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Preface

About the Subject

Control theory is a multidisciplinary branch of engineering that concerns with the
behavior of dynamical systems with inputs (or controls) and seeks to modify the
outputs by changes in the inputs using feedback. Linear control theory applies to
systems made of linear devices and they obey the superposition principle. For linear
control systems, the output of the device is proportional to the input. Nonlinear
control theory covers a wider class of systems which do not obey the superposition
principle. As most real-world control systems are nonlinear, nonlinear control
theory has great applications for real-world control systems. Nonlinear control
systems are often governed by nonlinear differential equations and many mathe-
matical techniques have been developed to analyze these systems such as Lyapunov
stability theory, limit cycle theory, Poincaré maps, bifurcation theory, chaos theory,
and describing functions. In the recent decades, soft computing techniques such as
neural networks, fuzzy logic, and evolutionary algorithms have been also suc-
cessfully applied to analyze and apply nonlinear control theory for many multi-
disciplinary applications. In the recent decades, advanced techniques such as sliding
mode control, fuzzy-based sliding mode control, backstepping control, and adaptive
control have been also applied for control systems design. Control systems design
has applications in several branches of engineering such as mechanical engineering,
aeronautical engineering, electrical engineering, communications engineering,
robotics, biomedical instrumentation, etc.

About the Book

The new Springer book, Advances and Applications in Nonlinear Control Systems,
consists of 30 contributed chapters by subject experts who are specialized in the
various topics addressed in this book. The special chapters have been brought out in
this book after a rigorous review process in the broad areas of modeling and
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applications of nonlinear control systems. Special importance was given to chapters
offering practical solutions and novel methods for the recent research problems in
the modeling and applications of nonlinear control systems.

This book discusses trends and applications of nonlinear control systems in
science and engineering.

Objectives of the Book

This volume presents a selected collection of contributions on a focused treatment
of recent advances and applications in nonlinear control systems. The book also
discusses multidisciplinary applications in control engineering, computer science,
and information technology. These are among those multidisciplinary applications
where computational intelligence has excellent potentials for use. Both novice and
expert readers should find this book a useful reference in the field of nonlinear
control systems.

Organization of the Book

This well-structured book consists of 30 full chapters.

Book Features

• The book chapters deal with the recent research problems in the areas of non-
linear control systems.

• The book chapters contain a good literature survey with a long list of references.
• The book chapters are well written with a good exposition of the research

problem, methodology, and block diagrams.
• The book chapters are lucidly illustrated with numerical examples and

simulations.
• The book chapters discuss details of engineering applications and future

research areas.

Audience

The book is primarily meant for researchers from academia and industry, who are
working in the research areas—control engineering, electrical engineering, com-
puter science, and information technology. The book can also be used at the
graduate or advanced undergraduate level as a textbook or major reference for
courses such as control systems, nonlinear dynamical systems, mathematical
modeling, computational science, numerical simulation, and many others.

vi Preface



Acknowledgments

As the editors, we hope that the chapters in this well-structured book will stimulate
further research in control systems, computational intelligence, and chaos theory,
and utilize them in real-world applications.

We hope sincerely that this book, covering so many different topics, will be very
useful for all readers.

We would like to thank all the reviewers for their diligence in reviewing the
chapters.

Special thanks go to Springer, especially the book editorial team.

Sundarapandian Vaidyanathan
Christos Volos

Preface vii



Contents

Kinematic Control of a Robot by Using a Non-autonomous
Chaotic System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Ch.K. Volos, D.A. Prousalis, S. Vaidyanathan, V.-T. Pham,
J.M. Munoz-Pacheco and E. Tlelo-Cuautle

Nonlinear Observer Design for Chaotic Systems . . . . . . . . . . . . . . . . . . 19
Sundarapandian Vaidyanathan

Nonlinear Observer Design for Population Biology Systems . . . . . . . . . 43
Sundarapandian Vaidyanathan

Output Regulation of Vaidyanathan 3-D Jerk Chaotic System . . . . . . . 59
Sundarapandian Vaidyanathan

General Observer Design for Continuous-Time
and Discrete-Time Nonlinear Systems . . . . . . . . . . . . . . . . . . . . . . . . . 81
Sundarapandian Vaidyanathan

Generalized Projective Synchronization of Vaidyanathan
Chaotic System via Active and Adaptive Control . . . . . . . . . . . . . . . . . 97
Sundarapandian Vaidyanathan

Adaptive Control and Synchronization of Chlouverakis–Sprott
Hyperjerk System via Backstepping Control . . . . . . . . . . . . . . . . . . . . 117
Sundarapandian Vaidyanathan and Babatunde A. Idowu

Anti-synchronization of Hyperchaotic Systems via Novel Sliding
Mode Control and Its Application to Vaidyanathan
Hyperjerk System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
Sundarapandian Vaidyanathan and Sivaperumal Sampath

Sliding Mode Control with State Derivative Feedback
in Novel Reciprocal State Space Form . . . . . . . . . . . . . . . . . . . . . . . . . 159
Yuan-Wei Tseng

ix

http://dx.doi.org/10.1007/978-3-319-30169-3_1
http://dx.doi.org/10.1007/978-3-319-30169-3_1
http://dx.doi.org/10.1007/978-3-319-30169-3_2
http://dx.doi.org/10.1007/978-3-319-30169-3_3
http://dx.doi.org/10.1007/978-3-319-30169-3_4
http://dx.doi.org/10.1007/978-3-319-30169-3_5
http://dx.doi.org/10.1007/978-3-319-30169-3_5
http://dx.doi.org/10.1007/978-3-319-30169-3_6
http://dx.doi.org/10.1007/978-3-319-30169-3_6
http://dx.doi.org/10.1007/978-3-319-30169-3_7
http://dx.doi.org/10.1007/978-3-319-30169-3_7
http://dx.doi.org/10.1007/978-3-319-30169-3_8
http://dx.doi.org/10.1007/978-3-319-30169-3_8
http://dx.doi.org/10.1007/978-3-319-30169-3_8
http://dx.doi.org/10.1007/978-3-319-30169-3_9
http://dx.doi.org/10.1007/978-3-319-30169-3_9


Active Controller Design for the Output Regulation
of Vaidyanathan Hyperjerk System . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
Sundarapandian Vaidyanathan

Analysis, Control and Synchronization of a Novel Highly
Chaotic System with Three Quadratic Nonlinearities . . . . . . . . . . . . . . 211
Sundarapandian Vaidyanathan

A No-Equilibrium Novel 4-D Highly Hyperchaotic System
with Four Quadratic Nonlinearities and Its Adaptive Control . . . . . . . . 235
Sundarapandian Vaidyanathan

Identification, Stability and Stabilization of Limit Cycles
in a Compass-Gait Biped Model via a Hybrid Poincaré Map . . . . . . . . 259
Hassène Gritli and Safya Belghith

Explicit Delay-Dependent Stability Criteria for Nonlinear
Distributed Parameter Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291
Michael Gil’

The Case of Bidirectionally Coupled Nonlinear Circuits
Via a Memristor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317
Ch.K. Volos, V.-T. Pham, S. Vaidyanathan, I.M. Kyprianidis
and I.N. Stouboulos

Fuzzy Adaptive Sliding-Mode Control Scheme for Uncertain
Underactuated Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 351
Soumia Moussaoui, Abdesselem Boulkroune
and Sundarapandian Vaidyanathan

Unstable PLL-Controller as FM Modulator and Detection
of Modulating Self-Oscillations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 369
Bishnu Charan Sarkar, Suvra Sarkar and Saumen Chakraborty

Application of Time-Delayed Feedback Control Techniques
in Digital Phase-Locked Loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 399
Tanmoy Banerjee and B.C. Sarkar

Modeling and Predictive Control of Nonlinear Hybrid
Systems Using Mixed Logical Dynamical Formalism. . . . . . . . . . . . . . . 421
K. Halbaoui, M.F. Belazreg, D. Boukhetala and M.H. Belhouchat

A Non-linear Decentralized Control of Multimachine Power
Systems Based on a Backstepping Approach . . . . . . . . . . . . . . . . . . . . 451
M. Ouassaid, M. Maaroufi and M. Cherkaoui

Diving Autopilot Design for Underwater Vehicles Using
an Adaptive Neuro-Fuzzy Sliding Mode Controller . . . . . . . . . . . . . . . . 477
G.V. Lakhekar, L.M. Waghmare and Sundarapandian Vaidyanathan

x Contents

http://dx.doi.org/10.1007/978-3-319-30169-3_10
http://dx.doi.org/10.1007/978-3-319-30169-3_10
http://dx.doi.org/10.1007/978-3-319-30169-3_11
http://dx.doi.org/10.1007/978-3-319-30169-3_11
http://dx.doi.org/10.1007/978-3-319-30169-3_12
http://dx.doi.org/10.1007/978-3-319-30169-3_12
http://dx.doi.org/10.1007/978-3-319-30169-3_13
http://dx.doi.org/10.1007/978-3-319-30169-3_13
http://dx.doi.org/10.1007/978-3-319-30169-3_14
http://dx.doi.org/10.1007/978-3-319-30169-3_14
http://dx.doi.org/10.1007/978-3-319-30169-3_15
http://dx.doi.org/10.1007/978-3-319-30169-3_15
http://dx.doi.org/10.1007/978-3-319-30169-3_16
http://dx.doi.org/10.1007/978-3-319-30169-3_16
http://dx.doi.org/10.1007/978-3-319-30169-3_17
http://dx.doi.org/10.1007/978-3-319-30169-3_17
http://dx.doi.org/10.1007/978-3-319-30169-3_18
http://dx.doi.org/10.1007/978-3-319-30169-3_18
http://dx.doi.org/10.1007/978-3-319-30169-3_19
http://dx.doi.org/10.1007/978-3-319-30169-3_19
http://dx.doi.org/10.1007/978-3-319-30169-3_20
http://dx.doi.org/10.1007/978-3-319-30169-3_20
http://dx.doi.org/10.1007/978-3-319-30169-3_21
http://dx.doi.org/10.1007/978-3-319-30169-3_21


Variable Structure Sensorless Control of PMSM Drives . . . . . . . . . . . . 505
Lucio Ciabattoni, Maria Letizia Corradini, Massimo Grisostomi,
Gianluca Ippoliti, Sauro Longhi and Giuseppe Orlando

Sliding Mode Control of Induction Generator Wind Turbine
Connected to the Grid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 531
M. Ouassaid, K. Elyaalaoui and M. Cherkaoui

Iterative Learning Control for Affine and Non-affine Nonlinear
Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 555
Farah Bouakrif

On Nonlinear Robust Adaptative Control: Application
on Electro-Hydraulic Valve System . . . . . . . . . . . . . . . . . . . . . . . . . . . 575
Lilia Sidhom, Ines Chihi, Xavier Brun, Eric Bideaux
and Daniel Thomasset

Nonlinear Discrete Time Sliding Mode Control Applied
to Pumping System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 595
Asma Chihi and Anis Sellami

Design of a Controller of Switched Nonlinear Systems
Based on Multiple Lyapunov Functions . . . . . . . . . . . . . . . . . . . . . . . . 611
Khalil Jouili, Arwa Abdelkarim and Naceur Benhadj Braiek

Nonlinear Sliding Mode Observer for Tire Pressure Monitoring . . . . . . 627
Nada Ouasli and Lilia El Amraoui

Global Stabilization of Switched Nonlinear Systems Using
Backstepping Approach: Applications to Chemical Processes . . . . . . . . 655
Arwa Abdelkarim, Khalil Jouili and Naceur BenHadj Braiek

Second Order Sliding Mode Based Synchronization
Control for Cooperative Robot Manipulators . . . . . . . . . . . . . . . . . . . . 669
Fatma Abdelhedi, Yassine Bouteraa and Nabil Derbel

Contents xi

http://dx.doi.org/10.1007/978-3-319-30169-3_22
http://dx.doi.org/10.1007/978-3-319-30169-3_23
http://dx.doi.org/10.1007/978-3-319-30169-3_23
http://dx.doi.org/10.1007/978-3-319-30169-3_24
http://dx.doi.org/10.1007/978-3-319-30169-3_24
http://dx.doi.org/10.1007/978-3-319-30169-3_25
http://dx.doi.org/10.1007/978-3-319-30169-3_25
http://dx.doi.org/10.1007/978-3-319-30169-3_26
http://dx.doi.org/10.1007/978-3-319-30169-3_26
http://dx.doi.org/10.1007/978-3-319-30169-3_27
http://dx.doi.org/10.1007/978-3-319-30169-3_27
http://dx.doi.org/10.1007/978-3-319-30169-3_28
http://dx.doi.org/10.1007/978-3-319-30169-3_29
http://dx.doi.org/10.1007/978-3-319-30169-3_29
http://dx.doi.org/10.1007/978-3-319-30169-3_30
http://dx.doi.org/10.1007/978-3-319-30169-3_30


Kinematic Control of a Robot by Using
a Non-autonomous Chaotic System

Ch.K. Volos, D.A. Prousalis, S. Vaidyanathan, V.-T. Pham,
J.M. Munoz-Pacheco and E. Tlelo-Cuautle

Abstract In this chapter, a newnavigation strategybydesigning a path planninggen-
erator, which ensures chaotic motion to an autonomous robot, has been investigated.
This new technique is implemented by using the well-known from the nonlinear
theory Poincaré map, which is produced by a non-autonomous chaotic system. For
this reason one of the most studied non-autonomous systems, the Duffing—van der
Pol system has been chosen, presenting suitable results. The path planning generator
produces an unpredictable trajectory by converting the chaotic strange attractor, pro-
duced by system’s Poincaré map, into the robot’s “random” trajectory in a chosen
workspace. As a consequence the autonomous robot covers the whole workspace
with unpredictable way. The simulation results verify that the proposed generator
achieves the aforementioned goal. So, with this work, new perspectives on use of
non-autonomous chaotic systems in robotic applications are opened.
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Keywords Chaos · Non-autonomous dynamical system · Duffing—van der pol
system · Poincaré map · Autonomous robot · Path planning generator · Terrrain
coverage

1 Introduction

In the last decade the subject of robotics and especially the design of motion con-
trollers for autonomous robots has become a very promising research field. This
occurs because there is a tension, in many difficult or dangerous tasks, of human
to be replaced by robots. In general, the great advantage of an autonomous robot is
that performs a task without the continuous human supervision. Terrain exploration
for searching for explosives [54], complete coverage of a terrain (like floor-cleaning
robots) [15, 50], transportation [58], search and rescue of human victims on dis-
aster places [59], fire fighting devices [61], map buildings [62] and surveillance or
patrolling of terrains for intrusion [6, 10, 33, 36, 39, 40, 42] are some of the civil
or military tasks, where autonomous robots can be very useful.

In the procedure of design and development of autonomous robots, the key issues
are the locomotion, the sensing and the localization. However, the most challenging
issue is the choice of the navigation strategy, which can be defined as the set of
various techniques that allow a robot to autonomously decide where to move in the
workspace in order to accomplish a given task [53]. Also, the navigation strategies
have a remarkable influence over the performance of the task execution and sig-
nificant contribution in building the robot’s autonomy. Many interesting navigation
techniques depending on the application have been proposed so far, but the issue
continues to preoccupy the scientific community.

Covering all the possible classes of problems related with navigation strategies,
such as the exploration of an initially unknown workspace or the patrolling of a
known environment, the key-point is the robot’s motion planning for the complete
and fast workspace scanning. For accomplishing these requirements, a robot that
is capable of crossing every region, covering systematically the entire workspace,
should be designed.Anobvious solution is a systematic scan by using parallel straight
trajectories. Nevertheless, this approach could be easily understood, for example by
an intruder in the case of a patrolling mission. Therefore, the unpredictability of the
robot’s trajectory is also a crucial factor for the success of such autonomous robot’s
tasks. Another, interesting feature that the navigation strategy should perform is not
only the unpredictability but also the fast scanning of the entire workspace. So, the
aforementioned features are the subjects of study among the researchers for selecting
the most suitable autonomous robotic system.

In this direction, Nakamura and Sekiguchi in 2001, proposed a strategy to solve
the above mentioned problem based on chaotic systems [47]. In that work the chaotic
behavior of the Arnold dynamical system is imparted to the robot’s motion control.
Since then a great number of relative research works in the field of autonomous
robots have been presented, because the chaotic motion guarantees the scanning
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of the whole workspace without a terrain map or motion plan. Lorenz dynamical
system [11, 37], Standard or Taylor–Chirikov map [38–40] , Chua circuit [54, 72],
and double-scroll systems [63, 69–71] are some of the chaotic systems which have
also been used for this purpose.

As it is known, the rich dynamic behavior of nonlinear systems and especially the
chaotic phenomena which that system produces, makes these systems suitable can-
didates for using in several disciplines including meteorology, physics, economics,
biology, philosophy [1, 2, 14, 19] and also in diverse engineering applications such
as communications [18, 45, 55], cryptography [44, 46, 67, 68], random bits gen-
erators [78] and neuronal networks [12]. This was the starting point of inducing
chaotic behavior to robotic systems. This goal is achieved by designing controllers,
which ensure chaotic motion producing by a nonlinear circuit or by programming a
microcontroller.

In more details, chaos theory studies the behavior of dynamical systems that are
highly sensitive on initial conditions, an effect which is popularly referred to as
the “Butterfly Effect”. This means, that small differences in initial conditions, such
as those due to rounding errors in numerical computation, yield widely diverging
outcomes for such dynamical systems, rendering long-term prediction impossible
in general. This happens even though these systems are deterministic, meaning that
their future behavior is fully determined by their initial conditions, with no random
elements involved. In other words, the deterministic nature of these systems does not
make them predictable.

Until now, the great majority of the proposed chaotic motion controllers are based
on autonomous nonlinear dynamical systems, in order to use the independence of
these systems to external sources. However, in the present work, the robot’s motion
controller is based on a path planning generator, which is designed by using a non-
autonomous dynamical system. For ridding from the system the influence of the
external source and increasing the unpredictability of the proposed controller, the
Poincaré section for sampling the chaotic signal has been used.

The proposed path planning generator produces an unpredictable trajectory by
imparting the chaotic behavior of the system to the robot’s motion. This occurs by
converting the Poincaré map of the chaotic system into a sequence of planned target
locations. As a consequence the autonomous robot can cover the whole workspace
with unpredictable way, presenting satisfactory results in regard to other similar
works.

This chapter is organized as follows. In Sect. 2 the features of chaotic systems
and especially the description of the Duffing—van der Pol system, which is the
key-point in this work, are given. The adopted robot’s chaotic path planning gen-
erator is described in Sect. 3. The simulation results of the proposed autonomous
robot’s trajectory and its analysis are presented in Sect. 4. Finally, Sect. 5 includes
the conclusion remarks of this work.
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2 The Duffing—van der Pol System

In literature, chaos refers to some dynamical phenomena considered to be complex
and unpredictable. Henry Poincaré was the first that observed this kind of dynamical
behavior at the end of the 19th century [52], however chaos theory begins to take form
in the second half of the 20th century after observations of the evolution of different
physical systems [30, 34]. These systems revealed that despite of the knowledge of
their evolution rules and initial conditions, their future seemed to be arbitrary and
unpredictable. That opened quite a revolution in modern physics, terminating with
Laplace’s ideas of causal determinism [29].

Today chaos theory has been changed in a catholic model of study of many
phenomena inweather and climate [30], population growth in ecology [41], economy
[28], to mention only a few examples. Chaos has also been observed in the laboratory
in a number of systems such as electrical circuits [66], lasers [7], chemical reactions
[13], fluid dynamics [3], mechanical systems, andmagneto-mechanical devices [43].
So, chaos theory provides the means to explain various phenomena in nature and
makes use of chaotic dynamical systems in many different scientific fields.

A nonlinear dynamical system, from a mathematical viewpoint, in order to be
considered as chaotic, must fulfill the following three conditions [21].

• It must be topologically mixing,
• Its chaotic orbits must be dense and
• It must be very sensitive on initial conditions.

The term topologically mixing means that the chaotic dynamical system, espe-
cially the chaotic designated area of the trajectory will eventually cover part of any
particular region. This is a very crucial feature for the design of robots motion’s
controllers. Also, as it is mentioned, the chaotic orbits have to be dense if it comes
arbitrarily close to any point in the domain. Finally, the most important feature of
chaotic systems, as it is referred in the previous section, is the sensitivity on initial
conditions. This means that a small variation on a system’s initial conditions will
produce a totally different chaotic trajectory.

In this chapter, a very well-known representative of the class of non-autonomous
dynamical systems has been chosen. This is the second order nonlinear, non-
autonomous Duffing—van der Pol system [65], which is described by the following
set of differential equations (1).

{
ẋ = y
ẏ = μ

(
1 − x2

)
y − x3 + B cos (ωt)

(1)

This system is called Duffing—van der Pol, because it contains in the second
equation the term, μ(1 − x2)y, which is a characteristic feature of the van der Pol
oscillator

dx2

dt2
− μ

(
1 − x2

) dx

dt
+ x = 0, (μ > 0) (2)
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Fig. 1 Bifurcation diagram
of x versus B, for
μ = 0.2 and ω = 4

and the cubic term x3 of Duffing’s equation

dx2

dt2
+ a

dx

dt
+ bx + cx3 = F cos (ωt) (3)

The dynamic behavior of the Duffing—van der Pol system is investigated numer-
ically by employing the fourth order Runge–Kutta algorithm. The system’s rich
dynamical behavior is revealed in Fig. 1, which shows the bifurcation diagram of x
versus the parameter B, for ω = 4, whileμ = 0.2. Periodic and chaotic regions alter-
nate as the parameter B increases while interesting dynamical phenomena, such as a
route to chaos, through a quasi-periodic region, and crisis phenomena (i.e. boundary
crisis), are also displayed. This richness of system’s dynamic behavior makes the
proposed non-autonomous system a suitable candidate for use in this work [9].

As it will be discussed in the next Section, the heart of the proposed robot’s
controller is the Poincaré map named by Henri Poincaré. This map is the intersection
of an orbit in the state space of a continuous dynamical system with a certain lower
dimensional subspace, called the Poincaré cross-section, transversal to the flow of
the system. So, in this case, the Poincaré map is produced by using the Poincaré
cross-section which is defined by

∑
= {

(x, y, θ = ωtN ) ∈ R2 × S1
}

(4)

where tN = NT + t0 is the sampling time, t0 the initial time determining the location
of the Poincaré cross-section on which the coordinates (x , y) of the attractors are
expressed and T = 2π/ω is the period of the voltage source.
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In Figs. 2, 3 and 4 three characteristic Poincaré maps for various values of the
parameter B of the bifurcation diagram of Fig. 1, in the case of μ = 0.2 and ω =
4, are displayed. From this figure the great utility of the Poincaré map can be seen,
since for different system’s dynamic behavior the Poincarémap has a totally different
form. As it is known, the various forms of the Poincaré map depending on system’s
dynamic behavior are:

• Discrete number of points for Periodic behavior.
• Closed curve for Quasi-periodic behavior.
• Strange attractor for Chaotic behavior.

Fig. 2 Poincaré map of y
versus x , for μ = 0.2, ω = 4
and B = 1 (quasi-periodic
behavior)

Fig. 3 Poincaré map of y
versus x , for μ = 0.2, ω = 4
and B = 17 (chaotic
behavior)
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Fig. 4 Poincaré map of y
versus x , for μ = 0.2, ω = 4
and B = 19 (periodic
behavior)

3 The Chaotic Path Planning Generator

In this Section the path planning generator, which is the heart of the autonomous
robot, is presented. The specific proposal is based on a novel chaotic random number
generator. This generator produces a trajectory in a workspace, which is the result
of a sequence of planned target locations.

One of the methods to obtain aperiodic sequences is to use chaos which is defined
as “random” phenomenon generated by simple deterministic systems. Until now
there have been reported in literature many works on random number generation
based on chaos by using either continuous chaotic systems or discrete [4, 5, 14, 16,
17, 22, 24, 26, 27, 31, 32, 49, 56, 57, 64, 67, 68, 73, 74, 77, 78].

In the first case, continuous chaotic systems are used while in the second case
various discrete-time chaotic systems realized by analog circuits are also used as
random number generators, to generate aperiodic random number sequences. How-
ever, it is difficult to generate random sequences with good statistical properties due
to nonidealities of analog circuit elements and inevitable noise [23, 64]. Thus, there
have also been several works on post-processing of the chaos-based random numbers
[51, 60].

The proposed random number generator, which has been used in this work, is
based on a non-autonomous continuous chaotic system. So, for this reason, the values
of system’s parameters were selected so that the system is in chaotic state. In Figs. 5
and 6 the phase portrait and the respective Poincaré map for a chosen set of system’s
parameters are shown.

In more details, the proposed chaotic random number generator produced a
sequence of planned target locations following the procedure.

Step 1: The number of cells, in which the workspace has been divided, is specified.
In this work a square workspace with dimensions M = 30 × 30 = 900 in
normalized unit cells, is chosen.
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Fig. 5 Phase portrait of y
versus x , for μ = 0.2, B =
1.175 and ω = 0.92

Fig. 6 Poincaré map of y
versus x , for μ = 0.2, B =
1.175 and ω = 0.92

Step 2: An area of the Poincarémap, that is dense in points, is selected. This happens
because the point’s density on the Poincaré map will guarantee the coverage
of the whole robot’s workspace. In Fig. 7, the selected area of the Poincaré
map (x ∈ [1.834, 2.044], y ∈ [–0.249, 0.407]) in the red box for the chosen
set of parameters (μ = 0.2, B = 1.175 and ω = 0.92) and initial conditions
(x0, y0) = (1, 1), is presented.

Step 3: The selected area in the Poincaré map is divided in the same unit cells as
the workspace in Step 1. As it is shown in Fig. 7, all the cells of the selected
area have been visited by the system. This is an essential condition for the
success of robot’s mission.

Step 4: Each time that a point in one of the cells of the selected area is produced in
the Poincaré map, a target point in the coordination format (x , y) = (0, 0),
…, (30, 30) is also produced.
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Fig. 7 The chaotic attractor
from the Poincaré map of y
versus x , for μ = 0.2, B =
1.175 and ω = 0.92, as well
as the chosen area
(x ∈ [1.834, 2.044],
y ∈ [–0.249, 0.407]) for
using in the chaotic path
planning generator

With the aforementioned procedure a sequence of target points in the robot’s
workspace is produced.

4 Simulation Results

In literature there has been presented a great number of works on kinematic con-
trol of chaotic robots, which is based mainly on a typical differential motion with
two degrees of freedom, composed by two active, parallel, and independent wheels
and a third passive wheel. However, the proposed, in this work, robot’s path plan-
ning generator represents an interesting compromise of simplicity between control
and implementation. So, it could be adopted by many commercial robotic models,
because the proposed kinematic control model is very easy to be implemented not
only in differential motion robots (Fig. 8), in which the robot rotates around itself
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Fig. 8 The mobile robot
Khepera

followed by a linear displacement directly to the next position, but also in humanoid
robots (Fig. 9), which will have a rapid growth of interest in the upcoming decade.

Also, in the real world, robots move in spaces with boundaries like walls or obsta-
cles. Furthermore, many robots have sensors, like sonar or infrared devices, which
provide the capability to detect the presence of obstacles or even more the recogni-
tion of the searched objects or intruders. In this work, for a better understanding of
the behavior of the robot’s chaotic motion generator, we do not care about the kind
of robot (mobile or humanoid) and we assume that the robot works in a smooth state
space with boundaries and without any sensor.

Fig. 9 The humanoid robot
Kondo KHR-2HV
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So, in this Section the proposed robot’s kinematic control was numerically simu-
lated and the results are presented in details. For this reason the workspace coverage,
using the well-known coverage rate (C), which represents the effectiveness, as the
amount of the total surface covered by the robot, is used. The coverage rate (C) is
given by the following equation

C = 1

M

M∑
i=1

I (i) (5)

where, I (i) is the coverage situation for each cell [8]. This is defined by the following
equation

I (i) =
⎧⎨
⎩
1,when the cell i is covered

0,when the cell i is not covered
(6)

where, i = 1, 2, …, M . The robot’s workplace, as it is mentioned, is supposed to
be a square terrain with dimensions M = 30 × 30 = 900 in normalized unit cells.
Furthermore, a second interesting evaluation criterion is the coverage time of the
system, which is the total time for the system to cover the entire terrain.

The simulation starts from an arbitrary initial position, as the chosen (x0, y0) =
(15, 15) in this work, which does not play any crucial role in coverage rate because
the robot follows a specific sequence of target points. Following the procedure, which
was explained in details in the previous Section, produces this sequence.

In order to accomplish the goal of complete terrain coverage, the robot must move
in every region, covering systematically the entire workspace. The results for the first
5,000 of the produced target points are shown in Figs. 10, 11 and 12. Especially, in
Fig. 10 the distribution of the target points over the entire terrain can be observed.
So, the number of the 5,000 target points is enough to cover almost all the workspace
(only 12 cells have not been visited). A more descriptive diagram, of the chaotic
robot’s behavior, is Fig. 11. In this figure a colour scale map of the terrain’s cells
versus the times of visiting is shown. The majority of the cells have been visited
from 0 to 10 times in those 5,000 iterations. As a conclusion we may note the almost
uniform distribution of the visiting times on the robot’s workplace.

Also, in Fig. 12 the trajectory of the chaoticmobile robot, with the adopted discon-
tinuous motion control, for the specific number of planned points (5,000) is shown.
A very important feature is raised from this plot. The robot, when is moving from one
target point to the next, visits other terrain’s cell, possibly many times with different
direction. As a consequence all the cells have been visited by the robot. This feature
is crucial, especially, in a patrolling mission.

In Fig. 13, the coverage rate versus the number of target points, for the robot
with the proposed chaotic motion generator, is shown, starting from the above men-
tioned, initial position. From this diagram the coverage of almost the entire terrain
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Fig. 10 Workspace
coverage using the robot
with proposed chaotic
path-planning generator, for
the first 5,000 target points

Fig. 11 Colour scale map of
the workspace’s cells versus
the time of visiting

Fig. 12 The robot’s
trajectory evolution, after
5,000 path planned points,
with the adopted path
planning controller
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Fig. 13 Coverage rate
versus the number of
planned points, for the robot
with the proposed chaotic
path-planning generator, for
5,000 planned points

is confirmed. Furthermore, the curve in Fig. 13 has an exponential form which is
confirmed by the fitting procedure with Origin. This fitting led to the conclusion that
the produced curve satisfies the following exponential function

y = y0 − AeR0x (7)

where, y0 = 98.95123, A = 97.46218 and R0 = −0.00103 with R-Square equal to
0.99972.

Finally, in comparison with other similar works [39, 40, 69, 71, 72, 75, 76], this
one shows very satisfactory results concerning the coverage rate and the scanning
time. So, the abovementioned simulation results confirmed that the proposed chaotic
robot satisfies the three basic requirements of autonomous robot’s motion, the unpre-
dictability of the trajectory, the complete and fast scanning of robot’s workplace by
following an exponential function.

5 Conclusion

In this chapter, a chaotic path planning generator for autonomous robots, mobile
or humanoid, is presented. This generator is based on a controller that defines the
position goal in each step by imparting the chaotic behavior.

Validation tests based on numerical simulations of the robot’smotion control, con-
firm that the proposed method can obtain very satisfactory results in regard to unpre-
dictability and fast scanning of the robot’s workplace. So, the proposed approach has
several interesting features and advantages.

As it is mentioned, this strategy ensures high unpredictability of robot trajecto-
ries, resembling a non-planned motion from external observer’s point of view. The
complete and fast scanning of the terrain is confirmed from the simulation results.
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It is also important to mention, that the proposed strategy has an advantage over a
randomly planned motion, which is the deterministic nature of the chaotic control
law.

The proposed robot with the above mentioned features, such as unpredictability
and fast scanning of workplace, may have many interesting applications in var-
ious, industrial, civil and military activities. Floor-cleaning devices and military
autonomous robots for surveillance, patrolling or terrain exploration for explosives
may be some of the proposed chaotic robot applications.

Finally, the results of this chapter ensure that the application of chaotic systems,
in solutions for autonomous robots control strategies represents a very interesting
task for researchers of both scientific fields. Furthermore, the simulation results of
the proposed robot’s motion show that such strategy can be easily applied in real
robotic systems, many of which are commercially available. So, as a future work, an
experimental realization of the proposed motion controller will be studied.
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Nonlinear Observer Design for Chaotic
Systems

Sundarapandian Vaidyanathan

Abstract This work investigates the nonlinear observer design for chaotic systems.
Explicitly, we have applied Sundarapandian’s theorem (2002) for local exponential
observer design for nonlinear systems to design nonlinear observers for chaotic
systems with a single stable equilibrium point, viz. Wei-Wang system (2013) and
Kingni-Jafari system (2014). MATLAB simulations are provided to illustrate the
phase portraits and nonlinear observer design for the Wei-Wang and Kingni-Jafari
chaotic systems.

Keywords Nonlinear observers · Exponential observers · Observability · Chaotic
systems

1 Introduction

The observer design problem is to estimate the state of a control system when only
the plant output and control input are available for measurement. The problem of
designing observers for linear control systemswas first introduced and fully solved by
Luenberger [21]. The problem of designing observers for nonlinear control systems
was proposed by Thau [59]. Over the past three decades, several techniques have
been developed in the control systems literature to the construction of observers for
nonlinear control systems [5].

A necessary condition for the existence of a local exponential observer for nonlin-
ear control systems was obtained by Xia and Gao [99]. On the other hand, sufficient
conditions for nonlinear observers have been derived in the control literature from
an impressive variety of points of view. Kou ey al. [14] derived sufficient conditions
for the existence of local exponential observers using Lyapunov-like method. In [11,
15, 16, 98], suitable coordinate transformations were found under which a nonlin-
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ear control systems is transferred into a canonical form, where the observer design
is carried out. In [61], Tsinias derived sufficient Lyapunov-like conditions for the
existence of local asymptotic observers for nonlinear systems. A harmonic analysis
method was proposed in [8] for the synthesis of nonlinear observers.

A characterization of local exponential observers for nonlinear control systems
was first obtained by Sundarapandian [38]. In [38], necessary and sufficient condi-
tions were obtained for exponential observers for Lyapunov stable continuous-time
nonlinear systems and an exponential observer design was provided by Sundara-
pandian which generalizes the linear observer design of Luenberger [21] for linear
control systems. In [41], Sundarapandian obtained necessary and sufficient condi-
tions for exponential observers for Lyapunov stable discrete-time nonlinear systems
and also provided a formula for designing exponential observers for Lyapunov stable
discrete-time nonlinear systems. In [37], Sundarapandian derived new results for the
global observer design for nonlinear control systems.

The concept of nonlinear observers for nonlinear control systems was also
extended in many ways. In [39, 40], Sundarapandian derived new results charac-
terizing local exponential observers for nonlinear bifurcating systems. In [42, 43,
48, 49], Sundarapandian derived new results for the exponential observer design for
a general class of nonlinear systems with real parametric uncertainty. In [44–47],
Sundarapandian derived new results and characterizations for general observers for
nonlinear systems.

Chaotic systems are defined as nonlinear dynamical systems which are sensitive
to initial conditions, topologically mixing and with dense periodic orbits. Sensitivity
to initial conditions of chaotic systems is popularly known as the butterfly effect.
Small changes in an initial state will make a very large difference in the behavior
of the system at future states. Chaotic behaviour was suspected well over hundred
years ago in the study of three bodies problem by Henri Poincaré [4], but chaos was
experimentally established by Lorenz [19] only a few decades ago in the study of
3-D weather models.

Some classical paradigms of 3-D chaotic systems in the literature are Rössler
system [30], ACT system [1], Sprott systems [36], Chen system [9], Lü system [20],
Liu system [18], Cai system [6], Chen-Lee system [10], Tigan system [60], etc.

Many new chaotic systems have been discovered in the recent years such as Zhou
system [100], Zhu system [101], Li system [17], Wei-Yang system [97], Sundara-
pandian systems [51, 56], Vaidyanathan systems [68, 69, 71–74, 76, 78, 81, 92,
95], Pehlivan system [24], etc.

Synchronizationof chaotic systems is a phenomenon that occurswhen twoormore
chaotic systems are coupled or when a chaotic system drives another chaotic system.
Because of the butterfly effectwhich causes exponential divergence of the trajectories
of two identical chaotic systems started with nearly the same initial conditions, the
synchronization of chaotic systems is a challenging research problem in the chaos
literature [2, 3].

Major works on synchronization of chaotic systems deal with the complete syn-
chronization of a pair of chaotic systems called the master and slave systems. The
design goal of the complete synchronization is to apply the output of the master
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system to control the slave system so that the output of the slave system tracks the
output of the master system asymptotically with time.

Pecora and Carroll pioneered the research on synchronization of chaotic systems
with their seminal papers [7, 23]. The active control method [12, 31, 32, 50, 55,
62, 66, 83, 84, 87] is typically used when the system parameters are available for
measurement. Adaptive control method [33–35, 52–54, 64, 70, 77, 82, 85, 86, 91,
94] is typically used when some or all the system parameters are not available for
measurement and estimates for the uncertain parameters of the systems.

Backstepping control method [25–29, 58, 88, 93] is also used for the synchro-
nization of chaotic systems, which is a recursive method for stabilizing the origin
of a control system in strict-feedback form. Another popular method for the syn-
chronization of chaotic systems is the sliding mode control method [57, 63, 65, 67,
75, 79, 80, 89, 90], which is a nonlinear control method that alters the dynamics of
a nonlinear system by application of a discontinuous control signal that forces the
system to “slide” along a cross-section of the system’s normal behavior.

The control and synchronization of chaotic systems is based on the full knowledge
of the states of the systems. When some of the chaotic systems are not available for
measurement, exponential observer design for chaotic systems can be used in lieu
of the states of the systems Thus, observer design for chaotic systems has important
applications in the control literature.

This work is organized as follows. Section2 reviews the definition and results
of local exponential observers for nonlinear systems. Section3 details the dynamic
analysis and phase portraits of the Wei-Wang chaotic system [96]. Section4 details
the nonlinear observer design for the Wei-Wang chaotic system. Section5 details
the dynamic analysis and phase portraits of the Kingni-Jafari chaotic system [13].
Section6 details the nonlinear observer design for the Kingni-Jafari chaotic system.
Section7 provides the conclusions of this work.

2 Review of Nonlinear Observer Design for Nonlinear
Systems

By the concept of a state observer for a nonlinear system, it is meant that from the
observation of certain states of the system considered as outputs or indicators, it is
desired to estimate the state of thewhole systemas a function of time.Mathematically,
observers for nonlinear systems are defined as follows.

Consider the nonlinear system described by

ẋ = f (x) (1a)

y = h(x) (1b)

where x ∈ Rn is the state and y ∈ Rp is the output.
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It is assumed that f : Rn → Rn, h : Rn → Rp are C1 mappings and for some
x� ∈ Rn, the following hold:

f (x�) = 0, h(x�) = 0 (2)

Remark 1 We note that the solutions x� of f (x) = 0 are called the equilibrium points
of the plant dynamics (1a). Also, the assumption h(x�) = 0 holds without any loss
of generality. Indeed, if h(x�) �= 0, then we may define a new output function as

ψ(x) = h(x) − h(x�) (3)

and it is easy to see that ψ(x�) = 0. �

The linearization of the nonlinear system (1a) and (1b) at x = x� is given by

ẋ = Ax (4a)

y = Cx (4b)

where

A =
[

∂f

∂x

]
x=x�

and C =
[
∂h

∂x

]
x=x�

(5)

Definition 1 ([38]) A C1 dynamical system defined by

ż = g(z, y), (z ∈ Rn) (6)

is called a local asymptotic (respectively, exponential) observer for the nonlinear
system (1a)–(1b) if the following two requirements are satisfied:

(i) If z(0) = x(0), then z(t) = x(t), for all t ≥ 0.
(ii) There exists a neighbourhood V of the equilibrium x� of Rn such that for all

z(0), x(0) ∈ V , the estimation error

e(t) = z(t) − x(t) (7)

decays asymptotically (respectively, exponentially) to zero as t → ∞. �

Theorem 1 ([38]) Suppose that the nonlinear system dynamics (1a) is Lyapunov
stable at the equilibrium x = x� and that there exists a matrix K such that A − KC
is Hurwitz. Then the dynamical system defined by

ż = f (z) + K[y − h(z)] (8)

is a local exponential observer for the nonlinear system (1a)–(1b). �
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Remark 2 The estimation error is governed by the dynamics

ė = f (x + e) − f (x) − K[h(x + e) − h(x)] (9)

Linearizing the error dynamics (9) at x = x�, we get the linear system

ė = Ee, where E = A − KC (10)

If (C, A) is observable, then the eigenvalues of E = A − KC can be arbitrarily
placed in the complex plane [22] and thus a local exponential observer of the form
(8) can always be found such that the transient response of the error decays quickly
with any desired speed of convergence. �

3 Dynamic Analysis of the Wei-Wang Chaotic System

The Wei-Wang chaotic system [96] is described by the 3-D dynamics

ẋ1 = ax1 + x2x3
ẋ2 = −x2 + x21
ẋ3 = 1 − 4x1

(11)

where a is a constant, positive parameter.
The system (11) exhibits a chaotic attractor when a = 0.03.
For numerical simulations, we take the initial conditions as

x1(0) = −0.6, x2(0) = 0.9, x3(0) = −1.7 (12)

Figure1 shows the 3-D phase portrait of the Wei-Wang chaotic system (11).
Figures2, 3, and 4 show the 2-D projections of the Wei-Wang chaotic system (11)
on the (x1, x2), (x2, x3) and (x1, x3) coordinate planes respectively.

It is known that the Wei-Wang chaotic system (11) has a stable equilibrium at

x� =
⎡
⎣−0.6

0.9
−1.7

⎤
⎦ (13)

Also, the Lyapunov exponents of the Wei-Wang chaotic system (11) for the para-
meter value a = 0.03 and for the initial values (12) are numerically found as

L1 = 0.0340, L2 = 0, L3 = −1.0002 (14)



24 S. Vaidyanathan

−1
−0.5

0
0.5

1
1.5

2

0

0.5

1

1.5
−3

−2

−1

0

1

2

3

4

5

x1

x2

x 3

Fig. 1 3-D phase portrait of the Wei-Wang chaotic system

−1 −0.5 0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

x1

x 2

Fig. 2 2-D projection of the Wei-Wang chaotic system on the (x1, x2) plane



Nonlinear Observer Design for Chaotic Systems 25

0 0.2 0.4 0.6 0.8 1 1.2 1.4
−3

−2

−1

0

1

2

3

4

5

x2

x 3

Fig. 3 2-D projection of the Wei-Wang chaotic system on the (x2, x3) plane

−1 −0.5 0 0.5 1 1.5 2
−3

−2

−1

0

1

2

3

4

5

x1

x 3

Fig. 4 2-D projection of the Wei-Wang chaotic system on the (x1, x3) plane



26 S. Vaidyanathan

Thus, the Kaplan–Yorke dimension of theWei-Wang chaotic system (11) is found
as

DKY = 2 + L1 + L2

|L3| = 2.0340 (15)

4 Nonlinear Observer Design for the Wei-Wang
Chaotic System

This section investigates the problem of nonlinear observer design for theWei-Wang
chaotic system described by the dynamics

ẋ1 = ax1 + x2x3
ẋ2 = −x2 + x21
ẋ3 = 1 − 4x1

(16)

where a is a positive parameter.
The system (16) is chaotic when a = 0.03. In the chaotic case, the system (16)

has a stable equilibrium point

x� =
⎡
⎣−0.6

0.9
−1.7

⎤
⎦ (17)

We consider the output function as

y = x1 (18)

The linearization of the plant dynamics (16) at x = x� is given by

A = ∂f

∂x

(
x�

) =
⎡
⎣ a x�

3 x�
2

2x�
1 −1 0

−4 0 0

⎤
⎦ =

⎡
⎣ 0.03 −1.7 0.9

−1.2 −1 0
−4 0 0

⎤
⎦ (19)

Also, the linearization of the output function (18) at x = x� is given by

C = ∂h

∂x

(
x�

) = [
1 0 0

]
(20)

From (19) and (20), the observability matrix for the Wei-Wang system (16) with
the output (18) is given by

O(C, A) =
⎡
⎣ C

CA
CA2

⎤
⎦ =

⎡
⎣ 1 0 0

0.03 −1.7 0.9
−1.5591 1.649 0.027

⎤
⎦ (21)
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We find that
det[O(C, A)] = −1.53 �= 0 (22)

which shows that O(C, A) has full rank. Thus, (C, A) is completely observable [22].
Since the equilibrium x = x� is Lyapunov stable, by Sundarapandian’s theorem

(Theorem 1), we obtain the following result, which gives a construction of nonlinear
observer for the Wei-Wang chaotic system.

Theorem 2 The Wei-Wang chaotic system (16) with the output (18) has a local
exponential observer of the form

⎡
⎣ ż1

ż2
ż3

⎤
⎦ =

⎡
⎣ az1 + z2z3

−z2 + z21
1 − 4z1

⎤
⎦ + K

[
y − z1

]
(23)

where K is a matrix chosen such that A − KC is Hurwitz. Since (C, A) is observable,
a gain matrix K can be found such that the error matrix E = A − KC has arbitrarily
assigned set of stable eigenvalues. �

For numerical simulations, we find an observer gain matrix K so that

eig(A − KC) = {−6,−6,−6} (24)

Using MATLAB, we get

K =
⎡
⎣ 17.0300

72.3294
236.0000

⎤
⎦ (25)

Thus, a local exponential observer for the Wei-Wang system (16) is given by

⎡
⎣ ż1

ż2
ż3

⎤
⎦ =

⎡
⎣ az1 + z2z3

−z2 + z21
1 − 4z1

⎤
⎦ +

⎡
⎣ 17.0300

72.3294
236.0000

⎤
⎦[

y − z1
]

(26)

where a = 0.03 (as in the chaotic case).
For numerical simulations, the initial conditions are chosen as

x(0) =
⎡
⎣ 1.5
2.4
1.8

⎤
⎦ and z(0) =

⎡
⎣2.6
4.7
2.9

⎤
⎦ (27)

Figures5, 6 and 7 depict the exponential convergence of the observer states
z1, z2, z3 of the system (26) to the plant states x1, x2, x3 of the Wei-Wang system
(16).

Figure8 depicts the exponential convergence of the estimation errors e1, e2, e3.
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5 Dynamic Analysis of the Kingni-Jafari Chaotic System

The Kingni-Jafari chaotic system [13] is described by the 3-D dynamics

ẋ1 = −x3
ẋ2 = −x1 − x3
ẋ3 = 3x1 − ax2 + x21 − x23 − x2x3 + b

(28)

where a, b are constant, positive parameters.
The system (28) exhibits a chaotic attractor when a = 1.3 and b = 1.01.
For numerical simulations, we take the initial conditions as

x1(0) = 0.1, x2(0) = 0.1, x3(0) = 0.1 (29)

Figure9 shows the 3-D phase portrait of the Kingni-Jafari chaotic system (28).
Figures10, 11 and 12 show the 2-D projections of the Kingni-Jafari chaotic system
(28) on the (x1, x2), (x2, x3) and (x1, x3) coordinate planes respectively.
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It is known that the Kingni-Jafari chaotic system (28) has a stable equilibrium at

x� =
⎡
⎣ 0

b/a
0

⎤
⎦ =

⎡
⎣ 0
0.7769

0

⎤
⎦ (30)

Also, the Lyapunov exponents of the Kingni-Jafari chaotic system (28) for the
parameter values a = 1.3, b = 1.01 and for the initial values (29) are numerically
found as

L1 = 0.0933, L2 = 0, L3 = −1.2969 (31)

Thus, the Kaplan–Yorke dimension of the Kingni-Jafari chaotic system (28) is
found as

DKY = 2 + L1 + L2

|L3| = 2.0719 (32)

6 Nonlinear Observer Design for the Kingni-Jafari
Chaotic System

This section investigates the problem of nonlinear observer design for the Kingni-
Jafari chaotic system described by the dynamics
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ẋ1 = −x3
ẋ2 = −x1 − x3
ẋ3 = 3x1 − ax2 + x21 − x23 − x2x3 + b

(33)

where a is a positive parameter.
The system (33) is chaotic when a = 1.3 and b = 1.01. In the chaotic case, the

system (33) has a stable equilibrium point

x� =
⎡
⎣ 0
0.7769

0

⎤
⎦ (34)

We consider the output function as

y = x1 (35)

The linearization of the plant dynamics (33) at x = x� is given by

A = ∂f

∂x

(
x�

) =
⎡
⎣ a x�

3 x�
2

2x�
1 −1 0

−4 0 0

⎤
⎦ =

⎡
⎣ 0 0 −1

−1 0 −1
3 −1.3 −0.7769

⎤
⎦ (36)

Also, the linearization of the output function (35) at x = x� is given by

C = ∂h

∂x

(
x�

) = [
1 0 0

]
(37)

From (36) and (37), the observability matrix for the Kingni-Jafari system (33)
with the output (35) is given by

O(C, A) =
⎡
⎣ C

CA
CA2

⎤
⎦ =

⎡
⎣ 1 0 0

0 0 −1
−3 1.3 0.7769

⎤
⎦ (38)

We find that
det[O(C, A)] = 1.3 �= 0 (39)

which shows that O(C, A) has full rank. Thus, (C, A) is completely observable [22].
Since the equilibrium x = x� is Lyapunov stable, by Sundarapandian’s theorem

(Theorem 1), we obtain the following result, which gives a construction of nonlinear
observer for the Kingni-Jafari chaotic system.
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Theorem 3 The Kingni-Jafari chaotic system (33) with the output (35) has a local
exponential observer of the form

⎡
⎣ ż1

ż2
ż3

⎤
⎦ =

⎡
⎣ −z3

−z1 − z3
3z1 − az2 + z21 − z23 − z2z3 + b

⎤
⎦ + K

[
y − z1

]
(40)

where K is a matrix chosen such that A − KC is Hurwitz. Since (C, A) is observable,
a gain matrix K can be found such that the error matrix E = A − KC has arbitrarily
assigned set of stable eigenvalues. �

For numerical simulations, we find an observer gain matrix K so that

eig(A − KC) = {−6,−6,−6} (41)

Using MATLAB, we get

K =
⎡
⎣ 17.2231

182.3769
−92.9194

⎤
⎦ (42)

Thus, a local exponential observer for the Wei-Wang system (16) is given by

⎡
⎣ ż1

ż2
ż3

⎤
⎦ =

⎡
⎣ −z3

−z1 − z3
3z1 − az2 + z21 − z23 − z2z3 + b

⎤
⎦ +

⎡
⎣ 17.2231

182.3769
−92.9194

⎤
⎦ [

y − z1
]

(43)

where a = 1.3 and b = 1.01 (as in the chaotic case).
For numerical simulations, the initial conditions are chosen as

x(0) =
⎡
⎣ 3.7
5.2
2.8

⎤
⎦ and z(0) =

⎡
⎣ 1.6
2.4
1.9

⎤
⎦ (44)

Figures13, 14 and 15 depict the exponential convergence of the observer states
z1, z2, z3 of the system (43) to the plant states x1, x2, x3 of the Kingni-Jafari system
(33).

Figure16 depicts the exponential convergence of the estimation errors e1, e2, e3.
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7 Conclusions

For many real world problems of chaotic systems, an efficient monitoring system
is of great importance. In this work, the methodology based on Sundarapandian’s
theorem (2002) for exponential observer design is applied for the monitoring of
chaotic systems with stable equilibria such as Wei-Wang system (2013) and Kingni-
Jafari system (2014). MATLAB simulations have been shown to illustrate the phase
portraits and nonlinear observer design for the Wei-Wang and Kingni-Jafari chaotic
systems.
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Nonlinear Observer Design for Population
Biology Systems

Sundarapandian Vaidyanathan

Abstract This work investigates the nonlinear observer design for Lotka–Volterra
population models. Explicitly, Sundarapandian’s theorem (2002) for local exponen-
tial observer design for nonlinear systems is used to solve the problem of observer
design for Lotka–Volterra systems. Predator-prey population models for two species
and three species are studied and nonlinear observers for these multi-species models
are constructed by applying Sundarapandian’s theorem (2002) and using only the
plant dynamics equations of the Lotka–Volterra models and the prey population sizes
as the output functions. Numerical examples andMATLAB simulations are provided
to demonstrate the nonlinear observer design for the multi-species Lotka–Volterra
models.

Keywords Lotka–Volterra models · Nonlinear observers · Observability ·
Ecosystems

1 Introduction

Many control system designs are based on state vector feedback, where the input
to the system is a function only of the current state vector. In many situations, the
system state vector is not readily available for measurement. In these situations, it
is not possible to evaluate the control function readily with the state vector, and
hence either the control scheme must be abandoned, or a reasonable substitute for
the state vector must be found. An observer for a plant is a system which performs
the reconstruction of the state vector from the available inputs.
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The problem of designing observers for linear control systems was first intro-
duced and fully solved by Luenberger [12]. The problem of designing observers for
nonlinear control systems was proposed by Thau [27]. Over the past three decades,
significant attention has been paid in the control systems literature on the construction
of observers for nonlinear control systems [1].

A necessary condition for the existence of a local exponential observer for nonlin-
ear control systems was obtained by Xia and Gao [32]. On the other hand, sufficient
conditions for nonlinear observers have been derived in the control literature from an
impressive variety of points of view. Kou et al. [6] derived sufficient conditions for
the existence of local exponential observers using Lyapunov-like method. In [4, 7, 8,
31], suitable coordinate transformations were found under which a nonlinear control
systems is transferred into a canonical form, where the observer design is carried
out. In [28], Tsinias derived sufficient Lyapunov-like conditions for the existence of
local asymptotic observers for nonlinear systems. A harmonic analysis method was
proposed in [2] for the synthesis of nonlinear observers.

A characterization of local exponential observers for nonlinear control systems
was first obtained by Sundarapandian [15]. In [15], necessary and sufficient condi-
tions were obtained for exponential observers for Lyapunov stable continuous-time
nonlinear systems and an exponential observer design was provided by Sundara-
pandian which generalizes the linear observer design of Luenberger [12] for linear
control systems. In [18], Sundarapandian obtained necessary and sufficient condi-
tions for exponential observers for Lyapunov stable discrete-time nonlinear systems
and also provided a formula for designing exponential observers for Lyapunov stable
discrete-time nonlinear systems. In [14], Sundarapandian derived new results for the
global observer design for nonlinear control systems.

The concept of nonlinear observers for nonlinear control systems was also
extended in many ways. In [16, 17], Sundarapandian derived new results charac-
terizing local exponential observers for nonlinear bifurcating systems. In [19, 20,
25, 26], Sundarapandian derived new results for the exponential observer design for
a general class of nonlinear systems with real parametric uncertainty. In [21–24],
Sundarapandian derived new results and characterizations for general observers for
nonlinear systems.

This work discusses the nonlinear observer design for Lotka–Volterra population
models. An important classical model of nonlinear dynamical systems is the two
species population dynamics model, which was discovered independently by an
Italianmathematician, VitoVolterra [30] and anAmerican biophysicist, Alfred Lotka
[11]. Recently, there has been significant interest in the application of mathematical
systems theory to population biology systems [3, 9, 10, 29].

This work is organized as follows. Section2 reviews the definition and results
of local exponential observers for nonlinear systems. Section3 details the design of
local exponential observers for two species Lotka–Volterra systems. Section4 details
the design of local exponential observers for three species Lotka–Volterra systems.
Section5 provides the conclusions of this work.
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2 Review of Nonlinear Observer Design
for Nonlinear Systems

By the concept of a state observer for a nonlinear system, it is meant that from the
observation of certain states of the system considered as outputs or indicators, it is
desired to estimate the state of thewhole systemas a function of time.Mathematically,
observers for nonlinear systems are defined as follows.

Consider the nonlinear system described by

ẋ = f (x) (1a)

y = h(x) (1b)

where x ∈ Rn is the state and y ∈ Rp is the output.
It is assumed that f : Rn → Rn , h : Rn → Rp are C1 mappings and for some

x� ∈ Rn , the following hold:

f (x�) = 0, h(x�) = 0 (2)

Remark 1 The solutions x� of f (x) = 0 are called the equilibrium points of the plant
dynamics (1a). Also, the assumption h(x�) = 0 holds without any loss of generality.
Indeed, if h(x�) �= 0, then we can define a new output function as

ψ(x) = h(x) − h(x�) (3)

and it is easy to see that ψ(x�) = 0. �

The linearization of the nonlinear system (1a) and (1b) at x = x� is given by

ẋ = Ax (4a)

y = Cx (4b)

where

A =
[
∂ f

∂x

]
x=x�

and C =
[

∂h

∂x

]
x=x�

(5)

Definition 1 ([15]) A C1 dynamical system defined by

ż = g(z, y), (z ∈ Rn) (6)

is called a local asymptotic (respectively, exponential) observer for the nonlinear
system (1a) and (1b) if the following two requirements are satisfied:
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(i) If z(0) = x(0), then z(t) = x(t), for all t ≥ 0.
(ii) There exists a neighbourhood V of the equilibrium x� of Rn such that for all

z(0), x(0) ∈ V , the estimation error

e(t) = z(t) − x(t) (7)

decays asymptotically (respectively, exponentially) to zero as t → ∞. �
Theorem 1 ([15]) Suppose that the nonlinear system dynamics (1a) is Lyapunov
stable at the equilibrium x = x� and that there exists a matrix K such that A − K C
is Hurwitz. Then the dynamical system defined by

ż = f (z) + K [y − h(z)] (8)

is a local exponential observer for the nonlinear system (1a) and (1b). �
Remark 2 The estimation error is governed by the dynamics

ė = f (x + e) − f (x) − K [h(x + e) − h(x)] (9)

Linearizing the error dynamics (9) at x = x�, we get the linear system

ė = Ee, where E = A − K C (10)

If (C, A) is observable, then the eigenvalues of E = A − K C can be arbitrarily
placed in the complex plane and thus a local exponential observer of the form (8)
can always be found such that the transient response of the error decays quickly with
any desired speed of convergence. �

3 Nonlinear Observer Design for Two Species
Lotka–Volterra Systems

In the 1920s, the Italian mathematician, Vito Volterra [30] proposed a model to
describe the population dynamics of two interacting species, a predator and its prey.
With this model, Volterra hoped to explain the observed increase in predator fish and
corresponding decrease in the prey fish in the Adriatic Sea during the World War I.

Independently, the American biophysicist, Alfred Lotka [11] discovered the very
same dynamical system to describe a hypothetical chemical reaction in which the
chemical concentrations oscillate. Collectively, the two species interacting popula-
tion dynamicsmodel is referred to as Lotka–Volterra system or predator–prey system.

The two species Lotka–Volterra system is described by the following system of
differential equations

ẋ1 = x1(a − bx2)
ẋ2 = x2(−c + dx1)

(11)
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where x2(t) and x1(t) represent, respectively, the predator and prey population as
functions of time. The parameters a, b, c and d are all positive, where a represents
the natural growth rate of the prey in the absence of predators, b represents the effect
of predator on the prey, c represents the natural death rate of the predator in the
absence of prey and d represents the efficiency and propagation rate of the predator
in the presence of prey.

The equilibrium points of the Lotka–Volterra system (11) are obtained by setting
ẋ1 = 0, ẋ2 = 0 and solving the resulting nonlinear equations for x1 and x2.

A simple calculation shows that the system (11) has two equilibrium points, viz.

0 =
[
0
0

]
and x� =

[ c
d
a
b

]
(12)

Using Lyapunov stability theory [5], it can be easily shown that the equilibrium
x = 0 is unstable, while the equilibrium x = x� is Lyapunov stable.

Figure1 depicts the state orbits of the two species Lotka–Volterra system (11)
when a = b = c = d = 0.5.

Since only the stable equilibrium x = x� pertains to problems of practical interest,
we consider only the problem of nonlinear observer design for the two species Lotka–
Volterra system (11) near x = x�.

Next, we suppose that the prey population is given as the output function of the
Lotka–Volterra system (11), i.e.

y = x1 − x�
1 (13)

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

x
1

x 2

Fig. 1 State orbits of the two species Lotka–Volterra system
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The linearization of the plant dynamics (11) at x = x� is given by

A = ∂ f

∂x

(
x�

) =
[
0 − bc

d
ad
b 0

]
(14)

Also, the linearization of the output function (13) at x = x� is given by

C = ∂h

∂x

(
x�

) = [
1 0

]
(15)

From (14) and (15), the observability matrix for the Lotka–Volterra system (11)
with the output (13) is given by

O(C, A) =
[

C
C A

]
=

[
1 0
0 − bc

d

]
(16)

which has full rank since a, b, c, d > 0. Thus, (C, A) is completely observable [13].
Since the equilibrium x = x� is Lyapunov stable, by Sundarapandian’s theorem

(Theorem1), we obtain the following result, which gives a construction of nonlinear
observer for the two species Lotka–Volterra system.

Theorem 2 The two species Lotka–Volterra system (11) with the output (13) has a
local exponential observer of the form

[
ż1
ż2

]
=

[
z1(a − bz2)

z2(−c + dz1)

]
+ K

[
y − z1 + x�

1

]
(17)

where K is a matrix chosen such that A − K C is Hurwitz. Since (C, A) is observable,
a gain matrix K can be found such that the error matrix E = A − K C has arbitrarily
assigned set of stable eigenvalues. �

Example 1 Consider a two species Lotka–Volterra system given by the dynamics

ẋ1 = x1(2 − 0.4x2)
ẋ2 = x2(−2 + 0.5x1)

(18)

which has the positive equilibrium x� =
[
4
5

]
.

The output function is taken as the prey population

y = x1 − x�
1 = x1 − 4 (19)

The linearization of the system dynamics (18) at x = x� is

A =
[
0 − bc

d
ad
b 0

]
=

[
0 −1.6
2.5 0

]
(20)
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Since (C, A) is observable, the eigenvalues of the error matrix E = A − K C can
be placed arbitrarily. Using the Ackermann’s formula [13] for the observability gain
matrix, we can choose K so that the error matrix E = A − K C has the eigenvalues
{−4,−4}.

A simple calculation using MATLAB yields K =
[

8.0
−7.5

]
.

By Theorem2, a local exponential observer for the given two species Lotka–
Volterra system (18) and (19) around x� is given by

[
ż1
ż2

]
=

[
z1(2 − 0.4z2)

z2(−2 + 0.5z1)

]
+

[
8.0

−7.5

] [
y − z1 + 4

]
(21)

For simulations, the initial conditions are chosen as x(0) =
[
3
8

]
and z(0) =

[
6
2

]
.

Figures2 and 3 depict the exponential convergence of the observer states z1 and
z2 of the system (21) to the plant states x1 and x2 of the Lotka–Volterra system (18).

Figure4 depicts the exponential convergence of the estimation errors e1, e2.
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4 Nonlinear Observer Design for Three Species
Lotka–Volterra Systems

This section investigates the problem of nonlinear observer design for three species
Lotka–Volterra predator-prey system where the lowest level prey x1 is preyed upon
by a mid-level species x2, which is, in turn, preyed upon by a top-level species x3.
Typical examples of such three species Lotka–Volterra ecosystems are mouse-snake-
owl, grass-hare-lynx and worm-robin-falcon ecosystems.

The three species Lotka–Volterra system is described by the following system of
differential equations

ẋ1 = x1(a − bx2)
ẋ2 = x2(−c + dx1 − αx3)
ẋ3 = x3(− f + gx2)

(22)

where the parameters a, b, c, d, α, f, g > 0.
A simple calculation shows that the three species Lotka–Volterra system (22) has

two equilibrium points, viz.

0 =
⎡
⎣0
0
0

⎤
⎦ and x� =

⎡
⎣

c
d
a
b
0

⎤
⎦ (23)

Using Lyapunov stability theory [5], it can be easily shown that the equilibrium
x = 0 is unstable,while the equilibrium x = x� is Lyapunov stable under the assump-
tion ga < f b.

Figure5 depicts the state orbits of the three species Lotka–Volterra system (22)
when a = 2, b = 0.5, c = 1, d = 0.8, f = 4, g = 0.5, α = 1.
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Since only the stable equilibrium x = x� pertains to problems of practical interest,
we consider only the problem of nonlinear observer design for the three species
Lotka–Volterra system (22) near x = x�.

Next, we suppose that the prey population is given as the output function of the
Lotka–Volterra system (22), i.e.

y = x1 − x�
1 (24)

The linearization of the plant dynamics (22) at x = x� is given by

A = ∂ f

∂x

(
x�

) =
⎡
⎣ 0 − bc

d 0
ad
b 0 −αa

b
0 0 − f + ga

b

⎤
⎦ (25)

Also, the linearization of the output function (24) at x = x� is given by

C = ∂h

∂x

(
x�

) = [
1 0 0

]
(26)

From (25) and (26), the observability matrix for the Lotka–Volterra system (22)
with the output (24) is given by

O(C, A) =
⎡
⎣ C

C A
C A2

⎤
⎦ =

⎡
⎣ 1 0 0

0 − bc
d 0

−ac 0 αac
d

⎤
⎦ (27)

We find that

det[O(C, A)] = −αabc2

d2
�= 0 (28)

which shows that O(C, A) has full rank. Thus, (C, A) is completely observable [13].
Since the equilibrium x = x� is Lyapunov stable, by Sundarapandian’s theorem

(Theorem1), we obtain the following result, which gives a construction of nonlinear
observer for the three species Lotka–Volterra system.

Theorem 3 Suppose that ga < f b. Then the three species Lotka–Volterra system
(22) with the output (24) has a local exponential observer of the form

⎡
⎣ ż1

ż2
ż3

⎤
⎦ =

⎡
⎣ z1(a − bz2)

z2(−c + dz1 − αz3)
z3(− f + gz2)

⎤
⎦ + K

[
y − z1 + x�

1

]
(29)

where K is a matrix chosen such that A − K C is Hurwitz. Since (C, A) is observable,
a gain matrix K can be found such that the error matrix E = A − K C has arbitrarily
assigned set of stable eigenvalues. �
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Example 2 Consider a three species Lotka–Volterra system given by the dynamics

ẋ1 = x1(2 − 0.5x2)
ẋ2 = x2(−1 + 0.8x1 − x3)
ẋ3 = x3(−4 + 0.5x2)

(30)

which has the non-trivial equilibrium x� =
⎡
⎣1.25

4
0

⎤
⎦.

The output function is taken as the prey population

y = x1 − x�
1 = x1 − 1.25 (31)

The linearization of the system dynamics (30) at x = x� is

A =
⎡
⎣ 0 − bc

d 0
ad
b 0 −αa

b
0 0 − f + ga

b

⎤
⎦ =

⎡
⎣ 0 −0.625 0
3.2 0 −4
0 0 −2

⎤
⎦ (32)

Since (C, A) is observable, the eigenvalues of the error matrix E = A − K C can
be placed arbitrarily. Using the Ackermann’s formula [13] for the observability gain
matrix, we can choose K so that the error matrix E = A − K C has the eigenvalues
{−4,−4,−4}.

A simple calculation using MATLAB yields K =
⎡
⎣ 10.0

−41.6
3.2

⎤
⎦ .

By Theorem3, a local exponential observer for the given three species Lotka–
Volterra system (30) and (31) around x� is given by

⎡
⎣ ż1

ż2
ż3

⎤
⎦ =

⎡
⎣ z1(2 − 0.5z2)

z2(−1 + 0.8z1 − z3)
z3(−4 + 0.5z2)

⎤
⎦ +

⎡
⎣ 10.0

−41.6
3.2

⎤
⎦ [

y − z1 + 1.25
]

(33)

For simulations, the initial conditions are chosen as

x(0) =
⎡
⎣ 3
12
4

⎤
⎦ and z(0) =

⎡
⎣ 7
2
8

⎤
⎦ (34)

Figures6, 7 and 8 depict the exponential convergence of the observer states
z1, z2, z3 of the system (33) to the plant states x1, x2, x3 of the Lotka–Volterra system
(30).

Figure9 depicts the exponential convergence of the estimation errors e1, e2, e3.
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5 Conclusions

For many real world problems of population and conservation ecology, an efficient
monitoring system is of great importance. In this work, the methodology based on
Sundarapandian’s theorem (2002) for exponential observer design is applied for
the monitoring of two species and three species Lotka–Volterra population systems.
Under the condition of stable coexistence of all the species, an exponential observer is
constructed near a non-trivial equilibrium of the Lotka–Volterra population ecology
system for both two species and three species Lotka–Volterra population systems
using Sundarapandian’s theorem (2002). Numerical examples have been illustrated
in detail for the nonlinear observer design of both two species and three species
Lotka–Volterra population systems. As a future work, nonlinear observer design for
four species and five species Lotka–Volterra population systemsmay be investigated.
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Output Regulation of Vaidyanathan 3-D Jerk
Chaotic System

Sundarapandian Vaidyanathan

Abstract This paper investigates the problem of output regulation of the
Vaidyanathan 3-D jerk chaotic system (2014). Explicitly, state feedback control laws
to regulate the output of the Vaidyanathan jerk chaotic system have been derived
so as to track the constant reference signals as well as to track periodic reference
signals. The control laws are derived using the regulator equations of C.I. Byrnes
and A. Isidori (1990), who solved the problem of output regulation of nonlinear
systems involving neutrally stable exosystem dynamics. The output regulation of
the Vaidyanathan jerk chaotic system has important applications in Electrical and
Communication Engineering. Numerical simulations using MATLAB are shown to
illustrate the phase portraits of the Vaidyanathan jerk chaotic system and the output
regulation results for the Vaidyanathan jerk chaotic system.

Keywords Chaos · Chaotic systems · Output regulation · Nonlinear control sys-
tems · Feedback stabilization

1 Introduction

Output regulation of control systems is one of the very important problems in control
systems theory. Basically, the output regulation problem is to control a fixed linear
or nonlinear plant in order to have its output tracking reference signals produced by
some external generator (the exosystem).

For linear control systems, the output regulation problem has been solved by
Francis and Wonham [12]. For nonlinear control systems, the output regulation
problem has been solved by Byrnes and Isidori [5] generalizing the internal model
principle obtained by Francis and Wonham [12]. Byrnes and Isidori [5] have made
an important assumption in their work which demands that the exosystem dynam-
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ics generating reference and/or disturbance signals is a neutrally stable system
(Lyapunov stable in both forward and backward time). The class of exosystem sig-
nals includes the important particular cases of constant reference signals as well as
sinusoidal reference signals. Using Centre Manifold Theory [7], Byrnes and Isidori
have derived regulator equations, which completely characterize the solution of the
output regulation problem of nonlinear control systems.

The output regulation problem for linear and nonlinear control systems has been
the focus of many studies in recent decades [48]. In [21], Mahmoud and Khalil
obtained results on the asymptotic regulation of minimum phase nonlinear systems
using output feedback. In [13], Fridman solved the output regulation problem for
nonlinear control systems with delay using centre manifold theory [7]. In [11], Chen
and Huang obtained results on the robust output regulation for output feedback
systems with nonlinear exosystems. In [18], Liu and Huang obtained results on the
global robust output regulation problem for lower triangular nonlinear systems with
unknown control direction. In [88], Yang and Huang obtained new results on the
global robust output regulation problem for nonlinear plants subject to nonlinear
exosystems.

In [14], Immonen obtained results on the practical output regulation for bounded
linear infinite-dimensional state space systems. In [23], Pavlov, Van de Wouw
and Nijimeijer obtained results on the global nonlinear output regulation using
convergence-based controller design. In [87], Xi and Ding obtained results on the
global adaptive output regulation of a class of nonlinear systems with nonlinear
exosystems. In [37], Serrani and Isidori obtained results on the global robust output
regulation problem for a class of nonlinear systems.

In [39], Sundarapandian obtained results for the output regulation of the Lorenz
attractor. In [52],Vaidyanathanobtained results for the output regulationof the unified
chaotic system. In [51], Vaidyanathan derived results for the output regulation of the
Arneodo-Coullet chaotic system. In [56], Vaidyanathan derived results for the output
regulation of the Liu chaotic system.

Chaotic systems are defined as nonlinear dynamical systems which are sensitive
to initial conditions, topologically mixing and with dense periodic orbits. Sensitivity
to initial conditions of chaotic systems is popularly known as the butterfly effect.
Small changes in an initial state will make a very large difference in the behavior
of the system at future states. Chaotic behaviour was suspected well over hundred
years ago in the study of three bodies problem by Henri Poincaré [4], but chaos was
experimentally established by E.N. Lorenz [19] only a few decades ago in the study
of 3-D weather models.

Some classical paradigms of 3-D chaotic systems in the literature are Rössler
system [31], ACT system [1], Sprott systems [38], Chen system [9], Lü system [20],
Liu system [17], Cai system [6], Chen-Lee system [10], Tigan system [49], etc.

Many new chaotic systems have been discovered in the recent years such as Zhou
system [89], Zhu system [90], Li system [16],Wei-Yang system [86], Sundarapandian
systems [40, 45], Vaidyanathan systems [58, 59, 61–64, 66, 68, 71, 82, 85], Pehlivan
system [25], etc.
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Synchronizationof chaotic systems is a phenomenon that occurswhen twoormore
chaotic systems are coupled or when a chaotic system drives another chaotic system.
Because of the butterfly effectwhich causes exponential divergence of the trajectories
of two identical chaotic systems started with nearly the same initial conditions, the
synchronization of chaotic systems is a challenging research problem in the chaos
literature [2, 3].

Major works on synchronization of chaotic systems deal with the complete syn-
chronization of a pair of chaotic systems called the master and slave systems. The
design goal of the complete synchronization is to apply the output of the master
system to control the slave system so that the output of the slave system tracks the
output of the master system asymptotically with time.

Pecora and Carroll pioneered the research on synchronization of chaotic systems
with their seminal papers [8, 24]. The active control method [15, 32, 33, 44, 50, 73,
74, 77] is typically used when the system parameters are available for measurement.
Adaptive control method [34–36, 41–43, 54, 60, 67, 72, 75, 76, 81, 84] is typically
used when some or all the system parameters are not available for measurement and
estimates for the uncertain parameters of the systems.

Backstepping control method [26–30, 47, 78, 83] is also used for the synchro-
nization of chaotic systems, which is a recursive method for stabilizing the origin
of a control system in strict-feedback form. Another popular method for the syn-
chronization of chaotic systems is the sliding mode control method [46, 53, 55, 57,
65, 69, 70, 79, 80], which is a nonlinear control method that alters the dynamics of
a nonlinear system by application of a discontinuous control signal that forces the
system to “slide” along a cross-section of the system’s normal behavior.

In this work, the output regulation problem for the Vaidyanathan jerk chaotic
system [82] has been solved using the Byrnes-Isidori regulator equations [5] to
derive the state feedback control laws for regulating the output of the Vaidyanathan
jerk chaotic system for the important cases of constant reference signals (set-point
signals) and periodic reference signals.

This work is organized as follows. In Sect. 2, a review of the solution of the out-
put regulation for nonlinear control systems and Byrnes-Isidori regulator equations
has been presented. In Sect. 3, a dynamic analysis of the Vaidyanathan jerk chaotic
system [82] is detailed. In Sect. 4, output regulation problem for the Vaidyanathan
jerk chaotic system is discussed and new results are derived. In Sect. 5, numerical
simulations for the output regulation of the Vaidyanathan jerk chaotic system are
detailed. Section6 summarizes the main results obtained in this work.

2 Review of the Output Regulation for Nonlinear
Control Systems

In this section, we consider a multi-variable nonlinear control system modelled by
equations of the form

ẋ = f (x) + g(x)u + p(x)ω (1)
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ω̇ = s(ω) (2)

e = h(x) − q(ω) (3)

Here, the differential equation (1) describes theplant dynamicswith state x defined
in a neighbourhood X of the origin of Rn and the input u takes values in Rm subject
to the effect of a disturbance represented by the vector field p(x)ω. The differential
equation (2) describes an autonomous system, known as the exosystem, defined in
a neighbourhood W of the origin of Rk , which models the class of disturbance and
reference signals taken into consideration. The Eq. (3) defines the error between the
actual plant output h(x) ∈ Rp and a reference signal q(ω), which models the class
of disturbance and reference signals taken into consideration.

We also assume that all the constituent mappings of the system (1), (2) and the
error Eq. (3), namely, f, g, p, s, h and q are C1 mappings vanishing at the origin, i.e.

f (0) = 0, g(0) = 0, p(0) = 0, h(0) = 0 and q(0) = 0.

Thus, for u = 0, the system (1), (2) has an equilibrium state (x, ω) = (0, 0) with
zero error (3).

A state feedback controller for the composite system (1), (2) has the form

u = α(x, ω) (4)

where α is aC1 mapping defined on X × W such that α(0, 0) = 0. Upon substitution
of the feedback law (4) in the composite system (1), (2),we get the closed-loop system
given by

ẋ = f (x) + g(x)α(x, ω) + p(x)ω

ω̇ = s(ω)
(5)

The purpose of designing the state feedback controller (4) is to achieve both inter-
nal stability and output regulation. Internal stability means that when the input is
disconnected from (5) (i.e. whenω = 0), the closed-loop system (5) has an exponen-
tially stable equilibrium at x = 0. Output regulation means that for the closed-loop
system (5), for all initial states (x(0), ω(0)) sufficiently close to the origin, e(t) → 0
asymptotically as t → ∞. Formally, we can summarize the requirements as follows.

State Feedback Regulator Problem [5]:
Find, if possible, a state feedback control law u = α(x, ω) such that

(OR1) (Internal Stability) The equilibrium x = 0 of the dynamics

ẋ = f (x) + g(x)α(x, 0)

is locally asymptotically stable.



Output Regulation of Vaidyanathan 3-D Jerk Chaotic System 63

(OR2) (Output Regulation) There exists a neighbourhood U ⊂ X × W of (x, ω) =
(0, 0) such that for each initial condition (x(0), ω(0)) ∈ U , the solution (x(t),
ω(t)) of the closed-loop system (5) satisfies

lim
t→∞ [h(x(t)) − q(ω(t))] = 0.

Byrnes and Isidori [5] have solved this problem under the following assumptions.

(H1) The exosystem dynamics ω̇ = s(ω) is neutrally stable atω = 0, i.e. the system
is Lyapunov stable in both forward and backward time at ω = 0.

(H2) The pair ( f (x), g(x)) has a stabilizable linear approximation at x = 0, i.e. if

A =
[
∂ f

∂x

]
x=0

and B =
[

∂g

∂x

]
x=0

,

then (A, B) is stabilizable, which means that we can find a gain matrix K so that
A + BK is Hurwitz. �

Next, we recall the solution of the output regulation problem derived by Byrnes and
Isidori [5].

Theorem 1 [5] Under the hypotheses (H1) and (H2), the state feedback regulator
problem is solvable if, and only if, there exist C1 mappings x = π(ω) with π(0) = 0
and u = φ(ω) with φ(0) = 0, both defined in a neighbourhod of W 0 ⊂ W of ω = 0
such that the following equations (called the Byrnes-Isidori regulator equations) are
satisfied:

(1) ∂π
∂ω

s(ω) = f (π(ω)) + g(π(ω))φ(ω) + p(π(ω))ω

(2) h(π(ω)) − q(ω) = 0

When the Byrnes-Isidori regulator equations (1) and (2) are satisfied, a control
law solving the state feedback regulator problem is given by

u = φ(ω) + K [x − π(ω)] (6)

where K is any gain matrix such that A + BK is Hurwitz. �

3 Dynamic Analysis of the Vaidyanathan Jerk
Chaotic System

The Vaidyanathan jerk chaotic system [82] is described by the 3-D dynamics

ẋ1 = x2
ẋ2 = x3
ẋ3 = x1 − a[sinh(x1) + sinh(x2)] − bx3

(7)
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In (7), a and b are constant, positive parameters.
The system (7) exhibits a chaotic attractor when the parameter values are taken

as
a = 0.4, b = 0.8 (8)

For numerical simulations, we take the initial conditions of the Vaidyanathan jerk
system (7) as

x1(0) = 0.8, x2(0) = 1.2, x3(0) = 0.5 (9)

Figure1 shows the 3-D phase portrait of the Vaidyanathan jerk chaotic system
(7). Figures2, 3, 4 show the 2-D projections of the Vaidyanathan jerk chaotic system
(7) on the (x1, x2), (x2, x3) and (x1, x3) coordinate planes respectively.

Also, the Lyapunov exponents of the Vaidyanathan jerk chaotic system (7) for the
parameter values (8) and the initial values (9) are numerically found as

L1 = 0.0771, L2 = 0, L3 = −0.8791 (10)

Since L1 + L2 + L3 = −0.802 < 0, the Vaidyanathan jerk chaotic system (7) is
dissipative and the asymptotic motion of the Vaidyanathan jerk chaotic system (7)
settles onto a strange attractor of the system.
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Fig. 1 3-D phase portrait of the Vaidyanathan jerk chaotic system
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Fig. 3 2-D projection of the Vaidyanathan jerk chaotic system on the (x2, x3) plane
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Fig. 4 2-D projection of the Vaidyanathan jerk chaotic system on the (x1, x3) plane

Also, the Kaplan-Yorke dimension of the Vaidyanathan jerk chaotic system (7) is
calculated as

DK Y = 2 + L1 + L2

|L3| = 2.0877, (11)

which is fractional.

4 Output Regulation of Vaidyanathan Jerk Chaotic System

The Vaidyanathan jerk chaotic system [82] is a novel chaotic system described by
the dynamics

ẋ1 = x2
ẋ2 = x3
ẋ3 = x1 − a[sinh(x1) + sinh(x2)] − bx3 + u

(12)

where a, b are positive constants and u is an active feedback control.
In this work, we consider two important cases of output regulation for the

Vaidyanathan jerk chaotic system [82]:

(I) Tracking of Constant Reference Signals
(II) Tracking of Periodic Reference Signals
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4.1 Tracking of Constant Reference Signals

In this case, the exosystem is given by the scalar dynamics

ω̇ = 0 (13)

It is important to observe that the exosystem (13) is neutrally stable because the
solutions of (13) are only constant trajectories, i.e.

ω(t) ≡ ω(0) = ω0 for all t

Thus, the assumption (H1) of Theorem 1 (Sect. 2) holds trivially.
Linearizing the dynamics of the Vaidyanathan jerk chaotic system (12) at the

origin, we get the system matrices

A =
⎡
⎣ 0 1 0

0 0 1
1 − a −a −b

⎤
⎦ and B =

⎡
⎣0
0
1

⎤
⎦ (14)

Using Kalman’s rank test for controllability [22], it can be easily seen that the
pair (A, B) is completely controllable.

Since (A, B) is in Bush companion form, the characteristic equation of A + BK
is given by

λ3 + (b − k3)λ
2 + (a − k2)λ + (a − k1 − 1) = 0 (15)

where K = [
k1 k2 k3

]
.

By the Routh’s stability criterion [22], it can be easily shown that the closed-loop
system matrix A + BK is Hurwitz if and only if

k1 < a − 1, k2 < a, k3 < b, (b − k3)(a − k2) > a − k1 − 1 (16)

Thus, the assumption (H2) of Theorem 1 (Sect. 2) also holds.
Hence, Theorem 1 can be applied to solve the output regulation problem for the

Vaidyanathan jerk chaotic system (12) for the tracking of constant reference signals
(set-point signals).

4.1.1 Constant Tracking Problem for x1

Here, the tracking problem for the Vaidyanathan jerk chaotic system (12) is given by

ẋ1 = x2
ẋ2 = x3
ẋ3 = x1 − a[sinh(x1) + sinh(x2)] − bx3 + u
e = x1 − ω

(17)
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By Theorem 1, the regulator equations of (17) are obtained as

⎧⎪⎪⎨
⎪⎪⎩

π2(ω) = 0
π3(ω) = 0

π1(ω) − a[sinh(π1(ω)) + sinh(π2(ω))] − bπ3(ω) + φ(ω) = 0
π1(ω) − ω = 0

(18)

Solving the regulator equation (18), we get the unique solution

⎧⎪⎪⎨
⎪⎪⎩

π1(ω) = ω

π2(ω) = 0
π3(ω) = 0
φ(ω) = a sinh(ω) − ω

(19)

By Theorem 1, a state feedback control law solving the output regulation problem
is given by

u = φ(ω) + K [x − π(ω)] = a sinh(ω) − ω + k1(x1 − ω) + k2x2 + k3x3 (20)

where k1, k2 and k3 satisfy the inequalities (16).

4.1.2 Constant Tracking Problem for x2

Here, the tracking problem for the Vaidyanathan jerk chaotic system (12) is given by

ẋ1 = x2
ẋ2 = x3
ẋ3 = x1 − a[sinh(x1) + sinh(x2)] − bx3 + u
e = x2 − ω

(21)

By Theorem 1, the regulator equations of (21) are obtained as

⎧⎪⎪⎨
⎪⎪⎩

π2(ω) = 0
π3(ω) = 0

π1(ω) − a[sinh(π1(ω)) + sinh(π2(ω))] − bπ3(ω) + φ(ω) = 0
π2(ω) − ω = 0

(22)

The first and fourth equations in (22) contradict each other.
Thus, the regulator equation (22) are not solvable.
Hence, by Theorem 1, we conclude that the output regulation problem is not

solvable for this case.
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4.1.3 Constant Tracking Problem for x3

Here, the tracking problem for the Vaidyanathan jerk chaotic system (12) is given by

ẋ1 = x2
ẋ2 = x3
ẋ3 = x1 − a[sinh(x1) + sinh(x2)] − bx3 + u
e = x3 − ω

(23)

By Theorem 1, the regulator equations of (23) are obtained as

⎧⎪⎪⎨
⎪⎪⎩

π2(ω) = 0
π3(ω) = 0

π1(ω) − a[sinh(π1(ω)) + sinh(π2(ω))] − bπ3(ω) + φ(ω) = 0
π3(ω) − ω = 0

(24)

The second and fourth equations in (24) contradict each other.
Thus, the regulator equation (24) are not solvable.
Hence, by Theorem 1, we conclude that the output regulation problem is not

solvable for this case.

4.2 Tracking of Periodic Reference Signals

In this case, the exosystem is given by the planar dynamics

ω̇1 = ν ω2

ω̇2 = −ν ω1
(25)

where ν > 0 is any fixed constant.
Clearly, the assumption (H1) (Theorem 1) holds. Also, as established in Sect. 4.1,

the assumption (H2) of Theorem 1 also holds and that the closed-loop system matrix
A + BK will be Hurwitz if the constants k1, k2 and k3 of the gain matrix K satisfy
the inequalities (16).

Hence, Theorem 1 can be applied to solve the output regulation problem for the
Vaidyanathan jerk chaotic system (12) for the tracking of periodic reference signals.

4.2.1 Periodic Tracking Problem for x1

Here, the tracking problem for the Vaidyanathan jerk chaotic system (12) is given by



70 S. Vaidyanathan

ẋ1 = x2
ẋ2 = x3
ẋ3 = x1 − a[sinh(x1) + sinh(x2)] − bx3 + u
ω̇1 = ν ω2

ω̇2 = −ν ω1

e = x1 − ω1

(26)

By Theorem 1, the regulator equations of (26) are obtained as

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂π1
∂ω1

(νω2) + ∂π1
∂ω2

(−νω1) = π2(ω)
∂π2
∂ω1

(νω2) + ∂π2
∂ω2

(−νω1) = π3(ω)
∂π3
∂ω1

(νω2) + ∂π3
∂ω2

(−νω1) = π1(ω) − a[sinh(π1(ω)) + sinh(π2(ω))]
−bπ3(ω) + φ(ω)

π1(ω) − ω1 = 0

(27)

Solving the regulator equation (27), we get the unique solution

⎧⎨
⎩

π1(ω) = ω1

π2(ω) = νω2

π3(ω) = −ν2ω1

(28)

and
φ(ω) = −ν3ω2 − (

bν2 + 1
)
ω1 + a[sinh(ω1) + sinh(νω2) (29)

By Theorem 1, a state feedback control law solving the output regulation problem
is given by

u = φ(ω) + K [x − π(ω)] (30)

where π(ω) is given by (28), φ(ω) is given by (29) and k1, k2 and k3 satisfy the
inequalities (16).

4.2.2 Periodic Tracking Problem for x2

Here, the tracking problem for the Vaidyanathan jerk chaotic system (12) is given by

ẋ1 = x2
ẋ2 = x3
ẋ3 = x1 − a[sinh(x1) + sinh(x2)] − bx3 + u
ω̇1 = ν ω2

ω̇2 = −ν ω1

e = x2 − ω1

(31)
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By Theorem 1, the regulator equations of (31) are obtained as

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂π1
∂ω1

(νω2) + ∂π1
∂ω2

(−νω1) = π2(ω)
∂π2
∂ω1

(νω2) + ∂π2
∂ω2

(−νω1) = π3(ω)
∂π3
∂ω1

(νω2) + ∂π3
∂ω2

(−νω1) = π1(ω) − a[sinh(π1(ω)) + sinh(π2(ω))]
−bπ3(ω) + φ(ω)

π2(ω) − ω1 = 0

(32)

Solving the regulator equation (32), we get the unique solution

⎧⎨
⎩

π1(ω) = −ν−1ω2

π2(ω) = ω1

π3(ω) = νω2

(33)

and
φ(ω) = ν2ω1 + (

ν−1 + bν
)
ω2 + a

[− sinh
(
ν−1ω2

) + sinh(ω1)
]

(34)

By Theorem 1, a state feedback control law solving the output regulation problem
is given by

u = φ(ω) + K [x − π(ω)] (35)

where π(ω) is given by (33), φ(ω) is given by (34) and k1, k2 and k3 satisfy the
inequalities (16).

4.2.3 Periodic Tracking Problem for x3

Here, the tracking problem for the Vaidyanathan jerk chaotic system (12) is given by

ẋ1 = x2
ẋ2 = x3
ẋ3 = x1 − a[sinh(x1) + sinh(x2)] − bx3 + u
ω̇1 = ν ω2

ω̇2 = −ν ω1

e = x3 − ω1

(36)

By Theorem 1, the regulator equations of (36) are obtained as

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂π1
∂ω1

(νω2) + ∂π1
∂ω2

(−νω1) = π2(ω)
∂π2
∂ω1

(νω2) + ∂π2
∂ω2

(−νω1) = π3(ω)
∂π3
∂ω1

(νω2) + ∂π3
∂ω2

(−νω1) = π1(ω) − a[sinh(π1(ω)) + sinh(π2(ω))]
−bπ3(ω) + φ(ω)

π3(ω) − ω1 = 0

(37)
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Solving the regulator equation (37), we get the unique solution

⎧⎨
⎩

π1(ω) = −ν−2ω1

π2(ω) = −ν−1ω2

π3(ω) = ω1

(38)

and
φ(ω) = (

b + ν−2
)
ω1 + νω2 − a

[
sinh

(
ν−2ω1

) + sinh
(
ν−1ω2

)]
(39)

By Theorem 1, a state feedback control law solving the output regulation problem
is given by

u = φ(ω) + K [x − π(ω)] (40)

where π(ω) is given by (38), φ(ω) is given by (39) and k1, k2 and k3 satisfy the
inequalities (16).

5 Numerical Simulations

For numerical simulations, we take the parameter values a and b so that the
Vaidyanathan jerk system (12) is in the chaotic case, i.e.

a = 0.4, b = 0.8 (41)

For achieving the internal stability of the state feedback regulator problem, a gain
matrix K which satisfies the inequalities (16) must be used.

With the choice

K = [
k1 k2 k3

] = [−125.6 −74.2 −14.2
]
,

the matrix A + BK is Hurwitz with the eigenvalues −5,−5,−5.
In the periodic tracking output regulation problem, the value ν = 1 is taken in the

exosystem dynamics given by (25).

5.1 Tracking of Constant Reference Signals

5.1.1 Constant Tracking Problem for x1

Here, the initial conditions are taken as

x1(0) = 8.1, x2(0) = 5.4, x3(0) = 6.3, ω(0) = 2
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Fig. 5 Constant tracking of the state x1

The simulation graph is depicted in Fig. 5 from which it is clear that the state
trajectory x1(t) tracks the constant reference signal ω(t) ≡ 2 in 3 s.

5.1.2 Constant Tracking Problem for x2

As detailed in Sect. 4.1.2, the output regulation problem is not solvable for this case
because the Byrnes-Isidori regulator equations do not admit any solution.

5.1.3 Constant Tracking Problem for x3

As pointed out in Sect. 4.1.3, the output regulation problem is not solvable for this
case because the Byrnes-Isidori regulator equations do not admit any solution.

5.2 Tracking of Periodic Reference Signals

5.2.1 Periodic Tracking Problem for x1

Here, the initial conditions are taken as

x1(0) = 5.1, x2(0) = 4.7, x3(0) = −2.5, ω1(0) = 0, ω2(0) = 1
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Fig. 6 Periodic tracking of the state x1

Also, it is assumed that ν = 1. The simulation graph is depicted in Fig. 6 from
which it is clear that the state trajectory x1(t) tracks the periodic reference signal
ω1(t) = sin t in 3 s.

5.2.2 Periodic Tracking Problem for x2

Here, the initial conditions are taken as

x1(0) = 8.1, x2(0) = 3.4, x3(0) = −2.7, ω1(0) = 0, ω2(0) = 1

Also, it is assumed that ν = 1. The simulation graph is depicted in Fig. 7 from
which it is clear that the state trajectory x2(t) tracks the periodic reference signal
ω1(t) = sin t in 3 s.

5.2.3 Periodic Tracking Problem for x3

Here, the initial conditions are taken as

x1(0) = 3.4, x2(0) = 2.5, x3(0) = −6.9, ω1(0) = 0, ω2(0) = 1
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Fig. 8 Periodic tracking of the state x3

Also, it is assumed that ν = 1. The simulation graph is depicted in Fig. 8 from
which it is clear that the state trajectory x3(t) tracks the periodic reference signal
ω1(t) = sin t in 3 s.
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6 Conclusions

Output regulation problem is one of the important problems in the control theory,
which aims to control a fixed linear or nonlinear plant in order to have its output
tracking reference signals produced by some external generator or the exosystem.
Byrnes and Isidori (1990) solved the output regulation problem for a general class of
nonlinear systems under some stability assumptions. In this work, the output regu-
lation problem for the Vaidyanathan jerk chaotic system (2014)) has been studied in
detail and a complete solution for the output regulation problem for the Vaidyanathan
jerk chaotic system has been presented as well. Explicitly, using the Byrnes-Isidori
regulator equations (1990), state feedback control laws for regulating the output of
the Vaidyanathan jerk chaotic system have been derived. As tracking reference sig-
nals, constant and periodic reference signals have been considered and in each case,
feedback control laws regulating the output of the Vaidyanathan chaotic system have
been derived when the problem is solvable. Numerical simulations using MATLAB
are shown to verify the results.
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General Observer Design for
Continuous-Time and Discrete-Time
Nonlinear Systems

Sundarapandian Vaidyanathan

Abstract In this work, it is established that detectability is a necessary condition for
the existence of general observers (asymptotic or exponential) for nonlinear systems.
Using this necessary condition, it is shown that there does not exist any general
observer (asymptotic or exponential) for nonlinear systems with real parametric
uncertainty if the state equilibrium does not change with the parameter values and if
the plant output function is purely a function of the state. Next, using center manifold
theory, necessary and sufficient conditions are derived for the existence of general
exponential observers for Lyapunov stable nonlinear systems. As an application of
this general result, it is shown that for the existence of general exponential observers
for Lyapunov stable nonlinear systems, the dimension of the state of the general
exponential observer should not be less than the number of critical eigenvalues of
the linearization matrix of the state dynamics of the plant. Results have been derived
for both continuous-time and discrete-time nonlinear systems.

Keywords Nonlinear observers · Exponential observers · Asymptotic observers ·
General observers · Detectability

1 Introduction

An observer for a plant is a system which performs the reconstruction of the state
vector from the available inputs. The problem of designing observers for linear
control systemswas first introduced and fully solved by Luenberger [9]. The problem
of designing observers for nonlinear control systems was proposed by Thau [23].
Over the past three decades, significant attention has been paid in the control systems
literature to the construction of observers for nonlinear control systems [1].
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A necessary condition for the existence of a local exponential observer for
nonlinear control systems was obtained by Xia and Gao [27]. On the other hand, suf-
ficient conditions for nonlinear observers have been derived in the control literature
from an impressive variety of points of view. Kou, Elliott and Tarn [6] derived suffi-
cient conditions for the existence of local exponential observers using Lyapunov-like
method. In [4, 7, 8, 26], suitable coordinate transformations were found under which
a nonlinear control systems is transferred into a canonical form, where the observer
design is carried out. In [24], Tsinias derived sufficient Lyapunov-like conditions
for the existence of local asymptotic observers for nonlinear systems. A harmonic
analysis method was proposed in [2] for the synthesis of nonlinear observers.

A characterization of local exponential observers for nonlinear control systems
was first obtained by Sundarapandian [11]. In [11], necessary and sufficient condi-
tions were obtained for exponential observers for Lyapunov stable continuous-time
nonlinear systems and an exponential observer design was provided by Sundara-
pandian which generalizes the linear observer design of Luenberger [9] for linear
control systems. In [14], Sundarapandian obtained necessary and sufficient condi-
tions for exponential observers for Lyapunov stable discrete-time nonlinear systems
and also provided a formula for designing exponential observers for Lyapunov stable
discrete-time nonlinear systems. In [10], Sundarapandian derived new results for the
global observer design for nonlinear control systems.

The concept of nonlinear observers for nonlinear control systems was also
extended in many ways. In [12, 13], Sundarapandian derived new results charac-
terizing local exponential observers for nonlinear bifurcating systems. In [15, 16,
21, 22], Sundarapandian derived new results for the exponential observer design for
a general class of nonlinear systems with real parametric uncertainty. In [17–20],
Sundarapandian derived new results and characterizations for general observers for
nonlinear systems.

This work gives a discussion on recent results on general observers for nonlinear
systems [19, 20]. This work is organized as follows. Section2 gives a definition
of general observers (asymptotic and exponential) for continuous-time nonlinear
systems. Section3 provides a necessary condition for general asymptotic observers
for continuous-time nonlinear systems. Section4 details a characterization of gen-
eral exponential observers for continuous-time nonlinear systems. Section5 gives
a definition of general observers (asymptotic and exponential) for continuous-time
nonlinear systems. Section6 provides a necessary condition for general asymptotic
observers for continuous-time nonlinear systems. Section7 details a characterization
of general exponential observers for continuous-time nonlinear systems. Section8
gives a summary of the main results discussed in this work.
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2 Definition of General Observers for Continuous-Time
Nonlinear Systems

In this section, we consider a C1 nonlinear plant of the form

ẋ = f (x)

y = h(x)
(1)

where x ∈ Rn is the state and y ∈ Rp, the output of the plant (1). We assume that
the state x belongs to an open neighbourhood X of the origin of Rn . We assume that
f : X → Rn is a C1 vector field and also that f (0) = 0. We also assume that the

output mapping h : X → Rp is a C1 map, and also that h(0) = 0. Let Y
Δ= h(X).

Definition 1 Consider a C1 dynamical system described by

ż = g(z, y), [z ∈ Rm] (2)

where z is defined in a neighbourhood Z of the origin of Rm and g : Z × Y → Rm

is a C1 map with g(0, 0) = 0. Consider also the map q : Z → Rn described by

w = q(z) (3)

Then the candidate system (2) is called a general asymptotic (respectively, general
exponential) observer for the plant (1) corresponding to (3) if the following two
requirements are satisfied:

(O1) If w(0) = x(0), then w(t) ≡ x(t), for all t ≥ 0.
(O2) There exists a neighbourhood V of the origin of Rn such that for all initial esti-

mation error w(0) − x(0) ∈ V , the estimation error e(t) = w(t) − x(t) tends
to zero asymptotically (respectively, exponentially) as t → ∞. �

Remark 1 If a general exponential observer (2) satisfies the additional properties that
m = n and q is aC1 diffeomorphism, then it is called a full-order general exponential
observer. A full-order general exponential observer (2) with the additional property
that q = idX is called an identity exponential observer, which is the same as the
standard definition of local exponential observers for nonlinear systems. �

The estimation error e is defined by

e = q(z) − x (4)

Now, we consider the composite system

ẋ = f (x)

ż = g(z, h(x))
(5)
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The following lemma is straightforward.

Lemma 1 ([20]) The following statements are equivalent.

(a) The condition (O1) in Definition1 holds for the composite system (1) and (2).
(b) The submanifold defined via q(z) = x is invariant under the flow of the composite

system (5). �

3 A Necessary Condition for General Asymptotic
Observers for Continuous-Time Nonlinear Systems

In this section, we first prove a necessary condition for the plant (1) to have general
asymptotic observers.

Theorem 1 ([20]) A necessary condition for the existence of a general asymptotic
observer for the plant (1) is that the plant (1) is asymptotically detectable, i.e. any
state trajectory x(t) of the plant dynamics in (1) with small initial condition x0,
satisfying h(x(t)) ≡ 0 must be such that

x(t) → 0 as t → ∞ (6)

Proof Let (2) be a general asymptotic observer for the plant (1). Then the conditions
(O1) and (O2) in Definition1 are satisfied. Now, let x(t) be any state trajectory of the
plant dynamics in (1) with small initial condition x0 satisfying y(t) = h(x(t)) ≡ 0.
Then the observer dynamics (2) reduces to

ż = g(z, 0) (7)

Taking z0 = 0, it is immediate from (7) that z(t) = z(t; z0) ≡ 0.
Hence, w(t) = q(z(t)) ≡ 0.
By condition (O2), we know that the estimation error trajectory e(t) = w(t) −

x(t) tends to zero as t → ∞. Since w(t) ≡ 0, it follows that x(t) → 0 as t → ∞.
This completes the proof. �

Using Theorem1, we can prove the following result which says that there is no
general asymptotic observer for the following plant

[
ẋ
λ̇

]
=

[
F(x, λ)

0

]

y = h(x)

(8)

if F(0, λ) = 0 (i.e. if the equilibrium x = 0 of the dynamics ẋ = F(x, λ) does not
change with the real parametric uncertainty λ).
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Theorem 2 Suppose that the plant (8) satisfies the assumption

F(0, λ) ≡ 0 (9)

Then there is no general asymptotic observer for the plant (8).

Proof This is an immediate consequence of Theorem1. We show that the plant (8)
is not asymptotically detectable.

This is easily seen by taking x(0) = x0 = 0 and λ(0) = λ0 �= 0.
Then we have

y(t) = h(x(t)) ≡ 0 and x(t) ≡ 0 (10)

but λ(t) ≡ λ0 �= 0. Hence, the plant (8) is not asymptotically detectable. From The-
orem1, we deduce that there is no general asymptotic observer for the plant (8).

This completes the proof. �

4 Necessary and Sufficient Conditions for General
Exponential Observers for Continuous-Time Nonlinear
Systems

In this section, we establish a basic theorem that completely characterizes the exis-
tence of general exponential observers of the form (2) for Lyapunov stable nonlinear
plants of the form (1).

For this purpose, we define the system linearization pair for the nonlinear plant
(1) as

A = ∂ f

∂x
(0) and h = ∂h

∂x
(0) (11)

We also define

E = ∂g

∂z
(0, 0) and K = ∂g

∂y
(0, 0) (12)

Now, we state and prove the following result, which gives a complete characteri-
zation of the general exponential observers for Lyapunov stable nonlinear systems.

Theorem 3 Suppose that the plant dynamics in (1) is Lyapunov stable at x = 0.
Then the system (2) is a general exponential observer for the plant (1) with respect
to (3) if and only if the following conditions are satisfied:

(a) The submanifold defined via q(z) = x is invariant under the flow of the composite
system (5).

(b) The dynamics
ż = g(z, 0) (13)

is locally exponentially stable at e = 0.
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Proof Necessity. Suppose that the system (2) is a general exponential observer for
the plant (1). Then the conditions (O1) and (O2) in Definition1 are readily satisfied.
By Lemma1, the condition (O1) implies the condition (a). To see that the condition
(b) also holds, we take x(0) = 0. Then x(t) ≡ 0 and y(t) = h(x(t)) ≡ 0, for all
t ≥ 0.

Thus, the Eq. (2) simplifies into

ż(t) = g(z(t), y(t)) = g(z(t), 0) (14)

By the condition (O2) inDefinition1, it is immediate that e(t) = q(z(t)) − x(t) =
q(z(t)) → 0 exponentially as t → ∞ for all small initial conditions z0. Hence, we
must have z(t) → 0 exponentially as t → ∞ for the solution trajectory z(t) of the
dynamics (14). Hence, we conclude that the dynamics (14) is locally exponentially
stable at z = 0. Thus, we have established the necessity of the conditions (a) and (b).

Sufficiency. Suppose that the conditions (a) and (b) are satisfied by the plant (1)
and the candidate observer (2). Since the condition (a) implies the condition (O1) of
Definition1 by Lemma1, it suffices to show that condition (O2) in Definition1 also
holds.

By hypotheses, the equilibrium z = 0 of the dynamics (13) is locally exponentially
stable and the equilibrium x = 0 of the plant dynamics in (1) is Lyapunov stable.
Hence, E must be Hurwitz and A must have all eigenvalues with non-negative real
parts.

We have two cases to consider.

Case I: A is Hurwitz.
By Hartman–Grobman theorem [3], it follows that the composite system (5) is

locally topologically conjugate to the system

[
ẋ
ż

]
=

[
A 0

K C E

] [
x
z

]
(15)

We note that

eig

[
A 0

K C E

]
= eig(A) ∪ eig(E) (16)

Since both A and E are Hurwitz matrices, it follows from (16) that the sys-
tem matrix of (15) is Hurwitz. Hence, it is immediate that x(t) → 0 and z(t) → 0
exponentially as t → ∞. Hence, it follows trivially that e(t) = q(z(t)) − x(t) → 0
exponentially as t → ∞ for all small initial conditions x(0) and z(0).

Case II: A is not Hurwitz.
Without loss of generality, we can assume that the plant dynamics in (1) has the

form
ẋ1 = A1x1 + φ1(x1, x2)
ẋ2 = A2x2 + φ2(x1, x2)

(17)
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where x1 ∈ Rn1 , x2 ∈ Rn2 (with n1 + n2 = n), A1 is an n1 × n1 matrix having all
eigenvalues with zero real part, A2 is an n2 × n2 Hurwitz matrix and φ1, φ2 are
C1 functions vanishing at (x1, x2) = (0, 0) together with all their first-order partial
derivatives.

Now, x = 0 is a Lyapunov stable equilibrium of the dynamics in (1). Also, the
equilibrium z = 0 of the dynamics (13) is locally exponentially stable. Hence, by a
total stability result [5], it follows that (x, z) = (0, 0) is a Lyapunov stable equilib-
rium of the composite system (5) (by its triangular structure).

Also, by the center manifold theorem for flows [25], we know that the composite
system (5) has a local center manifold at (x, z) = (0, 0), the graph of a C1 map,

[
x2
z

]
= π(x1) =

[
π1(x1)
π2(x1)

]
(18)

Since q(z) = x is an invariant manifold for the composite system (5), it is imme-
diate that along the center manifold, we have

q(π2(x1)) =
[

x1
π1(x1)

]
. (19)

By the principle of asymptotic phase in the center manifold theory [25], there
exists a neighbourhood V of (x, z) = (0, 0) such that for all (x(0), z(0)) ∈ V , we
have

‖
[

x2(t) − π1(x1(t))
z(t) − π2(x1(t))

]
‖ ≤ M exp(−at)‖

[
x2(0) − π1(x1(0))
z(0) − π2(x1(0))

]
‖ (20)

for some positive constants M and a.
Hence, it is immediate that

z(t) → π2(x1(t)) exponentially as t → ∞ (21)

From (19) and (21), it follows that

q(z(t)) →
[

x1(t)
π1(x1(t))

]
exponentially as t → ∞ (22)

From (20) and (22), it follows that

q(z(t)) → x(t) =
[

x1(t)
x2(t)

]
exponentially as t → ∞ (23)

Thus, the condition (O2) also holds.
This completes the proof. �
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Theorem 4 A necessary condition for the system (2) to be a general exponential
observer for a Lyapunov stable plant (1) is that

dim(z) ≥ n1 (24)

where n1 denotes the number of critical eigenvalues of the system matrix A.

Proof If the system matrix A is Hurwitz, then n1 = 0 and there is nothing to prove.
If A is not Hurwitz, then by the center manifold theory, we have

q(π2(x1)) =
[

x1
π1(x1)

]
(25)

For every small x1 ∈ Rn1 , we know that the vector

[
x1

π1(x1)

]

has a pre-image π2(x1) under the mapping, q. Hence, it is immediate that the dimen-
sion of the domain of the mapping, q, cannot be lower than the dimension of the
state x1.

This completes the proof. �

5 Definition of General Observers for Discrete-Time
Nonlinear Systems

In this section, we consider a nonlinear plant of the form

x(k + 1) = f (x(k)),

y(k) = h(x(k))
(26)

where x ∈ Rn is the state and y ∈ Rp, the output of the plant (26). We assume that
the state x belongs to an open neighbourhood X of the origin of Rn . We assume that
f : X → Rn is a C1 map and also that f (0) = 0. We also assume that the output

mapping h : X → Rp is a C1 map, and also that h(0) = 0. Let Y
Δ= h(X).

Definition 2 Consider a discrete-time dynamical system described by

z(k + 1) = g(z(k), y(k)), [z ∈ Rm] (27)

where z is defined in a neighbourhood Z of the origin of Rm and g : Z × Y → Rm

is a C1 map with g(0, 0) = 0. Consider also the map q : Z → Rn described by

w = q(z) (28)
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Then the candidate system (27) is called a general asymptotic (respectively, general
exponential) observer for the plant (26) corresponding to (28) if the following two
requirements are satisfied:

(O1) If w(0) = x(0), then w(k) ≡ x(k), for all k ∈ Z+, where Z+ denotes the set of
all positive integers.

(O2) There exists a neighbourhood V of the origin of Rn such that for all initial
estimation error w(0) − x(0) ∈ V , the estimation error e(k) = w(k) − x(k)

tends to zero asymptotically (respectively, exponentially) as k → ∞. �

Remark 2 If a general exponential observer (27) satisfies the additional properties
that m = n and q is a C1 diffeomorphism, then it is called a full-order general expo-
nential observer. A full-order general exponential observer (27) with the additional
property that q = idX is called an identity exponential observer, which is the same
as the standard definition of local exponential observers for nonlinear systems. �

The estimation error e is defined by

e = q(z) − x (29)

Now, we consider the composite system

x(k + 1) = f (x(k))

z(k + 1) = g(z(k), h(x(k)))
(30)

The following lemma is straightforward.

Lemma 2 ([19]) The following statements are equivalent.

(a) The condition (O1) in Definition1 holds for the composite system (26) and (27).
(b) The submanifold defined via q(z) = x is invariant under the flow of the composite

system (30). �

6 A Necessary Condition for General Asymptotic
Observers for Discrete-Time Nonlinear Systems

In this section, we first prove a necessary condition for the plant (26) to have general
asymptotic observers.

Theorem 5 ([19]) A necessary condition for the existence of a general asymptotic
observer for the discrete-time plant (26) is that the plant (26) is asymptotically
detectable, i.e. any state trajectory x(k) of the plant dynamics in (26) with small
initial condition x0, satisfying h(x(k)) ≡ 0 must be such that

x(k) → 0 as k → ∞ (31)
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Proof Let (27) be a general asymptotic observer for the plant (26). Then the
conditions (O1) and (O2) in Definition2 are satisfied. Now, let x(k) be any state
trajectory of the plant dynamics in (26) with small initial condition x0 satisfying
y(k) = h(x(k)) ≡ 0. Then the observer dynamics (27) reduces to

z(k + 1) = g(z(k), 0) (32)

Taking z0 = 0, it is immediate from (32) that z(k) = z(k; z0) ≡ 0.
Hence, w(k) = q(z(k)) ≡ 0.
By condition (O2), we know that the error trajectory e(k) = w(k) − x(k) tends

to zero as k → ∞. Since w(k) ≡ 0, it follows that x(k) → 0 as k → ∞.
This completes the proof. �

Using Theorem5, we can prove the following result which says that there is no
general asymptotic observer for the following plant

[
x(k + 1)
λ(k + 1)

]
=

[
F(x(k), λ(k))

λ(k)

]

y(k) = h(x(k))

(33)

if F(0, λ)=0 (i.e. if the equilibrium x = 0 of the dynamics x(k + 1)= F(x(k), λ(k))

does not change with the real parametric uncertainty λ).

Theorem 6 Suppose that the plant (33) satisfies the assumption

F(0, λ) ≡ 0 (34)

Then there is no general asymptotic observer for the plant (33).

Proof This is an immediate consequence of Theorem5. We show that the plant (33)
is not asymptotically detectable.

This is easily seen by taking x(0) = x0 = 0 and λ(0) = λ0 �= 0.
Then we have

y(k) = h(x(k)) ≡ 0 and x(k) ≡ 0 (35)

but λ(k) ≡ λ0 �= 0. Hence, the plant (33) is not asymptotically detectable. From
Theorem5, we deduce that there is no general asymptotic observer for the plant (33).

This completes the proof. �
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7 Necessary and Sufficient Conditions for General
Exponential Observers for Discrete-Time Nonlinear
Systems

In this section, we establish a basic theorem that completely characterizes the exis-
tence of general exponential observers of the form (27) for Lyapunov stable nonlinear
plants of the form (26).

For this purpose, we define the system linearization pair for the nonlinear plant
(26) as

A = ∂ f

∂x
(0) and h = ∂h

∂x
(0) (36)

We also define

E = ∂g

∂z
(0, 0) and K = ∂g

∂y
(0, 0) (37)

Now, we state and prove the following result, which gives a complete characteri-
zation of the general exponential observers for Lyapunov stable nonlinear systems.

Theorem 7 Suppose that the plant dynamics in (26) is Lyapunov stable at x = 0.
Then the system (27) is a general exponential observer for the plant (26) with respect
to (28) if and only if the following conditions are satisfied:

(a) The submanifold defined via q(z) = x is invariant under the flow of the composite
system (30).

(b) The dynamics
z(k + 1) = g(z(k), 0) (38)

is locally exponentially stable at e = 0.

Proof Necessity. Suppose that the system (27) is a general exponential observer for
the plant (26). Then the conditions (O1) and (O2) in Definition2 are readily satisfied.
By Lemma2, the condition (O1) implies the condition (a). To see that the condition
(b) also holds, we take x(0) = 0. Then x(k) ≡ 0 and y(k) = h(x(k)) ≡ 0, for all
k ∈ Z+.

Thus, the Eq. (27) simplifies into

z(k + 1) = g(z(k), y(k)) = g(z(k), 0) (39)

By the condition (O2) in Definition2, it is immediate that e(k) = q(z(k)) −
x(k) = q(z(k)) → 0 exponentially as k → ∞ for all small initial conditions z0.
Hence, we must have z(k) → 0 exponentially as k → ∞ for the solution trajectory
z(k) of the dynamics (39). Hence, we conclude that the dynamics (39) is locally expo-
nentially stable at z = 0. Thus, we have established the necessity of the conditions
(a) and (b).
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Sufficiency. Suppose that the conditions (a) and (b) are satisfied by the plant (26)
and the candidate observer (27). Since the condition (a) implies the condition (O1)
of Definition2 by Lemma2, it suffices to show that condition (O2) in Definition2
also holds.

By hypotheses, the equilibrium z = 0 of the dynamics (38) is locally exponentially
stable and the equilibrium x = 0 of the plant dynamics in (26) is Lyapunov stable.
Hence, E must be convergent and A must have all eigenvalues ζ with |ζ | ≤ 1.

We have two cases to consider.

Case I: A is convergent.
By Hartman–Grobman theorem for maps, it follows that the composite system

(30) is locally topologically conjugate to the system

[
x(k + 1)
z(k + 1)

]
=

[
A 0

K C E

] [
x(k)

z(k)

]
(40)

We note that

eig

[
A 0

K C E

]
= eig(A) ∪ eig(E) (41)

Since both A and E are convergent matrices, it follows from (41) that the system
matrix of (40) is convergent. Hence, it is immediate that x(k) → 0 and z(k) → 0
exponentially as k → ∞. Hence, it follows trivially that e(k) = q(z(k)) − x(k) → 0
exponentially as k → ∞ for all small initial conditions x(0) and z(0).

Case II: A is not convergent.
Without loss of generality, we can assume that the plant dynamics in (26) has the

form
x1(k + 1) = A1x1(k) + φ1(x1(k), x2(k))

x2(k + 1) = A2x2(k) + φ2(x1(k), x2(k))
(42)

where x1 ∈ Rn1 , x2 ∈ Rn2 (with n1 + n2 = n), A1 is an n1 × n1 matrix having all
eigenvalues with unit modulus, A2 is an n2 × n2 convergent matrix and φ1, φ2 are
C1 functions vanishing at (x1, x2) = (0, 0) together with all their first-order partial
derivatives.

Now, x = 0 is a Lyapunov stable equilibrium of the dynamics in (26). Also,
the equilibrium z = 0 of the dynamics (38) is locally exponentially stable. Hence,
by a total stability result [5], it follows that (x, z) = (0, 0) is a Lyapunov stable
equilibrium of the composite system (30) (by its triangular structure).

Also, by the center manifold theorem for maps, we know that the composite
system (30) has a local center manifold at (x, z) = (0, 0), the graph of a C1 map,

[
x2
z

]
= π(x1) =

[
π1(x1)
π2(x1)

]
(43)
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Since q(z) = x is an invariant manifold for the composite system (30), it is
immediate that along the center manifold, we have

q(π2(x1)) =
[

x1
π1(x1)

]
. (44)

By the principle of asymptotic phase in the center manifold theory [25], there
exists a neighbourhood V of (x, z) = (0, 0) such that for all (x(0), z(0) ∈ V , we
have

‖
[

x2(k) − π1(x1(k))

z(k) − π2(x1(k))

]
‖ ≤ Mak‖

[
x2(0) − π1(x1(0))
z(0) − π2(x1(0))

]
‖ (45)

for some positive constant M and 0 < a < 1.
Hence, it is immediate that

z(k) → π2(x1(k)) exponentially as k → ∞ (46)

From (44) and (46), it follows that

q(z(k)) →
[

x1(k)

π1(x1(k))

]
exponentially as k → ∞ (47)

From (45) and (47), it follows that

q(z(k)) → x(k) =
[

x1(k)

x2(k)

]
exponentially as k → ∞ (48)

Thus, the condition (O2) also holds.
This completes the proof. �

Theorem 8 A necessary condition for the system (27) to be a general exponential
observer for a Lyapunov stable plant (26) is that

dim(z) ≥ n1 (49)

where n1 denotes the number of critical eigenvalues of the system matrix A.

Proof If the system matrix A is convergent, then n1 = 0 and there is nothing to
prove.

If A is not convergent, then by the center manifold theory, we have

q(π2(x1)) =
[

x1
π1(x1)

]
(50)
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For every small x1 ∈ Rn1 , we know that the vector

[
x1

π1(x1)

]

has a pre-image π2(x1) under the mapping, q. Hence, it is immediate that the dimen-
sion of the domain of the mapping, q, cannot be lower than the dimension of the
state x1. This completes the proof. �

8 Conclusions

This work has studied the problem of constructing general asymptotic and exponen-
tial observers for both continuous-time and discrete-time nonlinear systems. First,
asymptotic detectability has been shown to be a necessary condition for the con-
struction of general asymptotic observers for nonlinear systems. Next, necessary
and sufficient conditions have been derived for the construction of general exponen-
tial observers for nonlinear systems. It has been established that the dimension of a
general exponential observer cannot be lower than the number of critical eigenvalues
of the system linearization matrix of the plant dynamics of a given nonlinear plant.
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Generalized Projective Synchronization
of Vaidyanathan Chaotic System via Active
and Adaptive Control

Sundarapandian Vaidyanathan

Abstract Generalized projective synchronization (GPS) of chaotic systems
generalizes known types of synchronization schemes such as complete synchroniza-
tion (CS), anti-synchronization (AS), hybrid synchronization (HS), projective syn-
chronization (PS), etc. In this work, we have designed active and adaptive controllers
for the generalized projective synchronization (GPS) of identical Vaidyanathan
chaotic systems (2014). Vaidyanathan system is an eight-term chaotic system with
three quadratic nonlinearities. The Lyapunov exponents of the Vaidyanathan chaotic
system are obtained as L1 = 6.5294, L2 = 0 and L3 = −26.4696. Since the maximal
Lyapunov exponent of the Vaidyanathan system is L1 = 6.5294, the system exhibits
highly chaotic behaviour. The Kaplan–Yorke dimension of the Vaidyanathan chaotic
system is obtained as DKY = 2.2467. The main GPS results in this work have been
established using Lyapunov stability theory. MATLAB plots have been depicted to
illustrate the phase portraits of the Vaidyanathan chaotic system and also the GPS
results for Vaidyanathan chaotic systems using active and adaptive controllers.

Keywords Chaos · Chaotic systems · Synchronization · Active control · Adaptive
control · Vaidyanathan system

1 Introduction

Chaotic systems are defined as nonlinear dynamical systems which are sensitive to
initial conditions, topologically mixing and with dense periodic orbits. Sensitivity to
initial conditions of chaotic systems is popularly known as the butterfly effect. Small
changes in an initial state will make a very large difference in the behavior of the
system at future states.
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Some classical paradigms of 3-D chaotic systems in the literature are Lorenz
system [12], Rössler system [24], ACT system [1], Sprott systems [32], Chen system
[7], Lü system [13], Cai system [5], Tigan system [43], etc.

Many new chaotic systems have been discovered in the recent years such as Zhou
system [97], Zhu system [98], Li system [11],Wei-Yang system [93], Sundarapandian
systems [35, 40], Vaidyanathan systems [52, 53, 55–58, 60, 61, 63, 66, 70, 82, 84,
86, 87, 89], Pehlivan system [17], Sampath–Vaidyanathan system [25], etc.

The synchronization of chaotic systems is a phenomenon that occurs when two or
more chaotic systems are coupled or when a chaotic system drives another chaotic
system. Because of the butterfly effect which causes exponential divergence of the
trajectories of two identical chaotic systems started with nearly the same initial
conditions, the synchronization of chaotic systems is a challenging research problem
in the chaos literature [2, 3].

Major works on synchronization of chaotic systems deal with the complete syn-
chronization (CS) of a pair of chaotic systems called the master and slave systems.
The design goal of the complete synchronization is to apply the output of the master
system to control the slave system so that the output of the slave system tracks the
output of the master system asymptotically with time.

Pecora and Carroll pioneered the research on synchronization of chaotic systems
with their seminal papers [6, 16]. The active control method [33, 45, 50, 72, 76] is
commonly usedwhen the systemparameters are available formeasurement.Adaptive
control method [34, 46, 54, 62, 73, 75, 81, 85, 88] is commonly used when some
or all the system parameters are not available for measurement and estimates for
the uncertain parameters of the systems. Memristors [18, 91, 92] are also considered
for the synchronization of chaotic systems.

Backstepping control method [19–23, 42, 78, 83, 90] is also used for the synchro-
nization of chaotic systems, which is a recursive method for stabilizing the origin of
a control system in strict-feedback form. Sliding mode control method [41, 47, 49,
51, 59, 64, 65, 79, 80] is also a popular method for the synchronization of chaotic
systems, which is a nonlinear control method that alters the dynamics of a nonlinear
system by application of a discontinuous control signal that forces the system to
“slide” along a cross-section of the system’s normal behavior.

In the chaos literature, many types of synchronization schemes have been pro-
posed such as complete synchronization [33, 45, 50, 72, 76], anti-synchronization
[36–38, 48, 71], hybrid synchronization [9, 39, 44, 74, 77], generalized synchro-
nization [4, 8, 95], projective synchronization [31, 94, 96], generalized projective
synchronization [14, 15, 26–30, 67–69], etc.

Complete synchronization (CS) is characterized by the equality of state variables
evolving in time, while anti-synchronization (AS) is characterized by the disappear-
ance of the sum of relevant state variables evolving in time.

In hybrid synchronization (HS) of two chaotic systems, one part of the systems
is completely synchronized and the other part is anti-synchronized. Typically, in
the hybrid synchronization of two chaotic systems, the respective odd states are
completely synchronized and the respective even states are anti-synchronized so that
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the complete synchronization (CS) and anti-synchronization (AS) co-exist in the
synchronized systems.

Projective synchronization (PS) is characterized by the fact that the master and
slave systems could be synchronized up to a scaling factor. In generalized projective
synchronization (GPS), the responses of the synchronized dynamical states synchro-
nize up to a constant scaling matrix α. The complete synchronization (CS) and anti-
synchronization (AS) are special cases of the generalized projective synchronization
where the scaling matrix α = I and α = −I , respectively.

This work derives new results for the active and adaptive controller design for the
generalized projective synchronization (GPS) of the Vaidyanathan chaotic system
[56], which is a novel chaotic system with highly chaotic behaviour.

This work is organized as follows. Section2 discusses the qualitative analysis of
the Vaidyanathan chaotic system [56]. Vaidyanathan system is an eight-term polyno-
mial chaotic systemwith three quadratic nonlinearities. In this section, the Lyapunov
exponents of the Vaidyanathan chaotic system are obtained as L1 = 6.5294, L2 = 0
andL3 = −26.4696. Since themaximal Lyapunov exponent of theVaidyanathan sys-
tem is L1 = 6.5294, the system exhibits highly chaotic behaviour. TheKaplan–Yorke
dimension of the Vaidyanathan system is obtained as DKY = 2.2467.

In Sect. 3, we derive new GPS results for the active controller design for identical
Vaidyanathan chaotic systems, when the system parameters are known. In Sect. 4, we
derive new GPS results for the adaptive controller design for identical Vaidyanathan
chaotic systems, when the system parameters are unknown. In Sect. 5, we summarize
the main results obtained in this work.

2 Analysis of the Vaidyanathan Chaotic System

Vaidyanathan–Volos system [56] is an eight-term novel chaotic system described by
the 3-D dynamics

ẋ1 = a(x2 − x1) + x2x3
ẋ2 = bx1 + cx2 − x1x3
ẋ3 = −dx3 + x21

(1)

where x1, x2, x3 are the states and a, b, c, d are constant, positive, parameters.
The system (1) exhibits a strange chaotic attractor when the parameter values

are taken as

a = 25, b = 33, c = 11, d = 6 (2)

The Vaidyanathan chaotic system (1) is invariant under the coordinates transfor-
mation

(x1, x2, x3) �→ (−x1,−x2, x3) (3)
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The transformation (3) persists for all values of the system parameters. Thus, the
Vaidyanathan system (3) has a rotation symmetry about the x3-axis. As a conse-
quence, any non-trivial trajectory of the Vaidyanathan chaotic system (3) must have
a twin trajectory.

For numerical simulations, we take the initial values of the Vaidyanathan chaotic
system (1) as

x1(0) = 0.8, x2(0) = 1.2, x3(0) = 0.6 (4)

For the system parameter values (2) and the initial values (4), the Lyapunov
exponents of the Vaidyanathan chaotic system (1) are obtained as

L1 = 6.5294, L2 = 0, L3 = −26.4696 (5)

Also, the Kaplan–Yorke dimension of the Vaidyanathan chaotic system (1) is
obtained as

DL = 2 + L1 + L2

|L3| = 2.2467 (6)

Figure1 shows the 3-D phase portrait of the Vaidyanathan chaotic system (1).
Figures2, 3 and 4 show the 2-D projections of the Vaidyanathan chaotic system (1)
on the (x1, x2), (x2, x3) and (x1, x3) coordinate planes respectively.
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3 Active Controller Design for the GPS of Vaidyanathan
Systems

In this section, we design an active controller for the generalized projective synchro-
nization (GPS) of identical Vaidyanathan systems [56], when the system parameters
are known.

As the master system, we consider the Vaidyanathan system

ẋ1 = a(x2 − x1) + x2x3
ẋ2 = bx1 + cx2 − x1x3
ẋ3 = −dx3 + x21

(7)

where x1, x2, x3 are the states and a, b, c, d are constant, positive, parameters.
As the slave system, we consider the controlled Vaidyanathan system

ẏ1 = a(y2 − y1) + y2y3 + u1
ẏ2 = by1 + cy2 − y1y3 + u2
ẏ3 = −dy3 + y21 + u3

(8)

where y1, y2, y3 are the states and u1, u2, u3 are active controls to be designed.
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For the GPS of the identical Vaidyanathan systems (7) and (8), we define the GPS
synchronization error as

e1 = y1 − m1x1
e2 = y2 − m2x2
e3 = y3 − m3x3

(9)

where m1, m2, m3 are real scaling constants.
The error dynamics is obtained by differentiating (9) as

ė1 = a(y2 − m1x2 − e1) + y2y3 − m1x2x3 + u1
ė2 = b(y1 − m2x1) + ce2 − y1y3 + m2x1x3 + u2
ė3 = −de3 + y21 − m3x21 + u3

(10)

We consider the active controller defined by

u1 = −a(y2 − m1x2 − e1) − y2y3 + m1x2x3 − k1e1
u2 = −b(y1 − m2x1) − ce2 + y1y3 − m2x1x3 − k2e2
u3 = de3 − y21 + m3x21 − k3e3

(11)

where k1, k2, k3 are positive gain constants.
Substituting (11) into (10), we get the closed-loop control system

ė1 = −k1e1
ė2 = −k2e2
ė3 = −k3e3

(12)

Next, we establish the following main result of this section.

Theorem 1 The active control law defined by (11) achieves global and exponential
generalized projective synchronization (GPS) of the identical Vaidyanathan chaotic
systems (7) and (8), where k1, k2, k3 are positive gain constants.

Proof We take the candidate Lyapunov function

V (e) = 1

2

(
e21 + e22 + e23

)
(13)

Then V is a quadratic function and positive definite on R3.
Differentiating V along the trajectories of (12), we obtain

V̇ = −k1e21 − k2e22 − k3e23 (14)

which is a negative definite function on R3.
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Thus, by Lyapunov stability theory [10], the error dynamics (12) is globally expo-
nentially stable. �

For numerical simulations using MATLAB, we use the classical fourth order
Runge–Kutta method with h = 10−8 for solving systems of differential equations.

The parameter values of the Vaidyanathan chaotic systems are taken as in the
chaotic case (2), i.e. a = 25, b = 33, c = 11 and d = 6.

We take the gains as ki = 6 for i = 1, 2, 3.
We the GPS scales as m1 = 2.3, m2 = −2.9 and m3 = 4.6.
As initial values of the master system (7), we take

x1(0) = 5.2, x2(0) = 4.3, x3(0) = −3.8

As initial values of the slave system (8), we take

y1(0) = 2.7, y2(0) = 1.4, y3(0) = 4.5

Figures5, 6 and 7 depict the GPS of the identical Vaidyanathan systems (7) and
(8). Figure8 depicts the time-history of the GPS synchronization errors e1, e2, e3.
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4 Adaptive Controller Design for the GPS of Vaidyanathan
Systems

In this section, we design an adaptive controller for the generalized projective syn-
chronization (GPS) of identical Vaidyanathan systems [56], when the system para-
meters are unknown.

As the master system, we consider the Vaidyanathan system

ẋ1 = a(x2 − x1) + x2x3
ẋ2 = bx1 + cx2 − x1x3
ẋ3 = −dx3 + x21

(15)

where x1, x2, x3 are the states and a, b, c, d are unknown parameters.
As the slave system, we consider the controlled Vaidyanathan system

ẏ1 = a(y2 − y1) + y2y3 + u1
ẏ2 = by1 + cy2 − y1y3 + u2
ẏ3 = −dy3 + y21 + u3

(16)

where y1, y2, y3 are the states and u1, u2, u3 are adaptive controls to be designed using
estimates for unknown parameters.
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For the GPS of the identical Vaidyanathan systems (15) and (16), we define the
GPS synchronization error as

e1 = y1 − m1x1
e2 = y2 − m2x2
e3 = y3 − m3x3

(17)

where m1, m2, m3 are real scaling constants.
The error dynamics is obtained by differentiating (17) as

ė1 = a(y2 − m1x2 − e1) + y2y3 − m1x2x3 + u1
ė2 = b(y1 − m2x1) + ce2 − y1y3 + m2x1x3 + u2
ė3 = −de3 + y21 − m3x21 + u3

(18)

We consider the adaptive controller defined by

u1 = −â(t)(y2 − m1x2 − e1) − y2y3 + m1x2x3 − k1e1
u2 = −b̂(t)(y1 − m2x1) − ĉ(t)e2 + y1y3 − m2x1x3 − k2e2
u3 = d̂(t)e3 − y21 + m3x21 − k3e3

(19)

where k1, k2, k3 are positive gain constants and â(t), b̂(t), ĉ(t), d̂(t) are estimates of
the unknown parameters a, b, c, d, respectively.

Substituting (19) into (18), we get the closed-loop control system

ė1 = [
a − â(t)

]
(y2 − m1x2 − e1) − k1e1

ė2 =
[
b − b̂(t)

]
(y1 − m2x1) + [

c − ĉ(t)
]

e2 − k2e2

ė3 = −
[
d − d̂(t)

]
e3 − k3e3

(20)

We define the parameter estimation errors as

ea(t) = a − â(t)
eb(t) = b − b̂(t)
ec(t) = c − ĉ(t)
ed(t) = d − d̂(t)

(21)

Using (21), we can simplify the error dynamics as

ė1 = ea(y2 − m1x2 − e1) − k1e1
ė2 = eb(y1 − m2x1) + ece2 − k2e2
ė3 = −ede3 − k3e3

(22)
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Differentiating (21) with respect to t, we obtain

ėa = −˙̂a(t)

ėb = −˙̂b(t)
ėc = −˙̂c(t)
ėd = −˙̂d(t)

(23)

We use adaptive control theory to find an update law for the parameter estimates.
We consider the quadratic candidate Lyapunov function defined by

V (e1, e2, e3, ea, eb, ec, ed) = 1

2

(
e21 + e22 + e23 + e2a + e2b + e2c + e2d

)
(24)

Differentiating V along the trajectories of (22) and (23), we obtain

V̇ = −k1e21 − k2e22 − k3e23 + ea

[
e1(y2 − m1x2 − e1) − ˙̂a

]
+eb

[
e2(y1 − m2x1) − ˙̂b

]
+ ec

[
e22 − ˙̂c

]

+ed

[
−e23 − ˙̂d

] (25)

In view of Eq. (25), we take the parameter update law as

˙̂a = e1(y2 − m1x2 − e1)˙̂b = e2(y1 − m2x1)˙̂c = e22˙̂d = −e23

(26)

Next, we state and prove the main result of this section.

Theorem 2 The adaptive control law defined by (19) and the parameter update law
(26) achieve global and exponential generalized projective synchronization (GPS)
between the identical Vaidyanathan systems (15) and (16) with unknown parameters,
where k1, k2, k3 are positive gain constants.

Proof We consider the quadratic Lyapunov function defined by (24), which is clearly
a positive definite function on R7.

By substituting the parameter update law (26) into (25), we obtain the time-
derivative of V as

V̇ = −k1e21 − k2e22 − k3e23 (27)

From (27), it is clear that V̇ is a negative semi-definite function on R7.
Thus, we conclude that the GPS error vector e(t) and the parameter estimation

error are globally bounded, i.e.
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[
e1(t) e2(t) e3(t) ea(t) eb(t) ec(t) ed(t)

]T ∈ L∞.

We define k = min{k1, k2, k3}.
Then it follows from (27) that

V̇ ≤ −k‖e(t)‖2 (28)

Thus, we have

k‖e(t)‖2 ≤ −V̇ (29)

Integrating the inequality (29) from 0 to t, we get

k

t∫
0

‖e(τ )‖2dτ ≤ V (0) − V (t) (30)

From (30), it follows that e ∈ L2.
Using (22), we conclude that ė ∈ L∞.
Using Barbalat’s lemma [10], we conclude that e(t) → 0 exponentially as t → ∞

for all initial conditions e(0) ∈ R3.
This completes the proof. �
For numerical simulations using MATLAB, we use the classical fourth order

Runge–Kutta method with h = 10−8 for solving systems of differential equations.
The parameter values of the Vaidyanathan chaotic systems are taken as in the

chaotic case (2), i.e.
a = 25, b = 33, c = 11, d = 6.

We take the gains as ki = 8 for i = 1, 2, 3.
We the GPS scales as m1 = 1.3, m2 = 0.4 and m3 = 1.2.
As initial values of the master system (15), we take

x1(0) = 0.2, x2(0) = 2.3, x3(0) = 1.8

As initial values of the slave system (16), we take

y1(0) = 2.7, y2(0) = 1.4, y3(0) = 2.5

As initial values of the parameter estimates, we take

â(0) = 4.2, b̂(0) = 8.1, ĉ(0) = 1.4, d̂(0) = 2.8

Figures9, 10 and 11 depict theGPSof the identicalVaidyanathan systems (15) and
(16). Figure12 depicts the time-history of the GPS synchronization errors e1, e2, e3.
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5 Conclusions

In this work, we derived new results for active and adaptive controller design for
the generalized projective synchronization (GPS) of identical Vaidyanathan chaotic
systems (2014). Active controller design is adopted when the system parameters
are known. Adaptive controller design is adopted when the system parameters are
unknown.Main results were proved using Lyapunov stability theory.MATLAB plots
were shown to illustrate all the main results discussed in this work.
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of Chlouverakis–Sprott Hyperjerk System
via Backstepping Control
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Abstract This work investigates the simple hyperjerk system obtained by
Chlouverakis and Sprott (2006) and derives new results for the adaptive con-
trol and synchronization of Chlouverakis–Sprott hyperjerk system via backstep-
ping control. The Chlouverakis–Sprott system is a 4-D hyperjerk system with one
quadratic nonlinearity. The phase portraits of the Chlouverakis–Sprott hyperjerk
system are displayed and the qualitative properties of the system are discussed. The
Chlouverakis–Sprott hyperjerk system has two equilibrium points which are saddle-
foci. The Lyapunov exponents of the Chlouverakis–Sprott hyperjerk system are
obtained as L1 = 0.1885, L2 = 0, L3 = −0.4836 and L4 = −0.7054, which shows
that the Chlouverakis–Sprott hyperjerk system is chaotic. The Kaplan–Yorke dimen-
sion of the Chlouverakis–Sprott hyperjerk system is obtained as DK Y = 2.3898.
Next, an adaptive backstepping controller is designed to globally stabilize the
Chlouverakis–Sprott hyperjerk system with unknown parameters. Moreover, an
adaptive backstepping controller is also designed to achieve global chaos synchro-
nization of the identical Chlouverakis–Sprott hyperjerk systems with unknown para-
meters. The backstepping control method is a recursive procedure that links the
choice of a Lyapunov function with the design of a controller and guarantees global
asymptotic stability of strict feedback systems. MATLAB simulations have been
shown to illustrate the phase portraits of the Chlouverakis–Sprott hyperjerk system
and also the adaptive backstepping control results.

Keywords Chaos · Chaotic systems · Backstepping control · Adaptive control ·
Synchronization · Hyperjerk systems

S. Vaidyanathan (B)
Research and Development Centre, Vel Tech University,
Avadi, Chennai 600062, Tamil Nadu, India
e-mail: sundarvtu@gmail.com

B.A. Idowu
Department of Physics, Lagos State University, Ojo, Lagos, Nigeria
e-mail: babatunde.idowu@lasu.edu.ng

© Springer International Publishing Switzerland 2016
S. Vaidyanathan and C. Volos (eds.), Advances and Applications in Nonlinear
Control Systems, Studies in Computational Intelligence 635,
DOI 10.1007/978-3-319-30169-3_7

117



118 S. Vaidyanathan and B.A. Idowu

1 Introduction

Chaos theory deals with the qualitative study of chaotic dynamical systems and
their applications in science and engineering. A dynamical system is called chaotic
if it satisfies the three properties: boundedness, infinite recurrence and sensitive
dependence on initial conditions [2].

Some classical paradigms of 3-D chaotic systems in the literature are Lorenz
system [14], Rössler system [23], ACT system [1], Sprott systems [30], Chen system
[5], Lü system [15], Cai system [3], Tigan system [41], etc.

Many new chaotic systems have been discovered in the recent years such as Zhou
system [89], Zhu system [90], Li system [12],Wei-Yang system [87], Sundarapandian
systems [33, 38], Vaidyanathan systems [49, 50, 52–55, 57, 58, 60, 63, 65, 76, 78,
80, 82, 83], Pehlivan system [17], Sampath system [24], etc.

The study of control of a chaotic system investigates feedback controlmethods that
globally or locally asymptotically stabilize or regulate the outputs of a chaotic system.
Manymethods have been designed for control and regulation of chaotic systems such
as active control [31, 32, 43], adaptive control [74, 81, 84], backstepping control
[13, 86], sliding mode control [46, 48], etc.

Synchronizationof chaotic systems is a phenomenon that occurswhen twoormore
chaotic systems are coupled or when a chaotic system drives another chaotic system.
Because of the butterfly effectwhich causes exponential divergence of the trajectories
of two identical chaotic systems started with nearly the same initial conditions, the
synchronization of chaotic systems is a challenging research problem in the chaos
literature [2].

Major works on synchronization of chaotic systems deal with the complete syn-
chronization of a pair of chaotic systems called the master and slave systems. The
design goal of the complete synchronization problem is to apply the output of the
master system to control the slave system so that the output of the slave system tracks
the output of the master system asymptotically with time.

Pecora and Carroll pioneered the research on synchronization of chaotic systems
with their seminal papers [4, 16]. The active control method [10, 25, 26, 37, 42,
47, 66, 67, 70] is typically used when the system parameters are available for mea-
surement. Adaptive control method [27–29, 34–36, 45, 51, 59, 64, 68, 69, 75, 79]
is typically used when some or all the system parameters are not available for mea-
surement and estimates for the uncertain parameters of the systems.

Sampled-data feedback control method [8, 88] and time-delay feedback control
method [6, 9] are also used for synchronization of chaotic systems. Backstepping
control method [18–22, 40, 71, 77, 85] is also used for the synchronization of
chaotic systems. Backstepping control is a recursive method for stabilizing the origin
of a control system in strict-feedback form [11]. Another popular method for the
synchronization of chaotic systems is the sliding mode control method [39, 44, 56,
61, 62, 72, 73], which is a nonlinear control method that alters the dynamics of
a nonlinear system by application of a discontinuous control signal that forces the
system to “slide” along a cross-section of the system’s normal behavior.
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In the recent decades, there is some good interest in finding novel chaotic and
hyperchaotic systems, which can be expressed by an explicit fourth order differential
equation describing the time evolution of the single scalar variable x given by

d4x

dt
= j

(
x,

dx

dt
,

d2x

dt2
,

d3x

dt3

)
(1)

The differential equation (1) is called “hyperjerk system” because the fourth order
time derivative in mechanical systems is called hyperjerk.

By defining phase variables

x1 = x, x2 = dx

dt
, x3 = d2x

dt2
, x4 = d3x

dt3
, (2)

the hyperjerk differential equation (1) can be expressed as a 4-D system given by

⎧⎪⎪⎨
⎪⎪⎩

ẋ1 = x2
ẋ2 = x3
ẋ3 = x4
ẋ4 = j (x1, x2, x3, x4)

(3)

In this research work, we investigate the 4-D Chlouverakis–Sprott hyperjerk sys-
tem [7]. We have designed adaptive backstepping controllers for stabilization and
synchronization of the 4-D Chlouverakis–Sprott hyperjerk system.

This work is organized as follows. Section2 describes the dynamic equations
and phase portraits of the 4-D Chlouverakis–Sprott hyperjerk system. Section3
details the qualitative properties of the Chlouverakis–Sprott hyperjerk system. The
Chlouverakis–Sprott hyperjerk system has two equilibrium points, which are saddle-
foci. Thus, the Chlouverakis–Sprott hyperjerk system has two unstable equilibrium
points.

The Lyapunov exponents of the Chlouverakis–Sprott hyperjerk system are
obtained as L1 = 0.1885, L2 = 0, L3 = −0.4836 and L4 = −0.7054. Since the sum
of the Lyapunov exponents is negative, the Chlouverakis–Sprott hyperjerk system is
dissipative. Thus, the system limit sets are ultimately confined into a specific limit
set of zero volume, and the asymptotic motion of the Chlouverakis–Sprott hyperjerk
system settles onto a strange attractor of the system. The Kaplan–Yorke dimension
of the Chlouverakis–Sprott hyperjerk system is obtained as DK Y = 2.3898.

In Sect. 4, we design an adaptive backstepping controller to globally stabilize
the Chlouverakis–Sprott hyperjerk system with unknown parameters. In Sect. 5, an
adaptive backstepping controller is designed to achieve global chaos synchronization
of the identical Chlouverakis–Sprott hyperjerk systems with unknown parameters.
Section6 contains the conclusions of this work.
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2 Chlouverakis–Sprott Hyperjerk System

In this section, we describe the 4-DChlouverakis–Sprott hyperjerk system [7], which
is an eight-term chaotic system with one quadratic nonlinearity. This is a simple case
of a hyperjerk system showing chaotic behavior.
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Chlouverakis–Sprott hyperjerk system is modeled by the 4-D dynamics

⎧⎪⎪⎨
⎪⎪⎩

ẋ1 = x2
ẋ2 = x3
ẋ3 = x4
ẋ4 = a

(
x2
1 − 1

) − bx2 − cx3 − x4

(4)

where x1, x2, x3, x4 are the states and a, b, c are constant positive parameters.
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The system (4) exhibits a strange chaotic attractor for the parameter values

a = 4.5, b = 2.7, c = 5.2 (5)

For numerical simulations, we take the initial conditions as

x1(0) = 0.01, x2(0) = 0.01, x3(0) = 0.01, x4(0) = 4 (6)

Figures1, 2, 3 and 4 show the 3-D projection of the Chlouverakis–Sprott hyper-
jerk system (4) on the (x1, x2, x3), (x1, x2, x4), (x1, x3, x4) and (x2, x3, x4) spaces,
respectively.

3 Analysis of the Chlouverakis–Sprott Hyperjerk System

In this section, we give a dynamic analysis of the Chlouverakis–Sprott hyperjerk
system (4).

3.1 Dissipativity

In vector notation, the Chlouverakis–Sprott hyperjerk system (4) can be expressed as

ẋ = f (x) =

⎡
⎢⎢⎣

f1(x1, x2, x3, x4)
f2(x1, x2, x3, x4)
f3(x1, x2, x3, x4)
f4(x1, x2, x3, x4)

⎤
⎥⎥⎦ , (7)

where ⎧⎪⎪⎨
⎪⎪⎩

f1(x1, x2, x3, x4) = x2
f2(x1, x2, x3, x4) = x3
f3(x1, x2, x3, x4) = x4
f4(x1, x2, x3, x4) = a

(
x2
1 − 1

) − bx2 − cx3 − x4

(8)

Let Ω be any region in R4 with a smooth boundary and also, Ω(t) = Φt (Ω),

where Φt is the flow of f . Furthermore, let V (t) denote the hypervolume of Ω(t).
By Liouville’s theorem, we know that

V̇ (t) =
∫

Ω(t)

(∇ · f ) dx1 dx2 dx3 dx4 (9)
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The divergence of the hyperjerk system (7) is found as:

∇ · f = ∂ f1
∂x1

+ ∂ f2
∂x2

+ ∂ f3
∂x3

+ ∂ f4
∂x4

= −1 < 0 (10)

Inserting the value of ∇ · f from (10) into (9), we get

V̇ (t) =
∫

Ω(t)

(−1) dx1 dx2 dx3 dx4 = −V (t) (11)

Integrating the first order linear differential equation (11), we get

V (t) = exp(−t)V (0) (12)

From Eq. (12), it follows that V (t) → 0 exponentially as t → ∞. This shows that
the Chlouverakis–Sprott hyperjerk system (4) is dissipative. Hence, the system limit
sets are ultimately confined into a specific limit set of zero hypervolume, and the
asymptotic motion of the Chlouverakis–Sprott hyperjerk system (4) settles onto a
strange attractor of the system.

3.2 Equilibrium Points

The equilibrium points of the Chlouverakis–Sprott hyperjerk system (4) are obtained
by solving the equations

⎧⎪⎪⎨
⎪⎪⎩

f1(x1, x2, x3, x4) = x2 = 0
f2(x1, x2, x3, x4) = x3 = 0
f3(x1, x2, x3, x4) = x4 = 0
f4(x1, x2, x3, x4) = a

(
x2
1 − 1

) − bx2 − cx3 − x4 = 0

(13)

We take the parameter values as in the chaotic case (5), i.e.

a = 4.5, b = 2.7, c = 5.2 (14)

Solving the equations (13), we get two equilibrium points of the Chlouverakis–
Sprott hyperjerk system (4) as

E1 =

⎡
⎢⎢⎣
1
0
0
0

⎤
⎥⎥⎦ and E2 =

⎡
⎢⎢⎣

−1
0
0
0

⎤
⎥⎥⎦ (15)
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To test the stability type of the equilibrium point E1, we calculate the Jacobian
matrix of the Chlouverakis–Sprott hyperjerk system (4) at any point x :

J (x) =

⎡
⎢⎢⎣

0 1 0 0
0 0 1 0
0 0 0 1

2ax1 −b −c −1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

0 1 0 0
0 0 1 0
0 0 0 1
9x1 −2.7 −5.2 −1

⎤
⎥⎥⎦ (16)

We find that

J1
�= J (E1) =

⎡
⎢⎢⎣
0 1 0 0
0 0 1 0
0 0 0 1
9 −2.7 −5.2 −1

⎤
⎥⎥⎦ (17)

The matrix J1 has the eigenvalues

λ1 = 0.9357, λ2 = −1.4826, λ3,4 = −0.2356 ± 2.5118i (18)

This shows that the equilibrium point E1 is a saddle-focus, which is unstable.
We also find that

J2
�= J (E2) =

⎡
⎢⎢⎣

0 1 0 0
0 0 1 0
0 0 0 1

−9 −2.7 −5.2 −1

⎤
⎥⎥⎦ (19)

The matrix J2 has the eigenvalues

λ1,2 = 0.2641 ± −1.6692i, λ3,4 = −0.7641 ± 1.6023i (20)

This shows that the equilibrium point E2 is a saddle-focus, which is unstable.

3.3 Lyapunov Exponents and Kaplan–Yorke Dimension

We take the parameter values of the Chlouverakis–Sprott hyperjerk system (4) as
a = 4.5, b = 2.7 and c = 5.2. We take the initial state of the Chlouverakis–Sprott
hyperjerk system (4) as given in (6).

Then the Lyapunov exponents of the Chlouverakis–Sprott hyperjerk system (4)
are numerically obtained using MATLAB as

L1 = 0.1885, L2 = 0, L3 = −0.4836, L4 = −0.7054 (21)
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Thus, the maximal Lyapunov exponent (MLE) of the Chlouverakis–Sprott hyper-
jerk system (4) is positive, which means that the system has a chaotic behavior.

Since L1 + L2 + L3 + L4 = −1.0005 < 0, it follows that the Chlouverakis–
Sprott hyperjerk system (4) is dissipative.

Also, the Kaplan–Yorke dimension of the Chlouverakis–Sprott hyperjerk system
(4) is obtained as

DK Y = 2 + L1 + L2

|L3| = 2.3898 (22)

which is fractional.

4 Adaptive Control of the Chlouverakis–Sprott Hyperjerk
System

In this section, we use backstepping control method to derive an adaptive feedback
control law for globally stabilizing the 4-D Chlouverakis–Sprott hyperjerk system
with unknown parameters.

Thus, we consider the 4-D Chlouverakis–Sprott hyperjerk system given by

⎧⎪⎪⎨
⎪⎪⎩

ẋ1 = x2
ẋ2 = x3
ẋ3 = x4
ẋ4 = a

(
x2
1 − 1

) − bx2 − cx3 − x4 + u

(23)

where a, b and c are unknown constant parameters, and u is a backstepping control
law to be determined using estimates â(t), b̂(t) and ĉ(t) for a, b and c, respectively.

The parameter estimation errors are defined as:

⎧⎨
⎩

ea(t) = a − â(t)
eb(t) = b − b̂(t)
ec(t) = c − ĉ(t)

(24)

Differentiating (24) with respect to t , we obtain the following equations:

⎧⎪⎨
⎪⎩

ėa(t) = −˙̂a(t)

ėb(t) = − ˙̂b(t)
ėc(t) = −˙̂c(t)

(25)

Next, we shall state and prove the main result of this section.

Theorem 1 The 4-D Chlouverakis–Sprott hyperjerk system (23), with unknown
parameters a, b and c, is globally and exponentially stabilized by the adaptive
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feedback control law,

u(t) = −5x1 − â(t)(x2
1 − 1) − [10 − b̂(t)]x2 − [9 − ĉ(t)]x3 − 3x4 − kz4 (26)

where k > 0 is a gain constant,

z4 = 3x1 + 5x2 + 3x3 + x4 (27)

and the update law for the parameter estimates â(t), b̂(t), ĉ(t) is given by

⎧⎪⎨
⎪⎩

˙̂a(t) = (x2
1 − 1)z4˙̂b(t) = −x2z4˙̂c(t) = −x3z4

(28)

Proof We prove this result via Lyapunov stability theory [11].
First, we define a quadratic Lyapunov function

V1(z1) = 1

2
z21 (29)

where

z1 = x1 (30)

Differentiating V1 along the dynamics (23), we get

V̇1 = z1 ż1 = x1x2 = −z21 + z1(x1 + x2) (31)

Now, we define

z2 = x1 + x2 (32)

Using (32), we can simplify the equation (31) as

V̇1 = −z21 + z1z2 (33)

Secondly, we define a quadratic Lyapunov function

V2(z1, z2) = V1(z1) + 1

2
z22 = 1

2

(
z21 + z22

)
(34)

Differentiating V2 along the dynamics (23), we get

V̇2 = −z21 − z22 + z2(2x1 + 2x2 + x3) (35)
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Now, we define

z3 = 2x1 + 2x2 + x3 (36)

Using (36), we can simplify the equation (35) as

V̇2 = −z21 − z22 + z2z3 (37)

Thirdly, we define a quadratic Lyapunov function

V3(z1, z2, x3) = V2(z1, z2) + 1

2
z23 = 1

2

(
z21 + z22 + z23

)
(38)

Differentiating V3 along the dynamics (23), we get

V̇3 = −z21 − z22 − z23 + z3(3x1 + 5x2 + 3x3 + x4) (39)

Now, we define

z4 = 3x1 + 5x2 + 3x3 + x4 (40)

Using (40), we can simplify the equation (39) as

V̇2 = −z21 − z22 − z23 + z3z4 (41)

Finally, we define a quadratic Lyapunov function

V (z1, z2, z3, z4, ea, eb, ec) = V3(z1, z2, z3) + 1

2
z24 + 1

2
e2a + 1

2
e2b + 1

2
e2c (42)

which is a positive definite function on R7.
Differentiating V along the dynamics (23), we get

V̇ = −z21 − z22 − z23 − z24 + z4(z4 + z3 + ż4) − ea
˙̂a − eb

˙̂b − ec
˙̂c (43)

Equation (43) can be written compactly as

V̇ = −z21 − z22 − z23 − z24 + z4S − ea
˙̂a − eb

˙̂b − ec
˙̂c (44)

where

S = z4 + z3 + ż4 = z4 + z3 + 3ẋ1 + 5ẋ2 + 3ẋ3 + ẋ4 (45)
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A simple calculation gives

S = 5x1 + a(x2
1 − 1) + (10 − b)x2 + (9 − c)x3 + 3x4 + u (46)

Substituting the adaptive control law (26) into (46), we obtain

S = (a − â(t))(x2
1 − 1) − (b − b̂(t))x2 − (c − ĉ(t))x3 − kz4 (47)

Using the definitions (25), we can simplify (47) as

S = ea(x2
1 − 1) − ebx2 − ecx3 − kz4 (48)

Substituting the value of S from (48) into (44), we obtain

V̇ = −z21 − z22 − z23 − (1 + k)z24 + ea((x2
1 − 1)z4 − ˙̂a) + eb(−x2z4 − ˙̂b)

+ec(−x3z4 − ˙̂c) (49)

Substituting the update law (28) into (49), we get

V̇ = −z21 − z22 − z23 − (1 + k)z24, (50)

which is a negative semi-definite function on R7.
From (50), it follows that the vector z(t) = (z1(t), z2(t), z3(t), z4(t)) and the

parameter estimation error (ea(t), eb(t), ec(t)) are globally bounded, i.e.

[
z1(t) z2(t) z3(t) z4(t) ea(t) eb(t) ec(t)

] ∈ L∞ (51)

Also, it follows from (50) that

V̇ ≤ −z21 − z22 − z23 − z24 = −‖z‖2 (52)

That is,

‖z‖2 ≤ −V̇ (53)

Integrating the inequality (53) from 0 to t , we get

t∫
0

|z(τ )|2 dτ ≤ V (0) − V (t) (54)

From (54), it follows that z(t) ∈ L2.
From Eq. (23), it can be deduced that ż(t) ∈ L∞.
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Thus, using Barbalat’s lemma [11], we conclude that z(t) → 0 exponentially as
t → ∞ for all initial conditions z(0) ∈ R4.

Hence, it is immediate that x(t) → 0 exponentially as t → ∞ for all initial con-
ditions x(0) ∈ R4. This completes the proof. �

For the numerical simulations, the classical fourth-order Runge–Kutta method
with step size h = 10−8 is used to solve the system of differential equations (23)
and (28), when the adaptive control law (26) is applied. The parameter values of the
system (23) are taken as in the chaotic case (5), i.e. a = 4.5, b = 2.7 and c = 5.2.

We take the positive gain constant as k = 8.
As initial conditions of the Chlouverakis–Sprott hyperjerk system (23), we take

x1(0) = 4.7, x2(0) = −1.6, x3(0) = 2.7, x4(0) = −3.9 (55)

Also, as initial conditions of the parameter estimates â(t) and b̂(t), we take

â(0) = 3.2, b̂(0) = 2.4, ĉ(0) = 7.5 (56)

In Fig. 5, the exponential convergence of the controlled states is depicted, when
the adaptive control law (26) is implemented.
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5 Adaptive Synchronization of the Identical
Chlouverakis–Sprott Hyperjerk Systems

In this section, we use backstepping control method to derive an adaptive control
law for globally and exponentially synchronizing the identical Chlouverakis–Sprott
hyperjerk systems with unknown parameters.

As the master system, we consider the 4-D Chlouverakis–Sprott hyperjerk system
given by ⎧⎪⎪⎨

⎪⎪⎩

ẋ1 = x2
ẋ2 = x3
ẋ3 = x4
ẋ4 = a

(
x2
1 − 1

) − bx2 − cx3 − x4

(57)

where x1, x2, x3, x4 are the states of the system, and a, b, c are unknown constant
parameters.

As the slave system, we consider the 4-D Chlouverakis–Sprott hyperjerk system
given by ⎧⎪⎪⎨

⎪⎪⎩

ẏ1 = y2
ẏ2 = y3
ẏ3 = y4
ẏ4 = a

(
y21 − 1

) − by2 − cy3 − y4 + u

(58)

where y1, y2, y3, y4 are the states of the system, and u is a backstepping control to
be determined using estimates â(t), b̂(t) and ĉ(t) for a, b and c, respectively.

We define the synchronization errors between the states of the master system (57)
and the slave system (58) as ⎧⎪⎪⎨

⎪⎪⎩

e1 = y1 − x1
e2 = y2 − x2
e3 = y3 − x3
e4 = y4 − x4

(59)

Then the error dynamics is easily obtained as

⎧⎪⎪⎨
⎪⎪⎩

ė1 = e2
ė2 = e3
ė3 = e4
ė4 = a(y21 − x2

1 ) − be2 − ce3 − e4 + u

(60)

The parameter estimation errors are defined as:

⎧⎪⎨
⎪⎩

ea(t) = a − â(t)

eb(t) = b − b̂(t)
ec(t) = c − ĉ(t)

(61)
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Differentiating (61) with respect to t , we obtain the following equations:

⎧⎪⎨
⎪⎩

ėa(t) = −˙̂a(t)

ėb(t) = − ˙̂b(t)
ėc(t) = −˙̂c(t)

(62)

Next, we shall state and prove the main result of this section.

Theorem 2 The identical 4-D Chlouverakis–Sprott hyperjerk systems (57) and (58)
with unknown parameters a, b and c are globally and exponentially synchronized by
the adaptive control law

u = −5e1 − â(t)(y21 − x2
1 ) −

[
10 − b̂(t)

]
e2 − [

9 − ĉ(t)
]

e3 − 3e4 − kz4 (63)

where k > 0 is a gain constant,

z4 = 3e1 + 5e2 + 3e3 + e4, (64)

and the update law for the parameter estimates â(t), b̂(t), ĉ(t) is given by

⎧⎪⎨
⎪⎩

˙̂a(t) = (y21 − x2
1 )z4˙̂b(t) = −e2z4˙̂c(t) = −e3z4

(65)

Proof We prove this result via backstepping control method and Lyapunov stability
theory.

First, we define a quadratic Lyapunov function

V1(z1) = 1

2
z21 (66)

where

z1 = e1 (67)

Differentiating V1 along the error dynamics (60), we get

V̇1 = z1 ż1 = e1e2 = −z21 + z1(e1 + e2) (68)

Now, we define

z2 = e1 + e2 (69)
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Using (69), we can simplify the equation (68) as

V̇1 = −z21 + z1z2 (70)

Secondly, we define a quadratic Lyapunov function

V2(z1, z2) = V1(z1) + 1

2
z22 = 1

2

(
z21 + z22

)
(71)

Differentiating V2 along the error dynamics (60), we get

V̇2 = −z21 − z22 + z2(2e1 + 2e2 + e3) (72)

Now, we define

z3 = 2e1 + 2e2 + e3 (73)

Using (73), we can simplify the equation (72) as

V̇2 = −z21 − z22 + z2z3 (74)

Thirdly, we define a quadratic Lyapunov function

V3(z1, z2, x3) = V2(z1, z2) + 1

2
z23 = 1

2

(
z21 + z22 + z23

)
(75)

Differentiating V3 along the error dynamics (60), we get

V̇3 = −z21 − z22 − z23 + z3(3e1 + 5e2 + 3e3 + e4) (76)

Now, we define

z4 = 3e1 + 5e2 + 3e3 + e4 (77)

Using (77), we can simplify the equation (76) as

V̇2 = −z21 − z22 − z23 + z3z4 (78)

Finally, we define a quadratic Lyapunov function

V (z1, z2, z3, z4, ea, eb, ec) = V3(z1, z2, z3) + 1

2
z24 + 1

2
e2a + 1

2
e2b + 1

2
e2c (79)

Differentiating V along the error dynamics (60), we get

V̇ = −z21 − z22 − z23 − z24 + z4(z4 + z3 + ż4) − ea
˙̂a − eb

˙̂b − ec
˙̂c (80)
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Equation (80) can be written compactly as

V̇ = −z21 − z22 − z23 − z24 + z4S − ea
˙̂a − eb

˙̂b − ec
˙̂c (81)

where

S = z4 + z3 + ż4 = z4 + z3 + 3ė1 + 5ė2 + 3ė3 + ė4 (82)

A simple calculation gives

S = 5e1 + a(y21 − x2
1 ) + (10 − b)e2 + (9 − c)e3 + 3e4 + u (83)

Substituting the adaptive control law (63) into (83), we obtain

S = − [
a − â(t)

]
(y21 − x2

1 ) −
[
b − b̂(t)

]
e2 − [

c − ĉ(t)
]

e3 − kz4 (84)

Using the definitions (62), we can simplify (84) as

S = −ea(y21 − x2
1 ) − ebe2 − ece3 − kz4 (85)

Substituting the value of S from (85) into (81), we obtain

⎧⎨
⎩

V̇ = −z21 − z22 − z23 − (1 + k)z24 + ea

[
−z4(y21 − x2

1 ) − ˙̂a
]

+eb

[
−e2z4 − ˙̂b

]
+ ec

[
−e3z4 − ˙̂c

] (86)

Substituting the update law (65) into (86), we get

V̇ = −z21 − z22 − z23 − (1 + k)z24, (87)

which is a negative semi-definite function on R7.
From (87), it follows that the vector z(t) = (z1(t), z2(t), z3(t), z4(t)) and the

parameter estimation error (ea(t), eb(t), ec(t)) are globally bounded, i.e.

[
z1(t) z2(t) z3(t) z4(t) ea(t) eb(t) ec(t)

] ∈ Li n f t y (88)

Also, it follows from (87) that

V̇ ≤ −z21 − z22 − z23 − z24 = −‖z‖2 (89)

That is,

‖z‖2 ≤ −V̇ (90)
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Integrating the inequality (90) from 0 to t , we get

t∫
0

|z(τ )|2 dτ ≤ V (0) − V (t) (91)

From (91), it follows that z(t) ∈ L2.
From Eq. (60), it can be deduced that ż(t) ∈ L∞.
Thus, using Barbalat’s lemma [11], we conclude that z(t) → 0 exponentially as

t → ∞ for all initial conditions z(0) ∈ R4.
Hence, it is immediate that e(t) → 0 exponentially as t → ∞ for all initial con-

ditions e(0) ∈ R4. This completes the proof. �

For the numerical simulations, the classical fourth-order Runge–Kutta method
with step size h = 10−8 is used to solve the system of differential equations (57)
and (58).

The parameter values of the Chlouverakis–Sprott hyperjerk system are taken as
in the chaotic case, viz. a = 4.5, b = 2.7 and c = 5.2. The gain constant is taken as
k = 8.

Also, as initial conditions of the master system (57), we take

x1(0) = 0.5, x2(0) = 0.1, x3(0) = −0.2, x4(0) = 0.2 (92)

0 1 2 3 4 5 6 7 8 9 10
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

Time (sec)

x 1, y
1

x
1

y
1

Fig. 6 Synchronization of the states x1 and y1



Adaptive Control and Synchronization … 135

0 1 2 3 4 5 6 7 8 9 10
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

Time (sec)

x 2, y
2

x
2

y
2

Fig. 7 Synchronization of the states x2 and y2

0 1 2 3 4 5 6 7 8 9 10
−6

−4

−2

0

2

4

6

Time (sec)

x 3, y
3

x
3

y
3

Fig. 8 Synchronization of the states x3 and y3

As initial conditions of the slave system (58), we take

y1(0) = −0.4, y2(0) = 0.3, y3(0) = 0.4, y4(0) = −0.3 (93)
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Furthermore, as initial conditions of the parameter estimates â(t), b̂(t) and ĉ(t),
we take

â(0) = 1.5, b̂(0) = 3.8, ĉ(0) = 2.6 (94)
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In Figs. 6, 7, 8 and 9, the complete synchronization of the identical 4-D
Chlouverakis–Sprott hyperjerk systems (57) and (58) is shown, when the adaptive
control law and the parameter update law are implemented.

Also, in Fig. 10, the time-history of the complete synchronization errors is shown.

6 Conclusions

In this work, we derived new results for the adaptive control and synchronization
of Chlouverakis–Sprott hyperjerk system (2006) via adaptive backstepping con-
trol method. The Chlouverakis–Sprott system is a 4-D hyperjerk system with one
quadratic nonlinearity. We discussed the qualitative properties of the Chlouverakis–
Sprott hyperjerk system.Next, an adaptive backstepping controller has been designed
to globally stabilize the Chlouverakis–Sprott hyperjerk system with unknown para-
meters. Moreover, an adaptive backstepping controller has also been designed to
achieve global chaos synchronization of the identical Chlouverakis–Sprott hyperjerk
systems with unknown parameters. The backstepping control method is a recursive
procedure that links the choice of a Lyapunov function with the design of a controller
and guarantees global asymptotic stability of strict feedback systems. MATLAB
simulations were shown to illustrate the phase portraits of the Chlouverakis–Sprott
hyperjerk system and also the adaptive backstepping control results.
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Abstract Chaos in nonlinear dynamics occurs widely in physics, chemistry,
biology, ecology, secure communications, cryptosystems and many scientific
branches. Anti-synchronization of chaotic systems is an important research prob-
lem in chaos theory. Sliding mode control is an important method used to solve
various problems in control systems engineering. In robust control systems, the slid-
ing mode control is often adopted due to its inherent advantages of easy realization,
fast response and good transient performance as well as insensitivity to parameter
uncertainties and disturbance. In this work, we derive a novel sliding mode control
method for the anti-synchronization of identical chaotic or hyperchaotic systems.
The general result derived using novel sliding mode control method is proved using
Lyapunov stability theory. As an application of the general result, the problem of anti-
synchronization of identical Vaidyanathan hyperjerk hyperchaotic systems (2015)
is studied and a new sliding mode controller is derived. The Lyapunov exponents
of the Vaidyanathan hyperjerk system are obtained as L1 = 0.1448, L2 = 0.0328,
L3 = 0 and L4 = −1.1294. Since the Vaidyanathan hyperjerk system has two posi-
tiveLyapunov exponents, it is hyperchaotic.Also, theKaplan–Yorkedimensionof the
Vaidyanathan hyperjerk system is obtained asDKY = 3.1573. Numerical simulations
using MATLAB have been shown to depict the phase portraits of the Vaidyanathan
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1 Introduction

Chaos theory describes the quantitative study of unstable aperiodic dynamic behav-
iour in deterministic nonlinear dynamical systems. For the motion of a dynamical
system to be chaotic, the system variables should contain some nonlinear terms
and the system must satisfy three properties: boundedness, infinite recurrence and
sensitive dependence on initial conditions [1].

A hyperchaotic system is defined as a chaotic system with at least two positive
Lyapunov exponents [1]. Thus, the dynamics of a hyperchaotic system can expand
in several different directions simultaneously. Thus, the hyperchaotic systems have
more complex dynamical behaviour and they have miscellaneous applications in
engineering such as secure communications [3, 9, 46], cryptosystems [5, 14, 50],
fuzzy logic [19, 49], electrical circuits [44, 47], etc.

The minimum dimension of an autonomous, continuous-time, hyperchaotic sys-
tem is four. The first 4-D hyperchaotic system was found by Rössler [15]. Many
hyperchaotic systems have been reported in the chaos literature such as hyperchaotic
Lorenz system [6], hyperchaotic Lü system [2], hyperchaotic Chen system [10],
hyperchaotic Wang system [43], hyperchaotic Vaidyanathan systems [28, 30, 31,
38, 40, 42], hyperchaotic Pham system [11], etc.

The synchronization of chaotic systems aims to synchronize the states of master
and slave systems asymptotically with time. There are many methods available for
chaos synchronization such as active control [7, 16, 17, 33, 35], adaptive control
[18, 20–22, 27, 32, 34], sliding mode control [23, 29, 37, 39], backstepping control
[12, 13, 24, 36], etc.

The design goal of anti-synchronization of chaotic systems is to use the output
of the master system to control the slave system so that the states of the slave sys-
tem have the same amplitude but opposite signs as the states of the master system
asymptotically [45, 48].

In this work, we use a novel sliding mode control method for deriving a general
result for the anti-synchronization of chaotic or hyperchaotic systems using sliding
mode control (SMC) theory. The sliding mode control method is an effective control
tool which has the advantages of low sensitivity to parameter variations in the plant
and disturbances affecting the plant.

This work is organized as follows. In Sect. 2, we discuss the problem statement
for the anti-synchronization of identical chaotic or hyperchaotic systems. In Sect. 3,
we derive a general result for the anti-synchronization of identical chaotic or hy-
perchaotic systems using novel sliding mode control. In Sect. 4, we describe the
Vaidyanathan hyperjerk system [41] and its dynamic properties. The Lyapunov
exponents of the Vaidyanathan hyperjerk system are obtained as L1 = 0.1448,
L2 = 0.0328, L3 = 0 and L4 = −1.1294, which shows that the Vaidyanathan hyper-
jerk system is hyperchaotic. In Sect. 5, we describe the slidingmode controller design
for the anti-synchronization of identical Vaidyanathan hyperjerk systems using novel
sliding mode control and its numerical simulations using MATLAB. Section6 con-
tains the conclusions of this work.
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2 Problem Statement

This section gives a problem statement for the anti-synchronization of identical
chaotic or hyperchaotic systems.

As the master or drive system, we consider the chaotic or hyperchaotic system
given by

ẋ = Ax + f (x) (1)

where x ∈ Rn denotes the state of the system, A ∈ Rn×n denotes the matrix of system
parameters and f (x) ∈ Rn contains the nonlinear parts of the system.

As the slave or response system, we consider the controlled identical system
given by

ẏ = Ay + f (y) + u (2)

where y ∈ Rn denotes the state of the system and u is the control.
The anti-synchronization error between the systems (1) and (2) is defined as

e = y + x (3)

The error dynamics is easily obtained as

ė = Ae + ψ(x, y) + u, (4)

where

ψ(x, y) = f (x) + f (y) (5)

Thus, the anti-synchronization problem between the systems (1) and (2) can be
stated as follows: Find a controller u(x, y) so as to render the anti-synchronization
error e(t) to be globally asymptotically stable for all values of e(0) ∈ Rn, i.e.

lim
t→∞ ‖e(t)‖ = 0 for all e(0) ∈ Rn (6)

3 A Novel Sliding Mode Control Method for Solving
Anti-synchronization Problem

This section details the main results of this work, viz. novel sliding mode controller
design for achieving anti-synchronization of chaotic or hyperchaotic systems.

First, we start the design by setting the control as

u(t) = −ψ(x, y) + Bv(t) (7)
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In Eq. (7), B ∈ Rn is chosen such that (A,B) is completely controllable.
By substituting (7) into (4), we get the closed-loop error dynamics

ė = Ae + Bv (8)

The system (8) is a linear time-invariant control system with single input v.
Next, we start the sliding controller design by defining the sliding variable as

s(e) = Ce = c1e1 + c2e2 + · · · + cnen, (9)

where C ∈ R1×n is a constant vector to be determined.
The sliding manifold S is defined as the hyperplane

S = {e ∈ Rn : s(e) = Ce = 0} (10)

We shall assume that a sliding motion occurs on the hyperplane S.
In sliding mode, the following equations must be satisfied:

s = 0 (11a)

ṡ = CAe + CBv = 0 (11b)

We assume that

CB �= 0 (12)

The sliding motion is influenced by the equivalent control derived from (11b) as

veq(t) = −(CB)−1 CAe(t) (13)

By substituting (13) into (8), we obtain the equivalent error dynamics in the sliding
phase as

ė = Ae − (CB)−1CAe = Ee, (14)

where

E = [
I − B(CB)−1C

]
A (15)

We note that E is independent of the control and has at most (n − 1) non-zero
eigenvalues, depending on the chosen switching surface, while the associated eigen-
vectors belong to ker(C).

Since (A,B) is controllable, we can use sliding control theory [25, 26] to choose
B and C so that E has any desired (n − 1) stable eigenvalues.

This shows that the dynamics (14) is globally asympotically stable.
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Finally, for the sliding controller design, we apply a novel sliding control law, viz.

ṡ = −ks − qs2 sgn(s) (16)

In (16), sgn(·) denotes the sign function and the SMC constants k > 0, q > 0 are
found in such a way that the sliding condition is satisfied and that the sliding motion
will occur.

By combining Eqs. (11b), (13) and (16), we finally obtain the sliding mode con-
troller v(t) as

v(t) = −(CB)−1
[
C(kI + A)e + qs2 sgn(s)

]
(17)

Next, we establish the main result of this section.

Theorem 1 The sliding mode controller defined by (7)achieves anti-synchronization
between the identical chaotic systems (1) and (2) for all initial conditions x(0), y(0)
in Rn, where v is defined by the novel sliding mode control law (17), B ∈ Rn×1 is such
that (A,B) is controllable, C ∈ R1×n is such that CB �= 0 and the matrix E defined
by (15) has (n − 1) stable eigenvalues.

Proof Upon substitution of the control laws (7) and (17) into the error dynamics (4),
we obtain the closed-loop error dynamics as

ė = Ae − B(CB)−1
[
C(kI + A)e + qs2 sgn(s)

]
(18)

We shall show that the error dynamics (18) is globally asymptotically stable by
considering the quadratic Lyapunov function

V(e) = 1

2
s2(e) (19)

The sliding mode motion is characterized by the equations

s(e) = 0 and ṡ(e) = 0 (20)

By the choice of E, the dynamics in the sliding mode given by Eq. (14) is globally
asymptotically stable.

When s(e) �= 0, V(e) > 0.
Also, when s(e) �= 0, differentiatingV along the error dynamics (18) or the equiv-

alent dynamics (16), we get

V̇(e) = sṡ = −ks2 − qs3 sgn(s) < 0 (21)

Hence, by Lyapunov stability theory [8], the error dynamics (18) is globally
asymptotically stable for all e(0) ∈ Rn. This completes the proof. �
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4 Vaidyanathan Hyperjerk System and Its Properties

In this section, we describe the Vaidyanathan hyperjerk system [41] and discuss its
dynamic properties.

The Vaidyanathan hyperjerk system [41] is described by the 4-D dynamics

ẋ1 = x2
ẋ2 = x3
ẋ3 = x4
ẋ4 = −x1 − x2 − bx21 − ax3 − cx41x4

(22)

where x1, x2, x3, x4 are the states and a, b, c are constant, positive, parameters.
In [41], it was shown that the system (22) is hyperchaotic when the parameters

take the values

a = 3.7, b = 0.2, c = 1.5 (23)

For numerical simulations,we take the initial values of theVaidyanathan hyperjerk
system (22) as

x1(0) = 0.1, x2(0) = 0.1, x3(0) = 0.1, x4(0) = 0.1 (24)

For the parameter values in (23) and the initial values in (24), the Lyapunov
exponents of the Vaidyanathan hyperjerk system (22) are numerically obtained as

L1 = 0.1448, L2 = 0.0328, L3 = 0, L4 = −1.1294 (25)

Since there are two positive Lyapunov exponents in the LE spectrum given in
(25), it follows that the Vaidyanathan hyperjerk system is hyperchaotic.

Since the sum of the Lyapunov exponents in (25) is negative, the Vaidyanathan
hyperjerk system (22) is dissipative.

The Kaplan–Yorke dimension [4] of a chaotic system of order n is defined as

DKY = j + L1 + · · · + Lj

|Lj+1| (26)

where L1 ≥ L2 ≥ · · · ≥ Ln are the Lyapunov exponents of the chaotic system and j
is the largest integer for which L1 + L2 + · · · + Lj ≥ 0. (Kaplan–Yorke conjecture
states that for typical chaotic systems, DKY ≈ DL, the information dimension of the
system.)
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Fig. 1 3-D projection of the Vaidyanathan hyperjerk system on the (x1, x2, x3) space

Thus, the Kaplan–Yorke dimension of the Vaidyanathan hyperjerk system (22) is
calculated as

DKY = 3 + L1 + L2 + L3

|L4| = 3.1573, (27)

which is fractional.
It is easy to show that the Vaidyanathan hyperjerk system (22) has two equilibrium

points given by

E0 =

⎡
⎢⎢⎣
0
0
0
0

⎤
⎥⎥⎦ and E1 =

⎡
⎢⎢⎣

−5
0
0
0

⎤
⎥⎥⎦ (28)

In [41], it was shown that both E0 and E1 are saddle-focus points, and hence they
are unstable.

For the initial conditions given in (24), phase portraits of the Vaidyanathan
hyperjerk system (22) are plotted using MATLAB.

Figures1, 2, 3 and 4 show the 3-D projections of the Vaidyanathan hyperjerk sys-
tem (22) in (x1, x2, x3), (x1, x2, x4), (x1, x3, x4) and (x2, x3, x4) spaces, respectively.
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Fig. 2 3-D projection of the Vaidyanathan hyperjerk system on the (x1, x2, x4) space
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Fig. 3 3-D projection of the Vaidyanathan hyperjerk system on the (x1, x3, x4) space

5 Sliding Mode Controller Design for the
Anti-synchronization of Vaidyanathan Hyperjerk
Systems

In this section, we describe the sliding mode controller design for the anti-
synchronization of Vaidyanathan hyperjerk systems [41] by applying the novel
method described by Theorem 1 in Sect. 3.
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Fig. 4 3-D projection of the Vaidyanathan hyperjerk system on the (x2, x3, x4) space

As the master system, we take the Vaidyanathan hyperjerk system given by

ẋ1 = x2
ẋ2 = x3
ẋ3 = x4
ẋ4 = −x1 − x2 − bx21 − ax3 − cx41x4

(29)

where x1, x2, x3, x4 are the state variables and a, b, c are positive parameters.
As the slave system, we consider the controlled Vaidyanathan hyperjerk system

given by

ẏ1 = y2 + u1
ẏ2 = y3 + u2
ẏ3 = y4 + u3
ẏ4 = −y1 − y2 − by21 − ay3 − cy41y4 + u4

(30)

where y1, y2, y3, y4 are the state variables and u1, u2, u3, u4 are the controls.
The anti-synchronization error between the Vaidyanathan hyperjerk systems is

defined by

e1 = y1 + x1
e2 = y2 + x2
e3 = y3 + x3
e4 = y4 + x4

(31)
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Then the error dynamics is obtained as

ė1 = e2 + u1
ė2 = e3 + u2
ė3 = e4 + u3
ė4 = −e1 − e2 − ae3 − b

(
y21 + x21

) − c
(
y41y4 + x41x4

) + u4

(32)

In matrix form, we can write the error dynamics (32) as

ė = Ae + ψ(x, y) + u (33)

The matrices in (33) are given by

A =

⎡
⎢⎢⎣

0 1 0 0
0 0 1 0
0 0 0 1

−1 −1 −a 0

⎤
⎥⎥⎦ and ψ(x, y) =

⎡
⎢⎢⎣

0
0
0

−b(y21 + x21) − c(y41y4 + x41x4)

⎤
⎥⎥⎦ (34)

We follow the procedure given in Sect. 3 for the construction of the novel sliding
controller to achieve anti-synchronization of the identical Vaidyanathan hyperjerk
systems (29) and (30).

First, we set u as

u(t) = −ψ(x, y) + Bv(t) (35)

where B is selected such that (A,B) is completely controllable.
A simple choice of B is

B =

⎡
⎢⎢⎣
1
1
1
1

⎤
⎥⎥⎦ (36)

It can be easily checked that (A,B) is completely controllable.
The Vaidyanathan hyperjerk system displays a strange attractor when the para-

meter values are selected as

a = 3.7, b = 0.2, c = 1.5 (37)

Next, we take the sliding variable as

s(e) = Ce = [
15 8 −9 −13

]
e = 15e1 + 8e2 − 9e3 − 13e4 (38)

Next, we take the sliding mode gains as

k = 5, q = 0.2 (39)
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From Eq. (17) in Sect. 3, we obtain the novel sliding control v as

v(t) = −88e1 − 68e2 − 11.1e3 + 74e4 − 0.2s2 sgn(s) (40)

As an application of Theorem 1 to the identical Vaidyanathan hyperjerk systems,
we obtain the following main result of this section.

Theorem 2 The identical Vaidyanathan hyperjerk systems (29)and (30)are globally
and asymptotically anti-synchronized for all initial conditions x(0), y(0) ∈ R4 with
the sliding controller u defined by (35), where ψ(x, y) is defined by (34), B is defined
by (36) and v is defined by (40). �

For numerical simulations, we use MATLAB for solving the systems of differ-
ential equations using the classical fourth-order Runge–Kutta method with step size
h = 10−8.

The parameter values of the Vaidyanathan hyperjerk systems are taken as in the
hyperchaotic case, viz. a = 3.7, b = 0.2 and c = 1.5.

The sliding mode gains are taken as k = 5 and q = 0.2.
As an initial condition for the master system (29), we take

x1(0) = 1.7, x2(0) = 0.5, x3(0) = 1.8, x4(0) = 1.2 (41)

As an initial condition for the slave system (30), we take

y1(0) = 3.1, y2(0) = 2.4, y3(0) = 0.3, y4(0) = 0.5 (42)
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Fig. 5 Anti-synchronization of the states x1 and y1
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Figures5, 6, 7 and 8 show the anti-synchronization of the states of the identical
Vaidyanathan hyperjerk systems (29) and (30).

Figure9 shows the time-history of the anti-synchronization errors e1, e2, e3, e4.
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6 Conclusions

Chaos and hyperchaos have important applications in science and engineering.
Hyperchaotic systems have more complex behaviour than chaotic systems and they
havemiscellaneous applications in areas like secure communications, cryptosystems,
etc. In robust control systems, the sliding mode control is commonly used due to its
inherent advantages of easy realization, fast response and good transient performance
as well as insensitivity to parameter uncertainties and disturbance. In this work, we
derived a novel slidingmode control method for the anti-synchronization of identical
chaotic or hyperchaotic systems.We proved the main result using Lyapunov stability
theory. As an application of the general result, the problem of anti-synchronization of
identical Vaidyanathan hyperjerk hyperchaotic systems (2015)was studied and a new
sliding mode controller has been derived. Numerical simulations using MATLAB
were shown to depict the phase portraits of theVaidyanathan hyperjerk systemand the
slidingmode controller design for the anti-synchronization of identical Vaidyanathan
hyperjerk systems.
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Sliding Mode Control with State Derivative
Feedback in Novel Reciprocal State Space
Form

Yuan-Wei Tseng

Abstract This chapter introduces a novel reciprocal state space (RSS) system form.
The concepts and the need ofRSS form are comprehensively reviewed and explained.
It shows that in RSS form, control design using state derivative related feedback is
straightforward. Sliding mode control (SMC) is a nonlinear control design method
and a highly active area of research. Finite-time convergence due to discontinuous
control law, low sensitivity to plant parameter uncertainty and/or external perturba-
tion, and greatly reduced-order modeling of plant dynamics are the main advantages
of SMC. In the past, the majority of available SMC algorithms and the corresponding
switching conditions involved only state related variables. In this chapter, the advan-
tages of both RSS and SMC are combined to develop sliding mode control in RSS
form so that state derivate related feedback can be systematically applied in SMC
to handle wider range of control problems. To provide the theoretical foundation,
stability analysis in RSS form is first reviewed. Next, novel switching function and
approaching condition based on the derivative of sliding surface are proposed to carry
out SMCdesign approach in RSS formwith considerations of system uncertainty and
disturbance. In addition, algorithm of finding upper bound of system uncertainty is
developed for robustness analysis. To verify the proposed design algorithms, numer-
ical examples are provided. Finally, conclusions are drawn.

Keywords Reciprocal state space (RSS) form · State derivate related feedback ·
Sliding mode control · Nonlinear control

1 Introduction

In recent years, robust control is one of themost popular topics in control area. One of
the famousmethods is the so-called slidingmode control (SMC) or variable structure
control (VSC) [33, 35, 36] which is a nonlinear control and has been proven as an
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effectively robust control technology with many practical applications. Through this
chapter, the name of sliding mode control (SMC) is used for unification. The main
idea of sliding mode control is to design a controller rendering the trajectory of states
trapped on a predetermined sliding surface and remained on it thereafter. Sliding
mode control utilizes a high-speed switching control law to drive the state trajectory
staying on this sliding surface for all subsequence time such that the robust stability
of the system is assured. In the present, sliding mode control is a highly active area of
research. Finite-time convergence due to discontinuous control law, low sensitivity to
plant parameter uncertainty and/or external perturbation, and greatly reduced-order
modeling of plant dynamics are the main advantages of it. Therefore, based on SMC,
many works in state space form have been developed [7, 11, 12, 20, 39].

The majority of available SMC algorithms for linear systems is developed in state
space form and applies state feedback. However, in many applications, people face
the problems that either cannot be handled in state space form or cannot directly
apply state feedback in designs. More details are given in next section. To provide
supplementary design algorithms of state derivative feedback in state space form, a
direct state derivative feedback control scheme was developed in “Reciprocal state
space” (RSS) form [21–26] by the author of this chapter.

In this chapter, the algorithms of SMC design utilizing state derivative feedback
in RSS form are introduced [27, 28, 40]. The main purpose of this chapter is to
combine the advantages of both RSS and SMC so that state derivate feedback can be
systematically applied in SMC designs to handle wider range of control problems.

The rest of chapter is organized as follows. “Reciprocal state space” (RSS) form
is introduced and reviewed in Sect. 2. In Sect. 3, the design approach of sliding mode
control with state derivative feedback in RSS form is described and the method for
finding the upper bound of system uncertainty in RSS form is also developed. The
contribution of this chapter, discussion and suggested future research are given in
the conclusion section.

2 Reciprocal State Space (RSS) Form and State Derivative
Feedback Control Designs

The concepts and the needs of RSS form are first comprehensively reviewed and
explained in this section as follows.

In general, a dynamic linear continuous time invariant system using state variables
with physical meanings can be naturally expressed in the following equation under
the names of generalized state space form [38] or descriptor form [42] or singular
system form [2].

Eẋ = Fx + Nu (1)

where xn×1 and um×1 are state vector and control vector, respectively, and En×n , Fn×n

and Nn×m are known constant system matrices. Controllability and observability of
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generalized state space systems have been investigated in [2, 42]. The following is
the characteristic equation of open loop generalized state space system in (1).

det(s E − F) = 0 (2)

The degree r of characteristic equation in (2) is the number of system’s finite
eigenvalues while n − r is the number of system’s eigenvalues at infinity [5].
If E in (1) is nonsingular, the system has no eigenvalue at infinity but can have zero
eigenvalues. Such system can be expressed in the following standard state space
system form:

ẋ = E−1Fx + E−1Nu = Āx + B̄u. (3)

For state space system, state derivative vector can be explicitly expressed in terms
of state vector and control input vector.Most of control algorithms developed for state
space systems are related to state feedback such as full state feedback, state related
output feedback and estimated state feedback when estimators are implemented.
However, in many applications, the sensors directly measure state derivatives rather
than states. For instance, accelerometers [9] in micro and nano-electro-mechanical
systems (M/NEMS) and structural applications [10, 26] are such cases because accel-
eration signals can only be modeled as state derivatives [6, 10, 26]. Consequently,
abundant control algorithms with state related feedback developed in standard state
space form cannot be readily applicable in this situation.Additional integratorswhich
may increase the cost and complexity of the implementation are needed. Mathemat-
ically speaking, state derivative related feedback designs cannot be carried out as
straightforward as state related feedback for systems expressed in standard state
space form. For example, if we apply the following full state derivative feedback
control law

u = −K ẋ (4)

to the state space system in (3), the closed loop system becomes

ẋ = (I + B̄ K )−1 Āx (5)

In (5), since gain K is inside an inverse matrix (I + B̄ K )−1 which is further coupled
with the open loop system matrix Ā by multiplication, it is obvious that advanced
mathematics is needed to design gain K in (4). Therefore, in the past, the developed
algorithms of state derivative related feedback for systems in state space form were
very few and rarely used to control the system alone [6]. In a word, standard state
space system in (1) is the best system form for open loop systems without poles at
infinity in designing state related feedback control algorithms. However, standard
state space system is not the most suitable form to develop state derivative related
feedback control algorithms and cannot handle the systems with open loop poles at
infinity.
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If E in (1) is singular, the system has poles at infinity and is called generalized
state space system. In the past, the majority of control designs for system with poles
at infinity were directly developed in the generalized state space form in (1).

Extensive applications of generalized state space systems arise in many areas of
engineering such as electrical networks [16], aerospace systems [1], smart structures
[26, 41] and chemical processes [18]. Generalized state space systems also exist in
other areas such as the dynamic Leontief model for economic production sectors
[15] and biological complex systems [14]. A comprehensive review is available in
Yeh et al. [41]. In this paper, generalized state space system is used as the name
to represent such systems. In previous studies, generalized state space systems are
further categorized as impulse-free ones [3] and with impulse mode ones in analysis.
To explain that, singular value decomposition (SVD) is performed on the original
generalized state space system. This transfers the original system to the following
form. [

Ir 0
0 0

] [
q̇1

q̇2

]
=

[
F11 F12

F21 F22

] [
q1

q2

]
+

[
N1

N2

]
u (6)

where Ir is an r × r identity matrix.
When F−1

22 in (6) exists, the system is impulse free, one can further obtain

q2 = −F−1
22 F21q1 − F−1

22 N2u (7)

Substituting (7) to (6), we have

q̇1 = (F11 − F12F−1
22 F21)q1 + (N1 − F12F−1

22 N2)u (8)

To q1, (8) is a standard state space system, if it is controllable, one can design a
state feedback control law u = −kq1 to control (8). Consequently, q2 is stabilized
through the coupling equation in (7). Therefore, control designs for impulse-free
generalized state space systems can be handled and have been an active area in
research. Obviously, applying state feedback methods only can control part of the
states while the rest of states are just stabilized for impulse-free generalized state
space systems. Therefore, the closed loop performance is limited.

For impulse-free generalized state space systems, the available control design
algorithms which are usually carried out in augmented systems and require feed-
backs of both state and state derivative variables [3, 4, 13, 19, 37] are much more
complex than algorithms for the standard state space systems. Consequently, there
are difficulties for engineers without strong mathematical background to apply those
sophisticated control algorithms.

When F−1
22 in (6) does not exist, the generalized state space system has impulse

mode. In this case, further investigations of impulse controllable and the impulse
mode elimination [3] have to be analyzed in control designs. Therefore, this kind of
generalized state space system is considered to be difficult in control designs.

As mention before, when the state derivative coefficient matrix E in (1) is nonsin-
gular, the system can be expressed in standard state space form in (3). If the system
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is controllable, applying state feedback alone is sufficient to control the system.
Similarly, it is natural to ask if applying state derivative feedback alone is sufficient
to control the system when the state coefficient matrix F in (1) is nonsingular. To
answer this question and to provide supplementary design algorithms of state deriva-
tive feedback, a direct state derivative feedback control scheme was developed using
the “Reciprocal State Space” (RSS) methodology by the author of this chapter as
follows.

x = F−1Eẋ − F−1Nu = Aẋ + Bu (9)

For above reciprocal state space (RSS) systems, state vector can be explicitly
expressed in terms of state derivative vector and control input vector. The controlla-
bility and observability analyses for system in RSS form have been investigated in
Tseng et al. and Tseng [24, 25]. It shows that they turn out to be the same as their
counterparts in state space form. After apply full state derivative feedback control
law in (4), the closed loop system becomes

x = (A − BK ) ẋ = Acẋ (10)

The concept of RSS is based on a fact that for a nonsingular matrix, the eigen-
values of its inverse matrix must be the reciprocals of its eigenvalues. Therefore,
the eigenvalues of Ac in (10) are the reciprocals of the closed loop system poles. To
address this nature, the name of reciprocal state space form was given. If state deriv-
ative feedback gain K can be designed such that real parts of all eigenvalues of Ac

in (10) are strictly negative, the closed loop system in RSS form in (10) can achieve
globally asymptotically stable. When a controllable system has no open loop pole
at zero, it can be expressed in RSS form to carry out state derive related feedback
control designs.

It also shows that state derivative feedback designs can be carried out as straight-
forward in RSS form as state feedback designs in standard state space form in pole
placement, eigenstructure assignment, and linear quadratic regulator (LQR) designs
[21–26].

The following is an example for quick understanding why expressing system
in RSS form and applying state derivative feedback can easily accomplish control
designs for some systems that were once thought difficult to be controlled. For the
following generalized state space systemwith impulsemode [13], its state coefficient
matrix is invertible. Therefore, the open loop system has no open loop pole at zero
and the system can be expressed in RSS form.

⎡
⎣1 0 0
0 1 0
0 0 0

⎤
⎦ ẋ =

⎡
⎣0.5 0 0

−1 −1 −1
0 −1 0

⎤
⎦ x +

⎡
⎣1
1
1

⎤
⎦ u
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Suppose that we want to place the closed loop poles at −2,−2.5,−5. Using state
feedback control laws in generalized state space form cannot place all of the desired
closed loop poles. However, one can first express the system in RSS form as follows.

x =
⎡
⎣2 0 0
0 0 0
−2 −1 0

⎤
⎦ ẋ +

⎡
⎣−2
1
2

⎤
⎦ u = Aẋ + Bu

Then apply the state derivative feedback law u = −K ẋ to assign −0.5,−0.4
and −0.2 (the reciprocals of −2,−2.5 and −5, respectively) as the eigenvalues
of matrix (A − BK ). Using “place” command of Matlab, one can easily get
K = [−1.63 −0.2 0.02

]
. Therefore, for the systems without open loop pole at

zero, including difficult systems to be controlled such as generalized state space sys-
tems with impulse mode in this example, they can be expressed in RSS form in (9)
and properly controlled by applying state derivative feedback alone. Usually, han-
dling the same problem in generalized state space system form, both state feedback
and state derivative feedback are needed [13].

Put RSS form into consideration, to streamline the design processes and keep
the controller as compact as possible, the following control design procedure is
suggested: For an open loop system, if it has no pole at infinity, one can express the
system in state space form and apply state related feedback to control it. If it has
poles at infinity but has no pole at zero, one can express the system in RSS form and
apply state derivative related feedback to control it. If it has neither pole at infinity
nor pole at zero, based on the type of available sensors (state related sensors or state
derivative related sensors), one can make choice between state space form and RSS
form to carry out control design. Generalized state space system form and control
laws applying both state feedback and state derivative feedback might be considered
as the last resort to handle the systemwith poles at both infinity and zero. In a nutshell,
RSS form fills in the gap between standard state space system and generalized state
space system and provides additional flexibility in control designs.

3 Sliding Mode Control with State Derivative Feedback
in Reciprocal State Space Form

This section explains how slidingmode control is carried out in novel reciprocal state
space (RSS) form with state derivative feedback.

Beginning with Lyapunov stability analysis in RSS form in Sects. 3.1 and 3.2 is an
introduction to the proposed novel approach condition suitable for systems in RSS
form. SMC design approach for a simple nominal system in RSS form and numerical
examples to verify the proposed novel approach condition are presented in Sect. 3.3.
Section3.4 explains the process of finding the upper bound of system uncertainty
and SMC design approach for RSS systems with both uncertainty and disturbance.
Numerical example is also provided to verify the proposed methods.
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3.1 Lyapunov Stability Analysis in RSS Form

Since Lyapunov stability is the fundamental of sliding mode control, in this subsec-
tion Lyapunov stability analysis in RSS form is presented.

For a linear time invariant system, it is globally asymptotically stable if the real
parts of all system poles are strictly negative. Therefore, such system must have no
pole at infinity or pole at zero. Consequently, a globally asymptotically stable system
can be expressed in both state space form and RSS form as follows.

ẋ = Āx (11)

x = Aẋ (12)

where Ā = A−1 and both A and Ā are nonsingular. Furthermore, the eigenvalues of
A are the reciprocals of the eigenvalues of Ā which are the system poles. If the real
parts of all eigenvalues of Ā are strictly negative, so are all eigenvalues of A. Based
on the above discussion, the following Lyapunov equation can also test the stability
of RSS systems in (12).

P A + AT P = −Q (13)

The solution of P in Lyapunov equation (13) must be symmetric positive definite
to ensure RSS system matrix A is globally asymptotically stable when a symmetric
and positive matrix Q is used.

3.2 Novel Approaching Condition for SMC Designs in RSS
Form

In general, design of slidingmode control consists of two parts. The first part involves
the selection of an appropriate sliding surface and the second part is the design of a
controller to meet the approaching condition. To provide the fundamentals of SMC,
approaching condition and sliding mode are briefly reviewed as follows.

Approaching condition can force the system toward the predetermined sliding sur-
face s (t) which can stabilize the system (some studies call this “reaching condition”
or “hitting condition”), and we usually consider it as follows [8, 33].

sT (t) · ṡ (t) < 0 (14)

When the system in the predetermined sliding surface, the system will remain in
the neighborhood of sliding surface therefore slip toward the target with any external
disturbance.

There is a simple SMCmethod’smoving trajectory shown in Fig. 1. From t= 0, the
state x starts to approach the sliding surface s = 0 and lands on the sliding surface at
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Fig. 1 The state trajectory
of SMC

the finite time th . When t > th , this state remains on the sliding surface, and moves
toward the equilibrium point x = 0 (i.e. x (∞) → 0).

According to the matrix sizes specified in (1), suppose that the sliding surface
s (t) is selected by

s (t) = Cx (t) = 0 (15)

where s ∈ �m×1 and c ∈ �m×n .
Approaching condition is briefly explained as follows.Define aLyapunov function

candidate based on the sliding surface s (t) as follows.

V = 1

2
sT (t)s(t) (16)

The derivative of V with respect to time becomes

V̇ = sT (t) · ṡ (t) (17)

For SMC designs in RSS form with state derivative related feedback laws, given a
positive constant α, the following novel approaching condition is proposed.

V̇ = sT (t) · ṡ (t) < −α ‖ṡ‖ < 0 (18)

where ‖‖ denotes norm in this chapter.
Detailed discussion will be given in the following subsections.

3.3 Sliding Model Control Design for Nominal System
in RSS Form

In this subsection, sliding mode control design for nominal system in RSS form
without any system uncertainty is presented for readers to easily understand the
fundamental of SMC design approach carried out in RSS form. We first consider the
RSS system described as follows:
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x (t) = Aẋ (t) + Bu (t) + d (t) (19)

where x (t) ∈ �n , u (t) ∈ �m and d (t) ∈ �n×1 are states, control inputs, and
external disturbance respectively. Assuming that the pair (A, B) is known and their
dimensions are A ∈ �n×n and B ∈ �n×m .

The following assumptions are applied in this chapter.

• The nominal RSS linear system is unstable.
• The pair (A, B) is controllable; Rank

[
B AB A2B · · · An−1B

] = n.
• The d(t) is a matched external disturbance as follows.

d (t) = Bdr (t) (20)

where dr (t) ∈ �m×1 and has an upper bound δ such that ‖dr (t)‖ ≤ δ.
So, (19) can be rewritten as

x (t) = Aẋ (t) + B (u (t) + dr (t)) (21)

The sliding face to be selected is

s (t) = Cx (t) = 0 (22)

3.3.1 Selecting Sliding Surface with Modified Transfer Matrix Method
in RSS Form

In this subsection, we present a method to select a sliding surface for developing a
sliding mode controller for the system in RSS form (19). The proposed method is
modified from the popular transfer matrix method [34].

If matrix B is partitioned into

B =
[

B1

B2

]
, (23)

where B1 is (n − m) × m and B2 is m × m.
One can define the following transfer matrix

T =
[

I(n−m)×(n−m) −B1B−1
2

0m×(n−m) Im×m

]
, (24)

such that T · B = [
0 B2

]T
.

Please note that for a controllable system, one can always obtain a B matrix with
an invertible sub-matrix B2 by properly define the state variables and consequently
obtain T .
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Applying the following transfer,

q = T x (25)

(21) is transferred to
q1 = A11q̇1 + A12q̇2 (26)

q2 = A21q̇1 + A22q̇2 + B2u + B2 · dr (27)

where

q =
[

q1

q2

]
∈

[
Rn−m

Rm

]
, T AT −1 =

[
A11 A12

A21 A22

]
(28)

Now, the sliding surface can be expressed as follows.

s = Cx = CT −1q = [
S1 S2

]
q = [

S2k S2
]

q = S2
[

k Im
]

q = 0 (29)

where S1 ∈ �m×(n−m), S2 ∈ �m×m and k ∈ �m×(n−m).
In (29), S2 can be considered as any square matrix, and if we select S2 as an

identity matrix Im , we have sliding surface as follows.

s = [
k Im

]
q = kq1 + q2 = [

k Im
]

T x = 0. (30)

Solving for q2 with (30), we have

q2 = −kq1 (31)

Taking derivative of both sides of (31), we obtain

q̇2 = −kq̇1 (32)

Substituting (32) into (26), we have:

q1 = (A11 − A12k) q̇1 (33)

If (A11, A12) is controllable, designing k in (33) is just a pole placement problem
with full state-derivative feedback in RSS framework. Note that k in (33) should be
designed such that the eigenvalues of (A11 − A12k) are equal to the reciprocal of the
desired closed loop poles. After k is designed, the sliding surface in (30) is obtained.
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3.3.2 Sliding Mode Control Design in RSS Form

This subsection introduces a SMC control law to make the approaching condition
(sT (t) · ṡ (t) < 0) happen so that the system in (21) is guaranteed to reach and
maintain on the sliding surface consequently.

After sliding surface is selected, we have to find the equivalent control ueq (t)
which is the control law to let the system operates in the sliding mode.
Substituting (19) into (22), we have

s (t) = Cx (t) = C [Aẋ (t) + Bu (t) + d (t)] = 0 (34)

If we let u (t) = ueq (t) in (34), the equivalent control can be found as

ueq (t) = − (C B)−1 [C Aẋ (t) + Cd (t)] (35)

Here ueq is related to state derivative ẋ . Therefore, state derivative signals can be
directly used in SMC design. Physically, the equivalent control ueq (t) cannot obtain
the sliding motion if the initial state is not on the sliding surface. An ideal control law
for the RSS system in (19) to generate the approaching condition of sliding mode is
proposed as follows.

u (t) = −(C B)−1C Aẋ (t) − (C B)−1 · (γ + α) · sign (ṡ (t)) (36)

where γ and α are all positive scalars such that ‖γ ‖ = ‖C‖ · ‖B‖ · δ > ‖C Bdr (t)‖
and α > 0.

The matrix CB is nonsingular and sign(ṡi ) is a novel switching function proposed
as follows.

sign(ṡi ) =
⎧⎨
⎩
1 ṡi > 0
0 ṡi = 0
−1 ṡi < 0

(37)

Note that sign(ṡi ) is not a function of the sliding surface, but a function of the
derivative of the sliding surface.

Proof Substituting (19) and (36) into sliding surface (22), we get the following result.

s (t) = (38)

{C Aẋ (t) + C B[−(C B)−1C Aẋ (t) − (C B)−1(γ + α) · sign (ṡ (t))] + Cd (t)}

Taking transposes and multiplying ṡ (t) on both sides of (38) to get the equation of
approaching condition, we have
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sT (t) · ṡ (t) = {C Aẋ (t) + C B[− (C B)−1 C Aẋ (t) − (C B)−1 (γ + α) · sign (ṡ (t))]
+ C Bdr (t)}T ṡ (t)

=
[
(C Bdr )

T ṡ (t) − (γ + α)T · ‖ṡ (t)‖
]

= −α · ‖ṡ (t)‖ − γ · ‖ṡ‖
(
1 − (C Bdr )

T ṡ (t)

γ · ‖ṡ (t)‖
)

(39)

Since −1 < (C Bdr )
T ṡ(t)

γ ·‖ṡ(t)‖ < 1, consequently,
(
1 − (C Bdr )

T ṡ(t)
γ ·‖ṡ(t)‖

)
> 0. We can con-

clude the following result.

sT (t) · ṡ (t) = −α · ‖ṡ (t)‖ − γ · ‖ṡ (t)‖
(
1 − (C Bdr )

T ṡ (t)

γ · ‖ṡ (t)‖
)

< −α · ‖ṡ (t)‖ < 0

(40)

Therefore, applying the ideal controller in (36), the approaching condition (sT (t)·
ṡ (t) < 0) holds. Consequently, the motion in the sliding mode is asymptotically
stable. However, the ideal controller in (36) which using “sign” function may cause
“Chattering Phenomenon”. To avoid this problem, “sign” function is replaced by a
novel “sat” saturation function in the modified control law given as follows.

u (t) := −(C B)−1C Aẋ (t) − (C B)−1(γ + α)sat (ṡ (t) , ε) (41)

where “sat” is a novel saturation function to handle the switching as follows.

sat (ṡi , ε) =
⎧⎨
⎩
1 ṡi > ε
ṡi
ε

|ṡi | ≤ ε

−1 ṡi < −ε

=
{

sign (ṡi ) |ṡi | > ε
ṡi
ε

|ṡi | ≤ ε
(42)

Here ε is a small positive value as the bound of the differential sliding surface ṡ.

|ṡ| ≤ ε (43)

Although the control law (41) cannot completely eliminate the external disturbance,
it still can reduce the influence of the external disturbance and can ensure the conver-
gence of states in a boundary layer. It is still worth to avoid “Chattering Phenomenon”
by paying the price of losing small accuracy.

One may wonder that if ṡ is just bounded inside the differential sliding layer
|ṡ| ≤ ε, can the amplitude of the sliding surface s keeps increasing as time goes
by and finally become diverged? The answer is negative because when ṡ = Cẋ is
bounded, so is ẋ due to the fact that C is a constant matrix. When ẋ is bounded,
from the system equation in (19) and controller in (41), x which can be expressed
in term of ẋ must be bounded, too. Consequently, s = Cx must also be bounded.
Similarly, through the system constraint in (19), when the approaching condition
does not happen inside the differential sliding layer of |ṡ| ≤ ε, both |s| and |x | will
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be increased, so will |ṡ| and |ẋ |. When ṡ finally reach to the condition of |ṡ| > ε,
the controller will switch to (36) to push the system back to the differential sliding
layer of |ṡ| ≤ ε. In this manner, the controller can keep the ṡ inside the differential
sliding layer of |ṡ| ≤ ε in steady state. Consequently, through the system constraint
in (19), s and x should also be bounded in steady state.

Numerical Example 1
Theoretically, if no external disturbance is considered in (19), the system should be
driven toward the sliding surface and stuck on it when SMC law is applied. In the
other word, one should obtain s (∞) → 0 in simulation. The following is an example
to verify that the proposed SMC algorithm can achieve s (∞) → 0 for RSS systems
without external disturbance. The system matrices are given as follows.

A =
[
1 2
2 4

]
and B =

[
0
1

]
. Since A is singular, SMC design cannot be directly

carried out in standard state space form. The initial condition is given as:

x0 =
[
0
1

]
.

The first step is to select the sliding surface by applying the presented transfer matrix
method. If pole at −2 is selected, the corresponding sliding surface is found to be
s = [

1.5 1
]

x . The second step is to design the controller in (41). The following
parameter are used in the simulation ε = 0.5, γ = 0, and α = 5.

Figures2, 3 and 4 show the time responses of states, sliding surface, and con-
trol effort, respectively. In Fig. 2, we find that the trajectories of x1 (t) and x2 (t)
are asymptotically stable. In Fig. 3, the sliding surface response does converge to
zero when no external disturbance is considered. Therefore, the proposed approach
condition in (18) and control law in (41) are successfully verified.

Fig. 2 The state responses
of numerical example 1
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Fig. 3 The sliding surface
response of numerical
example 1
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Fig. 4 The control effort of
numerical example 1
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From the simulation results, we conclude that the controller design in (41) as well
as the proposed novel saturation switching function in (42) dose work effectively
for the RSS system in (19). It also shows that SMC design can directly utilize state
derivative feedback if the design is carried out in RSS framework. Furthermore,
for generalized state space system in (1), if matrix E is singular but matrix F is
nonsingular, it can be expressed in RSS framework to directly carry out SMC design.

Numerical Example 2
Here is another example with disturbance to verify the proposed SMC algorithm.
Consider a dynamic RSS system in (19) with following parameters:
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A =
⎡
⎣ 1 −0.5 0.25
0 0.5 −0.25
0 0 0.5

⎤
⎦ , B =

⎡
⎣−0.25

0.25
−0.5

⎤
⎦ , dr (t) = 0.2 sin (0.3333t)

and the initial condition is given as: x0 =
⎡
⎣ 1

−2
6

⎤
⎦.

Using (24), the transpose matrix is constructed as follows.

T =
⎡
⎣ 1 0 −0.5
0 1 0.5
0 0 −2

⎤
⎦ .

The first step is to select the sliding surface, and the transfer matrix method is
applied. If poles at −5 and −2.5 are selected, the obtained sliding surface is
s = [−84 −180 1

]
x . The second step is to design the controller given in (41).

ε = 0.5, γ = 2 and α = 4 are used in the simulation.
Figures5, 6 and 7 show the time responses of states x1 (t)−x3 (t), sliding surface,

and control effort, respectively. As expected, in Fig. 5, under the influence of distur-
bance, we find that the trajectories of states are still bounded, so is the sliding surface
response in Fig. 6. Therefore, the controller designed in (41) for the RSS system (19)
indeed works effectively.

Fig. 5 The state responses
of numerical example 2
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Fig. 6 Time response of the
sliding surface of numerical
example 2
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Fig. 7 Time response of
control effort of numerical
example 2
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3.4 Sliding Model Control Design for a System with System
Uncertainty and Disturbance in RSS Form

In this subsection, SMC design procedure for more realistic systems with system
uncertainty and external disturbance inRSS form is presented.Consider the following
RSS system:

x (t) = [A + �A (t)] ẋ (t) + Bu (t) + d (t) (44)

where x (t) ∈ �n , �A (t) ∈ �n×n , u (t) ∈ Rm and d (t) ∈ �n×1 are states, mis-
matched uncertainty, control inputs, and external disturbance respectively. Assuming
that the nominal RSS linear system pair (A, B) is known and matrix dimensions are
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A ∈ �n×n and B ∈ �n×m . The external disturbance is amatched one and is defined as

d (t) = Bdr (t) (45)

where dr (t) ∈ �m×1.
Therefore, applying (45), (44) can be rewritten as

x (t) = [A + �A (t)] ẋ (t) + B [u (t) + dr (t)] (46)

We assume that positive scalars, δA and δd , are the upper bounds of the uncertainty
and the external disturbance, respectively.

‖�A (t)‖ ≤ δA, and ‖dr (t)‖ ≤ δd (47)

3.4.1 Sufficient Condition for Finding the Upper Bound of System
Uncertainty to Guarantee the Stability in Sliding Surface

In this subsection,wewill provide a sufficient condition to determine the upper bound
of uncertainty �A so that the stability in sliding surface is still guaranteed.

Like we mentioned in subsection3.3.1, we can find the transfer matrix T in (25)
such that T B = [

0 B2
]T
.

Then (44) is transferred to the following equations.

q1 = (A11 + �A11) q̇1 + (A12 + �A12) q̇2 (48)

q2 = (A21 + �A21) q̇1 + (A22 + �A22) q̇2 + B2 (u + d) (49)

where every matrix with appropriate dimensions and B2 is nonsingular.
We may neglect the uncertainty �A and disturbance d in (44) and apply the

method in subsection3.3.1 to design the sliding surface.

s = [
k Im

]
q = kq1 + q2 = [

k Im
]

T x = 0 (50)

Consequently, the derivative of sliding surface in (50) with respect to time can also
be transferred to

ṡ = kq̇1 + q̇2 = 0 (51)

Consequently, we have
q̇2 = −kq̇1 (52)

Then substituting (52) into (48), we have

q1 = Aeq̇1 + �Aeq̇1 (53)

where Ae = A11 − A12k and �Ae = �A11 − �A12k.
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It has been proved that we also can apply Lyapunov equation to test the stability
of a RSS system [24]. Based on that, the following two theorems are introduced for
determining the upper bound of system uncertainty.

Theorem 1 Assuming that Ae is a stable matrix and the time-varying uncertainty
matrix �Ae in (53) is in a bounded value ζ such that ‖�Ae‖ < ζ , we have

‖�Ae‖ < ζ = min {ηi }
2λmax(Pe)

, i = 1, 2, . . . , (n − m) . (54)

where ηi are all eigenvalues in a selected positive symmetric definite matrix Qe

while Pe is a positive symmetric definite matrix solved from the following Lyapunov
equation.

AT
e Pe + Pe Ae = −Qe (55)

Proof Define the Lyapunov functional:

V = qT
1 Peq1 (56)

where Pe is symmetric positive definite matrix. It can be easily verified that V is a
positive function. The time derivative of V along the trajectory of the system (53) is
expressed as

V̇ = q̇T
1 Peq1 + qT

1 Peq̇1

= q̇T
1 Pe [Aeq̇1 + �Aeq̇1] + [Aeq̇1 + �Aeq̇1]

T Peq̇1

= q̇T
1 Pe Aeq̇1 + q̇T

1 Pe�Aeq̇1 + q̇T
1 AT

e Peq̇1 + q̇T
1 �AT

e Peq̇1

= q̇T
1 [Pe Ae + AT

e Pe]q̇1 + 2q̇T
1 Pe�Aeq̇1 (57)

Then, substituting (55) into (57), one obtains

V̇ = q̇T
1 [−Qe] q̇1 + 2q̇T

1 Pe�Aeq̇1 (58)

From (58), when the following condition holds, one can conclude that V̇ < 0.

q̇T
1 Qeq̇1 > 2q̇T

1 Pe�Aeq̇1 (59)

ByRayleigh principle, the lower bound of q̇T
1 Qeq̇1 in (59) can be obtained as follows.

q̇T
1 Qeq̇1 ≥ λmin(Qe)q̇

T
1 q̇1 = λmin(Qe) ‖q̇1‖2 = min {ηi } ‖q̇1‖2 (60)

The following inequality can also be obtained

2q̇T
1 Pe�Aeq̇1 ≤ 2 ‖�Ae‖ λmax(Pe)q̇

T
1 q̇1 = 2 ‖�Ae‖ λmax(Pe) ‖q̇1‖2 (61)
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From (60), (61) and (59), if we have

2 ‖�Ae‖ λmax(Pe) ‖q̇1‖2 < min {ηi } ‖q̇1‖2 (62)

and consequently,

‖�Ae‖ <
min {ηi }
2λmax(Pe)

= ζ, i = 1, 2, . . . , (n − m) , (63)

it implies that (58) is negative, namely, V̇ < 0 for t ≥ 0. Consequently, the system
with mismatched time-varying uncertainty �Ae in (44) in the sliding surface is
asymptotically stable. Next, we have to provide another condition to find the upper
bound of the mismatched uncertainty �A.

Theorem 2 Let the transform matrix T in (24) be partitioned as

T =
[

L1

L2

]
and T −1 = [

R1 R2
]

(64)

where L1 ∈ �(n−m)×n, L2 ∈ �m×n, R1 ∈ �n×(n−m), and R2 ∈ �n×m.
If the following condition holds,

‖�A‖ ≤ min {ηi }
2 (‖L1‖ · ‖R1‖ + ‖L1‖ · ‖R2‖ · ‖k‖) λmax (Pe)

(65)

where Pe and Qe are defined in (55) in Theorem1, the RSS system with mismatched
uncertainty �A in (44) is stable on the sliding surface.

Proof Since the transform matrix T in (24) can be partitioned as T =
[

L1

L2

]
and

T −1 = [
R1 R2

]
, the uncertain matrix �A11 and �A12 in (48) can be expressed as

�A11 = L1�AR1 and �A12 = L1�AR2. (66)

So the uncertainty �Ae given in (53) can be rewritten as:

�Ae = L1�AR1 − L1�AR2k (67)

Taking the norm of (67), one can obtain the following inequality.

‖�Ae‖ ≤ ‖L1�AR1‖ + ‖L1�AR2FC1‖ ≤ ‖�A‖ (‖L1‖ · ‖R1‖ + ‖L1‖ · ‖R2‖ · ‖k‖)

<
min {ηi }
2λmax (Pe)

(68)

Consequently, the upper bound of �A is obtained as follow.
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‖�A‖ <
min {ηi }

2 (‖L1‖ · ‖R1‖ + ‖L1‖ · ‖R2‖ · ‖k‖) λmax (Pe)
, i = 1, 2, . . . , (n − m)

(69)
This concludes our proof.

From the above proof, it is clear to find that if both (54) in Theorems1 and
(65) in Theorem2 hold, the system with the mismatched uncertainty �A is stable
in the sliding mode. Since the presented methodology is a sufficient condition for
determining the upper bound of system uncertainty, if (54) and (65) do not hold, it
does not mean that the system will definitely become unstable. Above procedure is
analogous to that in [17].

Remark In this remark, the procedure of finding the upper bound of the uncertainty
�A is summarized as follows.

Step 1: Select a T such that (44) is transferred to (48) and (49).
Step 2: Neglect the uncertainty�A and disturbance d in (48) and (49), then select

a sliding surface with the method introduced in this chapter.
Step 3: Calculate Ae in (53).
Step 4: Select a positive symmetric definitematrix Qe, then calculate Pe using (55).
Step 5: Calculate the upper bound of �Ae in Theorem1 by calculating the mini-

mum eigenvalue of Qe and the maximum eigenvalue of Pe.
Step 6: Finding L1, L2, R1, and R2 from T and T −1 in (64), then calculate the

upper bound of �A in Theorem2.

3.4.2 Design the SMC Controller for System with System Uncertainty
and External Disturbance

When the system operates in the sliding mode, it meets the approaching condition.
Applying (46), the sliding surface becomes

s (t) = Cx = C [(A + �A (t)) ẋ (t) + B (u (t) + dr (t))] = 0. (70)

If we choose u (t) = ueq (t) in (70), the equivalent control is found as

ueq (t) = − (C B)−1 (C Aẋ (t) + C�Aẋ (t) + C Bdr (t)) (71)

Physically, the equivalent control ueq (t) cannot obtain the slidingmotion if the initial
state is not in the sliding surface. The SMC control law for the dynamic system in
(44) must satisfy the approaching condition of slidingmode. Based on (71), the SMC
control law is selected as

u (t) := − (C B)−1 (C Aẋ (t)) − (C B)−1 (‖δ ẋ (t)‖ + γ + α) · sat (ṡ (t) , ε) (72)

where δ, γ , and α are positive scalars such that δ = ‖C‖ · δA > ‖C�A (t)‖,
γ = ‖C‖ · ‖B‖ · δd > ‖C Bdr (t)‖, and α > 0, respectively. Moreover, ε is a small
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positive value, and sat is a saturation function of the derivative of sliding surface ṡ
and is used to handle the switching and is described as

sat (ṡi , ε) =
⎧⎨
⎩
1 ṡi > ε
ṡi
ε

|ṡi | ≤ ε

−1 ṡi < −ε

=
{

sign (ṡi ) |ṡi | > ε
ṡi
ε

|ṡi | ≤ ε
(73)

As mention in Sect. 3.3, the control law in (72) which uses saturation function
cannot completely eliminate the external disturbance, but it can reduce the influence
of the external disturbance so that the states are bounded.

At first, we consider the controller as follow.

u (t) = − (C B)−1 (C Aẋ (t)) − (C B)−1 (‖δ ẋ (t)‖ + γ + α) · sign (ṡ (t)) (74)

where sign is a function of ṡ and is described as

sign(ṡi ) =
⎧⎨
⎩
1 ṡi > 0
0 ṡi = 0
−1 ṡi < 0

i = 1..m (75)

Then, substituting (46) and (74) into sliding surface s (t), we have

s (t) = {C�Aẋ (t) + C Bdr (t) − (‖δ ẋ (t)‖ + γ + α) · sign (ṡ (t))} (76)

Applying (76), approaching condition becomes

sT (t) · ṡ (t) = [
(C�Aẋ (t) + C Bdr (t))T ṡ − (‖δ ẋ (t)‖ + γ + α)T · ‖ṡ (t)‖]

= −α · ‖ṡ (t)‖ − (‖δ ẋ (t)‖ + γ ) · ‖ṡ (t)‖
(
1 − (C�Aẋ (t) + C Bdr (t))T · ṡ (t)

(‖δ ẋ (t)‖ + γ ) · ‖ṡ (t)‖
)

(77)
Since −1 < (C�Aẋ(t)+C Bdr (t))

T ·ṡ(t)
(‖δ ẋ(t)‖+γ )·‖ṡ(t)‖ < 1, we have

sT (t) · ṡ (t) = −α · ‖ṡ (t)‖ − (‖δ ẋ (t)‖ + γ )T · ‖ṡ (t)‖
(
1 − (C�Aẋ (t) + Cd (t))T · ṡ (t)

(‖δ ẋ (t)‖ + γ ) · ‖ṡ (t)‖

)
(78)

< −α · ‖ṡ (t)‖ < 0

Thus, the approaching condition (sT (t) · ṡ (t) < 0) satisfies the Lyapunov stability
theorem. Consequently, the motion in the sliding mode is asymptotically stable.
Since the controller in (74) may cause “Chattering Phenomenon”, “sign” function
is replaced by “sat” function in the applied control law given in (72).
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Numerical Example 3
Consider a dynamic RSS system (44) with following parameters:

A =
⎡
⎣ −0.0104 −0.0583 0.1945

0.9971 0.0162 0.07715
0 0 −0.1499

⎤
⎦ , �A (t) =

⎡
⎣ 0 0 0
0 0 0
0.001 sin (t) 0.0013 sin (t) 0

⎤
⎦

B =
⎡
⎣ −0.7114

−0.1969
1

⎤
⎦ , d (t) =

⎡
⎣ −0.3557

−0.0984
0.5

⎤
⎦ cos (2t) =

⎡
⎣ −0.7114

−0.1969
1

⎤
⎦ × 0.5 cos (2t) = Bdr (t).

The initial condition is given as:

x0 =
⎡
⎣−0.5

0
10

⎤
⎦

With above given matrices, the transfer matrix is then constructed as follows.

T =
⎡
⎣1 0 0.7114
0 1 0.1969
0 0 1

⎤
⎦ .

Therefore, L1, L2, R1, and R2 in (64) are then found from T .
If the poles of Ae in (53) are selected at−0.1 and−0.3, the sliding surface is selected
as s = [

0.6179 −0.5112 1
]

x .

Calculating Ae in (53), selecting Qe =
[
7 0
0 8

]
and then solving Pe from (55), we

have

Pe =
[
700.5910 35.5079
35.5079 11.9477

]
.

Consequently, the upper bound of uncertainty ‖�A‖ is calculated using (65) and is
obtained as 0.002. Since the spectral norm of given �A(t) is less than 0.0016, the
system with �A(t) as uncertainty still can guarantee the stability.

The following parameters are used for controller in (72):
ε = 0.5, α = 2, δA = 0.0025 and δd = 0.25.

In Fig. 8, we can find that the simulation trajectories of states are bounded in a
boundary layer. Therefore, the proposed controller works effectively as expected.
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Fig. 8 State responses of
example 3
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4 Conclusion

In this chapter, the needs for reciprocal state space (RSS) form and state derivative
related feedback control designs have been addressed. The fundamentals of state
derivative feedback design in RSS form have been introduced. Basically, for con-
trollable time invariant systems with no open loop poles at zero, the systems can
be expressed in RSS form. The main advantage of RSS form is that state derivative
feedback control designs can be systematically carried out in this form. Some once
though tough systems to be controlled such as generalized state space system with
impulse modes, can be fully controlled if it can be expressed in RSS form and apply
state derivative feedback as shown in this chapter.

To better handle systems with external disturbance and system uncertainty with
state derivative feedback control designs, novel slidingmode control design approach
with state derivative feedback in RSS form is then presented. For systems in RSS
form, nontraditional switching function utilizing the derivative of sliding surface is
proposed andproven to satisfy the approaching conditionof slidingmode. In addition,
algorithm of finding upper bound of system uncertainty has been developed for
robustness analysis. Simulation results successfully verify the proposed algorithms.
State derivative output feedback algorithm for SMC design in RSS form has also
been reported by author [31]. Our derivation is basically parallel to that for systems
in standard state space form. Experienced engineers or researchers can be quickly
familiar with the proposed design methods.

The contribution of this chapter is to provide SMC design approach by applying
direct state derivative feedback in nontraditional RSS form so that people can handle
more control problems without too much of mathematical overhead.

The future directions of research are suggested as follows:
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• Considering nonlinear constraint in control input: In implementation, actuators
that generate control inputs have various operating limitations such as saturation
and dead zone [29]. People should develop algorithms that put actuator limits into
consideration for more realistic considerations in design.

• Using state derivative space (SDS) form in control design for nonlinear system:
State derivative space (SDS) form [30, 32] is a more general system form which
can handle nonlinear systems. RSS form is a linear time invariant case of SDS
form. SDS form is described as follows.

x = f (ẋ, u, t) (79)

People may consider carrying out control design in SDS form with state derivative
related feedback for some nonlinear systems. Author is working on it.
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Active Controller Design for the Output
Regulation of Vaidyanathan Hyperjerk
System

Sundarapandian Vaidyanathan

Abstract This paper investigates the active controller design for the output regu-
lation of the Vaidyanathan 4-D hyperjerk hyperchaotic system (2015). Explicitly,
nonlinear state feedback control laws have been derived to regulate the output of the
4-D Vaidyanathan hyperjerk hyperchaotic system so as to track the constant refer-
ence signals as well as to track periodic reference signals. The active control laws
are derived using the Byrnes-Isidori regulator equations (1990). Numerical simula-
tions using MATLAB are shown to illustrate the phase portraits of the Vaidyanathan
hyperjerk hyperchaotic system and the output regulation results for the Vaidyanathan
hyperjerk hyperchaotic system.

Keywords Chaos ·Hyperchaos ·Chaotic systems ·Hyperchaotic systems ·Output
regulation · Hyperjerk system

1 Introduction

Output regulation problem aims to control a fixed linear or nonlinear plant in order
to have its output tracking reference signals produced by some external generator
or the exosystem. Output regulation problem is one of the important problems in
control systems which have many applications in industry.

For linear control systems, the output regulation problem has been solved by Fran-
cis and Wonham [12]. For nonlinear control systems, the output regulation problem
has been solved by Byrnes and Isidori [5] generalizing the internal model principle
obtained by Francis andWonham [12]. Byrnes and Isidori [5] havemade an important
assumption in their work which demands that the exosystem dynamics generating
reference and/or disturbance signals is a neutrally stable system (Lyapunov stable
in both forward and backward time). The class of exosystem signals includes the
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important particular cases of constant reference signals as well as sinusoidal refer-
ence signals. Using Centre Manifold Theory [7], Byrnes and Isidori have derived
regulator equations, which completely characterize the solution of the output regu-
lation problem of nonlinear control systems.

The output regulation problem for linear and nonlinear control systems has been
the focus of many studies in recent decades [51]. In [22], Mahmoud and Khalil
obtained results on the asymptotic regulation of minimum phase nonlinear systems
using output feedback. In [13], Fridman solved the output regulation problem for
nonlinear control systems with delay using centre manifold theory [7]. In [11], Chen
and Huang obtained results on the robust output regulation for output feedback
systems with nonlinear exosystems. In [19], Liu and Huang obtained results on the
global robust output regulation problem for lower triangular nonlinear systems with
unknown control direction. In [98], Yang and Huang obtained new results on the
global robust output regulation problem for nonlinear plants subject to nonlinear
exosystems.

In [14], Immonen obtained results on the practical output regulation for bounded
linear infinite-dimensional state space systems. In [26], Pavlov, Van de Wouw
and Nijimeijer obtained results on the global nonlinear output regulation using
convergence-based controller design. In [96], Xi and Ding obtained results on the
global adaptive output regulation of a class of nonlinear systems with nonlinear
exosystems. In [40], Serrani and Isidori obtained results on the global robust output
regulation problem for a class of nonlinear systems.

In [42], Sundarapandian obtained results for the output regulation of the Lorenz
attractor. In [55],Vaidyanathanobtained results for the output regulationof the unified
chaotic system. In [54], Vaidyanathan derived results for the output regulation of the
Arneodo-Coullet chaotic system. In [59], Vaidyanathan derived results for the output
regulation of the Liu chaotic system.

Chaotic systems are defined as nonlinear dynamical systems which are sensitive
to initial conditions, topologically mixing and with dense periodic orbits. Sensitivity
to initial conditions of chaotic systems is popularly known as the butterfly effect.
Small changes in an initial state will make a very large difference in the behavior
of the system at future states. Chaotic behaviour was suspected well over hundred
years ago in the study of three bodies problem by Henri Poincaré [4], but chaos was
experimentally established by E.N. Lorenz [20] only a few decades ago in the study
of 3-D weather models.

Some classical paradigms of 3-D chaotic systems in the literature are Rössler
system [34], ACT system [1], Sprott systems [41], Chen system [9], Lü system [21],
Liu system [18], Cai system [6], Chen-Lee system [10], Tigan system [52], etc.

Many new chaotic systems have been discovered in the recent years such as
Zhou system [99], Zhu system [100], Li system [17], Wei-Yang system [95],
Sundarapandian systems [43, 48], Vaidyanathan systems [61, 63, 65–68, 71, 74,
77, 89, 93], Pehlivan system [28], etc.

Synchronization of chaotic systems is said to occur when two or more chaotic
systems are coupled together or when a chaotic system drives another chaotic system.
Because of the butterfly effectwhich causes exponential divergence of the trajectories
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of two identical chaotic systems started with nearly the same initial conditions, the
synchronization of chaotic systems is a challenging research problem in the chaos
literature [2, 3].

Major works on synchronization of chaotic systems deal with the complete syn-
chronization of a pair of chaotic systems called the master and slave systems. The
design goal of the complete synchronization is to apply the output of the master
system to control the slave system so that the output of the slave system tracks the
output of the master system asymptotically with time.

Pecora and Carroll pioneered the research on synchronization of chaotic systems
with their seminal papers [8, 27]. The active control method [16, 35, 36, 47, 53, 79,
80, 83] is typically used when the system parameters are available for measurement.
Adaptive control method [37–39, 44–46, 57, 64, 72, 78, 81, 82, 87, 91] is typically
used when some or all the system parameters are not available for measurement and
estimates for the uncertain parameters of the systems.

Backstepping control method [29–33, 50, 84, 90] is also used for the synchro-
nization of chaotic systems, which is a recursive method for stabilizing the origin
of a control system in strict-feedback form. Another popular method for the syn-
chronization of chaotic systems is the sliding mode control method [49, 56, 58, 60,
69, 75, 76, 85, 86], which is a nonlinear control method that alters the dynamics of
a nonlinear system by application of a discontinuous control signal that forces the
system to “slide” along a cross-section of the system’s normal behavior.

Hyperchaotic systems have been defined as chaotic systems having more than
one positive Lyapunov exponent. The minimum dimension of an autonomous hyper-
chaotic system is four. Hyperchaotic systems exhibit complex dynamics and special
characteristics such as high capacity, high security and high efficiency. Some para-
digms of hyperchaotic systems are hyperchaotic Rössler system [24], hyperchaotic
Lorenz-Haken system [23], hyperchaotic Chua’s circuit [15], hyperchaotic Chen sys-
tem [97], hyperchaotic Lü system [94], hyperchaotic Vaidyanathan systems [62, 70,
73, 88, 92], etc.

In this work, the output regulation problem for the Vaidyanathan hyperjerk hyper-
chaotic system [92] has been solved using the Byrnes-Isidori regulator equations [5]
to derive the state feedback control laws for regulating the output of the Vaidyanathan
hyperjerk hyperchaotic system for the important cases of constant reference signals
(set-point signals) and periodic reference signals.

This work is organized as follows. In Sect. 2, a review of the solution of the output
regulation for nonlinear control systems and Byrnes-Isidori regulator equations has
been presented. In Sect. 3, a dynamic analysis of the Vaidyanathan hyperjerk hyper-
chaotic system is detailed. In Sect. 4, output regulation problem for the Vaidyanathan
hyperjerk hyperchaotic system is discussed and new results are derived. In Sect. 5,
numerical simulations for the output regulation of the Vaidyanathan hyperjerk hyper-
chaotic system are detailed. Section6 contains conclusions of this work.
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2 Review of the Output Regulation for Nonlinear Control
Systems

In this section, we consider a multi-variable nonlinear control system modelled by
equations of the form

ẋ = f (x) + g(x)u + p(x)ω (1)

ω̇ = s(ω) (2)

e = h(x) − q(ω) (3)

Here, the differential equation (1) describes theplant dynamicswith state x defined
in a neighbourhood X of the origin of Rn and the input u takes values in Rm subject
to the effect of a disturbance represented by the vector field p(x)ω.

The differential equation (2) describes an autonomous system, known as the
exosystem, defined in a neighbourhood W of the origin of Rk , which models the
class of disturbance and reference signals taken into consideration.

The Eq. (3) defines the error between the actual plant output h(x) ∈ Rp and a
reference signal q(ω), which models the class of disturbance and reference signals
taken into consideration.

We also assume that all the constituent mappings of the system (1)–(2) and the
error Eq. (3), namely, f, g, p, s, h and q are C1 mappings vanishing at the origin, i.e.

f (0) = 0, g(0) = 0, p(0) = 0, h(0) = 0 and q(0) = 0.

Thus, for u = 0, the system (1)–(2) has an equilibrium state (x, ω) = (0, 0) with
zero error (3).

A state feedback controller for the composite system (1)–(2) has the form

u = α(x, ω) (4)

where α is a C1 mapping defined on X × W such that α(0, 0) = 0.
Upon substitution of the feedback law (4) in the composite system (1)–(2), we

get the closed-loop system given by

ẋ = f (x) + g(x)α(x, ω) + p(x)ω

ω̇ = s(ω)
(5)

State Feedback Regulator Problem [5]:
Find, if possible, a state feedback control law u = α(x, ω) such that

(OR1) (Internal Stability) The equilibrium x = 0 of the dynamics

ẋ = f (x) + g(x)α(x, 0)

is locally asymptotically stable.
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(OR2) (Output Regulation)There exists a neighbourhoodU ⊂ X × W of (x, ω) =
(0, 0) such that for each initial condition (x(0), ω(0)) ∈ U , the solution
(x(t), ω(t)) of the closed-loop system (5) satisfies

lim
t→∞ [h(x(t)) − q(ω(t))] = 0.

Byrnes and Isidori [5] have solved this problem under the following assumptions.

(H1) The exosystem dynamics ω̇ = s(ω) is neutrally stable at ω = 0, i.e. the sys-
tem is Lyapunov stable in both forward and backward time at ω = 0.

(H2) The pair ( f (x), g(x)) has a stabilizable linear approximation at x = 0, i.e. if

A =
[
∂ f

∂x

]
x=0

and B =
[

∂g

∂x

]
x=0

,

then (A, B) is stabilizable, which means that we can find a gain matrix K so that
A + BK is Hurwitz. �

Next, we recall the solution of the output regulation problem derived by Byrnes
and Isidori [5].

Theorem 1 [5] Under the hypotheses (H1) and (H2), the state feedback regulator
problem is solvable if, and only if, there exist C1 mappings x = π(ω) with π(0) = 0
and u = φ(ω) with φ(0) = 0, both defined in a neighbourhood of W 0 ⊂ W of ω = 0
such that the following equations (called the Byrnes-Isidori regulator equations) are
satisfied:

(1) ∂π
∂ω

s(ω) = f (π(ω)) + g(π(ω))φ(ω) + p(π(ω))ω

(2) h(π(ω)) − q(ω) = 0

When the Byrnes-Isidori regulator equations (1) and (2) are satisfied, a control
law solving the state feedback regulator problem is given by

u = φ(ω) + K [x − π(ω)] (6)

where K is any gain matrix such that A + BK is Hurwitz. �

3 Dynamic Analysis of the Vaidyanathan Hyperjerk
Hyperchaotic System

The Vaidyanathan hyperjerk hyperchaotic system [92] is described by the 4-D
dynamics
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ẋ1 = x2
ẋ2 = x3
ẋ3 = x4
ẋ4 = −x1 − x2 − bx2

1 − ax3 − cx4
1 x4

(7)

In (7), a, b and c are constant, positive parameters.
The system (7) exhibits a hyperchaotic attractor when the parameter values are

taken as
a = 3.7, b = 0.2, c = 1.5 (8)

For numerical simulations, we take the initial conditions of the Vaidyanathan
hyperjerk system (7) as

x1(0) = 0.1, x2(0) = 0.1, x3(0) = 0.1, x4(0) = 0.1 (9)

Also, the Lyapunov exponents of the Vaidyanathan hyperjerk system (7) for the
parameter values (8) and the the initial values (9) are numerically found as

L1 = 0.1448, L2 = 0.0328, L3 = 0, L4 = −1.1294 (10)

Since L1 + L2 + L3 + L4 = −0.9518 < 0, the Vaidyanathan hyperjerk hyper-
chaotic system (7) is dissipative. Thus the asymptotic motion of the Vaidyanathan
hyperjerk hyperchaotic system (7) settles onto a strange attractor of the system.

Figures1, 2, 3 and 4 shows the 3-D projections of the 4-D hyperchaotic hyper-
jerk system (7) on the (x1, x2, x3), (x1, x2, x4), (x1, x3, x4) and (x2, x3, x4) spaces,
respectively.
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Fig. 1 3-D projection of the Vaidyanathan hyperjerk system on the (x1, x2, x3) space
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Fig. 2 3-D projection of the Vaidyanathan hyperjerk system on the (x1, x2, x4) space

−2
−1

0
1

2

−4

−2

0

2

4
−8

−6

−4

−2

0

2

4

6

8

x
1

x
3

x 4

Fig. 3 3-D projection of the Vaidyanathan hyperjerk system on the (x1, x3, x4) space

Also, the Kaplan-Yorke dimension of the Vaidyanathan hyperjerk hyperchaotic
system (7) is calculated as

DK Y = 3 + L1 + L2 + L3

|L4| = 3.1573, (11)

which is fractional.
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Fig. 4 3-D projection of the Vaidyanathan hyperjerk system on the (x2, x3, x4) space

4 Output Regulation of Vaidyanathan Hyperjerk
Hyperchaotic System

TheVaidyanathan hyperjerk hyperchaotic system [92] is a novel hyperchaotic system
described by the dynamics

ẋ1 = x2
ẋ2 = x3
ẋ3 = x4
ẋ4 = −x1 − x2 − bx2

1 − ax3 − cx4
1 x4 + u

(12)

where a, b, c are positive constants and u is an active feedback control.
The hyperjerk system (12) is hyperchaotic when the parameters are taken as

a = 3.7, b = 0.2, c = 1.5 (13)

In this work, we consider two important cases of output regulation for the
Vaidyanathan hyperjerk hyperchaotic system (12):

(I) Tracking of Constant Reference Signals
(II) Tracking of Periodic Reference Signals
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4.1 Tracking of Constant Reference Signals

In this case, the exosystem is given by the scalar dynamics

ω̇ = 0 (14)

It is important to observe that the exosystem (14) is neutrally stable because the
solutions of (14) are only constant trajectories, i.e.

ω(t) ≡ ω(0) = ω0 for all t

Thus, the assumption (H1) of Theorem 1 (Sect. 2) holds trivially.
Linearizing the dynamics of theVaidyanathan hyperjerk hyperchaotic system (12)

at the origin, we obtain the system matrices

A =

⎡
⎢⎢⎣

0 1 0 0
0 0 1 0
0 0 0 1

−1 −1 −a 0

⎤
⎥⎥⎦ , B =

⎡
⎢⎢⎣
0
0
0
1

⎤
⎥⎥⎦ (15)

The controllability matrix is given by

Q = [
B AB A2B A3B

] =

⎡
⎢⎢⎣
0 0 0 1
0 0 1 0
0 1 0 −a
1 0 −a −1

⎤
⎥⎥⎦ (16)

which has full rank.
Thus, by Kalman’s rank test for controllability [25], it follows that the pair (A, B)

is completely controllable.
Thus, we can easily find a controller gain matrix K such that A + BK is Hurwitz

with arbitrarily assigned stable eigenvalues.
Thus, the assumption (H2) of Theorem 1 (Sect. 2) also holds.
Hence, Theorem 1 can be applied to solve the output regulation problem for

the Vaidyanathan hyperjerk hyperchaotic system (12) for the tracking of constant
reference signals (set-point signals).

4.1.1 Constant Tracking Problem for x1

Here, the tracking problem for the Vaidyanathan hyperjerk system (12) is given by
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ẋ1 = x2
ẋ2 = x3
ẋ3 = x4
ẋ4 = −x1 − x2 − bx2

1 − ax3 − cx4
1 x4 + u

e = x1 − ω

(17)

By Theorem 1, the regulator equations of (17) are obtained as

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

π2(ω) = 0
π3(ω) = 0
π4(ω) = 0

−π1(ω) − π2(ω) − bπ2
1 (ω) − aπ3(ω) − cπ4

1 (ω)π4(ω) + φ(ω) = 0
π1(ω) − ω = 0

(18)

Solving the regulator equations (18), we get the unique solution

π(ω) =

⎡
⎢⎢⎣

π1(ω)

π2(ω)

π3(ω)

π4(ω)

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

ω

0
0
0

⎤
⎥⎥⎦ (19)

and
φ(ω) = ω + bω2 (20)

By Theorem 1, a state feedback control law solving the output regulation problem
is given by

u = φ(ω) + K [x − π(ω)] (21)

where K is chosen so that A + BK is Hurwitz, π(ω) is given by (19) and φ(ω) is
given by (20)

4.1.2 Constant Tracking Problem for x2

Here, the tracking problem for the Vaidyanathan hyperjerk system (12) is given by

ẋ1 = x2
ẋ2 = x3
ẋ3 = x4
ẋ4 = −x1 − x2 − bx2

1 − ax3 − cx4
1 x4 + u

e = x2 − ω

(22)
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By Theorem 1, the regulator equations of (22) are obtained as

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

π2(ω) = 0
π3(ω) = 0
π4(ω) = 0

−π1(ω) − π2(ω) − bπ2
1 (ω) − aπ3(ω) − cπ4

1 (ω)π4(ω) + φ(ω) = 0
π2(ω) − ω = 0

(23)

The first and last equations in (23) contradict each other.
Thus, the regulator equations (23) are not solvable.
Hence, by Theorem 1, we conclude that the output regulation problem is not

solvable for this case.

4.1.3 Constant Tracking Problem for x3

Here, the tracking problem for the Vaidyanathan hyperjerk system (12) is given by

ẋ1 = x2
ẋ2 = x3
ẋ3 = x4
ẋ4 = −x1 − x2 − bx2

1 − ax3 − cx4
1 x4 + u

e = x3 − ω

(24)

By Theorem 1, the regulator equations of (24) are obtained as

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

π2(ω) = 0
π3(ω) = 0
π4(ω) = 0

−π1(ω) − π2(ω) − bπ2
1 (ω) − aπ3(ω) − cπ4

1 (ω)π4(ω) + φ(ω) = 0
π3(ω) − ω = 0

(25)

The second and last equations in (25) contradict each other.
Thus, the regulator equations (25) are not solvable.
Hence, by Theorem 1, we conclude that the output regulation problem is not

solvable for this case.

4.1.4 Constant Tracking Problem for x4

Here, the tracking problem for the Vaidyanathan hyperjerk system (12) is given by
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ẋ1 = x2
ẋ2 = x3
ẋ3 = x4
ẋ4 = −x1 − x2 − bx2

1 − ax3 − cx4
1 x4 + u

e = x4 − ω

(26)

By Theorem 1, the regulator equations of (26) are obtained as

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

π2(ω) = 0
π3(ω) = 0
π4(ω) = 0

−π1(ω) − π2(ω) − bπ2
1 (ω) − aπ3(ω) − cπ4

1 (ω)π4(ω) + φ(ω) = 0
π4(ω) − ω = 0

(27)

The third and last equations in (27) contradict each other.
Thus, the regulator equations (27) are not solvable.
Hence, by Theorem 1, we conclude that the output regulation problem is not

solvable for this case.

4.2 Tracking of Periodic Reference Signals

In this case, the exosystem is given by the planar dynamics

ω̇1 = ν ω2

ω̇2 = −ν ω1
(28)

where ν > 0 is any fixed constant.
Clearly, the assumption (H1) (Theorem 1) holds. Also, as established in Sect. 4.1,

the assumption (H2) of Theorem 1 also holds since (A, B) is completely observable
and we can easily find a controller gain matrix K so that A + BK is Hurwitz.

Hence, Theorem 1 can be applied to solve the output regulation problem for the
Vaidyanathan hyperjerk system (12) for the tracking of periodic reference signals.

4.2.1 Periodic Tracking Problem for x1

Here, the tracking problem for the Vaidyanathan jerk chaotic system (12) is given by



Active Controller Design for the Output Regulation of Vaidyanathan Hyperjerk System 197

ẋ1 = x2
ẋ2 = x3
ẋ3 = x4
ẋ4 = −x1 − x2 − bx2

1 − ax3 − cx4
1 x4 + u

ω̇1 = ν ω2

ω̇2 = −ν ω1

e = x1 − ω1

(29)

By Theorem 1, the regulator equations of (29) are obtained as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂π1
∂ω1

(νω2) + ∂π1
∂ω2

(−νω1) = π2(ω)

∂π2
∂ω1

(νω2) + ∂π2
∂ω2

(−νω1) = π3(ω)

∂π3
∂ω1

(νω2) + ∂π3
∂ω2

(−νω1) = π4(ω)

∂π4
∂ω1

(νω2) + ∂π4
∂ω2

(−νω1) = −π1(ω) − π2(ω) − bπ2
1 (ω) − aπ3(ω)

−cπ4
1 (ω)π4(ω) + φ(ω)

π1(ω) − ω1 = 0

(30)

Solving the regulator equations (30), we get the unique solution

π(ω) =

⎡
⎢⎢⎣

π1(ω)

π2(ω)

π3(ω)

π4(ω)

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

ω1

νω2

−ν2ω1

−ν3ω2

⎤
⎥⎥⎦ (31)

and
φ(ω) = (

1 − aν2 + ν4) ω1 + bω2
1 + ν

(
1 − cω4

1ν
2)ω2 (32)

By Theorem 1, a state feedback control law solving the output regulation problem
is given by

u = φ(ω) + K [x − π(ω)] (33)

where K is chosen so that A + BK is Hurwitz, π(ω) is given by (31), φ(ω) is given
by (32).

4.2.2 Periodic Tracking Problem for x2

Here, the tracking problem for the Vaidyanathan jerk chaotic system (12) is given by
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ẋ1 = x2
ẋ2 = x3
ẋ3 = x4
ẋ4 = −x1 − x2 − bx2

1 − ax3 − cx4
1 x4 + u

ω̇1 = ν ω2

ω̇2 = −ν ω1

e = x2 − ω1

(34)

By Theorem 1, the regulator equations of (34) are obtained as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂π1
∂ω1

(νω2) + ∂π1
∂ω2

(−νω1) = π2(ω)

∂π2
∂ω1

(νω2) + ∂π2
∂ω2

(−νω1) = π3(ω)

∂π3
∂ω1

(νω2) + ∂π3
∂ω2

(−νω1) = π4(ω)

∂π4
∂ω1

(νω2) + ∂π4
∂ω2

(−νω1) = −π1(ω) − π2(ω) − bπ2
1 (ω) − aπ3(ω)

−cπ4
1 (ω)π4(ω) + φ(ω)

π2(ω) − ω1 = 0

(35)

Solving the regulator equations (35), we get the unique solution

π(ω) =

⎡
⎢⎢⎣

π1(ω)

π2(ω)

π3(ω)

π4(ω)

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

−ν−1ω2

ω1

νω2

−ν2ω1

⎤
⎥⎥⎦ (36)

and
φ(ω) = (

1 − cν−2ω4
2

)
ω1 + (

aν − ν3 − ν−1
)
ω2 + bν−2ω2

2 (37)

By Theorem 1, a state feedback control law solving the output regulation problem
is given by

u = φ(ω) + K [x − π(ω)] (38)

where K is chosen so that A + BK is Hurwitz, π(ω) is given by (36), φ(ω) is given
by (37).

4.2.3 Periodic Tracking Problem for x3

Here, the tracking problem for the Vaidyanathan jerk chaotic system (12) is given by
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ẋ1 = x2
ẋ2 = x3
ẋ3 = x4
ẋ4 = −x1 − x2 − bx2

1 − ax3 − cx4
1 x4 + u

ω̇1 = ν ω2

ω̇2 = −ν ω1

e = x3 − ω1

(39)

By Theorem 1, the regulator equations of (39) are obtained as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂π1
∂ω1

(νω2) + ∂π1
∂ω2

(−νω1) = π2(ω)

∂π2
∂ω1

(νω2) + ∂π2
∂ω2

(−νω1) = π3(ω)

∂π3
∂ω1

(νω2) + ∂π3
∂ω2

(−νω1) = π4(ω)

∂π4
∂ω1

(νω2) + ∂π4
∂ω2

(−νω1) = −π1(ω) − π2(ω) − bπ2
1 (ω) − aπ3(ω)

−cπ4
1 (ω)π4(ω) + φ(ω)

π3(ω) − ω1 = 0

(40)

Solving the regulator equations (40), we get the unique solution

π(ω) =

⎡
⎢⎢⎣

π1(ω)

π2(ω)

π3(ω)

π4(ω)

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

−ν−2ω1

−ν−1ω2

ω1

νω2

⎤
⎥⎥⎦ (41)

and
φ(ω) = (

a − ν2 − ν−2) ω1 − ν−1ω2 + bν−4ω2
1 + cν−7ω4

1ω2 (42)

By Theorem 1, a state feedback control law solving the output regulation problem
is given by

u = φ(ω) + K [x − π(ω)] (43)

where K is chosen so that A + BK is Hurwitz, π(ω) is given by (41), φ(ω) is given
by (42).

4.2.4 Periodic Tracking Problem for x4

Here, the tracking problem for the Vaidyanathan jerk chaotic system (12) is given by
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ẋ1 = x2
ẋ2 = x3
ẋ3 = x4
ẋ4 = −x1 − x2 − bx2

1 − ax3 − cx4
1 x4 + u

ω̇1 = ν ω2

ω̇2 = −ν ω1

e = x4 − ω1

(44)

By Theorem 1, the regulator equations of (44) are obtained as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂π1
∂ω1

(νω2) + ∂π1
∂ω2

(−νω1) = π2(ω)

∂π2
∂ω1

(νω2) + ∂π2
∂ω2

(−νω1) = π3(ω)

∂π3
∂ω1

(νω2) + ∂π3
∂ω2

(−νω1) = π4(ω)

∂π4
∂ω1

(νω2) + ∂π4
∂ω2

(−νω1) = −π1(ω) − π2(ω) − bπ2
1 (ω) − aπ3(ω)

−cπ4
1 (ω)π4(ω) + φ(ω)

π4(ω) − ω1 = 0

(45)

Solving the regulator equations (45), we get the unique solution

π(ω) =

⎡
⎢⎢⎣

π1(ω)

π2(ω)

π3(ω)

π4(ω)

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

ν−3ω2

−ν−2ω1

−ν−1ω2

ω1

⎤
⎥⎥⎦ (46)

and
φ(ω) = (

cν−12ω4
2 − ν−2

)
ω1 + (

ν − aν−1 + ν−3
)
ω2 + bν−6ω2

2 (47)

By Theorem 1, a state feedback control law solving the output regulation problem
is given by

u = φ(ω) + K [x − π(ω)] (48)

where K is chosen so that A + BK is Hurwitz, π(ω) is given by (46), φ(ω) is given
by (47).

5 Numerical Simulations

For numerical simulations, we take the parameter values a, b and c so that the
Vaidyanathan hyperjerk system (12) is in the chaotic case, i.e.

a = 3.7, b = 0.2, c = 1.5 (49)
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With the choice

K = [
k1 k2 k3 k4

] = [−255 −255 −99.7 −16
]
,

the matrix A + BK is Hurwitz with eig(A + BK ) = {−4,−4,−4,−4}.
In the periodic tracking output regulation problem, the value ν = 1 is taken in the

exosystem dynamics given by (28).

5.1 Tracking of Constant Reference Signals

5.1.1 Constant Tracking Problem for x1

Here, the initial conditions are taken as

x1(0) = 0.1, x2(0) = 1.4, x3(0) = 2.7, x4(0) = 3.5, ω(0) = 2

The simulation graph is depicted in Fig. 5 from which it is clear that the state
trajectory x1(t) tracks the constant reference signal ω(t) ≡ 2 in 3 s.
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Fig. 5 Constant tracking of the state x1
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5.1.2 Constant Tracking Problem for x2

As detailed in Sect. 4.1.2, the output regulation problem is not solvable for this case
because the Byrnes-Isidori regulator equations do not admit any solution.

5.1.3 Constant Tracking Problem for x3

As pointed out in Sect. 4.1.3, the output regulation problem is not solvable for this
case because the Byrnes-Isidori regulator equations do not admit any solution.

5.1.4 Constant Tracking Problem for x4

As pointed out in Sect. 4.1.4, the output regulation problem is not solvable for this
case because the Byrnes-Isidori regulator equations do not admit any solution.

5.2 Tracking of Periodic Reference Signals

5.2.1 Periodic Tracking Problem for x1

Here, the initial conditions are taken as

x1(0) = 2.1, x2(0) = 1.7, x3(0) = −0.5, x4(0) = 1.2, ω1(0) = 0, ω2(0) = 1

Also, it is assumed that ν = 1. The simulation graph is depicted in Fig. 6 from
which it is clear that the state trajectory x1(t) tracks the periodic reference signal
ω1(t) = sin t in 5 s.

5.2.2 Periodic Tracking Problem for x2

Here, the initial conditions are taken as

x1(0) = 3.2, x2(0) = 0.5, x3(0) = 1.2, x4(0) = 2.4, ω1(0) = 0, ω2(0) = 1

Also, it is assumed that ν = 1. The simulation graph is depicted in Fig. 7 from
which it is clear that the state trajectory x2(t) tracks the periodic reference signal
ω1(t) = sin t in 5 s.
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Fig. 6 Periodic tracking of the state x1
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Fig. 7 Periodic tracking of the state x2

5.2.3 Periodic Tracking Problem for x3

Here, the initial conditions are taken as

x1(0) = 1.9, x2(0) = 2.5, x3(0) = 0.6, x4(0) = −0.4, ω1(0) = 0, ω2(0) = 1
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Fig. 8 Periodic tracking of the state x3
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Fig. 9 Periodic tracking of the state x4

Also, it is assumed that ν = 1. The simulation graph is depicted in Fig. 8 from
which it is clear that the state trajectory x3(t) tracks the periodic reference signal
ω1(t) = sin t in 5 s.
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5.2.4 Periodic Tracking Problem for x4

Here, the initial conditions are taken as

x1(0) = 2.9, x2(0) = 1.5, x3(0) = 2.6, x4(0) = 1.4, ω1(0) = 0, ω2(0) = 1

Also, it is assumed that ν = 1. The simulation graph is depicted in Fig. 9 from
which it is clear that the state trajectory x4(t) tracks the periodic reference signal
ω1(t) = sin t in 5 s.

6 Conclusions

Output regulation problem is one of the important problems in the control theory,
which aims to control a fixed linear or nonlinear plant in order to have its output
tracking reference signals produced by some external generator or the exosystem.
Byrnes and Isidori [5] solved the output regulation problem for a general class of
nonlinear systems under some stability assumptions. In this work, the output regu-
lation problem for the 4-D Vaidyanathan hyperjerk chaotic system (2015) has been
studied in detail and a complete solution for the output regulation problem for the 4-D
Vaidyanathan hyperjerk hyperchaotic system has been presented as well. Explicitly,
using the Byrnes-Isidori regulator equations (1990), state feedback control laws for
regulating the output of the 4-D Vaidyanathan hyperjerk hyperchaotic system have
been derived. As tracking reference signals, constant and periodic reference signals
have been considered and in each case, feedback control laws regulating the output
of the Vaidyanathan hyperchaotic system have been derived when the problem is
solvable. Numerical simulations using MATLAB are shown to illustrate all the main
results presented in this work.
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Abstract In this work, we describe a novel highly chaotic system with three
quadratic nonlinearities. The phase portraits of the novel highly chaotic system are
illustrated and the dynamic properties of the highly chaotic system are discussed.
The novel highly chaotic system has three unstable equilibrium points. We show
that the equilibrium point at the origin is a saddle point, while the other two equilib-
rium points are saddle foci. The novel highly chaotic system has rotation symmetry
about the x3 axis. The Lyapunov exponents of the novel highly chaotic system are
obtained as L1 = 6.34352, L2 = 0 and L3 = −29.26796, while the Kaplan–Yorke
dimension of the novel chaotic system is obtained as DKY = 2.2167. Since the Max-
imal Lyapunov Exponent (MLE) of the novel chaotic system has a large value, viz.
L1 = 6.34352, the novel chaotic system is highly chaotic. Since the sum of the Lya-
punov exponents is negative, the novel highly chaotic system is dissipative. Next,
we derive new results for the global chaos control of the novel highly chaotic system
with unknown parameters via adaptive control method. We also derive new results
for the global chaos synchronization of the identical novel highly chaotic systems
with unknown parameters via adaptive control method. The main adaptive control
results are established using Lyapunov stability theory. MATLAB simulations are
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1 Introduction

Chaotic systems are defined as nonlinear dynamical systems which are sensitive to
initial conditions, topologically mixing and with dense periodic orbits. Sensitivity to
initial conditions of chaotic systems is popularly known as the butterfly effect.

Chaotic systems are either conservative or dissipative. The conservative chaotic
systems are characterized by the property that they are volume conserving. The
dissipative chaotic systems are characterized by the property that any asymptotic
motion of the chaotic system settles onto a set of measure zero, i.e. a strange attractor.
In this research work, we shall announce and discuss a novel 3-D dissipative highly
chaotic circulant chaotic system with six sinusoidal nonlinearities.

The Lyapunov exponent of a chaotic system is a measure of the divergence of
points which are initially very close and this can be used to quantify chaotic systems.
Each nonlinear dynamical system has a spectrum of Lyapunov exponents, which are
equal in number to the dimension of the state space. The largest Lyapunov exponent
of a nonlinear dynamical system is called the maximal Lyapunov exponent (MLE).

In the last few decades, Chaos theory has become a very important and active
research field, employing many applications in different disciplines like physics,
chemistry, biology, ecology, engineering and economics, among others.

Some classical paradigms of 3-D chaotic systems in the literature are Lorenz
system [31], Rössler system [44], ACT system [1], Sprott systems [51], Chen system
[14], Lü system [32], Cai system [13], Tigan system [63], etc.

Many new chaotic systems have been discovered in the recent years such as Zhou
system [125], Zhu system [126], Li system [27], Sundarapandian systems [56, 60],
Vaidyanathan systems [71, 73, 75–78, 82, 88, 98, 99, 101, 107, 109, 112, 115, 116,
118], Pehlivan system [37], Sampath system [46], Pham system [39], etc.

Chaos theory and control systems havemany important applications in science and
engineering [2, 9–12, 127]. Some commonly known applications are oscillators [23,
50], lasers [28, 122], chemical reactions [17, 38, 86, 89, 91, 92, 96], biology [15, 25,
81, 83–85, 87, 90, 94, 95], ecology [18, 53], encryption [26, 124], cryptosystems
[43, 64], mechanical systems [4–8], secure communications [16, 34, 123], robotics
[33, 35, 120], cardiology [40, 121], intelligent control [3, 29], neural networks [20,
22, 30], finance [19, 52], etc.

The control of a chaotic system aims to stabilize or regulate the system. There
are many methods available for controlling a chaotic system such as active control
[54, 65, 66], adaptive control [55, 67, 72, 74, 80, 97, 108, 114, 117], sliding mode
control [69, 70], backstepping control [36, 111, 119], etc.

Major works on synchronization of chaotic systems deal with the complete syn-
chronization (CS) which has the design goal of using the output of the master system
to control the slave system so that the output of the slave system tracks the output of
the master system asymptotically with time.

There aremanymethods available for chaos synchronization such as active control
[21, 47, 48, 102, 104, 110], adaptive control [45, 49, 57–59, 68, 93, 100, 103],
sliding mode control [61, 79, 106, 113], backstepping control [41, 42, 62, 105], etc.
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In this research work, we announce an eight-term novel highly chaotic system
with three quadratic nonlinearities. Using adaptive control method, we have also
derived new results for the global chaos control of the novel highly chaotic system
and global chaos synchronization of the identical novel highly chaotic systems when
the system parameters are unknown.

This work is organized as follows. Section2 describes the dynamic equations and
phase portraits of the eight-term novel highly chaotic system. Section3 details the
dynamic analysis and qualitative properties of the novel highly chaotic system. The
Lyapunov exponents of the novel chaotic system are obtained as L1 = 6.34352,
L2 = 0 and L3 = −29.26796, while the Kaplan–Yorke dimension of the novel
chaotic system is obtained as DKY = 2.2167. Since the maximal Lyapunov exponent
of the novel chaotic system has a large value, viz. L1 = 6.34352, the novel chaotic
system is highly chaotic.

In Sect. 4, we derive new results for the global chaos control of the novel highly
chaotic system with unknown parameters. In Sect. 5, we derive new results for the
global chaos synchronization of the identical novel highly chaotic systems with
unknown parameters. Section6 contains a summary of the main results derived in
this work.

2 A 3-D Novel Highly Chaotic System

In this section, we describe an eight-term novel chaotic system, which is given by
the 3-D dynamics ⎧⎨

⎩
ẋ1 = a(x2 − x1) + x2x3
ẋ2 = b(x1 + x2) − x1x3
ẋ3 = −cx3 + x21

(1)

where x1, x2, x3 are the states and a, b, c are constant, positive parameters.
The novel 3-D system (1) is an eight-term polynomial systemwith three quadratic

nonlinearities.
The system (1) exhibits a highly chaotic attractor for the parameter values

a = 32, b = 18, c = 9 (2)

For numerical simulations, we take the initial conditions as

x1(0) = 0.3, x2(0) = 0.2, x3(0) = 0.3 (3)

Figure1 depicts the 3-D phase portrait of the novel highly chaotic system (1),
while Figs. 2, 3 and 4 depict the 2-D projection of the novel highly chaotic system
(1) on the (x1, x2), (x2, x3) and (x1, x3) planes, respectively.
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Fig. 1 3-D phase portrait of the novel highly chaotic system
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Fig. 2 2-D projection of the novel highly chaotic system on the (x1, x2) plane
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Fig. 4 2-D projection of the novel highly chaotic system on the (x1, x3) plane
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3 Analysis of the Novel 3-D Highly Chaotic System

In this section, we give a dynamic analysis of the 3-D novel highly chaotic system
(1). We take the parameter values as in the chaotic case (2), viz. a = 32, b = 18 and
c = 9.

3.1 Dissipativity

In vector notation, the novel chaotic system (1) can be expressed as

ẋ = f (x) =
⎡
⎣ f1(x1, x2, x3)

f2(x1, x2, x3)
f3(x1, x2, x3)

⎤
⎦ , (4)

where ⎧⎨
⎩

f1(x1, x2, x3) = a(x2 − x1) + x2x3
f2(x1, x2, x3) = b(x1 + x2) − x1x3
f3(x1, x2, x3) = −cx3 + x21

(5)

Let Ω be any region in R3 with a smooth boundary and also, Ω(t) = Φt(Ω),

where Φt is the flow of f . Furthermore, let V(t) denote the volume of Ω(t).
By Liouville’s theorem, we know that

V̇(t) =
∫

Ω(t)

(∇ · f ) dx1 dx2 dx3 (6)

The divergence of the novel chaotic system (4) is found as

∇ · f = ∂f1
∂x1

+ ∂f2
∂x2

+ ∂f3
∂x3

= −(a − b + c) = −μ < 0 (7)

since μ = a − b + c = 23 > 0.
Inserting the value of ∇ · f from (7) into (6), we get

V̇(t) =
∫

Ω(t)

(−μ) dx1 dx2 dx3 = −μV(t) (8)

Integrating the first order linear differential equation (8), we get

V(t) = exp(−μt)V(0) (9)
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Sinceμ > 0, it follows from Eq. (9) that V(t) → 0 exponentially as t → ∞. This
shows that the novel chaotic system (1) is dissipative.

Hence, the system limit sets are ultimately confined into a specific limit set of
zero volume, and the asymptotic motion of the novel chaotic system (1) settles onto
a strange attractor of the system.

3.2 Equilibrium Points

We take the parameter values as in the chaotic case (2), viz. a = 32, b = 18 and
c = 9.

It is easy to see that the system (1) has three equilibrium points, viz.

E0 =
⎡
⎣ 0
0
0

⎤
⎦ , E1 =

⎡
⎣ 15.7765

8.4627
27.6554

⎤
⎦ , E2 =

⎡
⎣−15.7765

−8.4627
27.6554

⎤
⎦ (10)

The Jacobian of the system (1) at any point x ∈ R3 is calculated as

J(x) =
⎡
⎣ −a a + x3 x2

b − x3 b −x1
2x1 0 −c

⎤
⎦ =

⎡
⎣ −32 32 + x3 x2
18 − x3 18 −x1
2x1 0 −9

⎤
⎦ (11)

The Jacobian of the system (1) at the equilibrium E0 is obtained as

J0 = J(E0) =
⎡
⎣−32 32 0

18 18 0
0 0 −9

⎤
⎦ (12)

We find that the matrix J0 = J(E0) has the eigenvalues

λ1 = −9, λ2 = −41.6554, λ3 = 27.6554 (13)

This shows that the equilibrium point E0 is a saddle-point, which is unstable.
The Jacobian of the system (1) at the equilibrium E1 is obtained as

J1 = J(E1) =
⎡
⎣ −32 59.6554 8.4267

−9.6554 18 −15.7765
31.5530 0 −9

⎤
⎦ (14)

We find that the matrix J1 = J(E1) has the eigenvalues

λ1 = −43.9949, λ2,3 = 10.4974 ± 25.9534i (15)
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This shows that the equilibrium point E1 is a saddle-focus, which is unstable.
The Jacobian of the system (1) at the equilibrium E2 is obtained as

J2 = J(E2) =
⎡
⎣ −32 59.6554 −8.4267

−9.6554 18 15.7765
−31.5530 0 −9

⎤
⎦ (16)

We find that the matrix J2 = J(E2) has the eigenvalues

λ1 = −43.9949, λ2,3 = 10.4974 ± 25.9534i (17)

This shows that the equilibrium point E2 is a saddle-focus, which is unstable.

3.3 Symmetry and Invariance

It is easy to see that the system (1) is invariant under the change of coordinates

(x1, x2, x3) �→ (−x1,−x2, x3) (18)

Thus, it follows that the 3-D novel chaotic system (1) has rotation symmetry about
the x3-axis and that any non-trivial trajectory must have a twin trajectory.

Next, it is easy to see that the x3-axis is invariant under the flow of the 3-D novel
chaotic system (1).

The invariant motion along the x3-axis is characterized by

ẋ3 = −cx3, (c > 0) (19)

which is globally exponentially stable.

3.4 Lyapunov Exponents and Kaplan–Yorke Dimension

We take the parameter values of the novel system (1) as in the chaotic case (2), i.e.

a = 32, b = 18, c = 9 (20)

We take the initial state of the novel system (1) as given in (3), i.e.

x1(0) = 0.3, x2(0) = 0.2, x3(0) = 0.3 (21)
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Fig. 5 Lyapunov exponents of the highly chaotic system

Then the Lyapunov exponents of the system (1) are numerically obtained as

L1 = 6.34352, L2 = 0, L3 = −29.26796 (22)

Figure5 shows the Lyapunov exponents of the novel system (1). From Fig. 5, we
note that the Maximal Lyapunov Exponent (MLE) of the novel system (1) is given
by L1 = 6.34352, which is a large value. This shows that the novel system (1) is
highly chaotic.

We also note that the sum of the Lyapunov exponents in (22) is negative, i.e.

L1 + L2 + L3 = −22.9244 < 0 (23)

This shows that the novel chaotic system (1) is dissipative.
Also, the Kaplan–Yorke dimension of the novel chaotic system (1) is found as

DKY = 2 + L1 + L2

|L3| = 2.2167, (24)

which is fractional.
Also, the relatively large value of theKaplan–Yorke dimension of the novel chaotic

system (1), i.e. DKY = 2.2167, indicates that the system exhibits highly complex
behaviour. Hence, the novel chaotic system (1) has applications in cryptosystems,
secure communication devices, etc.
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4 Global Chaos Control of the Novel Highly Chaotic System

In this section, we use adaptive control method to derive an adaptive feedback con-
trol law for globally stabilizing the novel 3-D highly chaotic system with unknown
parameters.

Thus, we consider the novel highly chaotic system given by

⎧⎨
⎩

ẋ1 = a(x2 − x1) + x2x3 + u1
ẋ2 = b(x1 + x2) − x1x3 + u2
ẋ3 = −cx3 + x21 + u3

(25)

In (25), x1, x2, x3 are the states and u1, u2, u3 are the adaptive controls to be
determined using estimates for the unknown system parameters.

We consider the adaptive feedback control law

⎧⎨
⎩

u1 = −â(t)(x2 − x1) − x2x3 − k1x1
u2 = −b̂(t)(x1 + x2) + x1x3 − k2x2
u3 = ĉ(t)x3 − x21 − k3x3

(26)

where k1, k2, k3 are positive gain constants.
Substituting (26) into (25), we get the closed-loop plant dynamics as

⎧⎪⎪⎨
⎪⎪⎩

ẋ1 = [
a − â(t)

]
(x2 − x1) − k1x1

ẋ2 =
[
b − b̂(t)

]
(x1 + x2) − k2x2

ẋ3 = − [
c − ĉ(t)

]
x3 − k3x3

(27)

The parameter estimation errors are defined as

⎧⎨
⎩

ea(t) = a − â(t)
eb(t) = b − b̂(t)
ec(t) = c − ĉ(t)

(28)

In view of (28), we can simplify the plant dynamics (27) as

⎧⎨
⎩

ẋ1 = ea(x2 − x1) − k1x1
ẋ2 = eb(x1 + x2) − k2x2
ẋ3 = −ecx3 − k3x3

(29)

Differentiating (28) with respect to t, we obtain

⎧⎪⎨
⎪⎩

ėa(t) = −˙̂a(t)

ėb(t) = −˙̂b(t)
ėc(t) = −˙̂c(t)

(30)
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We consider the quadratic candidate Lyapunov function defined by

V(x, ea, eb, ec) = 1

2

(
x21 + x22 + x23

) + 1

2

(
e2a + e2b + e2c

)
(31)

Differentiating V along the trajectories of (29) and (30), we obtain

V̇ = −k1x21 − k2x22 − k3x23 + ea

[
x1(x2 − x1) − ˙̂a

]
+ eb

[
x2(x1 + x2) − ˙̂b

]

+ ec

[
−x23 − ˙̂c

]
(32)

In view of (32), we take the parameter update law as

⎧⎪⎨
⎪⎩

˙̂a(t) = x1(x2 − x1)˙̂b(t) = x2(x1 + x2)˙̂c(t) = −x23

(33)

Next, we state and prove the main result of this section.

Theorem 1 The novel 3-D highly chaotic system (25) with unknown system parame-
ters is globally and exponentially stabilized for all initial conditions by the adaptive
control law (26) and the parameter update law (33), where k1, k2, k3 are positive
gain constants.

Proof We prove this result by applying Lyapunov stability theory [24].
We consider the quadratic Lyapunov function defined by (31), which is clearly a

positive definite function on R6.
By substituting the parameter update law (33) into (32), we obtain the time-

derivative of V as
V̇ = −k1x21 − k2x22 − k3x23 (34)

From (34), it is clear that V̇ is a negative semi-definite function on R6.
Thus, we can conclude that the state vector x(t) and the parameter estimation

error are globally bounded i.e.

[
x1(t) x2(t) x3(t) ea(t) eb(t) ec(t)

]T ∈ L∞.

We define k = min{k1, k2, k3}.
Then it follows from (34) that

V̇ ≤ −k‖x(t)‖2 (35)
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Thus, we have
k‖x(t)‖2 ≤ −V̇ (36)

Integrating the inequality (36) from 0 to t, we get

k

t∫
0

‖x(τ )‖2 dτ ≤ V(0) − V(t) (37)

From (37), it follows that x ∈ L2.
Using (29), we can conclude that ẋ ∈ L∞.
Using Barbalat’s lemma [24], we conclude that x(t) → 0 exponentially as t → ∞

for all initial conditions x(0) ∈ R3.
Hence, the novel highly chaotic system (25) with unknown system parameters is

globally and exponentially stabilized for all initial conditions by the adaptive control
law (26) and the parameter update law (33).

This completes the proof. �

For the numerical simulations, the classical fourth-order Runge–Kutta method
with step size h = 10−8 is used to solve the systems (25) and (33), when the adaptive
control law (26) is applied.

The parameter values of the novel 3-D highly chaotic system (25) are taken as in
the chaotic case (2), i.e.

a = 32, b = 18, c = 9 (38)

We take the positive gain constants as ki = 8 for i = 1, 2, 3.
Furthermore, as initial conditions of the novel highly chaotic system (25), we take

x1(0) = 23.8, x2(0) = −16.5, x3(0) = 9.4 (39)

Also, as initial conditions of the parameter estimates, we take

â(0) = 12.7, b̂(0) = 5.3, ĉ(0) = 2.6 (40)

In Fig. 6, the exponential convergence of the controlled states of the 3-D novel
highly chaotic system (25) is depicted. From Fig. 6, we see that the controlled states
x1(t), x2(t), x3(t) converge to zero in just one second. This shows the efficiency of the
adaptive controller designed in this section for the novel highly chaotic system (25).
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Fig. 6 Time-history of the controlled states x1, x2, x3

5 Global Chaos Synchronization of the Identical Novel
Highly Chaotic Systems

In this section, we apply adaptive control method to derive an adaptive feedback
control law for globally synchronizing identical 3-D novel highly chaotic systems
with unknown parameters. The main result is established using Lyapunov stability
theory.

As the master system, we consider the novel 3-D chaotic system given by

⎧⎨
⎩

ẋ1 = a(x2 − x1) + x2x3
ẋ2 = b(x1 + x2) − x1x3
ẋ3 = −cx3 + x21

(41)

In (41), x1, x2, x3 are the states and a, b, c are unknown system parameters.
As the slave system, we consider the novel 3-D chaotic system given by

⎧⎨
⎩

ẏ1 = a(y2 − y1) + y2y3 + u1
ẏ2 = b(y1 + y2) − y1y3 + u2
ẏ3 = −cy3 + y21 + u3

(42)

In (42), y1, y2, y3 are the states and u1, u2, u3 are the adaptive controls to be
determined using estimates of the unknown system parameters.
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The synchronization error between the novel chaotic systems is defined by

⎧⎨
⎩

e1 = y1 − x1
e2 = y2 − x2
e3 = y3 − x3

(43)

Then the error dynamics is obtained as

⎧⎨
⎩

ė1 = a(e2 − e1) + y2y3 − x2x3 + u1
ė2 = b(e1 + e2) − y1y3 + x1x3 + u2
ė3 = −ce3 + y21 − x21 + u3

(44)

We consider the adaptive feedback control law

⎧⎨
⎩

u1 = −â(t)(e2 − e1) − y2y3 + x2x3 − k1e1
u2 = −b̂(t)(e1 + e2) + y1y3 − x1x3 − k2e2
u3 = ĉ(t)e3 − y21 + x21 − k3e3

(45)

where k1, k2, k3 are positive gain constants.
Substituting (45) into (44), we get the closed-loop error dynamics as

⎧⎨
⎩

ė1 = [a − â(t)](e2 − e1) − k1e1
ė2 = [b − b̂(t)](e1 + e2) − k2e2
ė3 = −[c − ĉ(t)]e3 − k3e3

(46)

The parameter estimation errors are defined as

⎧⎨
⎩

ea(t) = a − â(t)
eb(t) = b − b̂(t)
ec(t) = c − ĉ(t)

(47)

In view of (47), we can simplify the error dynamics (46) as

⎧⎨
⎩

ė1 = ea(e2 − e1) − k1e1
ė2 = eb(e1 + e2) − k2e2
ė3 = −ece3 − k3e3

(48)

Differentiating (47) with respect to t, we obtain

⎧⎪⎨
⎪⎩

ėa(t) = −˙̂a(t)

ėb(t) = −˙̂b(t)
ėc(t) = −˙̂c(t)

(49)
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We consider the quadratic candidate Lyapunov function defined by

V(e, ea, eb, ec, ep, eq) = 1

2

(
e21 + e22 + e23

) + 1

2

(
e2a + e2b + e2c

)
(50)

Differentiating V along the trajectories of (48) and (49), we obtain

V̇ = −k1e21 − k2e22 − k3e23 + ea

[
e1(e2 − e1) − ˙̂a

]
+ eb

[
e2(e1 + e2) − ˙̂b

]
+ec

[
−e23 − ˙̂c

] (51)

In view of (51), we take the parameter update law as

⎧⎪⎨
⎪⎩

˙̂a(t) = e1(e2 − e1)˙̂b(t) = e2(e1 + e2)˙̂c(t) = −e23

(52)

Next, we state and prove the main result of this section.

Theorem 2 The novel highly chaotic systems (41) and (42) with unknown system
parameters are globally and exponentially synchronized for all initial conditions by
the adaptive control law (45) and the parameter update law (52), where k1, k2, k3
are positive gain constants.

Proof We prove this result by applying Lyapunov stability theory [24].
We consider the quadratic Lyapunov function defined by (50), which is clearly a

positive definite function on R6.
By substituting the parameter update law (52) into (51), we obtain

V̇ = −k1e21 − k2e22 − k3e23 (53)

From (53), it is clear that V̇ is a negative semi-definite function on R6.
Thus, we can conclude that the error vector e(t) and the parameter estimation

error are globally bounded, i.e.

[
e1(t) e2(t) e3(t) ea(t) eb(t) ec(t)

]T ∈ L∞. (54)

We define k = min{k1, k2, k3}.
Then it follows from (53) that

V̇ ≤ −k‖e(t)‖2 (55)

Thus, we have
k‖e(t)‖2 ≤ −V̇ (56)
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Integrating the inequality (56) from 0 to t, we get

k

t∫
0

‖e(τ )‖2 dτ ≤ V(0) − V(t) (57)

From (57), it follows that e ∈ L2.
Using (48), we can conclude that ė ∈ L∞.
Using Barbalat’s lemma [24], we conclude that e(t) → 0 exponentially as t → ∞

for all initial conditions e(0) ∈ R3.
This completes the proof. �

For the numerical simulations, the classical fourth-order Runge–Kutta method
with step size h = 10−8 is used to solve the systems (41), (42) and (52), when the
adaptive control law (45) is applied.

The parameter values of the novel chaotic systems are taken as in the chaotic case
(2), i.e. a = 32, b = 18 and c = 9.

We take the positive gain constants as ki = 8 for i = 1, 2, 3.
Furthermore, as initial conditions of the master system (41), we take

x1(0) = 5.3, x2(0) = −6.7, x3(0) = 12.8 (58)

As initial conditions of the slave system (42), we take

y1(0) = 12.7, y2(0) = 23.5, y3(0) = 3.4 (59)

Also, as initial conditions of the parameter estimates, we take

â(0) = 6.1, b̂(0) = 14.3, ĉ(0) = 7.8 (60)

Figures7, 8 and 9 describe the complete synchronization of the novel highly
chaotic systems (41) and (42), while Fig. 10 describes the time-history of the syn-
chronization errors e1, e2, e3.

From Fig. 7, we see that the states x1 and y1 are synchronized in just one second.
From Fig. 8, we see that the states x2 and y2 are synchronized in just one second.
From Fig. 9, we see that the states x3 and y3 are synchronized in just one second.
From Fig. 10, we see that the errors e1, e2, e3 converge to zero in just one second.

This shows the efficiency of the adaptive controller developed in this section for the
synchronization of identical highly chaotic systems.
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6 Conclusions

In this work, we described a novel highly chaotic systemwith three quadratic nonlin-
earities. The qualitative properties and phase portraits of the highly chaotic system
were discussed. The novel highly chaotic system has three unstable equilibrium
points. We showed that the equilibrium point at the origin is a saddle point, while the
other two equilibrium points are saddle foci. The novel highly chaotic system has
rotation symmetry about the x3 axis. The Lyapunov exponents of the novel highly
chaotic system have been obtained as L1 = 6.34352, L2 = 0 and L3 = −29.26796,
while the Kaplan–Yorke dimension of the novel chaotic system has been derived as
DKY = 2.2167. Since the Maximal Lyapunov Exponent (MLE) of the novel chaotic
system has a large value, viz. L1 = 6.34352, we concluded that the novel chaotic
system is highly chaotic. Since the sum of the Lyapunov exponents is negative,
the novel highly chaotic system is dissipative. Next, we derived new results for the
global chaos control and global chaos synchronization of the identical novel highly
chaotic systems with unknown parameters via adaptive control method. The main
adaptive control results are established using Lyapunov stability theory. MATLAB
simulations have been shown to depict all the adaptive control results derived in this
work.
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A No-Equilibrium Novel 4-D Highly
Hyperchaotic System with Four Quadratic
Nonlinearities and Its Adaptive Control

Sundarapandian Vaidyanathan

Abstract In this work, we describe an eleven-term novel 4-D highly hyperchaotic
system with four quadratic nonlinearities. The phase portraits of the eleven-term
novel highly hyperchaotic system are depicted and the qualitative properties of the
novel highly hyperchaotic system are discussed. We shall show that the novel hyper-
chaotic system does not have any equilibrium point. Hence, the novel 4-D hyper-
chaotic system exhibits hidden attractors. The Lyapunov exponents of the novel
hyperchaotic system are obtained as L1 = 15.06593, L2 = 0.03551, L3 = 0 and
L4 = −42.42821. The Maximal Lyapunov Exponent (MLE) of the novel hyper-
chaotic system is found as L1 = 15.06593, which is large. Thus, the novel 4-D hyper-
chaotic system proposed in this work is highly hyperchaotic. Also, the Kaplan–Yorke
dimension of the novel hyperchaotic system is derived as DK Y = 3.3559. Since the
sum of the Lyapunov exponents is negative, the novel hyperchaotic system is dissi-
pative. Next, an adaptive controller is designed to globally stabilize the novel highly
hyperchaotic system with unknown parameters. Finally, an adaptive controller is
also designed to achieve global chaos synchronization of the identical novel highly
hyperchaotic systems with unknown parameters. MATLAB simulations are depicted
to illustrate all the main results derived in this work.

Keywords Chaos · Chaotic systems ·Hyperchaos ·Hyperchaotic systems ·Adap-
tive control · Chaos synchronization · Stability theory

1 Introduction

In the last few decades, Chaos theory has become a very important and active research
field, employing many applications in different disciplines like physics, chemistry,
biology, ecology, engineering and economics, among others.
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Some classical paradigms of 3-D chaotic systems in the literature are Lorenz
system [35], Rössler system [50], ACT system [1], Sprott systems [59], Chen system
[15], Lü system [36], Cai system [13], Tigan system [70], etc.

Many new chaotic systems have been discovered in the recent years such as
Zhou system [138], Zhu system [140], Li system [31], Wei–Yang system [131],
Sundarapandian systems [63, 67], Vaidyanathan systems [78, 80, 82–85, 89, 96,
106, 107, 109, 115, 117, 120, 123, 124, 126], Pehlivan system [40], Sampath system
[53], Pham system [43], etc.

The Lyapunov exponent is a measure of the divergence of phase points that are
initially very close and can be used to quantify chaotic systems. It is common to
refer to the largest Lyapunov exponent as the Maximal Lyapunov Exponent (MLE).
A positive maximal Lyapunov exponent and phase space compactness are usually
taken as defining conditions for a chaotic system.

A hyperchaotic system is defined as a chaotic system with at least two positive
Lyapunov exponents. Thus, the dynamics of a hyperchaotic system can expand in
several different directions simultaneously. Thus, the hyperchaotic systems have
more complex dynamical behaviour and they have miscellaneous applications in
engineering such as secure communications [18, 30, 133], cryptosystems [21, 48,
139], fuzzy logic [57, 136], electrical circuits [130, 134], etc.

The minimum dimension of an autonomous, continuous-time, hyperchaotic sys-
tem is four. The first 4-D hyperchaotic system was found by Rössler [51]. Many
hyperchaotic systems have been reported in the chaos literature such as hyperchaotic
Lorenz system [23], hyperchaotic Lü system [14], hyperchaotic Chen system [32],
hyperchaotic Wang system [129], hyperchaotic Vaidyanathan systems [52, 79, 87,
101, 105, 116, 118, 122, 125], hyperchaotic Pham system [42], etc.

Chaos theory and control systems have many important applications in science
and engineering [2, 9–12, 141]. Some commonly known applications are oscillators
[26, 58], chemical reactions [19, 41, 93, 94, 97, 99, 100, 104], biology [16, 28,
88, 90–92, 95, 98, 102, 103], ecology [20, 60], encryption [29, 137], cryptosystems
[49, 71], mechanical systems [4–8], secure communications [17, 38, 135], robotics
[37, 39, 127], cardiology [45, 132], intelligent control [3, 33], neural networks [22,
25, 34], memristors [44, 128], etc.

The control of a chaotic or hyperchaotic system aims to stabilize or regulate the
system with the help of a feedback control. There are many methods available for
controlling a chaotic system such as active control [61, 72, 73], adaptive control [62,
74, 81], sliding mode control [76, 77], backstepping control [119], etc.

The synchronization of chaotic systems aims to synchronize the states of master
and slave systems asymptotically with time. There are many methods available for
chaos synchronization such as active control [24, 54, 55, 110, 112], adaptive control
[56, 64–66, 75, 108, 111], sliding mode control [68, 86, 114, 121], backstepping
control [46, 47, 69, 113], etc.

This work is organized as follows. Section2 describes the dynamic equations
and phase portraits of the eleven-term novel 4-D hyperchaotic system. Section3
details the qualitative properties of the novel hyperchaotic system. In this section,
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we establish that the novel hyperchaotic system does not have any equilibrium point.
Thus, it follows that the novel hyperchaotic system exhibits hidden attractors.

The Lyapunov exponents of the novel hyperchaotic system are obtained as L1 =
15.06593, L2 = 0.03551, L3 = 0 and L4 = −42.42821, while the Kaplan–Yorke
dimension of the novel hyperchaotic system is obtained as DK Y = 3.3559. Since
the Maximal Lyapunov Exponent (MLE) of the novel hyperchaotic system is L1 =
15.06593, which is a large value, we conclude that the proposed novel hyperchaotic
system is highly hyperchaotic. A novel contribution of this research work is the
finding of a highly hyperchaotic 4-D system with hidden attractors.

In Sect. 4, we design an adaptive controller to globally stabilize the novel highly
hyperchaotic system with unknown parameters. In Sect. 5, an adaptive controller is
designed to achieve global chaos synchronization of the identical novel highly hyper-
chaotic systems with unknown parameters. MATLAB simulations have been shown
to illustrate all the main results derived in this research work. Section6 summarizes
the main results of this research work.

2 A Novel 4-D Hyperchaotic System

In this section, we describe an eleven-term novel hyperchaotic system, which is given
by the 4-D dynamics ⎧⎪⎪⎨

⎪⎪⎩

ẋ1 = a(x2 − x1) + x2x3 + x4
ẋ2 = −cx1x3 + 3x2 + px2

3
ẋ3 = x1x2 − b
ẋ4 = −q(x1 + x2)

(1)

where x1, x2, x3, x4 are the states and a, b, c, p, q are constant positive parameters.
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Fig. 1 3-D projection of the novel highly hyperchaotic system on the (x1, x2, x3) space
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Fig. 2 3-D projection of the novel highly hyperchaotic system on the (x1, x2, x4) space
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Fig. 3 3-D projection of the novel highly hyperchaotic system on the (x1, x3, x4) space

The system (1) exhibits a strange hyperchaotic attractor for the parameter values

a = 62, b = 36, c = 160, p = 0.5, q = 2.8 (2)

For numerical simulations, we take the initial conditions as

x1(0) = 0.2, x2(0) = 0.8, x3(0) = 0.6, x4(0) = 0.4 (3)
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Fig. 4 3-D projection of the novel highly hyperchaotic system on the (x2, x3, x4) space

Figures1, 2, 3 and 4 show the 3-D projection of the novel hyperchaotic system
(1) on the (x1, x2, x3), (x1, x2, x4), (x1, x3, x4) and (x2, x3, x4) spaces, respectively.

3 Analysis of the Novel 4-D Highly Hyperchaotic System

In this section, we study the qualitative properties of the novel 4-D highly hyper-
chaotic system (1). We take the parameter values as in the hyperchaotic case (2).

3.1 Dissipativity

In vector notation, the novel highly hyperchaotic system (1) can be expressed as

ẋ = f (x) =

⎡
⎢⎢⎣

f1(x1, x2, x3, x4)
f2(x1, x2, x3, x4)
f3(x1, x2, x3, x4)
f4(x1, x2, x3, x4)

⎤
⎥⎥⎦ , (4)

where ⎧⎪⎪⎨
⎪⎪⎩

f1(x1, x2, x3, x4) = a(x2 − x1) + x2x3 + x4
f2(x1, x2, x3, x4) = −cx1x3 + 3x2 + px2

3
f3(x1, x2, x3, x4) = x1x2 − b
f4(x1, x2, x3, x4) = −q(x1 + x2)

(5)
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Let Ω be any region in R4 with a smooth boundary and also, Ω(t) = Φt (Ω),

where Φt is the flow of f .
Furthermore, let V (t) denote the hypervolume of Ω(t).
By Liouville’s theorem, we know that

V̇ (t) =
∫

Ω(t)

(∇ · f ) dx1 dx2 dx3 dx4 (6)

The divergence of the novel hyperchaotic system (4) is found as:

∇ · f = ∂ f1
∂x1

+ ∂ f2
∂x2

+ ∂ f3
∂x3

+ ∂ f4
∂x4

= −a + 3 = −μ < 0 (7)

since μ = a − 3 = 59 > 0.
Inserting the value of ∇ · f from (7) into (6), we get

V̇ (t) =
∫

Ω(t)

(−μ) dx1 dx2 dx3 dx4 = −μV (t) (8)

Integrating the first order linear differential equation (8), we get

V (t) = exp(−μt)V (0) (9)

Since μ > 0, it follows from Eq. (9) that V (t) → 0 exponentially as t → ∞.
This shows that the novel hyperchaotic system (1) is dissipative. Hence, the system
limit sets are ultimately confined into a specific limit set of zero hypervolume, and
the asymptotic motion of the novel hyperchaotic system (1) settles onto a strange
attractor of the system.

3.2 Equilibrium Points

We take the parameter values as in the hyperchaotic case (2).
The equilibrium points of the 4-D system (1) are obtained by solving the system

of equations

a(x2 − x1) + x2x3 + x4 = 0 (10a)

−cx1x3 + 3x2 + px2
3 = 0 (10b)

x1x2 − b = 0 (10c)

−q(x1 + x2) = 0 (10d)



A No-Equilibrium Novel 4-D Highly Hyperchaotic System with Four Quadratic … 241

Since q �= 0, it is immediate from (10d) that

x1 + x2 = 0 or x1 = −x2 (11)

Substituting x1 = −x2 in (10c), we get

x2
2 = −b (12)

which has no solutions since b > 0.
Thus, we conclude that the novel highly hyperchaotic system (1) does not have

any equilibrium points. Hence, the novel highly hyperchaotic system (1) exhibits
hidden attractors.

3.3 Invariance

It is easy to see that the x3-axis is invariant under the flow of the 4-D novel hyper-
chaotic system (1).

The invariant motion along the x3-axis is characterized by the scalar dynamics

ẋ3 = −b, (13)

which is unstable.

3.4 Lyapunov Exponents and Kaplan–Yorke Dimension

We take the parameter values of the novel system (1) as in the hyperchaotic case (2),
i.e.

a = 62, b = 36, c = 160, p = 0.5, q = 2.8 (14)

We take the initial state of the novel system (1) as given in (3), i.e.

x1(0) = 0.2, x2(0) = 0.8, x3(0) = 0.6, x4(0) = 0.4 (15)

Then the Lyapunov exponents of the system (1) are numerically obtained using
MATLAB as

L1 = 15.06593, L2 = 0.03551, L3 = 0, L4 = −42.42821 (16)

Since there are two positive Lyapunov exponents in (16), the novel system (1)
exhibits hyperchaotic behavior.
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From the LE spectrum (16), we see that the maximal Lyapunov exponent of the
novel hyperchaotic system (1) is L1 = 15.06593, which is large.

We find that
L1 + L2 + L3 + L4 = − − 27.32677 < 0 (17)

Thus, it follows that the novel highly hyperchaotic system (1) is dissipative.
Also, the Kaplan–Yorke dimension of the novel hyperchaotic system (1) is cal-

culated as

DKY = 3 + L1 + L2 + L3

|L4| = 3.3559, (18)

which is fractional.
Since the Kaplan–Yorke dimension of the novel highly hyperchaotic system (1)

has a large value, it follows that the 4-D system (1) exhibits highly complex dynamics
and hence, it is suitable for engineering applications like secure communication and
cryptosystems.

4 Adaptive Control of the Novel Highly Hyperchaotic
System

In this section, we apply adaptive control method to derive an adaptive feedback
control law for globally stabilizing the novel 4-D highly hyperchaotic system with
unknown parameters. We use parameter estimates in lieu of the unknown system
parameters. The main control result in this section is established using Lyapunov
stability theory.

Thus, we consider the controlled novel 4-D highly hyperchaotic system given by

⎧⎪⎪⎨
⎪⎪⎩

ẋ1 = a(x2 − x1) + x2x3 + x4 + u1

ẋ2 = −cx1x3 + 3x2 + px2
3 + u2

ẋ3 = x1x2 − b + u3

ẋ4 = −q(x1 + x2) + u4

(19)

In (19), x1, x2, x3, x4 are the states and u1, u2, u3, u4 are the adaptive controls to be
determined using estimates â(t), b̂(t), ĉ(t), p̂(t), q̂(t) for the unknown parameters
a, b, c, p, q, respectively.

We consider the adaptive feedback control law

⎧⎪⎪⎨
⎪⎪⎩

u1 = −â(t)(x2 − x1) − x2x3 − x4 − k1x1
u2 = ĉ(t)x1x3 − 3x2 − p̂(t)x2

3 − k2x2
u3 = −x1x2 + b̂(t) − k3x3
u4 = q̂(t)(x1 + x2) − k4x4

(20)

where k1, k2, k3, k4 are positive gain constants.
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Substituting (20) into (19), we get the closed-loop plant dynamics as

⎧⎪⎪⎨
⎪⎪⎩

ẋ1 = [a − â(t)](x2 − x1) − k1x1
ẋ2 = −[c − ĉ(t)]x1x3 + [p − p̂(t)]x2

3 − k2x2
ẋ3 = −[b − b̂(t)] − k3x3
ẋ4 = −[q − q̂(t)](x1 + x2) − k4x4

(21)

The parameter estimation errors are defined as

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ea(t) = a − â(t)
eb(t) = b − b̂(t)
ec(t) = c − ĉ(t)
ep(t) = p − p̂(t)
eq(t) = q − q̂(t)

(22)

In view of (22), we can simplify the plant dynamics (21) as

⎧⎪⎪⎨
⎪⎪⎩

ẋ1 = ea(x2 − x1) − k1x1
ẋ2 = −ecx1x3 + epx2

3 − k2x2
ẋ3 = −eb − k3x3
ẋ4 = −eq(x1 + x2) − k4x4

(23)

Differentiating (22) with respect to t , we obtain

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ėa(t) = −˙̂a(t)

ėb(t) = − ˙̂b(t)
ėc(t) = −˙̂c(t)
ėp(t) = − ˙̂p(t)
ėq(t) = − ˙̂q(t)

(24)

We consider the quadratic candidate Lyapunov function defined by

V (x, ea, eb, ec, ep, eq) = 1

2

(
x2
1 + x2

2 + x2
3 + x2

4

) + 1

2

(
e2a + e2b + e2c + e2p + e2q

)
(25)

Differentiating V along the trajectories of (23) and (24), we obtain

V̇ = −k1x2
1 − k2x2

2 − k3x2
3 − k4x2

4 + ea

[
x1(x2 − x1) − ˙̂a

]
+ eb

[
−x3 − ˙̂b

]
+ec

[
−x1x2x3 − ˙̂c

]
+ ep

[
x2x2

3 − ˙̂p
]

+ eq

[
−x4(x1 + x2) − ˙̂q

]
(26)
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In view of (26), we take the parameter update law as

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

˙̂a(t) = x1(x2 − x1)˙̂b(t) = −x3˙̂c(t) = −x1x2x3˙̂p(t) = x2x2
3˙̂q(t) = −x4(x1 + x2)

(27)

Next, we state and prove the main result of this section.

Theorem 1 The novel 4-D highly hyperchaotic system (19) with unknown system
parameters is globally and exponentially stabilized for all initial conditions by the
adaptive control law (20) and the parameter update law (27), where k1, k2, k3, k4
are positive gain constants.

Proof We prove this result by applying Lyapunov stability theory [27].
We consider the quadratic Lyapunov function defined by (25), which is clearly a

positive definite function on R9.
By substituting the parameter update law (27) into (26), we obtain the time-

derivative of V as
V̇ = −k1x2

1 − k2x2
2 − k3x2

3 − k4x2
4 (28)

From (28), it is clear that V̇ is a negative semi-definite function on R9.
Thus, we can conclude that the state vector x(t) and the parameter estimation

error are globally bounded, i.e.

[
x1(t) x2(t) x3(t) x4(t) ea(t) eb(t) ec(t) ep(t) eq(t)

]T ∈ L∞.

We define k = min{k1, k2, k3, k4}.
Then it follows from (28) that

V̇ ≤ −k‖x(t)‖2 (29)

Thus, we have
k‖x(t)‖2 ≤ −V̇ (30)

Integrating the inequality (30) from 0 to t , we get

k

t∫
0

‖x(τ )‖2 dτ ≤ V (0) − V (t) (31)

From (31), it follows that x ∈ L2.
Using (23), we can conclude that ẋ ∈ L∞.
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UsingBarbalat’s lemma [27], we conclude that x(t) → 0 exponentially as t → ∞
for all initial conditions x(0) ∈ R4.

Thus, the novel 4-D highly hyperchaotic system (19) with unknown system para-
meters is globally and exponentially stabilized for all initial conditions by the adaptive
control law (20) and the parameter update law (27).

This completes the proof. �

For the numerical simulations, the classical fourth-order Runge–Kutta method
with step size h = 10−8 is used to solve the systems (19) and (27), when the adaptive
control law (20) is applied.

The parameter values of the novel 4-D hyperchaotic system (19) are taken as in
the hyperchaotic case (2), i.e.

a = 62, b = 36, c = 160, p = 0.5, q = 2.8 (32)

We take the positive gain constants as

k1 = 8, k2 = 8, k3 = 8, k4 = 8 (33)

Furthermore, as initial conditions of the novel 4-D highly hyperchaotic system
(19), we take

x1(0) = 18.5, x2(0) = −14.7, x3(0) = 24.8, x4(0) = −12.3 (34)
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Fig. 5 Time-history of the controlled states x1, x2, x3, x4
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Also, as initial conditions of the parameter estimates, we take

â(0) = 15.6, b̂(0) = 12.4, ĉ(0) = 22.7, p̂(0) = 4.8, q̂(0) = 19.4 (35)

In Fig. 5, the exponential convergence of the controlled states of the novel 4-D
hyperchaotic system (19) is shown.

5 Adaptive Synchronization of the Identical Novel
Hyperchaotic Systems

In this section, we use adaptive control method to derive an adaptive feedback control
law for globally synchronizing identical novel 4-D highly hyperchaotic systems with
unknown parameters.

As the master system, we consider the novel 4-D hyperchaotic system given by

⎧⎪⎪⎨
⎪⎪⎩

ẋ1 = a(x2 − x1) + x2x3 + x4
ẋ2 = −cx1x3 + 3x2 + px2

3
ẋ3 = x1x2 − b
ẋ4 = −q(x1 + x2)

(36)

In (36), x1, x2, x3, x4 are the states and a, b, c, p, q are unknown system parame-
ters.

As the slave system, we consider the 4-D novel hyperchaotic system given by

⎧⎪⎪⎨
⎪⎪⎩

ẏ1 = a(y2 − y1) + y2y3 + y4 + u1

ẏ2 = −cy1y3 + 3y2 + py23
ẏ3 = y1y2 − b + u3

ẏ4 = −q(y1 + y2) + u4

(37)

In (37), y1, y2, y3, y4 are the states and u1, u2, u3, u4 are the adaptive controls
to be determined using estimates â(t), ĉ(t), p̂(t), q̂(t) for the unknown parameters
a, c, p, q, respectively.

The synchronization error between the novel hyperchaotic systems (36) and (37)
is defined by ⎧⎪⎪⎨

⎪⎪⎩

e1 = y1 − x1
e2 = y2 − x2
e3 = y3 − x3
e4 = y4 − x4

(38)
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Then the error dynamics is obtained as

⎧⎪⎪⎨
⎪⎪⎩

ė1 = a(e2 − e1) + e4 + y2y3 − x2x3 + u1

ė2 = 3e2 − c(y1y3 − x1x3) + p(y23 − x2
3 ) + u2

ė3 = y1y2 − x1x2 + u3

ė4 = −q(e1 + e2) + u4

(39)

We consider the adaptive feedback control law

⎧⎪⎪⎨
⎪⎪⎩

u1 = −â(t)(e2 − e1) − e4 − y2y3 + x2x3 − k1e1
u2 = −3e2 + ĉ(t)(y1y3 − x1x3) − p̂(t)(y23 − x2

3 ) − k2e2
u3 = −y1y2 + x1x2 − k3e3
u4 = q̂(t)(e1 + e2) − k4e4

(40)

where k1, k2, k3, k4 are positive gain constants.
Substituting (40) into (39), we get the closed-loop error dynamics as

⎧⎪⎪⎨
⎪⎪⎩

ė1 = [
a − â(t)

]
(e2 − e1) − k1e1

ė2 = − [
c − ĉ(t)

]
(y1y3 − x1x3) + [

p − p̂(t)
]
(y23 − x2

3 ) − k2e2
ė3 = −k3e3
ė4 = − [

q − q̂(t)
]
(e1 + e2) − k4e4

(41)

The parameter estimation errors are defined as

⎧⎪⎪⎨
⎪⎪⎩

ea(t) = a − â(t)
ec(t) = c − ĉ(t)
ep(t) = p − p̂(t)
eq(t) = q − q̂(t)

(42)

In view of (42), we can simplify the error dynamics (41) as

⎧⎪⎪⎨
⎪⎪⎩

ė1 = ea(e2 − e1) − k1e1
ė2 = −ec(y1y3 − x1x3) + ep(y23 − x2

3 ) − k2e2
ė3 = −k3e3
ė4 = −eq(e1 + e2) − k4e4

(43)

Differentiating (42) with respect to t , we obtain

⎧⎪⎪⎨
⎪⎪⎩

ėa(t) = −˙̂a(t)
ėc(t) = −˙̂c(t)
ėp(t) = − ˙̂p(t)
ėq(t) = − ˙̂q(t)

(44)

We use adaptive control theory to find an update law for the parameter estimates.
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We consider the quadratic candidate Lyapunov function defined by

V (e, ea, ec, ep, eq) = 1

2

(
e21 + e22 + e23 + e24

) + 1

2

(
e2a + e2c + e2p + e2q

)
(45)

Differentiating V along the trajectories of (43) and (44), we obtain

V̇ = −k1e21 − k2e22 − k3e
2
3 − k4e24 + ea

[
e1(e2 − e1) − ˙̂a

]

+ ec

[
−e2(y1y3 − x1x3) − ˙̂c

]
+ ep

[
e2(y23 − x2

3 ) − ˙̂p
]

+ eq

[
−e4(e1 + e2) − ˙̂q

]
(46)

In view of (46), we take the parameter update law as

⎧⎪⎪⎨
⎪⎪⎩

˙̂a(t) = e1(e2 − e1)˙̂c(t) = −e2(y1y3 − x1x3)˙̂p(t) = e2(y23 − x2
3 )˙̂q(t) = −e4(e1 + e2)

(47)

Next, we state and prove the main result of this section.

Theorem 2 The novel hyperchaotic systems (36) and (37) with unknown system
parameters are globally and exponentially synchronized for all initial conditions by
the adaptive control law (40) and the parameter update law (47), where k1, k2, k3, k4
are positive gain constants.

Proof We prove this result by applying Lyapunov stability theory [27].
We consider the quadratic Lyapunov function defined by (45), which is clearly a

positive definite function on R8.
By substituting the parameter update law (47) into (46), we obtain

V̇ = −k1e21 − k2e22 − k3e
2
3 − k4e24 (48)

From (48), it is clear that V̇ is a negative semi-definite function on R8.
Thus, we can conclude that the error vector e(t) and the parameter estimation

error are globally bounded, i.e.

[
e1(t) e2(t) e3(t) e4(t) ea(t) ec(t) ep(t) eq(t)

]T ∈ L∞. (49)

We define k = min{k1, k2, k3, k4}.
Then it follows from (48) that

V̇ ≤ −k‖e(t)‖2 (50)
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Thus, we have
k‖e(t)‖2 ≤ −V̇ (51)

Integrating the inequality (51) from 0 to t , we get

k

t∫
0

‖e(τ )‖2 dτ ≤ V (0) − V (t) (52)

From (52), it follows that e ∈ L2.
Using (43), we can conclude that ė ∈ L∞.
UsingBarbalat’s lemma [27], we conclude that e(t) → 0 exponentially as t → ∞

for all initial conditions e(0) ∈ R4.
This completes the proof. �

For the numerical simulations, the classical fourth-order Runge–Kutta method
with step size h = 10−8 is used to solve the systems (36), (37) and (47), when the
adaptive control law (40) is applied.

The parameter values of the novel hyperchaotic systems are taken as in the hyper-
chaotic case (2), i.e.

a = 62, b = 36, c = 160, p = 0.5, q = 2.8 (53)

We take the positive gain constants as

k1 = 8, k2 = 8, k3 = 8, k4 = 8 (54)

Furthermore, as initial conditions of the master system (36), we take

x1(0) = 12.3, x2(0) = 6.4, x3(0) = −9.7, x4(0) = −22.8 (55)

As initial conditions of the slave system (37), we take

y1(0) = 5.1, y2(0) = −18.5, y3(0) = 24.8, y4(0) = 3.7 (56)

Also, as initial conditions of the parameter estimates, we take

â(0) = 12.6, ĉ(0) = 5.4, p̂(0) = 17.9, q̂(0) = 25.8 (57)

Figures6, 7, 8 and 9 describe the complete synchronization of the novel hyper-
chaotic systems (36) and (37), while Fig. 10 describes the time-history of the syn-
chronization errors e1, e2, e3, e4.
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Fig. 10 Time-history of the synchronization errors e1, e2, e3, e4

6 Conclusions

In this work, we described an eleven-term novel 4-D highly hyperchaotic systemwith
four quadratic nonlinearities. The qualitative properties of the novel highly hyper-
chaotic system were discussed in detail. We showed that the novel hyperchaotic sys-
tem does not have any equilibrium point. Hence, the novel 4-D hyperchaotic system
exhibits hidden attractors. The Lyapunov exponents of the novel hyperchaotic system
have been obtained as L1 = 15.06593, L2 = 0.03551, L3 = 0 and L4 = −42.42821.
The Maximal Lyapunov Exponent (MLE) of the novel hyperchaotic system is found
as L1 = 15.06593, which is large. Thus, the novel 4-D hyperchaotic system proposed
in this work is highly hyperchaotic. Also, the Kaplan–Yorke dimension of the novel
hyperchaotic system has been derived as DK Y = 3.3559. Since the sum of the Lya-
punov exponents is negative, the novel hyperchaotic system is dissipative. Next, an
adaptive controller was designed to globally stabilize the novel highly hyperchaotic
system with unknown parameters. Finally, an adaptive controller was also designed
to achieve global chaos synchronization of the identical novel highly hyperchaotic
systems with unknown parameters. MATLAB simulations were shown to illustrate
all the main results derived in this work.
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Identification, Stability and Stabilization
of Limit Cycles in a Compass-Gait Biped
Model via a Hybrid Poincaré Map

Hassène Gritli and Safya Belghith

Abstract This chapter focuses on identification, stability analysis and stabilization
of hybrid limit cycle in the passive dynamic walking of the compass-gait biped
robot as it goes down an inclined surface. The walking dynamics of such biped is
described by an impulsive hybrid nonlinear system, which is composed of a nonlin-
ear differential equation and a nonlinear algebraic equation. Under variation of the
slope parameter, the passive biped robot displays symmetric (stable one-periodic)
and asymmetric (unstable one-periodic and chaotic) behaviors. Then, themain objec-
tive of this chapter is to stabilize a desired asymmetric gait into a symmetric one by
means of a control input, the hip torque. Nevertheless, the design of such control
input using the impulsive hybrid dynamics is a complicated task. Then, to overcome
this problem, we constructed a hybrid Poincaré map by linearizing the impulsive
hybrid nonlinear dynamics around a desired unstable one-periodic hybrid limit cycle
for some desired slope parameter. We stress that both the differential equation and
the algebraic equation are linearized. The desired hybrid limit cycle is identified and
analyzed first through the impulsive hybrid nonlinear dynamics via the fundamental
solution matrix. We demonstrate that identification of the one-periodic fixed point
of the designed hybrid Poincaré map and its stability depend only upon the nom-
inal impact instant. We introduce a state-feedback controller in order to stabilize
the linearized Poincaré map around the one-periodic fixed point. We show that the
developed strategy for the design of the OGY-based controller has achieved the sta-
bilization of the desired one-periodic hybrid limit cycle of the compass-gait biped
robot.
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1 Introduction

The research prototypes of biped robots made under the passive dynamic walking
are used mainly for investigating properties of the bipedal walking (dynamics, sta-
bility, limit cycles, etc.). The goal is to reproduce walking cycles and analyze the
generated cycles. The principle meanwhile is to use the effect of gravity as an action
to reproduce a stable periodic walking from some initial configurations. In this con-
text, several works have been proposed to date showing the central utility of passive
dynamic walking. There are three important motivations behind the study and design
of passive dynamicwalking, namely (1) The passive biped robot has a self-stabilizing
mechanical walking dynamics, (2) The passive dynamicwalking should significantly
increase the energy efficiency of bipedal locomotion, and (3) The passive dynamic
walking is studied in order to obtain an additional insight on the design principles
of legged locomotion in nature. The most famous passive biped robot is the planar
compass-gait biped model, which has been widely investigated in the literature (see
[44] for a survey). In this chapter, we are interested in the analysis of such passive
compass-gait model and its stabilization. The passive compass-gait biped robot and
its impulsive hybrid nonlinear dynamics are presented in Sect. 3. The interest in the
design and use of an active biped robot based on passive dynamic walking is its low
power consumption. Many researches have been conducted on the development of
bipedal walkers based on the observed demonstrations of passive dynamic walking
(see for example [44, 47, 85] and references therein).

The model of the dynamic walking of biped robots is qualified as an impulsive
hybrid nonlinear dynamics. Such dynamics is composed of nonlinear differential
equationsmodeling the swingmotion of the biped robot, and also nonlinear algebraic
equations describing the impulsive transition of the state vector at the impact phase.
As the periodic cyclic movement of biped robots is represented by a limit cycle, then
investigation of stability of the periodic dynamic walking of biped robots is achieved
by analyzing stability of the corresponding limit cycle using the concept of the
Poincarémap [10, 13, 34, 44, 60, 61, 64, 73, 78, 79, 81].Generally, stability analysis
of the limit cycle of the bipedal dynamicwalking is transformed into stability study of
the fixed point of the corresponding limit cycle. This fixed point is identified bymeans
of the Poincaré map. Nevertheless, because the impulsive and hybrid features of the
bipedal walking dynamics, determination of an explicit expression of the Poincaré
map is a complicated (if we can say impossible) task. Then, determination of the fixed
point of the Poincaré map and its stability analysis was found using the concept of the
shooting method and the trajectory sensitivity analysis [15, 36, 37]. Such analysis
was realized using the fundamental solution matrix and the monodromy matrix.
Because of the discontinuous behavior in the hybrid dynamics of the biped robot, a
jump (saltation) matrix was determined for the fundamental solution matrix at the
discontinuities (impacts). In Sect. 4, we revisit the investigation method for studying
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stability of the hybrid limit cycle in the impulsive hybrid nonlinear dynamics of the
(uncontrolled) passive compass-gait biped robot. The research method of the one-
periodic hybrid limit cycle was first presented. Determination of the saltation matrix
was also provided.

The passive dynamic walking has been served as an alternative point of departure
for the analysis of active dynamic walking of biped robots and hence for the design
of controller in order to avoid the use of high-gain control. Recently, we employed
the OGY approach in order to control chaos exhibited in the passive compass-gait
model [21, 22, 31] and in the semi-passive biped model with an upper body [26].
In [31], we used the hip torque as the control input in the OGY-based approach.
However, in [26], the desired torso angle was employed as the accessible control
parameter in the OGY method. In these two works, we linearized the impulsive
hybrid nonlinear dynamics of the biped model around a desired one-periodic hybrid
limit cycle. Then, we developed an analytical expression of a constrained controlled
Poincaré map, a hybrid Poincaré map. Furthermore, we determined the one-periodic
fixed point andwe stabilized it by adopting a state-feedback controller. As a result, the
unstable limit cyclewas stabilized andhence chaoswas controlled.We stress that only
the nonlinear differential equation was linearized. However, the nonlinear algebraic
equation was kept as it. It was shown that the designed OGY-based controller has
permitted to obtain an active dynamicwalking of the passive biped robotwith a small-
gain control. Hence, the OGY controller has contributed to substantially increase the
energy efficiency of the biped robots as they walk down an inclined surface.

In fact, in [21, 22, 31], the impulsive hybrid nonlinear dynamics was linearized
around a desired one-periodic hybrid limit cycle where the obtained linearized
dynamics is affine with respect to the state vector and the control input. However, in
[26], the developed linearized dynamics is affine only with respect to the state vector.
The control input was found to be incorporated within different matrices defining
the linearized dynamics. Then, two linearization methods have been introduced. The
first linearization method is used by considering from the start the control input in the
impulsive hybrid nonlinear dynamics of the passive biped robot. Thus, the nonlinear
dynamics was linearized around a point defined by both the desired state vector and
the desired control input. In contrast, the second linearization method does not take
into account the control input from the start. Then, the impulsive hybrid nonlinear
dynamics was linearized only around a desired state vector. In this chapter, we will
introduce the first linearization method for the compass-gait biped model in order to
derive the explicit expression of the hybrid Poincaré map. In addition, compared with
[21, 22, 31], we present in this chapter (Sect. 5) a new simplified analytical expres-
sion of the hybrid Poincaré map. This simplified map was obtained by linearizing
also the algebraic equation around the one-periodic fixed point of the desired one-
periodic hybrid limit cycle. Then, according to this hybrid Poincaré map, we will
design the control law by linearizing this map around its fixed point. Thus, we will
design a state-feedback control law in order to stabilize the linearized Poincaré map.
As a result, the designed control lawwill stabilize the one-periodic hybrid limit cycle
of the impulsive hybrid nonlinear dynamics of the compass-gait biped robot.
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2 Related Works

Human beings can walk in a stable and efficient manner on all kinds of terrain,
seemingly without much effort. Walking on two legs implies a strongly nonlinear
and multi-variable dynamics, a limited number of interaction of feet-ground and a
naturally unstable dynamics (the system is an inverted pendulumpivoting at the foot).
It involves also a dynamics with discrete changes (such as the impact of the heel)
and a variable configuration (alternating between swing phase and support phase). In
order to be able to reproduce the complex motion of walking, it is necessary to find
the essential elements of the locomotive system design that make the human walks
naturally and effortlessly.

In 1984, McMahon noted the similarities between the walking of the human
being and a biped toy of a child [58]. When it is set on a ramp and through an initial
push, the toy waddles on one side and the other and “walk” down the ramp. The
most remarkable point of such toy is the absence of an external source of energy; it
was driven via gravity. The toy is simple with uncontrolled walking suggested that
locomotion is fundamental to a system with links and joints and requires no external
power. In the past 20 years, several robotics laboratories throughout North America
and Europe have been working on this phenomenon.

In 1990, McGeer showed bipedal locomotion without motor with a simple biped
walker [57]. When placed on a ramp and giving a correct initial push, the biped
walks on the ramp. With each step, the biped robot gains energy through the change
in potential energy and kinetic energy at impact of the swing leg with the ground at
the end of each step. With a good combination of initial conditions and the angle of
the ramp, each successive set corresponds to the previous step and a stable passive
walking is generated. Thismode of bipedal locomotion becameknownas the “passive
dynamic walking”. The term “passive” comes from the fact that no external source
other than gravity provides energy with every step. The advantage of such passive
walking robot is its low power consumption. The term “dynamic” is linked to the
stability associated with bipedal walking.

There are two kinds of bipedalwalking, namely the staticwalking and the dynamic
walking. A static walking of a biped robot is restricted by the position of its center-
of-mass, which must be projected vertically inside the convex polygon of support.
Despite its great efficiency, static walking is very limited and is characterized by
a very slow bipedal locomotion. This will prevent the biped to reach high speeds
when moving. However, unlike the static biped walking, in a dynamic walking,
the biped robot is in total imbalance along a step. It recovers its balance when it
rests its swing leg. Then, it is again in the imbalance by lifting the other leg. This leg
transitionmechanism is reflected by the fact that the center-of-mass of the biped robot
leaves the convex polygon of support for periods during dynamic bipedal walking.
However, such periods must be strictly short and must necessarily be controlled to
avoid contingent situation of the fall of the biped.

The passive dynamic walking has been served as an alternative point of departure
for the analysis of active dynamic walking of biped robots and hence for the design
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of controller in order to avoid the use of high-gain control. The objective is therefore
intended to the design of some control structurewhich could be based on performance
of the passive dynamic walking of the biped robot such as using the passive limit
cycle for the design of the controller. Accordingly, such controller must be designed
based on the passive dynamic walking patterns of the biped robot and hence to obtain
a periodic stable walk that has something of a human walking look.

Investigation of bipedal walking is difficult because it requires a complete under-
standing of the different characteristics of the system. Because of these characteris-
tics, the biped robots belong to a general class of systems that make an interesting
topic for the theory of dynamical systems and a challenge to the control theory.
The model of dynamic walking of biped robots is qualified as an impulsive hybrid
nonlinear dynamics. Such dynamics is composed of a nonlinear differential equa-
tion modeling the swing motion of the biped robot, and also a nonlinear algebraic
equation describing the impulsive transition of the state vector at the impact phase.
Such impulsive hybrid nonlinear dynamics can show complex, strange and attractive
behaviors such as chaos and bifurcations [17, 20–25, 27–30, 32, 33, 41, 44, 48–51,
63, 67, 69, 70, 86, 89].

Themost interesting andmost important in the robotics community is to study and
design bipedal robots, and therefore control them in order to obtain patterns of stable
periodic walking. From the control point-of-view, the bipedal dynamic walking is
considered as a succession of postures of walking gaits. The biped robot must follow
this particular sequence of postures in order to achieve some movement allowing it
to move over a given walking surface. All these walking postures can be defined as
reference joint trajectories to be pursued by the joints of the biped robot. Therefore,
it is necessary to find the control law obviously allows pursuing these reference
trajectories in order to move the robot on the walking surface. The central objective
in the problem of the control of biped robots is to have a stable periodic gait with
maximum energetic efficiency.

Several methods have been designed for the identification of limit cycle walking
or the corresponding fixed point of the Poincaré map. The more investigated one is
based mainly on the fundamental solution matrix and then on the monodromymatrix
and the saltation matrix at the discontinuities [10, 13, 15, 18, 34, 36, 37, 44, 60, 61,
64, 68, 73, 78, 79, 81]. In contrast, some approximated methods have been intro-
duced in the literature (see for example [44] and references therein and the previous
cited references). Recently, we developed an analytical expression of a constrained
Poincaré map by linearizing the impulsive hybrid nonlinear dynamics of the biped
robot around the one-periodic hybrid limit cycle [26, 31]. This linearization method
was described in Sect. 5. The hybrid Poincaré map was used in order to design a
state-feedback controller to stabilize the one-periodic fixed point of the Poincaré
map and hence to stabilize the one-periodic hybrid limit cycle. However, authors in
[19, 54–56, 73–75] used the transverse linearization as a fundamental tool for analy-
sis of orbital stability of impulsive hybrid dynamics to stabilize periodic walking
motions. This tool was used especially to stabilize periodic walking motions. More-
over, authors in [13] used the finite difference method to find numerically period-one
gait cycles for simple passive walkers.
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Usually, the design and control of biped robots have been based on the standard
technologies of manipulator robots, namely solid and rigid actuators are combined
with sophisticated control algorithms such that the entire system can accurately track
the planned trajectories. We argue that this leads to unnecessarily complex walking
machines, heavy, and inefficient energy because the pursuit of an exact trajectory
is not a necessary condition for an appreciated and preferred locomotion. The key
idea is that stability does not have to be achieved in a single step of biped walking
(the trajectory control approach), as long as the movement of the bipedal walking is
stable over several steps. In other words, the movement of the biped robot must be
regarded as a cyclic movement, which only requires to be stabilized in its entirety.

Along the last two decades, many worldwide research groups have worked on
the control of dynamic walking of biped robots. Because of the complexity of the
dynamics of biped walking, the design of effective control strategies is a difficult
task. The main goal of current research on the biped control includes many pro-
posed control approaches, such as passivity based control [76, 77], robust sliding
mode control [72, 80], computed torque method [6, 71], impedance control [65],
nonlinear predictive control [8], optimal control [5, 35], speed control method with
adaptive regulation [53], Lyapunov based control [9], intuitive control [4], intel-
ligent learning control [45, 59], neural network control [43], minimalistic control
[42], anti-phase synchronization control [52], hybrid-zero-dynamics control [84],
feedback control [39, 40, 83], time-scaling control [11], input torque control [14],
discrete-time control [7, 40], PI control [82], zero-moment-point control [12], vir-
tual passive control [2], adaptive compliant control [88], landing force control [46],
energy shaping control method [38, 87], Virtual-Slope-Walking-based control [16],
0-flat-normal-form-based control [3], among others.

Recently, we used the concept of the Poincaré map in order to design a control
approach based on the OGYmethod [21, 22, 26, 31]. Such controller was developed
in order to control chaotic motions of the compass-gait biped model [31] and also
the torso-driven biped robot [26]. The design method of the OGY-based control
was achieved by linearizing the impulsive hybrid nonlinear dynamics of the biped
robot under consideration around a one-period limit cycle. Thus, we developed an
analytical expression of a controlled constrained (hybrid) Poincarémap, which found
to mimic with a reasonable error the behavior of the impulsive hybrid nonlinear
dynamics of the passive dynamic walking of the planar biped robot.

3 Impulsive Hybrid Nonlinear Dynamics of the Passive
Compass-Gait Model

3.1 The Compass-Gait Biped Robot

A schematic representation of the compass-gait biped robot is given in Fig. 1 [21, 22,
31]. The significant parameters in the dynamics description are provided in Table1.
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Fig. 1 The compass-gait biped robot model down an inclined surface of slope ϕ

Table 1 Simulation parameters for the passive compass-gait model

Symbol Description Value

a Lower leg segment 0.5m

b Upper leg segment 0.5m

m Mass of leg 5kg

m H Mass of hip 10kg

g Gravitational constant 9.8m/s2

The biped robot under consideration is composed of two identical legs, namely the
stance leg and the swing leg, and a frictionless hip. The two legs are modeled as
rigid bars without knees and feet where their masses are pinpoint. The passive walk
of the compass-gait model is constrained in the sagittal plane and is divided into a
swing phase and an impact phase. The swing phase describes the configuration when
one leg is fixed on the ground as a pivot and the other leg swings above the ground.
However, the impact phase describes the situation of the double-support of the two
legs duringwhich the swing and the stance leg are exchanged. The state configuration
of the biped robot is determined by the support angle θs , the nonsupport angle θns ,
and the corresponding angular velocities θ̇s and θ̇ns . Positive angles are computed
counterclockwise with respect to the indicated vertical lines.

The compass-gait biped robot is a non-actuated symmetric planar walker descend-
ing an inclined surface of slope ϕ using gravity as the only source of energy. Then,
its bipedal locomotion has been known as the passive dynamic walking, where their
intrinsic properties have beenwidely investigated from stability and dynamics points-
of-view. It has been known that this kind of bipedal locomotion exhibits chaos and
bifurcations as the inertial and geometrical parameters of the biped robot and as well
as the slope parameter vary.
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For stabilizating the passive cyclic motion of the compass-gait biped robot and
hence for controlling chaos, only one control input u = uH has been introduced at
the hip as shown in Fig. 1.

3.2 Impulsive Hybrid Nonlinear Dynamics

The compass-gait model consists of a nonlinear differential equation of the swing
phase and nonlinear algebraic equation of the impulsive impact phase. These two
equations form an impulsive hybrid nonlinear dynamics of the dynamic walking of
the compass-gait biped robot on the walking surface [21, 22, 31].

Let θ = [
θns θs

]T
be the vector of generalized coordinates of the compass-gait

model. Then, the impulsive hybrid nonlinear dynamics is described as follows:

J (θ)θ̈ + H(θ, θ̇) + G(θ) = Bu as long as θ ∈ Ω (1a)

{
θ+ = Reθ

−

θ̇
+ = Seθ̇

− whenever
{
θ−, θ̇

−}
∈ Γ (1b)

Ω = {
θ ∈ �2 : L1 (θ) = Cθ + 2ϕ > 0

}
(1c)

Γ = {
θ, θ̇ ∈ �2 : L1(θ) = 0 , L2(θ̇) = ∂L1(θ)

∂θ
θ̇ = Cθ̇ < 0

}
(1d)

with J is the inertia matrix, H includes Coriolis and centrifugal terms, G includes
gravity forces, B is the input matrix, Re is the renaming matrix and Se is the reset
matrix. These matrices are defined like so:

J (θ) =
[

mb2 −mlb cos(θs − θns)

−mlb cos(θs − θns) m Hl2 + m(l2 + a2)

]
, B =

[−1
1

]
,

H(θ, θ̇) =
[

mlbθ̇2s sin(θs − θns)

−mlbθ̇2ns sin(θs − θns)

]
, G(θ) = g

[
mb sin(θns)

−(m Hl + m(a + l)) sin(θs)

]
,

Re =
[
0 1

1 0

]
, and Se = Q−1

p (α) Qm(α), where

Qm(α) =
[−mab −mab + (m Hl2 + 2mal) cos(2α)

0 −mab

]
, and

Q p(α) =
[

mb(b − l cos(2α)) ml(l − b cos(2α)) + ma2 + m Hl2

mb2 −mbl cos(2α)

]
, with

l = a + b (see Table1) andα is the half-interleg angle (see Fig. 1) whereα = 1
2 (θs −

θns). Moreover, in (1c) and (1d), C = [
1 1

]
.

In (1), Ω defines the natural unilateral constraint, which corresponds to the dis-
tance between the tip of the swing leg and the ground. In other words, such unilateral
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constraint represents the situation where the swing leg is above the ground. However,
Γ defines constraints on the impact of the swing leg with the ground. The impact
occurs when the swing leg reaches the walking surface (constraint L1(θ) = 0) and
the swing leg is moving downward (constraint L2(θ̇) < 0).

The nonlinear differential equation (1a) models the motion of the biped robot
during the swing phase. However, the nonlinear algebraic equation (1b) describes
the impulsive transition in the angular positions and the angular velocities of the
two legs of the biped robot during (at) the impact phase. In (1b), subscribes + and −
denote just after and just before the impact, respectively.

We emphasize that for a entirely passive dynamic walking of the compass-gait
biped model, the control law u = uH in (1a) is zero. It will be designed next in
order to stabilize the bipedal locomotion of the biped robot. The impulsive hybrid
nonlinear dynamics (1) can be reformulated in the following state representation:

ẋ = f (x) + g(x)u as long as x ∈ Ω (2a)

x+ = h
(
x−)

whenever x− ∈ Γ (2b)

Ω = {
x ∈ �4 : L1 (x) = C1x > 0

}
(2c)

Γ = {
x ∈ �4 : L1 (x) = C1x = 0, L2 (x) = C2x < 0

}
(2d)

with x is the state vector given by x =
[
θT θ̇

T
]T

, x+ denotes the value of x

right after the impact, while x− refers to the value of x right before the impact.
Moreover, in (2c) and (2d), we have C1 = [C O1×2

]
and C2 = [O1×2 C ]

, where
O1×2 = [

0 0
]
.

The solution of the impulsive hybrid nonlinear dynamics (2) for some desired
slope parameter ϕd can be expressed in terms of flow like so:

x (t) = φ
(
t, x−

0 ,ϕd
)

(3)

where x−
0 = φ

(
t0, x−

0 ,ϕd
)
is the initial condition just before the impact phase.

4 Identification and Stability of One-Periodic Hybrid
Limit Cycle in the Impulsive Hybrid Dynamics

Our objective is to identify the one-periodic hybrid limit cycle of the passive dynamic
walking of the biped robot using first the impulsive hybrid nonlinear dynamics (2)
and to study its stability. A passive dynamics corresponds to an uncontrolled one,
i.e. for u = 0. Stability analysis of a one-periodic hybrid limit cycle will be based
on the concept of the Poincaré map, which will be described next.
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4.1 Concept of the Poincaré Map

A conventional technique for the discretization of a continuous dynamical system is
the Poincaré map. It replaces the continuous flow φ of n-dimensional system by a
(n − 1)-dimensional discrete map. A Poincaré map samples the flow φ once a time
in one direction. The Poincarémap is useful for reducing the order of the system [66].

For a n-dimensional autonomous system, the flow φ (t, x0) is defined as the
trajectory Λ. When Γ is chosen to be a (n − 1)-dimensional hyperplane such that
the trajectoryΛ intersects Γ transversely and x0 is a point ofΛ in the hyperplane Γ ,
the trajectory Λ starting from x0 encounters Γ at the point x1 = P (x0). Because of
the continuity of the flowφ (t, x0), trajectories starting fromΓ in a sufficiently small
neighborhood of x0 will also intersect Γ in the neighborhood of x1. The hyperplane
Γ is called the Poincaré section, which must be transverse to the flow φ (t, x0).
Thus, Λ and Γ define the Poincaré map P in a neighborhood U ⊂ Γ of x0 in a
neighborhood V ⊂ Γ of x1.

Figure2 showes the concept of the Poincaré map for an autonomous system. In
this figure, a trajectory Λ emanated from a state xk must meet again the Poincaré
section Γ to a next state xk+1 = P (xk) after some return time τr . In fact, the number
of successive intersections needed for the trajectory returns to its initial state x0 gives
us the period of the dynamics of the system and thus the return time τr (x0).

For example, in Fig. 2, the trajectory Λ0 returns to its initial state x0 in only one
iteration. In this case, the system response is of period 1. In general, a K -periodic
limit cycle must return to its starting point after K intersections. The successive
states of intersection of the flow φ with the Poincaré section Γ define the following
Poincaré map [66]:

xk+1 = P (xk) ≡ φ (τr (xk) , xk) (4)

Fig. 2 Illustration of the
concept of the Poincaré map
for an autonomous system



Identification, Stability and Stabilization of Limit Cycles … 269

This expression of the Poincaré map can be defined also for the impulsive hybrid
nonlinear dynamics (2) of the passive compass-gait model.

4.2 Fundamental Solution Matrix

Let consider first the uncontrolled nonlinear differential equation (2a):

ẋ (t) = f (x (t)) , x (t0) = x0 (5)

where x0 is the initial condition.
Solution of this system (5) is defined like so:

x (t) = φ (t, x0) , x0 = φ (t0, x0) (6)

Relying on (5), we can write the following expression:

φ̇ (t, x0) = f (φ (t, x0)) , φ (t0, x0) = x0 (7)

By making the derivative of (7) with respect to x0, it yields:

∂φ̇ (t, x0)

∂x0
= ∂ f (φ (t, x0))

∂x
∂φ (t, x0)

∂x0
,

∂φ (t0, x0)

∂x0
= In (8)

where In is the identity matrix.
By defining

Φ (t, x0) = ∂φ (t, x0)

∂x0
, (9)

expressions in (8) becomes:

{
Φ̇ (t, x0) = J f (x (t))Φ (t, x0)

Φ (t0, x0) = In
(10)

where J f (x (t)) is the Jacobian matrix and is given by J f (x (t)) = ∂ f (x(t))
∂x(t) .

The matrix Φ (t, x0) is called the fundamental solution matrix. It is called also
the sensitivity matrix of a periodic trajectory with respect to the initial condition x0.
More particularly, the matrix Φ (T, x0) is determined after a single period T , and is
called the monodromy matrix or the Floquet matrix.

The fundamental solution matrix can be obtained by integrating the following
system:

{
ẋ = f (x)

Φ̇(t, x0) = J f (x(t))Φ(t, x0)

x(0) = x0

Φ(t0, x0) = In
(11)
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For smooth (regular) continuous systems, the fundamental solution matrix is
obtained elegantly by integrating the system (11). However, for non-smooth (dis-
continuous) dynamical systems as the impulsive hybrid nonlinear dynamics (2),
the calculation is more complex. These discontinuities are provoked because of the
impact event. The jump (transition) in the fundamental solution matrix can be cal-
culated analytically as we will show in the sequel. In the next we will consider the
impulsive hybrid nonlinear dynamics (2a)–(2b).

4.3 Saltation Matrix

Impulsive hybrid nonlinear dynamic systems present discontinuities in the Jacobian
matrix at the transition of the state vector. The discontinuity in the Jacobian matrix
accordingly causes a discontinuity (a jump) in the fundamental solution matrix Φ.
The jumps in the fundamental solution matrix will be analytically calculated based
on [37, 62]. According to these references, the fundamental solution matrix just
after the transition Φ+ is related to the fundamental solution matrix just before the
transition Φ− using a saltation (jump) matrix S as follows:

Φ+ = S (
x+, x−)

Φ− (12)

Next, we will determine an analytical expression of this saltation matrix
S (

x+, x−)
.

We will assume that the transition of the state vector occurs at the instant τ > 0.
Then, denoting by τ+ (resp. τ−) the instant just after (resp. before) the transition, we
can note the two following notations: x+ = x

(
τ+)

and x− = x
(
τ−)

. In addition,
we will assume that the initial condition x0 belongs to the regionΩ . Wewill consider
in the following two notations: f − and f +, indicating that the vector f takes f −

just before the transition and further takes f + just after the transition.
In fact, in the subspaceΩ , and taking into account (6), solution of the correspond-

ing differential equation in (2a)–(2b) is defined in terms of flow by expression (6).
Then, relying on (6), we can derive the following relation:

dx (t)

dx0
= ∂φ (t, x0)

∂x0
+ ∂φ (t, x0)

∂t

dt

dx0
(13)

Using this last expression andconsidering the fact that ∂φ(t,x0)

∂t = ∂x(t)
∂t = f (x (t)),

we can write:
dx

(
τ−)

dx0
= Φ

(
τ−, x0

) + f
(
x

(
τ−))

τx0 (14)
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dx
(
τ+)

dx0
= Φ

(
τ+, x0

) + f
(
x

(
τ+))

τx0 (15)

with τx0 = dτ
dx0

.

In the sequel, we will consider the following notations: Φ+ = Φ
(
τ+, x0

)
, Φ− =

Φ
(
τ−, x0

)
, f + = f

(
x

(
τ+))

and f − = f
(
x

(
τ−))

. Then, the two expressions (14)
and (15) become, respectively:

dx−

dx0
= Φ− + f −τx0 (16)

dx+

dx0
= Φ+ + f +τx0 (17)

Using the algebraic equation (2b) and the first transition condition in (2d) (i.e.
L1 (x) = 0), we can deduce the following two relationships:

dx+

dx0
= ∂h

(
x−)

∂x−
dx−

dx0
(18)

dL1
(
x−)

dx0
= ∂L1

(
x−)

∂x−
dx−

dx0
= 0 (19)

According to (2), we have:
∂L1(x−)

∂x− = C1. Noting h−
x = ∂h(x−)

∂x− , and using relation
(16), these two last expressions, (18) and (19), become, respectively:

dx+

dx0
= h−

x

(
Φ− + f −τx0

)
(20)

C1
(
Φ− + f −τx0

) = 0 (21)

Taking into account the second transition condition in (2d) (i.e. L2 (x) =
∂L1(x)

∂x ẋ = C1 f < 0) and using relation (21), we can deduce the following expres-
sion:

τx0 = − C1

C1 f − Φ− (22)

Using the two relations (20) and (22), expression (17) becomes:

Φ+ =
(

h−
x −

(
h−

x f − − f +)C1

C1 f −

)
Φ− (23)
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Thus, this expression shows that there is a relationship between the fundamental
solution matrix just before the transition Φ− to that just after the transition Φ+ as
defined by equation (12). Therefore, the saltation matrix is expressed as:

S (
x+, x−) = h−

x −
(
h−

x f − − f +)C1

C1 f − (24)

Computation of the fundamental solution matrix Φ (t, x0) requires primarily a
precise knowledge of the transition instant τ and of course the saltation matrix (24).
Then, in order to calculate the fundamental solutionmatrixΦ (t, x0) for the impulsive
hybrid nonlinear dynamics (2a)–(2b), we should solve numerically the following
system:

{
ẋ = f (x)

Φ̇(t, x0) = J f (x(t))Φ(t, x0)

x (0) = x0

Φ(t0, x0) = In
if x ∈ Ω (25)

{
x+ = h(x−)

Φ+ = S (
x+, x−)

Φ− if x ∈ Γ (26)

4.4 Monodromy Matrix

The good choice of the Poincaré section is the hypersurface Γ . Emanating from the
initial state x0 (which is imposed to belong to Γ ), the return time to the Poincaré
section Γ is τr (x0). Then, for a periodic trajectory, this return time is eventually the
period of the trajectory. Hence, for a one-periodic trajectory (a one-periodic hybrid
limit cycle), the monodromy matrix Φ (τr (x0) , x0) is given by:

Φ (τr (x0) , x0) = S (
x+, x−)

Φ
(
τrx0

, x0
)

(27)

The eigenvalues of the monodromy matrix Φ (τr (x0) , x0) are called the Flo-
quet multipliers. Each Floquet multiplier provides a measure of the local orbital
divergence/convergence of along a particular direction over a period of the periodic
solution (the limit cycle). Floquet multipliers therefore determine the stability of the
limit cycle. The concept of a fundamental solution matrix is important in the analysis
of the stability of the periodic solutions of nonlinear dynamical systems.

4.5 Identification of a One-Periodic Hybrid Limit Cycle

Each fixed point x0 of the Poincaré map (4) corresponds to a point (state) of a limit
cycle of a given dynamical system. A limit cycle corresponds to a fixed point in the
Poincare section. Thus, identification of a limit cycle lies in the determination of the
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fixed point x0 of the Poincaré map. The Poincaré section is also the hypersurface Γ

defined in (2d).
Bu referring to (4) and in order to determine the initial condition x0 of a one-

periodic hybrid limit cycle, we must solve the following equation:

F (x0) = φ (τr (x0), x0) − x0 = 0 (28)

with τr (x0) is the return time of the flow φ to the Poincaré section Γ emanating
from x0 and returning to Γ after a complete cycle, which is composed of only one
intersection with Γ . Thus, x0 ∈ Γ and φ (τr (x0), x0) ∈ Γ .

To find the zeros of the relation in (28), we usually choose x0, then we iterate the
Poincaré map only one time to get the flow φ (τr (x0), x0), and finally we iterate the
Newton–Raphson scheme [66] like so:

xi+1
0 = xi

0 − (DF (
xi
0

))−1 F (
xi
0

)
(29)

withDF is the Jacobian matrix of the function F .
According to expression (28), it follows that:

DF (x0) = dφ (τr (x0), x0)

dx0
− I (30)

In (30), the first right term is equal to:

dφ (τr (x0), x0)

dx0
= ∂φ (τr (x0), x0)

∂x0
+ ∂φ (τr (x0), x0)

∂τr (x0)

dτr (x0)

dx0
(31)

Relying on expression (9), it holds that: ∂φ(τr (x0),x0)

∂x0
= Φ (τr (x0), x0). In fact,

Φ is the fundamental solution matrix, and the matrix Φ (τr (x0) , x0) is the mon-
odromy matrix evaluated at the return time τr (x0). Moreover, we emphasize that:
∂φ(τr (x0),x0)

∂τr (x0)
= f (x (τr (x0))). Then, expression (31) becomes:

dφ (τr (x0), x0)

dx0
= Φ (τr (x0), x0) + f (x (τr (x0)))

dτr (x0)

dx0
(32)

In (32), only the term dτr (x0)

dx0
is unknown. To calculate it, we must consider the

Poincaré section (2d). Therefore, we can note the following two conditions:

L1 (φ (τr (x0), x0)) = C1φ (τr (x0), x0) + 2ϕ = 0 (33a)

L2 (φ (τr (x0), x0)) = C2φ (τr (x0), x0) = C1 f (φ (τr (x0), x0)) < 0 (33b)
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Using relation (33a), we obtain:

dL1 (φ (τr (x0), x0))

dx0
= ∂L1 (φ (τr (x0), x0))

∂x0
+ ∂L1 (φ (τr (x0), x0))

∂τr (x0)

dτr (x0)

dx0
= 0

(34)
In addition, we have:

∂L1 (φ (τr (x0), x0))

∂x0
= ∂L1 (φ (τr (x0), x0))

∂φ (τr (x0), x0)

∂φ (τr (x0), x0)

∂x0
(35)

∂L1 (φ (τr (x0), x0))

∂τr (x0)
= ∂L1 (φ (τr (x0), x0))

∂φ (τr (x0), x0)

∂φ (τr (x0), x0)

∂τr (x0)
(36)

Based on the above results, expression (34) will be rewritten like so:

C1Φ (τr (x0), x0) + C1 f (x (τr (x0)))
dτr (x0)

dx0
= 0 (37)

Using expression (37) and taking into account the inequality (33b), the quantity
dτr (x0)

dx0
is expressed by:

dτr (x0)

dx0
= −C1Φ (τr (x0), x0)

C1 f (x (τr (x0)))
(38)

Then, substituting this amount dτr (x0)

dx0
in (32), we obtain the following relation:

dφ (τr (x0), x0)

dx0
=

(
In − f (x (τr (x0)))C1

C1 f (x (τr (x0)))

)
Φ (τr (x0), x0) (39)

with In is the identity matrix of dimension (n × n).
Therefore, the function DF in (30) will be defined as follows:

DF (x0) =
(

In − f (x (τr (x0)))C1

C1 f (x (τr (x0)))

)
Φ (τr (x0), x0) − In (40)

This expression can be rewritten as:

DF (x0) =
(

In − f −C1

C1 f −

)
Φ+ − In (41)

where Φ+ is the monodromy matrix calculated just after the impact according the
previous section and hence via the saltation matrix.
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4.6 Stability of the One-Periodic Hybrid Limit Cycle

With a good estimate of the initial condition, the iterative scheme (29) will converge
to a fixed point x0 corresponding to a one-periodic hybrid limit cycle of the impulsive
hybrid nonlinear dynamics (2). This limit cycle can be stable or unstable. The stability
of the limit cycle is determined via its characteristicmultipliers, which are also known
as the Floquet multipliers [66]. The limit cycle corresponds to a fixed point x0 in the
Poincaré map. The local behavior of the Poincaré map near x0 is determined by the
linearized equation of the map P at x0 as follows:

δxk+1 = DP (x0) δxk (42)

The matrix DP is the Jacobian matrix of the Poincaré map P . Referring to
expression (4) and expression (39), we can deduce that the Jacobian matrixDP (x0)

of the PoincarémapP is related to themonodromymatrixΦ (τr (x0) , x0) as follows:

DP (x0) =
(

In − f −C1

C1 f −

)
Φ+ (43)

The characteristics multipliers mi , i = 1, . . . , n − 1, are the eigenvalues of
DP (x0) and form a subset of the Floquet multipliers, which are the eigenvalues
of the monodromy matrix Φ (τr (x0) , x0). It is shown in [66] that an eigenvalue of
this monodromy matrix is always equal to 1. The remaining eigenvalues are equal to
mi . It is shown as well as that the characteristics multipliers are independent of the
choice of the Poincaré section.

Because the characteristics multipliers mi are the eigenvalues of the Jacobian
matrix of the Poincaré map, they allow to study the stability of the one-periodic
hybrid limit cycle. In fact, there are two important cases:

1. if all the characteristics multipliers mi are inside the unit circle, that is to say
|mi | < 1, for all i = 1, . . . , (n − 1), the one-periodic hybrid limit cycle is stable.

2. while if some mi are outside the unit circle, then one-periodic hybrid limit cycle
is unstable.

5 Controller Design Based on the OGY Approach

In this section, our main objective is to design a control structure for the impulsive
hybrid nonlinear dynamics (2) of the compass-gait biped model in order to stabilize
the passive walking gaits. Thus, to accomplish this, the idea is to use the formalism
of the OGY method, which is based mainly on the linearization of the controlled
Poincaré map. Then, a mathematical expression of such Poincaré map is absolutely
needed. Then, to achieve this problem, we will linearize the impulsive hybrid non-
linear dynamics (2) around a desired unstable one-periodic hybrid limit cycle. The
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process of linearization and the determination of the analytical expression of the
controlled Poincaré map is described in the sequel. We note that this work in this
section was based on our work in [21, 22, 31]. Then, for more details about the
linearization method around a desired period-1 limit cycle, we refer readers to [21,
22, 31]. We stress that our linearization method in [21, 22, 31] is done only for
the nonlinear differential equation (2a). In this chapter, we will linearize also the
nonlinear algebraic equation (2b).

5.1 Linearization Procedure of the Impulsive Hybrid
Nonlinear Dynamics

Let Λd be the desired one-periodic hybrid limit cycle, which is defined for some
desired slopeϕd . Such limit cycle is in fact identified according to the previous section
andwhich canbe either stable or unstable. It is characterizedby its correspondingflow
xd(t) = φd (t, xd), the desired initial condition x−

d and the desired impact instant τd .
The linearization precess of the impulsive hybrid nonlinear dynamics (2) is based
mainly on the specification of n points χi , for i = 1, 2, . . . , n, of the desired flow

φd (t, xd). According to [21, 22, 31], each point is described by χi = xd

(
ti +t(i−1)

2

)
,

where

ti = i

n
τd (44)

Then, the point χi can be determined like so:

χi = xd

(
2i − 1

2n
τd

)
(45)

Then, linearization procedure around each pointχi permit us to define n submodel
Mi , for i = 1, 2, . . . , n. Each submodel Mi is defined in

[
t(i−1) ti

]
as follows:

ẋ = Ai x + Bi u + Di for t(i−1) ≤ t ≤ ti , (46)

withAi = ∂ f (x)

∂x |χi
, Bi = g

(
χi

)
, and Di = f

(
χi

) − Aiχi .
As demonstrated in [21, 22, 31], we have:

n <
τd

τd − τ
(47)

In addition, in this chapter, the algebraic equation in (2b) is linearized around the
desired one-periodic fixed point x−

d of the desired one-periodic hybrid limit cycle.
Hence, we obtain:

x+ = Mx− + N for t = τd , (48)
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withM = ∂h(x)

∂x |x−
d
and N = h

(
x−

d

) − Mx−
d .

According to [21, 22, 31] and using expression (48), the linearization procedure
of the impulsive hybrid nonlinear dynamics (2) around a one-periodic hybrid limit
cycle has permitted to deduce an impulsive hybrid linear dynamics:

{
ẋ = An x + Dn + Bnu, as long as x ∈ Ω

x+ = J 1x− + H1 + G1u whenever x− ∈ Γ
(49)

with J 1 =
(∏n−1

i=1 e
τd
n Ai

)
M, H1 =

(∏n−1
i=1 e

τd
n Ai

)
N + ∑n−1

i=1

(∏n−1
j=i+1 e

τd
n A j

)
(

e
τd
n Ai − I

)
A−1

i Di , andG1 = ∑n−1
i=1

(∏n−1
j=i+1 e

τd
n A j

) (
e

τd
n Ai − I

)
A−1

i Bi . Here

and in the sequel of this chapter I is the identity matrix of dimension 4.

5.2 Analytical Expression of the Controlled Hybrid
Poincaré Map

Let define first the following notations as in [21, 22, 31]:

• x−
k is the initial state just before the kth impact,

• τk is the impact instant,
• uk is the control law applied along the kth one-periodic hybrid limit cycle,
• x−

k+1 is the initial state just before the (k + 1)th impact.

According to the linear differential equation (49), we have derived the following
analytical expression of a controlled hybrid Poincaré map:

x−
k+1 = P (

x−
k , τk, uk

)
(50a)

{L1
(P (

x−
k , τk, uk

)) = 0
L2

(P (
x−

k , τk, uk
))

< 0
(50b)

with
P (

x−
k , τk, uk

) = J (τk) x−
k + H (τk) + G (τk) uk (51a)

L1
(P (

x−
k , τk, uk

)) = C1P
(
x−

k , τk, uk
) + 2ϕ = 0 (51b)

L2
(P (

x−
k , τk, uk

)) = C2P
(
x−

k , τk, uk
)

< 0 (51c)

where J (τk) = J 2 (τk)J 1, H (τk) = J 2 (τk)H1 + H2 (τk), and G (τk) =
J 2 (τk)G1 + G2 (τk),withJ 2 (τk) = eτkAn ,H2 (τk) = (J 2 (τk) − I)A−1

n Dn , and
G2 (τk) = (J 2 (τk) − I)A−1

n Bn .
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5.3 Computation of the One-Periodic Fixed Point
of the Hybrid Poincaré Map

Here, we look for computing the one-periodic fixed point x−∗ of the hybrid Poincaré
map (50) for a passive dynamics, i.e. uk = u∗ = 0. Then, this fixed point x−∗ and its
associated impact instant τ∗ are the solutions of the following functions:

P (
x−

∗ , τ∗
) − x−

∗ = 0 (52a)

L1
(P (

x−
∗ , τ∗

)) = 0 (52b)

L2
(P (

x−
∗ , τ∗

))
< 0 (52c)

Using expressions in (51), we can show that τ∗ is the solution of the following
two scalar constraints:

C1 (I − J (τ∗))−1 H (τ∗) + 2ϕ = 0 (53a)

C2 (I − J (τ∗))−1 H (τ∗) < 0 (53b)

Hence, the one-periodic fixed point x−∗ will be evaluated via the following expres-
sion:

x−
∗ = (I − J (τ∗))−1 H (τ∗) (54)

5.4 Linearized Hybrid Poincaré Map and Stability
of the Fixed Point

As in [21, 22, 31], we pose: Δx−
k+1 = x−

k+1 − x−∗ and Δx−
k = x−

k − x−∗ . The lin-
earized hybrid Poincaré map around the one-periodic fixed point x−∗ is expressed
like so:

Δx−
k+1 = DP x−

k

(
x−

∗ , τ∗, u∗
)
Δx−

k + DPuk

(
x−

∗ , τ∗, u∗
)

uk (55)

The state matrix DP x−
k

(
x−∗ , τ∗, u∗

)
and the input matrix DPuk

(
x−∗ , τ∗, u∗

)
in

the linearized hybrid Poincaré map (55) are defined, according to [21, 22, 31], as
follows:

DP x−
k

(
x−

k , τk, uk
) =

⎡
⎣I −

∂P(x−
k ,τk ,uk)
∂τk

C1

C2P
(
x−

k , τk, uk
)
⎤
⎦ ∂P (

x−
k , τk, uk

)
∂x−

k

(56a)
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DPuk

(
x−

k , τk, uk
) =

⎡
⎣I −

∂P(x−
k ,τk ,uk)
∂τk

C1

C2P
(
x−

k , τk, uk
)
⎤
⎦ ∂P (

x−
k , τk, uk

)
∂uk

(56b)

According to [21, 22, 31],
∂P(x−

k ,τk ,uk)
∂τk

= AnP
(
x−

k , τk, uk
) + Dn + Bnuk . Fur-

thermore, relying on expressions in (51), it follows that:
∂P(x−

k ,τk ,uk)
∂x−

k
= J (τk), and

∂P(x−
k ,τk ,uk)
∂uk

= G (τk).

It is easy to demonstrate that the state matrix DP x−
k

(
x−∗ , τ∗, u∗

)
and the input

matrix DPuk

(
x−∗ , τ∗, u∗

)
in the linearized hybrid Poincaré map (55) are described

with respect to the nominal impact instant τ∗ by:

DP x−
k
(τ∗) =

[
I − An (I − J (τ∗))−1 H (τ∗)C + DnC

CAn (I − J (τ∗))−1 H (τ∗) + CDn

]
J (τ∗) (57a)

DPuk (τ∗) =
[
I − An (I − J (τ∗))−1 H (τ∗)C + DnC

CAn (I − J (τ∗))−1 H (τ∗) + CDn

]
G (τ∗) (57b)

We emphasize that stability investigation of the one-periodic fixed point x−∗ of the
hybrid Poincaré map lies in the analysis of the eigenvalues of the Jacobian matrix
DP x−

k
(τ∗) defined by expression (57a). It is worth noting that stability of the fixed

point depends chiefly on only the impact instant τ∗. Thus, if all the eigenvalues of
DP x−

k
(τ∗) are inside the unit circle, then the fixed point x−∗ is stable. However, if

at least one eigenvalue is outside the unit circle, then the one-periodic fixed point
x−∗ is unstable. As the linearization procedure of the impulsive hybrid nonlinear
dynamics was achieved around an unstable periodic-one hybrid limit cycle, then the
one-periodic fixed point x−∗ is absolutely unstable.

5.5 Stabilization of the One-Periodic Fixed Point
of the Hybrid Poincaré Map

The stabilization problem of the one-periodic fixed point x−∗ of the hybrid Poincaré
map (50) is in fact the stabilization problem of the linearized hybrid Poincaré map
(55). As in our work in [21, 22, 31], we introduced the state-feedback controller:

uk = K (
x−

k − x−
∗
)

(58)

where K is the matrix gain.
The computation of K is subject to a solving problem of the following linear

matrix inequality [21, 22, 31]:
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[ S DP x−
k
(τ∗)S + DPuk (τ∗)R(

DP x−
k
(τ∗)S + DDPuk (τ∗)R

)T S

]
> 0 (59)

One this linear matrix inequality is solved with respect to S and R, hence the
matrix gain K is evaluated like so:

K = RS−1 (60)

6 Numerical Results on the Stabilization
of the One-Periodic Hybrid Limit Cycle

In this section, we will verify efficiency of the developed OGY-based controller (58)
for the stabilization of the one-periodic hybrid limit cycle of the impulsive hybrid
nonlinear dynamics (2). Thus, we chosen three different desired slopes ϕd = 4.8◦,
ϕd = 5.2◦ and ϕd = 7◦, for which the identified passive one-periodic hybrid limit
cycle of the compass-gait biped robot is unstable [25, 30]. Indeed, for the slope
parameter ϕd = 4.8◦, the passive steady gait is two-periodic. However, the passive
gait was found to be chaotic for the second desired slope ϕd = 5.2◦. In contrast, for
ϕd = 7◦, there is no steady gait and only an unstable limit cycle is found. As a result,
the passive compass-gait biped robot falls down for any initial conditions.

For each of these three desired slopes, its corresponds a desired unstable one-
periodic hybrid limit cycle, which is characterized by the desired initial condition
just before the impact phase x−

d and the desired impact instant τd like so:

• For ϕd = 4.8◦, x−
d = [

13.4277 −23.0277 −130.6885 −102.5579
]T
, and τd =

0.7594s.
• For ϕd = 5.2◦, x−

d = [
13.5357 −23.9357 −135.9613 −105.8478

]T
, and τd =

0.7647s.
• For ϕd = 7◦, x−

d = [
13.7648 −27.7648 −156.8854 −119.2884

]T
, and τd =

0.7880 s.

These one-periodic hybrid limit cycles are found according to Sect. 4. Then, using
the linearization procedure, discussed in Sect. 5, around these identified limit cycles
for each desired slope parameter ϕd , we have computed the one-periodic fixed point
x−∗ of the hybrid Poincaré map and the associated impact instant τ∗. Moreover, we
have calculated the matrix gainK of the control law (58) by solving the linear matrix
inequality (59). As a result, we obtained:

• For ϕd = 4.8◦, x−∗ = [
13.3806 −22.9806 −131.1828 −102.4169

]T
, τd =

0.7576s, and K = [−56.2135 9.0743 1.1929 −10.2254
]
.

• For ϕd = 5.2◦, x−∗ = [
13.4855 −23.8855 −136.4149 −105.7015

]T
, τd =

0.7627s, and K = [−61.7227 11.5451 1.2807 −10.8518
]
.
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• For ϕd = 7◦, x−∗ = [
13.7018 −27.7018 −157.5949 −119.1341

]T
, τd =

0.7855s, and K = [−83.5237 22.2179 1.6010 −12.8260
]
.

It is obvious that the results obtained from the hybrid Poincaré map are nearly
identical to that obtained through the impulsive hybrid nonlinear dynamics. Then,
by applying the control law (58) to the impulsive nonlinear dynamics (2) for each

Fig. 3 Variation ofwalking step period a of the compass-gait bipedmodel under theOGYcontroller
b for the desired slope ϕd = 4.8◦
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desired slope parameterϕd and for the corresponding thematrix gainK, we obtained
the numerical results presented in Figs. 3, 4 and 5. It is clear that the passive dynamic
walking of the compass-gait biped robot is stabilized into the one-periodic behavior.

Fig. 4 Variation ofwalking step period a of the compass-gait bipedmodel under theOGYcontroller
b for the desired slope ϕd = 5.2◦
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Fig. 5 Variation ofwalking step period a of the compass-gait bipedmodel under theOGYcontroller
b for the desired slope ϕd = 7◦

7 Discussion

The compass-gait biped robot is the famous/popular prototype used in order to inves-
tigate the passive dynamic walking in human beings. This locomotion mode has
been found to be the recommended one in order to design and build biped robots
with active dynamic walking avoiding hence the use of high-gain control. The main
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idea was to use the observed demonstrations of the passive dynamic walking and its
performances. Then, the objective was to stabilize a one-period limit cycle walking
identified in the passive dynamic walking of the compass-gait model. Such hybrid
limit cycle is absolutely passive (relative to the nature of the bipedal walking). Hence,
it is necessary to stabilize the identified one-periodic hybrid limit cycle by designing
an intelligent controller.

To accomplish this objective, our control approachwas based on theOGYmethod,
which was based mainly (in this chapter) on the linearization of the impulsive hybrid
nonlinear dynamics of the compass-gait biped robot around the desired identifiedone-
period hybrid limit cycle. Moreover, our OGY-based control approach was based on
the development of a mathematical expression of a hybrid Poincaré map ans also
on its linearization around its one-periodic fixed point. The hybrid Poincaré map
designed in this work is simpler enough to be amendable to analysis and also to
control compared with the impulsive hybrid nonlinear dynamics where its limit cycle
control is a very complicated task.

Then, using the designed hybrid Poincarémap,we achieved the stabilization of the
desired one-periodic hybrid limit cycle in the impulsive hybrid nonlinear dynamics.
Such limit cycle is identified for some desired slope parameter of the walking surface
and also for fixed inertial and geometrical parameters of the compass-gait biped robot.
Thus, each slope parameter has its own control gain. Efficiency of the designed OGY
controller was observed. Indeed, the controlled passive dynamic walking of the biped
robot does not need high gains. The controller was found to reach a very small value.
Accordingly, this reveals the fact that our stabilization strategy of the one-periodic
hybrid limit cycle based on the OGY approach has increased the energy efficiency
of the bipedal locomotion.

We emphasize that, for our control approach, as the slope parameter changes, we
calculated the new gain of the OGY-based controller. Hence, the main problem in our
proposed control strategy is that the controller acts on the local neighborhood of the
slope parameter. Indeed, for the same controller, the compass-gait biped can perform
a different behavior as the slope parameter varies far away the desired one. Then,
investigation of the performance of the designed OGY controller on the walking
behavior of the compass-gait biped robot is needed.

Our developed method for the stabilization of the limit cycle walking can be
applied also for other prototypes of biped robots like the planar under-actuated
compass-like biped robot with semicircular feet [1], or other passive or semi-passive
biped robots that can be found in literature, see for example [44].

8 Conclusion

In this work, a mathematical model of the passive dynamic walking of the compass-
gait biped robot as it goes down an inclined surface was proposed. This walking
dynamics of such biped robot is described by an impulsive hybrid nonlinear dynam-
ics, which is composed of a nonlinear differential equation and a nonlinear algebraic
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equation. We revisited the mathematical/numerical method for the identification of
a one-periodic hybrid limit cycle via the impulsive hybrid nonlinear dynamics. Such
method is based on the calculation of the fundamental solution matrix and the salta-
tion matrix. A stability investigation of the hybrid limit cycle has provided also.
Based on this method, a OGY-based stabilization approach of this identified one-
period hybrid limit cycle was achieved. Our strategy was based firstly on the lin-
earization of the impulsive hybrid nonlinear dynamics around the desired one-period
hybrid limit cycle. Thus, the nonlinear differential equation and the nonlinear alge-
braic equation were both linearized. Hence, we developed an impulsive hybrid linear
dynamics. Our strategy of the stabilization was based secondly on the development
of an analytical expression of a hybrid (controlled constrained) Poincaré map, which
was found to mimics the characteristic of the impulsive hybrid nonlinear dynamics.
Determination of the one-periodic fixed point of the hybrid Poincaré map and its sta-
bility analysis were also realized. We showed that identification of such fixed point
and computation of the Jacobian matrix of the Poincaré map depend together on only
one variable, which is the impact instant. A linearization of the hybrid Poincaré map
around its one-period fixed point was achieved. Then, we adopted a state-feedback
controller in order to stabilize the linearized Poincaré map and accordingly in order
to stabilize the one-periodic fixed point. Application of the designed controller to
the impulsive hybrid nonlinear dynamics of he compass-gait biped model has hence
achieved the stabilization of the desired one-periodic hybrid limit cycle.
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1 Introduction and Notation

This chapter is a survey of some results from the papers [5–12] devoted to the stability
analysis of nonlinear autonomous distributed parameter systemswith delay, governed
by functional-differential equations in a Banach space with nonlinear causal map-
pings. These equations include partial differential, integro-differential and other tra-
ditional equations. Time-delaynaturally appears in various control systems.Recently,
many papers were devoted to control systems with delay and concentrated parame-
ters governed by ordinary differential equations with delay. It should be noted that
the stability analysis of systems with distributed parameters, described by partial
differential equations (PDEs) with delay is essentially more complicated and these
systems are investigated considerably less than the concentrated parameter systems.
As it was shown in [2, 20, 22] in the case of systems with distributed parameters,
arbitrarily small delays in the feedback may destabilize the system.

The basic method for the stability analysis is the second Lyapunov method
extended to time-delay equations in a Banach space, cf. [26]. By that method many
very strong results were obtained. In particular, various concrete classes of nonlinear
parabolic equationswith variable delayswere investigated in [16, 18, 21, 25].Besides
delay-dependent stability tests were established. Stability and instability conditions
for delay wave equations were found in [22]. In the paper [4] the exponential stability
of linear distributed parameter systems is considered. At the same time it should be
noted that finding the Lyapunov type functionals for PDE is often connected with
serious mathematical difficulties, especially in regard to nonlinear equations. To the
contrary, the stability conditions presented in this chapter are formulated explicitly
in terms of the spectra of the operator coefficients of the equations. This fact allows
us to apply the well-known results from the spectral theory of operators. In addition,
estimates for norms of solutions are established. These estimates provide us bounds
for the regions of attraction of steady states.

Our approach is based on a combined usage of properties of operator semigroups
with estimates for fundamental solutions.

A few words about the contents. The paper consists of eight sections.
In Sect. 2 we recall some well-known results from the theory of linear differential

equations in a Banach space, which are used in the next sections.
The solvability of integral equations with causal mappings is explored in Sect. 3.
In Sect. 4 we prove the existence of mild solutions of the considered differential-

delay equations with nonlinear causal mappings in a Banach space.
The main stability results of this paper are presented Sect. 5.
In Sect. 6 we illustrate our main results in the case of a system with one discrete

delay in the linear part.
In Sect. 7 we specialize the results from Sect. 5 in the case of systems with dis-

tributed delays in linear parts.
In Sect. 8 we discuss our results.
Introduce the notations. Let Y by a Banach space with a norm ‖.‖Y and the unit

operator I . ThenC(J, Y ) denotes the space of continuousY -valued functions defined
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on a finite or infinite real segment J and equipped with the sup-norm

‖v‖C(J,Y ) = sup
t∈J

‖v(t)‖Y (v ∈ C(J, Y )).

For 1 ≤ p < ∞, L p(J, Y ) means the space of Y -valued functions with the norm

‖w‖L p(J,Y ) =
[∫

J
‖v(t)‖p

Y dt

]1/p

(v ∈ L p(J, Y )).

Denote also R+ = [0,∞) and Rη = [−η,∞) for a finite η ≥ 0.
For a linear operator A, D(A) is the domain, σ(A) is the spectrum,

β(A) := inf Re σ(A)

and λk(A) (k = 1, 2, . . .) are the eigenvalues taken with their multiplicities.
In addition, for a positive ρ ≤ ∞ we set

Ωρ(J, Y ) := {h ∈ C(J, Y ) : ‖h(t)‖Y ≤ ρ; t ∈ J }.

As usually L2(Ω) = L2(Ω, C) is the Hilbert space of complex functions defined on
a set Ω with the scalar product

(v, w) = (v, w)L2(Ω) :=
∫

Ω

v(x)w(x)dx .

2 Linear Differential Equations in a Banach Space

The statements presented in this section arewell-knownand canbe found, for instance
in [3, 23, Sect. 3.1].

Let T (t) for each t ≥ 0 be a bounded linear operator in a Banach space X . Then
T (t) is called a C0-semigroup (a strongly continuous semigroup) if

(i) T (0) = I, T (t)T (s) = T (t + s) for all t, s ≥ 0,
(ii) T (t) → T (s) as t → s for each s ≥ 0 in the sense of the strong topology.

For any C0-semigroup T (t) (t ≥ 0) there exist real numbers M ≥ 1 and α such
that

‖T (t)‖ ≤ Meαt (1)

for all t ≥ 0. A linear operator A is called the infinitesimal generator of a C0-
semigroup T (t) if it is defined by
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Au = lim
h→+0

h−1(T (h)u − u)

in the sense of the strong topology whenever the limit exists.
If A is the infinitesimal generator of a semigroup T (t), we will sometimes write

eAt instead of T (t).

Theorem 1 The generator A of a C0-semigroup T (t) is a closed operator. Let M
and α be numbers such that (1) is satisfied. Then the half-plane {λ ∈ C : Re λ > α}
is contained in the resolvent set of A and therein

(A − λI )−1 = −
∫ ∞

0
eλt T (t)dt, (2)

and the relation

‖(A − λI )−n‖ ≤ M(Re λ − α)−n (3)

is satisfied for any n = 1, 2, . . ..

Theorem 2 Let A be a densely defined closed operator. Assume that the half-plane
{λ ∈ C : Reλ > α} is contained in the resolvent set of A and that relation (3) is
satisfied for any Re λ > α, and n = 1, 2, . . .. Then A generates a C0-semigroup
T (t). Moreover, inequality (1) is valid.

A semigroup T (t) satisfying ‖T (t)‖ ≤ 1 (t ≥ 0) is called a contraction semigroup.
A semigroup T (t) is said to be exponentially stable, if inequality (1) holds with
α < 0.

Let Y be a Banach space and A be a closely-defined linear operator in Y . Consider
the Cauchy (initial value) problem

du(t)/dt = Au(t) + f (t) (0 ≤ t ≤ T ), (4)

u(0) = u0, (5)

where u0 and f are given elements of D(A) and C([0, T ], Y ), respectively. A
function u is called a solution of this initial value problem if, besides satisfying (4)
and (5) it is continuously differentiable and u(t) ∈ D(A) for each t ∈ [0, T ], and
Au ∈ C([0, T ], X).

The following result is well known (see [23, pp. 64–65]). Let A generate a C0-
semigroup eAt , u0 ∈ D(A) and f be continuously differentiable. Then the function

u(t) = eAt u0 +
∫ t

0
eA(t−s) f (s)ds

is the solution of the problem (4) and (5).
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In particular the function v(t) = eAt u0 is a solution of the homogeneous problem

dv(t)/dt = Av(t) (t ≥ 0; v(0) = u0 ∈ D(A)).

3 Equations with Causal Mappings

3.1 Causal Mappings

Recall that R+ = [0,∞) and Rη = [−η,∞). Let X (Rη, Z) be a Banach space of
functions defined on [−η,∞) with values in a Banach space Z and X (R+, Y ) be a
Banach space of functions defined on [0,∞) with values in a Banach space Y . For
example, X (Rη, Z) = C(Rη, Z) and X (R+, Y ) = L p(R+, Y ).

For all τ > 0 introduce the subspaces X ([−η, τ ], Z) of X (Rη, Z) by

X ([−η, τ ], Z) := { f ∈ X (Rη, Z) : f (t) ≡ 0, t > τ }.

Similarly

X ([0, τ ], Y ) := { f ∈ X (R+, Y ) : f (t) ≡ 0, t > τ }.

Besides, we take

‖ f ‖X ([−η,τ ],Z) = ‖ f ‖X (Rη,Z) ( f ∈ X ([−η, τ ], Z)

and

‖ f ‖X ([0,τ ],Y ) = ‖ f ‖X (R+,Y ) ( f ∈ X ([0, τ ], Y ).

Denote by Pτ (0 < τ < ∞) the projections of X (R+, Y ) onto X ([0, τ ], Y ). That is,

(Pτ v)(t) =
{

v(t) if 0 ≤ t ≤ τ,

0 if t > τ
(v ∈ X (R+, Y )).

In addition, P0 = 0, and P∞w = w.
Note that it is not always Pτ v ∈ X (R+, Y ). For example, it is possible that

Pτ v /∈ C(R+, Y ) although v ∈ C(R+, Y ).
For a w ∈ X (Rη, Z) put

wτ (t) =
{

w(t) if −η ≤ t ≤ τ,

0 if t > τ.
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Definition 3 Let ΩX ⊆ X (Rη, Z) be a closed domain containing origin. Let F
continuously map ΩX ∩ X ([−η, τ ], Z) into X ([0, τ ], Y ) for all τ > 0. In addition,
let

F0 = 0 (6)

and

Pτ Fw = Pτ Fwτ (w ∈ ΩX , τ > 0). (7)

Then F will be called a (continuous) causalmapping (operator) ofΩX into X (R+, Y ).

Note that our definition is adopted from [14]. It is slightly different from the one
accepted in [1, 19].

Example 1 Let Y = Z = C(0, 1) and ΩX = C(Rh, C(0, 1)) (h = const ≥ 0).
Consider the mapping defined by

[Fw](t, x) =
{

wm(t − h, x) if t ≥ 0,
0 if t < 0

(m > 0, 0 ≤ x ≤ 1). Since Pτ Fw(t, x) = Pτ wm(t − h, x) = 0 (t > τ) and
wτ (t, x) = 0 (t > τ) we have wτ (t − h, x) = 0 (t > τ) and Pτ wm(t − h, x) =
wm

τ (t − h, x) (0 ≤ t ≤ τ). Therefore

[Pτ Fw](t, x) = Pτ wm(t − h, x) = Pτ wm
τ (t − h, x) = [Pτ Fwτ ](t, x).

So in this case the mapping is causal.

Lemma 1 Let F be a causal mapping acting from ΩX into X (R+, Y ), and

‖Fw‖X (R+,Y ) ≤ q‖w‖X (Rη,Z) (q = const > 0; w ∈ ΩX ).

Then for all T > 0, one has ‖Fw‖X ([0,T ],Y ) ≤ q‖w‖X ([−η,T ],Z).

Proof Put

wT (t) =
{

w(t) if −η ≤ t ≤ T,

0 if t > T

and FT = PT F . According to (7), FT w = FT wT . Due to the definition of Pτ we
have ‖Pτ‖ = 1. Consequently,

‖Fw‖X ([0,T ],Y ) = ‖FT w‖X (R+,Y ) = ‖FT wT ‖X (R+,Y )

≤ ‖FwT ‖X (R+,Y ) ≤ q‖wT ‖X (Rη,Z)

= q‖w‖X ([−η,T ],Z).
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In addition, since F is continuous on X (Rη, Z), the continuity of F on X ([−η,

T ], Z) is obvious. This proves the result. �

Absolutely similarly the following result can be proved.

Lemma 2 Let F be a causal mapping acting from ΩX into X (R+, Y ), and

‖Fw − Fw1‖X (R+,Y ) ≤ q‖w − w1‖X (Rη,Z) (w, w1 ∈ ΩX ).

Then for all T > 0, one has ‖Fw − Fw1‖X ([0,T ],Y ) ≤ q‖w − w1‖X ([−η,T ],Z).

Now let

Ωρ(Rη, Z) = {w ∈ C(Rη, Z) : ‖w‖C(Rη,Z) ≤ ρ}

for a positive ρ ≤ ∞. The following condition is often used below:

‖Fw‖C(R+,Y ) ≤ q‖w‖C(Rη,Z) (w ∈ Ωρ(Rη, Z)). (8)

Example 2 Let Y = Z = C(0, 1). An example of a causal mapping satisfying (8)
is given by the expression

[Fu](t, x) =
{

ψ(u(t, x), u(t − η, x)) if t ≥ 0,
0 if 0 < t < η

where ψ : C2 → C is a continuous function, satisfying the condition

| ψ(v1, v2)| ≤ b1|v1| + b2|v2| (v1, v2 ∈ C; |v1|, |v2| ≤ ρ)

withpositive constantsb1, b2. Simple calculations show that in this example condition
(8) holds with q = b1 + b2.

Example 3 Let Y = Z = C(0, 1). Another example of a causal mapping satisfying
(8) is given by the expression

[Fu](t, x) =
∫ η

0
a(s, u(s, x))u(t − s, x)ds (t ≥ 0, 0 ≤ x ≤ 1),

where a(., .) : [0, η]×C → C is a continuous function, and satisfying the condition

|a(s, v)| ≤ c(s)|v| (v ∈ C; |v| ≤ ρ; s ∈ [0, η])

with a positive continuous function c(s). Simple calculations show that in this exam-
ple condition (8) is also holds.
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3.2 Integral Equations with Causal Mappings

Let K (t, s) be a function defined for t ≥ s ≥ 0 whose values are bounded linear
operators acting from Y into Z . Introduce the operator K̂ : C(R+, Y ) → C(R+, Z)

defined by

K̂ f (t) =
∫ t

0
K (t, s) f (s)ds (t ≥ 0, f ∈ C(R+, Y ))

assuming that it is bounded.
For given functions z(.) ∈ C(Rη, Z) and f (.) ∈ C(R+, Y ) consider the equation

u(t) = z(t) +
∫ t

0
K (t, s)[Fu + f ](s)ds = z(t) + K̂ (Fu + f )(t) (t > 0) (9)

with a causal mapping F : Ω�(Rη, Z) → C(R+, Y ) and the initial condition

u(t) = z(t) for − η ≤ t ≤ 0. (10)

It is supposed that

‖Fw − Fw1‖C(R+,Y ) ≤ q‖w − w1‖C(Rη,Z) (w, w1 ∈ Ωρ(Rη, Z)), (11)

‖K̂‖ := ‖K̂‖C(R+,Y )→C(R+,Z) <
1

q
(12)

and

‖z‖C(Rη,Z) + ‖K̂ f ‖C(R+,Z) + qρ‖K̂‖ < ρ. (13)

If ρ = ∞, then (13) is automatically fulfilled.

Lemma 3 Let conditions (11)–(13) hold. Then problem (9) and (10) has a unique
solution u(.) ∈ C(Rη, Z). Moreover,

‖u‖C(Rη,Z) ≤ ‖z‖C(Rη,Z) + ‖K̂ f ‖C(R+,Z)

1 − q‖K̂‖ . (14)

Proof From (13) it follows that‖z‖C([−η,0],Z) ≤ ρ. DefineonΩρ(Rη, Z) themapping
Φ by

Φw(t) = z(t) + K̂ (Fw + f )(t) for t ≥ 0 (w ∈ Ωρ(Rη, Z)),

and

Φw(t) = φ(t) for − η ≤ t ≤ 0.
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Making use (11), we have

‖Φw‖C(Rη,Z) ≤ ‖z‖X (Rη,Z) + ‖K̂‖q‖w‖X (Rη,Z) + l,

where l = ‖K̂ f ‖X (R+,Z).
According to (13),Φ mapsΩρ(Rη, Z) into itself. Applying the ContractionMap-

ping Theorem, we prove the existence and uniqueness. Furthermore,

‖u‖C(Rη,Z) ≤ ‖z‖C(Rη,Z) + ‖K̂‖q‖u‖C(Rη,Z) + l.

Hence, due to (12), we obtain (14). �

Remark 1 Making use Lemma1, by the Scauder principle, we can prove the solution
existence and estimate (14), provided K̂ F is compact on each finite interval and
inequalities (8), (12) and (13) hold.

4 Mild Solutions

4.1 Fundamental Solutions

Let E : C(Rη, Y ) → C(R+, Y ) be a linear operator defined by

(Ew)(t) =
∫ η

0
B(s)w(t − s)dμ(s) (w ∈ C(Rη, Y )),

where μ(s) is a nondecreasing function having a finite number of jumps and B(s) is
a bounded in Y integrable (in the Bochner-Stieltjes sense) linear operator dependent
on s. That is,

∫ η

0 ‖B(s)‖Y→Y dμ(s) < ∞. One can takemore general causal operators
than E is.

Consider the problem

v̇(t) + Sv(t) + (Ev)(t) = f (t) (t > 0), (15)

v(t) = 0 (−η ≤ t ≤ 0) (16)

where −S generates a C0-semigroup e−t S in Y , is boundedly invertible and f ∈
C(R+, Y ) is given.

Let W (t) be a function defined on Rη whose values are bounded linear operators
in Y , boundedly differentiable. W (t) is called the fundamental solution to (15) if it
satisfies the equation

W (t)

dt
+ (S + E)W (t) = 0 (t > 0) (17)
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and the conditions

W (t) = 0 (t < 0), and W (0) = I (18)

hold.

Lemma 4 Assume that W (t)D(S) ⊆ D(S) and W ′(t)S−1 (t ≥ 0) is bounded and
integrable. In addition, let S f (t), t ≥ 0 be bounded and integrable. Then a solution
of problem (15) and (16) can be represented as

v(t) =
∫ t

0
W (t − s) f (s)ds (t ≥ 0). (19)

Proof Since S is closed and E is bounded, we obtain

d

dt

∫ t

0
W (t − s) f (s)ds = W (t, t) f (t) +

∫ t

0

d

dt
(W (t − s)S−1)S f (s)ds

= f (t) +
∫ t

0
(S + E)W (t − s) f (s)ds

= f (t) + (S + E)

∫ t

0
W (t − s) f (s)ds,

as claimed. �

Furthermore, consider the problem

v̇1(t) + (Ev1)(t) = f (t) (t > 0), (20)

v1(t) = 0 (−η ≤ t ≤ 0). (21)

Let G(t) be the fundamental solution to (20). That is, it is a function defined for
t ≥ −η, whose values are bounded linear operators in Y , differentiable and satisfying
the equation

dG(t)

dt
+ (EG)(t) = 0 (t > 0), (22)

with the conditions

G(t) = 0 (−η ≤ t < 0) and G(0) = I. (23)

Assume that E commutes with S. Then G(t) commutes with e−t S . Differentiating
the function W1(t) = G(t)e−t S = e−t SG(t) we have

dW1(t)

dt
= e−t S dG(t)

dt
− Se−t SG(t) = −(S + E)W1(t).
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So G(t)e−t S is the fundamental solution to (15). Now the previous lemma implies.

Corollary 1 Let E commute with S. In addition, let S f (t) be bounded and inte-
grable. Then a solution of problem (15) and (16) can be represented as

v(t) =
∫ t

0
e−(t−s)SG(t − s) f (s)ds (t ≥ 0).

4.2 Existence of Mild Solutions

Let F be a causal mapping acting from Ωρ(Rη, Y ) into C(R+, Y ). Consider the
problem

u̇(t) + Su(t) + (Eu)(t) = [Fu](t) + f (t) (t > 0), (24)

u(t) = φ(t) (−η ≤ t ≤ 0) (25)

with given φ ∈ C([−η, 0], Y ) ∩ D(S). Let z(t) ∈ C(Rη, Y ) be a solution of the
linear problem

ż(t) + Sz(t) + (Ez)(t) = 0 (t > 0) and z(t) = φ(t) (−η ≤ t ≤ 0). (26)

FollowingBrowder’s terminology cf. [17, p. 55], [24,Chap.5], according toLemma4
a continuous function u(t) : Rη → Y satisfying

u(t) = z(t) +
∫ t

0
W (t − s)((Fu)(s) + f (s))ds (t ≥ 0), (27)

and (25) will be called a mild solution to problem (24) and (25).
It is again supposed that the condition

‖Fw − Fw1‖C(R+,Y ) ≤ q‖w − w1‖C(Rη,Y ) (w, w1 ∈ Ωρ(Rη, Y )) (28)

holds. Introduce the operator Ŵ : C(R+, Y ) → C(R+, Y ) by

Ŵ f (t) =
∫ t

0
W (t − s) f (s)ds (t ≥ 0, f ∈ C(R+, Y ))

Due to Lemma3 we get

Theorem 4 Assume that the conditions (28),
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‖Ŵ‖ := ‖Ŵ‖C(R+,Y )→C(R+,Y ) <
1

q
(29)

and

‖z‖C(Rη,Y ) + ‖Ŵ f ‖C(R+,Y ) + qρ‖Ŵ‖ < ρ (30)

hold. Then problem (24) and (25) has a unique (mild) solution u ∈ C(Rη, Y ) and

‖u‖C(Rη,Y ) ≤ ‖z‖C(Rη,Y ) + ‖Ŵ f ‖C(R+,Y )

1 − q‖Ŵ‖ .

Now assume that E commutes with S. So W (t) = e−St G(t). Then

‖Ŵ‖ ≤ ω(S, G) where ω(S, G) :=
∫ ∞

0
‖e−sSG(s)‖Y→Y ds,

provided the integral converges. Due to the previous theorem we arrive at

Corollary 2 Suppose E commutes with S and the conditions (28),

ω(S, G) <
1

q
(31)

and

‖z‖C(Rη,Y ) + ω(S, G)‖ f ‖C(R+,Y ) + qρω(S, G) < ρ. (32)

hold. Then problem (24) and (25) has a unique solution u and

‖u‖C(Rη,Y ) ≤ ‖z‖C(Rη,Y ) + ω(S, G)‖ f ‖C(R+,Y )

1 − qω(S, G)
.

About variousmethods enabling us to receive existence results for evolution equa-
tions see [24] and references therein.

In the sequel the existence and uniqueness of solutions is assumed.

5 The Main Results

Consider the equation

u̇(t) + Su(t) + (Eu)(t) = [Fu](t) (t > 0) (33)
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with an initial function φ ∈ C([−η, 0], Y )) ∩ D(S). F is a causal mapping acting
from Ωρ(Rη, Y ) into C(R+, Y ). According to the definition of causal mappings one
has F0 = 0.

The zero solution of (33) is said to be stable (in the Lyapunov sense) if for any
ε > 0 there is δ > 0, such that the condition ‖φ‖C([−η,0],Y ) ≤ δ implies the inequality
‖u‖X (Rη,Y ) ≤ ε for any (mild) solution u(t) of (33).

The zero solution of (33) is asymptotically stable, if it is stable and there is a
δ0 > 0, such that the condition ‖φ‖C([−η,0],Y ) ≤ δ0 implies u(t) → 0 as t → ∞. If
δ0 = ∞, then the zero solution is globally asymptotically stable.

Furthermore, the zero solution of (33) is said to be exponentially stable, if there
are constants m0 ≥ 1, δ0 > 0 and α > 0, such that ‖u(t)‖Y ≤ m0e−αt (t ≥ 0),
provided ‖φ‖C([−η,0],Y ) ≤ δ0. It is globally exponentially stable if δ0 = ∞.

From Theorem4 we get

Theorem 5 Suppose the conditions

‖Fw‖C(R+,Y ) ≤ q‖w‖C(Rη,Y ) (w ∈ Ωρ(Rη, Y )) (34)

and

q‖Ŵ‖ < 1

hold. Then the zero solution of (33) is stable. Moreover, any solution of (33) satisfies
the inequality

‖u‖C(Rη,Y ) ≤ ‖z‖C(Rη,Y )

1 − q‖Ŵ‖ ≤ ρ.

provided the solution z(t) of (26) satisfies the inequality

‖z‖C(Rη,Y ) < ρ(1 − q‖Ŵ‖).

If, the condition

etε[Fe−tεw](t) → [Fw](t) as ε → 0 (w ∈ C(Rd , Y ))

holds uniformly in t in the strong topology, thenwewill say that F has the ε-property.
The mappings in the above presented examples have the ε-property.

Theorem 6 Under the hypothesis of Theorem5, let F have the ε-property. Then the
zero solution of (33) is exponentially stable. Moreover, it is globally exponentially
stable if (34) holds with ρ = ∞.

Proof Substitute

u(t) = uεe−εt (ε > 0) (35)
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into (33). We have

u̇ε(t) − εuε(t) = etε[−Se−tεuε(t) − (Ee−tεuε)(t) + (Fe−tεuε)(t)] (t > 0). (36)

Taking ε sufficiently small and applying Theorem5, we can assert that the zero
solution of the latter equation is stable. Now (35) implies the result. �

Corollary2 and Theorems5 and 6 imply.

Corollary 3 Suppose E commutes with S, and the conditions (34) and qω(S, G) <

1 hold. Then the zero solution of (33) is stable. If, in addition, F has the ε-property,
then the zero solution of (33) is exponentially stable. It is globally exponentially
stable, if (34) holds with ρ = ∞.

Definition 7 If the condition

lim‖w‖C(Rη,Y )→0

‖Fw‖C(R+,Y )

‖w‖C(Rη,Y )

= 0

holds, then Eq. (33) will be called a quasilinear equation.

Theorem 8 (Stability in the linear approximation) Let ‖Ŵ‖ < ∞ and Eq. (33)
be quasilinear. Then the zero solution to (33) is stable. If, in addition, F has the
ε-property, then the zero solution to (33) is exponentially stable.

Proof From (36) it follows that for any ρ > 0, there is a q > 0, such that (34) holds,
and q = q(ρ) → 0 as ρ → 0. Take ρ in such a way that the condition q‖Ŵ‖ < 1
is fulfilled. Now the required result is due the to Theorems5 and 6. �

Corollary 4 Suppose E commutes with S, ω(S, G) < ∞ and Eq. (33) is quasilinear.
Then the zero solution to (33) is stable. If, in addition, F has the ε-property, then the
zero solution of (33) is exponentially stable.

Let e−St be an exponentially stable C0-semigroup in Y :

‖e−St‖Y ≤ Me−βt (β > 0, t ≥ 0).

Then

ω(S, G) =
∫ ∞

0
‖e−sSG(s)‖Y→Y ds ≤ M

∫ ∞

0
e−sβ‖G(s)‖Y→Y ds (37)

Hence we get

Corollary 5 Suppose E commutes with S and Eq. (33) is quasilinear. If, in addition,
one of the following conditions holds:

(a) e−St is exponentially stable and G(t) is bounded on [0,∞);
(b) e−St is bounded on [0,∞) and (20) is exponentially stable.
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Then the zero solution to (33) is stable.
If, in addition, F has the ε-property, then the zero solution of (33) is exponentially

stable.

Finally, let Y be densely imbedded into a Hilbert space H with a scalar product
(., .) and the imbedding constant γ (Y, H): ‖ f ‖H ≤ γ (Y, H)‖ f ‖Y . Let S be a normal
operator in H with an isolated spectrum:

S =
∞∑

k=1

λk(S)Pk, (38)

where Pk = (., ek)ek are the eigen-projections with orthogonal eigenfunctions ek ,
such that (ek, ek) = 1. Then

e−t S =
∞∑

k=1

e−λk (S)t Pk .

Assume that ak := −Re λk(S) > 0 and the integrals and series considered in this
section converge. Then by the Schwarz inequality

‖e−t S f ‖2Y = ‖
∞∑

k=1

e−λk (S)t ( f, ek)ek‖2Y ≤ m2
Y

∞∑
k=1

e−2ak (S)t
∞∑

k=1

|( f, ek)|2

≤ m2
Y

∞∑
k=1

e−2ak (S)t‖ f ‖2H ,

where mY = supk ‖ek‖Y , provided the supremum is finite. So

‖e−t S‖Y→Y ≤ mY γ (Y, H)

( ∞∑
k=1

e−2ak (S)t

)1/2

. (39)

Hence,

(∫ ∞

0
‖e−t S‖2Y→Y dt

)1/2

≤ mY γ (Y, H)

( ∞∑
k=1

1

2ak

)1/2

(40)

and by the Schwaz inequality,

∫ ∞

0
‖e−t SG(t)‖Y→Y dt ≤ mY γ (Y, H)

(∫ ∞

0
‖G(t)‖2Y→Y dt

)1/2
( ∞∑

k=1

1

2ak

)1/2

.

(41)
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In addition from (39) it follows

‖e−t SG(t)‖2Y→Y ≤ γ 2(Y, H)m2
Y

∞∑
k=1

e−2ak t‖G(t)‖2Y→Y

≤ m2
Y γ 2(Y, H)

( ∞∑
k=1

e−ak t‖G(t)‖Y→Y

)2

and therefore

∫ ∞

0
‖e−t SG(t)‖Y→Y dt ≤ mY γ (Y, H)

∞∑
k=1

∫ ∞

0
‖e−tak G(t)‖Y→Y dt. (42)

6 Stability of a System with One Discrete Delay in the
Linear Part

6.1 Equations with Positive Fundamental Solutions

Again F is a causal mapping acting from Ωρ(Rη, Y ) into C(R+, Y ). Recall that

ω(S, G) =
∫ ∞

0
‖e−sSG(s)‖Y→Y ds.

Consider the equation

u̇(t) + Su(t) + bu(t − h) = [Fu](t) (t > 0), (43)

where b and h are positive constants.
So Eu(t) = bu(t − h) and G(t) = k(t)I , where k(t) is a fundamental solution

of the scalar equation.

v̇(t) + bv(t − h) = 0 (t > 0). (44)

Assume that

‖e−St‖ ≤ m0e−at (t ≥ 0; a ≥ 0) (45)

and

ebh < 1. (46)
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Then k(t) ≥ 0 and (44) is exponentially stable, cf. [13, Lemma11.4.1]. So we have

ω(S, G) ≤ m0

∫ ∞

0
k(t)e−at dt.

Recall that k(.) is a solution of (44), k(0) = 1 and k(t) = 0 (t < 0); then with a > 0,
integrating by parts, we have

∫ ∞

0
k(t)e−at dt − 1

a
= 1

a

∫ ∞

0
k ′(t)e−at dt = −b

a

∫ ∞

0
k(t − h)e−at dt

= −b

a
e−ah

∫ ∞

0
k(t − h)e−a(t−h)dt

= b

a
e−ah

∫ ∞

−h
k(t − h)e−a(t−h)dt

= −b

a
e−ah

∫ ∞

0
k(t)e−at dt.

Hence

∫ ∞

0
k(t)e−at dt = 1

a

(
1 + b

a
e−ah

)−1

= 1

a + be−ah
(a > 0). (47)

Hence (see also Lemma4.6.5 from [13]), we have

∫ ∞

0
k(t)dt = 1

b
,

and consequently,

ω(S, G) ≤ m0

a + be−ah
(a ≥ 0).

Now Corollary3 yields

Corollary 6 Suppose the conditions (45) and (46),

‖Fw‖C(R+,Y ) ≤ q‖w‖C(Rη,Y ) (w ∈ Ωρ(Rη, Y )) (48)

and

qm0 < a + be−ah

hold. Then the zero solution to (43) is stable in Lyapunov’s sense. If, in addition,
F has the ε-property, then the zero solution is exponentially stable. Moreover, it is
globally exponentially stable, provided (48) holds with ρ = ∞.
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Let Y be densely imbedded into a Hilbert space H and S be a normal operator in
H with an isolated spectrum. Due to (42), the equality G(s) = k(s)I and positivity
of k(t) we get

ω(S, G) ≤ mY γ (Y, H)

∞∑
k=1

∫ ∞

0
e−tak k(t)dt

provided ak = −Re λk(S) > 0. Now (47) implies

ω(S, G) ≤ mY γ (Y, H)

∞∑
k=1

∫ ∞

0
e−ak sk(s)ds.

≤ mY γ (Y, H)

∞∑
k=1

1

ak + be−ak h
,

provided the series converges. Making use Corollary3, we arrive at

Corollary 7 Let Y be densely imbedded into a Hilbert space H and S be a normal
operator in H with an isolated spectrum. Suppose the conditions (45), (46), (48) and

qmY γ (Y, H)

∞∑
k=1

1

ak + be−ak h
< 1

hold. Then the zero solution to (43) is stable in Lyapunov’s sense. If, in addition, F
has the ε-property, then the zero solution is exponentially stable. In particular, it is
globally exponentially stable, provided if (48) holds with ρ = ∞.

Example 4 In space C(0, 1) of the continuous functions defined on [0, 1] consider
the equation

∂u(t, x)

∂t
= ∂2u(t, x)

∂x2
+ cu(t, x) + bu(t − h, x) + (Fu)(x, t) (0 < x < 1, t > 0)

(49)
with a real constant c < π and the Dirichlet boundary conditions

u(t, 0) = u(t, 1) = 0 (t > 0). (50)

Take Sv = −d2v/dx2 − cv (v ∈ D(S)). Besides, D(S) is the closure of the set

{v ∈ C(0, 1) : d2v/dx2 ∈ C(0, 1); v(0) = v(1) = 0}.

This operator is selfadjoint in L2(0, 1) with λk(S) = π2k2 − c > 0 and

(Pkv)(x) =
∫ 1

0
v(s)ek(s)ds ek(x), where ek(x) = √

2 sin(πx) (k = 1, 2, . . .).
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So mY = √
2. Since ∫ 1

0
| f (x)|2dx ≤ sup

x
| f (x)|2,

the imbedding constant is 1. Therefore,

∫ ∞

0
‖e−sSG(s)‖C(0,1)→C(0,1)ds ≤ √

2
∞∑

k=1

1

π2k2 − c + be−π2k2+c
.

Thus we can apply the previous corollary. For example, take

(Fu)(x, t) = d1ed2 u(x,t)u(t − h) (d1, d2 = const ≥ 0). (51)

Hence, it follows that (48) holds with q = q(ρ) = d1ed2ρ . Suppose the relation (51)
and

d1
√
2

∞∑
k=1

1

π2k2 − c + be−(π2k2−c)h
< 1, (52)

then there is a constant ρ > 0, such that

d1
√
2ed2ρ

∞∑
k=1

1

π2k2 − c + be−(π2k2−c)h
< 1.

Thus byCorollary7 the zero solution to (49) and (50) is exponentially stable, provided
conditions (51) and (52) are fulfilled.

Furthermore, instead of (51) take

(Fu)(x, t) = d1 cos(u(x, t)) u(t − h). (53)

Then (48) holds with ρ = ∞ and q = d1. In this case the zero solution to (49) is
globally exponentially stable, provided (52) holds.

Example 5 Consider Eq. (49)with c = 0, the boundary conditions (50),Y = C(0, 1)
and F satisfying (48).

Take Sv = −d2v/dx2 with the domain as in the previous example. This operator is
dissipative [3, p. 88] and therefore generates a contracting semigroup: ‖e−St‖ ≤ 1.
As it was above mentioned

∫ ∞
0 k(t)dt = 1/b. Now Corollary6 implies that the

considered equation under condition (46) is stable, provided

q
∫ ∞

0
k(t)dt = q

b
< 1. (54)
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Example 6 Consider Eq. (49) with c = 0, Y = C(0, 1), F satisfying (48) and the
Neumann boundary conditions:

∂u(t, 0)

∂x
= ∂u(t, 1)

∂x
= 0 (t > 0). (55)

Take Sv = −d2v/dx2 (v ∈ D(S)). Besides, D(S) is the closure of the set

{v ∈ C(0, 1) : d2v/dx2 ∈ C(0, 1); v′(0) = v′(1) = 0}.

This operator generates a semigroup satisfying: ‖e−St‖ = 1 [3, p. 75 and p. 87] .
Now Corollary6 implies that the considered equation under conditions (46), (54)
and (55) is stable.

6.2 Equations with Non-positive Fundamental Solutions

Again consider Eq. (43) assuming now that instead of (46) the condition

bh < π/4 (56)

holds. Then due to Lemma4.7.1 from [13],

‖k‖L2(R+) ≤
√

2

τ(b, h)

(
b

τ(b, h)
+ 1

)

where τ(b, h) = in fs |is + be−ish |. By Lemma4.6.4 [13] τ(b, h) ≥ bcos(2bh).
Thus,

‖k‖L2(R+) ≤ w(b, h) := 1

cos(2bh)

√
2(cos(2bh) + 1)/b. (57)

Under condition (45), the Cauchy inequality implies

ω(G, S) ≤ ‖e−St‖L2(R+,Y )w(b, h) ≤ m0√
2a

w(b, h).

Now Corollary3 yields

Corollary 8 Suppose the conditions (45), (48), (56) and

qm0w(b, h) <
√
2a
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hold. Then the zero solution to (43) is stable in Lyapunov’s sense. If, in addition,
F has the ε-property, then the zero solution is exponentially stable. Moreover, it is
globally exponentially stable, provided (48) holds with ρ = ∞.

Let Y be densely imbedded into a Hilbert space H and S be a normal operator in
H with an isolated spectrum. Due to (40) and (57) and the equality G(s) = k(s)I
we get

ω(S, G) =
∫ ∞

0
‖e−t SG(t)‖Y→Y dt ≤ mY γ (Y, H)w(b, h)

( ∞∑
k=1

1

2ak

)1/2

.

Now Corollary3 implies

Corollary 9 Let Y be densely imbedded into H and S be a normal operator in H
with an isolated spectrum. Then the zero solution to (43) is stable in Lyapunov’s
sense, provided.

qmY γ (Y, H)w(b, h)

( ∞∑
k=1

1

2ak

)1/2

< 1. (58)

If, in addition, F has the ε-property, then the zero solution is exponentially stable.
In particular, it is globally exponentially stable, provided ρ = ∞ in (48).

Example 7 Consider Eq. (49) with the boundary condition (50) and condition (55).

Define S as in Example4. Then as it was pointed in that example γ (Y, H) =
γ (C, L2) = 1, mY = √

2 and λk(S) = π2k2 − c. Now we can directly apply
inequality (58).

Furthermore, due to Lemma4.4.10 [13],

‖k‖L1(R+) ≤ ‖k‖L2(R+)

√
π(1 + bh)/τ(b, h) ≤ ζ(b, h),

where

ζ(b, h) = w(b, h)
√

π(1 + bh)/bcos(2bh)

= 1

bcos3/2(2bh)

√
2π(1 + bh)(cos(2bh) + 1)

≤ 2

b cos3/2(2bh)

√
π(1 + bh).

Now Corollary3 implies.

Corollary 10 Suppose the conditions (45), (48), (56) and

qm0ζ(b, h) < 1
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hold. Then the zero solution to (43) is stable in Lyapunov’s sense. If, in addition,
F has the ε-property, then the zero solution is exponentially stable. Moreover, it is
globally exponentially stable, provided (48) holds with ρ = ∞.

Suppose now that (43) is quasilinear and

hb <
π

2
. (59)

Then Eq. (44) is exponentially stable, cf. [15, Appendix1]. Thus the zero solution to
(43) is stable due to Corollary5, provided e−St is bounded.

7 Stability of Systems with Distributed Delays in Linear
Parts

Consider the equation

u̇(t) + Su(t) +
∫ η

0
u(t − s)dμ(s) = [Fu](t) (t > 0), (60)

where μ(s) is a nondecreasing function having a finite number of jumps and F is
the same as in the previous section. So Eu(t) = ∫ η

0 u(t − s)dμ and G(t) = kμ(t)I ,
where kμ(t) is the fundamental solution of the scalar equation.

v̇(t) +
∫ η

0
v(t − s)dμ = 0 (t > 0). (61)

Assume that relations (45) and

e ηvar(μ) < 1 (62)

are fulfilled. Then kμ(t) ≥ 0, and (61) is exponentially stable [13, Lemmas4.6.5 and
11.4.2]. So we have

ω(S, G) ≤ m0

∫ ∞

0
kμ(t)e−at dt,

where a and m0 are taken from (45). Recall that kμ is a solution of (61), kμ(0) = 1
and kμ(t) = 0 (t < 0); With a > 0, integrating by parts, we have
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∫ ∞

0
kμ(t)e−at dt − 1

a
= 1

a

∫ ∞

0
k ′
μ(t)e−at dt

= −1

a

∫ ∞

0

∫ η

0
kμ(t − s)dμe−at dt

= −1

a

∫ η

0
e−as

∫ ∞

0
kμ(t − s)e−a(t−s)dtdμ

= 1

a

∫ η

0
e−as

∫ ∞

−η

kμ(t − s)e−a(t−s)dtdμ

= −1

a

∫ η

0
e−asdμ

∫ ∞

0
kμ(t)e−at dt.

Hence for a > 0.

∫ ∞

0
kμ(t)e−at dt =

(
a +

∫ η

0
e−asdμ

)−1

. (63)

Letting a → 0 we get

∫ ∞

0
kμ(t)dt =

(∫ η

0
dμ

)−1

= 1

var(μ)
.

Thus (63) is valid for a ≥ 0 and

ω(S, G) ≤ m0

a + ∫ η

0 e−asdμ
(a ≥ 0).

Now Corollary3 yields

Corollary 11 Suppose the conditions (45), (48), (62) and

qm0 < a +
∫ η

0
e−asdμ (64)

hold. Then the zero solution to (60) is stable in Lyapunov’s sense. If, in addition,
F has the ε-property, then the zero solution is exponentially stable. Moreover, it is
globally exponentially stable, provided (48) holds with ρ = ∞,

Again consider Eq. (60) assuming now that instead of (62) the condition

ηvar(μ) < π/4 (65)

holds. Then due to Lemma4.7.1 [13]

‖kμ‖L2(R+) ≤
√

2

τ(μ)

(
var(μ)

τ(μ)
+ 1

)
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where τ(μ) = in fs |is + ∫ η

0 e−isτ dμ|. By Lemma4.6.2 [13],

τ(μ) ≥ τ1(μ) :=
∫ η

0
cos(2var(μ)τ)dμ(τ).

Consequently,

‖kμ‖L2(R+) ≤ w(μ) :=
√

2

τ1(μ)

(
var(μ)

τ1(μ)
+ 1

)
.

Under condition (45), the Cauchy inequality implies

ω(G, S) ≤ ‖e−St‖L2(R+,Y )w(μ) ≤ m0√
2a

w(μ),

where a and m0 are taken from (45). Now Corollary3 yields

Corollary 12 Suppose the conditions (45), (48), (65) and

qm0w(μ) <
√
2a

hold. Then the zero solution to (60) is stable in Lyapunov’s sense. If, in addition,
F has the ε-property, then the zero solution is exponentially stable. Moreover, it is
globally exponentially stable, provided (48) holds with ρ = ∞.

8 Discussion

We have derived explicit delay-dependent stability tests for autonomous nonlinear
distributed parameter systems, governed by functional differential equations in a
Banach space with nonlinear causal mappings. These equations include partial dif-
ferential, integro-differential and other traditional equations. This fact enables us to
consider various classes of distributed retarded systems from the unified point of
view.

As the examples show, the obtained stability conditions allow us to avoid the
construction of the Lyapunov type functionals.
Concluding remarks
It should be very interesting to extend our results to non-autonomous nonlinear
distributed parameter systems, especially to systems with time-variable delays.
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The Case of Bidirectionally Coupled
Nonlinear Circuits Via a Memristor

Ch.K. Volos, V.-T. Pham, S. Vaidyanathan, I.M. Kyprianidis
and I.N. Stouboulos

Abstract The realization of a physical model of memristor by HP’s researchers
revealed a number of applications in which memristor can be used. Probably the
most interesting of these, is in neuromorphic computing circuits, in which this new
element could be used as an artificial synapse. So, in this work, a first step to this
approach by studying the effect of using an HP memristor in the coupling branch of
two nonlinear circuits is made. As a circuit, the Chua’s oscillator is chosen. The two
identical circuits are coupled bidirectionally via the proposed memristor, in which
two different window functions have been used. Simulation results show an interest-
ing dynamic behavior, which, among others confirm the complete chaotic synchro-
nization achieved through the memristor, depending on system’s initial conditions,
the chosen window function and the memristor’s parameters.
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1 Introduction

The electronic circuit theory, until the beginning of seventies, has been spinning
around the three known, fundamental two-terminal circuit elements,which are known
as: resistor (R), capacitor (C) and inductor (L). These elements reflect the relations
between pairs of the four basic electrical quantities of charge (q), current (i), voltage
(v) and magnetic flux (ϕ) that mathematically can be written as:

dv = R(i)di
dq = C(v)dv
dϕ = L(i)di

(1)

However, as it can be derived from the previous equations, a relation between the
charge (q) and the flux (ϕ) is missing.

Professor Leon Chua of the University of California at Berkley, in 1971, was
the first person who defined this missing link, by introducing the fourth fundamen-
tal element based on symmetry arguments [10]. This fourth circuit element was
named Memristor (M), an acronym for memory resistor, which its existence was
conjectured due to the following missing relation between the charge (q) and the
flux (ϕ).

dϕ = M(q)dq (2)

The multiplicative term M(·) is called the memristance function. Dividing both
sides of Eq. (2) by dt one obtains:

v = M(q)i (3)

This element proved to have a very interesting behavior. As it can be shown from
Eqs. (1) and (3), if M is constant, the previous equation presents nothing else, but
the defining relation of a linear resistor (R). However, Chua has proved theoretically
that a memristor is a nonlinear element because its v-i characteristic is similar to that
of a Lissajous pattern. So, a memristor with a non-constant M describes a resistor
with a memory, more precisely a resistor which resistance depends on the amount
of charge that has passed through the device.

Another interesting feature of a memristor is its response to a sinusoidal input
(Fig. 1). The “pinched hysteresis loop current-voltage characteristic” is a fingerprint
of this newelement. So, if any element or device has a current-voltage hysteresis curve
of this kind, then it is either a memristor or a memristive device. Also, the memristor
has as a signature that the “pinched hysteresis loop” shrinks as the frequency of the
input signal is increased. The fundamentality of the memristor can also be deduced
from this figure, as it is impossible to make a network of capacitors, inductors and
resistors with a v-i behavior forming a pinched hysteresis curve [12].
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Fig. 1 A typical v-i
characteristic curves of a
memristor driven by a
sinusoidal voltage input

Summarizing, the memristor has the following properties [10]:

• Non-linear relationship between current (i) and voltage (v).
• Does not store energy.
• Similar to classical circuit elements, a system of memristors can also be described
as a single memristor.

• Behaves like a linear resistor for high frequencies as it is evident from the v-i
characteristic curve.

• Memory capacity based on different resistances produced by the memristor.
• Non-volatile memory possible if the magnetic flux and charge through the mem-
ristor have a positive relationship (M > 0).

Furthermore, in 1976 Chua introduced a more generalized class of
systems, in regard to the original definition of a memristor, which were called
“memristive systems” [12]. An nth-order current-controlled memristive one-port is
represented by

v = R(w, i, t)i

dw

dt
= f (w, i, t)

(4)

where x ∈ Rn is the n-dimensional state variable of the system.
In the same way, the nth-order voltage-controlled memristive one-port is

defined as:

i = G(w, v, t)v

dw

dt
= f (w, v, t)

(5)

After Chua’s pioneering work, only a few works appeared in the literature for a
long time since it was thought that the memristor was only a theoretical element
and it could not be realized in the laboratory. So, until recently, the memristor had
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received little attention even though a working device made from op-amps and
discrete nonlinear resistors had been built and demonstrated in the seminal paper
of Chua [10].

However, in 2008, Hewlett-Packard researchers, working at its laboratories in
Palo Alto-California, announced in Nature [32] that a physical model of memristor
has been realized. In their scheme, a memory effect is achieved in solid-state thin
film two-terminal device.

This announcement brought a revolution in various scientific fields, as many
phenomena in systems, such as in thermistors, which internal state depends on the
temperature [31], spintronic devices which resistance varies according to their spin
polarization [26] and molecules which resistance changes according to their atomic
configuration [9], could be explained now with the use of the memristor. Also, elec-
tronic circuits with memory circuit elements could simulate processes typical of
biological systems, such as learning and associative memory [27] and the adaptive
behavior of unicellular organisms [28].

Furthermore, neuromorphic computing circuits, which are designed by borrow-
ing principles of operation typical of the human (or animal) brain, can potentially
solve problems that are cumbersome (or outright intractable) by digital computa-
tion. Therefore, certain realizations of memristors can be very useful in such circuits
because of their intrinsic properties which mimic to some extent the behavior of
biological synapses. Just like a synapse, which is essentially a programmable wire
used to connect neighboring neurons, the memristor changes its resistance in varying
levels. Many research teams [8, 11, 22, 23, 36] found that memristors can simulate
synapses because electrical synaptic connections between twoneurons can seemingly
strengthen or weaken depending on when the neurons fire. Furthermore, memristors
have been used in a cellular neural network [1, 6, 18, 29], for performing a number
of applications, such as logical operations, image processing operations, complex
behaviors and higher brain functions, or in designing stateful Boolean logic gates for
the AND, OR and NOT operations [14]. Also, in many well-known nonlinear cir-
cuits, the nonlinear element has been replaced by memristors and various interesting
dynamical phenomena have been observed [3, 7, 15, 17, 19, 20, 24, 25].

So, in this direction, this chapter presents the study of the effect of using the HP
memristor in the coupling branch of two nonlinear circuits. Despite the fact that a
memristor of smooth continuous cubic function of charge (q) versus flux (ϕ) has
been used as a coupling element between coupled chaotic circuits [33, 34], it is the
first time that the specific memristor model proposed by the researchers of HP is used
for such an application. This is a very interesting approach, especially for using, in
next stage, the HP’s memristor as an artificial synapse in neuromorphic computing
circuits.

For the need of this work, the most well-known nonlinear circuit, the Chua oscil-
lator, is used. The two identical circuits are coupled bidirectionally (mutually) via the
proposed memristor, in which two different window functions have been used. The
simulation results show the achievement of complete (or full) chaotic synchroniza-
tion, when some conditions are fulfilled, depending on system’s initial conditions
and the chosen window function. The phenomenon of full chaotic synchronization,
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according to which the interaction between two identical coupled chaotic systems
leads to a perfect coincidence of their chaotic trajectories (x1(t) = x2(t), as t → ∞),
plays an important role, especially in the case of coupling via a synapse [2, 5, 30].

The rest of the chapter is organized as follows. The next section provides a brief
description of the memristor proposed by HP researchers, which consists the base
of this work. Section3 presents the mutual coupling scheme, via the proposed mem-
ristor, between two identical coupled Chua oscillators. The simulation results of
systems’ dynamic behavior are presented in details in Sect. 4. Finally, Sect. 5 out-
lines the conclusions of this research study and some thoughts for future work.

2 Structure, Properties and Formulas of HP’s Memristor

After 36 years of Chua’s hypothesis aboutmemristor, this element came into life, as it
is mentioned, when researchers of HP’s lab reported the first ever solid state version
of memristor in their famous article [32]. This memristor, is made of a titanium
dioxide layer which is located between two platinum electrodes (Fig. 2). This layer
is of the dimension of several nanometers and if an oxygen dis-bonding occurs, its
conductance will rise instantaneously. However, without doping, the layer behaves
as an isolator. The area of oxygen dis-bonding is referred to as space-charge region
and changes its dimension if an electrical field is applied. This is done by a drift
of the charge carriers. The smaller the insulating layer, the higher the conductance
of the memristor. Also, the tunnel effect plays a crucial role. Without an external
influence the extension of the space-charge region does not change.

The internal state (ω) is the extent of the space-charge region, which is restricted
in the interval [0, 1] and can be described by the equation:

ω = w

D
, 0 ≤ ω ≤ 1, ω ∈ R (6)

where (w) is the absolute extent of the space-charge region and (D) is the absolute
extent of the titanium dioxide layer. The memristance can be described by the fol-
lowing equation:

Fig. 2 Structure of TiO2
memristor, in which TiO2−x
and TiO2 layers are
sandwiched between two
platinum electrodes
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Fig. 3 The equivalent
circuit of the memristor

M(ω) = RONω + ROFF (1 − ω) (7)

where (RON ) is the resistance of themaximum conducting state and (ROFF) represents
the opposite case (Fig. 3). So, when ω = 0, R = ROFF , and when ω = 1, R = RON .
The vector containing the internal states of the memristor is one dimensional. For
this reason scalar notation is used. The state equation is:

dω

dt
= μνRON

D2
i(t) (8)

where (μv) is the oxygen vacancy mobility and i(t) is the current through the device.
By using the Eq. (6) the previous equation can be rewritten as:

dw

dt
= mnRON

D
i(t) (9)

So, the dynamics of the memristor can therefore be modeled through the time
dependence of the width (w) of the doped region. Integrating Eq. (9) with respect to
time,

w = w0 + μνRON

D
q(t) (10)

where (w0) is the initial width of the doped region at t = 0 and (q) is the amount of
charges that have passed through the device. Substituting Eqs. (6), (10) into Eq. (7)
gives:

M(q) = R0 − μνRONΔR

D2
q(t) (11)

where

R0 = RON
w0

D
+ ROFF

(
1 − w0

D

)
(12)

and ΔR = ROFF − RON . The term (R0) refers to the net resistance at t = 0 that serves
as the device’s memory. This term is associated with the memristive state, which is
essentially established through a collective contribution, i.e. it depends directly on
the amount of all charges that have flown through the device. That’s why, we can say
that the memristor has the feature to “remember” whether it is “ON” or “OFF” after
its power is turned on or off.

The model of memristor which has been presented by HP scientists, does not take
into consideration the boundary effects as the speed of the boundary between doped
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Fig. 4 The window
functions of Eq. (14)

and undoped regions get suppressed at either edge. For this reason, Joglekar and
Wolf accounted this suppression by proposing a new window function F(ω) and so
Eq. (9) is modified as [21]:

dw

dt
= η

μνRON i(t)

D
F

( w

D

)
(13)

where η = ±1 depending on the polarity of the memristor. The function F(ω) is
symmetric to ω = 1/2 and F(0) = F(1) = 0, for restricting ion drifting at the edge.
In the interval, for 0< ω < 1/2 the function F(ω) is monotonically increasing, while
for 1/2 < ω < 1 is monotonically decreasing. Also, Joglekar and Wolf defined a
parameter p to constitute a family of windows functions of the form (Fig. 4):

Fp (ω) = 1 − (2ω − 1)2p (14)

As the parameter p increases the function F(ω) becomes linear, while for p = 1 the
Eq. (13) reduces to the HP model.

In 2009, Biolek et al. proposed an alternative window function which considers
the boundary speeds of the approaching and receding from the thin film edge [4].
This function (Fig. 5) is given as:

Fp (ω) = 1 − [
ω − stp (−i)

]2p
(15)

where (p) is a positive integer, (i) is the memristor’s current, which is considered to
be positive if it increases the width of the doped layer, or ω → 1 and

stp(i) =
{
1, if i ≥ 0
0, if i < 0

(16)
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Fig. 5 The window
functions of Eq. (15)

Fig. 6 The symbol of the
memristor

In this chapter, the two different approaches of Eqs. (14) and (15) for the windows
function have been adopted for being used in the HP’s memristor model as an artifi-
cial synapse in the coupling branch between two bidirectionally coupled nonlinear
systems. In Fig. 6 the symbol of the memristor is shown.

3 The Coupling Scheme

For studying the effect of theHP’smemristor as an artificial synapse between coupled
chaotic systems, the bidirectional or mutual coupling scheme has been used. In this
coupling scheme both the coupled systems are connected and each system’s behavior
influences the dynamics of the other. This case of coupling,which is even the simplest,
is very interesting because displays many of the phenomenology that is observed in
more complex networks. The case of bidirectional or mutual coupling between two
coupled chaotic oscillators is described by the following set of differential equations:

{
ẋ1 = F(x1) + C (x2 − x1)
ẋ2 = F(x2) + C (x1 − x2)

(17)

where F(x) is a vector field in a phase space of dimension n, i.e. x ∈ Rn, and C a
symmetricmatrix of constantswhich describes the nature and strength of the coupling
between the oscillators [16].

In this work, as a nonlinear system, the Chua’s oscillator, which is structurally the
simplest and dynamically the most complex member of the Chua’s circuit family,
is chosen [13, 35]. Until now, a great number of nonlinear phenomena concerning
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Fig. 7 Mutually coupled Chua oscillators via an HP memristor

chaos theory have been discovered by using the specific circuit. This is the reason
for choosing the Chua oscillator as a nonlinear system in this work.

The dynamics of the mutually coupled Chua oscillators via an HP memristor
(Fig. 7) is described by the following set of normalized differential equations:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dx1
dτ

= C0
C1

[RON
R (y1 − x1) − f (x1)

]
dy1
dτ

= C0
C2

[
RON

R (x1 − y1) + z1 − 1
R̂(ω)

(y1 − y2)
]

dz1
dτ

= L0
L

[
−y1 − R0

RON
z1

]
dx2
dτ

= C0
C1

[RON
R (y2 − x2) − f (x2)

]
dy2
dτ

= C0
C2

[
RON

R (x2 − y2) + z2 + 1
R̂(ω)

(y1 − y2)
]

dz2
dτ

= L0
L

[
−y2 − R0

RON
z2

]
dω
dτ

= ηF (ω) 1
R̂(ω)

(y1 − y2)

(18)

where R̂ (ω) = ω + ROFF
RON

(1 − ω) and η = 1.
In system’s equations, the first three equations describe the first of the two coupled

Chua’s oscillator, while the other three describe the second one and the last one is
the state equation of the proposed memristor model.

The dimensionless form of the nonlinear function f (xi), with i = 1, 2 of the Chua’s
diode NR (Fig. 8) is given by the following equation:

f (xi) = mcxi + 0.5 (ma − mb) (|xi + 1| − |xi − 1|)
+ 0.5 (mb − mc) (|xi + E2/E1| − |xi − E2/E1|) (19)

where, ma = RGa, mb = RGb and mc = RGc, while Ga, Gb, Gc the slopes of the five
segments and E1,2 the breakpoints.
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Fig. 8 Five-segment υ-i
characteristic of the
nonlinear element NR of the
Chua oscillator

Furthermore, xi, yi, zi and ω are the normalized state variables which are given by
the following equations:

xi = υC1i

υ0
, yi = υC2i

υ0
, zi = iLi

i0
, ω = w

D
, τ = t

t0

with

υ0 = 1V, i0 = υ0

RON
, t0 = D2

μυ0
, C0 = D2

μυ0RON
, L0 = D2RON

μυ0

In this work, the following values for the HP memristor have been used: RON =
100	, D = 10nm, μ = 10−14 cm2s−1V−1. Also, the values of the identical coupled
Chua’s oscillators parameters are chosen, so that each coupled circuit demonstrates
double-scroll chaotic attractors (Fig. 9),which is a sign of generating chaotic behavior
[20]: L/L0 = 1/18, C1/C0 = 1/10 C2/C0 = 1, G = 1/R = 555µS, R0/RON = 1/140,
while the parameter (ROFF) varies. Also, Chua’s oscillator has three equilibrium
points. One of these equilibria is the origin (x, y, z) = (0, 0, 0), while the other
two are usually referred as P+, P− (Fig. 8). So, a typical trajectory of this kind of
attractor rotates “randomly” around one of these equilibrium points (P+ or P−),
getting away from it until it goes back to a point closer to the equilibrium and either
repeats the process or goes to the other equilibrium point and repeats the process
around it (Fig. 9).

4 Simulation Results

For studying the effect of the HPmemristor as a coupling element in mutual coupling
system’s dynamic behavior, the two aforementioned window functions have been
used with different values of the parameter (p), while the parameter (ROFF) varies
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Fig. 9 Projection on the x–y
plane of the double-scroll
chaotic attractor of the Chua
oscillator

from 1 to 100k	, in order to see the dynamics behavior of the coupling system.
The value of memristor’s parameters and especially of (ROFF) plays a crucial role
in the design of the physical model of the memristor. So, it is important to know
memristor’s behavior in regard to (ROFF) values. The system of differential equations
(18) has been solved numerically by using the fourth order Runge–Kutta algorithm,
while the initial conditions of the system are: (x10, y10, z10, x20, y20, z20, ω0) =
(0.8,−0.2, 0.4,−0.5, 0.1, 0.2, 0.5).

4.1 First Approach

At the beginning the window function of Eq. (14) introduced by Joklegar and Wolf,
is adopted in the memristor model. The chosen value of the parameter (p) is equal
to one (p = 1), so the window function will give a nonlinear drift model with
Fp=1(ω) = 4ω(1 – ω). Also, the resistance (ROFF) is chosen to be equal to 1k	.

As it can be shown in Fig. 10, the state variable (ω) of the memristor increases
from the initial value (ω0 = 0.5) and gradually reaches its upper limit (ω → 1)
for t1 > 1.229s. From a physical point of view, this means, that the space-charge
region (w) expands and tends to cover the entire titanium dioxide layer. So, as it
is previously mentioned, for t > t1, the state variable (ω) remains equal to one
(ω = 1) and the resistance of the maximum conducting state is R = RON . In this case,
each one of the coupled circuits starts from a chaotic double-scroll state and under
the influence of the memristor, especially for t > t1, this behavior is suppressed
into single-scroll attractors around the two different equilibrium points (Fig. 14).
Finally, after a long transition time (t > 64.738s), the system results in full chaotic
synchronization (Fig. 11 and 15), in which each of the two coupled circuits returning
again in a chaotic double-scroll state. In Figs. 12 and 13 the time-series of the signals
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Fig. 10 Time-series of the
normalized variable (ω) of
the width of the doped
region, for ROFF = 1k	 and
p = 1, using the first
approach

Fig. 11 Time-series of the
difference signal (x1 − x2),
for ROFF = 1k	 and p = 1,
using the first approach

x1 and x2 are displayed, in which the transition from a single-scroll to a double-scroll
is shown for t > 64.738s.

For ROFF = 10k	 and p = 1, the system presents the same behavior as in the
previous case, but the time in which the state variable (ω) become equal to one
has been increased significantly (t > 35.723s), as it can be shown in Fig. 16. Also,
Fig. 20 displays the single-scroll attractors of the two coupled circuits around the
two different equilibrium points. Respectively, the transient time, in order to observe
full chaotic synchronization (Fig. 21), is also increased, t2 = 275.652s, (Fig. 17). For
t > t2, each oscillator is in a double-scroll chaotic state, (Figs. 18 and 19).

Finally, for ROFF = 100k	 and p = 1, the state variable (ω) of the memristor
oscillates chaotically (Fig. 22), and the system remains always in a chaotic desyn-
chronization mode, (Figs. 23 and 26), in which each oscillator is in a double-scroll
chaotic state, (Figs. 24 and 25).
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Fig. 12 Time-series of the
signal (x1), for ROFF = 1k	
and p = 1, using the first
approach

Fig. 13 Time-series of the
signal (x2), for ROFF = 1k	
and p = 1, using the first
approach

For greater values of the parameter (p), i.e. for ROFF = 1k	 and p = 10, the
memristor has the same behavior and so the coupled system reacts with the same
way. The state variable (ω) gradually increases from the initial value (ω0 = 0.5) and
after a long time (0.218–1.249s) of oscillations around the value of ω = 0.712 the
variable ω with an almost sudden jump results to the maximum value of ω = 1, for
t > 1.389s, which is slightly greater than in the case of p = 1 (Fig. 27).

Furthermore, each one of the coupled circuits begins from a chaotic double-scroll
behavior and under the influence of the memristor, this behavior is suppressed into a
single-scroll attractors for t > 1.389s (Fig. 31). Finally, after a long transition time
(t > 28.101s), the system results in full chaotic synchronization (Figs. 28 and 32), in
which each of the two coupled circuits returns again in a chaotic double-scroll state
(Figs. 29 and 30).

For ROFF = 100k	 and p = 10, the system shows the same behavior as in the
previous case for p = 1 (Figs. 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24,
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Fig. 14 Phase portraits of
(y1,2) versus (x1,2), for t <

64.738s while ROFF = 1k	
and p = 1, using the first
approach

Fig. 15 Phase portraits of
(x2) versus (x1), for t >

64.738s while ROFF = 1k	
and p = 1, using the first
approach

25 and 26). The state variable (ω) of the memristor oscillates chaotically (Fig. 33)
without reaching the boundaries and so the system remains always in a chaotic
desynchronization mode (Fig. 34), in which each one of the coupled circuits presents
the expected behavior of double-scroll chaotic attractor (Figs. 35 and 36).

4.2 Second Approach

In the second case, the window function of Eq. (15) introduced by Biolek et al.,
has been adopted. At the beginning the parameter (p) is chosen to be equal to one
(p = 1). For various values of the resistance ROFF , the variable (ω) is likely to reach
its limits without remaining therein. This is the advantage of the use of the window
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Fig. 16 Time-series of the
normalized variable (ω) of
the width of the doped
region, for ROFF = 10k	
and p = 1, using the first
approach

Fig. 17 Time-series of the
difference signal (x1 − x2),
for ROFF = 10k	 and p = 1,
using the first approach

function of Eq. (15). So the system remains always in a chaotic desynchronization
mode. However, even in this case some interesting phenomena can be mentioned.

The aforementioned system’s behavior, for ROFF = 1k	, is displayed in Figs. 37,
38, 39 and 40. The state variable (ω) of the memristor through Sudden Jumps (SJ),
either is increased or decreased, as shown in Fig. 37. In this figure, seven such jumps
in the range of [347s, 350s] are depicted. These jumps are a consequence of the
sudden change of the equilibrium point around which each one of the variables (x1)
and (x2) of the two coupled systems oscillates (Figs. 39 and 40). As a result, the
difference signal (x1 − x2) may oscillates in a chaotic way around three levels, a
high, x1 – x2 > 0, a low, x1 – x2 < 0, and a level around x1 − x2 = 0), in which
the system switches through sudden jumps (Fig. 38). The aforementioned dynamical
behavior is confirmed by the phase portraits of y1,2 versus x1,2 of Figs. 41, 42, 43, 44,
45 and 46, for the six ranges between the sudden jumps which are shown in Fig. 37.



332 Ch.K. Volos et al.

Fig. 18 Time-series of the
signal (x1), for ROFF =
10k	 and p = 1, using the
first approach

Fig. 19 Time-series of the
signal (x2), for ROFF =
10k	 and p = 1, using the
first approach

In Figs. 47 and 48 the effect of the resistance (ROFF) in the state variable’s (ω)
behavior is shown. From this figure deducted, that when (ω) varies, the range around
its initial value reduces by increasing the (ROFF). So, for ROFF = 10k	 this range
is Δω = 0.089 (ω ∈[0.454, 0.543]) while for ROFF = 100k	 this range is Δω =
0.012 (ω ∈[0.4946, 0.5066]) significantly lower in regards to the previous one.

Finally, by increasing the value of the parameter (p) of the window function two
phenomena have been observed. Firstly, the range of variation of the state variable (ω)
is increased, (Figs. 49, 50, 51 and 52). This means that the space-charge region (w) of
the memristor tends to cover all the range (D) of the titanium dioxide layer (w = D).
Secondly, as it is previously mentioned, using this window function, the variable (ω)
reaches the upper limit (ω = 1) without remaining therein, but oscillates chaotically
around a mean value of 0.95. Also, by increasing the value of the parameter (p), the
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Fig. 20 Phase portraits of
(y1,2) versus (x1,2), for 40 s
< t < 275s while ROFF =
10k	 and p = 1, using the
first approach

Fig. 21 Phase portraits of
(x2) versus (x1), for t >

275.652s while ROFF =
10k	 and p = 1, using the
first approach

memristor remains for a longer time in this state, as it is clearly shown in Figs. 50,
51 and 52. In Figs. 53 and 54 the phase portraits of (x2) versus (x1), in the case of
ROFF = 1k	 and p = 8, for t < 308s and t > 310s, are displayed.

4.3 The Effect of Initial Conditions on System’s Behavior

In this section, the effect of initial conditions on system’s behavior by using the
two different window functions is studied. For this reason different sets of initial
conditions of coupled circuits and values of the parameter (ω) have been chosen.

In the first case, by using the first window function with p = 1 and ROFF =
1k	, only the signs of some of the initial conditions of the coupled systems have
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Fig. 22 Time-series of the
normalized variable (ω) of
the width of the doped
region, for ROFF = 100k	
and p = 1, using the first
approach

Fig. 23 Time-series of the
difference signal (x1 − x2),
for ROFF = 100k	 and
p = 1, using the first
approach

been changed, while the initial value of the parameter (ω) remains the same as in the
previous simulations, (x10, y10, z10, x20, y20, z20, ω0) = (−0.8, 0.2, 0.4, 0.5,−0.1,
0.2, 0.5). Figure55 shows the time-series of the normalized variable (ω). From the
comparison of this figure with the respective diagram of Fig. 10, one could say that
the system is driven to the same dynamical behavior (full chaotic synchronization
for ω = 1). However, for this set of initial conditions the variable (ω) presents a sig-
nificant time delay until it reaches the aforementioned final state in regard to the other
set of initial conditions, by following also a different route. Furthermore, by changing
the initial condition of (ω) in the value of 0.1, the variable approaches its lower limit
(ω → 0), remaining there for a long period of time, and after a sudden “shock”, it is
immediately driven again to the upper limit, which is the final state (Fig. 56).

In Figs. 57, 58, 59 and 60 the time-series of the variable (ω), in the second
approach, for different set of initial conditions and system’s parameters (p, ROFF)
are shown. In more detail, Figs. 57 and 58 display the variation of the variable (ω),
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Fig. 24 Time-series of the
signal (x1), for ROFF =
100k	 and p = 1, using the
first approach

Fig. 25 Time-series of the
signal (x2), for ROFF =
100k	 and p = 1, using the
first approach

for (x10, y10, z10, x20, y20, z20) = (–0.8, 0.2, 0.4, 0.5, –0.1, 0.2), while ω0 = 0.2
and ω0 = 0.8, respectively. Furthermore, the system follows the same behavior
as in the previous set of initial conditions. However, an important conclusion can
be exported. The variable (ω), independent of its initial value, oscillates chaoti-
cally around its middle value (ω = 0.5), which means that the boundary between
the doped and undoped regions inside the titanium dioxide layer oscillates chaoti-
cally around the middle point. The same conclusion can be drawn for (x10, y10, z10,
x20, y20, z20, ω0) = (–0.8, 0.2, 0.4, 0.5, –0.1, 0.2, 0.8) but for ROFF = 100k	, p = 1
from Fig. 59 and ROFF = 1k	, p = 5 from Fig. 60, with different range of variation
around the middle value of (ω) according to the conclusions of the previous section.
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Fig. 26 Phase portrait of
(x2) versus (x1), for ROFF =
100k	 and p = 1, using the
first approach

Fig. 27 Time-series of the
normalized variable (ω) of
the width of the doped
region, forROFF = 1k	 and
p = 10, using the first
approach

Fig. 28 Time-series of the
difference signal (x1 − x2),
for ROFF = 1k	 and p = 10,
using the first approach
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Fig. 29 Time-series of the
signal (x1), for ROFF = 1k	
and p = 10, using the first
approach

Fig. 30 Time-series of the
signal (x2), for ROFF = 1k	
and p = 10, using the first
approach

Fig. 31 Phase portraits of
(y1,2) versus (x1,2), for
1.389s < t < 27.8 s while
ROFF = 1k	 and p = 10,
using the first approach
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Fig. 32 Phase portraits of
(x2) versus (x1) for t >

28.101s, for ROFF = 1k	
and p = 10, using the first
approach

Fig. 33 Time-series of the
normalized variable (ω) of
the width of the doped
region, for ROFF = 100k	
and p = 10, using the first
approach

Fig. 34 Time-series of the
difference signal (x1 − x2),
for ROFF = 100k	 and
p = 10, using the first
approach
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Fig. 35 Time-series of the
signal (x1), for ROFF =
100k	 and p = 10, using
the first approach

Fig. 36 Time-series of the
signal (x2), for ROFF =
100k	 and p = 10, using
the first approach

Fig. 37 Time-series of the
normalized variable (ω) of
the width of the doped
region, for ROFF = 1k	 and
p = 1, using the second
approach
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Fig. 38 Time-series of the
difference signal (x1 − x2),
for ROFF = 1k	 and p = 1,
using the second approach

Fig. 39 Time-series of the
signal (x1), for ROFF = 1k	
and p = 1, using the second
approach

Fig. 40 Time-series of the
signal (x2), for ROFF = 1k	
and p = 1, using the second
approach
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Fig. 41 Phase portraits of
y1,2 versus x1,2 in the time
interval between (SJ-1) and
(SJ-2), for ROFF = 1k	 and
p = 1, using the second
approach

Fig. 42 Phase portraits of
y1,2 versus x1,2 in the time
interval between (SJ-2) and
(SJ-3), for ROFF = 1k	 and
p = 1, using the second
approach

Fig. 43 Phase portraits of
y1,2 versus x1,2 in the time
interval between (SJ-3) and
(SJ-4), for ROFF = 1k	 and
p = 1, using the second
approach
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Fig. 44 Phase portraits of
y1,2 versus x1,2 in the time
interval between (SJ-4) and
(SJ-5), for ROFF = 1k	 and
p = 1, using the second
approach

Fig. 45 Phase portraits of
y1,2 versus x1,2 in the time
interval between (SJ-5) and
(SJ-6) for ROFF = 1k	 and
p = 1, using the second
approach

Fig. 46 Phase portraits of
y1,2 versus x1,2 in the time
interval between (SJ-6) and
(SJ-7), for ROFF = 1k	 and
p = 1, using the second
approach
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Fig. 47 Time-series of the
normalized variable (ω) of
the width of the doped
region, for p = 1 and
ROFF = 10k	, using the
second approach

Fig. 48 Time-series of the
normalized variable (ω) of
the width of the doped
region, for p = 1 and
ROFF = 100k	, using the
second approach

Fig. 49 Time-series of the
normalized variable (ω) of
the width of the doped
region, for p = 2 and
ROFF = 1k	 using the
second approach
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Fig. 50 Time-series of the
normalized variable (ω) of
the width of the doped
region, for p = 5 and
ROFF = 1k	 using the
second approach

Fig. 51 Time-series of the
normalized variable (ω) of
the width of the doped
region, for p = 8, and
ROFF = 1k	 using the
second approach

Fig. 52 Time-series of the
normalized variable (ω) of
the width of the doped
region, for p = 10 and
ROFF = 1k	 using the
second approach
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Fig. 53 Phase portraits of
(x2) versus (x1), in the case
of p = 8, for t < 308s and
ROFF = 1k	 using the
second approach

Fig. 54 Phase portraits of
(x2) versus (x1), in the case
of p = 8, for t > 310s and
ROFF = 1k	 using the
second approach

Fig. 55 Time-series of the
normalized variable (ω) of
the width of the doped
region, with the following
sets of initial conditions:
(x10, y10, z10, x20, y20, z20,
ω0) = (−0.8, 0.2, 0.4, 0.5,
−0.1, 0.2, 0.5), for
ROFF = 1k	 and p = 1,
using the first approach
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Fig. 56 Time-series of the
normalized variable (ω) of
the width of the doped
region, with the following
sets of initial conditions:
(x10, y10, z10, x20, y20,
z20, ω0) = (−0.8, 0.2,
0.4, 0.5,−0.1, 0.2, 0.1), for
ROFF = 1k	 and p = 1,
using the first approach

Fig. 57 Time-series of the
normalized variable (ω) of
the width of the doped
region, with the following
sets of initial conditions and
parameters: (x10, y10, z10,
x20, y20, z20, ω0) =
(−0.8, 0.2, 0.4, 0.5,−0.1,
0.2, 0.2), for ROFF = 1k	
and p = 1

Fig. 58 Time-series of the
normalized variable (ω) of
the width of the doped
region, with the following
sets of initial conditions and
parameters: (x10, y10, z10,
x20, y20, z20, ω0) = (–0.8,
0.2, 0.4, 0.5, –0.1, 0.2, 0.8),
for ROFF = 1k	 and p = 1



The Case of Bidirectionally Coupled Nonlinear Circuits Via a Memristor 347

Fig. 59 Time-series of the
normalized variable (ω) of
the width of the doped
region, with the following
sets of initial conditions and
parameters: (x10, y10, z10,
x20, y20, z20, ω0) = (–0.8,
0.2, 0.4, 0.5, –0.1, 0.2, 0.8),
for ROFF = 100k	 and
p = 1

Fig. 60 Time-series of the
normalized variable (ω) of
the width of the doped
region, with the following
sets of initial conditions and
parameters: (x10, y10,
z10,x20,y20, z20, ω0) = (–0.8,
0.2, 0.4, 0.5, –0.1, 0.2, 0.8),
for ROFF = 1k	 and p = 5

5 Conclusion

In this work the case of two mutually coupled identical nonlinear systems via the
proposed HPmemristor was presented. As a nonlinear system, the most well-known,
the Chua’s oscillator, was chosen due to its properties. For studying the effect of the
HP memristor as a coupling element in mutual coupling system’s dynamic behavior,
two different window functions have been used with different values of parameter
(p), while the parameter (ROFF) of the memristor varied from 1 to 100k	, in order
to study the dynamical behavior of the coupling system.

By using the first window function, which was presented by Joglekar and Wolf,
for taking into consideration the boundary effects, the coupling system could be in
two different dynamical states, depending mainly on the values of the parameter
(ROFF). In more detail, for low values of the resistance (ROFF) the state variable (ω)
increased from its initial value and gradually reached its upper limit (ω → 1), which
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means that the space-charge region (w) was expanded and had the tension to cover the
entire titanium dioxide layer of the memristor. As a consequence the resistance of the
maximum conducting state was R = RON and after a long transition time the system
resulted in full chaotic synchronization mode. However, before the system resulted
in this state, each one of the coupled circuits had started from a chaotic double-
scroll state and under the influence of the memristor, this behavior was suppressed
into single-scroll attractors around the two circuits’ equilibrium points. For greater
values of (ROFF) the system presented the same route from chaotic desynchronization
to full chaotic synchronization. The only differencewas the significant greater time in
which the variable (ω) became equal to one. Finally, for extreme high value of (ROFF)
in regards to (RON ) the system remained always in a chaotic desynchronizationmode,
in which each one of the coupled circuits were in a double-scroll chaotic state.

In the second approach, by using the window function, which was proposed by
Biolek et al., the coupling system had not shown synchronization but many other
interesting dynamical phenomena. Firstly, for low values of (ROFF) the state variable
(ω) was increased or decreased through sudden jumps that were consequence of
the sudden change of the equilibrium point around which each one of the coupled
circuits oscillated. With the increase of the resistance (ROFF), the range of values
(Δω) in which the state variable (ω) took values, was decreasing. In contrary, with
the increase of the parameter’s (p) value the range of variation of (ω) also increased
and the space-charge region (w) had the tension to cover all the range (D) of the
memristor’s layer. Furthermore, the state variable (ω) reached the upper limit (ω = 1)
and oscillated chaotically in the region near to this value. Further increase of the value
of the parameter (p) had as a consequence the system to remain for longer time in
the aforementioned state.

Also, the initial conditions of the system could change the time duration and the
route through which the system was driven in the chaotic synchronization mode in
the first case, or the way with which the variable (ω) oscillated chaotically around
its middle value.

So, as a future work, the most extensive study of the system’s behavior regarding
its various dynamic behaviors, depending on different sets of initial conditions and
values of memristor’s parameters (p) and (ROFF), should be done. Also, the use of
the HP memristor as a coupling element, in the case of unidirectionally coupled
nonlinear circuits, could be studied next. Finally, the use of other memristor’s model
in the coupling branch between coupled nonlinear circuits may has a great research
interest, especially as an artificial synapse, because of the nature of this fourth circuit
fundamental element.
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Fuzzy Adaptive Sliding-Mode Control
Scheme for Uncertain Underactuated
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Abstract This chapter proposes a fuzzy approximation-based adaptive sliding-mode
control scheme for uncertain nonlinear perturbed underactuated systems. The under-
actuated system under study can be modeled by two subsystems. In the controller
design, a sliding surface for each subsystem is defined and adaptive fuzzy systems are
utilized to online estimate the unknown nonlinear functions. To estimate the fuzzy
system parameters, a set of adaptation laws are appropriately designed. The bound-
edness of all signals of the closed-loop system as well as the asymptotic convergence
of the underlying tracking errors to the origin are established based on a Lyapunov
analysis. The main contributions of this chapter with respect to the existing works lie
in the following: (1) The controller designed is free of model. (2) The stability analy-
sis of the corresponding closed-loop system is rigorously proven by using some mild
assumptions. (3) The uncertain interconnected terms are eliminated by appropriately
designing a novel dynamic robust compensator. The effectiveness and robustness of
the proposed adaptive fuzzy adaptive controller is illustrated through two simulation
case studies taken from the underactuated system control literature.
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1 Introduction

The control literature has shown a growing attention in study and control of
underactuated systems, which are characterized by the fact that they have fewer actu-
ators than degree of freedom to be controlled, [18, 20, 30]. These systems have very
important applications such as free-flying space robots, underwater robots, manipu-
lators with structural flexibility, and overhead crane. The underactuated systems own
some advantages which include: the decreasing of the actuators number can decrease
the cost, the volume and the weight of system.

Recently, many control techniques have been developed for underactuated non-
linear systems [13–18, 20–22, 24, 25, 27, 29, 30]. Nevertheless, a general theory
for control of these systems is not yet available. The obtained results are gener-
ally for some specific classes. In [30], an adaptive controller based on hierarchi-
cal sliding mode approach has been designed for an underactuated spherical robot.
An optimal control for underactuated nonholonomic mechanical systems has been
studied in [18]. Using incremental sliding mode approach, a robust controller has
been proposed in [15] for a class of underactuated mechanical systems with mis-
matched uncertainties. A sliding-mode control of double-pendulum crane systems
has been designed in [27]. An adaptive multiple-surface sliding controller based
on function approximation techniques (FAT) for a class of underactuated mechan-
ical systems with disturbances and mismatched uncertainties has been proposed in
[16]. A motion planning-based adaptive control method of underactuated crane sys-
tems has been investigated in [14]. A sliding-mode control based on adaptive fuzzy
systems has been developed in [20] for a class underactuated systems. The consid-
ered systems have been modeled as two subsystems, and a sliding surface has been
respectively defined for each subsystem. The fuzzy systems have been used to esti-
mate some uncertain functions. Shine et al. have designed a robust adaptive control
system to achieve a globally asymptotic stability for a class of uncertain underac-
tuated mechanical systems [25]. A direct adaptive fuzzy sliding-mode decoupling
control for a class of underactuatedmechanical systems has been developed in [22].A
stable sliding-mode controller has been designed in [29] for a class of second-order
underactuated systems. In [21], based on hierarchical sliding-mode technology, a
disturbance adaptive control for an under-actuated spherical robot has been investi-
gated. In [17], a disturbance observer-based sliding mode control has been proposed
for a class of underactuated systems. The incorporation of this disturbance observer
in the controller allows to reduce the effect of the disturbances. In [24], a hierar-
chical sliding mode control to swing up a pendubot has been designed. In [13], a
fuzzy sliding mode control for uncertain nonlinear underactuated systems has been
proposed. However, the stability analysis of the corresponding closed-loop system
is not rigorously proven.

In this chapter,motivated by the previousworksmentioned above,wewill propose
a fuzzy approximation-based adaptive sliding-mode controller for a class of uncertain
underactuated systems. In the control design, the considered underactuated system is
divided into two subsystems, and then a sliding surface is defined for each subsystem.
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The adaptive fuzzy systems are adequately incorporated in the controller to online
approximate uncertain nonlinear functions. The adaptive sliding-mode control law
is designed to derive the subsystems toward their corresponding sliding surfaces and
to achieve their desired values. The asymptotic stability of the sliding surfaces is
rigorously established and theoretically proved in Lyapunov sense.

The main contributions of this chapter with respect to the existing works [13–18,
20–22, 24, 25, 27, 29, 30] are emphasized below:

(1) A novel fuzzy adaptive sliding-mode controller for a class of underactuated
systems with the presence of both uncertain dynamics and external disturbances is
proposed.

(2) The controller designed is free of model.
(3) Unlike many previous works [13, 20, 21, 29, 30], the stability analysis of the

corresponding closed-loop system is rigorously proven using a Lyapunov approach
and with mild assumptions.

(4) The uncertain interconnected terms are eliminated by appropriately designing
a novel dynamic robust compensator.

2 System Description and Problem Formulation

Consider a class of uncertain underactuatednonlinear systemswhich canbe expressed
in the following form:

ẋ1 = x2
ẋ2 = f1 (x) + b1 (x) u + d1 (t, x)

ẋ3 = x4
ẋ4 = f2 (x) + b2 (x) u + d2 (t, x)

(1)

where x = [x1, x2, x3, x4]T ∈ �4 is the overall state vector of the system, u ∈ �
is the control input, fi (x) and bi (x), i = 1, 2, are unknown continuous nonlinear
functions. d1 (t, x) and d2 (t, x) are the external disturbances.

In the subsequent, we need the following mild assumptions, which are quite
standard in the adaptive control literature.

Assumption 1 ([10, 26]) There exists an unknown positive constants d̄i such that
|di (t, x)| ≤ d̄i , for i = 1, 2.

Assumption 2 ([10, 26]) The sign of the function bi (x) is assumed to be known.
Without loss of generality, we assume that bi (x) is strictly positive. Thus, there exists
an unknown positive constant b0i such that 0 < b0i < bi (x).

Assumption 3 The desired trajectory vector xd (t) = [
xd1 xd2 xd3 xd4

]T

[
xd1 ẋd1 xd3 ẋd3

]T ∈ �4 is supposed to be continuous, bounded and available for
measurement.
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Our objective consists in designing a fuzzy adaptive sliding-mode controller for a
class of uncertain underactuated systems described by (1) that guarantees the stability
of the closed-loop system and the tracking error convergence to zero.

3 Control System Design and Stability Analysis

Now, let us define the tracking error vector as follows:

e =

⎡
⎢⎢⎣

e1
e2
e3
e4

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

xd1 − x1
xd2 − x2
xd3 − x3
xd4 − x4

⎤
⎥⎥⎦ (2)

where xd2 = ẋd1 and xd4 = ẋd3.
The sliding surfaces are selected as follows:

{
s1 = ė1 + c1e1
s2 = ė2 + c2e2

(3)

where c1 and c2 are positive design constants.
Differentiating (3) with respect to time yields:

{
ṡ1 = c1ė1 + ẋ2d − f1(x) − b1(x)u − d1 (t, x)

ṡ2 = c2ė2 + ẋ4d − f2(x) − b2(x)u − d2 (t, x)
(4)

We can rewrite the dynamics (4) as follows:

⎧⎪⎪⎨
⎪⎪⎩

1

2

db−1
1 (x)

dt
s1 + ṡ1

b1(x)
= 1

2

db−1
1 (x)

dt
s1 + c1ė1 + ẋ2d − f1(x)

b1(x)
− u − d1 (t, x)

b1 (x)
1

2

db−1
2 (x)

dt
s2 + ṡ2

b2(x)
= 1

2

db−1
1 (x)

dt
s2 + c2ė2 + ẋ4d − f2(x)

b2(x)
− u − d2 (t, x)

b2 (x)
(5)

Now, let’s denote

α1 (x) = 1

2

db−1
1 (x)

dt
s1 + c1ė1 + ẋ2d − f1(x)

b1(x)

α2 (x) = 1

2

db−1
2 (x)

dt
s2 + c2ė2 + ẋ4d − f2(x)

b2(x)
.
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By multiplying both expressions in (5) by s1 and s2 respectively, we get

⎧⎪⎪⎨
⎪⎪⎩

1

2

db−1
1 (x)

dt
s21 + s1ṡ1

b1(x)
= (α1 (x) − u) s1 − s1d1 (t, x)

b1 (x)
.

1

2

db−1
2 (x)

dt
s22 + s2ṡ2

b2(x)
= (α2 (x) − u) s2 − s2d2 (t, x)

b2 (x)
.

(6)

Because the nonlinear functions α1 (x) and α2 (x) are unknown, the design of a
stable controller for (1) is difficult. To solve this problem, we will use an adaptive
fuzzy system to online estimate these unknown nonlinear functions.

3.1 Description of Fuzzy Logic System

The fuzzy logic system performs a mapping for U ⊂ �4 to V ⊂ �. Let U =
U1 ×· · ·×U4 where Ui ⊂ �, i = 1, 2, 3, 4. The fuzzy logic system is characterized
by a set of IF-THEN rules in the following form:

R(l) : IF x1 is Fl
1 and . . . x4 is Fl

4 THEN y isGl (7)

with l = 1, 2, . . . , N , N is the number of fuzzy rules for each the fuzzy model, and
x = [x1, x2, x3, x4] ∈ U and y ∈ V are the input and output of the fuzzy systems
respectively, Fl

i and Gl are fuzzy sets in U and V , respectively.
As shown in Fig. 1, the fuzzifier maps a crisp point x into a fuzzy set and the

inference engine uses the fuzzy If-Then rules to perform a mapping from fuzzy sets
in U to fuzzy sets in V .

By using the singleton fuzzifier, product inference, and center-average defuzzifier,
the output of the fuzzy system can be expressed as follows:

ŷ(x) = θT ψ (x) (8)

where θT = [
θ1 θ2 . . . θ N

] ∈ �N is the adjustable parameters vector (composed
of consequent parameters), and ψT (x) = [

ψ1 (x) ψ2 (x) . . . ψ N (x)
] ∈ �N is the

Fig. 1 Basic configuration
of a fuzzy logic system
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fuzzy basis function (FBF) with ψ l (X) expressed as follows:

ψ l (x) =
4∏

i=1

μFl
i
(xi )/

N∑
l=1

(
4∏

i=1

μ
Fl

i
(xi )

)
(9)

μFl
i
(xi ) is the membership function of fuzzy set.
It is worth nothing that the fuzzy system (8) is commonly used in control

applications [1–9, 11, 12, 28]. Following the universal approximation theorem, the
fuzzy system (8) is able to approximate any nonlinear smooth function y on com-
pact operating space to an arbitrary degree of accuracy. Of particular importance,
it is assumed that the structure of the fuzzy system, namely the pertinent inputs,
the number of membership functions for each input and the number of rules, and
the membership function parameters are properly specified beforehand. The con-
sequent parameters are then determined by some appropriate parameter adaptation
algorithms [1–9, 11, 12, 28].

3.2 Design of Adaptive Fuzzy Sliding-Mode Controller

To facilitate the control system design, the following assumption will be used in the
subsequent developments.:

Assumption 4 There exists an unknown continuous positive function ᾱ2(x), such
as:

|α2 (x) − α1 (x)| ≤ ᾱ2 (x) , ∀x ∈ �x ⊂ �4 . (10)

The unknown nonlinear function α1 (X) and ᾱ2 (X) can be approximated by the
linearly parameterized fuzzy systems (8), as follows::

α̂1 (x) = θT
1 ψ1 (x) (11a)

ˆ̄α2 (x) = θT
2 ψ2 (x) (11b)

where ψ1 (x) and ψ2 (x) are fuzzy basis functions, and θ1 and θ2 are the adjustable
parameters vector of the fuzzy systems.

Let’s define the following optimal parameter vectors::

θ∗
1 = argθ1

min

[
sup
x∈�x

∣∣α1 (x) − α̂1 (x, θ1)
∣∣]

θ∗
2 = argθ2

min

[
sup
x∈�x

∣∣∣ᾱ2 (x) − ˆ̄α2 (x, θ2)

∣∣∣
] (12)

Note that θ∗
1 and θ∗

2 are artificial constant quantities introduced only for analysis
purposes, and their values are not needed when implementing the controller. Define
θ̃1 = θ1 − θ∗

1 and θ̃2 = θ2 − θ∗
2 as the parameter estimation error, and ε1(x) =
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α1 (x) − α̂1
(
x, θ∗

1

)
and ε2(x) = ᾱ2 (x) − ˆ̄α2

(
x, θ∗

2

)
as the fuzzy approximation

errors, where
α̂1

(
x, θ∗

1

) = θ∗T
1 ψ1 (x) (13a)

ˆ̄α2
(
x, θ∗

2

) = θ∗T
2 ψ2 (x) (13b)

As in [3–9, 11, 12, 28], we assume that the used fuzzy systems do not violate the
universal approximator property on the compact set �x , which is assumed large
enough so that the input vector of the fuzzy system remains in �x under closed-loop
control system. So it is logical that the fuzzy approximation error is bounded for all
x ∈ �x , i.e. |εi (x)| ≤ ε̄i , where ε̄i is an unknown constant.

From the above analysis, we can write the following relations

α̂1 (x, θ1) − α1 (x) = α̂1 (x, θ1) − α̂1(x, θ∗
1 ) + α̂1(x, θ∗

1 ) − α1 (x)

= α̂1 (x, θ1) − α̂1(x, θ∗
1 ) − ε1 (x)

= θ̃T
1 ψ1 (x) − ε1 (x) (14a)

ˆ̄α2 (x, θ2) − ᾱ2 (x) = ˆ̄α2 (x, θ2) − ˆ̄α2(x, θ∗
2 ) + ˆ̄α2(x, θ∗

2 ) − ᾱ2 (x)

= ˆ̄α2 (x, θ2) − ˆ̄α2(x, θ∗
2 ) − ε2 (x)

= θ̃T
2 ψ2 (x) − ε2 (x) (14b)

To meet our control objective, a suitable adaptive fuzzy sliding mode controller is
proposed as follows:

u = k1 (s1 + s2) + β1sign (s1 + s2) + θT
1 ψ1 (x) + vr (15)

The associated adaptive laws are given by

v̇r = −γvvr + γv

[
(s1 + s2) − vr

(
θT
2 ψ2(x) |s2| + β2 |s2| + k2s22

v2r + δ2

)]
(16)

δ̇ = −γδδ

(
θT
2 ψ2 |s2| + β2 |s2| + k2s22

v2r + δ2

)
(17)

θ̇1 = γθ1(s1 + s2)ψ1(X) (18)

θ̇2 = γθ2 |s2| ψ2(X) (19)

β̇1 = γβ1 |s1 + s2| (20)

β̇2 = γβ2 |s2| (21)

where k1, k2, γv, γδ , γθ1 , γθ2 , γβ1 and γβ2 are positive design constants.
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Theorem 1 Consider the system (1) and suppose that Assumptions 1–4 are valid.
Then, the proposed control scheme (15)–(21) guarantees the following properties.

• all signals in the closed-loop system are bounded, and
• the tracking errors asymptotically converge to zero.

Proof of Theorem 1: Let us consider the following Lyapunov function candidate:

V = 1
2b1(x)

s21 + 1
2b2(x)

s22 + 1
2γv

v2r + 1
2γδ

δ2 + 1
2γθ1

θ̃T
1 θ̃1 + 1

2γθ2
θ̃T
2 θ̃2 + 1

2γβ1
β̃2
1 + 1

2γβ2
β̃2
2

(22)

with β̃1 = β1 − β∗
1 and β̃2 = β2 − β∗

2 , where β∗
1 = ε̄1 + d̄1/b01 and β∗

2 = ε̄2 +(
d̄1/b01 + d̄2/b02

)
.

Differentiating (22) with respect to time yields

V̇ = d

dt

(
b−1
1 (x)

) s21
2

+ 1

b1(x)
s1ṡ1 + d

dt

(
b−1
2 (x)

) s22
2

+ 1

b2(x)
s2ṡ2 + 1

γv
vr v̇r + 1

γδ

δδ̇

+ 1

γθ1

θ̃T
1 θ̇1 + 1

γθ2

θ̃T
2 θ̇2 + 1

γβ1

β̃1β̇1 + 1

γβ2

β̃2β̇2 (23)

Using (6) and (23) becomes

V̇ = (s1 + s2) α1 (x) + (α2 − α1) s2 − (s1 + s2) u − (s1 + s2)d1 (t, x)

b1 (x)
+ s2d1 (t, x)

b1 (x)

− s2d2 (t, x)

b2 (x)
+ 1

γv
vr v̇r + 1

γδ

δδ̇ + 1

γθ1

θ̃T
1 θ̇1 + 1

γθ2

θ̃T
2 θ̇2 + 1

γβ1

β̃1β̇1 + 1

γβ2

β̃2β̇2

(24)

Substituting (14a) and (15) into (24), we obtain

V̇ ≤ − (s1 + s2) θ̃T
1 ψ1 (x) + β∗

1 |s1 + s2| + β∗
2 |s2| − ε2 (x) |s2| + ᾱ2(x) |s2|

− k1 (s1 + s2)
2 − β1 |s1 + s2| − (s1 + s2) vr + 1

γv
vr v̇r + 1

γδ

δδ̇ + 1

γθ1

θ̃T
1 θ̇1

+ 1

γθ2

θ̃T
2 θ̇2 + 1

γβ1

β̃1β̇1 + 1

γβ2

β̃2β̇2 (25)

Using (14b), (18) and (20), we have

V̇ ≤ −β̃2 |s2| + β2 |s2| − |s2| θ̃T
2 ψ2 (x) − k1 (s1 + s2)

2 + |s2| θT
2 ψ2 (x) − (s1 + s2) vr

+ 1

γv
vr v̇r + 1

γδ

δδ̇ + 1

γθ2

θ̃T
2 θ̇2 + 1

γβ2

β̃2β̇2 (26)
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Substituting (16), (17), (19) and (21) into (26), we get

V̇ ≤ −k1 (s1 + s2)
2 − v2r − k2s22 (27)

Therefore, all signals s1, s2, s1 + s2, vr , δ, θ1, θ2, x and u are bounded. Then, from
(4), we can conclude about the boundedness of ṡ1, ṡ2 and ṡ1 + ṡ2. Also, we can
demonstrate from (27) that s2 and s1 + s2 ∈ L2. By using the Barbalat’s lemma [19],
we can obtain the asymptotic convergence to zero of the signals s2 and s1+s2. Hence,
the signal s1 asymptotically converges to zero. The convergence of e1 and e2 follows
that of the surfaces s1 and s2.

4 Numerical Examples

In this section, we will test our proposed controller for the stabilization of two
underactuated systems, namely acrobot and overhead crane.

Example 1 In this subsection, the acrobot in Fig. 2 is used to verify the performance
of the proposed controller. Its model can be given by [17]:

m11q̈1 + m22q̈2 + h1 + ϕ1 = d1
m12q̈1 + m22q̈2 + h2 + ϕ2 = τ + d2 (28)

with q1 (t) ∈ � and q2 (t) ∈ �, τ is the control input, and

m11 = a + b cos (q2) , m12 = c + 0.5b cos (q2) , m12 = m21 , m22 = c,

a = m1l2c1 + m2
(
l21 + l2c2

) + I1 + I2, c = m2l2c2, b = 2m2l1lc2.

h1 = −m2l1lc2 sin (q2) q̇2
2 − 2m2l2lc2 sin (q2) q̇1q̇2, h2 = m2l1lc2 sin (q2) q̇2

1 ,

Fig. 2 The mechanical
structure of acrobot
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Table 1 The parameters of
acrobot

m1 1 kg lc2 1 m

m2 1 kg I1 0.083 kg.m

l1 1 m I2 0.33 kg.m

l2 2 m g 9.8 m/s2

lc1 0.5 m

ϕ1 = (m1lc1 + m2l1) g cos (q1) + m2lc2g cos (q1 + q2) , ϕ2 = m2lc2g cos (q1 + q2) .

The parameters of this acrobot system are given in Table1, [17].

The initial conditions are chosen as q1 = π/2 + 0.2, q2 = −0.5, q̇1 = 0, q̇2 = 0.
The desired output vector is selected as follows xd = [

π/2 0 0 0
]T
.

The adaptive fuzzy systems, θT
i ψi (x), with i =1, 2, have the state vector as

input. For each input variable of these fuzzy systems, as in [10], we define three (one
triangular and two trapezoidal) membership functions uniformly distributed on the
intervals [−2, 2].

The design parameters are chosen as follows: γθ1 = 1, γθ2 = 1, γβ1 = 0.01,
γβ2 = 0.01, γv = 0.5, γδ = 0.005, k1 = k2 = 1, c1 = 1, c2 = 2. The initial
conditions of the adaptive parameters are selected as δ (0) = 1, θ1 (0) = θ2 (0) =
0, β1 (0) = 1, β2 (0) = 4, and vr (0) = 2.

When the input disturbances are not considered (i.e. when d1 = 0 and d2 = 0),
the simulation results of acrobot are given in Figs. 3 and 4. Obviously, from Fig. 3,
the states of this system asymptotically converge to their desired values. Figure4
clearly illustrates the convergence towards zero of the sliding mode surfaces and the
tracking errors as well as the boundedness of the control signal.

When the input disturbances are considered (i.e. when d1 = 0.1 sin(0.5t + π/2)
and d2 = 0.5 sin(2t)), the simulation results are given in Figs. 5 and 6. From these
figures, it is clear that the system states oscillate near the equilibriumwith small range.
Compared to results obtained by applying the classical sliding mode controller in
[17], our results are improved.

Example 2 In this subsection, the validity of the proposed controller is demonstrated
on an overhead crane system, given by Fig. 7. This system consists of a trolley
subsystem and a load subsystem. The dynamic model of this system is [23]:

(mc + mL) ẍ + mL
(
q̈ cos q − q̇2 sin q

) + mLl̈ sin q + 2mLl̇q̇ cos q + w1 = u

mLl ẍ cos q + mLl2q̈ + 2mLll̇q̇ + mL gl sin q + w2 = 0 (29)

Let us select the state variables as q1 = x, q2 = ẋ, q3 = q, and q4 = q̇. So, if l is
constant, we have:
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Fig. 3 States of acrobot (without disturbances)

Fig. 4 Curves of trajectories errors, control signal and sliding surfaces, respectively (without dis-
turbances)
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Fig. 5 States of acrobot (with disturbances)

Fig. 6 Curves of trajectories errors, control signal and sliding surfaces, respectively (with distur-
bances)
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Fig. 7 Overhead crane
system

Table 2 Overhead crane
physical parameters

Variable Value used

mc 24 (kg)

mL 5 (kg)

l 1 (m)

g 9.81 (m/s2)

q̇1 = q2

q̇2 = f1
(

q
)

+ b1
(

q
)

u + d1
(

t, q
)

q̇3 = q4

q̇4 = f2
(

q
)

+ b2
(

q
)

u + d2
(

t, q
)

where q = [q1, q2, q3, q4]T is the state vector, and

f1 + d1 =
(

mL

(
−q2

4 l − g cos q3
)
sin q3 + lw1 − cos q3

l
w2

)
/
(

mL cos2 q3 − (mL + mc) l
)
,

g1 = −l

mL cos2 q3 − (mL + mc) l
, g2 = cos q3

mL cos2 x3 − (mL + mc) l
, and

f2 + d2 = (((
(mc + mL) g + mLq2

4 cos q3
)
sin q3

)
+ (((mL + mc)/mLl) w2 − w1 cos q3)) /

(
mL cos

2 q3 − (mL + mc) l
)

The external disturbance are chosen as: w1 = 0.2 cos (t) , w2 = 0.2 sin (t) . Its
physical parameters are summarized in Table2, [23].

The initial state and desired state vector are assumed q (0) = [
0 0 0 0

]
and

xd (t) = [
1 0 0 0

]
, respectively. The design parameters used in this simulation

are chosen as follows k1 = k2 = 1, c1 = 2, c2 = 1. γθ1 = 1, γθ2 = 2, γv = 0.5,
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Fig. 8 States of overhead crane (without disturbances)

Fig. 9 Curves of trajectories errors, control signal and sliding surfaces, respectively (without dis-
turbances)
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Fig. 10 States of overhead crane (with disturbances)

Fig. 11 Curves of trajectories errors, control signal and sliding surfaces, respectively (with distur-
bances)
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γδ = 0.5, γβ1 = 0.01, γβ2 = 0.01, γδ = 0.005, k1 = k2 = 1. The initial conditions of
the adaptive parameters are selected as δ (0) = 1, θ1 (0) = θ2 (0) = 0.002, β1 (0) =
1, β2 (0) = 4, and vr (0) = 1.

For each input variable of the used fuzzy systems, we defined three (triangular and
trapezoidal) membership functions uniformly distributed on the following intervals:
[−0.5, 2] for q1, [−0.1, 0.2] for q2, and [−0.5, 0.5] for q3 and q4. Therefore, the
number of fuzzy rules used in each fuzzy system is 81.

In the case without disturbances, the simulation results of overhead crane system
are given in Figs. 8 and 9. It is clear, from Fig. 8, that the states of this system
asymptotically converge to their desired values. Figure9 shows the convergence
towards zero of the sliding mode surfaces and the tracking errors as well as the
boundedness of the control signal.

When the disturbances w1, w2 are considered, the obtained simulation results are
given in Figs. 10 and 11. From these figures, it is clear that the system states oscillate
near the equilibrium with small range as in the first example.

5 Conclusion

Exploiting the intrinsic approximation ability of the fuzzy systems for the contin-
uous uncertain nonlinear functions, an adaptive sliding-mode controller for a class
of underactuated systems has been investigated in this chapter. A Lyapunov based
analysis has been carried out to conclude about the asymptotic stability as well as
the convergence of the tracking errors towards zero, and to derive the adaptive laws.
The numerical simulations have been carried out to evaluate the performance of the
proposed control scheme.

References

1. Azar AT, Vaidyanathan S (2015) Computational intelligence applications in modeling and
control, vol 576. Springer, Germany

2. Azar AT, Vaidyanathan S (2015) Handbook of research on advanced intelligent control engi-
neering and automation. IGI Global, USA

3. Boulkroune A,M’saadM (2011) A fuzzy adaptive variable-structure control scheme for uncer-
tain chaotic MIMO systems with sector nonlinearities and dead-zones. Expert Syst Appl
38:4744–4750

4. Boulkroune A, M’saad M (2012) On the design of observer-based fuzzy adaptive controller
for nonlinear systems with unknown control gain sign. Fuzzy Sets and Syst 201:71–85

5. Boulkroune A, M’saad M (2012) Fuzzy adaptive observer-based projective synchronization
for nonlinear systems with input nonlinearity. J Vib Control 18:437–450

6. BoulkrouneA,M’saadM, FarzaM (2012) Adaptive fuzzy tracking control for a class ofMIMO
nonaffine uncertain systems. Neurocomptiung 93:48–55

7. Boulkroune A, M’saad M, Farza M (2012) Fuzzy approximation-based indirect adaptive con-
troller for multi-input multi-output non-affine systems with unknown control direction. IET
Control Theory Appl 17:2619–2629



Fuzzy Adaptive Sliding-Mode Control Scheme for Uncertain Underactuated Systems 367

8. Boulkroune A, M’saad M, Farza M (2014) State and output feedback fuzzy variable structure
controllers for multivariable nonlinear systems subject to input nonlinearities. Int J AdvManuf
Technol 71:539–556

9. Boulkroune A, Bounar N, M’saad M, Farza M (2014) Indirect adaptive fuzzy control scheme
based on observer for nonlinear systems: a novel SPR-filter approach. Neurocomputing
135:378–387

10. Boulkroune A, Tadjine M, M’saad M, Farza M (2008) How to design a fuzzy adaptive control
based on observers for uncertain affine nonlinear systems. Fuzzy Sets Syst 159:926–948

11. Boulkroune A, Tadjine M, M’Saad M, Farza M (2014) Design of a unified adaptive fuzzy
observer for uncertain nonlinear systems. Inf Sci 265:139–153

12. Boulkroune A, Bouzeriba A, Hamel S, Bouden T (2014) A projective synchronization scheme
based on fuzzy adaptive control for unknown multivariable chaotic systems. Nonlinear Dyn
78(1):433–447

13. Chaing C, YehY (2014) Hierarchical fuzzy slidingmode control for uncertain nonlinear under-
actuated systems. In: Proceedings of the international conference on fuzzy systems (FUZZ-
IEEE). Beijing, China, pp 662–669

14. Fang Y, Ma B, Wang P, Zhang X (2012) A motion planning-based adaptive control method for
an under-actuated crane system. IEEE Trans Autom Control 20(1):241–248

15. Hao Y, Yi J, Zhao D, Qian D (2008) Robust control using incremental sliding mode for under-
actuated systems with mismatched uncertainties. In: Proceedings of the American control
conference. Seattle, Washington, USA, pp 532–537

16. Huang A-C, Chen Y-F (2010) Adaptive control for a class of underactuated system with mis-
matched uncertainties. In: Proceedings of the IEEEChinese control conference. Beijing, China,
pp 2053–2059

17. Huang J, Ding F, Wang Y (2013) Sliding mode control with nonlinear disturbance observer
class of underactuated system. In: Proceedings of the Chinese control conference. Xi’an, China,
pp 541–546

18. Hussein II, Bloch M (2008) Optimal control of underactuated nonholonomic mechanical sys-
tems. IEEE Trans Autom Control 53(3):668–682

19. Khalil HK (2001) Nonlinear systems, 3rd edn. Prentice Hall, New Jersey
20. Kung CC, Chen T-H, Huang LC (2009) Adaptive fuzzy sliding mode control for a class under-

actuated systems. In: Proceedings of the FUZZ-IEEE Conference. Korea, pp 1791–1795
21. Ming Y, Baoyin L (2012) Disturbance adaptive control for an under-actuated spherical robot

based on hierarchical sliding-mode technology. In: Proceedings of the Chinese control confer-
ence. Hefei, China, pp 4787–4791

22. Nafa F, Labiod S, Chekireb H (2013) Direct adaptive fuzzy slidingmode decoupling control for
a class of underactuated mechanical systems. Turk J Electr Eng Comput Sci 21(6):1615–1630

23. Pezeshki S, Badamchizadeh MA, Ghiasi MA, Ghaemi S (2014) Control of overhead crane
system Using adaptive model-free and adaptive fuzzy sliding mode controllers. J Control
Autom Electr Syst 26:1–15

24. Qian D, Yi J, Zhao D (2007) Hierarchical sliding mode control to swing up pendubot. In:
Proceedings of the American control conference. New-York city, pp 5254–5258

25. Shine K, Yang Y, Cheng C (2012) Robust adaptive controller design for second-order under-
actuated mechanical systems. In: Proceedings of the international conference in electric, com-
munication and automatic control, pp 711–719

26. Slotine JJE, Li W (1991) Applied nonlinear control. Prentice-Hall, Englewood Cliffs
27. Tuan L, Lee S (2013) Sliding mode controls of double-pendulum crane systems. J Mech Sci

Technol 23(10):1863–1873
28. Wang LX (1994) Adaptive fuzzy systems and control: design and stability analysis. Prentice-

Hall, Englewood Cliffs
29. Wang W, Zhao J, Liu D (2004) Design of a stable sliding-mode controller for class of second-

order under-actuated systems. IEE Proc Control Theory Appl 151(6):683–690
30. Yue M, Liu B (2014) Adaptive control of an under-actuated spherical robot with a dynamic

stable equilibrium point using hierarchical sliding mode approach. Int J Adapt Control Signal
Process 28(6):523–535



Unstable PLL-Controller as FM Modulator
and Detection of Modulating Self-Oscillations

Bishnu Charan Sarkar, Suvra Sarkar and Saumen Chakraborty

Abstract Phase locked loops are well known nonlinear feedback control circuits
extensively used in different electronic systems, particularly in communication and
control. Generally they are used in stable mode of operation where loop error mag-
nitude is small and system nonlinearity can be replaced by linear approximation.
However, PLL designers over the years observed that due to variation of signal and
loop parameters, dynamics of a PLL enters in a region which is not stable in con-
ventional sense, even though predictable and controllable through parameter tuning.
Hence attention has been given to explore so called unstable mode of PLL dynamics.
PLLs operating in such mode produce periodic or chaotic self-oscillatory signals. In
this chapter we focus on generation of self-oscillations in PLLs operating in their
unstable mode and examine the possibilities of using these PLLs as modulators of
periodic as well as chaotic oscillations. We consider a third order PLL with resonant
type loop filter since in continuous time domain third order system is susceptible to
chaotic self oscillations and gain as well as phase shift of a resonant filter could be
tuned through a single parameter.We estimate the influence of loop design parameters
in determining stable operating zone and hence find conditions of self-oscillation of
third order PLL. With the variation of a design parameter, PLL is found to undergo a
sequence of period doubling oscillations and ultimately chaotic oscillation of control
signal results. In this condition, PLL is treated as an FMmodulator of self-generated
chaotic signal.We also report the effectiveness of PLL-based demodulators in detect-
ing chaotically modulated signals. We consider second order and third order PLLs as
chaos detecting loops for this purpose and obtain their relative responses. Detection
of chaotically self-modulated signal is found to be difficult compared to that with
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periodically self modulated signal. We describe a circuit modification algorithm to
PLL in order to enhance its response as a demodulator. Modified loop is shown to
have increased stable zone of operation and faster transient response which makes
it a better FM demodulator. Besides analytical and numerical simulation results, we
have reported hardware experimental results on this problem.

1 Introduction

Phase locked loop (PLL) is a well known nonlinear feedback control system used
in different areas of electronic technology. Its dynamics has different complexities
and has been discussed in the literature in details during last several decades [7,
11, 17, 45]. In simple words, the purpose of a PLL is to acquire the instantaneous
phase of a reference input signal and in steady state operation, to get the loop voltage
control oscillator (VCO) synchronized to the input signal. Performing these activities,
PLLs have become indispensable parts of synchronous signal processors like angle
modulators and demodulators, carrier regenerators, frequency synthesizers etc. [24,
33, 35, 46].However the dynamics of this simple looking systembecomes immensely
complicated because of inherent nonlinearities of loop constituents [16, 23]. Phase-
error detector (PD), employed to detect the phase difference (φ) between input and
VCO signals, produces a signal which is a nonlinear odd-periodic function of φ [17,
35]. Loop filter introduces frequency dependent amplitude response and additional
phase shift to detected error signal. Moreover loop VCO has, in general, a nonlinear
sensitivity to control signal applied to it [41]. All these features, separately or jointly,
complicate PLL dynamics. Like any other control system, the operating mode of
a PLL is of two types, namely, transient or acquisition mode and steady state or
tracking mode [5, 30]. In transient mode, loop VCO tries to acquire input signal
phase and in steady state mode, loop VCO follows input signal phase. Over the
years, design objectives of a PLL are to have acquisition time (i.e., the time required
to acquire input signal phase) as small as possible and to have tracking range (i.e.,
the frequency shift of input signal up to which VCO can track it) as large as possible
[17, 45]. PLL designers have suggested several techniques to reach this goal through
different techniques. In the following, we first briefly discuss different aspects of PLL
study undertaken by researchers and then focus on the problem of self-oscillation of
PLLs in their unstable mode of operation [15, 21, 25]. Examination of consequences
of self-oscillation in a PLL-based modulator is the main interest of this work.

Conventionally, phase detector used in an analog PLL is a multiplier followed
by hard filtering arrangement to suppress double frequency ripple term. As such its
output is modeled as a sinusoidal function of phase error. Studies on responses of
sinusoidal and other analog PDs are reported in literature [9, 26]. However, with pre-
dominant introduction of digital circuits in electronic systems, flip-flop based PDs or
tri-state phase/frequency detectors (PFDs) having triangular, saw-tooth or extended
linear characteristics have become very popular [2, 24, 35]. Logic states of a PFD
output are converted into continuous VCO control signal with the help of a special
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class of filters called charge pump (CP) filters [17, 20, 34]. This design methodology
has led to charge pumpPLLs (CP-PLLs)whose dynamics needs discrete time domain
analysis [12, 47]. Besides hybrid type CP-PLLs, digital PLLs based on digitally con-
trolled oscillators, digital filters and edge sensitive PDs have been designed and their
dynamics have been extensively studied in discrete time domain. [2, 26, 27, 49].
Different techniques to enhance responses of digital PLLs are studied in literature
[2, 3, 28, 37, 40]. Studies on nonlinear dynamics and chaotic oscillations in digital
PLLs are topics of increasing interest [4, 6, 38, 43]. However in our present study we
would concentrate on time continuous dynamics of analog PLLs based on sinusoidal
PDs and continuously tunable VCOs. These systems have practical applications as
well as analytical importance in the context of modern communication technology.

Dynamics of a PLL is heavily dependent on type and response of loop filters. A
PLL with nth order filter is of (n + 1)th order. Thus a second order PLL (SO-PLL)
is designed using first order filters which are passive or active in respect of transfer
gain. SO-PLLs are extensively studied analytically in literature and predominantly
employed in practical systems [17]. However, in some cases, use of a third order PLL
(TO-PLL) is amust.Among several reasons, TO-PLLs are used to suppress the effects
of double frequency error signals and to track a frequency ramp type input signal
phase with zero steady state tracking error [7]. Several authors have examined the
dynamics of third order analog anddigital PLLs [10, 29, 31, 32, 43] followingvarious
techniques. Since third order feedback control systems are conditionally stable, the
knowledge of parameter range ensuring stable system operation is required by a
system designer. Further in unstable zone of operation, TO-PLLs show bifurcation
and chaos which deserve special attention. The choice of loop LPF structure depends
on the purpose for which PLL is being applied. Requirements of a carrier tracking
loop are obviously different from those of an FMdemodulator loop. So it is necessary
to have flexibility in controlling loop gain, natural frequency and damping [17, 35].
In this respect a Sallen-Key type active resonant second order LPF is often used
in the design of TO-PLLs [31, 43]. The closed loop response of a second order
PLL becomes seriously affected because of additional time delay of IF amplifiers
used in heterodyne PLLs [13, 17, 18, 41, 44]. Effectively time delay causes an
uplift of in the order of PLL and adverse effects of higher order loops are observed
in time delayed SO-PLLs. A good amount of studies on delayed SO-PLLs could
be found in the literature. The inclusion of nonlinear amplifiers in a PLL is also
suggested either to enhance the speed of convergence or to broaden the tracking
range of operation. For these purposes, nature of nonlinearities of loop amplifiers
could be cubic type or limiter type [14]. However, these additional nonlinearities
lead to nonlinear dynamical behavior in PLLs.

In practical applications, response of a PLL becomes even more complicated
because of unwanted signals accompanying input reference signal. These additional
signals could be of discrete frequency or broad band noise signals. Loop phase error
becomes a random variable because of the presence of interference and noisy signals
[36, 42]. This obviously disturbs acquisition as well as tracking performance of PLL.
In order to combat deleterious effects of these unwanted signals careful design of
loop filter has been suggested. In the analysis of the loop dynamics, one has to take
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time averaged loop phase error to estimate loop response. Statistical characterization
of loop response in this situation has drawn the attention of researchers and to this
end, selection of an optimum loop filter has become an important design problem.
A good amount of research has been published on these problems.

In conventional application oriented studies, PLL is approximated as a linear feed-
back loop by considering loop phase error a small quantity. Further in most of these
studies, time averaged analysis is found to provide reasonably satisfactory results.
But in general it is not always possible to linearize the effects of nonlinearities in
loop response. Also instantaneous time response has to be taken into account to
obtain transient behavior of a PLL. In this respect, characteristics of PD and order
of loop filter play vital roles. Like any other feedback control system, higher order
loop filters cause additional phase shift of control signal applied to loop VCO. This
additional phase shift affects loop stability and dynamics of the system becomes
unstable and complicated. As such one can observe features of non linear dynam-
ics like bifurcation and chaos in a deterministic PLL. The nonlinearity of PD and
loop amplifier (included to amplify the loop error signal) has pronounced effects in
non linear dynamics of a PLL. A higher order PLL operating in nonlinear mode is
conditionally stable and in unstable condition, produces periodic as well as chaotic
oscillations of control signal. In the context of increased interests on chaos based
communication during recent years, generation and synchronization of chaotic oscil-
lations have become very attractive topic of research [8, 22]. A PLL operating in
unstable self-oscillatory mode is capable of generating chaotically modulated FM
signals.Moreover, PLL-based demodulators could be used to recover themodulating
chaos. On the other hand, in some cases, suppressing the possibilities of chaotic self
oscillations in PLLs is primarily needed. These reasons have motivated PLL design-
ers to study chaotic dynamics of PLLs in general and in PLL-based modulators and
demodulators in particular.

Present chapter deals with problems of chaotic self oscillations in TO-PLL having
resonant loop LPFs. We estimate the influence of loop design parameters in stable
operating condition and hence find conditions of self-oscillation of TO-PLL. It is
observed that in unstable mode of operation TO-PLL undergoes a process of period
doubling oscillationwith the variation of suitable design parameter and chaotic oscil-
lation of control signal ultimately results. In this condition, PLL is treated as an FM
modulator of self-generated chaotic signal. Problem of demodulating this chaoti-
cally modulated signal has practical importance and we report the effectiveness of
PLL-based demodulators in this respect. We consider SO-PLL and TO-PLL as chaos
detecting loops and obtain their response through numerical analysis and experimen-
tal study.We describe a circuit modification algorithm to TO-PLL in order to enhance
its response as a PLL-demodulator. Modified TO-PLL has increased stable zone of
operation and faster transient response which makes it a better FM demodulator. The
chapter is organized in the following way. We discuss self-oscillation problem of
a TO-PLL in Sect. 2. Process of bifurcation of stable state and periodic oscillation
with variation of loop design parameter and period doubling route to chaos have been
narrated. Numerical simulation establishes the difference between stable frequency
zones of operation of TO-PLL in tracking and acquisition modes. In Sect. 3, we study



Unstable PLL-Controller as FM Modulator and Detection … 373

demodulation capabilities of a conventional SO-PLL and a TO-PLL with resonant
filter operating in stable condition. We compare generalized auto-correlation func-
tions of modulating chaos and demodulated chaos to establish faithful detection of
chaos. A modified TO-PLL is described in Sect. 4 and enhanced performance of
modified PLL is studied analytically and numerically. We describe hardware exper-
imental results performed to estimate responses of PLL-based chaotic modulator
and demodulator in Sect. 5. Obtained results fairly agree with analytical predictions.
Section6 discusses the outcome of the study reported in the chapter and a few con-
clusions are given in Sect. 7.

2 FM Modulator with Self-Generated Modulating Signal

In this sectionwe discuss the dynamics of a TO-PLL and obtain the conditions of self-
oscillation in the loop. With the variation of design parameters, stable state of PLL
operation bifurcates and VCO control signal becomes periodically oscillating one.
With further change in design parameter, bifurcation process continues and control
signal becomes chaotic in a period doubling route. In this situation VCO output
signal would be frequency modulated by self generated periodic or chaotic signals
and can be used for communication related applications. First we would study loop
dynamics analytically and then examine the same numerically. We would formulate
the system equation in terms of some measurable quantities for a TO-PLL and these
equations could be suitably modified for other forms of PLLs.

2.1 Analytical Considerations on Self-Oscillation

The structure of a basic PLL consisting of a PD, a LPF and a VCO is shown in
Fig. 1. We take for simplicity a single un-modulated signal at PLL input. The signal
at PD output is a function of instantaneous phase error φ between the phases of input
signal A sin((ωr + Ω)t) and VCO signal 2 cos(ωr t + θ). Averaging PD output in

Fig. 1 Basic block diagram
of phase locked loop
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Fig. 2 Mathematical model of third order PLL with resonant filter

loop LPF, it is applied to VCO to force its phase to become phase locked to input
signal.

A second order loop filter could be realized in different ways, for example, cas-
cading two first order filters [19]. Here we take a resonant type second order LPF and
an analog multiplier as PD to design a third order PLL. Figure2 shows mathematical
model of PD and hardware structure of loop filter. It is a Sallen-Key type resonant
LPF of gain g determined by resistors R1 and R2. The transfer function of resonant
LPF in the complex frequency (s) domain is as follows [43],

F(s) = g

s2T 2 + (3 − g)sT + 1
(1)

where g(=1 + R2/R1) and T = RC are gain and time constant of LPF respectively.
Frequency and phase transfer characteristics of F(s) play important role in PLL
dynamics. Introduction of discontinuous phase shift and nonlinearly varying gain by
the filter around its characteristics frequency would influence the stability of PLL.
The phase governing equation of PLLwritten in terms of instantaneous phase errorφ,
frequency offsetΩ between input signal andVCO signal, overall loop gain parameter
k and LPF transfer function F(p) in operator form is,

dφ

dt
= Ω − k F(p) sin φ (2)

Here p(≡ d
dt ) is the Heaviside operator and k(=AkDkv) takes care of VCO sen-

sitivity kv , PD gain kD , input signal amplitude (A) etc. The system equation can be
rewritten in terms of three state variables x(t), y(t) and z(t) as shown in Fig. 2. These
variables are related to φ as follows [43],
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x(t) = φ(t), φ(t) ε [−π, π ] (3a)

y(t) =
[

1 + T p

T 2 p2 + (3 − g)T p + 1

]
sin(φ(t)) (3b)

z(t) =
[

g

T 2 p2 + (3 − g)T p + 1

]
sin(φ(t)) (3c)

Here y(t) is the voltage at the input capacitor of LPF and filter output z(t) acts as
control signal to loop VCO. We derive three normalized state equations describing
the dynamics of conventional TO-PLL in terms of these state variables as,

dx

dτ
= Ωn − knz (4a)

dy

dτ
= sin(x) + (g − 2)y − (g − 1/g) z (4b)

dz

dτ
= gy − z (4c)

HereΩn , kn and τ denote normalized frequency offset, loop gain and time respec-
tively. The normalization has been done with respect to the time constant T of the
filter. Note that the time evolution of x is dependent on control signal z as given in
(4a). Dynamics of PLL is examined with the help of these equations.

Steady state values or fixed points of x , y and z are obtained by equating their
time variations to zero and these values are sin−1 μ, μ and μg respectively, where,
μ = (Ωn/kng). The parameter zone for stable loop operation has been obtained in the
literature [31].Note that steady state value of x is xs = sin−1 μ, whereμ = (Ωn/kng)

and the argument of arcsin must be less than or equal to one in magnitude. So we
get for stable operation of TO-PLL, the upper limit of Ωn is given by,

Ωn ≤ kng (5)

However Ωn cannot be arbitrarily increased by increasing g or kn . By examining
the stability of fixed points of state variables we derive another limiting condition.
The said condition connecting Ωn and g for a particular kn is,

Ωn >
√

(kng)2 − (3 − g)2 (6)

It is obtained from the linear transformation Jacobian J of the system described
by set of Eqs. (4a)–(4c), evaluated at the fixed point of stability. The characteristic
equation of steady state Jacobian Js is a cubic equation of Eigen value λ and it is as
given below:

λ3 + (3 − g)λ2 + λ + kng cos(xs) = 0 (7)
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Replacing the term cos(xs) by
√

(1 − (Ωn/kng)2), we get characteristic Eq. (7)
in terms of loop parameters. The stability condition of fixed point is obtained by
applying Routh–Hurwitz array technique to this equation. This gives the limiting
value of g for achieving stable state as less than 3 and the limiting relation (6). If, for
given values of Ωn and kn , we take g beyond the limits specified by (5) and (6), the
stable state of the loop is disturbed and periodic oscillations of PLL control signal is
obtained. At this condition the variation of y and z shown in y–z plane would be a
closed trajectory indicating limit cycle oscillation of the loop.

With further increase of g, limit cycle again bifurcates and control signal becomes
a combination of two sinusoidal signals, one the original periodic signal and the other
is its double period harmonic. This is known as period doubling phenomenon and
process of period doubling continues with increasing values of g until control signal
becomes a chaotic oscillation. The critical value of g leading to bifurcation of first
oscillatory steady state can be predicted in terms of other loop parameters. This is
done by finding the Jacobian matrix J0 at a point on the limit cycle trajectory of
oscillatory steady state and constructing the characteristic equation of this Jacobian
J0. As before we apply Routh Hurwitz technique to characteristic equation and find
the conditions of stability of limit cycle in terms of the roots of characteristic equation.
Predicted values of critical g required for bifurcation of fixed point and limit cycle are
2.16 and 2.54 respectively calculated for kn = 0.4 and Ωn = 0.3. These values have
been verified through numerical simulation and reported in following sub-section.
Chaotic self-oscillation of control signal in TO-PLL causes frequency modulation
of loop VCO and as such VCO output can be used as a chaos modulated signal for
communication applications.

So far we have examined the stable zone of TO-PLL in terms of conditions of
stability of the fixed point of loop state variables. The zone of stability is thus so called
tracking range of PLL which gives the limiting range of parameters up to which an
already synchronized loopwould remain locked. But another range of stability, called
acquisition range, is equally important. This gives the parameter zone for which a
PLL, not in locked condition initially, would become synchronized. This range in
terms of Ωn for same values of kn and g is less than tracking range. This is shown
through numerical simulation in next subsection.

2.2 Numerical Simulation

Wehave studied the dynamics of aTO-PLLbynumerical integration ofEqs. (4a)–(4c)
using fourth order Runge–Kutta technique. Dynamics of the system is examined by
noting the time series data of state variable z and phase plane plot of state variables y
and z. For each simulation run, a large number of initial time series data are discarded
to avoid primary transients in loop dynamics and thus to get steady state response.
For example, in a set of 100,000 time series data, about 60% data are not stored and
the rest data are used to draw phase-plane plot or to calculate frequency spectrum.
This method of simulation study has been followed for other loops reported in this
chapter.
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Fig. 3 Dynamical states of
TO-PLL in parameter space
denoted by color shades; 9
indicates stable state and 0
indicates chaotic state in two
extremes

Figure3 shows dynamical states of the PLL for different values of initial frequency
off-sets (Ωn) and loopfilter gain (g) at a fixedvalue of parameter kn (kn = 1).Dividing
(Ωn − g) parameter space in closely spaced grid points, we obtain the steady state
dynamical state of the PLL at each of these points. Different colour shades are used
to indicate various stable states like synchronous state, period-1 limit cycle, period-2,
period-4 etc. oscillations and finally chaotic state. The boundaries of the parameter
space indicating the stable synchronous state indicated by Eqs. (5) and (6) are also
plotted in the same figure.

The simulation results agree very well with analytically predicted results. To
find the limiting range of stable zone of operation in the simulation study, we start
computation with parameter values, Ωn , kn and g, inside the predicted stable range
and vary any one of them at a time in higher and lower directions of magnitude. The
convergence of the state variables to a steady value ensures the existence of the stable
state. This method obviously gives the range of parameters where the synchronous
state is stable. The system dynamics is symmetrical about zero value of frequency
offset.

We plot the bifurcation diagram of the loop with g as control parameter. Figure4
shows one such diagram obtained through numerical integration of systemEqs. (4a)–
(4c) for fixed values of other loop parameters. We find instantaneous peaks in time
variation of z for a particular g. Increase in number of peaks from one to two, four,
etc. with increasing g is due to period doubling process of z. Critical values of g
where bifurcation occur are noted and compared with analytically predicted values
for fixed point bifurcation or limit cycle bifurcation etc. A close agreement between
predicted and simulated values are obtained. For example with increasing g, we get
chaotic oscillation of z which is shown by all possible instantaneous peak values of
z. So, chaotic self-oscillation of TO-PLL is observed. To get a conclusive evidence of
chaotic state, we evaluate the maximum Lyapunov exponent (MLE) of numerically
obtained time series data for state variable z when g = 2.64, with kn and Ωn as
0.4 and 0.3 respectively. We adopt the method suggested in [48] to find MLE. The
obtained value of MLE is 0.469. Since the value is positive, it is a strong evidence of
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Fig. 4 Bifurcation diagram
of 3rd order PLL for fixed
values of Ωn = 0.3 and
kn = 0.4

chaotic oscillation. Figure5a, b show the y − z diagram for two different values of
g, one at the period-1 limit cycle range and the other in chaotic range of oscillation.

In the simulation study we have obtained the range of frequency offset between
input signal andVCOsignal leading to synchronized condition in steady state starting
fromanunsynchronized state. The frequency range thus obtained is called acquisition
range (AR). This zone is compared with that obtained by examining the stability of
synchronized state, called tracking range (TR). Simulation results show that AR is
less than TR for a TO-PLL. Simulation results are shown in Fig. 6. We note the
appearance of hysteresis zone at the synchronization boundaries and the loop is
susceptible to self-oscillations in this.

Frequency spectrum of the modulating signal is an important parameter for any
modulator or demodulator. Frequency spectrumof self-generated chaotic oscillations
in TO-PLL is obtained from the Fourier transform of time series data set of signal
z. We represent the same in Fig. 7a, b and compare it with closed loop transfer
function of modulator PLL. The same would be required to examine performance of
demodulator.

3 PLL-Based Demodulator Response

We examine the problem of demodulation of chaotically modulated signal obtained
froman unstableTO-PLL in a PLL-based demodulator. For this purpose, responses of
demodulators designedwith conventional SO-PLL and resonant filter based TO-PLL
are studied. The modification of TO-PLL-based demodulator is discussed in Sect. 4.
From basic PLL theory, it is known that the output of filter of PLL is demodulated
version of modulating signal present in input FM signal [17]. In complex frequency
domain, the output of loop filter is given by Z(s), where,
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(a)

(b)

Fig. 5 Phase space plot of modulator PLL; a periodic self oscillation, b chaotic self oscillation

Z(s) = H(s)

kng
M(s) (8)

Here, M(s) is frequency spectrum of modulating signal and H(s) is closed loop
transfer function of PLL. H(s) is related to loop filter F(s) and un-normalized
parameter k by following equation:
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Fig. 6 Parameter space
showing different dynamical
states of modulator PLL
computed in reverse
direction of Ωn variation
(unstable to stable zone)
compared to Fig. 3; reduced
stable zone indicates lesser
acquisition than tracking
range

H(s) = k F(s)

s + k F(s)
(9)

It shows that the nature of loop filter has important effect in demodulation char-
acteristics of PLL. H(s) of PLL used should ideally have constant transfer gain
and linear phase shift in the frequency band of modulating signal to provide undis-
torted demodulated signal. We examine different demodulators on the basis of this
requirement.

In cascaded configuration of modulator and demodulator PLLs (Fig. 8), VCO
output of modulator PLL (M-PLL) is taken as input of demodulator PLL (Dm-PLL).
System equations of M-PLL are those given in (4a)–(4c), with suffix 1 to state
variables and loop parameters. The equations are as follows:

dx1
dτ

= Ωn1 − kn1z1 (10a)

dy1
dτ

= sin(x1) + (g1 − 2)y1 − (g1 − 1/g1) z1 (10b)

dz1
dτ

= g1y1 − z1 (10c)

We take normalized design parameters for two PLLs as kni , gi and Ωni (where
i = 1 forM-PLL and i = 2 forDm-PLL). Filter time constant T ofM-PLL is normal-
izing parameter. Note that for M-PLL, frequency offset Ωn1 is defined with respect
to input reference frequency and that for Dm-PLLΩn2 with respect toM-PLLs VCO
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(a)

(b)

Fig. 7 a Frequency spectrum of chaotic control signal of modulator TO-PLL due to self oscillation;
b Amplitude transfer function of closed loop TO-PLL in that condition

free running frequency. In synchronized condition, M-PLLs VCO frequency is equal
to input reference signal frequency. Hence effective frequency off-set (Ωe f f ) of Dm-
PLL with respect to main reference signal frequency is an algebraic sum of Ωn1

and Ωn2.
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Fig. 8 Block diagram showing modulator-demodulator configuration

Response of a demodulator is examined by noting the similarity between wave-
forms and spectrum of modulating (z1) and demodulated (z2) signals. To examine
similarity in time domain, we plot instantaneous values of z1 and z2 along X and Y
axes in Cartesian plane. Similarity in two waveforms is indicated by a closed loop
elliptical curve obtained in such plotting. This curve becomes a straight line when
two waveforms are of same phase. For periodic modulation, inference can be easily
made. But for chaotic modulating signals, tracing would be complex and inference
of demodulation is to be made from frequency domain presentations.

3.1 Second Order PLL Based Demodulator

We take a first order lag-lead type filter in SO-PLL (Fig. 9a). Frequency domain
transfer function of filter is given by,

F(s) = g2

(
1 + F0sT

1 + sT

)
(11)

Here g2 and F0 are dc gain and high frequency gain normalized to g2 of filter
respectively. For a SO-PLLwe have two state variables x2(t) and z2(t)which are loop
phase error and filter output respectively. Remembering that input to demodulator
is frequency modulated by state variable z1 of M-PLL, we get state equations for
Dm-PLL as,

dx2
dτ

= Ωn2 + kn1z1 − kn2z2 (12a)

dy2
dτ

= g2 sin(x2) + g2F0 cos(x2)(Ωn2 + kn1z1 − kn2z2) − z2 (12b)

Note that when input to SO-PLL is zero we can estimate the steady state values
of by equating RHS of (12a) and (12b) to 0. Steady state values of x2 and z2 (for
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(a)

(b)

(c)

Fig. 9 aLag-lead loopfilter used in SO-PLL. SO-PLLbased demodulator response through z1 − z2
plot for b periodic self oscillation, c for chaotic self oscillation
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un-modulated input i.e., z1 = 0), are sin−1(Ωn2/kn2g2) and Ωn2/kn2 respectively.
Thus loop parameters are to be chosen satisfying the condition:

Ωn2 ≤ kn2g2 (13)

If M-PLL is in steady state, z1 is a nonzero time invariant quantity given by
Ωn1/kn1. Then steady state value of x2 is calculated in terms effective frequency
off-set as (Ωn1 + Ωn2)/kn2. When input to SO-PLL is an FM signal obtained from
M-PLLmodulated by self generated z1 signal, for synchronized operation of demod-
ulator, z2 is related to z1. Closed loop transfer function SO-PLL considered here we
have as,

H2(s) = kn2g2 + sT kn2g2F0

kn2g2 + sT (1 + kn2g2F0) + s2T 2
(14)

Amplitude transfer function of H2(s) and spectrum of z2 are to be estimated to
examine the response of demodulator.

3.2 Third Order PLL Based Demodulator

Since modulated signal is generated in a self-oscillating TO-PLL, we are interested
to examine the response of a demodulator based on a similar type TO-PLL. However
this TO-PLL is to be operated in stable zone by suitably choosing design parameters.
State equations for TO-PLL based demodulator with FM input signal would be
written as,

dx2
dτ

= Ωn2 + kn1z1 − kn2z2 (15a)

dy2
dτ

= sin(x2) + (g2 − 2)y2 − (g2 − 1/g2) z2 (15b)

dz2
dτ

= g2y2 − z2 (15c)

Here z1 represents modulating signal.WhenM-PLL is in steady state, input signal
to Dm-PLL is not modulated by time varying signal. Then, taking steady state value
of z1 as Ωn1/kn1 from Sect. 2.1, we obtain steady state values of x2, y2 and z2 as
sin−1(μ2), μ2 and μ2g2 respectively where μ2 = (Ωn1 + Ωn2)/kn2g2. The range of
the stable dynamics of Dm-PLL can be obtained by applying the conditions obtained
in (5) and (6), by putting Ωe f f , as (Ωn1 + Ωn2). Closed loop frequency transfer
function of TO-PLL is obtained as,

H3(s) = kn2g2
kn2g2 + sT + (3 − g2)s2T 2 + s3T 3

(16)
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In this case also amplitude transfer function of H3(s) and spectrum of z2 are to be
estimated to examine the response of demodulator. These are described in following
section.

3.3 Numerical Simulation

To studyDm-PLL response numerically,we takeM-PLLdescribed by (10) and adjust
loop parameters to get periodic or chaotic self oscillations of control signal. State
equations of SO-PLL-based demodulator are given in (12). Modulator-demodulator
response is obtainedby solving thesefive equations, simultaneously.Thusweget time
series data for z1 and z2 for given set of design parameters. Figure9b shows response
of the system with periodic modulation through plot of z1 and z2 (Ωe f f = 0) in the
Cartesian XY plane. One closed elliptic curve indicates demodulation of modulating
signal.Butwith chaoticmodulation, plot of z1 and z2 shown inFig. 9c is a complicated
trajectory containing number of elliptic curves. A chaos is a combination of huge
number of sinusoids having different frequencies and amplitudes and this results
complex curve. We represent amplitude transfer characteristic of H2(s) in Fig. 10,
with selected values of design parameters. We observe that response is not flat in the
band of modulating chaos (shown in Fig. 7a) and so demodulated chaos would be
distorted. Spectrum of z2 obtained from SO-PLL is shown in Fig. 11a, and distorted
output is evident. Thus demodulation of chaos with SO-PLL is not satisfactory.

We study response of TO-PLL-based demodulator in a similar way. Here we take
six state equations (three from (10) and three from (15)) for modulator demodulator
system. We take parameters for M-PLL as taken before and choose Dm-PLL para-
meters as g2 = 1.5, with kn2 = 0.6 andΩn2 = −0.3.We estimate amplitude transfer
function Dm-PLL from H3(s) given in (16). It is shown in Fig. 10 for two differ-
ent time constants (T2) of Dm-PLL. The difference in response is evident in figure.

Fig. 10 Amplitude transfer
function of closed loop PLL
of different orders shown in
same frequency scale
normalized to time
constant T
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Fig. 11 Frequency spectrum
of demodulated chaotic
oscillations by different
demodulators in same
normalized frequency. a
SO-PLL (filter time constant
T ); b TO-PLL (filter time
constant T ); c TO-PLL (filter
time constant 0.5T )

(a)

(b)

(c)
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When T2 is equal to that of M-PLL, response is not flat in the frequency band of
modulating chaos and it emphasizes some higher frequency components of chaos
around characteristic frequency. Thus demodulated chaos would be different from
modulating chaos. However with T2 equal to 0.5T , the flat zone extends; but still
there is greater gain for higher frequency components of z1. This introduces distor-
tion in demodulated signal. Spectrum of demodulated chaos is shown in Fig. 11b, c,
for two values of time constants of TO-PLL demodulator.

4 Modified TO-PLL-Based Demodulator

Motivation behind modifying TO-PLL structure is to have larger tracking and acqui-
sition zones which would lead to better response of demodulator. For this purpose
VCO control signal is modified such that VCO modulation becomes phase as well
as frequency modulation type.

4.1 Design Algorithm and System Equation

Figure12 shows proposed design algorithm of modified TO-PLL (MTO-PLL) [39].
Here, VCO control signal is taken as a sum of z(t) and time derivative of y(t). Thus,
VCO control signal, zm(t), is written as:

Fig. 12 Block diagram of modified TO-PLL



388 B.C. Sarkar et al.

zm(t) = z(t) + km
dy

dt
(17)

Here km is a new design parameter. Using the expressions of y(t) and z(t) given
in (4b) and (4c), we write time derivative of y(t) as,

dy

dt
= dz

dt
+ T

d2z

dt2
(18)

This means that zm(t) is proportional to z(t), dz/dt and d2z/dt2, where z(t) is
conventional control signal. In effect VCOoutput signal ofMTO-PLL is frequency as
well as phase modulated by signals proportional to loop phase error. Due to proposed
circuit modification effective transfer function of loop filter in complex frequency
(s) domain, written as Fm(s), is obtained as,

Fm(s) = km(s2T 2 + sT ) + g

s2T 2 + (3 − g)sT + 1
(19)

Normalized time evolution equation for x2 in MTO-PLL is obtained as,

dx2
dτ

= Ωn2 − kn2z − kn2km
dy2
dτ

(20)

Using Eqs. (17)–(19), we get the normalized state equations for MTO-PLL-based
demodulator as,

dx2
dτ

= Ωn2 − kn2km sin(x2) − kn2km(g2 − 2)y2

− kn2

[
1 − km

(
g2 − 1

g2

)]
+ kn1z1 (21a)

dy2
dτ

= sin(x2) + (g2 − 2)y2 − (g2 − 1/g2) z2 (21b)

dz2
dτ

= g2y2 − z2 (21c)

For, steady state values of x2, y2 and z2 for z1 = 0 are sin−1 μ, μ and μg respec-
tively,where,μ = Ωn2

kn2g2
. These values are identical to those of TO-PLL-based demod-

ulator indicating that steady state response ofMTO-PLLwould not change.However,
the additional control term in MTO-PLL would influence its transient response. For
a non-zero time invariant z1, effective frequency off-set has to taken as described
earlier. Closed loop frequency transfer function of TO-PLL is obtained as,

H3m(s) = kn2g2 + kmkn2sT + kmkn2s2T 2

kn2g2 + sT (1 + kmkn2) + (3 − g2 + kmkn2)s2T 2 + s3T 3
(22)
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We obtain amplitude transfer function of H3m(s) and spectrum of z2 to examine
the response of demodulator.

4.2 Numerical Simulation

Dynamics of MTO-PLL with modulation-free input signal is studied numerically by
putting z1 = 0 in (21a). Stability of fixed point of state variables are obtained and
shown in Fig. 13a.While compared to basic TO-PLL (km = 0), increased stable zone
forMTO-PLL (km = 1) is evident. Further the ability ofMTO-PLL to acquire a stable
state from unlocked state is estimated by performing simulation with suitable initial
values of effective frequency offset. Results are shown in Fig. 13b which shows
increased range of acquisition range. These observations indicate better transient
response as well as tracking ability of modified loop.

To study response of MTO-PLL-based demodulator we take a total of six state
equations, three from (10) and three from (21), for modulator demodulator system.

Fig. 13 Parameter space
showing different dynamical
states of MTO-PLL in
different colors. 9 indicates
stable state and 0 indicates
chaotic state. a For tracking
and b for acquisition modes
of operation of MTO-PLL

(a)

(b)
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Fig. 14 Amplitude transfer
function of closed loop
MTO-PLL in same
normalized frequency as
given in Fig. 11

We choose parameters for M-PLL as taken before for self-generation of periodic and
chaotic oscillations. For Dm-PLL parameters are taken as g2 = 2.1, kn2 = 0.6 and
Ωn2 = −0.3. We estimate amplitude transfer function Dm-PLL from H3(s) given in
(16). It is shown in Fig. 14 for time constant of Dm-PLL filter taken half of that of
M-PLL filter. This has been done to increase the flat zone of amplitude response and
it extends even though we have enhanced filter gain value. Spectrum of demodulated
chaos is shown in Fig. 15b, and it has fair similarity with modulating chaos spectrum
shown in Fig. 7a. We plot z1 − z2 curve for MTO-PLL (Fig. 15a) and observe it has
structural similarity with z1 − y1 plot of M-PLL with chaotic modulation. We note
that z1 and y1 are signals with phase shift between them because of the integrating
action. Similarly in a synchronized demodulation condition z1 and z2 are phase
shifted versions of one another. This is the reason of similar structures of attractor
shown Fig. 5a, b.

Next we estimate parameter zone for possible detection of chaos using the con-
cept of generalized synchronization (GS) [1]. Concept of GS is well documented in
literature. We consider more than one demodulators having identical design para-
meters but operating with different initial conditions. They are operating in the face
of a common input FM signal. If in steady state, error between two corresponding
state variables of two demodulators be zero or constant of time, we conclude GS has
taken place between modulator and demodulator. Mathematically in this situation
z2 would be a function of z1. Detection of modulating chaos would be possible for
a range of parameter values used to design Dm-PLLs. In Fig. 16 the shaded regions
of parameter space where GS would take place [43]. Figure16a shows the region
for TO-PLL based demodulators and Fig. 16b shows the same for MTO-PLL based
demodulator. It shows increased range of design parameters where GS is possible in
MTO-PLL-based demodulator.
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(a)

(b)

Fig. 15 Response of MTO-PLL based demodulator. a z1 − z2 plot of demodulator; b Frequency
spectrum of demodulated signal

5 Hardware Experiment

This section describes results of experimental verification of responses of PLL-
based modulators and demodulators under study. Prototype hardware circuits are
fabricated using some off-the-shelf ICs in RF frequency range. Signal generators,
having external frequency modulation facility, are used as loop VCOs. Frequency
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(a) (b)

Fig. 16 Parameter space showing state of generalized synchronization (shaded zone) between
modulating and demodulated chaos. a TO-PLL, b MTO-PLL

modulation sensitivity of these VCO are experimentally determined. Time constant
of PLLs, amplitude and frequency of input reference signal and VCO signals are
suitably chosen.With these values of signal and loop parameters, experimental values
of the normalized frequency offset and the loop gain are calculated. We perform
experiments to examine following properties of the system:

• Conditions of self-oscillation of TO-PLL and MTO-PLL are verified;
• Periodic and chaotic attractors of unstable TO-PLL are experimentally obtained;
• Demodulation capability of TO-PLL based demodulator is experimentally veri-
fied;

• Response of MTO-PLL-based demodulator is examined and its capability is com-
pared with that of TO-PLL-based demodulator.

Adjusting Ωn1 and kn1 at 0.22 and 0.38, we vary g1 from 1.0 in the increasing
direction and observe that the control signal in the feedback path of the Modulator
PLL breaks into self-oscillation in period-1 mode at g1 = 2.1. This observation is
consistent with analytical prediction. Next we go on increasing g1 and note that the
control signal bifurcates in period doubling route and ultimately becomes chaotic.
Figure17a shows experimentally obtained periodic attractor and power spectrum of
corresponding frequencymodulatedVCOoutput. Observations for chaotic condition
of control signal is shown in Fig. 17b where we have depicted chaotic attractor and
frequency modulated VCO output in this situation.

We study demodulation capability of TO-PLL-based demodulator with normal-
ized parameters as, Ωn2 = 0.33, kn2 = 0.53 and g2 = 2.33. With these values Dm-
PLL is in stable zone of operation. The demodulator response in this situation is
shown in Fig. 18a for period-1 type self-oscillation in modulator (Ωn1 = −0.27,
kn1 = 0.36). Obtained traces indicate that two signals are in a state of constant phase
difference and so TO-PLL based demodulator is able to detect periodic modulation.

Then we study the response of proposed MTO-PLL and its demodulation capa-
bility. We measure stable zone of operation of the loop with Ωn2 = 0.33, kn2 = 0.53
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(a)

(b)

Fig. 17 Experimental results for TO-PLL-based modulator. a Periodic self oscillation, b chaotic
self oscillation

and increasing g2. It is found that MTO-PLL remains stable for g2 up to 2.070,
but unmodified TO-PLL becomes oscillatory at g2 = 1.794. Observations are sim-
ilar for other loop parameters also. Demodulated signals obtained from MTO-PLL
demodulator with time constant T and 0.5T are shown in Fig. 18b, c for periodic
self-modulation. Here T is time constant of modulator PLL. An improved response
is evident in Fig. 18c, as compared to that shown in Fig. 18a, b. For chaotic modula-
tion signal, obtained traces for MTO-PLL are better than TO-PLL because of better
transient response and larger tracking zone MTO-PLL. But we have not included
them for poor photographs.

6 Discussion

In this work we discuss unstable dynamics of resonant second order filter based TO-
PLL and generation of self oscillations in periodic and chaotic modes. Consequences
of oscillations in feedback control path are discussed in details to design PLL-based
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Fig. 18 Experimental
results showing response of
demodulators based on
different PLLs for periodic
modulation. a TO-PLL, b
MTO-PLL c MTO-PLL with
reduced time constant

(a)

(b)

(c)
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FM modulators. By tuning a single design parameter, PLL can be driven to chaotic
mode in a period doubling route. Additional gain and phase shift of loop filter around
characteristic frequency is the cause of unstable dynamics of TO-PLL. We have
discussed stability of fixed point and obtained tracking range of a locked PLL and also
acquisition range has been obtained by numerical simulation when loop is initially
unlocked and then goes to locked state. Difference between these two ranges has been
shown and hysteresis around transition boundary confirms the possibility of chaos
generation in this range. Unstable TO-PLL could be used as a FM demodulator but
modulation index as well as frequency of modulating signal would be dependent
on loop design parameters. Availability of multiple design parameters would be of
much help for a system designer.

Applicability of PLL-based demodulators to detect self-generated oscillation
modulated FM signal is examined in details. In general responses of demodula-
tors degrade for chaotic modulating signals. Large number of component signals in
broad bandwidth of a chaotic signal is main cause of degradation. Demodulator PLLs
frequency pass band should be flat and as wide as modulating signals bandwidth.
With this motivation of design a modified TO-PLL is used as demodulator and bet-
ter responses are obtained. Physically, loop filter of MTO-PLL becomes effectively
proportional integrating and derivative (PID) control type due to proposed structure
modification and leads to improved response of demodulator.We have examined per-
formances of modulator and demodulator through prototype hardware experiment.
Obtained results agree well with analytical and numerical observations.

7 Conclusion

The study reported in this chapter leads to following conclusions.

1. Unstable mode dynamics of a resonant filter based TO-PLL is rich in complexi-
ties but predictable and reproducible. It transits from single period oscillation to
chaotic oscillation through period doubling route. As long as the PLL remains in
a locked condition to its input reference signal, VCO output can be treated as a
frequency modulated signal by self generated oscillations of VCO control signal.

2. Inherent phase shift in the resonant filter is primarily responsible for in-stability
in loop operation. A zone of hysteresis is found in the region of transition from
stable state to unstable state. This gives acquisition range of loop less than tracking
range.During acquisition process loopmay go into an oscillatory state,mentioned
as “false lock” in literature.

3. Detection of self-generated oscillations of an unstable PLL is possible in a PLL-
based FM demodulator. Frequency modulated VCO output of unstable PLL is
taken as input of demodulator PLL. While detection is easy for periodic self
modulation, for chaotic self-modulation undistorted detection is a bit difficult.
Bandwidth of PLL demodulator is to be large having flat amplitude response
in the frequency band of modulating chaos. Conventional SO-PLL or a TO-
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PLL introduces unavoidable distortions to detected chaos; hence proper detection
becomes difficult.

4. Modified TO-PLL is studied which has larger acquisition and tracking zones as
well as wide flat amplitude response band width. MTO-PLL has better demodu-
lation capability and can be used for detection of self generated chaos modulated
signals.

5. MTO-PLLs loop filter has the properties of proportional-integrating-and-
derivative controller. This is the reason of its improved performance. Hardware
required for MTO-PLL implementation is not much complex from that of a con-
ventional TO-PLL. So it will be an attractive demodulator of FM signals in gen-
eral.

Present study suggests that self oscillatory PLLs can be employed in chaos based
communication systems. It has potential of controlled chaos generation as well as it
provides chaosmodulated signals. Changing a gain parameter of the loop electrically,
one can map zero-one bit stream of a data sequence into different type of oscillatory
signals either periodic or chaotic having different attractors. This can be used in
secure communications. Moreover demodulation capability of PLL is studied in this
chapter and it is shown that modified TO-PLL could be a useful detector of FM
signals. Further studies are required in this direction.

Acknowledgments Authors thankfully acknowledge the infrastructural support provided by
Physics department, Burdwan University to carry out this work. They also acknowledge the assis-
tance of Mr. Debdeep Sarkar in different ph1ases of preparation of manuscript.

References

1. Abarbanel HDI, Rulkov NF, Sushchik MM (1996) Generalized synchronization of chaos: the
auxiliary system approach. Phys Rev E 53(5):4528

2. AI-Araji SR, Hussain ZM, AI-Qutairi MA (2006) Digital phase locked loops, architecture and
applications. Springer, Berlin

3. Banerjee T, Sarkar BC (2006) A new dynamic gain control technique for speed enhancement
of digital phase locked loops. Signal Process 86(7):1426–1434

4. Banerjee T, Sarkar BC (2008) Chaos and bifurcation in a third-order digital phase locked loop.
AEU: Int J Electron Commun 62(6):459–463

5. Benjamin CK (1995) Automatic control systems. Prentice Hall, Englewood Cliffs
6. Bernstein GM, Liberman MA, Lichtenberg AJ (1989) Nonlinear dynamics of a digital phase

locked loops. IEEE Trans Commun 37(3):1062
7. Best RE (2003) Phase-locked loops: design, simulation and applications. McGraw-Hill, New

York
8. Best RE, Kuznetsov NV, Leonov GA, Yuldashev MV, Yuldashev RV (2014) Nonlinear analy-

sis of phase-locked loop-based circuits, discontinuity and complexity in nonlinear physical
systems. Springer, Berlin

9. Biswas BN (1988) Phase lock theories and applications. Oxford and IBH Publishers, New
Delhi

10. Bueno AM, Rigon AG, Ferreira AA, Piqueira JRC (2010) Design constraints for third-order
PLL nodes in master-slave clock distribution networks. Commun Nonlinear Sci Numer Simul
15(9):2565–2574



Unstable PLL-Controller as FM Modulator and Detection … 397

11. Crawford JA (2008) Advanced phase-lock techniques. Artech House, Boston
12. Curran PF, Chuang B, Feely O (2013) Dynamics of charge-pump phase-locked loops. Int J

Circuit Theory Appl 41(11):1109
13. Dandapathak M, Sarkar S, Sarkar BC (2014) Nonlinear dynamics of an optical phase locked

loop in presence of additional loop time delay. Int J Light Electron Opt Optik 125:7007–7012
14. De B, Sarkar BC (2008) Nonlinear dynamics of nonlinear amplifier based delayed PLL incor-

porating additional phase modulator. Int J Electron 95(9):939–949
15. DmitrievAS,KletsovAV,KuzminLV (2008)Generation ofRF chaoswith PLLcircuit.Uspekhi

Sovremennoy Radioelektroniki (in Russian) 46
16. Endo T (1994) A review of chaos and nonlinear dynamics in phase locked loops. J Frankl Inst

331(6):859–902
17. Gardner FM (2005) Phase lock techniques. Wiley, Hoboken
18. Harb BA (2014) Effect of time delay on the pull-in range of phase locked loops. J Vibroeng

16(1):369–377
19. Harb BA, Harb MA (2004) Chaos and bifurcation in third-order phase-locked loop. Chaos

Solitons Fractals 19(3):463–698
20. Hati A, Sarkar BC (1999) Pump current modulated charge pump PLL. Electron Lett

35(18):1498–1499
21. Kennedy MP, Rovatti R, Setti G (eds) (2000) Chaotic electronics in telecommunications. CRC

Press, Boca Raton
22. Korsinova MV, Matrosov VV, Shalfeev VD (1999) Communications using cascade coupled

phase-locked loop chaos. Int J Bifurc Chaos 9(5):963–973
23. Kudrewicz J, Wasowicz S (2007) Equations of phase locked loops: dynamics on the circle,

torus and cylinder. World Scientific, Singapore
24. Lee T (1998) The design of CMOS radio frequency integrated circuits. Cambridge University

Press, Cambridge
25. LeonovGA,KuznetsovNV, Seledzhi SM (2009)Nonlinear analysis and design of phase-locked

loops. Automation control theory and practice. In-Tech
26. Leonov GA, Kuznetsov NV, Yuldashev MV, Yuldashev RV (2012) Analytical method for

computation of phase-detector characteristic. IEEE Trans Circuits Syst Part II 10:633
27. Lindsey WC (1972) Synchronization systems in communication and control. Prentice Hall,

Englewood Cliffs
28. Lindsey WC, Chie CM (1981) A survey of digital phase lock loops. Proc IEEE 69(4):410–431
29. Matrosov VV (2006) Nonlinear dynamics of phase-locked loop with the second-order filter.

Radio phys Quantum Electron 49(4):322–332
30. Ogata K (2002) Modern control engineering. Prentice Hall, Upper Saddle River
31. Piqueira JRC (2009) Using bifurcations in the determination of lock in ranges for third-order

phase-locked loops. Commun Nonlinear Sci Numer Simul 14:2328
32. Qananwah QM, Malkawi SR, Harb A (2008) Chaos synchronization of the third-order phase-

locked loop. Int J Electron 95:799–803
33. Razavi B (1996) Monolithic phase locked loops and clock recovery circuits. IEEE Press, New

York
34. RazaviB (2005)Designof analogCMOS integrated circuits. TsinghuaUniversityPress,Beijing
35. Rohde UL (1983) Digital PLL frequency synthesizers theory and design. Prentice Hall, Engle-

wood Cliffs
36. Sarkar BC (1990) Phase error dynamics of a first order Phase Locked Loop in the presence of

co-channel tone interference and additive noise. IEEE Trans Commun 38(7):962–965
37. Sarkar BC, Banerjee T (2006) Speed enhancement of a class of digital phae locked loops by

dynamic gain control technique. Int J Electron Commun (AEU) 60:539–544
38. Sarkar BC, Chakraborty S (2014) Self-oscillations of a third order PLL in periodic and chaotic

mode and its tracking in a response PLL. Commun Nonlinear Sci Numer Simul 19(3):738–749
39. Sarkar BC, Chakraborty S (2015) Chaotic oscillations in a third order PLL in the face of two

co-channel signals and its control. Spec Issue J Eng Sci Technol Rev (JESTR) 8(2):68–73



398 B.C. Sarkar et al.

40. Sarkar BC, Chattopadhyay S (1988) Novel quick response digital phase locked loops. Electron
Lett 24(20):1263–1264

41. Sarkar BC, De B (1998) Effect of additional loop time delay on the performance of a nonlinear
amplifier-based PLL with and without phase modulator. Int J Electron 84(4):321

42. Sarkar BC, Hati R (1999) Chaos from a second order PLL in the presence of CW interference.
Electron Lett 35(15):1217–1218

43. Sarkar BC, Sarkar SSD, Banerjee T (2014) Nonlinear dynamics of a class of symmetric lock
range DPLLs with an additional derivative control. Signal Process 94:631–641

44. Schanz MI, Pelster AX (2005) Analytical and numerical investigation of the phaselocked loop
with time delay. J Chaos Solitons Fractals 11

45. Stensby JL (1997) Phase-locked loops: theory and applications. CRC Press, USA
46. Stephens DR (1998) Phase locked loops for wireless communications. Kluwer Academic Pub-

lishers, Boston
47. Wiegand C, Hedayat C, Hilleringmann U (2010) Non-linear behaviour of charge-pump phase-

locked loops. Adv Radio Sci 8:161
48. Wolf A, Swift JB, Swinney HL, Vastano JA (1985) Determining Lyapunov exponents from a

time series. Physica D 16:285
49. Zoltowski M (2001) Some advances and refinements in digital phase locked loops. Signal

Process 81:735–789



Application of Time-Delayed Feedback
Control Techniques in Digital Phase-Locked
Loop

Tanmoy Banerjee and B.C. Sarkar

Abstract In this chapter we investigate how time-delayed feedback control (TDFC)
techniques can be exploited in controlling chaos and bifurcation in a digital phase-
locked loop (DPLL) and thus improve its system response. We use both the TDFC
techniques: The conventional one and its extended version. Using local stability
analysis, two parameter bifurcation studies and two parameter Lyapunov exponent
spectrum we explore the nonlinear dynamics of conventional and controlled DPLLs.
A condition for the optimum value of the system control parameter is derived ana-
lytically for a TDFC based DPLL. We describe the implementation of the extended
time-delayed feedback control (ETDFC) technique in a DPLL. It is observed that the
application of the delayed feedback control technique on the sampled values of the
incoming signal results in the nonlinear time-delayed feedback control on the phase
error dynamics. We establish that, for some suitably chosen control parameters, an
ETDFC based DPLL has a broader stability zone in comparison with a DPLL and
its TDFC version.

1 Intoduction

Control of chaos and bifurcation has been an active field of research for the last
two decades [9, 10, 19, 25]. By controlling chaos and bifurcation one can suppress
the chaotic behavior where it is unwanted (e.g., in power electronics [14, 24] and
mechanical systems [9]), and on the other hand in electronic systems one can exploit
chaos in chaos-based electronic communication systems [15]. The methodology
of controlling chaos in dynamical systems was first introduced in [21] and is well
known as the OGYmethod. In the OGYmethod, a physically accessible parameter is
perturbed to stabilize a desired unstable periodic orbit (UPO) embedded in the phase
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space. In practical applications the OGY-method lacks the robustness as it requires
accurate sampling of a variable at discrete times in order to compare itwith a reference
value and involves discontinuous adjustments of the control parameter. A second
method, known as the time-delayed feedback control (TDFC) algorithm, proposed
by Pyragas [22] is more suitable for practical applications, because in this case no
precise knowledge of either the form of the periodic orbit or the system of equations
is required. Taking into account only the period of the unstable orbit, the system
under control automatically settles on the target periodic motion, and the stability
of this motion is maintained with only small perturbations [23]. Later, in Ref. [27]
the idea of the TDFC algorithm has been modified by introducing the Extended
Time-Delayed Feedback Control (ETDFC) algorithm, which is more effective than
the original one because it can stabilize the UPOs of higher periods.

In this chapter we show how time-delayed feedback control techniques are useful
in a real engineering system, namely Digital Phase-Locked Loop (DPLL). In general
phase locked loops (PLLs) are one of the important building blocks in synchronous
communication systems. A PLL is a nonlinear feedback controlled system [12, 16]
that is widely used in electronic communication systems as in the form of noise
filter, frequency demodulator, frequency synthesizer, etc. PLLs have attracted much
attention in the research community owing to their application potentiality and rich
nonlinear behavior. At the advent of digital communication systems, digital phase-
locked loops (DPLLs) have rapidly replaced the conventional analogue PLLs because
DPLLs overcome some of the problems associated with its analog counterpart [18].
DPLLs are commonly used in frequency demodulators, frequency synthesizers, data
and clock synchronizers, modems, digital signal processors, hard disk drives, etc.
[28]. Many studies on DPLL reveal that the following variants of DPLLs show chaos
and bifurcations: positive zero-crossing DPLL (ZC1-DPLL) [1, 3, 5, 7, 17], uniform
samplingDPLL [28], bang-bangDPLL [11], dual sampler-based zero crossingDPLL
(ZC2-DPLL) [4] and tanlock DPLL [6, 13]. Although several variants of DPLLs
exist in the literature but zero-crossing DPLL (ZC-DPLL), which is a non-uniform
sampling DPLL, is the most popular one due to their less circuit complexity.

Exploring the time-delayed control technique on DPLLs have two-fold goals;
from a designer’s point of view, using the control techniques one can design an
optimum DPLL system. An optimum DPLL is one that has the fastest convergence
behavior, and at the same time a broader frequency acquisition range (FAR). From the
view point of electronic communication system, by generating and characterizing
the chaos from DPLLs in a controlled manner, one can explore the possibility of
using DPLLs in chaos-based electronic communication systems. To simultaneously
achieve both of these goals, one has to apply the techniques of control of chaos and
bifurcation in DPLLs. But a little work has been reported on the control of chaos and
bifurcation of DPLLs.

The present chapter investigates the effect of the delayed feedback control (DFC)
techniques on a first-order positive zero-crossing DPLL (ZC1-DPLL). We consider
both the ETDFC technique of chaos control and its original version, namely, the
TDFC technique. Toproceed in a systematicmanner,we start by exploring the nonlin-
ear dynamics of a ZC1-DPLL in the parameter space using two parameter bifurcation
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diagrams and two parameter Lyapunov exponent spectrum. Next, the TDFC algo-
rithm on a ZC1-DPLL is explored in the parameter space. Also, an estimate of the
optimum value of the control parameter is derived analytically. Finally, we describe
the controller design algorithm for an ETDFC based ZC1-DPLL (ETDFC-DPLL).
A stable zone of operation is identified with the help of local stability analysis, two
parameter bifurcation diagrams and two-parameter Lyapunov exponent spectrum. It
is found that, for some suitably chosen control parameters, an ETDFC-DPLL has an
extended stability zone in comparison with a conventional ZC1-DPLL and a TDFC-
DPLL, which will make the ETDFC-DPLL more superior for practical applications.

This chapter is organized in the following manner: The next section describes
the structure, system equation formulation and stability analysis of a ZC1-DPLL.
Also, the system dynamics in the parameter space is reported here. In Sect. 3, the
TDFC algorithm is described and a local stability analysis is performed. The two
parameter bifurcation diagram and Lyapunov exponent spectrum are explored. Also,
the condition of optimality is derived analytically. Section4 describes the ETDFC
algorithm on a ZC1-DPLL. The stability analysis is followed by the parameter space
exploration of the system; numerical search for the optimum control parameter is
carried out in this section. Finally, Sect. 5 summarizes the outcome and importance
of the study.

2 ZC1-DPLL

2.1 Structure and System Equation Formulation

The functional block diagram of a ZC1-DPLL is shown in Fig. 1. A ZC1-DPLL
consists of a sample and hold (S/H) block, a loop digital filter (LDF) and a digitally
controlled oscillator (DCO). The incoming signal e(t) is given by: e(t) = s(t) + n(t),
where s(t) is the sinusoidal reference signal andn(t) is a noise or unwanted continuous
wave interference signal. Let us consider a noise free and interference free (i.e.,n(t) =
0) unmodulated incoming signal of amplitude A0, written in term of the angular
frequency (ω0) of the DCO as,

e(t) = A0 sin(ω0t + θ(t)). (1)

Here we make the substitution θ(t) = (ωi − ω0)t + θ0. Where ωi is the angular
frequency of the incoming signal and θ0 is a constant phase part. e(t) is sampled
by the sampler at the positive zero crossing edges of the incoming signal at the
time instants tk . The time elapsed between the (k − 1)th and kth instants is given by
Tk = tk − tk−1. The sampled value of e(t) at tk is given by xk = e(tk). The sequence
of the samples {xk} is filtered by the LDF, which produces the control signal {yk} that
in turn controls the period of the DCO at the (k + 1)th instant with the following
algorithm [1]:
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Fig. 1 Functional block
diagram of a ZC1-DPLL

Tk+1 = T − yk, (2)

where T(= 2π/ω0) is the nominal period of the DCO. Taking t(0) = 0, one can get
the sampling instants tk as,

tk = kT −
k−1∑
0

y(i). (3)

We define the phase error φk at the kth instant as:

φk = θk − ω0

k−1∑
0

y(i). (4)

where θk = θ(tk). Now, for a first-order ZC1-DPLL the LDF is a zeroth order digital
filter having only a memory less gain element of gain G0. Thus the control signal yk

is simply given by: yk = G0xk . This in turn gives the following phase error equation
of a first-order ZC1-DPLL,

φk+1 = Λ0 + φk − K1ξ sin(φk) (5)

where we define ξ = ωi/ω0 (normalized frequency of the incoming signal), Λ0 =
2π(ξ − 1); K1 is substituted in place of A0ω0G0, which is defined as the closed loop
gain of a 1st-order ZC1-DPLL.

2.2 Stability Analysis

We study the dynamics of Eq. (5) near the fixed point, which is a stable phase-locked
state, φs given by

φs = arcsin(Λ0/ξK1) (6)
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For a stable loop operation the condition Λ0 ≤ ξK1 should be obeyed. The system
will converge to the fixed point φs if the condition |f ′

(φs)| < 1 is satisfied, which in
turn gives,

|1 − ξK1 cos(φs)| < 1. (7)

For a phase step input (i.e., if the incoming signal frequency and DCO frequency
coincide) ξ = 1 and one has two stationary solutions, φs = 2jπ and φs = (2j + 1)π
(j = 0, 1, 2, . . .). The former solution is asymptotically stable and the latter solution
is Lyapunov unstable [17]. Also, the behavior of the orbits generated by Eq. (5) is
bounded by only those φks that do not leave the segment [−π,π] as k grows larger.
So, the stability condition of a ZC1-DPLL in the face of a phase step input is given
by [20],

0 < K1 < 2 (8)

Also, for a frequency step input (i.e., ωi �= ω0 or ξ �= 1), the stability condition of the
loop can be obtained as:

0 < (K1ξ)
2 − Λ2

0 < 4 (9)

If the system and signal parameters are restricted within the region given by Eqs. (8)
and (9), the loop will converge asymptotically to the period-1 fixed point. The opti-
mum loop operation can be achieved by making |f ′

(φs)| = 0, which gives the con-
dition of fastest convergence as: ξK1 = 1.

Following observations can be made from the above results: φs is small for a large
K1 (Eq. (6)). Since ξ is a measure of the FAR, thus to get a large FAR, one has to
make K1 large. But K1 can not be increased beyond a certain limit, otherwise the
system becomes unstable. Also, a larger K1 results in a poorer convergence behavior
of the system. These are the inherent limitations of a ZC1-DPLL. A designer’s goal
is to design a ZC1-DPLL that will be stable even for a large K1, which ensures a
small φs and a large FAR; subsequently, it has to be ensured that the system response
should not get slower even for a large K1.

2.3 Two Parameter Bifurcation and Lyapunov
Exponent Spectrum

Figure2 shows the two parameter (2-D) bifurcation diagram in the K1 − ξ parameter
space. It shows that with the deviation of ξ from unity, K1 has to be made large in
order to get a stable locked state (i.e., period-1 state). Further, with an increasing
K1, beyond a certain value of K1, the system losses its locked state through a period
doubling bifurcation. For a quantitative measure we compute the Lyapunov exponent
(LE) [26] of the system, which is defined by:
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Fig. 2 Two parameter bifurcation diagram in the K1 − ξ parameter space. Black zone indicates the
chaotic or higher periodic solutions. Numbers in the color-box indicate the period of oscillations

Fig. 3 Two parameter Lyapunov exponent spectrum in the K1 − ξ parameter space, white zone
indicates the chaotic region

λ = limN→∞
1

N

N∑
i=1

ln |1 − ξK1 cos(φi)| (10)

We take the number of iterations N = 20,000 skipping the first 5000 iteration to
allow the transients to settle down. The spectrum of negative LEs in the parameter
space is shown in Fig. 3, which agreeswith the 2-D bifurcation diagram.Note that, for
ξ = 1 and K1 = 1, the LE is minimum (from the color code of Fig. 3) that indicates
the optimum (i.e., fastest) loop operation. White zone corresponds to the positive
LE, which ensures the occurrence of chaos in the system. Figure4 shows the single
parameter (1-D) bifurcation diagram of φk with K1 as the control parameter for
ξ = 1.1. It shows that the period-1 locked state losses its stability through a period
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Fig. 4 Bifurcationdiagram (red) andLyapunov exponent (λ) (blue)withK1 as the control parameter
(ξ = 1.1)

doubling bifurcation at K1 = 1.906; with increasing K1 the system enters into the
chaotic zone through a cascade of period doubling bifurcations. The corresponding
LE is also shown in the same figure that is in accordance with the 1-D bifurcation
diagram. Further, we can see that the 1-D and 2-D bifurcation diagrams agree with
each other.

3 Time-Delayed Feedback Controlled ZC1-DPLL
(TDFC-DPLL)

3.1 Controller Design

Figure5 shows a ZC1-DPLL with the TDFC algorithm (TDFC-DPLL). The TDFC
algorithm is realized on the sampled values xk of the ZC1-DPLL. In a TDFC-DPLL
a time-delayed feedback controlled signal is generated by subtracting the sampled
value at the (k − 1)th instant (i.e., xk−1) from that at the kth instant (i.e., xk) with
some weight factor β; that is, the TDFC signal is given by: xtd

k = β(xk − xk−1). The
LDF input signal xc

k at the kth sampling instant is the sum of xk and xtd
k (unlike a

ZC1-DPLL, where the LDF input signal is simply xk); that is,

xc
k = xk + xtd

k . (11)

xc
k is filtered by a zeroth order LDF and its output, yc

k = G0xc
k , is used to control

the period of the DCO. Using the similar arguments of the previous section one can
easily arrive at the following phase error equation of a TDFC-DPLL:

φk+1 = Λ0 + φk − K1ξ sin(φk) − K1ξβ(sin(φk) − sin(φk−1)) (12)

If we put β = 0, system Eq. (12) reduces to that of a ZC1-DPLL, i.e., Eq. (5).
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Fig. 5 Block diagram of a
TDFC-DPLL. The delay
block indicates a unit delay

An interesting observation can bemade fromEq. (12), the application of theTDFC
algorithm on the sampled values xk finally results in the nonlinear time-delayed
feedback control (NL-TDFC) algorithm on the system phase error dynamics. One
can expect that the exact analytical solution for the ZC1-DPLL based on this NL-
TDFC algorithm is difficult, and where impossible, we have to resort to numerical
tools.

3.2 Stability Analysis

For the local stability analysis of Eq. (12) around the fixed pointφs we define two new
state variables as pk = φk and qk = φk+1, and we can write the following relations:

(
pk+1

qk+1

)
=

(
qk

Λ0 + qk − K1ξ sin(qk) − K1ξβ(sin(qk) − sin(pk))

)
(13)

As can be seen from Eq. (12), a TDFC-DPLL and a ZC1-DPLL have the same steady
state phase error φs. To investigate the local stability, one has to define the Jacobian
near φs:

J =
(

0 1
K1ξβ cos(φs) 1 − K1ξ(1 + β) cos(φs)

)
(14)

The characteristic equation is given by:

z2 − J2z − J1 = 0. (15)

where we use the following substitutions: J1 = K1ξβ cos(φs) and J2 = 1 − K1ξ
(1 + β) cos(φs). The Jury stability criteria for the stable loop operation are:

| − J1| < 1 (16a)

1 − J2 − J1 > 0 (16b)

1 + J2 − J1 > 0 (16c)
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Fig. 6 Analytical stability zone (shaded region) in K1 − β space with ξ = 1.1

Using the above criteria, the following stability conditions for a TDFC-DPLL can
be derived:

0 < (K1ξ)
2 − Λ2

0 <
4

(1 + 2β)2
(17a)

|β2((K1ξ)
2 − Λ2

0)| < 1. (17b)

Equation (17) is graphically shown in Fig. 6, which shows the stable locked state of
the system in the K1 − β parameter space for ξ = 1.1. It can be seen that, a negative
value of β has to be chosen such that for a given ξ, K1 can be made large without
making the system unstable. For example, if we take β = −0.246, for ξ = 1.1 one
has Kmax

1 = 3.624, where Kmax
1 is the largest possible value of K1 in a stable locked

condition (at this conditionKmax
1 for a ZC1-DPLL is 1.906). Thus, for a TDFC-DPLL

we have a larger K1 value compared to that of a ZC1-DPLL in the stable locked state
of operation.

3.3 Two Parameter Bifurcation and Lyapunov Exponent
Spectrum

To explore the dynamics of a TDFC-DPLL we employ bifurcation diagrams in the
two-dimensional parameter space. In practical cases frequency of the incoming signal
does not coincidewith theDCOfrequency, i.e.,most of the signal inputs are frequency
step in nature (i.e., ξ �= 1); the phase step input (ξ = 1) is only a special case. So,
in our numerical exploration, we consider the frequency step input with ξ = 1.1.
Two-parameter bifurcation diagram in theK1 − β parameter space is shown in Fig. 7,
which shows that there exists a certain value of β for which a TDFC-DPLL allows the
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Fig. 7 Two parameter bifurcation diagram in the K1 − β parameter space with ξ = 1.1. Black zone
indicates the chaotic or higher periodic solutions

Fig. 8 Two parameter largest Lyapunov exponent (LE) spectrum, white zone indicates the chaotic
region. (ξ = 1.1)

largest loop gain K1 (say Kmax
1 ) under the stable locked state, i.e., period-1 state. For

example, in this figure one has Kmax
1 = 3.624 for β = −0.246, which agrees with

the stability analysis of the previous subsection. For a quantitative support to the
2-D bifurcation diagram, we compute the largest Lyapunov exponent (LE) spectrum
in the K1 − β space; Fig. 8 depicts the negative largest LE spectrum. White zone
indicates the zone of positive LEs, i.e., the chaotic zone of the system. It agrees with
the 2-D bifurcation diagram.

Bifurcation diagramwithK1 as the control parameter, with β = −0.246, is shown
in Fig. 9, which shows that the system losses the locked state through a period dou-
bling bifurcation atK1 > 3.624 that is in accordancewith the 2-Dbifurcation diagram
and the stability analysis. The same figure shows the variation of the largest LEs with
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Fig. 9 Bifurcation diagram (red) and largest LE (λmax) (blue) with K1 as the control parameter
(ξ = 1.1, β = −0.246)

Fig. 10 Real time variation of phase error (with ξ = 1.1) a K1 = 3.62, β = −0.246 b K1 = 3,
optimum value β = −0.198 c K1 = 3, non-optimum value β = −0.24

K1, that also agrees with the 2-D LE spectrum in the parameter space (i.e., Fig. 8).
Time variation of φk is shown in Fig. 10a for K1 = 3.62 and β = −0.246, which
shows that the system converges to a locked state (i.e., period-1 state), whereas at
this large value of K1 a conventional ZC1-DPLL becomes chaotic.
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3.4 Optimum Value of β

Two parameters are commonly used to characterize the performance of a ZC1-DPLL,
one is the frequency acquisition range (FAR) and the other one is the convergence
time (CT) of the system to the steady state. In a practical situation it is necessary that
a ZC1-DPLL must have a large FAR, and at the same time a small CT. It has been
observed that, for a conventional ZC1-DPLL, the FAR increases with increasing
loop gain parameter K1, but the CT is minimum for K1ξ = 1; the CT increases with
increase of K1 [2]. Thus, a faster transient response and a broader acquisition range
can not be achieved simultaneously in a ZC1-DPLL. Since in a TDFC-DPLL one
can extend the largest possible value of K1 in the stable locked zone, then at this large
value of K1, the CT will be increased. Thus, in a TDFC-DPLL we have to search
for an optimum value of β for which the response of the system is fastest even for a
large K1. It has been shown in Refs. [8, 24] that to achieve the optimum condition
we have to find out the parameter values for which the spectral radius of J of Eq. (14)
is minimum, which is equivalent to make the discriminant of J equal to zero, i.e.,

J2
2 + 4J1 = 0 (18)

That gives the optimum value of β as:

β = − 1√
L

((
√

L + 1) − 2L
1
4 ), (19)

where, L = (ξK1)
2 − Λ2

0.
For example, according to Eq. (19), for ξ = 1.1 and K1 = 3, the optimum value

of β is −0.198. Figure10 b, c shows the real time convergence behavior of a TDFC-
DPLL for an optimum and non-optimum value of β, respectively. It can be seen that
the CT is lesser for the optimum value of β. Using Eq. (19) we plot Fig. 11 that shows

Fig. 11 Optimum value of β in the K1 − ξ parameter space. White region indicates the out of
locked states
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the optimum values of β in the K1 − ξ parameter space. From the color map it can
be observed that, for a particular value of ξ, if we increase K1, the optimum value of
|β| increases; also, this increasing nature is observed for a value of ξ far from unity
with a fixed K1.

4 Extended Time-Delayed Feedback Controlled
ZC1-DPLL (ETDFC-DPLL)

4.1 Controller Design

Figure12 shows the Extended Time-Delayed Feedback Controlled ZC1-DPLL
(ETDFC-DPLL) along with the controller design algorithm. The ETDFC technique
extends the effect of many previous states to the present output with a decaying
weight as we go further in the past [27]. Note that, to achieve this goal only two unit
delay elements are used. The controller output xetd

k is defined as:

xetd
k = β

(
xk − (1 − r)

k∑
l=1

r(l−1)xk−l

)
(20)

Note the limit of the new control parameter r: 0 ≤ r < 1. For r = 0, an ETDFC-
DPLL reduces to a TDFC-DPLL. Here the input to the LDF is,

xc
k = xk + xetd

k , (21)

For convenience, let us redefine xetd
k as: xetd

k = ζk . Then one can write,

ζk = β(xk − xk−1) + rζk−1 (22)

i.e., the input to the LDF can be written as

xc
k = xk + β(xk − xk−1) + rζk−1 (23)

Fig. 12 Block diagram of an
ETDFC-DPLL. Delay blocks
indicate unit delay
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The control signal is achieved from the output of the LDF as: yc
k = G0xc

k ; after
simplifications one can arrive at the phase error equation of the system:

φk+1 = Λ0 + φk − K1ξ sin(φk) − K1ξβ(sin(φk) − sin(φk−1)) − rξω0G0ζk−1 (24)

Now, let us define ψk = ω0G0ζk . Thus, finally we get the following phase error
equations that describe the system:

φk+1 = Λ0 + φk − K1ξ sin(φk) − K1ξβ (sin(φk) − sin(φk−1)) − rξψk−1 (25a)

ψk+1 = β (sin(φk+1) − sin(φk)) + rψk (25b)

Here also, the application of the ETDFC algorithm on the sampled values xk

finally results in the nonlinear extended time-delayed feedback control (NL-ETDFC)
algorithm on the system phase error dynamics. One can see that, by putting r = 0
in Eq. (25), one gets the phase governing equation of a TDFC-DPLL (i.e., Eq. 12),
also r = 0 along with β = 0 reduce Eqs. (25)–(5), i.e., the phase error equation for
a conventional ZC1-DPLL.

4.2 Stability Analysis

To analyze the stability criteria of an ETDFC-DPLL, let us define αk = φk , ηk =
φk+1. Thus, one gets

⎛
⎝αk+1

ηk+1

ψk+1

⎞
⎠ =

⎛
⎝ ηk

Λ0 + ηk − K1ξ sin(ηk) − K1ξβ(sin(ηk) − sin(αk)) − rξψk

β(sin ηk − sinαk) + rψk

⎞
⎠
(26)

The steady state phase error is same as φs of Eq. (6). The Jacobian of the system
around the fixed point φs is:

J =
⎛
⎝ 0 1 0

J1 J2 J3
−βK1 cos(φs) βK1 cos(φs) r

⎞
⎠ . (27)

Here we define J3 = −ξr. The characteristic equation is given by:

z3 − (J2 + r)z2 − (J1 − J2r + J3βK1 cos(φs))z = 0 (28)

Using the Jury stability analysis, one gets the following stability conditions:
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Fig. 13 Analytical stability zone (colored region) in K1 − r space with β = −0.8 and ξ = 1.1

0 < (K1ξ)
2 − Λ2

0 <
4(r + 1)2

(1 + r + 2β)2
(29a)

|(β + r)
√

(K1ξ)2 − Λ2
0 − r| < 1. (29b)

It is noteworthy that if we put r = 0 in Eq. (29), it reduces to the stability condition
of a TDFC-DPLL (i.e., Eq. (17)). Figure13 shows the analytically obtained stable
locked zone of anETDFC-DPLL (with ξ = 1.1 andβ = −0.8),which shows that one
can have amuch larger value ofK1 (e.g.,Kmax

1 = 16.67 for r = 0.796) in comparison
with a ZC1-DPLL and a TDFC-DPLL.

4.3 Two Parameter Bifurcation and Lyapunov
Exponent Spectrum

Extensive numerical simulation is carried out on an ETDFC-DPLL to explore the
system dynamics in the parameter space. As before, in the numerical simulations we
have chosen a more general input condition, i.e., a frequency step input with ξ = 1.1.
Figure14 shows the two parameter bifurcation diagram in theK1 − r parameter space
with β = −0.8. Numerically obtained period-1 zone agrees with the analytically
obtained stable locked zone (Fig. 13). It can be seen from thefigures that forβ = −0.8
at r = 0.796 we get Kmax

1 = 16.67, which is more than eight (four) times the value
of that of a conventional (TDFC-) ZC1-DPLL. It is found that as β is decreased
Kmax
1 increases with increasing r, which is in accordance with the stability analysis.

Further, to give a quantitative support to the 2-D bifurcation result we have computed
the largest Lyapunov exponent (LE) spectrum in the K1 − r space using time series
analysis. Figure15 shows the region of negative largest LEs (i.e., the non chaotic
region) in the K1 − r parameter space that agrees with the 2-D bifurcation diagram.
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Fig. 14 Two parameter bifurcation diagram in the K1 − r parameter space with ξ = 1.1 and β =
−0.8. Black zone indicates the chaotic or higher periodic solutions

Fig. 15 Two parameter largest Lyapunov spectrum in the K1 − r parameter space (ξ = 1.1), β =
−0.8. White zone indicates the chaotic zone

White zone represents the region of positive LEs that indicates the occurrence of
chaos. 2-D bifurcation diagrams in the β − r parameter space (with K1 = 6) and
K1 − β parameter space (with r = 0.5) are shown in Fig. 16 a and b, respectively.
FromFig. 16awe can see that for a largeK1 one can choose a broad range of parameter
values from the β − r parameter space to get a phase-locked state. The same is true
for theK1 − β parameter space, also. Thus, we can draw an inference that the ETDFC
technique provides options to choose a suitable parameter values to achieve a stable
phase-locked state.

Figure17 shows the bifurcation diagram and largest LE (λmax) of the system with
K1 as the control parameter for β = −0.8 and r = 0.796. It shows that the stable
locked state losses its stability through a period doubling bifurcation at K1 > 16.67
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Fig. 16 Two parameter bifurcation diagram in a β − r parameter space, ξ = 1.1, K1 = 6 b K1 − β
parameter space, ξ = 1.1, r = 0.5. Black zone indicates the chaotic or higher periodic solutions



416 T. Banerjee and B.C Sarkar

Fig. 17 Bifurcation diagram (red) and largest LE (λmax) (blue) with K1 as the control parameter
(ξ = 1.1, β = −0.8, r = 0.796)

Fig. 18 Real time variation of phase error (with ξ = 1.1, β = −0.8) a K1 = 16.60, r = 0.796
b K1 = 12, optimum value r = 0.853 c K1 = 12, non-optimum value r = 0.79

that agrees with the 2-D bifurcation diagram and clearly proves the extension of
stability range (i.e., Kmax

1 ) with the proper choice of the control parameter. From the
figure it is important to note that the steady state phase error (φs) decreases with
increasing K1, e.g., at K1 = 16, φs = 0.035, whereas at K1 = 1 we have φs = 0.570.
Small φs is essential for application of a ZC1-DPLL in the coherent communication
systems. Figure18a shows the time variation of φk for ξ = 1.1, K1 = 16.60, β =
−0.8 and r = 0.796 that shows the convergence of an ETDFC-DPLL to the stable
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Fig. 19 Bifurcation diagram with r. Other parameters are: ξ = 1.1, K1 = 5 and β = −0.6

locked state; whereas at this large value of K1 a TDFC-DPLL or a conventional
ZC1-DPLL become unstable.

Further, we explore the effect of variation of r for fixed K1 and β. We observed
many complex behaviors: An exemplary result is shown in Fig. 19 for ξ = 1.1,
K1 = 5 andβ = −0.6.One can see that the increasing r destabilizes the phase-locked
condition (at r ≈ 0.9) through a period doubling bifurcation. But in the low r regime
the system goes into chaotic mode through a quasiperiodic route (at r ≈ 0.52). It can
be seen that in the quasiperiodic region the value of Lyapunov exponent becomes
zero, which indeed quantify the quasiperiodic behavior.

5 Conclusion

In this chapter we have studied the effect of the ETDFC algorithm and its origi-
nal version, the TDFC algorithm, on a ZC1-DPLL. At first we have explored the
nonlinear dynamics of a ZC1-DPLL in the parameter space. Next, we have investi-
gated the stability criteria of a TDFC and an ETDFC based ZC1-DPLL using local
stability analysis, 2-D bifurcation analysis and 2-D Lyapunov exponent spectrum.
Subsequently, we have identified the optimal condition of operation of the controlled
system. Let us summarize the results obtained in our study and also discuss their
importance from the perspective of practical communication systems:

• We have proved that for some suitably chosen system parameters, the largest
possible value of loop gain under the stable locked condition of an ETDFC-DPLL
is larger than that of a ZC1-DPLL and a TDFC-DPLL (see Eqs. (29), (17) and (9)).
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Thus, by wisely choosing the system control parameters one can extend the stable
locked zone of operation in an ETDFC-DPLL.

• We have identified the optimality condition for which the system can have the
fastest convergence even for a large loop gain parameter K1. Large value of K1

means a large frequency acquisition range (FAR). Thus in an ETDFC-DPLL one
can obtain a large FAR simultaneously with a small CT by choosing the proper
design parameters.

• The inherent disadvantage of a first-order ZC1-DPLL is that, it has a non-zero
steady state phase error for a frequency step input. This nonzero steady-state
phase error gives rise to a phase offset between the input and recovered carrier
that precludes the use of ZC1-DPLLs in a coherent demodulation application.
In an ETDFC-DPLL one can operate in a large K1 value, which ensures a very
small (almost zero) steady state phase error that is advantageous in the coherent
or synchronous communication systems.

• Another inherent limitation of a ZC1-DPLL is that the loop gain depends upon the
incoming signal power (as can be seen from the definition, K1 = A0ω0G0). Thus,
the variation of signal power may make the system unstable [1]. To alleviate this
problem an automatic gain control arrangement is used in the practical ZC1-DPLL
that increases the design complexity and at the same time affects the phase part of
the incoming signal. But as an ETDFC-DPLL can withstand a large K1, thus the
variation of input signal power will be less effective for this loop.

Since all the time delay techniques discussed here can be implemented in hardware
level using the FPGA based systems, thus we believe that the control algorithms can
be tested in real experimental set up.
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Abstract This work deals with the modeling and the control of hybrid systems
by using Mixed Logical Dynamical (MLD) system framework described by inter-
dependent physical laws, logic rules, and operating constraints. These are describe
by linear dynamic equations subject to linear inequalities involving real and inte-
ger variables. The changes which may appear over such dynamics, are modeled by
using the auxiliary variables which take into account the interconnections effects.
The MLD model is used to synthesize the model predictive control law (MPC). The
discrete-time equivalent of the model predicts the hybrid system behavior over a pre-
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1 Introduction

The term “hybrid systems” refers to categories of systems that explicitly involve
simultaneously phenomena or dynamic type models continuous and event type. These
systems are typically composed of continuous processes interacting with or super-
vised by discrete processes. They are also the result of the hierarchical organization
of complex/control systems or interaction between discrete planning algorithms and
control algorithms continuous [17, 18].

In conventional automatic, the control problem is treated differently depending
on the nature of the system to be studied: continuous or discrete. The study and
analysis of the system is based on a set of theories and concepts lead to making
methods and development of effective solutions to the problem of adjustment in
its homogeneous in nature without resorting to solutions and contribution of the
other domain. A general unified theory to model, analyze and design controls for
such systems is not currently available. However, many researchers are working on
subclasses of hybrid systems for which such approaches have been developed [2, 3,
14, 18]. Knowing that industrial processes are complex in nature and are difficult to
control, the engineers use supervision and control systems by sequential controllers
coupled with control loop in the different modes of operation. This operating dynamic
aspect is characterized by a continuous and event nature.

For this purpose, the study of hybrid systems has attracted the attention of the
automation community, as well as that of the IT community. The objectives can be
assigned to the study of SDH hybrid systems are to provide a solution in terms of
models, methods, performance and quality to problems improperly addressed by the
homogeneous or conventional approaches. Indeed, the researcher community has
focused these efforts in three areas: modeling, analysis and control [17].

The concept of hybrid dynamic system HDS appeared first time in [10] in 1987
where the author insists on the need to develop a theory combining continuous and
discrete signals. This need can be applied in many areas:

• The simulation of complex processes composed of several units and continuous
operating modes

• Supervision processes and safe operation of multiple-model systems
• The development of smart controllers, that is to say, continuous controllers but

adapting their response following a discrete logic
• Scheduling and task management for real-time systems
• Modeling the dynamic behavior of the response time systems constrained by their

environment
• The air traffic control
• Robotics,

The hybrid term that refers to the essential coupling continuous and discrete
phenomena in a system such as is shown in Fig. 1. A hybrid dynamic system allows
globally represent the interdependence of continuous/discrete dynamic elements in
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Fig. 1 Coupling of continuous and discrete phenomena in a hybrid dynamic system

the classical sense of differential equations or difference equations, subject to discrete
decision points deterministic or discrete event systems DES.

For modeling hybrid dynamic systems, several formalisms have been proposed
to establish a uniform model for the interaction between the continuous and discrete
part. Various formalisms are available, the best known are linear automata [19] the
piecewise affine systems PWA [12] linear complementarity systems LC [11], lin-
ear complementarity systems extended ELC [7] the Max-Min-Plus Scaling systems
MMPS [8] dynamics and logic mixed systems ‘MLD’ [2, 3].

The approaches developed in this chapter adopt the MLD formalism proposed
by Bemporad [3]. It allows modeling of hybrid systems, including continuous and
discrete dynamics with interactions and constraints. Furthermore, the predictive con-
trol based model (MPC) is widely distributed in as simple and efficient control for
industry. The MLD model is used to control a hybrid system in terms of trajec-
tory tracking. Predictive control structure developed under the receding horizon with
MLD formalism is based on a mixed integer quadratic optimization technic.

2 MLD Formalism

The control problem of a hybrid system is to lead the process in one or more desired
states and prevent other states, all of the functionality described by rules. In this way,
we can consider the interference that can occur in the models of continuous systems,
but also non-controlled events such defects that may occur in discrete models.

For analysis of the system, it is necessary to define the interface between the
continuous and discrete systems. The structure adopted for the definition is very
important in the formalization of the control law.
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In this chapter, the work is oriented to modeling and control systems, described by
interdependent physical laws, logical rules and operating constraints, systems called
MLD (mixed logical dynamical). These are described by linear dynamic equations,
including linear inequalities involving continuous or logical variables.

For hybrid systems, MLD modelling allows to translate the logical rules in lin-
ear inequalities. To this effect, the MLD systems include a set of classes of sys-
tems namely: linear hybrid systems, finite state machines, discrete event systems,
linear systems with constraints, and nonlinear systems whose non-linearity can be
expressed by piecewise affine function.

2.1 Description of the Modeling Formalism MLD

In the study presented in [2, 3, 13] we express a logical proposition as linear con-
straints on logical variables provides a powerful modeling structure using the MLD
form. This formalism is used to describe a number of important classes of systems,
such as piecewise linear systems, systems with inputs and mixed states continu-
ous/discrete. This framework includes constraints, and incorporates heuristic rules
in the description of the model, by the description of interacting physical laws,
logical rules, and operating constraints. The techniques described by, [5, 15, 21]
allows to transforming propositional logic to linear inequalities involving continu-
ous and binary variables. This produces an MLD system described by linear dynamic
equations and linear inequalities involving continuous and binary variables, which
included continuous/discrete states, continuous/logical input and auxiliary continu-
ous/binary variables.

2.2 Propositional Calculus

We will adopt later X1 as capital letters to represent relations. Variable X1 is commonly
referred literal name can have a truth value ‘T’ ‘true’ or ‘F’ “false”. We can also
associate a literal X1 a logical variable δi ∈ {0, 1} that has a value of 1 if Xi = T or
0 otherwise [5, 21].

The linear integer programming is an effective method to calculate a systematic
transformation of logical relations in linear inequalities on binary variables [15] The
propositional logic problem for a set of literal statements denoted X1, X2, . . . , Xn,
can be solved using linear integer programming [21].

This can be achieved by appropriately reflecting the initial declarations to linear
inequalities involving logical variables δi. Thus, the following proposals and linear
constraints can easy to be shown as equivalent.
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⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

X1 ∨ X2 is equivalent to δ1 + δ2 ≥ 1
X1 ∧ X2 is equivalent to δ1 = 1, δ2 = 1
∼ X1 is equivalent to δ1 = 0
X1 → X2 is equivalent to δ1 − δ2 ≤ 1
X1 ↔ X2 is equivalent to δ1 − δ2 = 0
X1 ⊕ X2 is equivalent to δ1 + δ2 = 1

(1)

Other alternative methods and formulations to perform the transformation of logic
proportional to equivalent entire programming exist.

This technique inference calculation will later be used to model the logical parts
of the process (switches On/Off’ mechanisms networks combinational and sequen-
tial networks) and heuristic knowledge related to the operation of the entire linear
inequality systems. The study of the dynamics and logic mixed systems needed to
establish a link between the two parts.

For this purpose, it is necessary to establish a link between the two modes; which
results in the relations between the input events and the physical dynamics, one
using linear inequalities involving continuous variables x ∈ �n and logical variables
(indicators) δ ∈ {0, 1} (“Mixed-Integer Linear Inequalities”).

Consider X = [f (x) ≤ 0
]
, where f : �n → � is linear and x ∈ χ, where χ is

a bounded set, such as: {
M = max

x ∈ X
f (x)

m = min
x ∈ X

f (x)
(2)

By associating a binary variable δ to the literal relations X, one can deduce the
relation:

[
f (x) ≤ 0

]↔ [δ = 1] is true if and only if

{
f (x) ≥ ε + (m − ε)δ
f (x) ≤ M(1 − δ)

(3)

where ε is a tolerance (the machine precision), beyond which the constraint is con-
sidered violated.

Furthermore, the term δf (x), where f : �n �→ � et δ ∈ {0, 1}, may be replaced
with an auxiliary variable z = δf (x),which satisfies: [δ = 0] → [z = 0] , [δ = 1] →[
z = f (x)

]
. Therefore, by defining M, m as in Eq. (2), z = δf (x) is equivalent to:

⎧⎪⎪⎨
⎪⎪⎩

z ≤ Mδ
z ≥ mδ
z ≤ f (x) − m(1 − δ)
z ≥ f (x) − M(1 − δ)

(4)

All of these tools will be used to transform logical facts involving continu-
ous variables in linear inequalities and also express relationships describing the
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evolution of systems where physical laws, logical rules and operating constraints
are interdependent.

2.3 The Steps of MLD Formalism Modelling

The MLD modelling of a hybrid system is based on the combination of the three
main ideas:

1. Represent logical relations of linear inequalities on binary variables.
2. Associate logical and continuous variables by linear inequalities on binary and

continuous variables.
3. Include binary variables in the differential equations.

The logic part is transformed into a system of inequalities involving binary vari-
ables. These proposals will be transcribed into equations translating an evolution, as
the continuous part, but with additional constraints of logical variables.

2.3.1 Architecture of the MLD Formalism

A hybrid system is generally composed of two parts, a party related to the continuous
dynamics and the other to discrete/digital dynamics. The diagram below shows the
MLD model for a hybrid system and the associated transfer: continuous/discrete.

Auxiliary variables used to model the relations between the continuous and dis-
crete parts (Fig. 2). Thus, the transition from discrete part to the continuous part
requires the addition of logic variables. In general, an auxiliary logic variable is set
to translate a switching phenomenon. A proposal form can represent such a phenom-
enon we saw previously [δ = 1] ⇔ [

f (x) ≤ 0
]
. For the part corresponding to the

discrete/continuous transformation continuous auxiliary variables are added, such
that if δ = 1, then z = f1 (x) , else z = f2 (x).

Fig. 2 A hybrid system
structure

x

Discrete/Digital
o=Δ(δ)

( , , )x f x z d=

if ax b≤
1δ =

else 0δ =

if 1δ =
1 1z a x b= +

2 2else z a x b= +

Iδ ∈ o O∈

z

D/A converterA/D converter

Continuous dynamic system
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2.3.2 Modelling by the MLD Formalism

We have seen earlier that all auxiliary continuous and binary variables and logical
relations can be translate into linear inequalities on binary and continuous variables:

[
f (x) ≤ 0

]↔ [δ = 1] ⇔
{

f (x) ≤ M(1 − δ)
f (x) ≥ ε + (m − ε)δ

(5a)

z = δf (x) ⇔

⎧⎪⎪⎨
⎪⎪⎩

z ≤ Mδ
z ≥ mδ
z ≤ f (x) − m(1 − δ)
z ≥ f (x) − M(1 − δ)

(5b)

The system under MLD formalism resulting from the continuous/discrete asso-
ciation is therefore describe by the following linear relationship:

⎧⎨
⎩

x(k + 1) = Ax(k) + B1u(k) + B2δ(k) + B3z(k)

x(k) = Cx(k) + D1u(k) + D2δ(k) + D3z(k)

E2δ(k) + E3z(k) ≤ E1u(k) + E4x(k) + E5

(6)

These relations involves the following variables, mixed continuous/binary, binary
and continuous:

State: x =
[

xc

xl

]
, xc ∈ �nc , xl ∈ {0, 1}nl , n = nn + nl

Output: y =
[

yc

yl

]
, yc ∈ �pc , yl ∈ {0, 1}pl , p = pn + pl

Input: u =
[

uc

ul

]
, uc ∈ �mc , ul ∈ {0, 1}ml , m = mn + ml

δ ∈ {0, 1}rl are the auxiliary binary variables
z ∈ �rc are the auxiliary continuous variables
The MLD model represents the hybrid system by linear equations with linear

inequalities on continuous and binary variables. All the inequalities of the MLD
model thus collects firstly the constraints of the system, secondly inequalities result-
ing from logical propositions and auxiliary variables. A problem called “well-posed”
if the solution δ and z is unique for a given pair (x, u), and therefore x(k + 1) is
uniquely defined, allowing find unique trajectory of the states.

3 Predictive Control of a Hybrid System in the MLD Form

The prediction is a concept that is important for any activity in which one seeks to
anticipate a predefined path. In fact, many human activities such as walking, driving
a car or sport seek to anticipate a trajectory to predict the actions and switching



428 K. Halbaoui et al.

operations. It is this intuitive and natural concept that is based predictive control.
Industrial processes, for a large part of them must also follow certain guidelines.

The first theoretical and practical results related to predictive control have been
achieved in the late 1970s, including the work done by [16]. In the 1980s, sev-
eral methods based on the same predictive concepts were developed. Among, these
include generalized predictive control GPC, developed by [6], which proved the most
widely used technology in the future. A historical introduction to the various predic-
tive control methods can be found in the book of [4] .This diversity in the predictive
control is the origin of the birth of predictive control model based: Model Predictive
Control “MPC”.

The predictive control based model MPC has been very well received in the indus-
try because it proves a technique of simple and effective control. Predictive control
has been implemented in a number of industrial applications, including chemical
processes, which were the first to use this type of control, distillation processes, the
oil industry and electromechanical systems. These industrial applications all have
a common denominator: knowing of the trajectory to be followed by the system in
the future, at least over a certain horizon. Finally, these techniques are capable of
controlling a wide variety of processes.

The goal to be achieved by the use of predictive control is to create an anticipa-
tory effect exploiting explicit knowledge about the evolution of the trajectory to be
followed in the future (explicit knowledge on the horizon of a few points beyond the
moment). This constraint takes advantage of all the resources of the method which
necessarily limited the scope of the control system for which the trajectory to be
followed is well known and stored point by point in the calculator (Fig. 3).

Fig. 3 Principles of predictive control
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Fig. 4 Scheme characterized predictive control

Four points are common to all methods:

1. Definition of a numerical model of the system to make the prediction of future
behavior of the system. This discrete model most often results of prior identifi-
cation offline.

2. Minimization of a quadratic criterion for finite horizon on future prediction errors,
differences between the predicted output of the system and the following trajectory
(Fig. 4).

3. Calculating a future optimal control sequence, only the first value is applied to
the system and the model.

4. Repetition of the previous steps to the next sampling period according to the
principle of receding horizon.

Predictive control, based on the use of a model and the principle of moving horizon
(RHC), can be seen as a strategy to which the control at time t is obtained by solving
online, every at each sampling time an optimal control problem in open loop finite
horizon, using the current state of the system as initial state.

The optimization algorithm provides an optimal sequence of future control, which
only the first is apply to the input of the process. There is interest in this type of control
when the trajectory to be following by the system it is well known.

The model used is CARIMA (Controlled Auto Regressive Integrated Moving
Average). The GPC control law is obtained by minimizing a quadratic criterion on
future errors with a weighting term on the control or control increment. Constraints
on the output signals may be taken into account in the criterion.

3.1 Prediction Model for MPC

In this section a brief description of the prediction model used with the generalized
predictive control to be later reintroduced for application to hybrid systems.

Calculating the predicted output in the future requires the use of a digital model of
the system, as used in GPC. The model is a model conventionally used input/output
type CARIMA in the form:
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A(q−1)y(k) = B(q−1)u(k − 1) + C(q−1)

�(q−1)
ξ(k) (7)

y(k), u(k − 1) et ξ(k) are respectively the output, input and the system disturbance
signal. The ξ(k) signal is considered random and with zero mean. The polynomial
C(q−1) models the influence of noise on the system. The introduction of �(q−1) =
1 − q−1 in the noise model aims to reason about the signals increments, and then to
provide integrated action corrector, to cancel the static errors against input or a step
change.

The overall aim is to reach the mistake of future output to zero, with minimal
control effort. Thus, the GPC control law is obtained by minimizing a quadratic
criterion on future mistakes with a weighting term on command increments.

J(N1, N2, Nu) =
N2∑

j=N1

β(j)(ŷ(k + j|k) − w(k + j))2 +
Nu∑
j=1

λ(j)(u(k + j − 1))2 (8)

where: N1, N2 are the horizons of lower and upper prediction on the output, Nu is
the prediction horizon on the command, β(j), λ(j) are the weights on the order. The
prediction horizon enables the user to reduce the number of future orders calculated
since we assume the following relationship:

�u(k + j) = 0 pour j ≥ Nu (9)

w(k + j) is the set point or the reference trajectory imposing rallying of the output at
set point.

The constraints on the control and output may be added in the cost function:

{
umin ≤ u(k) ≤ umax

ymin ≤ y(k) ≤ ymax
(10)

In this case, the minimization becomes complex, which requires the use of
quadratic programming methods MIQP.

3.2 Structure of the Optimization Criterion

For a system as MLD, MPC predictive control strategy developed by [2] can be
summarized as follows:
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Let k be the current time, x(k) the current state, (xe, ue) an equilibrium point
or reference value to reach, k+N the final time prediction, we seek to develop the
sequence future control uk+N+1

k = {u(k), . . . , u(k + N − 1)} go from the state x(k)

to xe by minimizing the following cost function:

min{uk+N−1
k } J(uk+N−1

k , x(k)) =
N−1∑
i=0

‖u(k + i) − ue‖2
Q1

+ ‖δ(k + i/k) − δe‖2
Q2

+‖z(k + i/k) − ze‖2
Q3

+ ‖x(k + i/k) − xe‖2
Q4+‖y(k + i/k) − ye‖2

Q5

(11)

subject to constraints

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

x(k + N/k) = xe

x(k + i + 1/k) = Ax(k + i/k) + B1u(k + i)
+B2δ(k + i/k) + B3z(k + i/k)

y(k + i/k) = Cx(k + i/k) + D1u(k + i)
+D2δ(k + i/k) + D3z(k + i/k)

E2δ(k + i/k) + E3z(k + i/k) ≤ E1u(k + i)
+E4x(k + i/k) + E5

N is the prediction horizon on the output, δe and ze the values of the auxiliary
variables to the reference point, calculated by resolution of a problem for equation
MIQP on inequality.
Let: x(k + i + 1/k) ≈ x(k + i, x(k), uk+i

k ). Furthermore, it is assumed that Qi =
QT

i � 0, pour i = 1, 4 and Qi = QT
i ≥ 0, for i = 2, 3, 5.

Assume that the optimal solution
{
uk+N−1

k (j)
}

j=0,...,N−1 exists. According to the
philosophy of moving horizon, only the first u(k) of this sequence is applied to the
system.

The following optimal control u(k +1), . . . , u(k +N −1): are then neglected and
the complete optimization process is repeated at time k + 1.

To be able examine in more detail this control strategy, it is first necessary to refor-
mulate the problem of quadratic optimization (12) originally proposed by Bemporad
and Morari [2] in a form similar to the problem GPC, to as follows:

min{uk+N−1
k } J(uk+N−1

k , x(k))

=
N−1∑
i=0

‖u(k + i) − ue‖2
Q1

+ ‖δ(k + i/k) − δe‖2
Q2

+ ‖z(k + i/k) − ze‖2
Q3

+ ‖x(k + i/k) − xe‖2
Q4

+ ‖y(k + i/k) − ye‖2
Q5

(12a)
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Subject to relations:

⎧⎨
⎩

x(k + i + 1/k) = Ax(k + i/k) + B1u(k + i) + B2δ(k + i/k) + B3z(k + i/k)

y(k + i/k) = Cx(k + i/k) + D1u(k + i) + D2δ(k + i/k) + D3z(k + i/k)

E2δ(k + i/k) + E3z(k + i/k) ≤ E1u(k + i) + E4x(k + i/k) + E5
(12b)

Follows the same steps for the development of the GPC control (CARIMA), as

follows:
H(z) = C

z (I + A
z + A2

z2 + A3

z3 + · · · )B1 + D1
z (I + A

z + A2

z2 + A3

z3 + · · · )B2+
D2
z (I + A

z + A2

z2 + A3

z3 + · · · )B2 + D3
z (I + A

z + A2

z2 + A3

z3 + · · · )B3

We substitute the operator Z in the following equation; we have:

y(k) = D1u(k) + CB1u(k − 1) + CAB1u(k − 2) + CA2B1u(k − 3) + · · · +
D2δ(k) + CB2δ(k − 1) + CAB2δ(k − 2) + CA2B2δ(k − 3) + · · · +
D3z(k) + CB3z(k − 1) + CAB3z(k − 2) + CA2B3z(k − 3) + · · · +

The future outputs can ben then calculated as:

y(k + 1) = D1u(k + 1) + CB1u(k) + CAB1u(k − 1) + CA2B1u(k − 2) + · · · +
D2δ(k + 1) + CB2δ(k) + CAB2δ(k − 1) + CA2B2δ(k − 2) + · · · +
D3z(k + 1) + CB3z(k) + CAB3z(k − 1) + CA2B3z(k − 2) + · · · +

y(k + 2) = D1u(k + 2) + CB1u(k + 1) + CAB1u(k) + CA2B1u(k − 1) + · · · +
D2δ(k + 2) + CB2δ(k + 1) + CAB2δ(k) + CA2B2δ(k − 1) + · · · +
D3z(k + 2) + CB3z(k + 1) + CAB3z(k) + CA2B3z(k − 1) + · · · +

For a prediction horizon N , one obtains:

y(k + N) = D1u(k + N) + CB1u(k + N − 1) + CAB1u(k + N − 2)

+CA2B1u(k + N − 3) + · · · +
D2δ(k + N) + CB2δ(k + N − 1) + CAB2δ(k + N − 2)

+CA2B2δ(k + N − 3) + · · · +
D3z(k + N) + CB3z(k + N − 1) + CAB3z(k + N − 3)

+CA2B3z(k + N − 3) + · · · +

More generally, the term y(k + j)(j = 1, 2, . . . , N), the previous equation can be
written as :

y(k + j) =
∞∑

i=1
CAi−1B1u(k + j − i) + D1u(j + 1) +

∞∑
i=1

CAi−1B2δ(k + j − i)

+D2δ(j + 1) +
∞∑

i=1
CAi−1B3z(k + j − i) + D3z(j + 1)
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y(k + j) =
j∑

i=1
CAi−1B1u(k + j − i) +

∞∑
i=j+1

CAi−1B1u(k + j − i) + D1u(j + 1)

+
j∑

i=1
CAi−1B2δ(k + j − i) +

∞∑
i=j+1

CAi−1B2δ(k + j − i) + D2δ(j + 1)

+
j∑

i=1
CAi−1B3z(k + j − i) +

∞∑
i=j+1

CAi−1B3z(k + j − i) + D3z(j + 1)

y(k + j) =
j∑

i=1
CAi−1B1u(k + j − i) +

∞∑
m=0

CAm+jB1u(k − m − 1) + D1u(j + 1)

+
j∑

i=1
CAi−1B2δ(k + j − i) +

∞∑
m=0

CAm+jB2δ(k − m − 1) + D2δ(j + 1)

+
j∑

i=1
CAi−1B3z(k + j − i) +

∞∑
m=0

CAm+jB3z(k − m − 1) + D3z(j + 1)

y(k + j) =
j∑

i=1
CAi−1B1u(k + j − i) +

j∑
i=1

CAi−1B2δ(k + j − i)

+
j∑

i=1
CAi−1B3z(k + j − i)

+D1u(j + 1) + D2δ(j + 1) + D3z(j + 1)

+
∞∑

m=0
CAm+j(B1u(k − m − 1)) + B2δ(k − m − 1)) + B3z(k − m − 1))

y(k + j) =
j∑

i=1
CAi−1B1u(k + j − i) +

j∑
i=1

CAi−1B2δ(k + j − i)

+
j∑

i=1
CAi−1B3z(k + j − i)

+D1u(j + 1) + D2δ(j + 1) + D3z(j + 1)

+
∞∑

m=0
CAm+j(x(k − m) − Ax(k − m − 1))

After simplification, one obtains:

y(k + j) =
j∑

i=1
CAi−1(B1u(k + j − i) + B2δ(k + j − i) + B3z(k + j − i))

+D1u(j + 1) + D2δ(j + 1) + D3z(j + 1) + CAjx(k)

(13)

We set: Y = [y(k) y(k + 1) y(k + 2) · · · y(k + N − 1)
]

and
U = [u(k) · · · u(k + N − 1), z(k) · · · z(k + N − 1), z(k) · · · z(k + N − 1)], we
obtain the following compact form:

Y = GU + F (14)
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With:

F =

⎡
⎢⎢⎢⎢⎢⎣

C
CA
CA2

.

.

.

CAN−1

⎤
⎥⎥⎥⎥⎥⎦

x(k), G =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

D1 · · · 0 D2 · · · 0 D3 · · · 0
CB1 CB2 CB3

CAB1
. . .

.

.

. CAB2
.
.
. CAB3

.

.

.

CA2B1 CA2B2 CA2B3
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

CAN−1B1 D1 CAN−1B2 D2 CAN−1B3 D3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(15)

We use this formulation in the quadratic optimization criterion:

⎧⎨
⎩

F(χ, x(k)) = min
x

1
2χT Hχ + f Tχ

subject to constraints : c χ

{=
≤
}

b
(16)

We have the following matrices: H = PT QP, f = YT
e QP with:

c =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−E1 · · · 0 E2 · · · 0 E3 · · · 0
−E4B1 −E4B2 −E4B3

−E4AB1
. . . −E4AB2

. . . −E4AB3
. . .

−E4A2B1 −E4A2B2 −E4A2B3
...

...
...

...
...

...

−E4AN−2B1 · · · −E1 −E4AN−2B2 · · · E2−E4AN−2B3 E3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

bT = [(E4x(k)+E5)T (E4Ax(k)+E5)T · · · (E4AN−1x(k)+E5)T
]

YT
e =

⎡
⎢⎢⎣

(Ax(k) − xe)T (Ax(k) − xe)T · · · (AN x(k)-xe)T ,

(Cx(k) − ye)T (CAx(k) − ye)T · · · (CAN−1x(k)-ye)T ,

−uT
e ,−uT

e , ...,−uT
e︸ ︷︷ ︸

N

, −δT
e ,−δT

e , ...,−δT
e︸ ︷︷ ︸

N

, −zT
e ,−zT

e , ...,−zT
e︸ ︷︷ ︸

N

⎤
⎥⎥⎦

QT = diag
[
diag(Q4)N diag(Q5)N diag(Q1)N diag(Q2)N diag(Q3)N

]

where diag(Qi)N is a diagonal matrix with elements Qi and dimension N .
The number of binary variables relevant to the optimization is then equal to L =

N∗(ml + rl).
Where ml is the number of binary control variable (logical/Discrete) and rl is the

number of auxiliary binary variables.
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P =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

B1 · · · 0 B2 · · · 0 B3 · · · 0
AB1

...
...

...
...

...
...

AN−1B1 · · · B1 AN−1B2 · · · B2 AN−1B3 · · · B3

D1 · · · 0 D2 · · · 0 D3 · · · 0
CB1 CB2 CB3

CAB1 CAB2 CAB3

CA2B1 CA2B2 CA2B3
...

...
...

...
...

CAN−1B1 · · · D1 CAN−1B2 · · · D2 CAN−1B3 · · · D3

Im×m

Im×m

· · ·
Im×m

Irl×rl

· · ·
Irl×rl

Irc×rc

· · ·
Irl×rl

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

With: m = mc + ml

3.3 Formulation of the Optimization Criterion
for the Method of Bemporad [2, 14]

For the formulation of MIQP optimization criterion if the prediction horizon is dif-
ferent from the control, it follows the same previous approach to reformulating the
following criteria as a MIQP problem:

min
u,δ,z

J

⎛
⎜⎜⎝

⎧⎪⎪⎨
⎪⎪⎩

uk+Nm−1
k ,

δ
k+Np−1
k ,

z
k+Np−1
k

⎫⎪⎪⎬
⎪⎪⎭

, x(k)

⎞
⎟⎟⎠ =

Np−1∑
i=0

‖y(k + i/k) − ye‖2
Q5

+ ‖δ(k + i/k) − δe‖2
Q2

+‖z(k + i/k) − ze‖2
Q3

+
Nu−1∑
i=0

‖u(k + i) − ue‖2
Q1

(17)

QM = 2∗
⎡
⎣HT

M1Q5HM11 HT
M1Q5HM2 HT

M1Q5HM3

HT
M2Q5HM1 HT

M2Q5HM2 + Q2 HT
M2Q5HM3

HT
M3Q5HM1 HT

M3Q5HM2 HT
M3Q5HM3 + Q3

⎤
⎦
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HMi =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

CBi 0 · · · 0
CABi CBi · · · 0
CA2Bi CABi · · · 0

...
...

...

CA(p−2)B1 CA(p−3)B1 · · · CBi 0
CA(p−1)B1 CA(p−2)B1 · · · CABi CBi

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

where i = 2, 3

HM1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

CB1 0 · · · · 0
CAB1 CB1 · · · 0
CA2B1 CAB1 · · · 0

...
...

...

CA(m−1)B1 CA(m−2)B1 · · · CAB1 CB1

CAmB1 CA(m−1)B1 · · · CA2B1 CB1 + CAB1
...

...
...

CA(p−1)B1 CA(p−2)B1 · · · CA(p−m−1)
p−m∑
i=0

CAiB1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

EMi =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Ei 0 · · · 0
−E4Bi Ei · · · 0
−E4ABi −E4Bi · · · 0

...
...

. . .
...

−E4A(p−3)Bi −E4A(p−4)Bi · · · Ei 0
−E4A(p−2)Bi −E4A(p−3)Bi · · · −E4Bi Ei

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

where i=2, 3

EM4 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−E4

−E4A
−E4A2

...

...

−E4A(p−1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

EM5 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−E5

−E5

−E5
...

p times
...

−E5

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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EM1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−E1 0 · · · . 0
−E4B1 −E1 · · · 0

−E4A2B1 −E4B1 · · · 0
.
.
.

.

.

. −E1

.

.

.

−E4A(m−2)B1 −E4A(m−3)B1 · · · −E4B1 −E1

−E4A(m−1)B1 −E4A(m−2)B1 · · · −E4AB1 −E1 − E4B1

−E4AmB1 −E4A(m−1)B1 · · · −E4A2B1 −E1−E4B1 − −E4AB1

.

.

.

.

.

.

.

.

.

−E4A(p−2)B1−E4A(p−3)B1 · · · −E4A(p−m)B1 −E1+
p−m−1∑

i=0
−E4AiB1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

EM1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−E1 0 ... · 0
−E4B1 − E1 ... 0

−E4A2B1 − E4B1 ... 0
...

... −E1
...

−E4A(m−2)B1 − E4A(m−3)B1... −E4B1 −E1
−E4A(m−1)B1 − E4A(m−2)B1... −E4AB1 −E1 − E4B1

−E4AmB1 −E4A(m−1)B1... −E4A2B1 −E1−E4B1 − −E4AB1
...

...
...

−E4A(p−2)B1 −E4A(p−3)B1... −E4A(p−m)B1 −E1+
p−m−1∑

i=0
−E4AiB1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�M =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

CA
CA2

CA3

...

...

CAp

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

fM = 2∗
⎡
⎣ xT

k �T
M Q5HM1 − ψT

spQ5HM1 − μT
sp�su + dT

k ST
d �yHM1

xT
k �T

M Q5HM2 − ψT
spQ5HM2 − δT

spQ2+dT
k ST

d Q5HM2

xT
k �T

M Q5HM3 − ψT
spQ5HM3 − zT

spQ2+dT
k ST

d Q5HM3

⎤
⎦ S1 = [EM1 EM2 EM3

]

S2 = [HM1 HM2 HM3
]

ST
3 =

⎡
⎣ eye(m(size(B1, 2))))

zeros(size(B1, 2)), p(size(B2, 2)))

zeros(m(size(B1, 2)), p(size(B3, 2)))

⎤
⎦
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1 5 4 11

212 21

2 22 22

3 3131

3 3232 min

,

M M k

max M k d k

in max M k d k in

max

b E E x bS

b x S d bS

A S b x S d b b

bS b

S bb

ψ
ψ

μ
μ

= −⎧ ⎡ ⎤⎡ ⎤
⎪ ⎢ ⎥⎢ ⎥ = − Φ −⎪ ⎢ ⎥⎢ ⎥ ⎪ ⎢ ⎥⎢ ⎥= − = − + Φ + ⇒ =⎨ ⎢ ⎥⎢ ⎥ ⎪ = ⎢ ⎥⎢ ⎥ ⎪ ⎢ ⎥⎢ ⎥ ⎪− = −⎣ ⎦ ⎣ ⎦⎩

1

2
subject to:

T T
m m

m m

min Q f

A b

χ χ χ

χ

⎧ +⎪
⎨
⎪ ≤⎩

MIQP
Optimization Problem !

ψk = [yk+1yk+2....yk+p
]T
⎧⎪⎨
⎪⎩

μk = [uk uk+1......uk+m−1
]T

δ̄k = [δk δk+1......δk+p−1
]T

z̄k = [zk zk+1......zk+p−1
]T ⇒ χ = [μk δ̄k z̄k

]T

3.4 Programming of the Quadratic Optimization Algorithm
MIQP

The establishment of the MPC for the problem (12) requires the solution of a mixed
quadratic programming problem (MIQP), that is to say, an optimization problem
including a quadratic cost function, for which the optimization vector consists of
mixed variables (continuous and binary), and linear constraints. The optimization
problem (12) can actually be transcribed in the generic form Eq. (16). Where the
optimization vector is:

χ = [uT (k), . . . , uT (k + N − 1), δT (k), . . . , δT (k + N − 1), zT (k), . . . , zT (k + N − 1)

xT (k), . . . , xT (k + N), y(k), . . . , yT (k + N − 1)
]T

(18)

Techniques of type “Branch and Bound” were successfully applied during criteria
optimization phases (5) [2]. Several authors agree on the fact that B & B methods
are most effective for solving problems MIQP [9]. The following section provides a
summary of the technique B&B:

3.5 Description of the Optimization Algorithm MIQP
“Branch and Bound” (B&B)

All control laws that can be applied to hybrid systems as MLD require the use of
an integer optimization solver. Two major problems may be encountered “Mixed
integer Linear Problems” (MILP) and “Mixed Integer Quadratic Problems” (MIQP).

In the literature, these types of problems are solved not only for binary variables,
but also to a larger area of values. Our limiting case these general problems at the
particular logical variables case. The algorithm “Branch and Bound” is then a general
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framework for solving combinatorial problems and integers. The combinatorial part
of the problem (determining the integer optimal part) is resolved by searching a tree
during which the relaxations QP problem MIQP are produced and non-integer QP
solutions are eliminated by adding simple limits (“Branch”).Using the lower and
upper limits to the optimal value of the objective (“Bound”), it is possible to limit
the search in the tree, thus avoiding the complete enumeration.

To describe the strategy of B&B, it is necessary to clarify some notations and
terminologies. Let P′ the problem obtained from P by relaxing all integer restrictions.
The problem P′ is then an ordinary QP problem.

The two authors [9] showed that the algorithm B&B within the MIQP problems
is to generate and solve new problems QP in a search tree, where the nodes of the
tree correspond to the QP sub-problems. The operation called “branch” is to produce
child nodes from parent nodes according branching rules.

A node that has been fully explored is referred to as: probed. A standby node is a
node that was produced by branching but has not yet been resolved. The algorithm
“B&B” explores the tree until all nodes waiting disappeared. It is not always neces-
sary to explore the complete tree and the success of “B&B” is partly due to the fact
that integer sub-trees can be excluded from the search if the node to the root produces
an infeasible integer solution. The problem “MIQP” to solve has the following form:

⎧⎪⎪⎨
⎪⎪⎩

min xT Qx + bT x

subject to constraints :
⎧⎨
⎩

Cx + d ≤ 0

x =
[

xc

xl

]
, xc ∈ �nc , xl ∈ {0, 1}nl

(19)

The idea of solving this MIQP with methods “B&B” is based on the relaxation of
the whole constraints, variables may be in the continuous interval [0, 1].

Let ξ be a vector of dimension nd and the symbol “*” meaning that the entry of ξ
is relaxed, i.e. may be in continuous interval. Consider the following initial problem
MIQP without full constraints:

ξ0 = [∗, ∗, . . . , ∗]︸ ︷︷ ︸
nd

(20)

The vector ξ0 will be assigned to the root of the tree. Separating the initial MIQP
problem sub-problem QP relaxed is performed by assigning 0 or 1 to integer vari-
ables. New problems resulting QP are assigned to children of the node.

If the component of the element ξi = 0(ou ξi = 1), then the QP corresponding
to that node is solved by placing the ith binary variable to 0 (or 1).

The tree of MIQP problem can be explored in several ways. The choice of the
separation of the problem and the procedure for consideration of sub-problems affect
the average volume calculation. A good “Branch & Bound” algorithm aims to quickly
search the integer’s sub-trees by reducing the number of sub-problems resolutions.
Two choices determine the order of sub-problems: (1) the branching rule, and (2) the
exploration of the tree strategy.
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The solver used to solve the problem MIQP developed under the MATLAB
environment based on a strategy of “B&B” (Fig. 5) and includes the tree exploration
strategy and the selection rule branching variables (Fig. 6). The problem solved by
this program takes the quadratic formulation MIQP following:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

min 1
2χT Hχ + f Tχ

subject to constraints :

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Aχ ≤ b
Aeqχ ≤ beq

vlb ≤ χ ≤ vub

χ ∈ �mc × {0, 1}ntd

χ
(
ivar type

) ∈ {0, 1}ntd

(21)
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The length of vector optimization is nt = ntc + ntd . The variables are stored by
the index “ivar type” subset of {1, . . . , ntc + ntd} , are binary constraints. The matrix
H ∈ �nt×nt is positive semi-definite. The special case where H = 0 corresponds to
mixed integer program (MILP) and can also be treated by this optimization program.
The matrix A ∈ �mt×nt and vector b ∈ �mt define linear constraints inequality type
of optimization variables. Linear constraints equal type are given by Aeq ∈ �mt×nt

and beq ∈ �mt and while limits on optimization vector may be indicated by the
vlb, vub ∈ �nt vectors.

4 Application

4.1 Description of the Modeling Tool APROS

This section discusses the modeling and simulation environment under the APROS
(Advanced Process Simulation Software). This tool is multifunctional software used
by various methods such as power plants and nuclear reactors. It was developed by
VTT Technical Research Centre of Finland. The APROS software was primarily
used in nuclear power plants and combustion power plants. It can simulate and
examine the thermal-hydraulic behavior of processes in transient and steady. It is
based on an inhomogeneous hydrodynamic model and not balanced for the two-
phase flow system solved by implicit, semi expressed or implied numerical methods.
The development and enrichment is constantly growing meets the requirements of
users in different areas. The latest version has undergone a mutation to Simantics
platform that includes tools for modeling and simulation as Fluent and Modelica.

The modeling is to use a set of predefined process component models that are
conceptually one-to-one with a concrete form (pumps, valves, tanks ... etc.). The
setting of the components is achieved by the introduction of physical properties.
Then we connect the components by Connections to establish the link between the
various elements constituting the process (http://www.Apros.fi) [1].

The database structure APROS is subject to a hierarchical model. We acting on
the component level by using components of predefined processes, such as pipes,
valves, heat exchangers, automatically generate objects of calculation levels.

The modeling process is organized around a set of models. Each model is com-
posed of one or more sub-model contained in Grades net pages. The net form contains
the basic components of the process. Each component has an interface for introduc-
ing the initialization data, which later will be used to simulate the dynamic behavior.
The components defined in the simulation are out of data determining the boundary
conditions.

http://www.Apros.fi
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Fig. 7 Benchmark three-tank ‘COSY’

4.2 Description of the Benchmark Three Tanks ‘COSY’

The hydraulic system with three tanks is governed by a set of mathematical equations
that describe the transient and steady dynamic behavior. The benchmark COSY
(Control of Complex Systems) shown in Fig. 7 is, in fact, a model designed for
control problems and detection failures of hybrid systems [18].

The system consists of three tank filled by two independent pumps Q1 et Q2

flow into the tanks T1 and T2 respectively. Both pumps are operated in a continuous
manner from 0 to a maximum flow rate Qmax. The four valves V1, V2, V13 et V23

control the flow between the reservoirs as shown in Fig. 8. These four valves are all
or nothing (open if Vi = 1, else closed). The manual valve VN3 control the nominal
flow rate output of the central tank. It is assumed throughout the rest of our study
that the manual valves and VN1 et VN2 are still closed and VN3 open. Water levels to
control are denoted h1, h2 et h3 respectively.

4.3 Modeling of Three-Tank System

Conservation of mass in the tanks provides differential equations:

⎧⎨
⎩

ḣ1 = 1
A (Q1 − Q13V1 − Q13V13 − QN1)

ḣ2 = 1
A (Q2 − Q23V2 − Q23V23 − QN2)

ḣ3 = 1
A (Q13V1 + Q13V13 + Q23V2 + Q23V23 − QN3)

(22)

where Qi represents the flow variables and A section of each of the tanks. Torricelli’s
law provides the expressions flow in valves:

Q13V13 = V13aS13sign(h1 − h3)
√|2g(h1 − h3)| (23)
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Fig. 8 Modeling the three tanks system by APROS software

Q23V23 = V23aS23sign(h2 − h3)
√|2g(h2 − h3)| (24)

Q13V1 = V1aS1sign(max(h1 − hv) − max(h3 − hv))
√|2g(max(h1 − hv) − max(h3 − hv))|

(25)

Q23V2 = V2aS2sign(max(h2 − hv) − max(h3 − hv))
√|2g(max(h2 − hv) − max(h3 − hv))|

(26)

QN3 = VN3aSN3

√
2gh3 (27)

where Si represents the surface of the valve Vi and a is a constant dependent on the
liquid (Table 1).

Table 1 Three-tank benchmark parameters

Symbol Meaning Value

A Tank section 0.0154 m2

Sh Cross-section of valve Vh 2 × 10−5 m2

g Gravity constant 9.81 m/S2

hmax Upper level water 0.62 m

hv Height of valve V1 et V2 0.30 m

Qi max Maximum inflow through
pump i(i = 1, 2)

10−4 m3/s

Ts Sampling time 5 s
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In order to model the entire test bed in the MLD form should be to approximate
the non-linear relationships giving flows through the following linearized equations:

Qi3Vi3 ≈ ki3Vi3(hi − h3) (28)

Qi3Vi ≈ kiVi(max(hv − hi) − max(hv − h3)) (29)

QN3 ≈ kN3VN3h3 (30)

With: i = 1, 2.

ki3 ≈ aSi3

√
2g

hmax
(31)

ki ≈ aSi

√
2g

hmax − hv
(32)

kN3 ≈ aSN3

√
2g

hmax
(33)

4.4 Modelling Three-Tank System Under APROS

The modeling of the system under the COSY APROS environment (Fig. 8) requires
the use of certain components namely: pipes, valves discrete control by pneumatic
actuators, reservoirs, check valves, pumps and boundary conditions with analog and
digital inputs.

The open loop simulation performed on our model “three-tanks” mathematics and
APROS, for flow control levels with gradual variation between the maximum and
Qmax zero. For binary commands from the valves of interconnections between the
tanks and output each. The results shows some differences between the response of
the mathematical model and APROS model that is partly due to numerical calcula-
tions following the discretization of the mathematical model and hydraulic parame-
ters declared in the environment of APROS is height hydraulic pressure losses caused
by the valves, the other hand pipes. This modeling aspect in the APROS environ-
ment takes into account all the physical and hydraulic considerations (temperature,
pressure, viscosity coefficient,... etc.) That are not included in a mathematical model.
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4.5 Processed into MLD Model

From these expressions, an MLD model can be obtained by conventional techniques
described in [3, 13, 14, 18] by introducing the auxiliary continuous and binary
variables required by the interface translation, so that we will involves the following
vectors:

x = [h1 h2 h3]T (34)

u = [Q1 Q2 V1 V2 V13 V23 VL1 VL2 VN3]T (35)

δ = [δ01 δ02 δ03]T (36)

z = [z01 z02 z03 z1 z2 z13 z23 zL1 zL2 zN3 ]T (37)

With:
[δ0i(k) = 1] ↔ [hi(k) ≥ hv] i = 1, 2, 3 (38)

z0i(k) = δ0i(k)(hi(k) − hv) i = 1, 2, 3 (39)

zi(k) = Vi(k)(z0i(k) − z03(k)) i = 1, 2 (40)

zi3(k) = Vi3(k)(hi(k) − h3(k)) i = 1, 2 (41)

From the relations (14)–(32), using the discretization technique to first order (Euler)
ḣ(t) → h(k + 1) − h(k)/Ts, we obtain the following discrete form:
⎧⎪⎪⎨
⎪⎪⎩

h1(k + 1) = h1(k) + 1
A (Q1 − k1z1(k) − k13z13(k) − kL1zL1(k))

h2(k + 1) = h2(k) + 1
A (Q2 − k1z2(k) − k23z23(k) − kL2zL2(k))

h3(k + 1) = h3(k) + 1
A (k1z1(k) + k13z13(k) + k2z2(k) + k23z23(k) − kN3zN3(k))

(42)

The MLD structure therefore requires the addition of three (03) binary auxiliary
variables and seven (07) continuous auxiliary variables, it is reminder that the control
vector includes two (02) continuous variables and four (04) binary variables and the
vector state contains only three (03) continuous variables because the system does
not have discrete dynamics. The HYSDEL File MLD model for this system is as
Fig. 9.

The hybrid approach was applied initially on the model APROS three tanks with
the following configuration: the control vector with the outlet valve on the tank T3
is kept fully open by against the two outlet valves on the T1 and T2 tanks are com-
pletely closed (see Fig. 10). The MLD model developed for the synthesis of MPC is
composed of two continuous variables, 4 binary variables, 3 auxiliary binary vari-
ables and 7 auxiliary continuous variables with 44 linear mixed integer constraints.
The MPC control problem is transformed into a linear optimization problem with
constraints whole mixed giving on a prediction horizon selected equal to the order
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SYSTEM Three 

INTERFACE
STATE

REAL h1,h2,h3; 

INPUT
REAL Q1,Q2; 
BOOL

V1,V2,V13,V23; 

PARAMETER  

REAL Su = 0.0154;
REAL Ts = 5;
/* constant for valves V13, V23, 
VL1 and VN3 */
REAL k1 = 0.0001125; 
REAL k2 = 0.0001566;
/* constant for valves V1 and V2 
*/
REAL hmax = 0.62;
REAL hv = 0.30;
REAL Qmax = 0.0001;
REAL VL1 = 0;
REAL VL2 = 0;
REAL VN3 = 1;

IMPLEMENTATION
AUX
REAL z01,z02,z03,z1,z2,z13,z23;
BOOL d01,d02,d03;

AD
-h1 <= 0;
d02 = hv-h2 <= 0;
d03 = hv-h3 <= 0;

DA 
-hv  ELSE 0};

-hv  ELSE 0};
 z03 -hv  ELSE 0};

-z03 ELSE 0};
-z03 ELSE 0};

-h3 ELSE 0};
-h3 ELSE 0};

CONTINUOUS  
h1=h1+(Ts/Su)*(Q1-k1*z13-k2*z1- 

k1*h1*VL1);
h2=h2+(Ts/Su)*(Q2-k1*z23-k2*z2);     
h3=h3+(Ts/Su)*(k1*z13+k1*z23+k2*z1+k2*z2- 
k1*h3*VN3);

MUST  

h2<=hmax;
h3<=hmax;
-h1<=0;
-h2<=0;
-h3<=0;
Q1<=Qmax; 
Q2<=Qmax; 

-Q1<=0;
 -

Fig. 9 The HYSDEL File MLD model of the three tanks system

N = 3 to 48 continuous and binary variables with 132 mixed integer linear constraints.
Controls calculated by MIQP optimization program with CPLEX solver are applied
via the OPC interface (OLE for Process Control) on the model to achieve the water
level specifications h1 = 0.45 m; h2 = 0.35 and h3 = 0.1 m. Three tanks being initially
empty (level = 0). Note that the level of the third tank exhibits oscillations around
the name, as the level h3 = 0.1 m does not correspond to an equilibrium point level
for these instructions, the outflow of the third tank QN3 is equal to any combination
of inflows (Q13V1, Q23v2, Q13V13 et Q23V23). The level h2 does not present oscilla-
tions and that the two valves are kept closed after reaching the set point hr2=0.35 m.
Against by the level of the tank T1 exhibits oscillations induced by the opening and
closing of the two valves [V1 V13] for the h1 and h3 level adjustment around their
instructions. For the choice of weights in the optimization criterion, our choice is
particularly intended for the penalization of tracking error between levels and set
points affected by the matrix Qy = 6000.
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Fig. 10 Predictive control of fluid levels h1, h2 and h3 (Prediction horizon N = 3, Qu = 6103,
Qd = Qz = 10−2, valve VL3 (=1) is held open)
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Fig. 11 Predictive control of the leves h1, h2 and h3 (Prediction horizon N=3, Qu=6103,
Qd=Qz=10−2, valve VrmL3 (=1) is held open with deadlock in the low state for 100 s)
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In order to test the robustness of the control algorithm vis-à-vis a blocking position
of the outlet valve VL3 on the third tank R3. The same previous configuration is
reused with the situation following locking at time t = 150 s, the VL3 valve is kept
closed for 100 s (end of blocking at time 250 s).

The predictive controller responds quickly to this situation after one sampling
period with an overshoot less than 10 % of the value of the h3 set point. This dis-
turbance in the functioning of the system is rejected by the regulator acting on the
state of the two valves [V1, V2] leading them to the closure and flow Q1 to a total
shutdown (see Fig. 11). From time t = 250 s, the system resumes operation correctly
by acting on the valves between the tank R1 and R3 by performing the emptying and
oscillations around the level h1 and h3 appear again to maintain the set around their
set points references.

5 Conclusion

In this chapter we presented definitions hybrid dynamic systems, and applications
in the field of industry. We also flew review the models and work performed mainly
affecting the control of hybrid dynamic systems. Subsequently, there is described
the various steps necessary for the modeling with the MLD formalism. MLD model
is used for the development of an MPC predictive control strategy.

The so-called MLD representation of a hybrid system is particularly well suited
to the implementation of predictive control strategy for these systems. Nevertheless,
the combinatorial explosion resulting from a large number of binary variables from
the MLD formalism restricts online application possibilities of this structure for low
sampling period systems.

The application of this strategy in the three-tank benchmark under the APROS
environment, brings interesting for the implementation of a predictive control strategy
for hybrid systems in the form MLD in real time.
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on a Backstepping Approach
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Abstract Power system requires high-performance control techniques due to their
elevated complexity, high nonlinearity and almost continuously time-varying nature.
Also, power systems are often subjected to small and large disturbances. To enhance
the multimachine power system stability, a new approach to designing decentral-
ized nonlinear control scheme is proposed. The approach seeks first build a novel
mathematical model of multimachine power systems. The main characteristic of this
model is that interactions between generators and changes in operating conditions
are represented by time-varying parameters. More important, those parameters are
update online, using only local measurements. Second, it develops a decentralized
controller for the transient stabilization and voltage regulation. The controller con-
sists of two controllers, known as the terminal voltage regulator and rotor speed
stabilizer. The methodology adopted is based on backstepping design strategy. The
proposed stabilizing feedback laws for the power system are shown to be globally
asymptotically stable in the context of Lyapunov theory. Case studies are achieved
in a two-area four machine power system to verify the effectiveness of the approach.
Numerical results are presented to illustrate the usefulness and the performance of
the proposed control scheme, under different contingencies.
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1 Introduction

Modern Electrical Power Systems (EPS) are increasingly operated closer to their
transfer power and stability limits. The control systems, accordingly, will have to
regulate the system, to improve its global stability including inter-area transfer capa-
bility and dynamic performance under a diversity of operating conditions. Tradi-
tionally, conventional controllers such as the Automatic Voltage Regulator (AVR),
the Power System Stabiliser (PSS) and Speed Governor (SG), are mainly designed
by using linear models of the power systems [16]. Those linear controllers, based
mainly on classical control algorithms, can be used to insure asymptotic stability of
the equilibrium following a small perturbation. Unfortunately, in the event of a large
disturbance, the operating point of the system may vary significantly and a linear
controller may not be able to guarantee asymptotic stability.

Therefore, the high complexity and nonlinearity of power systems together with
their almost continuously time varying nature require candidate controllers to be able
to take into account the important non linearities of the power system model and to
be independent of the equilibrium point [16]. To meet this challenge, a lot of interest
has been considered in the application of the nonlinear control theory for the control
of power systems and consequently to enhance the power systems stability. Most of
these controllers are based on feedback linearization [8, 34], Hamiltonian techniques
[35, 37], sliding-mode control [4, 5, 9, 11, 17, 24, 25] have been successfully
applied to improve the transient stability. New approaches have been proposed for
power stability designs according to other sophisticated schemes such as fuzzy logic
control [1, 6, 19], adaptive control [7, 10, 12, 13, 29, 36], and neurocontrol [18, 26,
32]. Combinations of the above techniques are also proposed in order to exploit the
advantages of each method at the cost of the increase in complexity [2, 28, 33].

The backstepping is one of the most important techniques, which provides a pow-
erful design tool to solve many design problems under restrictive conditions than
those encountered in the other methods [15, 27]. Further, the adaptive backstepping
approach is capable of guaranteeing almost all robustness properties of the mis-
matched uncertainties [30, 31]. This technique has been successfully applied for
power system in [14, 22, 23].

Generally, the design of the controllers, for power system, is based on two main
modeling approaches:

• The Single-Machine, Infinite-Bus (SMIB) approach is simple but it does not take
into account dynamic phenomena in the rest of the electrical network. Therefore,
controllers may not perform well when inter-area oscillations occur.

• The Multimachine Power System (MPS) approach is based on the global
N-generator modeling [9, 34]. The controllers based on this model dampen inter-
machine and inter-area oscillations very well.
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A new approach for modelling the EPS combines the advantages of both previous
modelling approaches [20, 21]. The approach consists of partitioning the power sys-
tem into the generator to be controlled and the rest of the network viewed as dynamic
load. The time-varying parameters of the resulting model encapsulate operating-
condition variations and interactions between generators. Nevertheless, wide area
control laws are derived from a reformulation of the multimachine model, gener-
ator terminal voltages are used as state variables instead of internal field voltages,
through complex transformations. In addition, time varying parameters of the model
are unknown and must be estimated online by an adaptation process.

The main aim of this study is the design of controllers to guarantee the voltage
regulation and enhance transient stability for multimachine power systems. These
controllers are proposed to replace the traditional speed governor (SG), automatic
voltage regulator (AVR) plus the power system stabilizer control structure (PSS). To
this end, a novel modelling of multimachine power system is proposed. Contrary to
the model proposed in Okou et al. [20, 21] which is based on a third order simplified
model, in the resulting modelling, the model of synchronous machine is based on a
seventh order model which takes into account both field effects and damper winding
effects introduced by different rotor circuits. In addition, time varying parameters
of the model, which depend on the steady-state active and reactive power delivered
by each generator, and the interactions between generators, are update continuously
online.

Furthermore, a backstepping control system is designed to control the rotor speed
and terminal voltage, simultaneously, in order to enhance the transient stability and
ensure good post-fault voltage regulation for power system. The theoretical bases of
the proposed control technique are derived in detail where the feedback system is
shown to be globally asymptotically stable in the sense of the Lyapunov’s stability
theory.

Finally, the decentralized proposed controller requires only local measurement,
which owns highly desirable advantages in cost, reliability and can be easily imple-
mented.

The rest of this chapter is organized as follows. In Sect. 2, a new dynamic math-
ematical model of a multimachine power system is developed. Section3 is devoted
to a design of a backstepping control for the multimachine power system to ensure
the voltage regulation and enhance the transient stability of the system. The stabil-
ity of this controller is proven. In Sect. 4, simulation results are given to validate
the proposed model and illustrate the performance of the proposed scheme. Also,
the performances of the developed controller are compared to the performance of a
standard AVR/PSS and SG. Conclusions are finally made in Sect. 5.
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2 New Dynamic Power System Model

2.1 Mathematical Model of Synchronous Generator

The synchronous generator is described by a 7th order nonlinear mathematical model
which comprises three stator windings, one field winding and two damper windings.
The model takes into account both field effects and damper windings effects intro-
duced by the different rotor circuits. The synchronous machine equations in terms
of Park’s d-q axis are expressed as follows [3, 16]

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

vd = −Rsid + Lqωiq − Lmqωikq − Ld
did
dt + Lmd

(
di f d

dt + dikd
dt

)
vq = −Rsiq + −Ldωid + Lmdω(i f d + ikd) − Lq

diq

dt + Lmq
dikq

dt

v f d = Rsi f d − Lmd
did
dt + L f d

di f d

dt + Lmd
dikd
dt

0 = Rkdikd − Lmd
did
dt + Lmd

di f d

dt + Lkd
dikd
dt

0 = Rkqikq − Lmq
did
dt + Lkq

dikq

dt

(1)

where vd and vq are direct and quadrature axis stator terminal voltage compo-
nents, respectively; vfd excitation control input; vt terminal voltage; id , iq direct
and quadrature axis stator current components, respectively; ifd field winding cur-
rent; ikd , ikq direct and quadrature axis damper winding current components, respec-
tively; Rs stator resistance; Rfd field resistance; Rkd , Rkq damperwinding resistances;
Ld , Lq direct and quadrature self inductances, respectively; Lfd rotor self induc-
tance; Lkd , Lkq direct and quadrature damper winding self inductances, respectively;
Lmd , Lmq direct and quadrature magnetizing inductances, respectively.

Mechanical equations are as follows

2H
dω

dt
= Tm − Te − Dω (2)

dδ

dt
= ω − 1 (3)

whereω is angular speed of the generator; δ rotor angle of the generator; Tm mechan-
ical torque, Te electromagnetic torque; D damping constant; H inertia constant.

The electromagnetic torque is

Te = (
Lq − Ld

)
id iq + Lm f d ifdiq + Lmdikd iq − Lmqid ikq (4)

The steam turbine dynamics and valve are represented by the following equations [8].

{ d Pm
dt = − 1

Tt
Pm + Km

Tt
Xe

d Xe
dt = − 1

Tg
Xe + Kg

Tg

(
ug − 1

RωR
ω

) (5)
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where Xe is the steam valve opening of the system; ug the input power of control
system; Tt the time constant of the turbine; Kt the gain of the turbine; R the regulation
constant of the system; Tg the time constant of the speed governor; Kg the gain of
the speed governor and ωR is the power system frequency.

2.2 Mathematical Model of the Rest of the Network

The modelling of the rest of network is made by using the concept introduced in
[20]. In this approach, each generator views the rest of the grid as a dynamic load.
This load is represented by an instantaneous effective impedance and is given by the
following equation in per-unit

v(t) = RL(t)i(t) + X L(t)
di(t)

dt
(6)

where v and i are the generator’s instantaneous terminal voltage and stator cur-
rent, respectively. The time dependent parameters RL(t) and X L(t) summarize the
dynamic exchange of active and reactive powers, respectively.

In the d-q reference frame, after applying a Park transformation, we obtain

{
vd = RL(t)id − X L(t)ωiq + X L(t) did

dt

vq = RL(t)iq + X L(t)ωid + X L(t) diq

dt

(7)

2.3 New Dynamic Mathematical Model of Multimachine
Power System

The mathematical model is obtained by combining equations of the synchronous
generator (1) with equation of the rest of the network (7). After some lengthy but
straightforward algebraic manipulations, the resulting model has the following form

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

did
dt = h11(t)id + h12(t)ifd + h13(t)ωiq + h14(t)ikd + h15(t)ikqω + g1(t)ufd
difd
dt = h21(t)id + h22(t)ifd + h23(t)ωiq + h24(t)ikd + h25(t)ikqω + g2(t)ufd

diq
dt = h31(t)idω + h32(t)ifdω + h33(t)iq + h34(t)ikdω + h35(t)ikq
dikd
dt = h41(t)id + h42(t)ifd + h43(t)iqω + h44(t)ikd + h45(t)ikqω + g3(t)ufd

dikq
dt = h51(t)idω + h52(t)ifdω + h53(t)iq + h54(t)ikdω + h55(t)ikq

dω
dt = h61(t)ω + h62(t)

Pm
ω − h62(t)Te

(8)

The time-varying parameters hi j (t) and gi (t) depend on R(t) and X (t) and hence on
the operating conditions of the power system. Their expressions are given as follow
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h11(t) = −(Rs + RL (t))(Lfd Lkd − L2
md )ωR D−1

d h12(t) = −Rfd(Lmq Lkd − L2
md )ωR D−1

d
h13(t) = (Lq + X L (t))(Lmd Lkd − L2

md )ωR D−1
d h14(t) = Rkd ((Ld + X L (t))Lmd − L2

md )ωR D−1
d

h15(t) = −Lmq (Lfd Lkd − L2
md )ωR D−1

d

h21(t) = −(Rs + RL (t))(Lmd Lkd − L2
md )ωR D−1

d h22(t) = −Rfd((Ld + X L (t))Lkd − L2
md )ωR D−1

d
h23(t) = (Lq + X L (t))(Lmd Lkd − L2

md )ωR D−1
d h24(t) = Rkd ((Ld + X L (t))Lmd − L2

md )ωR D−1
d

h25(t) = −Lmq (Lmd Lkd − L2
md )ωR D−1

d

h31(t) = (Ld + X L (t))LkqωR D−1
q h32(t) = Lmd .LkqωR D−1

q
h33(t) = −(Rs + RL (t))LkqωR D−1

q h34(t) = Lmd LkqωR D−1
q

h35(t) = −Lmq .RkqωR D−1
q

h41(t) = −(Rs + RL (t))(Lfd Lmd − L2
md )ωR D−1

d h42(t) = Rfd((Ld + X L (t))Lmd − L2
md )ωR D−1

d
h43(t) = (Lq + X L (t))(Lmd Ld − L2

md )ωR D−1
d h44(t) = −Rkd ((Ld + X L (t))Lfd − L2

md )ωR D−1
d

h45(t) = −Lmd (Lmq .Lfd − L2
md )ωR D−1

d

h51(t) = −(Ld + X L (t))LmqωR D−1
q h52(t) = Lmd LmqωR D−1

q
h53(t) = −(Rs + RL (t))LmqωR D−1

q h54(t) = Lmd LmqωR D−1
q

h55(t) = −Rkq (Lq + X L (t))ωR D−1
q

h61(t) = 1/2H h62(t) = −D/2H

g1(t) = (Lmd Lkd − L2
md )ωR D−1

d g2(t) = ((Ld + Lfd)Lkd − L2
md )ωR D−1

d
g3(t) = ((Ld + X L (t))Lmd − L2

md )ωR D−1
d

These parameters encapsulate the interactions between the generator to be controlled
and the rest of the grid.

In order to reduce the controller complexity and hence to increase its reliability, we
consider the two-axis model assumption, by neglecting the stator current dynamics.
Hence, equations (7) have the following form

(
vd

vq

)
=

(
RL(t) −X L(t)ω
X L(t)ω RL(t)

) (
id

iq

)
(9)

Therefore, the expressions of RL(t) and X L(t) in terms of the d-q axis voltage and
current are derived of the forms

⎧⎨
⎩

RL(t) = vd id+vq iq

i2d +i2q

X L(t) = 1
ω

vq id−vd iq

i2d +i2q

(10)

From (10), it is evident that, RL(t) and X L(t) are proportional to, respectively, the
active and reactive power delivered by the generator and give information about the
operating conditions of the rest of the grid. More important, they are update online
using only local measurement.

The terminal voltage is defined by

vt =
√

v2d + v2q (11)
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The expressions of vd and vq as a function of the state variables can be expressed,
by combining Eqs. (1) and (7), as follow

{
vd = ∂11(t)id + ∂12ifd + ∂13ωiq + ∂14ikd + ∂15ikqω + ∂16(t)ufd

vq = ∂21(t)idω + ∂22(t)ifdω + ∂23(t)iq + ∂24(t)ikdω + ∂25(t)ikq
(12)

where the time-varying parameters ∂i j depend on hi j (t) and gi (t) and hence on the
operating conditions of the power system. Their expressions are given as follows

∂11(t) = RL + h11(t)X L(t)ω−1
R ∂12(t) = h12(t)X L(t)ω−1

R

∂13(t) = X L(t)(h13(t)ω
−1
R − 1) ∂14(t) = h14(t)X L(t)ω−1

R

∂15(t) = h15(t)X L(t)ω−1
R ∂16(t) = g1(t)X L(t)ω−1

R

∂21(t) = X L(t) + h31(t)X L(t)ω−1
R ∂22(t) = h32(t)X L(t)ω−1

R

∂23(t) = h33(t)X L(t)ω−1
R + RL(t) ∂24(t) = h34(t)X L(t)ω−1

R

∂25(t) = h35(t)X L(t)ω−1
R

Then, combining Eqs. (8), (11) and (12) with mechanical equation (2), and the equa-
tions of the turbine (5), we can formulate the new mathematical model of the power
system in the following nonlinear state-space form

dvt

dt
= ∂16(t)

vd

vt

dufd

dt
+ g3(t)∂14(t)

vd

vt
ufd + f (t) (13)

dω

dt
= h61(t)ω + h62(t)

Pm

ω
− h62(t)Te (14)

d Pm

dt
= h81(t)Pm + h82(t)Xe (15)

d Xe

dt
= h91(t)Xe + h92(t)ω + g4(t)ug (16)

where

f (t) = vd

vt

[
∂11(t)

did
dt

+ ∂12(t)
difd
dt

+ ∂13(t)

(
ω

diq
dt

+ iq
dω

dt

)]
+

vd

vt
∂15(t)

[
ω

dikq

dt
+ ikq

dω

dt

]

+ ∂14(t)
vd

vt

[
h41(t)id + h42(t)ifd + h43(t)iqω + h44(t)ikd+h45(t)ikqω

] + vq

vt

dvq

dt

h81(t) = −(Tm)−1 h82(t) = Km(Tm)−1

h91(t) = −(Tg)
−1 h92(t) = −Kg(Tg RωR)−1

g4(t) = Kg(Tg)
−1
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3 Backstepping Terminal Voltage and Rotor Speed
Controllers Design

The control objectives are the terminal voltage magnitude vt regulation and rotor
speed ω stability enhancement. The form of the nonlinear system, described by
(13)–(16), allows the use of the recursive backstepping procedure for the controller
design. The basic idea of backstepping design is to select recursively some appro-
priate functions of state variables as pseudo-control inputs for lower dimension sub-
systems of the overall system. Each backstepping stage results in a new pseudocon-
trol design, expressed in terms of the pseudocontrol designs from preceding design
stages. When the procedure terminates, a feedback design for the true control input
results which achieves the original design objective by virtue of a final Lyapunov
function, which is formed by summing up the Lyapunov functions associated with
each individual design stage [15]. In the rest of this section, this idea is adopted to
design a nonlinear controller for terminal voltage and rotor speed tracking of the
power system.

3.1 Backstepping Control Design

To satisfy the first control objective, the terminal voltage control error is defined as

z1 = vt − vre f
t (17)

where vre f
t is the desired trajectory. The time derivative of the z1 , using (13), is

dz1
dt

= ∂16
vd

vt

dufd

dt
+ g3∂14

vd

vt
ufd + f (t) (18)

The design procedure starts by defining the following Lyapunov-like function:

V1 = 1

2
z21 (19)

Its time derivative can be written as

dV1

dt
=

[
∂16

vd

vt

dufd

dt
+ g3∂14

vd

vt
ufd + f (t)

]
z1 (20)

To ensure the global asymptotic stability, we impose

dV1

dt
= −K1z21 (21)
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where K1 is a positive constant feedback gain. Then (20) can be rewritten as

dV1

dt
= −K1z21 +

[
K1z1 + ∂16

vd

vt

dufd

dt
+ g3∂14

vd

vt
ufd + f (t)

]
z1 (22)

From the above expression, we can define the following control function

dufd

dt
= − vt

∂16vd

[
K1z1 + g3∂14

vd

vt
ufd + f (t)

]
(23)

The second control objective is to keep the rotor speed tracks the desired trajectory
ωre f = 1 p.u.

Step 1: To reach the control objective, the rotor speed error is defined as

z2 = ω − ωre f (24)

From (14), the derivative of the rotor speed error is given as

dz2
dt

= h61ω + h62
Pm

ω
− h62Te (25)

Consider the second Lyapunov function

V2 = z21
2

+ z22
2

(26)

Using (21) and (25), the derivative of (26) can be derived as follows

dV2

dt
= −K1z21 +

(
h61ω + h62

Pm

ω
− h62Te

)
z2 (27)

The Pm can be viewed as a virtual control in the above equation. Define the following
stabilizing function

α1 = ω

h62
(h62Te − h61ω − K2z2) (28)

where K2 is a positive constant feedback gain. Since the mechanical power Pm is not
our control input, we define

z3 = Pm − α1 (29)

which is the stabilizing error between Pm and its desired trajectory α1. When a
fault occurs, large currents and torque are produced. This electrical perturbation may
destabilize the operating conditions. Hence, it becomes necessary to account for
these uncertainties by designing a higher performance controller.

In (28), as electromagnetic load Te is unknown, when fault occurs, it has to be
estimated adaptively. Thus, let us define
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α̂1 = ω

h62

(
h62T̂e − h61ω − K2z2

)
(30)

where
∧
Te is the estimated value of the electromagnetic load. Thus from (25), (29)

and (30), the following rotor speed error dynamics is obtained

dz2
dt

= −K2z2 + h62
z3
ω

− h62

∼
Te (31)

where
∼
Te = Te − ∧

Te.

Step 2: To stabilize themechanical power Pm , one defines the following derivative
of z3 using (15), (29) and (30) as

dz3
dt

= h81Pm + h82Xe − dα̂1

dt
(32)

Now, we can define a new Lyapunov function including the mechanical power error
variable z3 as

V3 = 1

2
z21 + 1

2
z22 + 1

2
z23 + 1

2μ
T̃ 2

e (33)

where μ is a positive adaptive gain. Its derivative, using (21), (31) and (32), is given
as follows

V̇3 = −K1z21 − K2z22 − K3z23 + T̃e

(
1
μ

˙̃Te − h62z2
)

+
(

h81Pm + h82Xe − dα̂1
dt + h62

z2
ω

+ K3z3
)

z3
(34)

Similarly, if we consider Xe as a second virtual control, one easily obtains the fol-
lowing stabilizing function

α2 = 1

h82

(
dα̂1

dt
− K3z3 − h62

z2
ω

− h81Pm

)
(35)

where K3 is a positive constant feedback gain. And the following update law can be
derived as ˙̃Te = μh62z2 (36)

Step 3: Define the steam valve opening error as

z4 = Xe − α2 (37)

Its derivative along the trajectory, using (16), is

dz4
dt

= h91Xe + h92ω + g4ug − dα2

dt
(38)
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By substituting (37) into (32), one can get

dz3
dt

= h82z4 − K3z3 − h62
z2
ω

(39)

Finally, let us define a Lyapunov function for the closed-loop system as follows

V4 = V3 + 1

2
z24 = 1

2
z21 + 1

2
z22 + 1

2
z23 + 1

2μ
T̃ 2

e + 1

2
z24 (40)

By differentiating the Lyapunov function V4 in (40) one obtains

V̇4 = −K1z21 − K2z22 − K3z23 + z4
(
h82z3 + h91Xe + h92ω + g4ug − α̇2

)
(41)

From (41), a backstepping control law is designed as follows

ug(t) = 1

g4

(
dα2

dt
− K4z4 − h82z3 − h91Xe − h92ω

)
(42)

where K4 is a positive constant feedback gain.
By substituting (42) into (41), one can get

V̇4 = −K1z21 − K2z22 − K3z23 − K4z24 ≤ 0 (43)

3.2 Stability Analysis

Theorem The globally asymptotic stability of the system defined by (13)–(16), is
guaranteed, if the control laws and the adaptive control are given by (23), (42) and
(36), respectively.

Proof The system error dynamics of the resulting closed loop adaptive system can
be written as

dz1
dt = −K1z1

dz2
dt = −K2z2 + h62

z3
ω

− h62

∼
Te

dz3
dt = h82z4 − K3z3 − h62

z2
ω

dz4
dt = −K4z4 − h82z3

dT̃e
dt = h62μz2

(44)

This system has an equilibrium at z1 = z2 = z3 = z4 = 0.

It is then clear that a Lyapunov function (40) for the system defined by (13)–(16),
the control laws (23), (42) and the adaptive law (36) make it derivative negative
semi-definite. So, define the following equation



462 M. Ouassaid et al.

W (t) = K1z21 + K2z22 + K3z23 + K4z24 ≥ 0

Using Lasalle–Yoshizawa’s principle [15], it can be shown that W (t) tend to zero as
t → ∞. Therefore, the tracking errors which include terminal voltage, rotor speed,
mechanical power and steam valve opening will converge to zero asymptotically as
t → ∞.

4 Validation and Discussion

The developed dynamic model and control strategy were tested on the two-area four-
machine interconnected power system [16] whose schematic is shown in Fig. 1. At
the steady state of the full load case, about 700 MW power is generated from each of
the generators. The loads on buses LD7 and LD9 are 967 and 1767MW, respectively.
About 400MWpower is transferred fromarea 1 to area 2 through the parallel tie lines.
The numerical values of the studied system parameters are presented in the Tables1,
2 and 3. The Matlab/Simulink software is used for the time-domain simulations.
Nonlinearities were taken into account incorporating both exciter ceilings, control
signal limiters and rate of opening and closing in the turbine valve.

Figure2 shows the decentralized control system configuration of the multima-
chine power system. In order to prove the usefulness and supremacy robustness of
the proposed modelling and controllers, the results are compared with those of the
conventional AVR + PSS and SG. Simulation studies are carried out for the power
system under different contingencies.

Fig. 1 Single-line diagram of the two-area four-machine power system
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Table 1 Parameters of the power synchronous generator (# 1) in p.u.

Parameter Value

Sbase 900 MVA

Rs , stator resistance 1.096 × 10−3

Rfd, field resistance 7.42 × 10−4

Rkd , direct damper winding resistance 13.1 × 10−3

Rkq , quadrature damper winding resistance 54 × 10−3

Ld , direct self-inductance 1.700

Lq quadrature self-inductances 1.640

Lfd, rotor self inductance 1.650

Lkd ,direct damper winding self inductance 1.605

Lkq , quadrature damper winding self
inductance

1.526

Lmd , direct magnetizing inductance 1.550

Lmq , quadrature magnetizing inductance 1.490

V ∝, infinite bus voltage 1

D,damping constant 0

H , inertia constant 2.37 s

Table 2 Parameters of the power synchronous generators (# 2, 3, 4) in p.u.

Parameter Value

Sbase 900 MVA

xl leakage reactance 0.2 p.u.

ra resistance 0.0025 p.u.

xd d-axis synchronous reactance 1.8 p.u.

x ′
d d-axis synchronous transient reactance 0.25 p.u.

T ′
d0 d-axis open circuit time constant 8 s

xq q-axis synchronous reactance 1.7 p.u.

x ′
q q-axis synchronous transient reactance 0.25 p.u.

T ′
q0 q-axis open circuit time constant 0.4 s

H inertia constant 6.5 s

4.1 Effect of Severe Disturbance on the Dynamic
Performance of the System

A symmetric three-phase short circuit fault occurs at location F (in the middle of the
transmission line between bus B7 and bus B9), see Fig. 1, at 3 s. The transmission
line subject to a fault is cut off at 3.1 s. The original system is restored after the
fault clearance. Figure3 illustrates terminal voltage and rotor speed. According to
this figure, the trajectories command can be well tracked and the tracking error
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Table 3 Parameters of the steam turbine and speed governor

Parameter Value

Tt , time constant of the turbine 0.35 s

Kt , gain of the turbine 1

R regulation constant of the system 0.05

Tg , time constant of the speed governor 0.2 s

Kg , gain of the speed governor 1

Fig. 2 Decentralized control system configuration

converged to zero. The electrical power of controlled generator and tie-line power
flow are shown in Fig. 4. It is seen how dynamics of the terminal voltage, rotor speed
and electrical power exhibit large overshoots during post fault state before they settle
to their steady state values with the standard controllers (AVR + PSS + SG) rather
than with the nonlinear decentralized scheme. It is quite evident that the developed
decentralized controller achieves very good voltage regulation and transient stability.

Also, Fig. 5 shows the variations of the inter-area and local mode of oscillation.
From these figures, it can be seen that, the inter-area modes of oscillations are very
quickly damped out with the application of the proposed controller. Further, the
proposed approach is also effective in suppressing the local mode of oscillations.
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Fig. 3 Dynamic performance tracking of generator G1, following temporary three-phase short
circuit fault. Solid proposed nonlinear control scheme; dot conventional controllers

4.2 Effect of Small Disturbance on the Dynamic
Performance of the System

In any power system, the operating load varies over a wide range. It is extremely
important to investigate the effect of variation of the loading condition on the
dynamic performance of the system. In order to examine the robustness of the
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Fig. 4 Tie-line power flow (a) and electrical power of generator G1 (b) following temporary three-
phase short circuit fault. Solid proposed nonlinear control scheme; dot conventional controllers

damping controllers to wide variation in the loading condition, the load at bus 7
(LD7 = 967MW) is disconnected at t = 5s for 100ms.

Figures6 and 7 show the tracking performance of the proposed controller. As it
can be seen, the state variables reach a steady state condition, exhibiting the stability
of the closed-loop system.
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Fig. 5 Local mode of oscillationω1-ω2 (a) and inter-area mode of oscillationω1-ω3 (b) following
temporary three-phase short circuit fault. Solid proposed nonlinear control scheme; dot conventional
controllers

Figure8 shows the variations of the inter-area and local mode of oscillation. It can
be seen that, the transient response of the classical controllers (PSS/AVR and SG) is
more oscillatory than the response given by the designed nonlinear controller. The
developed decentralized controller provides significantly better damping enhance-
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Fig. 6 Dynamic performance tracking of generator G1, following load variation Solid proposed
nonlinear control scheme; dot conventional controllers

ment in the power system oscillations. It is possible to observe that the overshoot
and settling time are reduced as well.

It is evident that the proposed controller is robust to this type of disturbance and
provides efficient damping to power system oscillations even under small distur-
bance.
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Fig. 7 Tie-line power flow (a) and electrical power of generator G1 (b) following load variation.
Solid proposed nonlinear control scheme; dot conventional controllers

4.3 Robustness to Parameters Uncertainties
and Modelling Errors

The variation of system parameters and model errors are considered for robustness
evaluation of the proposed controller. In fact, an accurate model of power system is
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Fig. 8 Local mode of oscillationω1-ω2 (a) and inter-area mode of oscillationω1-ω3 (b) following
load variation Solid proposed nonlinear control scheme; dot conventional controllers

not available. Therefore, it is required to investigate the robustness of the proposed
controller with system parameter variation and model errors.

A robustness test has been carried out by changing the controlled generator para-
meters from their nominal values. Two cases are examined in the following:
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Fig. 9 Terminal voltage (a) and Electrical power of generator G1 (b) under parameter variations

• Case 1: The parameters of the controlled generator have +25% perturbations of
the nominal values.

• Case 2: The parameters of the controlled generator have −25% perturbations of
the nominal values.

In addition to the abrupt and permanent variation of the power system parameters
a three-phase short-circuit is simulated at t = 4s. It can be seen in Figs. 9 and 10 that
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Fig. 10 Local mode of oscillation ω1-ω2 (a) and inter-area mode of oscillation ω1-ω3 (b) under
parameter variations

the proposed scheme can still provide consistent control performance even if system
parameters have changed and furthermore the controller is not sensitive to the model
errors.
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5 Conclusion

Anonlinear decentralized controller based on a new dynamicmodel of multimachine
power systems is developed. In our solution a nonlinear nine order model for syn-
chronous generator, driven by steam turbine and connected to EPS was used. This
novel model, with time-varying parameters representing intermachine interactions,
takes into account all interactions in EPS between the electrical and mechanical
dynamics and load constraints. The only local information is required; therefore, the
proposed control scheme can be implemented in a decentralized way.

The proposed nonlinear decentralized controllers, of terminal voltage and speed
rotor, are constructed using adaptive backstepping design. The feedback system is
globally asymptotically stable in the sense of Lyapunov method despite the nature
of the contingencies.

The designed nonlinear controller is tested through simulation under the most
important perturbations in the power systems: (a) load variation, (b) large fault (a
100ms short circuit) and (c) generator parameter variations.Digital simulation results
confirm that the developed decentralized control gains much priority over conven-
tional controllers (AVR/PSS and speed governor) in damping oscillation, improving
voltage regulation and enhancing transfer capability.
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Diving Autopilot Design for Underwater
Vehicles Using an Adaptive Neuro-Fuzzy
Sliding Mode Controller

G.V. Lakhekar, L.M. Waghmare and Sundarapandian Vaidyanathan

Abstract In general, the diving dynamics of an autonomous underwater vehicle
(AUV) has been derived under various assumptions on the motion of the vehicle
in vertical plane. Usually, pitch angle of AUV is assumed to be small in maneu-
vering, so that the nonlinear dynamics in the depth motion of the vehicle could be
linearized. However, a small-pitch-angle is a somewhat strong restricting condition
and may cause serious modeling inaccuracies of AUV’s dynamics. For this reason,
many researchers concentrated their interests on the applications of adaptive control
methodology to the motion control of underwater vehicle. In this chapter, we directly
resolve the nonlinear equation of the AUV’s diving motion without any restricting
assumption on the pitch angle in diving model. The proposed adaptive neuro-fuzzy
sliding mode controller (ANFSMC) with a proportional + integral + derivative (PID)
sliding surface is derived so that the actual depth position tracks the desired trajectory
despite uncertainty, nonlinear dynamics and external disturbances. In the proposed
control structure, the corrective term is approximated by a continuous fuzzy logic
control and the equivalent control is determined by a feedforward neural network.
The weights of the neural network are updated such that the corrective control term
of the ANFSMC goes to zero. The adaptive laws are employed to adjust the output
scaling factor and to compute PID sliding surface coefficients. Finally, the lyapunov
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theory is employed to prove the stability of the ANFSMC for trajectory tracking
of diving behaviors. Simulation results show that this control strategy can attain
excellent control performance.

Keywords Autonomous underwater vehicle · Adaptive neuro-fuzzy sliding mode
control · Fuzzy logic control and Neural network

1 Introduction

Underwater robotic vehicles (URV’s) have experienced remarkable growth in their
emerging applications, such as scientific inspection of deep sea, oceanographic map-
ping, long range survey, underwater structure maintenance, oil and gas exploration,
underwater pipelines tracking, rescue operation, underwater precision-guided muni-
tions and so on. The area of URV’s currently falls into two basic categories such
as Manned Underwater Vehicles and Unmanned Underwater Vehicles (UUVs).
Again, UUVs is classified in to Remotely Operated Underwater Vehicles (ROVs)
and Autonomous Underwater Vehicles (AUVs). ROV is a physically linked vehicle
via the tether to the surface and are remotely operated by a human pilot. AUV is
an unmanned, untethered and underactuated, underwater vehicle that carries its own
power source and relies on an on-board computer along with machine intelligence to
execute a mission. However, AUV’s dynamics are highly nonlinear, time varying and
hydrodynamic coefficients of vehicles are difficult to be accurately estimated a prior,
because of the variations of these coefficients with different operating conditions.
These types of difficulties cause modeling inaccuracies as parametric uncertainty
and unstructured uncertainty in AUV’s dynamics. In order to deal with the uncer-
tainties in the AUV’s dynamics, most control related researchers on URV are mainly
focused on the applications of robust control methodology to the motion control of
underwater vehicles.

In the existing literatures, several different studies have been done in order to
design autopilots for controlling the AUV’s such as PD/PID controllers are designed
in [16, 22, 23, 31, 33, 48, 50, 61, 79] as model based controllers most dynami-
cally used in dynamic positioning and motion control. The adaptive control law is
developedwith estimation of uncertain parameters associatedwith the hydrodynamic
damping co-efficients, which is used to generate appropriate control for the AUV
mentioned in [2, 4, 11, 53, 76–78]. Recent progress in the design of robust control
schemes has resulted in the linear quadratic gaussian (LQG) methodology with loop
transfer recover (LTR), gain scheduling and H∞ control method employed in control
of AUV, as described in [15, 40, 47, 51, 54, 56, 57, 59, 60, 64–66]. As compared to
robust methods, adaptive control is better for plants with uncertainties because it can
improve it’s performance by adaptation with little or no information of the bounds
on uncertainties and it is difficult for higher order system.
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Sliding mode approach introduced in [9–12, 17, 18, 21, 24, 42, 49, 68, 71, 72]
as an effective means of controlling an AUV, mainly due to its ability to tolerate
imprecision in the dynamics of undersea robots. A fuzzy logic framework is used
for navigation and control of underwater vehicles as discussed in [1, 3, 14, 26, 34,
36, 41, 62, 69]. This control technique dealing with problems characterized by the
presence of uncertainty and nonlinearity; in this case the vehicle’s movement and
sensing actions depend on a number of environment conditions that are impossi-
ble to model. Another intelligent control technique as neural networks (NNs) have
an inherent capability of approximating uncertain nonlinear dynamics of the AUV
without explicit knowledge of its dynamic structure and it is an attractive tool for
steering and diving motion control depicted in [5, 27–30, 44–46, 52, 67, 70, 73–
76, 80]. The controllers for AUV should be robust to suppress the uncertain effects
from nonlinearity, modeling error and the interferences from complicated external
environment.

Usually, it is difficult to derived or identify an accurate dynamic model of a com-
plicated AUV system for designing autopilots. So that, an intelligent control method
as fuzzy logic control (FLC) law can be designed based on some knowledge or with-
out any knowledge about the system. In addition, an appropriate FLC can overcome
the parameter variation and environmental disturbance during operation. But, there is
still lacking of theoretical modeling and analysis for the FLC stability and robustness
problems. Hence, the robustness feature of a sliding mode control (SMC) was intro-
duced into the fuzzy controller in current researches. More recently, several studies
have been done in order to combine the advantages of SMC and FLC. Kim and
Lee [37] proposed a fuzzy controller with fuzzy sliding surface for reducing track-
ing error and eliminating chattering problem due to that stability and robustness is
improved. Song and Smith [63] introduced a sliding mode fuzzy controller that uses
pontryagins maximum principle for time optimal switching surface design and uses
fuzzy logic to this surface. Guo et al. [19] applied a sliding mode fuzzy controller to
motion control and line of sight guidance of an AUV. The parameters of FSMC algo-
rithm are non-adaptive in nature, which could be adapted by intelligent techniques
for improving output response. Balasuriya and Cong [6] proposed adaptive fuzzy
controller can approximate the unknown system and sliding mode approach provide
strong robustness against model uncertainties and external disturbances. Its parame-
ters will be adapted online to utilize control energy more efficiently. Kim and Shin
[38] developed autopilot for depth control of an underwater flight vehicle (UFV)
based on adaptive fuzzy sliding mode control (AFSMC) with a fuzzy basis func-
tion expansion (FBFE) is employed with a proportional integral augmented sliding
signal. Afterwards, Kim and Shin [39] proposed an expanded adaptive fuzzy slid-
ing mode controller (EAFSMC), is based on the decomposition method designed
by using an expert knowledge and the decoupled sub-controllers and composition
method designed by using the FBFE’s. Sebastion et al. (2007) address the kinematic
variables controller based on pioneering algorithm, is utilized in control of underac-
tuated snorkel vehicle. In proposed methodology, adaptive capabilities are provided
by several fuzzy estimators, while robustness is provided by the SMC law.
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In the further development, Bessa et al. [7] presented an adaptive fuzzy control
algorithm based on sliding mode for depth control of an ROV, which is employed
for uncertainty and disturbance compensation with completely eliminating chat-
tering effect. Later, Bessa et al. [8] applied AFSMC for identification of external
disturbances to control the dynamic positioning of underwater vehicles with four
controllable degrees of freedom. Javadi-Moghaddam and Bagheri [32] introduced
an adaptive neuro-fuzzy sliding-mode-based genetic algorithm (ANFSGA) control
system for a ROV with four degrees of freedom (DOF)s. Since, the dynamic of
ROVs are highly nonlinear and time varying, an ANFSGA control system is investi-
gated according to direction-based genetic algorithm (GA) with the spirit of sliding
mode control and adaptive neuro-fuzzy sliding mode (ANFS) based evolutionary
procedure. Guo et al. [20] presented AFSMC to deal with the depth and heading reg-
ulation of spherical underwater robots. Furthermore, the designed controller can’t
only tolerate actuator stuck faults, but also compensate the disturbanceswith constant
components. Lakhekar and Waghmare [43] designed dynamic fuzzy sliding mode
control (DFSMC) for heading angle control in horizontal turn to track desired com-
mand, under the influence of disturbances and parameter variations. In this control
technique, two fuzzy supervisory systems are employed to determine the value of
boundary layer width and hitting gain as the base values of input-output membership
functions of FSMC control structure. From the literatures, it can be observed that
many approaches in FSMC algorithms have been taken to address the control aspect
of the AUV’s.

To accomplish the mentioned motivation in controlling of undersea robots, an
ANFSMC designed as diving autopilot for trajectory tracking of AUV’s. This is a
cooperative control that is based on the concept of combining NN, FLC and SMC,
where the equivalent control is determined by a feed forward NN and the corrective
control is approximated by a continuous FLC. At first, we design PID sliding surface
and their coefficients are estimated with the help of adaptive control law. In order to
reduce the chattering phenomenon, a FLC is used to approximate the corrective con-
trol term and the equivalent control is computed by a feed-forward NN. The weights
of the NN are adopted by the gradient descent method and adaptive PID sliding
surface. This approach can achieve asymptotic stability and converge faster. The rest
of this chapter is organized as follows. In Sect. 2, we shall briefly describe diving
model of an AUV. The design of ANFSMC applied to AUV for tracking periodic
command is described in Sect. 3. Then, Sect. 4 presented, MATLAB/Simulink based
numerical simulations for diving motion control for AUV. Finally, conclusions are
summarized in Sect. 5.

2 Mathematical Model of AUV

Generally, AUV has a streamlined torpedo-like body propelled by a single thruster
and it’s dynamics is highly nonlinear, coupled and time-varying. In addition to
these, the hydrodynamic parameters are often poorly known and the vehicle may be
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Fig. 1 Body-fixed frame and earth-fixed frame for AUV

subjected to unknown forces due to ocean currents.For vehicle maneuvering, two
stern planes and two stern rudder underneath the hull are used. Dynamical behavior
of an AUV can be described in a common way through six degree of freedom (DOF)
nonlinear equations suggested by Fossen [16], in the two co-ordinate frames such as
Body fixed frame and Earth fixed frame as indicated in Fig. 1.
The nonlinear underwater vehicle’s motion equation expressed in the Body fixed
frame is given as,

M(ν)ν̇ + CD(ν)ν + g(η) + d = τ, η̇ = J(η)ν, (1)

where, η = [x, y, z, φ, θ, ψ]T is the position and orientation vector in earth fixed
frame, ν = [u, v, w, p, q, r]T is the velocity and angular rate vector in body-fixed
frame. M(ν) ∈ �6×6 the inertia matrix (including added mass), CD(ν) ∈ �6×6

denotes the matrix of Coriolis, centripetal and damping term, g(η) ∈ �6 the gravita-
tional forces and moments vector, d is the disturbances, τ is the input torque vector
and J(η) is the transformation matrix. In vertical plane, we can assume that the
roll and yaw angular velocities are close to zeros. This can be achieved by properly
adjusting the RPM of propeller and the rudders’ angles. Under these assumptions,
the heave dynamics of AUVs could be represented as,

ż = −u sin θ + ν cos θ sin φ + ω cos θ cosφ ≈ −u0 sin θ (2)

where u0 > 0 is a forward constant speed, and the pitch kinematics could bewritten as

θ̇ = q cosφ − r sin φ ≈ q cosφ (3)
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The roll angle φ is nearly constant, since p ≈ 0. Without any loss of generality, we
assume that φ = 0. Therefore, above equation could be rewritten as

θ̇ ≈ q (4)

Consequently, the diving equation of an AUV can be certain modified as

ż = −u0 sin θ (5)

θ̇ = q (6)

mqq̇ = ΦTΘ + Fqu2
0δq + dq (7)

where,Φ = [q, u̇, u, u2, ωq, rq, cosφ sinΨ ]T ,Θ = [θ1, θ2, θ3, θ4, θ5, θ6, θ7]T ,mq is
the inertia term including addedmass,Fq is the finmoment coefficient and δq denotes
the stern plane angle and dq is the disturbance term. The main focus of this chapter is
taken on an attempt to break a conventional restricting condition, which is typically
added to the AUV’s motion behavior while in maneuvering. Mostly, the pitch angle
of the vehicle is assumed to be small in maneuvering so that the nonlinear dynamics
in the depth motion of the vehicle could be linearized. Here, small-pitch-angle is a
strong restricting condition and may cause difficulty in many practical applications.
In this work, we directly resolve the nonlinear equation of the vehicle’s depth motion
without any restricting assumptionon the pitch angle of the vehicle. In fact, robustness
has become one of the important aspect related to nonlinear depth control problems,
and attention have been taken in to guarantee the stabilities of the proposed control
algorithmunder various assumptions on the unstructured uncertainties.AnANFSMC
was proposed for diving control of an AUV with the nonlinear depth dynamics and
their unstructured uncertainties were assumed to be unknown and unbounded.

3 Design of Adaptive Neuro-Fuzzy Sliding Mode Controller

3.1 Proposed Control Structure

The derivation of the proposed ANFSMC scheme for diving control of an AUV is
discussed in this section. The control problem is to synthesize an adaptive control
law, so that it can provide direct solution to the nonlinear depth dynamics without
any restricting assumption on the AUV’s pitch angle, during diving motion behavior.
The overall control scheme for motion behavior of undersea robot in vertical plane
is depicted in Fig. 2, in which reaching mode control law or switching law means
discontinuous control part is approximated by a continuous fuzzy logic control and a
feedback control law as equivalent control is to be designed to provide convergence
of a system’s trajectory to the sliding surface, within finite time period is computed
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Fig. 2 The structure of ANFSMC

by a NN. The output of the NN is added with fuzzy logic based corrective control
to form the control signal. In the overall control structure, fuzzy logic control is
applied to eliminate chattering phenomenon by smoothing the switching signal and
the equivalent control effort computed by a feed-forward neural network. The design
procedure of the ANFSMC includes the following steps.

Step(1): Design PID sliding surface with adaptation scheme
Step(2): Determine corrective control ufe using e or S
Step(3): Determine equivalent control ueq with the help of NN
Step(4): Estimate output scaling factor kf of fuzzy logic control
Step(5): Calculate the overall control signal for diving control

In this work, a NN controller with the learning rule based on sliding mode algorithm,
is employed to assure computation of unknown part in the equivalent control under
the influence of parametric uncertainties and the second one is chattering free smooth
switching law based on fuzzy logic control. The weights of the NN are updated by
using iterative gradient algorithm, due to which reaching time is shorten and gain
factor of fuzzy inference system along with sliding surface coefficients are computed
using adaptive laws.
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3.2 PID Sliding Surface

At the first step, let us define a PID sliding surface S(t) in the state space �2 by the
equation S(q, θ, z̃) with following equation

S = Kp(z(t) − zd) + Kiθ(t) + Kdq(t) (8)

where, z̃ is the tracking error, z is the depth parameter and zd is desired vertical
position. An integral term included in the PD type sliding surface expression that
resulted in a type of PID sliding surface as hyperbolic function. PID sliding surface
coefficients Kp, Ki and Kd are designed such that the sliding mode on S = 0 is stable
ie convergence of S to zero in turn guarantees that z̃ converge to zero. The coefficients
of PID based sliding surface are strictly positive constant Kp, Ki and Kd ∈ �T . The
coefficients of PID sliding surface can be obtained by adaptive laws as,

K̇p = −η1Se (9)

K̇i = −η2S
∫

edt (10)

K̇d = −η3Sė (11)

where, ηi > 0 is the learning rate i = 1, 2, 3, …, The control law based on a contin-
uous time varying PID sliding surface, here coefficients are systematically obtained
according to the adaptive law.

3.3 Corrective Control

An advantage of using fuzzy logic in the controller design is that the dynamics of
system need not be fully known. On the other hand, the linguistic expression of the
fuzzy controller makes it difficult to guarantee the stability and robustness of the
control system. Therefore, their designing based on the sliding mode theory assures
performance and stability, while simultaneously reducing the number of fuzzy rules.
Sliding mode control (SMC) produces a serious chattering phenomenon, which is
avoided by smoothing the switch signal. Therefore, a fuzzy logic controller is used to
replace the switching control or discontinuity in the signum function at the reaching
phase in the SMC design.
A principal diagram for ANFSMC includes NN module and fuzzy inference system
for combined action of equivalent and corrective control algorithm. In fuzzy inference
engine, generalized fuzzy sliding mode based rule is designed as follows

Equivalently,Ri: If s isF
′i
s then uf isF

′i
uf , i = 1, 2, . . . 5.
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Fig. 3 Membership
functions for corrective
control as fuzzy logic control

Table 1 Rule base for FSMC algorithm

Sliding
surface (S)

NL NS ZE PS PL

Control
signal (uf )

P P Z N N

where, NL is Negative Large, NM is Negative Medium, ZE is Zero, PM is Positive
Medium, PL is Positive Large, P is Positive, N is Negative and Z is Zero. NL, NM,
…P, N, Z are labels of fuzzy sets and their corresponding membership functions are
depicted in Fig. 3, respectively. Let X and Y are the input and output space of the
fuzzy rules, respectively. For any arbitrary fuzzy Fx in X, each rule Ri can determine
a fuzzy set Fx * Ri in Y . The reduced rule base table for corrective control part in
proposed control scheme as stated in Table1.
The corrective control part is based on single input single output (SISO) mamdani
type fuzzy inference system with minimum If-Then rules. Here, reaching law or
corrective control is defined as,

ufe = kf ufuzzy (12)

where, kf is the output scaling factor and ufuzzy is the output of fuzzy inference
system, which is determined by the sliding surface S. The fuzzy control rules can
be represented as mapping of the input linguistic variable S to the output linguistic
variable as uf .

According to the following the sup-min compositional rule of inference

μF̃x◦Ri(uf ) = Sup
s ∈ X

[
min

(
μF̃x

(s), min

(
μF̃i

s
(s), μ ˜Fi

uf

(uf )

))]
(13)
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It can be further simplified by supposing F̃x be a fuzzy singleton, then

μFx◦Ri(uf ) = min[μFi
s
(α), μFi

uf
(uf )] (14)

the deduced MF F
′d
u of the consequence of all rules is,

μd
F̃d

uf
(uf ) = max[μF̃x◦Ri(uf ), . . . μF̃x◦Rs(uf )] (15)

the output variable in above equation is fuzzified output. For the defuzzifier, the
center of area defuzzification method is used to find the crisp output is given as.

ufuzzy =
∫

uf μd
F̃d

uf
(uf )duf∫

μd
F̃d

uf
(uf )duf

(16)

The crisp control signal from extended fuzzy controller is applied to the system
model for achieving stabilized diving motion behavior. Other task is to update out-
put scaling factor on line, which depends on sliding surface variable S and its number
of fuzzy partitions. The gain updating factor kf is calculated using following relation

kf = k1[1/p̃ + |S|] (17)

Here, kf is nonfuzzy adapted output normalization gain, p̃ is the number of fuzzy
partitions ofS ie. (p̃=5), k1 is a positive constant, thatwill bring appropriate variations
in kf , which is formulated according to the rule-base of fuzzy inference system with
the following strategy: when the state is moving fast towards its set-point, control
action needs to be reduced to prevent possible large overshoot and/or undershoot;
on the other hand, when the state is rapidly moving away from the set-point, control
action needs to be increased to restrict such deviations for a good recovery of the
process. In this way, corrective control part is designed to provide smooth switch
signal.

3.4 Equivalent Control

The computation of equivalent control is based on fully connected neural network
structure, which is consists of an input layer with two neurons (n), one hidden layer
with four neurons (h) and a single neuron in output layer (m). The structure of NN
presented in control configuration as depicted in Fig. 4 with x is the n × 1 input
vector and y is a m × 1 diagonal vector. Here, ω and ϑ denotes the input-to-hidden
layer and hidden -to-output layer weights respectively in feed forward NN structure.
In forward propagation, response of NN is expressed as follows:
The input of the jth hidden layer is specified as
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Fig. 4 NN structure for estimation of equivalent control

yj =
n∑

k=1

ωjk xk (18)

The output of the jth hidden unit is represented as

youtj = f (yj) (19)

where, f is the sigmoidal transfer function

f (σ ) = 2

1 + e−σ
− 1 (20)

In above activation function, σ = yj is output of first layer in NN. Afterwards, the
input to the ith output unit is

qi =
h∑

j=1

ϑij youtj (21)

The output of NN is given as
qouti = f (qi) (22)

The estimated value of equivalent control is obtained as

ûeq = keq qouti (23)

In backward propagation, the weight adaptation of NN for equivalent control esti-
mation is expressed as follows:

The error back propagation algorithm is derived on the basis of simple gradient
principle for minimizingmean square error between the actual output and the desired
output. That is, to minimize the cost function selected as the difference between
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the desired and the estimated equivalent control. Hence, a simple cost function is
described as follows

E = 1

2
[ueq − ûeq]2 (24)

The weights are updated by using

�ϑij = −α
∂E

∂ϑij
(25)

Similarly, another weights between input and hidden layer is updated as

�ωjk = −α
∂E

∂ωjk
(26)

Here, α is the learning rate of the back propagation algorithm and it is constant.
Moreover, the two factor as ∂E/∂ϑij and ∂E/∂ωjk can be expressed as follows

∂E

∂ϑij
= −1

2
keq(ueq − ûeq)(1 − q2

outi) youtj (27)

∂E

∂ωjk
= −1

4
keq(ueq − ûeq)ϑij(1 − q2

outi)(1 − y2outj ) xk (28)

In above equation, ueq is the unknown term. So that, ∂ϑij can not be determined.
In order to solve this problem, we have to use the value of adapted PID sliding
surface S to replace the ueq − ûeq. The reason is that S is given by the designer and
characteristics of ueq − ûeq and S are similar.

∂E

∂ϑij
= −1

2
keq S (1 − q2

outi) youtj (29)

∂E

∂ωjk
= −1

4
keq S ϑij(1 − q2

outi)(1 − y2outj ) xk (30)

The structure of NN that estimate the equivalent control action, is a standard two
layer feed-forward NN with the back propagation adaptation algorithm. The error
between the desired and estimated equivalent control is adjusted by the PID sliding
surface based on adaptive law. The overall output of the neural network structure is
given as

ûeq = unn = Γ (ϑ(Γ (ωxk))) (31)

where, unn is the output of NN structure, employed to estimate equivalent control and
Γ is a nonlinear operator. According to the neural network function approximation
property, a smooth function un is a compact set based on hidden layer neurons with
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weights matrices as ω and ϑ such that,

un(X) = ϑTg(ωT , X) + ε(X) (32)

where, ε(X) represent NN approximation of error satisfying ‖ε(X)‖ < εn for some
εn > 0. Then, estimate of un can be given as

ûn(X) = ϑ̂Tg(ω̂T , X) (33)

where, ϑ̂T and ω̂T are the estimations of ϑ and ω respectively obtained by updating
weights of NN. The proof of the convergence of E to zero is given

Theorem 1 Using the back propagation algorithm with a proper learning rate, it
is guaranteed that E defined in Eq. (24) converges to zero, without bonding to local
minimum. Means that, for a bounded disturbance D(t) and unknown dynamics, it is
guaranteed that system is stable with zero steady state error.

Proof According to Lyapunov stability criteria, we have to show that Ė < 0. The
derivative of the error function with respect to time is given by

dE

dt
= ∂E

∂ω

∂ω

∂t
+ ∂E

∂ϑ

∂ϑ

∂t
(34)

We know that updated weights in Eqs. (25) and (26) utilized in NN structure and
substituted in above Eq. (34),

dE

dt
= −α

[(
∂E

∂ω

)2

+
(

∂E

∂ϑ

)2
]

(35)

Substituting Eqs. (29) and (30) into Eq. (35),

dE

dt
= −α

{ (
−1

4
keqSϑij(1 − q2

outi)(1 − y2outj ) xk

)2

+
(

−1

2
keq S (1 − q2

outi) youtj

)2 }
(36)

Due to squaring operation inner terms become positive as H̃ is given as

dE

dt
= −α [H1 + H2] = −αH̃ (37)

Note that Eq. (37) is a negative definite function, which completes the proof.
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4 The Parameter Adaptive Method

The ANFSMC structure proposed in the previous section has substantially improved
the performance of the fuzzy control (corrective control) by adaptation of dead band
width as width of output membership function, while in neural network (equivalent
control), learning rate is also adapted by using Lyapunov function.

4.1 Tuning of Output Membership Function in Corrective
Control

The response time due to corrective control is minimized, based on the initial condi-
tion of system and dead band ±d. These two factors were considered as the tuning
parameter to achieve minimum time response. In this work, it is demonstrated that,
the settling time can be significantly reduced by on line tuning of the universe of
discourse of the output membership function range ±a with no a prior information
of the initial condition is required. Here, problem is that to tune the base value of
output membership function defined by three fuzzy sets such as negative, zero and
positive with universe of discourse {−a, a}. In order to accomplish a better perfor-
mance and devise a systematic method to obtain optimal membership functions. So
that, we employ following algorithm for tuning of dead zone parameter as base value
of output fuzzy variable, which can significantly minimize settling time of output
response.

Determine the universe of discourse ±a for output fuzzy variable
Initialize dead band d value of output fuzzy variable as d = a/2
Initialize integral absolute function and integral time absolute function
For i = 1 to maximum number of epochs to refinement all d
For j = 1 to minimum number of epochs to refinement one d
Run the experiment and get new values of IAF and ITAF
If ((new IAF < IAF) and (new ITAF < ITAF))
IAF = new IAF;
ITAF = new ITAF;
Save d;
End If
If ((new IAF ≤ IAF) and (new ITAF ≤ ITAF))
d = d × increase ratio
Else
d = d × decrease ratio
End if
End for
End for
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Here, multi variable unconstrained optimization algorithm is employed to deter-
mine the minimum state trajectory θ as function of f (a) of the range ±a of output
membership function in corrective control part. We use decrease ratio and increase
ratio as 0.8 and 1.25 respectively. IAF and ITAF are defined as follows:

IAF : minimize f (a) =
∫ ∞

0
|θ(a)|dθ (38)

ITAF : minimize f (a) =
∫ ∞

0
t|θ(a)|dθ (39)

IAF accounts mainly for state at the beginning of the response and to a lesser degree
for the steady state duration. ITAF keeps account of state at the beginning but also
emphasizes the steady state. Due to this tuning method, response time is significantly
reduced with non oscillatory behavior.

4.2 Adaptive Learning Rate

A simple feed-forward NN has a single output with nonlinear activation function for
neurons. The network is parameterized in terms of its weights which is represented as
a weight vectorW ∈ �m. For a specific function approximation problem, the training
data consists of N patterns, {xp, yp}.
Let us consider a specific pattern p for the input vector is xp, then the network output
is given as,

yp = f (W , xp) (40)

In this work, usual quadratic cost function seen in Eq. (24), which is minimized to
train the weight vector W = {ω, ϑ} is mentioned in Eqs. (25) and (26).
We consider a Lyapunov function candidate as

V = 1

2
(ỹT , ỹ) (41)

where, ỹ = [y1d − y1, . . . , yp
d − yp, . . . , yN

d − yN ]T

it’s time derivative is given as

V̇ = −ỹT ∂y

∂W
Ẇ = −ỹT J Ẇ (42)

where, J = ∂y/∂W ∈ �N×m
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In back propagation algorithm, weights are updated as follows

W(t + 1) = W(t) + α

(
∂E

∂W

)
(43)

Here, α is the fixed learning rate, which is replaced by its adaptive version αa is given
by

αa =
(

μ
‖ỹ‖2

‖JT
p ỹ‖2

)
(44)

In earliest stage, there have been more contribution concerning the adaptive learning
rate and it is the most remarkable factor for determination purpose. However, the
computation of adaptive learning rate using the Lyapunov function approach is the
key part in neural network based control.

5 Stability Analysis

Lyapunov stability analysis is the most popular approach to prove and to evaluate
the stable convergence property of proposed control algorithm as ANFSMC. Here,
direct Lyapunov stability approach is employed to investigate the stability property
of the proposed controller and to derive the adaptive robust control.

Theorem 2 Let the underwater vehicle represented by Eqs. (5)–(7) in vertical plane.
Then subject to required assumptions in diving motion is considered, the proposed
controller is combination of corrective control defined by Eq. (12) and equivalent
control as in Eq. (23) ensures the convergence of state to the sliding surface S and
having desired trajectory tracking response.

Proof Let a Lyapunov function VL be defined as

VL = 1

2
S2 (45)

The time derivative of Lyapunov function is,

V̇L = SṠ (46)

V̇L = S
[
Kp(ż − żd) + Kiθ̇ + Kdq̇

]
(47)

V̇L = S

[
Kp(−u0 sin θ) + Kiq + Kd

mq
(ΦTΘ) + KdFqu2

0δq

mq
− Kpżd

]
(48)
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Here, control input to the underwater vehicle is u = δq as an ANFSMC control signal,

V̇L = S
[
f (z, θ, q) + D(t) + B0u − Kpżd

]
(49)

V̇L = S
[
f (z, θ, q) + D(t) + B0(ûeq + ufe) − Kpżd

]
(50)

V̇L = S
[
f (z, θ, q, D) + B0((Kpżd − f̂ (z, θ, q))B−1

0 + ufe) − Kpżd

]
(51)

V̇L = S
[
B0ufe + D(t)

] = S
[
B0Kf fuzz(S) + D(t)

]
(52)

V̇L ≤ − [
B0Kf − D(t)

] |S| (53)

V̇L ≤ −‖S‖ [‖B0‖‖Kf ‖ − ‖D(t)‖
]

(54)

From the above analysis, the global asymptotic stability is guaranteed since the
derivative of the Lyapunov function is a negative definite V̇L = SṠ < 0.

6 Simulation Results

In order to demonstrate the effectiveness and robustness of the proposed ANFSMC
approach for diving motion control of AUV has been simulated using MATLAB/
Simulink. The main focus of this work is to design adaptive diving autopilot for
nonlinear depth dynamics control of AUV. In this case, the diving equation of an
AUV can be expressed as

ż = −u0 sin θ (55)

θ̇ = q (56)

q̇ = 1

Iy − CMq̇

(
BzCB sin θ + CMq u0q + u2

0CMδq
δq

)
(57)

The parameter values are given as follows:
Length of AUV = 1.8 m
Weight of AUV = m ∗ g = 53 ∗ 9.81 = 519.93 kg.m/s2

Density of sea water = ρ = 1025 kg/m3

Forward Speed= u0 = 1.5 m/s
Vehicle’s mass moment of inertia= Iy = 9.921 kg.m2

Vertical distance between center of gravity and center of buoyancy
BzCB = −(zg − zb) ∗ W = −3.5942
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Non-dimensional hydrodynamic coefficient expressed in body frame B
Mq = −0.000641877
Mq̇ = −0.00190690
Mδs = −0.00786620

Non-dimensional hydrodynamic coefficient = C(.)

CMq = 0.5ρMqL4 = −34.5331
CMq̇ = 0.5ρMq̇L5 = −18.4665
CMδs

= 0.5ρMδs L
5 = −23.5113

The performance of the traditional FSMC and ANFSMC has been compared in
terms of the set point control, sinusoidal trajectory tracking control, phase portrait and
control signal.Moreover, suppose theAUVhas somedisturbance effect, then tracking
capabilities among these controller are also compared for analysis purpose. In order
to evaluate the control system performance, three different numerical simulations
were performed. In first stage, constant input signal applied to underwater robot,
afterwards sinusoidal trajectory tracking of AUVwas carried out through simulation
and in last simulation disturbance and uncertainties are included in operation of
undersea robot.

6.1 Set Point Control

In set point control, the initial conditions of the AUV in diving motion behavior are
considered as {q0, θ0, z0}. The simulation response of three parameter with control
signal in vertical plane are shown in Fig. 5, which demonstrates that the ANFSMC
provides the shortest reaching time, no overshoot and smooth tracking response.
The developed control algorithm employed for regulating diving motion behavior
based on combined control action of fuzzy logic control as corrective control and
NN control as equivalent control. In this controller design, output fuzzy variable
was tuned using multi variable unconstrained optimization method, while learning
rate of NN was adopted using Lyapunov function. The weights of NN adapted using
back propagation algorithm and adaptive PID sliding surface, while output scaling
factor of fuzzy logic control was determined with the help of non fuzzy adaptation
technique.

6.2 Sinusoidal Trajectory Tracking Control

In second stage of simulation, sinusoidal reference signal zd = 2 sin(π t) applied to
diving model of AUV gives corresponding results of tracking as seen in Fig. 6, with
considering that the initial state coincides with the initial desired state. As observed
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Fig. 5 Set point tracking response of AUV in diving motion behavior

Fig. 6 Sinusoidal trajectory tracking response of AUV

in sine wave trajectory tracking, ANFSMC is able to provide trajectory tracking with
a small associated error and no chattering at all. It can be also verified that proposed
method provides a minimum tracking error, when compared with the traditional
FSMC. Despite the external disturbance forces and parameter variation with respect



496 G.V. Lakhekar et al.

Fig. 7 Sinusoidal trajectory tracking response under the influence of disturbance effect and para-
meter variation

to diving model parameters, the ANFSMC allows the underwater robotic vehicle
to track the desired trajectory with a less tracking error and undesirable chattering
effect was not observed in Fig. 7, the disturbance signal employed in simulation as
d(t) = 0.5 sin(π t)
As observed phase portrait in Fig. 8, reaching time of proposed control algorithmwas
better than other control technique such as FSMC, without any chattering effect. Due
to the adaptation scheme employed in NN module and fuzzy logic control, reaching
time get significantly reduced with smoother response.

As performance measure for a quantitative comparison, we use integral square of
error (ISE) and integral absolute of error (IAE) which are defined as

ISE =
∫ t

0
e2 · dt (58)

IAE =
∫ t

0
|e| · dt (59)

In performance comparison, three conditions are considered as set point tracking
and disturbance rejection as shown in Figs. 9 and 10, respectively. Here, a piecewise
constant reference positions were employed, which reports that ANFSMC gives
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Fig. 8 Phase portrait of AUV in vertical plane

Fig. 9 Response of AUV under set point variation
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Fig. 10 Response of AUV under influence of sampled gaussian noise

better performance than traditional FSMC, due to the adaptation of corrective and
equivalent control by selecting parameters like PID sliding surface, output scaling
factor, width of output fuzzy variable and learning rate of NNmodule. In disturbance
rejection condition, effect of sampled gaussian noise is less as compared with FSMC
on depth parameter regulation by ANFSMC. Time integral performance indices are
used such as ISE and IAE for comparison between the controllers. The smaller value
of performance measures shows that good controller performance characteristics.
It is observed that, ISE and IAE values for above mentioned conditions are consider-
ably reduced inmagnitude than other techniques dealt within this chapter. The values
of different errors for various control strategies and under the influences of different
conditions are tabulated in Table 2.

The proposed controller is more robust in sense that, under the conditions of set
point variation, sinusoidal trajectory tracking, parameter variation and disturbance
effects leads to small tracking error and minimum settling time in output response.
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Table 2 Performance comparison of controllers

Case(I): Set point tracking

ISE IAE

Depth (m) FSMC EDFSMC FSMC EDFSMC

2 0.5243 0.3425 3.248 1.541

5 0.4123 0.2513 2.832 1.216

Case(II): Under the influence of gaussian noise

ISE IAE

Depth (m) FSMC EDFSMC FSMC EDFSMC

5 3.878 1.985 5.875 3.752

7 Conclusion

In this work, we have presented an ANFSMC for diving motion behavior of AUV
in vertical plane. It basically consists of equivalent and corrective control, in which
fuzzy logic control is employed for approximating discontinuous control action,
while NN module is used to estimate equivalent control, because AUV’s parameters
are uncertain in nature. In the adaptation scheme, PID sliding surface coefficients,
width of output fuzzy variable, scaling factor, weights and learning rate of NN struc-
ture are adapted for improving response of depth parameters of AUV in vertical
plane. We found that the performance of the proposed ANFSMC is superior to that
of conventional FSMC. The attractive features of the controller are mentioned as
follows:

• The exact knowledge of AUV’s diving model and their parameter estimation of
upper bounds on uncertainties of the AUV are not required in autopilot design.
The necessary information to the design of the diving autopilot is the qualitative
knowledge of the system such as operating ranges and the form of its nominal
model.

• The fuzzy logic controller is designed to provide smooth control by approximating
switching control action.Theproblemof chattering effect in slidingmode approach
is effectively eliminated by given corrective control law

• In fuzzy inference engine, width of output fuzzy variable is tuned by multivari-
able unconstrained optimization method based on integral absolute function and
integral time absolute function for minimizing reaching time.

• In NNmodule, weights are updated using gradient descent method and their learn-
ing rate adopted by Lyapunov function based approach

It is significant to point out that proposed control algorithm assure its validity, effec-
tiveness and its superiority to the conventional FSMC method as demonstrated in
simulation results. Further research can be done on adaptation scheme to enhance the
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output response of AUV in vertical plane by using simplified adaptation algorithm
as genetic algorithm, modified particle swarm optimization and other bio-inspired
optimization algorithm.
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1 Introduction

Electric motors are the single biggest consumer of electricity in modern society.
According to an analysis of the International Energy Agency [43], more than 45%
of the global electrical energy is consumed by industrial and domestic motors. With
a share of 64%, the industrial sector consumes the most power for electric motorized
applications. The next most important sectors are the commercial (accounting for
20%) and the residential one (accounting for about 13%). To better understand these
data, it can be useful to highlight that the second consumer of electricity, i.e. lighting,
is responsible of less than 15% of consumptions.

In this scenario the demand of inexpensive and reliable drives is pushing applied
research towards the elimination of mechanical sensors, in particular for mass-
produced motors in the kW range, see e.g. [4, 5, 16, 21, 25, 31, 47, 57]. Indeed, in
most applications, these sensors present several disadvantages in terms of reliabil-
ity, susceptibility to noise, additional cost and weight contemporarily increasing the
complexity of the drive system and observer-based solutions are needed [12, 18, 19].
High performance control of PMSM drives typically requires the knowledge of the
rotor shaft position and speed in order to synchronize the phase excitation pulses to
the rotor position, as described in [55]. This implies the need for speed or position
sensors such as an encoder or a resolver attached to the shaft of the motor. The posi-
tion and velocity sensorless control of PMSM drive may overcome these difficulties.
Therefore, sensorless control of motors based on algorithms simple enough to be
real-time executed in low-cost industrial DSP appears susceptible of industrial inter-
est due to its cost-effective nature and wide applicability to a large class of motors,
see e.g. [1, 24, 29]. A comprehensive overview of methods developed to obtain rotor
position and angular speed from measurements of electric quantities is reported in
[6, 8, 9].

In this chapter, an Adaptive Extended Kalman Filter (AEKF), which is a simple
and efficient state estimator for nonlinear systems with inherent robustness against
parameter variations, is proposed for the estimation of rotor position and speed of
PMSM drives from measurements of electric quantities. Recent advances in digital
technology allow nowadays adequate data processing on cost-effective DSP-based
platforms, and the EKF can be now considered a viable and computationally efficient
tool for position and speed estimation, as reported in [6, 56]. Theoretical issues and
digital implementation of the EKF have been deeply investigated in the past by
[3, 7, 26, 34, 41] and a novel procedure for the offline tuning of covariance matrices
inEKF-basedPMSMdrives has been presented in [8].Application examples reported
in [9, 10, 30] seem to prove that some well-known pitfalls (such as the starting from
unknown rotor position and the filter matrices tuning) have been successfully fixed.

Nonetheless, at least one major drawback of the EKF application to sensorless
drives is still unsolved. Indeed, the use of Kalman filtering techniques requires to
derive a stochastic state-space representation of the systemmodel and of the measure
process, and the design and the online tuning of the covariance matrices appearing in
the EKF equations are still an open problem. Most of the EKF techniques proposed
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in the literature for state estimation are based on some fixed values of the input and
measurement noise covariance matrices, as in [3, 6, 8, 9, 33, 41]. In many practical
applications an a priori information of this kind is often unavailable and it is necessary
to allow the filter to properly weight online the incoming observations. On the other
hand it is well known how poor estimates of noise statistics may seriously degrade
the Kalman filter performance.

The main feature of the Adaptive Extended Kalman Filter (AEKF) here adopted
is its capability of online adaptively estimating such unknown statistical parameters.
This adaptive solution should reduce customization required by each application
that makes most of the EKF-based drives incompatible with an off-the-shelf market
strategy. It is worth noticing that particular attention has been paid, in developing the
algorithm, to prevention of filter divergence and to the simplicity of implementation,
in view of its implementation on commercial DSP.

Considering control issues requiring specific attention in electric drive systems, it
is well known that electromechanical parameters are subject to significant variations.
A nonlinear control strategy widely recognized and successfully applied in recent
years is the Variable Structure Control (VSC), adopted by [11, 27, 44, 45, 53, 54,
58, 59]. Indeed, VSC methods provide robustness to matched uncertainties (see e.g.
[17, 20, 52, 60]), and are computational simpler with respect to other robust control
approaches, thus well suited for low-cost DSP implementation. VSC schemes are
typically affected by chattering of the control signal but, as discussed in [2, 54],
this well-known implementation drawback of VSC does not cause difficulties for
electric drives since the on-off operation mode is the only admissible one for power
converters.

For PMSM, the cascade control structure of the Field Oriented Control (FOC) is
often usefully applied to achieve fast four quadrant operation, smooth starting and
acceleration, as described in [38–40, 42]. FOC is implemented with two current
controllers in inner control loops and a speed controller in an outer control loop. The
speed controller provides the reference current for one of the two inner current con-
trol loops; this reference current corresponds to the required motor torque. As argued
in [54], VSC techniques cannot be applied for the outer speed control loop, since
the reference input of the inner control loop should have bounded time derivatives.
To overcome this problem, different approaches have been followed, such as, for
instance, the ‘direct speed control’ in [54] and the ‘second-order sliding-mode tech-
nique’ in [44]. Both techniques, however, share a formulation in the continuous time
framework, while the practical implementation on a low-cost DSP of a real motor
drive claims for a more appropriate formulation of the problem in a sampled-data
systems context.

In particular in the present study, a control policy based on Discrete-Time VSC
(DTVSC) [13–15, 22, 32], endowed with a AEKF for the estimation of the rotor
position and speed, is developed and experimentally tested. The introduction of a
DTVSC is motivated by the need of taking directly into account the issue of control
law digitalization. Reported experimental evidences seem to show that it is actually
able to cope with electromechanical disturbances.
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Fig. 1 Block scheme of the proposed cascade controller (FOC)

Summing up, the features of the DTVSC technique combined with the
AEKF-based rotor position and speed estimator are exploited in this work to design
the cascade control architecture shown in Fig. 1. In this scheme, the external velocity
DTVS control loop, two internal current DTVS control loops and the AEKF-based
rotor position and speed estimator can be identified. The task is to make the speed
error ω∗

r − ω̂r to tend to zero as close as possible. As well known, the discrete-time
slidingmode condition can be imposed exactly only outside a given sector. This issue
has been addressed using the approach known as Time Delay Control [23, 50].

The chapter is organized as follows. The nonlinear state spacemodel of the PMSM
dynamics is presented in Sect. 2. TheAEKF algorithm is reported in Sect. 3. In Sect. 4
details on the considered DTVS controller are discussed. Results on experimental
tests are reported in Sect. 5. The chapter ends with comments on the performance of
the proposed solution.

2 Motor Dynamics

In the (d, q) reference frame, synchronously rotating with the motor rotor, the elec-
trical equations of motion of a permanent-magnet synchronous motor can be written
as [46, 54]:

did

dt
= − R

L
id + ωeiq + 1

L
ud (1)

diq

dt
= − R

L
iq − ωeid − 1

L
λ0ωe + 1

L
uq (2)
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where id and iq are the d-axis and q-axis stator currents, respectively; ud and uq

are the d-axis and q-axis stator voltages, respectively; R is the winding resistance
and L = Ld = Lq is the winding inductance on axis d and q; λ0 is the flux linkage
of the permanent magnet and ωe is the electrical angular speed of the motor rotor.

The electrical torque τe and the mechanical power P of the motor are given by
τe = Ktiq and P = τeωr in which Kt = 3

2λ0Nr is the torque constant with Nr the
number of pole pairs and ωr is the mechanical angular speed of the motor rotor.
The developed torque of the motor is proportional to the iq current because of the
assumption that there is no reluctance torque in the considered PMSM.

The mechanical motion equation of the motor is described by:

J
dωr

dt
+ Bωr = τe − τ�; dθr

dt
= ωr (3)

where J is themechanical inertia of themotor and load, B is the coefficient of viscous
friction, τ� is the load torque and θr denotes the mechanical angular position of the
motor rotor.

For the electrical angular position/speed and the mechanical angular position/
speed, these relations hold: ωe = Nrωr and θe = Nrθr .

3 Adaptive Estimation of Rotor Position and Speed

The proposedAEKF providing online estimates of rotor position and speed is derived
in this section. Denote with X (t) := [

ωr (t) id(t) iq(t) ϑr (t)
]
the motor state and

with U (t) := [
ud(t) uq(t)

]
the motor control input. The motor nonlinear dynamic

state space model can be written in the compact form of the following stochastic
differential equation:

d X (t) = F(X (t), U (t))dt + η(t), (4)

where F(X (t), U (t)), obtained by (1)–(3), is given by:

F (X (t), U (t)) =

⎡
⎢⎢⎢⎣

− B
J ωr (t) + Kt

J iq(t) − τ�

J

− R
L id(t) + ωe(t)iq(t) + 1

L ud(t)

− R
L iq(t) − ωe(t)id(t) − 1

L λ0ωe(t) + 1
L uq(t)

ωr (t)

⎤
⎥⎥⎥⎦

and η(t), is a white noise process∼N (0, Q(t)) representing the model inaccuracies.
Assuming a constant sampling period Δtk = Tc and denoting tk+1 by (k + 1)Tc, the
following sampled nonlinear measure equation can be associated to Eq. (4):

Z((k + 1)Tc) = G(X ((k + 1)Tc)) + v(kTc), (5)
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where Z(kTc) is the vector containing measures of motor phase currents and v(kTc)

is a white sequence∼N (0, R(kTc)). The measure vector Z(kTc) is composed of two
elements, i.e. Z(kTc) = [z1(kTc) z2(kTc)]T , where z1(kTc) = id(kTc) + v1(kTc) and
z2(kTc) = iq(kTc) + v2(kTc).

Bydefinitionof themeasurement vector onehas that the output functionG(X ((k +
1)Tc)) has the following form:

G(X (kTc)) = [
id(kTc) iq(kTc)

]T = C(kTc)X (kTc) (6)

where

C(kTc) =
[
0 1 0 0
0 0 1 0

]
(7)

and v(kTc) = [v1(kTc) v2(kTc)]T . Assume U (t) = U (kTc) for t ∈ [kTc, (k + 1)Tc).
To obtain an extended Kalman filter with an effective state prediction equation in
a simple form, model (1) and (2) has been linearized about the current state esti-
mate X̂(kTc, kTc) and the control input U ((k − 1)Tc) applied until the linearization
instant. Subsequent discretization with period Tc of the linearized model results in
the following EKF (where explicit dependence on Tc has been dropped for simplicity
of notation),

X̂(k + 1, k) = Ad(k)X̂(k, k) + L(k)U (k) + D(k) (8)

P(k + 1, k) = Ad(k)P(k, k)AT
d (k) + Qd(k) (9)

K (k + 1) = P(k + 1, k)CT (k + 1)[C(k + 1)P(k + 1, k)CT (k + 1) + R(k + 1)]−1

(10)

X̂(k + 1, k + 1) = X̂(k + 1, k) + K (k + 1)[Z(k + 1 − G(X̂(k + 1, k))] (11)

P(k + 1, k + 1) = [I − K (k + 1)C(k + 1)]P(k + 1, k) (12)
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where

Ad(k) = eA(k)Tc � I + A(k)Tc

=

⎡
⎢⎢⎢⎢⎣

1 − B
J Tc 0

îq(k, k)Tc 1 − R
L Tc

−
(

λ0
L + îd(k, k)

)
Tc −Nr ω̂r (k, k)Tc

1 0

Kt
J Tc 0

Nr ω̂r (k, k)Tc 0

1 − R
L Tc 0
0 0

⎤
⎥⎥⎥⎥⎦ (13)

with

A(k) :=
[
∂ F(X (t), U (t))

∂ X (t)

]
X (t)=X̂(k,k)

U (t)=U (k−1)

(14)

and

L(k) =

⎡
⎢⎢⎣

0 0
Tc
L 0
0 Tc

L
0 0

⎤
⎥⎥⎦ (15)

D(k) = Tc D̄(k) =

⎡
⎢⎢⎣

− τ�Tc
J

−îq(k, k)Nr ω̂r (k, k)Tc

îd(k, k)Nr ω̂r (k, k)Tc

0

⎤
⎥⎥⎦ (16)

D̄(k) := F
(

X̂(k, k), U (k − 1)
)

− A(k)X̂(k, k) − L(k)U (k − 1) (17)

Qd(k) = σ 2
η (k)Q̄(k). (18)

The elements of the matrix Q̄(k) have been reported in the Appendix. The form
of Qd(k) expressed by (18) derives by the hypothesis that Q(τ ) = σ 2

η (k)I4, τ ∈
[kTc, (k + 1)Tc). This simplification assumption has been introduced to obtain a
Qd(k) which is completely known up to the unknown multiplicative scaling fac-
tor σ 2

η (k). Moreover, the covariance matrix R(k) is assumed to have the following
diagonal form:

R(k) = diag
[
σ 2

v,1(k), σ 2
v,2(k)

] ; (19)

thismeans that no correlation is assumed between themeasurement errors introduced
by the sensors. As R(k) is diagonal, the components of Z(k) may be processed one
by one by reducing the inversion of the 2 × 2 matrix in (3) to the two inversions
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of scalars [35], thus saving much computation time. The sequential processing of
each component z1(k) and z2(k)must be performed in a period of time (typically the
sampling period) such that no significant change occurs in the state estimate and in
its covariance matrix due to dynamics (4) [35].

The EKF can be implemented once estimates of Qd(k) and R(k) are available. In
general, a complete and reliable information about these matrices is not available; on
the other hand it is well known how poor knowledge of noise statistics may seriously
degrade the Kalman filter performance. This problem is here dealt with introducing
an adaptive adjustment mechanism of Qd(k) and R(k) values in the EKF equations.

3.1 Adaptive Estimation of Qd(k) and R(k)

A considerable amount of research has been carried out in the adaptive Kalman
filtering area [35–37, 48], but in practice it is often necessary to redesign the adaptive
filtering scheme according to the particular characteristics of the problem faced.
Following [36], in view of real time applications, a particular attention has been
here devoted to simplicity of implementation and to prevention of filter divergence,
moreover, the particular structure of the input noise covariance matrix Qd(k), which
is completely known save that for a multiplicative scalar, has been suitably taken
into account.

The following nearly stationarity assumption is made: the parameters σ 2
v,i (k), i =

1, 2, and σ 2
η (k) are nearly constant over nv ≥ 2 and nη ≥ 2 samples respectively [36].

Defineγi (k + 1) = zi (k + 1) − Gi (X̂(k + 1, k)),where zi (k + 1) andGi (X̂(k +
1, k)) are the i th component of Z(k + 1) and G(X̂(k + 1, k)), respectively. For
analogy with the linear case, residuals γi (k + 1), i = 1, 2, are called the innova-
tion process samples and are assumed to be well described by a white sequence
∼N (0, si (k + 1)), where si (k + 1), i = 1, 2 can be expressed as

si (k + 1) = Ci (k + 1)P(k + 1, k)CT
i (k + 1) + σ 2

v,i (k + 1)

= Ci (k + 1)[Ad(k)P(k, k)AT
d (k) + σ 2

η (k)Q̄(k)]CT
i (k + 1)

+ σ 2
v,i (k + 1). (20)

This simplifying assumption is as more valid as discretization and linearization of (4)
is more accurate and makes it possible to apply the methods of the adaptive filtering
theory developed for the linear case.

The two above assumptions will allow us to define a simple and efficient esti-
mation algorithm based on the condition of consistency, at each step, between the
observed innovation process samples γi (k + 1), i = 1, 2 and their predicted statistics
E{γ 2

i (k + 1)} = si (k + 1). Imposing such a condition, one stage estimates σ̂ 2
η (k) and

σ̂ 2
v,i (k + 1), i = 1, 2, of σ 2

η (k) and σ 2
v,i (k + 1), i = 1, 2, respectively are obtained at

each step. To increase their statistical significance, the one stage estimates σ̂ 2
η (k) and
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σ̂ 2
v,i (k + 1), i = 1, 2, are averaged obtaining the relative smoothed versions ¯̂σ 2

η (k)

and ¯̂σ 2
v,i (k + 1), i = 1, 2.

From (20) it is apparent that the statistical information carried by each γi (k +
1), i = 1, 2, depends, at the same time, on the two unknown parameters σ 2

η (k) and
σ 2

v,i (k + 1).
This indeterminateness is here dealt with using a number (say n′

η) of innovation
process samples γi (k + 1), i = 1, 2, to estimate σ 2

η (k) and the others (say n′
v) to

estimateσ 2
v,i (k + 1). In the light of the nearly stationarity assumption, the two integers

n′
η and n′

v are chosen such that n′
η/n′

v = nv/nη.
Assume nv ≥ nη, let α and β two coprime integers such that α/β = nv/nη and let

q and r two integers such that α = βq + r ; then, the innovation process sequence is
subdivided into intervals Iα+β composed of α + β samples. Each interval contains
β sequences of q samples used to estimate σ 2

η (k) (the faster varying parameter), the
ensembles of q samples are separated by β sequences of one sample used to estimate
σ 2

v,i (k + 1), i = 1, 2 (the more slowly varying parameter), the last r samples of each
Iα+β interval are used to estimate σ 2

η (k). This scheme minimizes the interval of time
over which either one step estimate is not updated. A symmetric situation holds if
nη ≥ nv.

When the one step estimate σ̂ 2
η (k)(σ̂ 2

v,i (k + 1), i = 1, 2) is updated, the other sin-
gle stage estimate σ̂ 2

v,i (k + 1), i = 1, 2, (σ̂ 2
η (k)) is kept constant, so that the symbol

σ̂ 2
η (k)(σ̂ 2

v,i (k + 1)) does not necessarily imply that this estimate has been computed
using the last observed innovation process sample γi (k + 1), i = 1, 2.

Because of the particular form (18) of Qd(k) and of the sequential scalar process-
ing of measures, two one stage estimates σ̂ 2

η,i (k) of the unknown σ 2
η (k), i = 1, 2

can be determined maximizing the probability of observing the corresponding i th
component of the predicted residual γi (k + 1), i = 1, 2 [35]. Namely, each σ̂ 2

η,i (k)

is determined by the operation

max probσ 2
η,i (k+1)≥0γi (k + 1).

The maximizing σ̂ 2
η,i (k) is obtained by imposing the condition of consistency

between residuals and their predicted statistics, namely γ 2
i (k + 1) = E{γ 2

i (k +
1)} = si (k + 1). Using (20) and replacing σ 2

v,i (k + 1) with ¯̂σ 2
v,i (k + 1) one has

σ̂ 2
η,i (k) = max

{
(Ci (k + 1)Q̄(k)CT

i (k + 1))−1[γi (k + 1)2

− Ci (k + 1)Ad(k)P(k, k)AT
d (k)CT

i (k + 1) ¯̂σ 2
v,i (k + 1)], 0

}
. (21)

To obtain a unique estimate of σ 2
η (k) and to increase the statistical significance of

estimators (21), which are based on only one component γi (k + 1), the following
smoothed estimate is computed
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¯̂σ 2
η (k) = 1

2(lη + 1)

lη∑
j=0

2∑
i=1

σ̂ 2
η,i (k − j), (22)

where lη denotes the number of one-stage estimates σ̂ 2
η,i (·) yielding the smoothed

estimate.
In a recursive form the proposed estimate of σ 2

η (k) is

¯̂σ 2
η (k) = ¯̂σ 2

η (k − 1) + 1

2(lη + 1)

[
2∑

i=1

(
σ̂ 2

η,i (k) − σ̂ 2
η,i (k − (lη + 1))

)]
. (23)

Analogously, the operation

max probσ 2
v,i (k+1)≥0γi (k + 1)

and (20) give the following one stage estimate of σ 2
v,i (k + 1), i = 1, 2,

σ̂ 2
v,i (k + 1) = max{γ 2

i (k + 1) − [Ci (k + 1)Ad(k)P(k, k)AT
d (k)CT

i (k + 1)

+ Ci (k + 1) ¯̂σ 2
η,i (k)Q̄(k)CT

i (k + 1)], 0}, (24)

the smoothed version ¯̂σ 2
v,i (k + 1) is

¯̂σ 2
v,i (k + 1) = 1

lv + 1

lv∑
j=0

σ̂ 2
v,i (k + 1 − j), (25)

where lv denotes the number of one-stage estimates σ̂ 2
v,i (·) yielding the smoothed

estimate.
In a recursive form the proposed estimates of σ 2

v,i (k + 1) becomes

¯̂σ 2
v,i (k + 1) = ¯̂σ 2

v,i (k) + 1

lv + 1
(σ̂ 2(k + 1) − σ̂ 2(k − lv)). (26)

The proposed adaptive estimation algorithm is given by Eqs. (23) and (26) and is
able to prevent filter divergence. In fact, as long as the innovation samples γi (k +
1), i = 1, 2 are sufficiently small and consistentwith their statistics, the filter operates
satisfactorily and the noisemodel is kept small (or null) by (21). If a sudden increase of
the absolute value of the innovation process samples is observed, Eq. (21) provides an
increased Q̂d(k) = ¯̂σ 2

η (k)Q̄(k), and hence an augmented filter gain, thus preventing
filter divergence.

Parameters lη and lv of estimators (23) and (26) are chosen on the basis of two
antagonist considerations: low values would produce noise estimators which are not
statistically significant, large values would produce estimators which are scarcely
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sensitive to possible rapid fluctuations of the true σ 2
η (k) and σ 2

v,i (k), i = 1, 2. During
filter initialization, the starting values σ̂ 2

η (0) and σ̂ 2
v,i (0), i = 1, 2, of σ̂ 2

η (k) and σ̂ 2
v,i (k)

respectively, must be chosen on the basis of the a priori available information. In the
case of a lack of such information, a large value of P(0, 0) is useful to prevent
divergence.

Remark 3.1 As stated in [6], to reduce the computational effort for a real time imple-
mentation of the EKF an acceptable approximation is to use a diagonal covariance
matrix Qd(k).

4 Control Design

The discretization of Eqs. (1)–(3) with a sampling time Tc according to standard
techniques gives:

ωe(k + 1) = Aωωe(k) + Bω(Ktiq(k) − τ�) (27)

id(k + 1) = Ai id(k) + Bi ud(k) + f1(ωe, iq , k) (28)

iq(k + 1) = Ai iq(k) + Bi uq(k) − f2(ωe, id , k) (29)

with

Aω = e− B
J Tc , Bω = 1

J

∫ Tc

0
e− B

J τ dτ

Ai = e− R
L Tc , Bi = 1

L

∫ Tc

0
e− R

L τ dτ

f1(ωe, iq , k) =
∫ (k+1)Tc

kTc

ωe(τ )iq(τ )dτ � ωe(k)iq(k)Tc;

f2(ωe, id , k) =
∫ (k+1)Tc

kTc

ωe(τ )(id(τ ) + λ0

L
)dτ � ωe(k)(id(k) + λ0

L
)Tc.

To account for possible model uncertainties, it is assumed that model parameters
may differ from their nominal values for some unknown but bounded quantities:

Aω = Āω + ΔAω; Bω = B̄ω + ΔBω;
|ΔAω| ≤ ρAω; |ΔBω| ≤ ρBω

Ai = Āi + ΔAi ; Bi = B̄i + ΔBi ;
|ΔAi | ≤ ρAi ; |ΔBi | ≤ ρBi . (30)
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Define the following discrete-time sliding surfaces:

sω(k) = (ω̂e(k) − ω∗
e (k)) + λω(ω̂e(k − 1) − ω∗

e (k − 1)) = 0 (31)

siq(k) = (iq(k) − i∗
q (k)) + λq(iq(k − 1) − i∗

q (k − 1)) = 0 (32)

sid = id(k) + λd id(k − 1) = 0 (33)

where λω, λq , λd ∈ (−1, 1), ω̂e(k) is the estimate of ωe(k) provided by the AEKF,
ω∗

e (k) is the given reference value for the angular velocity, and i∗
q (k) will be defined

in the following of this section.
As well known, a quasi sliding motion on the surface sω(k) = 0 can be achieved

imposing the following discrete time sliding mode existence condition [22, 28]:

sω(k)Δsω(k + 1) < −1

2
[Δsω(k + 1)]2 (34)

being Δsω(k + 1) = sω(k + 1) − sω(k). It can be easily verified that condition (34)
is ensured by the control law i∗

q (k) = i eq
q (k) + i n

q (k), where the equivalent control is
given by:

i eq
q (k) = 1

B̄ω Kt
(ω∗

e (k + 1) − Āωω̂e(k) − λω(ω̂e(k) − ω∗
e (k))). (35)

Asusual, the discontinuous control i n
q is such that the sliding condition canbe imposed

exactly only outside a given sector. Inside such sector the sliding condition can be
imposed only approximately. To this purpose we made resort to the approach known
as time delay control [23], obtaining

i n
q (k) =

⎧⎪⎪⎨
⎪⎪⎩

θω

|sω(k)| − ρω

B̄ω Kt
i f |sω(k)| > ρω

− sω(k) − B̄ωi n
q (k − 1)

B̄ω Kt
i f |sω(k)| ≤ ρω

(36)

with |θω| ≤ 1, and with

ρω = (|B̄ω| + ρBω)ρτ + ρAωωmax
e + KtρBωimax

q

ρτ being the constant bound of the unknown load which can affect the motor, i.e.
|τ�| ≤ ρτ . Note that ωmax

e and imax
q are the largest speed achievable by the motor and

the largest current which can be supplied, respectively, according to its constructive
limits.

The control law i∗
q (k) is fed as reference value, which is the requiredmotor torque,

to one of the two inner current control loops. The tracking of such reference is ensured
by the imposition of a quasi sliding motion of the surface siq(k) = 0. Following the
same lines as before, it can be easily verified that the sliding condition on siq(k) = 0
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is ensured by the control law uq(k) = ueq
q (k) + un

q(k), where:

ueq
q (k) = 1

B̄i

[
i∗
q (k) − Āi iq(k) − λq(iq(k) − i∗

q (k))
]

(37)

un
q(k) =

⎧⎪⎪⎨
⎪⎪⎩

θq
|siq(k)| − ρq

B̄i
i f |siq(k)| > ρq

− siq(k) − B̄i un
q(k − 1)

B̄i
i f |siq(k)| ≤ ρq

(38)

where |θq | ≤ 1, ρq = ρAi imax
q + ρBi umax

q + ρ + ωmax
e (imax

d + λ0
L )Tc, ρ being the

bound of Δi∗
q (k) = |i∗

q (k + 1) − i∗
q (k)|.

Finally, the achievement of a quasi sliding motion on sid(k) = 0 guarantees the
vanishing of the variable id(k), and is ensured by the control law:

ueq
d (k) = − ( Āi + λd)id(k)

B̄i
(39)

un
d(k) =

⎧⎪⎪⎨
⎪⎪⎩

θd
|sid(k)| − ρd

B̄i
i f |sid(k)| > ρd

− sid(k) − B̄i un
d(k − 1)

B̄i
i f |sid(k)| ≤ ρd

(40)

where |θd | ≤ 1 and ρd = ρAi imax
d + ρBi umax

d + ωmax
e imax

q Tc.

5 Experimental Implementation

The proposed DTVS controller and AEKF-based rotor position and speed estimator
have been implemented on the Technosoft MCK28335-Pro DSP motion control
kit [49], available in the Robotics Laboratory at the Dipartimento di Ingegneria
dell’Informazione of theUniversità Politecnica delleMarche. The experimental setup
is shown in Fig. 2. It is a combination of hardware and software and includes a
DSP-based controller board, a power module, a PMSM equipped with a 500-line
quadrature encoder (4 is the multiplication ratio of the position resolution done in
the encoder interface) and a software platform to developmotion control applications.
All communication between PC andDSP board is done through the RS-232 interface
using a real-time serial communication monitor resident in the DSP flash.

In this section, the drive structure, the experimental setup and the results are
discussed.
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DMCD28 x-Pro

MSK28335 board

PM50 power module

MBE300.E.500 PMSM

Fig. 2 Experimental setup

5.1 Drive Structure

Control design methods performed in the (d, q) coordinates are called field-oriented
control which consists of controlling the stator currents represented by a vector
(vector control). This approach uses a state transformation after which the decoupling
and linearization tasks can be performed [55]. In particular, FOC-based schemes
exploit the fact that in the (d, q) rotating reference frame the torque and the flux
dynamics are linear and decoupled and independent torque and flux control loops
can be implemented. PI controllers are commonly used in both loops to produce
the ‘d’ and ‘q’ voltage vector components, affecting the flux and torque dynamics,
respectively. Recently, high-speed DSP has become very common in electric drive
systems and FOC has been implemented in many drive systems of AC machines.
The FOC scheme of Fig. 1 is based on the measure of two phase currents (ia and ib)
and the AEKF-based estimator is designed to estimate the rotor position and speed
from measurements of electric quantities. The measured phase currents, ia and ib,
are transformed, based on the rotor position information and the Park coordinate
transformation, into the rotor frame direct and quadrature components, id and iq . The
inverse Park coordinate transformation is used for the computation of the three-phase
voltage references, u∗

a , u∗
b and u∗

c , applied to the inverter starting from the values of
voltage references computed by the current controllers in the (d, q) reference frame,
i.e. ud and uq . Thus, 6 PWM outputs of the DSP controller are directly driven by the
implemented control algorithm, based on these reference voltages.
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The remaining problem is robustness associated with disturbances in both the
electrical and mechanical subsystems which deteriorate the drive performance.
Therefore in this chapter the application of the VSC methodology provides advan-
tages over conventional PI-based control design due to the robustness property of
the VSC principle. In particular, the motion control of Fig. 1, uses a cascade control
structure where the inner loops for the current control and the outer loop for the speed
control are DTVSCs.

In the proposed solution the reference (i∗
d ) of the direct current component is set

to zero (see Fig. 1). This case corresponds to the motion of the motor in the normal
speed range, without considering possible field weakening operations [46].

The sampling frequency is selected as 1 kHz for the velocity control loop and 10
kHz for the current control loops.

As proposed in [6], Fig. 1 shows that the AEKF is fed with the reference volt-
ages ud and uq instead of the measured ones. In fact, taking into account saturation
phenomena in the current controller implementation, it is possible to use the voltage
references instead of the actual voltages because of the inverter switching period is
small with respect to the electrical time constant of the motor [6].

5.2 Experimental Setup

Experiments have been carried out on the Technosoft MBE.300.E500 PMSM. The
motor catalog electric and mechanical parameters are given in Table1. The Tech-
nosoft PM50 power module includes a three-phase inverter, the protection circuits
and the measurement circuits for the DC-bus voltage and the motor currents. The
three-phase inverter uses MOSFET transistors with switching frequency up to 50
kHz. The PM50 interface includes six PWM command inputs (TTL/CMOS com-
patible) through which the control unit can drive each transistor of the inverter.
The PM50 electrical specifications are given in Table2. The control unit is the
Technosoft MSK28335 board based on the high-performance Texas Instruments
DelfinoTM TMS320F28335 DSP motion controller [51]. The three-phase voltage
commands are generated using the PWM unit of the DSP. The PWM outputs are
applied to the six transistors of the power inverter, based on sinusoidal reference
values for the motor phase voltage, as generates after computation in (d, q) rotor
coordinates frame at the output of the current controllers, and transformation to sta-
tor coordinates frame by the inverse Park transformation (see Fig. 1). The DSP has
a 150-MIPS, 32 bit single-precision floating-point DSP core and operates at a 150-
MHz frequency. The MSK28335 board is equipped also with 128-kWords 0-wait
state external RAM, 2 channels of 12-bit accuracy D/A outputs, 16 channels of 12-
bit accuracy and 80 ns conversion time A/D inputs, RS-232, CAN-bus and JTAG
interfaces.

The motor phase current measurement scheme of the MCK28335 kit is based
on shunts mounted on each lower leg of the inverter. The voltage drop on a shunt
is amplified and sent to the TMS320F28335 A/D channels. This current measure-
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Table 1 Technosoft
MBE.300.E500 PMSM
parameters [49]

Coil dependent parameters

Phase-phase resistance ohm 8.61

Phase-phase inductance mH 07.13

Back-EMF constant V/1000 rpm 3.86

Torque constant mNm/A 36.8

Pole pairs – 1

Dynamic parameters

Rated voltage V 36

Max. voltage V 58

No-load current mA 73.2

No-load speed rpm 9170

Max. cont. current (at 5000 rpm) mA 913

Max. cont. torque (at 5000 rpm) mNm 30

Max. permissible speed rpm 15000

Peak torque (stall) mNm 154

Mechanical parameters

Rotor inertia Kgm2 × 10−7 11

Mechanical time constant ms 7

ment scheme, simple and cost-effective from the hardware point of view, requires
some special care from the software implementation. The A/D conversion have to
be synchronized with the PWM command of the inverter transistors, for a proper

Table 2 Technosoft PM50 power module electrical specifications [49]

Parameter Cond. Min. Typ. Max. Units

DC input power

Mot. supply volt. – 9 – 36 V

Mot. supply cur. – – – 2.1 Arms

Mot. supply cur. – – – 6.33 Apeak

Output power

Voltage Set by external 0 – 36 Vrms

PWM control

Nom. Mot. Power Vin = 36V, – – 75 W

f pwm = 20 kHz,

TA = 40 ◦C
Nom. Mot. Cur. TA = 40 ◦C – – 1.7 Arms

PWM frequency – 0.1 20 100 kHz
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measurement of the currents on each phase of the motor. In fact a ripple in the motor
currents exists and its value is relative to the motor parameters (electrical time con-
stant), PWM frequency, and current controller bandwidth. Consequently, due to this
inherent current ripple, in order to get the closest measured value of the current, the
measurements have been performed at the middle of the PWM period [49].

The MCK28335-Pro kit includes the DMCD28x-Pro, the Technosoft software
platform, which allows the development of motor control applications. The code is
developed in C language using a modular approach providing flexibility for further
system integration.

5.3 Experimental Results

Someof theperformed speed-tracking experiments considering theproposedDTVSC
equipped with the AEKF-based rotor position and speed estimator are shown in
Figs. 3 and 5. The numerical values of the control scheme parameters have been
selected as in Table3. Achieved performance has been compared to a conventional
PI-based FOC equipped with a conventional backward-difference method for speed
estimation, using sampled position measurements provided by a digital incremental
encoder. This PI-based FOC has a cascade control structure with inner loops for cur-
rent control and an outer loop for speed control (see Fig. 1). Standard PI controllers
have been designed for each control loop following the directions reported in the user
manual of the MCK28335-Pro kit [49]. The controller design has been done under
the assumption that the outer loop pass band is much smaller than that of inner loops
and the torque regulation is much faster than the speed reference achievement. In
particular, current control is performed by two identical PI regulators that have been
designed and tuned to get a bandwidth of 400 Hz. Similarly, the parameters of the
PI speed regulator have been set considering a bandwidth of 40 Hz. PI constants are
related to both the electrical and mechanical system parameters (see Table1) and the
required bandwidth; the proportional gain and the integral action factor are 0.0001
and 0.9618, respectively, for the two current controllers and 171.2532 and 31.4921,
respectively, for the speed controller.

Figures3 and 4 show performance considering a reference trajectory given by a
rectangular velocity profile. In particular, theDTVSCequippedwith theAEKF-based
rotor position and speed estimator (Fig. 3a—black continuous line) shows a better
tracking performance with respect to the PI-based FOC equipped with the encoder
and the backward-difference based speed estimator (Fig. 3a—blue dashed line). The
speed-tracking errors are reported in Fig. 3b; in particular the black continuous line
is the tracking error for the DTVSC with the AEKF-based rotor position and speed
estimator and the blue dashed line is the tracking error for the PI-based FOC with
the encoder and the backward-difference based speed estimator.

In Fig. 4a, the AEKF-based estimated rotor position (blue continuous line) is
compared with the encoder-based measured one (red dashed line); the estimated
position shows good correspondence to the measured rotor position.
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Fig. 3 Rectangular velocity profile. a DTVSC-based FOCwith the AEKF-based rotor position and
speed estimator (black continuous line), PI-basedFOCwith the encoder and the backward-difference
based speed estimator (blue dashed line) and reference velocity (red dotted line) b Speed error:
DTVSC-based FOC with the AEKF-based rotor position and speed estimator (black continuous
line) and PI-based FOC with the encoder and the backward-difference based speed estimator (blue
dashed line)

Figures5 and 6 depict a sample of the tests performed with a time-varying distur-
bance affecting the iq current for the rectangular reference velocity profile. Such
picture proves that, in response to disturbances acting in the electrical subsys-
tem, the actual velocity deviates significantly from the reference with the PI-based
FOC with the encoder and the backward-difference based speed estimator (Fig. 5b),

Table 3 Control scheme parameters

Āω = 0.9999 B̄ω = 909.0877 λω = −0.74 θω = −0.02

Āi = 0.2988 B̄i = 0.1630 θq = −0.04 ρq = 1.3604

ρd = 0.9776 θd = −0.07 Kt = 0.0368 ρω = 10.7816

λq = −0.7 λd = −0.6
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Fig. 4 Rectangular velocity profile. a AEKF-based estimated rotor position (blue continuous line)
and encoder-based measured rotor position (red dashed line); b Behavior of the estimated ¯̂σ 2

η (·)
assuming lη = 5 and ¯̂σ 2

η (0) = 0.3

while the DTVSC-based FOC with the AEKF-based rotor position and speed esti-
mator performs a more accurate tracking (Fig. 5a). The DTVSC-based controller
reacts to the disturbance producing a small peak in the angular velocity and quickly
re-approaching the reference velocity. On the contrary, the PI-based controller seems
unable to compensate for the disturbance, and produces an evident offset with respect
to the reference in the angular velocity.

In Fig. 6a, the AEKF-based estimated rotor position (blue continuous line) is
compared with the encoder-based measured one (red dashed line); the estimated
position shows good correspondence to the measured rotor position.

The IAE criterion, i.e. the integral of the absolute value of the speed-tracking error
and of the error between the estimated and the encoder-basedmeasured rotor position,
is used to summarize the above experimental results (see Table4). In Table4 are also
reported results for the motor following speed trajectories chosen with trapezoidal
and sinusoidal shapes. Figures4b and 6b show the behavior of the estimated ¯̂σ 2

η (k)

assuming lη = 5 and the initial value ¯̂σ 2
η (0) = 0.3 for the rectangular velocity profile.
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Fig. 5 Rectangular velocity profile; a time-varying disturbance acts on the iq current. Actual (blue
continuous line) and reference (red dashed line) velocities: a DTVSC-based FOC with the AEKF-
based rotor position and speed estimator; b PI-based FOC with the encoder and the backward-
difference based speed estimator

Thesefigures evidence increases of ¯̂σ 2
η (k) in correspondenceof the initial time instant,

time instants when step changes of the reference trajectory occur and in Fig. 6b also
when electrical disturbances act on the motor drive. At these time instants the effects
of these sharp trajectory changes and disturbances is a rapid increase of residuals
γi (k) and, by Eq. (22), ¯̂σ 2

η (k) increases too. As a consequence also the filter gain
increases and this allows the filter to properly weight the incoming observations. The
estimated motor state is rapidly corrected and this provokes a decrease of residual
samples and hence of the estimated ¯̂σ 2

η (k). On the basis of experimental tests, the

adaptive estimation of ¯̂σ 2
v,i (k) did not produce very significant changes with respect

to the initial values and for this reason the relative figures are not reported. In all
the experiments the values nη = nv = 2 have been assumed; this means that the
innovation process vector samples Γ (k + 1) have been alternately used to estimate
σ 2

η (k) and σ 2
v,i (k + 1), i = 1, 2 according to the algorithm described in Sect. 3.1.
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Fig. 6 Rectangular velocity profile; a time-varying disturbance acts on the iq current. a AEKF-
based estimated rotor position (blue continuous line) and encoder-based measured rotor position
(red dashed line); b Behavior of the estimated ¯̂σ 2

η (·) assuming lη = 5 and ¯̂σ 2
η (0) = 0.3

Table 4 Performance comparison at high speed (157 rad/s)

No disturbance AEKF-speed Backward-difference AEKF-position

Rectangular 1.98 2.90 0.16

Trapezoidal 0.35 1.01 0.14

Sinusoidal 0.35 2.19 0.30

Disturbance AEKF-speed Backward-difference AEKF-position

Rectangular 2.12 3.04 0.18

Trapezoidal 0.39 1.23 0.15

Sinusoidal 0.43 2.29 0.31

Experimental tests at low speed have been also performed with trapezoidal, rec-
tangular and sinusoidal velocity profiles. In particular, velocities of 78.5 rad/s and
31.4 rad/s have been considered; results have been summarized in Table5. The
reported index IAE shows an improvement of the proposed solution based on the
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Table 5 Performance comparison at low speed

78.5 rad/s AEKF-speed Backward-difference AEKF-position

Rectangular 0.76 0.95 0.30

Trapezoidal 0.19 0.37 0.35

Sinusoidal 0.36 0.78 0.13

31.4 rad/s AEKF-speed Backward-difference AEKF-position

Rectangular 0.31 0.42 0.16

Trapezoidal 0.20 0.24 0.34

Sinusoidal 0.36 0.40 0.05

AEKF-based rotor position and speed estimator with respect to the PI-based FOC
equipped with the encoder and the standard backward-difference method for speed
estimation.

6 Concluding Remarks

This chapter has proposed a DSP-based discrete time VSC equipped with an AEKF
for the accurate rotor position and speed estimation of a PMSM from measure-
ments of electric quantities. The approach is based on a linearized Kalman filter
endowed with an adaptive algorithm for the adjustment of the input and measure-
ment noise covariance matrices. The adaptation mechanism has been introduced to
allow the filter to cope with realistic operating conditions. The introduction of an
adaptive algorithm seems to be the most efficient and simple remedy to prevent fil-
ter divergence. Experiments on a commercial PMSM drive reported in the chapter
have confirmed that high performance of the rotor position and speed estimation
algorithm are really obtainable in a wide range of experimental situations. Moreover
experimental evidence shows good speed trajectory tracking performance as well as
robustness in the presence of disturbances acting on the system. In particular, the tests
have shown superior robustness of the proposed DTVSC-based FOC with respect to
a conventional PI-based FOC.

7 Q-Matrix Elements
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Sliding Mode Control of Induction Generator
Wind Turbine Connected to the Grid

M. Ouassaid, K. Elyaalaoui and M. Cherkaoui

Abstract Conventional fossil fuels such as coal, oil andnatural gas are being reduced
and become more and more a source of serious undesirable effects on the environ-
ment. Wind power is playing a major role in the effort to augment the share of
renewable energy sources in the world energy mix with a continuously increasing
penetration into the grid. Wind turbine generators can be divided into two basic
categories: fixed speed and variable speed. Variable-speed wind energy systems
are presently favored than fixed-speed wind turbines thanks to their higher wind
power extraction, improved efficiency, reactive power support and voltage control.
This study addresses the problem of control of Wind Energy Conversion System
(WECS) in variable speed. To this end, two simultaneous control objectives, namely
the maximization of the energy conversion efficiency based on Squirrel Cage Induc-
tion Generator (SCIG) wind turbine and the regulation of the active and reactive
power feed to the grid, to guarantee Unit Power Factor (UPF), have been established.
To deal with the complexity and nonlinearity of the system, the sliding mode con-
trol is adopted. Indeed, this technique provides an efficient tool for controller design
and presents attractive features such as robustness to parametric uncertainties of the
different components of the system. In this way, sliding-mode control laws are devel-
oped using Lyapunov stability analysis, to guarantee the reaching and sustaining of
sliding mode and stability of the system control. Evaluation of the reliability and
performance of the proposed sliding mode control approach has been established on
a 3MW three-blade wind turbine. Simulation results demonstrate that the proposed
control strategy is effective in terms of MPPT control strategy, active and reactive
power tracking trajectories and robustness against system parameter variations.
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1 Introduction

Currently, the demand for electric energy is growing rapidly. On the other hand, the
conventional energy sources are depleting fast, their costs are going up, and they
are causing the environment contamination. To meet these challenges, the attention
has focused to renewable and clean energy sources, like wind, solar, fuel cell, etc.
[6, 39].

Wind energy is an important renewable green energy resource. Indeed, it is
omnipresent, environmentally friendly, and freely available [8]. Further, it is charac-
terized by its high reliability and cost effectiveness. Thanks to all these features, the
wind power generation capacity has been growing rapidly, with an average annual
growth around 30%, in the world, over the last decade.

Electric energy is generated fromwind using a wind turbine and an electric gener-
ator. It can be used either for standalone loads or fed into the electric network through
a suitable power electronic converters.

A wind turbine operates either at a fixed or variable speed.

• A fixed-speed wind turbine generator generally uses a squirrel-cage induction
generator to convert the mechanical energy from the wind turbine into electrical
energy (Fig. 1). The generator is connected directly to the electric network. The
system operates almost at constant speed even if the wind speed varies. This
topology is simple, less expensive and effective. But, it suffers from the low energy
capture, mechanical stress and mediocre power quality [8, 20, 21, 25].

• Variable-speed wind turbine generator provides high efficiency in capturing the
energy fromwind over a wider range of wind speeds, alongwith better power qual-
ity. Also this scheme is capable to regulate the power factor, by either consuming

Fig. 1 Cage induction generator-based fixed speed wind turbine
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Fig. 2 Variable speed wind turbine connected to a grid

or producing reactive power, and ensure lower mechanical stress. The power elec-
tronic converters are incorporated between the electrical machine and the power
system as shown in Fig. 2 [22, 24, 33].

Most of themajor wind turbinemanufacturers are developing newmegawatt scale
wind turbines based on variable-speed operation with pitch control.

1.1 Wind Turbine Generators Technologies

Different types of electric machines are used for the generation of electric energy
from wind:

• Permanent Magnets Synchronous Generator (PMSG): The PM generators can
be divided into radial-flux and axial-flux generators. The advantages of a PMSG
configuration are gearless construction, the elimination of a dc excitation system,
full controllability of the system for maximum wind power extraction and grid
interface; and straightforward in accomplishing fault-ride through and grid support
[7, 20, 21]. However, the major drawback of the PMSG is the high cost of the PM
material and power converter [28].

• Doubly-Fed Induction Generator (DFIG)—wounded rotor: With this topology,
the stator is connected directly to the grid whereas the rotor is linked to the grid
via a bidirectional converter [27, 32]. The main characteristics of the DFIG are
(i) limited operating speed range (ii) small scale power electronic converter (iii)
reduced power losses and cost (vi) complete control of active and reactive power
exchanged with the grid. However the most important disadvantages are necessity
of gear and use of slip-rings which involve maintenance.

• Squirrel Cage Induction Generator (SCIG): Induction generators were used
for a long time for constant speed wind turbines. In this operating mode, the pitch
control or active stall control are imposed for power limitation and protection. Cur-
rently, it is used for variable-speed wind energy systems which guarantee superior
wind power extraction and better efficiency. In comparison with the DFIG, this
configuration offers extended speed operating range, and complete decoupling
between the generator and the network (Fig. 2), which results in higher power
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extraction at different wind speeds and improved capability to realize the low-
voltage ride-through. Indeed, SCIG provides some advantages when compared
with the PMSG and DFIG such as light weight, small size, high reliability, main-
tenance less, high efficiency, low cost and operational simplicity [19, 36].

1.2 Control Technique Strategies of WECS

Wind generator and its control is a very complex electromechanical system. Lin-
ear controllers have been widely used in the engineering field for their reliability
and simplicity. However, their parameters are usually tuned with the approximately
linearized model. Consequently, the dynamic control performance may not be guar-
anteed during the transients of the wind turbine with WECS. To overcome these
disadvantages, many methods for the design of controllers for the WECS have been
investigated in order to ensure better control performance in terms of transient sta-
bility and robustness to parameter uncertainties or disturbances. These methods are
summarized as follow:

• Field Oriented Control (FOC). Common control of grid-connected WECS is
based on FOC [1, 5]. The scheme decouples the stator current into active and
reactive components in the synchronous reference frame. In this technique, the
control of the system is accomplished by regulating the decoupled stator currents,
using proportional-integral controllers [3]. However, the major disadvantage for
this linear control scheme is that the performance may demean in the case of
deviation of the machine parameters, such as stator and rotor inductances and
resistances, from values used in the control system.

• Feedback linearization. The control based on this technique has been the subject
of several investigations [14]. The aim of this method is to make the model of
the system to be controlled exactly linearized by coordinate transformation using
differential geometry theory. The obtained linearized system allows the synthesis
of the control laws based on the linear optimal control principles. However, these
control designs require precisemodels and often cancel some useful nonlinearities.
Therefore, it does not guarantee the robustness in the presence of parameter uncer-
tainties or disturbances. To overcome this drawback, numerous adaptive versions
of the feedback linearizing techniques are then proposed [15, 38]. References [26,
41] present an application of this approach.

• Backstepping technique. This method offers an efficient tool for controller syn-
thesis through building step by step the Lyapunov functions which can guarantee
the asymptotic stability of the overall closed-loop system [17]. Indeed, the back-
stepping is less restrictive compared to the feedback linearization control which
cancels the nonlinearities that might be useful. Unlike the adaptive controllers,
based on certain equivalence, which separate the design of the controller and the
terms of adaptation, adaptive backstepping has emerged as an alternative. This
technique has been successfully applied for control of power system and wind
power generator system in [3, 29, 30].
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• Direct Torque Control (DTC). In contrast to vector control with linear con-
trollers (PI), DTC technique presents advantages such as simple structure and
insensitivity to the parameters disturbances. The DTC technique directly controls
machine torque and flux by selecting voltage vectors from a look-up-table using
the stator flux and torque information. The problems with the DTC method is
that (i) performances are very mediocre during starting and low-speed operation;
(ii) converter switching frequency variation complicates the power circuit design;
(iii) ripples in flux and torque [34]. This is due to the use of predefined switch-
ing table and hysteresis regulator. To deal with those drawbacks modified DTC
strategies, incorporating space vector modulation, have been used to obtain con-
stant switching frequency [16]. Nevertheless, further drawbacks were introduced,
such as additional PI controller parameters, and sensitivity to system parameter
variations [13, 18].

• Direct Power Control (DPC). More recently, direct power control was developed
based on the principles of DTC strategy. In [42], it was demonstrated that the con-
trol system is less complicated and robust against parameters machine variation.
Nevertheless, switching frequency varies significantly with active and reactive
power variations, rotor slip, and hysteresis bandwidth of power controllers. Ref-
erences [12, 34, 42] present an application of this technique.

• Sliding-Mode Control (SMC). It is themost robust control techniques for systems
with uncertainties and parameter variations. It dates back to the 70s with the
work of Utkin [40]. SMC features simple implementation, disturbance rejection,
strong robustness, and fast responses. Nevertheless, the problems of chattering
inherent in this type of discontinuous control appear quickly and may excite the
highfrequency dynamics neglected sometimes leading to instability. Methods to
tackle this phenomenon have been developed [35]. More recently, This technique
has been successfully applied for wind power system in [10, 11, 23, 37].

In this study, a SMC strategy, for a variable speed wind turbine equipped with
SCIG connected to the grid through power converters is developed:

• The prime control objective of the WECS is to capture the maximum wind power
through MPPT control strategy. To this end, the turbine tip-speed ratio should be
kept at its optimum value despite wind variations.

• The second objective consists of maintaining the DC bus voltage constant and to
achieve the grid-side Unity Power Factor (UPF).

In the sections that follow, the chapter first introduces the mathematical model of
different components of wind energy conversion system in Sect. 2. Then, Sect. 3
presents the synthesis of the control laws of the SCIG in order to maximize the wind
energy conversion efficiency. Control design, of active and reactive power injected
into the grid, is developed in Sect. 4. Section5 presents the simulation results to
demonstrate the performance of the proposed SMC strategy. Finally, the conclusions
are made in Sect. 6.
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2 Mathematical Model of Wind Energy Conversion System

The complete wind energy conversion system consists mainly of three parts: a wind
turbine drive train, a SCIG, and two back-to back Voltage Source Converters (VSC).
The system considered is shown in Fig. 3.

2.1 Model of Wind Turbine

The wind turbine basic principle is to convert the linear action of the wind into
rotational energy.The converted energy is used to drive an electrical generator.Hence,
the kinetic energy of the wind is transformed to electric power.

The wind power acting on the swept area of the blade A is a function of the air
density (1.225 kg/m2) and the wind speed Vw (m/s). The transmitted power Pw (w)
is generally deduced from the wind power using the power coefficient Cp as [9]

Pw = 1

2
.Cp(λ, β) · ρ · A · V 3

w (1)

The power coefficient is a nonlinear function of the tip speed-ratio λ, which depends
on the wind velocity and the rotation speed of the shaft ωt .

Fig. 3 Control scheme of wind turbine based-SCIG connected to a grid
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Table 1 Parameters of the coefficient of power

Symbole C1 C2 C3 C4 C5 C6

Value 0.5109 116 0.4 5 21 0.0068

λ = R · ωm

Vw
(2)

where R is the blade radius (m). The coefficient of power is expressed as

Cp(λ, β) = C1

(
C2

λi
− C3 · β − C4

)
· exp

(−C5

λi
− C6 · λ

)

1

λi
= 1

λ + 0.08 · β
− 0.035

β3 + 1
(3)

The parameters of coefficient of power are defined in Table1.
Then, the input torque in the transmission mechanical system is given as

Tw = Pw

ωt
= Cp(λ, β) · ρ · A · V 3

w

2ωt
(4)

The maximum value of Cp (λ, β) is Cpmax = 0.47 and obtained for λopt = 8.1 and
for β = 0◦. If the parameters are in pet unit, λpu and Cp_pu can be computed as

λpu = λ

λopt

Cp_pu = Cp

Cp−opt

(5)

Bothmechanical shafts are linked by the gearbox. The equation is expressed as [2]

2H
dωm

dt
= Tm − Te − Fωm (6)

where H = Hb + Hh + Hg is the inertia constant of the single rotating mass (which
includes the blades, hub and generator rotor), ωm is the rotor speed and F is the
damping coefficient of a single mass.

2.2 Model of the Induction Generator

The generator, convertingmechanical energy into electrical energy, is a SCIGwith its
stator windings connected to the grid through a frequency converter. The induction
generator is described by 5th nonlinear mathematical model, in the space vector by
the following state-space form [3, 20, 21]
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1

ωb

disd

dt
= −∂1isd + ωsisq − ∂2φrd − Vsd

σLs
(7)

1

ωb

disq

dt
= −∂1isq − ωsisd + ∂3φrd − Vsq

σLs
(8)

1

ωb

dφrd

dt
= −Rrφrd

Lr
− RrLm

Lr
isd (9)

1

ωb

dφrq

dt
= −RrLm

Lr
isq − (ωs − ωm) φrd (10)

2H
dωm

dt
= −Lm

Lr
φrd isq + Tm − Fωm (11)

where

∂1 = RsL2r + RrL2m
σLsL2r

, ∂2 = RrLm

σLsL2r
, ∂3 = Lmωm

σLsLr
, Lr = Lσ r + Lm and Ls = Lσ s + Lm

Lσ r and Lσ r are the leakage inductances of stator and rotor, Lm is the mutual induc-
tance.ωb = 2π f is the system base frequency,ωs is the synchronous electrical speed,
ωm is the rotor speed of the SCIG.

Remark The nonlinear control is applied to orient rotor flux on d-axis of the rotating
reference frame, therefore, Φrq = 0 and Φrd = Φref .

2.3 Model of the Converters

The frequency converter is built by two current-regulated voltage-source pulse width
modulation (PWM) converters: a Machine Side Converter (MSC) and a Grid Side
Converter (GSC), with a dc voltage link in between.

The modeling of the converters is made by using the concept of instantaneous
average value. The converter is equivalent to a matrix topology as given in (12).

⎡
⎣ Vsa

Vsb

Vsc

⎤
⎦ = Vdc

3

⎡
⎣ 2 −1 −1

−1 2 −1
−1 −1 2

⎤
⎦
⎡
⎣ Sa

Sb

Sc

⎤
⎦ (12)

Sa, Sb, Sc are variables which represent the switching status and take the value 1
when the switch is closed (on) and 0 when it is opened (off).
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The model of DC link voltage is given as [4]

Cvdc
dvdc

dt
= Pge − Pgr (13)

where C is the capacitance, Pge is the active power of generator and Pgr is the active
power injected into AC network.

2.4 The Model of the Filter

The SCIG is connected to the grid through a filter. The model of the filter is given
by [20, 21]

vfd = Lf
difd
dt

+ Rf ifd − Lf ωeifq + ed (14)

vfq = Lf
difq
dt

+ Rf ifq + Lf ωeifd + eq (15)

where Lf and Rf are the filter inductance and filter resistance respectively; vfd and vfq

are the filter voltage components of d-axis and q-axis respectively, ed and eq are the
grid voltage components of d-axis and q-axis respectively, ifd and ifq are the values
of the current of d axis and q-axis respectively, and ωe = 2π f where f is the grid
frequency.

3 Nonlinear Control of SCIG

A generator side converter connected to the stator of the SCIG effectively decouples
the generator from the grid. Hence, the generator rotor speed depends only on the
wind conditions.

The first control objective is to track the optimum generator speed ωm_opt and to
orient the rotor flux on the d-axis.

3.1 Control of Generator Speed

The optimum generator speedωm_opt is generated by aMPPT technique to determine
the stabilizing function. The tracking error between speed and its reference is given as

e1 = ωm_opt − ωm (16)
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The sliding surface is chosen as follow

S1(t) = K1e1(t) (17)

where K1 is a positive constant feedback gain.
In order to satisfy the sliding mode existence law, the control input is chosen to

have the following structure

u(t) = ueq(t) + un(t) (18)

where ueq(t) is an equivalent control-input that determines the system’s behavior on
the sliding surface and un(t) is a non-linear switching input, which drives the state
to the sliding surface and maintains the state on the sliding surface in the presence
of the parameter variations and disturbances [31, 40]. The equivalent control-input
is obtained from the invariance condition and is given by the following condition
S1 = 0 and dS

dt = 0 ⇒ u(t) = ueq(t).
Hence the derivative of the sliding surface (17) is given as

dS1(t)
dt = K1

(
dωm_opt

dt − dωm
dt

)
= K1

dωm_opt

dt + K1
2H

(
Lmφref

Lr
isq − Tm + Fωm

) (19)

The isq can be viewed as a virtual control in the above equation. It is derived to ensure
the SCIG speed convergence to the optimum speed. To ensure the Lyapunov stability
criteria i.e. dS1

dt S1 ≺ 0, the nonlinear control input isq_eq is defined as

isq_eq =
(

−2H
dωm_opt

dt
+ Tm − Fωm

)
Lr

Lmϕref
(20)

The nonlinear switching input isq−n can be chosen as follows

isq−n = −α1
2HLr

Lmϕref
sgn (e1) (21)

where α1 is a positive constant and the sign function is defined to reduce the phe-
nomenon of charting as

sgn (S(t)) = S(t)

|S(t) | + ε
(22)

where ε is a small positive number. Then, the reference of q-axis current is
expressed as

isq_ref =
(

−2H
dωm_opt

dt
+ Tm − Fωm − 2Hα1 sgn (e1)

)
Lr

Lmφref
(23)
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Substituting (23) in (19), the q-axis current sliding surface dynamics becomes

dS1(t)

dt
= −K1α1 sgn (e1) (24)

3.2 Control of d-Axes Rotor Flux

The d-axis rotor flux Φrd can be estimated from Eq. (9) as

φrd−estim = − Lm

1 + Tr · s
isd (25)

where Tr = ωbLr
Rr

is the time constant.
The stabilizing error between φrd and its desired trajectory φref is defined as

e2(t) = φref − φrd (26)

To stabilize the d-axis rotor flux Φrd , the new sliding surface is selected as

S2(t) = K2e2(t) (27)

where K2 is a positive constant. The derivative of S2(t) using (9) and (27) is given as

dS2(t)

dt
= K2

dφref

dt
+ K2ωb

Rr

Lr
[φrd + Lmisd] (28)

Then, the equivalent control isd_eq (29) is obtained as the solution of the equation
dS2(t)

dt = 0.

isd_eq = − Lr

ωbLmRr

dφref

dt
− 1

Lm
φrd (29)

As a result, the stabilizing function of the control current is defined as

isd_ref = − Lr

ωbLmRr

dφref

dt
− 1

Lm
φrd − Lr

ωbLmRr
α2 sgn (e2) (30)

where α2 is a positive constant. Using (30), the d-axis current sliding surface dynam-
ics (28) becomes

dS2(t)

dt
= −K2α2 sgn (e2) (31)

Since the d-axis current and the q-axis current are not our control inputs, the stabi-
lizing errors between isd_ref and isq_ref and their desired trajectories, respectively, are
defined as
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e3(t) = isd_ref (t) − isd(t) (32)

e4(t) = isq_ref (t) − isq(t) (33)

To stabilize isd(t) and isq(t), the new sliding surfaces are selected as

{
S3(t) = K3e3(t)
S4(t) = K4e4(t)

(34)

where K3 and K4 are a positive constants. Then, the derivative of sliding surfaces are
defined as

dS3(t)

dt
= K3

(
disd_ref

dt
− disd

dt

)
(35)

dS4(t)

dt
= K4

(
disq_ref

dt
− disq

dt

)
(36)

when replacing (7) in (35) and (8) in (36), then track the same steps used to obtain
the control currents, the control voltage laws are obtained as

Vsd_ref = σLs

(
− 1

ωb

disd_ref

dt
− ∂1isd + ωsisq − ∂2φrd − α3

ωb
sgn (e3(t))

)
(37)

Vsq_ref = σLs

(
− 1

ωb

disq_ref

dt
− ∂1isq − ωsisd + ∂3φrd − α4

ωb
sgn (e4(t))

)
(38)

3.3 Stability Analysis

Theorem 1 The dynamic sliding mode control laws (37) and (38) with stabilizing
functions (23) and (30) when applied to the SCIG side converter, guarantee the
asymptotic convergence of the generator speed ωm and the d-axis rotor flux Φrd to
their desired values ωm_opt and φref , respectively.

Proof Consider the following positive definite Lyapunov function

V1 = 1

2
S2
1 + 1

2
S2
2 + 1

2
S2
3 + 1

2
S2
4 (39)
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By considering (24), (31), (35) and (36), the derivative of (39) can be derived as
follows

dV1

dt
= dS1

dt
S1 + dS2

dt
S2 + dS3

dt
S3 + dS4

dt
S4

= −K2
1α1e1 sgn (e1) − K2

2α2e2 sgn (e2) (40)

+ K2
3 e3

(
disd_ref

dt
− disd

dt

)
+K2

4 e4

(
disq_ref

dt
− disq

dt

)

Substituting the control laws (37) and (38) in (40) gives

dV1

dt
= −K2

1α1e1 sgn (e1(t)) − K2
2α2e2 sgn (e2(t))

− K2
3α3e3 sgn (e3(t)) − K2

4α4e4 sgn (e4(t)) (41)

= −
4∑

i=1

αiK
2
i |ei| < 0

From the above analysis, it is evident that the reaching condition of sliding mode is
guaranteed.

4 Sliding Mode Control of Grid Side Converter

The aim of the grid side converter control is to maintain the dc link voltage constant,
thereby ensuring that the active power generated by the SCIG is fed to the grid. Also
this control must be able to provide perfect tracking performance of the reactive
power fed to the network to its reference trajectory.

4.1 Control Laws of Reactive and Active Powers

By orienting the grid voltage space vector on the d axis, we obtain

ed = V
eq = 0

(42)

Substituting (42) in (14) and (15) gives the following equations of the filter

difd
dt

= 1

Lf

(
vfd − Rf ifd + Lf ωeifq − V

)
(43)
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difq
dt

= 1

Lf

(
vfq − Rf ifq − Lf ωeifd

)
(44)

The reactive power and active power of grid can be expressed as

Pgr = ifdV (45)

Qgr = ifqV (46)

From (45) and (46), it can be seen that the active and reactive power of grid can be
controlled by the direct and quadrature components current, respectively. Then, let’s
define

e5(t) = ifd_ref − ifd (47)

e6(t) = ifq_ref − ifq (48)

where ifd_ref and ifq_ref are the desired values of the ifd and ifq. The current ifd_ref is
derived directly from the control loop of the DC bus voltage, while ifq_ref is computed
by (48). Qgr is set to zero in order to ensure unit power factor ifq_ref = 0. The sliding
surface for ifd and ifq can be expressed as

S5(t) = K5e5(t) (49)

S6(t) = K6e6(t) (50)

The DC bus voltage is regulated by using the proportional integral (PI) regulator.
The derivative of (49) and (50) using (43) and (44) gives

dS5(t)

dt
= K5

(
difd_ref

dt
− 1

Lf

(
vfd − Rf ifd + Lf ωeifq − V

))
(51)

dS6(t)

dt
= K6

(
difq_ref

dt
− 1

Lf

(
vfq − Rf ifq − Lf ωeifd

))
(52)

To ensure the reaching condition dS5
dt S5 ≺ 0, the equivalent control vfd−eq(t) is

obtained as

vfd−eq = Lf
difd_ref

dt
+ Rf ifd − Lf ω.ifq + V (53)

Subsequently, the control law is written as follows

vfd = Lf
difd_ref

dt
+ Rf ifd − Lf ω.ifq + V + α5 sgn (e5(t)) (54)
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In the same way, the control voltage law for the reactive power tracking is given as

vfq = Lf
difq_ref

dt
+ Rf ifq + Lf ω.ifd + Lf α6 sgn(e6(t)) (55)

4.2 Stability Analysis

Theorem 2 The dynamic sliding mode control laws (54) and (55) when applied to
the grid side converter, guarantee the asymptotic convergence of the reactive and
active powers to their reference trajectories Pgr and Qgr = 0, respectively.

Proof Consider the following positive definite Lyapunov function

V2 = 1

2
S2
5 + 1

2
S2
6 (56)

By considering (51) and (52) the derivative of (56) can be derived as follows

dV2

dt
= dS5

dt
S5 + dS6

dt
S6

= K2
5 e5

(
difd_ref

dt
− 1

Lf

(
vfd − Rf ifd + Lf ωeifq − V

))

+ K2
6 e6

(
difq_ref

dt
− 1

Lf

(
vfq − Rf ifq − Lf ωeifd

))
(57)

Substituting the control laws (54) and (55) in (57) gives

dV2

dt
= −α5K2

5 e5 sgn (e5(t)) − α6K2
6 e6 sgn(e6(t))

= −α5K2
5 |e5| − α6K2

6 |e6|
≤ 0 (58)

Therefore the condition of sliding mode of the system is guaranteed.

5 Simulation Results and Discussion

A 3MW, 690V SCIG wind turbine system is simulated in the MATLAB/Simulink
software environment to demonstrate the effectiveness of the proposed control
scheme. The SCIG wind turbine is modeled by 5th nonlinear mathematical model.
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Fig. 4 Schematic diagram of the proposed control of SCIG wind turbine

The MSC and the GSC are represented by a switch-level model in which the oper-
ation of each individual switch is fully represented. Figure4 shows the scheme of
the implemented system. The parameters of the SCIG wind turbine are given in the
Table2.

The power reference is generated by a maximum power point tracking (MPPT)
algorithm that searches for the peak power on the power–speed curve.
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Table 2 Parameters of the wind turbine SCIG

Symbol Quantity Value

Pr Rated power 3 (MW)

Vs Rated voltage 690 (V)

F Rated frequency 50 (Hz)

Rs Stator resistance 0.004843 (pu)

Ls Stator leakage Inductance 0.1248 (pu)

Rr Rotor resistance 0.004347 (pu)

Lr Rotor leakage Inductance 0.1791 (pu)

Lm Mutual inductance 6.77 (pu)

H Per unit Inertia constant 3.04 (pu)

Fig. 5 Simulation results of MPPT control of SCIG wind turbine
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Fig. 6 Illustration of tracking performance of DC link voltage

Fig. 7 Performance tracking of power and wave forms of grid voltage and current

5.1 Responses of MPPT Control

To extract maximum power corresponding to a specifiedwind velocity, the frequency
at the terminals of the SCIG is adjusted in such a way that the machine rotates at
a speed corresponding to the MPP. The objective of this case is to show the overall
performance of the proposed controller under varied conditions of operation. With
this purpose, the simulation was carried out considering the wind speed profile and
rated wind speed presented in Fig. 5.

In this figure, it’s also represented the pitch angle, the tip speed ratio, the coefficient
of power conversion, the aerodynamic power, the generator speed and the optimum
speed. It is shown that the pitch angle value is set at 0◦, the tip speed ratio is equal to
8.1, and the power coefficient Cp is around of 0.47 when the wind speed is lower than
11m/s. Once the rated speed is greater than 11m/s, the rated power 1 p.u (3MW) is
obtained.



Sliding Mode Control of Induction Generator Wind Turbine Connected to the Grid 549

5.2 Tracking Performance of DC Link Voltage and Powers

The Fig. 6 depicts the response of the DC bus voltage. It is noticeable that is regu-
lated at 1380V. Figure7 presents the simulation results concerning the grid side: the
voltage, the current, the reactive and active powers, respectively. It can be seen that
the measured active power tracks very well the reference. Also, the reactive power
is equal to its reference which is set to 0. Consequently, the unity power factor is
achieved, since the current and the voltage of the grid are in phase.

5.3 Robustness to Parameter Disturbances

In this section, simulation results of the wind turbine SCIG under parameter variation
is considered, in order to confirm the robustness of the proposed control. While the
variations of the stator and rotor leakage inductances during operation are insignif-
icant, mutual inductance variation should be taking into account due to possible
variation of the magnetic permeability of the stator and rotor cores under differ-
ent operating conditions. Figure8 shows the simulation results with inductances
used in the controller with increase of +50% from their original values. Besides,

Fig. 8 Performance of the system under +50% change in inductance values
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Fig. 9 Performance of the system under +50% change in resistances of stator and rotor

variations of stator and rotor resistances should also be considered. Simulation results
with change of resistances of stator and rotor (with the range of+50%) are shown in
Fig. 9. As a result, it can be seen that the proposed scheme can still provide consistent
performance even if system parameters have changed.

6 Conclusion

Compared to other types of renewable energy, wind energy system has become a fast
increasing energy source in theworld;mainly as a consequence of its environmentally
friendly, high reliability and cost effectiveness.

WECS based on SCIG is one of promising topology to reduce maintenance costs
and to increase mechanical robustness and versatility. Further, it guarantees superior
wind power extraction, better efficiency in variable-speed of the wind and improved
quality of the energy feed to the grid.

In this context, two simultaneous control objectives have been investigated:

• the maximization of the energy conversion efficiency based SCIG wind turbine
• the regulation of the active and reactive power injected into the grid, to ensure
UPF,
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To this end, a sliding-mode control strategy, which presents attractive features such
as robustness to parametric uncertainties of the different components of the system,
has been adopted. The globally and exponentially stability of the derived control
laws has been proven by applying Lyapunov stability analysis.

Simulation results have been performed to illustrate successful mathematical
analysis and prove the effectiveness of the proposed nonlinear control laws. It can
be observed from the simulation study that proposed controllers guarantee good per-
formance in terms of (i) tracking of maximum power, (ii) reactive power regulation
to guarantee unity power factor and (iii) robust feedback control solution despite
parameter uncertainties and disturbances.
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Iterative Learning Control for Affine
and Non-affine Nonlinear Systems

Farah Bouakrif

Abstract This chapter deals with Iterative Learning Control ILC schemes to solve
the trajectory tracking problem of affine and non-affine nonlinear systems performing
repetitive tasks. Two ILC laws are presented; the first law is a simple on-line 2D-
type learning control for affine nonlinear systems. In addition, an initial condition
algorithm is generated to provide the initial state value at each iteration automatically.
To prove the asymptotic stability of the closed loop system over the whole finite
time interval when the iteration number tends to infinity, λ-norm is used, as the
topological measure. The second law is the on-line P-type ILC applied to non affine
nonlinear systems. The asymptotic stability of the closed loop system is guaranteed
upon the use of a Lyapunov-like positive definite sequence, which is shown to be
monotonically decreasing under the proposed control scheme. Finally, simulation
results on nonlinear system are provided to illustrate the effectiveness of the two
controllers.

Keywords Asymptotic stability · Iterative learning control · Lyapunov theory ·
λ-norm

1 Introduction

The design of a controller for dynamical system is typically divided into two different
design problems: The first design problem is a regulation problem which consists
of finding a control law that manipulates the input variable so that the system auto-
matically holds the output at a constant value even when unknown disturbances try
to move output away from this constant set point. The second one is the trajectory
tracking problem which consists of forcing the output response to follow a desired
trajectory as close as possible, for example Proportional-Integral-Derivative PID
control [17], adaptive control [20], variable structure control [21], fuzzy control [26]
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and passivity-based control [2, 3]. In many cases, this desired trajectory is repeated
over a given operation time, i.e., these nonlinear systems are used for repetitive tasks.
The use of conventional control algorithms with such systems will result in the same
level of tracking error being repeated time and time again. Iterative Learning Control
ILC is a relatively new addition to the toolbox of control algorithms. It is concerned
with the performance of systems that operate in a repetitive manner and includes
examples such as robot arm manipulators. The basic idea of this method is to use
information from previous operation in an attempt to improve performance from
repetition to repetition in the sense that the tracking error (between the output and a
specified reference trajectory) is sequentially reduced to zero. Since the early works
of Arimoto et al. [1], Casalino and Bartolini [12], Craig [13], this technique has been
the centre of interest of many researchers over the last decade (see, for instance,
Bouakrif [4–6, 9] and Tayebi [25]).

In these works, the structures of ILC appeared as D-type, P-type, PD-type and
PID-type. In addition, and for the sake of convergence speed, the forgetting factors
have been introduced in ILC by Bouakrif [7]. From these works, it should be noted
that ILC can be further classified into two kinds: off-line learning and on-line learning.
In the case of off-line learning control, information in the controlled torque in the
current iteration comes from the previous iteration. Philosophically, the learning in
this case is shifted to the off-line mode. In the case of the on-line learning control,
information in the controlled torque in the current iteration comes from the current
iteration. Thus, the feedback control decision incorporates ILC at real-time.

Although, using ILC, the system should be started with the same initial condition
at the beginning of each iteration [15, 16, 19], there have many works on ILC
without identical initial condition [8, 18, 23, 27]. The first control law presented in
this chapter is an ILC scheme without identical condition.

The most useful and general approach for studying the stability of nonlinear
control systems is the theory introduced by the Russian mathematician Alexander
Mikhailovich Lyapunov. Lyapunov’s work includes two methods for stability analy-
sis, the linearization method and direct method. The first one draws conclusions
about a nonlinear system’s local stability around an equilibrium point from the sta-
bility properties of its linear approximation. The second method is not restricted to
local motion, and determines the stability properties of a nonlinear system by con-
structing a scalar energy-like function for the system and examining the function’s
time variation. This last method has become the most important tool for nonlinear
system analysis and design. Recently, another type of ILC algorithms has been devel-
oped using a positive definite Lyapunov-like sequence which is made monotonically
decreasing along the iteration axis via a suitable choice of the control input. In fact,
[14] utilized Lyapunov-based techniques to develop an ILC that is combined with a
robust control design to achieve global uniformly ultimately bounded link position
tracking for robot manipulators. Using Lyapunov-like function, [10, 24] derived an
adaptive ILC and a velocity observer based ILC, respectively, to solve the trajectory
tracking problem of robot manipulators.

Using another proof of the stability for such controller (iterative learning con-
troller), λ-norm defined firstly by Arimoto et al. [1], is used as the topological
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measure, to prove the asymptotic stability of the closed loop system over the whole
finite time interval when the iteration number tends to infinity. Using this norm and
to solve the trajectory tracking problem for nonlinear systems with arbitrary relative
degree and no state measurement, a state observer based iterative learning controller
has been presented by Bouakrif [11].

In this chapter, we present two ILC schemes to solve the trajectory tracking prob-
lem of affine and non affine nonlinear systems performing repetitive tasks. The first
law is a simple on-line 2D-type learning control for affine nonlinear systems with an
initial condition algorithm to provide the initial state value at each iteration automat-
ically. Using λ-norm, the asymptotic stability of such controller is guaranteed, over
the whole finite time interval when the iteration number tends to infinity. The second
law is an on-line P-type ILC of non affine nonlinear systems. To prove the asymp-
totic stability of the closed loop system, a Lyapunov-like positive definite sequence is
used. It is shown to be monotonically decreasing under the proposed control scheme.
Finally, simulation results on nonlinear system are provided to illustrate the effec-
tiveness of the two controllers.

2 Iterative learning control design

2.1 General Form of Iterative Learning Controller

In general case, the ILC scheme is presented as follows

uk+1(t) = f (uk(t), ek+1(t), ek(t), . . . , ek−m(t)), m ≥ 1. (1)

We note that f depends on errors, and/or on derivative errors, and/or on integral
errors obtains from different cycles. The fundamental problem resides to determine
a simple recursive form of f ensuring the error convergence and a satisfactory rate
convergence. Indeed, the Eq. (1) can be written as

uk+1(t) = uk(t) + φk+1ek+1(t) + φkek(t) + · · · + φk−mek−m(t) m ≥ 1. (2)

Figure 1 shows the block diagram of Eq. (2).
From this block, the following can be easily obtained

uk+1(t) = u f f (t) + u f b(t). (3)

u f f (t) : is the feedforword controller.
u f b(t) : is the current cycle feedback controller.
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ku

mke −

ke

ffu

dy +                               fbu 1+ku 1+ky

mk−φ

kφ

1+kφ System

Fig. 1 Block diagram of ILC

2.2 Off-Line Iterative Learning Control Scheme

The off-line ILC scheme is obtained when φk+1 equals to zero. It is important to
note that this scheme in open loop via iterations domain. The off-line ILC scheme is
given by:

uk+1(t) = u f f (t) = uk(t) + φkek(t) + · · · + φk−mek−m(t). (4)

The original off-line ILC scheme was proposed firstly by Arimoto et al. [1], and
it applied mainly in robotics. This scheme is as follows:

uk+1(t) = uk(t) + φ
d

dt
ek(t) (5)

where φ is the learning gain and d
dt ek(t) is the derivative error.

2.3 On-Line Iterative Learning Control Scheme

Adding a current cycle feedback controller to open loop ILC scheme, the on-line
ILC scheme is obtained. Thus, the form of this scheme is given by:

uk+1(t) = u f f (t) + u f b(t) = uk(t) + φk+1ek+1(t) + φkek(t) + · · · + φk−mek−m(t).

(6)
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3 On-Line 2D-Type Iterative Learning Control for Affine
Non Linear Systems

3.1 System Description

Consider the following affine non linear system

{
ẋ(t) = f (x(t), t) + B(t)u(t)
y(t) = h(x(t), t).

(7)

where k denotes the iteration index or the operation number, xk ∈ Rn , uk ∈ Rr

and yk ∈ Rm are the state, control input and output of the system, respectively.
The function f (∗) = [ f1(∗), . . . . fn(∗)] ∈ Rn is strictly unknown. The functions
f (∗) = [ f1(∗), . . . . fn(∗)] ∈ Rn and h(∗) = [h1(∗)...hm(∗)]T ∈ Rm are smooth in
their domain of definition, and let the associated time interval be t ∈ [0, T ].

The Jacobi of h(x(t), t) is given by

hx (xk) =
[(

∂h1

∂x1
· · · ∂h1

∂xn

)
· · ·

(
∂hm

∂x1
· · · ∂hm

xn

)]T

(8)

The following assumption is needed.

Assumption A1 The function f (x(t), t) satisfies the Lipschitz condition with
respect x over the time interval t∈[0, T]. Thus ∃αfor x1(t), x2(t) ∈ R × [0, T ]
such as

‖ f (x1, t) − f (x2, t)‖ ≤ α ‖x1 − x2‖ . (9)

The following lemmas are used.

Lemma 1 Let z(t) = [z1(t), z2(t), . . . .zn(t)]T ∈ Rn is defined for t∈[0, T], then
we have ⎛

⎝
t∫

0

‖z(s)‖ ds

⎞
⎠ · e−λt ≤ 1

λ
‖z(t)‖λ . (10)

Lemma 2 (Gronwall-Bellman) [22] Suppose that f (t) and g(t) ≥ 0 are real and
locally integrable scalar functions in [a, b], and L is a constant. If the real scalar
function f (t) satisfies the integral equation

f (t) ≤ L +
t∫

0

g(τ ) f (τ )dτ t ∈ [a, b]. (11)

Then, on the same interval, f (t) satisfies
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f (t) ≤ L exp

⎛
⎝

t∫
0

g(τ )dτ

⎞
⎠ . (12)

Lemma 3 Letting ξ(t), η1(t), η2(t) the continuous functions in [0, T]. If

‖ξ(t)‖ ≤ 	

t∫
0

‖ξ(s)‖ ds + 	1

t∫
0

‖η1(s)‖ ds + 	2 ‖η2(t)‖ (13)

then

‖ξ(t)‖λ ≤
(

1

λ
	1 ‖η1(t)‖λ + 	2 ‖η2(t)‖λ

)
exp

(
	

λ

)
(14)

with 	 ≥ 0 , 	1 and 	2 are constants.

Proof Multiplying (13) by e−λt , we have

‖ξ(t)‖ e−λt ≤ 	

t∫
0

‖ξ(s)‖ e−λse−λ(t−s)ds + (	1

t∫
0

‖η1(s)‖ ds)e−λt + 	2 ‖η2(t)‖e−λt .

(15)
Applying the Lemma 1, we obtain

‖ξ(t)‖ e−λt ≤
(

1

λ
	1 ‖η1(t)‖λ + 	2 ‖η2(t)‖λ

)
+	

t∫
0

‖ξ(s)‖ e−λse−λ(t−s)ds. (16)

Using Lemma 2, it comes

‖ξ(t)‖ e−λt ≤
(

1

λ
	1 ‖η1(t)‖λ + 	2 ‖η2(t)‖λ

)
exp

⎛
⎝

t∫
0

	e−λ(t−s)ds

⎞
⎠ . (17)

Thus

‖ξ(t)‖ e−λt ≤
(

1

λ
	1 ‖η1(t)‖λ + 	2 ‖η2(t)‖λ

)
exp

(
	

λ

)
. (18)

3.2 Iterative Learning Control Design

Objective

Our objective is to design a controller that is updated iteratively such that the output
trajectory yk(t) follows a desired trajectory yd(t), for t ∈ [0, T ]and k → ∞.
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In this section, we consider a simple on-line 2D-type learning control and an
initial condition algorithm. This algorithm provides the initial state value at each
iteration automatically. Using λ-norm defined firstly by Arimoto et al. [1], as the
topological measure, the asymptotic stability of the closed loop system is guaranteed
over the whole finite time interval when the iteration number tends to infinity. More
specifically, the output system is proved to be convergence to the desired output by
showing that the inequality

‖ek+1(t)‖λ ≤ 
 ‖ek(t)‖λ (19)

holds if 
 ≺ 1. With ek(t) = yd(t) − yk(t).
The formal definition of the λ-norm for a function f : [0, T ] → Rn is given by

‖ f (t)‖λ = supt∈[0,T ](e
−λt ‖ f (t)‖∞) (20)

Throughout the paper, we will use the following norms.

‖ f (t)‖∞ = supt∈[0,T ] ‖ f (t)‖ , ‖M‖ = max1≤i≤n

⎛
⎝ m∑

j=1

∣∣mi j

∣∣
⎞
⎠ ,

‖V ‖ = max1≤i≤n |Vi | , where

M = (mi j ), V = (Vi ), 1 ≤ i ≤ n and 1 ≤ j ≤ m.

The asymptotic stability conditions for such controller are given in the following
theorem.

Theorem 1 Given the affine nonlinear system (7), and let assumption A1 be satisfied.
For any initial state x1(0), any admissible control u1(t), and applying the following
on-line 2D-type iterative learning control and initial state algorithm

uk+1(t) = uk(t) + L(t)ėk(t) + K (t)ėk+1(t) (21)

xk+1(0) = (In + B(0)K (0)hx(x(0)))−1(xk(0) + B(0)K (0)yd(0))

+ B(0)L(0)ek(0) (22)

If
1—hx (x, t) is bounded in Rn × [0, T ],
2—Im + hx (x(t), t)B(t)K (t) is non-singular,
3— sup

(x,t)∈Rn×[0,T ]

∥∥(Im − hx (x, t)B(t)L(t)).(Im + hx (x, t)B(t)K (t))−1
∥∥ < 1.

Then
lim

k→∞ yk(t) = yd(t) . (23)

where ek(t) = yd(t) − yk(t). K (t) ∈ Rr×m and L(t) ∈ Rr×m are the gain matrices,
with In + B(0)K (0)hx (x(0)) is non singular.
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Proof From (7), (21) and (22), we have

xk+1(t) = xk+1(0) +
t∫

0

( f (xk+1(s), s) + B(s)uk+1(s))ds

= xk(0) + B(0)K (0)ek+1(0)B(0)L(0)ek(0) +
t∫

0

f (xk+1(s), s)ds

+
t∫

0

B(s)(uk(s) + L(s)ėk(s) + K (s)ėk+1(s))ds

= xk(0) +
t∫

0

[ f (xk(s), s) + B(s)uk(s)]ds

+
t∫

0

[ f (xk+1(s), s) − f (xk(s), s)]ds + B(t)L(t)ek(t)

−
t∫

0

d(B(s)L(s))

ds
ek(s)ds + B(t)K (t)ek+1(t) −

t∫
0

d(B(s)K (s))

ds
ek+1(s)ds

(24)

consequently

xk+1(t) − xk(t) =
t∫

0
[ f (xk+1(s), s) − f (xk(s), s)]ds + B(t)L(t)ek(t)

−
t∫

0

d(B(s)L(s))
ds ek(s)ds

+B(t)K (t)ek+1(t) −
t∫

0

d(B(s)K (s))
ds ek+1(s)ds

(25)

Using assumption A1, Lemmas 1 and 2, we find

‖xk+1(t) − xk(t)‖λ ≤ γ1 exp(
α

λ
) ‖ek(t)‖λ + γ2 exp(

α

λ
) ‖ek+1(t)‖λ (26)

with a = max
t∈[0,T ]

‖B(t)L(t)‖, b = max
t∈[0,T ]

∥∥∥ d B(t)L(t))
dt

∥∥∥, γ1 = a + b
λ

, γ2 = c + d
λ

,

c = max
t∈[0,T ]

‖B(t)K (t)‖ and d = max
t∈[0,T ]

∥∥∥ d B(t)K (t))
dt

∥∥∥.
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Using the theorem of differential mean value, it exists ξk(t), such that

ek+1(t) − ek(t) = yk(t) − yk+1(t)

= hx (ξk(t), t)(xk(t) − xk+1(t)). (27)

From (25) and (27), it comes

[Im + hx (xk(t), t)B(t)K (t)]ek+1(t) = [Im − hx (xk(t), t)B(t)L(t)]ek(t)

− hx (xk(t), t)

t∫
0

[ f (x(s), s) − f (x(s), s)]ds (28)

− hx (xk(t), t)

⎡
⎣

t∫
0

d(B(s)L(s)

ds
ek(s)ds +

t∫
0

d(B(s)K (s)

ds
ek+1(s)ds

⎤
⎦

From (26), (28) and using assumption A1, we have

∥∥ek+1(t)
∥∥
λ

≤
⎡
⎢⎣

max
t∈[0,T ] ‖(Im − hx (x(t), t)B(t)L(t))‖ + δ

λ

[
αγ1 exp( α

λ ) + b
]

max
t∈[0,T ] ‖(Im + hx (x(t), t)B(t)K (t))‖ − δ

λ

[
αγ21 exp( α

λ ) + d
]
⎤
⎥⎦ ‖ek(t)‖λ

(29)

Choosing λ(λ > 0) widely great, we obtain

‖ek+1(t)‖λ ≤ max
t∈[0,T ]

{∥∥∥(Im − hx (x(t), t)B(t)L(t))(Im + h(x(t), t)B(t)K (t))−1
∥∥∥}

‖ek(t)‖λ.

(30)
If

max
t∈[0,T ]

{∥∥(Im − hx(x(t), t)B(t)L(t))(Im + h(x(t), t)B(t)K (t))−1
∥∥}

< 1. (31)

Then yk(t) converges uniformly to yd(t), when k → ∞ and t∈[0, T].

3.3 Simulation Results

Consider the dynamic model of robot manipulator given by

Jmq̈(t) + Sg sin(q(t)) = u(t) (32)

g is the gravitational acceleration, u(t) is the input control, q(t) is the rotation angle
of the robot.
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We takes x1 = q and x2 = q̇ , thus we obtain

[
ẋ1

ẋ2

]
=

[
x2

−J−1
m Sg sin x1

]
+

[
0
J−1

m

]
· u. (33)

The output is y = 2
5 x2. Jm = 14 kgm2, S = 6 kg · m, g = 9.8 m/s2, T=2 s,

hx = [
0, 2

5

]
.

The ILC laws is given by

uk+1(t) = uk(t) + 10ėk(t) + 14ėk+1(t)

xk+1(0) =
[

1 0
0 5

7

]
xk(0) +

[
0
5
7

]
yd(0) +

[
0
1

]
ek(0)

(34)

with L(t) = 10 and K (t) = 14.
For a continuous function yd(t) in [0, T], it exists u(t) ∈ U , such that yd(t) =

h(xd(t), t), with xd(t) is generated by ud(t), given as

ud(t) = 35 − 70t − 58.8 sin

(
5t2(2t − 3)

12

)
(35)

with x1(0) = [0, 1], and u1(t) = 1.
Applying the ILC law, we obtain the following results.
The simulation results are given in Figs. 2, 3, 4 and 5. These figures present

the simulation results of the real and desired trajectories for 1st, 3rd, 7th and 10th
iteration. We can see that the real trajectory follows the desired one through learning
iteration. Thus, the system executes 10 iterations so that the real output system follows
the desired trajectory without error.
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4 On-Line P-Type Iterative Learning Control for a Class
of Non affine Nonlinear Systems

4.1 System Description

Consider the non-affine time-varying nonlinear systems described by

{
ẋk(t) = f (xk(t), uk(t), t) + wk(t)
yk(t) = h(xk(t), t)

(36)

where k denotes the iteration index or the operation number, xk ∈ Rn , uk ∈ Rr and
yk ∈ Rm are the state, control input and output of the system, respectively. wk(t) is the
external disturbance of the system. The functions f (∗) = [ f1(∗), . . . . fn(∗)] ∈ Rn

and h(∗) = [h1(∗)...hm(∗)]T ∈ Rm are smooth in their domain of definition, and let
the associated time interval be t ∈ [0, T ].

4.2 Iterative Learning Control Design

In order to design a controller that is updated iteratively such that the system output
(36) can follow the desired output, one presents the following on-line P-type ILC law:

uk+1(t) = uk(t) + L1ek+1(t) (37)

where ek(t) = yd(t) − yk(t) is the trajectory tracking error, L1 is diagonal positive
definite matrix.

It is important to note here that the asymptotic stability is proved using a positive
definite Lyapunov-like sequence which is made monotonically decreasing along the
iteration axis.

Theorem 2 Given the unknown nonlinear systems (36) under the iterative learning
control law (37), the closed loop system is asymptotically stable, i.e.,

(i) lim
k→∞ ek(t) = 0 t ∈ [0, T ].

(ii) uk(t) is uniformly convergent on [0, T ].
Proof Letting

k(t) =
(

ek(t)
� uk(t)

)
(38)

where � uk(t) = uk(t) − uk−1(t).
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It is clear that
{

ek(t) = yd(t) − yk(t) = yd(t) − h(xk(t), t)
ek+1(t) = yd(t) − yk+1(t) = yd(t) − h(xk+1(t), t).

(39)

Thus
ek+1(t) = ek(t) − (h(xk+1(t), t) − h(xk(t), t)) . (40)

From (37), the control law at kth iteration is as follows

uk(t) = uk−1(t) + L 1 ek(t). (41)

From (37), (40) and (41), we have

� uk+1(t) = � uk(t) − L1 (h(xk+1(t), t) − h(xk(t), t)) . (42)

From (38) and (42), we obtain

k+1(t) = k(t) + B Fk(t) (43)

where B =
(−In

−L2

)
and Fk(t) = (h(xk+1(t), t) − h(xk(t), t)).

Stability analysis: The proof of the theorem 2 is in three parts. The first part consists
of taking a positive definite Lyapunov-like composite energy function, namely Vk(t),
and show that this sequence is non-increasing with respect to k and hence bounded
if V0(t) is bounded. In the second part, one shows that V0(t) is bounded for all
t ∈ [0, T ]. In the third part, one shows that lim

k→∞ ek(t) = 0 and uk(t) is uniformly

convergent ∀t ∈ [0, T ].
Part 1: Let us consider the following Lyapunov-like sequence

Vk(ek(t),� uk(t) ) =
∞∑
j=k

T
j (t)P j (t) (44)

where P is symmetric, positive definite matrix.
At (k + 1)th iteration, we have

Vk+1(ek+1(t),� uk+(t) ) =
∞∑

j=k+1

T
j (t)P j (t). (45)

In the sequel, since the time t does not have any impact on the stability analysis,
it is removed for the sake of simplicity.
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Let’s define
�Vk = Vk+1 − Vk . (46)

From (43), (44), (45) and (46), we can write

�Vk = −T
k Pk . (47)

Since P is symmetric, we can apply the theorem of Rayleigh-Ritz. It becomes

�Vk ≤ −λmin(P) ‖k‖2 . (48)

where λmin(P) denotes the minimum eigenvalue of P .
It is clear that

�Vk ≤ 0. (49)

Hence Vk is non-increasing sequence. Thus if V0 is bounded, we can conclude
that Vk is bounded.

Part 2: Now, we will show that V0 is bounded over the time interval [0, T ]. In fact,
from (44) V0 is given by

V0 =
∞∑
j=0

T
j P j . (50)

with  j =
(

e j

� u j

)
.

From (40) and (42), � u0 and � u1 are given by

� u0 = � u−1 + L1 (e0 − e−1) . (51)

and

�u1 = u1 − u0

= �u0 + L1 (e1 − e0) . (52)

Before applying the control at the first iteration, it is logical to suppose that
e−1 = e0 = 0 and u−1(t) = u0(t) = 0. Hence, it becomes

{
� u0 = 0
0 = 0

(53)

and
u1 = L1e1 (54)
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Since the control at the first iteration is bounded, we can conclude from (54) that
e1 is bounded.

We note that

V∞ = f (e∞) (55)

V∞−1 = f (e∞−1, e∞) (56)

...

V2 = f (e2, . . . , e∞−1, e∞) (57)

V1 = f (e1, e2, . . . , e∞−1, e∞). (58)

Knowing that Vk+1 ≤ Vk for k ≥ 1, we can use the following reasoning:

e∞ is bounded if e∞−1 is bounded

e∞−1 is bounded if e∞−2is bounded

...

e2 is bounded if e1 is bounded

Since e1 is bounded and using this reasoning, we can conclude that e∞ is bounded.
This implies that all  j , j = 1, . . . ,∞ are bounded. Finally and knowing that 0

is bounded, we can conclude from (50) that V0 is bounded over [0, T ].
Part 3: We note that Vk can be written as follows

Vk = V0 +
k∑

j=1

�Vj . (59)

Thus, from (48), we have

Vk ≤ V0 − λmin(P) ‖k‖2 . (60)

This implies that
λmin(P) ‖k‖2 ≤ 2 (V0 − Vk) . (61)

Since Vk(t) is bounded ∀k ∈ N and ∀t ∈ [0, T ], this implies that k disappears
when k → ∞. Therefore, lim

k→∞ ek(t) = 0 for t ∈ [0, T ] and uk(t) is uniformly

convergent. This completes the proof.
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4.3 Simulation Results

Consider the dynamical model of a nonlinear system given as follows

[
ẋ1k(t)
ẋ2k(t)

]
=

[
x2k(t)
−J−1

m Sg sin x1k(t)

]
+

[
0
J−1

m

]
uk(t) (62)

where t ∈ [0, 2](s), Jm = 14 kgm2, S = 6 kg · m, g = 9.8 m/s2 (gravitational
acceleration), and uk(t) is the control.

Adding the disturbances, we have

[
ẋ1k(t)
ẋ2k(t)

]
=

[
x2k(t)
−J−1

m Sg sin x1k(t)

]
+

[
0
J−1

m

]
uk(t) +

[
w1k(t)
w2k(t)

]
. (63)

Fig. 6 Real and desired
trajectories after 2 iterations

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-0.5

0

0.5

1

1.5

2

Time (s)

ou
tp

ut

yd 

yr 

yd : Desired trajectory
yr  : Real trajectory 

k=2 

Fig. 7 Real and desired
trajectories after 5 iterations
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Fig. 8 Real and desired
trajectories after 10 iterations
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Fig. 9 Real and desired
trajectories after 30 iterations

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-0.5

0

0.5

1

1.5

2

2.5

Time (s)

ou
tp

ut

yd 

yr 

k=30 

where the disturbances are given by

[
w1k(t)
w2k(t)

]
= a

[
cos(2π f0 t )

2 cos(4π f0 t )

]
(64)

with f0 = 1/(20h) and a = 0.1. The output is chosen as: y = 1
4 x2. The desired

trajectory is chosen as: yd(t) = t2 − t , and u1(t) = 1.
Simulation parameters: L1 = diag {90, 90}.
Applying the control law (37), the simulation results for real and desired trajec-

tories for 2nd, 5th, 10th, 30th and 40th iteration are shown in Figs. 6, 7, 8, 9 and 10.
We can see that the real trajectory follows the desired trajectory through learning
iteration. Thus, the system executes 40 iterations so that the real trajectory follows
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Fig. 10 Real and desired
trajectories after 40 iterations
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Fig. 11 Output errors for
2nd , 5th, 10th, 30th and
40th iteration
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the desired trajectory without error. Figure 11 shows the trajectory tracking error for
different number of iterations. It is clear that the trajectory tracking error decrease
through the iterations. Therefore, we can conclude that the control algorithm works
well.

5 Conclusion

In this chapter, two ILC schemes have been presented to solve the trajectory track-
ing problem of affine and non affine nonlinear systems performing repetitive tasks.
The first law is a simple on-line 2D-type learning control applied to affine nonlinear
systems. In this control scheme, the initial state value at each iteration is provided
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automatically via an initial condition algorithm. Using λ-norm, the asymptotic sta-
bility of such controller is guaranteed, over the whole finite time interval when the
iteration number tends to infinity. The second law is an on-line P-type ILC of non
affine nonlinear systems. To prove the asymptotic stability of the closed loop system,
a Lyapunov-like positive definite sequence is used. It is shown to be monotonically
decreasing under the proposed control scheme. Finally, simulation results on non-
linear system are provided to illustrate the effectiveness of the two controllers. It is
important to note that, the control laws here are very simple in the sense that there is
no dependence with the system.
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On Nonlinear Robust Adaptative Control:
Application on Electro-Hydraulic Valve
System
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Abstract In this work, a robust adaptive control (RAC) of electro-hydraulic servo-
system is investigated. The dynamics of hydraulic systems are highly nonlinear and
the system may be subjected to some discontinuous nonlinearity due principally to
servo-valve characteristics. Aside from the nonlinear nature of hydraulic dynam-
ics, our test bench presents an intermediate interface between the actuator and the
servo-valve, which leads to have some pressure drop between the servo-valve and the
cylinder chambers. This pressure drop depends on some operating conditions. There-
fore, the system may possess both parametric uncertainties and unknown nonlinear
functions that may represent modelling errors. To address these challenging issues,
the robust adaptive control (RAC) is applied. Based on adaptive update techniques,
the parametric uncertainties are compensated. Moreover, a robust method is used to
solve the problem derived from the modelling errors. The proposed controller ensure
that the position tracking errors of the system remains bounded and can be made
arbitrarily small. Simulation studies on the control of hydraulic servo-actuator show
the effectiveness of the proposed scheme.
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1 Introduction

Hydraulic actuators are widely utilized in industry, ranging from heavy-duty appli-
cations such as hydraulic manipulators to precision machine tool control and ground
base simulators. Moreover, the compactness, the high force-to-mass ratio and the
reliable performance of hydraulic actuators are factors that could potentially be
exploited in sophisticated manipulator design. However, the dynamic behaviour of
hydraulic systems is highly nonlinear. These nonlinearities depend on the servo-
valve flow-pressure characteristics, change of the control volumes and the friction
force equation [1]. Furthermore, the electro-hydraulic system has many uncertainties
models, which are generated by both parametric uncertainties and uncertain non-
linearities. Parametric uncertainties consist to the large variations in the hydraulic
parameters, due generally to the change of the operating conditions such as oil tem-
perature and supply pressure. The other uncertainties include uncertain dynamics
such as leakage flow, dry friction which can be described by some unknown func-
tions.

The complexity of the electro-hydraulic systems and the important rangeof control
laws are a real industrial problemwhere the target is to choose the best control strategy
for an application. For this reason, some research efforts have been directed toward
meeting this requirement. Most of them have been based on the linear control theory
[2, 3]. But in such works, some important dynamic information may be lost when the
hydraulic servo system is linearized around some operating point, during the design.

Therefore, it is important to choose a nonlinear control method that is reasonably
suitable for hydraulic servo systems. Some numbers of investigations have been con-
ducted on feedback linearization techniques [4–6]. But thesemethods did not account
for model uncertainties and also require exact knowledge of the system dynamics. To
overcome this problem, nonlinear robust control techniques are essentially used for
controlling this kind of systems with a good performance. In this way, a sliding mode
variable structure controller is adopted in electro-hydraulic systems in some research
works [7–9]. A specific drawback associated with implementation of such technique
is the chattering phenomenon, which is essentially a high frequency switching of the
control. In effect, the presence of a discontinuous function in a controller design can
affected the performance of the controlled system [10].

For an electro-hydraulic system, the adaptive control is considered as one valid
method that can maintain consistent performances in the presence of some variations
in plant parameters. There exists relatively little general theory for the adaptive
control of nonlinear systems. In the previous research, some kinds of nonlinear robust
adaptive control (RAC) laws have been investigated and applied for some application.
For example, a feedback linearization adaptive control [6] and a nonlinear robust
adaptive control based on backstepping technique are employed on [11–13]. In these
latter works, the backstepping design procedures [14] are presented in order to design
a global stable controller for a class of nonlinear systems transformable to a strict-
feedback form. Some alternative approach is based on both sliding mode and an
adaptive technique, which is defined by the integral-type adaptation law, [15]. In [16],
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the authors applied nonlinear RAC in single-rod cylinder hydraulic system based
on backstepping technique to compensate the uncertainties. A systematic design
procedure to combine the adaptive control and the smoothed sliding mode control
for tracking objectives of robot manipulators is presented in [17], where the control
designer is described for a multi-input multi-output (MIMO) nonlinear system. In
[18, 19] the authors consider that the original total control volumes are uncertain
unknown nonlinear parameters. This kind of consideration can be useful when the
dynamic system is affected by a small variation of the original control volumes.

In this work, we address the RAC of electro-hydraulic system with nonlinear and
parametric uncertainties. The major contribution of this work concerns the effec-
tiveness of the controller design on the real system. This system is a symmetric
double acting electro-hydraulic servo-drive is considered. This system disposes of
some interface block between the actuator and the servo-valve. The presence of this
interface generates some pressure drop between the servo-valve and the cylinder
chambers. This derived pressure decrease depends on the geometrical characteristics
of the different pipes constituting this block, the velocity of the fluid and also the input
exciting signal. In order to obtain a good performance, with presence of an interme-
diary interface, a RAC is applied. Effectively, this kind of technique can successfully
solve the control problem, particularly in the presence of unknown parameters. Such
control law gives an idea about the evolution of some unknown parameters, for exam-
ple the value of the pressure drop caused by the intermediate block, in each operating
conditions.

The RAC of single-input single-output (SISO) nonlinear system in a strict-
feedback form is considered with allowing both parametric uncertainties and
unknown nonlinear functions, with assuming a prior knowledge of some bounds. By
introducing the projection technique to the integral-type adaptation law and based on
the Lyapunov method, a simpler control law and adaptive mechanism are designed.
We combine a defined adaptive controller with a conventional robust control method
to obtain a RAC.

The outline of the work is as follows. In Sect. 2, the detailed nonlinear model is
presented. In Sect. 3, the designed robust adaptive control for the electro-hydraulic
system is given. The following section is dedicated to the simulation results and
discussion.

2 Electro-Hydraulic Servo-System Model First Heading

Table1 illustrates descriptions and units of several parameters used in this work.
The considered systemFig. 1 is a symmetric double acting electro-hydraulic servo-

drive using a double-rod cylinder with a stroke of 330mm, controlled by a five
two-way servo-valve.

The intermediary interface is specifically produced for our test bench to implement
two servo-valves in order to ensure different operating mode of the system. However
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Table 1 List of notation Parameter Description Unit

b Viscous friction coefficient N/m/s

M Total load mass kg

p Pressure in the cylinder
chamber

Pa

S Area of the piston cylinder m2

V Volume m3

y, v, a Position, velocity,
acceleration

m, m/s, m/s2

ρ Fluid density kg/ m3

h(t) Dry friction function N

l Length of stroke m

xt Spool valve displacement m

φ Pressure drop caused by
the intermediary interface

Pa

Fig. 1 Schematic diagram of the studied hydraulic system

the presence of this block, let to have output flowof servo-valve (Q11, Q12) is different
than the input flow of the actuator (Q1, Q2), see Fig. 1.

In this work, the intermediate block is just approximated to a resistive component
which is described by some pipes. The simulation model of the system is designed
on the AMESim software, by the Fig. 2. This model introduces some components
which are neglected on the control model. The added components in the simulation
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Fig. 2 Simulation model of the studied system

model include two pipes between the cylinder chambers and the servovalve in order
to represent the intermediary block in a simplified way, two accumulators, and some
lines respectively on the supply and exhaust pressure way. In this model, the dynamic
of the servovalve is described by a second-order model. The pulsation of this model
is fixed in order to be higher than the actuator. The viscous, stiction and coulomb
friction forces are taken into account in this model.

As a first step, the control law defined in this work is designed by a more simpli-
fied model denoted by control model. The used equations of the control model are
explained as below. The dynamic of the inertia load is:

Ma = S�P − Mg − bv − h(t). (1)

whereM is the mass of themoving part,�P = p1 − p2 is the drop across load piston,
S is the effective area of the two chambers, b represents the coefficient of the viscous
friction force, v, a are respectively the velocity and the acceleration of the load. Dry
friction force is represented by the function h(t). This function must be a nonlinear
and a differentiable one with bounded value. For this reason, the dry friction force
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is defined around null velocity by a smooth function such as a “tanh” instead of the
“sign” function.

The governing nonlinear equations that describe the fluid flow distribution in the
valve can be written in their simplest forms [1]:

{
Q1 = V1(y)

β

dp1
dt + dV1

dt

Q2 = V2(y)
β

dp2
dt + dV2

dt

(2)

where β is the effective bulkmodulus,V1 andV2 are the total volumes of the cylinder,
defined respectively by V1(y) = V0 + Sy and V2(y) = V0 − Sy, with: V0 = VD + S l

2
is the piping volume of the chambers for the zero position, VD is a dead volume
present on each extremities of the cylinder, y is the displacement of the load and l
is the cylinder stroke. With D notes a subscript of the dead volume in the cylinder
chamber, S andT are respectively a subscript denote a supply and an exhaust pressure.

In this present work, some assumptions are considered. Firstly consider that the
spool valve displacement x is related to the control voltage u by a given equation:
xt = Ksvu. This type of assumption can be used in control [19] for some operating
mode.

The flow laws can be written as follows:
{

Q1 = η · ψ1(p1, pP, pT , sign(u))u
Q2 = −η · ψ2(p2, pP, pT , sign(u))u

(3)

where:
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ψ1(p1, pp, pT , sign(u)) = α[γ (u)
√|pP − p1|sign(pP − p1)

+ γ (−u)
√|p1 − pT |sign(p1 − pT )]

ψ2(p2, pp, pT , sign(u)) = [αγ (u)
√|p2 − pT |sign(p2 − pT )

+ γ (−u)
√|pP − p2|sign(pP − p2)]

(4)

with: γ (u) = 1+sign(u)

2 and the function sign(u) is defined by:

sign(u) =
{

1 u ≥ 0
−1 u < 0

pP, pT are respectively the supply pressure and the exhaust pressure of the fluid.
The servo-valve is supposed a symmetric one, which justify the presence of the same
variable gain η in the two flow laws. The flow gain η is defined by a given expression
η = Cqωφ, Cq is the flow coefficient of each restriction, ω is the spool valve area
gradient, and φ is the pressure drop caused by the intermediary interface. Let us

define the known variable α by α = Ksv

√
2
ρ
, whereρ is a fluid density.
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Note that under normal practical working condition, the domain of the pressure
is defined by:

p1, p2 ∈ �p
�= ]

pT , pP
[
, (5)

with the assumption (5), the term sign(pP − pj) and sign(pj − pT ) introduced in (4)
can be deleted, with j = {1, 2}.

Define the state variable X = [
y, v, a

]T
. The system can be expressed in state

space form as:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ẏ = v,
v̇ = a,

ȧ = β·S
M(V 0+Sy)

(
ηψ1(p1, pp, pT , sign(u))u − Sv

)
− S·β

M(V 0−Sy)

(−ηψ2(p2, pp, pT , sign(u))u + Sv
) − b

M a − ḣ(t)
M .

(6)

Given the desired trajectories yd, vd, ad our work aims to synthesize a control
input u such that the position tracking error of the system remains as closely as
possible to zero in spite of various model uncertainties.

The desired trajectories are assumed to be all bounded and yd must be chosen in
order to respect the required differentiability.

3 Controller Design

The system is subjected to parametric uncertainties due to the variations of b, ω, Cq,

φ and β in the work process for different environments conditions, as the influence
of bulk modulus due to entrapped air or temperature. In this work, the parametric
uncertainties of important parameters β, b and the coefficient flow gain η are taken
into account. Moreover S, M, V0 are considered as fixed and known parameters.

In this section we describe one class of SISO system to design a RAC for the
considered nonlinear system. From the system (6), some conditions can be satisfied
such that the nonlinear plant dynamics shall be linearly parameterized [19] and we
suppose that the full state is measurable.

Let c = V0
S , so the third equation of the system (6) can be rewritten:

ȧ = 1

(c + y)(c − y)

[
(c − y)

(
β

M
ηψ1(p1, pp, pT , sign(u))u − β

M
Sv

)

−(c + y)

(
− β

M
ηψ2(p2, pp, pT , sign(u))u + β

M
Sv

)]
− b

M
a − ḣ(t)

M
(7)
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The above equation can be transformed in terms of unknown parameters θi as:

ȧ = 1

(c2 − y2)
[θ1ψ (p1, p2, pP, pT , sign(u)) u − 2θ2v] − θ3a − d(t). (8)

where:

ψ(p1, p2, pP, pT , sign(u)) = (c − y)ψ1(p1, pp, pT , sign(u))

+ (c + y)ψ2(p2, pp, pT , sign(u))

Thus

ψ(p1, p2, pP, pT , sign(u)) = cψ1(p1, pp, pT , sign(u)) + cψ2(p2, pp, pT , sign(u))

−yψ1(p1, pp, pT , sign(u)) + yψ2(p2, pp, pT , sign(u))
(9)

Define the unknown parameters as θ1 = βη

M , θ2 = V0β

M , θ3 = b
M and d(t) = ḣ(t)

M .
Before starting the controller design, some practical assumptions on the system

must be made.
The first one is that all uncertain parameters are bounded such as:

θi ∈ [
θimin , θimax

]
, i = {1, 2, 3} . (10)

Physically, all θi are positives parameters. Sowe assume that θimin > 0. The second
assumption is described by the inequality |d(t)| < H, where H is a positive constant,
defined by some maximum bound on the function ḣ(t).

The displacement y satisfies this expression − l
2 ≤ y ≤ l

2 . So we have: c = VD
S +

l
2 > l

2 .
Remark that in spite of the simplifications already made, the system dynamics

remains highly nonlinear such as the nonlinear functions ψ1(p1, pP, pT , sign(u)),
ψ2(p2, pP, pT , sign(u)) and the change of control volumes represented by V1(y) and
V2(y).

Consider now the position error as: ey = y − yd .
Let a function error σ(t) described by (11). This function, introduced in [6],

includes the integral term of ey in order to cancel a static error:

σ(t) =
(

k + d

dt

)3
t∫

0

ey(τ )dτ ,

= k3
t∫

0

ey(τ )dτ + 3k2ey + 3kev + ea.

(11)

where ev, ea are respectively a velocity and an acceleration error. A Hurwitz polyno-
mial can be associated to the function σ(t), if the parameter k is chosen as a positive
one. Then the time derivative of σ(t) along the trajectories system is given by:
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σ̇ (t) = ėa + 3kea + 3k2ev + k3ey,

= ȧ + χ(t)
(12)

With: χ(t) = −ȧd + ∑2
i=0 �ie(i)

y (t).
Where �0 = k3,�1 = 3k2,�2 = 3k.
Basing on the Lyapunov approach, both a control law and an update mechanism is

constructed in order to guarantee that the derivative of a suitable Lyapunov candidate
function is non-positive. With the chosen function error σ(t), a controller designer
with a Lyapunov theory is easily applied. This is justified by the relative degree of
σ(t)with respect to the tracking errors, which it equal to one.Otherwise, the recursive
design procedure must be used [12, 16, 17].

Let θ̂i the estimates of the parameters θi and denote θ̃i the errors of parameters
estimations defined by θ̃i = θi − θ̂i, for each i = {1, 2, 3}.

The integral-type update law is generally defined by some function which incor-
porate a tracking error and the estimated parameters. Indeed, the adaptive law can

be written by ˙̂
θi = τi(X, θ̂i). So the aim consists to select a control input u which

can be expressed by u = ϕ(X, θ̂i) and the adaptation functions τi to ensure a global
stability of the whole system. To achieve the required purpose, a Lyapunov function
candidate V(X, θ̃i) is defined. This function is described by a quadratic term in the
parameter estimation errors and the tracking error, which is given by:

V = 1

2
σ 2(t) + 1

2

3∑
i=1

θ̃T
i �−1θ̃i. (13)

� ∈ R(3×3) is a positive symmetric matrix.
The time derivative of the defined Lyapunov function V along the system trajec-

tories is obtained as:

V̇ = σ σ̇ (t) −
3∑

i=1

θ̃T
i �−1 ˙̂

θi,

= σ

[
1

(c2 − y2)
(θ1ψ(p1, p2, pP, pT , sign(u))u − 2θ2v) − θ3a − d(t) + χ

]

−
3∑

i=1

θ̃T
i �−1 ˙̂

θi. (14)

In order to design a controller and adaptation laws, it is sufficient to replace θi by
θ̂i + θ̃i, in the Eq. (15). Then the control law can be structured as:

u = (c2 − y2)

θ̂1ψ(p1, p2, pP, pT , sign(u))
[u1 + u2 + u3] . (15)
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where u1 = −χ is the controller part which allows the compensation of certain

known components, u2 = 2θ̂2v
(c2−y2) + θ̂3a is an adaptive part used to overcome the

problem from uncertain parameters, u3 is a robust part of controller defined in order
to compensate the function d(t) related to the poorly modelled dynamics of dry
friction. Indeed, the robust controller is designed by u3 = −k1σ − H

ε
. This choice is

explained below. k1, H and ε are positive constants.
It is clear that the singularity of the Eq. (15) happens when ψ(p1, p2, pP, pT ,

sign(u)) = 0, which can be occur when the pressure in the two chambers are equal
respectively to the supply and the exhaust pressure. Or according to the assumption
(5), this problem is avoided.

Substituting (15) into (14) V̇ becomes:

V̇ = −k1σ
2 − θ̃1

ψ(p1, p2, pP, pT , sign(u))

(c2 − y2)
σu − 2v

(c2 − y2)
θ̃2σ

− θ̃3aσ − σd(t) − H

ε
σ −

3∑
i=1

θ̃T
i �−1 ˙̂

θi

(16)

To make sure that V̇ is semi-definite negative, the adaptation laws can be chosen
as: ⎧⎪⎪⎨

⎪⎪⎩

˙̂
θ1 = τ1 = �11σ

ψ(p1,p2,pP,pT ,sign(u))

(c2−y2) u,

˙̂
θ2 = τ2 = −�22

2v
(c2−y2)σ˙̂

θ3 = τ3 = −�33σa.

, (17)

where �11, �22, �33 are the components of the matrix �.
With the knowledge of the set values of estimated parameters, it is interesting to

use this information for the adaptation mechanism designer. Indeed, the knowledge
of θimin and θimax for each parameters helps to speed up the convergence of adaptive
mechanism, reduce the transition effect and prevent θ̂1 from tacking the value zero.

For meeting this requirement, a simple modification is introduced at the equations
of adaptation law (18):

˙̂
θi = Proj{τi}, i = {1, 2, 3}.

So this modification is just described by the discontinuous projection [11]:

Proj(τi) =
⎧⎨
⎩
0 if θ̂i = θimax and τi > 0,
0 if θ̂i = θimin and τi < 0,
τi Otherwise.

(18)

The projection method presented in [18] guarantees the condition (10) and always
holds the following equation θ̃T

i (�−1Proj(τi) − τi) ≤ 0.
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Thus, from the system (18) the system (17) can be rewritten as:

˙̂
θi = Proj

{
�σ

[
ψ(p1, p2, pP, pT , sign(u))

(c2 − y2)
u,− 2v

(c2 − y2)
,−a

]T
}

. (19)

Substituting the adaptation laws defined by (19) into the Eq. (16):

V̇ ≤ −k1σ
2 − σ · d(t) − H

ε
σ. (20)

In order to ensure the non-positiveness of V̇ , wemust impose some positive bound
value ε on σ , which is chosen arbitrarily. The proof is done by the contraposition.

Supposed that |σ | ≥ ε and we know that |d(t)| ≤ H, so in this sense two cases
can be presented. If σ ≥ ε and d(t) ≥ −H the following equation can be written:

σ 2

ε
≥ σ ⇒ Hσ 2

ε
≥ Hσ, (21)

Hσ ≥ −σd(t). (22)

With both Eqs. (21) and (22), the following inequality is checked:

σ · d(t) + H

ε
σ ≥ 0. (23)

In the same manner, the Eq. (23) is obtained for σ ≤ −ε and d(t) ≤ H.
Then, we have V̇ ≤ 0 which implies that |σ | ≤ ε and the parameter estimation

errors remain bounded and also can be made arbitrarily small.
Based on the work done in [20], the function δ(t) = ey(t)ekt can be defined. So

we can obtain: ...
δ (t) = σ̇ (t)ekt . (24)

Integrating (24), the following equation holds:

δ̈(t) − δ̈(0) = σ(t)ekt − σ(0) − k
∫ t

0
σ(τ)ekτ dτ .

Then we can write,

∣∣δ̈(t) − δ̈(0) + σ(0)
∣∣ ≤ |σ(t)| ekt + k

∫ t

0
|σ(τ)| ekτ dτ .

And we have |σ(t)| ≤ ε.
Then, { ...

δ (t) ≤ 2εekt + ξ1,...
δ (t) ≥ −2εekt + ξ ′

1.
(25)
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where {
ξ1 = δ̈(0) − σ(0) − ε,

ξ ′
1 = δ̈(0) − σ(0) + ε.

Integrate thefirst equationof system (25) at three times, so these following inequal-
ities are:

δ(t) ≤ 2ε

k2
ekt + (ξ1t

2 + ξ2t + ξ3)

⇒ ey(t) ≤ 2ε

k2
+ (ξ1t

2 + ξ2t + ξ3)e
−kt (26)

With ξ2, ξ3 are constants which include the initial condition of δ̇(0), δ(0) where:

{
ξ2 = δ̇(0) − 2ε

k ,

ξ3 = δ(0) − 2ε
k2 .

Thus when time tends to infinity, the inequality (26) becomes

ey(t) ≤ 2ε

k2
.

From the second equation of system (25), we can show in the same manner the
following inequality:

ey(t) ≥ −2ε

k2
.

So we can deduce that for a bounded function error, σ(t) the absolute value of
the error dynamics ey(t) is bounded by 2ε

k2 .
Finally we have that σ(t), the tracking position error ey(t) and all state variables

of system (6) are bounded. Moreover with the discontinuous projection included in
the adaptation law, we ensure that all estimated parameters are always bounded and
satisfy the Eq. (10). The fact that the Lyapunov function V is semi-negative implies:

3∑
i=1

θ̃T
i (t)�−1θ̃i(t) ≤ 2V(t) ≤ 2V(0).

then
3∑

i=1

θ̃T
i (t)�−1θ̃i(t) ≤ σ 2(0) +

3∑
i=1

θ̃T
i (0)�−1θ̃i(0).
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This bound shows that the possibility for reducing the estimation parameters errors
lies in σ(0), that could be chosen as small as possible.

So we can conclude that the synthesized controller permit a global stability of the
closed loop system with a bounded position error.

4 Simulation Results

To illustrate the above controller design, a simulation results are obtained for a
hydraulic cylinder. The control model of system and the controller design are both
developed on the Simulink software. The sampling frequency of the control loop is
equal to 1Khz.

The value of position tracking error is related to controller parameter k and ε,
with the last one can be chosen arbitrarily. As the placement of poles, the value of
the gain k can be computed taking into account the natural frequency of the tangent
linearized model for the central position. This pulsation is about 1000(rad/s). So we
can impose the closed-loop dynamics system by acting on the gain k. For example,
we can choose the value of k in order to obtain the closed-loop system twice faster
than the open-loop one. On the other hand, when k is so high, the performance of the
control system and the update laws will be affected by some chattering phenomenon.
Therefore, it is important to select an appropriate k.

Note that the stability and convergence of the RAC is guaranteed for any positive
�11, �22, �33. However, the performance of the controller will depend critically on
these gains. If small gains are chosen the adaptation will be slow and the transient
tracking errorwill be large.Conversely,when themagnitudes of the gains are too large
will lead to very oscillatory parameters. Therefore, the choice of these parameters is
a difficult task.

The desired trajectory is a sinusoidal curve given by yd(t) = 0.01 sin(10t). The
true system parameters that are used in the control model are set as follows: b =
400 (N/m · s−1), β = 17,000 (bars) and η = 2.545 × 10−7 (Kg/s · Pascal · V).

A direct validation is carried out to the control model. It consists in comparing
respectively the actual position, velocity and acceleration to their desired one (Figs. 3,
5, 7). These figures show the effectiveness of the control schema. Figures4, 6 and 8
illustrate that the errors of position, of velocity and of acceleration are very small.

Figures9, 10 and 11 shows the evolution and the convergence of the dynamic
parameters along the tracking trajectory and the control law is presented in Fig. 12.

The identified parameters correspond to the a priori values of the model system
with small relative standard deviations which can due to the features of the reference
signals.

With appropriate chosen of adaptation gains, the parameter convergence has the
smallest transient tracking error.
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Fig. 3 Position and desired position

Fig. 4 Error position
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Fig. 5 Velocity and desired velocity

Fig. 6 Error velocity
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Fig. 7 Acceleration and desired acceleration

Fig. 8 Error acceleration



On Nonlinear Robust Adaptative Control … 591

Fig. 9 Evolution of parameter η̂

Fig. 10 Evolution of parameter β̂
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Fig. 11 Evolution of parameter b̂

Fig. 12 Control law
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5 Conclusion and Perspectives

In this work, an RAC controller based on discontinuous projection method is applied
for the high performance robust motion control of a special electro-hydraulic servo-
system. The controller which is based on the Lyapunov theory takes into account the
particular nonlinearities associated with hydraulic dynamics and allows parametric
uncertainties as well as uncertain nonlinearities coming from uncompensated fric-
tion dry forces. Simulation results show that the proposed scheme achieves a better
tracking performance. The basic idea in this application of this controller is espe-
cially to estimate on-line the coefficient of flow gain, based on the measured system
signals and using the estimated parameters in the control input computation.

From this study we can consider several future works. One is to show the effec-
tiveness of the presented controller on the simulation model already presented and
also on the test bench. Another is the consideration of the partial measured of the
state. So in this case, the study of an estimator is required. The third one consists to
replace the actually robust method by a sliding integral smoothing technique.
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Nonlinear Discrete Time Sliding Mode
Control Applied to Pumping System

Asma Chihi and Anis Sellami

Abstract In this chapter, a discrete time Indirect Field Oriented Control (IFOC)
by sliding mode applied to pumping system is studied. The main contribution of
this work is to design a novel form of switching surfaces which presented by an
addition of an integral term into the considered sliding surfaces. First, an overview
of pumping system is presented. Second, sliding mode controllers are designed by
using the new concept of proposed switching surfaces. Then, the stability of digitized
sliding mode control pumping system is investigated. After that, a comparative study
is given to validate the proposed control. To illustrate the effectiveness of the proposed
controllers, simulation results is developed and discussed.

Keywords Discrete time sliding mode control (DSMC) · Pumping system ·
Switching surfaces · Stability analysis

1 Introduction

Nonlinear control theory have been developed in the last decades both in continuous
time and in discrete time with respect to their nonlinearity. The sampled dynamical
model is performed in twomethods: the first one is a simple digital implementation of
the continuous control using the zero order hold. But, this techniques allows a small
sampling time compared with the dynamical process. Using this methods we cannot
maintained the control objectives because some dynamical performances change
into the passage of the continuous case to the discrete one. The second method is
to develop the digitized control to the sampled process. This technique includes the
calculation of the numerical control. So, the control objectives is achieved.
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The industrial applications [1, 6, 8, 10, 15] (such as: the inductionmotor, pumping
system, robotics, etc.) recourse to different form of control such as: Indirect Field
Oriented Control (IFOC), Direct Torque Control (DTC), Fuzzy Logic Control (FLC)
and SlidingMode Control (SMC). All these one are designed both in continuous time
and discrete time [11]. The development of the microprocessor makes frequent the
utilization of the discrete time. For this reason, we choose to use the SMC in discrete
time.

In [3, 4], Castillo define the switching surfaces as the error between the selected
variable and its references. But, in some different application we are interested by
the system performances especially when it comes to a pumping system, it must
specify with accuracy the pressure and flow when pumping wants. For that, the
objectives of this work is to develop a novel switching surfaces witch presents an
addition of an integral term into the surfaces defining the proposed control. The
aims of this methods is the control of torque and speed respectively the head (H)
and le flow (Q) with more performances for the complete pump unit. This work is
organized into seven sections. After introduction, the problem statement is designed.
Then, an overview of pumping system is presented. The third section develop the
discrete time sliding mode control with defining the novel switching surfaces. The
forth section gives the stability analysis. Section five, allows the simulation results.
The last section, gives a comparative study. Finally, a conclusion is drawn.

2 Overview of Pumping System

Pumping, ventilation and compression systems are shown in many industrials appli-
cations. For example, in water sector the pump is used for irrigation, distribution and
processing. In oil and gas sector, the pump is used for transportation and extraction.
The recourse of this type of system is frequently used because the model of pump is
simple to use, robust and relatively inexpensive to produce. Specially, the centrifugal
pump occurs a wide range of power, flow and pressure. The significant value used
in the pumping systems are: the flow (Q) and the Head (H): the flow represents the
volume of transported fluid per unit time; it’s expressed in m3/s. The head repre-
sents the pressure in a given point of the circuit, expressed as a column height of
the transported fluid in (m). The relation between the head and the pressure is given
by Eq. (1):

Pr = ρgH (1)

with
Pr = pressure (Pa)
ρ = volumetric fluid mass
g = acceleration of gravity.
In water the volumetric fluid mass is equal to 1000Kg/m3.
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The pump is characterized by a nominal operating point which is defined as a
point where the efficiency of the pump is maximum. It exists a similitude law which
can helped in determining the pressure and flow in different operating point. There
is presented by:

QN ′ = QN
∗ N ′

N

HN ′ = HN
∗
(

N ′

N

)2

PN ′ = PN
∗
(

N ′

N

)3

(2)

3 Problem Statement

The proposed system is constituted by an induction motor coupled to pump. The
aims of this work is to design a control law based on Indirect Field Oriented Control
(IFOC) by sliding mode in discrete time. The objective is to control the torque and
speed respectively pressure and flow [5]. Figure1 present a strategy of this control
system.

The main problem of this type of system is to maintain a robustness and accuracy
in the same time. But, the recourse of both present an important task.

Fig. 1 Dynamical system strategy
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Consider a mathematical model defining the induction motor with discrete time
approach by applying a zero order hold sampled that the control law u(t) = u(k)

for to time t ∈ [kTe, (k + 1)Te], where: T e is the sampled period. So, referring to
Euler’s discretization, the system defining induction motor is written by [12, 17]:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a) isd(k + 1) = isd(k) − Te
(

1
στs

+ 1−σ
στr

)
isd(k) + Te(1−σ)

σ Msr τr
ϕrd(k)

+ Te(1−σ)

σ Msr
ϕrq(k)w(k) + Te

σ Ls
Vsd(k)

b) isq(k + 1) = isq(k) − Te wdqisd − Te
(

1
στs

+ 1−σ
στr

)
isq(k)

− 1−σ
σ Msr

w(k)ϕrd(k) + Te(1−σ)

σ Msr τr
ϕrq(k) + Te

σ Ls
Vsq(k)

c) ϕrd(k + 1) = ϕrd(k) + Te Msr
τr

isd(k) − Te
τr

ϕrd(k) − w(k)ϕrq(k)

d) ϕrq(k + 1) = ϕrq(k) + Te Msr
τr

iqs(k) + w(k)ϕdr (k) − Te
τr

ϕqr (k)

e) w(k + 1) = w(k) + Te 3
2

np2

j
Msr
Lr

(ϕrd(k)isq(k)

−ϕrq(k)isd(k)) − Te np
j (Cr (k) − C f (k))

(3)

where:
Ids, Iqs = d-, q-axis stator current components,
ϕdr, ϕqr = d-, q-axis rotor flux components,

wsl = slip angular speed (wdq-wr),
wdq = synchronous angular speed,

Rr, Rs = rotor and stator resistances,
Msr = cyclic mutual inductance stator-rotor,

Lr, Ls = rotor and stator self-inductions,
τs, τr = stator and rotor time constant,

σ = leakage coefficient,
np = pole-pair number,

j = inertia,
Cf = friction torque,
Cr = load torque,

k = Continuous time,
Te = sampling time.

Same to the continuous case, the switching surfaces is presented by:

sk = Cxk (4)

where C ∈ �1Xn is such that the system is maintain the switching manifold.

s = {xk/Cxk = 0} (5)

Definition 1 System (1) is said to be in aQuasi SlidingMode (QSM) in the�vicinity
of the switching manifold (4), if a motion of the system (3) satisfies {xk/ |Cxk | ≤ �}
for all k ≥ k∗(k∗ is a constant integer). The specified space domain where the QSM
occurs is called theQSMDand the positive constant� called thewidth of theQSMD.
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Definition 2 System (3) is said to satisfy the reaching condition of the QSM in the�

vicinity of the switching manifold (4) in the following condition hold: when sk > �,
then−� ≤ sk+1 < sk ; when sk < −�, then sk < sk+1 ≤ �; andwhen |sk | ≤ �, then
|sk+1| ≤ �, [16].

4 Discrete Sliding Mode Control

The design of the Discrete Sliding Mode Control (DSMC) is constitute by two tasks
[2, 9, 16]: The first one, establish a sliding mode controller uk that the closed loop
system (3) satisfies the reaching law conditions in Definition2. The second one,
design a switching surfaces (4) such that the closed loop system (3) is stable. The
discrete IFOC based on sliding control is constituted by three regulators such as:
speed controller, direct stator current controller and quadratic stator current con-
troller. The induction motor is modeled in (d–q) stationary reference frame. That is
ϕrd = ϕr and ϕrq = 0. The control strategy is defined by Fig. 2.

4.1 Switching Surfaces Design

Several investigator defined the switching surfaces as the error between the selected
variable and its reference Eq. (6), [3, 4]:

Fig. 2 Discrete sliding mode control design
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⎧⎨
⎩
sw = c1ew with ew = w∗ − w
sd = c2ed with ed = I∗sd − Isd

sq = c3eq with eq = I∗sq − Isq

(6)

Due to ameliorate the performance of the system, that obtained a faster response
time and zero steady state error, we added an integral term to the switching surfaces.
The novel proposed sliding surfaces are defined is continuous time as:

⎧⎨
⎩
sw = c1εw + c4

∫
εwdt

sd = c2εd + c5
∫

εddt
sq = c3εq + c6

∫
εqdt

(7)

The Euler discretization for the system Eq. (7) is as follows:

⎧⎨
⎩
sw(k + 1) − sw(k) = c1(εw(k + 1) − εw(k)) + Te c4εw(k)

sd(k + 1) − sd(k) = c2(εd(k + 1) − εd(k)) + Te c5εd(k)

sq(k + 1) − sq(k) = c3(εq(k + 1) − εq(k)) + Te c6εq(k)

(8)

4.2 Control Law Design

After the determination of the sliding surfaces, we developed the control strategy.

4.2.1 Speed Controller

The switching surface relative to the speed controller is defined by:

sw(k + 1) − sw(k) = Te

[
c1

(
(w∗(k + 1) − w∗(k))

Te
− (w(k + 1) − w(k))

Te

)

+ c4(w
∗(k) − w(k))

]
(9)

Substituting the equation (3-e) in Eq. (9), we get:

sw(k + 1) − sw(k) = c1w∗(k + 1) − c1w∗(k) − c1w(k)

− c1Te
3

2

np2

j

Msr

Lr
(ϕrd(k)isq(k))

+ c1Te
np

j
(Cr (k) − C f (k)) + c1w(k)

+ Te c4 w∗(k) − Te c4 w(k) (10)
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The nonlinear component is defined by:

sw(k + 1) − sw(k) = −Q Te sw(k) − KwTe sign(sw(k)) (11)

The global control is the sum of equivalent component and nonlinear component:

isq(k) = 2 j Lr

3c1Te np2Msrϕrd(k)

⎡
⎣ c1w∗(k + 1) − c1w∗(k) + c1Te np

j (Cr (k)

− C f (k))] + Te c4w∗(k) − Te c4 w(k)

+ Q Te s(k) + K Te sign(s(k))

⎤
⎦ (12)

4.2.2 Direct Stator Current Controller

The sliding surfaces defining the direct stator current controller is presented by:

sd(k + 1) − sd(k) = Te

[
c2

(
Isd

∗(k + 1) − Isd
∗(k)

Te

)
−

(
Isd(k + 1) − Isd(k)

Te

)

+ c5(Isd
∗(k) − Isd(k))

]
(13)

Replacing the equation (3-a) in the Eq. (13), we get:

sd (k + 1) − sd (k) = c2 Isd
∗(k + 1) − c2 Isd

∗(k) − c2

⎡
⎣ Isd (k) − Te

(
1

στs
+ 1−σ

στr

)
Isd (k)

+ Te(1−σ)
σ Msr τr

ϕr (k) + T e
σ Ls

Vsd (k)

⎤
⎦

+ c2 Isd (k) + Te c5 Isd
∗(k) − Te c5 Isd (k) (14)

The nonlinear control is presented by:

sd(k + 1) − sd(k) = −Q Te sd(k) − KdTe sign(sd(k)) (15)

From Eq. (14), we determine the control law relative to the direct stator current
controller:

Vsd(k) = σ Ls

c2Te

⎡
⎢⎢⎣
c2 Isd

∗(k + 1) − c2 Isd
∗(k) + c2Te

(
1

στs
+ 1−σ

στr

)
Isd(k)

− c2
Te(1−σ)

σ Msr τr
ϕr (k) − c2 Te

σ Ls
+ c2 Isd(k) + Te c5 Isd

∗(k)

− Te c5 Isd(k) + Q Te sd(k) + K Te sign(sd(k))

⎤
⎥⎥⎦ (16)

4.2.3 Quadratic Stator Current Controller

The equation defined the quadratic stator current controller is presented by:
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sq(k + 1) − sq(k) = c3 Isq
∗(k + 1) − c3 Isq

∗(k) − c3 Isq(k + 1) + c3 Isq(k)

+ Tec6 Isq
∗(k) − T ec6 Isq(k) (17)

Replacing the equation (3-b) in the Eq. (17), we get:

sq(k + 1) − sq(k) = c3 Isq
∗(k + 1) − c3 Isq

∗(k)

− c3

⎡
⎣ Isq(k) − Te wdq Isq(k) − Te

(
1

στs
+ 1−σ

στr

)
Isq(k)

− 1−σ
σ Msr

w(k)ϕr (k) − Te
σ Ls

Vsq(k)

⎤
⎦

+ c3 Isq(k) + Te c6 Isq
∗(k) − Te c6 Isq(k) (18)

The nonlinear component is defined by:

sq(k + 1) − sq(k) = −Q Te sq(k) − KqTe sign(sq(k)) (19)

The global control is:

Vsq(k) = σ Ls

c3Te

⎡
⎢⎢⎢⎢⎣

− c3 Isq
∗(k + 1) + c3 Isq

∗(k) + c3 Isq(k) − c3Te wdq Isq(k)

− c3Te
(

1
στs

+ 1−σ
στr

)
Isq(k) − c3 1−σ

σ Msr
w(k)ϕr (k)

− c3 Isq(k) − Te c6 Isq
∗(k) + Te c6 Isq(k) + QTe sq(k)

+ KqTe sign(sq(k))

⎤
⎥⎥⎥⎥⎦
(20)

5 Stability Analysis

To satisfy discrete time sliding mode control, it is necessary to involve the system
stability [13, 14]. We consider the constraint |u(k)| ≤ umax the control is defined by:

u(k) =
{

u(k)eq for
∥∥u(k)eq

∥∥ ≤ u(k)max
u(k)eq
‖u(k)‖u(k)max for

∥∥u(k)eq
∥∥ > u(k)max

(21)

In [7], we present the QSM reaching conditions with the Lyapunov function
candidate.

5.1 Speed Controller

The Eq. (10) can be rewritten as follows:

sv(k + 1) = sv(k) + G(k) + A(k)u(k) (22)
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where

G(k) = c1w∗(k + 1) − c1w∗(k) − c1w(k) + c1Te
np

j
(Cr (k) − C f (k))

+ c1w(k) + Te c4w∗(k) − Te c4w(k) (23)

And

A(k) = −c1Te
3

2

np2

j

Msr

Lr
ϕrd(k) (24)

The stability analysis will be carried out under the assumption.
(A.1) the value umax is such that

umax ≥ − 1

A(k)
‖G(k)‖ (1 + ε) (25)

for a ε > 0 for all w(k), ϕ(k) and for all admissible functions w(k).
The increasing of Lyapunov function V(k) = ‖sv(k)‖ is as follows:

�V(k) = ‖sv(k + 1)‖ − ‖sv(k)‖ (26)

=
∥∥∥∥(sv(k) + G(k))

(
1 − Isq,k

Isq,eq

)∥∥∥∥ − ‖sv(k)‖ (27)

≤ ‖sv(k) + G(k)‖
(
1 − Isq,max∥∥Isq,eq

∥∥
)

− ‖sv(k)‖ (28)

≤ ‖sv(k) + G(k)‖ − A(k)Isq,max − ‖sv(k)‖ (29)

From above we get:

0 ≤ 1 − Isq,k

Isq,eq
≤ 1 − Isq,max∥∥Isq,eq

∥∥ ; where
∥∥Isq,eq

∥∥ = − 1

A(k)
‖sv(k) + G(k)‖ (30)

Under assumption (A.1), it is possible to determine

‖sv(k) + G(k)‖ − A(k)Isq,max ≤ ‖sv(k)‖ − ε ‖G(k)‖ < ‖sv(k)‖ (31)

After the condition above, when the decreases monotonically. The decreases
monotonically. It exists a time k1 that

∥∥Isq,eq

∥∥ for all k ≥ k1 which the equivalent
controllers is applied.

∥∥Isq,eq

∥∥ ≤ Isq,max

5.2 Direct Stator Current Controller

The Eq. (19) is defined by

sd(k + 1) = sd(k) + H(k) + B(k)u(k) (32)
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where

H(k) = c2 Isd
∗(k + 1) − c2 Isd

∗(k) − c2

⎡
⎣ Isd(k) − Te

(
1

στs
+ 1−σ

στr

)
Isd(k)

+ Te(1−σ)

σ Msr τr
ϕr (k)

⎤
⎦

+ c2 Isd(k) + Te c5 Isd
∗(k) − Te c5 Isd(k) (33)

And

B(k) = c2
Te

σ Ls
(34)

From assumption (A.1), the Lyapunov function is given by V(k) = ‖sd(k)‖

�V(k) = ‖sd(k + 1)‖ − ‖sd(k)‖ (35)

=
∥∥∥∥(sd(k) + H(k))

(
1 − Vsd,k

Vsd,eq

)∥∥∥∥ − ‖sd(k)‖ (36)

≤ ‖sd(k) + H(k)‖
(
1 − Vsd,max∥∥Vsd,eq

∥∥
)

− ‖sd(k)‖ (37)

≤ ‖sd(k) + G(k)‖ − H(k)Vsd,max − ‖sd(k)‖ (38)

From Eq. (38), we define

0 ≤ 1 − Vsd,k

Isd,eq
≤ 1 − Vsd,max∥∥Vsd,eq

∥∥ ; where
∥∥Vsd,eq

∥∥ = − 1

B(k)
‖sd(k) + H(k)‖ (39)

On the basis of (A.1), it is possible to write

‖sd(k) + H(k)‖ − B(k)Vsd,max ≤ ‖sd(k)‖ − ε ‖H(k)‖ < ‖sd(k)‖ (40)

The ‖sd(k)‖ decreases monotonically. Then, the
∥∥Vsd,eq

∥∥ decreases monotoni-
cally. It exists a time k2 that

∥∥Vsd,eq

∥∥ ≤ Vsd,max for all k ≥ k2 which the equivalent
controllers is applied.

5.3 Quadratic Stator Current Controller

The Eq. (17) is rewritten as follows:

sq(k + 1) = sq(k) + I (k) + C(k)u(k) (41)
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where

I(k) = c3 Isq
∗(k + 1) − c3 Isq

∗(k) − c3 Isq(k) + c3Te wdq Isq(k)

+ c3Te

(
1

στs
+ 1 − σ

στr

)
Isq(k) + c3

1 − σ

σ Msr
w(k)ϕr (k) + c3 Isq(k)

+ Te c6 Isq
∗(k) − Te c6 Isq(k) (42)

and

C(k) = c3
T e

σ Ls
Vsq(k) (43)

Considering the Lyapunov function candidate:

�V(k) = ∥∥sq(k + 1)
∥∥ − ∥∥sq(k)

∥∥ (44)

=
∥∥∥∥(sq(k) + I (k))

(
1 − Vsq,k

Vsq,eq

)∥∥∥∥ − ∥∥sq(k)
∥∥ (45)

≤ ∥∥sq(k) + I (k)
∥∥

(
1 − Vsq,max∥∥Vsq,eq

∥∥
)

− ∥∥sq(k)
∥∥ (46)

≤ ∥∥sq(k) + I (k)
∥∥ − I (k)Vsq,max − ∥∥sq(k)

∥∥ (47)

Referring to Eq. (47), we get

0 ≤ 1 − Vsq,k

Isq,eq
≤ 1 − Vsq,max∥∥Vsq,eq

∥∥ ; where
∥∥Vsq,eq

∥∥ = − 1

C(k)

∥∥sq(k) + I (k)
∥∥ (48)

Under assumption (A.1), it is possible to write:

∥∥sq(k) + I (k)
∥∥ − C(k)Vsq,max ≤ ∥∥sq(k)

∥∥ − ε ‖I (k)‖ <
∥∥sq(k)

∥∥ (49)

We concluded that the
∥∥sq(k)

∥∥ decreases monotonically. Then, the
∥∥Vsq,eq

∥∥
decreases monotonically. It exists a time k3 that

∥∥Vsq,eq

∥∥ ≤ Vsq,max for all k ≥ k3
which the equivalent controllers is applied.

6 Results and Discussions

Weconsidered an inductionmotorwith the following characteristics: three phase, two
pole, 85/140V; 3.5/6A; f = 50Hz Rs = 3.45�; Rr = 2.95�; Ls = 0.1442H;
Lr = 0.1442H; Msr = 0.1342H; j = 0.01Kgm2;np = 2.The coefficients c1, c2, c3,
c4, c5, c6 and the gains kv, kd , kq associated in the control law, are adjusted to values:
c1 = 0.00018, c2 = 0.0099, c3 = 0.00000009, c4 = 0.000000002, c5 = 0.0000003,
c6 = 0.0000000009, kv = 115, kd = 3000 and kv = 115, kd = 3000, kq = 3000.
These coefficients and gains have been tuned until the obtain of the validate results.



606 A. Chihi and A. Sellami

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
5

0

0.05

0.1

kTe

sw

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
5

-2

0

2
x 10

-6

kTe

sd

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
5

0

2

4
x 10

-3

kTe

sq
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Fig. 4 Pumping characteristics Q = f(H)

Figure3 presents the evolution of the three sliding surfaces relative to three con-
troller such as: speed controller, direct stator current controller and quadratic stator
current controller. We remark that all the surfaces converge to zero in a minimal
band. That satisfy the criteria of the sliding mode control.

Figure4 shows the characteristics of the pump, it presents a parabolic form. If the
head (H) increasing so, the flow (Q) increase. This characteristic is verified by the
system equation given by Eq. (2).
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Fig. 5 Evolution of the speed

The speed started with a nominal value equal to 157 rad/s, and in the instant 1 s, it
increases in the value 250 rad/s. We remark that this curve will follow the reference
without overshoot and admits a settling time equal to 0.9 s. This test is achieved with
unloaded torque and reference flux equal to 0.8Wb, Fig. 5.

7 Comparative Study

For testing the robustness of the proposed control, it is necessary to know the degree
of confidence that we can fix some control and the reliability that brings. For this
reason, we make a comparison between the classical Proportional Integral (PI) and
Proportional Integral Sliding Mode Control (PISMC).

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
5

0

50

100

150

200

250

300

W
(r

ad
/s

)

 

 

Wref

W-PISMC

W-classical PI0.9 1 1.1 1.2 1.3 1.4 1.5 1.6

245

250

255

260

kTe

W
(r

ad
/s

)

 

kTe

Fig. 6 Comparison results with PISM and conventional PI
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Figure6 allows the evolution of the speed with two methods: the first one presents
the conventional PI and the second one presents the PISM. The characteristic with
PISM is faster than the conventional PI. The response time in the case of unloaded
system is about 0.2 s for the conventional PI and 0.18 s for PISM.During the insertion
of the load, the response time is 0.4 s in the case of the conventional PI and 0.18 s in
the case of the PISM. We conclude that the PISM give the best performances than
the conventional PI.

8 Conclusion

The work presented in this chapter is about analysis and evaluation of discretiza-
tion behavior for pumping system. The control design is the indirect field oriented
control by sliding mode in discrete time. The principle becomes in choice of switch-
ing function which an integral action is added into the considered function. This
addition provides a satisfactory results regardless uncertainties and robustness. In
fact, the studied system is presented. Then, the control strategy is developed. This
kind of control synthetize three control loops in discrete time related to speed con-
troller, direct stator current controller and quadratic stator current controller. Yet, the
proposed control is compared with conventional PI and shows a good results.
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Abstract In this work, we focus on the stabilization issue of a class of non-minimum
phase switched nonlinear systems where the internal dynamics of each mode may be
unstable and uncontrollable. We develop a hybrid nonlinear control technique based
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laws designed to stabilize the transitions between the stability regions associated to
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and multiple Lyapunov functions. In summary, the synthesized controllers can guar-
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1 Introduction

There are numerous examples of chemical processes include both continuous
dynamics and discrete events. Continuous behavior of a process caused by some
factors, such as momentum, mass, and energy conservation, can be modeled more
conveniently as discrete events by continuous-time differential equations.

However discrete phenomena is ubiquitously multifaceted and can originate from
physical constraints or manufacturing distinct phases such as discontinuous actua-
tors, phase changes, flow reversals, shocks, and transitions; the use of measurement
sensors and control actuators with discrete settings/positions or filling/emptying a
reactor [7, 14].

The overall process behavior in all of these instances is characterized by the inter-
action of continuous and discrete dynamics that they cannot be decoupled effectively,
and is modeled by hybrid systems.

A class of hybrid systems that have drawn considerable attention in the past
decade is the class of switched systems which consists of a family of subsystems and
a switching signal, which defines a specific subsystem that is active at each instant
of time. For a survey on switched systems we refer to [6, 10, 11, 18, 21, 23, 24].

The study of stability analysis and stabilization of switched systems is an important
problem that has been the subject of significant research works in control theory [1–4,
20, 22, 28, 29, 32, 35]. In this framework one of these problems is the stabilization
of non-minimum phase nonlinear switched systems.

This system control, however, is a delicate task. Some contributions have been
devoted to non-minimum phase switched nonlinear systems where each nonlinear
mode may be non-minimum phase. In [34], H∞ control goal is achieved for a
class of non-minimum phase cascade switched nonlinear systems where the internal
dynamics of each mode is assumed to be asymptotically stabilizable. Output tracking
of non-minimum phase switched nonlinear systems has been considered in [26],
where an approximated minimum phase model is utilized. The same problem is also
investigated in [8] by means of an inversion based control strategy. In [33], a switching
control methodology for non-minimum phase nonlinear switched systems with the
control law which has singularities was developed. However, it is well known that
the stabilization of non-minimum phase nonlinear systems is quite difficult, and is
even impossible to achieve if the unstable zero dynamics is uncontrollable.

Motivated by these considerations, we present in this work a nonlinear control
methodology for a class of non-minimum phase nonlinear switched systems with
input constraints.

The main feature of the proposed approach is not only to synthesize the bounded
nonlinear feedback controllers of the individual subsystems, but also to design an
appropriate switching scheme that organizes the transitions between the different
non-minimum phase modes and keeps all the system stable. The controller synthesis
procedure yields also an explicit characterization that coupling the switching strat-
egy and the stability regions associated for each mode arising from the limitations
imposed by the input constraints.
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The proposed method involves the integration of Input–output feedback lineariza-
tion control and Hauser’s approximation [17] in the particular case where the relative
degree coincides with the system order.

To this end, we Use Multiple Lyapunov Functions [13, 36], one for each mode, a
family of feedback controllers was synthesized for the individual closed-loop approx-
imate modes and has provided an explicit characterization of the corresponding sta-
bility regions in terms of the input constraints. Then for the synthesis of a family
of feedback controllers that enforce the desired stability and performance properties
within each individual dynamical mode in the presence of input constraints. Finally
we derive a set of switching rules that organize stabilizing transitions between the
output feedback stability regions of the non-minimum phase modes.

The outline of this chapter is as follows: In Sect. 2, we introduce a motivating
example. Section 3 provides the system description and preliminaries. The problem
formulated is solved in Sect. 4. The proposed method is successfully applied to the
switched exothermic chemical reactor [27] example in spite of to the fact that it is a
nonlinear non-minimum phase system and that it is also characterized by a dynamic
that leads to the instability of the dynamic of zero. Finally, a conclusion is drawn in
Sect. 6.

2 Motivating Example: A Continuously Stirred Tank
Reactor with Two Modes

Chemical reactors are known to be ones of the most important plants in chemical
industry. The process in the reactor is usually exhibit complex behavior, so it is
necessary to control their operation. In recent years, various nonlinear design tools
have been proposed to provide global stabilization [5, 15, 16, 30]. One of the major
control problems which has attracted the attention of researchers for a long time deal
with the temperature regulation under input constraints of exothermic irreversible
reaction in a continuously stirred tank reactor (CSTR).

Consider a general class of a constant-volume, non-isothermal CSTR system
with a hybrid behavior, in which the reaction A → B takes place in the liquid phase.
The reactor has two inlet streams: the first continuously feeds pure A at flow rate
Fr = 0.45 m3/min, concentration CA0 = 12 kmol m−3 and TA0 = 300 K, while the
second can be turned on or off (by means of an on/off valve) during reactor operation.
When turned on, the second stream feeds pure A at flow rate F∗

r = 0.7 m3/min,
concentration C∗

A0
= 14 kmol m−3 and T ∗

A0
= 320 K. For the parameters given in

Table 1 under standard modeling assumptions, the mathematical model of the process
takes the following form:
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Table 1 Parameter values of the non-isothermal reactor

Parameter Value Unit

Zr Reaction rate pre-exponential factor 5 × 108 S−1

V0 Reactor volume 0.1 m3

Ea Activation energy 49.884 kJ/mol

Rr Ideal gas constant 8.31 × 10−3 kJ/mol ◦C

CA0 Inlet concentration of reactant A 12 kmol/m−3

γ Reactor model parameter 3.9

⎧⎪⎪⎨
⎪⎪⎩

dCA

dt
= −Zr exp

(
− Ea

Rr T

)
CA + (

CA0 − CA
) Fr

V0
+ (i − 1)

(
C∗

A0
− CA

) F∗
r

V0

dT

dt
= γr Zr exp

(
− Ea

Rr T

)
CA + (

TA0 − T
) Fr

V0
+ (i − 1)

(
T ∗

A0
− T

) F∗
r

V0
+ Qr

(1)

If the variable i is equal to 1 then the second inlet stream is turned off and it is
turned on when i has the value of 2. Initially, it is assumed that i = 1. The control
objectives are to stabilize the reactor temperature at the unstable steady state of
mode 1 (xe = 302.0 K), and to maintain this temperature at this steady state when
the reactor switches to mode 2 subject to the constraint |Qr | ≤ 10 × 10−2 K s−1.

3 System Description and Preliminaries

We consider a class of single-input single-output switched nonlinear systems of the
following state-space equation:

⎧⎪⎨
⎪⎩

ẋ = fi (x) + gi (x) ui

y = h (x)

i ∈ I = {1, 2, . . . , N }
(2)

where x = [x1 . . . xn]T ∈ �n denote the vector of continuous state variables, ui =[
u1

i . . . um
i

]T
is the vector of manipulated inputs taking values in a nonempty com-

pact convex subset U = {
ui ∈ �m : ‖ui‖ ≤ umax

i

}
with ui

max ≥ 0 denotes the bound
on the manipulated inputs, the notation ‖·‖ will be used to denote the standard Euclid-
ean norm of a vector ui . The nonlinear vector functions fi (.), gi (.) and the scalar
function h(x) are assumed to be sufficiently smooth which gives rise to the switched
nonlinear system (2). The index i represent a discrete state that takes values in a finite
index set I which specifies the active subsystem. The number N of the switches is
finite on every bounded time interval. Throughout the paper, we use the notations t k

i
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and t k+1
i to denote the t th times that the i th subsystem is switched in and out. We

can assume, in the rest of the study, that the continuous state of the i th active mode
evolves according to the state equation and the output equation governed for each
t k
i < t < t k+1

i .
In order to provide the necessary background for our main results in Sect. 3,

we will briefly review in the remainder of this section the stability properties of
the system viewed as a finite collection of continuous-time nonlinear systems with
discrete events that direct the transition between them. One of the main tools for
stability analysis of switched systems is Multiple Lyapunov Functions (MLFs). In
fact, its principle lies in the use of a family of functions named pseudo-Lyapunov
functions {Vi : i ∈ I } associated with each field of vectors ẋ = fi (x), to demonstrate
stability.

Definition 1 ([19] Pseudo-Lyapunov function) A pseudo Lyapunov function for the
system (2), around an operating point in a stability region of the space (xn ∈ �i ⊂ �n)

is a real-valued function Vi (x) defined in a region �i satisfying the following con-
ditions:

• Positive definite: Vi (xn) = 0 and Vi (x) > 0 for xn �= x ∈ �i

• Derivative defined non-positive: for all x included in the stability region �i

dV (x)

dt
= (∂Vi (x)/∂x) [ fi (x) + gi (x) ui ] ≤ 0 (3)

We can, then, write the following result proving the sufficient conditions for
stability:

Theorem 1 ([9, 11]) Suppose that ∪�i = �n and each vector field fi has an asso-
ciated Lyapunov like function Vi in the region �i , neighborhood xn.

For the N switched nonlinear system (1), with ui ≡ 0, i ∈ I , the switching
sequence can take the value of i only if x ∈ �i , then the value of Vi decreases
on each interval when the i th subsystem is active, more specifically

Vi
(
x
(
t k

i

)) ≤ Vi
(
x
(
t k−1

i

))
(4)

We pose t k
i

the kth switching instant for the sequence. Then, the adjacent of the
operating point xe of the system (2), is Lyapunov stable.

As shown above in Theorem 1, The Multiple Lyapunov Function approach, usually
one for each of the individual subsystems being switched, can be used to determine
the stability of switched systems without input signals; such that if for every i the
value of Vi , at the end of each such interval exceeds the value at the end of the next
interval on which the i th subsystem is active, the switched system can be shown to be
asymptotically stable. However it cannot inquire about the existence of a stabilizing
feedback law for the switched control system (2). Here we introduce the notion of
control Lyapunov function for feedback controller synthesis. The idea is to expect
the MLFs method to play an important role for designing the feedback controllers.
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Referring to the system (2), the concept of Control Lyapunov Function (CLF)
introducing as follows:

Definition 2 ([31] Control Lyapunov Function) A smooth, proper, and Positive-
Definite function V : �n → �+ is called a CLF for a nonlinear control system of
the form ẋ = f (x) + g (x) u when there is an admissible value u1, . . . , um for the
controls such that:

in f
{

L f V + Lg1 V u1 + · · · + Lgm V um
}

< 0 (5)

where L f V = [∂V /∂x] f (x) , gk is the kth column of the matrix g.

We can generalize the Definition 1 to a switched nonlinear system as shown in
this assumption:

Assumption 1 For every i ∈ I = {i = 1, . . . , N }, a Control Lyapunov Function,
Vi , exists for system (2).

By Assumption 1; if we can find a family of CLF for the switched System (2),
one for each subsystem, then for the solution of (2) we can derive a control signal u
such that family of CLF monotonically decreases.

4 Main Results

4.1 Problem Formulation

In order to clear presentation of the main results of this paper, we will start in this
section by reviewing the state feedback control problem.

Consider the class of nonlinear systems that has been represented by Eq. (2). We
need to assume that for all i ∈ I , there exists an integer r (this assumption is made only
to simplify notations and can be readily relaxed to allow a different relative degree
ri for each subsystem) and a set of coordinates (see [19] for a detailed treatment of
feedback linearizable nonlinear systems)

�i (x) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�i,1 (x)

�i,2 (x)
...

�i,ri (x)

�i,ri +1 (x)
...

�i,n (x)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

h (x)

L fi h (x)
...

Lri
fi

h (x)

χi,1 (x)
...

χi,n−ri (x)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(6)

where χi,1 (x) , . . . , χi,n−ri (x) are nonlinear scalar functions of x .
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The coordinate change φi (x) allows transforming the subsystem of Eq. (1) into a
partially linear form such that the system takes the form:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ξ̇1 = ξ2
...

ξ̇ri −1 = ξri

ξ̇ri = Lri
fi

h(x) + Lgi L
ri −1
fi

h(x)ui

η̇i,1 = Qi,1 (x)
...

η̇i,n−ri = Qi,n−ri (x)

y = ξ1

(7)

where Lgi L
r−1
fi

h(x) �= 0 for all x ∈ �n, i ∈ I and Q1,i (x) , . . . , Q(n−r),i (x) are non-
linear functions of their arguments describing the evolution of the inverse dynamics
of the i th mode.

4.2 Theory and Design

In this section, we present a technique that combines the multiple Lyapunov functions
and Hauser’s [17] approximation to develop a nonlinear control strategy for the
stabilization of a switched nonlinear system where each mode may be non-minimum
phase. The key component of this methodology is to use a family of control Lyapunov
functions, one for each subsystem, to:

1. Synthesize the bounded nonlinear feedback controllers of the individual subsys-
tems.

2. Design an appropriate switching scheme that organizes the transitions between
the different modes and keeps all the system stable.

Owing to the presence of the unstable zero dynamics, the problem becomes more
challenging not only in the synthesizes of the control laws but also in the design of
an appropriate switching scheme that guarantees stability in the presence of non-
minimum phase modes. To present the solution, we will first define the notion of
robust relative degree.

Consider the system (2), we assume that x = xe is an equilibrium point, that is
fi (xe) = 0 , and without loss of generality we assume that h (xe) = 0 .

If we will also assume the following “controllability” rank condition: Rank{
gi , ad ( fi gi ) , . . . , adn−1 ( fi gi )

} = n for each mode i ∈ I = {i = 1, . . . , N } at
x = xe, we will impose the following assumptions on the system (2).

Assumption 2 The nonlinear system (7) has a robust relative degree γi , for all for
each mode i(i ∈ I ), in the neighborhood of xe if there is a set of smooth functions
�̂i, j (x) as the following one:
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

y = h (x) = �̂i,1 (x) + ψi,0 (x, ui )

y( j) = �̂i, j+1 (x) + ψi, j (x, ui )
...

y(γi −1) = �̂i,γi (x) + ψi,γi −1 (x, ui )

y(γi ) = Lγi

fi
h(x) + Lgi L

γi

fi
h(x)ui

i = 1, . . . , N
j = 0, . . . , γi

(8)

where the functions ψi, j (x, ui ), are sums of terms O(x)2, O(x, ui ), or O (ui )
2,

Lγi

fi
h (x) and Lgi L

γi

fi
h (x) are smooth, and Lgi L

γi

fi
h (xe) �= 0.

Let us note that that a function δ(x) is O(x)n if lim|x |→0
(|δ(x)| / |x |n) �= 0 . Moreover,

the functions known as O(x)0 will be indicated by O(1).
The determination of the robust relative degree γi of a nonlinear system shows

that the latter arises in a way similar to the case of the classic relative degree ri .
Indeed, one also obtains: γi < n.

The study of the properties of the approximately linearized system on a parame-
terized family of operating envelopes can be defined as follows:

Definition 1 For all i ∈ I , we call Bi
εi

⊂ �n for some εi > 0, a family of operating
envelopes provided that Bi

δi
⊂ Bi

εi
, whenever δi < εi and sup

{
δ : Bi

δi
⊂ Bi

εi

} = εi

where Bi
δi

, is a ball of radius δi centered at the origin.

Then, for the approximation in a larger region, we will impose following assump-
tion

Assumption 3 For all i ∈ I , a function ψi : �n × � → � is said to be of uniformly
high order on Bi

εi
× Bi

σi
if for some εi > 0, σi > 0 there exists a monotone increasing

function of εi , λi (εi ) , such that:

{ |ψi (x, ui )| ≤ εiλi (εi ) (|x | + |ui |)
∀x ∈ Bi

εi
,∀ui ∈ Bi

σi

(9)

where Bi
εi

is a ball of radius εi centered at xe, and Bi
εi

is a ball of radius σi centered
at the origin.

Now, we return to the original problem. We assume that system (1) has robust
relative degree γi . Adopting the notation of [17], we define new coordinates ξ with
ξ j = �̂i, j (x) , j = 0, . . . , γi . Thus, we obtain the new representation of the system
(1) which is written in mixed ξ and x coordinates as follows:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ξ̇1 = ξ2 + ψi,1 (x, ui )
...

ξ̇γi −1 = ξγi + ψi,γi −1 (x, ui )

ξ̇γi = Lγi

fi
h(x) + Lgi L

γi −1
fi

h(x)ui

(10)
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Consider the switched nonlinear system of Eq. (10). Our Objective now is twofold.
The first is to synthesize an output feedback controller from where the requested
closed-loop properties for each mode Then the second objective is to design an
appropriate set of switching scheme that organizes the transitions between constituent
modes and their respective controllers and keeps all the system stable.

In order to proceed with the controller synthesis task, we will impose the following
assumption on the on the process of Eq. (10). This assumption allows constructing
bounded controls using the Lyapunov function [12, 25].

Assumption 4 For each i ∈ I , there exists a family of N bounded nonlinear state
feedback controllers of the form:

ui = −ki (x)
(
Lgi Vi (x)

)T
, i = 1, . . . , N (11)

where Vi is a CLF for the i th mode and Lgi Vi is the Lie derivatives of the control
Lyapunov function Vi for the i th mode along the column vectors of the matrix gi .

Theorem 2 that follows provides the explicit synthesis formula for the desired
bounded nonlinear state feedback controllers and states precise switching conditions
that guarantee closed-loop stability.

Theorem 2 Consider the switched nonlinear system (10), for which a family of
CLFs Vi , i = 1, . . . , N has been founds, using each control Lyapunov function, we
construct the following family of bounded nonlinear feedback controllers:

ui = −ki
(
x, umax

i

) (
Lgi Vi (x)

)T
, i = 1, . . . , N (12)

where

ki
(
Vi , umax

i

) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

βi (x)+
(

β2
i
(x)+

(
umax

i

∥∥∥((Lgi Vi
)T

(x)
)∥∥∥)4

) 1
2

∥∥∥((Lgi Vi
)T

(x)
)∥∥∥2

⎛
⎝1+

(
1+

(
umax

i

∥∥∥((Lgi Vi
)T

(x)
)∥∥∥)2

) 1
2

⎞
⎠

(
Lgi Vi

)T
(x) �= 0

0
(
Lgi Vi

)T
(x) = 0

with βi (x) = L fi Vi (x) + ρi Vi (x) , ρi > 0.

Let ϒi
(
umax

i

)
be the largest set of x, containing the origin, such that βi (x) ≤

umax
i

∥∥∥(Lgi Vi (x)
)T

∥∥∥. Also, let �∗
i

(
umax

i

) := {
x ∈ �n : Vi (x) ≤ ςx,i

}
be a level set

of Vi , completely contained in ϒi , for some ςx,i > 0, and assume, without loss
of generality, that x (0) ∈ �∗

i

(
umax

i

)
for some i ∈ I . If, at any given time, T , the

following conditions hold:

{
x (T ) ∈ �∗

l

(
umax

l

)
Vl (x (T )) < Vl (x (tl∗))

(13)
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For some l ∈ I , l �= i , where tl∗ < T is the time when the lth subsystem was last
switched in, i.e., for t ≥ T +, guarantees that the origin of the switched closed-loop
system is asymptotically stable.

The stability requirement of Theorem 2, on the other hand, the behavior is
globally input–output linearized according to the previous design as it is allowed
to synthesize controllers ensuring the stability of the closed loop system. For
this reason, we adopt the following notation ek = ξk − xk

e = [
e1 e2 . . . ek

]T
, x̄e =[

xe x (1)
e . . . x (γi −1)

e

]T
, where x̄ k

e , kth time derivative of the reference input xe which

is assumed to be a smooth function of time. Consequently, one may prove that the
ξ -subsystem of Eq. (10) will be equivalent to the following more compact form:

ė = f̄i (e, x̄e) + ḡi (e, x̄e) ui , i = 1, . . . , N (14)

where f̄i (e, x̄e) = Ai e + bi Lγi

fi
h (x) , ḡi (e, x̄e) = bi Lgi L

γi −1
fi

h (x) are γi × 1 vector
functions, and

Ai =

⎡
⎢⎢⎢⎢⎢⎣

0 1 0 . . . 0
0 0 1 . . . 0
...

...

0 0 0 . . . 0
0 0 0 . . . 0

⎤
⎥⎥⎥⎥⎥⎦

, bi =

⎡
⎢⎢⎢⎢⎢⎣

0
0
...

0
1

⎤
⎥⎥⎥⎥⎥⎦

(15)

are γi × γi matrix and γi × 1 vector, respectively.
We use the above normal form to construct a control Lyapunov Function for each

mode of the switched system. A sufficient condition to construct CLF is provided in
the following theorem.

Theorem 3 Consider the system (2) with the form (14), a simple choice for a Control
Lyapunov Function is a quadratic function:

Vi = eT Pi e (16)

where Pi is a positive definite matrix chosen so that AT
i Pi + Pi Ai − Pi bi bT

i Pi < 0.
We must note that the Lyapunov functions V̄i used in designing the controllers

are equal to the Lyapunov functions Vi used in implementing the switching rules
because the robust relative degree γi is equal to order n of the system.

Using these quadratic CLFs, a controller can be designed for each mode using
(12) applied to the system (14). By means of a standard Lyapunov argument, it can
be shown that each controller asymptotically stabilizes the e-states in each mode.
This result with the Assumptions 3 and 4 can then show that the closed-loop system
(14), for each individual mode, is asymptotically stable.
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5 Results and Discussion

In this section, we show the applicability and effectiveness of our approach on the
CSTR example illustrating the main results of the paper. Let’s revisit the CSTR
system (1) presented in Sect. 2.

Defining x = [
x1 x2

] = [
CA T

]
, u = [Qr ] , and y = [T ] . The model of CSTR

(1) can be written under the same form of system (2). Hence, we have:

fi (x) =
⎡
⎢⎣−Zr exp

(
− Ea

Rr x2

)
x1 + (

CA0 − x1
) Fr

V0
+ (i − 1)

(
C∗

A0
− x1

) F∗
r

V0

γr Zr exp
(
− Ea

Rr x2

)
x1 + (

TA0 − x2
) Fr

V0
+ (i − 1)

(
T ∗

A0
− x2

) F∗
r

V0

⎤
⎥⎦ ,

gi (x) =

⎡
⎢⎢⎣

0

1

⎤
⎥⎥⎦ and h (x) = x2

We apply the approach presented in Sect. 3, the system given by (1) satisfying the
Assumptions 2 and 3 is transformed by the two following modes:

• Mode 1:

⎧⎪⎪⎨
⎪⎪⎩

ξ̇1 = γr Zr exp

(
− Ea

Rr x2

)
x1 + (

TA0 − x2
) Fr

V0︸ ︷︷ ︸
ξ2

+ u1︸︷︷︸
ψ1,1(x,u1)

ξ̇2 = L2
f1

h (x) + Lg1 L f1 h (x) u1

(17)

where

⎧⎪⎪⎨
⎪⎪⎩

L2
f1

h (x) =
[
γr Zr exp

(
− Ea

Rr x2

)]
×

[
Zr x1 exp

(
− Ea

Rr x2

)
+ (

CA0 − x1
) Fr

V0

]

+
[(

γr Zr Ea x1

Rr x2
2

)
exp

(
− Ea

Rr x2

)
+ Fr

V0

]
×

[
γr Zr x1 exp

(
− Ea

Rr x2

)
− (

TA0 − x2
) Fr

V0

]

and Lg1 L f1 h (x) =
(

γr Zr Ea x1

Rr x2
2

)
exp

(
− Ea

Rr x2

)
+ Fr

V0

• Mode 2:

⎧⎪⎪⎨
⎪⎪⎩

ξ̇1 = γr Zr exp

(
− Ea

Rr x2

)
x1 + (

TA0 − x2
) Fr

V0
+ (

T ∗
A0

− x2
) F∗

r

V0︸ ︷︷ ︸
ξ2

+ u2︸︷︷︸
ψ2,1(x,u2)

ξ̇2 = L2
f2

h (x) + Lg2 L f2 h (x) u2

(18)

where

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

L2
f1

h (x) =
[
γr Zr exp

(
− Ea

Rr x2

)]
×

[
Zr x1 exp

(
− Ea

Rr x2

)
+ (

CA0 − x1
) Fr

V0
+ (

C∗
A0

− x1
) F∗

r

V0

]

+
[(

γr Zr Ea x1

Rr x2
2

)
exp

(
− Ea

Rr x2

)
+ Fr

V0
+ F∗

r

V0

]
×

[
γr Zr x1 exp

(
− Ea

Rr x2

)
− (

TA0 − x2
) Fr

V0
+ (

T ∗
A0

− x2
) F∗

r

V0

]
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and

Lg2 L f2 h (x) =
(

γr Zr Ea x1

Rr x2
2

)
exp

(
− Ea

Rr x2

)
+ Fr

V0
+ F∗

r

V0

with e = [
e1 = ξ1 − xe e2 = ξ2 − ẋe

]T
, a scalar system under the same form of

system (14), describing the approximate input–output dynamics, can be obtained for
controller design:

• For mode 1:
ė = f̄1 (e, x̄e) + ḡ1 (e, x̄e) u1 (19)

where f̄1 (e, x̄e) = A1e + b1 L2
f1

h(x), ḡi (e, x̄e) = b1Lg1 L f1 h(x),

A1 =
[

0 1
0 0

]
and b1 =

[
0
1

]

• For mode 2:
ė = f̄2 (e, x̄e) + ḡ2 (e, x̄e) u2 (20)

where f̄2 (e, x̄e) = A2e + b2 L2
f2

h(x), ḡ2 (e, x̄e) = b2 Lg2 L f2 h(x), A2 =
[

0 1
0 0

]
and

b2 =
[

0
1

]
.

For each mode i(i = 1, 2) the relative degree γi = 2 , then the choice Vi = V̄i is
sufficient.

We construct the controllers and for each mode i(i = 1, 2) under the same form
of Eq. (14) satisfying the Theorem 3, we choose the following quadratic Lyapunov
functions:

• V1 = V̄1 for mode 1:

V1 = V̄1 = 1

2
c1e2

1 + 1

2
c2e2

2 (21)

• V2 = V̄2 for mode 2:

V2 = V̄2 = 1

2
c3e2

1 + 1

2
c4e2

2 (22)

The stabilizing controller u1 is:

u1 = − (
Lḡ1 V̄1

) ×
⎛
⎜⎝ L f̄1

V̄1 + 1.2V1 +
((

L f̄1
V̄1 + 1.2V̄1

)2 + (
umax

1 Lḡ1 V̄1
)4
) 1

2

(
Lḡ1 V̄1

)2
(

1 + (
umax

1 Lḡ1 V̄1
)2
) 1

2

⎞
⎟⎠

(23)
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The stabilizing controller u2 is:

u2 = − (
Lḡ2 V̄2

) ×
⎛
⎜⎝ L f̄2

V̄2 + 2.3V2 +
((

L f̄2
V̄2 + 2.3V̄2

)2 + (
umax

2 Lḡ2 V̄2
)4
) 1

2

(
Lḡ2 V̄2

)2
(

1 + (
umax

2 Lḡ2 V̄2
)2
) 1

2

⎞
⎟⎠

(24)

In order to validate the performance of the proposed approach, we have performed
the simulations on Matlab.

A first simulation study is shown in Figs. 1 and 2. In these figures (solid
lines) we respectively represent the evolution of the reaction temperature and the
evolution of the control variable when the reactor is initialized at x (0) = x0 =[

13 kmol m−3 293 K
]

and is operating in mode1 for all times (without switching).
We observe that for this mode the controller successfully stabilizes the reactor tem-
perature at the desired steady-state (xe = 302.0 K).

Figures 1 and 2 (dashed lines) depict the result when the reactor (initialized at
x0 within) switches to mode 2 at a randomly chosen time t = 1.1 min. It is clear
that in this case the controller is unable to stabilize the temperature at the desired
steady-state. The reason is the fact that at t = 1.1 min, the state of the system lies

Fig. 1 Evolution of the
reactor temperature when the
reactor is initialized and
operates in mode 1 (solid),
when the reactor switches to
mode 2 at t = 1.1 min
(dashed)
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Fig. 2 Evolution of the
controller when the reactor is
initialized and operates in
mode 1 (solid), when the
reactor switches to mode 2 at
t =1.1 min (dashed)
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Fig. 3 Evolution of the
reactor temperature while
applying the Theorem 2
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Fig. 4 Evolution of the
controller while applying the
Theorem 2
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outside the stability region of mode 2 and, therefore, the available control action is
insufficient to achieve stabilization.

To avoid this instability, we used the switching scheme proposed in Theorem 2
in a second study. The simulation results representing the evolution of the reaction
temperature and the evolution of the control variable are respectively given by Figs. 3
and 4. It appears in these figures that the controllers successfully drive the reactor
temperature to the desired steady-state (xe = 302.0 K) and maintain it there with the
available control action.

6 Conclusions

In this chapter, we have considered the global stabilization problem of a class of non-
minimum phase switched nonlinear systems where the global stabilization problem
of individual subsystems is not assumed to be solvable when applying the formalism
of the input–output feedback linearization.

Based on the MLFs method and the Hauser’s approximation, we have designed
state feedback controllers of subsystems and constructed a switching law, which
guarantees global asymptotic stability of the corresponding closed-loop system.
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The main idea is the coupling between the switching strategy and the stabil-
ity regions arising from the limitations imposed by the input constraints. A set of
switching rules is designed to stabilize the transitions between the stability regions
associated for each mode. We demonstrated the efficiency of the proposed approach
through a non-minimum phase CSTR example.
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Nonlinear Sliding Mode Observer
for Tire Pressure Monitoring

Nada Ouasli and Lilia El Amraoui

Abstract The tire is an essential element for road holding, comfort and safety of a
vehicle. Nevertheless, under inflation will cause rapid tire wear and increases fuel
consumption. It is therefore important to develop Tire pressure Monitoring Systems
(TPMS).One approach, called “direct”, consisting in using pressure sensors proves to
be expensive and unreliable (possibility of breakdowns). New generations of TPMS
favor “indirect” methods without pressure sensor. Supervision is carried from phys-
ical quantities related to the pressure. The drop in pressure results a decrease in
effective radius of wheel and an increase in rolling resistance force. We study in the
context of this chapter, the possibility to use the models of longitudinal and rotational
dynamics of the two front wheels and the vehicle for the implementation of nonlinear
observer, which variables depend on the pressure. The observer is based on a higher
order slidingmode approach, allowing finite time convergence of the estimation error
and robustness face disturbance. The originality of the presented results consists in
providing a joint estimation of three variables, namely, the effective radii of wheels
and rolling resistance force of the front axle, without use of additional sensors.

Keywords Wheels’ effective radii · High order sliding mode observer · Rolling
resistance force · Tire monitoring system

1 Introduction

The tires are the only physical link between the vehicle and the road, their impact
on safety is crucial. Their physical properties that affect its dynamic behavior are
largely related to its pressure. A drop in pressure has a direct impact on characteristics
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such as damping, stiffness and rigidity of the tire. Any unsuitable inflation leads to
increase fuel consumption, accentuate the risk of explosion and cause rapid wear of
the tire. In addition, the chassis configuration of current vehicles, designed to provide
optimum road holding, tends to mask the effects of inflation problem. For the driver,
the behavior of the car seems to remain in a normal situation until it is faced with an
emergency or more radically to an incident [7]. It is therefore important to inform the
driver of any anomaly by displaying a message on the dashboard. It is the vocation
of the tire pressure monitoring system.

The tire pressure monitoring system is intended to improve the safety of the
equipped vehicle. Over the years, various statistics have shown that over 40% of
vehicles are driven with tires under inflated by an average 0.6 bars and that many
accidents are due to a failure primarily caused by pressure loss [5].

These accidents have led to the development of Tire PressureMonitoring Systems
(TPMS) to supervise permanently the pressure. A European regulation which comes
into force in 2012 requires the presence of such systems on all new vehicles. The
constraint is that theminimum pressure loss that these systemsmust be able to detect,
is 25% of the hot pressure. In addition, a pressure drop on a wheel must be detected
in less than 10min and more wheels in less than 1h [5].

Many research aims to improve the performance of existing systems and to design
innovative solutions (especially without pressure sensors) corresponding to new reg-
ulations. Two techniques are proposed to measure the physical parameters of tires:
The first strategy (direct approach) is to directly measure the pressure in each tire,
thanks to pressure sensors installed at the inflation valve [25]. Nevertheless, the pres-
ence of the sensors may have disadvantages such as a reduction in the reliability of
the system caused by the risk of damage of sensors in case of shock intervening
during rolling or when the wheels are removed, furthermore, the need to add addi-
tional cabling thus a significant price increase. To overcome these disadvantages, an
alternative is to favor methods without pressure sensor for reasons of economy and
reliability, and also for monitoring in case of sensor failure in a direct approach.

The indirect approach can detect a fall pressure from physical measurements
already used by the central computer of the vehicle (angular wheels speeds, acceler-
ation, useful torque, steering wheel angle) without adding sensors for measuring the
tire pressure. The underlying idea is to use the effect of pressure on certain physical
variables to detect its variations. Indeed, the drop in tire pressure leads for example
by a decreased in effective radii of wheels, an increase in their angular velocities and
an increase in rolling resistance force. It would be sufficient, thanks to appropriate
tools, using these physical quantities as indicators of the state of the pressure [21].

2 Motivation, Related Work, and Objectives

A variation in the pressure in the tire leads to decrease in its effective radius and
increase in rolling resistance force. Thus, first key information related to the wheel
is its effective radius. In fact, knowledge of effective radius has several advantages:
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the estimated effective radius in real time can be used to inform the driver of tire
pressure level and its evolution in order to emit an alarm [19]. There is therefore a
great interest in trying to estimate the effective radius. An assessment of the value
of this radius may be obtained from the vehicle speed, the angular velocity of the
wheel and the slip-ratio [22].

Another feature providing information about the tire pressure is the rolling resis-
tance force. The variation of this force is in fact indicative of the general state of the
vehicle in terms of load, tire pressure or road type. Moreover, the rolling resistance
force acts not only on the longitudinal dynamics of the vehicle, but also, and very
significantly, on the fuel consumption [26]. As it will be seen later in this chapter, the
rolling resistance force is much more sensitive to pressure variation than the radius
(larger relative variations) but the vehicles are not equipped with rolling resistance
sensor, so there is a real interest in assessing this force. In addition to detect pres-
sure loss, the estimation of rolling resistance force can detect a vehicle overload and
improve vehicle control strategies in this type of situation.

Studies have already focused on the estimator design for vehicle wheels radii [19]
and have proposed to use this estimation for the diagnosis of pressure in tires [3]. The
used models consider that the rolling resistance force can be measured a priori under
normal driving conditions, and then connected to the vehicle speed and the load by
using empirical models. Nevertheless, according to [8], the rolling resistance force
is heavily dependent on the tire parameters, e.g., pressure and temperature, type of
road and the vehicle speed. Consequently, such approaches cannot be used in driving
conditions and online estimation of the rolling resistance force is necessary. Note that
in [27], the longitudinal stiffness and the effective radius assumed as being constant
are identified from the correction terms of a sliding mode observer. An estimation of
the pressure in the tire is deduced from the identified value of the radius. This observer
considers the angular position, angular velocity of the wheel and the vehicle speed as
state variables. It uses the measurement of the angular position of the wheel provided
by the ABS encoders and the measuring speed vehicle. The unknown terms of the
observation model are written as a function of the longitudinal stiffness and the
effective radius in order to identify those parameters.

The work on the assessment of the rolling resistance force has been, to our knowl-
edge, mainly based on tests using laboratory measurement benches and static models
of finite elements [1]. This allows establishing the characteristic curves of the rolling
resistance based on road type, vehicle load and tire temperature. The rolling resis-
tance force is determined offline. In addition, these tests are carried out in very
specific experimental conditions versus actual driving conditions. Note finally that
much work has also been made on the synthesis of observers for the purpose to
estimate other variables of the wheel or the vehicle (longitudinal stiffness coefficient
of adhesion between tire and the soil and lateral speed of the vehicle; forces and
parameters required for controlling the vehicle [27]; differential between the useful
torque and braking torque applied to the wheel [24]; tire-soil friction).
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The contribution of this chapter is to apply an online evaluation of effective radii
of the front wheels and the rolling resistance of the whole axle, in order to analyze
the unknown variations of the pressure. The originality is located in:

• observation model using nonlinear dynamics and consideration of the effective
radius and the rolling resistance force as state variables,

• observation strategy “by sliding mode” which main features are the robustness
opposite to uncertainty and disturbance and convergence in finite time.

In this chapter is proposed the synthesis of a nonlinear observer based on technical
of high order sliding mode [4]: an observer, applied on the front axle, the effective
radii of the wheels and the global rolling resistance force of the whole axle. As will
be seen later in this chapter, these estimated values are all dependent on the pressure;
their variations, thus, allows to evaluate the variation of the pressure. This observer
is designed to reconstruct unmeasured variables (effective radii and the rolling resis-
tance force) of the wheels based on available measurements of mechanical quantities
(angular speeds provided by ABS encoders and useful torque).

The remaining parts of this chapter are structured as follows. Section3 presents the
notions of observability of nonlinear systems, and the canonical form of observability
of such systems. Section4 presents solutions for the observation of nonlinear systems,
with particular emphasis on high order sliding mode observer. Section5 presents the
physical model of longitudinal and rotational dynamics of a vehicle coupled with
the model of the vertical dynamics. From this model will be carried out, in Sect. 6,
a study of the influence of the pressure drop in the front tires on three parameters:
the effective radius of each wheel and the rolling resistance force of the whole axle,
being based on the synthesis of a nonlinear sliding mode observer. Section7 presents
conclusions and future research directions of the work presented in this chapter.

3 Observability and Observers

The synthesis of an observer for a physical system begins by the following question:
Is it the system observable, that means, is it possible to estimate the overall state
of the system from the measurements performed? The corollary to this question is:
which outputs measured use to make the system observable? In addition, in the case
where the systems are represented by nonlinear models, analysis of observability
should highlight the presence of possible singularities. Indeed, a notable difference
between the observability of nonlinear and linear dynamic systems lies in the fact
that the observability of nonlinear systems potentially depends of the input of the
system and the state and it may therefore be losses observability according borrowed
trajectories.
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3.1 Observability: Concept and Criteria

Consider the nonlinear system of the form:

{
ẋ = f (x, u)

y = h(x)
(1)

where x ∈ R
n represents the state, u ∈ R

m the input and y ∈ R
p the output. f (: ; :)

and h (:) are analytic functions. It is assumed that the functions f (: ; :) and h (:) are
meromorphic functions of x and u. We also assume that u(t) is admissible, that is to
say, measurable and bounded. According to [10], observability is defined from the
notion of indistinguishability.

Definition 3.1.1 Two initial states x(t0) = x1 and x(t0) = x2 are indistinguishable
for the system (1) if, ∀t ∈ [t0, t1] the corresponding outputs y1(t) and y2(t) are the
same regardless of the allowable input u(t) of the system.

Definition 3.1.2 The nonlinear system (1) is said observable, if it does not admit
indistinguishable pair. This means that the system is said observable if there is no
distinct initial state that cannot be separated by review of the system output.

Definition 3.1.3 Considering the system (1), space observability H, is defined by
the smallest vector space containing the outputs; h1, h2, . . . , hp and closed under the
operation of the derivation Lie to the vector field f (x, u), u being fixed. We denote
dH the space of differential elements H.

Definition 3.1.4 The space dH(x0) characterizes the local low observability x0 of
system (1).

System (1) is said to satisfy the observability rank condition x0 if : dim(dH(x0))
= n.

The system (1) satisfies the rank condition of observability if ∀x ∈ R
n, dim

(dH(x)) = n.

Definition 3.1.5 For system (1), the space generic observability [23] is defined by
O = X ∩ (Y + U), with:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

X = SpanK {dx}
Y = SpanK

{
d(j)

u

}
, j ≥ 0

U = SpanK

{
d(q)

y

}
, q ≥ 0

(2)

or K is the set of meromorphic functions and SpanK is the space generated on K of
meromorphic functions of x and of a finite number of derivatives of u. System (1) is
said generically observable if:

dimO = n (3)
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A property is generically satisfiedwhen it is locally satisfied around a point x0 ∈ M ⊂
R

n. An equivalent algebraic definition can also be given. A system is generically
observable if the whole state can be expressed as a function of y, of u and a finite
number of their derivatives (with j ∈ N, q ∈ N):

x = X(y, ẏ, . . . , y(j), u, u̇, . . . , u(j)) (4)

In the nonlinear context, observability depends clearly of u and state x. The generic
aspect is that we are not interested in any singularities.

Suppose that condition (3) is satisfied, and then we can check the equivalent
condition of this definition. This ultimately amounts to analyzing the observability
of a local perspective that is to say in an area defined by physical constraints.

Definition 3.1.6 System (1) is said locally observable if for any x ∈ M ⊂ R
n and

u ∈ U ⊂ R
p (M and U being respectively open in R

n and R
p):

RangK

[
dy dẏ . . . dy(n−1)

]T = n (5)

An equivalent criterion focuses on the analysis of vector �

� = [
dy dẏ . . . dy(n−1)

]T
(6)

Definition 3.1.7 System (1) is said locally observable if for x ∈ M and u ∈ U:

det

(
∂�

∂x

)
�= 0 (7)

The last property implies that � defines a transformation of state on this consider
field. In the following, the term “observable” will mean “locally observable”. If
there is a singularity of observability, it obviously causes problems for the proper
functioning of the observers. A first solution is to pass the observer, in estimator
mode (this means to putting the observer in “open loop”: there are no correction
term). Another solution is to switch to another observer structure, e.g. by using
different indices of observability [17].

3.2 Canonical Forms of Observability and Observer

Based on the form of the dynamic system of the tire used in the rest of this chapter,
we consider the following nonlinear system:

{
ẋ = f (x) + �f (x, t) + χ(y, u)

y = h(x)
(8)
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with x ∈ M and u ∈ U the additive uncertainty term �f (x, t) sufficiently derivable
and the additive terms which only depends on well-known variables (measurements
and control) grouped in the vector called “input–output injection” χ(y, u).

Consider the following assumptions:

Assumption 3.2.1 The additive uncertainty term �f (x, t) does not change the
observability of (8):

i.e. ‖�f ‖ ≤ FH < ∞,∀x ∈ M and t ≥ 0.
Like the goal is to synthesize an observer, and �f is unknown and verified this

assumption, therefore consider the nonlinear system (8) without any uncertainty
(�f = 0). {

ẋ = f (x) + χ(y, u)

y = h(x)
(9)

Assumption 3.2.2 The input–output injection χ(y, u) does not change the observ-
ability of the system [2].

The main idea is simple: for the purpose to analyze the observability, then to
synthesize the observer, the system (8) is transformed into a simple system and well
known from which observability will be analyzed, and observer designed. Adding to
the observer the input–output injection term, we obtain an observer for (9). Remains
to propose an adequate solution for that this observation is sufficiently robust to
provide a good estimate of the uncertain system (8). Via an input–output injection
defined by χ(y, u), the nonlinear system (9) can be transformed into:

{
ẋ = f (x)
y = h(x)

(10)

Assumption 3.2.3 Consider the system (10) and p integers
{
k1, k2, . . . , kp

}
defined

such that [14]:
p∑

i=1
ki = n and k1 ≥ k2 ≥ · · · ≥ kp after numbering of output components if nec-

essary.
The function �(x) defined by:

�(x) =
⎡
⎢⎣

[y1(x) · · · y(k1−1)
1 (x)]T

...

[yp(x) · · · y
(kp−1)
p (x)]T

⎤
⎥⎦

x∈M

(11)

verifies:

det

(
∂ψ(x)

∂x

)
�= 0 (12)

The function ζ = �(x) is thus a state transformation. The integers
{
k1, k2, . . . , kp

}
are called observability indices.
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Proposition 3.2.1 Given the Assumptions3.2.1; 3.2.2 and 3.2.3, the system (8) is
observed for x ∈ M and u ∈ U.

Consider again the system (8) verifying the Assumptions3.2.1 and 3.2.3. By asking
ζ = [

y ẏ · · · y(n−1)
]T

, is obtained by:

ζ̇ = Aζ +

⎡
⎢⎢⎢⎢⎢⎣

0
0
0
...

�(ζ)

⎤
⎥⎥⎥⎥⎥⎦

y = Cζ

(13)

with:

A =

⎡
⎢⎢⎢⎢⎢⎣

0 1 0 0 · · · 0
0 0 1 0 · · · 0
...

...
...

...
...

...

0 0 0 0 · · · 1
0 0 0 0 · · · 0

⎤
⎥⎥⎥⎥⎥⎦

, C = [
1 0 0 · · · 0 ] and�(ζ) = y(n) (14)

The representation (13) is called “canonical form of observability”. Given system
(8), it is clear that the term �(ζ) is uncertain; is assumed to be written:

�(ζ) = �n + �� (15)

with �n the “nominal” part (composed of parameters and dynamics known derived
from the term f (x)) and “uncertain” part �� (derived from �f (x, t)). Is thus
obtained:

ζ̇ = Aζ +

⎡
⎢⎢⎢⎢⎢⎣

0
0
0
...

�n(ζ)

⎤
⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎣

0
0
0
...

��

⎤
⎥⎥⎥⎥⎥⎦

(16)

Proposition 3.2.2 An observer for the system (16) is written in the form:

˙̂
ζ = Aζ̂ +

⎡
⎢⎢⎢⎢⎢⎣

0
0
0
...

�n(ζ)

⎤
⎥⎥⎥⎥⎥⎦

+ k(y, ζ̂) (17)

The function k is the correction term which ensures convergence of the estimated
state to the actual state ζ̂ → ζ.
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The term k(y, ζ) can be obtained by variousmethods (high gains, slidingmode,…)
and must ensure convergence (exponentially or in finite time) of the observer to the
real system, i.e., it ensures that ζ̂ → ζ exponentially or in finite time despite the
presence of uncertain term ��. In addition, it depends only on the measured output
y and the estimated state vector ζ̂. To summarize, knowing that the dynamics of the
estimation error is written:

ė = Ae +

⎡
⎢⎢⎢⎢⎢⎣

0
0
0
...

�n(ζ̂) − �n(ζ)

⎤
⎥⎥⎥⎥⎥⎦

−

⎡
⎢⎢⎢⎢⎢⎣

0
0
0
...

��

⎤
⎥⎥⎥⎥⎥⎦

+ k(y, ζ̂) (18)

with e = (ζ − ζ̂) → 0
It is necessary to choose that the correction term k(y, ζ) such that the observer

converges to the real system despite the initial error e(0) and the uncertain term ��.
From (17), twomethods can be used to obtain the vector x̂, representing the estimated
x.

• When the inverse of the transformation �, i.e. �−1, can be analytically calculate,
the estimated state x̂ is deduced from ζ̂ by:

x̂ = �−1(ζ) (19)

• In many cases of applications [17], it is very difficult to calculate the inverse of
� (including with formal calculation software). In this case, using an approach
based on the calculation of the inverse Jacobian of �. As ζ̂ = �(x̂), we can write:

˙̂
ζ = ∂�

∂x̂
˙̂x → ˙̂x =

[
∂�

∂x̂

]−1 ˙̂
ζ (20)

According to (17) and (20), is obtained

˙̂x =
[
∂�

∂x̂

]−1

⎛
⎜⎜⎜⎜⎜⎝

Aζ̂ +

⎡
⎢⎢⎢⎢⎢⎣

0
0
0
...

�n(ζ̂)

⎤
⎥⎥⎥⎥⎥⎦

+ k(y, ζ̂)

⎞
⎟⎟⎟⎟⎟⎠

(21)

Then, from (17) and (21), an observer for the system (10) can be written by:

˙̂x = f (x̂) +
[
∂�

∂x

]−1

k(y, x̂) (22)
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Applying the inverse transform of the input–output injection χ(y, u) allows to obtain
the observer for the system (9):

˙̂x = f (x̂, y) + χ(y, u) +
[
∂�

∂x̂

]−1

k(y, x̂) (23)

In the following section, an observer of the type (23) is proposed to estimate “suf-
ficiently” a precise state x of the system (8) despite the uncertain term �f , and this
thanks to a judicious choice of k. In the following, we consider:

Assumption 3.2.4 For every ζ ∈ Mζ(Mζ being the area of application in the state
space ζ, corresponding to M in which evolves x):

|�n(ζ)| ≤ L� (24)

with L� being known Lipschitz positive constant. Furthermore:

|��| ≤ L�� (25)

with 0 < L�� < ∞.

4 Observation Technique Using Sliding Mode

Many techniques of observation of nonlinear systems exist: the observers based on
linearization by input–output injection [23], high gains observers [9], continuous
observer with finite time convergence [20], and sliding mode observers [4]. Each
of these observation strategies is applied to a more or less broad class of nonlinear
systems. In this section sliding mode observers are studied and then applied for tire
pressure monitoring.

4.1 Sliding Mode Observers

One of the known classes of nonlinear robust observers is that of sliding mode
observer. Among the different observation methods, sliding mode observers have
been widely studied for their robust qualities [12]. The main features of observer
type are:

• finite time convergence of the estimation error,
• robustness face to disturbances and uncertainties.

Sliding mode observer is characterized by discontinuous functions in their
correction terms. The principle of sliding mode observer involves to constrain the
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dynamics of the estimation error, of dimension n, to evolve in finite time on a variety
S, corresponding to a null estimation error. The attractiveness and the invariance of
this surface are ensured by conditions called sliding conditions. If these conditions
are satisfied, the observer converges to S and remains there.

In the next section, will be presented an observation solution based on sliding
mode approach of first order and high order [16].

4.2 First Order Sliding Mode Observer

The first solutions were based on the approach of the first order sliding mode. In this
case, the variety S is defined S = {

y − ŷ = 0
}
with ŷ the estimate of themeasure. The

discontinuous corrective terms depend on the estimation error of y. This observer is
applicable for systemswith observability indices equal to 1. For observability indices
2, this observer does not allow to perfectly cancel the estimation error of x2. Another
drawback is the phenomenon of “chattering”. This phenomenon is not desirable
as it deteriorates the accuracy of the observation. Many studies have been work
done in order to reduce or eliminate this problem. One solution is the introduction
of new dynamics to act on higher order derivatives of the estimation error of y.
This technique is the basic concept of higher order sliding mode which reduces the
“chattering” retaining the qualities of robustness and finite time convergence of the
approach first order sliding mode [11].

4.3 High Order Sliding Mode Observer

The concept of high order sliding mode was introduced in the 80s by Emelyanov
[6], the principle involves acting via discontinuous corrective terms, on higher order
derivatives of the measurement error y. The main advantages are:

• improving robustness and convergence in finite time,
• reducing the effects of chattering,
• improving the observer performance (precision), the application to systems with
indices of observability higher than 1.

4.3.1 Second Order Sliding Mode Differentiation

The problem here is to constrain the estimation error to evolve in finite time on the
sliding surface:

S =
{

y − ŷ = 0
ẏ − ˙̂y = 0

(26)
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In this way, the estimation error is now continuous and the chattering is eliminated.
In this framework: The “Super Twisting algorithm” is proposed. This algorithm
has been developed, to the base, for control systems (output feedback sliding mode
of order 2) and is based on the technique of differentiation, hence its adequacy in
observing systems written under canonical form of observability. This method is
robust and does require only knowledge of it (no derivative calculation) but its use
is limited to an index of observability equal to 2 [15].

4.3.2 High Order Sliding Mode Differentiation

For a given observability indices k, the objective here is to force the quantity (y − ŷ)
and its first (k − 1) derivatives to zero in finite time [16]. Observers based on differen-
tiation technique of high order slidingmode are offered in this context. This technique
will be presented in detail since it was adopted in this chapter. In fact, according to its
robustness and convergence in finite time it can be applied to a wide class of observ-
able nonlinear systems. Considering system (16) with ζ = [

ζ1 ζ2 ζ3 ζ4 . . . ζn
]T

in
this case, a single output y is measured; the observability indices k then being equal
to k1. Is obtained:

ζ̇1 = ζ2
ζ̇2 = ζ3
ζ̇3 = ζ4

...

ζ̇n = �(ζ)

y = ζ1

(27)

When assumptions of Sect. 3.2 are satisfied, the observer is described by form (17).
The correction term k must ensure the convergence of e to 0, despite the initial
error e(0) and the uncertain term ��. A possible choice of observer based on the
differentiation of higher order [16]:

˙̂
ζ1 = ζ̂2 + a1L

1
n+1

∣∣∣ζ1 − ζ̂1

∣∣∣
n

n+1
sign(ζ1 − ζ̂1)

˙̂
ζ2 = ζ̂3 + a2L

1
n |γ1| n−1

n sign(γ1)˙̂
ζ3 = ζ̂4 + a3L

1
n−1 |γ2| n−2

n−1 sign(γ2)
...

˙̂
ζi = ζ̂i+1 + aiL

1
n+2−i |γi−1| n+1−i

n+2−i sign(γi−1)
...

˙̂
ζn = �(ζ̂) + anLsign(γn−1)

(28)

with L > L� + L�� and a1 . . . an coefficients fixed according to Table1 [16].
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Table 1 ai coefficients ai for
sliding modes order 2 and 3

Coefficient n = 2 n = 3

a1 1.5 2

a2 1.1 1.5

a3 – 1.1

Thus, from (23) a finite time convergence observer is developed for the initial
system (8). It can be written:

˙̂x = f (x̂, y) + χ(y, u) +
[
∂�

∂x̂

]−1

⎡
⎢⎢⎢⎢⎢⎣

γ1
γ2
γ3
...

γn

⎤
⎥⎥⎥⎥⎥⎦

(29)

with:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

γ1
γ2
...

γi
...

γn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1L
1

n+1
∣∣y − x̂1

∣∣ n
n+1 sign(y − x̂1)

a2L
1
n |γ1| n−1

n sign(γ1)
...

aiL
1

n+2−i |γi−1| n+1−i
n+2−i sign(γi−1)
...

anLsign(γn−1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(30)

5 Vehicle Front Axle Modeling

This section presents themodel of longitudinal and rotational dynamics of the vehicle
front axle wheels. This model and its coupling with the vertical vehicle dynamic are
the basis of wheels behavior description. With consideration of rolling resistance
force and effective radii of the wheels.

5.1 Dynamics of the Front Axle

The suspension system is composed of mechanical components that connect the
wheels to the main structure of the vehicle. The suspension provides an elastic con-
nection to absorb and transmit smoothly the irregularities. There are several types of
suspension, the most common are steel suspensions (called mechanical) and pneu-
matic suspensions.Currently the vehicles are equipped, inmost cases,with pneumatic
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Fig. 1 Vertical vibration
model of a half vehicle

suspension that provide better dynamic stability and are less aggressive for the road
[28]. This study considers a simplified air suspension mechanism described by a
mass-spring-damper system. The front axle model of the vehicle is used to describe
the vertical dynamics of the vehicle and those of the wheels shown in Fig. 1.
with

mc : suspended mass brought on two wheels,
mr : unsprung mass,
Ksr : stiff right suspension,
Ksl : stiff left suspension,
Kvr : vertical stiffness of the right tire,
Kvl : vertical stiffness of the left tire,
Cs : suspension damping,
Cv : vertical pneumatic damping,
R0 : nominal radius,
R : tire radius,
Cf : viscous friction coefficient,
zc : vertical position of the suspended mass,
zr : vertical position of the unsprung mass,
zpro : profile of the wheel surface,
dpro : road profile.

Referring to a fixed vertical position referenced by o, Zpro0 on the initial contact
(between the wheel and the ground) is located by vertical axis z shown on Fig. 1.
Zc0 is the vertical distance in the static state of the vehicle body and Zr0 the vertical
distance in the static state from the center of the wheel.

The relative positions of wheel-ground contact zpro, wheel center zr and vehicle
body zc given by:
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dpro = zpro − Zpro0 (31)

dr = zr − Zr0 (32)

dc = zc − Zc0 (33)

The application of the second Newton’s law can write the equations of the vertical
dynamics of a half vehicle and of the wheel [29] according to:

⎧⎨
⎩

mcd̈c = −Ksl(dc − dr) − Csl(ḋc − ḋr) − Ksr(dc − dr) − Csr(ḋc − ḋr)

mrd̈r = Ksl(dc − dr) + Csl(ḋc − ḋr) + Ksr(dc − dr) + Csr(ḋc − ḋr)

−Kvl(dr − dprol) − Kvr(dr − dpror) − Cv(ḋr − ḋpro)

(34)

The damping of the tires is assumed to be negligible compared to other variables
(Cv = 0).
Thus, taking as a state vector (x1, x2, x3, x4)T = (dc, ḋc, dr, ḋr)

T and as input u =
(dprol, dpror), the state model of the pneumatic is written in the form:

⎡
⎢⎢⎣

ḋc

d̈c

ḋr

d̈r

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

0 1 0 0
−a1 −a2 a1 a2
0 0 0 1
a3 a4 −a5 −a4

⎤
⎥⎥⎦

⎡
⎢⎢⎣

dc

ḋc

dr

ḋr

⎤
⎥⎥⎦ +

⎡
⎢⎢⎣

0 0
0 0
0 0
a6 a7

⎤
⎥⎥⎦
[

dprol

dpror

]
(35)

with

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a1 = Ksl+Ksr
mc

a2 = Csl+Csr
mc

a3 = Ksl+Ksr
mr

a4 = Csl+Csr
mr

a5 = Kvl+Kvr
mr

a6 = Kvl
mr

a7 = Kvr
mr

(36)

Tire/road contact forces are obtained from the tire model, which we will present
in the next section. These forces are transmitted to the chassis (sprung mass) via the
suspension. They depend on the characteristics of the latter and axle configuration.

5.2 Dynamics of Wheels

The application of the second Newton’s law to the forces acting on two wheels of
front axle allows writing their rotational and longitudinal dynamics as (Fig. 2):

⎧⎨
⎩

Jl�̇l = Tl − RlFxl − Cf �l

Jr�̇r = Tr − RrFxr − Cf �r

M1/2v̇x = Fxl + Fxr − Fd1/2 − Frg

(37)



642 N. Ouasli and L. El Amraoui

Fig. 2 Forces and torques
acting on the front wheels

where indexes l and r respectively refer to the front left and rights wheels, � is the
wheel angular velocity, R is the effective radius, vx the vehicle’s linear velocity, Cf

the viscous friction coefficient of the wheel, J and M1/2 are respectively the inertia
and the half-vehicle mass. T is the torques applied to the wheel.
The complete model of the front axle of a vehicle can be obtained from the model
(37) coupled to themodel of the vertical dynamics (34). The coupling is done through
the normal force Fz (38).

• Normal force: This force depends mainly on the half-vehicle mass and the
vertical displacement of the tire-road point contact [5], it is defined by the following
relationship:

Fzi = Mg − Kvi(Rlib − (dr − dproi)) − Cv(ḋr − ḋproi) (38)

where i ∈ {l, r} and g the gravitational acceleration.
A simplifying assumptionmay be considered to reduce themodel of normal force.

This assumption is formulated by Eq. (39):

Kvi(Rlib − (dr − dproi)) − Cv(ḋr − ḋproi)〈〈Mg (39)

The expression of the normal force becomes:

Fzi = Mg (40)

• Aerodynamic drag force: This force is proportional to the square of the vehi-
cle’s velocity [8].

Fd1/2 = 1

2
(ρAd1/2Cd1/2v2x) (41)
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Fig. 3 Friction coefficient
versus slip ratio

with ρ the air density, Ad1/2 the frontal area of the half-vehicle and Cd1/2 the drag
coefficient.

• Tractive forces: These forces are expressed according to friction wheel-ground
coefficient μ(λi) [8] as:

Fx(λi) = Fziμ(λi) (42)

with λi the slip ratio defined by:

λi = − (νx − Ri�i)

Ri�i
= − νx

Ri�i
+ 1 (43)

Figure3 shows the friction coefficient evolution slip ratio for different road types.
The friction coefficient μi is theoretically given by semi-empirical formulas. An

acceptable approximation [13] is expressed as a function of λi by:

μi(λ) = 2μ0

(
λ0λi

λ2
0 + λ2

i

)
(44)

where λ0 is the optimal slip ratio, leading to the maximum friction value μ0 = μ(λ0).
The tractive forces are then given by:

Fxi = 2μ0

λ0

(
1 − νx

�iRi

)

λ2
0 +

(
1 − νx

�iRi

)2 M1/2g (45)



644 N. Ouasli and L. El Amraoui

Fig. 4 f0 and fs evolution of
according to pressure

• Global rolling resistance force: It is related to the normal force Fz by:

Frg(vx) = Frl(vx) + Frr(vx) = 2Fzifr(vx) (46)

with fr the rolling resistance coefficient. This coefficient depends mainly on the tire
inflation pressure, temperature, velocity, and road surface type then this assumption
can be made for heavy vehicles and is valid on light vehicles only for low speeds [8].

In the case of light vehicles with higher speeds, another equation must be consid-
ered by:

fr(νx) = f0 + 3.24fs (3.6vx/100)
5/2 (47)

This expression will be used for the model of half vehicle. The coefficients f0 and fs
of the rolling resistance force vary for a given tire, with the pressure according to the
characteristic shown in Fig. 4.

5.3 Global Model Coupling

The completemodel of the vehicle front axle is elaborated fromassociation of the ver-
tical axle andwheels dynamicmodeling. The considered state variables are expressed
as: [

x1 x2 x3 x4 x5 x6 x7
]T = [

�l �r vx dc ḋc dr ḋr

]T

Then, the global model, is written as follows:



Nonlinear Sliding Mode Observer for Tire Pressure Monitoring 645

ẋ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
Jl
[Tl − RlFx − Cf �l]

1
Jr

[Tr − RrFx − Cf �r]
1

M1/2
[Fxl + Fxr − Fd1/2 − Frg]

x5

1
mc

[−Ksl(x4 − x6) − Csl(x5 − x7) − Ksr(x4 − x6) − Csr(x5 − x7)]
x7

1
mr

[Ksl(x4 − x6) + Csl(x5 − x7) + Ksr(x4 − x6) + Csr(x5 − x7)

−Kvl(x6 − dprol) − Kvr(x6 − dpror)]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(48)

6 Observer of Wheels’ Effective Radii and Rolling
Resistance Force of the Front Axle

In this section, will first be developed the sliding mode observer for only estimation
of wheel effective radii and rolling resistance force. This observer uses, in addition,
measures of the angular velocity of each wheel and the wheel applied torque.

The physical area of work is defined by:

M =
{
0 < � ≤ 175 rds−1; 0 < νx ≤ 200 kmh−1; 0.29 ≤ R ≤ 0.32m; 80 ≤ Frg ≤ 800N

}

Since the aim is pressure drop detection, the knowledge of the twowheels radii gives
information about pressure state in the tire of each wheel and the rolling resistance
force. Therefore it seems to be judicious to develop joint estimation observers using
the effective radius and the rolling resistance force.

6.1 Observation Model

In order to simplify the study, only the longitudinal dynamics of the front axle and
the rotational dynamics of the two front wheels are considered. The state variables
considered in this case are x = [

�l �r vx
]T
, with:

ẋ =

⎡
⎢⎢⎢⎣

1
Jl

(
Tl − RlFxl(x) − Cf x1

)
1
Jr

(
Tr − RrFxr(x) − Cf x2

)
1

M1/2

(
Fxl(x) + Fxr(x) − Fd1/2(x) − Frg

)

⎤
⎥⎥⎥⎦ (49)
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with M1/2 the mass of the two wheels, Fd1/2(x) the aerodynamic drag force on the
train, Tl and Tr couples applied to each wheel. Frg = Frl + Frr is the global rolling
resistance force on the train. The force Fxl(x) and Fxl(x) are written:

Fxl = 2μ0

λ0

(
1 − x3

x1Rl

)

λ2
0 +

(
1 − x3

x1Rl

)2 Mg (50)

Fxr = 2μ0

λ0

(
1 − x3

x2Rr

)

λ2
0 +

(
1 − x3

x2Rr

)2 Mg (51)

The aerodynamic drag force for the half of vehicle is written:

Fd1/2 = 1

2
(ρAd1/2Cd1/2x23) (52)

The effective radii Rl and Rr and the global rolling resistance force Frg of the front
axle are unknown and may change due to loss of pressure in both wheels.

⎧⎨
⎩

Ṙl = ηl(t)
Ṙr = ηr(t)
Ḟrg = ηg(t)

(53)

with ηl(t), ηr(t) and ηF(t): unknown and bounded functions,
u = [

u1 u2
]T = [

Tl Tr
]T : control input,

x = [
x1 x2 x3 x4 x5 x6

]T = [
�l �l vx Frg Rl Rr

]T : state vector of the observa-
tion model.

The dynamic behavior of the whole axle is given by:

ẋ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− 1
Jl

(
x5Fxl(x) + Cf x1

)
− 1

Jr

(
x6Fxr(x) + Cf x2

)
1

M1/2

(
Fxl(x) + Fxr(x) − Fd1/2(x) − x4

)

ηl

ηl

ηg

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎣

1
Jl

0
0
0
0
0

0
1
Jr

0
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎦

u (54)

with measurements y = [
y1 y2 y3

]T = [
x1 x2 x3

]T
. The structure of the effective

radii of the observer and the global force of rolling resistance, from the knowledge
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of the angular velocities �l and �r and torques applied to each wheels Tl and Tr ,
is based on the observation model and the strategy of higher order sliding modes
[16]. The terms−Cf

Jl
x1 + 1

Jl
u1,−Cf

Jl
x2 + 1

Jl
u2 depend only of known variables. Thus,

system (54) can be written as:

ẋ = f (x) + �f + χ(y, u) (55)

where

f (x) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− 1
Jl

x5Fxl(x)

− 1
Jr

x6Fxr(x)

1
M1/2

(Fxl(x) + Fxr(x) − Fd1/2(x) − x4)

0

0

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(56)

�f = [
0 0 0 ηl(t) ηr(t) ηF(t)

]T
(57)

χ(y, u) =
[
−Cf

Jl
x1 + 1

Jl
u1 −Cf

Jr
x2 + 1

Jr
u2 0 0 0 0

]T
(58)

Assumptions3.2.1 and 3.2.2 are satisfied for this system.

6.2 Observability Analysis

In order to analysis the observability of the studied system, the function ψ(x) is
defined by:

ψ(x) =

⎡
⎢⎢⎢⎢⎢⎢⎣

y1
ẏ1
y2
ẏ2
y3
ẏ3

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1

− 1
Jl

x5Fxl(x)

x2

− 1
Jr

x5Fxr(x)

x3

1
M1/2

(Fxl(x) + Fxr(x) − Fd1/2(x) − x4)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(59)
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Themeasured variables are thewheels’ velocities and the vehicle’s longitudinal speed
y = [

x1 x2 x3
]T
. If the determinant of the Jacobian of the functionψ(x) is in all cases

different from 0 on the operating trajectories, this implies that the transformationψ is
invertible and the system (54) is locally observable [5]. In this case, the observability
indices vector is equal to [2 2 2]T .

6.3 Observer Design

According to Sect. 3, the application of the inverse input–output injection transfor-
mation χ(y, u) allows the observer synthesis for system (54). The observer proposed
as part of this problem is based on differentiation of a second order sliding mode.
Thus, an observer of (54) is written as:

˙̂x = f (x̂, y) + χ(y, x) +
[
∂ψ

∂x

]−1

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1.5L1/2
1

∣∣y1 − x̂1
∣∣1/2 sign(y1 − x̂1)

1.1L1sign(γ1)

1.5L1/2
2

∣∣y2 − x̂2
∣∣1/2 sign(y2 − x̂2)

1.1L2sign(γ3)

1.5L1/2
3

∣∣y3 − x̂3
∣∣1/2 sign(y3 − x̂3)

1.1L3sign(γ5)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(60)

L1 = 6, L2 = 5 and L3 = 4 are observer gains.

6.4 Simulation Results and Discussion

To verify and validate the effectiveness of the observer in more general case, sim-
ulation are carried out with full model (48) of the vehicle front axle based on the
coupling between the vertical dynamic and front axle wheels modeling. The initial
state of the system x(0) is given by:

x(0) = [
�l �r vx dc ḋc dr ḋr

]T

= [
17
0.3

17
0.3 17 0 0 0 0

]T (61)

From (61) it is assumed that at starting time, the vehicle vertical displacements dc

and dr as well as wheels positions with their first derivatives are null. The parameters
used for the front axle provided by Renault of the system (48) and the observer (60)
are summarized in Table2 [5].
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Table 2 Wheels and vehicle
model parameters for the axle
model

Coefficient n = 2 n = 3

Jl 1.6 Kg.m2

Jr 1.6 Kg.m2

R0 0.32 m

M1/2 880 Kg

Ad1/2 0.65 m2

ρ0 1.205 Kg/m3

g 9.807 m/s2

Cf 0 Kg.m2/s

Cd1/2 0.25 –

Cs 7722 Kg/s

Ks 19,960 Kg/s2

μ0 0.9 –

λ0 0.25 –

R 0.3 m

vx 17 m/s

dpro 1 mm

The Observer (60) allowing joint estimation of the two wheel effective radii the
global rolling resistance forces is initialized by:

x̂(0) = [
�̂l �̂r v̂x F̂rg R̂l R̂r

]T

= [
17
0.3

17
0.3 17 128 0.302 0.302

]T (62)

A case of pneumatic pressure fall of 40% according to nominal value of 2.3 bar
between instants t1 = 20 s and t2 = 30 s is simulated. It is therefore assumed, at the
initial time, that there is an error of 8mm between actual and estimated radii and an
error of 2.6 rad/s between actual and estimated angular velocities of each wheel. The
control strategy imposes low variable speed.

vd
x = vd(1 + 0.01sin(ωt)) (63)

with: f = 2π
ω

= 0.05Hz and vd = 40 km/h
The controller output is then:

z = Ri�i − υd
x (t) (64)

From (49) and (64) it comes:
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ż = Ri
Ji

(Ti − RiFx − Cf �i) + Ṙi�i − υ̇d
x

= −Ri

Ji
(RiFx + Cf �i) + Ṙi�i − υ̇d

x︸ ︷︷ ︸
α(x,t)

+ Ri

Ji︸︷︷︸
β(x,t)

Ti

= −k z

(65)

where i ∈ {l, r}.
Therefore the torque applied to each wheels can be written as follow:

Ti = 1

βi

[−αi(x, t) − (Ri�i − υd
x (t))

]
(66)

Figure5 shows the schematic diagram for the simulation of the system and the
observer effective radii and the rolling resistance force of the front axle.

The estimation of the left wheel radius, the right wheel radius and the rolling
resistance force of the front axle are respectively shown in Figs. 6, 7 and 8. The
designed observer ensures a simultaneous control of the two front wheels. It appears
that when the pressure is decreased in the tire of the front left wheel, the observer
gives a lower value of the left wheel radius and a very high value of rolling resistance
force of the whole axle.

It also presents a convergence time (around 10s) compatible with the objectives of
Automobile Manufacturers (European standard requires the pressure fall detection
on a wheel in less than 10min). The radius of the right front wheel is also estimated,
this estimation is constant (Fig. 7).

The increase in the global rolling resistance force can detect a pressure drop;
however, this information alone does not allow us to establish which tire presents a
pressure fall. The radii of the both wheels are directly connected to their pressure.
These graphical representations allow us to establish that the pressure fall comes
from the left wheel.

Controller Simulation model

Constant parametersAnalytical relations

Observer

Variable pressure

+

-

( )d
x tυ

, ,l r rgR R F
lΩ

xυ

rRlR rgF

rΓ

lΓ

rΩ

Fig. 5 Simulation diagram
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Fig. 6 Estimated left wheel radius for two tire pressure
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Fig. 7 Estimated right wheel radius for two tire pressures

Consequently, the joint estimation of three parameters: left effective radius, right
effective radius and rolling resistance force appears to be an adequate tool for mon-
itoring tire pressure.
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Fig. 8 Estimated rolling resistance force of the front axle for two tire pressures

7 Conclusions

In this chapter, different notions of observability have been recalled, emphasizing
mainly on nonlinear systems. Then, the longitudinal and rotational dynamics of
the wheels and their coupling with the vertical dynamics of the front axle of the
vehicle were studied. This coupling model is used for validation of observer design.
The model of longitudinal and rotational dynamics was used for nonlinear observer
design which constitutes a major contribution of our work.

The synthesis of a sliding mode observer seeks on non-measurable quantities
estimation (left effective radius, right effective radius and rolling resistance force of
the whole axle) using onlymeasured quantities (angular speed of each wheel, vehicle
speed and useful torque) was designed. The choice of high order sliding modes
observer was made for its well-known characteristics of robustness and precision.
The results show a satisfactory estimation of effective radii and rolling resistance
force for the vehicle front axle.

The future directions of research include:

• Real-time implementation of the observer studied taking into account the various
constraints, in particular the complexity and computation time.

• Suggest of adequate strategy for observer gain determination or design of adaptive
sliding mode observer.

• Elaboration of a global model of the complete vehicle for the extension of the
study to an observation model taking into account simultaneous operation of the
4 wheels.

• Use of one or two pressure sensors for indirect approach elaboration [18].
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Global Stabilization of Switched Nonlinear
Systems Using Backstepping
Approach: Applications to Chemical
Processes

Arwa Abdelkarim, Khalil Jouili and Naceur BenHadj Braiek

Abstract This work presents a hybrid control methodology for a broad class of
switched nonlinear systems in strict-feedback form under arbitrary switching. Thus,
the focus of this chapter is to devise controller design based on the formalism of back-
stepping and simultaneous domination assumption it is shown that, a classes of state
feedback controllers and a common Lyapunov function (CLF) are simultaneously
constructed in a way that switched system can be globally uniformly asymptoti-
cally stabilized under arbitrary switching. Finally a global stabilization problem for
a Continuous Stirred Tank Reactor (CSTR) in strict-feedback form with arbitrary
switching between two modes is discussed to demonstrate effectiveness of the pro-
posed approach.

Keywords Switched nonlinear systems · Common lyapunov function ·
Backstepping · Arbitrary switching · Global stabilization

1 Introduction

Studying of switched systems in control is motivated by the fundamentally hybrid
nature of many modern-day control systems.

A switched system is a dynamical system made up of a family of subsystems
and a rule that orchestrate the switching between them. Such systems can be used to
describe a wide range of physical and engineering systems, see for example [26].
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The motivation grows in importance for studying switched systems because it
exists a class of system that cannot be asymptotically stabilized by a single smooth
feedback control law [1, 3, 16, 17]. One of these problems is the stabilization of a
switched system under arbitrary switching signal [9, 21, 22]. It is well established
that, the existence of a Common Lyapunov Function CLF [2, 27]; the constituent
systems of a switched system, was shown to be a necessary and sufficient condition
for switched systems to be asymptotically stable under arbitrary switching signal.

Furthermore, some linearization techniques based on the theory of Lyapunov were
successively developed [4, 20]. In particular, Multiple Lyapunov Functions (MLFs)
[3, 12, 13, 18]; switched Lyapunov functions [11]; and the concept of dwell-time
[25].

On the other hand, for nonlinear systems in lower triangular form, both feedback
controllers and associated Lyapunov functions can be constructed systematically by
backstepping [19, 23, 30], which constitutes one of the most important controller
design methods for switched systems. The key idea of this technique is to synthesize
the control law in a recursive manner.

Continuous stirred tank reactors (CSTRs) are known to be one of the systems that
exhibit a very complicated dynamics behavior. Unfortunately, the stabilization of
chemical reactors meets a serious problem owing to their nonlinearity and the exis-
tence of several stable and unstable operating points [28]. Some nonlinear methods
resting on the linearization techniques have been used to provide a global stabi-
lization [9]. Therefore, nonlinear design tools such as feedback linearization have
been used to ensure global stabilization [6, 7, 10]. Also, various auxiliary solutions
have been brought into play so as to reduce the drawbacks of the feedback lineariza-
tion approach [9]. Moreover, the input constraints and the multivariable behavior of
CSTRs encourage the utilization of other advanced controllers based on the Common
Control Lyapunov Function (CCLF) [29] and the backstepping approaches [14]. In
this context, we consider, in this paper, a CSTR with hybrid behavior as a case study.
It is described by switched nonlinear systems model.

The main idea of this work is to design stabilizing state feedback controller for
switched nonlinear systems in lower triangular form under arbitrary switching. The
proposed method involves the integration of Modal feedback linearization, to make
the system in strict-feedback form, and the backstepping algorithm where both feed-
back controllers and associated CCLF can be constructed systematically [24]. Note
also that finding common control Lyapunov functions (CCLFs) is a necessary and
sufficient condition to guarantee the stability in the case when the switching law is
not generated by the controller.

The remainder of the manuscript is organized as follows. In Sect. 2, we present the
class of switched systems considered and briefly review CCLF stability analysis, also
the modal feedback linearization which is addressed in Sect. 3 to obtain a switched
system in strict feedback form, and it will be combined with backstepping approach
to implement a controller design based on construction of CCLFs. In Sect. 4, the
proposed methodology is used to solve the global stabilization problem of a second
order continuously stirred tank reactor (CSTR) with two modes. Finally, a conclusion
is drawn in Sect. 5.
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2 Theoretical Background

2.1 Class of Systems, Useful Definition and Theorem

A simple expression version of SISO switched nonlinear system is shown in Eq. (1):

ẋ = Fσ(t)(x) + Gσ(t)(x)u (1)

where x = [x1 . . . xn]T ∈ �n , u ∈ � are the state variables and the control input of
the system, respectively σ(t) is the set of switching signals consisting of all right-
continuous piecewise constant functions from �+to M = {1, 2, . . . , m}. In this
paper, we consider the case when the switching signal is arbitrary. F(x), G(x) are
smooth functions describing the system dynamics.

Definition 1 ([29]) Consider the system given by Eq. (1).
A Common Control Lyapunov Function (CCLF) for the subsystems of (1) is a

smooth function V (x) : �n → �+, satisfying ∀k ∈ M, x �= 0 the conditions:

∂V (x)

∂x
Gk(x) = 0 ⇒ ∂V (x)

∂x
Fk(x) < 0 (2)

Definition 2 ([29]) A CCLF of the subsystems of (1) satisfies the common small
control property (CSCP) if ∀ς < 0, ∃δ > 0 such that, if x �= 0 satisfies ‖x‖ < δ
then there exist u with ‖u‖ < ς such that and

∂V (x)

∂x
[Fk(x) + Gk(x)u] < 0 k = 1, . . . ,m (3)

From the definition of a Common Control Lyapunov function V (x), the existence
of V (x) is the necessary and sufficient conditions for the stabilizability of switched
nonlinear systems with arbitrary switching signals. Therefore, once we construct the
CCLF for all subsystems of (1), then, we can select an explicit form of the stabilizing
control law.

The idea of Theorem 1 below is that if there exists such a CCLF exists for all
closed-loop subsystems of (1). In fact, it is possible to construct if a simultaneous
domination condition, holds. Then, a stabilizing feedback law can be established by
the obtained CCLF.

Theorem 1 ([30]) Switched system is globally uniformly asymptotically stable
under arbitrary switching if and only if, there exists a common control Lyapunov
function CCLF V (x) for all subsystems in a way that all the subsystems are simul-
taneously dominatable, and then a continuous feedback law u exists.
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2.2 Modal State Feedback Linearization

For the switched nonlinear system modal feedback linearization [5, 8, 9] can trans-
form the switched nonlinear system into a controlled switching linear system using
a common coordinate transformation.

In general, this case of problem is described and formulated from some classes
of second-order switching nonlinear system.

The switching nonlinear system (1) is one of these classes, without loss of gener-
ality we suppose that

k = 2, x ∈ �2, gi (x) =
[

0
gi

2(x1, x2)

]
and f i (x) =

[
f i
1 (x1, x2)

f i
2 (x1, x2)

]

and the model can be described by this state space representation:

{
ẋ1 = f i

1 (x1, x2)

ẋ2 = f i
2 (x1, x2) + gi

2(x1, x2)u
(4)

where

⎧⎨
⎩

f i
1 = ci

1 f11(x1) + ci
2 f12(x1, x2)

f i
2 = f i

2 (x1, x2)

gi
2 = gi

2(x1, x2)

ci
2, ci

1 ∈ � are the parameter of the system, f11, f12 are linearly independent and
f i
2 , gi

2 are sufficiently smooth real-valued function.
To implement modal feedback linearization strategy for Switched Nonlinear Sys-

tem (4), let us state the following theorem.

Theorem 2 ([15])

• f12(x1, x2) can be written as f12(x1, x2) = f12a(x2) · f12b(x1, x2) where

– Assumption 1.

∂ f11

∂x1
− ∂ f12b

∂x1
· f11

f12b
= p1 p1 ∈ �/{0}

– Assumption 2.

f12a(0) = 0

– Assumption 3.

‖ f12b(0)‖ < ∞
– Assumption 4.

∂ f12a

∂x2
(0) �= 0
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• Define h1(x1, x2) = f11

f12b
. So the Assumption 5

– Assumption 4.

h(0) = 0

Then a local diffeomorphism in a neighborhood of the ẋ = Fσ(t)(x)+Gσ(t)(x)uU0 ∈
�2 origin denote by:

T (x) =
[

p2h1(x1, x2)

f12a(x1)

]
(5)

T (x) transforms the switched nonlinear system (4) to a switched linear system of the
form: {

ż1 = ai
1z1 + ai

2z2

ż2 = f i
z (z1, z2) + gi

z (z1, z2) u
(6)

3 Main Result

3.1 Motivation

The main objective of this section can be summed up as a presentation of a technique
to synthesis of a nonlinear stabilizing control to ensure a regulation around a desired
operating point and the stability of the nonlinear controlled system by backstepping.

This technique is based on the combination between Modal feedback lineariza-
tion formalism and the backstepping approach in a way that guarantees asymptotic
stability of the overall switched closed-loop system under arbitrary switching signal.

The basic motivation for developing this approach is the serious drawbacks of the
Modal feedback linearization, which may not stabilize system (1) when the switching
between the controllers and the subsystems are asynchronous.

To confront this challenge, we have taken into consideration in references [4,
20], that we cannot guarantee the stability of a global switched system by the use
of stability of each mode individual under arbitrary switching. It is to be noted
here that the design of a stabilizing controller for each mode is not sufficient to
achieve our control objectives. To solve this problem, auxiliary techniques should
be developed to guarantee the stability under a randomly chosen switching signal.
The design of the present study consists of two main stages. We plan to apply, in the
first step, the concept of modal state feedback linearization [9], in order to transform
the switched nonlinear model system into an equivalent switched linear system in
the strict feedback form (Pavlichkov et al. 2009). Then, in the second stage is to
synthesize the stabilizing control law in a recursive manner using the technique
of backstepping. To achieve our goal, we must found a CCLF for all closed loop
subsystems, necessary and sufficient condition to design continuous state feedback
law u.
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3.2 Description Design

3.2.1 System in Strict Feedback Form

This problem requires the setting into the strict feedback or triangular form, of the
state Eq. (1).

Referring to the Theorem 2, we first exploit the formalism of modal feedback
method so as to construct a suitable change of coordinates, to transform the model
to the desired class of system.

Now we can obtain the strict feedback form:
{

ẋ j = x j+1 + f j,σ(t)(x1, . . . , x j ) 1 ≤ j ≤ n − 1

ẋn = fσ(t)(x) + gσ(t)(x)u
(7)

Our objective is to find a continuous feedback law u, which will stabilize the following
form of (7): ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ1 = x2 + f1,σ(t)(x1)
...

ẋi = xi+1 + fi,σ(t)(Xi )
...

ẋn−1 = xn + fn,σ(t)(Xn−1)

ẋn = fσ(t)(x) + gσ(t)(x)u.

(8)

where ẋ = Fσ(t)(x) + Gσ(t)(x)u, i ∈ I= {1, . . . , n − 1} and Xi = [x1 x2 . . . xi ] .

For all i ∈ I and k ∈ M , f1,σ(t)(x), fk(x) and gk(x) are smooth.

3.2.2 The Backstepping Approach

To establish the main results of this paper, we will frequently employ backstep-
ping to construct controllers for subsystems and a switching law to achieve global
asymptotically stabilization for the system (8) under arbitrary switching.

Our goal is to globally uniformly asymptotically stabilize a switched nonlinear
system in strict-feedback form by a continuous state feedback controller.

The detailed design procedure is based on the following main steps:
Step 1: Let us define the first variable of the procedure:

z1(x1) = x1 (9)

Then, we construct a candidate Lyapunov Function:

V1(x1) = 1

2
x2

1 (10)
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This is called the auxiliary first-order subsystems which are represented by:

ż1 = x2 + f1,k(x1) k = 1, . . . ,m (11)

By treating x2 as a virtual control input of the system (8), the first order subsystem
is simultaneously dominatable if there is a continuous feedback law x2 = θ1(x1).

Thus, the derivative of the Lyapunov function is definite negative so:

V̇1(x1) = x1
(
θ1(x1) + f1,k(x1)

)
< 0 (12)

If we found a simultaneously dominating feedback law x2 = θ1(x1)we can achieve
the first step.

Step i (for i = 2… n − 1):
After different algebraic manipulations of the derivative of the variable of the

procedure, we define:
zi (Xi ) = xi − φi−1(Xi−1) (13)

We also define the augmented candidate Lyapunov function:

Vi (Xi ) = Vi−1(Xi−1) + 1

2
(xi − θi−1(Xi−1))

2 (14)

Consider the auxiliary i th order subsystems given by:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ż1 = z2(X2) + φ1(x1) + f1,k(x1)
...

żi = xi+1 + fi,k(Xi ) −
i−1∑
j=1

∂θi−1(Xi−1)

∂x j

(
x j+1 + fi,k(Xi )

) (15)

In a similar fashion, we can design a virtual controller With by taking xi+1as a
virtual control input of the system (12), and we consider the i th order subsystems as
a simultaneously dominatable if there exists continuous feedback law: xi+1 = θi (Xi ).

In this respect, the derivative along the trajectory is:

V̇i (Xi ) =
i∑

j=1

z j (X j )ż j (X j ) < 0 ∀Xi �= 0 and k = 1, . . . , m (16)

The goal here is to check the n − 1 step in order to affirm that the subsystems of
Eq. 5 are simultaneously dominatable, and, hence, one can build a CCLF.

Step n: It is the last step of the design of CCLF. As soon as the final control u

appears in the derivative of V̇n , we define zn(x) = xn − θn−1(Xn−1) and Vn in a way
that it is defined negative:
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V (x) = Vn−1(Xn−1) + 1

2
(xn − θn−1(Xn−1))

2 (17)

Thus, the Lyapunov derivative,

V̇ (x) = ∂V (x)

∂x
(Fk(x) + Gk(x)u) =

n∑
i=1

zi (Xi )żi (Xi )

=
n−1∑
i=1

zi (Xi )żi (Xi ) + zn(x)

⎛
⎜⎝

zn−1(Xn−1) + fk(x) + gk(x) · u−
n−1∑
j=1

∂θn−1(Xn−1)

∂x j
· (x j+1 + fi,k(X j )

⎞
⎟⎠ (18)

= αk(x) + βk(x) · u

where:

αk(x) =
n−1∑
i=1

zi (Xi )żi (Xi ) + zn(x)

⎛
⎜⎝

zn−1(Xn−1) + fk(x)−
n−1∑
j=1

∂θn−1(Xn−1)

∂x j
.(x j+1 + fi,k(X j )

⎞
⎟⎠

βk(x) = zn(x) (gk(x).u)

Because of gk(x) �= 0 ∀x, it is obvious that βk(x) = 0 if and only if zn(x) = 0, and

αk(x)

∣∣∣βk (x)=0 and x�=0 = ∑n−1
i=1 zi (x̃i )żi (x̃i ) < 0

Therefore, V (x) is a CCLF for the subsystems given by Eq. 8. Moreover, it is easy
to verify that satisfies the CSCP condition.

As shown above in Theorem 2, The Common Lyapunov Function approach, for
all subsystems being switched, can be used to determine the stability of switched
systems without input signals; such that the constructed positive definite and radially
unbounded smooth function V (x), so the subsystems of (8) are simultaneously dom-
inatable, then a continuous feedback law u is established by the obtained CCLF So
the switched system (8) is globally uniformly asymptotically stabilize under arbitrary
switching.

4 Application to Control of Nonlinear Switched CSTR
Example

In this section we will design a controller for the below CSTR based on backstepping
technique and synthesize of CCLF. A backstepping design is combined with a modal
feedback linearization to develop a controller of switched model of CSTR under
arbitrary switching.
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Fig. 1 Schematic diagram of the process

4.1 Mathematical Model of the Reactor

The process, shown schematically in Fig. 1, consists of a standard nonlinear second
order model of a continuous stirred tank reactor (CSTR), with constant volume fed by
a single input flow manipulated by a selector valve connected to two different source
streams. In the reactor an exothermic, irreversible first-order reaction in reactant A,
of the form A → B takes place. B is the product specie. At each time you change
the position of the selector, and this allows changing instantaneously the excitation
parameters of the reactor to obtain a two reactor mode according to the flow qσ and
concentration Cσ

A f . In this paper we consider an arbitrary signal which determines
the position of the selector valve, and then the mode of operation of the reactor at
any time. We named σ = {1, 2} the switching signal.

Source 1 feeds pure species A at the flow rate q1 = 50(L min−1), concentration
C

1

A f = 1.5(mol L−1) and temperature T
1

f = 350K. Source 2 allows feed the pure
species A at the flow rate q2 = 200(L min−1), concentration C2

A f = 0.75(mol L−1)

and temperature T
2

f = 350K.
The dynamical model of the reactor obtained from mass and energy balances can

be molded as a switched nonlinear system in the following form:

⎧⎨
⎩

dCA
dt = qσ

V

(
Cσ

A f − CA

)
− k0exp

(− E
RT

)
CA

dT
dt = qσ

V

(
T σ

f − T
)

+ (−�H)

ρC p
k0exp

(− E
RT

)
CA + U A

ρC p V (Tc − T )
(19)

where CA [mol/l] is the concentration of the A component in the reactor [K] is the
reactor temperature, while the input of the process is the T j [K]: temperature of the
reactor jacket.

The considered controlled output y of the process is the reactor temperature T . The
nominal operating conditions can be found in [9]. Consider, then, the representation
of the state vector of the model of the reactor:

x = [x1 = CA x2 = T ]T (20)
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In this state space, the model will be described, at each mode, by an equation of
the state such as [16]:

⎧⎨
⎩

ẋ1 = qσ

V

(
Cσ

A f − x1

)
− k0exp

(
− E

R X2

)
x1

ẋ2 = qσ

V

(
T σ

f − x2

)
− �H

ρC p
k0exp

(
− E

Rx2

)
x1 + U A

ρC p V (U − x2)
(21)

The position of the selector valve at each time is determined by our objective. In
other words, the control objectives are to stabilize the reactor temperature T and the
concentration CA f by manipulating the control temperature Tc and the valve position,
also to ensure global asymptotic stability when the reactor switches between mode
1 and mode 2 under arbitrary switching

4.2 CSTR in Strict Feedback Form

The system (3) can be represented by the model:

{
ẋ1 = cσ

1 f11(x1) + cσ
2 f12(x1, x2)

ẋ2 = f σ
2 (x1, x2) + gσ

2 (x1, x2)u
(22)

where cσ
1 =−qσ/V, cσ

2 =1, f11 = x1 and f12 = qσ

V

(
Cσ

A f − x1

)
− k0exp

(
− E

Rx2

)
x1.

In [16] the system can be modal state feedback linearizable using the diffeomor-
phism ξ(x):

ξ(x) =
[

x1
qσ

V

(
Cσ

A f − x1

)
− k0exp

(
− E

Rx2

)
x1

]

According to the procedure described in (Barkordaroi), one can easily obtain the
strict feedback form of the CSTR given by:

{
ẋ1 = f σ(t)

1 (x1) − x1

ẋ2 = uσ(t) (23)

where f11 = 0.5x1 and f12 = 2x2.

4.3 Synthesis of Control Law

Drawing on the algebraic developments presented in Sect. 3, we will synthesize a
CCLF and a control law u using the backstepping algorithm, such that the closed-loop
of the reactor is globally asymptotically stable.
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Firstly, we define:
z1(x1) = x1 (24)

with the Lyapunov control function,

V1(x1) = 1

2
x2

1 (25)

The Lyapunov function is defined positive and the derivative is defined negative, so

{
V̇1(x1) = x1

(
θ1(x1) + f1,1(x1)

)
< 0 k = 1

V̇1(x1) = x1
(
θ1(x1) + f1,2(x1)

)
< 0 k = 2

We can choose θ1(x1) = −3x1.
Secondly, we define our second variable:

z2(x1) = x2 − θ1(x1) (26)

with the candidate CCLF for both subsystems:

V = 1

2

2∑
i=1

z2
1(x̄) (27)

According to the theory we can design the individual controller:

{
u1 = 27x1-7x2 k = 1
u2 = 14x1-4x2 k = 2

(28)

4.4 Simulation and Discussion

The control objectives are to:

1. Stabilize the reactor temperature at the open-loop unstable steady state of mode 1.
2. Maintain the temperature at this steady-state when the reactor switches to mode 2.

As mentioned in our motivation in Sect. 3, we must overcome the problem of insta-
bility of the system (22), when switching between controllers and subsystems are
asynchronous. The temperature and concentration profiles for this case are given in
Fig. 2 (dotted lines and dashed line respectively), which show that the controllers fail
to drive the reactor temperature to the desired steady-state.

We now consider the case when the backstepping algorithm is applied and, there-
fore, a feedback controller of the form of Eq. (28) is designed for each mode.



666 A. Abdelkarim et al.

1 2 3 4 5 6 7 8 9 10
-2

-1

0

1
x 10

6

t(min)

x1

1 2 3 4 5 6 7 8 9 10
0

2

4

6
x 10

11

t(min)

x2

Fig. 2 Evolution of the reaction temperature TA following the application of an arbitrary switching
signal and backstepping design

The results are outlined in Figs. 3 and 4. In these figures, we are respectively
representing the two state of the reactor: the concentration of the A component and
the reaction temperature.

The simulation results show that the controller can achieve the desired control
objective in a short time interval, and the controlled system remains stable under the
switching signal.

It can be seen that the switched system (3) is globally uniformly asymptotically
stabilize under a randomly chosen switching signal.

Fig. 3 Evolution of the
reaction temperature T A
following the application of
an arbitrary switching signal
and backstepping design
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Fig. 4 Evolution of the
concentration C A following
the application of an
arbitrary switching signal
and backstepping design
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5 Conclusion

In this work, we have considered the global stabilization problem of switched non-
linear systems in strict-feedback form, as well as its application, where the global
stabilization problem of individual subsystems is not assumed to be solvable when
applying modal feedback linearization with some arbitrary switching.

Based on the Backstepping technique, we have designed feedback controllers of
subsystems and constructed a Common Control Lyapunov Function, which guaran-
tees global asymptotic stability of the corresponding closed-loop system.

The Construction of CCLFs for all subsystems plays a very important role in
the method. This can be effective tool to guarantee the global stability. Moreover,
the applications of the proposed control schemes have been illustrated by a CSTR
system.

Future works will concentrate on generalize the study to a system having order
higher than two.
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Second Order Sliding Mode Based
Synchronization Control for Cooperative
Robot Manipulators

Fatma Abdelhedi, Yassine Bouteraa and Nabil Derbel

Abstract This work develops a modern controller design, combining reformu-
lated second order sliding mode conception with the cross-coupling synchronizing
approach. The goal behind the developed control architecture is to synchronize a
group of robot manipulators while guaranteeing a performant trajectory tracking
motion control. The developed robust approach allows not only to deal with sudden
disturbances but also to avoid chattering phenomena yielded by acute discontinu-
ous control signals. The Lyapunov-based analysis has been utilized to establish the
multi-robot system asymptotic stability. Simulation results have been provided to
demonstrate the performance of the adopted control schemes.

Keywords Trajectory tracking · Synchronization · Cross coupling technical ·
Sliding mode control · Second order sliding mode control · Robot manipulators

1 Introduction

Nowadays, in the modern industry, there exist enormous pressure to realize great and
rapid developments, especially with the notable increasing exigency for greater pro-
ductivity. Modern manufacturing devices are consequently intended to be organized
such as all machine axes progress simultaneously aiming to reduce the time of work-
in-progress, in such a way that a number of specific operations can be combined into
only one. Such integration can be successfully guaranteed by the motion synchro-
nization, which represents an interesting research field and becomes increasingly
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needed mainly in the industrial area [6]. In fact, the interest in synchronization of
multiple motion axes and motors has recently grown worldwide. As an illustration,
large applications of the motion synchronization lie in the industrial assembling,
where the multi-axis system proceeds in coordinated behaviors [4, 5]. Furthermore,
there has been a great interest in the methodological development for robotic manip-
ulation where each robot operates cooperatively in order to realize a common goal.
Besides, real systems are mostly non-linear. They have variable parameters and are
constantly subject to external disturbances. The modeling of these systems is often
an approximation of involved physical phenomena. It is from this systems approx-
imate representation that it is required to build a robust control, in the sense that it
can afford a low sensitivity to parameters uncertainties and to external disturbances.

1.1 Previous Works

While treating a specific process where the controlled part is slightly disturbed,
conventional controls such as Proportional, Integral and Derivative actions [7] can be
sufficient in cases where precision requests and system performances are not unduly
required. Otherwise, it is needed to design more control designs ensuring robustness
of behavior, regarding parameters uncertainties and their variations. There may be
mentioned in this context, the H∞ control [14], the adaptive control [16], the sliding
modes control [2, 3, 8, 13] etc.

The problem faced by the type of variable structure approach is the control limi-
tation by the chattering phenomenon [10]. Such problems are produced by residual
vibrations at high frequencies, that occur on slaved magnitudes and on control vari-
ables. As solutions, various smoothing functions have been proposed in the literature
to overcome this major drawback, but at the expense of system performances [1].
For this reason, several control laws based on higher order sliding modes has been
recently proposed to generalize the basic sliding mode concept and to ensure high-
order accuracy [9, 12, 15], these controllers are supposed sufficiently smooth to
eliminate the chattering phenomenon.

1.2 Contribution

The object we have set in the present research lies in determining robust and effective
controls, relatively simple to implement and to be adaptedwith rapid robotic systems.
Then, we are interested as a first step, in the second order sliding mode approach to
control robot manipulators systems, that we combine in a second step with the cross
coupling technique in order to realize robot manipulators synchronization tasks.
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The intended targets are the elimination of the chattering phenomenon, guaran-
teeing asymptotic convergence to zero of both tracking and synchronization errors,
in order to impose to each manipulator joint to track its desired trajectory, while
synchronizing behavior with those of other robot joints.

The first step in the present work is to provide a brief introduction to the sliding
mode theory, and to clearly represent main features and abilities of higher order
slidingmodes. Thus, themain characteristic of slidingmode control lies in its variable
structure that switches under certain predefined conditions upon synthesis of the
sliding surface.

The proposed approaches are detailed and illustrated in a “SCARA” robot manip-
ulator example.

2 Preliminaries

2.1 Modeling of a SCARA Robot

In this study, simulations are based on a SCARA robot manipulator model with
rigid links and having three degrees of freedom (DOF), where the system includes
two revolute articulations and a prismatic one related to the end effector. Figure1
demonstrates one of the current SCARAmanipulator representationswith threeDOF.

The corresponding dynamic equation of robot “i” is expressed as:

Mi (qi )q̈i + Ci (qi , q̇i )q̇i + Gi (qi ) = τi (1)

Fig. 1 Example of a three DOF “SCARA” robot representation
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Table 1 Model parameters values

Parameters m0 (kg) m1 (kg) m2 (kg) m3 (kg) l0 (m) l1 (m) l2 (m) l3 (m)

Values 19.5 8 6 0.5 0.65 0.4 0.3 0.3

where:

• qi (t) ∈ R
n denotes measured displacements vector,

• q̇i ∈ R
n is the measured velocity vector,

• q̈i ∈ R
n is the articulatory acceleration vector,

• Mi (qi ) ∈ R
n×n is the inertia matrix, which is symmetric uniformly bounded and

positive definite,
• Ci (qi , q̇i )q̇i ∈ R

n is the vector expressing the Coriolis and the centrifugal forces,
• Gi (qi ) ∈ R

n is the gravitational forces vector,
• τi ∈ R

n denotes the external torques and forces vector, applied at each joint.

Dynamic parameters values corresponding to the adopted SCARA robotmanipulator
model are presented in Table1.

2.2 Sliding Mode Control

Sliding mode control has long revealed its profits, reflecting special impact in con-
trols of independent motion, through several operational methods, such as trajectory
control [5], observation [11].

Fundamentally, such variable structure control results from the discontinuous
control phenomenon. Especially, it involves discontinuous feedback control laws in
order to force system states to reach, and then to remain on the specified surface in
the state space known by switching or sliding surface. When confined by the sliding
surface, the system dynamic is considered as an ideal sliding motion that represent
the controlled system behavior.

Thus, there are two major methods that deal in a detailed manner with the sliding
mode strategies: The ‘Filippov’ method and the ‘equivalent control’ method [17].

In this study, the proposed control law is developed exploiting the equivalent
control method, which admits that in sliding mode everything happens as if the
system is driven by an “equivalent control” denoted by ueq . This control method
allows to system states to reach and to maintain on the sliding surface S.

• Equivalent control theory:

Consider the nonlinear affine system used in the following control:

ẋ(t) = f (x) + g(x)u(t) (2)
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where x ∈ R
n , u ∈ R

m , f (x) ∈ R
n × R

m , and g(x) ∈ R
n × R

m , and S is a set of m
switching surfaces chosen in such away x goes to xd , while remaining on the sliding
surface. Defining the generalized error vector S(x), the sliding surface is described
by:

S = {x ∈ R
n/s(x) = [s1(x), ..., sm(x)]T = 0} (3)

In order to satisfy the control objective, the controller can be expressed as:

u = ueq + Δu (4)

where the equivalent control ueq represents the required term to reach and to remain
on the sliding surface. The corrected term Δu is intended to guarantee the remaining
on the surface defined by s(x) = 0.

As results from the previous expressions we can obtain that:

1. Based on the sliding mode expression,

ṡ(x) = ∂s

∂x
[ f (x) + g(x) u(t)] = 0 (5)

Assuming that matrix
∂s

∂x
g(x) is regular, which represents the intrinsic condition

for the existence of the sliding mode control, the associated equivalent control is
written as:

ueq = −
(

∂s

∂x
g(x)

)−1 ∂s

∂x
f (x) (6)

2. The resulting dynamics:

ẋ =
[

I − g(x)

(
∂s

∂x
g(x)

)−1 ∂s

∂x

]
f (x) (7)

3. By adopting the simple sliding mode approach, the discontinuous term can be
chosen as:

Δu = −
(

∂s

∂x
g(x)

)−1

W sign(s) (8)

where W is a positive definite matrix.
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2.3 High Order Sliding Mode Control

Generally, the dynamics smoothness degree is characterized by the sliding order, in
the vicinity of the mode. If we need to maintain a constraint determined by equability
of the smooth function s(x) to zero, then the sliding order is specified by a number of
continuous derivatives of s(x), including the zero one, in the proximity of the sliding
mode. Thus, the r th order sliding mode is established by the successive equalities:

s = ṡ = s̈ = · · · = s(r−1) = 0 (9)

The standard sliding surface expression (10) is defined in the state space Rn as
follows:

s(x) =
(

d

dt
+ λ

)n−1

x̃(t) (10)

where, λ is a strict positive scalar, taken to be the bandwidth of the system, and
x̃(t) = q(t) − qd(t) represents the error in the output state.

Thus, high order sliding mode control aims for keeping the main advantages of
the original method, and seems to be able to remove the chattering effect and provide
at the same time to further higher accuracy in realization.

3 Control Design

We consider decentralized control laws for three manipulator robots, taking into
account the status of each neighbor, all agents ‘follower’ synchronize their positions
while tracking the ‘leader’ robot trajectory.

Specifically, the purpose of each torque controller is to ensure the convergence to
zero of position, velocity and synchronization errors.

3.1 Cross Coupling Technical

To achieve a coordinated control motion, a cross-coupled control approach is applied
where the whole multi-agent system is considered as a single generalized system.

In order to achieve this goal, we define the tracking error as follows:

ε1i (t) = qi (t) − qM(t) (11)

where qM(t) ∈ R
n denotes the position of the leader robot.
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The ‘cross-coupling’ technique consists in presenting a synchronization error that
is presented as follows:

ε2i (t) =
p∑

j �=i

Ki j [(qi − qM) − (q j − qM)]

=
p∑

j �=i

Ki j [(qi − q j )] (12)

where Ki j is a symmetric positive-definite matrix that reveals an idea about the
communication quality between the i th and the j th agents. Finally, the global error
concerning each agent of the system, which contains both trajectory tracking error
and synchronization error is given by:

ei = ε1i +
∫ t

t0

ε2i (τ ) dτ (13)

Consider the standard sliding surface (10) that can be written as:

si = ėi + λi ei , i = 1, 2, . . . (14)

where λi are positive scalars.

3.2 Second Order Sliding Mode Concept

Themain problem in the implementation of higher order slidingmodes is the increas-
ing information demand. For this reason the second order sliding mode controllers
are the most widely used in practice among higher order sliding mode controllers
because of their simplicity and their low information demand.

In this context, and as it is mentioned above, the sliding surface derivative doesn’t
reach zero values anymore, it rather has new expression presented in (15), that follows
the general sliding system (9). Then:

ṡi = σi ⇒ u = ueq +
[

∂s

∂x
g(x)

]−1

σ (15)

Consider now the following representation of the system described by:

{
ṡi = σi

σ̇i = −a0 si − a1 σi + vi
(16)

where a0 and a1 are positive scalars. This representation considers single-input
single-output systems. However, the present study can be easily generalized to multi-
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input multi-output systems. Besides, the following polynomial A(p) in (17) is a
Hurwitz one, i.e. its roots have negative real parts.

A(p) = a1 p + a0 = 0 (17)

Then, the previous polynomial can be chosen as:

A(p) = (p + μ)2 (18)

where μ is a positive scalar. System (16) can be represented by the following form:

Ṡi = φSi + Γ vi (19)

where:

Si =
[

si

σi

]
, φ =

[
0 1

− a0 − a1

]
, Γ =

[
0
1

]
(20)

Note that φ clearly represents a Hurwitz matrix. Therefore, there exist two positive
definite matrices P and Q such that:

Pφ + φT P = −Q (21)

Here, vi is defined by:
vi = −v0i sign (wi ) (22)

where wi is a linear combination of Si , and v0i is a diagonal positive matrix.
This yields that:

wi = L Si (23)

where:
L = Γ T P (24)

Remembering that ṡi = σi , and taking into consideration Eq. (14) we obtain:

q̈i − q̈d +
∑
j �=i

Ki j (q̇i − q̇ j ) + λi

⎡
⎣q̇i − q̇d +

∑
j �=i

Ki j (qi − q j )

⎤
⎦ = σi (25)

Retaking dynamic model representation, (1), and substituting it in (25) gives:

σi = Mi
−1[τi − Ci (qi , qi

−1) − gi (qi )] +
∑
j �=i

Ki j (q̇i − q̇ j )

+λi

⎡
⎣(q̇i − q̇d) +

∑
j �=i

Ki j (qi − q j )

⎤
⎦ − q̈d (26)
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This produces:

τi = Ci (qi , q̇i ) + gi (qi ) + Mi

⎡
⎣ q̈d −

∑
j �=i

Ki j (q̇i − q̇ j )

− λi

⎡
⎣(q̇i − q̇d) +

∑
j �=i

Ki j (qi − q j )

⎤
⎦ + σi

⎤
⎦ (27)

Theorem 1 Control laws (22), (23), (24) and (27) stabilize the global system (1).

Proof We consider the positive Lyapunov function candidate:

V =
∑

i

Vi =
∑

i

Si
T P Si , (28)

Differentiating the previous Lyapunov expression (28) with respect to time, gives:

V̇ =
∑

i

ṠT
i P Si +

∑
i

Si
T P Ṡi

=
∑

i

(φSi + Γ vi )
T P Si +

∑
i

Si
T P(φSi + Γ vi )

=
∑

i

Si
T (φT P + Pφ)Si + 2

∑
i

viΓ
T P Si (29)

Consequently, the final V̇ expression is given by (30):

V̇ =
∑

i

−Si
T QSi − 2

∑
i

v0i |wi | < 0 (30)

This demonstration illustrates the Lyapunov theorem and guarantees the stability
of the closed loop system.

4 Simulation Results

Consider the SCARA robot controlled by the second order SMC law applied on the
robot for the motion control. The desired trajectory is noted qd(t), and its desired
velocities and accelerations are noted q̇d(t) and q̈d(t) respectively.

Besides, q is the position vector of the manipulator, q̇ its speed vector, q̈ its
acceleration vector, and τ is the torque vector applied to joints of the manipulator:
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Table 2 Initial conditions

Articulation Leader Follower Unit

q1(0) π/3.5 π/5 rad

q2(0) π/3.5 π/5 rad

q3(0) 0.4 0 m

q̇1(0) 0 0 rad/s

q̇2(0) 0 0 rad/s

q̇3(0) 0 0 m/s

Table 3 Control parameters

Control parameters Values

λ 6

Ki j 0.03

μ 4

q =
⎡
⎣ q1

q2

q3

⎤
⎦ , q̇ =

⎡
⎣ q̇1

q̇2

q̇3

⎤
⎦ , q̈ =

⎡
⎣ q̈1

q̈2

q̈3

⎤
⎦ , τ = u =

⎡
⎣ τ1

τ2
τ3

⎤
⎦ (31)

State equations of a SCARA robot are presented as:

d

dt

[
q
q̇

]
=

[
q̇

M(q)−1[τ − C(q, q̇)q̇ − G(q)]
]

(32)

The robot initially at rest has initial conditions as mentioned in Table2. Control
parameters values have been chosen as indicated in Table3.

We consider the desired trajectory defined by:

qd(t) =
⎡
⎢⎣

qd1(t)

qd2(t)

qd3(t)

⎤
⎥⎦ =

⎡
⎢⎣

π
6 sin(1.5πt)

π
4 sin πt

0.2 sign (0.8 − t)

⎤
⎥⎦ (33)

We have considered two cases:

• Simulation results without external disturbances are presented in Figs. 2a, b, 3
and 4.

• Simulation results in the presence of external disturbances are presented in Figs. 5,
6 and 7. In this case, the follower position state vector is afflicted by 10%measured
errors.
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Fig. 2 a Simple SMC torques. b Second order SMC torques
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Fig. 3 a Trajectory tracking and positions synchronization. b Velocity synchronizing behavior
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Fig. 4 a Synchronization and trajectory tracking errors. b Evolution of the generalized error vector
s(x)
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Fig. 5 Second order sliding
mode control torques
behaviors in presence of
external disturbances
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Fig. 6 Simulations in presence of external disturbances: a Trajectory tracking and positions syn-
chronization. b Velocity synchronizing behavior

5 Discussion

Simulation results demonstrate the evolution of the trajectory tracking motion with
respect to time, where the first and the second order SMC torques are shown in
Fig. 2a and b respectively, whereas the positions and velocities tracking behavior of
the second order SMC are presented in Fig. 3.

Concerning the simple SMC torques in Fig. 2a, it is clearly noted that the imper-
fections impact and the finite switching frequencies are obviously significant, whose
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Fig. 7 Simulations in presence of external disturbances: a Synchronization and trajectory tracking
errors. b Evolution of the generalized error vector s(x)

effect appears through the strong oscillations. Compared to that produced by the
simpler controller in Fig. 2a, second order SMC produces smooth control torques
behavior in Fig. 2b, where the chattering effect is attenuated, even thoroughly elim-
inated.

Sliding surface representations and trajectory tracking and synchronization errors
are reflected through Fig. 4, where resulted errors curves have low values and attain
zero nearly in 1.5s, as indicated in Fig. 4a. Generalized error vector representations
in Fig. 4b reflect the rapidity and the smoothness of the convergence behavior.

Otherwise, obtained results of the disrupted process analysis yield clear dissimi-
larities with those of the ideal system, depending on torques and the generalized error
behavior. In fact, Figs. 5 and 7b show parasitic effects presented as small disrupting
oscillations attaining second order SMC torques and the generalized error vector
smoothness of the follower robot. In addition, trajectory tracking motions and joints
velocity behaviors retain same behaviors of those described by the ideal system con-
troller. Besides, this proves the follower controller robustness in spite of the sudden
apparition of external disturbances. Consequently, the trajectory tracking task of the
second order SMC is insensitive to changes in environmental conditions, and resists
such fluctuating situations.

Thus, simulations show major advantages of the second order order SMC, which
proves its superior ability to eliminate the chattering phenomenon, and to clearly
minimize input values comparing to the simple SMC torques, even in the presence
of external disturbances. So it seems to be a better solution that enables the controller
response to be suitable with high performances of the closed-loop control system.
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6 Conclusion

This work develops a second order SMC design combined with the cross-coupling
control strategy for a robots synchronization task. The objective is to deal with exter-
nal disturbances and uncertain parameters, by eliminating the chattering phenom-
enon, while solving problems of the inaccurate communication during the informa-
tion exchange between cooperative manipulator robots. Depending on the proposed
controller, the synchronization of a multi-agent system in a trajectory tracking task is
optimally achieved, and synchronization errors and tracking errors rapidly converge
to zero even in the presence of external measured errors affecting the state posi-
tion vector. Simulation results illustrate good performances, high tracking precision
and robustness in the face of parameter variations and mainly external disturbances
affecting the developed controller.
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