVs). ROV is a physically linked vehicle
via the tether to the surface and are remotely operated by a human pilot. AUV is
an unmanned, untethered and underactuated, underwater vehicle that carries its own
power source and relies on an on-board computer along with machine intelligence to
execute a mission. However, AUV’s dynamics are highly nonlinear, time varying and
hydrodynamic coefficients of vehicles are difficult to be accurately estimated a prior,
because of the variations of these coefficients with different operating conditions.
These types of difficulties cause modeling inaccuracies as parametric uncertainty
and unstructured uncertainty in AUV’s dynamics. In order to deal with the uncer-
tainties in the AUV’s dynamics, most control related researchers on URV are mainly
focused on the applications of robust control methodology to the motion control of
underwater vehicles.

In the existing literatures, several different studies have been done in order to
design autopilots for controlling the AUV’s such as PD/PID controllers are designed
in [16, 22, 23, 31, 33, 48, 50, 61, 79] as model based controllers most dynami-
cally used in dynamic positioning and motion control. The adaptive control law is
developedwith estimation of uncertain parameters associatedwith the hydrodynamic
damping co-efficients, which is used to generate appropriate control for the AUV
mentioned in [2, 4, 11, 53, 76–78]. Recent progress in the design of robust control
schemes has resulted in the linear quadratic gaussian (LQG) methodology with loop
transfer recover (LTR), gain scheduling and H∞ control method employed in control
of AUV, as described in [15, 40, 47, 51, 54, 56, 57, 59, 60, 64–66]. As compared to
robust methods, adaptive control is better for plants with uncertainties because it can
improve it’s performance by adaptation with little or no information of the bounds
on uncertainties and it is difficult for higher order system.
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Sliding mode approach introduced in [9–12, 17, 18, 21, 24, 42, 49, 68, 71, 72]
as an effective means of controlling an AUV, mainly due to its ability to tolerate
imprecision in the dynamics of undersea robots. A fuzzy logic framework is used
for navigation and control of underwater vehicles as discussed in [1, 3, 14, 26, 34,
36, 41, 62, 69]. This control technique dealing with problems characterized by the
presence of uncertainty and nonlinearity; in this case the vehicle’s movement and
sensing actions depend on a number of environment conditions that are impossi-
ble to model. Another intelligent control technique as neural networks (NNs) have
an inherent capability of approximating uncertain nonlinear dynamics of the AUV
without explicit knowledge of its dynamic structure and it is an attractive tool for
steering and diving motion control depicted in [5, 27–30, 44–46, 52, 67, 70, 73–
76, 80]. The controllers for AUV should be robust to suppress the uncertain effects
from nonlinearity, modeling error and the interferences from complicated external
environment.

Usually, it is difficult to derived or identify an accurate dynamic model of a com-
plicated AUV system for designing autopilots. So that, an intelligent control method
as fuzzy logic control (FLC) law can be designed based on some knowledge or with-
out any knowledge about the system. In addition, an appropriate FLC can overcome
the parameter variation and environmental disturbance during operation. But, there is
still lacking of theoretical modeling and analysis for the FLC stability and robustness
problems. Hence, the robustness feature of a sliding mode control (SMC) was intro-
duced into the fuzzy controller in current researches. More recently, several studies
have been done in order to combine the advantages of SMC and FLC. Kim and
Lee [37] proposed a fuzzy controller with fuzzy sliding surface for reducing track-
ing error and eliminating chattering problem due to that stability and robustness is
improved. Song and Smith [63] introduced a sliding mode fuzzy controller that uses
pontryagins maximum principle for time optimal switching surface design and uses
fuzzy logic to this surface. Guo et al. [19] applied a sliding mode fuzzy controller to
motion control and line of sight guidance of an AUV. The parameters of FSMC algo-
rithm are non-adaptive in nature, which could be adapted by intelligent techniques
for improving output response. Balasuriya and Cong [6] proposed adaptive fuzzy
controller can approximate the unknown system and sliding mode approach provide
strong robustness against model uncertainties and external disturbances. Its parame-
ters will be adapted online to utilize control energy more efficiently. Kim and Shin
[38] developed autopilot for depth control of an underwater flight vehicle (UFV)
based on adaptive fuzzy sliding mode control (AFSMC) with a fuzzy basis func-
tion expansion (FBFE) is employed with a proportional integral augmented sliding
signal. Afterwards, Kim and Shin [39] proposed an expanded adaptive fuzzy slid-
ing mode controller (EAFSMC), is based on the decomposition method designed
by using an expert knowledge and the decoupled sub-controllers and composition
method designed by using the FBFE’s. Sebastion et al. (2007) address the kinematic
variables controller based on pioneering algorithm, is utilized in control of underac-
tuated snorkel vehicle. In proposed methodology, adaptive capabilities are provided
by several fuzzy estimators, while robustness is provided by the SMC law.



480 G.V. Lakhekar et al.

In the further development, Bessa et al. [7] presented an adaptive fuzzy control
algorithm based on sliding mode for depth control of an ROV, which is employed
for uncertainty and disturbance compensation with completely eliminating chat-
tering effect. Later, Bessa et al. [8] applied AFSMC for identification of external
disturbances to control the dynamic positioning of underwater vehicles with four
controllable degrees of freedom. Javadi-Moghaddam and Bagheri [32] introduced
an adaptive neuro-fuzzy sliding-mode-based genetic algorithm (ANFSGA) control
system for a ROV with four degrees of freedom (DOF)s. Since, the dynamic of
ROVs are highly nonlinear and time varying, an ANFSGA control system is investi-
gated according to direction-based genetic algorithm (GA) with the spirit of sliding
mode control and adaptive neuro-fuzzy sliding mode (ANFS) based evolutionary
procedure. Guo et al. [20] presented AFSMC to deal with the depth and heading reg-
ulation of spherical underwater robots. Furthermore, the designed controller can’t
only tolerate actuator stuck faults, but also compensate the disturbanceswith constant
components. Lakhekar and Waghmare [43] designed dynamic fuzzy sliding mode
control (DFSMC) for heading angle control in horizontal turn to track desired com-
mand, under the influence of disturbances and parameter variations. In this control
technique, two fuzzy supervisory systems are employed to determine the value of
boundary layer width and hitting gain as the base values of input-output membership
functions of FSMC control structure. From the literatures, it can be observed that
many approaches in FSMC algorithms have been taken to address the control aspect
of the AUV’s.

To accomplish the mentioned motivation in controlling of undersea robots, an
ANFSMC designed as diving autopilot for trajectory tracking of AUV’s. This is a
cooperative control that is based on the concept of combining NN, FLC and SMC,
where the equivalent control is determined by a feed forward NN and the corrective
control is approximated by a continuous FLC. At first, we design PID sliding surface
and their coefficients are estimated with the help of adaptive control law. In order to
reduce the chattering phenomenon, a FLC is used to approximate the corrective con-
trol term and the equivalent control is computed by a feed-forward NN. The weights
of the NN are adopted by the gradient descent method and adaptive PID sliding
surface. This approach can achieve asymptotic stability and converge faster. The rest
of this chapter is organized as follows. In Sect. 2, we shall briefly describe diving
model of an AUV. The design of ANFSMC applied to AUV for tracking periodic
command is described in Sect. 3. Then, Sect. 4 presented, MATLAB/Simulink based
numerical simulations for diving motion control for AUV. Finally, conclusions are
summarized in Sect. 5.

2 Mathematical Model of AUV

Generally, AUV has a streamlined torpedo-like body propelled by a single thruster
and it’s dynamics is highly nonlinear, coupled and time-varying. In addition to
these, the hydrodynamic parameters are often poorly known and the vehicle may be
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Fig. 1 Body-fixed frame and earth-fixed frame for AUV

subjected to unknown forces due to ocean currents.For vehicle maneuvering, two
stern planes and two stern rudder underneath the hull are used. Dynamical behavior
of an AUV can be described in a common way through six degree of freedom (DOF)
nonlinear equations suggested by Fossen [16], in the two co-ordinate frames such as
Body fixed frame and Earth fixed frame as indicated in Fig. 1.
The nonlinear underwater vehicle’s motion equation expressed in the Body fixed
frame is given as,

M(ν)ν̇ + CD(ν)ν + g(η) + d = τ, η̇ = J(η)ν, (1)

where, η = [x, y, z, φ, θ, ψ]T is the position and orientation vector in earth fixed
frame, ν = [u, v, w, p, q, r]T is the velocity and angular rate vector in body-fixed
frame. M(ν) ∈ �6×6 the inertia matrix (including added mass), CD(ν) ∈ �6×6

denotes the matrix of Coriolis, centripetal and damping term, g(η) ∈ �6 the gravita-
tional forces and moments vector, d is the disturbances, τ is the input torque vector
and J(η) is the transformation matrix. In vertical plane, we can assume that the
roll and yaw angular velocities are close to zeros. This can be achieved by properly
adjusting the RPM of propeller and the rudders’ angles. Under these assumptions,
the heave dynamics of AUVs could be represented as,

ż = −u sin θ + ν cos θ sin φ + ω cos θ cosφ ≈ −u0 sin θ (2)

where u0 > 0 is a forward constant speed, and the pitch kinematics could bewritten as

θ̇ = q cosφ − r sin φ ≈ q cosφ (3)
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The roll angle φ is nearly constant, since p ≈ 0. Without any loss of generality, we
assume that φ = 0. Therefore, above equation could be rewritten as

θ̇ ≈ q (4)

Consequently, the diving equation of an AUV can be certain modified as

ż = −u0 sin θ (5)

θ̇ = q (6)

mqq̇ = ΦTΘ + Fqu2
0δq + dq (7)

where,Φ = [q, u̇, u, u2, ωq, rq, cosφ sinΨ ]T ,Θ = [θ1, θ2, θ3, θ4, θ5, θ6, θ7]T ,mq is
the inertia term including addedmass,Fq is the finmoment coefficient and δq denotes
the stern plane angle and dq is the disturbance term. The main focus of this chapter is
taken on an attempt to break a conventional restricting condition, which is typically
added to the AUV’s motion behavior while in maneuvering. Mostly, the pitch angle
of the vehicle is assumed to be small in maneuvering so that the nonlinear dynamics
in the depth motion of the vehicle could be linearized. Here, small-pitch-angle is a
strong restricting condition and may cause difficulty in many practical applications.
In this work, we directly resolve the nonlinear equation of the vehicle’s depth motion
without any restricting assumptionon the pitch angle of the vehicle. In fact, robustness
has become one of the important aspect related to nonlinear depth control problems,
and attention have been taken in to guarantee the stabilities of the proposed control
algorithmunder various assumptions on the unstructured uncertainties.AnANFSMC
was proposed for diving control of an AUV with the nonlinear depth dynamics and
their unstructured uncertainties were assumed to be unknown and unbounded.

3 Design of Adaptive Neuro-Fuzzy Sliding Mode Controller

3.1 Proposed Control Structure

The derivation of the proposed ANFSMC scheme for diving control of an AUV is
discussed in this section. The control problem is to synthesize an adaptive control
law, so that it can provide direct solution to the nonlinear depth dynamics without
any restricting assumption on the AUV’s pitch angle, during diving motion behavior.
The overall control scheme for motion behavior of undersea robot in vertical plane
is depicted in Fig. 2, in which reaching mode control law or switching law means
discontinuous control part is approximated by a continuous fuzzy logic control and a
feedback control law as equivalent control is to be designed to provide convergence
of a system’s trajectory to the sliding surface, within finite time period is computed
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Fig. 2 The structure of ANFSMC

by a NN. The output of the NN is added with fuzzy logic based corrective control
to form the control signal. In the overall control structure, fuzzy logic control is
applied to eliminate chattering phenomenon by smoothing the switching signal and
the equivalent control effort computed by a feed-forward neural network. The design
procedure of the ANFSMC includes the following steps.

Step(1): Design PID sliding surface with adaptation scheme
Step(2): Determine corrective control ufe using e or S
Step(3): Determine equivalent control ueq with the help of NN
Step(4): Estimate output scaling factor kf of fuzzy logic control
Step(5): Calculate the overall control signal for diving control

In this work, a NN controller with the learning rule based on sliding mode algorithm,
is employed to assure computation of unknown part in the equivalent control under
the influence of parametric uncertainties and the second one is chattering free smooth
switching law based on fuzzy logic control. The weights of the NN are updated by
using iterative gradient algorithm, due to which reaching time is shorten and gain
factor of fuzzy inference system along with sliding surface coefficients are computed
using adaptive laws.
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3.2 PID Sliding Surface

At the first step, let us define a PID sliding surface S(t) in the state space �2 by the
equation S(q, θ, z̃) with following equation

S = Kp(z(t) − zd) + Kiθ(t) + Kdq(t) (8)

where, z̃ is the tracking error, z is the depth parameter and zd is desired vertical
position. An integral term included in the PD type sliding surface expression that
resulted in a type of PID sliding surface as hyperbolic function. PID sliding surface
coefficients Kp, Ki and Kd are designed such that the sliding mode on S = 0 is stable
ie convergence of S to zero in turn guarantees that z̃ converge to zero. The coefficients
of PID based sliding surface are strictly positive constant Kp, Ki and Kd ∈ �T . The
coefficients of PID sliding surface can be obtained by adaptive laws as,

K̇p = −η1Se (9)

K̇i = −η2S
∫

edt (10)

K̇d = −η3Sė (11)

where, ηi > 0 is the learning rate i = 1, 2, 3, …, The control law based on a contin-
uous time varying PID sliding surface, here coefficients are systematically obtained
according to the adaptive law.

3.3 Corrective Control

An advantage of using fuzzy logic in the controller design is that the dynamics of
system need not be fully known. On the other hand, the linguistic expression of the
fuzzy controller makes it difficult to guarantee the stability and robustness of the
control system. Therefore, their designing based on the sliding mode theory assures
performance and stability, while simultaneously reducing the number of fuzzy rules.
Sliding mode control (SMC) produces a serious chattering phenomenon, which is
avoided by smoothing the switch signal. Therefore, a fuzzy logic controller is used to
replace the switching control or discontinuity in the signum function at the reaching
phase in the SMC design.
A principal diagram for ANFSMC includes NN module and fuzzy inference system
for combined action of equivalent and corrective control algorithm. In fuzzy inference
engine, generalized fuzzy sliding mode based rule is designed as follows

Equivalently,Ri: If s isF
′i
s then uf isF

′i
uf , i = 1, 2, . . . 5.
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Fig. 3 Membership
functions for corrective
control as fuzzy logic control

Table 1 Rule base for FSMC algorithm

Sliding
surface (S)

NL NS ZE PS PL

Control
signal (uf )

P P Z N N

where, NL is Negative Large, NM is Negative Medium, ZE is Zero, PM is Positive
Medium, PL is Positive Large, P is Positive, N is Negative and Z is Zero. NL, NM,
…P, N, Z are labels of fuzzy sets and their corresponding membership functions are
depicted in Fig. 3, respectively. Let X and Y are the input and output space of the
fuzzy rules, respectively. For any arbitrary fuzzy Fx in X, each rule Ri can determine
a fuzzy set Fx * Ri in Y . The reduced rule base table for corrective control part in
proposed control scheme as stated in Table1.
The corrective control part is based on single input single output (SISO) mamdani
type fuzzy inference system with minimum If-Then rules. Here, reaching law or
corrective control is defined as,

ufe = kf ufuzzy (12)

where, kf is the output scaling factor and ufuzzy is the output of fuzzy inference
system, which is determined by the sliding surface S. The fuzzy control rules can
be represented as mapping of the input linguistic variable S to the output linguistic
variable as uf .

According to the following the sup-min compositional rule of inference

μF̃x◦Ri(uf ) = Sup
s ∈ X

[
min

(
μF̃x

(s), min

(
μF̃i

s
(s), μ ˜Fi

uf

(uf )

))]
(13)
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It can be further simplified by supposing F̃x be a fuzzy singleton, then

μFx◦Ri(uf ) = min[μFi
s
(α), μFi

uf
(uf )] (14)

the deduced MF F
′d
u of the consequence of all rules is,

μd
F̃d

uf
(uf ) = max[μF̃x◦Ri(uf ), . . . μF̃x◦Rs(uf )] (15)

the output variable in above equation is fuzzified output. For the defuzzifier, the
center of area defuzzification method is used to find the crisp output is given as.

ufuzzy =
∫

uf μd
F̃d

uf
(uf )duf∫

μd
F̃d

uf
(uf )duf

(16)

The crisp control signal from extended fuzzy controller is applied to the system
model for achieving stabilized diving motion behavior. Other task is to update out-
put scaling factor on line, which depends on sliding surface variable S and its number
of fuzzy partitions. The gain updating factor kf is calculated using following relation

kf = k1[1/p̃ + |S|] (17)

Here, kf is nonfuzzy adapted output normalization gain, p̃ is the number of fuzzy
partitions ofS ie. (p̃=5), k1 is a positive constant, thatwill bring appropriate variations
in kf , which is formulated according to the rule-base of fuzzy inference system with
the following strategy: when the state is moving fast towards its set-point, control
action needs to be reduced to prevent possible large overshoot and/or undershoot;
on the other hand, when the state is rapidly moving away from the set-point, control
action needs to be increased to restrict such deviations for a good recovery of the
process. In this way, corrective control part is designed to provide smooth switch
signal.

3.4 Equivalent Control

The computation of equivalent control is based on fully connected neural network
structure, which is consists of an input layer with two neurons (n), one hidden layer
with four neurons (h) and a single neuron in output layer (m). The structure of NN
presented in control configuration as depicted in Fig. 4 with x is the n × 1 input
vector and y is a m × 1 diagonal vector. Here, ω and ϑ denotes the input-to-hidden
layer and hidden -to-output layer weights respectively in feed forward NN structure.
In forward propagation, response of NN is expressed as follows:
The input of the jth hidden layer is specified as
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Fig. 4 NN structure for estimation of equivalent control

yj =
n∑

k=1

ωjk xk (18)

The output of the jth hidden unit is represented as

youtj = f (yj) (19)

where, f is the sigmoidal transfer function

f (σ ) = 2

1 + e−σ
− 1 (20)

In above activation function, σ = yj is output of first layer in NN. Afterwards, the
input to the ith output unit is

qi =
h∑

j=1

ϑij youtj (21)

The output of NN is given as
qouti = f (qi) (22)

The estimated value of equivalent control is obtained as

ûeq = keq qouti (23)

In backward propagation, the weight adaptation of NN for equivalent control esti-
mation is expressed as follows:

The error back propagation algorithm is derived on the basis of simple gradient
principle for minimizingmean square error between the actual output and the desired
output. That is, to minimize the cost function selected as the difference between
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the desired and the estimated equivalent control. Hence, a simple cost function is
described as follows

E = 1

2
[ueq − ûeq]2 (24)

The weights are updated by using

�ϑij = −α
∂E

∂ϑij
(25)

Similarly, another weights between input and hidden layer is updated as

�ωjk = −α
∂E

∂ωjk
(26)

Here, α is the learning rate of the back propagation algorithm and it is constant.
Moreover, the two factor as ∂E/∂ϑij and ∂E/∂ωjk can be expressed as follows

∂E

∂ϑij
= −1

2
keq(ueq − ûeq)(1 − q2

outi) youtj (27)

∂E

∂ωjk
= −1

4
keq(ueq − ûeq)ϑij(1 − q2

outi)(1 − y2outj ) xk (28)

In above equation, ueq is the unknown term. So that, ∂ϑij can not be determined.
In order to solve this problem, we have to use the value of adapted PID sliding
surface S to replace the ueq − ûeq. The reason is that S is given by the designer and
characteristics of ueq − ûeq and S are similar.

∂E

∂ϑij
= −1

2
keq S (1 − q2

outi) youtj (29)

∂E

∂ωjk
= −1

4
keq S ϑij(1 − q2

outi)(1 − y2outj ) xk (30)

The structure of NN that estimate the equivalent control action, is a standard two
layer feed-forward NN with the back propagation adaptation algorithm. The error
between the desired and estimated equivalent control is adjusted by the PID sliding
surface based on adaptive law. The overall output of the neural network structure is
given as

ûeq = unn = Γ (ϑ(Γ (ωxk))) (31)

where, unn is the output of NN structure, employed to estimate equivalent control and
Γ is a nonlinear operator. According to the neural network function approximation
property, a smooth function un is a compact set based on hidden layer neurons with
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weights matrices as ω and ϑ such that,

un(X) = ϑTg(ωT , X) + ε(X) (32)

where, ε(X) represent NN approximation of error satisfying ‖ε(X)‖ < εn for some
εn > 0. Then, estimate of un can be given as

ûn(X) = ϑ̂Tg(ω̂T , X) (33)

where, ϑ̂T and ω̂T are the estimations of ϑ and ω respectively obtained by updating
weights of NN. The proof of the convergence of E to zero is given

Theorem 1 Using the back propagation algorithm with a proper learning rate, it
is guaranteed that E defined in Eq. (24) converges to zero, without bonding to local
minimum. Means that, for a bounded disturbance D(t) and unknown dynamics, it is
guaranteed that system is stable with zero steady state error.

Proof According to Lyapunov stability criteria, we have to show that Ė < 0. The
derivative of the error function with respect to time is given by

dE

dt
= ∂E

∂ω

∂ω

∂t
+ ∂E

∂ϑ

∂ϑ

∂t
(34)

We know that updated weights in Eqs. (25) and (26) utilized in NN structure and
substituted in above Eq. (34),

dE

dt
= −α

[(
∂E

∂ω

)2

+
(

∂E

∂ϑ

)2
]

(35)

Substituting Eqs. (29) and (30) into Eq. (35),

dE

dt
= −α

{ (
−1

4
keqSϑij(1 − q2

outi)(1 − y2outj ) xk

)2

+
(

−1

2
keq S (1 − q2

outi) youtj

)2 }
(36)

Due to squaring operation inner terms become positive as H̃ is given as

dE

dt
= −α [H1 + H2] = −αH̃ (37)

Note that Eq. (37) is a negative definite function, which completes the proof.
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4 The Parameter Adaptive Method

The ANFSMC structure proposed in the previous section has substantially improved
the performance of the fuzzy control (corrective control) by adaptation of dead band
width as width of output membership function, while in neural network (equivalent
control), learning rate is also adapted by using Lyapunov function.

4.1 Tuning of Output Membership Function in Corrective
Control

The response time due to corrective control is minimized, based on the initial condi-
tion of system and dead band ±d. These two factors were considered as the tuning
parameter to achieve minimum time response. In this work, it is demonstrated that,
the settling time can be significantly reduced by on line tuning of the universe of
discourse of the output membership function range ±a with no a prior information
of the initial condition is required. Here, problem is that to tune the base value of
output membership function defined by three fuzzy sets such as negative, zero and
positive with universe of discourse {−a, a}. In order to accomplish a better perfor-
mance and devise a systematic method to obtain optimal membership functions. So
that, we employ following algorithm for tuning of dead zone parameter as base value
of output fuzzy variable, which can significantly minimize settling time of output
response.

Determine the universe of discourse ±a for output fuzzy variable
Initialize dead band d value of output fuzzy variable as d = a/2
Initialize integral absolute function and integral time absolute function
For i = 1 to maximum number of epochs to refinement all d
For j = 1 to minimum number of epochs to refinement one d
Run the experiment and get new values of IAF and ITAF
If ((new IAF < IAF) and (new ITAF < ITAF))
IAF = new IAF;
ITAF = new ITAF;
Save d;
End If
If ((new IAF ≤ IAF) and (new ITAF ≤ ITAF))
d = d × increase ratio
Else
d = d × decrease ratio
End if
End for
End for
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Here, multi variable unconstrained optimization algorithm is employed to deter-
mine the minimum state trajectory θ as function of f (a) of the range ±a of output
membership function in corrective control part. We use decrease ratio and increase
ratio as 0.8 and 1.25 respectively. IAF and ITAF are defined as follows:

IAF : minimize f (a) =
∫ ∞

0
|θ(a)|dθ (38)

ITAF : minimize f (a) =
∫ ∞

0
t|θ(a)|dθ (39)

IAF accounts mainly for state at the beginning of the response and to a lesser degree
for the steady state duration. ITAF keeps account of state at the beginning but also
emphasizes the steady state. Due to this tuning method, response time is significantly
reduced with non oscillatory behavior.

4.2 Adaptive Learning Rate

A simple feed-forward NN has a single output with nonlinear activation function for
neurons. The network is parameterized in terms of its weights which is represented as
a weight vectorW ∈ �m. For a specific function approximation problem, the training
data consists of N patterns, {xp, yp}.
Let us consider a specific pattern p for the input vector is xp, then the network output
is given as,

yp = f (W , xp) (40)

In this work, usual quadratic cost function seen in Eq. (24), which is minimized to
train the weight vector W = {ω, ϑ} is mentioned in Eqs. (25) and (26).
We consider a Lyapunov function candidate as

V = 1

2
(ỹT , ỹ) (41)

where, ỹ = [y1d − y1, . . . , yp
d − yp, . . . , yN

d − yN ]T

it’s time derivative is given as

V̇ = −ỹT ∂y

∂W
Ẇ = −ỹT J Ẇ (42)

where, J = ∂y/∂W ∈ �N×m
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In back propagation algorithm, weights are updated as follows

W(t + 1) = W(t) + α

(
∂E

∂W

)
(43)

Here, α is the fixed learning rate, which is replaced by its adaptive version αa is given
by

αa =
(

μ
‖ỹ‖2

‖JT
p ỹ‖2

)
(44)

In earliest stage, there have been more contribution concerning the adaptive learning
rate and it is the most remarkable factor for determination purpose. However, the
computation of adaptive learning rate using the Lyapunov function approach is the
key part in neural network based control.

5 Stability Analysis

Lyapunov stability analysis is the most popular approach to prove and to evaluate
the stable convergence property of proposed control algorithm as ANFSMC. Here,
direct Lyapunov stability approach is employed to investigate the stability property
of the proposed controller and to derive the adaptive robust control.

Theorem 2 Let the underwater vehicle represented by Eqs. (5)–(7) in vertical plane.
Then subject to required assumptions in diving motion is considered, the proposed
controller is combination of corrective control defined by Eq. (12) and equivalent
control as in Eq. (23) ensures the convergence of state to the sliding surface S and
having desired trajectory tracking response.

Proof Let a Lyapunov function VL be defined as

VL = 1

2
S2 (45)

The time derivative of Lyapunov function is,

V̇L = SṠ (46)

V̇L = S
[
Kp(ż − żd) + Kiθ̇ + Kdq̇

]
(47)

V̇L = S

[
Kp(−u0 sin θ) + Kiq + Kd

mq
(ΦTΘ) + KdFqu2

0δq

mq
− Kpżd

]
(48)
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Here, control input to the underwater vehicle is u = δq as an ANFSMC control signal,

V̇L = S
[
f (z, θ, q) + D(t) + B0u − Kpżd

]
(49)

V̇L = S
[
f (z, θ, q) + D(t) + B0(ûeq + ufe) − Kpżd

]
(50)

V̇L = S
[
f (z, θ, q, D) + B0((Kpżd − f̂ (z, θ, q))B−1

0 + ufe) − Kpżd

]
(51)

V̇L = S
[
B0ufe + D(t)

] = S
[
B0Kf fuzz(S) + D(t)

]
(52)

V̇L ≤ − [
B0Kf − D(t)

] |S| (53)

V̇L ≤ −‖S‖ [‖B0‖‖Kf ‖ − ‖D(t)‖
]

(54)

From the above analysis, the global asymptotic stability is guaranteed since the
derivative of the Lyapunov function is a negative definite V̇L = SṠ < 0.

6 Simulation Results

In order to demonstrate the effectiveness and robustness of the proposed ANFSMC
approach for diving motion control of AUV has been simulated using MATLAB/
Simulink. The main focus of this work is to design adaptive diving autopilot for
nonlinear depth dynamics control of AUV. In this case, the diving equation of an
AUV can be expressed as

ż = −u0 sin θ (55)

θ̇ = q (56)

q̇ = 1

Iy − CMq̇

(
BzCB sin θ + CMq u0q + u2

0CMδq
δq

)
(57)

The parameter values are given as follows:
Length of AUV = 1.8 m
Weight of AUV = m ∗ g = 53 ∗ 9.81 = 519.93 kg.m/s2

Density of sea water = ρ = 1025 kg/m3

Forward Speed= u0 = 1.5 m/s
Vehicle’s mass moment of inertia= Iy = 9.921 kg.m2

Vertical distance between center of gravity and center of buoyancy
BzCB = −(zg − zb) ∗ W = −3.5942
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Non-dimensional hydrodynamic coefficient expressed in body frame B
Mq = −0.000641877
Mq̇ = −0.00190690
Mδs = −0.00786620

Non-dimensional hydrodynamic coefficient = C(.)

CMq = 0.5ρMqL4 = −34.5331
CMq̇ = 0.5ρMq̇L5 = −18.4665
CMδs

= 0.5ρMδs L
5 = −23.5113

The performance of the traditional FSMC and ANFSMC has been compared in
terms of the set point control, sinusoidal trajectory tracking control, phase portrait and
control signal.Moreover, suppose theAUVhas somedisturbance effect, then tracking
capabilities among these controller are also compared for analysis purpose. In order
to evaluate the control system performance, three different numerical simulations
were performed. In first stage, constant input signal applied to underwater robot,
afterwards sinusoidal trajectory tracking of AUVwas carried out through simulation
and in last simulation disturbance and uncertainties are included in operation of
undersea robot.

6.1 Set Point Control

In set point control, the initial conditions of the AUV in diving motion behavior are
considered as {q0, θ0, z0}. The simulation response of three parameter with control
signal in vertical plane are shown in Fig. 5, which demonstrates that the ANFSMC
provides the shortest reaching time, no overshoot and smooth tracking response.
The developed control algorithm employed for regulating diving motion behavior
based on combined control action of fuzzy logic control as corrective control and
NN control as equivalent control. In this controller design, output fuzzy variable
was tuned using multi variable unconstrained optimization method, while learning
rate of NN was adopted using Lyapunov function. The weights of NN adapted using
back propagation algorithm and adaptive PID sliding surface, while output scaling
factor of fuzzy logic control was determined with the help of non fuzzy adaptation
technique.

6.2 Sinusoidal Trajectory Tracking Control

In second stage of simulation, sinusoidal reference signal zd = 2 sin(π t) applied to
diving model of AUV gives corresponding results of tracking as seen in Fig. 6, with
considering that the initial state coincides with the initial desired state. As observed
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Fig. 5 Set point tracking response of AUV in diving motion behavior

Fig. 6 Sinusoidal trajectory tracking response of AUV

in sine wave trajectory tracking, ANFSMC is able to provide trajectory tracking with
a small associated error and no chattering at all. It can be also verified that proposed
method provides a minimum tracking error, when compared with the traditional
FSMC. Despite the external disturbance forces and parameter variation with respect
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Fig. 7 Sinusoidal trajectory tracking response under the influence of disturbance effect and para-
meter variation

to diving model parameters, the ANFSMC allows the underwater robotic vehicle
to track the desired trajectory with a less tracking error and undesirable chattering
effect was not observed in Fig. 7, the disturbance signal employed in simulation as
d(t) = 0.5 sin(π t)
As observed phase portrait in Fig. 8, reaching time of proposed control algorithmwas
better than other control technique such as FSMC, without any chattering effect. Due
to the adaptation scheme employed in NN module and fuzzy logic control, reaching
time get significantly reduced with smoother response.

As performance measure for a quantitative comparison, we use integral square of
error (ISE) and integral absolute of error (IAE) which are defined as

ISE =
∫ t

0
e2 · dt (58)

IAE =
∫ t

0
|e| · dt (59)

In performance comparison, three conditions are considered as set point tracking
and disturbance rejection as shown in Figs. 9 and 10, respectively. Here, a piecewise
constant reference positions were employed, which reports that ANFSMC gives
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Fig. 8 Phase portrait of AUV in vertical plane

Fig. 9 Response of AUV under set point variation
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Fig. 10 Response of AUV under influence of sampled gaussian noise

better performance than traditional FSMC, due to the adaptation of corrective and
equivalent control by selecting parameters like PID sliding surface, output scaling
factor, width of output fuzzy variable and learning rate of NNmodule. In disturbance
rejection condition, effect of sampled gaussian noise is less as compared with FSMC
on depth parameter regulation by ANFSMC. Time integral performance indices are
used such as ISE and IAE for comparison between the controllers. The smaller value
of performance measures shows that good controller performance characteristics.
It is observed that, ISE and IAE values for above mentioned conditions are consider-
ably reduced inmagnitude than other techniques dealt within this chapter. The values
of different errors for various control strategies and under the influences of different
conditions are tabulated in Table 2.

The proposed controller is more robust in sense that, under the conditions of set
point variation, sinusoidal trajectory tracking, parameter variation and disturbance
effects leads to small tracking error and minimum settling time in output response.
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Table 2 Performance comparison of controllers

Case(I): Set point tracking

ISE IAE

Depth (m) FSMC EDFSMC FSMC EDFSMC

2 0.5243 0.3425 3.248 1.541

5 0.4123 0.2513 2.832 1.216

Case(II): Under the influence of gaussian noise

ISE IAE

Depth (m) FSMC EDFSMC FSMC EDFSMC

5 3.878 1.985 5.875 3.752

7 Conclusion

In this work, we have presented an ANFSMC for diving motion behavior of AUV
in vertical plane. It basically consists of equivalent and corrective control, in which
fuzzy logic control is employed for approximating discontinuous control action,
while NN module is used to estimate equivalent control, because AUV’s parameters
are uncertain in nature. In the adaptation scheme, PID sliding surface coefficients,
width of output fuzzy variable, scaling factor, weights and learning rate of NN struc-
ture are adapted for improving response of depth parameters of AUV in vertical
plane. We found that the performance of the proposed ANFSMC is superior to that
of conventional FSMC. The attractive features of the controller are mentioned as
follows:

• The exact knowledge of AUV’s diving model and their parameter estimation of
upper bounds on uncertainties of the AUV are not required in autopilot design.
The necessary information to the design of the diving autopilot is the qualitative
knowledge of the system such as operating ranges and the form of its nominal
model.

• The fuzzy logic controller is designed to provide smooth control by approximating
switching control action.Theproblemof chattering effect in slidingmode approach
is effectively eliminated by given corrective control law

• In fuzzy inference engine, width of output fuzzy variable is tuned by multivari-
able unconstrained optimization method based on integral absolute function and
integral time absolute function for minimizing reaching time.

• In NNmodule, weights are updated using gradient descent method and their learn-
ing rate adopted by Lyapunov function based approach

It is significant to point out that proposed control algorithm assure its validity, effec-
tiveness and its superiority to the conventional FSMC method as demonstrated in
simulation results. Further research can be done on adaptation scheme to enhance the
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output response of AUV in vertical plane by using simplified adaptation algorithm
as genetic algorithm, modified particle swarm optimization and other bio-inspired
optimization algorithm.
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