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Abstract In this work, we describe an eleven-term novel 4-D highly hyperchaotic
system with four quadratic nonlinearities. The phase portraits of the eleven-term
novel highly hyperchaotic system are depicted and the qualitative properties of the
novel highly hyperchaotic system are discussed. We shall show that the novel hyper-
chaotic system does not have any equilibrium point. Hence, the novel 4-D hyper-
chaotic system exhibits hidden attractors. The Lyapunov exponents of the novel
hyperchaotic system are obtained as L1 = 15.06593, L2 = 0.03551, L3 = 0 and
L4 = −42.42821. The Maximal Lyapunov Exponent (MLE) of the novel hyper-
chaotic system is found as L1 = 15.06593, which is large. Thus, the novel 4-D hyper-
chaotic system proposed in this work is highly hyperchaotic. Also, the Kaplan–Yorke
dimension of the novel hyperchaotic system is derived as DK Y = 3.3559. Since the
sum of the Lyapunov exponents is negative, the novel hyperchaotic system is dissi-
pative. Next, an adaptive controller is designed to globally stabilize the novel highly
hyperchaotic system with unknown parameters. Finally, an adaptive controller is
also designed to achieve global chaos synchronization of the identical novel highly
hyperchaotic systems with unknown parameters. MATLAB simulations are depicted
to illustrate all the main results derived in this work.

Keywords Chaos · Chaotic systems ·Hyperchaos ·Hyperchaotic systems ·Adap-
tive control · Chaos synchronization · Stability theory

1 Introduction

In the last few decades, Chaos theory has become a very important and active research
field, employing many applications in different disciplines like physics, chemistry,
biology, ecology, engineering and economics, among others.
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Some classical paradigms of 3-D chaotic systems in the literature are Lorenz
system [35], Rössler system [50], ACT system [1], Sprott systems [59], Chen system
[15], Lü system [36], Cai system [13], Tigan system [70], etc.

Many new chaotic systems have been discovered in the recent years such as
Zhou system [138], Zhu system [140], Li system [31], Wei–Yang system [131],
Sundarapandian systems [63, 67], Vaidyanathan systems [78, 80, 82–85, 89, 96,
106, 107, 109, 115, 117, 120, 123, 124, 126], Pehlivan system [40], Sampath system
[53], Pham system [43], etc.

The Lyapunov exponent is a measure of the divergence of phase points that are
initially very close and can be used to quantify chaotic systems. It is common to
refer to the largest Lyapunov exponent as the Maximal Lyapunov Exponent (MLE).
A positive maximal Lyapunov exponent and phase space compactness are usually
taken as defining conditions for a chaotic system.

A hyperchaotic system is defined as a chaotic system with at least two positive
Lyapunov exponents. Thus, the dynamics of a hyperchaotic system can expand in
several different directions simultaneously. Thus, the hyperchaotic systems have
more complex dynamical behaviour and they have miscellaneous applications in
engineering such as secure communications [18, 30, 133], cryptosystems [21, 48,
139], fuzzy logic [57, 136], electrical circuits [130, 134], etc.

The minimum dimension of an autonomous, continuous-time, hyperchaotic sys-
tem is four. The first 4-D hyperchaotic system was found by Rössler [51]. Many
hyperchaotic systems have been reported in the chaos literature such as hyperchaotic
Lorenz system [23], hyperchaotic Lü system [14], hyperchaotic Chen system [32],
hyperchaotic Wang system [129], hyperchaotic Vaidyanathan systems [52, 79, 87,
101, 105, 116, 118, 122, 125], hyperchaotic Pham system [42], etc.

Chaos theory and control systems have many important applications in science
and engineering [2, 9–12, 141]. Some commonly known applications are oscillators
[26, 58], chemical reactions [19, 41, 93, 94, 97, 99, 100, 104], biology [16, 28,
88, 90–92, 95, 98, 102, 103], ecology [20, 60], encryption [29, 137], cryptosystems
[49, 71], mechanical systems [4–8], secure communications [17, 38, 135], robotics
[37, 39, 127], cardiology [45, 132], intelligent control [3, 33], neural networks [22,
25, 34], memristors [44, 128], etc.

The control of a chaotic or hyperchaotic system aims to stabilize or regulate the
system with the help of a feedback control. There are many methods available for
controlling a chaotic system such as active control [61, 72, 73], adaptive control [62,
74, 81], sliding mode control [76, 77], backstepping control [119], etc.

The synchronization of chaotic systems aims to synchronize the states of master
and slave systems asymptotically with time. There are many methods available for
chaos synchronization such as active control [24, 54, 55, 110, 112], adaptive control
[56, 64–66, 75, 108, 111], sliding mode control [68, 86, 114, 121], backstepping
control [46, 47, 69, 113], etc.

This work is organized as follows. Section2 describes the dynamic equations
and phase portraits of the eleven-term novel 4-D hyperchaotic system. Section3
details the qualitative properties of the novel hyperchaotic system. In this section,
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we establish that the novel hyperchaotic system does not have any equilibrium point.
Thus, it follows that the novel hyperchaotic system exhibits hidden attractors.

The Lyapunov exponents of the novel hyperchaotic system are obtained as L1 =
15.06593, L2 = 0.03551, L3 = 0 and L4 = −42.42821, while the Kaplan–Yorke
dimension of the novel hyperchaotic system is obtained as DK Y = 3.3559. Since
the Maximal Lyapunov Exponent (MLE) of the novel hyperchaotic system is L1 =
15.06593, which is a large value, we conclude that the proposed novel hyperchaotic
system is highly hyperchaotic. A novel contribution of this research work is the
finding of a highly hyperchaotic 4-D system with hidden attractors.

In Sect. 4, we design an adaptive controller to globally stabilize the novel highly
hyperchaotic system with unknown parameters. In Sect. 5, an adaptive controller is
designed to achieve global chaos synchronization of the identical novel highly hyper-
chaotic systems with unknown parameters. MATLAB simulations have been shown
to illustrate all the main results derived in this research work. Section6 summarizes
the main results of this research work.

2 A Novel 4-D Hyperchaotic System

In this section, we describe an eleven-term novel hyperchaotic system, which is given
by the 4-D dynamics ⎧

⎪⎪⎨

⎪⎪⎩

ẋ1 = a(x2 − x1) + x2x3 + x4
ẋ2 = −cx1x3 + 3x2 + px2

3
ẋ3 = x1x2 − b
ẋ4 = −q(x1 + x2)

(1)

where x1, x2, x3, x4 are the states and a, b, c, p, q are constant positive parameters.
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Fig. 1 3-D projection of the novel highly hyperchaotic system on the (x1, x2, x3) space
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Fig. 2 3-D projection of the novel highly hyperchaotic system on the (x1, x2, x4) space
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Fig. 3 3-D projection of the novel highly hyperchaotic system on the (x1, x3, x4) space

The system (1) exhibits a strange hyperchaotic attractor for the parameter values

a = 62, b = 36, c = 160, p = 0.5, q = 2.8 (2)

For numerical simulations, we take the initial conditions as

x1(0) = 0.2, x2(0) = 0.8, x3(0) = 0.6, x4(0) = 0.4 (3)
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Fig. 4 3-D projection of the novel highly hyperchaotic system on the (x2, x3, x4) space

Figures1, 2, 3 and 4 show the 3-D projection of the novel hyperchaotic system
(1) on the (x1, x2, x3), (x1, x2, x4), (x1, x3, x4) and (x2, x3, x4) spaces, respectively.

3 Analysis of the Novel 4-D Highly Hyperchaotic System

In this section, we study the qualitative properties of the novel 4-D highly hyper-
chaotic system (1). We take the parameter values as in the hyperchaotic case (2).

3.1 Dissipativity

In vector notation, the novel highly hyperchaotic system (1) can be expressed as

ẋ = f (x) =

⎡

⎢
⎢
⎣

f1(x1, x2, x3, x4)
f2(x1, x2, x3, x4)
f3(x1, x2, x3, x4)
f4(x1, x2, x3, x4)

⎤

⎥
⎥
⎦ , (4)

where ⎧
⎪⎪⎨

⎪⎪⎩

f1(x1, x2, x3, x4) = a(x2 − x1) + x2x3 + x4
f2(x1, x2, x3, x4) = −cx1x3 + 3x2 + px2

3
f3(x1, x2, x3, x4) = x1x2 − b
f4(x1, x2, x3, x4) = −q(x1 + x2)

(5)



240 S. Vaidyanathan

Let Ω be any region in R4 with a smooth boundary and also, Ω(t) = Φt (Ω),

where Φt is the flow of f .
Furthermore, let V (t) denote the hypervolume of Ω(t).
By Liouville’s theorem, we know that

V̇ (t) =
∫

Ω(t)

(∇ · f ) dx1 dx2 dx3 dx4 (6)

The divergence of the novel hyperchaotic system (4) is found as:

∇ · f = ∂ f1
∂x1

+ ∂ f2
∂x2

+ ∂ f3
∂x3

+ ∂ f4
∂x4

= −a + 3 = −μ < 0 (7)

since μ = a − 3 = 59 > 0.
Inserting the value of ∇ · f from (7) into (6), we get

V̇ (t) =
∫

Ω(t)

(−μ) dx1 dx2 dx3 dx4 = −μV (t) (8)

Integrating the first order linear differential equation (8), we get

V (t) = exp(−μt)V (0) (9)

Since μ > 0, it follows from Eq. (9) that V (t) → 0 exponentially as t → ∞.
This shows that the novel hyperchaotic system (1) is dissipative. Hence, the system
limit sets are ultimately confined into a specific limit set of zero hypervolume, and
the asymptotic motion of the novel hyperchaotic system (1) settles onto a strange
attractor of the system.

3.2 Equilibrium Points

We take the parameter values as in the hyperchaotic case (2).
The equilibrium points of the 4-D system (1) are obtained by solving the system

of equations

a(x2 − x1) + x2x3 + x4 = 0 (10a)

−cx1x3 + 3x2 + px2
3 = 0 (10b)

x1x2 − b = 0 (10c)

−q(x1 + x2) = 0 (10d)



A No-Equilibrium Novel 4-D Highly Hyperchaotic System with Four Quadratic … 241

Since q �= 0, it is immediate from (10d) that

x1 + x2 = 0 or x1 = −x2 (11)

Substituting x1 = −x2 in (10c), we get

x2
2 = −b (12)

which has no solutions since b > 0.
Thus, we conclude that the novel highly hyperchaotic system (1) does not have

any equilibrium points. Hence, the novel highly hyperchaotic system (1) exhibits
hidden attractors.

3.3 Invariance

It is easy to see that the x3-axis is invariant under the flow of the 4-D novel hyper-
chaotic system (1).

The invariant motion along the x3-axis is characterized by the scalar dynamics

ẋ3 = −b, (13)

which is unstable.

3.4 Lyapunov Exponents and Kaplan–Yorke Dimension

We take the parameter values of the novel system (1) as in the hyperchaotic case (2),
i.e.

a = 62, b = 36, c = 160, p = 0.5, q = 2.8 (14)

We take the initial state of the novel system (1) as given in (3), i.e.

x1(0) = 0.2, x2(0) = 0.8, x3(0) = 0.6, x4(0) = 0.4 (15)

Then the Lyapunov exponents of the system (1) are numerically obtained using
MATLAB as

L1 = 15.06593, L2 = 0.03551, L3 = 0, L4 = −42.42821 (16)

Since there are two positive Lyapunov exponents in (16), the novel system (1)
exhibits hyperchaotic behavior.
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From the LE spectrum (16), we see that the maximal Lyapunov exponent of the
novel hyperchaotic system (1) is L1 = 15.06593, which is large.

We find that
L1 + L2 + L3 + L4 = − − 27.32677 < 0 (17)

Thus, it follows that the novel highly hyperchaotic system (1) is dissipative.
Also, the Kaplan–Yorke dimension of the novel hyperchaotic system (1) is cal-

culated as

DKY = 3 + L1 + L2 + L3

|L4| = 3.3559, (18)

which is fractional.
Since the Kaplan–Yorke dimension of the novel highly hyperchaotic system (1)

has a large value, it follows that the 4-D system (1) exhibits highly complex dynamics
and hence, it is suitable for engineering applications like secure communication and
cryptosystems.

4 Adaptive Control of the Novel Highly Hyperchaotic
System

In this section, we apply adaptive control method to derive an adaptive feedback
control law for globally stabilizing the novel 4-D highly hyperchaotic system with
unknown parameters. We use parameter estimates in lieu of the unknown system
parameters. The main control result in this section is established using Lyapunov
stability theory.

Thus, we consider the controlled novel 4-D highly hyperchaotic system given by

⎧
⎪⎪⎨

⎪⎪⎩

ẋ1 = a(x2 − x1) + x2x3 + x4 + u1

ẋ2 = −cx1x3 + 3x2 + px2
3 + u2

ẋ3 = x1x2 − b + u3

ẋ4 = −q(x1 + x2) + u4

(19)

In (19), x1, x2, x3, x4 are the states and u1, u2, u3, u4 are the adaptive controls to be
determined using estimates â(t), b̂(t), ĉ(t), p̂(t), q̂(t) for the unknown parameters
a, b, c, p, q, respectively.

We consider the adaptive feedback control law

⎧
⎪⎪⎨

⎪⎪⎩

u1 = −â(t)(x2 − x1) − x2x3 − x4 − k1x1
u2 = ĉ(t)x1x3 − 3x2 − p̂(t)x2

3 − k2x2
u3 = −x1x2 + b̂(t) − k3x3
u4 = q̂(t)(x1 + x2) − k4x4

(20)

where k1, k2, k3, k4 are positive gain constants.
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Substituting (20) into (19), we get the closed-loop plant dynamics as

⎧
⎪⎪⎨

⎪⎪⎩

ẋ1 = [a − â(t)](x2 − x1) − k1x1
ẋ2 = −[c − ĉ(t)]x1x3 + [p − p̂(t)]x2

3 − k2x2
ẋ3 = −[b − b̂(t)] − k3x3
ẋ4 = −[q − q̂(t)](x1 + x2) − k4x4

(21)

The parameter estimation errors are defined as

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ea(t) = a − â(t)
eb(t) = b − b̂(t)
ec(t) = c − ĉ(t)
ep(t) = p − p̂(t)
eq(t) = q − q̂(t)

(22)

In view of (22), we can simplify the plant dynamics (21) as

⎧
⎪⎪⎨

⎪⎪⎩

ẋ1 = ea(x2 − x1) − k1x1
ẋ2 = −ecx1x3 + epx2

3 − k2x2
ẋ3 = −eb − k3x3
ẋ4 = −eq(x1 + x2) − k4x4

(23)

Differentiating (22) with respect to t , we obtain

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ėa(t) = −˙̂a(t)

ėb(t) = − ˙̂b(t)
ėc(t) = −˙̂c(t)
ėp(t) = − ˙̂p(t)
ėq(t) = − ˙̂q(t)

(24)

We consider the quadratic candidate Lyapunov function defined by

V (x, ea, eb, ec, ep, eq) = 1

2

(
x2
1 + x2

2 + x2
3 + x2

4

) + 1

2

(
e2a + e2b + e2c + e2p + e2q

)

(25)
Differentiating V along the trajectories of (23) and (24), we obtain

V̇ = −k1x2
1 − k2x2

2 − k3x2
3 − k4x2

4 + ea

[
x1(x2 − x1) − ˙̂a

]
+ eb

[
−x3 − ˙̂b

]

+ec

[
−x1x2x3 − ˙̂c

]
+ ep

[
x2x2

3 − ˙̂p
]

+ eq

[
−x4(x1 + x2) − ˙̂q

]

(26)
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In view of (26), we take the parameter update law as

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

˙̂a(t) = x1(x2 − x1)˙̂b(t) = −x3˙̂c(t) = −x1x2x3˙̂p(t) = x2x2
3˙̂q(t) = −x4(x1 + x2)

(27)

Next, we state and prove the main result of this section.

Theorem 1 The novel 4-D highly hyperchaotic system (19) with unknown system
parameters is globally and exponentially stabilized for all initial conditions by the
adaptive control law (20) and the parameter update law (27), where k1, k2, k3, k4
are positive gain constants.

Proof We prove this result by applying Lyapunov stability theory [27].
We consider the quadratic Lyapunov function defined by (25), which is clearly a

positive definite function on R9.
By substituting the parameter update law (27) into (26), we obtain the time-

derivative of V as
V̇ = −k1x2

1 − k2x2
2 − k3x2

3 − k4x2
4 (28)

From (28), it is clear that V̇ is a negative semi-definite function on R9.
Thus, we can conclude that the state vector x(t) and the parameter estimation

error are globally bounded, i.e.

[
x1(t) x2(t) x3(t) x4(t) ea(t) eb(t) ec(t) ep(t) eq(t)

]T ∈ L∞.

We define k = min{k1, k2, k3, k4}.
Then it follows from (28) that

V̇ ≤ −k‖x(t)‖2 (29)

Thus, we have
k‖x(t)‖2 ≤ −V̇ (30)

Integrating the inequality (30) from 0 to t , we get

k

t∫

0

‖x(τ )‖2 dτ ≤ V (0) − V (t) (31)

From (31), it follows that x ∈ L2.
Using (23), we can conclude that ẋ ∈ L∞.
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UsingBarbalat’s lemma [27], we conclude that x(t) → 0 exponentially as t → ∞
for all initial conditions x(0) ∈ R4.

Thus, the novel 4-D highly hyperchaotic system (19) with unknown system para-
meters is globally and exponentially stabilized for all initial conditions by the adaptive
control law (20) and the parameter update law (27).

This completes the proof. �

For the numerical simulations, the classical fourth-order Runge–Kutta method
with step size h = 10−8 is used to solve the systems (19) and (27), when the adaptive
control law (20) is applied.

The parameter values of the novel 4-D hyperchaotic system (19) are taken as in
the hyperchaotic case (2), i.e.

a = 62, b = 36, c = 160, p = 0.5, q = 2.8 (32)

We take the positive gain constants as

k1 = 8, k2 = 8, k3 = 8, k4 = 8 (33)

Furthermore, as initial conditions of the novel 4-D highly hyperchaotic system
(19), we take

x1(0) = 18.5, x2(0) = −14.7, x3(0) = 24.8, x4(0) = −12.3 (34)
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Fig. 5 Time-history of the controlled states x1, x2, x3, x4
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Also, as initial conditions of the parameter estimates, we take

â(0) = 15.6, b̂(0) = 12.4, ĉ(0) = 22.7, p̂(0) = 4.8, q̂(0) = 19.4 (35)

In Fig. 5, the exponential convergence of the controlled states of the novel 4-D
hyperchaotic system (19) is shown.

5 Adaptive Synchronization of the Identical Novel
Hyperchaotic Systems

In this section, we use adaptive control method to derive an adaptive feedback control
law for globally synchronizing identical novel 4-D highly hyperchaotic systems with
unknown parameters.

As the master system, we consider the novel 4-D hyperchaotic system given by

⎧
⎪⎪⎨

⎪⎪⎩

ẋ1 = a(x2 − x1) + x2x3 + x4
ẋ2 = −cx1x3 + 3x2 + px2

3
ẋ3 = x1x2 − b
ẋ4 = −q(x1 + x2)

(36)

In (36), x1, x2, x3, x4 are the states and a, b, c, p, q are unknown system parame-
ters.

As the slave system, we consider the 4-D novel hyperchaotic system given by

⎧
⎪⎪⎨

⎪⎪⎩

ẏ1 = a(y2 − y1) + y2y3 + y4 + u1

ẏ2 = −cy1y3 + 3y2 + py23
ẏ3 = y1y2 − b + u3

ẏ4 = −q(y1 + y2) + u4

(37)

In (37), y1, y2, y3, y4 are the states and u1, u2, u3, u4 are the adaptive controls
to be determined using estimates â(t), ĉ(t), p̂(t), q̂(t) for the unknown parameters
a, c, p, q, respectively.

The synchronization error between the novel hyperchaotic systems (36) and (37)
is defined by ⎧

⎪⎪⎨

⎪⎪⎩

e1 = y1 − x1
e2 = y2 − x2
e3 = y3 − x3
e4 = y4 − x4

(38)



A No-Equilibrium Novel 4-D Highly Hyperchaotic System with Four Quadratic … 247

Then the error dynamics is obtained as

⎧
⎪⎪⎨

⎪⎪⎩

ė1 = a(e2 − e1) + e4 + y2y3 − x2x3 + u1

ė2 = 3e2 − c(y1y3 − x1x3) + p(y23 − x2
3 ) + u2

ė3 = y1y2 − x1x2 + u3

ė4 = −q(e1 + e2) + u4

(39)

We consider the adaptive feedback control law

⎧
⎪⎪⎨

⎪⎪⎩

u1 = −â(t)(e2 − e1) − e4 − y2y3 + x2x3 − k1e1
u2 = −3e2 + ĉ(t)(y1y3 − x1x3) − p̂(t)(y23 − x2

3 ) − k2e2
u3 = −y1y2 + x1x2 − k3e3
u4 = q̂(t)(e1 + e2) − k4e4

(40)

where k1, k2, k3, k4 are positive gain constants.
Substituting (40) into (39), we get the closed-loop error dynamics as

⎧
⎪⎪⎨

⎪⎪⎩

ė1 = [
a − â(t)

]
(e2 − e1) − k1e1

ė2 = − [
c − ĉ(t)

]
(y1y3 − x1x3) + [

p − p̂(t)
]
(y23 − x2

3 ) − k2e2
ė3 = −k3e3
ė4 = − [

q − q̂(t)
]
(e1 + e2) − k4e4

(41)

The parameter estimation errors are defined as

⎧
⎪⎪⎨

⎪⎪⎩

ea(t) = a − â(t)
ec(t) = c − ĉ(t)
ep(t) = p − p̂(t)
eq(t) = q − q̂(t)

(42)

In view of (42), we can simplify the error dynamics (41) as

⎧
⎪⎪⎨

⎪⎪⎩

ė1 = ea(e2 − e1) − k1e1
ė2 = −ec(y1y3 − x1x3) + ep(y23 − x2

3 ) − k2e2
ė3 = −k3e3
ė4 = −eq(e1 + e2) − k4e4

(43)

Differentiating (42) with respect to t , we obtain

⎧
⎪⎪⎨

⎪⎪⎩

ėa(t) = −˙̂a(t)
ėc(t) = −˙̂c(t)
ėp(t) = − ˙̂p(t)
ėq(t) = − ˙̂q(t)

(44)

We use adaptive control theory to find an update law for the parameter estimates.
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We consider the quadratic candidate Lyapunov function defined by

V (e, ea, ec, ep, eq) = 1

2

(
e21 + e22 + e23 + e24

) + 1

2

(
e2a + e2c + e2p + e2q

)
(45)

Differentiating V along the trajectories of (43) and (44), we obtain

V̇ = −k1e21 − k2e22 − k3e
2
3 − k4e24 + ea

[
e1(e2 − e1) − ˙̂a

]

+ ec

[
−e2(y1y3 − x1x3) − ˙̂c

]
+ ep

[
e2(y23 − x2

3 ) − ˙̂p
]

+ eq

[
−e4(e1 + e2) − ˙̂q

]
(46)

In view of (46), we take the parameter update law as

⎧
⎪⎪⎨

⎪⎪⎩

˙̂a(t) = e1(e2 − e1)˙̂c(t) = −e2(y1y3 − x1x3)˙̂p(t) = e2(y23 − x2
3 )˙̂q(t) = −e4(e1 + e2)

(47)

Next, we state and prove the main result of this section.

Theorem 2 The novel hyperchaotic systems (36) and (37) with unknown system
parameters are globally and exponentially synchronized for all initial conditions by
the adaptive control law (40) and the parameter update law (47), where k1, k2, k3, k4
are positive gain constants.

Proof We prove this result by applying Lyapunov stability theory [27].
We consider the quadratic Lyapunov function defined by (45), which is clearly a

positive definite function on R8.
By substituting the parameter update law (47) into (46), we obtain

V̇ = −k1e21 − k2e22 − k3e
2
3 − k4e24 (48)

From (48), it is clear that V̇ is a negative semi-definite function on R8.
Thus, we can conclude that the error vector e(t) and the parameter estimation

error are globally bounded, i.e.

[
e1(t) e2(t) e3(t) e4(t) ea(t) ec(t) ep(t) eq(t)

]T ∈ L∞. (49)

We define k = min{k1, k2, k3, k4}.
Then it follows from (48) that

V̇ ≤ −k‖e(t)‖2 (50)
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Thus, we have
k‖e(t)‖2 ≤ −V̇ (51)

Integrating the inequality (51) from 0 to t , we get

k

t∫

0

‖e(τ )‖2 dτ ≤ V (0) − V (t) (52)

From (52), it follows that e ∈ L2.
Using (43), we can conclude that ė ∈ L∞.
UsingBarbalat’s lemma [27], we conclude that e(t) → 0 exponentially as t → ∞

for all initial conditions e(0) ∈ R4.
This completes the proof. �

For the numerical simulations, the classical fourth-order Runge–Kutta method
with step size h = 10−8 is used to solve the systems (36), (37) and (47), when the
adaptive control law (40) is applied.

The parameter values of the novel hyperchaotic systems are taken as in the hyper-
chaotic case (2), i.e.

a = 62, b = 36, c = 160, p = 0.5, q = 2.8 (53)

We take the positive gain constants as

k1 = 8, k2 = 8, k3 = 8, k4 = 8 (54)

Furthermore, as initial conditions of the master system (36), we take

x1(0) = 12.3, x2(0) = 6.4, x3(0) = −9.7, x4(0) = −22.8 (55)

As initial conditions of the slave system (37), we take

y1(0) = 5.1, y2(0) = −18.5, y3(0) = 24.8, y4(0) = 3.7 (56)

Also, as initial conditions of the parameter estimates, we take

â(0) = 12.6, ĉ(0) = 5.4, p̂(0) = 17.9, q̂(0) = 25.8 (57)

Figures6, 7, 8 and 9 describe the complete synchronization of the novel hyper-
chaotic systems (36) and (37), while Fig. 10 describes the time-history of the syn-
chronization errors e1, e2, e3, e4.
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6 Conclusions

In this work, we described an eleven-term novel 4-D highly hyperchaotic systemwith
four quadratic nonlinearities. The qualitative properties of the novel highly hyper-
chaotic system were discussed in detail. We showed that the novel hyperchaotic sys-
tem does not have any equilibrium point. Hence, the novel 4-D hyperchaotic system
exhibits hidden attractors. The Lyapunov exponents of the novel hyperchaotic system
have been obtained as L1 = 15.06593, L2 = 0.03551, L3 = 0 and L4 = −42.42821.
The Maximal Lyapunov Exponent (MLE) of the novel hyperchaotic system is found
as L1 = 15.06593, which is large. Thus, the novel 4-D hyperchaotic system proposed
in this work is highly hyperchaotic. Also, the Kaplan–Yorke dimension of the novel
hyperchaotic system has been derived as DK Y = 3.3559. Since the sum of the Lya-
punov exponents is negative, the novel hyperchaotic system is dissipative. Next, an
adaptive controller was designed to globally stabilize the novel highly hyperchaotic
system with unknown parameters. Finally, an adaptive controller was also designed
to achieve global chaos synchronization of the identical novel highly hyperchaotic
systems with unknown parameters. MATLAB simulations were shown to illustrate
all the main results derived in this work.
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