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Abstract Power system requires high-performance control techniques due to their
elevated complexity, high nonlinearity and almost continuously time-varying nature.
Also, power systems are often subjected to small and large disturbances. To enhance
the multimachine power system stability, a new approach to designing decentral-
ized nonlinear control scheme is proposed. The approach seeks first build a novel
mathematical model of multimachine power systems. The main characteristic of this
model is that interactions between generators and changes in operating conditions
are represented by time-varying parameters. More important, those parameters are
update online, using only local measurements. Second, it develops a decentralized
controller for the transient stabilization and voltage regulation. The controller con-
sists of two controllers, known as the terminal voltage regulator and rotor speed
stabilizer. The methodology adopted is based on backstepping design strategy. The
proposed stabilizing feedback laws for the power system are shown to be globally
asymptotically stable in the context of Lyapunov theory. Case studies are achieved
in a two-area four machine power system to verify the effectiveness of the approach.
Numerical results are presented to illustrate the usefulness and the performance of
the proposed control scheme, under different contingencies.
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1 Introduction

Modern Electrical Power Systems (EPS) are increasingly operated closer to their
transfer power and stability limits. The control systems, accordingly, will have to
regulate the system, to improve its global stability including inter-area transfer capa-
bility and dynamic performance under a diversity of operating conditions. Tradi-
tionally, conventional controllers such as the Automatic Voltage Regulator (AVR),
the Power System Stabiliser (PSS) and Speed Governor (SG), are mainly designed
by using linear models of the power systems [16]. Those linear controllers, based
mainly on classical control algorithms, can be used to insure asymptotic stability of
the equilibrium following a small perturbation. Unfortunately, in the event of a large
disturbance, the operating point of the system may vary significantly and a linear
controller may not be able to guarantee asymptotic stability.

Therefore, the high complexity and nonlinearity of power systems together with
their almost continuously time varying nature require candidate controllers to be able
to take into account the important non linearities of the power system model and to
be independent of the equilibrium point [16]. To meet this challenge, a lot of interest
has been considered in the application of the nonlinear control theory for the control
of power systems and consequently to enhance the power systems stability. Most of
these controllers are based on feedback linearization [8, 34], Hamiltonian techniques
[35, 37], sliding-mode control [4, 5, 9, 11, 17, 24, 25] have been successfully
applied to improve the transient stability. New approaches have been proposed for
power stability designs according to other sophisticated schemes such as fuzzy logic
control [1, 6, 19], adaptive control [7, 10, 12, 13, 29, 36], and neurocontrol [18, 26,
32]. Combinations of the above techniques are also proposed in order to exploit the
advantages of each method at the cost of the increase in complexity [2, 28, 33].

The backstepping is one of the most important techniques, which provides a pow-
erful design tool to solve many design problems under restrictive conditions than
those encountered in the other methods [15, 27]. Further, the adaptive backstepping
approach is capable of guaranteeing almost all robustness properties of the mis-
matched uncertainties [30, 31]. This technique has been successfully applied for
power system in [14, 22, 23].

Generally, the design of the controllers, for power system, is based on two main
modeling approaches:

• The Single-Machine, Infinite-Bus (SMIB) approach is simple but it does not take
into account dynamic phenomena in the rest of the electrical network. Therefore,
controllers may not perform well when inter-area oscillations occur.

• The Multimachine Power System (MPS) approach is based on the global
N-generator modeling [9, 34]. The controllers based on this model dampen inter-
machine and inter-area oscillations very well.
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A new approach for modelling the EPS combines the advantages of both previous
modelling approaches [20, 21]. The approach consists of partitioning the power sys-
tem into the generator to be controlled and the rest of the network viewed as dynamic
load. The time-varying parameters of the resulting model encapsulate operating-
condition variations and interactions between generators. Nevertheless, wide area
control laws are derived from a reformulation of the multimachine model, gener-
ator terminal voltages are used as state variables instead of internal field voltages,
through complex transformations. In addition, time varying parameters of the model
are unknown and must be estimated online by an adaptation process.

The main aim of this study is the design of controllers to guarantee the voltage
regulation and enhance transient stability for multimachine power systems. These
controllers are proposed to replace the traditional speed governor (SG), automatic
voltage regulator (AVR) plus the power system stabilizer control structure (PSS). To
this end, a novel modelling of multimachine power system is proposed. Contrary to
the model proposed in Okou et al. [20, 21] which is based on a third order simplified
model, in the resulting modelling, the model of synchronous machine is based on a
seventh order model which takes into account both field effects and damper winding
effects introduced by different rotor circuits. In addition, time varying parameters
of the model, which depend on the steady-state active and reactive power delivered
by each generator, and the interactions between generators, are update continuously
online.

Furthermore, a backstepping control system is designed to control the rotor speed
and terminal voltage, simultaneously, in order to enhance the transient stability and
ensure good post-fault voltage regulation for power system. The theoretical bases of
the proposed control technique are derived in detail where the feedback system is
shown to be globally asymptotically stable in the sense of the Lyapunov’s stability
theory.

Finally, the decentralized proposed controller requires only local measurement,
which owns highly desirable advantages in cost, reliability and can be easily imple-
mented.

The rest of this chapter is organized as follows. In Sect. 2, a new dynamic math-
ematical model of a multimachine power system is developed. Section3 is devoted
to a design of a backstepping control for the multimachine power system to ensure
the voltage regulation and enhance the transient stability of the system. The stabil-
ity of this controller is proven. In Sect. 4, simulation results are given to validate
the proposed model and illustrate the performance of the proposed scheme. Also,
the performances of the developed controller are compared to the performance of a
standard AVR/PSS and SG. Conclusions are finally made in Sect. 5.
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2 New Dynamic Power System Model

2.1 Mathematical Model of Synchronous Generator

The synchronous generator is described by a 7th order nonlinear mathematical model
which comprises three stator windings, one field winding and two damper windings.
The model takes into account both field effects and damper windings effects intro-
duced by the different rotor circuits. The synchronous machine equations in terms
of Park’s d-q axis are expressed as follows [3, 16]

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

vd = −Rsid + Lqωiq − Lmqωikq − Ld
did
dt + Lmd

(
di f d

dt + dikd
dt

)

vq = −Rsiq + −Ldωid + Lmdω(i f d + ikd) − Lq
diq

dt + Lmq
dikq

dt

v f d = Rsi f d − Lmd
did
dt + L f d

di f d

dt + Lmd
dikd
dt

0 = Rkdikd − Lmd
did
dt + Lmd

di f d

dt + Lkd
dikd
dt

0 = Rkqikq − Lmq
did
dt + Lkq

dikq

dt

(1)

where vd and vq are direct and quadrature axis stator terminal voltage compo-
nents, respectively; vfd excitation control input; vt terminal voltage; id , iq direct
and quadrature axis stator current components, respectively; ifd field winding cur-
rent; ikd , ikq direct and quadrature axis damper winding current components, respec-
tively; Rs stator resistance; Rfd field resistance; Rkd , Rkq damperwinding resistances;
Ld , Lq direct and quadrature self inductances, respectively; Lfd rotor self induc-
tance; Lkd , Lkq direct and quadrature damper winding self inductances, respectively;
Lmd , Lmq direct and quadrature magnetizing inductances, respectively.

Mechanical equations are as follows

2H
dω

dt
= Tm − Te − Dω (2)

dδ

dt
= ω − 1 (3)

whereω is angular speed of the generator; δ rotor angle of the generator; Tm mechan-
ical torque, Te electromagnetic torque; D damping constant; H inertia constant.

The electromagnetic torque is

Te = (
Lq − Ld

)
id iq + Lm f d ifdiq + Lmdikd iq − Lmqid ikq (4)

The steam turbine dynamics and valve are represented by the following equations [8].

{ d Pm
dt = − 1

Tt
Pm + Km

Tt
Xe

d Xe
dt = − 1

Tg
Xe + Kg

Tg

(
ug − 1

RωR
ω

) (5)
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where Xe is the steam valve opening of the system; ug the input power of control
system; Tt the time constant of the turbine; Kt the gain of the turbine; R the regulation
constant of the system; Tg the time constant of the speed governor; Kg the gain of
the speed governor and ωR is the power system frequency.

2.2 Mathematical Model of the Rest of the Network

The modelling of the rest of network is made by using the concept introduced in
[20]. In this approach, each generator views the rest of the grid as a dynamic load.
This load is represented by an instantaneous effective impedance and is given by the
following equation in per-unit

v(t) = RL(t)i(t) + X L(t)
di(t)

dt
(6)

where v and i are the generator’s instantaneous terminal voltage and stator cur-
rent, respectively. The time dependent parameters RL(t) and X L(t) summarize the
dynamic exchange of active and reactive powers, respectively.

In the d-q reference frame, after applying a Park transformation, we obtain

{
vd = RL(t)id − X L(t)ωiq + X L(t) did

dt

vq = RL(t)iq + X L(t)ωid + X L(t) diq

dt

(7)

2.3 New Dynamic Mathematical Model of Multimachine
Power System

The mathematical model is obtained by combining equations of the synchronous
generator (1) with equation of the rest of the network (7). After some lengthy but
straightforward algebraic manipulations, the resulting model has the following form

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

did
dt = h11(t)id + h12(t)ifd + h13(t)ωiq + h14(t)ikd + h15(t)ikqω + g1(t)ufd
difd
dt = h21(t)id + h22(t)ifd + h23(t)ωiq + h24(t)ikd + h25(t)ikqω + g2(t)ufd

diq
dt = h31(t)idω + h32(t)ifdω + h33(t)iq + h34(t)ikdω + h35(t)ikq
dikd
dt = h41(t)id + h42(t)ifd + h43(t)iqω + h44(t)ikd + h45(t)ikqω + g3(t)ufd

dikq
dt = h51(t)idω + h52(t)ifdω + h53(t)iq + h54(t)ikdω + h55(t)ikq

dω
dt = h61(t)ω + h62(t)

Pm
ω − h62(t)Te

(8)

The time-varying parameters hi j (t) and gi (t) depend on R(t) and X (t) and hence on
the operating conditions of the power system. Their expressions are given as follow
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h11(t) = −(Rs + RL (t))(Lfd Lkd − L2
md )ωR D−1

d h12(t) = −Rfd(Lmq Lkd − L2
md )ωR D−1

d
h13(t) = (Lq + X L (t))(Lmd Lkd − L2

md )ωR D−1
d h14(t) = Rkd ((Ld + X L (t))Lmd − L2

md )ωR D−1
d

h15(t) = −Lmq (Lfd Lkd − L2
md )ωR D−1

d

h21(t) = −(Rs + RL (t))(Lmd Lkd − L2
md )ωR D−1

d h22(t) = −Rfd((Ld + X L (t))Lkd − L2
md )ωR D−1

d
h23(t) = (Lq + X L (t))(Lmd Lkd − L2

md )ωR D−1
d h24(t) = Rkd ((Ld + X L (t))Lmd − L2

md )ωR D−1
d

h25(t) = −Lmq (Lmd Lkd − L2
md )ωR D−1

d

h31(t) = (Ld + X L (t))LkqωR D−1
q h32(t) = Lmd .LkqωR D−1

q
h33(t) = −(Rs + RL (t))LkqωR D−1

q h34(t) = Lmd LkqωR D−1
q

h35(t) = −Lmq .RkqωR D−1
q

h41(t) = −(Rs + RL (t))(Lfd Lmd − L2
md )ωR D−1

d h42(t) = Rfd((Ld + X L (t))Lmd − L2
md )ωR D−1

d
h43(t) = (Lq + X L (t))(Lmd Ld − L2

md )ωR D−1
d h44(t) = −Rkd ((Ld + X L (t))Lfd − L2

md )ωR D−1
d

h45(t) = −Lmd (Lmq .Lfd − L2
md )ωR D−1

d

h51(t) = −(Ld + X L (t))LmqωR D−1
q h52(t) = Lmd LmqωR D−1

q
h53(t) = −(Rs + RL (t))LmqωR D−1

q h54(t) = Lmd LmqωR D−1
q

h55(t) = −Rkq (Lq + X L (t))ωR D−1
q

h61(t) = 1/2H h62(t) = −D/2H

g1(t) = (Lmd Lkd − L2
md )ωR D−1

d g2(t) = ((Ld + Lfd)Lkd − L2
md )ωR D−1

d
g3(t) = ((Ld + X L (t))Lmd − L2

md )ωR D−1
d

These parameters encapsulate the interactions between the generator to be controlled
and the rest of the grid.

In order to reduce the controller complexity and hence to increase its reliability, we
consider the two-axis model assumption, by neglecting the stator current dynamics.
Hence, equations (7) have the following form

(
vd

vq

)

=
(

RL(t) −X L(t)ω
X L(t)ω RL(t)

) (
id

iq

)

(9)

Therefore, the expressions of RL(t) and X L(t) in terms of the d-q axis voltage and
current are derived of the forms

⎧
⎨

⎩

RL(t) = vd id+vq iq

i2d +i2q

X L(t) = 1
ω

vq id−vd iq

i2d +i2q

(10)

From (10), it is evident that, RL(t) and X L(t) are proportional to, respectively, the
active and reactive power delivered by the generator and give information about the
operating conditions of the rest of the grid. More important, they are update online
using only local measurement.

The terminal voltage is defined by

vt =
√

v2d + v2q (11)
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The expressions of vd and vq as a function of the state variables can be expressed,
by combining Eqs. (1) and (7), as follow

{
vd = ∂11(t)id + ∂12ifd + ∂13ωiq + ∂14ikd + ∂15ikqω + ∂16(t)ufd

vq = ∂21(t)idω + ∂22(t)ifdω + ∂23(t)iq + ∂24(t)ikdω + ∂25(t)ikq
(12)

where the time-varying parameters ∂i j depend on hi j (t) and gi (t) and hence on the
operating conditions of the power system. Their expressions are given as follows

∂11(t) = RL + h11(t)X L(t)ω−1
R ∂12(t) = h12(t)X L(t)ω−1

R

∂13(t) = X L(t)(h13(t)ω
−1
R − 1) ∂14(t) = h14(t)X L(t)ω−1

R

∂15(t) = h15(t)X L(t)ω−1
R ∂16(t) = g1(t)X L(t)ω−1

R

∂21(t) = X L(t) + h31(t)X L(t)ω−1
R ∂22(t) = h32(t)X L(t)ω−1

R

∂23(t) = h33(t)X L(t)ω−1
R + RL(t) ∂24(t) = h34(t)X L(t)ω−1

R

∂25(t) = h35(t)X L(t)ω−1
R

Then, combining Eqs. (8), (11) and (12) with mechanical equation (2), and the equa-
tions of the turbine (5), we can formulate the new mathematical model of the power
system in the following nonlinear state-space form

dvt

dt
= ∂16(t)

vd

vt

dufd

dt
+ g3(t)∂14(t)

vd

vt
ufd + f (t) (13)

dω

dt
= h61(t)ω + h62(t)

Pm

ω
− h62(t)Te (14)

d Pm

dt
= h81(t)Pm + h82(t)Xe (15)

d Xe

dt
= h91(t)Xe + h92(t)ω + g4(t)ug (16)

where

f (t) = vd

vt

[

∂11(t)
did
dt

+ ∂12(t)
difd
dt

+ ∂13(t)

(

ω
diq
dt

+ iq
dω

dt

)]

+
vd

vt
∂15(t)

[

ω
dikq

dt
+ ikq

dω

dt

]

+ ∂14(t)
vd

vt

[
h41(t)id + h42(t)ifd + h43(t)iqω + h44(t)ikd+h45(t)ikqω

] + vq

vt

dvq

dt

h81(t) = −(Tm)−1 h82(t) = Km(Tm)−1

h91(t) = −(Tg)
−1 h92(t) = −Kg(Tg RωR)−1

g4(t) = Kg(Tg)
−1
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3 Backstepping Terminal Voltage and Rotor Speed
Controllers Design

The control objectives are the terminal voltage magnitude vt regulation and rotor
speed ω stability enhancement. The form of the nonlinear system, described by
(13)–(16), allows the use of the recursive backstepping procedure for the controller
design. The basic idea of backstepping design is to select recursively some appro-
priate functions of state variables as pseudo-control inputs for lower dimension sub-
systems of the overall system. Each backstepping stage results in a new pseudocon-
trol design, expressed in terms of the pseudocontrol designs from preceding design
stages. When the procedure terminates, a feedback design for the true control input
results which achieves the original design objective by virtue of a final Lyapunov
function, which is formed by summing up the Lyapunov functions associated with
each individual design stage [15]. In the rest of this section, this idea is adopted to
design a nonlinear controller for terminal voltage and rotor speed tracking of the
power system.

3.1 Backstepping Control Design

To satisfy the first control objective, the terminal voltage control error is defined as

z1 = vt − vre f
t (17)

where vre f
t is the desired trajectory. The time derivative of the z1 , using (13), is

dz1
dt

= ∂16
vd

vt

dufd

dt
+ g3∂14

vd

vt
ufd + f (t) (18)

The design procedure starts by defining the following Lyapunov-like function:

V1 = 1

2
z21 (19)

Its time derivative can be written as

dV1

dt
=

[

∂16
vd

vt

dufd

dt
+ g3∂14

vd

vt
ufd + f (t)

]

z1 (20)

To ensure the global asymptotic stability, we impose

dV1

dt
= −K1z21 (21)
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where K1 is a positive constant feedback gain. Then (20) can be rewritten as

dV1

dt
= −K1z21 +

[

K1z1 + ∂16
vd

vt

dufd

dt
+ g3∂14

vd

vt
ufd + f (t)

]

z1 (22)

From the above expression, we can define the following control function

dufd

dt
= − vt

∂16vd

[

K1z1 + g3∂14
vd

vt
ufd + f (t)

]

(23)

The second control objective is to keep the rotor speed tracks the desired trajectory
ωre f = 1 p.u.

Step 1: To reach the control objective, the rotor speed error is defined as

z2 = ω − ωre f (24)

From (14), the derivative of the rotor speed error is given as

dz2
dt

= h61ω + h62
Pm

ω
− h62Te (25)

Consider the second Lyapunov function

V2 = z21
2

+ z22
2

(26)

Using (21) and (25), the derivative of (26) can be derived as follows

dV2

dt
= −K1z21 +

(

h61ω + h62
Pm

ω
− h62Te

)

z2 (27)

The Pm can be viewed as a virtual control in the above equation. Define the following
stabilizing function

α1 = ω

h62
(h62Te − h61ω − K2z2) (28)

where K2 is a positive constant feedback gain. Since the mechanical power Pm is not
our control input, we define

z3 = Pm − α1 (29)

which is the stabilizing error between Pm and its desired trajectory α1. When a
fault occurs, large currents and torque are produced. This electrical perturbation may
destabilize the operating conditions. Hence, it becomes necessary to account for
these uncertainties by designing a higher performance controller.

In (28), as electromagnetic load Te is unknown, when fault occurs, it has to be
estimated adaptively. Thus, let us define
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α̂1 = ω

h62

(
h62T̂e − h61ω − K2z2

)
(30)

where
∧
Te is the estimated value of the electromagnetic load. Thus from (25), (29)

and (30), the following rotor speed error dynamics is obtained

dz2
dt

= −K2z2 + h62
z3
ω

− h62

∼
Te (31)

where
∼
Te = Te − ∧

Te.

Step 2: To stabilize themechanical power Pm , one defines the following derivative
of z3 using (15), (29) and (30) as

dz3
dt

= h81Pm + h82Xe − dα̂1

dt
(32)

Now, we can define a new Lyapunov function including the mechanical power error
variable z3 as

V3 = 1

2
z21 + 1

2
z22 + 1

2
z23 + 1

2μ
T̃ 2

e (33)

where μ is a positive adaptive gain. Its derivative, using (21), (31) and (32), is given
as follows

V̇3 = −K1z21 − K2z22 − K3z23 + T̃e

(
1
μ

˙̃Te − h62z2
)

+
(

h81Pm + h82Xe − dα̂1
dt + h62

z2
ω

+ K3z3
)

z3
(34)

Similarly, if we consider Xe as a second virtual control, one easily obtains the fol-
lowing stabilizing function

α2 = 1

h82

(
dα̂1

dt
− K3z3 − h62

z2
ω

− h81Pm

)

(35)

where K3 is a positive constant feedback gain. And the following update law can be
derived as ˙̃Te = μh62z2 (36)

Step 3: Define the steam valve opening error as

z4 = Xe − α2 (37)

Its derivative along the trajectory, using (16), is

dz4
dt

= h91Xe + h92ω + g4ug − dα2

dt
(38)
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By substituting (37) into (32), one can get

dz3
dt

= h82z4 − K3z3 − h62
z2
ω

(39)

Finally, let us define a Lyapunov function for the closed-loop system as follows

V4 = V3 + 1

2
z24 = 1

2
z21 + 1

2
z22 + 1

2
z23 + 1

2μ
T̃ 2

e + 1

2
z24 (40)

By differentiating the Lyapunov function V4 in (40) one obtains

V̇4 = −K1z21 − K2z22 − K3z23 + z4
(
h82z3 + h91Xe + h92ω + g4ug − α̇2

)
(41)

From (41), a backstepping control law is designed as follows

ug(t) = 1

g4

(
dα2

dt
− K4z4 − h82z3 − h91Xe − h92ω

)

(42)

where K4 is a positive constant feedback gain.
By substituting (42) into (41), one can get

V̇4 = −K1z21 − K2z22 − K3z23 − K4z24 ≤ 0 (43)

3.2 Stability Analysis

Theorem The globally asymptotic stability of the system defined by (13)–(16), is
guaranteed, if the control laws and the adaptive control are given by (23), (42) and
(36), respectively.

Proof The system error dynamics of the resulting closed loop adaptive system can
be written as

dz1
dt = −K1z1

dz2
dt = −K2z2 + h62

z3
ω

− h62

∼
Te

dz3
dt = h82z4 − K3z3 − h62

z2
ω

dz4
dt = −K4z4 − h82z3

dT̃e
dt = h62μz2

(44)

This system has an equilibrium at z1 = z2 = z3 = z4 = 0.

It is then clear that a Lyapunov function (40) for the system defined by (13)–(16),
the control laws (23), (42) and the adaptive law (36) make it derivative negative
semi-definite. So, define the following equation
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W (t) = K1z21 + K2z22 + K3z23 + K4z24 ≥ 0

Using Lasalle–Yoshizawa’s principle [15], it can be shown that W (t) tend to zero as
t → ∞. Therefore, the tracking errors which include terminal voltage, rotor speed,
mechanical power and steam valve opening will converge to zero asymptotically as
t → ∞.

4 Validation and Discussion

The developed dynamic model and control strategy were tested on the two-area four-
machine interconnected power system [16] whose schematic is shown in Fig. 1. At
the steady state of the full load case, about 700 MW power is generated from each of
the generators. The loads on buses LD7 and LD9 are 967 and 1767MW, respectively.
About 400MWpower is transferred fromarea 1 to area 2 through the parallel tie lines.
The numerical values of the studied system parameters are presented in the Tables1,
2 and 3. The Matlab/Simulink software is used for the time-domain simulations.
Nonlinearities were taken into account incorporating both exciter ceilings, control
signal limiters and rate of opening and closing in the turbine valve.

Figure2 shows the decentralized control system configuration of the multima-
chine power system. In order to prove the usefulness and supremacy robustness of
the proposed modelling and controllers, the results are compared with those of the
conventional AVR + PSS and SG. Simulation studies are carried out for the power
system under different contingencies.

Fig. 1 Single-line diagram of the two-area four-machine power system
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Table 1 Parameters of the power synchronous generator (# 1) in p.u.

Parameter Value

Sbase 900 MVA

Rs , stator resistance 1.096 × 10−3

Rfd, field resistance 7.42 × 10−4

Rkd , direct damper winding resistance 13.1 × 10−3

Rkq , quadrature damper winding resistance 54 × 10−3

Ld , direct self-inductance 1.700

Lq quadrature self-inductances 1.640

Lfd, rotor self inductance 1.650

Lkd ,direct damper winding self inductance 1.605

Lkq , quadrature damper winding self
inductance

1.526

Lmd , direct magnetizing inductance 1.550

Lmq , quadrature magnetizing inductance 1.490

V ∝, infinite bus voltage 1

D,damping constant 0

H , inertia constant 2.37 s

Table 2 Parameters of the power synchronous generators (# 2, 3, 4) in p.u.

Parameter Value

Sbase 900 MVA

xl leakage reactance 0.2 p.u.

ra resistance 0.0025 p.u.

xd d-axis synchronous reactance 1.8 p.u.

x ′
d d-axis synchronous transient reactance 0.25 p.u.

T ′
d0 d-axis open circuit time constant 8 s

xq q-axis synchronous reactance 1.7 p.u.

x ′
q q-axis synchronous transient reactance 0.25 p.u.

T ′
q0 q-axis open circuit time constant 0.4 s

H inertia constant 6.5 s

4.1 Effect of Severe Disturbance on the Dynamic
Performance of the System

A symmetric three-phase short circuit fault occurs at location F (in the middle of the
transmission line between bus B7 and bus B9), see Fig. 1, at 3 s. The transmission
line subject to a fault is cut off at 3.1 s. The original system is restored after the
fault clearance. Figure3 illustrates terminal voltage and rotor speed. According to
this figure, the trajectories command can be well tracked and the tracking error
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Table 3 Parameters of the steam turbine and speed governor

Parameter Value

Tt , time constant of the turbine 0.35 s

Kt , gain of the turbine 1

R regulation constant of the system 0.05

Tg , time constant of the speed governor 0.2 s

Kg , gain of the speed governor 1

Fig. 2 Decentralized control system configuration

converged to zero. The electrical power of controlled generator and tie-line power
flow are shown in Fig. 4. It is seen how dynamics of the terminal voltage, rotor speed
and electrical power exhibit large overshoots during post fault state before they settle
to their steady state values with the standard controllers (AVR + PSS + SG) rather
than with the nonlinear decentralized scheme. It is quite evident that the developed
decentralized controller achieves very good voltage regulation and transient stability.

Also, Fig. 5 shows the variations of the inter-area and local mode of oscillation.
From these figures, it can be seen that, the inter-area modes of oscillations are very
quickly damped out with the application of the proposed controller. Further, the
proposed approach is also effective in suppressing the local mode of oscillations.
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Fig. 3 Dynamic performance tracking of generator G1, following temporary three-phase short
circuit fault. Solid proposed nonlinear control scheme; dot conventional controllers

4.2 Effect of Small Disturbance on the Dynamic
Performance of the System

In any power system, the operating load varies over a wide range. It is extremely
important to investigate the effect of variation of the loading condition on the
dynamic performance of the system. In order to examine the robustness of the
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Fig. 4 Tie-line power flow (a) and electrical power of generator G1 (b) following temporary three-
phase short circuit fault. Solid proposed nonlinear control scheme; dot conventional controllers

damping controllers to wide variation in the loading condition, the load at bus 7
(LD7 = 967MW) is disconnected at t = 5s for 100ms.

Figures6 and 7 show the tracking performance of the proposed controller. As it
can be seen, the state variables reach a steady state condition, exhibiting the stability
of the closed-loop system.
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Fig. 5 Local mode of oscillationω1-ω2 (a) and inter-area mode of oscillationω1-ω3 (b) following
temporary three-phase short circuit fault. Solid proposed nonlinear control scheme; dot conventional
controllers

Figure8 shows the variations of the inter-area and local mode of oscillation. It can
be seen that, the transient response of the classical controllers (PSS/AVR and SG) is
more oscillatory than the response given by the designed nonlinear controller. The
developed decentralized controller provides significantly better damping enhance-
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Fig. 6 Dynamic performance tracking of generator G1, following load variation Solid proposed
nonlinear control scheme; dot conventional controllers

ment in the power system oscillations. It is possible to observe that the overshoot
and settling time are reduced as well.

It is evident that the proposed controller is robust to this type of disturbance and
provides efficient damping to power system oscillations even under small distur-
bance.
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Fig. 7 Tie-line power flow (a) and electrical power of generator G1 (b) following load variation.
Solid proposed nonlinear control scheme; dot conventional controllers

4.3 Robustness to Parameters Uncertainties
and Modelling Errors

The variation of system parameters and model errors are considered for robustness
evaluation of the proposed controller. In fact, an accurate model of power system is
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Fig. 8 Local mode of oscillationω1-ω2 (a) and inter-area mode of oscillationω1-ω3 (b) following
load variation Solid proposed nonlinear control scheme; dot conventional controllers

not available. Therefore, it is required to investigate the robustness of the proposed
controller with system parameter variation and model errors.

A robustness test has been carried out by changing the controlled generator para-
meters from their nominal values. Two cases are examined in the following:
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Fig. 9 Terminal voltage (a) and Electrical power of generator G1 (b) under parameter variations

• Case 1: The parameters of the controlled generator have +25% perturbations of
the nominal values.

• Case 2: The parameters of the controlled generator have −25% perturbations of
the nominal values.

In addition to the abrupt and permanent variation of the power system parameters
a three-phase short-circuit is simulated at t = 4s. It can be seen in Figs. 9 and 10 that
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Fig. 10 Local mode of oscillation ω1-ω2 (a) and inter-area mode of oscillation ω1-ω3 (b) under
parameter variations

the proposed scheme can still provide consistent control performance even if system
parameters have changed and furthermore the controller is not sensitive to the model
errors.
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5 Conclusion

Anonlinear decentralized controller based on a new dynamicmodel of multimachine
power systems is developed. In our solution a nonlinear nine order model for syn-
chronous generator, driven by steam turbine and connected to EPS was used. This
novel model, with time-varying parameters representing intermachine interactions,
takes into account all interactions in EPS between the electrical and mechanical
dynamics and load constraints. The only local information is required; therefore, the
proposed control scheme can be implemented in a decentralized way.

The proposed nonlinear decentralized controllers, of terminal voltage and speed
rotor, are constructed using adaptive backstepping design. The feedback system is
globally asymptotically stable in the sense of Lyapunov method despite the nature
of the contingencies.

The designed nonlinear controller is tested through simulation under the most
important perturbations in the power systems: (a) load variation, (b) large fault (a
100ms short circuit) and (c) generator parameter variations.Digital simulation results
confirm that the developed decentralized control gains much priority over conven-
tional controllers (AVR/PSS and speed governor) in damping oscillation, improving
voltage regulation and enhancing transfer capability.
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