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Abstract A novel automatic method for detecting corresponding attributes in
schemas based on content data is studied. More specifically, our proposed method
for the detection of coreferent attributes in schemas is based on a statistical and
lexical comparison of content data and detected coreferent tuples across multiple
datasets, which increase the possibility of correct schema matching. We will show
that knowledge of even a small number of coreferent tuples is sufficient to establish
correct matching between corresponding attributes of heterogeneous schemas. The
behaviour of the novel schemamatching technique has been evaluated on several real
life datasets, giving a valuable insight in the influence of the different parameters of
our approach on the results obtained.

1 Introduction

The existence of coreferent content data (coreferent tuples, duplicates) which
describe the same entity but in a different way across multiple, related databases
significantly lowers data quality and should be avoided. However, a small number
of coreferent tuples can be useful in the data integration process, which involves
importing data from one source to another. Namely, coreferent tuples may be helpful
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Table 1 Example of objects extracted from the source dataset S

Key Name Lon. Lat. Category Address

1 Belfry & Cloth
Hall

3.724911 51.053653 Tourist attract Sint-Baafsplein,
9000 Ghent

2 Saint Bavo 3.797826 50.984194 Church Sint-Baafsplein,
9000 Ghent

3 Cafe-Restaurant
De Ster

4.050876 51.281777 Restaurant Grotestraat 91,
7471 BL Goor

4 Het Kouterhof 3.665122 51.034331 Lodging Stoopkensstraat
24, 3320
Hoegaarden

5 Borluut B&B 3.657992 51.018882 Lodging Kleine Gentstraat
69, 9051
St-Denijs-Westrem

6 Gravensteen
Hotel

3.719741 51.056485 Hotel Jan Breydelstraat
35,9000,Ghent

7 Carlton Hotel 3.713951 51.036280 Lodging Chartreuseweg 20,
8200 Brugge

8 Vlaamse Opera 3.722336 51.049746 Theater Schouwburgstraat
3, 9000 Ghent

in establishing a true matching between the corresponding attributes of heteroge-
neous database schemas. This is known as the schema matching problem, which is
the first step in data integration and is investigated in this paper.

1.1 Problem Illustration

As amotivating example let us consider the schemamatching scenario of two datasets
of points of interest (POIs) in which corresponding attributes in the source dataset
S in Table1 and the target dataset T in Table2 have to be aligned as in Fig. 1.1 The
attributes “Key”, “Name”, “Lat”, “Lon” and “Category” inTable1 have to bematched
to the attributes “ID”, “POI”, “Geo1”, “Geo2” and “Type” in Table2, respectively. It
is obvious that matching techniques which are based on the attributes’ names are not
capable to establish all of these matchings. Semantical matching of corresponding
attributes has to be established as coreferent attributes may have different names.
Moreover, an attribute “Address” in the left part of Fig. 1 and inTable1 is decomposed
into a number of (sub)attributes: “Street”, “City”, “ZipCode” in the right part of
Fig. 1 and in Table2. Thus, a one-to-many matching between these attributes is
required; namely, a concatenation function has to be applied to solve the attribute

1The order of datasets does not matter, i.e., there exists schema matching between corresponding
attributes from the source dataset and the target dataset, and vice versa.
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Table 2 Example of objects extracted from the target dataset T

ID POI Geo1 Geo2 Type Street City ZipCode

1 Belfort en
Lakenhalle

51.054898 3.721675 Bell tower Emile Braunplein Gent 9000 BE

2 Sint-Bavokerk 51.054898 3.721675 Church Sint-Baafsplein Gent 9000 BE

3 Cafe Theatre 51.049830 3.722015 Restaurant Schouwburgstraat
5-7

Gent 9000 BE

4 Het Kouterhof 51.034379 3.665140 Hotel Stoopkensstraat
24

Hoegaarden 3320 BE

5 Borluut Bed
Breakfast

51.018938 3.657975 Hotel Kleine Gentstraat
69

St-Denijs-
Westrem

9051 BE

6 Hotel
Gravensteen

51.056465 3.719741 Hotel Jan Breydelstratt
35

Gent 9000 BE

Fig. 1 Example of schema matching. Arrows represent matchings of coreferent schema attributes

granularity problem. In general also the coverage problem of matched different
attributes exists, i.e., coreferent attributes do not necessarily completely have to
represent the same information; for example, the attribute “Address” in Fig. 1 and
in Table1 does not contain information about the country. Moreover, due to errors,
inaccuracies and lack of standard, coreferent data are not bound to be equal, i.e.,
the Belfry in Ghent has a different category in the considered tables. It should be
clear that detected coreferent tuples do not guarantee perfect schema matching, i.e.,
the attributes “Name” and “Type” may contain similar values, e.g., cafe or theatre,
which may mislead the matching system. Therefore, all of this makes the finding of
coreferent data in schemas using content data a challenging task.

Examples of coreferent tuples are the objects described in the first, second, fourth,
fifth and sixth rows in Tables1 and 2, respectively. They have slightly different
names, similar geographic coordinates and different categories and addresses, but
they are still describing coreferent objects. These detected coreferent tuple pairs in
the considered datasets are used to derive schema matching, known as horizontal
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matching. The same or similar attribute values among coreferent tuple pairs imply
coreference of the corresponding attributes of the schemas.

However, detecting coreferent tuple pairswithout having knowledge about the cor-
respondences between the attributes of heterogeneous schemas (known as schema
alignment) is time-consuming and error prone. It requires the comparison of the
values of each attribute from one schema with the values of each attribute from the
other schema. Thus, one of the main challenges in the efficient detection of coref-
erent tuple pairs is the reduction of the set of attributes involved in the comparison
to those that may correspond to each other. For this purpose our content data-based
approach statistically and lexically compares the attributes’ effective domains and
selects potentially corresponding (coreferent) attributes which are called candidate
attributes. This method is known as vertical matching. It significantly decreases the
number of comparisons and increases the quality of coreferent tuple pairs detection.
Candidate attributes give the first tips of the coreference among attributes, which
is confirmed or rejected by detected coreferent tuples or even may be the basis to
establish schema matching in case of a lack of coreferent tuples. However, it should
be clear that vertical matching is necessary but not sufficient for efficient attribute
coreference identification. Thus, our approach is a combination of vertical and hor-
izontal schema matching methods used to establish the matching of corresponding
attributes.

Many problems have to be addressed while devising such a schema matching
algorithm. To sum up, the most important among them are the following:

• How can content data be useful in schema matching?
• How can one-to-one and one-to-many semantic matching be established between
corresponding attributes?

• How can attribute granularity and the coverage matching problems occurrence be
recognized?

1.2 Contributions

The objective of this paper is to propose a novel automatic semantical matching
method of corresponding (coreferent) attributes in schemas based on data and meta-
data. More specifically, the detection of coreferent attributes in schemas is based on
statistical and lexical analysis of content data and detected coreferent tuples across
pairs of datasets,which increases the confidence in schemasmatching. In otherwords,
our method is a combination of vertical and horizontal schema matching techniques
that applies possibilistic truth values (PTVs) and a kind of cardinality of a set of PTV
to express the uncertainty about the matchings. Apart from this, our approach copes
with the attribute granularity problem and the information coverage problem.

Wewill show that even a small number of coreferent tuples is sufficient to establish
a correctmatching between corresponding attributes of heterogeneous schemas. Such
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methods can then later be used to improve the coreference detection of data described
by schema which are considered as metadata of content data.

1.3 Outline

The remainder of this paper is organized as follows. In Sect. 2, an extensive overview
of work related to the topic of this paper is provided. Next, in Sect. 3, some prelimi-
nary concepts are introduced that serve as a theoretical foundation of this paper. In
Sect. 4.2, an overview of our novel content data-based schema matching algorithm
is presented. In Sects. 5 and 6, the details of the algorithm are studied. In Sect. 7
an experimental study of the proposed methods and techniques is reported. Finally,
Sect. 8 summarizes the most important contributions of this paper.

2 Related Work

Schema matching can be established by using different methods. Some methods use
only data (e.g., duplicates [1, 10]), others use only metadata (e.g., schema informa-
tion [17, 25–27], knowledge base [24]), whereas other methods use both data and
metadata, e.g., [8, 9]. In this paper the content data-based schemamatching approach
is proposed which uses coreferent tuples. There is a large body of work on schema
matching which uses content data [21]; for example, LSD [10] extracts information
from a training set and consists of a learning and classification phase. More specif-
ically, given a user-supplied mapping between schema elements, the learning step
looks at content data to train the classifier, thereby discovering characteristic con-
tent data patterns and matching rules. Next, these patterns and rules can be applied
to match other schema elements. Moreover, the approach in [18] captures valuable
knowledge about the domain of the attribute. This approach uses regular expressions
as a formalism to characterize a set of attribute values. Having these expressions,
the corresponding attributes are detected by matching the regular expression of one
attribute with the value of another attribute using the match function. In many cases
it is still not clear which attributes correspond to each other. Thus, regular expres-
sions are a valuable and useful tool but should be supported by other techniques.
As opposed to most instance-based solutions which use summary information (e.g.,
average value) for attribute classification, we derive schema matching from detected
coreferent tuples in the datasets. One schema matching approach using duplicates
is ILA [19], which is a domain-independent program that learns the meaning of
external information by explaining it in terms of internal categories. ILA considers
a pair of objects as duplicates if both objects contain at least one attribute value in
common and relies on a high extensional overlap (a number of coreferent tuples). In
our opinion these assumptions are unrealistic.
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IMap [8] is based on both schema and instance information as well as on a domain
ontology and uses past matchings. The duplicates are identified by the user and only
exact matches of attribute values are considered by a matcher. IMap copes with
various attribute granularities, as in Chua et al. [6] and Lu et al. [16], but the focus is
on numerical and differently scaled data (as opposed to our approach which focuses
on textual data). Statistical analysis is employed to data in duplicates which are
assumed to be identified by a common ID attribute. This means that at least one
attribute is already aligned. The approach of Chua et al. [6] classifies attributes into
domain classes (e.g., categorical) and forms attribute groups (sets of attributes from
the same relation which may correspond one to another) based on predefined rules.
Then, the correspondence scores of pairs of attribute groups are calculated. Finally,
attributes are matched based on these scores. The approach of Lu et al. [16], one the
other hand, uses correlation analysis techniques (supervised by the user) to identify
attributes which are potentially semantically related; secondly, they apply regression
analysis to generate the relevant conversion function that allows the attribute values
of one database to be transformed into attribute values of the other database.

DUMAS [1], just as in our approach, drops several of the assumptions that
were made in the above works: coreferent tuples are automatically detected using
unaligned schemas; a few coreferent tuples being sufficient to establish schema
matching (low extensional overlap). Moreover, it does not use any external source
of information, such as an ontology; it is a content data-based approach. In contrast
to our approach, DUMAS does not apply possibility theory and does not combine
vertical and horizontal schema matching methods to detect coreferent tuples and
establish schema matching.

3 Preliminaries

Before we present the details of elaborated algorithms we will first introduce some
relevant basic concepts.We start with themultiset definition. Then, wemore formally
define the problem of coreference detection, which is the main problem addressed
in this paper, and the cardinality of a set of pairs of coreferent objects.

3.1 Necessity Measure

In possibility theory, the certainty concerning the statement that the value of X is in
A, denoted Necessity(X is A), is expressed by the necessity measure NX(A), defined
with respect to a possibility measure ΠX(A) as follows:

Necessity(X is A) � NX(A) � 1 − ΠX(A) (1)

with A denoting the complement of the fuzzy set A [30].
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3.2 Multisets

Within the context of this work, the framework of set theory (which is the basis
of the relational model) will not suffice to present our approach. Instead, the more
general framework of multisets (also called bags) will be used where necessary and
the definitions by Yager [29] are adopted here. A multiset A over a universe U is
defined by a function A : U → N. For each u ∈ U, A(u) denotes the multiplicity
(i.e., the number of occurrences) of u in A. The set of all multisets drawn from a
universe U is denotedM(U). Yager has defined some basic operations on multisets.
The j-cut of a multiset A is a regular set, denoted as Aj and is given by Aj = {u|u ∈
U ∧A(u) ≥ j}. Counterparts of classical set intersection, union operations and of the
notion of subsethood are defined as follows:

∀u ∈ U : (A ∪ B) (u) = max (A(u), B(u)) (2)

∀u ∈ U : (A ∩ B) (u) = min (A(u), B(u)) (3)

A ⊂ B ≡ ∀u ∈ U : A(u) < B(u) (4)

A ⊆ B ≡ ∀u ∈ U : A(u) ≤ B(u). (5)

The theory of multisets provides also an addition operator and a subtraction operator:

∀u ∈ U : (A ⊕ B) (u) = A(u) + B(u) (6)

∀u ∈ U : (A � B) (u) = max (A(u) − B(u), 0) . (7)

The cardinality of a multiset A is calculated as the sum of all multiplicities:

|A| =
∑

u∈U

A(u). (8)

Finally, it is said that an element u belongs to the multiset A, denoted as u ∈ A, if
A(u) ≥ 1.

3.3 Object Coreference Detection

Considering a more abstract view of entity representation, denoting the universe of
the ith feature of an object by Ui, we can model the universe O of objects by:

O = U1 × · · · × Un. (9)

Two objects o1 ∈ O and o2 ∈ O are said to be coreferent (denoted o1 ↔ o2) if
and only if they describe the same real world entity.



288 M. Szymczak et al.

Two elementary operators play an important role in establishing the coreference
of objects: a comparison operator working at the level of object features (ormetadata
features, e.g., tags, paths) and an aggregation operator combining the comparison
scores obtained for particular features.

Definition 1 (Comparison operator) A comparison operator on the universe O is
defined by a function C:

C : O2 → L (10)

where (L,≤) is a totally ordered and bounded lattice.

A comparison operator C compares (a feature of) two objects o1 and o2 and
expresses the result of this comparison as a matching degree. This matching degree
may be interpreted as expressing how certain it is that both objects are coreferent
and belongs to a totally ordered and bounded lattice L. In the case of probabilistic
methods, L can be instantiated with the unit interval [0, 1] in order to express the
result of comparison as a probability of coreference of the objects. Other practical
examples of L are the set of truth values B = {T , F}, where T and F denote full
certainty of the match and mismatch, respectively or the set of possibilistic truth
values (PTVs) [2].

In our approach we use PTVs to express the confidence (certainty) in the validity
of themappings produced by an algorithm. Hereby, a PTV is a normalized possibility
distribution [30] defined over the set of Boolean values B [20]:

PTV �−→ π : B → [0, 1]

A PTV expresses the uncertainty about the Boolean value of a proposition p. We will
often use the notation μ(T) and μ(F) instead of π(T) and π(F) assuming that the
(un)certainty as to the truth of a proposition is expressed as “certainly true”, “true or
false” etc., represented by appropriate fuzzy sets in B; e.g., respectively, μ(T) = 1
and μ(F) = 0, and μ(T) = μ(F) = 1, for the previous examples. In the context
considered here, the propositions p of interest are of the form:

p ≡ o1 and o2 are coreferent

where o1 and o2 are two objects.
Let P denote a set of all propositions under consideration. Then each p ∈ P

can be associated with a PTV denoted p̃ = {
(T ,μp̃(T)), (F,μp̃(F))

}
, where μp̃(T)

represents the possibility that p is true and μp̃(F) denotes the possibility that p is
false. In what follows, PTVs are often noted in couple notation as (μp̃(T), μp̃(F)). It
is assumed that each PTV is normalized, which means that max(μp̃(T), μp̃(F)) = 1.
The domain of all possibilistic truth values is denoted F(B), i.e., is the fuzzy power
set of (normalised) fuzzy sets over B.
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Let us define the order relation ≥ on the set F(B) by:

p̃ ≥ q̃ ⇐⇒ if((μp̃(F) ≤ μq̃(F)) and (μp̃(T) = μq̃(T) = 1)) or (μq̃(T) ≤ μp̃(T))

(11)

Moreover, two thresholds (thresholdT and thresholdF) are employed to decide on
object coreference. Ifμp̃(F) is lower than the thresholdF , then coreference is declared.
If μp̃(T) is lower than the thresholdT , then a lack of coreference is declared. Finally,
if both of the thresholds are exceeded then the coreference status is declared as being
unknown.

Comparison of complex objects is usually a two-stage process. First, parts of
objects, notably values of their features, are compared using a comparison operator.
Thus, we extend our definition of the comparison operator (10) so as to make it
applicable also to scalar feature values:

Ci : U2
i → L (12)

In this way a separate comparison operator Ci can be defined for each feature. Then,
the results of those comparisons are aggregated to obtain an overall matching degree
reflecting the coreference of the whole objects being compared. Therefore, another
elementary operator, an aggregation operator, is needed.

Definition 2 (Aggregation operator) An aggregation operator on L is defined by a
function A:

A : Ln → L (13)

where (L,≤) is a totally ordered and bounded lattice.

For more information on aggregation operators the reader is referred to [5]. We
assume an aggregation operator A to be idempotent:

∀ l ∈ L : A(l, l, . . . , l) = l (14)

Besides that, we assume that A is monotone in the following sense:

∀ (l, l′) ∈ L
n × L

n : l ≤ l′ ⇒ A(l) ≤ A(l′) (15)

where the relation ≤ is generalized from L to vectors from L
n in a point wise way.

Based on the definition of these two elementary operators, a comparison of two
objects can be generally written as:

C(o1, o2) = n
A
i=1

(Ci (ui1, ui2)) (16)

where ui1 and ui2 denote the value of the ith feature of o1 and o2, respectively.
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In our approachL is the space of all PTVs endowedwith the relation given in (11).
Aggregation of PTVs may be carried out using the Sugeno integral for possibilistic
truth values as defined in [3]; cf. also [23] for the original, general definition of the
Sugeno integral. This integral uses two fuzzy measures (γT and γF) which are defined
below. Let us first remind briefly the definition of a fuzzy measure.

Definition 3 (Fuzzy measure) A fuzzy measure on a finite universeU is a set function
γ : P(U) → [0, 1] that satisfies the following properties:

γ(∅) = 0 (17)

γ(U) = 1 (18)

A ⊆ B ⇒ γ(A) ≤ γ(B) (19)

Then, in the context considered here, the measure γT (A) (resp. γF(A)) provides the
assessment of certainty that two complex objects are (not) coreferent, given that the
set of (metadata) features A are (not) coreferent. As required by the definition of
fuzzy measures, γT and γF are monotonic and satisfy the boundary conditions of a
fuzzy measure.

Definition 4 (Sugeno integral for PTVs [3]) Given a set of propositions P =
{p1, . . . , pn} and a corresponding set of PTVs P̃ = {p̃1, . . . , p̃n}, let γT and γF

be two fuzzy measures defined on P which satisfy the condition:

∀Q ⊆ P : min(γT (Q), γF(Q̄)) = 0 (20)

where Q̄ denotes the complement of Q.
Then the Sugeno integral of P̃ with respect to γT and γF is defined by:

SγT ,F (P̃) : F(B)n → F(B) : P̃ �→ p̃, where (21)

μp̃(T) = 1 −
n∨

i=1

Np̃(i)

(
F

)
∧ γF

(
P(i)F

)
(22)

and

μp̃(F) = 1 −
n∨

i=1

Np̃(i)

(
T
)

∧ γT
(

P(i)T

)
(23)

where (·)T (respectively (·)F) is a permutation that orders the elements of P̃ non-
increasingly (non-decreasingly), while P(i)F and P(i)T are sets of propositions pj with,
respectively, i largest values μp̃j (F) and i largest values μp̃j (T).
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Remark. The motivation to use PTVs and the Sugeno integral is the following. We
would like to show that taking into account similarity and dissimilarity of objects in
each step separately may be advantageous. In fact, De Cooman [7] has shown in his
formal analysis of PTVs that it is essential that possibilities for true and false can be
measured separately. To this aim, the aggregated PTVs indicate both the coreference
and the lack of coreference of paths/schemas. The choice for the Sugeno integral
is motivated by the ability of the related fuzzy measures to model complex prefer-
ences in the regular case, making the Sugeno integral a very powerful and flexible
aggregation operator [3]. The research on the aggregation of bipolar information
(here: for and against the coreference) is not that developed in the literature and the
Sugeno integral is a prominent example of an aggregation operator adopted for this
setting. Besides that, the experimental results confirm that this is a promising choice.
An alternative aggregator can be, e.g., an OrderedWeighted Conjunction (OWC) [2]
which is in fact a special case of the Sugeno integral.

3.4 Cardinality of a Set of Pairs of Coreferent Objects

In this paper we will often use (multi)sets of Boolean propositions, certainty of truth
of which will be expressed with a PTV associated with each proposition. We will
then use the concept of a kind of the cardinality of such a (multi)set which counts
those propositions fully certain to be true (i.e., with a PTV (1, 0) assigned) as 1,
does not count at all propositions fully certain to be false (i.e., with a PTV (0, 1)
assigned), and counts the remaining propositions to some degree belonging to [0, 1]
and depending on how their PTVs are close to (1, 0) or (0, 1). In fact, this cardinality
is similar to a fuzzy cardinality of fuzzy sets and will be expressed as a possibility
distribution on the set of integers.Wewill denote this cardinality as πN (provided that
from the context it will be clear which set of propositions it concerns). We will call
it also sometimes as a fuzzy integer due to the fact that its possibility distribution is
assumed to be a convex function, in the same sense as membership functions of fuzzy
numbers are assumed, i.e., every α-cut of this function (interpreted as a membership
function of a fuzzy set) is an interval, i.e., contains all integers between the lowest
and highest integers belonging to this α-cut.

In [12], a method is proposed to construct such a possibility distribution (fuzzy
integer) for a (multi)set of propositions associated with PTVs P̃. In fact, this method
may be treated as constructing a possibility distribution which expresses the possi-
bility that an integer k represents the number of true propositions in P.

Definition 5 (Cardinality of a set of PTV qualified propositions) Let P be a multiset
of independent Boolean propositions and let P̃ be the multiset of corresponding
possibilistic truth values, i.e., ∀p ∈ P : p̃ is the PTV associated with p and expressing
the (un)certainty as to the truth of p and let p̃(i) denote the ith largest possibilistic
truth value with respect to the order relation defined by Eq.11. The quantity of true
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propositions in P is given by the following possibility distribution on the set of all
integers (fuzzy integer):

πN(k) =
⎧
⎨

⎩

μp̃(1) (F), k = 0
μp̃(k)

(T), k = |P|
min

(
μp̃(k)

(T),μp̃(k+1) (F)
)
, else.

(24)

This definition states that πN(k) is the minimum of the possibility that at least k
propositions are true and the possibility that at least |P| − k propositions are false.

Let us define an order relation ≺sup on the set of such possibility distributions
(fuzzy integers).

Definition 6 (Sup-order of fuzzy integers) For two fuzzy integers, ñ and m̃, the order
relation ≺sup is defined as:

ñ ≺sup m̃ ⇔ sup ñα < sup m̃α (25)

Hereby, ñα is the α-cut of ñ, which is treated here as a fuzzy set, and α is chosen
such that:

α = sup{x| sup ñx �= sup m̃x} (26)

4 Content Data-Based Schema Matching

Before we continue to describe our method for schema matching, first of all we
should define the problem more formally.

4.1 Problem Definition

Within the scope of this paper it is assumed that entities from the real world are
described as objects (tuples) which are characterised by a number of attributes (fea-
tures). A schema R of a given dataset, which consists of tuples, is identified by a
set of attributes A. For each attribute a ∈ A, let dom(a) denote the domain of a (the
set of possible values for attribute a) and let dom′(a) denote the subset of dom(a)

comprising the values of a that are actually present in the (tuples of the) dataset.
Two datasets are considered. The source dataset over the schema RS with the

set of attributes AS = {aS
1, . . . , aS

n} is denoted as S, while the target dataset over
the schema RT with the set of attributes AT = {aT

1 , . . . , aT
m} is denoted as T . The

one-to-many schema matching is defined as follows.
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Definition 7 (One-to-many schema matching) A relationM is a schemamatching if:

M ⊆ 2AS × 2AT × M̃ (27)

where M = {mi} = {(A′
S, A′

T , m̃)}, A′
S ⊆ AS , A′

T ⊆ AT and A′
S or A′

T is a singleton
set, M̃ is the set of PTVs and m̃ ∈ M̃ expresses the certainty degree to which A′

S
matches A′

T .

Some additional properties may be associated with each matching m ∈ M. For
example, the local matching cardinality, denoted cardl

m, is the number of matched
attributes in m, i.e., cardl

m = |A′
S| + |A′

T | (e.g., cardl
m is equal to 2 for a one-to-one

matching).Moreover, particular matchings may be classified to a type. The following
matching types are distinguished:

• full matching (coverage level 1): corresponding attributes have the same meaning
and cover completely the same concept, e.g., “Name” and “POI” or “Type” and
“Category” in Fig. 1;

• inclusion matching (coverage level 0.5): corresponding attributes have partially
the same meaning and do not cover completely the same concept, e.g., “Address”
in the source S in Fig. 1 represents the address of a POI which consists of a street,
house number, city and zip code, and this is a part of the concatenation of the
attributes “Street”, “City” and “ZipCode” in the target T in Fig. 1, which consists
of the same information as address from the source but is extended by a country
code. “Street” in the target T in Fig. 1 represents only a part of the address from
the source. Thus, two sub-types of matching are considered: the source is a part
of the target and the target is a part of the source, respectively;

• has a common part matching (coverage level 0.3): corresponding attributes have
partially the same meaning, do not cover completely the same concept and are
not an inclusion matching. E.g., the matching between “Address” in the source
S and “ZipCode” in the target T in Fig. 1. “Address” represents the address of a
POI which consists of a street name, house number, city and zip code without the
country code; while “ZipCode” in the target T in Fig. 1 represents the zip code
and country code of a POI, thus only the zip code is a common part.

• unknown (coverage level 0): if attributes do not match.
• concatenation. This is a special case of attribute matching which combines two or
more attributes. Combining matching types might result in another matching type.
For instance, a combination of two inclusion matchings may give a full match-
ing (of attributes) or an inclusion matching. E.g., let assume inclusion matchings
between attributes from the source S and the target T in Fig. 1: “Address” and
“Street”; “Address” and “City”; “Address” and “ZipCode”. Concatenation of these
matchings gives a full matching.

The matching m ∈ M can be interpreted as a one-to-one matching of correspond-
ing attributes if the cardinalities of A′

T and A′
S are equal to 1 or as a one-to-many

matching of corresponding attributes if the cardinalities ofA′
T orA′

S are greater than 1.
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Furthermore, in the context of a one-to-many schema matching M, we consider
a set D of coreferent tuple pairs which is defined as follows.

Definition 8 (A set D of coreferent tuple pairs) A set D of coreferent tuple pairs
consists of 4-tuples d = (tS, tT , MV , d̃) where tS and tT are coreferent tuples from
the source and target datasets, respectively, MV is a set of attributes matchings for
which there are coreferent values in both particular tuples tS and tT , and d̃ is a PTV
representing the (un)certainty that two tuples tS ∈ S and tT ∈ T are coreferent.

4.2 Algorithm

The novel content data-based schema matching Algorithm 1 creates matchings
between corresponding attributes AS and AT of the source dataset S and the target
dataset T , respectively, using content data. Therefore, the inputs for the algorithm
are the source and target datasets (S and T , respectively), and a set of parameters
(PV and PH for each phase) which are used to establish a schema matching. The
objective of our algorithm is to establish as many valid one-to-one or one-to-many
schema matchings M for coreferent attributes as possible.

Algorithm 1 SchemaMatchingAlgorithm

Require: Dataset S, Dataset T , Parameters PV , Parameters PH
Ensure: Schema Matching M
1: MV ← getVerticalMatchings({dom′(aS)}aS∈AS

, {dom′(aT )}aT ∈AT
,PV )

2: M ← getHorizontalMatchings(S,T ,MV ,PH )

TheAlgorithm1 is composedof twomainphases. First, vertical schemamatchings
are established by the method getVerticalMatchings which compares the domains
of particular attributes (line 1 in Algorithm 1, which is further discussed in Sect. 5).
Second, the established vertical matchings MV are used to detect coreferent tuple
pairs in the heterogeneous data sources which, in turn, constitute a basis to generate
horizontal schema matchings M by using the method getHorizontalMatchings (line
2 in Algorithm 1, which is further discussed in Sect. 6). These steps are described in
detail in the following sections.

5 Phase I: Vertical Matching

The first phase of our novel schema matching approach is the generation of one-
to-one and one-to-many vertical matchings between corresponding attributes. These
matchings are established by Algorithm 2 based on statistical analysis and lexical
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comparison of attribute domains. Thus the input for the algorithm are the subsets
of the domains consisting of these values that actually occur in tuples of respective
datasets, {dom′(aS)}aS∈AS

and {dom′(aT )}aT ∈AT , and also a setPV of parameters which
define the thresholds and submatcher settings and is detailed further on. This phase
consists of three steps.

In the first step, “Statistical analysis of content data”, the subsets of the attribute
domains are statistically compared by the statistical matcher, and if particular subsets
are coreferent, then the matching between their corresponding attributes is estab-
lished (lines 2–18 in Algorithm 2); otherwise the attribute domains are lexically
compared in the second step called “Overlapping” by the lexical matcher (lines 19–
25 inAlgorithm 2).More specifically, each pair of attributes is processed sequentially
by the following techniques. First, the results of the statistical analysis of the subsets
of the attribute domains (such as the analysing the average length, average values,
called attribute properties) are compared, which is a relatively computationally non-
expensive statistical technique. Second, only if coreference between two attributes
is not declared then the intersection of the subsets of their domains, which are rep-
resented by multisets of terms, is calculated based on the equality relation, i.e., two
terms are added to the intersection if they are equal. Thus, two attributes are con-
sidered as coreferent if a cardinality of the intersection exceeds threshold. Third,
if coreference between the attributes is still not declared, then the subsets of their
domains are calculated analogously to the second technique but based on the low-
level string comparison technique [2] instead of the equality relation. This is the
most computationally expensive method of the three, but it is also the most valuable
because non-equal but coreferent terms can be detected. The established matchings
are added to the set M1:1

V of the one-to-one schema matchings. Next, in the third
step, called “Generalization”, from the established one-to-one schema matchings
in M1:1

V , a one-to-many schema matching (∈ M1:n
V ) is generated (line 28 in Algo-

rithm 2). Finally, the vertical schema matching MV is composed of the one-to-one
schema matchings M1:1

V and the one-to-many schema matchings M1:n
V (line 29 in

Algorithm 2). These steps are described in detail in the following subsections.

5.1 Step 1: Statistical Analysis of Content Data

In the first step the attribute domains of each schema are statistically analysed sep-
arately using predefined Data Analysers PV .AN (lines 2–8 in Algorithm 2). This
returns a set of properties for each attribute which are considered as a basis for some
heuristics for determining the coreference of attributes. There is a large body of work
of such properties and heuristics [13–15, 22]. Thus, we give only some examples of
such properties and also give an example of an application. These aspects are subject
to further research and outside the scope of the work. The proposed examples of such
heuristics are the following:
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Algorithm 2 VerticalMatchingAlgorithm

Require: {dom′(aS)}aS∈AS
, {dom′(aT )}aT ∈AT

, Parameters PV
Ensure: Schema Matching MV
1: Schema Matching M1:1

V ← null
2: Properties PS[], PT []
3: for all aS ∈ AS do
4: PS[aS] ← getProperties(dom′(aS),PV .AN)
5: end for
6: for all aT ∈ AT do
7: PT [aT ] ← getProperties(dom′(aT ),PV .AN)
8: end for
9: for all aS ∈ AS do
10: for all aT ∈ AT do
11: Matching m ← null
12: if compareStats(PS[aS],PT [aT ]) > PV .thrStats then
13: m.A′

S ← aS

14: m.A′
T ← aT

15: m.πN ← π1
N

16: M1:1
V ← M1:1

V ∪ m
17: continue
18: end if
19: m.πN ← compareDom(dom′(aS),dom′(aT ),PV )
20: FuzzyInteger πthr

(domS ,domT )
← getThr(PV .thrOverlap)

21: if πthr
(domS ,domT )

≺sup m.πN then

22: m.A′
S ← m.A′

S ∪ aS

23: m.A′
T ← m.A′

T ∪ aT

24: M1:1
V ← M1:1

V ∪ m
25: end if
26: end for
27: end for
28: Schema Matching M1:n

V ← getGeneralization(M1:1
V )

29: MV ← M1:1
V ∪ M1:n

V

• average, minimum and maximum length as a number of characters in a value
without white spaces (numbers are considered as character strings, e.g., telephone
numbers, bank accounts, etc.);

• average, minimum and maximum number of tokens for alphabetic and alphanu-
merical data types. Each value is tokenised, which results in a set of substrings
which are called tokens. In most cases, the tokens are separate words. In our
approach, the tokenisation of a value is equivalent to subdividing the value in a
multiset of tokens and deleting all white spaces in a value;

• average, minimum and maximum value for numerical data types;
• data type: numerical (values contain only numbers), alphabetic (values contain
only letters and special characters), alphanumerical (values contain any charac-
ters);
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Next, attributes aS and aT that have similar properties are considered as potentially
coreferent (candidate attributes, line 12 in Algorithm 2) and the establishedmatching
m between them is added to the set of matchings M1:1

V (lines 13–16 in Algorithm 2,
similarity for all properties is assumed here). The statistical criteria are very strict,
thus this matching is assigned a full certainty which is expressed by the fuzzy integer
π1
N
that∀x ∈ Nπ1

N
(x) = 1.Thebasis to decide if properties are similar is the similarity

function. We use a simple function that calculates the similarity of properties for
particular attributes as a normalised difference of property values. The returnedvalues
are within the unit interval [0, 1], where 1 means strong similarity and 0 means a
complete lack of similarity. Properties with a similarity above threshold PV .thrStats
are considered to be similar. The similarity function is defined by Eq. (28) and is
applied for all properties, except for data type property which is considered similar
only if compared data types are the same.

simProp(aS, aT ) = 1 − |propVal(aS) − propVal(aT )|
|propVal(aS)| + |propVal(aT )| (28)

Hereby aS ∈ AS and aT ∈ AT , and propVal is a method which gets the value of
a particular property, e.g., the maximum length of the values for an attribute aS

(or aT ).

Remark. Information from the schema, e.g., maximum value, etc., is not consid-
ered because it might be too general and may mislead the matching algorithm. For
instance, let assume a database of students with an attribute “Age” of type INTEGER
in the range of −231 to 231 − 1. This statistical analysis of the values of the attribute
“Age” which are actually present in the database may return a range of 20–29. This
information can be more useful than data type restriction which is defined in the
database schema.

Example Let us consider the attributes from the source dataset in Table1 and the
target dataset in Table2. The calculated properties of the subsets of the attribute
domains from these datasets are presented in Tables3 and 4, respectively. Next, the
similarities between these properties are calculated by Eq.28, e.g., for the attributes
aS = “Lon” and aT = “Geo2” we obtain:

MinLength: simProp(aS, aT ) = 1 − |8−8|
|8|+|8| = 1

MaxLength: simProp(aS, aT ) = 1 − |8−8|
|8|+|8| = 1

AvgLength: simProp(aS, aT ) = 1 − |8−8|
|8|+|8| = 1

MinValue: simProp(aS, aT ) = 1 − |3.657992−3.657975|
|3.657992|+|3.657975| = 0.999998

MaxValue: simProp(aS, aT ) = 1 − |4.050876−3.722015|
|4.050876|+|3.722015| = 0.957691

AvgValue: simProp(aS, aT ) = 1 − |3.756594−3.701370|
|3.756594|+|3.701370| = 0.992595

(29)

Assuming that the thresholdPV .thrStats is equal to 0.8, these attributes are considered
as being coreferent because the similarity of all properties of these attribute domains
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Table 3 Properties of attribute domains from the source dataset in Table1

Property Name Lon. Lat. Category Address

Min length 10 8 9 5 27

Max length 23 8 9 15 44

Avg length 14.86 8 9 8 31.36

Min #tokens 2 – – 1 3

Max #tokens 4 – – 2 5

Avg #tokens 2.38 – – 1.13 3.86

Min value – 3.657992 50.984194 – –

Max value – 4.050876 51.281777 – –

Avg value – 3.756594 51.064419 – –

Data type str num num str str-num

Num means numerical datatype, str means alphabetic data type, and str-num means alphanumeric
datatype

Table 4 Properties of attribute domains from the target dataset Table2

Property POI Geo1 Geo2 Type Street City ZipCode

Min
length

12 9 8 5 15 4 7

Max
length

21 9 8 10 20 17 7

Avg
length

16.17 9 8 8.83 18.17 7.17 7

Min
#tokens

1 – – 1 1 1 2

Max
#tokens

3 – – 2 3 1 2

Avg
#tokens

2.16 – – 1.17 2.16 1 2

Min value – 51.018938 3.657975 – – – –

Max value – 51.056465 3.722015 – – – –

Avg value – 51.044901 3.701370 – – – –

Data type str num num str str-num str str-num

Num means numerical datatype, str means alphabetic data type, and str-num means alphanumeric
datatype

exceeds 0.8. The same holds for the attribute pair “Lat” and “Geo1”. Thus, these two
attribute pairs determine two one-to-one matchings which are added to the set M1:1

V
of one-to-one matchings. However, the other attribute pairs are not coreferent based
on the statistical information, therefore they are further processed in the next step of
our algorithm.
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5.2 Step 2: Overlapping

The attributes aS and aT , whose statistical properties are not similar enough, are con-
sidered in this step. More specifically, a lexical comparison of the subsets dom′(aS)

and dom′(aT ) of the attribute domains is conducted using soft strings comparison.
For that purpose, the method compareDom is used which works as follows (lines
19–25 in Algorithm 2).

First, special characters that appear in the values of dom′(aS) and dom′(aT ), i.e.,
dash, semicolon, dot, etc., are replaced by a space character, which results in strings
of terms separated by space. This way, each attribute is described by a multiset of
obtained terms (WaS and WaT , respectively). Next, the intersection I of thesemultisets
is calculated according to formula (3). Thus, multiset I contains the common terms of
WaS and WaT , which are assigned a PTV (1, 0) and are the basis for further checking
whether the particular attributes aS and aT are coreferent or not. Namely, these
associated PTVs multiplied by the term multiplicity form a multiset P̃ which is used
to construct a possibility distribution πN (a fuzzy integer) introduced in Definition 5.

The fuzzy integer πN of intersection I reflects the possibility that two attribute
domains are coreferent. Hence, if πN is greater than the threshold πthr

(domS ,domT )
with

respect to the order relation of Definition 6, then the attributes aS ∈ AS and aT ∈ AT

are considered to be potentially coreferent (candidate attributes, line 21 in Algo-
rithm 2), and the established matching m between them is added to the set M1:1

V of
matchings (lines 22–24 in Algorithm 2). The threshold πthr

(domS ,domT )
is a fuzzy integer

and is dynamically calculated by the method getThr (lines 20 in Algorithm 2). This
threshold depends on the particular attribute domains and the predefined parameter
PV .thrOverlap, which specifies the percentage of domain terms that overlap. More
specifically, πthr

(domS ,domT )
is constructed from n PTVs (1, 0), where n is calculated by

the following equation:

n = �min(|WaS |, |WaT |) × PV .thrOverlap� (30)

However, if a fuzzy integer m.πN of matching is not larger than the threshold
πthr

(domS ,domT )
, then the domains of the considered attribute aS and aT are analogously

compared again, but the equalness relation, which decides on the coreference of the
terms, is replaced by the low-level string comparison method proposed in [2]. This
low-level comparison method estimates the possibility that two given terms (strings)
are coreferent or not and is based on an approximation of weak string intersections
which is the set of longest common subsequences. It uses the concept of a moving
window to construct the intersection of the two input strings. More specifically, the
algorithm starts at the beginnings of both strings of a pair and moves a window over
each of them. Each time common characters are detected under the moving windows
they are added to the intersection, which is the largest set (in terms of set cardinality)
that is a subset of both strings.

For example, consider a pair of strings s1 = tracks and s2 = tracklist. The con-
struction of the intersection goes then as follows. We start with two one-character
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wide windows. Initially each window is at the beginning of a respective string and
contains a character ‘t’. This character is common so it is added to the intersection
and both windows move to their next position. Similarly for ‘r’, ‘a’, ‘c’ and ‘k’. In
the next step the windows contain different characters, ‘s’ and ‘l’, respectively. Thus,
the window size is increased by one. This is repeated until the windows contain a
common character, here ‘s’, or there are no more characters in both of the strings.
Next, the common character is added to the intersection, windows are shrunk to
one character and moved to the position where the common character was found
increased by 1. This construction of the intersection is repeated until the windows
reach the ends of strings. Finally, the resulting intersection is ‘tracks’. The non com-
mon characters are counted (considered as errors) and decrease possibility that steps
are coreferent.

This methodmarks out four different types of errors during comparison. These are
prefix, suffix, gap and mismatch. The prefix is an error where one of the input strings
contains a prefix before the matched substring, for instance a letter ‘d’ is a prefix for
dtitle and title. Analogously for suffix. The gap consists of missing characters in the
middle of a string, for instance ‘li’ is a gap and ‘t’ is a suffix for strings tracklist and
tracks. Finally, a mismatch is an unmatched character in both strings. These errors
have different importance and influence on the final matching result. Because of
that, the importance of each error type is expressed by predefined weights between
0 and 1 and are problem dependent. The higher the weight of an error the lower
degree of matching of two strings for which such an error occurs. In our case, where
abbreviations are very popular, the crucial error types are prefix and mismatch so
their weights are set to 1, gap has a weight 0.3 and suffix 0.1 is the minor error.

Our algorithm then compares pairs of strings from the domains of the considered
attribute aS and aT . It generates PTVs which express the uncertainty about the coref-
erence of the compared strings as described above. The possibility that a proposition
p, stating that two strings are coreferent, is true (μp̃(T)) and the possibility that p is
false (μp̃(F)) are calculated by the following equations:

μp̃(T) = possT

factor
(31)

μp̃(F) = possF

factor
(32)

where possT, possF and factor equal:

possT = |intersection|
max(s1.length, s2.length)

(33)

possF =
|errors|∑

i=0

(errorsi.size × wi) (34)
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factor = max(possT , possF) (35)

where |intersection| denotes the number of common characters, an |errors| is the
number of types of the errors, errorsi.size is the number of the errors of a given type.

On the one hand, possT is the ratio between the number of characters that are
found to be common for a pair of strings (cardinality of the intersection) and the
length of the longer string. On the other hand, possF is computed as the sum of the
product of the number of the errors of a given type (from errors that are found during
comparison) and predefined weight wi of specific error type. Finally, factor is the
maximum of possT and possF and is used to normalize both possibilities.

Two terms are considered as coreferent if μp̃(F) of the resulting PTV is lower
than μp̃(F) of the predefined threshold PV . ˜thr (see Sect. 3.3).

This terms comparisonmethod thus takes into account misspellings and abbrevia-
tions and, moreover, has a low computational complexity. This technique was chosen
due to its efficiency [2]. In the literature a multitude of algorithms for string com-
parison has been proposed and these may also be employed here. An example of an
interesting survey concerning strings in general is [11]. An example of an approach
employing fuzzy logic which might also be of interest to the reader is [31].

Example Let us consider the attribute aS = “Address” from the source dataset in
Table1 and the attribute aT = “City” from the target dataset in Table2. Let us assume
that these attributes have not been indicated as coreferent based on the analysis carried
out in Step 1. After preprocessing the subset dom′(aS) of the attribute domain, the
resulting multiset WaS contains the terms: “Sint-Baafsplein” (multiplicity 2), “9000”
(3), “Ghent” (4), “Hoegaarden” (1), “St-Denijs-Westrem” (1), “Gentstraat” (1), etc.
Whereas, the multiset WaT of the subset dom′(aT ) of the attribute domain consists
of the terms: “Gent” (4), “Hoegaarden” (1) and “St-Denijs-Westrem” (1). Next, the
intersection I of the multisets WaS and WaT is calculated which contains two terms,
“Hoegaarden” and “St-Denijs-Westrem”, both with a multiplicity equal to 1 (the
multiplicity of an element in the intersection of two multisets is the minimum of the
multiplicities of that element in both multisets, see Sect. 3.2). Both returns are given
an associated PTV (1, 0). Thus, the fuzzy integer of this intersection is constructed
from the multiset of PTVs {(1,0); (1,0)} by Eq.24.

Figure2 (the top left-most graph) shows the multiset of possibilistic truth values,
where a circle denotes the possibility of T and a triangle denotes the possibility of
F. The derived possibility distribution πN (the fuzzy integer) is shown below the
possibilistic truth values. The middle graph of Fig. 2, in turn, shows the multiset
of PTVs which are used to construct the threshold πthr

(domS ,domT )
which depends on

the particular attribute domains and the predefined parameter PV .thrOverlap and
is shown in the graph below the multiset of PTVs. Following the specification, the
multiset of PTVs which is used to construct the threshold πthr

(domS ,domT )
consists of n

PTVs equal to (1, 0), where n is calculated by Eq.30 with PV .thrOverlap = 0.35
and equals to n = �min(33, 6) × 0.35� = 2. The fuzzy integer πN is not larger than
πthr

(domS ,domT )
(w.r.t. Definition 6), because the 1-cuts of both fuzzy integers have the

same supremum equal 2. So, the domains of the considered attributes aS and aT are
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Fig. 2 Fuzzy integers derived from the possibilistic truth values of the attribute matching
(“Address”; “City”) based on the equality relation, the threshold πthr

(domS ,domT )
and the attribute

matching (“Address”; “City”) based on the low-level string comparison method

next compared using the low-level string comparison method with μp̃(F) = 0.5 as
the predefined threshold PV . ˜thr. That comparison returns an intersection I , which
consists of the following elements: (“Gentstraat”, “Gent”) with an associated PTV (1,
0.3) and multiplicity 1; (“Ghent”, “Gent”), (1, 0.12), 4; (“St-Denijs-Westrem”, “St-
Denijs-Westrem”), (1, 0), 1; and (“Hoegaarden”, “Hoegaarden”), (1, 0), 1. Figure2
(the right-most top graph) shows themultiset of PTVs {(1,0); (1,0); (1,0.12); (1,0.12);
(1,0.12); (1,0.12); (1,0.3)}, which are used by Eq.24 to construct a fuzzy integer πN

and is shown below the PTVs in Fig. 2. Now, it turns out that, the fuzzy integer
πN is larger than the threshold πthr

(domS ,domT )
(w.r.t. Definition 6), because the 1-cut of

the right-most fuzzy integer has a higher supremum, equal 7, than the middle fuzzy
integer threshold, which has the supremum2. This is the same fuzzy integer threshold
as above because it depends on the same particular attribute domains—we consider
the same attributes. Thus, the attributes “Address” and “City” are considered as being
potentially coreferent and the established matching m between them is added to the
set M1:1

V of matchings.

5.3 Step 3: Generalization

The last step of the vertical matching phase derives a one-to-many schema matching
M1:n

V by using the method called getGeneralization based on one-to-one schema
matching M1:1

V (line 28 in Algorithm 2). Afterwards, the vertical schema matching
MV is composed of the schema matching M1:n

V and M1:1
V (line 29 in Algorithm 2).

The method getGeneralization is implemented by the Algorithm 3 which works as
follows.
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The input schema matching M1:1
V , which is generated in steps 1 and 2 (Sects. 5.1

and 5.2, respectively), is the basis to generate a set M ′
1:n of one-to-many matchings

by combining a number of one-to-one matchings which have the same attribute from
AS or AT , i.e., a one-to-many matching has either the form: (line 1 in Algorithm 3):

(
A, aT

j

)
, where A ⊆ AS ∧ |A| ≥ 2 ∧ ∀aS

i ∈ A ∃ (
aS

i , aT
j

) ∈ M1:1
V (36)

or, (
aS

i , A
)
, where A ⊆ AT ∧ |A| ≥ 2 ∧ ∀aT

j ∈ A ∃ (
aS

i , aT
j

) ∈ M1:1
V (37)

Afterwards, for each matching m1:n ∈ M ′
1:n, the extended domains are compared

by the compareDom method (line 3 in Algorithm 3). This is done analogously as
in the “Overlapping” step of Sect. 5.2. An extended domain is constructed by the
method getDom and contains concatenated values of all attributes that are specified
in the parameters, i.e., of all attributes forming the set A in m1:n (cf. (36) and (37)).
The values are concatenated one by one and separated with a white space into a new
value which belongs to the extended domain.

Next, alternative matchings M1:1
alt ⊆ M1:1

V are selected by the method getAlterna-
tives (line 4 in Algorithm 3). An alternative matching m1:1 ∈ M1:1

alt for m1:n should
have at least one attribute in common with the matching m1:n ∈ M ′

1:n, i.e., (a
S
k , aT

l ) is
an alternative matching with respect to (A, aT

j ) if aS
k ∈ A or aT

l = aT
j , and similarly

for (aS
i , A). Finally, if the fuzzy integer πN of the one-to-manymatching m1:n is larger

(w.r.t. Definition 6) than the fuzzy integer of any alternative matching m1:1 ∈ M1:1
alt

(line 6 in Algorithm 3), then the matching m1:n is added to the schema matching M1:n
V

(line 7 in Algorithm 3).

Algorithm 3 GeneralizationAlgorithm

Require: Schema Matching M1:1
V

Ensure: Schema Matching M1:n
V

1: Schema Matching M ′
1:n ← getCombination(M1:1

V )
2: for all Matching m1:n ∈ M ′

1:n do
3: m1:n.πN ← compareDom(getDom(m1:n.A′

S),getDom(m1:n.A′
T ))

4: Schema Matching M1:1
alt ← getAlternatives(M1:1

V ,m1:n)
5: for all Matching m1:1 ∈ M1:1

alt do
6: if m1:1.πN ≺sup m1:n.πN then
7: M1:n

V ← M1:n
V ∪ m1:n

8: break
9: end if
10: end for
11: end for

Remark. This generalization is specified for alphanumerical data, where numerical
data are considered as character data. For numerical data more sophisticated con-
catenation method (such as aggregation or transformation function, e.g., a function
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Table 5 Example of the
vertical schema matching
M1:1

V

Matching m Source Target

1 Name Type

2 Name POI

3 Lon. Geo2

4 Lat. Geo1

5 Category Type

6 Key Id

7 Address ZipCode

8 Address Street

9 Address City

which calculates average value) of values of all attributes that are specified in the
matching parameters, i.e., of all attributes forming the set A in m1:n (cf. (36) and
(37)), is required and it is out of the scope of this paper.

Example Let us consider the one-to-many matching m1:n ∈ M ′
1:n as a combination

of the one-to-one matching M1:1
V in Table5. Namely, m1:n establishes a matching

of the attribute aS = “Address” (aS ∈ AS) from the source dataset in Table1 and
the attributes A′

T = {“Street”, “City”, “ZipCode”} from the target dataset in Table2
(A′

T ⊆ AT ). This matching is derived as a combination of the one-to-one (candidate,
alternative) matchings 7, 8 and 9 of Table5.

First, the extended domains are constructed by using the method getDom. These
domains contain the values of all attributes forming the set A in a one-to-many
matching; cf. (36) and (37). The extended domain domext(A′

S) = dom(aS) =
dom(“Address”) contains the values: “Sint-Baafsplein, 9000 Ghent”, “Grotestraat
91, 7471 BL Goor”, “Jan Breydelstraat 35, 9000, Ghent”, etc. The extended domain
domext(A′

T ) = domext({“Street”, “City”, “ZipCode”}) contains the concatenated val-
ues: “Emile Braunplein Gent 9000 BE, “Sint-Baafsplein Gent 9000 BE”, “Jan Brey-
delstraat 35 Gent 9000 BE”, etc. Both extended domains domext(A′

S) and domext(A′
T )

are compared by the compareDom method just as in the “Overlapping” step in
Sect. 5.2. More specifically, after preprocessing the attribute domains, the multi-
set WA′

S
= WaS contains the terms: “Sint-Baafsplein” (multiplicity 2), “9000” (3),

“Ghent” (4), “Hoegaarden” (1), “St-Denijs-Westrem” (1), “Gentstraat” (1), etc. The
multiset WA′

T
contains the terms: “BE” (6), “Gent” (4), “9000” (4) “Hoegaarden”

(1), “St-Denijs-Westrem” (1), “Sint-Baafsplein” (1), etc. Next, the intersection I of
these multisets is determined which contains the terms: “Kleine” with associated
PTV (1, 0) and multiplicity 1; “Gentstraat”, (1, 0), (1); “24”, (1, 0), (1); “5”, (1, 0),
(1); “69”, (1, 0), (1); “3320”, (1, 0), (1); “9051”, (1, 0), (1); “Schouwburgstraat”, (1,
0), (1); “9000”, (1, 0), (4); “Stoopkensstraat”, (1, 0), (1); “Sint-Baafsplein”, (1, 0),
(1); “Jan”, (1, 0), (1), “St-Denijs-Westrem”, (1, 0), (1); “Hoegaarden”, (1, 0), (1). All
associated PTVs are (1, 0) because all the compared terms are equal. Next, the fuzzy
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Fig. 3 Fuzzy integers derived from possibilistic truth values of the attribute matching (“Address”;
“Street”, “City”, “ZipCode”)

integer expressing the cardinality of the multiset of matching terms is constructed
from the resulting multiset of PTVs multiplied by the term multiplicity by Eq.24.

Figure3 shows the set of possibilistic truth values, where a circle denotes the
possibility of T and triangle denotes the possibility of F. The derived possibility
distribution πN (the fuzzy integer) is shown below the possibilistic truth values.

Next, alternative matchings M1:1
alt ⊆ M1:1

V are selected by the method getAl-
ternatives, i.e., one-to-one matchings that have at least one attribute in common
with the constructed one-to-many matching m1:n. Namely, (“Address”; “ZipCode”),
(“Address”; “City”), and (“Address”; “Street”). Finally, it turns out that the fuzzy

Fig. 4 Fuzzy integers derived from possibilistic truth values of the alternative attribute matchings
for the attribute “Address”: (“Address”; “City”), (“Address”; “Street”) and (“Address”; “ZipCode”)
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integer πN related to the one-to-many matching m1:n is larger than the fuzzy integer
(w.r.t. Definition 6) related to each alternative matching in Fig. 4, because the 1-cut
of the fuzzy integer resulting from concatenation m1:n has a higher supremum (17 in
Fig. 3) than the fuzzy integers of the alternative matchings (2, 9, 6, respectively in
Fig. 4). So, the matching m1:n is added to the schema matching M1:n

V .
Finally, the union of sets of matchings M1:1

V and M1:n
V forms the final set of can-

didate matchings MV , which is the basis to detect coreferent tuples and to establish
the final matching between corresponding attributes in the next phase.

6 Phase II: Horizontal Matching

In this phase, the candidate vertical schema matching MV from the previous phase
is used to establish the horizontal schema matching M by the method getHorizon-
talMatchings (line 2 in Algorithm 1). More specifically, in step 1 of this phase the
vertical schema matching MV is used to efficiently detect coreferent tuples across
heterogeneous data sources (Sect. 6.1). This significantly reduces the number of com-
parisons and the complexity of the approach and in turn is the basis for generating
the final schema matching in the second step of this phase (Sect. 6.2). The following
subsections describe both steps of the horizontal matching phase.

6.1 Step 1: Coreferent Tuples Detection

The coreferent tuples detection Algorithm 4 for schema matching searches for the
n-most coreferent tuple pairs D across tuples in the source dataset S and the target
dataset T using the candidate vertical schema matching MV as follows. First, each
tuple from the source is compared with each tuple from the target. More precisely,
the values of the corresponding attributes, which are matched by MV , are compared
by the method compareTuples (line 3 in Algorithm 4) which inter alia calculates
the possibility that two given tuples are coreferent (expressed by a PTV denoted
as d̃) and returns a pair of coreferent tuples d. The details of this comparison are
presented in Algorithm 5 and described in the next Paragraph “Tuples comparison”.
Next, coreferent tuple pair d is added to the set D of coreferent tuple pairs (line 4
in Algorithm 4). Finally, the detected coreferent tuple pairs d ∈ D are sorted by d̃
using Eq.11 and the PH .n most coreferent tuple pairs are the result of this algorithm
(line 7 and 8 in Algorithm 4, respectively). Using a fixed threshold on the matching
degree would be unreasonable because the (un)certainty of tuples coreference varies
along with the number of corresponding attributes [1], i.e., if only a few attributes
are truly coreferent then the certainty will be low. Thus, instead, our method ranks
coreferent tuple pairs by their PTVs and gets the n-most coreferent tuple pairs. It has
to be clear that the goal is not to detect all coreferent tuples. These coreferent tuple
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pairs serve as the basis to establish horizontal schema matching, what is discussed
in the next Sect. 6.2.

Algorithm 4 CoreferentTupleDetectionAlgorithm

Require: Dataset S, Dataset T , Schema Matching MV , Parameters PH
Ensure: n-most Coreferent Tuple Pairs D
1: for all Tuple tS ∈ S do
2: for all Tuple tT ∈ T do
3: Coreferent tuple pair d ← compareTuples(tS ,tT ,MV ,PH )
4: D ← D ∪ d
5: end for
6: end for
7: D ← sort(D)
8: D ← getMostCoreferent(PH .n,D)

Tuples Comparison A comparison of two tuples is conducted by Algorithm 5 and
works as follows. First, the input tuples tS and tT from the source dataset and the
target dataset, respectively, form a pair of candidate coreferent tuples (d.tS, d.tT )

(line 1 and 2 in Algorithm 5, respectively). Second, a comparison of attribute values
for eachmatchingm ∈ MV computed in the previous stepworks as follows. An initial
matching d.m is initialized as a copy of amatchingm (line 4 inAlgorithm5).Next, for
each attribute(s) m.A′

S (m.A′
T ) of a candidate matching m ∈ MV the value(s) vS or vT

from tuples d.tS and d.tT are respectively extracted (lines 5 and 6 in Algorithm 5). In
case of 1:n matching of attributes (see Sect. 5.3), the extracted values can be vectors
of values vS[] or vT [] whose coordinates are concatenated into vS or vT before they
are compared. Afterwards, the extracted values vS and vT are compared using a data
type-specific method which estimates the possibility d.m̃ that two given values are
coreferent (line 7 inAlgorithm5).More precisely, a numerical and an alphanumerical
matchers are considered as follows.

Numerical matcher. Numerical values are compared by a method which is
based on the difference (diff ) of the considered values and a difference threshold
(PH .thrDiff ). The difference threshold is a real number which defines the maximum
allowed difference of values, and depends on the range of values of a particular
attribute and the predefined parameter PH .thrNum, which specifies the percentage of
difference for average range of the considered attributesm.A′

S andm.A′
T (1:n attribute

matching does not apply for numerical data, thus, m.A′
S = aS and m.A′

T = aT ). More
specifically, PH .thrDiff is calculated by the following equation:

PH .thrDiff =
⌊
range(dom′(aS)) + range(dom′(aT ))

2
× PH .thrNum

⌋
(38)

where range is a difference between the maximum and minimum value of dom′(aS)

or dom′(aT ) from the source or the target. If the difference diff between values is
smaller than the difference threshold PH .thrDiff , then the possibility that a propo-
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sition p stating that the two values are coreferent is true (μp̃(T)) equals 1, and the
possibility that p is false (μp̃(F)) is a fraction of the difference diff and the difference
thresholdPH .thrDiff ; otherwise, a lack of coreference is declared, i.e.,μp̃(T) = 0 and
μp̃(F) = 1.

Alphanumerical matcher. Alphanumerical values are transformed into sets of
substringswhich are inmost cases separate words. The string is split at the position of
a white space, comma, dot or other special character. The usefulness of this approach
follows from the fact that character-based methods are typically not well suited for
longer strings. Next, the substrings are compared with one another by the low-level
string comparison method [2] (see Sect. 5.2). This gives PTVs which are aggregated
by the Sugeno integral [3, 4, 23]. Aggregation results in a single PTV which reflects
the possibility that two given values are coreferent (see Sect. 3.3). More specifically,
the aggregation operator for the comparison of two values, vS and vT , is defined by
the Sugeno integral for PTVs, where:

• P = {pi} is a set of propositions stating coreference of pairs of substrings,
• P̃ is the set of selected PTVs corresponding to the above-mentioned propositions
representing the uncertainty about their truth values computed by the low-level
string comparison method,

• the fuzzy measure γT is defined by:

γT (Q) =
k∑

j=1

wj, Q ⊆ P, Q = {p1, . . . , pk} (39)

where wj is the weight of the jth pair (sj
S , sj

T ) of substrings, computed by:

wj = 1

|P| (40)

• the fuzzy measure γF is defined by

γF(Q) =
{
1 if Q = P
0 otherwise

(41)

what is implied by condition (20) is that for each Q which is a subset of P.

Moreover, pairs of substrings with the selected PTVs are grouped into two sets.
The first set contains substrings which have an associated PTV that is larger than
PH . ˜thr w.r.t. Eq. 11, and are called coreferent tokens. The second set contains sub-
strings which have an associated PTV that is not larger than PH . ˜thr and are called
non-coreferent tokens. These two sets are the basis for deriving the type of matching.
The type type of matching d.m (see Sect. 4.1) is specified based on the number of
coreferent and non-coreferent tokens (substrings) of the values vS and vT by amethod
which is presented in the Sect. “Matching type of tuples” (line 8 in Algorithm 5).
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Next, the matching d.m is added to the set d.MV of matchings for the coreferent
tuples pair d.

Finally, the set d.MV contains matchings d.m of coreferent attributes A′
S and A′

T
for the particular tuples d.tS and d.tT . Each matching d.m ∈ d.MV has an associated
PTV (d.m̃), which expresses the possibility that attributes A′

S and A′
T are coreferent

for the particular tuples d.tS and d.tT based on their values, and is the basis for
further checking whether the particular tuples d.tS and d.tT are coreferent or not.
Namely, these associated PTVs form a multiset d.M̃V and are aggregated by the
Sugeno integral [3, 4, 23]. The aggregation returns a single PTV d̃ which reflects
the possibility that two given tuples are coreferent (line 11 in Algorithm 5). More
specifically, the aggregation operator for the comparison of two tuples, d.tS and d.tT ,
is defined by the Sugeno integral for PTVs, where:

• P = {pi} is a set of propositions stating coreference of attributes A′
S and A′

T for the
particular tuples d.tS and d.tT , represented by d.MV = {d.mi},

• P̃ is the set of PTVs corresponding to the above-mentioned propositions, repre-
sented by d.M̃V ,

• the fuzzy measure γT is defined by:

γT (Q) =
k∑

j=1

wj, Q ⊆ P, Q = {p1, . . . , pk} (42)

wherewj is the weight of the jth pair (A′
S , A′

T ) of attributes for the particular tuples,
computed by:

wj = ∀d.m̃ ∈ d.M̃V : wd.m̃ = 1

|d.MV | . (43)

These weights are equal for each PTV and depend on the number of matchings.
• the fuzzy measure γF is defined by

γF(Q) =
{
1 if Q = P
0 otherwise

(44)

what is implied by condition (20) is that for each Q which is a subset of P.

Matching Type of TuplesThematching types, which are defined in Sect. 4.1, depend
on the factors ratioS and ratioT . These factors represent the completeness of each
matching d.m ∈ d.MV for the particular tuples tS and tT and are based on the number
of coreferent tokens (substrings) of compared values vS ∈ tS and vT ∈ tT . The factor
ratioS (ratioT ) is the fraction of the number of coreferent tokens over the number of
tokens of the value vS (vT , respectively). Thus, the following conditions have to be
considered:

• if ratioS = 0 and ratioT = 0 then m ∈ M is an “unknown” matching
• if ratioS = 1 and ratioT = 1 then m ∈ M is a “full” matching
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Algorithm 5 CompareTuplesAlgorithm

Require: Tuple tS , Tuple tT , Schema Matching MV , Parameters PH
Ensure: Coreferent tuple pair d
1: d.tS ← tS

2: d.tT ← tT

3: for all Matching m ∈ MV do
4: Matching d.m ← m
5: var vS ← d.tS[m.A′

S]
6: var vT ← d.tT [m.A′

T ]
7: d.m̃ ← compare(vS , vT , PH . ˜thr, PH .thrNum)
8: d.m.type ← mType(vS , vT )
9: d.MV ← d.MV ∪ d.m
10: end for
11: d̃ ← aggregate(d.M̃V )

• if ratioS = 1 and ratioT �= 1 then m ∈ M is a “source is part of target” matching
• if ratioS �= 1 and ratioT = 1 then m ∈ M is a “target is part of source” matching
• if ratioS �= 1 and ratioT �= 1 then m ∈ M is a “a common part” matching

Example Let us consider coreferent tuple pairs detection for the following case. The
input is the verticalmatchingMV ofTable6,which is the basis for detecting coreferent
tuple pairs across the source and target datasets, of Tables1 and 2, respectively. Each
tuple from the source dataset is compared to each tuple in the target dataset which
results in the set D of coreferent tuple pairs. For example, let us consider that tuple tS

Table 6 Example of the
vertical schema matching MV

Matching m Source Target

m1 Name Type

m2 Name POI

m3 Name Type, POI

m4 Name, Category Type

m5 Lon. Geo2

m6 Lat. Geo1

m7 Category Type

m8 Key Id

m9 Address ZipCode

m10 Address Street

m11 Address City

m12 Address ZipCode, Street

m13 Address ZipCode, City

m14 Address Street, City

m15 Address ZipCode, Street,
City
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in row 2 in Table1 is compared to tuple tT in row 2 in Table2. First, the values of the
matched attributes (byMV ) are compared in sequence, e.g., the value “Saint Bavo” of
the attribute “Name” in tS is comparedby the alphanumericalmatcher to the following
values in tT w.r.t. the matchings m1, m2 and m3 in Table6: “Church” (of the attribute
“Type”), “Sint-Bavokerk” (of the attribute “POI”) and “Church Sint-Bavokerk” (of
the concatenation of the attributes “Type” and “POI”). This comparison results in
d.MV which contains all the attributes matchings m ∈ MV , namely d.m ∈ d.MV

(with associated PTVs d.m̃ which form a multiset d.M̃V ) for the particular tuples
tS and tT , e.g., d.m̃1 = (0, 1), d.m̃2 = (1, 0.12), d.m̃3 = (1, 0.16), etc. Next, the
matching type for each d.m ∈ d.MV for particular tuples is derived: d.m1.type is
an “unknown” matching (no common tokens), d.m2.type is a “full” matching (all
tokens are common), d.m3.type is a “source is part of target” matching (all tokens
from the source are common, but not all from the target), etc. Next, the PTVs in d.M̃V

are aggregated by the Sugeno integral with equal weights w = 1/15 (calculated by
Eq.43). This results in a single PTV d̃ that equals (1, 0.5)which reflects the possibility
that the two given tuples tS and tT are coreferent.

Finally, the detected coreferent tuple pairs D are sorted by d̃, and the PH .n (in
our case 3) most coreferent tuple pairs are returned. Namely, the pairs of tuples from
rows 2, 4 and 5 of Tables1 and 2 are returned as the 3 most coreferent tuple pairs
and are used to establish the final schema matching, what is discussed in the next
section.

6.2 Step 2: Schema Matching

The n most coreferent tuples pairs of D detected in the previous step and the vertical
schema matching MV established in the first phase of our approach are used to infer
the final horizontal schema matching M. Our novel approach is implemented by
Algorithm 6, which works as follows. First of all, for each matching m ∈ MV , the
cardinality cardm of this matching is calculated (lines 2–6 in Algorithm 6). This
cardinality is the number of coreferent tuple pairs whose values of attributes m.A′

S
and m.A′

T are coreferent. Hereby coreference is considered if μp̃(F) of d.m̃ is lower
than μp̃(F) of the predefined threshold PH . ˜thrDup = (0.5, 0.5) w.r.t. Eq. 11.

Next, if a particular matching m returns most of the coreferent tuple pairs
(line 7 in Algorithm 6), i.e., m.cardm/|D| is greater than the predefined threshold
PH .thrMajority, then m is added to the final schema matching M (line 8 in Algo-
rithm 6). Next, the propositions evaluated using PTVs of the matching m across all
coreferent tuple pairs ofD (i.e., ∀d ∈ D : d.m̃) are aggregated by the Sugeno integral.
This results in a possibility degree m̃ (PTV), which expresses the uncertainty of that
matching m ∈ M (line 9 in Algorithm 6) [3, 4, 23] (see Sect. 3.3).

More specifically, the aggregation operator for matching m ∈ M is defined by the
Sugeno integral for PTVs, where:
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• P = {pi} is a set of propositions stating coreference of attributes m.A′
S and m.A′

T
across all coreferent tuple pairs of D, represented by D[m] = {di.m},

• P̃ is the set of PTVs corresponding to the above-mentioned propositions, repre-
sented by D̃[m] = {di.m̃},

• the fuzzy measure γT is defined by:

γT (Q) =
k∑

j=1

wj, Q ⊆ P, Q = {p1, . . . , pk} (45)

where wj is the weight of the jth duplicate dj, computed by:

wj = 1

|D| . (46)

Theseweights are equal for each PTV dj.m̃ and depend on the number of coreferent
tuple pairs.

• the fuzzy measure γF is defined by

γF(Q) =
{
1 if Q = P
0 otherwise

(47)

what is implied by condition (20) is that for each Q which is a subset of P.

Moreover, a possibility degree m̃ of that matching m ∈ M can be used to resolve
schema matching conflicts. The schema matching M contains conflicts if there exists
more than one matching m ∈ M (called alternative matching) for any attribute
aS ∈ AS or aT ∈ AT . Thismeans that amatchingwhich is donatedwith the larger PTV
than alternative matchings is preferable and another alternative matchings should be
removed. However, the conflict resolution is subject to further research and outside
the scope of this paper.

Finally, thematching types of thematchingm ∈ M across all coreferent tuple pairs
D are unified by themethod unifyType in line 10 in Algorithm 6. This method returns
for eachm ∈ M themost popular matching type across all coreferent tuple pairsD. In
the case of indistinguishablematching types, i.e., if maximum frequency ofmatching
type for matching m ∈ MV over all coreferent tuple pairs of D is not unique, the
matching type with the predefined lowest coverage level is selected (see Sect. 4.1).
For example, if full matching (with coverage level 1) and inclusion matching (with
coverage level 0.5) types are specified for the same number of coreferent tuple pairs
then inclusion matching type is selected. The unified matching types inform about
matching completeness and can be used to resolve schema matching conflicts but it
is out of the scope of this paper.

Example Let us consider the coreferent tuple pairs in D which were detected in the
previous step. The set D of coreferent tuples pairs consists of 3 pairs, each composed
of rows 2, 4, 5 from Tables1 and 2. The matching cardinality cardm is calculated
for each matching m ∈ MV in Table6. For example, the cardm of the matching
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Algorithm 6 HorizontalMatchingAlgorithm

Require: Coreferent tuple pairs D, Schema Matching MV , Parameters PH
Ensure: Schema Matching M
1: for all Matching m ∈ MV do
2: for all Coreferent tuple pair d ∈ D do
3: if d.m̃ > PH . ˜thrDup then
4: cardm ← cardm + 1
5: end if
6: end for
7: if cardm/|D| > PH .thrMajority then
8: M ← M ∪ m
9: m̃ ← aggregate(D̃[m])
10: m.type ← unifyType(D[m].type)
11: end if
12: end for

m10 = {“Address”; “Street”} equals 2 because only the attribute values of two tuple
pairs are coreferent for the thresholdPH . ˜thrDup equal to (0.5, 0.5).More specifically,
the value “Stoopkensstraat 24, 3320 Hoegaarden” is similar to “Stoopkensstraat 24”,
and “Kleine Gentstraat 69, 9051 St-Denijs-Westrem” is similar to “Kleine Gentstraat
69”. The certainty as to their similarity is expressed for both of them by a PTV
(1, 0.33). The similarity of values “Sint-Baafsplein, 9000Ghent” and “Sint-Baafsplein”
is expressed by a PTV (1, 0.5), but this does not exceed the threshold. In contrast,
cardm of the matching m15 = {“Address”; “Street”, “City”, “ZipCode”} is equal to 3,
because the attribute values of all coreferent tuple pairs are coreferent. This confirms
that the concatenation of attributes makes sense.

Next, if cardm of m satisfies the majority condition in line 7 of Algorithm 6, then
the matching m is added to M. The predefined threshold PH .thrMajority = 0.3 and
|D| = 3, thus if cardm of m is greater than 0.9, then m is considered as a matching
in M. This means that M contains only matchings which are confirmed by at least
one coreferent tuple pair. Matchings m4, m9 and m11 in Table6 are not included
in M because they do not satisfy this condition. Next, the PTVs for matching m
across all coreferent tuple pairs D are aggregated by the Sugeno integral. For the
matching m10, the PTVs (1, 0.33), (1, 0.5), (1, 0.33) are aggregated with equal
weights w = 1/|D| = 1/3 to a single PTV equal to (1, 0.33). This PTV reflects
the possibility that the attributes “Address” and “Street” are coreferent. Finally, the
matching types of the matching m ∈ M across all coreferent tuple pairs D are unified
by themethod unifyType. For thematchingm10, the unifiedmatching type is “t is part
of s” (target is part of source) because the matching type of all considered coreferent
tuple pairs is “t is part of s”.

This gives us the schema matching M in Table7 with alternative matchings (con-
flicts) for some of the attributes, e.g., m10–m15 in Table7. These conflicts can be
resolved based on cardinality (cardm), certainty (m̃) and/or type of matching but it is
out of the scope of this paper.
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Table 7 Example of the schema matching M with alternative matchings

Matching m Source Target cardm typem m̃

m1 Name Type 1 t is part of s (1, 0.67)

m2 Name POI 1 Has a
common part

(1, 0.5)

m3 Name Type, POI 1 Has a
common part

(1, 0.6)

m5 Lon Geo2 2 Full matching (1, 0.33)

m6 Lat Geo1 2 Full matching (1, 0.33)

m7 Category Type 1 Full matching (1, 0.67)

m8 Key id 3 Full matching (1, 0)

m10 Address Street 2 t is part of s (1, 0.33)

m12 Address ZipCode,
Street

3 Has a
common part

(1, 0.03)

m13 Address ZipCode, City 1 Has a
common part

(1, 0.5)

m14 Address Street, City 3 t is part of s (1, 0.12)

m15 Address ZipCode,
Street, City

3 s is part of t (1, 0.12)

7 Evaluation and Discussion

In this section we describe an experimental evaluation of our method which shows
the influence of the parameters and the benefits of using content data (compared to
schema information-only-based methods).

7.1 Datasets

To illustrate the proposed approach we consider different real-world datasets, respec-
tively, containing information about ‘compact discs’, ‘restaurants’ and ‘points of
interest’.

Compact disc (CD) data are contained in two datasets which are defined in two
schemas. The first schema is extracted fromFreeDB2 and consists of 8 attributes. The
second schema is extracted from Discogs3 and consists of 24 attributes, of which 6
have been identified manually as being coreferent with the FreeDB schema attributes
and act as the ground truth for our experiments. The FreeDB dataset contains 124
tuples which are extracted from the CD dataset,4 while the Discogs dataset contains

2FreeDB, http://www.freedb.org/.
3Discogs, http://www.discogs.com/data/.
4http://hpi.de/naumann/projects/repeatability/datasets/cd-datasets.html.

http://www.freedb.org/
http://www.discogs.com/data/
http://hpi.de/naumann/projects/repeatability/datasets/cd-datasets.html
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132 tuples which are extracted from Discogs.5 The number of coreferent tuples in
these datasets is equal to 33, which are detected manually.

Restaurant data are represented by two famous datasets [28]. One dataset stems
from the on-line guide ‘Zagat’, while the other dataset stems from the on-line guide
‘Fodor’. Zagat contains 331 tuples and Fodor contains 533 tuples, where 112 coref-
erent tuples are counted (i.e., 112 restaurants occur in both lists). These datasets are
defined in two pairs of schemas, called R1 and R2, respectively. Both schemas of
the first pair R1 consist of 6 attributes, of which all 6 have been identified manually
as being coreferent, i.e., each attribute in the Fodor schema corresponds to exactly
one attribute in the Zagat schema, and vice versa. More specifically, 6 one-to-one
matchings are established. The Fodor schema in the second schemas pair R2 is iden-
tical to the Fodor schema in the first schema pair R1. But the Zagat schema in the
second schemas pair R2 consists of 5 attributes, of which the attribute “street-city” is
a concatenation of the attributes “street” and “city”. Thus, each of the 4 attributes in
the Fodor schema corresponds to exactly one attribute in the Zagat schema, and the
concatenation of the attributes “street” and “city” in the Fodor schema corresponds
to the attribute “street-city” in the Zagat schema. So, four one-to-one matchings
and one-to-many matching are present. The truly coreferent schema attributes act as
ground truth for our experiments.

Points of interest data are represented by two datasets which are defined in two
schemas. The first dataset is made available by the Belgian company RouteYou,6

which is an on-line provider of cycling routes. In order to support their routing
algorithms, RouteYou manages a database with POIs. This database is defined by a
schema which consists of the attributes latitude, longitude, POI name, POI category,
POI internal name (which is a copy of the POI name extended by location infor-
mation) and the language in which the name and category are given. An important
characteristic of the given POI database is that data is mostly contributed by inde-
pendent users of the website. Hereby, a user can pinpoint a location on the map,
type in the name of the POI he/she wants to add and associate one of the predefined
POI categories to it. From the complete POI database, we inferred one dataset by
selecting tuples in English and in a specific area: the center of Ghent. This resulted
in the RouteYou dataset which consists of 136 tuples. The second dataset contains
945 tuples which were extracted from the Google Maps database and are related to
the same specific area. The tuple extraction has been done using the Google Places
API.7 The resulting dataset is defined by a schema which consists of the attributes id,
name, vicinity, lat, lng, googleId and type, of which 6 have been identified manually
as being coreferent with the attributes of the RouteYou dataset.

Table8 contains a summary of all datasets considered in the experiments. The
number of attributes in the data varies between 5 and 24 (column 2 in Table8), while
the number of truly coreferent attributes varies between 5 and 6 (column 5 in Table8).
The number of detected coreferent tuple pairs varies between 33 and 112 (column

5Discogs, http://www.discogs.com/data/.
6http://www.routeyou.com.
7Google Places, http://developers.google.com/places/.

http://www.discogs.com/data/
http://www.routeyou.com
http://developers.google.com/places/
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Table 8 Real-world datasets

Datasets # attributes # tuples # dup # coreferent attr.

S: CD.FreeDB 8 124 33 6

T: CD.Discogs 24 132

S: R1.Fodor 6 533 112 6

T: R1.Zagat 6 331

S: R2.Fodor 6 533 112 5

T: R2.Zagat 5 331

S: POI.RouteYou 9 136 51 6

T: POI.Google 7 945

4 in Table8), while the number of tuples varies between 124 and 945 (column 3 in
Table8).

7.2 Evaluation Setting

To determine the quality of our approach, we compared its result against themanually
derived results. Based on the standard confusion matrix, we will consider the follow-
ing three sets. The first set, denoted as B, contains the truly coreferent objects which
are discovered by our approach, i.e., so-called true positives. The second set, denoted
as A, contains truly coreferent objects which are not identified, i.e., so-called false
negatives. The last set, denoted as C, contains objects which are falsely identified as
coreferent, i.e., so-called false positives.

Precision is defined as the fraction of truly coreferent objects among all objects
classified by a given algorithm as being coreferent:

Precision = |B|
|B| + |C| . (48)

Recall is another important quality measure which in our case can be defined as
the fraction of true positive objects among all coreferent objects present in a test
dataset:

Recall = |B|
|A| + |B| . (49)



Content Data Based Schema Matching 317

7.3 Experiment: Configuration of Parameters of the Vertical
Matcher

Goal. Our vertical matching Algorithm 2 in Sect. 5 employs the parameters
PV .thrStats and PV .thrOverlap. PV .thrStats specifies the threshold above which
statistical properties of attribute domains are considered as similar. PV .thrOverlap
specifies the percentage of the domains overlap. This experiment evaluates the impact
of these parameters on the precision and recall of the established vertical schema
matching.

Procedure. For the parameter PV .thrStats, a range from 0 to 1 with a step equal to
0.01 is considered. For the parameter PV .thrOverlap, a range from 0 to 1 with a step
equal to 0.1 is considered. Mean recall and precision for each value of PV .thrStats
and PV .thrOverlap over all datasets are calculated. Statistical matcher is executed
before the lexical matcher, thus, the overlap threshold does not have to be considered.

Result. Figure5 shows the mean precision and recall over all datasets for the dif-
ferent values of the parameter PM .thrStats (uninterested results are omitted). For
PM .thrStats values between 0.08 and 0.96 the statistical comparison of content data
gives the highest precision of matching. In this case, precision is more important
than recall because non matched truly coreferent attributes can be matched by the
lexical matcher. Besides that, the criteria of the statistical matcher are strict (all prop-
erties have to be similar) because statistical information may mislead the matcher,
i.e., there can exist domains which have similar properties but may describe non
coreferent attributes. We choose PM .thrStats equal to 0.9 for the further evaluations.

Figure6 shows themeanprecision and recall obtainedover all datasets for different
values of the parameter PM .thrOverlap in the lexical matcher. For PM .thrOverlap
values equal to 0.3 and 0.4 the lexical comparison of content data gives matchings
with the highest precision and recall. The establishedmatchings are the basis to detect
coreferent tuple pairs, which in turn are used to derive the final schema matching,

Fig. 5 Mean precision and
recall over all datasets in
function of PV .thrStats and
PM .thrOverlap equal to 0.3
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Fig. 6 Mean precision and
recall over all datasets in
function of PV .thrOverlap
and PM .thrStats equal to 0.9

thus, the method has to derive as many as possible matchings at the expense of
precision—the non coreferent matchings are eliminated by the horizontal matcher.
Thus, PM .thrOvelap equal to 0.3 is selected for the further evaluations, because the
smaller percentage of domain terms that overlap is easier to satisfy.

The combination of the matchings which are established by statistical and lexical
matchers gives an average precision equal to 0.58 and recall equal to 0.79 over all
datasets for PM .thrStats equal to 0.9 and PM .thrOvelap equal to 0.3.

7.4 Experiment: Configuration of Parameters
of the Horizontal Matcher

Goal. The goal of this experiment is to show the impact of the number PH .n of
coreferent tuple pairs, which is the basis to establish the schema matching, and
the parameter PH .thrMajority of our horizontal matching algorithm in Sect. 6 on
the precision and recall of the established schema matching. PH .thrMajority is a
threshold which specifies that a matching is considered as a correct matching by the
horizontal matcher.

Procedure. For the parameter PH .n, a range from 1 to 10 is considered. For the para-
meter PH .thrMajority, values 0.25, 0.5, 0.75 and 1 are considered. PH .thrMajority
equal to 0.25 (0.5, 0.75 or 1) means that if any vertical matching m ∈ MV between
the particular attributes is repeated by a quarter (two quarters, three quarters or all,
respectively) of detected coreferent tuple pairs then m is added to the set M of hor-
izontal matchings. The mean precision and recall for each value of PH .thrMajority
and PH .n over all datasets are calculated.

Result. Figure7 shows the mean precision and recall over all datasets for different
values of the parameters PH .thrMajority and PH .n.
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Fig. 7 Mean precision and recall over all datasets for different PH .thrMajority in function of PH .n

Setting PM .thrMajority to 0.5 or 0.75, and PH .n to 5 or 6 is sufficient to establish
the schemamatchingwith highprecision and recall.More coreferent tuple pairs (PH .n
greater than 6) do not increase the precision significantly or can even decrease the
recall for a large value of PH .thrMajority, because PH .thrMajority equal to 1 forces
that a particularmatchinghas to be confirmedbyall the selected coreferent tuple pairs.
However, this may be unrealistic and difficult to satisfy. Besides that, our horizontal
matcher is based on the n most coreferent tuples pairs so using many coreferent tuple
pairs may result in coreferent tuples pairs having assigned low certainty (because
the values of some attributes may not be coreferent). Thus, it is recommended to use
only a few coreferent tuple pairs but then those that are assigned the highest certainty
and PM .thrMajority between 0.5 and 0.75.

7.5 Benefits of Using Content Data

Content data-based schema matching approaches are able to establish semantical
matchings of corresponding schema elements in those situations where the schema
information-only-basedmethods can be ineffective. For example, a schemamatching
method which is based only on element names is not able to create a matching if the
names of coreferent attributes are synonyms. This means that content data add addi-
tional information about the particular attribute which can be used to better infer the
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semantics of the attribute and, as a consequence, create a matching between coref-
erent attributes. Moreover, attribute names may even mislead the schema matching
methods which are only based on schema information. Content data are a power-
ful and valuable source of information which can be used to considerably improve
schema matching. In contrast, approaches which are based on schema information
only can establish matchings of attributes which are not coreferent based on the
content data, e.g., “id” attributes.

8 Conclusion

In this paper, a content data based schema matching algorithm has been proposed
as a way to construct proper matching between corresponding schema elements of
heterogeneous datasets. The algorithm is especially useful in cases where finding the
correspondences between the schema elements based on schema information only
is difficult or impossible. Our novel technique employs possibilistic truth values,
to express certainty of matchings, similarities etc., and fuzzy integers, to express
cardinalities of sets of true propositions based on the certainty of their truth expressed
usingPTVs.This allowsus to explicitly copewith the (un)certainty of semantical one-
to-one and one-to-many schema matchings which are set up by our novel techniques
in an automated fashion. As a consequence, solutions to the attribute granularity
problem and the data coverage problem are proposed. The behaviour of the novel
schema matching algorithm has been evaluated on several real life datasets, thus
providing us with a valuable insight into the influence of the different parameters.
Moreover, it has been shown what are the advantages of the proposed approach
compared with a schema matching approach based on schema information only.
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