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Abstract. The growing dependence of our society on increasingly
complex software systems makes software testing ever more important
and challenging. In many domains, several independent systems, form-
ing a distributed and heterogeneous system of systems, are involved in
the provisioning of end-to-end services to users. However, existing test
automation techniques provide little tool support for properly testing
such systems. Hence, we propose an approach and toolset architecture for
automating the testing of end-to-end services in distributed and hetero-
geneous systems, comprising a visual modeling environment, a test execu-
tion engine, and a distributed test monitoring and control infrastructure.
The only manual activity required is the description of the participants
and behavior of the services under test with UML sequence diagrams,
which are translated to extended Petri nets for efficient test input gen-
eration and test output checking at runtime. A real world example from
the Ambient Assisted Living domain illustrates the approach.

Keywords: Software testing · Distributed systems · UML sequence
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1 Introduction

Due to the increasing ubiquity, complexity, criticality and need for assurance
of software based systems [2], testing is a fundamental lifecycle activity, with a
huge economic impact if not performed adequately [21].

In a growing number of domains, the provision of services to end users
depends on the correct functioning of large and complex systems of systems
[5]. A system of systems consists of a set of small independent systems that
together form a new system, combining hardware components and software sys-
tems. Systems of systems are in most cases distributed and heterogeneous, involv-
ing mobile and cloud-based platforms.

Testing these distributed and heterogeneous systems is particularly impor-
tant and challenging. Some of the challenges are: the difficulty to test the system
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as a whole due to the number and diversity of individual components; the diffi-
culty to coordinate and synchronize the test participants and interactions, due
to the distributed nature of the system; the difficulty to test the components
individually, because of the dependencies on other components.

An example of a distributed and heterogeneous system is the Ambient
Assisted Living (AAL) ecosystem that was prototyped in the context of the
nationwide AAL4ALL project [1]. The AAL4ALL ecosystem comprises a set of
interoperable AAL products and services (sensors, actuators, mobile and web-
based applications and services, middleware components, etc.), produced by dif-
ferent manufacturers using different technologies and communication protocols
(web services, message queues, etc.). To assure interoperability and the integrity
of the ecosystem, it was developed and piloted a testing and certification method-
ology [6], to be applied on candidate components of the ecosystem. A major
problem faced during test implementation and execution was related with test
automation, due to the diversity of component types and communication inter-
faces, the distributed nature of the system, and the lack of support tools. Similar
difficulties have been reported in other domains, such as the railway domain [22].
In fact, we found in the literature limited tool support for automating the whole
process of specification-based testing of distributed and heterogeneous systems.

Hence, the main objective of this paper is to propose an approach and a
toolset architecture to automate the whole process of model-based testing of
distributed and heterogeneous systems in a seamless way, with a focus on inte-
gration testing, but supporting also unit (component) and system testing. As
compared to existing approaches, the proposed approach and architecture pro-
vide significant benefits regarding efficiency and effectiveness: the only man-
ual activity required from the tester is the creation (with tool support) of
partial behavioral models of the system under test (SUT), using feature-rich
industry standard notations (UML 2 sequence diagrams), together with model-
to-implementation mapping information, being all the needed runtime test
components provided by the toolset for different platforms and technologies; the
ability to test not only the interactions of the SUT with the environment, but
also the interactions among components of the SUT, following an adaptive test
generation and execution strategy, to improve fault detection and localization
and cope with non-determinism in the specification or the SUT.

The rest of the paper is organized as follows: Sect. 2 describes the state of the
art. Section 3 presents an overview of the proposed approach and test process.
Section 4 introduces the toolset architecture. Section 5 summarizes the novelties
and benefits of the proposed approach. Section 6 concludes the paper and points
out future work. A running example from the AAL domain is used to illustrate
the approach presented.

2 State of the Art

The highest level of test automation is achieved by automating both test gen-
eration and test execution, but the approaches for automating test generation
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and automating test execution are in most cases orthogonal. Hence, we analyze
in separate subsections approaches for automatic test generation (from models
or specifications) and automatic test execution that have the potential to be
applied for distributed and heterogeneous systems.

2.1 Model-Based Test Generation

Model-based testing (MBT) techniques and tools have attracted increasing inter-
est from academia and industry [24], because of their potential to increase the
effectiveness and efficiency of the test process, by means of the automatic gener-
ation of test cases (test sequences, input test data, and expected outputs) from
behavioral models of the system under test (SUT).

However, MBT approaches found in the literature suffer from several limita-
tions [4]. The most common limitation is the lack of integrated support for the
whole test process. This is a big obstacle for the adoption of these approaches
by industry, because of the effort required to create or adapt tools to implement
some parts of the test process.

Another common problem with existing MBT approaches is the difficulty
to avoid the explosion of the number of test cases generated. In recent MBT
approaches [8,18], researchers try to overcome the test case explosion problem
by the usage of behavioral models focusing on specific scenarios, i.e., by following
a scenario-based testing approach instead of a state-based testing approach.
Being a feature-rich industry standard, UML 2 sequence diagrams (SDs) are
particularly well suited for supporting scenario-based MBT approaches. With
the features introduced in UML 2, parameterized SDs can be used to model both
simple and complex behavioral scenarios, with control flow variants, temporal
constraints, and conformance control operators. UML SDs are also well suited
for modeling the interactions that occur between the components and actors of
a distributed system.

In the literature it can be found some test automation approaches based
on UML SDs, but those approaches has some limitations for the testing of dis-
tributed and heterogeneous systems, namely regarding the support for features
specific to those systems, such as parallelism, concurrency and time constraints.

Of particular relevance in the context of this paper is the UML Checker
toolset developed in recent work of the authors [7,8], with several advantages over
other approaches, namely regarding the level of support of UML 2 features. The
toolset supports the conformance testing of standalone object-oriented applica-
tions against test scenarios specified by means of so called test-ready SDs. Test-
ready SDs are first translated to extended Petri Nets for efficient incremental
conformance checking, with a limited support for parallelism and concurrency.
Besides external interactions with users and client applications, internal inter-
actions between objects in the system are also monitored using Aspect-Oriented
Programming (AOP) techniques [16], and checked against the ones specified in
the model. The testing of distributed systems is not supported, but some of
the techniques developed have the potential to be reused for the modeling and
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testing of interactions between components in a distributed system, instead of
interactions between objects in a standalone application.

Other examples of test automation approaches based on UML SDs are the
SCENTOR tool, targeting e-business EJB applications [27], the MDA-based
approach of [14], and the IBM Rational Rhapsody TestConductor AddOn [13],
targeting real-time embedded applications. A comparison of the strengths and
weaknesses of these approaches can be found in [8]. The main limitations of these
approaches are the limited support for the new features of UML 2 SDs and the
limited support for testing internal interactions (besides the interactions with
the environment).

2.2 Test Execution Frameworks

Regarding test concretization and execution for distributed systems, we found in
the literature several frameworks that can be adapted and integrated for building
a comprehensive test automation solution.

The Software Testing Automation Framework (STAF) [20] is an open source,
multi-platform, multi-language framework designed around the idea of reusable
components, called services (such as process invocation, resource management,
logging, and monitoring). STAF removes the tedium of building an automation
infrastructure, thus enabling the tester to focus on building an automation solu-
tion. The STAF framework provides the foundation upon which to build higher
level solutions, and provides a pluggable approach supported across a large vari-
ety of platforms and languages.

Torens and Ebrecht [22] proposed the RemoteTest framework as a solution
for the testing of distributed systems and their interfaces. In this framework, the
individual system components are integrated into a virtual environment that
emulates the adjacent modules of the system. The interface details are thereby
abstracted by the framework and there is no special interface knowledge neces-
sary by the tester. In addition to the decoupling of components and interface
abstraction, the RemoteTest framework facilitates the testing of distributed sys-
tems with flexible mechanisms to write test scripts and an architecture that can
be easily adapted to different systems.

Zhang et al. [28] developed a runtime monitoring tool called FiLM that can
monitor the execution of distributed applications against LTL specifications on
finite traces. Implemented within the online predicate checking infrastructure
D3S [17], FiLM models the execution of distributed applications as a trace of con-
sistent global snapshots with global timestamps, and it employs finite automata
constructed from Labelled transition systems (LTL) specifications to evaluate
the trace of distributed systems.

Camini et al. [3] proposed DiCE, an approach that continuously and auto-
matically explores the system behavior, to check whether the system deviates
from its desired behavior. At a highlevel DiCE (i) creates a snapshot consisting
of lightweight node checkpoints, (ii) orchestrates the exploration of relevant sys-
tem behaviors across the snapshot by subjecting system nodes to many possible
inputs that exercise node actions, and (iii) checks for violations of properties
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that capture the desired system behavior. DiCE starts exploring from current
system state, and operates alongside the deployed system but in isolation from
it. In this way, testing can account for the current code, state and configuration
of the system. DiCE reuses existing protocol messages to the extent possible for
interoperability and ease of deployment.

One difficulty in testing distributed systems is that their distributed nature
imposes theoretical limitations on the conformance faults that can be detected by
the test components, depending on the test architecture used [11,12]. Hierons
[11] devised a hybrid framework for solving the problem that exist in many
systems that interact with their environment at distributed interfaces without
the possibility in some cases to place synchronised local testers at the ports of the
SUT. Before this framework existed only two main approaches to test this type
of systems: having independent local testers [23] or a single centralised tester
that interacts asynchronously with the SUT. The author proved that the hybrid
framework is more powerful than the distributed and centralised approaches.

2.3 Synthesis

Although we didn’t find in the literature an integrated approach for fully
automating the testing of distributed and heterogeneous systems, the concepts
used by each can be harnessed in the development of an architecture that can
be fully supported by tools, so that all the testing process can be automated.

3 Approach and Process

Our main objective is the development of an approach and a toolset to automate
the whole process of model-based testing of distributed and heterogeneous sys-
tems in a seamless way, with a focus on integration testing, but supporting also
unit (component) and system testing. The only manual activity (to be performed
with tool support) should be the creation of the input model of the SUT.

To that end, our approach is based on the following main ideas:

– the adoption of different ‘frontend’ and ‘backend’ modeling notations, with
an automatic translation of the input behavioral models created by the user
in an accessible ‘frontend’ notation (using industry standards such as UML
[19]), to a formal ‘backend’ notation amenable for incremental execution at
runtime (such as extended Petri Nets as in our previous work for object-
oriented systems [8]);

– the adoption of an online and adaptive test strategy, where the next test
input depends on the sequence of events that has been observed so far and
the resulting execution state of the formal backend model, to allow for non-
determinism in either the specification or the SUT [11];

– the automatic mapping of test results (coverage and errors) to the ‘frontend’
modeling layer.

Figure 1 depicts the main activities and artifacts of the proposed test process
based on the above ideas. The main activities are described in the next subsec-
tions and illustrated with a running example.
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Fig. 1. Dataflow view of the proposed test process.

3.1 Visual Modeling

The behavioral model is created using an appropriate UML profile [10,19] and an
existing modeling tool. We advocate the usage of UML 2 SDs, with a few restric-
tions and extensions, because they are well suited for describing and visualizing
the interactions that occur between the components and actors of a distributed
system. UML deployment diagrams can also be used to describe the distrib-
uted structure of the SUT. Mapping information between the model and the
implementation, needed for test execution (such as the actual location of each
component under test), may also be attached to the model with tagged values.

To illustrate the approach, we use a real world example from the AAL4ALL
project, related with a fall detection and alert service. As illustrated in Fig. 2,
this service involves the interaction between different heterogeneous components
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Fig. 2. UML deployment diagram of a fall detection scenario.

running in different hardware nodes in different physical locations, as well as
three users.

A behavioral model for a typical fall detection scenario is shown in Fig. 3. In
this scenario, a care receiver has a smartphone that has installed a fall detec-
tion application. When this person falls, the application detects the fall using
the smartphone’s accelerometer and provides the user a message which indicates
that it has detected a drop giving the possibility for the user to confirm whether
he/she needs help. If the user responds that he/she does not need help (the fall
was slight, or it was just the smartphone that fell to the ground), the application
does not perform any action; however, if the user confirms that needs help or
does not respond within 5 s (useful if the person became unconscious due to the
fall), the application raises two actions in parallel. On the one hand, it makes a
call to a previously clearcut number to contact a health care provider (in this
case can be a formal or informal caregiver); on the other hand, it sends the fall
occurrence for a Personal Assistance Record database and sends a message to a
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Fig. 3. UML sequence diagram representing the interactions of the fall detection sce-
nario. The diagram is already painted after a failed test execution in which the fall
detection application didn’t send an emergency call.

portal that is used by a caregiver (e.g. a doctor or nurse) that is responsible for
monitoring this care receiver. The last two actions are performed through a cen-
tral component of the ecosystem called AALMQ (AAL Message Queue), which
allows incoming messages to be forwarded to multiple subscribers, according to
the publish-subscribe pattern [9]. To facilitate the representation of a request for
input from the user with a timeout and a default response, we use the special
syntax request(confirm fall, {yes, no}, yes, 5 sec), where the first argument iden-
tifies the message, the second argument is the set of valid answers, the third is
the default answer in case of timeout, and the last argument is the timeout time.

3.2 Visual to Formal Model Translation

For the formal runtime model, we advocate the usage of Event-Driven Colored
Petri Nets – a sort of extended Petri Nets proposed in our previous work for test-
ing object-oriented systems [8], with the addition of time constraints as found in
Timed Petri Nets. We call the resulting Petri Nets Timed Event-Driven Colored
Petri Nets, or TEDCPN for short. Petri Nets are well suited for describing in a
rigorous and machine processable way the behavior of distributed and concurrent
systems, usually requiring fewer places than the number of states of equivalent
finite state machines. Translation rules from UML 2 SDs to Event-Driven Col-
ored Petri Nets have been defined in [8]. Rules for translating time and duration
constraints in SDs to time constraints in the resulting Petri Net can also be
defined.
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Fig. 4. TEDCPN derived from the SD of Fig. 3. The net is marked in a final state of a
failed test execution in which the fall detection application didn’t send an emergency
call.

Figure 4 shows the TEDCPN derived from the SD of Fig. 3, according to the
rules described in [8] and additional rules for translating time constraints.

The generated TEDCPN is partitioned into a set of fragments corresponding
to the participants in the source SD. Each fragment describes the behavior local
to each participant and the communication with other participants via boundary
places.

Transitions may be optionally labeled with an event, a guard (with braces)
and a time interval (with square brackets). Events correspond to the sending or
receiving of messages in the source SD. Guards correspond to the conditions of
conditional interaction fragments in the source SD. Time intervals correspond
to duration and time constraints in the source SD. A transition can only fire
when there is at least one token in each input place, the event (if defined) has
occurred, the guard (if defined) holds, and the time elapsed since the transition
became enabled (i.e., since there is a token in each input place) lies within the
time interval (if defined).

Incoming and outgoing arcs of a transition may be labeled with a pattern
matching expression describing the value (token) to be taken from the source
place or put in the target place, respectively, being 1 the default. For example,
in Fig. 4 the transition labeled “?answer(x)” has an input arc labeled “x”, where
“x” represents a local variable of the transition. The transition can only fire if the
value of the token in the source place is the same as the value of the argument
of the event. Then, the value of “x” is placed in the target place.
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For testing purposes, the events in the runtime model are marked as observ-
able (default) or controllable. Controllable events (underlined) are to be injected
by the test harness (playing the role of a test driver, simulating an actor) when
the corresponding transition becomes enabled. Controllable events correspond
to the sending of messages from actors in the source SD. All other events are
observable, i.e., they are to be monitored by the test harness. For example, when
the TEDCPN of the example starts execution (i.e., a token is put in the start
place), the initial unlabeled transition is executed and a token is placed in the
initial place of each fragment. At that point, the only transition enabled is the
one labeled with the “!fall signal” controllable event, so the test harness will
inject that event (simulating the user) and test execution proceeds.

This mechanism provides a unified framework with monitoring, testing and
simulation capabilities. In one extreme case, all events in the model may be
marked as observable, in which case the test system acts as a runtime monitoring
and verification system. In the other extreme case, all events in the model may
be marked as controllable, in which case the test system acts as a simulation
system. This also allows the usage of the same model with different markings of
observable and controllable events for integration and unit testing.

3.3 Test Generation and Execution

Test Generation. Using the UML 2 interaction operators, a single SD, and
hence the TEDCPN derived from it, may describe multiple control flow variants,
that require multiple test cases for being properly exercised.

In the running example, from the reading of the set of interactions repre-
sented in Fig. 3, one easily realizes that there are three test paths to be exercised
(with at least one test case for each test path). The first test path (TP1) is
the case where the care receiver responds negatively to the application and the
application doesn’t trigger any action. The second test path (TP2) is the situa-
tion where the user confirms to the application that he/she needs help and after
that the application triggers the actions. The last test path (TP3) corresponds
to the situation where the user doesn’t answer within the defined time limit and
the application triggers the remaining actions automatically. If one wants also
to exercise the boundary values of allowed response time (close to 0 and close to
5 seconds), then two test cases can be considered for each of the test paths TP1
and TP2, resulting in a total of 5 test cases.

Equivalently, in order to exercise all nodes, edges and boundary values in
the TEDCPN, several test cases are needed. In the example, one could exercise
the two outgoing paths after the “?conf fall” event, the two possible values of
variable “x” in the “!answer(x)” event, and the two boundary values of the “[0,
5 sec]” interval, in a total of 5 test cases.

In general, the required test cases can be generated using an offline strategy
(with separate generation and execution phases) or an online test strategy (with
intermixed generation and execution phases) [25]. In an offline strategy, the
test cases are determined by a static analysis of the model, assuming the SUT
behaves deterministically. But that is not often the case, so we prefer an online,
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adaptive, strategy, in which the next test action is decided based on the current
execution state. Whenever multiple alternatives can be taken by the test harness
in an execution state, the test harness must choose one of the alternatives and
keep track of unexplored alternatives (i.e., model coverage information) to be
exercised in subsequent test repetitions.

Test Execution. Test execution involves the simultaneous execution of: (i) the
set of components under test (CUTs); (ii) the formal runtime model (TEDCPN),
dictating the possible test inputs and the expected outputs from the CUTs in
each step of test execution; (iii) a local test component for each CUT, running
in the same node of the CUT, able to perform the roles of test driver (i.e., send
test inputs to the CUT, simulating an actor) and test monitor (i.e., monitor all
the messages sent or received by the CUT).

The collection of monitored events (message sending and receiving events)
forms an execution trace. Testing succeeds if the observed execution trace con-
forms to the formal behavioral model, in the sense that it belongs to the (possibly
infinite) set of valid traces defined by the model.

Conformance checking is performed incrementally as follows: (i) initially, the
execution of the TEDCPN is started by placing a token in the start place and
firing transitions until a quiescent state is reached (a state where no transition
can fire); (ii) each time a quiescent state is reached having an enabled transi-
tion labeled with a controllable event, the test harness itself generates the event
(i.e., the message specified in the event is sent to the target CUT by the appro-
priate test driver) and the execution status of the TEDCPN is advanced to a
new quiescent state; (iii) each time an observable event is monitored (by a test
monitor), the execution state of the TEDCPN is advanced until a new quiescent
state is reached; (iv) the two previous steps are repeated until the final state of
the TEDCPN is reached (i.e., a token is placed in the final place), in which case
test execution succeeds, or until a state is reached in which there is no control-
lable event enabled and no observable event has been monitored for a defined
wait time, in which case test execution fails. The latter situation is illustrated in
Fig. 4. Depending on the conformance semantics chosen, the observation of an
unexpected event may also be considered a conformance error.

To minimize communication overheads, the TEDCPN can itself be executed
in a distributed fashion, by executing each fragment of the ‘global’ TEDCPN
(describing the behavior local to one participant and the communication with
other participants via boundary places) by a local test component. Communica-
tion between the distributed test components is only needed when tokens have
to be exchanged via boundary places.

When a final (success or failure) state is reached, the Test Diagnosis and
Reporting activity is responsible to analyze the execution state of the TEDCPN
and the collected execution trace, and produce meaningful error information.

Model coverage information is also collected during test execution, to guide
the selection of test inputs and the decision about when to stop test execution,
as follows: when it is reached a quiescent state of the TEDCPN with multiple
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controllable events enabled leading to different execution paths, the test harness
shall generate an event that leads to a previously unexplored path; when a final
state of the TEDCPN is reached, test execution is restarted if there are still
unexplored (but reachable) paths.

3.4 Test Results Mapping

At the end of test execution it is important to reflect the test results back in the
visual behavioral model created by the user. As an example, the marking shown
in the net of Fig. 4 corresponds to the final state of a failed test execution in
which the Fall Detection App didn’t send an emergency call. By a simple analysis
of this final state (and traceability information between the source SD and the
TEDCPN), it is possible to point out to the tester which messages in the source
SD were covered and what was the cause of test failure (missing “emergency
call” message), as shown in Fig. 3.

4 Toolset Architecture

Figure 5 depicts a layered architecture of a toolset for supporting the test process
described in the previous section, promoting reuse and extensibility.

At the bottom layer in Fig. 5, the SUT is composed by a set of components
under test (CUT), executing potentially in different nodes [19]. The CUT interact
with each other (usually asynchronously) and with the environment (users or
external systems) through well defined interfaces at defined interaction points
or ports [10,11].

The three layers of the toolset are described in the following sections.

4.1 Visual Modeling Environment

At the top layer, we have a visual modeling environment, where the tester can
create a visual behavioral model of the SUT, invoke test generation and execution,
and visualize test results and coverage information back in the model.

This layer also includes a translation tool to automatically translate the visual
behavioral models created by the user into the formal notation accepted by the
test execution manager in the next layer, and a mapping tool to translate back
the test results (coverage and error information) to annotations in the visual
model.

The model transformations can be implemented using existing MDA tech-
nologies and tools [26].

4.2 Test Execution Engine

At the next layer, the test execution engine is the core engine of the toolset.
It comprises a model execution & conformance checking engine, responsible for
incrementally checking the conformance of observed execution traces in the SUT
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Fig. 5. Toolset architecture.

against the formal runtime model derived from the previous layer, and a test
execution manager, responsible for initiating test execution (using the services
of the next layer), forward execution events (received from the next layer) to
the model execution & conformance checking engine, decide next actions to be
performed by the local test driving and monitoring components in the next layer
of the system, and produce test results and diagnosis information for the layer
above.

The model execution & conformance checking engine can be implemented by
adapting existing Petri net engines, such as CPN Tools [15].
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4.3 Distributed Test Monitoring and Control Infrastructure

We adopt a hybrid test monitoring approach as proposed in [11], combining a
centralized ‘tester’ and a local ‘tester’ at each port (component interaction point)
of the SUT, that was shown to lead to more effective testing than a purely cen-
tralized approach (where a centralized tester interacts asynchronously with the
ports of the SUT) or a purely distributed approach (where multiple independent
distributed testers interact synchronously with the ports of the SUT).

Hence, the Distributed Test Monitoring and Control Infrastructure comprises
a set of local test driving and monitoring (LTDM) components, each communi-
cating (possibly synchronously) with a component under test (CUT), performing
the roles of test monitor, driver and stub; and a test communication manager
(TCM) component, that (asynchronously) dispatches control orders (coming
from the previous layer) to the LTDMs and aggregates monitoring information
from the LTDMs (to be passed to the previous layer).

During test execution, the TEDCPN may be executed in a centralized or
a distributed mode, depending on the processing capabilities that can be put
in the LTDM components. In centralized mode, the LTDM components just
monitor all observable events of interest and send them to the central TEM;
they also inject controllable events when requested from the central TEM. In
distributed mode, a copy of each fragment (up to boundary places) is sent to the
respective LTDM component for local execution. When there is the need to send
a token to a boundary place, the LTDM sends the token to the central TEM,
which subsequently dispatches it to the consumer LTDM. Because of possible
delays in the communication of tokens through boundary places, the LTDM
components must be prepared to tentatively accept observable events before
receiving enabling tokens in boundary places.

This infrastructure may be implemented by adapting and extending existing
test frameworks for distributed systems, such as the ones described in Sect. 2.2.

Different LTDM components have to be implemented for different platforms
and technologies under test, such as WCF (Windows Communication Founda-
tion), Java EE (Java Platform, Enterprise Edition), Android, etc. However, a
LTDM component implemented for a given technology may be reused without
change to monitor and control any CUT that uses that technology. For exam-
ple, in our previous work for automating the scenario-based testing of standalone
applications written in Java, we developed a runtime test library able to trace and
manipulate the execution of any Java application, using AOP (aspect-oriented
programming) instrumentation techniques with load-time weaving. In the case
of a distributed Java application, we would need to deploy a copy of that library
(or, more precisely, a modified library, to handle communication) together with
each Java component under test. In the case of a distributed system implemented
using other technologies (with different technologies for different components in
case of heterogeneous systems), similar test monitoring components suitable for
the technologies involved will have to be deployed.
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5 Synthesis of Novelties and Benefits

As compared to existing approaches (see Sect. 2), the approach proposed in this
paper provides the following novelties and benefits.

Our approach provides a higher level of automation of the testing process
because all phases of the test process are supported in an integrated fashion.
The only manual activity needed is the development in a user friendly notation
of the model required as input for automatic test case generation and execution;
there is no need to develop test components specific for each SUT.

This approach also provides a higher fault detection capability. The use of
a hybrid test architecture allows the detection of a higher number of errors as
compared to purely distributed or centralized architectures. Interactions between
components in the SUT are also monitored and checked against the specifica-
tion, besides the interactions of the SUT with the environment. To facilitate fault
diagnosis, it is used an incremental conformance checking algorithm allowing to
capture the execution state of the SUT as soon as a failure occurs. Because of the
support for temporal constraints, timing faults can also be detected. Our app-
roach has the ability to test non-deterministic SUT behaviors, using an online,
adaptive, test generation strategy.

The proposed approach provides easier support for multiple test levels
because the same input model can be used to perform tests at different lev-
els (unit, integration, and system testing), simply by changing the selection of
observable and controllable events in the input model. A scenario-oriented app-
roach simplifies the level of detail required in the input models.

With this approach the test execution process is more efficient. With a dis-
tributed conformance checking algorithm, communication overheads during test
execution are minimized and the usage of a state-oriented runtime model allows
a more efficient model execution and conformance checking.

6 Conclusions

In this paper, it was presented a novel approach and process for automated
scenario-based testing of distributed and heterogeneous systems. It was also
presented the architecture of a toolset able to support and automate the pro-
posed test process. Based in a multilayer architecture and using a hybrid test
monitoring approach combining a centralized ‘tester’ and a local ‘tester’ this
toolset promotes reuse and extensibility. In the approach proposed, the tester
interacts with a visual modeling front-end to describe key behavioral scenarios
of the SUT using UML sequence diagrams, invoke test generation and execution,
and visualize test results and coverage information back in the model using a
color scheme (see Fig. 3). Internally, the visual modeling notation is converted to
a formal notation amenable for runtime interpretation (see Fig. 4) in the back-
end. A distributed test monitoring and control infrastructure is responsible for
interacting with the components of the SUT, under the roles of test driver, mon-
itor and stub. At the core of the toolset, a test execution engine coordinates
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test execution and checks the conformance of the observed execution trace with
the expectations derived from the visual model. For better understanding the
approach and toolset architecture proposed, a real world example from the AAL
domain was presented along the paper.

As future work we will implement a toolset following the architecture (repre-
sented in Fig. 5) and working principles presented in this paper, taking advantage
of previous work for automating the integration testing of standalone object-
oriented systems. To experimentally assess the benefits of the approach and
toolset, industrial level case studies will be conducted, with at least one in the
AAL domain.

With such a toolset, we expect to significantly reduce the cost of testing
distributed and heterogeneous systems, from the standpoint of time, resources
and expertise required, as compared to existing approaches.
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