
123

Pascal Lorenz
Jorge Cardoso
Leszek A. Maciaszek
Marten van Sinderen (Eds.)

10th International Joint Conference, ICSOFT 2015
Colmar, France, July 20–22, 2015
Revised Selected Papers

Software Technologies

Communications in Computer and Information Science 586

Communications
in Computer and Information Science 586

Commenced Publication in 2007
Founding and Former Series Editors:
Alfredo Cuzzocrea, Dominik Ślęzak, and Xiaokang Yang

Editorial Board

Simone Diniz Junqueira Barbosa
Pontifical Catholic University of Rio de Janeiro (PUC-Rio),
Rio de Janeiro, Brazil

Phoebe Chen
La Trobe University, Melbourne, Australia

Xiaoyong Du
Renmin University of China, Beijing, China

Joaquim Filipe
Polytechnic Institute of Setúbal, Setúbal, Portugal

Orhun Kara
TÜBİTAK BİLGEM and Middle East Technical University, Ankara, Turkey

Igor Kotenko
St. Petersburg Institute for Informatics and Automation of the Russian
Academy of Sciences, St. Petersburg, Russia

Ting Liu
Harbin Institute of Technology (HIT), Harbin, China

Krishna M. Sivalingam
Indian Institute of Technology Madras, Chennai, India

Takashi Washio
Osaka University, Osaka, Japan

More information about this series at http://www.springer.com/series/7899

http://www.springer.com/series/7899

Pascal Lorenz • Jorge Cardoso
Leszek A. Maciaszek • Marten van Sinderen (Eds.)

Software Technologies
10th International Joint Conference, ICSOFT 2015
Colmar, France, July 20–22, 2015
Revised Selected Papers

123

Editors
Pascal Lorenz
University of Haute Alsace
Mulhouse
France

Jorge Cardoso
Universidade da Coimbra
Coimbra
Portugal

Leszek A. Maciaszek
Macquarie University
Sydney
Australia

Marten van Sinderen
Information Systems Group
Enschede
The Netherlands

ISSN 1865-0929 ISSN 1865-0937 (electronic)
Communications in Computer and Information Science
ISBN 978-3-319-30141-9 ISBN 978-3-319-30142-6 (eBook)
DOI 10.1007/978-3-319-30142-6

Library of Congress Control Number: 2015952534

© Springer International Publishing Switzerland 2016
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by SpringerNature
The registered company is Springer International Publishing AG Switzerland

Preface

The present book includes extended and revised versions of a set of selected papers
from the 10th International Conference on Software Technologies (ICSOFT 2015),
which was sponsored by the Institute for Systems and Technologies of Information,
Control and Communication (INSTICC), co-organized by the University of Haute
Alsace, held in cooperation with the IEICE Special Interest Group on Software
Interprise Modelling (SWIM) and technically co-sponsored by IEEE Computer Soci-
ety/Technical Council on Software Engineering (IEEE CS TCSE).

The purpose of ICSOFT is to bring together researchers, engineers, and practitioners
working in areas that are related to software engineering and applications. ICSOFT is
composed of two co-located conferences ICSOFT-PT, which specializes in new soft-
ware paradigm trends, and ICSOFT-EA, which specializes in mainstream software
engineering and applications. Together, these conferences aim at becoming a major
meeting point for software engineers worldwide.

ICSOFT-PT (10th International Conference on Software Paradigm Trends) focuses
on four main paradigms that have been intensively studied during the last decade for
software and system design, namely, “Models,” “Aspects,” “Services,” and “Context.”

ICSOFT-EA (10th International Conference on Software Engineering and Appli-
cations) has a practical focus on software engineering and applications. The conference
tracks are “Enterprise Software Technologies,” “Software Project Management,”
“Software Engineering Methods and Techniques,” and “Distributed and Mobile Soft-
ware Systems.”

ICSOFT 2015 received 117 paper submissions from 41 countries in all continents,
of which 38 % were orally presented (14 % as full papers). To evaluate each sub-
mission, a double-blind paper evaluation method was used: Each paper was reviewed
by at least two internationally known experts from the ICSOFT Program Committee.

The quality of the papers herewith presented stems directly from the dedicated effort
of the Steering and Scientific Committees and the INSTICC team responsible for
handling all secretariat and logistics’ details. We are further indebted to the conference
keynote speakers, who presented their valuable insights and visions regarding areas of
interest to the conference. Finally, we would like to thank all authors and attendees for
their contribution to the conference and the scientific community. We hope that you
will find these papers interesting and consider them a helpful reference in the future
when addressing any of the research aforementioned areas.

July 2015 Pascal Lorenz
Jorge Cardoso

Leszek Maciaszek
Marten van Sinderen

Organization

Conference Chair

Pascal Lorenz University of Haute Alsace, France

Program Co-chairs

ICSOFT-PT

Jorge Cardoso University of Coimbra, Portugal and Huawei European
Research Center, Germany

Marten van Sinderen University of Twente, The Netherlands

ICSOFT-EA

Leszek Maciaszek Wroclaw University of Economics, Poland and
Macquarie University, Sydney, Australia

ICSOFT-PT Program Committee

Farhad Arbab CWI, The Netherlands
Colin Atkinson University of Mannheim, Germany
Maurice H. ter Beek ISTI-CNR, Pisa, Italy
Gábor Bergmann Budapest University of Technology and Economics,

Hungary
Marcello M. Bersani Politecnico di Milano, Italy
Thomas Buchmann University of Bayreuth, Germany
Dumitru Burdescu University of Craiova, Romania
Jose Antonio

Calvo-Manzano
Universidad Politécnica de Madrid, Spain

Cinzia Cappiello Politecnico di Milano, Italy
Ana R. Cavalli Institute TELECOM SudParis, France
Kung Chen National Chengchi University, Taiwan
Marta Cimitile UNITELMA Sapienza, Italy
Marco Danelutto University of Pisa, Italy
Sergiu Dascalu University of Nevada, Reno, USA
Steven Demurjian University of Connecticut, USA
María J. Domínguez-Alda Universidad de Alcalá, Spain
Fikret Ercal Missouri University of Science and Technology, USA
Maria Jose Escalona University of Seville, Spain
Santiago Escobar Universidad Politécnica de Valencia, Spain
Anne Etien Université Lille 1, France

Jean-Rémy Falleri Institut Polytechnique de Bordeaux, France
João Faria FEUP - Faculty of Engineering of the University

of Porto, Portugal
Chiara Di Francescomarino FBK-IRST, Italy
Nikolaos Georgantas Inria, France
Paola Giannini University of Piemonte Orientale, Italy
J. Paul Gibson Mines-Telecom - Telecom SudParis, France
Athula Ginige University of Western Sydney, Australia
Cesar Gonzalez-Perez Institute of Heritage Sciences (Incipit), Spanish

National Research Council (CSIC), Spain
Gregor Grambow University of Ulm, Germany
Jan Friso Groote Eindhoven University of Technology, The Netherlands
Øystein Haugen Østfold University College, Norway
Christian Heinlein Aalen University, Germany
Jose Luis Arciniegas

Herrera
Universidad del Cauca, Colombia

Jose R. Hilera University of Alcala, Spain
Shihong Huang Florida Atlantic University, USA
Ivan Ivanov SUNY Empire State College, USA
Pooyan Jamshidi Imperial College London, UK
Hermann Kaindl Vienna University of Technology, Austria
Dimitris Karagiannis University of Vienna, Austria
Jun Kong North Dakota State University, USA
Eda Marchetti ISTI-CNR, Italy
Manuel Mazzara Innopolis University, Russian Federation
Gergely Mezei Budapest University of Technology and Economics,

Hungary
Marian Cristian Mihaescu University of Craiova, Romania
Tommi Mikkonen Institute of Software Systems, Tampere University

of Technology, Finland
Dimitris Mitrakos Aristotle University of Thessaloniki, Greece
Mattia Monga Università degli Studi di Milano, Italy
Claude Moulin JRU CNRS Heudiasyc, University of Compiègne,

France
Elena Navarro University of Castilla-La Mancha, Spain
Paolo Nesi University of Florence, Italy
Rory O’Connor Dublin City University, Ireland
Claus Pahl Dublin City University, Ireland
Jennifer Pérez Technical University of Madrid - Universidad

Politécnica de Madrid, Spain
Rosario Pugliese Università di Firenze, Italy
Henrique Rebelo Universidade Federal de Pernambuco, Brazil
Michel Reniers Eindhoven University of Technology, The Netherlands
Colette Rolland Université De Paris1 Panthèon Sorbonne, France
Carlos Rossi Universidad de Málaga, Spain
Gustavo Rossi Lifia, Argentina

VIII Organization

Matteo Rossi Politecnico di Milano, Italy
Krzysztof Sacha Warsaw University of Technology, Poland
Maria-Isabel

Sanchez-Segura
Carlos III University of Madrid, Spain

Ulrik Pagh Schultz University of Southern Denmark, Denmark
Harvey Siy University of Nebraska at Omaha, USA
Yeong-tae Song Towson University, USA
Cosmin Stoica Spahiu University of Craiova, Romania
Peter Stanchev Kettering University, USA
Clemens Szyperski Microsoft, USA
Chouki Tibermacine LIRMM, CNRS and Montpellier University, France
Claudine Toffolon Université du Maine, France
Gianluigi Viscusi EPFL-CDM, Switzerland
Christiane Gresse

von Wangenheim
UFSC - Federal University of Santa Catarina, Brazil

Dietmar Wikarski FH Brandenburg University of Applied Sciences,
Germany

Andreas Winter Carl von Ossietzky University Oldenburg, Germany
Jinhui Yao Xerox Research, USA
Jingyu Zhang Macquarie University, Australia
Elena Zucca University of Genoa, Italy

ICSOFT-PT Additional Reviewers

Vincent Blondeau Worldline, France
Sharmistha Chatterjee Broward College, USA
Diego Rivera Institut Telecom SudParis, France
Gustavo Santos Université de Lille-1, France
Nikolaos Tantouris University of Vienna, Austria
Reza Teimourzadegan Islamic Azad University of Azarshahr Branch,

Iran, Islamic Republic of
Tarek Zernadji Biskra University, Algeria

ICSOFT-EA Program Committee

Waleed Alsabhan KACST, UK
Nicolas Anquetil Inria and USTL, France
Jorge Bernardino Polytechnic Institute of Coimbra - ISEC, Portugal
Mario Berón Universidad Nacional de San Luis, Argentina
Lisa Brownsword Software Engineering Institute, USA
Andrea Burattin University of Innsbruck, Austria
Dumitru Burdescu University of Craiova, Romania
Fergal Mc Caffery Dundalk Institute of Technology, Ireland
Antoni Lluís Mesquida

Calafat
Universitat de les Illes Balears (UIB), Spain

Organization IX

Jose Antonio
Calvo-Manzano

Universidad Politécnica de Madrid, Spain

Krzysztof Cetnarowicz AGH - University of Science and Technology, Poland
Chun-Yen Chang National Taiwan Normal University, Taiwan
Alexander Chatzigeorgiou University of Macedonia, Greece
Kung Chen National Chengchi University, Taiwan
Marta Cimitile UNITELMA Sapienza, Italy
Rem Collier University College Dublin, Ireland
Kendra Cooper The University of Texas at Dallas, USA
António Miguel Rosado

da Cruz
Instituto Politécnico de Viana do Castelo, Portugal

Aldo Dagnino ABB Corporate Research, USA
Steven Demurjian University of Connecticut, USA
Philippe Dugerdil Geneva School of Business Administration,

University of Applied Sciences of Western
Switzerland, Switzerland

Maria Jose Escalona University of Seville, Spain
João Faria FEUP, University of Porto, Portugal
Cléver Ricardo Guareis

de Farias
University of São Paulo, Brazil

Matthias Galster University of Canterbury, New Zealand
Nikolaos Georgantas Inria, France
Hamza Gharsellaoui INSAT Institute-University of Carthage, Tunisia,

Al-Jouf College of Technology, TVTC, KSA,
Saudi Arabia

Paola Giannini University of Piemonte Orientale, Italy
J. Paul Gibson Mines-Telecom - Telecom SudParis, France
Athula Ginige University of Western Sydney, Australia
Jean Hauck Universidade Federal de Santa Catarina, Brazil
Orit Hazzan Technion Israel Institute of Technology, Israel
Brian Henderson-Sellers University of Technology, Sydney, Australia
Pedro Rangel Henriques University of Minho, Portugal
Jose Luis Arciniegas

Herrera
Universidad del Cauca, Colombia

Yoshiki Higo Osaka University, Japan
Jose R. Hilera University of Alcala, Spain
Jang-eui Hong Chungbuk National University, Korea, Republic of
Shihong Huang Florida Atlantic University, USA
Milan Ignjatovic Prosoftwarica GmbH, Switzerland
Ivan Ivanov SUNY Empire State College, USA
Judit Jasz University of Szeged, Hungary
Bo Nørregaard Jørgensen University of Southern Denmark, Denmark
Bharat Joshi University of North Carolina Charlotte, USA
Dimitris Karagiannis University of Vienna, Austria
Carlos Kavka ESTECO SpA, Italy
Foutse Khomh École Polytechnique, Canada

X Organization

Jitka Komarkova University of Pardubice, Czech Republic
Jun Kong North Dakota State University, USA
Martin Kropp University of Applied Sciences Northwestern

Switzerland, Switzerland
Philippe Kruchten University of British Columbia, Canada
Giuseppe Lami Consiglio Nazionale delle Ricerche, Italy
Ivan Lukovic University of Novi Sad, Faculty of Technical

Sciences, Serbia
Leszek Maciaszek Wroclaw University of Economics, Poland

and Macquarie University, Sydney, Australia
Fabrizio Maria Maggi University of Tartu, Estonia
Ahmad Kamran Malik Quaid-i-Azam University, Pakistan
Eda Marchetti ISTI-CNR, Italy
Leonardo Mariani University of Milano Bicocca, Italy
Katsuhisa Maruyama Ritsumeikan University, Japan
Tom McBride University of Technology Sydney, Australia
Emilia Mendes Blekinge Institute of Technology, Sweden
Jose Ramon Gonzalez de

Mendivil
Universidad Publica de Navarra, Spain

Marian Cristian Mihaescu University of Craiova, Romania
Dimitris Mitrakos Aristotle University of Thessaloniki, Greece
Mattia Monga Università degli Studi di Milano, Italy
José Arturo Mora-Soto Mathematics Research Center, Mexico
Antao Moura Federal Universisty of Campina Grande

(UFCG), Brazil
Henry Muccini University of L’Aquila, Italy
Takako Nakatani University of Tsukuba, Japan
Paolo Nesi University of Florence, Italy
Jianwei Niu University of Texas at San Antonio, USA
Rory O’Connor Dublin City University, Ireland
Hanna Oktaba Universidad National Autonoma de Mexico, Mexico
Giuseppe Polese Università Degli Studi di Salerno, Italy
Rakesh Rana University of Gothenburg, Sweden
Gustavo Rossi Lifia, Argentina
Chandan Rupakheti Rose-Hulman Institute of Technology, USA
Krzysztof Sacha Warsaw University of Technology, Poland
Francesca Saglietti University of Erlangen-Nuremberg, Germany
Maria-Isabel

Sanchez-Segura
Carlos III University of Madrid, Spain

Luis Fernandez Sanz University of Alcala, Spain
Ichiro Satoh National Institute of Informatics, Japan
Riccardo Scandariato University of Gothenburg, Sweden
Marian Fernández de Sevilla Alcalá University, Spain
Istvan Siket Hungarian Academy of Science, Research Group on

Artificial Intelligence, Hungary
Harvey Siy University of Nebraska at Omaha, USA

Organization XI

Yeong-tae Song Towson University, USA
Anongnart Srivihok Kasetsart University, Thailand
Miroslaw Staron University of Gothenburg, Sweden
Antony Tang Swinburne University of Technology, Australia
Joseph Trienekens TU Eindhoven, The Netherlands
László Vidács University of Szeged, Hungary
Sergiy Vilkomir East Carolina University, USA
Gianluigi Viscusi EPFL-CDM, Switzerland
Christiane Gresse

von Wangenheim
UFSC - Federal University of Santa Catarina, Brazil

Rainer Weinreich Johannes Kepler University Linz, Austria
Murat Yilmaz Çankaya University, Turkey
Zheying Zhang University of Tampere, Finland
Elena Zucca University of Genoa, Italy

ICSOFT-EA Additional Reviewers

Dominik Bork University of Vienna, Austria
Matteo Camilli Università degli Studi di Milano, Italy
Theodore Chaikalis University of Macedonia, Greece
Sharmistha Chatterjee Broward College, USA
George Digkas University of Macedonia, Greece
Vladimir Dimitrieski Faculty of Technical Sciences, Serbia
Hans-Georg Fill University of Vienna, Austria
Vladimir Ivancevic University of Novi Sad, Faculty of Technical

Sciences, Serbia

Invited Speakers

Eleni Karatza Aristotle University of Thessaloniki, Greece
John Domingue The Open University, UK
David Budgen Durham University Mountjoy, UK

XII Organization

Contents

Invited Paper

What Do We Know and How Well Do We Know It? Current Knowledge
About Software Engineering Practices . 3

David Budgen

Software Paradigm Trends

Filtered Model-Driven Product Line Engineering with SuperMod:
The Home Automation Case. 19

Felix Schwägerl, Thomas Buchmann, and Bernhard Westfechtel

A Semantic Versioning Service Based on Formal Certification 42
Jean-Yves Vion-Dury and Nikolaos Lagos

An Eclipse IDE for Teaching Java–. 63
Lorenzo Bettini and Pierluigi Crescenzi

Supporting Privacy Impact Assessments Using Problem-Based
Privacy Analysis . 79

Rene Meis and Maritta Heisel

Integrating Model Driven and Model Checking to Mine Design Patterns 99
Mario L. Bernardi, Marta Cimitile, Giuseppe De Ruvo,
Giuseppe A. Di Lucca, and Antonella Santone

R-UML: An UML Profile for Verification of Flexible Control Systems 118
Mohamed Oussama Ben Salem, Olfa Mosbahi, Mohamed Khalgui,
and Georg Frey

Invariant Implementation for Domain Models Applying Incremental
OCL Techniques. 137

Alberto-Manuel Fernández-Álvarez, Daniel Fernández-Lanvin,
and Manuel Quintela-Pumares

An Ontological Analysis of a Proposed Theory for Software Development. . . 155
Diana Kirk and Stephen MacDonell

Software Engineering and Applications

Specifying Business Process Outsourcing Requirements 175
Mouna Rekik, Khouloud Boukadi, and Hanene Ben-Abdallah

http://dx.doi.org/10.1007/978-3-319-30142-6_1
http://dx.doi.org/10.1007/978-3-319-30142-6_1
http://dx.doi.org/10.1007/978-3-319-30142-6_2
http://dx.doi.org/10.1007/978-3-319-30142-6_2
http://dx.doi.org/10.1007/978-3-319-30142-6_3
http://dx.doi.org/10.1007/978-3-319-30142-6_4
http://dx.doi.org/10.1007/978-3-319-30142-6_5
http://dx.doi.org/10.1007/978-3-319-30142-6_5
http://dx.doi.org/10.1007/978-3-319-30142-6_6
http://dx.doi.org/10.1007/978-3-319-30142-6_7
http://dx.doi.org/10.1007/978-3-319-30142-6_8
http://dx.doi.org/10.1007/978-3-319-30142-6_8
http://dx.doi.org/10.1007/978-3-319-30142-6_9
http://dx.doi.org/10.1007/978-3-319-30142-6_10

Supporting Deviations on Software Processes: A Literature Overview 191
Manel Smatti, Mourad Oussalah, and Mohamed Ahmed Nacer

Protection of Customers’ and Suppliers’ Knowledge in Software
Development Projects with Fixed-Price Contract: Using Property
Rights Theory. 210

Cornelia Gaebert

GQM-Based Definition and Evaluation of Software Project Success
Indicators . 228

Luigi Lavazza, Enrico Frumento, and Riccardo Mazza

Dynamic Analysis Techniques to Reverse Engineer Mobile Applications 250
Philippe Dugerdil and Roland Sako

Annotating Goals with Concerns in Goal-Oriented Requirements
Engineering . 269

Shinpei Hayashi, Wataru Inoue, Haruhiko Kaiya, and Motoshi Saeki

A Model-Based Approach for Integrating Executable Architectural Design
Patterns in Space Flight Software Product Lines . 287

Julie Street Fant, Hassan Gomaa, and Robert G. Pettit

Model Checking Feature Interactions . 307
Thibaut Le Guilly, Petur Olsen, Thomas Pedersen, Anders P. Ravn,
and Arne Skou

Deriving Tailored UML Interaction Models from Scenario-Based
Runtime Tests . 326

Thorsten Haendler, Stefan Sobernig, and Mark Strembeck

Documenting and Designing QVTo Model Transformations
Through Mathematics . 349

Ulyana Tikhonova and Tim Willemse

An Approach for the Automatic Adaptation of Domain-Specific Modeling
Languages for Model-Driven Mobile Application Development 365

Xiaoping Jia and Christopher Jones

Automated Testing of Distributed and Heterogeneous Systems
Based on UML Sequence Diagrams . 380

Bruno Lima and João Pascoal Faria

Guiding Cloud Developers to Build Energy Aware Applications 397
Christophe Ponsard, Jean-Christophe Deprez, and Raphael Michel

XIV Contents

http://dx.doi.org/10.1007/978-3-319-30142-6_11
http://dx.doi.org/10.1007/978-3-319-30142-6_12
http://dx.doi.org/10.1007/978-3-319-30142-6_12
http://dx.doi.org/10.1007/978-3-319-30142-6_12
http://dx.doi.org/10.1007/978-3-319-30142-6_13
http://dx.doi.org/10.1007/978-3-319-30142-6_13
http://dx.doi.org/10.1007/978-3-319-30142-6_14
http://dx.doi.org/10.1007/978-3-319-30142-6_15
http://dx.doi.org/10.1007/978-3-319-30142-6_15
http://dx.doi.org/10.1007/978-3-319-30142-6_16
http://dx.doi.org/10.1007/978-3-319-30142-6_16
http://dx.doi.org/10.1007/978-3-319-30142-6_17
http://dx.doi.org/10.1007/978-3-319-30142-6_18
http://dx.doi.org/10.1007/978-3-319-30142-6_18
http://dx.doi.org/10.1007/978-3-319-30142-6_19
http://dx.doi.org/10.1007/978-3-319-30142-6_19
http://dx.doi.org/10.1007/978-3-319-30142-6_20
http://dx.doi.org/10.1007/978-3-319-30142-6_20
http://dx.doi.org/10.1007/978-3-319-30142-6_21
http://dx.doi.org/10.1007/978-3-319-30142-6_21
http://dx.doi.org/10.1007/978-3-319-30142-6_22

SPACES: Subjective sPaces Architecture for Contextualizing
hEterogeneous Sources . 415

Daniela Micucci, Marco Mobilio, and Francesco Tisato

Author Index . 431

Contents XV

http://dx.doi.org/10.1007/978-3-319-30142-6_23
http://dx.doi.org/10.1007/978-3-319-30142-6_23

Invited Paper

What Do We Know and How Well Do We Know
It? Current Knowledge About Software

Engineering Practices

David Budgen(B)

School of Engineering and Computing Sciences, Durham University, Durham, UK
david.budgen@durham.ac.uk

Abstract. Context: The ‘prescriptions’ used in software engineering for
developing and maintaining systems make use of a set of ‘practice mod-
els’, which have largely been derived by codifying successful experiences
of expert practitioners. Aim: To review the ways in which empirical prac-
tices, and evidence-based studies in particular, have begun to provide
more systematic sources of evidence about what practices work, when,
and why. Method: This review examines the current situation regard-
ing empirical studies in software engineering and examine some of the
ways in which evidence-based studies can inform and influence practice.
Results: A mix of secondary and tertiary studies have been used to illus-
trate the issues. Conclusion: The corpus of evidence-based knowledge
for software engineering is still developing. However, outcomes so far are
encouraging, and indicate that in the future we can expect evidence-
based research to play a larger role in informing practice, standards and
teaching.

Keywords: Evidence-based · Empirical · Systematic review

1 Introduction

When teaching about software engineering (and many other topics in comput-
ing), one of the challenges we face is that much of our material requires us to
provide students with knowledge which is in a ‘catalogue’ form. We might dress it
up with models and formalism wherever possible, but basically we teach about a
set of (relatively disjoint) topics that are loosely linked by such things as process
models. This is contrast to most science subjects, where knowledge is imparted
in a much more hierarchical fashion, with advanced topics building upon more
basic knowledge.

So, one question that we might start with is where this knowledge (about
design, testing, coding structures, . . .) comes from? In many cases the answer
is that it is largely derived from the experiences of expert practitioners, who
have drawn upon observations of their own experiences (and maybe those of
their colleagues too) and codified these in some way. Some examples of this are

c© Springer International Publishing Switzerland 2016
P. Lorenz et al. (Eds.): ICSOFT 2015, CCIS 586, pp. 3–16, 2016.
DOI: 10.1007/978-3-319-30142-6 1

4 D. Budgen

techniques such as structured programming, plan-driven design forms, design
patterns, agile methods and test-first development.

This is not to imply that this is necessarily a bad thing, and indeed in com-
puting where ‘theory’ is apt to be far divorced from application, it is likely to
remain as the dominant way for new ideas to emerge. However, while it does
mean that while we can benefit from good experiences, it is also essentially the
way that a ‘craft’ develops rather than providing the basis needed for good engi-
neering practice. And equally important, we are unlikely to have any reliable
criteria for identifying the limitations of such knowledge. This is particularly
true for software engineering where there are many confounding factors, most
especially in the way that:

– software is used for a very wide range of roles in a very extensive set of
application domains, so ‘methods’ that work in one context may be unsuitable
for another.

– every practitioner has a different set of abilities and experiences, which may
not always match those implicitly required for using particular techniques or
methods.

So, given that this is the case, the ability to be able to evaluate and assess our
practices is an important one, helping to move our knowledge about computing
practices to an evidence-informed basis, rather than simply being dependent
upon expert experiences. It also provides an important and valuable input to
the way that we teach about our subject.

This review is therefore structured around a consideration of how we are
currently able to answer the following four questions about software engineering
knowledge.

1. How have our ideas about software engineering ‘knowledge’ been evolving?
2. How has the adoption of evidence-based studies changed the nature and qual-

ity of that knowledge?
3. How well can EBSE (evidence-based software engineering) inform practice,

teaching and research?
4. What might we do to improve the quality of our knowledge?

The following sections address each of these in turn.

2 Empirical Knowledge in Computing

Q1. How have our ideas about software engineering ‘knowledge’ been evolving?
Software engineering knowledge covers a broad span: from process issues (project
management, cost modelling, planning, lifecycles etc.) to technical issues (test-
ing, design, programming, tools . . .). And influencing most of these are human
skills and experience, which may determine how the processes are performed and
the technologies employed. This section briefly reviews the way that the use of
empirical evaluation has evolved in computing, and in software engineering in
particular.

Current Knowledge About Software Engineering Practices 5

2.1 Research Practice

We have some knowledge of how research and evaluation was conducted around
the millennium from a set of studies reported in [7] that examined 1485 jour-
nal publications in computing over a five year period. For each of these the
researchers identified the research methods the authors used and the reference
disciplines that these drew upon. In particular, their study compared the prac-
tices in the three main branches of computing: computer science (CS), software
engineering (SE) and information systems (IS).

The dominant research methods used were very different for each branch.

– For CS, most papers used either mathematically based conceptual analysis
(73.4 %) or more analytically based forms of conceptual analysis (15.1 %).

– For IS, the dominant form was field study in various forms (24.5 %) along with
some use of conceptual analysis.

– For SE, dominant forms were conceptual analysis (42.5 %) and concept
implementation— “we built it and it worked” (17.1 %).

This indicates that the basis for software engineering knowledge:

– was based upon a culture of building things and using analysis rather than
empirical evaluation;

– was codified in many ways, but rarely in any formal way.

In the period since this study was performed (1995–1999), empirical software
engineering has been making substantial advances, both in terms of establishing
accepted practice and of undertaking systematic evaluations. Indeed, this period
has seen the establishment of a journal (Empirical Software Engineering) and
two annual conferences (EASE and ESEM). Considerable effort has gone into
developing and promulgating guidelines for use by researchers, and overall, there
are indications that the quality of published empirical research has improved
[13], although we have no recent studies to indicate how far the overall profile
of research studies has changed.

2.2 Empirical Practice

For anyone with a grounding in the traditional sciences, the terms ‘empirical’
and ‘experimental’ are apt to be considered synonymous. This was probably
largely the position for software engineering in the 1990 s too. However, if we
look more carefully, we can see that this is no longer the case. For this paper,
we consider them to be defined as:

Empirical: Relying upon observation and experimental investigation rather than
upon theory.

Experiment: “A study in which an intervention (i.e. a treatment) is deliberately
controlled to observe its effects” [18].

6 D. Budgen

So we can consider ‘empirical’ as being more of an umbrella concept that spans a
wide range of forms and that it subsumes ‘experimental’, with experiments being
simply one of these forms. Indeed, the transition from thinking about ‘experi-
ments’ to thinking about’empiricism’ probably reflects a growing confidence that
software engineering is a distinct domain that draws upon many (often human-
centric) reference disciplines.

One sign of this is the wider use of qualitative studies. While a quantitative
study can help establish whether some form of cause-effect relationship exists
(e.g. “does using pair programming for complex tasks require less time than
when using solo programming?”), it can rarely identify why it might be so (or
not). So to answer questions that are often stimulated by quantitative studies,
such as “why different inspection groups may be more/less able to find errors,
and possibly different types of error”, really needs the deeper probing that can
be provided by qualitative forms. For another, rather different, example, see [16].

Another sign is the use of a larger range of empirical forms, drawn from
a wider set of reference disciplines. The earliest studies, starting in the 1980 s
tended to be either observational (formal or informal) or involve the use of
experiments or quasi-experiments. By the 1990 s researchers were also conducting
some surveys, which became a more practical option with the emergence of the
internet.

Post-2000 two significant developments have been increasing use of case stud-
ies modelled around the positivist approach developed by Robert K Yin [17,21]
and of systematic reviews, or secondary studies [10]. Case studies provide an
excellent vehicle for research ‘in the field’ and for investigating questions about
such issues as the transition of technology into organisations. And secondary
studies, discussed in the next section, provide the key underpinning of the ideas
in this paper.

Overall, in terms of answering our first question, we should observe that new
sources and forms of knowledge have become available, based on more systematic
approaches to investigating how well our tools and techniques work, and in what
circumstances they are most (or least) effective.

3 Secondary Studies

Q2. How has the adoption of evidence-based studies changed the nature and qual-
ity of that knowledge? Software engineering makes extensive use of human-centric
studies in which human participants perform technical tasks, often requiring spe-
cialist training. (These are referred to as being primary studies.) One problem
with this form of study is that the natural variability in performance by human
participants, together with the many confounding factors that can influence the
outcomes of a study, may well result in quite different results from separate stud-
ies, even when these use the same materials. Indeed, replication of such studies
poses quite a challenging issue for empiricists, and this is currently an active
research topic for empirical software engineers [20].

It is worth exploring this issue of variability a little more here, since it is
an important factor when distinguishing between the use of experimentation in

Current Knowledge About Software Engineering Practices 7

Table 1. Sources of variability in experimental studies.

Form of study Causes of variation

Natural sciences (humans as
observers)

Any variation in the results of experiments
tends to come from errors in
measurement, and are usually relatively
small

Human-centric (humans as
recipients: e.g. Clinical
RCTs)

We expect there to be some ‘spread’ of
values in the outcomes because physical
and physiological variability will mean
that different people react differently

Human-centric (humans as
participants: e.g. SE)

We expect quite a large spread in the
outcome values because each participant
involved will have a different combination
of ability, skill and experience

traditional ‘natural sciences’ and its use in fields where humans are likely to be
involved (medicine, social sciences, education, software engineering). Indeed, it
is this very distinction that provides a strong motivating factor in favour of the
use of secondary studies.

Table 1 summarises the causes for variation in experimental outcomes for
three different contexts: natural sciences, where humans are primarily observers;
fields where humans are recipients of some experimental treatment; and those
where they actively participate in some way.

What this highlights is that for human-centric studies, such variation is to be
expected (rather as an exam will usually produce a range of marks for a class),
and it is not some artifact of measurement. So, when plotting the outcome values
for a natural science study we might expect to show error bars and to see a normal
distribution of values around a mean. In contrast, for human-centric studies we
are more likely to use forms such as box plots (based on percentiles and the
median) and expect these to show that data values might well be skewed.

3.1 Systematic Reviews

This natural variation of outcome values may well mean that an individual study
has inconclusive results. One way to address this is to use a secondary study to
aggregate the outcomes of a set of relevant primary studies in order to reduce
the effects of this variability The evidence-based approach seeks to do this in a
systematic, objective and repeatable way, and the main tool for doing so is the
systematic review1.

The evidence-based approach originated in clinical medicine, where one bene-
fit of using randomised controlled trials (RCTs) is that the process of aggregation
can use statistical meta-analysis. However it has spread widely to other branches
of health and social care, to education, to management, and over the last decade,
1 In software engineering this has often been referred to as a systematic literature
review to distinguish it from code reviews. However, the proliferation of systematic
reviews means that it is really no longer necessary to do so.

8 D. Budgen

to software engineering. Software engineers have also made considerable use of
mapping studies, which are a form of secondary study that seeks to identify what
empirical knowledge exists about a topic, and in particular where there are clus-
ters of studies, and also ‘gaps’ (identifying these of course requires some form of
model of what aspects of the topic should be studied).

Of course the idea of the review article is not a new one, and expert reviews
have long been an important element in many disciplines (perhaps rather less
so in computing). However, one of the problems of the expert review is that two
different experts conducting a review on the same topic may well select different
studies and hence come to rather different conclusions. So an important element
in the process of a systematic review is to minimise the element of individual
choice. In particular, where decisions have to be made, it is customary to use two
analysts, who are expected to resolve any differences and to report the degree
of consistency (usually by using Cohen’s kappa measure).

3.2 Performing a Systematic Review

So, how is a secondary study organised in software engineering? Essentially this
is a five-step process, with the first three forming the systematic review, and the
last two being the process of knowledge translation (KT). The steps are then as
follows.

1. Convert information need into an answerable question.
2. Track down the best evidence relating to the question in a systematic and

unbiased manner.
3. Critically appraise the evidence for validity, impact and applicability (useful-

ness).
4. Integrate the outcomes from critical appraisal with domain expertise and

stakeholder requirements.
5. Evaluate the outcomes and improve the above steps.

One consequence of this is that the research protocol that forms the plan for any
empirical study particularly needs to specify exactly how the evidence will be
found and selected. With any empirical study it is important to avoid ‘fishing’
for results, and particularly so for a secondary study. This is usually related to
the following two elements of the study:

Searching. The forms and bounds of this need to be clearly specified since the
effectiveness of the search has an important effect upon the outcomes. There
are arguments in favour of both manual searching and also of electronic
searching using tools such as SCOPUS, IEEExplore, Web of Science etc. In
addition, the use of snowballing, which involves following up the references
of the studies initially selected can typically add a further 10 % of studies to
the final set.

Inclusion/Exclusion. The candidate studies identified by the search process need
to be filtered in order to determine which ones will be included in the study.

Current Knowledge About Software Engineering Practices 9

Doing so requires clear criteria that can be applied (preferably by two peo-
ple). Bearing in mind that initial searches may well find several thousand
candidate studies, and that the final number of studies used may well be
below 50, this process needs to be clearly specified and performed systemat-
ically.

Performing both of these tasks will also be influenced by the ways in which
primary studies are reported. There is an unfortunate tendency of comput-
ing researchers to re-invent the wheel (and terminology) that can complicate
searching—as well as some limitations of our search engines. Ideally both search-
ing and inclusion/exclusion can also be aided by good abstracts, and vice versa.
Adoption of structured abstracts (as used at the head of this article) can help
ensure that key information is provided in an abstract [3].

3.3 Influence upon Primary Studies

The relationship between primary and secondary studies is not a purely one-way
flow. Secondary studies can also have an influence upon primary studies, both
in terms of conduct and reporting. We can identify three important elements in
this relationship.

– Since secondary studies involve expending substantial effort for data extrac-
tion, systematic reviewers are keen to encourage the use of better and more
systematic reporting standards for primary studies. This has already occurred
in domains such as clinical medicine and is an issue raised in many papers
reporting systematic reviews in software engineering. The adoption of struc-
tured abstracts by a number of conferences and one journal can be considered
as a useful step in this direction.

– A systematic review, and a mapping study in particular, may identify where
further primary studies are needed to help provide better answers to specific
research questions. At present, while this does occur in software engineering
review, we lack any means of gathering this information together and making
it widely available to researchers.

– A systematic review may well identify new research questions, but again, this
information is not catalogued in any consistent form.

An example of identifying new research questions is the way that our systematic
review examining “Empirical evidence about the UML” [2] helped to motivate
the study reported in Marian Petre’s award-winning paper presented at ICSE
2013, where this reported on a series of interviews with 50 experienced developers
to find out how far, and in what ways, they actually used the UML [16].

So, returning to our second question, there are a number of ways in which
EBSE has begun to change our knowledge about software engineering practices.
These come primarily from the ‘pooling’ of the outcomes of individual studies,
whether through a mapping of that knowledge, or through aggregation, as well
as helping to identify how we might refine and extend our knowledge through
new studies.

10 D. Budgen

4 The Outcomes

Our third question (How well can EBSE (evidence-based software engineering)
inform practice, teaching and research?) changes our focus from methodological
aspects to what we can learn from the outcomes of systematic reviews in software
engineering.

4.1 Tertiary Studies

In the decade since the publication of the seminal paper on EBSE [10] the number
of secondary studies has proliferated, and keeping track of these has become
quite a challenge. One way of checking on the number of secondary studies is
to perform a systematic mapping study that identifies these—we term this a
tertiary study. There have been three ‘broad’ tertiary studies reported, looking
to see what existed [11,12,19], and subsequently most such studies have been
more focused on specific themes rather than trying to map out the whole field.

An example of focused tertiary study is one we undertook that looked at
how useful the available published systematic reviews were for use as teaching
material. As a start we used the papers found by the three broad studies, and
then performed a manual search of the five software engineering journals up to
mid-2011 [4]. This identified 143 secondary studies (after removing duplicates
where a study was reported in more than one venue), with 43 being considered
as having direct value for teaching. (Obviously some of the others may also have
value for teaching specialised topics, but our target was papers that could provide
input to an introductory software engineering course.) We recently extended this
study to the end of 2014, increasing the field to 216 studies, although only 59 of
these were considered as providing useful material for teaching.

As a further backup, we conducted an electronic search for the period covered
by our restricted manual search. This found over 250 further studies (the exact
number is yet to be determined as we still have to remove duplicates). While
many of these are very specialist in nature, and a very large proportion are
mapping studies, it still leaves a likely total of over 400 secondary studies that
have been published in the first decade of performing evidence-based studies in
software engineering.

A fuller analysis of our dataset is still being conducted at time of writing,
but it is possible to make some informal observations at this point.

– Few authors provide explicit recommendations based on the outcomes of their
reviews, in part because the practices of knowledge translation are still imma-
ture for software engineering, but also because the effect sizes observed are
often small. However, from a teaching perspective (and also that of practice),
there are useful conclusions in many reviews that can help guide and inform
learning and practice.

– Relatively few studies address the major technical issues of software engineer-
ing, such as requirements and design, although testing is covered well (most
testing studies are not human-centric of course). This may be largely because

Current Knowledge About Software Engineering Practices 11

study topics are currently driven by researcher interest, rather than being
commissioned by policy-making agencies (as happens in medicine, education
and social sciences), although it may also reflect the nature of the available
primary studies.

– Even where the outcomes of a study are limited or have only weak statistical
significance, they can still offer useful insight. Indeed, part of their value may
lie in helping students to be aware that software engineering is highly diverse
and skill-dependent, and hence tends to lack clear ‘right/wrong’ answers to
its questions.

Some of these points are illustrated more fully in the examples below.

4.2 Some Examples

Here we provide three brief examples of secondary studies, chosen to illustrate the
range of topics addressed by such studies, their scale, and the type of outcomes
that occur.

Agile Methods. The original study of the use of agile methods, published as
[6], is often quoted as an excellent example of how to report such studies. The
figures from searching are interesting:

– The initial search, after removal of duplicates, found 1996 studies.
– Exclusion on the basis of title reduced this to 821.
– Exclusion after reading (821) abstracts reduced the set to 270.
– After reading the full papers, the final set of studies was 36.

(We might note that secondary studies require an element of persistence!)
Their main finding was a lack of trustworthy studies. They also found most

papers were about XP (25), with only one addressing Scrum.

Pair Programming. This study is one of the rare examples where most of the
primary studies were experiments and it was possible to perform a meta-analysis
[9]. They again found quality issues, after reading the full papers they had 23
studies, but only 18 provided reports that were adequate for inclusion in the
meta-analysis. They found limited evidence that the use of pair programming
could:

– lead to higher quality code (small significance)
– be faster than conventional programming practices (small significance)
– could be less productive (moderate significance)

However, they suggest that the degree of heterogeneity in the findings does
suggest that other factors could be involved.

12 D. Budgen

Software Development in Startup Companies. The previous examples
are rather ‘technology’-focused, so this example is chosen to illustrate the wider
scope of many studies [15]. As may occur with mapping studies, not all of the
primary studies were actually empirical (some described frameworks or models)
and none were controlled experiments. However, the paper did still suggest that
there was some evidence to support the following practices:

– use of light-weight methodologies to obtain flexibility in choosing tailored
practices, and to provide reactiveness so that the product could be changed
to fit business strategies;

– using fast releases to build a prototype in an evolutionary way and use this
to obtain users’ feedback in order to help address uncertainty in the chosen
market.

Overall, the outcomes from the tertiary study, as illustrated above, show that
the aggregation of the outcomes from primary studies can provide a better and
fuller understanding of a phenomenon or practice. As such therefore, by provid-
ing such insight, they can potentially begin to inform teaching, support practice,
and help identify where new research could most usefully make a contribution.

5 Improving Knowledge

The fourth question posed at the start of this review was Q4. What might we do
to improve the quality of our knowledge?. Inevitably this element is essentially
‘informed speculation’, and this section examines three factors that currently
appear to be important for the development of EBSE.

5.1 Improving Empirical Quality

Over the past two decades there has been considerable effort dedicated to improv-
ing the quality of empirical studies, through books, guidelines and other activities
(including the journal and conferences mentioned earlier).

A group of seven researchers recently conducted a study to see whether there
was any measurable effect from these interventions [13]. The study itself formed
a quasi-experiment (meaning that it was not possible to randomise the allocation
of the material [18]). Its form was an ‘interrupted-time-series’ study, in which
the team assessed the quality of a set of 70 papers describing experiments and
quasi-experiments published in four major software engineering journals over the
two periods:

– 1992–2002
– 2006–2010

Each paper was assessed by three members of the team (each person assessed
thirty papers) using both a questionnaire with 9 quality questions, each scored
on a scale of 0–3, and also providing an overall subjective quality score using the
same range of values.

Current Knowledge About Software Engineering Practices 13

When analysed, the data showed a steady increase in quality over the period
1992–2010, as well as a significant linear relationship between the total quality
score using the questionnaire, and the subjective assessments. However, because
there were so many confounding factors, it was not possible to demonstrate that
this improvement arose from the influence of the various articles and texts writ-
ten by software engineering researchers, although obviously we may informally
infer that these were likely to have been significant influences.

In terms of our fourth question, this is encouraging, improving the quality of
primary studies can help to improve the quality of secondary studies.

5.2 Replication of Primary Studies

A concern for any experimentally-derived outcome is whether or not this has
been biased by other factors. For natural sciences, results are usually not accepted
until other researchers have been able to replicate them, usually in another labo-
ratory, and much the same approach has been adopted for human-centric studies
too.

Replication in software engineering has been studied quite extensively, for
example as reported in [20]. There are many categorisations of replication types
used in different disciplines [8], but for many purposes the two categories iden-
tified in [14] are sufficient to identify key roles:

Close replications repeat a study with a different set of participants, keeping
the conditions of the study as close as possible to the original one. They are
confirmatory in nature, aiming to see if the outcomes are the same when the
study is repeated.

Differentiated replications seek to vary different aspects of a study in order to
explore the boundaries of any observed effects.

Hence, close replications should be undertaken first, and if these are successful in
confirming an effect, should then be followed by a range of differentiated studies.

Replication for software engineering has proved to be problematical, including
getting the outcomes of replications published, since the importance of these
has not always been understood by editors or reviewers. The systematic review
reported in [20] particularly observed that:

– researchers are unlikely to publish non-confirmatory results for their own work;
– negative results are probably less likely to be accepted for publication;
– negative results might be easier to publish when these are related to the work

of others.

This is an important topic, since effective replication can help improve systematic
reviews. While close replications are of little use for synthesis, differentiated ones
can make a valuable contribution.

14 D. Budgen

5.3 Size of Studies

Many software engineering primary studies have a relatively small number of
participants, making it more difficult to obtain clear outcomes where effect sizes
are small. (In software engineering, the effect sizes of our interventions are usually
small, and very few techniques really lead to large differences when compared
with others). In part, this is because finding and recruiting participants who have
relevant skills and experience can be problematical, not least because taking part
in empirical studies is not an established part of our culture.

One way to improve this is to spread an experimental study across a number
of different sites to obtain larger numbers of participants (for clinical studies,
these are known as multi-site trials). For studies using human participants, the
use of distributed experiments is as yet a relatively unexplored area (some initial
experiences from a pilot study is reported in [5]). However, it does offer scope to
help with improving the quality of primary studies, and hence secondary studies.

So, overall, there are various ways in which we might potentially improve the
quality of software engineering knowledge yet further, but more work is needed
to bring these into practice.

6 Conclusions

At the end of the first decade of evidence-based studies there are encouraging
signs that these are achieving a greater maturity, although as yet few are really
able to provide strong practice guidelines. A particular factor is the quality of
primary studies, and in many cases, the relatively small effect sizes. Without
improvements to these, the next generation of secondary studies may still be
limited in their ability to inform practice and teaching as effectively as we would
like. However, it is also relevant to observe that these issues are themselves
stimulating further research, such as that in [16].

It is also interesting to note that evidence-based medicine (which has formed
a relative avalanche in terms of its impact on the medical profession) actually
started out with the mission of improving the teaching of clinical medicine [1].
The outcomes from evidence-based studies in any discipline clearly provide useful
potential to inform teaching (and we ourselves are beginning to employ them in
this role), and there may well be a useful lesson to learn there.

So, in terms of the question in the title—we do have more knowledge than we
did ten years ago, but this is still rather ‘patchy’, and uneven in terms of quality.
However, there are many encouraging signs that suggest that our knowledge will
continue to evolve and improve over the next ten years.

Acknowledgements. This report draws upon the collective effort of many fellow
researchers, and in particular the collaborative studies that I have undertaken with
Barbara Kitchenham and Pearl Brereton, as well as the tertiary studies looking at
teaching material with Pearl, Sarah Drummond and Nikki Williams. I would like to
acknowledge all of their contributions.

Current Knowledge About Software Engineering Practices 15

More details about the practices of EBSE and empirical software engineering
can also be found in Evidence-Based Software Engineering and Systematic Reviews, by
Barbara Kitchenham, David Budgen and Pearl Brereton, Chapman & Hall, 2015.

References

1. Barends, E.G.R., Briner, R.B.: Teaching evidence-based practice: Lessons from the
pioneers—An interview with Amanda Burls and Gordon Guyatt. Acad. Manag.
Learn. Educ. 13(3), 476–483 (2014)

2. Budgen, D., Burn, A., Brereton, P., Kitchenham, B., Pretorius, R.: Empirical evi-
dence about the UML: a systematic literature review. Softw. Pract. Experience
41(4), 363–392 (2011)

3. Budgen, D., Burn, A., Kitchenham, B.: Reporting student projects through struc-
tured abstracts: a quasi-experiment. Empirical Softw. Eng. 16(2), 244–277 (2011)

4. Budgen, D., Drummond, S., Brereton, P., Holland, N.: What scope is there for
adopting evidence-informed teaching in software engineering? In: Proceedings of
34th International Conference on Software Engineering (ICSE 2012), pp. 1205–
1214. IEEE Computer Society Press (2012)

5. Budgen, D., Kitchenham, B., Charters, S., Gibbs, S., Pohthong, A., Keung, J.,
Brereton, P.: Lessons from conducting a distributed quasi-experiment. In: Pro-
ceedings of 2013 International Symposium on Empirical Software Engineering &
Measurement, pp. 143–152. IEEE Computer Society Press (2013)

6. Dyb̊a, T., Dingsøyr, T.: Empirical studies of agile software development: a system-
atic review. Inf. Softw. Technol. 50, 833–859 (2008)

7. Glass, R., Ramesh, V., Vessey, I.: An analysis of research in computing disciplines.
Commun. ACM 47, 89–94 (2004)

8. Gómez, O.S., Juristo, N., Vegas, S.: Replications types in experimental disciplines.
In: Proceedings of Empirical Software Engineering & Measurement (ESEM), pp.
1–10 (2010)

9. Hannay, J., Dyb̊a, T., Arisholm, E., Sjøberg, D.: The effectiveness of pair program-
ming: a meta analysis. Inf. Softw. Technol. 51(7), 1110–1122 (2009)

10. Kitchenham, B., Dyb̊a, T., Jørgensen, M.: Evidence-based software engineering.
In: Proceedings of ICSE 2004, pp. 273–281. IEEE Computer Society Press (2004)

11. Kitchenham, B., Brereton, P., Budgen, D., Turner, M., Bailey, J., Linkman, S.:
Systematic literature reviews in software engineering — a systematic literature
review. Inf. Softw. Technol. 51(1), 7–15 (2009)

12. Kitchenham, B., Pretorius, R., Budgen, D., Brereton, P., Turner, M., Niazi, M.,
Linkman, S.: Systematic literature reviews in software engineering — a tertiary
study. Inf. Softw. Technol. 52, 792–805 (2010)

13. Kitchenham, B., Sjøberg, D.I., Dyb̊a, T., Brereton, P., Budgen, D., Höst, M.,
Runeson, P.: Trends in the quality of human-intensive software engineering
experiments-a quasi-experiment. IEEE Trans. Softw. Eng. 39(7), 1002–1017 (2013)

14. Lindsay, R.M., Ehrenberg, A.S.C.: The design of replicated studies. Am. Stat.
47(3), 217–228 (1993)

15. Paternoster, N., Giardino, C., Unterkalmsteiner, M., Gorschek, T.: Software devel-
opment in startup companies: a systematic mapping study. Inf. Softw. Technol.
56, 1200–1218 (2014)

16. Petre, M.: UML in practice. In: Proceedings of the 2013 International Confer-
ence on Software Engineering (ICSE), pp. 722–731. IEEE Computer Society Press
(2013)

16 D. Budgen

17. Runeson, P., Höst, M., Rainer, A., Regnell, B.: Case Study Research in Software
Engineering: Guidelines and Examples. Wiley, Hoboken (2012)

18. Shadish, W., Cook, T., Campbell, D.: Experimental and Quasi-Experimental
Design for Generalized Causal Inference. Houghton Mifflin Co., Boston (2002)

19. da Silva, F.Q., Santos, A.L., Soares, S., França, A.C.C., Monteiro, C.V., Maciel,
F.F.: Six years of systematic literature reviews in software engineering: an updated
tertiary study. Inf. Softw. Technol. 53(9), 899–913 (2011)

20. da Silva, F.Q., Suassuna, M., França, A.C.C., Grubb, A.M., Gouveia, T.B.,
Monteiro, C.V., dos Santos, I.E.: Replication of empirical studies in software engi-
neering research: a systematic mapping study. Empirical Softw. Eng. 19, 501–557
(2014)

21. Yin, R.K.: Case Study Research: Design & Methods, 5th edn. Sage Publications
Ltd., London (2014)

Software Paradigm Trends

Filtered Model-Driven Product Line Engineering
with SuperMod: The Home Automation Case

Felix Schwägerl(B), Thomas Buchmann, and Bernhard Westfechtel

Applied Computer Science I, University of Bayreuth, 95440 Bayreuth, Germany
{felix.schwaegerl,thomas.buchmann,

bernhard.westfechtel}@uni-bayreuth.de

Abstract. Software Product Line Engineering promises to increase the
productivity of software development. In the literature, a plan-driven
process has been established that is divided up into domain and appli-
cation engineering. We argue that the strictly sequential order of its
process activities implies several disadvantages such as increased com-
plexity, late customer feedback, and duplicate maintenance. SuperMod
is a novel model-driven tool based upon a filtered editing model oriented
towards version control. The tool provides integrated support for domain
and application engineering, offering an iterative and incremental style
of development. In this paper, we apply SuperMod to a well-known case
study, the Home Automation System product line. We learn that the
tool supports a broad variety of iterative and incremental development
processes, ranging from phase-structured to feature-driven. Furthermore,
it can mitigate the disadvantages of the traditional software product line
development process.

Keywords: Software product line engineering · Software development
process · Filtered editing · Model-driven engineering · Home automation
example

1 Introduction

Software Product Line Engineering (SPLE) aims at systematic development of a
family of software products by exploiting the variability among members thereof
[1]. Core assets of different products are provided as the platform. Common-
alities and differences among products are captured in feature models [2]. In
the literature [3], a two-stage SPLE process is proposed (cf. Fig. 1): (1) During
domain engineering (DE), platform and variability model are defined. A map-
ping, e.g., presence conditions [4], specifies which part of the platform realizes
which feature(s). (2) In application engineering (AE), variability is resolved by
specification of a feature configuration, and a product with the desired features
is derived in a preferably automated way. For the definition of the platform, two
distinct approaches exist: Using positive variability, a common core is defined to
which specific features may be added. Negative variability proposes to specify

c© Springer International Publishing Switzerland 2016
P. Lorenz et al. (Eds.): ICSOFT 2015, CCIS 586, pp. 19–41, 2016.
DOI: 10.1007/978-3-319-30142-6 2

20 F. Schwägerl et al.

Fig. 1. The two-stage SPLE process as defined in the literature [3].

the platform as superimposition of product variants, from which elements must
be removed to obtain a specific product.

Version Control (VC) has become indispensable for software engineers to
control software evolution and to coordinate changes among a team. Version
control systems (VCS) such as Git [5] or Subversion [6] provide an iterative
three-stage editing model, which is shown in Fig. 2: (1) A developer checks out a
specific revision of a software project from a repository. A copy of the project is
created in the local workspace. (2) In the workspace, the developer modifies the
project by implementing new functionality or by fixing bugs. (3) To make these
modifications persistent and available to others, the developer commits his/her
changes to the repository as a new revision.

Model-Driven Software Engineering (MDSE) [7] considers models as first-
class artifacts, using well-defined languages such as the Unified Modeling Lan-
guage (UML) [8]. Many model-driven applications are built upon the Eclipse
Modeling Framework (EMF) [9]. The combination of MDSE with VC or SPLE is
subject to many research activities, resulting in the integrating disciplines Model
Version Control [10] and Model-Driven Product Line Engineering (MDPLE)
[11], which improve tool support by raising the abstraction level of the artifacts
subject to version control or variability.

Previous Work. In [12], we have elaborated a conceptual framework for the
integration of SPLE and VC based on MDSE. The framework addresses the

Fig. 2. The iterative three-stage editing model proposed by version control systems
[5,6].

Filtered Model-Driven Product Line Engineering with SuperMod 21

Fig. 3. Detailed phases of the traditional SPLE process as defined in the literature [3].

incremental development of a SPL in a single-version workspace using a filtered
editing model that fully automates variability management. In addition to a revi-
sion graph, which describes evolution, a feature model and feature configurations
are used to express logical variability. In [13], we have presented SuperMod, a
model-driven tool that realizes the conceptual framework, allowing to develop a
software product line in a single-version workspace step by step using the familiar
version control metaphors update, modify, and commit.

Contribution. The current paper explores the development processes under-
lying existing SPLE tools relying on unfiltered editing on the one hand, and
the impact of SuperMod’s filtered editing model on development processes on
the other hand. We apply SuperMod to a well-known SPLE example, the Home
Automation System (HAS) product line [3], illustrating the following key obser-
vations:

– Using a filtered editing model, product lines may be developed in an iterative
and incremental way, relaxing the strictly sequential order of DE and AE.

– By applying all changes representatively within one product variant, complex-
ity is reduced when compared to multi-variant editing.

– Tool support for DE and AE is integrated, allowing to postpone the decision
whether a change is product-specific or in the scope of multiple products until
commit.

– The adaptation of the VCS-oriented editing model allows to propagate
product-specific changes back to the product line.

– SuperMod is flexible with respect to the used SPLE process, ranging between
phase-structured and feature-driven domain engineering.

Roadmap. Section 2 is dedicated to SPLE processes. Section 3 sketches the
tool SuperMod used to carry out the HAS case study in Sect. 4. Related work
is outlined in Sect. 5. Finally, in Sect. 6, open questions are discussed, before the
paper is concluded.

22 F. Schwägerl et al.

2 Software Product Line Development Processes

2.1 The Traditional SPLE Process

The de-facto standard SPLE process has been sketched in the introduction.
Figure 3 shows both sub-processes, domain and application engineering, being
equally structured by the typical software development activities analysis, design,
implementation, and testing. Prior to DE stands an additional activity, product
management, where the scope of the product line is planned, including econom-
ical considerations. AE is applied repeatedly for each product; in the traditional
SPLE process, it strictly follows DE and re-uses artifacts developed there, i.e.,
the outcomes of domain analysis, design, implementation, and testing. The sub-
process terminates with the deployment of particular products.

The benefits of SPLE are obvious: Rather than developing products from
scratch, they may be configured and refined based upon an existing platform.
The more products are contained in the product line, the higher the return of
investment will be. However, we argue that the traditional SPLE process suffers
from a couple of disadvantages:

1. Necessity of Additional Tools. To manifest the captured variability in
the platform, the toolchain must be extended by mapping tools in the case
of negative variability, or composers or transformation languages in the case
of positive variability. Obviously, additional tools require additional training
effort and imply new sources of error. In the case of MDSE, tools need to
be generic with respect to the used modeling language, which immediately
leads to undesirable compromises concerning, e.g., the representation of model
elements in concrete syntax.

2. Complexity of the Multi-variant Platform. Domain engineering requires
the developers to keep track of all artifacts of the SPL. This raises complex-
ity particularly concerning the implementation of variation points. Assuming
that designing a good architecture is already a challenge for single system
development, domain design and implementation become even more complex
and error-prone. In many MDSE approaches, multi-variant models are con-
strained with single-version rules.

3. Duplicate Maintenance. Many tools, particularly in the context of
MDPLE, aim at fully automated AE by reducing it to a simple configuration
step. Frequently, product maintenance causes duplicate maintenance effort.
For instance, a bug report may be at first glance specific to a single product,
but then become relevant to different members of the product line. Techni-
cally, the problem is caused by the automated configuration of products being
a one-way road. Round-trip support between DE and AE is urgently required.

2.2 Iterative and Incremental Software Product Line Engineering

Iterative SPLE. In analogy to the waterfall model for single-system develop-
ment, the traditionally applied sequential SPLE process has soon been extended

Filtered Model-Driven Product Line Engineering with SuperMod 23

Fig. 4. Phase-structured domain engineering. The identifiers fi refer to different fea-
tures and their connected realization artifacts in the platform.

by feedback loops and iterations, making SPLE more flexible. Gomaa’s double
spiral development model [11] allows for alternations between the activities of
DE and AE, which are executed in intertwined spirals. Similarly, Clements and
Northrop [1] define an iterative SPLE process consisting of three main activi-
ties, namely Core Asset Development, Product Development, and Management,
which coarsely correspond to DE, AE, and product management, respectively.
It is assumed that all three activities are performed in parallel, evolving both
the platform and individual products continuously.

Iterative SPLE still assumes that DE is performed in a strictly sequen-
tial way as shown in Fig. 4. In the beginning of each iteration, during domain
analysis, several features are introduced. These features are further designed,
implemented, and tested during the subsequent activities. This implies a phase-
structured domain engineering process, which typically consists of long-running
iterations that have to be planned extensively in advance.

Phase-structured SPLE processes allow to maintain an overview of the over-
all product line, easing architectural decisions necessary to anticipate variation
points. For this purpose, multi-version editing tools are employed, e.g., preproces-
sor languages [14] in source-code centric approaches and mapping tools [15,16]
in MDPLE.

Incremental SPLE. Feature-Oriented Software Development (FOSD) sum-
marizes a plethora of different techniques and paradigms for the development of
variational software in general, and SPL in particular [17]. In the sub-discipline
Stepwise and Incremental Software Development (SISD) [18], features are
described as refinements or layers of an existing software system and consecu-
tively added to the platform as separate increments. The implied feature-driven
and incremental realization of domain engineering is sketched in Fig. 5 as a coun-
terpart to the phase-structured way. By introducing one feature at a time, this
results in comparatively short-running iterations.

In the FOSD context, feature-driven development is preferred over phase-
structured approaches. Rather than focusing on multi-variant architectural deci-
sions and explicitly modeling variation points, product changes associated with

24 F. Schwägerl et al.

a specific features are described in a preferably fine-granular way, e.g., by using
composition [19,20] or aspect-oriented techniques [21].

2.3 SPLE Processes with SuperMod

During the transition from phase-structured to feature-driven SPLE, the per-
formed iterations become smaller. Accordingly, the distinction between domain
engineering and application engineering is blurred. The tool SuperMod presented
in Sect. 3 provides a filtered editing model, which makes multi-variant artifacts
transparent to the SPL engineer by uniformly supporting DE and AE. An incre-
ment is performed representatively in a particular product variant and then prop-
agated to the platform. Increments correspond to change sets, each referring to
a partial feature configuration, which may be developed over multiple iterations.
SuperMod is compatible with SPLE processes ranging between phase-structured
and feature-driven. The disadvantages of the traditional process listed in Sect. 2.1
are addressed as follows:

1. Familiar VCS and SPL Metaphors. SuperMod is added to the toolchain
as a new tool, implying the aforementioned difficulties. However, SuperMod’s
user interface relies on familiar concepts such as version control metaphors
(check-out and commit) and established SPL abstractions (feature models
and configurations).

2. Filtered Editing. Changes are generally performed on single-variant prod-
ucts, which eases architectural decisions. Variation points are created auto-
matically and transparently. In the case of MDPLE, the variability of the
invisible multi-variant model is unconstrained.

3. Automatic Propagation of Changes. After having finished an iteration,
the performed changes are propagated to the platform automatically, remov-
ing the necessity of duplicate maintenance. In SuperMod, there is technically
no distinction between DE and AE. Only at commit time, the user must
decide whether a change is product-specific or global.

Fig. 5. Feature-driven domain engineering.

Filtered Model-Driven Product Line Engineering with SuperMod 25

3 The Tool SuperMod

This section briefly describes SuperMod [13], a model-driven tool that allows to
develop software product lines in an iterative and incremental way as proposed
in the previous section. First, we explain theoretical foundations of the tool.
Thereafter, SuperMod’s architecture and editing model are sketched and the
operations check-out, modify, and commit are redefined. The tool is available
for evaluation as Eclipse plug-in (see installation instructions at the end of this
paper). Currently, SuperMod is restricted to single-user operation; support for
team collaboration is scheduled for future releases.

3.1 Underlying Principles

SuperMod realizes the conceptual framework presented in [12], which integrates
MDSE, SPLE, and VC. The framework in turn specializes the uniform version
model [22], adding higher-level representations for both the version space (i.e.,
feature models and revision graphs) and the product space (i.e., EMF models).
Below, the core concepts of UVM and its extensions are described informally.

– Options: An option is a temporal or logical property of a software system,
which may or may not be included in a specific product version. In SuperMod,
two kinds of options exist: revision options and feature options.

– Choices: A choice denotes a single valid version by assigning a selection
(selected or deselected) to each of the existing options. Choices are used as
read filters, i.e., they describe product versions available in the workspace.

– Ambitions: An ambition denotes a set of versions as a subset of all valid
versions. Ambitions are used as write filters in order to delineate the scope
of a product change performed in the workspace. In contrast to a choice, an
ambition may contain unbound options, to which the change is immaterial.

– Version Rules: The set of available choices and ambitions is constrained by
a set of version rules, logical expressions over the option set. Version rules are
used, e.g., in order to implement constraints such as mutual exclusion imposed
by feature models, or to designate subsequent revisions.

– Visibilities: A visibility is a logical expression over the option set, which is
attached to an element of the feature or domain model. In order to test an
element’s presence in a specific version, the bindings specified by the respective
choice are applied. Visibilities are modified automatically during the operation
commit.

3.2 Tool Architecture and Editing Model

Both the architecture and the editing model of SuperMod are inspired by distrib-
uted VCS [5]. The traditional VCS architecture is extended as follows: Firstly,
the feature model is an additional artifact varying along the temporal dimension.
Secondly, the domain model varies along two dimensions, the revision graph and
the feature model. Figure 6 illustrates the remarks below.

26 F. Schwägerl et al.

Fig. 6. SuperMod tool architecture and editing model.

Repository. A repository is a persistent storage transparently linked to a
software project under VC. Developers communicate with it by means of the
metaphors check-out and commit. A SuperMod repository consists of three
layers.

– The revision graph is a directed acyclic graph that describes the temporal his-
tory of a SuperMod project. The graph is extended automatically each time a
new revision has been committed. For each revision, a revision option is intro-
duced transparently together with a version rule that realizes the relationship
to the predecessor revision.

– The multi-version feature model plays a dual role: Firstly, its evolution is
controlled by the revision graph. Secondly, each feature is mapped to a feature
option, such that the feature model provides an additional version model.
Feature model constraints are mapped to version rules transparently [12].

– The multi-version domain model describes the superimposition of the ver-
sioned project. Although the term “domain model” is used here, the project
may comprise a file hierarchy containing model or non-model resources.
Within the visibilities of domain model elements, both revision and feature
options may occur.

Workspace. A SuperMod workspace contains the currently selected version of
the domain model in its single-version representation. EMF models are repre-
sented as instances of their custom Ecore-based metamodel(s). Plain text and
XML files are made available in their ordinary format, allowing SuperMod users
to utilize their preferred single-version editing tools. During the sub-process mod-
ify, they may also edit the feature model, e.g., by introducing new features or
relationships.

Filtered Model-Driven Product Line Engineering with SuperMod 27

Version Specification. A version in the temporal dimension corresponds to a
single revision. As mentioned above, feature configurations specify choices and
ambitions in the logical dimension. When referring to an iterative and incre-
mental development process (cf. Sect. 2.2), version specification happens in the
beginning and at the end of each iteration. A feature configuration is specified
on the current revision of the feature model. When provided as an ambition,
the feature configuration may be partial1 and typically binds only few features,
in many cases only one feature. The effective choice/ambition is formed during
check-out/commit as conjunction of the temporal and logical component.

3.3 Check-Out, Modify, and Commit

In the following, the operations update, modify, and commit known from VCS
are redefined on top of SuperMod’s architecture and editing model (cf. Fig. 6).

Check-Out. Like in ordinary VCS, the operation check-out is provided to select
a specific version (the choice) from the repository, which is then copied to the
workspace:

– The user selects a revision as the temporal component of the choice. The
feature model is filtered by the revision, and made available for modification
in the workspace.

– The user specifies a completely bound feature configuration, which forms the
logical component of the choice. The effective choice is recorded persistently.

– The domain model is filtered by the effective choice and exported into the
local workspace. The export transformation translates multi-version resources
into their specific single-version representation, e.g., plain text or XMI files.

– The filtered and exported contents are made available in the workspace.

Modify. The user may modify both the filtered feature model and the filtered
domain model within the workspace. For domain model resources, arbitrary
editors may be used. For the feature model, the command Edit Version Space is
offered, which delegates to a specific model editor for the current feature model
revision.

Commit. The operation commit, the counterpart to check-out, propagates
changes performed in the workspace to the repository under a user-specified
scope (the ambition):

1 Our notion of partial feature configuration only implies that there exist unbound
features. This differs from the concept of staged configurations (as introduced, e.g., in
[4]), which need to be specified in a top-down way, introducing parent-child selection
constraints.

28 F. Schwägerl et al.

– A new revision is created as the successor of the revision specified for the
choice and selected in the temporal component of the ambition. Within the
given revision of the feature model, the logical component of the ambition is
user-specified as a partial feature configuration. For consistency, it is required
that the set of versions described by the effective ambition include the recorded
choice.

– The original state of the workspace version is temporarily restored by applying
the recorded choice to the repository. The new state is generated by importing
(the inverse of export) the current workspace into its multi-version represen-
tation.

– Differences are computed between the original and the new workspace state.
– Inserted elements are copied into the repository.
– The visibilities of inserted/deleted feature model elements are updated auto-

matically by adding/subtracting the temporal component of the ambition
to/from the existing visibility.

– In analogy, the visibilities of inserted/deleted domain model elements are
updated by adding/subtracting the effective ambition.

4 The Home Automation Case Study

We apply the tool SuperMod presented in Sect. 3 to the standard example of a
product line for Home Automation Systems from [3]. The example is divided up
into a phase-structured and a feature-driven part. First, the activities analysis
(Sect. 4.1), design (Sect. 4.2), and implementation (Sect. 4.3) are executed, realiz-
ing an initial DE iteration. During implementation, a command-line application
is developed based on the generated source code. Due to space restrictions, the
activity testing has been omitted. In the second part, we transition into feature-
driven DE, extending the product line by a new feature ensuing from a customer
request (Sect. 4.4). Last, we present our observations and refer back to the SPLE
processes from Sect. 2.

For analysis and design, we rely on UML use case, activity, package, and class
diagrams [8], using the GMF2-based UML modeling tool Valkyrie [23] and its
Java code generator. The remarks below are illustrated by screencasts available
on our web pages; please follow the link provided at the end of this paper.

4.1 Requirements Analysis

Requirements analysis is split into two phases. To begin with, residents’ inter-
actions with the HAS are documented in a use case diagram. Subsequently, one
use case is representatively refined by means of an activity diagram.

After having initialized a Valkyrie project and having connected it to Super-
Mod version control, the first phase is started with an empty use case diagram.
In consecutive iterations, we add actors, components, use cases, and relation-
ships as summarized in Table 1. The table also shows that the feature model
2 Graphical Modeling Framework, http://www.eclipse.org/modeling/gmp/.

http://www.eclipse.org/modeling/gmp/

Filtered Model-Driven Product Line Engineering with SuperMod 29

Table 1. Commit history of the use case diagram.

Rev. Ambition Changes to feature model Changes to use case diagram

1 H.A.S. added feature H.A.S. added actor Resident and
component H.A.S.

2 Id.Mech. added feature Id.Mech. added component Id.Mech.,
contained use cases,
includes, and connected
use links

3 DoorLock added feature DoorLock added comp. DoorL., use
cases Lock and Unlock

4 DoorLock — added missing use links for
Lock and Unlock

5 AlarmAct. added feature AlarmActivision added component
AlarmActivision,
contained use cases, and
connected use links

6 SMSTo-Owner added features Ac.Sig., Vid.S.,
PoliceInf., and SMSToOwner

added use case Change
Phone Number

7 Heat.Cont. added feature Heat.Cont. added component Heat.Cont.
and contents

Fig. 7. The use case diagram of the HAS example after revision 7, shown in a variant
that includes all mandatory and optional features available.

is developed simultaneously, introducing new features on demand in order to
delineate the scope of the respective changes. Figure 7 shows a variant of the
final use case diagram.

During the second analysis phase, the feature IdentificationMechanism is fur-
ther refined by adding three concrete mechanisms, namely Keypad, Magnetic-
Card, and FingerprintScanner. These are collected in an OR-group, meaning that
at least one mechanism must be chosen in a valid configuration. In case several
mechanisms are available, one of them must be chosen during identification. The

30 F. Schwägerl et al.

Table 2. Commit history of the activity diagram for Identify.

Rev. Ambition Changes to feature model Changes to activity diagram

8 H.A.S. added XOR groups below
DoorL. and
HeatingCont.

—

9 Id.Mech. — initialized diagram, added initial and
final nodes, Choose Mech.,
decision/merge nodes, and flows

10 Keypad added OR group with
Keypad, Mag.Card,
Fp.Scanner

added action KeypadIdentification and
incoming/outgoing flow

11 Mag.Card — added action M.C.Id. and
incoming/outgoing flow

12 Fp.Scan. — added action Fp.Id. and
incoming/outgoing flow

Fig. 8. The activity diagram of the use case Identify after revision 12, shown in a variant
that includes all sub-features of IdentificationMechanism.

available selection should be restricted by the active features; this is realized in
revisions 10 until 12 shown in Table 2. The resulting activity diagram is shown
in Fig. 8; Fig. 9 shows the refined feature model.

4.2 Design

The static structure of the HAS product line is also developed in two phases.
After modeling an initial package diagram, specific packages are refined by class
diagrams.

Table 3 indicates that the package diagram (see Fig. 10) is developed in an
iterative and incremental way by realizing one feature after another. Variation

Filtered Model-Driven Product Line Engineering with SuperMod 31

Fig. 9. The feature model after revision 12, shown in SuperMod’s feature model editor.
Filled circled denote mandatory features, empty circles optional child features. OR
groups require the selection of at least one, XOR groups of exactly one child feature.

Table 3. Commit history of the package diagram.

Rev. Ambition Changes to package diagram

13 HomeAutomationS. added package has and contained class
HomeAutomationSystem

14 Ident.Mechanism added package identification, class Id.Mech., and
interface IMechanism

15 Keypad added class Keypad

16 MagneticCard added class MagneticCard

17 FingerprintScanner added class FingerprintScanner

18 DoorLock added package doorLock and interface IDoorLock

19 Active added class ActiveLock

20 Passive added class PassiveLock

21 AlarmActivision added package alarm, class AlarmAct., and interface
IAlarmService

22 AcousticSignal added class AcousticSignal

23 VideoSurveillance added class VideoSurveillance

24 PoliceInformation added class PoliceInformation

25 SMSToOwner added class SMSNotifier

26 HeatingControl added package heating and contained interface
IHeatingControl

27 Automatic added class heating::Automatic

28 Manual added class heating::Manual

points are anticipated by sketching the use of appropriate design patterns such
as strategy and command [24], which are subsequently refined by class diagrams.
Here, we refrain from introducing new features during the design phase, although
permitted in general.

As shown in Table 4, the package identification is refined by a class diagram,

32 F. Schwägerl et al.

Fig. 10. The package diagram after revision 28. The shown product variant does not
include features Active and Automatic, thus not classes doorLock::ActiveLock and heat-
ing::Automatic, either.

exemplifying the realization of variation points during design. In revision 29,
general details are added to the class IdentificationMechanism as well as to the
interface IMechanism that realizes the command pattern. Its specific realizations
are added subsequently and scoped with the respective feature. In this example,
the only necessary changes are to make the respective command classes realize
IMechanism (see Fig. 11). In fact, more details could have been added to the
classes here. Furthermore, similar refinements might have been applied to the
packages doorLock, alarm, and heating.

4.3 Implementation

In our model-driven product line, the static part of the source code can be
derived from the artifacts developed in the design phase using Valkyrie’s code
generator. The main class HomeAutomationSystem shall contain the main exe-
cutable as command-line application. Below, we confine the presentation to the

Table 4. Commit history of the class diagram refining package identification.

Rev. Ambition Changes to class diagram for package identification

29 Ident.Mechanism initialized diagram, detailed class Ident.Mech. and
interface IMech.

30 Keypad added interface realization originating from class Keypad

31 MagneticCard added interface realization originating from class
MagneticCard

32 FingerprintScanner added interface realization originating from class
FingerprintScanner

Filtered Model-Driven Product Line Engineering with SuperMod 33

Fig. 11. The class diagram that refines package identification in its state after revi-
sion 32, with features Keypad, MagneticCard, and FingerprintScanner selected.

implementation of the method identify() of class IdentificationMechanism, which
implements the activity diagram from Fig. 8.

Table 5. Overall commit history of the implementation phase.

Rev. Ambition Changes to IdentificationMechanism.java or other source files

33 HomeAutomationS. generated Java source code

34 Ident.Mechanism added multi-variant implementation to method identify() (l. 96 – 101)

35 not Fp.Scanner removed FingerprintScanner.java and line 99

36 not MagneticCard removed MagneticCard.java and line 98

37 not Keypad removed MagneticCard.java and line 97

Variability is achieved by making the declarations and usages of specific
mechanism classes dependent on their respective features. As shown in Table 5
and Listing 1.1, after the initial code generation run in revision 33, negative vari-
ability is simulated: In revision 34, a multi-variant implementation is provided.
We then connect the variable constructor calls and the concrete implementation
classes to their respective features by applying the negative implementation, i.e.,
by removing the corresponding source code file and the statement containing the
constructor call, and by committing against the negation of the respective ambi-
tion3. In order to perform these deletions, it is necessary to switch to a suitable
choice where the respective features are deselected, e.g., the choices presented in
the screencast.

3 Equivalently, we could have applied the positive realization and committed it against
positively bound features; however, this would have required three additional code
generation increments.

34 F. Schwägerl et al.

95 private void identify() {
96 List<IMechanism> mechs = new LinkedList<>();
97 mechs.add(new Keypad());
98 mechs.add(new MagneticCard());
99 mechs.add(new FingerprintScanner());
100 IMechanism mech = (...) // choose interactively
101 return mech.checkIdentification(getIdentifySignature());
102 }

Listing 1.1. Implementation of the method IdentificationMechanism.identify() in revi-
sion 34.

4.4 Handling a New Customer Request

So far, our SPL has been developed in a phase-structured way, following the
classical development activities analysis, design, and implementation. Now, we
demonstrate how SuperMod allows to quickly react to a new customer request
that cross-cuts all three development activities; we realize the increment in one
single iteration.

The customer requests to extend the list of identification mechanisms avail-
able in the HAS product line by a new, biometric mechanism that uses existing
iris scanner hardware and drivers. We check-out the latest revision of the HAS
project, choosing the customer’s product variant, which currently includes all
sub-features of IdentificationMechanism. Then, we handle the request as follows
(due to space restrictions, we cannot present the modified artifacts here; please
refer to the screencasts):

– Analysis: It is obvious that a new feature Biometric must be introduced into
the OR-group below IdentificationMechanism (cf. Fig. 9). The request does not
affect the use cases, but the activity diagram that details the use case Identify
(cf. Fig. 8): We add a new action BiometricIdentification and connect it to the
decision/merge node in analogy to the existing identification actions.

– Design: We add a new class Biometric as well as a realization of the interface
IMechanism to the class diagram shown in Fig. 11. This transparently extends
the package diagram (cf. Fig. 10).

– Implementation: The (incremental) code generation is re-invoked, cre-
ating a new source file Biometric.java. To the implementation of method
IdentificationMechanism.identify() (cf. Listing 1.1), we add the following state-
ment after line 99:

mechs.add(new Biometric());

– Deployment: The current iteration is finalized by committing all pending
changes to the repository under revision 38. As logical ambition, we specify a
partial configuration that selects only the new feature Biometric. Hence, the
performed modifications hold for future variants that include this feature. At
last, the current product variant is deployed to the customer, without the
need for an additional AE run.

Filtered Model-Driven Product Line Engineering with SuperMod 35

Fig. 12. Summary of the HAS example: Iterations and increments performed during
specific development activities, aligned with the temporal (x-axis) and logical dimen-
sion (y-axis).

4.5 Results and Observations

Key Figures. Our example SPL has evolved over a total of 38 iterations,
distributing as follows: 12 iterations for analysis, 20 for design, 5 for the imple-
mentation of a cut-out of the functionality, and one additional iteration for the
new customer request. In total, the product line contains approximately 100
model elements, from which 17 source code files have been derived, the largest
of which contains 137 lines of code. The final feature model contains 17 features,
10 of which are optional. The entire version management has been performed
by specifying 6 choices (cf. screencasts) and 38 ambitions, respectively, during
check-out and commit.

According to the mechanisms described in [12,13], 410 visibilities have been
added to elements, attributes, and links contained in the transparent multi-
variant UML model (not including its graphical representation). Necessarily, the
same number of feature expressions or presence conditions would have to be
manually be specified when using an explicit mapping model in a tool relying
on positive variability, e.g., [15] or [16].

Remarks on SPLE Process and Tools. Figure 12 summarizes the relevant
cut-out of the example. When considering DE as a whole, one could sum up
revisions 1 until 37 as one process iteration, including the DE activities analysis,
design, and implementation. Technically, a multitude of iterations have been
performed using fine-grained check-out/commit cycles in order benefit from

36 F. Schwägerl et al.

SuperMod’s automated variability management and filtered editing model. Note-
worthily, the iterations belonging to each phase are arranged roughly diagonally
when referring to the temporal and logical dimension.

Revision 37 may be considered as an initial major revision of the product line,
after which we transition from phase-structured to feature-driven development
in order to integrate customer feedback more flexibly. The change performed in
revision 38 is realized in the customer’s product variant and then added to the
product line transparently by committing the change against the new feature
Biometric. This way, duplicate maintenance is avoided by the tool-level integra-
tion of DE and AE.

In sum, the example has shown that SuperMod is compatible with both a
phase-structured and a feature-driven style of iterative and incremental SPLE
development. In addition to a reduced version management overhead, the exam-
ple has demonstrated a minimal planning effort when referring to particular
iterations; features are introduced on demand. The advantages of tool indepen-
dence and unconstrained variability discussed in [12] can also be reproduced in
the HAS example.

5 Related Work

This paper continues a series of previous publications on the SuperMod project
and its foundations. In [12], the underlying conceptual framework for the integra-
tion of VC, SPLE and MDSE has been defined. The paper also contains a general
overview of literature concerning the integrating disciplines Model-Driven Prod-
uct Line Engineering [11], Model Version Control [10], and Software Product
Line Evolution [25]. In [13], the tool SuperMod has been presented using the
standard example of a product line for graphs [26]. Additionally, the paper con-
tains a comparative domain analysis of VC and SPLE and aligns SuperMod with
different tools that share VC and SPLE concepts. In this section, we compare
our work to different iterative and/or incremental approaches to SPLE and to
other occurrences of the HAS case study.

The Home Automation System example has been introduced by Pohl et al. [3]
to illustrate different activities of the traditional SPLE process (cf. Fig. 3). The
authors stress the importance of the activity domain analysis, where an initial
feature model is produced. During domain design and domain implementation, a
reference architecture and core implementation assets are constructed. In domain
testing, component tests are written. These artifacts are then filtered and com-
posed during corresponding application engineering activities, concluding with
testing the product using respective component tests. As opposed to our ver-
sion of the HAS example, the original version has been developed in a strictly
phase-structured way.

Among others, the authors of [27] have observed that agile principles poten-
tially increase the applicability of SPLE while reducing time to market. They
present a bottom-up, test-driven approach inspired by Extreme Programming
[28]. After defining a test case specific to a new feature, its realization is incor-
porated to the product line using systematic refactoring techniques. However,

Filtered Model-Driven Product Line Engineering with SuperMod 37

the presented solution is not as highly automated as the SuperMod approach.
Furthermore, when compared to our example, the iterations are still relatively
long-running. Presumably, SuperMod can also meet the requirements of agile
SPLE.

In [29], an approach to filtered (projectional) editing of multi-variant pro-
grams is described. Like in our work, the motivation is a reduction of complexity
gained by hiding variants not important for a specific change to a multi-variant
model. Visibilities are managed automatically, but in contrast to our approach,
the choice always equals the ambition. Furthermore, the restriction of a com-
pletely bound choice does not exist since the user operates on a partially filtered
product which still contains variability. The wider the ambition, the more vari-
ability information is kept in the workspace, increasing maintenance overhead
especially for wide ambitions.

Völter et al. [21] apply aspect-oriented techniques such as modularization
and composition in order to realize the HAS example using positive variability.
The platform is described at a high level of abstraction using a custom domain-
specific language. During product derivation, artifacts belonging to the selected
features are composed. This leads to a reduction of complexity with respect to
architectural decisions of the modular artifacts, but raises new problems when
it comes to conflicting composition rules.

In [15,30], the HAS example has been used to demonstrate consistency mech-
anisms of the MDPLE tool FAMILE, which relies on negative variability and
unfiltered editing. The tool allows to connect a manually developed multi-variant
domain model to a feature model in a dedicated mapping model using feature
expressions, and to automatically configure products. Contradictions among fea-
ture expressions may lead to inconsistencies within the mapping model. The
presented solutions, which include a domain specific language for repair actions,
are interactively controlled by the SPL engineer. In contrast, SuperMod makes
both the multi-variant model and feature expressions transparent, and product
conflicts are resolved by the user in batch mode.

The HAS example is frequently referred to in the context of dynamically
reconfiguring systems, which can be considered as product lines that use run-time
variability. An example is provided in [31], where the platform itself is described
using MDSE techniques. When compared to our compile-time based solution,
time to market is even shorter. However, consistent component interaction must
be manually ensured.

6 Discussion

Having conducted two standard examples with the tool SuperMod and having
defined an appropriate development process, we are now able to discuss the
potential research impact as well as the limitations of our proposed approach.
The following open questions will also stimulate future research directions.

38 F. Schwägerl et al.

How Steep is SuperMod’s Learning Curve? In the beginning, SuperMod’s
editing model seems quite unfamiliar, in particular to SPL engineers who are used
to unfiltered editing approaches, where they fully control the multi-variant archi-
tecture. According to our own experience, planning the iterations and learning to
specify a correct ambition are the most challenging parts. We have observed that
small iterations and frequent commits require a fair amount of discipline. The
effective training effort of SuperMod remains to be experimentally quantified
and compared to unfiltered SPLE approaches.

Do We Still Require Unfiltered Editing? Intentionally, SuperMod users
never get in touch with multi-version artifacts, since they always operate in a
single-version view. This reduces complexity, but also awareness of the variabil-
ity present in the overall product line. In some situations, one wants to inspect
or modify the multi-version artifacts in an unfiltered way, e.g., in order to revise
erroneously specified ambitions. A compromise between filtered and unfiltered
editing is partially filtered editing [29]. However, preprocessor-like variability
annotations are technically hard to realize for graphically represented models.

Where are Organized Reuse and Variation Points? SPL are based on
the principle of organized reuse. When developing the multi-variant architec-
ture, variation points are planned in advance and explicitly realized using the
features of the respective programming or modeling language, e.g., inheritance.
SuperMod does not require to explicitly model and document variation points;
on the contrary, they are completely transparent to the user. This fact is in turn
linked to the advantage of reduced complexity and the disadvantage of limited
awareness of variability [12]. Furthermore, in SPLE, features are typically intro-
duced in the beginning during product management. In contrast, our approach
dedicates the decision, when to introduce new features, to the user.

How to Control the Multi-variant Architecture? This question is linked
to the preceding two answers. Due to the single-version view and the fact
that variation points are transparent, the challenge of designing a multi-variant
architecture never arises. However, this also removes the chance to control the
architecture, e.g., by refactoring. Does this result in a “worse” multi-variant
architecture? Provided that it is transparent to the user anyway, is a “good”
multi-variant architecture important at all? The properties of automatically con-
structed multi-variant architectures need to be further investigated.

7 Summary and Outlook

In this paper, we have revisited a well-established SPLE case study, the Home
Automation System SPL. We have employed the tool SuperMod, which is
focused on but not restricted to model-driven SPL. Its user interface is ori-
ented towards version control by offering the metaphors update, modify, and

Filtered Model-Driven Product Line Engineering with SuperMod 39

commit. Developers may evolve the SPL in a single-version workspace, while
changes are propagated to the multi-version platform transparently, obviat-
ing the need for up-front, multi-variant design. The evolution of multi-variant
product artifacts is mostly automated. SuperMod’s integrated tool support
enables a round-trip between DE and AE, whose distinction is blurred by fine-
granular update/commit cycles and by keeping products in the product line until
deployment.

With respect to the underlying SPLE process, our example has demonstrated
that SuperMod is compatible with different styles of iterative and incremental
development, ranging from phase-driven domain engineering, which has been
applied to create an initial major revision of the product line, to feature-driven
development, which has been enforced to integrate customer feedback and to
integrate the respective change to the product line transparently, without the
need of duplicate maintenance.

When compared to state-of-the-art approaches, our presented solution mini-
mizes both planning and maintenance effort. Furthermore, the amount of man-
ually specified variability information is significantly lower. Using the presented
procedure and tool, the SPLE developer may focus on product-specific design
decisions, reducing the cognitive complexity in the domain engineering phase.
SuperMod integrates well with existing tools, particularly in the EMF world.

Future work addresses extensions to SuperMod, including multi-user support,
product conflict resolution, and difference representation. Furthermore, we aim
to continue the experimental evaluation of our approach using a case study of
industrial scale.

8 Accompanying Resources

The research prototype SuperMod is available as a set of Eclipse plug-ins under
the Eclipse Public License. The plug-ins may be installed into a clean Eclipse
Luna Modeling distribution using the following update site:4. The items Super-
Mod Core and SuperMod Revision+Feature Layered Version Model should be
selected for installation. Furthermore, we provide several screencasts where
SuperMod’s usage with both the graph example from [13] and the HAS example
from this paper is demonstrated:5.

Acknowledgements. The authors give thanks to Marco Dmitrow for adapting the
HAS case study in a master project and for valuable input for the improvement of
SuperMod.

References

1. Clements, P., Northrop, L.: Software Product Lines: Practices and Patterns.
Addison-Wesley, Boston (2001)

4 http://btn1x4.inf.uni-bayreuth.de/supermod/update.
5 http://btn1x4.inf.uni-bayreuth.de/supermod/screencasts.

http://btn1x4.inf.uni-bayreuth.de/supermod/update
http://btn1x4.inf.uni-bayreuth.de/supermod/screencasts

40 F. Schwägerl et al.

2. Kang, K.C., Cohen, S.G., Hess, J.A., Novak, W.E., Peterson, A.S.: Feature-oriented
domain analysis (FODA) feasibility study. Technical Report CMU/SEI-90-TR-21,
Carnegie-Mellon University, Software Engineering Institute (1990)

3. Pohl, K., Böckle, G., van der Linden, F.: Software Product Line Engineering: Foun-
dations. Principles and Techniques, Berlin (2005)

4. Czarnecki, K., Kim, C.H.P.: Cardinality-based feature modeling and constraints:
a progress report. In: International Workshop on Software Factories at OOPSLA
2005, San Diego, California, USA. ACM (2005)

5. Chacon, S.: Pro Git, 1st edn. Apress, Berkely (2009)
6. Collins-Sussman, B., Fitzpatrick, B.W., Pilato, C.M.: Version Control with Sub-

version. O’Reilly, Sebastopol (2004)
7. Völter, M., Stahl, T., Bettin, J., Haase, A., Helsen, S.: Model-Driven Software

Development: Technology, Engineering Management. Wiley, New York (2006)
8. OMG: UML Superstructure. Object Management Group, Needham, MA.

formal/2011-08-06th edn. (2011)
9. Steinberg, D., Budinsky, F., Paternostro, M., Merks, E.: EMF Eclipse Modeling

Framework. The Eclipse Series, 2nd edn. Addison-Wesley, Upper Saddle River
(2009)

10. Altmanninger, K., Seidl, M., Wimmer, M.: A survey on model versioning
approaches. Int. J. Web Inf. Syst. (IJWIS) 5, 271–304 (2009)

11. Gomaa, H.: Designing Software Product Lines with UML: From Use Cases to
Pattern-Based Software Architectures. Addison-Wesley, Boston (2004)

12. Schwägerl, F., Buchmann, T., Uhrig, S., Westfechtel, B.: Towards the integra-
tion of model-driven engineering, software product line engineering, and software
configuration management. In: Hammoudi, S., Pires, L.F., Desfray, P., Filipe, J.
(eds.) Proceedings of the 3rd International Conference on Model-Driven Engineer-
ing and Software Development (MODELSWARD 2015), Angers, France, pp. 5–18.
SCITEPRESS (2015)

13. Schwägerl, F., Buchmann, T., Westfechtel, B.: SuperMod - A model-driven tool
that combines version control and software product line engineering. In: ICSOFT-
PT 2015 - Proceedings of the 10th International Conference on Software Paradigm
Trends, Colmar, Alsace, France, pp.5–18. SCITEPRESS (2015)

14. Kästner, C., Trujillo, S., Apel, S.: Visualizing software product line variabilities in
source code. In: Proceedings of the 2nd International SPLC Workshop on Visuali-
sation in Software Product Line Engineering (ViSPLE), pp. 303–313 (2008)

15. Buchmann, T., Schwägerl, F.: FAMILE: tool support for evolving model-driven
product lines. In: Störrle, H., Botterweck, G., Bourdells, M., Kolovos, D., Paige,
R., Roubtsova, E., Rubin, J., Tolvanen, J.P. (eds.) Joint Proceedings of Co-Located
Events at the 8th European Conference on Modelling Foundations and Applica-
tions. CEUR WS, Building 321, DK-2800 Kongens Lyngby, pp.59–62. Technical
University of Denmark (DTU) (2012)

16. Heidenreich, F., Kopcsek, J., Wende, C.: FeatureMapper: mapping features to
Models. In: Companion Proceedings of the 30th International Conference on Soft-
ware Engineering (ICSE 2008), pp. 943–944. ACM, New York (2008)

17. Apel, S., Kästner, C.: An overview of feature-oriented software development. J.
Object Technol. 8, 49–84 (2009)

18. Batory, D., Sarvela, J.N., Rauschmayer, A.: Scaling step-wise refinement. In: Pro-
ceedings of the 25th International Conference on Software Engineering, ICSE 2003,
pp. 187–197. IEEE Computer Society, Washington, DC (2003)

Filtered Model-Driven Product Line Engineering with SuperMod 41

19. Jayaraman, P., Whittle, J., Elkhodary, A.M., Gomaa, H.: Model composition in
product lines and feature interaction detection using critical pair analysis. In:
Engels, G., Opdyke, B., Schmidt, D.C., Weil, F. (eds.) MODELS 2007. LNCS,
vol. 4735, pp. 151–165. Springer, Heidelberg (2007)

20. Zschaler, S., Sánchez, P., Santos, J., Alférez, M., Rashid, A., Fuentes, L., Moreira,
A., Araújo, J., Kulesza, U.: VML* – A family of languages for variability manage-
ment in software product lines. In: van den Brand, M., Gašević, D., Gray, J. (eds.)
SLE 2009. LNCS, vol. 5969, pp. 82–102. Springer, Heidelberg (2010)

21. Völter, M., Groher, I.: Product line implementation using aspect-oriented and
model-driven software development. In: Proceedings of the 11th International Soft-
ware Product Line Conference, SPLC 2007, pp. 233–242. IEEE Computer Society,
Washington, DC (2007)

22. Westfechtel, B., Munch, B.P., Conradi, R.: A layered architecture for uniform ver-
sion management. IEEE Trans. Softw. Eng. 27, 1111–1133 (2001)

23. Buchmann, T.: Valkyrie: A UML-based model-driven environment for model-
driven software engineering. In: Hammoudi, S., van Sinderen, M., Cordeiro, J.
(eds.) Proceedings of the 7th International Conference on Software Paradigm
Trends (ICSOFT 2012), pp.147–157. SCITEPRESS (2012)

24. Gamma, E., Helm, R., Johnson, R., Vlissides, J.M.: Design Patterns: Ele-
ments of Reusable Object-Oriented Software, 1st edn. Addison-Wesley Longman,
Amsterdam (1995)

25. Laguna, M.A., Crespo, Y.: A systematic mapping study on software product line
evolution: From legacy system reengineering to product line refactoring. Sci. Com-
put. Program. 78, 1010–1034 (2013)

26. Lopez-Herrejon, R.E., Batory, D.: A standard problem for evaluating product-line
methodologies. In: Dannenberg, R.B. (ed.) GCSE 2001. LNCS, vol. 2186, pp. 10–
24. Springer, Heidelberg (2001)

27. Ghanam, Y., Maurer, F.: Extreme product line engineering – refactoring for vari-
ability: a test-driven approach. In: Sillitti, A., Martin, A., Wang, X., Whitworth,
E. (eds.) XP 2010. LNBIP, vol. 48, pp. 43–57. Springer, Heidelberg (2010)

28. Beck, K., Andres, C.: Extreme Programming Explained: Embrace Change, 2nd
edn. Addison-Wesley Professional, Reading (2004)

29. Walkingshaw, E., Ostermann, K.: Projectional editing of variational software. In:
Generative Programming: Concepts and Experiences, GPCE 2014, Vasteras, Swe-
den, 15–16 September 2014, pp. 29–38 (2014)

30. Buchmann, T., Schwägerl, F.: Ensuring well-formedness of configured domain mod-
els in model-driven product lines based on negative variability. In: Proceedings of
the 4th International Workshop on Feature-Oriented Software Development, FOSD
2012, pp. 37–44. ACM, New York (2012)

31. Cetina, C., Giner, P., Fons, J., Pelechano, V.: Autonomic computing through reuse
of variability models at runtime: The case of smart homes. Computer 42, 37–43
(2009)

A Semantic Versioning Service Based
on Formal Certification

Jean-Yves Vion-Dury(B) and Nikolaos Lagos

Xerox Research Centre Europe, 6 Chemin de Maupertuis, 38330 Meylan, France
{jean-yves.vion-dury,nikolaos.lagos}@xrce.xerox.com

Abstract. This work describes a Version Broker Service that enables
consistent management of dynamic digital resources throughout their
life cycle. The service handles the association of resources with logi-
cal specifications formally expressed using an extensible logical language
understood and agreed by tiers. A new version of a digital resource is
considered certified only if the resource owner is able to formally prove
that the new version satisfies the logical specifications, with the help of
the service. A method is also described to both use formal proofs for
qualifying changes (occurring either on the resource content or on the
corresponding specifications), and for characterizing them through the
evolution of version labels. While the resource owners may handle a fully
detailed specification (called internal), the users may have a simplified
view of the same resource, i.e. a particular external specification. The
service we propose can manage changes consistently, in a sound manner,
for both perspectives, all potential users, and change cases.

Keywords: Versioning model · Semantic versioning · Formal
specification · Formal proofs · Change management

1 Introduction

Versioning is particularly challenging in dynamic, non-centralized architectures,
as propagating changes in a consistent manner requires strict coordination of
tiers. Such a case is for example service-oriented architectures, where the sep-
aration of the service interface from its implementation, often referred to as
opacity, is an additional complexity (changes in the interface or the implemen-
tation may impact the contract that the service provider has with a consumer
from a functional or quality-of-service (QoS) point) [1].

In our context, versioning support has two dimensions [1]: Interface version-
ing, which is support for the description of the behaviour expected by clients of a
system, e.g. artifacts that describe the interaction of the service with its environ-
ment (for instance definitions of data in WSDL and Abstract BPEL documents
in the case of service-environment); implementation versioning which is support
for the code, resources, configuration files and documentation of a system.

c© Springer International Publishing Switzerland 2016
P. Lorenz et al. (Eds.): ICSOFT 2015, CCIS 586, pp. 42–62, 2016.
DOI: 10.1007/978-3-319-30142-6 3

A Semantic Versioning Service Based on Formal Certification 43

While traditional Software Configuration Management (SCM) systems, such
as Subversion and GIT (among others), are being widely used for implementation
versioning, interface versioning is still a not very-well studied subject.

This work presents a method towards Version Management that enables con-
sistent management of digital resources throughout their life cycle for the ben-
efit of both resource owners/providers (the entities offering the resource) and
resource users (the entities using the resources), and exemplifies it in a service-
oriented setting. As part of the method we define how resources can be associated
with logical specifications written in an extensible logical formalism understood
and agreed by tiers. We also describe how a Version Broker Service (VBS) can
verify the well-formedness of proofs and properties when required, so that the
version labels stay consistent.

2 Related Work

Version management includes defining strategies for: version naming (which
should aid in recording the evolution of a resource); and for identify-
ing/responding to different updates (which should be related to controlling the
consistency of different versions). In this work we deal with both of the above
issues and integrate them into a single framework.

Version naming is most typically designed to reflect consumer
¯

compatible and
non-compatible (or breaking and non-breaking) changes. The former constitute
major releases and the latter minor ones. The corresponding naming usually fol-
lows the “Major#.Minor#” scheme where the sequential major release version
number precedes the minor one [2]. Alternatively naming schemes may incor-
porate a time-stamp instead of the above identifier. However, the above nam-
ing schemes provide very limited semantic information about the relationships
between versions [3].

Recent work, especially in the area of web services, recognises the impor-
tance of having semantic information relevant to versioning and try to inject
such information. For instance, [4] extends WSDL and UDDI with correspond-
ing meta-data. In [5,6] a three-label version scheme is proposed, where each
label is incremented in response to changes in the versioned resource (in their
case each label corresponds to one of data components, message components
and features). [7] goes one step further by not only assigning semantics to ver-
sion labels but also using them to determine the compatibility between entities
(e.g. UML processes) and source code modules. However, the naming scheme
is defined by the provider and it is the job of the consumers to use this con-
sistently. Our method allows separate identifiers for the service owner/provider
and each of the users(s)/consumer(s). Based on this idea we propose the use of a
dedicated versioning service implementing our method, which would ensure the
consistency of the mapping between the different identifiers.

Similar work can be found, in terms of formalising the evolution of artifacts
in dynamic environments, in [8], where a theoretical type-safe framework is pro-
posed to ensure correct versioning transitions in service-oriented environments.

44 J.-Y. Vion-Dury and N. Lagos

Although their method sketches the relation between the notion of compatibility
and specifications, they do not provide any formal grounding on how the mod-
elling of consistent change is reflected by the naming scheme of different variants.
In addition, they do not refer at all to the notion of a dedicated versioning ser-
vice functioning as broker, a direct versioning approach being implied to the
best of our understanding. In direct approaches the consumer and provider are
directly connected and each one has to manage changes to their requirements
and offer respectively. In our case, we propose an intermediary-based approach,
where the consumer does not have to communicate with the provider directly
but only through a third service (i.e. a broker). The broker is responsible for
managing the changes happening to any of the connected services (a preferred
approach in the context of service-oriented environments is [9]).

Another close work is done by [10]. The author formalises the notion of
component versioning to support consistent substitutability of components and
falls under the umbrella of software configuration management for component-
based systems. Although very interesting, the work is mainly focused on a specific
architecture (widely used for software components) called CORBA [11].

3 Key Ideas

The first key idea of our method is to provide certified version evolution. Certifi-
cation represents a strong guarantee that pre-defined usage properties of digital
resources are preserved. In addition, the impact of changes is faithfully reflected
by the version labels managed by the VBS. This desirable property is the con-
sequence of a rigorous versioning model, operated with the help of logical tools
able to verify properties and build proofs. Hence, when the data owner wants to
register the evolution of a resource, or of its logical specifications, he is asked to
provide proofs that the system is able to check for correctness. Thanks to the
internal logic of the VBS, these proofs are minimized.

The second key idea is to clearly separate the “contract” of the resource
owner (i.e. the logical specification that formally characterizes the resource) from
the “contract” of the resource users (i.e. the logical specification that formally
characterises the expected use of the resource). To the best of our knowledge,
versioning is today associated with one unique central specification (API, con-
tract, document) used by both the provider and the consumer of the resource.
In this proposal, we consider that a resource has one provider (or owner) respon-
sible for its maintenance and evolution and possibly many consumers (or users)
able to retrieve and download the resources based on our version label based
designation mechanism. Depending on their needs, users may have a more or
less simplified view of the resource properties. This is a big step in our opinion,
as simplified views will require less effort regarding the certification of versions,
and will tune the resource to the exact needs of the user, who consequently will
be less exposed to incompatible changes. Based on this distinction, the VBS will
help the resource owner to propagate rigorously the changes toward a coherent
labeling scheme adapted to the various needs of its consumers.

A Semantic Versioning Service Based on Formal Certification 45

We believe that the above two innovations can enable the exploitation of
the VBS with radically new business models related to the management of the
evolution of resources, for the benefit of all parties.

4 The Versioning Model

4.1 Invariants, Specifications, Theories

We represent the logical characterisation of a resource via two logical formulae:
the first one is the invariant, i.e. the logical properties that the resource must
always satisfy during its life cycle; the second one, specification, is a logical
formula that may change over time, but that the resource must satisfy in order
to be certified. The certification of a resource is therefore a formally established
proof that the new version is consistent with the resource logical specification.
Consequently, a version increment can be generated (the choice of the increment
type is left to the owner, but must satisfy specific logical properties, as explained
later in the paper).

Associating an invariant with a versioned resource means that if a resource
owner intends to derive versions, then something common to all versions should
be preserved. Otherwise, versions are not needed, one just need to derive a new
resource with a different name and different logical characteristics, and start a
novel life cycle.

What is the role of the specification? We assume that versioning systems should
have an abstract description that explains what is the resource and how it can be
used. For instance, this can be a document describing an API (Software Engineer-
ing and Service Oriented Architectures), it can be an SQL schema for a data set,
an XSD schema for an XML document, and so on. A specification can also be used
to describe tests that a resource should pass in order to be considered valid.

We also distinguish between: external specification, describing the behaviour
that is expected by users of the resource, e.g. an API exposing methods to a ser-
vice’s clients; internal specification, describing the behaviour that is expected by
the owner of the resource, e.g. support for changes in the code and documentation.

Such a specification is formally expressed in this work using an underly-
ing core logic L (see Sect. 5.2 and a specific, owner designed, theory T , which
extends the core logic with axioms and theorems suitable to handle the owner’s
applicative domain.

The key idea is that the versioning method, presented in this paper, is based
on formal proofs to certify a versioning step. Such a proof will take the form of
a proof term, i.e. a particular data structure that reflects exactly how the proof
was constructed from the axioms and the theorems. Although it can be hard to
build such a proof, it is easy to verify that it is well-formed and that it is indeed
a proof of the claimed property.

4.2 Structure of Version Labels

A resource r represents a digital content (its digital extension as a bitstream)
and is related to a unique identifier and a version label defined as [M.m.μ : ν]/s,

46 J.-Y. Vion-Dury and N. Lagos

where M,m,μ, ν, s are natural numbers greater or equal to 0. The number M
stands for major revision, m for minor, μ for micro, ν for variant and s for stamp.
Minor versions preserve the backward compatibility (while possibly offering new
functionalities); micro versions have no visible impacts from the external speci-
fication point of view (improvements, bug fixes, simplifications...); while major
versions may require revising the processes depending on the changing resource
(this scheme is coined as Semantic Versioning [12]). With this it is a straight-
forward way to communicate to the users of a resource whether its evolutions
are backward compatible or incompatible.

The stamp is incremented at each modification operation, independently of
versioning mechanisms. As a consequence, a resource can be updated and never
versioned, meaning that the changes can be tracked and memorized, but without
any assumptions regarding its semantic properties. A resource r is certified when
a versioning operation was able to logically establish its compliance with its
semantic specification(s). The version label is designed in order to reflect this,
as the variant component must be null.

4.3 Version-Based Ordering

Version labels are built in such a way that they are totally ordered for a resource.
This is important since this means that one can always find the antecedent of
a given version based on the label structure. We define an order ≺ on version
labels through:

∀M, M ′, m, m′, μ, μ′, ν, ν′, s, s′non negative integers

M < M ′ ⇒ [M.m.μ : ν]/s ≺ [M ′.m′.μ′ : ν′]/s′

m < m′ ⇒ [M.m.μ : ν]/s ≺ [M.m′.μ′ : ν′]/s′

μ < μ′ ⇒ [M.m.μ : ν]/s ≺ [M.m.μ′ : ν′]/s′

ν < ν′ ⇒ [M.m.μ : ν]/s ≺ [M.m.μ : ν′]/s′

s < s′ ⇒ [M.m.μ : ν]/s ≺ [M.m.μ : ν]/s′

Version labels evolve in such a way that the following property always holds.

Proposition 1. Monotonicity of stamps

∀M ′, m′, μ′, ν′, s′non negative integers
[M.m.μ : ν]/s ≺ [M ′.m′.μ′ : ν′]/s′ ⇒ s < s′

This property says that for a resource r, the stamp stamp(r) = s tracks
all change history regardless of the evolution of the version label. In order
to abstractly handle resources, we define three destructors to access those
attributes:

identifier(r) = � content(r) = c version(r) = [M.m.μ : ν]/s

Similarly, versioning labels can be de-constructed with the following functions:

major([M.m.μ : ν]/s) = M
minor([M.m.μ : ν]/s) = m
micro([M.m.μ : ν]/s) = μ

update([M.m.μ : ν]/s) = ν
stamp([M.m.μ : ν]/s) = s

Given the above, we can build a partial order over versioned resources as follows.

A Semantic Versioning Service Based on Formal Certification 47

Definition 1. Partial Ordering of Resources

∀r, r′ r ≺ r′ iff identifier(r) = identifier(r′) ∧ version(r) ≺ version(r′).

4.4 Designation and Selection of Resources

To be able to select and retrieve resources, we define herein the designation
mechanism. Resources can be designated through a term built from the following
syntax:

D ::= � | �[V1] | �/s | �/ � | �/?
V1 ::= � | ? | M | M.V2
V2 ::= � | ? | m | m.V3
V3 ::= � | ? | μ

All resources E can be retrieved with the resolution function noted ! that takes
as input the designation term, and returns a set of resources accordingly, defined
in Table 1.

Table 1. Resolution of references.

Reference Result Comment Certified

!(�) !(�/�) shorthand

!(�/?) {r ∈ E | identifier(r) = �} all variants yes/no

!(�/�) sup≺[!(�/?)] last variant yes/no

!(�/s) {r ∈!(�/?) | stamp(r) = s} a particular variant yes/no

!(�[M]) !(�[M.�]) shorthand

!(�[�]) sup≺[!(�[?])] last version yes

!(�[?]) {r ∈!(�/?) | major(version(r)) > 0} all variants yes

!(�[M.m]) !(�[M.m.�]) shorthand

!(�[M.�]) sup≺[!(�[M.?])] last M version yes

!(�[M.?]) {r ∈!(�/?) | major(version(r)) = M} all M versions yes

!(�[M.m.μ]) {r ∈!(�[M.m.?]) | micro(version(r)) = μ} this version yes

!(�[M.m.�]) sup≺[!(�[M.m.?])] last M.m version yes

!(�[M.m.?]) {r ∈!(�[M.?]) | minor(version(r)) = m} all M.m versions yes

The jocker ? denotes all available components that match some versioning
constraints, whereas � denotes the highest available component, and therefore,
is always a singleton (or the empty set if the condition is not satisfied). The
notation �[?] designates the set containing all versions of the resource �, �[�] the
last qualified version, �[3.�] designates the last minor and micro version derived
from the major revision 3 of �. For some value M,m,μ the designation �[M.m.μ]
always maps to a singleton (provided this derivation belongs to the history of the
resource), as well as �/s, under the same condition. The notation �/? designates
the set of all variants of � regardless of any versioning information, and �/� the
most recent element of this set, if any.

48 J.-Y. Vion-Dury and N. Lagos

5 The Certification Model

5.1 Dynamics of Resources and Specifications

In addition to the resource r, internal Ir, and external Er,c specifications can
also change. The triple 〈r, Ir, Er,c〉 can be considered certified, if the fundamental
property (Sect. 5.3) is verified. Still, uncertified resources have a versioning label
and can be designated and retrieved. By construction, a version label including
a non zero variant is uncertified.

Figure 1 illustrates an example where three update operations are applied
on a certified resource (with version label �[1.1.3 : 0]/13). The first two steps
track modifications of the resource content, whereas the third one tracks the
modification of the internal specification. The last step corresponds to a minor
qualification, to establish that the fundamental invariant is satisfied: the resource
satisfies the modified specification and this one is a logical extension of the
original specification (and is thus backward compatible). From this last property,
we can deduce that the modified specification is also a logical extension of the
invariant.

5.2 Underlying Logic and Its Implementations

The expressiveness of an appropriate logic depends on the requirements of the
application; however, higher order logic is commonly used today, implemented
with powerful proof assistants, embedding interactive/automated tactic based
theorem provers [13], and is generic enough to cover practical cases.

Fig. 1. Example updates for a resource r with identifier � and specification Ir.

Logic L. This logic, called L, should be equipped with a particular relation that
checks well-formedness of terms, in order to be sure that a logical specification
is indeed a term that can be managed by axioms and theorems. We note this
relation wf(P), or equivalently, using a generic typing relation, as type(P, prop).
This logic L must also be equipped with a proof system able to explicitly handle
proof terms. We note L � proof(p, P) the logical relation establishing that p
is a proof of P in L. Consequently, proving a property P is a process that will

A Semantic Versioning Service Based on Formal Certification 49

construct a proof term p. In general, it is much more difficult to build the proof
term than to check for its correctness, the latter being usually implemented
through simple and efficient algorithms (see for instance how proofs become
first order entities in [14] and Dedukti [15] and how proof terms are built and
computed in any logic based on the Curry-Howard correspondence [16]).

We expect also that extensions suited to domain specific applications will be
expressed as additional theories T0, T1, · · · that will be designed to work on top
of L. In those cases, the L, T0, T1, · · · � proof(p, P) will be the natural extension
of the notation presented above, to express a proof in the aforementioned set of
theories.

To illustrate, consider the higher order intuitionistic logic L (whose associated
proof system is based on natural deduction [17], where elimination and intro-
duction rules are associated with each construct). If we consider a formula like

∀A.∀B.((A ∧ B) ⇒ B)

A proof using sequents and natural deduction could be for instance

�
A ∧ B ∈ A ∧ B, ∅ ∈L

�
B ∈ B, A ∧ B, ∅ ∈L

B ∈ A, B, A ∧ B, ∅ ∈R

A, B, A ∧ B, ∅ � B
I�

A ∧ B, ∅ � B
E∧

∅ � (A ∧ B) ⇒ B
I⇒

∅ � ∀B.(A ∧ B) ⇒ B
I∀

∅ � ∀A.∀B.(A ∧ B) ⇒ B
I∀

This proof can be mapped into a structurally equivalent proof term using all
applied rule names

I∀(I∀(I⇒(E∧(∈L, I�(∈R (∈L)))))))

which can be checkedfor correctness using a dedicated predicate proof(p, P):

�
∈L ∴ A ∧ B ∈ A ∧ B, ∅ ∈L

�
∈L ∴ B ∈ B, A ∧ B, ∅ ∈L

∈R (∈L) ∴ B ∈ A, B, A ∧ B, ∅ ∈R

I�(∈R (∈L)) ∴ A, B, A ∧ B, ∅ � B
I�

E∧(∈L, I�(∈R (∈L)) ∴ A ∧ B, ∅ � B
E∧

I⇒(E∧(∈L, I�(∈R (∈L))) ∴ ∅ � (A ∧ B) ⇒ B
I⇒

I∀(I⇒(E∧(∈L, I�(∈R (∈L)))), I�(∈L))))) ∴ ∅ � ∀B.(A ∧ B) ⇒ B
I∀

I∀(I∀(I⇒(E∧(∈L, I�(∈R (∈L))))) ∴ ∅ � ∀A.∀B.(A ∧ B) ⇒ B
I∀

Fundamental Logical Relations and Properties. When a resource r satis-
fies a logical formula F , this is noted as r |= F . The � relation expresses strict
logical implication:

F1 � F2 iff F2 ⇒ F1 ∧ ¬(F1 ⇒ F2)

whereas 	 expresses the logical implication (therefore, is reflexive):

F1 	 F2 iff F2 ⇒ F1

50 J.-Y. Vion-Dury and N. Lagos

The
F relation expresses “partial disjunction”, i.e., that a logical intersection
F exists between two formulas:

F1
F F2 iff F � F1 ∧ F � F2 ∧ ¬(F1 	 F2)

Defined this way, this relation produces two subcases: one where F2 � F1 (F2 is
strictly more specific than F1) and one where ¬(F2 � F1) (F1 and F2 are strictly
conjunctive). Both situations make sense when interpreting major version evolu-
tion (which potentially can raise incompatibility issues). The first one expresses
cases where a specification is restricted (producing some regression in the expec-
tation), the second situations where a specification evolves by extending some
points, but regressing on others.

The ≈ relation just expresses logical equivalence (but is typically used when
F1 and F2 are syntactically distinct):

(F1 ≈ F2) iff F2 ⇔ F1

It is easy to show that the �,	,≈ relations are transitive, and since the logic is
expected to be sound, we also assume the following property holds:

(F1 	 F2 ∧ r |= F2) ⇒ r |= F1

We denote the change of resource r into r′ by a relation δ, such that δ(r) = r′.

5.3 Certification of Resources and Specifications

When a client asks that a resource r is certified (creation of a new major, minor
or micro version), he/she must provide one or several proofs, depending on the
past operations and the current context (some cases are detailed in Sect. 5.3).
The proofs are checked for correctness, i.e., the system verifies that they indeed
establish the expected properties Pi or L, T0, T1, · · · � proof(p, Pi). Moreover,
depending on the kind of change, some “structural” properties may be veri-
fied: well-formedness of changed specifications and that the resource satisfies the
specifications.

Checking a proof is easy, while building the proof term (formally proving a
property) can be of unbounded difficulty, depending on the application domain
(and consequently on the power of theories operated by the resource owners).
However, many useful scenarios can be captured by simple theories, and proofs
can be established either by a proof assistant or even by specialized programs,
such as type checkers. Note that run-time execution performance of such pro-
grams would not be as crucial as during development cycles, since they are used
only in the certification phase. Properties such as schema membership (XML
validation, database relational schema) can be processed automatically by dedi-
cated algorithms, after those schemes are translated into L inside an appropriate
theory. Similarly, API signatures for a software library, making use of decidable
type systems, can be similarly processed through an equivalent approach.

Section 5.3 details some change cases with respect to the versioning certifica-
tion. The changes involve three entities: the resource r, its internal specification
Ir, and its external specification Er,c for a particular client c.

A Semantic Versioning Service Based on Formal Certification 51

Version Consistency. The certification process aims at controlling the evo-
lution of the tuple 〈r, Ir, Ir, Er,c〉 for all resources r, for all clients c of r and
associated specifications Ir and Er,c, and the invariant Ir. This is achieved in a
way that the resource satisfies all specifications, and the external specification
visible by the client is a specialization of the internal specification (controlled
by the owner). Both external and internal specifications must always specialize
the initial invariant Ir. This fundamental scheme is illustrated in the following
diagram.

Ir

Er,c r Ir

� �

�

|= |=

|=

Version Co-evolution. We examine changes potentially affecting any of the
three dynamic parameters (therefore, excluding the base invariant I), focusing on
the consequences both from the clients and owner perspectives, in terms of how
their respective version labels will evolve. The elements with color red correspond
to the logical relations that must be established, whereas the green ones express
what can be deduced both from the previously established relations and from

Fig. 2. Update with changing specifications and unchanged resource: client sees a major
evolution (M , m and µ stands for major, minor, micro).

52 J.-Y. Vion-Dury and N. Lagos

the proved statements (and therefore, do not need explicit formal treatment by
the service).

As many combinations exist, we present here only two cases: the first one
deals with unchanged resources but evolving specifications (no change regarding
the resource itself, but changes to the corresponding specifications), while in the
second case the resource changes as well. See [19] for the exhaustive list of cases.

Update Describing Changing Specifications and Unchanged Resources. Figure 2
shows a certification scheme where the client considers a change as having a
major effect.

Update with Changing Resources. We distinguish three cases, from the point of
view of a client c, working with an external specification Er,c over a resource r.
Figure 3 covers major changes with an evolving external specification.

6 Version Broker Service

This section presents a service-oriented application setting for the method
described in the previous sections. We consider that a specialised broker can offer

Fig. 3. Major changes with an evolving external specification (M , m and µ stands for
major, minor, micro; δ denotes a modification of the resource).

A Semantic Versioning Service Based on Formal Certification 53

services related to versioning (and generally resource lifecycle management) by
implementing our method as described herein. We call that service the Version
Broker Service (VBS).

We distinguish between two roles for the service’s clients: the resource owner
and the resource user. The resource owner publishes one or several logical descrip-
tions, at various levels of precision, which characterize the resource and will serve
as a basis for the formal agreement about its intended use. Users may subscribe
to a “contract” (e.g. Quality of Service agreement) and get access to the resource
through a dedicated version management scheme. Each time the owner certifies
a new version, the VBS will make sure that this change is propagated to the
“contracts”, i.e. that each version label associated with the contracted interface
is derived in a semantically consistent way. In the remaining part of the section
we describe a typical example of setting up a resource certification and selection
process using the VBS and what the service offers but also requires from the
owners and users of the resources.

6.1 Overview of the VBS Process

In general, a broker is a common gateway/address for provider/user applica-
tions to access a wide variety of services. An example workflow of setting up a
certification and selection process using the VBS is described below (Fig. 4).

– Step 1. The VBS publishes its interface to the UDDI registry that can be used
by other services to locate the VBS.

– Step 2. A Resource Owner O that want to set up a certification process for a
resource r contacts the UDDI registry, in order to locate the VBS.

– Step 3. Once O has located VBS, performs a binding and asks to register r.
O should also send the contract definition related to the resource.

– Step 4. The VBS confirms that r is valid (i.e. well-formed, this is further
explained in later sections) and responds with a confirmation to O, that r has
been certified.

– Step 5. The VBS publishes r with a qualified version label (i.e. a label that
represents the current state of r) by sending the information to the UDDI
registry.

– Step 6. A Resource User U contacts the UDDI registry to locate a service
that offers r available via the VBS. Thanks to the UDDI registry U selects
the VBS.

– Step 7. Once the VBS is found, U contacts the VBS and requests a specific
version or range of versions of r.

– Step 8. The VBS selects the resource r based on the information received by
U related to the version label but also to the contract that U has (we assume
here that the contract is also communicated to the VBS).

– Step 9. The VBS sends the response (e.g. that the specific version of the
resource r is available to U).

– Step 10. In the case of a positive response U performs a binding with the VBS
or O (this depends on the business model followed).

54 J.-Y. Vion-Dury and N. Lagos

Fig. 4. VBS process (example).

Based on the above scenario, the VBS plays the role of an intermediate service
between the Resource Owner and the Resource User.

6.2 The Resource Owner

The resource owner creates the resource and defines how it evolves. This includes
deciding when and how to publish the resource and also what type of access and
use should be allowed for different users. The owner also defines the domain
specific theories needed (or use/extend those that might be proposed by the
VBS), and design the properties needed to characterize the provided resource.
The resource extension (its bitstream) might be directly uploaded into the VBS
inner storage space, or just localized through a pointer that allows the VBS to
access the content when needed. The actions that the VBS allows/expects from
the resource owner are:

Theory Creation. Upload a source file compatible with the underlying logic (see
Sect. 5.2) supported by the VBS, and an associated name that must be unique for
this owner. This means that the VBS has a dedicated parser and computational

A Semantic Versioning Service Based on Formal Certification 55

means to verify/type the provided definitions (check for well-formedness). Once
loaded and verified by the VBS the definitions can be used in other operations.

Resource Creation. Allows to specify a name uniquely associated with the tar-
get resource. This name is used to designate the revisions thanks to the ver-
sion labels. For instance cobra.socket.api, could be subsequently referenced as
cobra.socket.api[1.2.0].

Internal Specification Creation. VBS expects the resource name to which the
specification will be attached, and a logical formula, which will be checked for
well-formedness. The VBS returns a unique identifier, so that the specification
can be designated without ambiguity for future operations. External specification
creation. idem (see above).

Resource Update. Upload a novel extension for the resource, or equivalently,
apply a patch; a new internal version label is computed accordingly (see update
in Table 2).

Specification Update. Upload a novel extension for the resource (or equivalently,
apply a patch); a new internal version label is computed accordingly (see update
in Table 2).

Qualification. This corresponds to the first stage involving a logical characteri-
zation. Once certified, the resource can be derived and made visible to external
users. As parameters, the VBS expects the resource label � = identifier(r), a
reference to the invariant property I� and to the internal specification S�, and
the following proofs (see Sect. 5.3): (i) the invariant is implied by the internal
specification in the defined context L, Ti � I� 	 S� and (ii) the resource satis-
fies the internal specification in the defined context L, Ti � � |= S�. The VBS
then verifies the proofs and if correct, qualifies the resource, generating the first
certified version label (Table 2).

Derivation. Compute a new version for a resource, whose name is given as a
parameter, as well as the type of version: micro, minor, or major. Depending on
the version type, different proofs are required by the VBS, so as to minimize the
proving cost (Fig. 5).

Table 2. Operations supported by the Version Broker Service and corresponding
impact on version labels.

Operation on resource Version label (before) Version label (after) Certified

Creation n.a [0.0.0:1]/0 no

Qualification [0.0.0 : ν]/s [1.0.0 : 0]/s yes

Major derivation [M.m.μ : ν]/s [M+.0.0 : 0]/s yes

Minor derivation [M.m.μ : ν]/s [M.m+.0 : 0]/s yes

Micro derivation [M.m.μ : ν]/s [M.m.μ+ : 0]/s yes

Update [M.m.μ : ν]/s [M.m.μ : ν+]/s+ no

56 J.-Y. Vion-Dury and N. Lagos

Fig. 5. Certified evolution of a resource � according to a specification S (δ denotes a
modification of the resource).

A Semantic Versioning Service Based on Formal Certification 57

Publication. Requires the resource’s name as parameter and synchronizes the
last certified version to generate the external version labels for all users. Proofs
will be asked by the VBS according to the co-evolution schemes (see Sect. 5.3).

In the following, we use x+ to denote x+1. Table 2 defines the transformations
of the version label according to the operation done on a resource r, where
version(r) = [M.m.μ : ν]/s.

6.3 The Resource User

The resource user accesses the bitstream extension (the resource content) corre-
sponding to particular versions, thanks to the designation mechanism described
in Sect. 4.4. The corresponding external specification may also be accessed. The
operations that the VBS supports for users of the resource include:

Resource Download. The VBS expects a full version label (e.g. dp.api[2.1.3]),
and returns a set of resource contents, associated with its exact version label.
Such a label will resolve into this particular content if a subsequent access
is required. As an example, a first request with db.api[1.2.?] may return
{(c1, db.api[1.2.1]), (c2, db.api[1.2.2])} (where ci denotes the respective bitstream
contents) whereas a db.api[1.2] request will be interpreted by the VBS as
db.api[1.2.�] and would return the latest content available for this major and
minor version in the given context, i.e. {〈c1, db.api[1.2.2])}.

Specification Download. Using the same communication scheme, the resource
user can access external specifications associated with each version resolved by
the VBS.

7 Illustrative Example

In this section we present an example that illustrates the concepts introduced
in the previous sections. We assume that a provider manages a software library
offering persistent storage operations. We call the library STO and assume that
it is made available as a compiled module. The owner of STO chooses to expose
two different views of this library: a basic one including creating/opening a
persistent store, storing, deleting, and retrieving data, and a more complex one
that can additionally handle transactions. We assume that the owner of STO
uses an object-oriented dedicated theory to describe the resource, focusing on
the naming and typing of classes and methods.

7.1 Fundamental Invariant

The fundamental invariant of STO is defined in terms of a class, three methods to
deal with data, and three basic functions to create, open and delete a database.

ISTO ≡ class(STOHandler)
∧ language(Python2)
∧ method(STOHandler, store)
∧ method(STOHandler, retrieve)
∧ method(STOHandler, close)
∧ function(create)
∧ function(open)
∧ function(delete)

58 J.-Y. Vion-Dury and N. Lagos

Note that according to the vision of the resource owner, signatures of meth-
ods/functions are not considered as fundamental, and therefore, could change
along the lifetime of the resource, however, the programming language and ver-
sion must stay stable.

7.2 The External Specification

It describes a minimal view on the functionality offered by the API, namely, the
signatures of methods and functions, including potential exceptions as follows.

ESTO ≡ ISTO

∧ signature(STOHandler.store, [string, string],void)
∧ signature(STOHandler.retrieve, [string], [string])
∧ signature(STOHandler.close, [],void)

∧ signature(create, [string], STOHandler)
∧ signature(delete, [string],void)
∧ signature(open, [string], STOHandler)

∧ throw(create,Exception)
∧ throw(delete,Exception)
∧ throw(open,Exception)

7.3 The Internal Specification

This one is typically more complex, as expected to help the designer maintaining
his source code in a coherent way while hiding (potentially irrelevant) complexity
to users. To illustrate this, we decided to consider three additional methods:
check (verify the presence of a data in the store), replace (change a value using
a known key) and put (store one or many values using the same key). Those
methods may be used internally to build higher level operations such as the store
method which perform storage with replacement, as in standard dictionary data
structures based on a hashing algorithm.

ISTO ≡ ISTO

∧ signature(STOHandler.store, [string, string],void)
∧ signature(STOHandler.retrieve, [string], [string])
∧ signature(STOHandler.close, [],void)

∧ signature(create, [string], STOHandler)
∧ signature(delete, [string],void)
∧ signature(open, [string], STOHandler)

∧ method(STOHandler, check)
∧ method(STOHandler, replace)
∧ method(STOHandler, put)
∧ signature(STOHandler.check, [string], integer)
∧ signature(STOHandler.replace, [string, string],void)
∧ signature(STOHandler.put, [string, string],void)

∧ class(PathException)
∧ subtype(PathException,Exception)
∧ throw(create,PathException)
∧ throw(delete,Exception)
∧ throw(open,PathException)

Note that exception management is more detailed thanks to a class
specialization.

A Semantic Versioning Service Based on Formal Certification 59

Fig. 6. Example dedicated theory.

7.4 Verification of Specifications

The well-formedness of the logical specification is established by proofs using
both a generic (for the basic logic operators) and a dedicated theory. In Fig. 6
we just give an idea of what the dedicated theory could be for the illustrative
example presented above (x :y is the infix notation of the predicate type(x, y),
and label, integer, · · · are built-in predicates to assess lexical properties of
items). The formal proofs required by the VBS for the three specifications will
be � ISTO, � ESTO and � ISTO, which can be reduced into � ISTO, � P1 and
� P2 since ISTO ≡ ISTO ∧ P2 and ESTO ≡ ISTO ∧ P1 (Pi being the additional
properties illustrated by Sects. 7.2 and 7.3).

7.5 First Certification

After submitting the internal and external specifications, the owner wants to
produce a first certification of STO (that is, asks the VBS to generate a

60 J.-Y. Vion-Dury and N. Lagos

certified version label STO[1.0.0 : 0]/0). To that end, the owner must provide
a proof that STO satisfies the specification (STO |= ISTO). The computational
characterisation of the proof will depend on the characteristics of the underlying
theory, on the properties of the programming language, and on the difficulty of
the task (and also on the performance level of the algorithm/human operator).

In the worst case, the proof is not provided by the owner. Yet, proofs of well-
formedness (� P), implication and partial disjunction of properties are required
to control the quality of specifications and the consistency of the claimed evo-
lution. The absence of strong compliance proofs can be compensated by offer-
ing testing infrastructure at the VBS level, and including runtime tests in the
specifications, e.g. through dedicated predicates like test(context, code, value) or
raises(context, code, exception), where code, value and exception are particular
expressions of an appropriate abstract language.

In the best case, the programming language is associated with a formal spec-
ification system (e.g. based on predicate transformers) able to conduct semi-
automatic proofs of correctness and to export proof terms in the VBS compliant
form.

In the rest of the cases, the programming language can be associated with
static analysis tools (such as type or property checkers using partial evaluation or
model checking). To perform the first certification, the VBS will require STO |=
ISTO, ISTO 	 ESTO (easy), ISTO 	 ISTO (easy, but longer), and ESTO 	
ISTO (a bit more difficult). The only difficulty in the last one, is about proving
properties like e.g.

throw(create,PathException) ⇒ throw(create,Exception)

which requires using appropriate subtyping oriented axioms as follows (proof
scheme in abbreviated form).

�
.
.
.

∈�L

.

.

.

∈�R

subclass(PathException,Exception) ∈ γ
∈�R

γ � subclass(PathException,Exception)
I�L

γ � throw(create,PathException) ⇒ throw(create,Exception)
≺throw

7.6 A Change and Its Co-Evolution

To illustrate the notion of co-evolution, we propose to examine a change
that occurs in both the resource (modification of source code and, accord-
ingly, of the library resource STO) and in the internal specification. Now, the
store, retrieve, put and replace methods of the STOHandler class could accept
any kind of value, and not only strings. This would constitute a major evo-
lution from the internal side (the new specification is more specific, that is,
δ(ISTO) 	 ISTO, whereas the ESTO need not to be upgraded. As an example,
the proof for the store method would be as follows.

A Semantic Versioning Service Based on Formal Certification 61

8 Conclusion

In this paper we presented a method for versioning that enables managing con-
sistently digital resources throughout their life cycle. The method assigns explicit
semantics to version labels and describes resources in terms of properties that
can be checked for validity with formal logical theories. Only if these properties
are valid the resource is marked as certified. We also sketched how this method
could be implemented in a service-oriented setting. We have shown that follow-
ing our versioning approach entails benefits to both resource users and owners.
The resource users have a strong guarantee with respect to the versioning of
certified resources. More specifically, that the versioning scheme always reflects
in a consistent way the evolution of the resources they contracted for. On the
other hand, resource owners receive valuable support for coherently managing
changes between versions while minimizing requested proofs at each step.

We plan of extending the above work by introducing, within the same set-
ting, the formal underpinnings for version branching and merging, and to start
experimenting with the main concepts presented in this paper. The challenge
of scaling such a system to a real environment should be understood more con-
cretely, as well as the level of precision we can expect and manage regarding the
various logical specifications involved in a system based on our model.

Acknowledgements. We would like to thank Jean-Pierre Chanod for his continuous
support and PERICLES partners for the creative exchanges. This research is conducted
in the PERICLES project [18], a four-year Integrated Project funded under EU’s FP7.

References

1. Novakouski, M., Lewis, G., Anderson, W., Davenport, J.: Best Practices for Artifact
Versioning in Service-Oriented Systems. Software Engineering Institute, Carnegie
Mellon University, Pittsburgh, Pennsylvania, Technical Note CMU/SEI-2011-TN-
009 (2012). resources.sei.cmu.edu/asset files/TechnicalNote/2012 004 001 15356.
pdf

2. Jerijrvi, K., Dubray, J.-J.:Contract Versioning, Compatibility and Composabil-
ity. InfoQ Magazine, December 2008. www.infoq.com/articlescontract-versioning-
comp2

3. Conradi, R., Westfechtel, B.: Version models for software configuration man-
agement. ACM Comput. Surv. 30(2), 232–282 (1998). doi.acm.org/10.1145/
280277.280280

resources.sei.cmu.edu/asset_files/TechnicalNote/2012_004_001_15356.pdf
resources.sei.cmu.edu/asset_files/TechnicalNote/2012_004_001_15356.pdf
www.infoq.com/articlescontract-versioning-comp2
www.infoq.com/articlescontract-versioning-comp2
doi.acm.org/10.1145/280277.280280
doi.acm.org/10.1145/280277.280280

62 J.-Y. Vion-Dury and N. Lagos

4. Juric, M.B., Sasa, A., Brumen, B., Rozman, I.: WSDL and UDDI extensions for ver-
sion support in web services. J. Sys. Soft. 82(8), 1326–1343 (2009). dx.org/10.1016/
j.jss.2009.03.001, www.sciencedirect.com/science/article/pii/S0164121209000478

5. Wetherly, C., Goring, B.R., Shenfield, M., Cacenco, M.: System and method
for implementing data-compatibility-based version scheme. US Patent 8,555,272
(2013)

6. Cacenco, M., Goring, B., Shenfield, M., Wetherly, C.: Implementing data-
compatibility-based version scheme. WO Patent App. PCT/CA2005/001,345
(2006)

7. Vairavan, V., Bellur, U.: Method and system for versioning a software system. US
Patent App. 12/324,950 (2009)

8. Papazoglou, M.P., Benbernou, S., Andrikopoulos, V.: On the evolution of services.
IEEE Trans. Soft. Eng. 38(3), 609–628 (2012). Preprint, http://infolab.uvt.nl/
∼mikep/publications/IEEE-TSE%20%5Bpreprint%5D.pdf

9. Leitner, P., Michlmayr, A., Rosenberg, F., Dustdar, S.: End-to-End versioning
support for web services. In: IEEE International Conference on Services Computing
(SCC 2008), vol. 1, pp. 59–66 - Technical report version (2008). www.infosys.
tuwien.ac.at/staff/leitner/papers/TUV-1841-2008-1.pdf

10. Brada, P.: Specification-Based Component Substitutability and Revision Identifi-
cation. Ph.D. thesis, Charles University, Prague, August 2003. http://d3s.mff.cuni.
cz/publications/download/brada phd.pdf

11. CORBA 3.3, 26 June 2014. www.omg.org/spec/CORBA/3.3/
12. Semantic Versioning. Technical Whitepaper, OSGi Alliance, Revision 1.0, May

2010. www.osgi.org
13. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL: A Proof Assistant for

Higher-Order Logic. LNCS, vol. 2283. Springer, Heidelberg (2002)
14. Kirchner, F., Muñoz, C.: The Proof Monad. J. Logic Alg. Program. 79(3), 264–277

(2010)
15. Boespflug, M., Carbonneaux, Q., Hermant, O.: The lambda-Pi-calculus modulo as

a universal proof language. In: Proof Exchange for Theorem Proving, pp. 28–43
(2012)

16. De Bruijn, N.G.: On the roles of types in mathematics. In: The Curry-Howard
Isomorphism, vol. 8, pp. 27–54 (1995)

17. Laboreo, D.: Introduction to Natural Deduction. Tutorial, May 2005. www.
danielclemente.com/logica/dn.en.pdf

18. PERICLES: a FP7 European project (2013–2017). www.pericles-project.eu
19. Vion-Dury, J.-Y., Lagos, N.: Technical Annex (2015). www.xrce.xerox.com/

content/download/34443/372476/file/SV-ANNEX.pdf

dx.org/10.1016/j.jss.2009.03.001
dx.org/10.1016/j.jss.2009.03.001
http://www.sciencedirect.com/science/article/pii/S0164121209000478
http://infolab.uvt.nl/~mikep/publications/IEEE-TSE%20%5Bpreprint%5D.pdf
http://infolab.uvt.nl/~mikep/publications/IEEE-TSE%20%5Bpreprint%5D.pdf
www.infosys.tuwien.ac.at/staff/leitner/papers/TUV-1841-2008-1.pdf
www.infosys.tuwien.ac.at/staff/leitner/papers/TUV-1841-2008-1.pdf
http://d3s.mff.cuni.cz/publications/download/brada_phd.pdf
http://d3s.mff.cuni.cz/publications/download/brada_phd.pdf
www.omg.org/spec/CORBA/3.3/
www.osgi.org
www.danielclemente.com/logica/dn.en.pdf
www.danielclemente.com/logica/dn.en.pdf
www.pericles-project.eu
www.xrce.xerox.com/content/download/34443/372476/file/SV-ANNEX.pdf
www.xrce.xerox.com/content/download/34443/372476/file/SV-ANNEX.pdf

An Eclipse IDE for Teaching Java–

Lorenzo Bettini1(B) and Pierluigi Crescenzi2

1 Dipartimento di Informatica, Università di Torino, Torino, Italy
bettini@di.unito.it

2 Dipartimento di Ingegneria dell’Informazione, Università di Firenze, Firenze, Italy
pierluigi.crescenzi@unifi.it

Abstract. In this paper, we describe a new Eclipse-based IDE for teach-
ing Java following the object-later approach. This IDE allows the pro-
grammer to write code in Java–, a smaller version of the Java language
that does not include object-oriented features, and includes all the power-
ful features available when using an IDE like Eclipse (such as debugging,
automatic building, and project wizards). With our implementation, it
is also straightforward to create self-assessment exercises for students,
which are integrated in Eclipse and JUnit.

1 Introduction

Java– is a smaller version of the Java language, which has been used at the
University of Florence to start teaching undergraduate students to program in
Java, without referring to the object-oriented features of this language [1–3].
By using Java–, students can focus, during the first few weeks, on the basic
programming concepts without being distracted by complex constructs (for the
educational motivation for using Java–, we refer the interested reader to [4]). In
order to write, compile, and execute Java– programs, a quite simple application
was also developed at the University of Florence more than ten years ago, which
provides a GUI, but lacks all the advanced tooling mechanisms that are typical
of an IDE like Eclipse. In this paper, we describe a new implementation of
Java– that includes a full-featured Eclipse-based IDE. Our IDE provides an
editor with syntax highlighting, navigation, code completion and error markers,
not to mention automatic integrated building and debugging. Since the IDE
is Eclipse based, the students will immediately become familiar with all the
tools of Eclipse itself, which is the IDE mostly used to teach Java with all
its object-oriented features. Moreover, by using our implementation of the IDE
for Java–, it is straightforward for the teachers to create exercise projects that
students can use for self-assessment. The teacher can, indeed, rely on existing
frameworks such as JUnit, which is already integrated in Eclipse. The Java–
IDE has been implemented by using Xtext [5,6], which is a modern language
workbench (such as MPS [7] and Spoofax [8]) that, starting from a grammar

This work has been supported in part by MIUR (proj. CINA), Ateneo/CSP (proj.
SALT), ICT COST Action IC1201 BETTY, and PRIN 2012C4E3KT national
research project AMANDA (Algorithmics for MAssive and Networked Data).

c© Springer International Publishing Switzerland 2016
P. Lorenz et al. (Eds.): ICSOFT 2015, CCIS 586, pp. 63–78, 2016.
DOI: 10.1007/978-3-319-30142-6 4

64 L. Bettini and P. Crescenzi

definition generates not only a parser and an abstract syntax tree, but also all the
typical Eclipse-based tooling features (for more details about the technology used
for implementing the Java– IDE, we refer the interested reader to [4]). Our IDE
is available as an open source project starting from http://javamm.sourceforge.
net, where we also provide an Eclipse update site and pre-configured Eclipse
distributions with Java– installed, for several architectures. In the following we
will use the term Java– for denoting both the smaller version of the Java language
and the application, with or without IDE, for writing code in this language.

The rest of the paper is organised as follows. In Sect. 2 we briefly describe the
original Java– application, while in Sect. 3 we describe our new Java– IDE. In
Sects. 4 and 5 we focus our attention on the debugging and the self-assessment
features of the Java– IDE, respectively. Finally, in Sect. 6 we refer the reader
to some related work, and in Sect. 7 we conclude by suggesting some possible
research open problems.

2 The Original Java– Application

In this section, we recall the main features of the original implementation of
Java–. As stated in the introduction, the goal of this tool is to allow the user
to focus on the basic programming concepts, without encumbering the novice
student with unnecessary complex constructs. Indeed, the user can write Java
code outside of any method body as shown in the left part of Fig. 11. In order
to appreciate the advantage of using Java–, the code shown in the figure can
be compared with the code that a student should have written if Java– was not
used, that is,

public class Example {
public static void main(String[] a) {

int x = 2;
System.out.println(x);

}
}

Apart from the fact that the student is exposed since the very beginning with
the object-oriented specific syntax of Java, as stated in [9] the above code can
even be “harmful to development of object-thinking”, since “it communicates
virtually nothing about the concept of user-created objects”. On the contrary,
the code shown in the left part of Fig. 1 turns out to be very similar to the
corresponding Python code, that is,

1 As it is shown in the figure, the student is required to make a leap of faith con-
cerning the use of the static methods to print to the standard output (such as
System.out.println()). Although this could have been avoided by implement-
ing a print() method that invokes the corresponding Java method, we preferred
to ask the students to use the standard Java methods and to profess their faith
in them, rather than give them a solution that is not pure Java, and which could
confuse them later on.

http://javamm.sourceforge.net
http://javamm.sourceforge.net

An Eclipse IDE for Teaching Java– 65

Fig. 1. Writing a program, and defining and invoking methods in the original Java–
application.

x = 2
print x

Clearly, Java– allows the programmer to define and invoke methods, as shown in
the right part of Fig. 1. Once again, it is interesting to compare the code shown in
the figure with the corresponding Python code defining the max method, that is,

def max(a,b):
if a>b:

return a
else:

return b

When Java– is asked to execute a code, the tool generates a temporary class
where it defines the main method and copies all the methods specified by the
user. Successively, the temporary class is compiled and executed: the compilation
errors are shown in the Errors pane, while the output and/or the execution
error are shown in the output pane. The original implementation of Java– also
includes a self-assessment module, that allows the student to write methods solv-
ing simple programming problems. The behaviour of this module is very similar
to other tools available on the web, such as, for example, the CodingBat tool [10].
The distribution of Java– already includes dozens of pre-defined exercises, but
new exercises can be easily added by teachers.

3 The Java– IDE

We now briefly describe the new IDE, by first describing the main features of the
IDE interface and by then emphasising the advantages of using these features.
We would like to stress that the aim of Java– as a programming language is
to target algorithmic aspects of programming, so that students can concentrate
on implementing algorithms without being distracted by OO features. Thus,
Java– does not target other programming contexts such as GUI programming.
However, as described in more details in Sect. 7, Java– can access any existing
Java type, such as container classes.

3.1 The IDE Interface

In Fig. 2 we show a screenshot of the Java– Eclipse IDE (note the complete
integration of our tooling with the Eclipse mechanisms, which are basically the

66 L. Bettini and P. Crescenzi

Fig. 2. Java– Eclipse IDE.

same as Eclipse JDT). First of all, in the Java– Eclipse project, the Java– com-
piler automatically generates Java code into the source folder src-gen. Such
generation is integrated with the Eclipse building mechanisms: if a Java– file is
modified, re-generation is automatically triggered and if a Java– file is removed,
the corresponding generated Java file is automatically removed. Error markers
are placed on the editor’s left ruler, on the corresponding file in the “Package
Explorer”, and in the “Problems” view (note that warnings are generated as
well, just like in Java, e.g., when a declared variable is not used). Moreover, the
regions in the editor corresponding to the errors are underlined (e.g., for a type
mismatch error like in the screenshot). The “Outline” view on the right reflects
the one of Eclipse JDT. Code completion works as well. With that respect, note
that the content assist mimics the one of Java: Javadoc comments, if present,
are displayed as well. The Java– IDE also offers a project wizard to create an
Eclipse project with the structure and requirements to start editing, compiling
and launching Java– programs. We also provide a wizard to import a Java–
project with about 40 examples (see Fig. 3).

3.2 On the Value of an IDE

Although an IDE is not a strict requirement to develop applications, it surely
helps programmers to increase productivity with features like syntax colouring
in the editor, compiler and debugger integration, build automation, code com-
pletion and easy navigation to definitions, just to mention a few. In an agile [11]

An Eclipse IDE for Teaching Java– 67

Fig. 3. Some examples shipped with Java–.

and test-driven context [12] the features of an IDE like Eclipse become an essen-
tial requirement. Indeed, languages such as Smalltalk have been tightly coupled
with an IDE from the beginning [13]. The ability to see the program coloured
and formatted with different visual styles (e.g., comments, keywords, strings,
etc.) gives an immediate feedback concerning the syntactic correctness of the
program. Moreover, colours and fonts help the programmer to see the structure
of the program directly, making it easier to visually separate the parts of the pro-
gram. The programming cycle consisting of writing a program with a text editor,
saving it, switching to the command line, running the compiler, and, in case of
errors, going back to the text editor is surely not productive. The programmer
should not realise about errors too late: the IDE should continuously check the
program in the background while the programmer is typing in the editor, even if
the current file has not been saved yet. The longer it takes to realise that there is
an error, the higher the cost in terms of time and mental effort to correct it. For
example, the Eclipse Java plugin highlights the parts of the program with errors
directly in the editor: it underlines in red only the parts that actually contain
the errors; it also puts error markers (with an explicit message) on the left of
the editor in correspondence to the lines with errors, and fills the Problem view

68 L. Bettini and P. Crescenzi

with all these errors. The programmer will be able to easily spot the parts of the
program that need to be fixed. With that respect, in our experience as teachers,
we noted that most of the students that fail programming exams are not able
to fix compilation errors since they do not use an IDE: they tend to write the
whole program and then try to compile it; when they get lots of compilation
errors, they are not able to understand how to fix them.

4 The Debugging Feature

When running the generated Java code in debugging mode in the Java– IDE,
we can choose to debug directly the original Java– code (it is always possible to
switch between the generated Java code and the original code). In Fig. 4 we show
a debug session of a Java program generated by our Java– compiler (running or
debugging the generated Java code can be done using context menus available
directly on the original Java– source): we have set break points on the Java– file,
and the debugger automatically switches to the original Java– code (note also
the file names in the thread stack, the “Breakpoint” view and the “Variables”
view). Indeed a well-known problem with implementations which generate Java
code is that for debugging, the programmer has to debug the generated code
which is usually quite different from the original program; our implementation
does not have this drawback. Note that the usage of the debugging mode of the
Java– Eclipse IDE has another advantage: it may indeed allow the students to
get used to the debugger before using it for developing their own object-oriented
more complex programs.

Fig. 4. Debugging a Java– program.

An Eclipse IDE for Teaching Java– 69

Fig. 5. Using the debug for teaching array references and the price of recursion.

The debugging feature can also be very useful, during a lecture, in order
to support explanations (usually done by using the whiteboard) of a program
execution. Let us now briefly describe three simple examples.

Methods and Arrays. In the left part of Fig. 5 it is shown how the debugger
can be used in order to explain that an array variable is a reference variable
and, hence, that the equality between two different array variables cannot be
established by simply using the == operator. Indeed, in the “Variables” view it
is explicitly shown that the two variables a1 and a2 are distinct, even though
the elements of the two arrays they refer to are all the same.

The Price of Recursion. Another example of such a “pedagogical” utilisation of
the debugger is given in the right part of Fig. 5. In this case, the “Debug” view
explicitly shows the activation records corresponding to the five invocations of
the recFactorial method, so that it is easier to explain to the students that
recursion (and, in general, method invocation) has a “small” price to be paid,
that, in certain cases, can be excessively high (just imagine the invocation of
recFactorial with a large integer number as argument).

Methods and Local Variables. The last example deals with the notion of local
variables inside a method, which can have the same name of another variable
defined outside the method itself. As shown in Fig. 6, the variable a defined

70 L. Bettini and P. Crescenzi

Fig. 6. Using the debug for teaching methods and local variables.

(and initialised) inside the method f1 is a local variable, which has nothing to
do with the variable a defined (and initialised) before the invocation of method
f1. Indeed, the value of a within the activation record corresponding to the
invocation of f1 and after the execution of the first instruction of this method
is 11 (see the left part of the figure) and, hence, different from the value of a
within the main activation record, which is 10 (see the right part of the figure).
Observe that, of course, the same reasoning applies to the variables called b
and the method f2. Indeed, the value of the variable b defined outside of the
methods is equal to 12 after the invocation of f1 and it is not changed by the
invocation of f2.

5 The Self-Assessment Feature

By using the Java– IDE, self-assessment exercises can be straightforwardly imple-
mented by relying on JUnit and its integration in Eclipse. The basic idea is that
the teacher provides the students with Java– Eclipse projects containing a Java–
file where the student implements the solution to the requested problem, the

An Eclipse IDE for Teaching Java– 71

Fig. 7. An example of exercise for self-assessment: the teacher project

solution of the teacher in binary form (so that the student cannot have a look
at it), and a JUnit test case that checks whether the output of the student’s
implementation corresponds to the teacher’s implementation. Let us show this
process by referring to a simple example, in which the student must implement
the max function in Java–, that is, a method which, given in input two integer
numbers, returns the maximum between these two integers (in the following, we
will assume the reader to be sufficiently familiar with the JUnit framework).

The Teacher Side. The teacher has, first of all, to create a Java– project (called,
for example, Max.teacher) and write the source code of the solution, as shown
in Fig. 7. Successively, the teacher has to create another Java– project (called,
for example, Max.student) and write the source code of the student solution
containing only a comment explaining the exercise, and the signature of the
method to be developed along with a dummy return instruction, as shown in
Fig. 8. Within the Max.student project, the teacher has also to create a new
folder (called, for example, solution), add this folder to the libraries of the
build path of the Max.student project, and copy in this folder the javamm
folder included in the bin folder of the Max.teacher project (see again Fig. 8).
Finally, the teacher has to create within the Max.student project a JUnit test
case: for example, in Fig. 9, the JUnit test case has been created within the
folder tests and includes only one test method checking whether the method
implemented by the student correctly answers with input the two values 3 and
5 (note that, by making use of the parametrized test feature of JUnit, it is
easy to develop tests of the student’s implementation with random inputs using
the teacher’s implementation as the expected output). The teacher can now
distribute the Max.student project to the students.

72 L. Bettini and P. Crescenzi

Fig. 8. An example of exercise for self-assessment: the student project.

Fig. 9. An example of exercise for self-assessment: the JUnit test case.

Fig. 10. An example of exercise for self-assessment: the successful case.

An Eclipse IDE for Teaching Java– 73

Fig. 11. An example of exercise for self-assessment: the failure case.

The Student Side. The student has to fill the body of the method, whose sig-
nature was included in the project distributed by the teacher. For example, the
code written by the student could simply be the following line.

if (i>j) return i; else return j;

By running the JUnit test case included by the teacher in the Max.student
project, the student can then verify the correctness of the proposed solution, as
shown in Fig. 10. If the solution is not correct (for example, if instead of writing
i>j the student wrote i<j in the previous code line), the execution of the JUnit
test results in one failure, and a message is shown, specifying the expected result
and the actual result returned by the student’s method (see Fig. 11).

The Self-Assessment Creation Wizard. In the previous description, the setup of
a self-assessment exercise has been done manually by the teacher. The manual
procedure is tedious and error prone, since the teacher might forget to copy
updated class files into the student’s project. For these reasons, our Java– IDE
supports the teacher with the following features:

– We provide a wizard that creates both projects altogether, with some ini-
tial contents, including an example of JUnit parametrized test; the student’s
project is also setup with the solution library folder, so that its contents
are part of the classpath of that project.

– The teacher’s project is setup with our custom Eclipse builder that auto-
matically keeps in sync the teacher’s project’s bin folder with the student’s
project’s solution folder. This way, new class files in the teacher’s project
are copied into the student project, updated class files in the teacher’s project
are updated in the student’s project and if a class file is removed from the
teacher’s project the corresponding class file will be removed from the stu-
dent’s project as well.

The project wizard and the custom builder will give the teacher the usual
Eclipse automatic building infrastructure experience and will avoid possible
inconsistency problems.

74 L. Bettini and P. Crescenzi

6 Related Work

In this section we will discuss some related work, both concerning the educational
context and the implementation technology.

6.1 Educational Related Work

An excellent survey of programming languages and environments for making
programming accessible to beginners is contained in [14]. For what concerns
Java, there is now a vast range of tools, which have been especially designed
for educational purposes, in an attempt to create an environment that can help
in teaching programming; we mention some of the popular ones. Alice [15] is
an interactive programming environment that establishes an easy, intuitive rela-
tionship between program constructs and 3D graphics animations. BlueJ [16]
is a teaching environment strictly linked to the development of object-oriented
programs by means of a framework which is focused on objects (hence, applying
a teaching paradigm opposite to the one followed by JOSH and Java–). JEliot
2000 [17] is a program animation system intended for teaching computer science
especially to high school students but does not hide the object-oriented feature
of the Java language. In [18] an approach is presented to gradually teaching
programming using a programming language, e.g., Java, that grows along with
the number of concepts presented to the students; however, no IDE tooling is
considered in that approach. As far as we know, however, the Java– IDE is the
first tool which combines the pure procedural Java syntax learning with the
utilisation of all the powerful features of an IDE like Eclipse.

6.2 Implementation Framework Related Work

There are other tools for implementing DSLs and IDEs (we refer to [19–21]
for a wider comparison). Tools like IMP (The IDE Meta-Tooling Platform) [22]
and DLTK (Dynamic Languages Toolkit) only deal with IDE features, thus the
compiler of the language has to be implemented separately, while Xtext unifies
all the implementation phases. TCS (Textual Concrete Syntax) [23] is similar
to Xtext, but with the latter it is easier to describe the abstract and concrete
syntax at once, and it is completely open to customisation of every part of the
generated IDE (besides, TCS seems to be no longer under active development).
EMFText [24], instead of deriving a metamodel from the grammar, does the
opposite, i.e., the language to be implemented must be defined in an abstract
way using an EMF metamodel.

In general, we chose Xtext since it is basically the main standard framework
for implementing DSLs in the Eclipse ecosystem, it is continuously supported,
and it has a wide community. Moreover, Xtext is continuously evolving, and
the main forthcoming features will be the integration in other IDEs (mainly,
IntelliJ), and the support for programming on the Web (i.e., an implementation
with Xtext should be easily portable on the Web, allowing programming directly
in a browser).

An Eclipse IDE for Teaching Java– 75

Fig. 12. An example showing the use of library classes, generics and imports.

7 Conclusions

We have described a new IDE for teaching Java following the object-later
approach. In particular, by using Xtext, this IDE combines the “structured
programming before object oriented programming” teaching paradigm (already
implemented in Java–) with all the powerful features available when using the
Eclipse IDE. Observe that our IDE also allows to use all Java types, such as, e.g.,
the String and the Java collection classes; furthermore, the syntax for types
already supports full Java generics, including wildcards. Indeed, from a Java–
file one can access any Java type of any Java library available in the project’s
classpath. Finally, the syntax of Java– expressions corresponds to the syntax of
Java expressions, except for this, super, anonymous classes and Java 8 lamb-
das. This means that copying Java expressions into a Java– program is allowed
(of course, if the original Java expressions rely on specific OO features, like, e.g.,
a field reference on this, Java– will issue a validation error). An example is
shown in Fig. 12: we use Java list classes, with generics (including wildcards)
and imports; concerning imports, we support the automatic import statement
insertion during content assist, and the typical “Organize Imports” menu. All
these features turn out to be useful before migrating to the full Java syntax,
in order to allow the students to familiarise with method invocation of already
existing classes and with Java generics.

Adding Java 8 lambda expressions into Java– should not be a problem: Xbase
supports lambda expressions with its own syntax (which we have removed from
the grammar), so we would just need to introduce in the Java– Xtext grammar
the syntax for Java 8 lambda expressions and then reuse Xbase’s type system

76 L. Bettini and P. Crescenzi

for lambda expressions. This is the subject of future work that would allow us to
experiment with the functional programming approach as an intermediate step
between object-later approach and the OO paradigm. The final step towards full
Java would consist in adding anonymous classes and OO Java constructs such as
interfaces and classes. This is feasible in Xtext, as proven by the programming
language Xtend2, but we think that it would not make much sense, since at
that point we can directly switch to the full Java programming language and its
Eclipse tooling.

As shown in Sect. 5 we make the creation and maintenance of self-assessment
exercises easy for the teacher, thanks to our project wizard and the automatic
building infrastructure. We are also planning to implement a dedicated DSL
for defining tests, without requiring the teacher to explicitly create Junit test
cases. Also this DSL will be implemented it with Xtext and Xbase. We will take
inspiration from similar testing frameworks implemented in Xtext, such as, e.g.,
Xpect [25] and Jnario [26].

From an experimental point of view, instead, we observe that, whenever a
programmer is asked whether an IDE should be used, it is very likely that the
answer would be an obvious one, that is, “yes”. However, as stated in [27], it
might be that, for novice programmers, it can be useful “to be able to trace
through the execution of the code by hand”, even because, at this stage, the
programs to be written will likely be pretty short. We conjecture that this is
not the case. For this reason, we now plan to execute a controlled experiment in
order to evaluate the efficacy of starting learning Java, by following the object-
later approach, with and without an IDE (that is, by using the original Java–
application and by using the IDE described in this paper).

Java– is the first project that customises Xbase grammar, type system and
code generator in order to be able to deal with Java expression syntax. We
believe that such customizations should be easily factored out in a more gen-
eral and reusable framework: this customised Xbase expression syntax for Java
expressions can be reused in other DSLs that rely on Xbase for achieving the
integration with the Java platform. Indeed, our customised syntax for expres-
sions does not depend on any specific feature of Java–: the syntax for methods is
simply built on top of the syntax for expressions. It will be interesting to perform
such refactoring, to extract this part from Java– and to experiment its use in
other DSLs (one of such DSLs we plan to experiment with is the one described
in [28]).

References

1. Cecchi, L., Crescenzi, P., Innocenti, G.: C : C++ = JavaMM: Java. In: Proceedings
of the 2nd International Conference on Principles and Practice of Programming in
Java, pp. 75–78 (2003)

2 Xtend, https://eclipse.org/xtend/, is a Java dialect implemented with Xtext and
Xbase.

https://eclipse.org/xtend/

An Eclipse IDE for Teaching Java– 77

2. Bettini, L., Crescenzi, P., Innocenti, G., Loreti, M., Cecchi, L.: An environment for
self-assessing Java programming skills in undergraduate first programming courses.
In: Proceedings of the IEEE International Conference on Advanced Learning Tech-
nologies, pp. 161–165 (2004)

3. Crescenzi, P., Loreti, M., Pugliese, R.: Assessing CS1 Java skills: a three-year
experience. SIGCSE Bull. 38, 348 (2006)

4. Bettini, L., Crescenzi, P.: Java– meets Eclipse - an IDE for teaching Java following
the object-later approach. In: Proceedings of the 10th International Conference on
Software Paradigm Trends, pp. 31–42 (2015)

5. Itemis: Xtext (2015). http://www.eclipse.org/Xtext
6. Bettini, L.: Implementing Domain-Specific Languages with Xtext and Xtend. Packt

Publishing, Birmingham (2013)
7. Voelter, M.: Language and IDE modularization and composition with MPS. In:

Lämmel, R., Saraiva, J., Visser, J. (eds.) GTTSE 2011. LNCS, vol. 7680, pp. 383–
430. Springer, Heidelberg (2013)

8. Kats, L.C.L., Visser, E.: The spoofax language workbench. Rules for declarative
specification of languages and IDEs. OOPSLA 45, 444–463 (2010)

9. Westfall, R.: Technical opinion: Hello, world considered harmful. Commun. ACM
44, 129–130 (2001)

10. Parlante, N.: Codingbat code practice (2011). http://codingbat.com
11. Martin, R.C.: Agile Software Development: Principles, Patterns, and Practices.

Prentice Hall, Upper Saddle River (2003)
12. Beck, K.: Test Driven Development: By Example. Addison-Wesley, Boston (2003)
13. Goldberg, A.: SMALLTALK-80: The Interactive Programming Environment.

Addison-Wesley, Boston (1984)
14. Kelleher, C., Pausch, R.: Lowering the barriers to programming: a taxonomy of

programming environments and languages for novice programmers. ACM Comput.
Surv. 37, 83–137 (2005)

15. Dann, W.P., Cooper, S., Pausch, R.: Learning to Program with Alice. Prentice
Hall, Upper Saddle River (2011)

16. Barnes, D., Kölling, M.: Objects First with Java: A Practical Introduction Using
BlueJ, 5th edn. Prentice Hall, Upper Saddle River (2011)

17. Levy, R.B.B., Ben-Ari, M., Uronen, P.A.: The Jeliot 2000 program animation sys-
tem. Comput. Edu. 40, 1–15 (2003)

18. Cazzola, W., Olivares, D.M.: Gradually learning programming supported by a
growable programming language. IEEE Trans. Emerg. Top. Comput. 4 (2016).
Special Issue on Emerging Trends in Education

19. Pfeiffer, M., Pichler, J.: A comparison of tool support for textual domain-specific
languages. In: Proceedings of the DSM, pp. 1–7 (2008)

20. Voelter, M., Benz, S., Dietrich, C., Engelmann, B., Helander, M., Kats, L.C.L.,
Visser, E., Wachsmuth, G.: DSL Engineering - Designing, Implementing and Using
Domain-Specific Languages (2013)

21. Erdweg, S., van der Storm, T., Völter, M., Tratt, L., Bosman, R., Cook, W.R.,
Gerritsen, A., Hulshout, A., Kelly, S., Loh, A., Konat, G., Molina, P.J., Palatnik,
M., Pohjonen, R., Schindler, E., Schindler, K., Solmi, R., Vergu, V., Visser, E.,
van der Vlist, K., Wachsmuth, G., van der Woning, J.: Evaluating and comparing
language workbenches: existing results and benchmarks for the future. Comput.
Lang. Syst. Struct. 44, 24–47 (2015)

22. Charles, P., Fuhrer, R., Sutton Jr., S., Duesterwald, E., Vinju, J.: Accelerating the
creation of customized, language-Specific IDEs in Eclipse. OOPSLA 44, 191–206
(2009)

http://www.eclipse.org/Xtext
http://codingbat.com

78 L. Bettini and P. Crescenzi

23. Jouault, F., Bézivin, J., Kurtev, I.: TCS: a DSL for the specification of textual
concrete syntaxes in model engineering. In: GPCE, pp. 249–254. ACM (2006)

24. Heidenreich, F., Johannes, J., Karol, S., Seifert, M., Wende, C.: Derivation and
refinement of textual syntax for models. In: Paige, R.F., Hartman, A., Rensink,
A. (eds.) ECMDA-FA 2009. LNCS, vol. 5562, pp. 114–129. Springer, Heidelberg
(2009)

25. Eysholdt, M.: Xpect (2014). http://www.xpect-tests.org
26. Benz, S., Engelmann, B.: Jnario, Executable Specifications for Java (2014). http://

jnario.org
27. MacDonald, B.: To IDE or not to IDE? (2014). http://radar.oreilly.com/2014/01/

to-ide-or-not-to-ide.html
28. Bettini, L., Damiani, F.: Generic traits for the Java platform. In: Proceedings of

the 2014 International Conference on Principles and Practices of Programming on
the Java platform: Virtual machines, Languages, and Tools, pp. 5–16. ACM (2014)

http://www.xpect-tests.org
http://jnario.org
http://jnario.org
http://radar.oreilly.com/2014/01/to-ide-or-not-to-ide.html
http://radar.oreilly.com/2014/01/to-ide-or-not-to-ide.html

Supporting Privacy Impact Assessments Using
Problem-Based Privacy Analysis

Rene Meis(B) and Maritta Heisel

paluno - The Ruhr Institute for Software Technology,
University of Duisburg-Essen, Duisburg, Germany

{rene.meis,maritta.heisel}@uni-due.de

Abstract. Privacy-aware software development is gaining more and
more importance for nearly all information systems that are developed
nowadays. As a tool to force organizations and companies to consider pri-
vacy properly during the planning and the execution of their projects,
some governments advise to perform privacy impact assessments (PIAs).
During a PIA, a report has to be created that summarizes the conse-
quence on privacy the project may have and how the organization or
company addresses these consequences. As basis for a PIA, it has to
be documented which personal data is collected, processed, stored, and
shared with others in the context of the project. Obtaining this informa-
tion is a difficult task that is not yet well supported by existing methods.
In this paper, we present a method based on the problem-based privacy
analysis (ProPAn) that helps to elicit the needed information for a PIA
systematically from a given set of functional requirements. Our tool-
supported method shall reduce the effort that has to be spent to elicit
the information needed to conduct a PIA in a way that the information
is as complete and consistent as possible.

Keywords: Privacy impact assessment · Privacy analysis · Problem
frames · Requirements engineering

1 Introduction

To provide privacy-aware software systems, it is crucial to consider privacy from
the very beginning of the development. Ann Cavoukian was one of the first who
promoted this idea with her concept of privacy by design [1]. Several countries
prescribe or advise government departments and organizations to perform a so
called privacy impact assessment (PIA). Wright et al. [2] define a PIA as fol-
lows: “A privacy impact assessment is a methodology for assessing the impacts
on privacy of a project, policy, programme, service, product or other initiative
which involves the processing of personal information and, in consultation with
stakeholders, for taking remedial actions as necessary in order to avoid or min-
imise negative impacts.” In the same document the authors review the PIA
methods of seven countries, namely Australia, Canada, Hong Kong, Ireland,
New Zealand, the United Kingdom, and the United States of America for the
c© Springer International Publishing Switzerland 2016
P. Lorenz et al. (Eds.): ICSOFT 2015, CCIS 586, pp. 79–98, 2016.
DOI: 10.1007/978-3-319-30142-6 5

80 R. Meis and M. Heisel

EU project PIAF1. This project had the goal to provide recommendations on
how a regulation for a PIA in the EU should look like. In the draft of the EU
data protection regulation [3] in article 33, the EU describes a procedure similar
to a PIA called data protection impact assessment.

In this paper, we extend the problem-based privacy analysis (ProPAn)
method [4] and show how this extension helps requirements engineers to elicit
the information they have to provide to conduct a PIA. Wright et al. distilled
from their above mentioned analysis of the PIA practice 36 points that they
“recommend for a European PIA policy and methodology”. These points con-
sist of 15 recommendations on how a PIA guideline document should look like, 9
points address how PIA should be integrated into policy, for the PIA report they
give 6 recommendations and also 6 for the PIA process. Requirements engineers
can provide valuable input for some of those points on the basis of a require-
ments model of the software project for which the PIA shall be conducted. Our
proposed method addresses the following points which are central for the success
of a PIA:

1. “A PIA should be started early, so that it can evolve with and help shape the
project, so that privacy is built in rather than bolted on.” Our method starts
at the very beginning of the software development process, namely in the
analysis phase, and only needs the initial system description consisting of the
functional requirements on the system.

2. “The PIA should identify information flows, i.e., who collects information,
what information do they collect, why do they collect it, how is the informa-
tion processed and by whom and where, how is the information stored and
secured, who has access to it, with whom is the information shared, under
what conditions and safeguards, etc.,”

3. “The focus of a PIA report should be on the needs and rights of individu-
als whose personal information is collected, used or disclosed. The proponent
of the proposal is responsible for privacy The proponent must “own” prob-
lems and devise appropriate responses in the design and planning phases.”
With the proposed extension of ProPAn, we provide a systematic approach
to identify the individuals whose personal information is collected, how it is
used by the software system, and to whom it is disclosed on the basis of a
given requirements model.

The rest of the paper is structured as follows. Section 2 introduces an eHealth
scenario that we use to illustrate our method. The problem frames approach and
ProPAn are presented in Sect. 3 as background of this paper. Our method is then
described in Sect. 4. Section 5 discusses related work, and Sect. 6 concludes the
paper.

2 Running Example

We use a subsystem of an electronic health system (EHS) scenario provided
by the industrial partners of the EU project Network of Excellence (NoE) on
1 http://www.piaf.eu.

http://www.piaf.eu

Supporting PIAs using Problem-based Privacy Analysis 81

Engineering Secure Future Internet Software Services and Systems (NESSoS)2

to illustrate our method. This scenario is based on the German health care
system which uses health insurance schemes for the accounting of treatments.

The EHS is the software to be built. It has to manage electronic health records
(EHR) which are created and modified by doctors (functional requirement R1).
Additionally, the EHS shall support doctors to perform the accounting of treat-
ments patients received. The accounting is based on the treatments stored in
the health records. Using an insurance application it is possible to perform the
accounting with the respective insurance company of the patient. If the insur-
ance company only partially covers the treatment a patient received, the EHS
shall create an invoice (R2). The billing is then handled by a financial applica-
tion (R3). Furthermore, mobile devices shall be supported by the EHS to send
instructions and alarms to patients (R4) and to record vital signs of patients
(R5). Finally, the EHS shall provide anonymized medical data to researchers for
clinical research (R6).

3 Background

Problem frames are a requirements engineering approach proposed by Jackson [5].
The problem of developing the software-to-be-built (called machine) is decom-
posed until subproblems are reached which fit to problem frames. Problem frames
are patterns for frequently occurring problems. An instantiated problem frame
is represented as a problem diagram. A problem diagram visualizes the rela-
tion of a requirement to the environment of the machine and how the machine
can influence these domains. The environment of the machine is structured into
domains. Jackson distinguishes the domain types causal domains that comply
with some physical laws, lexical domains that are data representations, and bid-
dable domains that are usually people. A requirement can refer to and constrain
phenomena of domains. Phenomena are events, commands, states, information,
and the like. Both relations are expressed by dependencies from the requirement
to the respective domain annotated with the referred to or constrained phenom-
ena. Connections (associations) between domains describe the phenomena they
share. Both domains can observe the shared phenomena, but only one domain
has the control over a phenomenon (denoted by a “!”).

We use the UML4PF-framework [6] to create problem frame models as UML
class diagrams. All diagrams are stored in one global UML model. Hence, we can
perform analyses and consistency checks over multiple diagrams and artifacts.
The problem diagram (in UML notation) for the functional requirements R6
is shown in Fig. 1. The problem diagram is about the problem to build the
submachine Research that provides medical data extracted from the EHRs to
the ResearchDatabaseApplication based on the requests made by Researchers to
perform clinical research. The functional requirement R6 refers to the researcher
that requests the medical data and to the health records from which this data

2 http://www.nessos-project.eu/.

http://www.nessos-project.eu/

82 R. Meis and M. Heisel

Fig. 1. Problem diagram for functional requirement R6.

is extracted. Furthermore, R6 constrains the research database application to
provide the requested medical data.

ProPAn [4] extends the UML4PF-framework with a UML profile for pri-
vacy requirements and a reasoning technique. A privacy requirement in ProPAn
consists of a stakeholder and a counterstakeholder, both are domains of the
requirements model. A privacy requirement states that the privacy of the stake-
holder shall be preserved against the counterstakeholder in the system-to-be.
Note that stakeholder and counterstakeholder can be the same biddable domain
because biddable domains in the problem frame model do not necessarily repre-
sent individuals, but in most cases user roles. Hence, the privacy of an individual
can be threatened by another individual of the same user role. The reasoning
technique identifies to which domains personal information of the stakeholder
can potentially flow and to which domains the counterstakeholder may have
access. For each privacy requirement, the information flows starting from the
stakeholder and the access capabilities of the counterstakeholder is visualized
in a privacy threat graph. This directed graph has domains as nodes and con-
tains two kinds of edges annotated with statements (requirements, facts and
assumptions) describing the origin of the edge. Information flow edges indicate
a possible flow of information between the domains and access edges indicate
that a domain is able to access information of the other domain. In this paper,
we refine these graphs and investigate which personal information really flows
between the domains due to the given requirements model.

4 Method

Our proposed method is visualized in Fig. 2 as UML2 activity diagram. The
starting point of our method is a set of functional requirements in form of a
UML-based problem frame model. Using this model, we first elicit further con-
text information in the step Context Elicitation. The result of this step is Domain
Knowledge that is integrated into the UML model. Then we can automatically
generate Detailed Stakeholder Information Flow Graphs from the model and use
these in the following step to identify the personal data that is put into the
system by stakeholders. The result of this step is the Personal Data of Stake-
holders and the relations between this data. In the following step, we iteratively

Supporting PIAs using Problem-based Privacy Analysis 83

Fig. 2. Overview of the
proposed method.

Fig. 3. UML profile extension of UML4PF.

analyze the flow of the previously identified personal data through the system
using the previously generated graphs. During this step, we obtain information
about the availability and linkability of personal data at the domains of the sys-
tem. In the last step, we create artifacts for an initial PIA report based on the
previously elicited information. Our method shall be carried out by requirements
engineers in collaboration with privacy experts and experts in the application
domain of the system to be built. We will refer to all of them using the term
user in the rest of the paper. Our method is supported by the ProPAn-tool3

that extends the UML4PF-framework [6]. We extended the UML4PF profile to
provide the basis for our tool support as shown in Fig. 3. We will explain the
stereotypes introduced by the profile where we use them the first time in our
method.

4.1 Context Elicitation

Information systems often store and process data of persons who not directly
interact with these systems and that hence may not be represented in the require-
ments model. Furthermore, there are often information flows between domains
in a system that are out of the scope of the functional requirements of the sys-
tem to be built. E.g., doctors and patients may exchange information without
using the system to be built. To elicit these indirect stakeholders and implicit
information flows between domains and stakeholders that are not covered by the

3 https://www.uni-due.de/swe/propan.shtml.

https://www.uni-due.de/swe/propan.shtml

84 R. Meis and M. Heisel

Fig. 4. Researchers receive medical data from the research database application.

requirements, we developed elicitation questionnaires [7]. The implicit informa-
tion flows are captured as domain knowledge diagrams that are generated by
the ProPAn-tool4 based on the user’s answers. A domain knowledge diagram is
similar to a problem diagram, but it does not contain a machine and instead of
a requirement it contains a fact (an indicative statement that is always true) or
an assumption (an indicative statement that is may not true under some circum-
stances). For our proposed method, it is especially important that during the
context elicitation the user elicits the domain knowledge from which domains
people (biddable domains) probably gain information. Domains that are part
of the same problem diagram as a biddable domain are candidates for domains
from which that biddable domain may gain information. The functional require-
ments usually only refer to the biddable domain involved in it and hence, do
not constrain that the biddable domain gains knowledge due to the functional
requirement, but this is often the case. Thus, we have to add the missing domain
knowledge to the model to document these implicit information flows.

Application to EHS Scenario. For the sake of simplicity, we only introduce one
example for an implicit information flow. For other domain knowledge that we
identified for the EHS scenario see [7]. The implicit information flow that we
consider in this paper is that researchers get knowledge about the medical data
they receive from the research database application based on the requests they
make. This information flow is only implicit in the problem diagram for require-
ment R6 (cf. Fig. 1), because R6 only constrains the research database applica-
tion to presents the medical data to researchers, but it does not constrain that
researchers really receive this information. Figure 4 shows the domain knowledge
diagram for assumption A11. It makes explicit that researchers receive the med-
ical data (constrained phenomenon) presented to them by the research database
application (referred to phenomenon).

4.2 Graph Generation

A large set of functional requirements and domain knowledge often implies com-
plex flows of information through the system that are only visible if all require-
ments are considered simultaneously. Hence, it is a difficult task to analyze
these information flows. To assist users to analyze the information flows implied
by the given set of requirements, we generate graphs from the problem frame
model. In this paper, we introduce so-called detailed stakeholder information flow

4 https://www.uni-due.de/swe/propan.shtml.

https://www.uni-due.de/swe/propan.shtml

Supporting PIAs using Problem-based Privacy Analysis 85

graphs (DSIFGs) to identify the personal data of the stakeholder and at which
domains that information is available due to the functional requirements and
the elicited domain knowledge. In a problem frame model, statements (require-
ments, assumptions, and facts) refer to and constrain domains of the machine’s
environment. If a domain is referred to by a statement, then this implies that
it is potentially an information source, and if a domain is constrained, then this
implies that based on the information from the referred to domains there is a
change at the domain. Hence, there is a potential information flow from the
referred to domains to the constrained domains. Our tool uses this information
available in the problem frame model to automatically generate the DSIFG for
each biddable domain without any user interaction. In contrast to the graphs
that are already used in the ProPAn-method (cf. Sect. 3), a DSIFG has a petri-
net like structure with domains as places and statements as transitions. The
DSIFG starts with the stakeholder under consideration. Iteratively, all state-
ments that refer to a domain in the DSIFG are added to the DSIFG together
with input edges annotated with the referred-to phenomena starting from the
domain to the added statement. And for each statement in the graph, the con-
strained domains are added to the DSIFG together with corresponding output
edges annotated with the constrained phenomena starting from the statement
to the added domain.

Application to EHS Scenario. In this paper, we perform the information flow
analysis for the stakeholder doctor. For the analysis of the stakeholder patient,
we refer to [8]. An excerpt of the doctor’s DSIFG is shown in Fig. 5. The doc-
tor’s DSIFG shows how information of the doctor possibly flows through the
system based on the functional requirements R1, R2, R3, R4, R5, R6, and the
assumption A11. E.g., assumption A11 (cf. Fig. 4) implies an information flow
from the research database application (referred to/input domain) to the doctor
(constrained/output domain) and requirement R6 (cf. Fig. 1) implies informa-
tion flows from the health records (EHR) and researchers (referred to/input
domains) to the research database application (constrained/output domain).

4.3 Identification of Personal Data

For the analysis of the information flow graph, the user has to identify the
personal data of the stakeholder that is processed in the system under consider-
ation. In the literature, often the term personally identifiable information (PII)
is used. The International Organization for Standardization [9] defines PII as
“any information that (a) can be used to identify the PII principal to whom such
information relates, or (b) is or might be directly or indirectly linked to a PII
principal”. The European Commission [3] uses the term personal data in the
draft of the EU data protection regulation and defines “personal data” means
any information relating to a data subject. In this paper, we use the terms per-
sonal data and personal information synonymously as more general terms than
PII. Personal data is not only data that can be used to identify an individual or
that is linkable to an individual, but also data related to an individual without

86 R. Meis and M. Heisel

Fig. 5. Excerpt of the doctor’s detailed stakeholder information flow graph.

providing any link to the related individual. E.g., knowing that there is an end-
user with a specific sexual orientation will in most cases not allow one to identify
or narrow down the set of end-users with that specific sexual orientation. But
nevertheless, the sexual orientation of an end-user represents a sensitive personal
information that needs special protection if it is processed by the system under
consideration. Note that the user of the method can decide to use a more specific
definition of personal data, but we decided to use the general term to capture all
possibly critical processing of personal data in the system under consideration.

As starting point for the identification of personal data from the requirements
model, the user has to look at the data that the stakeholder directly or indirectly
provides to the system. This personal data is contained in the phenomena of the
stakeholder that at least one statement refers to. Hence, the user has to consider
the phenomena annotated at the edges starting from the stakeholder in his/her
DSIFG. We distinguish two cases for the identification of personal data in our
requirements model. A phenomenon can either be a causal or a symbolic phe-
nomenon. Causal phenomena represent events or commands a domain issues and
symbolic phenomenon represent a state, value, or information. If the phenom-
enon is symbolic, then the user has to check whether this phenomenon represents
personal data. If the phenomenon is causal, then the user has to check whether
it contains/transmits personal data.

To document the contains/transmits relationship between phenomena, we
use aggregations with stereotype �contains� connecting the phenomena in the
UML model (cf. Figs. 3 and 6). Besides the property that information is con-
tained in other information, it is often the case that information is not directly
contained but derived from other information. This relation is documented as
dependency with stereotype �derivedFrom� (cf. Figs. 3 and 6) starting from the

Supporting PIAs using Problem-based Privacy Analysis 87

derived phenomenon and pointing to the phenomena which are necessary to
derive it. It is possible that a personal information can be derived from differ-
ent sources, e.g., the actual position of a person can be derived from the GPS
coordinates of the person’s smart phone or using the currently available wire-
less networks also provided by the person’s smart phone. In such cases, we add
multiple dependencies to the model.

Note that a contains relationship is naturally transitive and that if a phe-
nomenon is derived from a set of phenomena, then each phenomenon of the set
can be replaced by a phenomenon that contains it and the phenomenon can also
be derived by each superset of the documented set. At the points where we need
these properties, our tool computes the transitive closure of these properties. Fur-
thermore, our tool automatically documents for traceability of decisions made,
the origin of our decision for introducing a contains or derivedFrom relationship.
The tool sets the property origin of contains and derivedFrom relations (cf. Fig. 3)
automatically to the statements from which we identified the relations.

Our tool assists users to identify personal data. The tool presents for a
selected stakeholder the phenomena (derived from the DSIFG) that are can-
didates for personal data of the stakeholder. For each symbolic phenomenon
that the user identifies to be personal data, the tool documents the relation to
the stakeholder by creating a dependency with stereotype �relatedTo� start-
ing from the phenomenon and pointing to the stakeholder. To document the
relation’s quality, the user has to answer two questions:

1. Does the phenomenon represent sensitive personal data for the stakeholder?
2. Does the personal data identify the single individual it belongs to, does it

narrow down the set of possible individuals it is related to a subgroup, or
does the information not provide any link to the corresponding individual
and is hence anonymous?

The answers to the above questions are stored as properties of �relatedTo� (cf.
Fig. 3) and based on the values the user selects. The property origin is again
automatically set by the tool by setting it to the set of statements that refer to
the respective phenomenon.

Application to EHS Scenario. From the DSIFG shown in Fig. 5, we derive that
modifyEHR, and createEHR are the phenomena that have to be considered to
identify the personal data of doctors that is processed by the EHS. These phe-
nomena are causal and hence, we have to decide which personal information is
contained in them or transmitted by them. We identified that both modifyEHR
and createEHR contain contact information (including name, address, and phone
number) of the doctor represented by the symbolic phenomenon doctorCon-
tactInformation, details about the doctor (e.g. specialization and identification
number) represented by doctorDetails, the treatments performed by doctors, the
diagnosis doctors make, and the notes doctors make about the progress of the
treatment. All these symbolic phenomena represent sensitive personal informa-
tion related to a doctor. The contact information and the details of the doctor
identify a single doctor, whereas the performed treatments, diagnosis, and notes

88 R. Meis and M. Heisel

Fig. 6. Identified personal information for the doctor.

a group of possible doctors. The initially identified relations for the doctor are
highlighted using bold connections and gray shapes in Fig. 6. The other relations
visible in Fig. 6 are identified during the later iterative analysis.

4.4 Personal Data Flow Analysis

In this step, we analyze how the identified personal data of each stakeholder
is propagated through the system based on the given requirements and domain
knowledge. As a result of this process, we obtain for each domain and stakeholder
of the system a projection of the identified personal data of the stakeholder that
is available at the domain enhanced with some additional information.

To document that some personal data about a stakeholder is available at a
domain, our tool creates for this domain a package in the UML model with stereo-
type �availableInformationDiagram� and adds into this package a dependency
with stereotype �linkableTo� starting from the personal data to the stakeholder
when the user identifies this relation during the process. We document as quality
attributes of the relation linkableTo from which statements of the requirements
this relation was derived (origin), for which purpose the information is available
at the domain, how the collection of information took place, and how long the
information will be available at the domain (duration) using the stereotype prop-
erties (cf. Fig. 3). Note that in the first place, we document for which purpose
some personal information is available at a domain due to the requirements
model. Whether the stakeholder gave consent to process the data for this pur-
pose and whether the purpose is legitimate as required by some data protection
regulations [3] has to be analyzed later. We distinguish four kinds of collec-
tion methods. First, direct collection from the stakeholder, e.g., the stakeholder
enters the information on its own. Second, indirect collection, e.g., the infor-
mation is collected by observing the stakeholder’s behavior. Third, reused data
that was previously collected (for another purpose). Fourth, data collected by
external third parties. Note that we allow to assign multiple collection methods
to a linkableTo relation. We distinguish three kinds of duration. If the duration

Supporting PIAs using Problem-based Privacy Analysis 89

is forAction, then the information will only be available at the domain as long
as the information is needed for the action to be performed. If the duration is
untilDeleted, then the information will be deleted at some point in time when it
is no longer needed, but not directly after it is no longer needed. The duration
unlimited expresses that once the information is available at that domain, it will
stay available there.

Initialization of Personal Data Flow Analysis. At each domain, the ini-
tially available information is the information that the user identified in the
previous step for this domain. I.e., the personal data related to the domain
itself. The initial available information diagrams are created automatically by
our tool. The tool sets the collection method for the initial available information
to direct and the duration of availability to unlimited. The attribute origin is set
to the value of the corresponding relatedTo relation from which the linkableTo
relation is created and the attribute purpose is initially an empty collection.

During a step of the later iterative personal data flow analysis, the user selects
a statement of the DSIFG for which he/she wants to investigate which personal
data available at the input domains of the statement flows to which output
domain of the statement and in which quality. The tool guides through the
process and presents the statements that still have to be considered to the user.
Initially, these are the statements for which the stakeholder under consideration
is an input domain.

Application to EHS Scenario. For the stakeholder patient, we have initially to
consider the statement R1 (cf. Fig. 5). The information initially available at the
patient is the gray part with bold connections in Fig. 6.

Iterative Analysis of the Flow of Personal Data. Now, the user iteratively
chooses a statement to be considered for the stakeholder under consideration.
Our tool then collects the personal information of the stakeholder that is avail-
able at the input domains and computes the transitive closure using the contains
and derivedFrom relations. The computation of the transitive closure can reveal,
e.g., that a personal information a that is not available at one of the input
domains, but can be derived from two pieces of personal information b available
at one input domain and c available at another input domain, possibly flows to
the output domain(s) due to the statement under consideration.

As mentioned before, the user may identify that only a part of or information
derived from the available information is transmitted to output domains. Because
of that, the tool allows the user to select available information from which only
parts or derived information is transmitted. The user has only to select the
available information and to enter the name of the new information. The tool
then creates the newly identified phenomenon and the corresponding contains,
derivedFrom, and relatedTo relations with the current statement as origin.

Then the user has to decide for each output domain which of the avail-
able information is transmitted to it and how long it will be available at the

90 R. Meis and M. Heisel

output domain (attribute duration). Based on the user’s selection, our tool auto-
matically generates the corresponding model elements. The stereotype property
origin is automatically set by the tool to the statement under consideration. For
the attribute collectionMethod two cases are distinguished. First, if one of the
input domains is the stakeholder, then the user can choose how the informa-
tion is collected due to the statement. Second, if the stakeholder is not one of
the input domains, then the collection method is set automatically to the union
of the collection methods specified at the input domains. For each transmit-
ted phenomenon, the tool adds the current statement to the property purpose
of the �linkableTo� dependency between the phenomenon and the stakeholder
under consideration in an input domain’s available information diagram if such
a dependency exists. I.e., we document that the information is available at the
input domain for the purpose to be made available at an output domain accord-
ing to the currently considered statement.

Depending on how the information transfer is described by the current state-
ment, it is possible that an output domain is able to link two pieces of data
related to a stakeholder to each other. I.e., there is information available at the
domain that allows everyone who has access to this information to know that
different personal data is related to the same individual, but not necessarily to
which individual. E.g., the doctor is able to link the health status of a patient
to his/her demographics and hence, knows to which patient a health status is
related. To document at which domain which information about the stakeholder
is linkable, we use an association with stereotype �linkable� (cf. Fig. 3) that
is part of the available information diagram of the domain at which this link is
known and connects the phenomena which can be linked. After the user specified
the information transmitted to the output domains, the tool allows to specify
for each output domain which personal data available at the output domain is
linkable to each other, to which degree the data is linkable to each other, how
this link was collected, and how long this link will be available at the domain.
The tool then creates on the basis of the user’s selection the linkable relations
(cf. Fig. 3) and sets the origin of the linkable relation to the statement under
consideration. If such a link already existed at a input domain then the current
statement is added to the attribute purpose of this linkable relation, similar to
the way we set the purpose of personal data that is available at an input domain.

After the above steps, the tool removes the considered statement from the
set of statements that still have to be considered and adds all statements that
have one of the current output domains for which the user identified a new
information flow as input domain. In this way, the user iteratively traverses the
DSIFG supported by the tool until all information flows are documented.

Application to EHS Scenario. We consider the first step of the analysis for the
stakeholder doctor and select statement R1. As input domain, we have the doctor
and the only output domain is the EHR (cf. Fig. 5). The available phenomena
are the identified personal data of the doctor, namely his/her doctor contact
information, doctor details, treatment, diagnosis, and notes (cf. gray and bold
part of Fig. 6). We do not identify further contained or derived personal data in

Supporting PIAs using Problem-based Privacy Analysis 91

Fig. 7. Available information diagram for the EHR after the first analysis step.

the first step, but we identify that the doctor’s contact information is contained
in the doctor’s details. R1 requires that doctors are able to create and modify
health records. Doing this they enter and update contact information and details
about them, and information about the treatments, diagnoses, and notes they
make. All this information is entered directly by the respective doctor. Health
records do not have to be deleted after the treatment is done, but there can be
situations where they have to be deleted after some period. This is because some
regulations prescribe to ensure that the health records are kept up to date. If
this cannot be assured, e.g., because a patient does not show up for a longer
time period, the respective personal data has to be deleted. Hence, we set the
duration of availability to untilDeleted. Furthermore, the tool adds R1 to the
property purpose of the stereotype instances �linkableTo� in the available infor-
mation diagram of the doctor (input domain) for all the personal data that flows
to the EHR (output domain). The personal data that doctors enter due to R1
are (and have to be) linkable to each other at the EHR for further processing.
E.g., it has to be known to which doctor (determined by doctorDetails) the notes,
treatments and diagnoses belong, and also it has to be known which treatments,
diagnosis, and notes are related to each other. These links are recorded based
on the direct input of doctors, the links allow a 1-to-1 mapping between the
personal data (linkability set to single), and these links are kept until they are
deleted, analogously to the personal data itself. The generated available infor-
mation diagram for the EHR after the first analysis step is shown in Fig. 7.

During the further analysis, we identify additional personal information of
the doctor that is processed by the EHS. This information is shown in addition to
the initially identified personal data of the doctor in Fig. 6. Due to requirement
R4, we identified that the alarms and instructions that are shown to patients
using their mobile devices can be considered as a part of the treatment the doc-
tor specifies for a patient and hence this information has also to be considered as
personal information. Additionally, we identify from R4 that the appointments
of patients are derived from the doctor’s details and the specified treatment by
the doctors themselves. For the accounting of patients (R2) the costs of the
treatments are derived based on the treatments performed and the diagnosis of

92 R. Meis and M. Heisel

Fig. 8. Available information diagram for the research database application.

the doctor. To allow researchers to perform clinical research based on the kept
health records (R6), an anonymization of the personal data to be sent to the
research database application has to be performed. Only information about the
doctor (phenomenon doctorInformation) which is contained in the doctor’s details
and which does not allow to uniquely identify a single doctor is provided to the
research data base application. Additionally, the notes of doctors are reduced to
ensure that these notes do not contain any information that reveals the identity
of doctors. Due to limitations of space, we do not show all available informa-
tion diagrams. Figure 8 shows the personal data of the doctor available at the
research database application. For clinical research, the diagnoses, treatments,
and anonymized information about the doctor and the reduced notes are avail-
able at the research database application. All this information is linkable to each
other to be of value for clinical research. Furthermore, it was automatically doc-
umented by the tool that the purpose for which the personal data and the links
between the personal data is available at the research database application is
assumption A11 that we identified in the context elicitation step.

4.5 Using the Elicited Knowledge for a PIA Report

The user can now use the collected data to fill parts of a PIA report. At this
point of the method, the UML model contains:

1. The personal data of stakeholders that is used in the system.
2. The information at which domain of the system which personal data is avail-

able and in which quality.
3. Traceability links to identify the requirements, facts, and assumptions that

lead to the information flows.
4. For each domain, we can derive the set of counterstakeholders that possibly

have access to personal data available at the domain that they should not be
able to access (cf. [4]).

Wright et al. [2] propose eleven criteria that indicate the effectiveness of a
PIA report. The artifacts on which our method is based and which it produces

Supporting PIAs using Problem-based Privacy Analysis 93

Fig. 9. Stakeholder data flow graph for the doctor.

can be used to address two of them. First, Wright et al. stress to “include a
description of the project to be assessed, its purpose and any relevant contextual
information”. By relying on the problem frames approach, we already have a
description of the project to be assessed in the form of a context diagram [5]
and the functional requirements. Furthermore, we extend this description in the
step context elicitation with additional information about the environment of
the software-to-be in the form of facts and assumptions. Second, Wright et al.
advise to “map the information flows (i.e., how information is to be collected,
used, stored, secured and distributed and to whom and how long the data is to
be retained)”. The information about how the information is collected, used,
to whom it is disclosed, and how long the data is retained is elicited during
the information flow analysis and documented in the personal and available
information diagrams. This information can be used for PIA reports in different
ways. Several PIA guidelines suggest to visualize the information flows in the
form of an information flow graph (cf. Fig. 9). Our tool is able to automatically
generate such graphs (that we call stakeholder data flow graphs) automatically
on the basis of the available information diagrams. A symbolic phenomenon p
flows from a domain i to an other domain o iff p is available at both i and o,
and the intersection of the purposes why p is available at i with the statements
from which it was identified that p is available at o (origin) is not empty.

Furthermore, we can develop templates to automatically fill the PIA report
that has to be created with the information elicited with our method. E.g., we
can use the following four templates to document 1. how the information is to
be collected, 2. used, 3. to whom it is disclosed and 4. how long the data is to
be retained.

1. <personalInformation> is <collection>ly collected from <stakeholder>
according to <origin>.

2. <personalInformation> is used for <origin> by/for the <Domain>.
3. <personalInformation> is disclosed to <Domain>s according to <origin>.

94 R. Meis and M. Heisel

4. <personalInformation> is retained <duration> at the <Domain> due to
<origin>.

The templates are instantiated for a fixed stakeholder and a fixed personal
information of that stakeholder, which represent the values of the parameters
<stakeholder> and <personalInformation>. The other parameters are instanti-
ated for specific edges of the stakeholder data flow graph (SDFG). The parameter
<Domain> is instantiated with the target domain of the considered edge and
the parameters <collection>, <origin>, and <duration> are the correspond-
ing attributes of the linkableTo relation between the personal information and
the stakeholder in the available information diagram of the target domain. The
first template is instantiated for each edge in the stakeholder data flow graph
(SDFG) that starts from the stakeholder and at which the personal information
is annotated (collection), the second for each edge that does not start at the
stakeholder and does not end at a biddable domain (use of collected data), the
third for each edge that does not start at the stakeholder and ends at a biddable
domain (flow of data to persons), and the fourth for each edge that does not end
at a biddable domain (storage of data).

According to Wright et al., a PIA report shall also contain information about
a privacy risk assessment and the proposed measures to reduce the identified
privacy risks. Our method does not yet support a privacy risk assessment, but
we think that the information our method elicits is a good starting point for the
performance of a privacy risk assessment.

Application to EHS Scenario. The stakeholder data flow graph for the doctor is
shown in Fig. 9. It visualizes which personal data (annotated at the edges) flows
from which domains to which domains (nodes of the graph). The properties of
the personal data are not visualized in the data flow graph, but this information
is contained in the corresponding personal and available information diagrams.

If we apply the above mentioned templates and instantiation rules for the
stakeholder Doctor and the personal information treatment, we can generate the
following text automatically from the model (cf. Figs. 7, 8, and 9) in order to be
used for a PIA report. The terms in italics represent instantiated parameters of
the templates.

1. Collection
Treatment is direct ly collected from Doctors according to R1.

2. Use
Treatment is used for R2 by/for the Invoice.
Treatment is used for R2 by/for the InsuranceApplication.
Treatment is used for R6 by/for the ResearchDatabaseApplication.

3. To whom
Treatment is disclosed to Researchers according to A11.

4. Retention
Treatment is retained untilDeleted at the EHR due to R1.
Treatment is retained untilDeleted at the ResearchDatabaseApplication due
to R6.

Supporting PIAs using Problem-based Privacy Analysis 95

Treatment is retained forAction at the Invoice due to R2.
Treatment is retained forAction at the InsuranceApplication due to R2.

5 Related Work

Privacy-Aware Requirements Engineering. The LINDDUN-framework
proposed by Deng et al. [10] is an extension of Microsoft’s security analysis
framework STRIDE [11]. The basis for the privacy analysis is a data flow dia-
gram (DFD) which is then analyzed on the basis of the high-level threats Link-
ability, Identifiabilitiy, Non-repudiation, Detectability, information Disclosure,
content Unawareness, and policy/consent Noncompliance.

The PriS method introduced by Kalloniatis et al. [12] considers privacy
requirements as organizational goals. The impact of the privacy requirements on
the other organizational goals and their related business processes is analyzed.
The authors use privacy process patterns to suggest a set of privacy enhancing
technologies (PETs) to implement the privacy requirements.

Liu et al. [13] propose a security and privacy requirements analysis based
on the goal and agent-based requirements engineering approach i∗ [14]. The
authors integrate the security and privacy analysis into the elicitation process
of i∗. Already elicited actors from i∗ are considered as attackers. Additional
skills and malicious intent of the attackers are combined with the capabilities
and interests of the actors. Then the vulnerabilities implied by the identified
attackers and their malicious intentions are investigated in the i∗ model.

The above mentioned methods all support the identification of high-level
privacy threats or vulnerabilities and the selection of privacy enhancing tech-
nologies (PETs) to address the privacy threats or vulnerabilities. These steps
are not yet supported by the ProPAn-method. But in contrast to a problem
frame model, DFDs, goal models, and business processes, as they are used by
the above methods, are too high-level and lack of detailed information that is
necessary to identify personal data that is processed by the system and how
the personal data flows through the system. Hence, the methods proposed by
Deng et al., Kalloniatis et al., and Liu et al. lack of support for the elicitation
of the information that is essential for a valuable privacy analysis. Additionally,
we provide a tool-supported method to systematically identify the personal data
and collect the information at which domains of the system this personal data
is available in a way that allows us to use the data to assist PIAs.

Omoronyia et al. [15] present an adaptive privacy framework. Formal mod-
els are used to describe the behavioral and context models, and user’s privacy
requirements of the system. The behavioral and context model are then checked
against the privacy requirements using model checking techniques. This approach
is complementary to ours, because the knowledge collected by our method can
be used to set up adequate models, which is crucial to obtain valuable results.

Methodologies Supporting PIA. Oetzel and Spiekermann [16] describe a
methodology to support the complete PIA process. Their methodology describes

96 R. Meis and M. Heisel

which steps have to be performed in which order to perform a PIA. Hence, their
methodology covers all necessary steps that have to be performed for a PIA. In
contrast to our method, Oetzel and Spiekermann’s methodology does not give
concrete guidance on how to elicit the relevant information needed for a PIA
which is the focus of this work.

Tancock et al. [17] propose a PIA tool for cloud computing that provides
guidance for carrying out a PIA for this domain. The information about the
system has to be entered manually into the tool. The PIA tool by Tancock et al.
covers more parts of a PIA then our method. In contrast, our method can use
the information provided by an existing requirements model and provides in this
way more guidance for the elicitation of the information essential for a PIA.

6 Conclusions

To assist the creation of a PIA report for software projects, we developed a tool-
supported method that derives necessary inputs for a PIA from a requirements
model in a systematic manner. This method is based on a requirements model
in problem frame notation and hence, can be started at the very beginning
of the software development process, when it is still possible to influence the
software project. Our method assists requirements engineers and domain experts
to systematically identify the personal data processed by the system to be built
and how this personal data flows through the system. We sketched how this
information can be used to create parts of a PIA report. Additionally, it can
also serve as starting point for a privacy risk assessment. Our proposed UML
profile can be extended with further stereotype properties and values to capture
additional information that has to be documented for a specific PIA report.

Our method has some limitations. As starting point of the analysis, we rely
on a complete model of functional requirements. Hence, changes in the functional
requirements generally imply a re-run of our method and all collected informa-
tion has to be elicited again. To overcome this limitation, we could enhance our
method as follows. If a requirement is removed from the mode, then all informa-
tion flows that originate from this requirement could be automatically removed
from the model by the tool. This is possible due to the attributes origin (cf.
Fig. 3). And if a requirement is added then we would have to check whether
this requirement introduces new relevant domain knowledge, and whether the
requirement together with the new domain knowledge introduce new information
flows to the already elicited information flows. In this way, the already collected
information from the unchanged requirements could be kept. Another limitation
is that our proposed tool is only a prototype implementation that needs to be
further analyzed for usability and user acceptance.

As future work, we want to further support the generation of PIA reports
based on the elicited information. For this, we will extend our tool support
with the possibility to define templates that can be filled with the information
contained in the UML model and then be used as part of a PIA report. We
also want to extend our proposed method with a privacy risk assessment and to

Supporting PIAs using Problem-based Privacy Analysis 97

integrate a privacy threshold assessment that indicates which level of detail the
PIA shall have. Furthermore, we plan to empirically validate our method, the
tool support, and the outputs produced by our method.

References

1. Cavoukian, A.: Privacy by design - the 7 foundational principles (2011). https://
www.ipc.on.ca/images/resources/7foundationalprinciples.pdf

2. Wright, D., Wadhwa, K., Hert, P.D., Kloza, D.: A privacy impact assessment frame-
work for data protection and privacy rights - Deliverable D1. Technical report,
PIAF Consortium (2011)

3. European Commission: Proposal for a regulation of the european parliament and
of the council on the protection of individuals with regard to the processing of
personal data and on the free movement of such data (general data protection reg-
ulation) (2012). http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:
52012PC0011

4. Beckers, K., Faßbender, S., Heisel, M., Meis, R.: A problem-based approach for
computer-aided privacy threat identification. In: Preneel, B., Ikonomou, D. (eds.)
APF 2012. LNCS, vol. 8319, pp. 1–16. Springer, Heidelberg (2014)

5. Jackson, M.: Problem Frames: Analyzing and Structuring Software Development
Problems. Addison-Wesley, Boston (2001)

6. Côté, I., Hatebur, D., Heisel, M., Schmidt, H.: UML4PF - a tool for problem-
oriented requirements analysis. In: Proceedings of RE, pp. 349–350. IEEE Com-
puter Society (2011)

7. Meis, R.: Problem-based consideration of privacy-relevant domain knowledge. In:
Hansen, M., Hoepman, J.-H., Leenes, R., Whitehouse, D. (eds.) Privacy and Iden-
tity 2013. IFIP AICT, vol. 421, pp. 150–164. Springer, Heidelberg (2014)

8. Meis, R., Heisel, M.: Systematic identification of information flows from require-
ments to support privacy impact assessments. In: ICSOFT-PT 2015 - Proceedings
of the 10th International Conference on Software Paradigm Trends. SciTePress
(2015)

9. ISO/IEC: ISO 29100 Information technology - Security techniques - PrivacyFrame-
work (2011)

10. Deng, M., Wuyts, K., Scandariato, R., Preneel, B., Joosen, W.: A privacy threat
analysis framework: supporting the elicitation and fulfillment of privacy require-
ments. RE 16, 3–32 (2011)

11. Howard, M., Lipner, S.: The Security Development Lifecycle. Microsoft Press,
Redmond (2006)

12. Kalloniatis, C., Kavakli, E., Gritzalis, S.: Addressing privacy requirements in sys-
tem design: the PriS method. RE 13, 241–255 (2008)

13. Liu, L., Yu, E., Mylopoulos, J.: Security and privacy requirements analysis within
a social setting. In: Proceedings of 11th IEEE International Requirements Engi-
neering Conference, pp. 151–161 (2003)

14. Yu, E.: Towards modeling and reasoning support for early-phase requirements engi-
neering. In: Proceedings of the 3rd IEEE International Symposium on RE, pp.
226–235. IEEE Computer Society, Washington, DC (1997)

15. Omoronyia, I., Cavallaro, L., Salehie, M., Pasquale, L., Nuseibeh, B.: Engineering
adaptive privacy: on the role of privacy awareness requirements. In: Proceedings
of the 2013 International Conference on SE, ICSE 2013, pp. 632–641. IEEE Press,
Piscataway (2013)

https://www.ipc.on.ca/images/resources/7foundationalprinciples.pdf
https://www.ipc.on.ca/images/resources/7foundationalprinciples.pdf
http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52012PC0011
http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52012PC0011

98 R. Meis and M. Heisel

16. Oetzel, M., Spiekermann, S.: A systematic methodology for privacy impact assess-
ments: a design science approach. Eur. J. Inf. Syst. 23, 126–150 (2014)

17. Tancock, D., Pearson, S., Charlesworth, A.: A privacy impact assessment tool for
cloud computing. In: IEEE 2nd International Conference on Cloud Computing
Technology and Science (CloudCom), pp. 667–676 (2010)

Integrating Model Driven and Model Checking
to Mine Design Patterns

Mario L. Bernardi1, Marta Cimitile2, Giuseppe De Ruvo1,
Giuseppe A. Di Lucca1(B), and Antonella Santone1

1 Department of Engineering, University of Sannio, Benevento, Italy
{mlbernar,gderuvo,dilucca,santone}@unisannio.it

2 Unitelma Sapienza University, Rome, Italy
marta.cimitile@unitelma.it

Abstract. The use of Design Patterns has constantly grown in the
development of Object Oriented systems, due to the well-known advan-
tage they offer to improve the quality of software design. However, lack
of documentation about which Design Patterns are actually adopted and
implemented in the code and about the code components involved in the
implementation of each Design Pattern instance can make harder any
operation of maintenance, reuse, or evolution impacting those compo-
nents. Thus, several Design Pattern Mining approaches and tools have
been proposed to identify the instances of Design Pattern implemented
in an Object oriented system. Nevertheless, the results produced by these
approaches can be not fully complete and precise because of the presence
of false positive/negative. In this paper we propose to integrate a Model
Driven based Design Pattern mining approach with a Formal Method
technique to automatically refine and improve the precision of results of
traditional mining tool. In particular Model checking is used to refine the
results of the Design Pattern Finder (DPF) tool implementing a Model
Driven based approach to detect Design Pattern instances Object Ori-
ented systems. To verify and validate the feasibility and effectiveness of
the proposed approach we carried out a case study regarding four open
source OO systems. The results from the case study showed that actually
the technique allowed to raise significantly the precision of the instances
that the DPF tool was able to identify.

Keywords: Software engineering · Design patterns · Model checking ·
Formal methods · Models · Mining

1 Introduction

In the last two decades we have seen a growth on the usage of Design Pat-
terns (DPs) [1] in the development of Object Oriented (OO) software systems,
because their adoption contributes to greatly improve the software quality [2,3].
Unfortunately, the lack of adequate documentation may make difficult to under-
stand which are the adopted Design Patterns and where they are implemented
c© Springer International Publishing Switzerland 2016
P. Lorenz et al. (Eds.): ICSOFT 2015, CCIS 586, pp. 99–117, 2016.
DOI: 10.1007/978-3-319-30142-6 6

100 M.L. Bernardi et al.

(i.e., which code components implement each instance of a DP) in a system.
Thus, several approaches have been proposed to support the automatic identifi-
cation of DPs instances in an existing OO software system, linking each detected
instance to the OO components implementing it [4–6]. The automatic detection
of DPs provides software engineers the needed knowledge to better comprehend
the system reducing the effort to modify and evolve it [3,7,8].

However, the results obtained by the existing DP detection approaches can
suffer a lack of completeness or precision due to the presence of false positive/neg-
ative. The precision of the DP’s instances detected by a tool can be improved by
Model Checking (MC) techniques that can automatically refine the results the
tool produces. Model checking has been applied to several fields. For instance, it
has been used in bioinfomatics to infer gene regulatory networks from time series
data [9] or to analyse wiki quality [10]. In this paper we proposed to integrate
Model Driven based DP mining approaches with Formal Method techniques to
improve the precision and quality of the DP detection task. Formal methods
are exploited to automatically refine the results produced by an existing DP
mining tool implementing a Model based mining approach. In particular we
employ Model Checking using the Language of Temporal Ordering Specification
(LOTOS) and selective-μ-calculus (we interchangeably refer to either μ or MU).
The MC methodology [11] aims to analyze the DPs’ instances, detected by the
Model based mining tool, evaluating their correctness with respect to formally
encoded properties checked against the entire system model represented with
(basic) LOTOS. This allows to reduce the number of wrongly detected patterns
(false positives) with respect to the original approach.

We apply the proposed MC technique to the Design Pattern Finder (DPF)
approach presented in [12,13]. The DPF approach is based on a meta-model and
a Domain Specific Language (DSL) to represent both the software system and
the searched DPs. The DPs models are organized as a hierarchy of declarative
specifications and expressed as a wide set of high level properties that can be
added, removed or relaxed obtaining new pattern variants. Moreover, the DPF
approach with respect to the existing ones: (i) allows to easily specify variant
forms of the classic DPs; (ii) takes into account a wider set of high level properties
(including also the behavioural properties to better characterize DPs) to specify
a pattern. The DPF effectiveness, was evaluated by applying it to several systems
and the obtained results are reported in [13]. Even if the obtained results are
good, we observed that the precision of the DPF can be further improved. Indeed,
DPF, as any other existing DPs detecting approach, can suffer in lacking of
precision and completeness. We decided to apply the MC refinement to the
DPF, because: (i) the authors of DPF made available both the tool and the
results of previous analysis they made; (ii) DPF seems to perform better than
other similar tools as shown in [13]; (iii) DPF is based on a meta-model that can
be exploited by the MC refinement to create (basic) LOTOS processes.

Therefore, we embodied a new refinement step along the DPF detection
process, where the DPF outcomes are the inputs. From the DPF model we
create (basic) LOTOS processes and from DPF detected patterns we generate

Integrating Model Driven and Model Checking to Mine Design Patterns 101

selective-μ-calculus properties in order to verify the actual existence of design
patterns instances through model checking.

The approach has been assessed by applying it to some systems of open
benchmarks proposed in [14,15].

Of course, the proposed refining approach can be extended to any other DP
mining approach. The remainder of this paper is organized as follows. Section 2
discusses related work. Section 3 gives definitions of basic LOTOS and selective-
μ-calculus. Section 4 presents and discusses the proposed detection approach,
the implemented tools and their integration aspects. Section 5 introduces and
describes the case study. Finally, in Sect. 6, conclusive remarks and future work
are presented.

2 Related Work

In the last years, many design pattern recovery techniques and tools have been
proposed. In [5,6] reviews regarding some of the main existing approaches can
be found.

Several approaches, as the ones in [16–18], use UML structures, represented
as matrices, to model structural and behavioral information of software systems.
These techniques are applied to match a DP template matrix with the matrix
generated for the system. In particular, a DP detection methodology based on
similarity scoring between graph vertexes is proposed in [16]. The approach is
able to also recognize patterns that are slightly modified from their standard
representation. It exploits the fact that patterns reside in one or more inheritance
hierarchies (in order to reduce the size of the graphs to which the algorithm is
applied). These approaches are computationally efficient and have good precision
and recall rates. Their limit is that they miss to detect patterns variants of similar
design patterns. Furthermore, they are only limited to the patterns coded as
matrices and hence it is not suitable to be easily extended.

Some DP mining approaches are based on metric techniques: program related
metrics (i.e. generalizations, aggregations, associations, interface hierarchies) are
computed from different source code representations and their values compared
with source code DP metrics [18–20]. These techniques are computationally effi-
cient because metric computation is less expensive than structural pattern recog-
nition and do not require heuristic approach to reduce search space through
filtration [21]. Their precision and recall are usually low; moreover they were
experimented on few design patterns in literature.

Other DP detection approaches exploit other techniques (such as, fuzzy
reasoning, bit vector compression, minimum key structure method, dynamic
analysis using run-time execution traces, machine learning based approaches and
concept analysis) that are good as a complement to improve the DP detection
based on structural methods. For example, in [22], De Lucia et al. use a recov-
ery technique based on the parsing of visual languages, and supported by a visual
environment automatically produced by a grammar based visual environment gen-
erator. A tool, using a mixed structural and metric approach, for design pattern
detection and software architecture reconstruction is proposed in [23].

102 M.L. Bernardi et al.

Other studies [17,24] have been focused on the formalization of empirical
evaluation criteria [17,24].

There is few work, at best of our knowledge, that exploits formal methods
(model checking) based approaches to detect DP instances in existing OO sys-
tems. In [25] formal framework to specify the DPs at different levels of abstrac-
tion is proposed. The framework uses stepwise refinement to incrementally add
details to a specification after starting from the most abstract one. Moreover, a
validation through model checking will verify that a specification in a given level
of abstraction is indeed a refinement of a specification of a higher level. The limit
of this approach is that a domain specific language to describe DPs is missing
and applications in real systems has been never performed. In [26], authors pro-
pose an approach aiming to validate DPs using formal method. Similarly, in [27]
formal methods are used to demonstrate that a particular design conforms to a
given DPs. Both these approaches, are not validated on real software systems.
Finally, in [28], a fully automated DPs mining approach performing both static
and dynamic analysis to verify the behavior of pattern instances, is proposed.
The static analysis exploits model checking to analyze the interactions among
objects, while the dynamic analysis of the pattern behavior is performed through
a code instrumentation and monitoring phase, applied on the candidate pattern
instances. This approach, differently from ours, requires the analysis of the col-
laboration among objects at runtime by identifying and executing test cases on
the software system.

3 Background

Historically, process algebras have been developed as formal descriptions of com-
plex computer systems, and in particular of those involving communicating,
concurrently executing components. The crucial idea in the definition of Process
Algebras is the algebraic structure of the concurrent processes. This uses a state-
based approach with labeled transitions, where states and transitions correspond
to processes and actions, respectively. There are many examples of process alge-
bras, like for example Milner’s Calculus of Communicating Systems (CCS) [29]
and Language of Temporal Order Specification (LOTOS) [30], which we will use
in this paper.

3.1 Basic LOTOS

Let us now recall the main concepts of Basic LOTOS. A Basic LOTOS program
is defined as:

process ProcName := B
where E

endproc

where B is a behaviour expression, process ProcName := B is a process declara-
tion and E is a process environment, i.e., a set of process declarations. A behaviour

Integrating Model Driven and Model Checking to Mine Design Patterns 103

expression is the composition, by means of a set of operators, of a finite set A =
{i,a,b, ...} of atomic actions. Each occurrence of an action in A represents
an event of the system. An occurrence of an action a ∈ A−{i} represents a com-
munication on the gate a. The action i does not correspond to a communication
and it is called the unobservable action.

The syntax of behaviour expressions (also called processes) is the following:

B ::= stop | a;B | B[]B| P | B|[S]|B | B[f] | hide S in B | exit
| B>>B | B[>B

where P ranges over a set of process names and a ranges over A. The operational
semantics of a behaviour expression B is a labelled transition system, i.e., an
automaton whose states correspond to behaviour expressions (the initial state
corresponds to B) and whose transitions (arcs) are labeled by actions in A. The
meaning of the operators composing behavior expressions is the following:

– The action prefix a;B means that the corresponding process executes the
action a and then behaves as B.

– The choice B1 [] B2 composes the two alternative behavior descriptions B1
and B2.

– The expression stop cannot perform any move.
– The parallel composition B1|[S]|B2, where S is a subset of A−{i}, composes

in parallel the two behaviors B1 and B2. B1 and B2 interleave the actions not
belonging to S, while they must synchronize at each gate in S. A synchroniza-
tion at gate a is the simultaneous execution of an action a by both partners
and produces the single event a. If S = ∅ or S = A, the parallel composition
means pure interleaving or complete synchronization.

– Cyclic behaviors are expressed by recursive process declarations.
– The relabeling B[f], where f: A → A is an action relabeling function, renames

the actions occurring in the transition system of B as specified by the func-
tion f. This function is syntactically defined as: a0 -> b0,...,an->bn, mean-
ing that:
f(a0) = b0,...,f(an) = bn, and f(a) = a for each a not belonging to
{a0,...,an}. Note that each relabelling function has the property that
f(i) = i.

– The hiding hide S in B renames the actions in S, occurring in the transition
system of B, with the unobservable action i.

– The expression exit represents successful termination; it can be used by
the enabling (B >> B) and disabling (B[> B) operators: B >> B represents
sequentialization between B1 and B2 and B[> B models interruptions. For the
sake of simplicity, we do not discuss these operators in the paper.

Assume the precedence of the operators as specified by the following list,
ordered in decreasing order:

; [f] hide |[S]| []

104 M.L. Bernardi et al.

Table 1. Standard operational semantics of Basic LOTOS.

a ∈ A, l ∈ A − {i}

pre
a;B

a−→S B
choice

B1
a−→S B′

1

B1 [] B2
a−→S B′

1

inst
B

a−→S B′

P
a−→S B′ P := B ∈ E rel

B
a−→S B′

B[f]
f(a)−→S B′[f]

par
B1

a−→S B′
1

B1 |[S]| B2
a−→S B′

1 |[S]| B2

a �∈ S

com
B1

a−→S B′
1, B2

a−→S B′
2

B1 |[S]| B2
a−→S B′

1 |[S]| B′
2

a ∈ S

hide1
B

a−→S B′

hide S in B
a−→S hide S in B′ a �∈ S

hide2
B

l−→S B′

hide S in B
i−→S hide S in B′

l ∈ S

The semantics of a process B is precisely defined by means of the structural
operational semantics (in Table 1). The semantic definition is given by a set of
conditional rules describing the transition relation of the automaton correspond-
ing to the behavior expression defining B. This automaton is called standard
transition system for B and is denoted by S(B). In Table 1 the symmetrical rules
for choice and parallel composition are not shown.

We consider only finite Basic LOTOS programs, i.e., programs with finite
standard transition systems. A sufficient condition for finiteness is that the par-
allel operator does not occur inside recursive process declarations. From now on,
we write LOTOS instead of Basic LOTOS.

3.2 Selective-µ-Calculus

The selective-μ-calculus, introduced in [31], is a branching temporal logic to
express behavioral properties of systems. It is equi-expressive to μ-calculus [32],
but it differs from it in the definition of the modal operators.

Given a set A of actions and a set Var of variables, the syntax of the selective
mu-calculus logic is the following, where K and R range over sets of actions:

ϕ ::= tt | ff | ϕ ∧ ϕ | ϕ ∨ ϕ | [K]R ϕ | 〈K〉R ϕ | μZ.ϕ | νZ.ϕ

The satisfaction of a formula ϕ by a state s of a transition system, written
s |= ϕ, is defined as follows:

Integrating Model Driven and Model Checking to Mine Design Patterns 105

– each state satisfies tt and no state satisfies ff;
– a state satisfies ϕ1 ∨ ϕ2 (ϕ1 ∧ ϕ2) if it satisfies ϕ1 or (and) ϕ2;
– [K]R ϕ is satisfied by a state which, for every performance of a sequence of

actions not belonging to R∪K, followed by an action in K, evolves to a state
obeying ϕ.

– 〈K〉R ϕ is satisfied by a state which can evolve to a state obeying ϕ by perform-
ing a sequence of actions not belonging to R ∪ K, followed by an action in K.

The selective modal operators 〈K〉R ϕ and [K]R ϕ substitute the standard
modal operators 〈K〉 ϕ and [K] ϕ. The basic characteristic of the selective-μ-
calculus is that each formula allows us to immediately point out the parts of
the transition system that do not alter the truth value of the formula itself.
More precisely, the only actions relevant for checking a formula are the ones
explicitly mentioned by the selective modal operators used in the formula itself.
Thus, the result of checking the formula is independent from all other actions.
This information can be exploited to obtain reduced transition systems on which
the formula can be equivalently checked (see, for example, [33]). The precise
definition of the satisfaction of a closed formula ϕ by a state of a transition
system can be found in [31].

4 The Integrated Approach

In this section we introduce the integrated Design Pattern mining approach.
The process is structured in two main sub-processes. The first one performs

the Model Driven design pattern detection applying the Graph-Matching app-
roach implemented by DPF, discussed in [13]. The second sub-process performs
the refinement of the results by DPF using the Model Checking approach defined
in this paper.

In the following there is a short description of the main process activities,
according to the sequence they are performed:

– Source Code Analysis — The source and bytecodes of the system under
study are parsed and the complete ASTs of the system are produced.

– Model Instantiation — A traversal of the system AST is performed to gen-
erate an instance of the system model (i.e. the system graph S), conforming to
the meta-model defined for DPF. Rapid type analysis (RTA), class flattening
and inlining of not public methods are exploited in order to build a system’s
representation suitable for the matching algorithm.

– Graph-Matching DPs Detection — The DPF graph matching algorithm,
described in [13], is performed to match the system model, built in the previous
step, with the pattern specifications graphs of the DPs to be detected.

– Pattern Property Generation — Each pattern specification to be detected
is written as a set of templated μ-properties. These properties involve the
patterns roles and their relationships. The template parameters are bound
to the concrete system elements using information extracted from the pattern
instances found in the detection step (i.e. roles and the system elements related
to them).

106 M.L. Bernardi et al.

Fig. 1. The architecture of the integrated tool.

– LOTOS System Model Creation — In order to check if a given set of
parametrized μ-properties holds, the system model graph has to be expressed
in a suitable model (in our approach LOTOS was exploited). Hence this step
takes the system model graph as input and translates it to a LOTOS model
instance. This translation has to be performed only one time for each system
to be mined.

– Pattern Matching Through Model Checking — This step checks the
parametrized sets of μ-properties obtained from the pattern specifications
catalogue against the LOTOS model of the system in order to reduce the
number of false positives in the results by DPF.

The Fig. 1 shows the overall architecture of the tool implementing the pro-
posed approach. The tool integrates the DPF tool with the ReForM (Refining
by Formal Methods) tool exploiting Model Checking to improve the precision of
the DPF’s results.

The DPF tool implements the three steps of the first sub-process described
before. It was developed as a set of Eclipse plug-ins based upon Java Develop-
ment Tools (JDT) and upon the Eclipse Modeling Framework. It has a layered
architecture.

The bottom layer includes the Eclipse Foundation Components: the tool uses
the JDT and the Eclipse Modeling Platform (Xpand, Xtext, and MoDisco) to
extract.

Integrating Model Driven and Model Checking to Mine Design Patterns 107

The DP-Finder Core layer includes three main sub-systems. The Pattern
Specification Parser and Translator module supports the activities related to
the specification of DPs by the Domain Specification Language defined at this
aim. It registers the DSL specifications of each DP and parses them to produce
the corresponding DPGs. Each DSL specification is translated, by means of the
Xtext-based DSL translator in a set of constraints. The specifications (both DSLs
and corresponding DPGs) of the DPs to be mined are stored in a Catalog.

The System Analyzer produces an instance of the meta-model (i.e., the Sys-
tem Graph) of the analyzed system by static analysis.

The Design Pattern Finder Engine module executes the detection algorithm
to identify the DP instances by searching the System Graph for sub-graphs
matching a defined DPG. The detection algorithm produces a model of the
system elements annotated with information on the detected patterns (e.g.,
their internal members and roles played in the pattern). Each identified pat-
tern instance is traced to the source code elements implementing it.The results
of the identification process are stored in the central repository.

The DPF IDE layer allows interactions with users, that can select which DPs
are to be searched and analyzed in a system by means of a tree viewer or using
the Eclipse Visualizer. The Visualizer also shows a summary of patterns found
in the analyzed system at different levels (package or class).

The ReForM tool is composed by three main modules. The Pattern2MU is
devoted to activities for writing the set of templated μ-properties for each DP
to detect.

The module Model2LOTOS supports the translation of the System Model
Graph into a LOTOS model instance.

The Results Refiner component executes the check of the μ-properties against
the LOTOS model of the subject system.

At the time of writing this paper, just a first prototype of ReForM has
been developed: some activities/operations (mainly for the Pattern2MU and
Model2LOTOS) are not fully automated and require human intervention to be
performed.

4.1 Graph-Matching DPs Detection

The detection of the DPs instances is performed according to the DPF app-
roach [13]. The DPF approach is based on a meta-model and a Domain Specific
Language (DSL) to model the structure of both OO systems and DPs. The
meta-model uniformly describes the DPs and systems in terms of relationships
among code elements, and allows to trace down to the DPs Properties and Types
components both the structural and behavioral relationships among the types.
The meta-model defined in [13] is exploited to define the DSL to represent struc-
tural and behavioral relevant properties of OO software systems, as well as to
express the specifications of the DPs to be detected. Each pattern, in order to
be detected, has been modeled writing a DSL pattern specification stored into
a repository. The current repository stores a catalog composed of 18 patterns
with 56 variants. Each DSL specification can be translated into a graph, called

108 M.L. Bernardi et al.

DP Graph (DPG), in which elements are nodes and properties are labeled edges.
The DPG is part of the input for the graph-matching detection algorithm.

Along the execution of the DPF Graph Matching algorithm, the system graph
(i.e., the instance of the system model) is traversed and each pattern instance
sub-graph is mapped to the corresponding matching DPG (to identify the actu-
ally implemented patterns). More insights and details about the DPF approach
can be found in [13].

4.2 DPF Refinement

The proposed approach is based on the use of formal methods. From the DPF
outcomes we derive LOTOS processes, which are successively used to perform
model checking to increase the precision of DPs mining results produced by
DPF. The following activities are to be performed:

1. LOTOS System model creation.
2. Pattern Property generation.
3. Pattern Matching through Model Checking.

LOTOS Model Creation. We use, as internal representation, the LOTOS
language. Thus, LOTOS specifications are generated starting from the internal
representation of DPF. This is obtained by defining a DPF-to-LOTOS transform
operator T . The function T directly applies to Java system outcomes of DPF and
translates them into LOTOS process specifications. The function T is defined for
each part of a Java system such as classes, interfaces, methods, fields. Each one
has been translated into LOTOS processes. First of all, a System is composed of
a set of Types. A Type may be a ClassType or an InterfaceType. A ClassType is
made up of Methods. Types may be tied by inheritance relations and a ClassType
may implement an InterfaceType, as usually occurs in OO software systems.

System. The generic Java System containing k types is translated into the
following LOTOS process:

T (C) = process SY STEM :=
Type1 [] · · · [] Typek
endproc

where Typei is written using the fully qualified Java name. The LOTOS process
SY STEM represents the parent process of all the types. Each translated
LOTOS model has a System process.

Type. As stated, a Type may be a ClassType or an InterfaceType. If FQN is
the fully qualified name of a Type, a ClassType is translated into the following
LOTOS process:

Integrating Model Driven and Model Checking to Mine Design Patterns 109

T (T) = process FQN ClassType :=
name ClassType;
(FQN Methodi;FQN Methodi Method [] · · · []
FQN Methodk;FQN Methodk Method []
implements; (FQN InterfaceTypej [] · · · []
FQN InterfaceTypew) []
inherits; (FQN ClassTypel [] · · · []
FQN ClassTypey) []
field; (FQN InterfaceTypeh [] · · · [] FQN ClassTypez))
endproc

Instead, an InterfaceType is translated into the following LOTOS process:

T (I) = processFQN InterfaceType :=
name InterfaceType; (FQN Methodi;
FQN Methodi Method [] · · · []
FQN Methodk;FQN Methodk Method []
inherits; (FQN InterfaceTypel [] · · · [] FQN InterfaceTypey))
endproc

where implements and inherits are actions which respectively indicate imple-
mentation of interfaces and inheritance relation between types.

Method. A method is represented with its own arguments and with a modifier,
thus it is translated into the following LOTOS process:

T (M) = process FQN Method := name Method;
(argi; stop [] · · · [] argk; stop [] modifier mod; stop)
endproc

where argi is the name of the argument and mod is the type of modifier such as
public, private, protected.

Pattern Property Generation. After the LOTOS processes of the Java soft-
ware system are generated, we can use selective-μ-calculus logic to specify desired
properties. A pattern is translated into a selective-μ-calculus property. Each
design pattern leads to a different property, although a set of common proper-
ties are used as building blocks:

1. Existence of Interface Implementation:
〈implements〉∅ 〈name InterfaceType〉∅ tt

2. Existence of Inheritance:
〈inherits〉∅ 〈name ClassType〉∅ tt ∧〈inherits〉∅ 〈name InterfaceType〉∅ tt

3. Existence of a Method:
〈name Method〉∅ tt

4. Existence of a Field:
〈field〉∅ 〈name InterfaceType〉∅ tt ∧ 〈field〉∅ 〈name ClassType〉∅ tt

5. Existence of an Argument:
〈arg〉∅ 〈name InterfaceType〉∅ tt ∧ 〈arg〉∅ 〈name ClassType〉∅ tt

110 M.L. Bernardi et al.

Pattern Matching Through Model Checking. Once we have created the
LOTOS model of a Java software system and we also have built all the properties
which represent the design patterns, we can proceed with model checking. As
aforementioned, in this paper both model and properties (patterns) come out
translating the ones of DPF. Such translations have been completely automated.

One of the most popular toolbox for the design of asynchronous concurrent
systems is CADP [34]. It supports high-level descriptions written in various lan-
guages, mainly LOTOS. In the CADP the verification of temporal logic formulae
is based on model checking [35], a formal technique for proving the correctness
of a system with respect to a desired behavior. This is accomplished by check-
ing whether a structure representing the system (typically a labelled transition
system) satisfies a temporal logic formula describing the expected behaviour.

The CADP model checker is applied verifying each pattern against the Sys-
tem model. When the result is TRUE, it means that the pattern has been found,
FALSE otherwise. Thanks to a very detailed LOTOS model we are able to iden-
tify false positives among the DPs detected by DPF. Eventually, we have all the
necessary information to improve the precision of the overall results, as explained
in the following section.

5 Case Study

The effectiveness and efficiency of the proposed approach has been validated
applying it to some middle-sized OO systems. These systems were available
from the publicly available benchmarks proposed in [14,15].

We present the results for the four systems reported in Table 2 and the 4
GoF patterns (Command, Composite, Factory methods and Strategy) for which
the DPF method provides the lowest precision.

According to [36], in order to assess effectiveness and correctness of the pro-
posed approach, we evaluated precision and recall. To compute recall and preci-
sion we assume that a pattern instance can be classified into one of four categories
(TP : true positive, FP : false positive, TN : true-negative, and FN false-negative).

Precision is defined as the ratio of correctly found occurrences to occurrences
provided by the tool whereas recall is defined as the ratio of correctly found
occurrences to all correct occurrences:

Precision = TP /(TP + FP) (1)

Recall = TP /(TP + FN) (2)

Table 2. Analyzed systems characteristics.

System name Version Size (KLOC) #Types #Methods

JHotDraw 5.1 8,9 K 174 1316

QuickUML 2.1 9,2 K 230 1082

Nutch 0.4 23,6 K 335 1854

PMD 1.8 41,5 K 519 3665

Integrating Model Driven and Model Checking to Mine Design Patterns 111

Table 3. Results obtained on JHotDraw and QuickUML.

Table 4. Results obtained on Nutch before and after refinement.

Table 5. Results obtained on PMD before and after refinement.

To verify the correctness of the results we considered as Gold Standard (GS)
the union of both the benchmarks cited in [14,15] (assumed to be correct) with
the correct results produced by DPF approach (i.e., also the instances not present
in the benchmarks, mainly due to DP variants, but correctly detected by DPF
as verified by manual code inspection).1

Since in this context we are interested to assess the improvement in precision
obtained after the model-checking driven refinement, we evaluate and compare
precision and recall at the end of both DPs Matching and DPF Refinement steps.

Tables 3, 4, 5 report, for each of the analyzed systems: the name of the DPs
searched in the code (first column), the number of true positive instances as pro-
vided by the benchmark (GS), and two groups of columns for the DPs detection
performed by DPF and the DPF refinement steps performed using the model
checker. Each group contains the number of detected patterns (column D), the
number of true positive (column Tp), the number of false positive and negative
ones (columns Fp and Fn). The last two columns report respectively precision
(P) and recall (R).
1 Of course, the different formats of the benchmarks were translated into a unique

common format to store the considered GS.

112 M.L. Bernardi et al.

In the Composite-GoF pattern, for the JHotDraw system, the model-checking
step reduced the number of false positive from five to three raising the precision
from 0.74 to 0.82. Looking at the three remaining false positive we can see that
these are cases in which the assignment of the element to a role in the pattern can
be only done looking at the semantics of the element. This is confirmed by the
presence in the results of two methods of 3 concrete composite classes (read() and
readObject() in subclasses of CompositeFigure) that were mistakenly bound to
Operation role by both the steps but are not part of the interface. This is also the
case for the parametrized Factory Method for which the two false positives have
the same structure and behaviour of the defined property but cannot be considered
as factory methods (decompose(. . .) and flip(. . .) method of Figure class).

In QuickUML system in both cases properties were able to consider structural
or behavioral relationships that the original approach was unable to take into
account. For instance, for the Strategy pattern several false positive (e.g. the
ToolPalette, Clipboard Tool, PropertyChangeHandler and SelectioModel con-
texts) were detected since the properties were able to better identify indirect
relationships and type nesting relationships.

In Nutch system, the model checking step reduced the number of false
positives from 1 to 0 in the Command-GoF pattern, and from 4 to 1 in the
FactoryMethod-Parametrized. Such reductions lead respectively to a precision
of 1 and 0.96, without affecting the recall.

Finally, in PMD, the model checking step improved the precision leading to 1
in either Composite-GoF pattern or FactoryMethod-Parametrized. Even in this
case the recall was not affected.

The overall average improvement for all the considered patterns and systems
was above 20 %, thanks to the model checking step.

5.1 Motivation of the Use of the Selective-µ-Calculus Logic

We use the selective-μ-calculus logic to express design patterns to improve both
the ReForm performance, i.e., the speed at which the model checker returns its
results, and its scalability, i.e., the extent to which the model checker can manage
increasingly large systems. In the following, we discuss the results of these tests.

The basic characteristic of the selective mu-calculus is that the actions rele-
vant for checking a formula φ are those ones explicitly mentioned in the modal
operators used in the formula itself. Thus, we define the set O(φ) of occurring
actions of a formula φ as the union of all sets K and R appearing in the modal
operators ([K]Rψ, 〈K〉Rψ) occurring in φ.

In the work [31] ρ-equivalence is defined, formally characterizing the notion
of “the same behavior with respect to a set ρ of actions”:

two transition systems are ρ-equivalent ifa ρ-bisimulation

relating their initial states exists.

The definition of ρ-bisimulation is based on the concept of α-ending path: an
α-ending path is a sequence of transitions labeled by actions not in ρ followed by

Integrating Model Driven and Model Checking to Mine Design Patterns 113

a transition labeled by the action α in ρ. Two states S1 and S2 are ρ-bisimilar
if and only if for each α-ending path starting from S1 and ending into S′

1, there
exists an α-ending path starting from S2 and ending into a state ρ-bisimilar
to S′

1, and vice-versa. In [31] it is proved that “two transition systems are ρ-
equivalent if and only if they satisfy the same set of formulae with occurring
actions in ρ”. As a consequence, a formula of the selective mu-calculus with
occurring actions in ρ can be checked on any transition system ρ-equivalent to
the standard one. Thus, improvements in model checking can be obtained by
minimizing the transition system with respect to the actions in ρ. Obviously,
the degree of reduction depends on the size of ρ with respect to the size of the
whole set A of actions. Consider the transition systems illustrated in Fig. 2. S1
is {a, b}-equivalent to S3. The two transition systems give the same value for the
formulae containing only actions in {a, b}. In particular, they satisfy ψ2, while
they do not satisfy ψ1. Note that O(ψ1) = {a, b} and O(ψ2) = {a} ⊆ {a, b}. On
the contrary S2 is not {a, b}-equivalent to S3, since it can perform an action
b without performing an action a. In [33] a method is defined, which, given a
process p and a set of interesting actions ρ occurring in a formula φ to be checked,
transforms p into another process q, corresponding to a smaller transition system
than that of p, on which φ can be equivalently checked. The tool is based on
a set of syntactic transformations rules. A prototype tool which implements
the algorithm has also been defined; it is written in SICStus Prolog [37]. The
tool can be easily used both for the CCS [29] and for LOTOS. We discuss our
experience with the above methodology to verify the effectiveness in improving
the precision of design pattern instances identification. The aim is to evaluate the
performances of the approach and compare it against the CADP. First, we apply
our tool to transform the specification into a smaller one, where the reduction is
driven by the actions occurring in the formulae. Then, we check the properties on
the reduced specification. All properties have been checked on reduced LOTOS
processes; below we will show only the application on a single property, just to
give the reader the flavor of the approach followed.

Consider the following property:

P1 = LEAF ∧ COMPOSITE
COMPOSITE = MC ∧ (IC ∨ HC) ∧ FC
IC = 〈implements CH ifa draw framework F igure〉∅ tt
HC = 〈inherits CH ifa draw framework AbtractF igure〉∅ tt
FC = 〈field fF igures〉∅ tt
LEAF = MO
MC = MO ∧ MA ∧ MR ∧ MGC
MO = 〈CH ifa draw standard BouncingDrawing animationStep〉∅ tt
MA = 〈CH ifa draw standard BouncingDrawing add〉∅ AC
MR = 〈CH ifa draw standard BouncingDrawing remove〉∅ tt
AC = 〈arg CH ifa draw framework F igure〉∅ tt
MGC = 〈CH ifa draw standard CompositeF igure findF igure〉∅ tt

P1 is the selective-μ-calculus logic formulation of the Composite-GoF pattern.
It holds that the set of interesting actions of the above property is:

114 M.L. Bernardi et al.

Fig. 2. Three transition systems.

ρ1 = O(P1) = {implements CH ifa draw framework F igure,
inherits CH ifa draw framework AbtractF igure, field fF igures,
CH ifa draw standard BouncingDrawing animationStep,
CH ifa draw standard BouncingDrawing add,
CH ifa draw standard BouncingDrawing remove,
arg CH ifa draw framework F igure,
CH ifa draw standard CompositeF igure findF igure}

Table 6. State-Space reduction.

JHotDraw (without reduction) P1-reduction

states trans. states trans.

1964 9210 15 33

Table 6 shows the number of states and transitions of the P1-reduction, i.e., is
the reduced LOTOS process obtained by applying the property-based method-
ology with ρ1. It is worth noting that the reduction we perform of the states and
transitions is significant. Note that also for all the other properties we obtain
great reductions. Obviously, a reduction of the state-space implies also a reduc-
tion of the time employed by CADP to check the formulae. In almost the cases
we obtain a reduction more than 90%. In general, the usefulness of our tool
depends both on the number of actions occurring in the formula and on the
structure of the formula to be checked.

6 Conclusions and Future Works

In this work we exploited formal methods to automatically refine the results
produced by an existing DP mining approach. In particular, we proposed an
integration of model driven and model checking techniques, namely DPF and
ReForM. On the one hand, DPF approach introduces a meta-model to represent
both the patterns and the system under study as graphs in order to apply a graph
matching algorithm. On the other hand, the detection process is enriched using
ReForM, a model-checking refinement step in which the system model is rep-
resented using LOTOS and patterns as selective-μ-calculus properties checked

Integrating Model Driven and Model Checking to Mine Design Patterns 115

against it. The defined LOTOS model allows to check a wider set of properties
that lead to a reduction of the number of false positives. The performed exper-
iments confirmed the feasibility, correctness, and effectiveness of the approach
showing, on the analyzed systems, an improvement of the precision (20 % on
average) with a very reduced impact on the original recall. As future work, a
more complete translation of pattern specifications to selective-μ-calculus prop-
erties will be defined. Moreover, we will perform the translation of the entire DP
catalogue defined in [13] as selective-μ-calculus properties allowing the experi-
mentation on the complete benchmark comprised of 12 OO systems. Finally, we
want to assist software engineers providing “What You See Is What You Get”
(WYSIWYG) tools that support our approach as done in [38].

References

1. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley Longman Publishing Co.,
Inc., Boston (1995)

2. Ampatzoglou, A., Frantzeskou, G., Stamelos, I.: A methodology to assess the
impact of design patterns on software quality. Inf. Softw. Technol. 54, 331–346
(2012)

3. Bergenti, F., Poggi, A.: Improving uml designs using automatic design pattern
detection. In: Proceedings of the 12th International Conference on Software Engi-
neering and Knowledge Engineering (SEKE 2000), pp. 336–343 (2000)

4. Peng, T., Dong, J., Zhao, Y.: Verifying behavioral correctness of design pattern
implementation. In: Proceedings of the Twentieth International Conference on
Software Engineering & Knowledge Engineering (SEKE 2008), pp. 454–459 (2008)

5. Dong, J., Zhao, Y., Peng, T.: Architecture and design pattern discovery techniques -
a review. In: Arabnia, H.R., Reza, H. (eds.) Software Engineering Research and
Practice, pp. 621–627. CSREA Press, Las Vegas (2007)

6. Rasool, G., Streitfdert, D.: A survey on design pattern recovery techniques. IJCSI
Int. J. Comput. Sci. Issues 8, 251–260 (2011)

7. Beyer, D.: Relational programming with crocopat. In: Proceedings of the 28th
International Conference on Software Engineering, ICSE 2006, pp. 807–810. ACM,
New York (2006)

8. Prechelt, L., Unger-Lamprecht, B., Philippsen, M., Tichy, W.: Two controlled
experiments assessing the usefulness of design pattern documentation in program
maintenance. IEEE Trans. Softw. Eng. 28, 595–606 (2002)

9. Ceccarelli, M., Cerulo, L., De Ruvo, G., Nardone, V., Santone, A.: Infer gene
regulatory networks from time series data with probabilistic model checking. In:
FormaliSE 2015 (2015)

10. De Ruvo, G., Santone, A.: Analysing wiki quality using probabilistic model check-
ing. In: 2015 IEEE 24th International WETICE Conference, WETICE 2015,
Larnaca, Cyprus, 15–17 June 2015

11. Bernardi, M.L., Cimitile, M., De Ruvo, G., Di Lucca, G.A., Santone, A.: Model
checking to improve precision of design pattern instances identification in OO sys-
tems. In: ICSOFT-PT 2015 - Proceedings of the 10th International Conference on
Software Paradigm Trends, Colmar, Alsace, France, 20–22 July 2015, pp. 53–63
(2015)

116 M.L. Bernardi et al.

12. Bernardi, M., Cimitile, M., Di Lucca, G.: A model-driven graph-matching approach
for design pattern detection. In: 20th Working Conference on Reverse Engineering
(WCRE), pp. 172–181 (2013)

13. Bernardi, M., Cimitile, M., Di Lucca, G.: Design patterns detection using a dsl-
driven graph matching approach. J. Softw. Evol. Process. Published online in Wiley
Online Library (wileyonlinelibrary.com). doi:10.1002/smr.1674 (2014)

14. Guéhéneuc, Y.G.: P-mart: pattern-like micro architecture repository. In: Michael,
W., Birukou, A., Giorgini, P. (eds.) Proceedings of the 1st EuroPLoP Focus Group
on Pattern Repositories (2007). http://www.ptidej.net/tool/designpatterns/

15. Rasool, G., Philippow, I., Mäder, P.: Design pattern recovery based on annotations.
Adv. Eng. Softw. 41, 519–526 (2010)

16. Tsantalis, N., Chatzigeorgiou, A., Stephanides, G., Halkidis, S.T.: Design pattern
detection using similarity scoring. IEEE Trans. Softw. Eng. 32, 896–909 (2006)

17. Dong, J., Zhao, Y., Sun, Y.: A matrix-based approach to recovering design patterns.
Trans. Sys. Man Cyber. Part A 39, 1271–1282 (2009)

18. Paakki, J., Karhinen, A., Gustafsson, J., Nenonen, L., Verkamo, A.I.: Software
metrics by architectural pattern mining. In: Proceedings of the International Con-
ference on Software: Theory and Practice (16th IFIP World Computer Congress),
pp. 325–332 (2000)

19. von Detten, M., Becker, S.: Combining clustering and pattern detection for the
reengineering of component-based software systems. In: Proceedings of the Joint
ACM SIGSOFT Conference QoSA-ISARCS, QoSA-ISARCS 2011, pp. 23–32.
ACM, New York (2011)

20. Antoniol, G., Fiutem, R., Cristoforetti, L.: Design pattern recovery in object-
oriented software. In: Proceedings of the 6th International Workshop on Program
Comprehension, IWPC 1998, p. 153. IEEE Computer Society, Washington, DC
(1998)

21. Guéhéneuc, Y.G., Guyomarc’H, J.Y., Sahraoui, H.: Improving design-pattern iden-
tification: a new approach and an exploratory study. Softw. Qual. Control 18,
145–174 (2010)

22. De Lucia, A., Deufemia, V., Gravino, C., Risi, M.: Design pattern recovery through
visual language parsing and source code analysis. J. Syst. Softw. 82, 1177–1193
(2009)

23. Arcelli, F., Zanoni, M.: A tool for design pattern detection and software architec-
ture reconstruction. Inf. Sci. 181, 1306–1324 (2011)

24. Tonella, P., Torchiano, M., Du Bois, B., Systä, T.: Empirical studies in reverse
engineering: state of the art and future trends. Empirical Softw. Engg. 12, 551–
571 (2007)

25. Taibi, T., Herranz-Nieva, Á., Moreno-Navarro, J.J.: Stepwise refinement validation
of design patterns formalized in TLA+ using the TLC model checker. J. Object
Technol. 8, 137–161 (2009)

26. Aranda, G., Moore, R.: A formal model for verifying compound design patterns.
In: Proceedings of the 14th International Conference on Software Engineering and
Knowledge Engineering, SEKE 2002, pp. 213–214. ACM, New York (2002)

27. Flores, A., Moore, R., Reynoso, L.: A formal model of object-oriented design and
gof design patterns. In: Oliveira, J.N., Zave, P. (eds.) FME 2001. LNCS, vol. 2021,
pp. 223–241. Springer, Heidelberg (2001)

28. De Lucia, A., Deufemia, V., Gravino, C., Risi, M.: Improving behavioral design
pattern detection through model checking. In: 2010 14th European Conference on
Software Maintenance and Reengineering (CSMR), pp. 176–185 (2010)

http://dx.doi.org/10.1002/smr.1674
http://www.ptidej.net/tool/designpatterns/

Integrating Model Driven and Model Checking to Mine Design Patterns 117

29. Milner, R.: Communication and Concurrency. PHI Series in Computer Science.
Prentice Hall, Upper Saddle River (1989)

30. Bolognesi, T., Brinksma, E.: Introduction to the iso specification language lotos.
Comput. Netw. 14, 25–59 (1987)

31. Barbuti, R., De Francesco, N., Santone, A., Vaglini, G.: Selective mu-calculus and
formula-based equivalence of transition systems. J. Comput. Syst. Sci. 59, 537–556
(1999)

32. Stirling, C.: An introduction to modal and temporal logics for CCS. In: Yonezawa,
A., Ito, T. (eds.) Concurrency: Theory, Language, and Architecture. LNCS, pp.
1–20. Springer, Heidelberg (1989)

33. Barbuti, R., De Francesco, N., Santone, A., Vaglini, G.: Reduced models for efficient
CCS verification. Formal Methods Syst. Des. 26, 319–350 (2005)

34. Garavel, H., Lang, F., Mateescu, R., Serwe, W.: CADP: a toolbox for the construc-
tion and analysis of distributed processes. STTT 15(2013), 89–107 (2011)

35. Clarke, E.M., Grumberg, O., Peled, D.: Model Checking. MIT Press, Cambridge
(2001)

36. Pettersson, N., Lowe, W., Nivre, J.: Evaluation of accuracy in design pattern occur-
rence detection. IEEE Trans. Softw. Eng. 36, 575–590 (2010)

37. SICStus Prolog User’s Manual. Swedish Institute of Computer Science. Release
3.7.1, October 1998. Swedish Institute of Computer Science. http://www.sics.se/
isl/sicstus.html

38. De Ruvo, G., Santone, A.: An eclipse-based editor to support lotos newcomers. In:
2014 IEEE 23rd International Conference on Enabling Technologies: Infrastructure
for Collaborative Enterprises (WETICE) (2014)

http://www.sics.se/isl/sicstus.html
http://www.sics.se/isl/sicstus.html

R-UML: An UML Profile for Verification
of Flexible Control Systems

Mohamed Oussama Ben Salem1,2(B), Olfa Mosbahi2, Mohamed Khalgui2,
and Georg Frey3

1 Polytechnic School of Tunisia, University of Carthage, Tunis, Tunisia
bensalem.oussama@hotmail.com

2 LISI Laboratory, INSAT, University of Carthage, Tunis, Tunisia
olfamosbahi@gmail.com, khalgui.mohamed@gmail.com

3 Chair of Automation and Energy Systems, Saarland University,
Saarbrücken, Germany

georg.frey@aut.uni-saarland.de

Abstract. Unified Modeling Language (UML) is currently accepted as
the standard for modeling software and control systems since it allows to
highlight different aspects of the system under design. Nevertheless, UML
lacks formal semantics and, hence, it is not possible to apply, directly,
mathematical techniques on UML models in order to verify them. Fur-
thermore, UML does not feature explicit semantics to model flexible con-
trol systems sharing adaptive shared resources either. Thus, this work
proposes a new UML profile, baptized R-UML (Reconfigurable UML),
to model such reconfigurable systems. R-UML is enriched with a PCP-
based solution for the management of resource sharing. The paper also
presents an automatic translation of R-UML into R-TNCES, a Petri
Net-based formalism, in order to support model checking.

Keywords: UML · R-TNCES · Model transformation · Modeling ·
Model-based verification · PCP · Shared resource

1 Introduction

The Unified Modeling Language (UML) is a semi formal language developed
by the Object Management Group to specify, visualize and document mod-
els of both software and non-software systems. Driven by software engineering
industries, it became well developed and supported with dozens of tools [1].
UML provides two types of diagrams to create a specific profile for a given sys-
tem: structural and behavioral. The first is designed to visualize and document
the static aspects of systems, while the second aims at visualizing the dynamic
aspects [2]. UML has unquestionable advantages as a technique for visual mod-
eling, nevertheless, it does not guarantee that the generated models are correct.
Actually, no step of system development, including the modeling one, is spared
from human errors. Consequently, the cost to detect and remove such defects
considerably increases through the system development [3].
c© Springer International Publishing Switzerland 2016
P. Lorenz et al. (Eds.): ICSOFT 2015, CCIS 586, pp. 118–136, 2016.
DOI: 10.1007/978-3-319-30142-6 7

R-UML: An UML Profile for Verification of Flexible Control Systems 119

The idea of being able to, more or less automatically and systematically,
verify and validate UML-based models has been around for a while, so there is
a rather large body of literature on the topic. For example, the authors in [4]
use statecharts and sequence diagrams in a combined manner to check temporal
logic formulas over a statechart-based description of the system, and the model
checker produces, then, counterexamples through sequence diagrams. Another
approach is described in [5] where sequence diagrams are formally translated into
Petri nets, based on the UML collaborations package metamodel. The authors
check the correctness of the sequence diagrams through the resulting Petri nets.
A work described in [6] uses the sequence diagram in conjunction with use cases
and deployment diagrams to obtain queuing network models for performance
evaluation. An execution graph from the sequence diagram is later obtained
thanks to a given algorithm. Another work reported in [7] translated Statecharts
into PROMELA, the input language of SPIN verification system, whereas [8] for-
mally analyzed activity diagrams using NuSMV model checker to determine the
correctness of activity diagrams. The authors in [9] produce Petri net models
starting from UML diagrams, however, they only describe the methodology at
an intuitive level, through an example and no translation procedure is described.
The work described in [10] proposed new UML stereotypes to enrich UML dia-
grams with dependability aspects. The purpose is to exploit the latter to build
generally distributed stochastic Petri net models. The authors didn’t focus on an
automatic translation, but rather on detecting the dependability aspects from
the UML diagrams.

We see in the previous related works that no one of our community was
interested in modeling the reconfiguration aspect which is featured by many
control systems and their shared resources. Nevertheless, reconfiguration has
become, nowadays, a crucial feature to consider when designing new embedded
systems. It is actually the ability to dynamically improve the latter’s perfor-
mance and quality of service at run-time, according to well defined conditions
[11]. Increasing safety constraints and growing expected flexibility pushed devel-
opers to focus on designing systems that are able to fit their environment and
shifting user requirements under functional and temporal constraints [12]. In
this work, a reconfiguration scenario is assumed to be any run-time automatic
operation that modifies the system’s structure by adding or removing tasks or
resources according to user requirements in order to adapt the whole architec-
ture to its environment [13]. Whence, we propose, in this work, a new UML
profile, baptized R-UML (Reconfigurable UML), endowed with a formal seman-
tics enabling UML to model flexible control systems sharing adaptive shared
resources. R-UML relies on UML’s extensibility mechanisms to enhance class
and statechars diagrams, respectively called R-CD and R-StD henceforth. The
latter are extended to support Priority Ceiling Protocol (PCP), a well-known
synchronization protocol for shared resources. It was proved in [13] the rele-
vance of this protocol to solve the issue of concurrent access to adaptive shared
resources in reconfigurable control systems. We propose then a new solution
to translate R-UML into Reconfigurable Timed Net Condition/Event Systems

120 M.O.B. Salem et al.

(R-TNCES) [14], a Petri net-based formalism to model flexible control systems.
An application of formal verification is, then, performed and aims to (dis)prove
certain properties of the system using a formal model. This contribution is orig-
inal since R-TNCES is a new and original formalism for reconfigurable sys-
tems, and no one in our community worked on the translation of UML into
R-TNCES to combine their respective assets, i.e. the easiness and relevance of
UML for visual modeling and the formal semantics of R-TNCES to verify and
validate models.

This paper is organized as follows: the next section describes useful prelimi-
naries for the reader. Section 3 introduces a running example which will be used
throughout the paper to prove the relevance of our contribution. We expose,
in Sect. 4, the new profile R-UML and a solution to translate the latter into
R-TNCES. We finish the paper in Sect. 5 by a conclusion and an exposition of
our future works.

2 Background

We start, in this section, by presenting the formalisms TNCES [15] and
R-TNCES [14] which extend Petri nets for the modeling of adaptive control
systems. We provide, then, an overview of the well-known PCP.

2.1 Timed Net Condition/Event System

The formalism was introduced by [15]. A TNCES is a tuple:

TNCES = {P, T, F,m0, Ψ, CN,EN,DC} (1)

where (i) P = {p1, p2, ..., pn} is a finite set of places; (ii) T = {t1, t2, ..., tm} is a
finite set of transitions; (iii) F ⊆ (P × T) ∪ (T × P) is a finite set of flow arcs
between places and transitions; (iv) m0 is initial marking; (v) CN ⊆ (P × T) is
a finite set of condition arcs; (vi) EN ⊆ (T × T) is a finite set of event arcs.

Ψ is input/output structure of TNCES module which is represented by the
following tuple:

Ψ = {Cin, Ein, Cout, Eout, Bc,Be,Cs,Dt} (2)

where (i) Cin defines a finite set of TNCES module condition input signals;
(ii) Ein defines a finite set of TCNES module event input signals; (iii) Cout

defines a finite set of TNCES module condition output signals; (iv) Eout defines
a finite set of TCNES module event output signals; (v) Bc ⊆ Cin × T is a set
of TNCES module input condition arcs; (vi) Be ⊆ En × T is a set of TNCES
module input event arcs; (vii) Cs ⊆ P ×Cout is TNCES module output condition
arcs; (viii) Dt ⊆ T × Eout is a set of TNCES module output event arcs.

Time intervals are assigned to the pre-transition flow arcs F ⊆ P ×T , which
impose time constrains to the firing of the transition:

DC = {DR,DL,D0} (3)

R-UML: An UML Profile for Verification of Flexible Control Systems 121

where (i) DR represents the set of minimum times that the token should spend at
particular place before the transition can fire; (ii) DL is the final set of limitation
time that defines maximum time that the place may hold a token (if all the other
conditions for transition firing are met); (iii) D0 is the initial set of the clocks
associated with the places.

2.2 Reconfigurable Timed Net Condition/Event System

An R-TNCES, as defined in [14], is a structure RTN = (B, R), where R is the
control module consisting of a set of reconfiguration functions R = r1,...,rn and
B is the behavior module that is a union of multi TNCESs, represented as

B = (P, T, F,W,CN,EN,DC, V, Z) (4)

where: (i) P (respectively, T) is a superset of places (respectively, transitions),
(ii) F ⊆ (P × T) ∪ (T × P) is a superset of flow arcs, (iii) W: (P × T) ∪
(T × P) → {0, 1} maps a weight to a flow arc, W (x, y) < 0 if (x, y) ∈ F , and
W(x, y)=0 otherwise, where x, y ∈ P ∪ T , (iv) CN ⊆ (P × T) (respectively,
EN ⊆ (T × T)) is a superset of condition signals (respectively, event signals),
(v) DC : F ∩(P ×T) → {[l1, h1], ..., [l|F∩(P×T)|, h|F∩(P×T)|} is a superset of time
constraints on output arcs, where i ∈ [1, |F ∩ (P × T)|], li, hi ∈ N , and li < hi,
(vi) V : T → {∨,∧} maps an event-processing mode (AND or OR) for every
transition, (vii) Z = (M0, D0), where M0 : P → {0, 1} is the initial marking and
D0 : P → {0} is the initial clock position.

2.3 Priority Ceiling Protocol

The Priority Ceiling Protocol (PCP) [16] in real-time computing is a synchro-
nization protocol for shared resources to avoid unbounded priority inversion and
mutual deadlock due to wrong nesting of critical sections. In this protocol, each
resource R is assigned a priority ceiling Cl(R), which is equal to the highest
priority of the tasks that may lock it. A task can acquire a resource only if the
resource is free and has a higher priority than the priority ceiling of the rest
resources in lock by other tasks.

Let us assume a system to be composed of the tasks T1, T2, T3 and T4 (having
respectively the increasing priorities 1, 2, 3 and 4) and two resources R and Q :
R can be used by T1 and T2 and Q by T1 and T4. Then, Cl(R) = 2 and Cl(Q)
= 4. Thus, T2 is blocked if it tries to block R which is free when Q is locked.

3 Running Example

Let us assume a reconfigurable discrete event system to be composed of two tasks
A and B. We suppose that these two tasks share initially the resources Q and R
(as shown in Fig. 1) before applying a reconfiguration scenario which will add a
new resource S (to be used by both A and B). This case was not treated in any

122 M.O.B. Salem et al.

related work and forms a new problem dealing with reconfigurable resources.
We suppose that B has the highest priority (B > A). We suppose that the
system is safe before the reconfiguration scenarios. But, once the reconfiguration
is applied, a deadlock certainly occurs according to Fig. 2. In fact, A starts by
using R and then S before being interrupted by B due to the latter’s higher
priority. B is then blocked because it tries to lock R (P(R)) which is dill hold
by A. A continues progressing until it frees R (V(R)) and B interrupts it. When
B asks for S (P(S)), it is interrupted because S is hold by A. A is in its turn
blocked because it is asking for Q which is hold by B. A deadlock occurs thus,
because A is waiting for Q while B for S. Regarding to this situation, we apply
the PCP on this running example which solves the deadlock issue as illustrated
in Fig. 3.

Fig. 1. Behavior of A and B before a reconfiguration scenario.

Fig. 2. Behavior of A and B after a reconfiguration scenario.

R-UML: An UML Profile for Verification of Flexible Control Systems 123

This running example features two tasks sharing three adaptive resources
like in [13], however, the tasks’ behavior and the reconfiguration scenario are
different. Besides, in [13], a deadlock occurs because A is waiting for S while B
for Q, whereas, in this work, it occurs because A is waiting for Q while B for S.

4 Conception and Validation of Flexible Control Systems

We expose, in this section, the new profile R-UML to model and validate flexible
control systems sharing adaptive resources. A new solution is proposed, then, to
transform an R-UML into an R-TNCES.

4.1 R-UML

In this section, we define how to model the structure and the behavior of a
flexible control system using R-UML. The contribution is applied on the running
example of Sect. 3.

Fig. 3. A and B behaviors after using PCP.

Structure Modeling. UML provides the class diagram to show the logical
structure of a system. This diagram highlights conceptual connections showing
the relations between the system’s modules or components, each of which hav-
ing its distinctive properties defined by a class. It is possible to extend the core
semantics of UML and express new properties by using stereotypes. The latter
is a mechanism to categorize an element. Thus, we extend the contribution pro-
posed in [17] and define the following eight stereotypes of the class’s attribute:

– << input >>: the given attribute is a system input;
– << output >>: the given attribute is a system output;

124 M.O.B. Salem et al.

– << in >>: the given attribute is a system module input;
– << out >>: the given attribute is a system module output;
– << eventInput >>: the given attribute is a system module event input;
– << eventOutput >>: the given attribute is a system module event output;
– << integer >>: the given attribute is an integer;
– << boolean >>: the given attribute is a boolean attributed which can be

evaluated to TRUE or FALSE.

The description above distinguishes between system and module. System
denotes the whole system under control, whereas module a part of the system.
A system may actually have internal connections between the modules speci-
fied by means of the stereotypes << in >> and << out >>, and a module
may provide to the controller the connections that are specified by means of the
stereotypes << input >> and << output >>. Two system modules may also be
interconnected by an event which is an action which occurrence may be detected
by another module in the system. An event is different from an input/output,
since the first is just a signal informing that a certain action took place. The
<< eventInput >> and << eventOutput >> stereotypes respectively represent
the event inputs and outputs that a module may have.

The information provided by a class diagram can be formally written as a
tuple:

ClD = {C,A,M,S, α, β} (5)

where (i) C = {cl1, c12, ..., cln} is a finite set of classes in class diagram ClD;
(ii) A = {attr1, attr2, ..., attrn} is a final set of attributes that belong to the
classes; (iii) M = {setlnput, resetInput, setOutput, resetOutput, setCeiling}
is a set of methods of the classes; (iv) S is a set of stereotypes / S = {<<
in >>,<< out >>,<< input >>,<< output >>,<< eventInput >>,<<
eventOutput >>,<< integer >>,<< boolean >>}; (v) α : sti → attrj is
a function that maps the stereotype sti from S to the attrj from A; (vi) β :
attri → clj is a function that maps attribute to the class.

According to the previous class diagram definition, we create two classes to
model the running example of Sect. 3: a class named Task to model, as its name
suggests, the different tasks of the system, and a second one, named Resource,
to model the different reconfigurable shared resources. We instantiate for each
task or resource an object from the corresponding class.

The class Task, as showed in Fig. 4, has an integer-stereotyped attribute,
named priority, translating the task’s priority. It also has a boolean-stereotyped
one, added, indicating whether the task in added to the system (added=TRUE)
or not (added=FALSE), depending on the applied reconfiguration scenario. The
Fig. 5 shows that the class Resource features an integer-stereotyped attribute,
named ceiling, translating the ceiling that each resource has according to PCP
definition in Sect. 2.3. The class also features a method named setCeiling that
recompute a resource’s ceiling after applying a reconfiguration scenario. This
method’s code will be detailed later. Just as tasks, resources have a boolean-
stereotyped attribute, added, because a reconfiguration scenario may add or
remove a task or a resource [13].

R-UML: An UML Profile for Verification of Flexible Control Systems 125

Fig. 4. The Task class.

Fig. 5. The Resource class.

Running Example 1. The static description of a system is often made through
the class diagram. This simplifies the modeling by synthesizing the common
characteristics and covering a large number of objects. However, it is sometimes
useful or even necessary to add an object diagram. The latter allows, depend-
ing on the situation, to illustrate the class diagram (showing an example that
explains the model), clarify certain aspects of the system (by highlighting imper-
ceptible details in the class diagram), express an exception (by modeling specific
cases of non-generalizable knowledge) or take an image (snapshot) of a system
at a given time. The class diagram models the rules, whereas the object diagram
models facts. Often the class diagram is a model to instantiate the binders in
order to obtain the object diagram [18]. Thus, we propose here to realize the
object diagram of the running example described in Sect. 3. The said diagram
illustrated in Fig. 6 features two objects of the Task class (modeling the tasks
A and B) and three of the Resource class (modeling the resources R, Q and S)
while highlighting the links between them.

Behavior Modeling. UML features the State diagram as powerful tool to rep-
resent the behavior of an object which is the implementation of a particular
class. We define for the system or its components a set of states which they
may take. Each state is distinguished by its name. The change of the states is
represented via transitions. The latter specify the laws that cause the change of
the state and the consequences of the change. The rules which fire transitions
may be expressed by event and guard which is a boolean expression that has
to be evaluated to TRUE to fire the transition. A given transition may be fired
through three manners: an event (if a certain action took place somewhere in
the system), a guard (if the certain properties are assigned with the particu-
lar values) or combination of both. The different states are interconnected by
transitions which determine the rules that cause transition to fire and the con-
sequences of a transition’s firing. Events, guards and the combination of both

126 M.O.B. Salem et al.

Fig. 6. The running example’s object diagram.

specify these rules. A time event, after (n) where n is a positive integer, is also
used to specify that n time units should elapse before the transition may fire.
Events may also be specified by << eventInput >> or << eventOutput >>
stereotyped attributes. A transition firing may be accompanied by the activation
of an action which can modify some properties of the system. This activation
may call attribute-modifying methods defined in the classes, such as setlnput,
resetInput, setOutput, resetOutput and setCeiling.

We extend the contribution proposed in [17] and formally represent a state
diagram by the tuple:

StD = {St, Tr,Ev,G,Ac, γ, δ, ε, ζ} (6)

where (i) St = {st1, st2, ..., stn} is a finite set of states in a state diagram StD ;
(ii) Tr = {tr1, tr2, ..., trm} is a finite state of transitions in a state diagram StD;
(iii) Ev is a finite set of events in transitions of StD ; (iv) G is a finite set of the
guards in StD ; (v) Ac is a final set of actions; (vi) γ : evi → trj is a function
that maps the event evi of Ev to the transition trj of Tr ; (vii) δ : grk → trj is
a function that maps the guard grk of Gr to the transition trj of Tr ; (viii) ε :
actl → trj is a function that maps the action actl of Ac to the transition trj
of Tr ; (ix) ζ : trj → {stb, ste} is a function that maps transition trj of Tr to
the pair of states stb and ste, where stb is the state from which the transition is
taken and ste is the next state if trj fires.

According to the reconfiguration feature expected from the system, we define
a reconfigurable state diagram as a structure:

R − StD = (B,R) (7)

R-UML: An UML Profile for Verification of Flexible Control Systems 127

where (i) B is the behavior module that is a union of multi StD; (ii) R is the
control module consisting of a set of reconfiguration functions R = {r1,...,rn}.

A reconfiguration function ri makes the necessary changes to the system
after a reconfiguration scenario in accordance with the definition given in Sect. 1.
Hence, we define r as the structure:

r = (η, θ, ι) (8)

where (i) η : ti → {0, 1} is a function controlling tasks, η(ti) = 1 if the task ti
is added to the system, η(ti) = 0 otherwise; (ii) θ : resj → {0, 1} is a function
controlling resources, θ(resj) = 1 if the resource resi is added to the system and
θ(resj) = 0 otherwise; (iii) ι : (resj , ti) → {0, 1}, ι(resj , ti) = 1 if resj is used
by ti in this triggered reconfiguration scenario, ι(resj , ti) = 0 otherwise.

According to the previous definitions, we define in this section the Resource
class’s method, setCeiling, as follows:

if θ(res) == 1
for i:=1 to |Tasks|

if η(ti) == 1 AND ι(res, ti) == 1
AND ti.priority > res.ceiling

res.ceiling := ti.priority

We propose, then, R-StD diagrams to model a task and a resource on the
basis of PCP definition and the reconfiguration feature expected from the system.
Thus, we propose the R-StD illustrated in Fig. 7 to model a reconfigurable shared
resource:

A resource may actually be free or hold by a task Ti. Thus, we propose the
states “Free”, “Hold by Ti” and “Hold by Tn” where R may be exclusively hold
by a task from a set of n different tasks (n is an integer ∈ (1, +∞)). The guards
associated to the transitions leaving the state Free guarantee the respect of PCP
rules before locking a resource, i.e. a task T may hold a given resource if, first,
the latter is free and, secondly, the resources hold by other tasks have a ceiling

Fig. 7. The shared resource’s R-StD.

128 M.O.B. Salem et al.

lower than T ’s dynamic priority, a condition verified by the guard named X.
E3.i is an event coming from Ti and asking to unlock R.

We propose, then, a second R-StD, illustrated in Fig. 8 to model a reconfig-
urable task:

Fig. 8. The task’s R-StD.

The task’s R-StD is composed of the following states: (i) Idle: as its names
suggests, the task is idle, (ii) Execute: the task is running, (iii) Wait : the task was
interrupted by another one, so it is waiting, (iv) P(R): the task T is asking to
lock a resource R, (v) Q(R): the task T is unlocking the resource R. The R-StD
of a task T should include as many P(R) and Q(R) as the resources it may
lock, but, in this running example, we decide that T will use just one resource
(R). The different events indicated on the figure above stand for: (i) E2 : an
event confirming the lock of R by T, (ii) E8.1 and E8.2 : when T switches from
Idle to Execute, the event E8.1 forces the running tasks with lower priorities to
switch from Execute to Wait. T’s E8.1 is actually the E8.2 of tasks with lower
priorities. Whence, the E8.2 on Fig. 8 is an event announcing that a task with
a higher priority than T ’s switched from Idle to Execute, (iii) E9.1 : when T
switches from Execute to Idle, the event E9.1 will force the waiting tasks with
lower priorities to switch from Wait to Execute. T ’s E9.1 is actually the E9.2
of tasks with lower priorities. Whence, the E9.2 is translating that a task with
a higher priority that T ’s has switched from Execute to Idle.

Running Example 2. Now that we formalized R-StD and proposed patterns
to model control tasks and shared resources, we can model our running example.
We propose, as examples and respectively in Figs. 9 and 10, the modeling of the
control task A, which uses the resources Q, R and S, and the resource R which
is shared by the tasks A and B.

R-UML: An UML Profile for Verification of Flexible Control Systems 129

Fig. 9. The task A’s R-StD.

In our case study, the different resources have the same modeling since they
have the same ceiling and are used by the same tasks. We choose to model the
resource R as shown in Fig. 10. The guards named X are used to guarantee that,
when a task T tries to lock the resource, all the other resources, whose ceilings
are not lower than the task’s priority, are free or hold by T. Thus, we avoid any
eventual deadlock and see the relevance of the PCP.

4.2 Tranformation

We present, in this section, R-TNCES-based models using PCP to solve the
issue of concurrent access to adaptive shared resources. We propose, then, a new

Fig. 10. The resource R’s R-StD.

130 M.O.B. Salem et al.

solution to translate R-StD models into the said R-TNCES-based ones. A formal
verification is, then, performed to prove the relevance of our contribution.

PCP-based Solution for Resource Sharing in R-TNCES. We aim in
this section to check the safety of each reconfiguration scenario by enriching
the Reconfigurable Timed Net Condition/Event System (R-TNCES) with the
PCP protocol. We propose, then, to use new patterns introduced in [13] to
model reconfigurable discrete event systems according to R-TNCES by using
PCP. This contribution is original since R-TNCES is an original formalism for
reconfigurable systems, but lacks of useful mechanisms to manage reconfigurable
shared resources.

Table 1. Correspondence table for R-StD translation into R-TNCES.

Rules R-StD R-TNCES

Rule 1 St (6) P (4)

Rule 2 Tr (6) T (4)

Rule 3 {stb, ste} := ζ(tr) (6) {pout, pto} ⊆ P ; {fa1, fa2} ⊆ F (4)

Rule 4 gr := δ−1(tr) (6) ci ∈ Cin (2); co ∈ Cout (2); ca ∈ CN (1)

Rule 5 ac := ε−1(tr) (6) ei ∈ Ein (2); eo ∈ Eout (2); ea ∈ EN (1)

Rule 6 ev := ζ−1(tr) (6) AND <<
eventInput >>:= α−1(ev) (5)

ei ∈ Ein (2); eo ∈ Eout (2); ea ∈ EN (1)

Rule 7 ev := ζ−1(tr) (6) AND ev is an
after(n) event

n ∈ DR; ∞ ∈ DL (1) (2) (3)

Formalization. We present in this section the formalization of Distributed
Reconfigurable Control Systems (DRCS) sharing resources.

DRCS. The authors in [13] assume a DRCS D to be composed of n1 networked
reconfigurable sub-systems sharing n2 resources. They extend the formalization
of DRCS in [14] by adding the new set of resources as follows:

D = (
∑

R − TNCES,�,
∑

M,
∑

R) (9)

where: (i)
∑

R − TNCES is a set of n1 R-TNCES, (ii) � a virtual coordina-
tor handling

∑
M , a set of Judgment Matrices, (iii)

∑
R, a set of n2 shared

resources.

Shared Resources. On the basis of PCP’s definition and the flexibility expected
from the DRCS, a resource R is defined as follows :

R = (Rec, S,Cl) (10)

where: (i) Rec (Reconfiguration) indicates whether R is added to the
system /Rec ∈ {added, !added}, (ii) S indicates the state of R /S ∈
{free, hold by a task i}, (iii) Cl is used for the ceiling of R.

R-UML: An UML Profile for Verification of Flexible Control Systems 131

Tasks. Based on the expected reconfiguration of the system, the authors in [13]
defines a task T by:

T = (Rec, S) (11)

where: (i) Rec (Reconfiguration) indicates whether T is added to the
system /R ∈ {added, !added}, (ii) S indicates the state of T /S ∈
{idle, execute, wait, P (Ri), V (Ri)} and P (Ri) means locking R and V (Ri)
unlocking it.

Modeling. The authors in [13] proposes new solutions to introduce PCP in
R-TNCES to avoid any blocking problem after reconfiguration scenarios. An R-
TNCES model is proposed for each resource of

∑
R and task of

∑
R−TNCES.

Shared Resources. Each shared resource is modeled by an R-TNCES as shown in
Fig. 11. The latter is composed of three TNCES modeling the resource’s recon-
figuration (Rec), state (S) and ceiling (Cl). Here is the modeling of a resource R:

Control Tasks. The authors in [13] model each task T by an R-TNCES to be
composed of two TNCESs as shown in Fig. 12: the first one is illustrating its
reconfiguration (Rec), the second its state (S).

R-Std Translation into R-TNCES. The paper proposes Table 1 which is
given above to show the correspondence between R-StD and R-TNCES. The
numbers given in parentheses show the reference to the formulas that give details
on the syntax used in the table.

The seven translation rules are explained hereafter:

– Rule 1: A state St in an R-StD corresponds to a place P in an R-TNCES;
– Rule 2: A transition Tr in an R-StD corresponds to a transition too (T) in

an R-TNCES;

Fig. 11. A shared resource’s modeling.

132 M.O.B. Salem et al.

Fig. 12. A task’s modeling.

– Rule 3: Each transition tr in an R-StD is mapped to a pair of states, stb and
ste, where the first is the state from which tr is taken and the second is the
next state if tr fires. The corresponding transition (t) and two places (pout
and pto) will be created using, respectively, Rule 2 and Rule 1. Rule 3 creates
actually in the R-TNCES a flow arc, fa1, linking pout to t, and another one,
fa2, linking t to pto;

– Rule 4: In an R-StD, some guards can be mapped to some transitions. A guard
gr corresponds to a condition arc, ca, in an R-TNCES. A condition output
signal, co, is added to the place from which ca is leaving and a condition input
signal, ci, to the place which is pointed by ca;

– Rule 5: In an R-StD, some actions can be mapped to some transitions. An
action ac corresponds to an event arc, ea, in an R-TNCES. An event output
signal, eo, is added to the place from which ea is leaving and an event input
signal, ei, to the place which is pointed by ea;

– Rule 6: In an R-StD, each <<eventInput>>-stereotyped event, ev, is trans-
lated into an event arc, ea, in the corresponding R-TNCES. An event output
signal, eo, is added to the place from which ea is leaving and an event input
signal, ei, to the place which is pointed by ea;

– Rule 7: An R-StD may feature after(n)-typed events, where n ∈ NNN
∗. If so,

n is added to DR, the set of minimum times that the token should spend
at particular place before the transition can fire, and ∞ to DL, the set of
limitation time that defines maximum time that the place may hold a token,
since the place from which the after(n)-typed event is leaving may indefinitely
hold the token.

Verification. We propose in this section to check the relevance of the our solu-
tion and the contribution of PCP in solving several issues threatening a DRCS’s
safety and deadlock-freedom. Thus, we start by modeling the running example of

R-UML: An UML Profile for Verification of Flexible Control Systems 133

Fig. 13. The illustrative example’s R-TNCES.

Fig. 14. Screenshot from SESA.

Sect. 3 in UML and then transforming the latter in R-TNCES according to [14].
Thus, we don’t call out the PCP. We obtain the model illustrated in Fig. 13. To
verify it, we use model-checking which is a technique for automatically verifying
the correctness properties of finite-state systems. Model checking for R-TNCES
is based on its reachability graphs. ZiZo [11] is a new and effective software
environment for the analysis of R-TNCES, which computes the set of reach-
able states exactly. It exports, then, files exploitable by the model-checker SESA
[19]. Typical properties which can be verified are boundedness of places, live-
ness of transitions, and reachability of states. In addition, temporal/functional
properties based on Computation Tree Logic (CTL) specified by users can be
checked manually. We apply, then, the CTL formula AG EX TRUE which checks
the deadlock-freedom of the system. The said formula turned out to be false as
shown in Fig. 14, meaning that the system features a deadlock issue.

Whence, we call out the solution we proposed in the previous sections. We
start by modeling the two tasks and the three resources in R-StD and transform,
then, the models to R-TNCES based on the transformation rules specified in
Sect. 4.2. We obtain, thus, the R-TNCES model of the tasks A and B illustrated
in Fig. 15.

Once the R-TNCES model of the DRCS is enriched with PCP, the next step
is to verify whether the models meet users requirements. So, any reconfiguration
scenario dealing with adding/removal of resources does not lead to a blocking
situation. The following e-CTL formula is applied:

AG EX true (12)

134 M.O.B. Salem et al.

This formula is proven to be true by SESA as shown in the screenshot in
Fig. 16, so there is no deadlock in our R-TNCES.

Fig. 15. The taks A and B’s modeling using PCP.

Fig. 16. Screenshot from SESA.

We also check the safety property by checking if a given resource may be
simultaneously locked by two different tasks. The following CTL formula is
checked:

EF p22 AND p23 (13)

where p22 is the place translating that the resource R is locked by the task
A; p22 means that B locks R. This formula is proven to be false as illustrated
in Fig. 17.

The formula 13 is applied six times of the R-TNCES modeling, changing at
each time p22 and p23 by the places which correspond to the ones translating
that the resource R (and then Q and S) is locked by the task A (and then B).
We check thus whether a given resource can be locked by the two tasks at the
same time. The six formulas turned out to be false. We are sure, then, that our
system doesn’t feature a deadlock issue caused by a concurrent access to shared
resources after a reconfiguration scenario.

5 Conclusions

Our work consisted, through this paper, in proposing a new UML profile, the
R-UML, to model and verify flexible control systems sharing adaptive resources.

R-UML: An UML Profile for Verification of Flexible Control Systems 135

Fig. 17. Screenshot from SESA.

Whence, we chose to enhance class and statecharts diagrams to support PCP. We
proposed, then, a new and original solution to translate the generated R-UML
models into R-TNCES-based patterns which were proposed in [13]. This aims at
proving the correctness of the R-UML models by performing model-checking on
the generated R-TNCES models. The relevance of our contribution was proved
thanks to model-checking using ZiZo, a new R-TNCES editor, simulator and
model-checker [11]. This approach is original since R-TNCES is a new formalism
dedicated to flexible control systems modeling and ZiZo is a new tool supporting
the said formalism.

The next step is to apply this contribution on BROS, a new surgical robotic
platform [12]. BROS is a flexible system since it can run under different operating
modes: it is reconfigurable. The concurrent access to adaptive shared resources
is present in the said system, which can be rather hazardous in such medical
systems. Whence, applying our contribution on BROS can be very relevant to
certify that the robotic platform is safe and does not run any risk after any
reconfiguration scenario.

Acknowledgements. This research work is carried out within a MOBIDOC PhD
thesis of the PASRI program, EU-funded and administered by ANPR (Tunisia). The
BROS national project is a collaboration between the Children Hospital of Bchir Hamza
(Tunis), eHTC and INSAT (LISI Laboratory) in Tunisia.

References

1. Bahill, T., Daniels, J.: Using objected-oriented and UML tools for hardware design:
a case study. Syst. Eng. 6(1), 28–48 (2003)

2. Warmer, J.B., Kleppe, A.G.: The Object Constraint Language: Precise Modeling
With UML. Addison-Wesley, Boston (1998). (Addison-Wesley Object Technology
Series)

3. Fenton, N.E., Neil, M.: A critique of software defect prediction models. IEEE Trans.
Softw. Eng. 25(5), 675–689 (1999)

4. Lilius, J., Paltor, I.P.: The production cell: an exercise in the formal verification of
a UML model (1999)

5. Cardoso, J., Sibertin-Blanc, C.: Ordering actions in sequence diagrams of UML.
In: Proceedings of the 23rd International Conference on Information Technology
Interfaces, ITI 2001, pp. 3–14. IEEE, June 2001

6. Cortellessa, V., Mirandola, R.: Deriving a queueing network based performance
model from UML diagrams. In: Proceedings of the 2nd International Workshop on
Software and Performance, pp. 58–70. ACM, September 2000

136 M.O.B. Salem et al.

7. Mikk, E., Lakhnech, Y., Siegel, M., Holzmann, G.J.: Implementing statecharts
in PROMELA/SPIN. In: Proceedings of the 2nd IEEE Workshop on Industrial
Strength Formal Specification Techniques, pp. 90–101. IEEE (1998)

8. Lam, V.S.: A formalism for reasoning about UML activity diagrams. Nord. J.
Comput. 14(1), 43–64 (2007)

9. King, P., Pooley, R.: Using UML to derive stochastic Petri net models. In: Pro-
ceedings of the 15th UK Performance Engineering Workshop, pp. 45–56, July 1999

10. Bondavalli, A., Majzik, I., Mura, I.: Automated dependability analysis of UML
designs. In: Proceedings of the 2nd IEEE International Symposium on Object-
Oriented Real-Time Distributed Computing, 1999 (ISORC 1999), pp. 139–144.
IEEE (1999)

11. Ben Salem, M., Mosbahi, O., Khalgui, M., Frey, G.: Modeling, simulation and
verification of reconfigurable real-time control tasks sharing adaptive resources -
application to the medical project BROS. In: Proceedings of the International
Conference on Health Informatics, pp. 20–31 (2015). ISBN: 978-989-758-068-0

12. Ben Salem, M., Mosbahi, O., Khalgui, M., Frey, G.: BROS - a new robotic plat-
form for the treatment of supracondylar humerus fracture. In: Proceedings of the
International Conference on Health Informatics, pp. 151-163 (2015). ISBN 978-
989-758-068-0

13. Salem, M.O.B., Mosbahi, O., Khalgui, M.: PCP-based solution for resource sharing
in reconfigurable timed net condition/event systems

14. Zhang, J., Khalgui, M., Li, Z., Mosbahi, O., Al-Ahmari, A.M.: R-TNCES: a novel
formalism for reconfigurable discrete event control systems. IEEE Trans. Syst. Man
Cybern. Syst. 43(4), 757–772 (2013)

15. Hanisch, H.M., Thieme, J., Luder, A., Wienhold, O.: Modeling of PLC behav-
ior by means of timed net condition/event systems. In: Proceedings of the 1997
6th International Conference on Emerging Technologies and Factory Automation,
ETFA 1997, pp. 391–396. IEEE, September 1997

16. Goodenough, J.B., Sha, L.: The priority ceiling protocol: a method for minimizing
the blocking of high priority Ada tasks. ACM 8(7), 20–31 (1988)

17. Lobov, A., Lastra, J.L.M., Tuokko, R.: Application of UML in plant modeling for
model-based verification: UML translation to TNCES. In: 3rd IEEE International
Conference on Industrial Informatics, INDIN 2005, pp. 495–501. IEEE, August
2005

18. Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F., Lorensen, W.E.: Object-
oriented Modeling and Design. Prentice-hall, Englewood Cliffs (1991). vol. 199(1)

19. Starke, P.H., Roch, S.: Analysing signal-net systems. Professoren des Inst. fr Infor-
matik (2002)

Invariant Implementation for Domain Models
Applying Incremental OCL Techniques

Alberto-Manuel Fernández-Álvarez, Daniel Fernández-Lanvin(&),
and Manuel Quintela-Pumares

Computing Science Department, University of Oviedo,
Oviedo, Asturias, Spain

{alb,dflanvin,quintelamanuel}@uniovi.es

Abstract. Constraints for rich domain models are easily specified with the
Object Constraint Language (OCL) at model level, but hard to translate into
executable code. We propose a solution which automatically translates the OCL
invariants into aspect code able to check them incrementally after the execution
of a Unit of Work getting good performance, a clean integration with pro-
grammers’ code being respectful with the original design and easily combined
with atomic all-or-nothing contexts (data base transactions, STM, ORM, etc.).
The generated code solves some difficult issues: how to implement, when to
check, over what objects and what to do in case of a violation.

Keywords: Constraint � Invariant � Incremental checking � Domain model �
Object orientation � Ocl � Aspect oriented programming

1 Introduction

Domain modeling is a well-known practice to capture the essential sematic of a rich
domain. The advantages of this approach have been widely discussed in the software
engineering literature [1–3]. The most popular tool to model both static and dynamic
aspects of the domain model during the development is UML. Even though UML is
proven as an effective and powerful resource, it is lacking in mechanisms to represent
efficiently some aspects of the system under design. For instance, some complex
domain constraints cannot be easily graphically expressed in UML.

Those constraints can be expressed in natural language or by means of OCL
expressions that complement the UML models. Afterwards, the developer will trans-
form these OCL expressions into source code.

Although the use of OCL fills the gap of UML limitations, the subsequent
implementation of these constraints usually involves some difficulties that can com-
plicate the work of the programmers: (1) how to write the invariant check, (2) when to
execute the constraint verification, (3) over what objects should be executed and
(4) what to do in case of a constraint violation.

Constraints that affect only to one attribute or set of attributes on the same object
can be easily checked. However, those that affect to more than one object of the domain
(domain constraints) are determined by the state and relationships of every concerned
object. As changes in any of the involved objects state can be produced by different

© Springer International Publishing Switzerland 2016
P. Lorenz et al. (Eds.): ICSOFT 2015, CCIS 586, pp. 137–154, 2016.
DOI: 10.1007/978-3-319-30142-6_8

method calls it is difficult to know where to place the constraint checking code. There
may be several methods that need to check the constraint, or part of it, as a postcon-
dition. That could lead to code scattering, code tangling and thigh coupling [4].

Regarding the when problem, in case of domain constraints, immediate checking
after every single method call could simply not be possible as low-level method calls
may produce transient illegal states that, eventually, will evolve to a final legal state.
That means the checking must be delayed until the higher-level method finishes. Again,
it may be difficult to foresee at programming time whether a high-level method is being
called by another higher-level call or not.

The third issue (over what objects) that developers must solve is to delimit the
scope of the checking. A complete checking of every constraint after any modification
would involve unfeasible performance rates. Ideally the programmer must keep track of
those constraints that might be compromised and over what objects they should be
checked and then, at the end of the high-level method call check as few constraints,
over as few objects, as possible.

Finally, developers must guarantee the consistence of the model in case a domain
constraint violation happens. There are many works on this topic. Some applies
backward error recovery techniques (BER) that provide Atomicity, that is the case of
Reconstructors [5]. With that property in place, programmers can assume that modi-
fications are done in an all-or-nothing way.

Although all these issues could be solved by manual implementation, their high
complexity makes its development and maintenance an error prone task that can
suppose a source of implementation problems in the project.

This paper describes the implementation of a tool that (1) translates invariants code
(OCL) into executable code (aspect code), (2) optimizes the constraints by generating
simpler (incremental) versions regarding the events that affect the constraint, (3) delays
the execution of those constraints until the close of the atomic context or a high-level
operation, (4) is easy to integrate with atomic contexts such as Reconstructors or an
STM and (5) generates non-invasive code (aspect code), and thus easy to add to
programmer’s code.

The remaining of this paper is organized as follows: the second chapter summarizes
the proposal, the third presents the difficulties a programmer must solve, the fourth
introduces a running example the tool is deep detailed in chapter five and chapter six
shows the results of applying the proposed processing to the running example, the
seventh chapter comments related work and the eighth closes with the conclusions.

2 Proposal

We think that all the aforementioned difficulties could be avoided and automatized by
means of appropriate consistency checking mechanisms that complement atomicity
contexts. Checking all pending constraints when the atomic context is about to close
solves the when difficulty (2). What-to-do (4) in case of failure is then solved due to the
atomicity property of the context. The other two, how (1) and over what object (3), can
be solved applying OCL analysis techniques and code generation. Those techniques are
able to convert the original constraints into new incremental versions (how) optimized

138 A.-M. Fernández-Álvarez et al.

for the events and objects affected (what object). Consequently, programmers’ effort
would be reduced.

Developers must implement the domain model classes as Plain Old Java Objects
(POJO), and provide all constraints expressed in OCL in a separate unit.

The tool (Fig. 1) analyzes the model implementation and the OCL constraints. The
constraint engine generates the code implementing an incremental checking of the
given constraints. The output is the AspectJ code to be weaved with the programmer’s
code.

The programmer must also delimit the context of the business operations, in the
same way he/she delimits transactions. At the end of the context every check will be
done. If any constraint is violated, an exception will be raised indicating a constraint
violation in the business operation.

Ideally this consistence integrity checking will be done in combination with some
kind of atomicity handling context able to restore the model to its previous state. The
tool currently integrates with Reconstructors [5], and with the Hibernate ORM [6]. The
design would easily integrate also software transactional memory solutions [7, 8].

Fig. 1. A tool to generate invariants checking code.

Fig. 2. Execution of business code inside a context.

Invariant Implementation for Domain Models 139

3 Constraint Implementation Issues

Depending on the model elements involved we could classify constraints on four
different categories: (1) attribute, (2) object, (3) class and (4) domain constraints.

Let us use the example in Fig. 3 for illustrating purposes in which we add three
constraints as OCL invariants to a small UML model.

– I1: The age of a user must be a positive value
context User inv I1:

self.age() > = 0
– I2: If a car is gold class then it must be
– less than 4 years old
context Car inv I2:

self.category = ‘gold’ implies self.age() < 4
– I3: There can only be 10 cars of gold class at maximum
context Car inv I3:

Car.allInstances- > select(category = ‘gold’)- > size
() < 10

– I4: Gold class cars can only be driven by
– drivers with more than 10 years of experience.
context Car inv I4:

self.category = ‘gold’ implies self.drivers- > forAll(d |
d.experience > 10

)

Attribute constraints are those that only depend on the value of an object attribute,
for example the I1 constraint. Object constraints involve several attributes of the same
object, as example the I2. Here the constraint depends on the category and age attri-
butes. Class constraints (I3) depend on all instances of a class (extent). Domain
constraints are those affected by the state of a subgraph of objects (I4).

Attribute and object constraints can be safely checked after any attributemodification.
Those changes are typically done by object methods and, thus, the enumerated difficulties
have a straight solution. These constraints can be checked after (when) the execution of
the object method that changes the attribute (as a postcondition). The implementation of
the constraint checking will be a plain translation into the implementation language
(how). The concerned object is clearly located (what object). The last issue (what to do)
may also be easily solved provided we have an atomic execution context.

Fig. 3. Car and driver UML diagram.

140 A.-M. Fernández-Álvarez et al.

Class constraints are more difficult to check properly. As more than the
currently-being-modified object is involved, the constraint is not only sensitive to the
modification of object’s attributes it depends on, but also to insertions and deletions of
other objects. When to check the constraint has more affecting events (updates, inserts
and deletes) and the what-object difficulty is also more complex as more objects are
involved. The complexity of the implementation (how) of this kind of constraints is
related to the architecture; in the case of plain model to code translation, it is usually
hard to maintain the extent of the class. Not many languages maintain such a collection
of objects, and in those with garbage collection, it is hard to control if an object has
been functionally deleted (unreferenced) or not.

Domain constraints management involves even more problems. Several linked
objects may be involved, so any change in any of them might violate the constraint.
Let’s see a trivial example of two entities, A and B, which have a bidirectional
association. There is an implicit constraint: if an object of A has a reference to an object
of B, then this object of B must have a reference to the A object. If we check the
constraint after setting the reference to B in A (a.setB(b)), the object A will be in a valid
state, but B is not linked to A yet, thus the constraint is not meet. If we do the reverse
we end in a similar situation. The obvious solution here is to delay the checking until
the high-level operation has finished (when). As the constraint might be affected by
different objects, through different method calls, there could be various objects on
which we have to check the constraint (more difficult over what-object). The imple-
mentation of the constraint (how) have to consider more than one class. Combining this
with every possible method that may affect it would lead to a combinational explosion.
That kind of situations are error-prone since a programmer can easily forget some of
those methods. This quickly leads to code scattering, code tangling, and strong cou-
pling of code [4]. Besides, as an attribute may be involved in several constraints (in the
previous examples the car class attribute), the implementations of the modifier methods
will end up even more tangled.

All those difficulties acquire a new dimension if performance is another concern.
The programmer should analyze the constraint looking for affecting modifications
(relevant events). Consider again the example constraint I4 “gold class cars can only be
driven by drivers with more than 10 years of experience”. We will conclude that we
only need to check that constraint if there is an updating of the car class attribute, or a
change in the driver experience field, or when a car and a driver are linked. The rest of
all possible modifications in the model will never affect it, so it is unnecessary to check
the constraint. Note that checking the constraint after an effective attribute modification
is more precise than checking it after a method execution that might have changed the
attribute or not.

Another efficiency gap comes from the checking of more objects than those really
affected by the changes. For instance, to check the constraint over all cars after
modifying the category attribute in one of them clearly has no point. Note that the
processing of the relevant instances for a constraint must consider not only the entities
of the context type directly modified by the structural events, but also those entities
related directly or indirectly to certain modified entities of other types.

Invariant Implementation for Domain Models 141

Furthermore, depending on the type of event, the body of the constraint could be
different, better focused. For instance, if the case of a linking event between a car and a
driver, then an equivalent and more efficient constraint body would be:

– I4: better focused for class-driver linking
context Drives inv:

self.car.category <>‘gold’ or self.driver.experience > 10

That redefinition only requires the two linked objects. Neither needs to check all the
drivers related with the car nor all the cars related with the driver.

As another example for the case of User::experience modification, we could check
this other redefined constraint:

– I4: better focused for driver.experience changes
context User inv: self.cars- > forAll(c |

c.category <> ’gold’ or self.experience > 10
)

This performs better given that it only involves the cars related with the driver.
Note the context change from Car to User.

As a conclusion, we can state that implementing constraints avoiding code tangling,
scattering or high coupling, with an efficient (incremental) checking and ensuring the
stability of the system in case of constraint violation is not a trivial task for the
developer.

4 Running Example

In order to illustrate different stages of the constraints processing we will use a running
example based on the well-known Royal&Loyal model proposed by Jos Warmer and
Anneke Kleppe [9]. We show a reduced version of the Royal&Loyal system in Fig. 4.

Fig. 4. Reduced version of the Royal&Loyal model.

142 A.-M. Fernández-Álvarez et al.

Consider the following example restrictions expressed as OCL invariants over this
domain model:

– I1 Owner’s card must be an adult
context CustomerCard inv I1:

validFrom.diffYears(owner.dateOfBirth) > = 18
– I2 Every senior citizen’s card must have a positive
credit in all his transactions
context Customer inv I2:

self.age() > = 65 implies self.cards- > forAll(c |
c.transactions- > collect(t | t.points)- > sum() > = 0

)

5 The Tool

The tool makes use of Dresden OCL ToolKit (DOT) [10]. DOT provides a set of tools
to parse and evaluate OCL constraints on various models like UML, EMF and Java.
The tool is also able to generate Java equivalent code. We take advantage of the model
loading feature to build a representation of the domain model from Java classes.
The OCL parsing capabilities are also used to build an AST representation of every
OCL constraint.

Over that AST representation we apply the processing proposed by [11]. They
propose an incremental checking of constraints. I.e., if the system is currently in a valid
state and we apply some modification over it, we do not need to check all constraints
over all instances (that would be extremely inefficient), but just over the instances
affected and only those constraints that could possibly be violated by the modification.
The algorithm transforms the original constraints into an equivalent set of simpler and
optimized constraints according to the type of modification (event type).

5.1 Processing Every Constraint

The processing of constraint AST consists of several stages, as depicted in Fig. 5.

Fig. 5. Processing of constraints.

Invariant Implementation for Domain Models 143

During the first stage OCL expressions are simplified by translating them into a
canonical form. During this step some logical equivalences are applied. An extensive
relationship of this equivalences can be found in [12]. The process uses here a rule
engine that recursively applies every matching rule over the AST until no more rules
can be applied.

The second stage computes all possible structural events that can affect a constraint.
For this we follow the process explained in [11]. Our implementation can detect five
different types of events:

• Insert: the creation of a new entity (call to new operator)
• Delete: the deletion of an entity. There are some extra difficulties here as in Java we

cannot delete an object. More on this later.
• Link: indicates the linking of two objects over an association.
• Unlink: signals the unlinking of two objects.
• UpdAtt: indicates a change in the value of an attribute (update attribute).

The third stage computes for each constraint-event pair a new alternative equivalent
to the first but probably simpler and with fewer entities involved. This new constraint is
specialized for that specific type of event.

After this transformation the simplification rule engine is executed again with the
addition of some new rules [11].

As a result of this process we end up with some simpler constraints regarding every
event for each constraint. These new constraints will be simpler and consequently,
more efficient in execution.

Consider again the invariant example I1, it is affected by the events UpdAtt(Cus-
tomerCard.validFrom), Link(Holds), Insert(CustomerCard) and UpdAtt(Customer.-
dateOfBirth). Being the two last events better checked by the redefinition I1-2 of the
original invariant.

context Customer inv I1-2:
self.cards- > forAll(v |

v.validFrom.diffYears(v.owner.dateOfBirth) > = 18
)

The invariant I2 is affected by the events Link(Accumulates), Unlink(Accumulates),
Link(Holds) and UpdAtt(Transaction.points). For all those events the I2-2 redefinition
is better focused then the original.

context CustomerCard inv I2-2:
not (self.customer.age() > = 65
or self.transactions- > collect(t | t.points)- > sum

() > = 0

5.2 Code Generation for Event Detection

The output of the previous processing is a set of classes, with the events and the
invariants that should be checked. The tool generates aspect code to detect those events
over the objects that form the domain graph.

144 A.-M. Fernández-Álvarez et al.

Attribute Modification To detect this type of modification we create pointcuts fol-
lowing this pattern:

protected pointcut < att > Set(< cl > obj):
set(* < cl > .<att >) && this(obj);

Where < cl > and < att > are placeholders for the class name and the attribute name.
We advise that pointcut with a block of code as shown in Fig. 6.

That code creates and registers an object in charge of checking and invariant when
invoked (new Invariant(…)). This object will receive as argument the affected object
and the reflective representation of the checking method to be executed. It is then
stacked on the context waiting for context close() operation to be executed.

Linkage of Objects. We need to distinguish between linking to unique association
ends and many association ends. The former are represented in Java by a reference to
an object, while the latter are usually supported by a collection. One-side linking is
detected with the same pattern as for attribute modification detection.

In case of a many side, we need to detect additions and removals to the underlying
collection. The tool introduces a proxy for the collection to generate callbacks when a
modification to the underlying collection is done. That proxy must be configured with
the event types it has to notify (additions or deletions). It is injected after the assign-
ment of the collection to the object’s field during construction time. The pointcut we
use here follows a pattern like this:

pointcut < att > ColSetter(< cl > obj):
set(Set < att >) && within(< cl >) && target(obj);

With and after advise for that pointcut the proxy is inserted:
The last line of code configures the proxy with the events it must notify and an

invariant builder object whose mission is to create and insert into the context an
invariant checker (new Invariant(…)) whenever one of the specified events occurs.

after(<cl> obj): <att>Set(obj) {
if (! Context.hasActiveContext()) return;
Method method = getInvariantMethod(<cl>.class,

"<invariant_name>");
Context.getCurrentContext().add(

pgy"Kpxctkcpv*qdl."ogvjqf+);

}
Fig. 6. Insertion into the context of an invariant checker method after event detection.

Invariant Implementation for Domain Models 145

5.3 Creation and Deletion of Objects: Extent of a Class

Those OCL constraints that involve an allInstances expression are especially difficult
to compute due to the fact that not all created objects are valid objects. Just by detecting
the construction of an object (with a pointcut on the constructor execution) will not be
enough. Some objects could be created just as temporal values (variables in methods)
and others could be unreferenced objects waiting for the garbage collector to be
removed. Several questions come to the fore here: Which objects are valid objects?
When does an object become invalid (i.e. it is no longer used)? Where is the collection
of valid objects?

In our understanding, the objects that must be considered valid are those in the
domain object graph. More precisely, those objects reachable from the graph. In that
way we can detect the addition of a new object when it is linked to another object
already in the graph. Conversely an object deletion will be produced after the removal
of all links that maintain the object linked to the graph.

We consider an object to be in-the-graph when it is reachable though “any” link of
“any” association type its class can have. Using another aspect we crosscut the domain
entity classes with two collections, one for forward references, and another for the
backward ones.

privileged aspect GraphNodeAspect {
boolean GraphNode.isInRepository;
List < GraphNode > GraphNode.forward;
List < GraphNode > GraphNode.backward;
…

}

When an insertion or deletion (Insert or Delete events) is detected the affected
object is then added or removed to/from the corresponding allInstances collection.

after(<cl> obj) : <att>ColSetter(obj){
Field field = getField(<cl>.class, "<att>");
IncContainer ic = newProxy(obj, field);
applyValueToField(obj, field, ic);

ContainerEvent[] events;
Method method;
method = reflectivelyGetMethod(

<cl>.class, "<invariant>");
events = new ContainerEvent[]{<evnts>};
InvariantBuilder builder =

new InvariantBuilder(obj, method);
ic.registerInvariantBuilderForEvents(builder, events);

}
Fig. 7. After advise pattern for many side linking and unlinking.

146 A.-M. Fernández-Álvarez et al.

void GraphNode.removeFromAllInstances(){
Extents.get(this.getClass()).remove(this);
for(GraphNode entity: forward) {

if (! entity.isInGraph()) {
entity.removeFromAllInstances();

}
}

}

We already know how to detect when two objects are linked or unlinked. Now we
need to augment the body of the previous after advise pattern (Fig. 7) to check the
reachability of both objects after the link/unlink operation.

after(< cl > obj) : < cl > ColSetter(obj){
//same code as Fig. 7
//extra code to detect Insert
events = new ContainerEvent[]{Insert};
method = getInvariantMethod(< cl > .class, “ < inv_name > ”);

}

The system maintains a collection for every domain class. The contents of these
collections are updated after the additions and removals.

There is one remaining question. A graph is a set of interrelated objects, but there
could be many independent graphs. What is the real graph? In our conception the graph
must have some root nodes (objects) to which other objects are connected after. Those
root nodes are usually well localized in the design and stored in some type of collection
(Repository pattern in [1]). With that in place we can state the condition an object must
meet to be considered in-the-graph: An object will be in the graph if it is directly stored
in a repository or is reachable from another object that is already in the graph.

public boolean GraphNode.isInGraph() {
return isInRepository || anyRelatedIsInGraph();

}
boolean GraphNode.anyRelatedIsInGraph() {
for(GraphNode n: backward) {
if (n.isInGraph() && n.forward.contains(this)) {
return true;

}
}
return false;

}

In this tool we use an annotation (@Repository) to mark those collections that act as
repositories. Finally, by proxying those collections with and aspect advise we are able
to detect additions or removals of root objects. Whenever a new object is added, its

Invariant Implementation for Domain Models 147

inRepository attribute is set to true and the opposite when it is removed. Consequently,
all objects reachable from this object will acquire or lose their in-the-graph condition
by reachability (and will fire the respective Insert/Delete event).

5.4 Code Generation of Invariants

Once the invariants have been transformed in their incremental versions they can be
translated into Java. For this step we use again the Dresden OCL Toolkit. The output
DOT code generator is a list of strings, being the last one the final Boolean expression
used to raise and exception in case it evaluates to false. The invariant checker method
will follow this pattern:

public void < inv_name > (<class > obj) {
<DOT generated lines>
if (! < DOT generated last line >) {
throw new ConstraintException(…);}}

5.5 Execution Context

All business operations must be executed within a context (similar idea as a transac-
tion). This functionality is represented by the Context interface.

public interface Context {
public void add(Invariant i);
public void close() throws …
public void dispose() throws …

}

The developer must invoke the business operations within an opened context as
shown in Fig. 2. Explicitly context handling can be avoided by annotating the business
methods with @Context. The tool put the context handling code behind the scenes.

@Context public void doBusiness(…){…}

Context objects are obtained from a factory class that maintains the Context object
linked to the current running thread. The add() method is invoked from the event
detectors to insert the corresponding invariant checker method that, along with other
pending invariants, must be checked at the end of the context (when the close() method
is called).

Event Simplification. During the execution of the business operation some events
may arise, and consequently the event handler inserts an invariant checker method to
verify the corresponding constraint. The context stores every checker object classified
by its origin object, event type and invariant method to call. With this information in
place there are some optimizations that can be done to improve efficiency.

• In the case of UpdAtt events repeated over the same object attribute, the context just
store one. If there is a previous Insert event then the UpdAtt is irrelevant, as all
invariant checkings related to UpdAtt events are always verified by an Insert event.

148 A.-M. Fernández-Álvarez et al.

• With Delete events we must delete all previous invariants for the same instance.
Besides, if there already an Insert event for the same entity we do not even need to
store the Delete event.

• The case of Unlink event is similar to the previous one, if there already is a Link
event for the same association and object in the context the Link event must be
deleted. And if Link and Unlink are in the same context, none of them deserve to be
checked.

• Finally, as different events could raise the same invariant checking, the context
object should avoid registering the same object-invariant more than once.

Final Execution. When the business operation is finished, the context is closed and
every pending check is executed. The context catches and stacks every possible vio-
lation. After that, all the accumulated exceptions are gathered together in one final
exception raised with all that information in place. That way the programmer can obtain
information about every broken constraint in one single shot.

6 Results

We have tested our tool with the full version of the Royal&Loyal model already
presented [9]. For that purpose we take the invariant definitions available as example in
the Dresden Toolkit [13]. The full domain model consists of 11 entity classes and 2
extra types. It also has 20 OCL invariants of which 6 are of attribute or object type, 12
are of domain type and 2 of class type.

Consider a use case in which a Customer consumes a Service offered by a Program
Partner of a Loyalty Program to which both are associated and is paid with the points
accumulated on the Loyalty Account by the previous customer’s Transactions. During
the operation the system has to register a new Burning transaction for a number of
points specified by the service. Figure 8 shows the involved invariants.

*3+"context Burning inv burningAsTransaction:
points = oclAsType(Transaction).points

*4+ context ProgramPartner inv totalPointsEarning:
self.services.transactions
->select(t| t.oclIsTypeOf(Earning))
->collect(tt | tt.points)->sum() < 10000

*5+ context ProgramPartner inv totalPoints:
self.services.transactions

->collect(t | t.points)->sum() < 10000
*6+"context LoyaltyAccount inv oneOwner:

self.transactions.card.owner->size()=1
*7+ context LoyaltyAccount inv transactionsWithPoints:

self.points <= 0
or self.transactions->select(t | t.points > 0)

->size() > 0

Fig. 8. New generated versions of invariants.

Invariant Implementation for Domain Models 149

As discussed before, in case of using a DbC approach the object’s invariants would
only be checked due to object’s methods executions, and thus the invariant’s affected
object could be unware of possible invariants violations due to changes in other linked
objects. As shown in Table 3, just one invariant is of attribute or object type, therefore
the other invariants will not be checked (unless some other methods of the related
ProgramPartner and LoyaltyAccount objects are executed).

Alternatively we can use an OCL interpreter, widely used in some scenarios such as
model to model transformations. An interpreter checks all the constraints against all
objects in the model instance. We can use the amount of objects visited as an indicator
for comparing the three approaches mentioned.

After executing the tool we get 36 new invariants related to 25 affecting events and
11 new AspectJ files ready to be weaved with the entities1.

During the execution of the use case, several affecting events will be produced
indicating a potential violation of their related constraints.

In During the execution of the use case, several affecting events will be produced
indicating a potential violation of their related constraints.

Table 1. Events raised by the use case execution.

Ev id Ev type Over entity type

1 Insert Transaction (base class of Burning)
2 Insert Burning
3 Link Transaction and Service
4 Link Transaction and CustomerCard
5 Link Transaction and LoyaltyAccount
6 UpdAtt LoyaltyAccount.points

Table 2. Invariants stacked onto the context due to the previous events (Id column relates with
the id column of Table 1).

Ev id Context Invariant

1 Burning burningAsTransaction
2 ProgramPartner totalPointsEarning
3 ProgramPartner totalPoints
4 LoyaltyAccount oneOwner
5 LoyaltyAccount oneOwner
6 LoyaltyAccount transactionsWithPoints-19

1 The tool and all related code for this testing can be downloaded from http://www.di.uniovi.es/
*alberto_mfa/constraints.proto.zip.

150 A.-M. Fernández-Álvarez et al.

http://www.di.uniovi.es/%7ealberto_mfa/constraints.proto.zip
http://www.di.uniovi.es/%7ealberto_mfa/constraints.proto.zip

Table 2 we can observe that event 1 has no invariant associated, while event 3 has
two of them. Besides, the oneOwner invariant is raised by two different events. Thanks
to context optimization those repetitions are avoided and eventually only 5 invariants
require to be checked.

Table 3 relates the invariant, the type and number of objects accessed for its
verification. The third column indicates the number of objects using the proposed tool
while the fourth do the same for an OCL interpreter. Here SPP stands for the average
number of Service objects linked to a ProgramPartner object, TS represents the average
number of Transactions linked to a Service, and TLA means the average number of
Transactions linked to a LoyaltyAccount.

The OCL interpreter must execute each invariant for every context class object in
the system. That is represented in the right column where NB stands for the total
number of Burning transactions in the system; NPP represents the total number of
ProgramPartners and NLA the total of LoyaltyAccounts.

7 Related Work

This idea of objects having to satisfy a set of invariants traces back to the work of
Hoare [14]. Later Meyer continued the idea with his Design by Contract
(DbC) methodology [15]. Nowadays this idea was also applied to many other lan-
guages such as JML for Java [16], Spec# for C# [17], etc.

Design by Contract is based on the principle of an object being responsible for its
own consistency. This rule is practical for single objects not associated with others
(attribute and object constraints in our classification), or just having references to its
owned objects (composition), but does not match with class and domain constraints.
Therefore, DbC is enough for attribute and object constraints, but is not practical for
class and domain constraints.

There are also many works using OCL based contracts. Some tools translate them
into Java, AspectJ [18–21] or other contract languages such as JML [22, 23] or
CleanJava [24]. All this works differ from our approach in their adherence to DbC
(attribute and object constraints only). However, those that generate AspectJ suggest

Table 3. Type of each invariant and number of objects accessed by each one (id refers to
Table 1). The symbol (.) indicates the formula in the “Proposed Tool” column.

Inv id Inv type Proposed tool OCL intrpr.

1 Attribute 1 NB * (.)
2 Domain 1 + SPP * (1 + TS) NPP * (.)
3 Domain 1 + SPP * (1 + TS) NPP * (.)
4 Domain 1 + (3 * TLA) NLA * (.)
5 Domain 1 || 1 + TLA NLA * (.)

Invariant Implementation for Domain Models 151

techniques and templates. In [25] the authors offers a complete report and comparison
of those techniques. We take the idea of using proxies for them.

Henrique Rebêlo et al. [26], propose a JML to AspectJ compiler able to solve one
the problems addressed with our proposal, the scattering of the contract specification
among different methods that may violate it. Their work avoids contract scattering by
centralizing the contract specification in a common advice complemented with JML.
Our approach also avoids scattering and promotes the invariants specification as
documentation by centralizing all invariants in one single file.

Dzidel et al. [20] present another OCL-contract to AspectJ tool, but leave as future
work some problems we try to solve with our proposal: (1) the challenge of translating
the OCL allInstances expression into target code, and (2) the runtime overhead of
checking OCL collection expressions as forAll, collect, etc. We have proposed a
possible solution to the allInstances problem using the idea on being in-the-graph.

Another type of OCL tools are the interpreters [27]. They are aimed to check a
model instance against its model and constraints. That may seem a solution but they
work in a one shot fashion: they check every constraint against the whole model
instance. This solution is practical for those situations in which the whole model
instance is created at once, for example in model transformations (MDA). But this
strategy will lead to unfeasible performance rates for a domain model being incre-
mentally updated by business logic method executions.

A common point in all these DbC and OCL tools is that they do not perform any
analysis of constraints, thus the generated code is not incremental. Although some of
them can generate code able to detect plain attribute modifications, they insert the
checking right after the modification [13] or allow the programmer to call the checking
method later, leading to the programmer the responsibility to explicitly decide when
and what method to call. They help with the how difficulty, partially with the over what
object, but neither with the when nor with the what to do difficulties.

8 Conclusions

The proposed tool aids developers with the four discussed difficulties. The generated
code is able to detect those potentially affecting events (what object) which combined
with the delayed checking (when) and the transformed invariants translated to exe-
cutable code (how) is a key difference with all DbC-like implementations for the
specific case of programs built around the domain model pattern. The integration with
atomicity contexts such as Reconstructors [5] or Hibernate [6] solves the problem of
restoring the model to a previous state (what to do), although that integration is not
mandatory; the generated code could work without that capability.

As we can conclude from results section the efficiency is quite good. Due to the
incremental approach followed, every constraint is executed over as few objects as
necessary and the context simplification process may reduce the number of constraint
verifications.

The tool also gives a possible implementation for the allInstances problem, a
classical problem when translating OCL to Java code.

152 A.-M. Fernández-Álvarez et al.

Finally, by maintaining all invariants in a single source file it also helps with the
problem of invariant scattering while it preserves the invariants as documentation for
programmers.

Acknowledgements. This work has been funded by the European Union, through the European
Regional Development Funds (ERDF); and the Principality of Asturias, through its Science,
Technology and Innovation Plan (grant GRUPIN14-100).

References

1. Evans, E.: Domain-Driven Design-Tackling Complexity in the Heart of Software.
Addison-Wesley Professional, Boston (2003)

2. Fowler, M.: Patterns of Enterprise Application Architecture. Addison-Wesley Longman
Publishing Co., Inc., Boston (2003)

3. Olivé, À.: Conceptual schema-centric development: a grand challenge for information
systems Research. In: Pastor, Ó., Falcão e Cunha, J. (eds.) CAiSE 2005. LNCS, vol. 3520,
pp. 1–15. Springer, Heidelberg (2005)

4. Cachopo, J.M.P.: Development of Rich Domain Models with Atomic Actions,
UNIVERSIDADE TÉCNICA DE LISBOA (2007)

5. Fernández Lanvin, D., Izquierdo Castanedo, R., Juan Fuente, A.A., Fernández Álvarez, A.
M.: Extending object-oriented languages with backward error recovery integrated support.
Comput. Lang. Syst. Struct. 36, 123–141 (2010)

6. Bauer, C., King, G., Gregory, G.: Java Persistence with Hibernate. Manning Publications
Co., Greenwhich (2014)

7. Harris, T., Marlow, S., Peyton-Jones, S., Herlihy, M.: Composable memory transactions. In:
Proceedings of the Tenth ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming - PPoPP 2005, p. 48. ACM Press, New York (2005)

8. Dice, D., Shalev, O., Shavit, N.: Transactional locking II. Distrib. Comput. 4167, 194–208
(2006)

9. Warmer, J., Kleppe, A.: The Object Constraint Language: Getting Your Models Ready for
MDA. Addison-Wesley Professional, Reading (2003)

10. Wilke, C., Thiele, M.: Dresden OCL2 for Eclipse Manual for Installation, Use and
Development (2010)

11. Cabot, J., Teniente, E.: Incremental integrity checking of UML/OCL conceptual schemas.
J. Syst. Softw. 82(9), 1459–1478 (2009)

12. Cabot, J., Teniente, E.: Transformation techniques for OCL constraints. Sci. Comput.
Program. 68, 179–195 (2007)

13. Wilke, C., Demuth, B., Aÿmann, U.: Java Code Generation for Dresden OCL2 for Eclipse
(2009). http://dresden-ocl.sourceforge.net/downloads/pdfs/gb_claas_wilke.pdf

14. Hoare, C.A.R.: Proof of correctness of data representations. Acta Inform. 1, 271–281 (1972)
15. Meyer, B.: Applying “design by contract”. Computer 25, 40–51 (1992). (Long. Beach.

Calif)
16. Leavens, G.T., Cheon, Y.: Design by Contract with JML. Draft. 1, 4 (2005). www.jmlspecs.

org
17. Barnett, M., Leino, K.R.M., Schulte, W.: The Spec# programming system: an overview. In:

Barthe, G., Burdy, L., Huisman, M., Lanet, J.L., Muntean, Traian (eds.) CASSIS 2004.
LNCS, vol. 3362, pp. 49–69. Springer, Heidelberg (2005)

Invariant Implementation for Domain Models 153

http://dresden-ocl.sourceforge.net/downloads/pdfs/gb_claas_wilke.pdf
http://www.jmlspecs.org
http://www.jmlspecs.org

18. Cheon, Y., Avila, C., Roach, S., Munoz, C., Estrada, N., Fierro, V., Romo, J.: An aspect-
based approach to checking design constraints at run-time. Presented at the November
(2008)

19. Gopinathan, M., Rajamani, S.K.: Runtime monitoring of object invariants with guarantee.
In: Leucker, M. (ed.) RV 2008. LNCS, vol. 5289, pp. 158–172. Springer, Heidelberg (2008)

20. Dzidek, W.J., Briand, L.C., Labiche, Y.: Lessons learned from developing a dynamic OCL
constraint enforcement tool for java. In: Bruel, J.M. (ed.) MoDELS 2005. LNCS, vol. 3844,
pp. 10–19. Springer, Heidelberg (2006)

21. Rebêlo, H., Soares, S., Lima, R., Ferreira, L., Cornélio, M.: Implementing java modeling
language contracts with AspectJ. In: Proceedings of 2008 ACM Symposium Applied
Computing, SAC 2008, pp. 228–233 (2008)

22. Avila, C., Flores, G., Cheon, Y.: A library-based approach to translating OCL constraints to
JML assertions for runtime checking. In: International Conference on Software Engineering
Research and Practice, Las Vegas, Nevada, 14-17 July 2008, pp. 403–408 (2008)

23. Hamie, A.: Translating the object constraint language into the java modelling language. In:
Proceedings of 2004 ACM Symposium Applied Computing - SAC 2004, pp. 1531–1535
(2004)

24. Cheon, Y., Avila, C.: Automating Java program testing using OCL and AspectJ. In:
ITNG2010 - 7th International Conference on Information Technology: New Generations,
pp. 1020–1025 (2010)

25. Froihofer, L., Glos, G., Osrael, J., Goeschka, K.M.: Overview and evaluation of constraint
validation approaches in Java. In: Proceedings - International Conference on Software
Engineering, pp. 313–322. IEEE Computer Society, Los Alamitos (2007)

26. Rebêlo, H., Leavens, G.T., Bagherzadeh, M., Rajan, H., Lima, R., Zimmerman, D.M.,
Cornélio, M., Thüm, T.: AspectJML: modular specification and runtime checking for
crosscutting contracts. In: Proceedings of the 13th International Conference on Modularity,
pp. 157–168. ACM, Lugano (2014)

27. Chimiak-Opoka, J., Demuth, B., Awenius, A., Chiorean, D., Gabel, S., Hamann, L., Willink,
E.D.: OCL Tools Report based on the IDE4OCL Feature Model. Eceasst. 44, (2011)

154 A.-M. Fernández-Álvarez et al.

An Ontological Analysis of a Proposed Theory
for Software Development

Diana Kirk1(B) and Stephen MacDonell2

1 Independent Research Consultancy, Auckland, New Zealand
dianakirk@acm.org

2 Software Engineering Laboratory (SERL),
Auckland University of Technology (AUT), Auckland, New Zealand

stephen.macdonell@aut.ac.nz

Abstract. There is growing acknowledgement within the software engi-
neering community that a theory of software development is needed to
integrate the myriad methodologies that are currently popular, some
of which are based on opposing perspectives. We have been developing
such a theory for a number of years. In this paper, we overview our the-
ory and report on a recent ontological analysis of the theory constructs.
We suggest that, once fully developed, this theory, or one similar to it,
may be applied to support situated software development, by providing
an overarching model within which software initiatives might be cate-
gorised and understood. Such understanding would inevitably lead to
greater predictability with respect to outcomes.

Keywords: Software development · Software engineering · Theoretical
model · Ontology · Software context

1 Introduction

The term Software Engineering was coined in 1968 at a conference whose aim was
to discuss the need for the software development discipline to be more strongly
based on theoretical and engineering principles [46]. The Waterfall model, a
then-popular model used in manufacturing, was adopted as the standard app-
roach for developing computer software. As time progressed, it became apparent
that a strict implementation of this model was not appropriate for all software.
A number of modifications, for example Spiral [8], and alternative models, for
example XP [7], have emerged. The authors of the various models have different
viewpoints on what kind of activity software development actually is. Earlier
models view software development as an engineering activity and focus on con-
trol. More recent models adopt the viewpoint of ‘software-as-a-service’ and focus
on effective communications. However, regardless of the huge variation in app-
roach, until recently, the accepted wisdom by all methodology architects was
that, in order to be fully effective, their approach must be followed exactly, with
nothing added and nothing missed [12].
c© Springer International Publishing Switzerland 2016
P. Lorenz et al. (Eds.): ICSOFT 2015, CCIS 586, pp. 155–171, 2016.
DOI: 10.1007/978-3-319-30142-6 9

156 D. Kirk and S. MacDonell

We have long understood from experiences in industry that this ‘wisdom’
is not based on what actually happens in the field, and have advocated with
others the need to more deeply understand the process of developing computer
software in order to support industry in its need to select practices in a flexible
way, according to objectives and context [4,15,25,30,35,36]. This viewpoint has
now become the accepted one [2,3,44,49,55]. The traditional viewpoint — that
methodologies and practices should be adopted and used as prescribed — has
thus been superseded by one of acceptance that tailoring is both necessary and
unavoidable.

If tailoring is of the essence, we clearly must strive to fully understand the
nature of the relationships between objectives, process and context. Only then
will we be in a position to advise industry on which practices might be most
suitable or to predict project outcomes based on context and practices imple-
mented. The sole route to this kind of general understanding is through theory-
building [16]. Without an understanding of the relationships between objectives,
practices, context and outcomes, we can at best expose patterns based on data
or observations. Such patterns represent correlations and correlations can not
be used to predict in a general way. For consistent prediction, we must create
frameworks based on causal relationships i.e. theoretical models. Indeed, Basili
et al. remind us that, when carrying out controlled experiments, “... it is hard
to know how to abstract important knowledge without a framework for relating
the studies” [6].

The role of theory in software engineering (SE) has been investigated from
a number of perspectives. Sjøberg et al. observed that there is very little focus
on theories in software engineering and remind us of the key role played by
theory-building if we wish to accumulate knowledge that may be used in a wide
range of settings [51]. Hannay et al. conducted a review of the literature on
experiments in SE and found that fewer than a third of studies applied theory to
explain the cause-and-effect relationship(s) under investigation, and that a third
of the theories applied were themselves proposed by the article authors [24].
Gregor examined the nature of theory in Information Systems (IS) and found
multiple views on what constitutes a theory [17]. Stol and Fitzgerald argue that
SE research does, in fact, exhibit traces of theory and suggest that the current
focus on evidence based software engineering (EBSE) must be combined with a
theory-focussed research approach to support explanation and prediction [52].

While there is general agreement within the research community that an
increased focus on theory building would produce benefits, there remains uncer-
tainty about how to proceed. Wand et al. remind us that “To employ conceptual
modeling constructs effectively, their meanings have to be defined rigorously”
and that achievement of this requires an articulation within the context of ontol-
ogy [56]. The authors apply an ontological framework developed by Bunge [9] to
analyse the relationship construct in entity-relationship modelling. A number of
authors have used their approach to investigate various aspects of IS, for exam-
ple, UML [47] and reference models [14]. A key aspect of the approach is the
ability to confirm that a model is complete and without redundancy.

An Ontological Analysis of a Proposed Theory for Software Development 157

Our aim is to establish a conceptual model to describe a software initiative.
By software initiative, we mean the software-related processes implemented to
achieve specified outcomes. We suggest that the existence of such a model would
support the software industry in the selection of appropriate practices, according
to an organisation’s specific objectives and contexts.

In this paper, we report on an ontological analysis of our proposed theory.
We analysed the theoretical constructs with respect to the Unified Foundational
Ontology (UFO) [21] with a view to identifying issues relating to meaning. The
aim of our analysis was to gain a better understanding of the constructs that
form the basis of our model. In Sect. 2 we discuss other efforts towards providing
a theoretical foundation for software development. In Sect. 3, we overview our
proposed model prior to ontological analysis. In Sect. 4, we present the results
of our analysis based on the UFO and in Sect. 5, we summarise the paper and
discuss limitations and future work.

2 Related Work

As far as we are aware, the only initiative to create a theory specifically for
software is the SEMAT initiative, launched in 2009 by Ivar Jacobson, Bertrand
Meyer and Richard Soley [27]. The approach proposes a SEMAT kernel compris-
ing three parts. The first is a means of measuring project progress and health,
the second categorises the activities required to effect progress, and the third
defines the competencies required to effect the activities [26]. There are seven
top-level ‘alphas’ - Requirements, Software System, Work, Team, Way of Work-
ing, Opportunity and Stakeholders. It is claimed that these concepts support
determination of a project’s health and facilitate selection of a suitable set of
practices.

Although the authors of the SEMAT approach state that the initiative pro-
motes a “non-prescriptive, value-based” philosophy that encourages selection of
practices according to context, we suggest that the approach is, in fact, pre-
scriptive in intent. Each of the SEMAT elements has a number of states “which
may be used to measure progress and health” [28], and this implies that the
health of every software project can be measured in a common way. We do not
believe this to be the case, because of the vast number of possible objectives and
contexts. In addition, the SEMAT model appears to offer no guidance on how
to choose activities. Other than mentioning competencies required for activities,
there is no link between activities and objectives or context. How do we know
if an activity is suitable when the developers are in different countries or when
the team comprises multiple cultures? The authors state that gaps and overlaps
in activities can be easily identified, but it is not clear how this can be achieved
in an objective way. We also note that the theory relates to a software project,
a scope we have identified as being too narrow. For the above reasons, we have
issue with the claim that a general theory is being developed. We cannot see
how the approach will help researchers better understand practice limitations.

158 D. Kirk and S. MacDonell

Weiringa, discussing the field of requirements engineering, reminds us of the dan-
gers of confusing solution design with research [57]. We suggest that SEMAT, at
this point, represents a design initiative rather than a theory building exercise.

3 Theory Overview

Our first observation is that we must scope our model to include any software
initiative i.e. the scope is larger than a software project. Our rationale is the
need to consider in a holistic way the entire software-in-a-system (SIAS) i.e. the
software product or service as part of a larger whole. This ‘whole’ will vary in
time as the software is first created and then used. The larger system during
creation will include the development organisation, test environments (possibly
stand-alone) and the client. After deployment, the software will become part
of a system comprising any of hardware, software, humans and processes. The
job is to create, deliver and sustain healthy software systems over a lifetime of
operation. The reason behind our viewpoint of a need for greater holism has its
roots in the uncertainty that results from the growing complexity of software
systems. This complexity makes it impossible to categorise in a simple way the
environment during development and makes it difficult to anticipate all future
conditions under which the software will run i.e. we can no longer assume a stable
and bounded operating environment. Conditions such as technology change and
inappropriate use will probably affect the in-situ efficacy of the software. Uncer-
tainty also characterises delivery mechanisms — in the past, a project developed
a software product and then delivered this to a known client base. More recently,
the web-based mechanism of ‘deliver a little, solicit immediate client feedback,
and deliver the next increment’ has become popular [53], leaving the concept of
a ‘project-to-develop-then-deliver’ no longer tenable.

As early as 1987, Basili and Rombach believed that “Sound tailoring requires
the ability to characterise ... goals ..., the environment ..., and the effect of
methods and tools on achieving these goals in a particular environment” [5].
Our efforts thus far have focused on clarifying what this might mean when
considering flexibility in software initiatives. We thus begin with a consideration
of objectives, process and context. In the following sections, we overview our
efforts and comment on understandings achieved.

3.1 Objectives

We first observe the need to consider more than one objective for an initiative
[33,36]. The reason is that a focus on a single outcome may lead to the identifi-
cation of a local maximum and a possible sub-optimisation of the whole system
[40,42,43]. We next observe that there are many possible objectives, including
the common product-related ones of minimisation of cost and maximisation of
quality, but also including the people-related ones such as ‘increase developer
subject-area knowledge’, ‘retain developers’ or ‘keep a specific customer happy’.
For some of these, an associated numerical value will change throughout the

An Ontological Analysis of a Proposed Theory for Software Development 159

initiative, for example, when spending increases throughout a project. For oth-
ers, the goal is less definitive and a more fuzzy measure may be appropriate,
for example, developer satisfaction levels may be described as ‘Low’, ‘Medium’
and ‘High’ [31]. A third observation is that most software initiatives are charac-
terised by uncertainty [1,48] and this means that values cannot be represented
in a deterministic way. A probabilistic distribution is a more suitable measure
for some kinds of objective [11,39,50]. Our proposal is that a set of objectives
may be modelled by a set of values, the type of value for each depending upon
the nature of the objective. An implementation would involve representing an
objective by a name, a description and a desired value.

Monitoring of progress, i.e. ‘current state’, will involve a consideration of
the current value for each objective in the set. This takes into account the fact
that state values are generally not ‘empty’ at commencement. For example,
developers will have a certain ‘satisfaction’ level at commencement; in a product
line situation, there is an existing code base that is characterised by a level of
quality. While we believe this to be a sound approach, we have as yet taken
this investigation no further i.e. the structure of objectives is an open research
question.

3.2 Process

We view a process as a set of practices. Each Practice has the effect of moving
the initiative closer to (or further away from) its Objectives. We observe that,
in addition to the accepted practices such as ‘design inspection’, our definition
includes anything that has an effect. For example, in a small startup organisation,
an informal, unplanned practice such as ‘chat over lunch’ may be crucial for
supporting the developer’s understanding of what is to be built and is thus an
acceptable ‘practice’ in our model. According to our model, a desired practice is
one that successfully moves the initiative in the right direction. A ‘lean’ process
is one in which every practice is effective.

The space of all possible practices is huge, and includes practices for identi-
fying the target audience for a proposed product and understanding what the
product should do, practices for designing, implementing and delivering the prod-
uct, and practices for supporting product use in the target environment(s). We
clearly need to introduce some structure, but found that the standard reference
models did not suit when attempting to elicit information from individuals in
smaller, less formal organisations [37]. It was clear that, if we wanted to capture
practices-as-implemented-in-the-real-world, some new perspective was required.

Our approach considers what organisations need to achieve at a high level
when involved in a software initiative. Our top-level functional categories are

– Define what is to be made.
– Make it.
– Deliver it.

We extended these categories to be what we believe are the main sub-
categories for software. These are shown in Table 1.

160 D. Kirk and S. MacDonell

Table 1. Categories for practices.

Define Roadmap

Scope

Make Design

Implement

Integrate

Deliver Release

Support

Because we have structured based on function, the categorisation will support
any practice deemed to be relevant for meeting objectives. Informal meetings in
the lunch room that help developers understand scope clearly fit into the ‘scope’
category. We hypothesise that the proposed categorisation addresses all software
practices. A precondition that an objective be met is that each category must
contain one or more effective practices. To illustrate, for a ‘Quality’ objective,
including quality considerations during product design, implementation and inte-
gration will fail to achieve the objective if quality expectations are not included
during scoping. The identification of gaps is straightforward.

The categorisation above does not imply any ordering of practices. Such
ordering would exist at a higher level and might be used to describe strategies
of iteration and incremental delivery. We also submit that the categorisation
is ‘paradigm-agnostic’ — whether an initiative is run in a traditional or agile
way, the basic functions of defining, making and delivering the product must be
carried out. Of note is the fact that the sub-categories ‘Roadmap’ and ‘Support’
lie outside of a traditional development project and sub-categories ‘Scope’ and
‘Release’ relate to practices that span development organisation and client.

Our work on the practices aspect of the proposed theory is embryonic. Test-
ing thus far is limited to a single, exploratory study in which we captured prac-
tices in three New Zealand software organisations [37,38]. We did expose some
interesting areas for further study. For example, all participating organisations
reported a dependence on practices that involved having to actively search for
information, possibly implying some inefficiency as individuals must spend time.
However, the study was exploratory in nature and this is an open research area.

3.3 Context

This represents the most challenging aspect of any theory for software devel-
opment. There have been many attempts to relate project outcomes to spe-
cific contextual factors, for example, [2,10,41,53]. Our main critique of existing
approaches is that they remain factors based [32]. We suggest that such an app-
roach is misguided because

– there are simply too many possible factors to take into consideration, and this
number will increase as new paradigms for software are introduced.

An Ontological Analysis of a Proposed Theory for Software Development 161

– it is unlikely that any two projects will be exactly the same and so under-
standing key factors for some is unlikely to be of use in a general way.

We believe that it is crucial that we develop an operationalisation of context
that will be relevant for all software initiatives i.e. takes into account the situated
nature of a software product throughtout its lifetime. It seems clear that the
required model must comprise a number of orthogonal dimensions in order that
an initiative can be plotted as a point in the dimensional space. In order to
remove the ‘factors-based’ aspect, it is necessary to also find suitable abstractions
for each dimension, abstractions that support a straight-forward identification
of value for a given initiative. For example, rather than define a number of
factors such as ‘developer experience’, ‘developer subject area knowledge’, we
must abstract in such a way as to render it irrelevant if we have missed a factor
out (for example, ‘developer commitment’).

Our first efforts at modelling this space involved a consideration of the dimen-
sions Who, Where, What, When, How and Why [32]. These dimensions have been
applied by others to ensure orthogonality [13,58]. Of course, the usefulness of
the abstraction depends upon the choices about what these dimensions mean.
Our assigned meanings are [34]:

Who: associates with peoples’ ability to perform. Personal characteristics, cul-
ture and group structure are relevant, as these affect levels of understanding
and conceptual sharing.

Where: associates with peoples’ availability. The degrees of temporal and phys-
ical separation are relevant.

What: associates with product characteristics. Standards expectations, product
interfaces and achieved quality are relevant.

When: associates with product life cycle. Examples are in-development, recently
deployed, near retirement [45].

How: associates with engagement expectations. Client and developer expecta-
tions for the mechanisms for product specification and delivery will affect
which practices are most appropriate.

Why: associates with establishing objectives.

We carried out some ‘proof-of-concept’ studies on this model, each involving
categorising contextual factors from a small number of studies from the software
engineering literature [29,34]. These studies caused us to refine our understand-
ing of context in the following ways. In the first instance, it became clear that the
dimension why addresses objectives and is thus not part of a model for context.
We also found that many contextual factors mentioned in the literature are vague
or ambiguous, and so must be clarified prior to categorising. For example, when
considering the commonly-mentioned factor ‘Company size’, we suggest that it
is not size itself that affects practice selection and/or outcomes, but rather what
this means in terms of culture and physical and temporal separation. We labelled
such factors as ‘Secondary’. Some factors, such as ‘requirements uncertainty’,
may be the result of one of a number of possible scenarios. For example, perhaps
the client is not clear about what the product exactly is; perhaps (s)he is simply

162 D. Kirk and S. MacDonell

weak on decision-making; perhaps (s)he is unable to state what is wanted because
of client-internal processes i.e. (s)he is waiting for a decision from someone else.
We cannot know which practices will be effective until we understand which
meaning is relevant. A practice of ‘regular client meetings with prototypes’ will
not help if the client is waiting for someone else. We labelled this kind of factor
as ‘ambiguous’. Finally, we noticed that some factors were more ‘high level’ in
that they could be more usefully viewed as affecting strategy. For example, ‘lack
of funds’ would likely force some consideration about strategy, and the resulting
decision may, in turn, affect objectives and/or context. It might be decided that
the project should be abandoned, that some developers should be removed, or
that a minimal product only should be delivered. We recognise these factors as
Strategic factors and remove from our discussion of context.

Our current status is that, with our refined definition of context, we are
well into a study to categorise contextual factors from the literature into our
dimensional model. Thus far, we have met no obstacles. However, we have as
yet included only literature from the software engineering domain and have
constrained the study to the development project. Although we are optimistic,
there clearly is much scope for research in this area, research that must be carried
out before we can be confident in our proposed structure for context.

4 Ontological Considerations

As a preliminary to investigating the efficacy of our model in the field, we sought
to more deeply understand its constructs from a meaning perspective. In order
to achieve this, we turned to the field of ontology.

Ontology is primarily a long-established branch of philosophy that deals with
the nature and structure of reality [19]. With the more recent growing interest
in the semantic web, the term has been more generally used to represent a
single domain in some knowledge representation language, for example, RDF
and OWL [20]. However, the data modelling community has continued to apply
the term in its more philosophical sense i.e. as a “philosophically well-founded
domain-independent system of formal categories that can be used to articulate
domain-specific models of reality” [20]. The claim is that, unless a domain model
is based on the meaning of the domain concepts, the model will be flawed and
open to mis-interpretation. One implication is that the use of logics for capturing
systems is insufficient because logics do not address meaning. When discussing
classifications of modelling primitives in knowledge representation, Guarino sug-
gests that an ontological level for modelling is required to ensure meaning is
adequately represented [18].

Guizzardi and Wagner suggest that an ontologically sound model is charac-
terised by truthfulness to reality (domain appropriateness) and conceptual clar-
ity (comprehensibility appropriateness) [23]. Without these constraints, a model
may have several interpretations and cause misunderstandings in communica-
tion. These properties can be guaranteed if an isomorphism (one-to-one map-
ping) exists between abstraction and domain models. Specifically, an abstraction
must exhibit:

An Ontological Analysis of a Proposed Theory for Software Development 163

Soundness — each modelling construct maps to a domain construct.
Completeness — each domain construct is represented by a modelling

construct.
Lucidity — each modelling concept represents at most one domain concept.
Laconicity — each domain construct is represented by at most one modelling

construct.

Foundational ontologies are “theoretically well-founded domain-independent
systems of categories that have been successfully used to improve the qual-
ity of conceptual ... models” [23]. They thus enable the description of general
concepts to be used in conceptual modelling. To our knowledge, there are two
main foundational ontologies that have been adopted by the Information Sys-
tems community. Each of these has been applied to expose issues in current
modelling methods. The Bunge-Wand-Weber model is an ontology based on the
work of the philosopher Bunge [9] and adapted by Wand and Weber for use in
information systems [56]. The approach has been applied to expose issues with
the relationship construct in entity-relationship modelling [56], and to analyse
shortcomings in UML [47] and reference models [14]. The Unified Foundational
Ontology (UFO) represents a “synthesis of a selection of foundational ontolo-
gies” with the goal of creating a foundational ontology that is “tailored towards
applications in conceptual modelling” [21]. As the UFO appears to have been
more fully developed, with greater consideration for process-related entities, we
have chosen to use this as a basis for our analysis.

In the next section, we overview the UFO, including only those aspects that
we believe are relevant to this research. In the following section, we categorise
the components of our proposed theory in terms of the UFO.

4.1 Unified Foundational Ontology (UFO)

The Unified Foundational Ontology (UFO) aims to define a range of domain-
independent ontological categories to be used as a basis and elaborated for spe-
cific domains. There are three layered sets [22]:

UFO-A: defines the core set and addresses endurants i.e. entities that do not
depend upon time for identification, for example, a person or a document.

UFO-B: extends UFO-A to include perdurants i.e. entities that are critically
time-dependent, for example, events and processes.

UFO-C: extends UFO-B to include terms relating to intentional and social
things.

Endurants are changed by perdurants. For example, a document may be
altered by the enactment of an editing procedure.

Some relevant terms are introduced below [23]. A fundamental distinction is
made between the categories of Particular (Individual) and Universal (Type).

Particulars (Individuals) are entities that possess a unique identity. Examples
are ‘person’, ‘apple’.

164 D. Kirk and S. MacDonell

Universals (Types) are patterns of features which can be realised in a number
of different particulars. Examples are ‘Person’, ‘Apple’.

Substantials are existentially independent particulars, for example ‘apple’.
Moments are particulars that can exist only in other particulars and are thus

existentially dependent upon them. These relate to the properties or qualities
of a substantial. Examples, are a colour, a symptom.

Intrinsic Moments are dependent upon a single individual, for example, the
colour of a rose.

Relators (Relational Moment) are dependent upon multiple individuals, for
example, an employment. A relator can be viewed as the sum of the moments
(properties) acquired by the participating individuals.

Substance Universals include, for example, ‘Apple’, ‘Person’.
Moment Universals include, for example, ‘Colour’, ‘Headache’.
Relations are universals that glue together other entities, for example, ‘Employ-

ment’.
Material Relations have a material structure, for example, ‘being employed

by’.
Formal Relations hold between two or more entities directly, for example,

‘part-of’.
Quality Structure provides the means for representing intrinsic moments, for

example, a one-dimensional structure for representing ‘height’.
Quale is a point in a quality structure.
Conceptual Space is a collection of quality structures, for example, a ‘Colour’

conceptual space may comprise structures for ‘red’, ‘green’ and ‘blue’.
Mode is an intrinsic moment that can be conceptualised in terms of multiple

separable quality dimensions, for example ‘beliefs’, ‘symptoms’, skills’.

At first glance, it would appear that the UFO-C would also be relevant, as
we are aiming to model a software development initiative and this inherently
includes teams, goals, etc. However, our aim is not to fully describe a software
initiative, but is rather to find an abstraction that will support selection of suit-
able practices. As we consider all contextual aspects as simply affecting practice
efficacy, we have no need of the social aspects covered in UFO-C. In the next
section, we report the results of considerng our proposed abstraction in the light
of the UFO-A and UFO-B.

4.2 Application of UFO to Proposed Theory

The concepts identified above as being relevant for our abstraction are Software
Initiative, Objectives, Context and set of Practice.

In keeping with the convention of naming particulars and universals above, we
use first letter uppercase for naming universal concepts and first letter lowercase
for naming particulars.

We categorise Software Initiative as a substance universal i.e. a type, and
software initiative as a substantial particular i.e. an instantiation.

When considering ‘Objectives’, we notice that objectives are closely bound to
a software initiative i.e. are existentially dependent upon the initiative. We also

An Ontological Analysis of a Proposed Theory for Software Development 165

observe that a software initiative has a current status, which changes as the
initiative progresses and which has the same structure as objectives. It would
seem reasonable to categorise both Objectives and Current Status as properties
of Software Initiative i.e. as moment universals. As these constructs comprise
multiple separable quality dimensions, for example, ‘Time to market’, ‘Developer
satisfaction’, we represent as a mode.

We now consider Practice. We view as a substantial i.e. uniquely identifiable
entity, with properties such as ‘name’, ‘description’ and ‘category’ (see Table 1).
Torres reminds us that “sometimes we become so enamored with our favorite
tools and techniques that we lose sight that they ... have a nominal operating
range” [54]. We recognise that a practice is inherently associated with an oper-
ating specification, for example, ‘client must be available’ or ‘effective change
management for a fast-changing product but not for a stable one’. These con-
straints would be modelled as intrinsic moments of Practice. We observe that
the operating specification relates directly to context, and revisit below.

On considering Context, our first analysis results in viewing as a substantial,
with moments (properties) such as ‘name’ and ‘description’. We have suggested
in Sect. 3.3 that context is ‘made up of’ a number of parts i.e. a who-part,
a where-part, etc. Each of these parts would be represented as a substantial.
A material relation ‘implement practice within a context and software initiative’,
exemplified by a relator entity, let’s say ‘practice implementation’, would then
bind a specific software initiative, practice and context.

However, we noticed in the previous paragraph that a practice’s operating
specification is closely related to the concept of context in that an operating
specification will comprise the same kinds of values as are found in context. If we
view Operating Specification as an intrinsic moment (property) of Practice, we
cannot easily relate this to Context-as-a-Substantial. We are applying different
kinds of modelling construct to model domain constructs that have the same
basis. This would compromise the conceptual clarity of our model.

Another viewpoint is to consider that Context might be better viewed as
an intrinsic moment of Software Initiative i.e. is existentially dependent upon
Software Initiative. However, the moment comes into being only when a practice
is carried out within a software initiative i.e. it is externally dependent upon
the Relation ‘implement practice within a software initiative’ and the associ-
ated relator (relational moment) ‘practice implementation’. To illustrate, the
developer characteristics and lifecycle stage associated with a software initiative
become relevant only in relation to a practice implementation. For example, a
developer may be extremely skilled in playing chess and in designing software
systems, but neither of these is relevant for a task of contract negotiation with
a potential client.

We now have both context and operating specification viewed as intrinsic
properties of substantials. As Context comprises several separable dimensions
(who, when, what, where and how), we model as a mode, each dimension of
which is a quality structure. This supports analysis of whether a practice is
being implemented within its operating constraints.

166 D. Kirk and S. MacDonell

From UFO-B, which extends UFO-A, we can consider the perdurant ‘practice
implementation’ as an event that causes a change of state in its participating
substantials. In our abstraction, change is effected to both current status and
context (both intrinsic moments of software initiative). For example, current
status may have become closer to some objectives and developer experience may
have increased.

In summary, our abstraction is:

Software Initiative is a substantial universal with moment universals Objec-
tives and Current Status. The moments are described as a Software Status
mode. For a specific software initiative, software status comprises the quality
dimensions appropriate for the initiative (for example, cost) and the elements
of each as quales.

Practice is a substantial universal with moment universals Category and Oper-
ating Constraints. The latter has a structure similar to that of Context.

Practice Implementation is a relational moment (relator), relating Software
Initiative and Practice and described as ‘a practice is implemented within
a software initiative’. As a relator, Practice Implementation is characterised
by the properties of the participating substantials that become relevant as a
result of participation in the relationship. The relevant property is Context, a
moment of software initiative. Context is a mode, with dimensions modelled
as quality structures.

4.3 Discussion

We submit that the above abstraction complies with the requirements that a
model be characterised by domain appropriateness and comprehensibility appro-
priateness [23]. We believe the exercise has been beneficial in that the need
for separation of ‘practice’ and ‘practice implementation’ has been exposed. We
have had to think more clearly about the roles of objectives and current sta-
tus. We have exposed a need for the concept ‘operating specification’ and have
considered its link with context.

Although the UFO extension, UFO-C, would appear to be relevant, in that
it includes ideas such as ‘objective’ and ‘intentions’, we submit that, because
we are not trying to describe a software development process, the concepts are
not necessary for our purpose. We wish to more deeply understand how to sup-
port practice selection and at this point believe that the influence of human
attributes can be viewed in the same way as, for example, lifecycle stage for
this purpose. Each of these affects which practices are (contra-)indicated for the
software initiative.

An observation from the above analysis, is that the relational moment context
is dependent upon the participation of a software intiative in a practice imple-
mentation relationship. As noted above, a developer’s experience and location
have meaning only in relation to the task being carried out. The implication is
that discussing a software initiative’s context in general has no meaning. This is
potentially problematic from a practical perspective in that we cannot ascertain

An Ontological Analysis of a Proposed Theory for Software Development 167

practice implementation efficacy without understanding which contextual ele-
ments are relevant and we cannot know which contextual elements are relevant
without considering a practice implementation. We believe the key lies in how
the dimensions of context are abstracted, and this is clearly an area for further
research.

Although our approach has shown benefits, we are clear that this does not
mean our proposed theory is correct or useful i.e. if our abstraction does not
model a software initiative in a way that supports practice selection, its adher-
ence to ontological requirements is irrelevant. Our goal is rather to expose poten-
tial issues with theory structure before embarking on a more extensive and
situated evaluation.

5 Summary

We have proposed an embryonic theory for software development with the aim
of more deeply understanding which practices might be indicated and contra-
indicated within specific contexts. One characteristic of a successful theory is
that opposing viewpoints can be seen as facets of a larger whole. Our conceptu-
alisation must address the traditional versus agile dichotomy. It is not difficult to
see that, as a situated practice is defined simply as a transformation of current
state, many different practices will exist that implement the same kind of trans-
formation. For example, in relation to Table 1, the practices ‘Formally document
requirements’ and XP’s ‘Planning Game’ both result in an increased understand-
ing of what is to be built. However, if we consider the objectives ‘Reliability’
and ‘Increase developer subject area knowledge’, it is likely that the formal doc-
umentation approach will address the former (as non-functional requirements
are an inherent part of formal requirements documents) while ‘Planning Game’
will not. The XP approach may require additional practices to address quality
expectations.

Before embarking on a more exhaustive consideration of the efficacy of our
theory, we deemed it necessary to gain confidence in the proposed constructs
from a ‘meaning’ perspective and have completed a preliminary ontological
analysis. When mapping the theoretical constructs to constructs in the UFO
(Unified Foundational Ontology), we identified Software Initiative and Practice
as basic entities, understood that a relator entity ‘Practice Implementation’ is
required and established that Objectives and Context can be represented as
multi-dimensional modes. We believe our analysis has been of benefit in that
we now have a mechanism for associating a software initiative’s objectives and
current state and a practice’s operating constraints and implementation context.

In summary, we have presented an overview of the theoretical approach we
have been pursuing for several years and a report of our recent ontological analy-
sis. Our work is in-embryo. Our contribution is that we are making an honest
attempt to tackle an extremely difficult problem, and have set a new direction
for exploration. We believe we have made pockets of progress in some areas.
Our hope is that the efforts we have made thus far will be used as a starting

168 D. Kirk and S. MacDonell

point for other researchers. We submit that, if the community does not take
the theory-building initiative seriously, we are doomed to endless cycles of ‘new’
process paradigms and architectures, each of which has some merit and many
shortfalls.

References

1. Atkinson, R., Crawford, L., Ward, S.: Fundamental uncertainties in projects and
the scope of project management. Int. J. Proj. Manage. 24, 687–698 (2006)

2. Avison, D., Pries-Heje, J.: Flexible information systems development: designing
an appropriate methodology for different situations. In: Filipe, J., Cordeiro, J.,
Cardoso, J. (eds.) Enterprise Information Systems: 9th International Conference,
ICEIS 2007. LNBIP, pp. 212–224. Springer, Heidelberg (2008)

3. de Azevedo Santos, M., de Souza Bermejo, P.H., de Oliveira, M.S., Tonelli, A.O.:
Agile practices: an assessment of perception of value of professionals on the quality
criteria in performance of projects. J. Softw. Eng. Appl. 4, 700–709 (2011)

4. Bajec, M., Vavpotic, D., Krisper, M.: Practice-driven approach for creating project-
specific software development methods. Inf. Softw. Technol. 49, 345–365 (2007)

5. Basili, V.R., Rombach, H.D.: Tailoring the software process to project goals and
environments. In: Proceedings of the Ninth International Conference on Software
Engineering, pp. 345–357. IEEE, IEEE Computer Society Press (1987)

6. Basili, V.R., Shull, F., Lanubile, F.: Building knowledge through families of exper-
iments. IEEE Trans. Softw. Eng. 25(4), 456–473 (1999)

7. Beck, K.: eXtreme Programming eXplained - Embrace Change. Addison-Wesley,
USA (2000)

8. Boehm, B.W.: A spiral model of software development and enhancement. IEEE
Comput. 21(5), 61–71 (1988)

9. Bunge, M.A.: Treatise on Basic Philosophy 3. Ontology 1: The Furniture of the
World. D. Reidel Publishing Company, Dordrecht (1977)

10. Clarke, P., O’Connor, R.V.: The situational factors that affect the software devel-
opment process: towards a comprehensive reference framework. Inf. Softw. Technol.
54, 433–447 (2012)

11. Connor, A.: Probabilistic estimation of software project duration. N. Z. J. Appl.
Comput. Inf. Technol. 11(1), 11–22 (2007)

12. Cusumano, M., MacCormack, A., Kemerer, C., Crandall, B.: Software development
worldwide: the state of the practice. IEEE Softw. 20(6), 28–34 (2003)

13. Dyb̊a, T., Sjøberg, D.I., Cruzes, D.S.: What works for whom, where, when and
why? on the role of context in empirical software engineering. In: Proceedings of the
6th International Symposium on Empirical Software Engineering and Measurement
(ESEM 2012), Lund, Sweden, pp. 19–28, September 2012

14. Fettcke, P., Loos, P.: Ontological evaluation of reference models using the Bunge-
Wand-Weber model. In: Proceedings of the Ninth Americas Conference on Informa-
tion Systems (AMCIS 2003), pp. 2944–2955. Association for Information Systems
(2003)

15. Fitzgerald, B.: The use of systems development methodologies in practice: a field
study. Inf. Syst. J. 7, 201–212 (1997)

16. Gilmore, D.J.: Methodological issues in the study of programming. In: Hoc, J.M.,
Green, T., Samurcay, R., Gilmore, D. (eds.) Psychology Of Programming, pp. 83–
98. Academic Press Ltd., London (1990)

An Ontological Analysis of a Proposed Theory for Software Development 169

17. Gregor, S.: The nature of theory in information Systems. MIS Q. Manage. Inf.
Syst. 30(3), 611–642 (2006)

18. Guarino, N.: The ontological level: revisiting 30 years of knowledge representa-
tion. In: Borgida, A.T., Chaudhri, V.K., Giorgini, P., Yu, E.S. (eds.) Conceptual
Modeling: Foundations and Applications. LNCS, vol. 5600, pp. 52–67. Springer,
Heidelberg (2009)

19. Guarino, N., Oberle, D., Staab, S.: What is an Ontology? In: Staab, S., Studer, R.
(eds.) Handbook on Ontologies. International Handbooks on Information Systems,
vol. 4171, pp. 1–17. Springer, Heidelberg (2009)

20. Guizzardi, G., Falbo, R., Guizzardi, R.S.: Grounding Software Domain Ontolo-
gies in the Unified Foundational Ontology (UFO): The case of the ODE Soft-
ware Process Ontology. http://www.inf.pucrio.br/∼cibse/CIBSEPapers/artigos/
artigos IDEAS08/13 paper 58 GiancarlGuizzardi-fmra.pdf (2008)

21. Guizzardi, G., Wagner, G.: A Unified Foundational Ontology and some Applica-
tions of it in Business Modeling. http://ceur-ws.org/Vol-125/paper2.pdf

22. Guizzardi, G., Wagner, G.: Towards ontological foundations for agent modelling
concepts using the unified fundational ontology (UFO). In: Bresciani, P., Giorgini,
P., Henderson-Sellers, B., Low, G., Winikoff, M. (eds.) AOIS 2004. LNCS (LNAI),
vol. 3508, pp. 110–124. Springer, Heidelberg (2005)

23. Guizzardi, G., Wagner, G.: Using the unified foundational ontology (UFO) as a
foundation for general conceptual modeling languages. In: Poli, R., Healy, M.,
Kameas, A. (eds.) Theory and Applications of Ontology: Computer Applications,
Chap. 8, pp. 175–196. Springer, Heidelberg (2010)

24. Hannay, J.E., Sjøberg, D.I.K., Dyb̊a, T.: A systematic review of theory use in
software engineering experiments. IEEE Trans. Softw. Eng. 33(2), 87–107 (2007)

25. Hansson, C., Dittrich, Y., Gustafsson, B., Zarnak, S.: How agile are software devel-
opment practices? J. Syst. Softw. 79, 1295–1311 (2009)

26. Jacobson, I., Seidewitz, E.: A new software engineering. Commun. ACM 57(12),
49–54 (2014)

27. Jacobson, I., Meyer, B., Soley, R.: Software Engineering Method and Theory
(2013). http://www.semat.org

28. Jacobson, I., Spence, I., Ng, P.W.: Agile and SEMAT - perfect partners. Commun.
ACM 56(11), 53–59 (2013)

29. Kirk, D., MacDonell, S.G.: Categorising software contexts. In: Proceedings of 20th
Americas Conference on Information Systems, AMCIS 2014 (2014). http://aisel.
aisnet.org/amcis2014/Posters/ITProjectManagement/8/

30. Kirk, D.: A Flexible Software Process Model. Ph.D. thesis, University of Auckland,
Auckland, New Zealand (2007)

31. Kirk, D., MacDonell, S.: A simulation framework to support software project
(re)planning. In: Proceedings of the 35th Euromicro Conference on Software Engi-
neering Advanced Applications (SEAA), pp. 285–292. IEEE Computer Society
Press (2009)

32. Kirk, D., MacDonell, S.: A model for software contexts. In: Proceedings of the
Eighth International Conference on Evaluation of Novel Approaches in Software
Engineering (ENASE 2013), pp. 197–204, July 2013

33. Kirk, D., MacDonell, S., Tempero, E.: Modelling software processes - a focus on
objectives. In: Proceedings of the 24th ACM SIGPLAN Conference Companion on
Object Oriented Programming Systems Languages and Applications (OOPSLA),
Session: Onward Short Papers Session 2, pp. 941–948. ACM Press, Orlando (2009)

http://www.inf.pucrio.br/~cibse/CIBSEPapers/artigos/artigos_IDEAS08/13_paper_58_GiancarlGuizzardi-fmra.pdf
http://www.inf.pucrio.br/~cibse/CIBSEPapers/artigos/artigos_IDEAS08/13_paper_58_GiancarlGuizzardi-fmra.pdf
http://ceur-ws.org/Vol-125/paper2.pdf
http://www.semat.org
http://aisel.aisnet.org/amcis2014/Posters/ITProjectManagement/8/
http://aisel.aisnet.org/amcis2014/Posters/ITProjectManagement/8/

170 D. Kirk and S. MacDonell

34. Kirk, D., MacDonell, S.G.: Investigating a conceptual construct for software con-
text. In: Proceedings of the Conference on Empirical Assessment in Software Engi-
neering (EASE), no. 27 (2014)

35. Kirk, D., Tempero, E.: Proposal for a flexible software process model. In: Pro-
ceedings of the 5th International Workshop on Software Process Simulation and
Modeling (ProSim 2004), Edinburgh, Scotland (2004)

36. Kirk, D., Tempero, E.: A conceptual model of the software development process.
In: Proceedings of the 6th International Workshop on Software Process Simulation
and Modeling (ProSim 2005), Fraunhofer IRB, St. Louis, Missouri (2005)

37. Kirk, D., Tempero, E.: A lightweight framework for describing software practices.
J. Syst. Softw. 85(3), 581–594 (2012)

38. Kirk, D., Tempero, E.: Software development practices in New Zealand. In: Pro-
ceedings of the Nineteenth Asia-Pacific Software Engineering Conference (APSEC
2012), pp. 386–395, Hong Kong, December 2012

39. Kitchenham, B., Linkman, S.: Estimates, uncertainty and risk. IEEE Softw. 14(3),
69–74 (1997)

40. Kitchenham, B.A., Pfleeger, S.L., Hoaglin, D.C., El Emam, K., Rosenberg, J.:
Preliminary guidelines for empirical research in software engineering. IEEE Trans.
Softw. Eng. 28(8), 721–734 (2002)

41. Kruchten, P.: Contextualizing agile software development. J. Softw. Evol. Process
25(4), 351–361 (2013)

42. Lakey, P.B.: A hybrid software process simulation model for project management.
In: Proceedings of the 2003 International Workshop on Software Process Simulation
and Modeling (ProSim 2003), Portland, Oregan, U.S.A. (2003)

43. Lehman, M.: Process modelling - where next. In: Proceedings of the 1997 Confer-
ence on Software Engineering. IEEE Computer Society Press (1997)

44. MacCormack, A., Crandall, W., Henderson, P., Toft, P.: Do you need a new
product-development strategy? Res. Technol. Manage. 55(1), 34–43 (2012)

45. MacDonell, S., Kirk, D., McLeod, L.: Raising healthy software systems. In: The
4th International ERCIM Workshop on Software Evolution and Evolvability (Evol
2008). The European Research Consortium for Informatics and Mathematics
(ERCIM), L’Aquila, Italy, pp. 21–24. IEEE Computer Society Press (2008)

46. Naur, P., Randell, B.: NATO Software Engineering Conference 1968. Conference
report, NATO Science Committee (1969), Report on a conference sponsored by
the NATO SCIENCE COMMITTEE held in Garmisch, Germany, October 1968

47. Opdahl, A.L., Henderson-Sellers, B.: Ontological evaluation of the UML using the
Bunge-Wand-Weber model. Softw. Syst. Model. 1(1), 43–67 (2002)

48. Perminova, O., Gustaffson, M., Wikstrom, K.: Defining uncertainty in projects a
new perspective. Int. J. Proj. Manage. 26, 73–79 (2007)

49. Petersen, K., Wohlin, C.: A comparison of issues and advantages in agile and
incremental development between state of the art and an industrial case. J. Syst.
Softw. 82, 1479–1490 (2009)

50. Rao, U.S., Kestur, S., Pradhan, C.: Stochastic optimization and modeling and
quantitative project management. IEEE Softw. 25, 29–36 (2008)

51. Sjøberg, D.I., Dyb̊a, T., Anda, B.C., Hannay, J.E.: Building theories in software
engineering. In: Shull, F., et al. (eds.) Guide to Advanced Empirical Software
Engineering, pp. 312–336. Springer, London (2008)

52. Stol, K., Fitzgerald, B.: Uncovering theories in software engineering. In: Proceed-
ings of the 2nd Workshop on Grand Theory in Software Engineering (GTSE 2013),
Colocated with ICSE 2013, San Francisco, USA, pp. 5–14 (2013)

An Ontological Analysis of a Proposed Theory for Software Development 171

53. Stuckenberg, S., Heinzl, A.: The impact of the software-as-a-service concept on
the underlying software and service development processes. In: Proceedings of the
2010 Pacific Asia Conference on Information Systems (PACIS 2010), pp. 1297–1308
(2010). http://aisel.aisnet.org/pacis2010/125

54. Torres, F.: Context is King; what’s your software’s operating range. IEEE Softw.
32, 9–12 (2015)

55. Turner, R., Ledwith, A., Kelly, J.: Project management in small to medium-sized
enterprises: matching processes to the nature of the firm. Int. J. Proj. Manage. 28,
744–755 (2010)

56. Wand, Y., Storey, V.C., Weber, R.: An ontological analysis of the relationship
construct in conceptual modeling. ACM Trans. Database Syst. 24(4), 494–528
(1999)

57. Wieringa, R.: Requirements researchers: are we really doing research? Require-
ments Eng. 10, 304–306 (2005)

58. Zachman, J.A.: Engineering the Enterprise: The Zachman Framework for
Enterprise Architecture (2009). http://www.zachmaninternational.com/index.
php/the-zachman-framework

http://aisel.aisnet.org/pacis2010/125
http://www.zachmaninternational.com/index.php/the-zachman-framework
http://www.zachmaninternational.com/index.php/the-zachman-framework

Software Engineering and Applications

Specifying Business Process Outsourcing
Requirements

Mouna Rekik1,3(B), Khouloud Boukadi1,3, and Hanene Ben-Abdallah2,3

1 Sfax University, Sfax, Tunisia
mouna.isims@gmail.com

2 King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
3 Mir@cl Laboratory, Sfax, Tunisia

Abstract. Outsourcing enterprises’ data, business processes and appli-
cations to the Cloud is emerging as a major trend thanks to the Cloud
offerings and features. Basically, enterprises expect when outsourcing to
save cost, improve software and hardware performance and gain more
flexibility by responding to the dynamic customers’ requirements. How-
ever, adopting the Cloud as an alternative environment for the manage-
ment of the business processes leads to a radical change in the enterprise
IT infrastructure. Furthermore, additional challenges may appear such
as data security, vendor-lock-in and labor union rendering the outsourc-
ing decision require a deep analysis and knowledge about the business
processes context. Assisting enterprises’ experts in the business process
outsourcing to the Cloud decision is the focus of this paper: it extends the
BPMN 2.0 language to explicitly support the specification of outsourcing
concepts, and it presents an automated approach to help decision mak-
ers identify those parts of their business process that benefit most from
outsourcing to the Cloud. Using this extension helps also in identifying
Cloud services considered as the most suitable to support the outsourced
business process requirements.

Keywords: Business process outsourcing · Cloud computing · BPMN
extension · Genetic algorithm

1 Introduction

Face to the increasingly stringent business competition, small and medium size
enterprises strive to excel in the marketplace by adopting different strategies
and solutions. Outsourcing their business processes has been among the most
widely adopted strategies [20]. Business Process Outsourcing (BPO) is seen as
a means to save costs, improve the business process performance and make it
more flexible, etc. These advantages along with others explain the exponentially
growing number of manufacturers which are outsourcing substantial parts of
their supply chain processes to outside contractors [1].

In the recent years, the Cloud became the most chosen outsourcing environ-
ment. Indeed, according to the National Institute of standards and technology
c© Springer International Publishing Switzerland 2016
P. Lorenz et al. (Eds.): ICSOFT 2015, CCIS 586, pp. 175–190, 2016.
DOI: 10.1007/978-3-319-30142-6 10

176 M. Rekik et al.

(NIST) [12], Cloud computing is a model for enabling convenient, on-demand
network access to a shared pool of configurable computing resources that can
be rapidly provisioned and released with minimal management effort or service
provider interaction. It is a pay-as-you-go model providing customers with the
possibility of using its various offerings and pay only for the used resources.
When thinking about the suitability of BPO, business experts must address sev-
eral issues to properly choose those parts of the business process to outsource.
This explains the fact that enterprises decision makers spend almost 80 % of
their time to decide about the suitability to outsource theur business processes
[20]. Indeed, BPO affects and depends on several aspects of an enterprise: social,
economic, legal, and IT (information technology) aspects. To make a judicious
outsourcing decision, business experts must have a clear specification of each of
these aspects; we believe that such specification should be through a set of val-
ued criteria integrated as much as possible with the business process model. For
example, it is easier to delimit the social/economic/IT effects of an outsourcing
decision when the business expert has an explicit description of the personnel in
charge, costs and IT requirements of each business activity. Currently available
business process modeling languages, and in particular the standard BPMN [13],
do not provide for most of these criteria; this is justified by the fact that these
languages’ primary concern is the business modeling and not the outsourcing.

To overcome this expressive power shortage, this paper proposes OutyBPMN,
a lightweight BPMN extension for the specification of outsource-ability charac-
teristics of business processes. Because our research work deals with the Cloud
as an outsourcing environment, OutyBPMN extends BPMN with outsourcing
concepts pertinent to the Cloud, e.g., cost as cloud may be a pertinent solu-
tion to save overhead cost, security to prevent outsourcing sensitive data, etc.
In a second contribution, this paper presents an automated approach that uses
OutyBPMN to identify the business process parts that benefit most from out-
sourcing to the Cloud. The identification is in fact a multi-objective optimization
problem that can be resolved through evolutionary algorithms such as genetic
algorithms, neuroevolution, genetic programming, etc. [3]. The herein presented
approach applies the penalty based genetic algorithm [8] to select the activities
candidate to outsourcing according to the criteria specified in OutyBPMN. Ini-
tially randomly selected activities are generated as potential solutions. According
to their quality, only best ones are kept from generation to another allowing thus
to keep solutions that best meet specified criteria. Using the proposed extension
helps also in identifying Cloud services considered as the most suitable to support
the outsourced business process requirements.

The remainder of this paper is structured as follows. Section 2 enumerates
the criteria pertinent to business process outsourcing to the Cloud. Section 3
presents how OutyBPMN extends BPMN to provide for the explicit specification
of these criteria. Section 4 presents the proposed solution design whose evaluation
is discussed in Sect. 5. Section 6 summarizes the work status and highlights its
extensions.

Specifying Business Process Outsourcing Requirements 177

2 Business Process Outsourcing Criteria

BPO is the process of delegating one or more ITintensive business processes
to third parties that may perform the business process more effectively and effi-
ciently. Deciding whether to outsource ones business process is not a trivial task.
To assist with the outsourcing decision making, [20] suppose that a set of poten-
tial determinants have been gathered from experts. Indeed, enterprises expect
from the outsourcing to save costs, focus on core competence and gain flexibil-
ity in management. Other dimensions may urge enterprises to outsource their
business processes such as speeding the time to market and improving service
quality [11]. Despite these advantages, some drawbacks may prevent enterprises
from outsourcing their business processes. BPO inconveniences are related to
security issues, loss of management control, and vendor’s service quality. In fact,
cost saving is not always guaranteed owing to an inadequate business case or
the inability to predict all business requirements. Moreover, security concerns,
loss of control and vendor lock-in are among risks that may prohibit enterprises
from outsourcing their business processes. More detailed risks are exposed in the
research elaborated by [6]. A judicious outsourcing decision needs to fix a set
of criteria that can help decision maker in weighing the pros and cons of each
outsourcing solution. In the next sections, we provide a detailed definition for
the most important set of criteria that are widely considered when outsourcing
business processes to the Cloud.

2.1 Cost Saving

Almost all researchers and practitioners, agree on the fact that cost saving is
the most determinant factor that attracts enterprises to outsource their related
business processes. In their analysis of data collected from trade reports, [16]
showed that outsourcing may yield a cost saving of 20 %. [20] argue that out-
sourcing is guided essentially by overhead costs; that is, parts of a business
process to be outsourced are selected by ascertaining firstly how much money
they may save. To calculate the cost of a business process, one should have a
knowledge about expenditure of setting up, executing and monitoring each of
its a tasks/activities. An activity’s cost is calculated essentially by investigating
on expenditure related to its enactment cost (EC) and realization cost (RC).
The former corresponds to the cost necessary for achieving essential steps in the
business process management life-cycle starting from its design to the monitor-
ing of its behavior. The latter corresponds however, to the data transfer rate,
transaction, or pre-payment for a period of time [17].

2.2 Focus on Core Competence

Focusing on core competencies means that enterprises are spending financial
expenditure and business efforts on activities expected to bring competitive
advantage. As stated by Tom Peters, an expert in the outsourcing area, an
enterprise should follow the rule of “Do what you do best and outsource the

178 M. Rekik et al.

rest” [18]. The activities which are typical for outsourcing are those considered
as noncore. More specifically, the less strategic the activity is, the more likely
it can be outsourced. In this sense, business activities can be categorized into
three types according to their strategic importance, listed from most to least
critical:Core competence, critical noncore and noncritical noncore. Although the
general attempts when outsourcing is to delegate noncore activities/processes
to external provider, some enterprises are trying to outsource also some of their
related core business processes [19].

2.3 Security Concerns

When outsourcing its business processes, an enterprise should be aware about
risks that may lead to undesirable outcome. Security concerns are the most
prominent factor that may prohibit enterprises from outsourcing to external
provider [20]. This concern is due to the fact that service providers have control
over the outsourced activities including those dealing with the confidential data
of costumers. This risk increases when the service provider lacks the means to
encrypt data of outsourcing enterprises [6]. Moreover, the Internet-based con-
nectivity between the outsourcing enterprise and its service provider can present
vulnerabilities of unauthorized access to personal data, intrusion and hackers. To
overcome this situation, an outsourcing enterprise should think to keep confiden-
tial business data or activities dealing with high level security data in premise.
This way, it will be sure that vital information and data are secured and pro-
tected [14]. It is worth noting that, in spite of the existence of multitude solutions,
security issues still remain a serious problem when outsourcing due to lack of
trust in service providers.

2.4 Quality Improvement

Besides cost reduction, outsourcing relies on the hypothesis that the service
providers are capable of performing the outsourced activities more efficiently and
effectively. The satisfaction of this hypothesis presumably leads to an increased
customer satisfaction [5]. Indeed, the majority of outsourcing cases are elabo-
rated after making sure that the quality of the services provided by the external
party is better compared to internal outcomes [20]. In addition, outsourcing
enterprises may benefit from external expertise as the service supplier may have
skills, platforms specialists and technical staff for enacting business processes;
the outsourcing enterprise is often unable to provide such human resources.

3 BPMN 2.0 Extension with Outsourcing Concerns

Business processes are devoted to present the workflow of activities within enter-
prises. In a service oriented architecture, the business process is considered as a
set of logically interrelated services. In this context each service is supposed to
perform an activity [17]. Modeling a business process is considered as a means

Specifying Business Process Outsourcing Requirements 179

to improve the way of the business process operation. In general, the promi-
nence of modeling processes is due to the possibility it offers for sharing knowl-
edge between enterprise stakeholder which allows to work harmoniously towards
goals [4]. Several number of process modeling languages and notations have been
emerged in the aim to assist enterprises in the documentation and presentation
of their processes. However, BPMN (Business Process Modeling Notation) [13]
is considered as the de facto standard [15] approved by ISO/OSI [9]. BPMN
is defined by OMG in order to make the understanding of business processes
easier from business analysts to technical developers. Its elements can be clas-
sified into five categories: Data, Flow Objects, Connection Objects, Swimlanes
and Artifacts; we refer readers to [13] for more details. BPMN2.0 introduces
an extensibility mechanism for extending standard BPMN elements with addi-
tional attributes and elements to specify a specific need. The BPMN2.0 extension
consists essentially on four different elements which are: Extension, ExtensionDe-
finition, ExtensionAttributeDefinition, and ExtensionAttributeValue. The
ExtensionDefinition class defines additional attributes, however ExtensionAt-
tributeDefinition presents the list of attributes that can be attached to any
BPMN element. ExtensionAttributeValue contains attribute value. Finally the
extension element imports the ExtensionDefinition and its related attributes
to a BPMN model definition. Several works focus on the BPMN extension for
different purposes. In fact, the extension allows to give additional comprehen-
sion for business process models. Moreover, adding new concepts to business
process modeling allows to switch the way to use the BPMN from the contem-
plative manner to the productive one by automating the analysis of the busi-
ness process or even its implementation [2]. In this context, [15] presents a new
extension of BPMN to incorporate security requirements to business process
diagrams. Additionally, the adding of the quality of service into the business
process modeling is considered in [17]. Despite the multitude researches dealing
with business process extension, there is no work which deals with the extension
of BPMN for outsourcing concerns. In our elaborated extension, we propose a
generic concepts that helps experts to decide the suitability of BPMN elements
to be outsourced such as cost, business criticality, security and specific concepts
such as the location side concept (in premise, in the cloud) and defaulting ser-
vice concept as we aim to enhance the web service quality by enacting it in the
Cloud environment. Furthermore, the extension specifies the business processes
features requirements which enable to identify which Cloud service is most suit-
able for supporting the outsourced part. For instance, when enterprise decide
to outsource its related databases to Cloud services, the programming language,
the schema, and the database model should be compliant so the business process
enactment will be held in the best circumstances. This paper adopts BPMN2.0 to
support the aforementioned outsourcing concerns. Figure 1 presents the proposed
class diagram corresponding to the meta model used for illustrating the outsourc-
ing concerns. The outsourcing concerns class presents the ExtensionDefinition
class containing extension attributes classes which are: Cost, BusinessCritical-
ity, SecurityLevel and DefaultingService. Another class presenting the feature

180 M. Rekik et al.

requirements is proposed specifying the hardware and software features for the
business process enactment. It is straightforward to mention that the enterprise
aim when outsourcing is to keep as much as possible the same programming
language and the databases model so to avoid any compliancy problems.

These latter classes present the ExtensionAttributeDefinition illustrated in
details in Fig. 2.

The extension proposed is intended for adding new concepts to the activity
element as our aim is to identify then which activities are the most suitable for
outsourcing. The activity is the generic term for work that enterprise performs.
Table 1 presents the graphical representation of the extensions over activity ele-
ment and their corresponding description. Only information about location side
(in premise/in cloud) are designed to be on the pool element. In fact, we aim
to group activities selected to be outsourced into one BPMN element which is
the pool. The implementation of the proposal is done using Eclipse Modeler as
a tool.

4 Outsourced Activity Identification

Our work aims to find a good solution corresponding to the appropriate set of
activities suitable for outsourcing respecting the enterprise experts preferences.
These latter are specified in OutyBPMN. Our solution search adopts penalty
based genetic algorithm. In this section, we first present the problem model.
Secondly, we present our algorithm for the identification of activities to be out-
sourced. A report on the algorithm performance is presented in Sect. 5.

Fig. 1. Outsourcing concerns extension metamodel [13].

Specifying Business Process Outsourcing Requirements 181

Fig. 2. OutyBPMN metamodel: BPMN2.0 extensions with outsourcing concerns.

4.1 Problem Formulation

The input to our search algorithm is an OutyBPMN model identifying in par-
ticular, the following activities:

– Expensive when executed in premise compared to when executed in the cloud;
– Noncore;
– Handling and processing non sensitive data;
– Presenting a defaulting behavior when executed as a service within the enter-

prise.

To look for an optimal set of activities best outsourced, we will use the following
problem formulation:

1. A = {A1, A2, A3, ..., An} is a set of activities composing the business process.
2. The weights for outsourcing concerns, W1,W2, W3 and W4 for Cost (C), Busi-

ness Criticality (BC), Defaulting Service (DS), and the number of activities
composing the solution (L) respectively.

4∑

k=1

Wk = 1 (1)

3. S = {S1, S2, S3, ..., Sn} is a set of security constraints imposed on data handled
by corresponding activities.

182 M. Rekik et al.

Table 1. Extensions graphics for BPMN elements.

Graphical extension Description

This icon means that experts should precise the business criticality, namely the
activity is core {high level of business criticality}, critical noncore {medium
level of business criticality} or noncritical noncore {low level of business criti-
cality}. To simplify for users, one can precise the level of criticality by choosing
one of proposed graphics presented in the last row of this table.

IT and business experts should collaborate to identify whether the activity han-
dle confidential data or not. The security graphic is used when experts observe
that the activity proceed sensitive data .

In the context of this paper, IT experts should precise the cost of the hardware
supporting the activity. More specifically, experts should be able to present in
detail required expenditure of hardware maintenance, monthly bills, and all cor-
responding costs for realizing an activity. These information will help next to
compare between financial cost of executing the activity in premise and in the
cloud. Techniques used for calculating two prices is out of this paper scope.
However, based on the difference between two prices, experts can categorize the
cost of doing the activity internal {high,medium,low}.

As previously said, among potential determinants urging enterprises to out-
source their business processes, is the need to improve service quality. As we fo-
cus on business processes running within Small and Medium Enterprises (SME)
that lack sufficient IT expertise, cost and required determinants for well realizing
their business processes, we decide to choose defaulting services most suitable
for outsourcing. Defaulting services are those have leading to the degradation of
the business process performance, more specifically, those preventing business
processes from attaining their goals. Discovering defaulting services is done in
our previous work. We use ”defaulting service” term and ”activities presenting
a default behavior when executed as service” interchangeably to refer the same
thing.

Whenever the algorithm of selecting appropriate activities to be outsourced is
done, experts should analyze results and precise on each activity its location
side {in premise, in the cloud}.

IT developers are supposed to indicate to indicate the programming language of
business processes fractions whenever they notice the importance of this infor-
mation.

These graphics help experts to specify level of importance of the extended ele-
ments (business criticality, security, and cost). They refer respectively to, high ,
medium and low level.

Our aim is to give a set A’ of activities that are most suitable for outsourcing
where A’⊂ A. We should notice all the process may merit to be outsourced
which make A’ = P where P is the entire business process although it is not a
preferable case. A’ is selected according to the fitness function (4).

Specifying Business Process Outsourcing Requirements 183

We convert the optimization problem from a multi-objective to single objec-
tive one by assigning weights to each objective function composing the func-
tion (2).

Max F′ = W1 ∗ F ′
1(A

′) + W2 ∗ F ′
2(A

′) + W3 ∗ F ′
3(A

′) + W4 ∗ F ′
4(A

′) (2)

where

– F ′
1(A

′) =
∑N

i=1 C(ai)

N

– F ′
2(A

′) =
∑N

i=1 BC(ai)

N

– F ′
3(A

′) =
∑N

i=1 DS(ai)

N

F ′
4(A

′) =

{
1 + ((N−N ′)

(N ′−1)) if 1 < N < N ′

1 − ((N−N ′)
(L(P)−N ′)) if N ′ < N < L(P)

(3)

– ai is an activity that belongs to A’.
– N is the number of activities composing the solution A’.
– N’ is the preferred length of the solution A’. This metric is added to F ′

4 to
prevent foster solutions having greater number of activities. The value of this
metric is automatically calculated by counting the number of activities having
a defaulting behavior when executed as services and not dealing with sensitive
data.

– L(P) is the number of activities composing the process.

4.2 Implementation of Genetic Algorithm to Select Suitable
Activities for Outsourcing

Genetic algorithms (GAs) [6] are evolutionary algorithms. Their main idea is to
simulate the evolution of population composed of diversified individuals. These
individuals are subject to operations such as recombination and mutation allow-
ing thus, by selecting best individuals, to enhance the population quality. Choos-
ing to work with GA is due to the fact that it allows to find solutions which best
meet different criteria. The genetic algorithm presents solutions as individuals in
a population that varies each time its quality is enhanced. The individuals com-
posing a population vary when undergoing a set of operations such as crossover
and mutation. Their quality is evaluated using a fitness function.

Individuals Encoding. To find out suitable solutions for the optimization
problem, appropriate encoding of individuals is necessary. First of all, we should
note that individuals composing a population have variable lengths. Each gene,
composing an individual, corresponds to an integer referring an activity that
belongs to the business process. Figure 3 presents examples of individuals
encoding.

184 M. Rekik et al.

Fig. 3. Individuals encoding.

Infeasible Solutions. In our research case, some solutions are infeasible as
they violate security constraint. An individual may be composed of one or more
activities handling sensitive data, we consider each activity dealing with sensitive
data as a constraint violation.

Crossover and Mutation. We apply in our proposal the crossover and the
mutation operations. We adopt the classical one-point crossover to generate each
time two offsprings. Concerning the mutation operator, we have use it in three
different ways:it can select randomly a position in the individual and replace it
by another activity, add an activity, or delete existing one. An additional control
should be done in this level to prevent repeating the same activity within an
individual.

Fitness Function. An individual composed of activities requiring securing their
data is considered as infeasible. To guaranty that GA reaches an optimal or near-
optimal solution, these infeasible individuals should be kept as their presence is
essential in the building of solutions. Thus, the idea is to give a penalty to fitness
values relative to infeasible solutions. This leads to lower fitness values compared
to those corresponding to feasible solutions. Moreover, infeasible solutions hav-
ing more activities requiring security are more harshly penalized. This process
helps to reenforce the presence of feasible solutions and the disappearance of the
infeasible ones from generation to another. The Eq. (4) presents the definition
of the fitness function.

Fitness(X) =
{
F ′ ∗ 0, 5 + 0, 5 if v(X) = 0
F ′ ∗ 0, 5 − (0, 1 ∗ v(X)/vmax) otherwise (4)

F’ is the objective function presented in Sect. 4, v(X) presents the total number
of activities composing an individual requiring security, and vmax stands for
the total number of activities requiring security in the entire business process.
The presented fitness guaranties that infeasible solutions have always less fitness
values compared to feasible ones.

Specifying Business Process Outsourcing Requirements 185

5 Experiment and Result

We applied the penalty based genetic algorithm using Java as a development
language. Simulations were conducted on a laptop computer with 2.5 GHz Intel
Core i7 CPU and 4 GB RAM.

The business process illustrated in Fig. 4 presents an example of a case study
that we analyzed. As shown, the business process is composed of 13 activities.
The suitable activities appropriate for outsourcing is unknown rendering the
research space huge despite that experts define the preferred number of activities
to be outsourced. Preferred number of activities to be outsourced in this example
is 4 (the number of activities presenting defaulting behavior when executed as
services and not requiring security constraints). As shown, three activities require
high level of security which are: 2, 4, and 7. Individuals encompassing one or
more of these three activities are penalized but they still present solutions of our
problem. The evaluation of our penalty based GA is twofold: we evaluated firstly
the performance of our genetic algorithm and then we verified the pertinence of
the results. A comparison between our algorithm and a greedy algorithm was
also elaborated in terms of performance and the pertinence of results.

5.1 Experiment A

Table 2 presents parameters values we used to experiment our algorithm. We
evaluate the validity of our penalty based genetic algorithm by comparing its
time cost in different computing scale. We begin by observing the execution
time consumed by our algorithm when increasing the number of constraints.
Figure 5 shows that the number of constraints influences the execution time of the
algorithm which can be explained by the additional number of treatment to be

Fig. 4. The business process used for the evaluation of the proposed GA.

186 M. Rekik et al.

Fig. 5. The execution time consumed when increasing the number of constraints.

Fig. 6. The execution time consumed when increasing the number of activities.

Table 2. Parameters used for our penalty based genetic algorithm.

Parameters Description

Population size 50

Selection technique Tournament selection

Termination condition Number of generation = 100

Crossover probability 0.5

Mutation probability 0.015

done. The number of activities composing a business process increases the time
of execution as shown in Fig. 6. We compared our genetic algorithm with another
optimization algorithm namely the greedy algorithm [10]. Greedy algorithms are
known by their ability to find quickly solutions. Generally, generated solutions
are approximate, and optimal ones are founded in few cases. The comparison was
done by testing the execution time of both algorithms when applied to different
number of business processes. As shown in Fig. 7, the GA consumed a bit more
time to generate results compared to greedy algorithms.

Specifying Business Process Outsourcing Requirements 187

Fig. 7. Comparison between the execution time consumed corresponding to both algo-
rithms.

5.2 Experiment B

To evaluate the pertinence of our algorithm, we interviewed 5 business experts
having knowledge on business processes. We first asked experts to rank the
outsourcing concerns according to their preferences, the results of this interview
are shown in Table 3. According to the experts preferences, we attributes to the
weights explained in Sect. 4.1, the following values: W1 = 0.4 for (BC), W2 =
0.25 for (DS), W3 = 0.25 for (C) and W4 = 0.1 for (L).

Table 3. Ranks of outsourcing concerns according to experts.

Rank Outsourcing Concern (OC) % experts how select the corresponding OC

1 BC 100 %

2 DS & C 60 %

3 L 100 %

Table 4. Evaluation of our GA.

Precision of GA Recall of GA Precision of greedy Recall of greedy

100 % 66 % 33 % 33 %

The extended BPMN illustrated in Fig. 4 is presented to the same experts
to depict, according to them, the most appropriate activities to be outsourced.
Among the thirteen activities, four experts chose the activities 12 and 6 and one
expert select in addition to these activities, the activity 11. When we applied the
GA, the individual having the best quality according to its fitness is composed of

188 M. Rekik et al.

Fig. 8. BPMN with deployment location data.

two activities: {6,12} where fitness = 0.8437. The greedy algorithm generated an
individual composed of 3 activities {12,9,1}. Table 4 presents the precision and
recall of our penalty-based genetic algorithm and the same values corresponding
to greedy algorithm. As shown in above table, the GA has a high value of recall
and precision which make it a relevant and pertinent way to assist experts in
the decision of business process outsourcing. Moreover, despite that the greedy
algorithm take less time to generate results, our GA generate better results if
we refer to the comparison of the recall and precision of the two algorithms.
According to experiments, we can affirm that the proposed genetic algorithm is
a pertinent way to decide about the business process activities to be outsourced.
However, in term of performance and more specifically the response time, the
genetic algorithm may not be the most suitable one.

In the context of our research, when applying the GA on the business process,
the BPMN should be redesigned so that, activities selected to be outsourced are
putted within a pool element designed to be entirely in the cloud as presented in
Fig. 8. The next step consists on the selection of the most suitable cloud offering
that well support the business process execution. Regarding the huge number
of cloud services and models, the proposed extension and more specifically the
features requirements, contributes to the filtration of the Cloud offerings that are
not suitable for the outsourced business process part. In the example illustrated
in Fig. 4, referring to the features requirements of the presented database, the
Amazon’s simpleDB [7] cannot be a suitable Cloud offering. This is due to the
fact that the Amazon’s simpleDB offers different schema and database model
from the business process’ database requirements.

6 Conclusions

This paper presents a method to assist experts in the fastidious task of BPO
to the cloud decision. The method offers a modeling language, OutyBPMN, an

Specifying Business Process Outsourcing Requirements 189

extension of the BPMN to take into consideration the outsourcing criteria. In
addition it uses a penalty based genetic algorithm to identify most appropriate
activities of a business process to be outsourced. In the herein presented work,
activity appropriateness is determined based on its business criticality, cost, its
quality when executed and constrained by security level of handled data. Based
on our preliminary experimental results, the proposed penalty based genetic
algorithm generates satisfactory results. Indeed, the evaluation of the method
presents its accuracy and the similarity with experts preferences. We are elabo-
rating a deployment model for the execution of the business process when part of
it is located in the cloud. Moreover, we are working on defining a decision model
to weight the importance of outsourcing the selected pool against keeping it in
premise. Additional experimental evaluations are needed to adjust the fitness
function and its related parameters to thoroughly examine the performance of
the proposed algorithm.

References

1. Adesta, E., Agusman, D.: The evolution of supply-chain management into extended
enterprise. In: Proceedings of the 2004 IEEE International Conference on Engineer-
ing Management, vol. 3, pp. 1298–1302 (2004)

2. Bocciarelli, P., D’Ambrogio, A.: A BPMN extension for modeling non functional
properties of business processes. In: Proceedings of the 2011 Symposium on Theory
of Modeling & Simulation: DEVS Integrative M & S Symposium, TMS-DEVS 2011,
pp. 160–168. Society for Computer Simulation International, San Diego (2011)

3. Deb, K., Kalyanmoy, D.: Multi-Objective Optimization Using Evolutionary Algo-
rithms. Wiley, New York (2001)

4. Eriksson, H.-E., Penker, M.: Business Patterns at Work, 1st edn. Wiley, New York
(1998)

5. Gewald, H., Dibbern, J.: Risks and benefits of business process outsourcing: a
study of transaction services in the German banking industry. Inf. Manag. 46(4),
249–257 (2009)

6. Gewald, H., Rouse, A.: Comparing business process and IT outsourcing risks–an
exploratory study in Germany and Australasia. In: 2012 45th Hawaii International
Conference on System Science (HICSS), pp. 275–284 (2012)

7. Ramanathan, S., Goel, S., Alagumalai, S.: Comparison of cloud database: Ama-
zon’s SimpleDB and Google’s bigtable. In: 2011 International Conference on Recent
Trends in Information Systems (ReTIS), pp. 165–168 (2011)

8. Hu, Y.-B., Wang, Y.-P., Guo, F.-Y.: A new penalty based genetic algorithm for
constrained optimization problems. In: Proceedings of the 2005 International Con-
ference on Machine Learning and Cybernetics, 2005, vol. 5, pp. 3025–3029 (2005)

9. ISO 10303-203:1994: Information technology – object management group business
process model and notation (1994)

10. Kodaganallur, V., Sen, A.: Greedy by chance - stochastic greedy algorithms. In:
2010 Sixth International Conference on Autonomic and Autonomous Systems
(ICAS), pp. 182–187 (2010)

11. Li, H., Meissner, J.: Improving quality in business process outsourcing through
technology. Working Papers MRG/0009, Department of Management Science,
Lancaster University (2009)

190 M. Rekik et al.

12. Mell, P.M., Grance, T.: Sp 800-145. the nist definition of cloud computing. Tech-
nical report, Gaithersburg, MD, United States (2011)

13. (OMG), O. M. G.: Business process model and notation (bpmn) version 2.0. Tech-
nical report (2011)

14. Pathak, R., Joshi, S.: Secured communication for business process outsourcing
using optimized arithmetic cryptography protocol based on virtual parties. In:
Ranka, S., Aluru, S., Buyya, R., Chung, Y.-C., Dua, S., Grama, A., Gupta, S.K.S.,
Kumar, R., Phoha, V.V. (eds.) IC3 2009. CCIS, vol. 40, pp. 205–215. Springer,
Heidelberg (2009)

15. Rodŕıguez, A., Fernández-Medina, E., Piattini, M.: A BPMN extension for the
modeling of security requirements in business processes. IEICE - Trans. Inf. Syst.
E90–D(4), 745–752 (2007)

16. Rouse, A.C., Corbitt, B.J.: It-supported business process outsourcing (BPO): the
good, the bad and the ugly. In: PACIS, p. 126. AISeL (2004)

17. Saeedi, K., Zhao, L., Sampaio, P.: Extending BPMN for supporting customer-
facing service quality requirements. In: 2010 IEEE International Conference on
Web Services (ICWS), pp. 616–623 (2010)

18. Soiva, J.: Business process outsourcing case study: how to develp Deloitte S2G’s
shared service activities in the Bercelona costumer response centre. PhD thesis,
Lahti university of applied sciences (2007)

19. Lynn, T., Carroll, N.O., Mooney, J., Helfert, M., Corcoran, D., Hunt, G., Van
Der Werff, L., Morrison, J., Healy, P.: Towards a framework for defining and cat-
egorising business Process-As-A-Service (BPaaS). In: 21st International Product
Development Management Conference. Citations: Not Avail. (2014)

20. Yang, D.-H., Kim, S., Nam, C., Min, J.-W.: Developing a decision model for busi-
ness process outsourcing. Comput. Oper. Res. 34(12), 3769–3778 (2007). Opera-
tions Research and Outsourcing

Supporting Deviations on Software Processes:
A Literature Overview

Manel Smatti1(B), Mourad Oussalah2, and Mohamed Ahmed Nacer1

1 LSI-USTHB, BP 32-Bab Ezzouar, Algiers, Algeria
manel.smatti@univ-nantes.fr, anacer@mail.cerist.dz

2 LINA-Universite de Nantes, CNRS UMR 6241, 2 Rue de la Houssiniere BP 92208,
44322 Nantes, France

mourad.smatti@univ-nantes.fr

Abstract. Software Process (SP) models are the results of the efforts
deployed by the software Engineering community to guarantee an
advanced level of the SP quality. However, experience has shown that
SP agents often deviate from these models to cope with new environ-
ments’ challenges. Unfortunately, the appearance of such situations, if
not controlled, often lead to the process failure. Since the 90s, several
research works have been conducted to handle this problem. Through
this paper, we aim at gathering these approaches around a single clas-
sification that puts in advance their strengths and their weaknesses. To
achieve this goal, we propose two classification frameworks that high-
light how existing approaches deal with deviations from two different
axes: detection and correction. As a result of this classification, a cov-
ering graph is drawn for each framework, which gives an insight about
what has been left by the existing approaches and worth to be consid-
ered, further. Finally, we introduce briefly the general outlines of a new
contribution that we are currently working on to face the shortcomings
of the existing approaches.

1 Introduction

PSEEs (Process-centered Software Engineering Environment) [1] are special
environments dedicated to support (large) software development projects that
are conducted through a set of steps that define their processes. The goal of
proposing such environments is to assess software agents through the develop-
ment steps in order to achieve the desired quality within the final products.
Moreover, as they are often endowed of the process model description using
a Process Modeling Language (PML) [2], and in ideal situation a clear view of
what is carried out in real world, PSEEs play an important role in process under-
standing, training, when hiring new engineers, and even organization strategies
improvement, they are the core of any software development process [3].

Because of their significant importance, PSEEs have gotten a great interest
within the software engineering field. Many prototypes have been proposed to
cater for all the needs of software development projects by offering means to
c© Springer International Publishing Switzerland 2016
P. Lorenz et al. (Eds.): ICSOFT 2015, CCIS 586, pp. 191–209, 2016.
DOI: 10.1007/978-3-319-30142-6 11

192 M. Smatti et al.

model processes and enacting them, but the lack of flexibility, to cope with
unforeseen situations, within these environments has led to their failure in being
widely adopted within industry.

Deviations on Software Processes (SP) are known as unexpected situations
that could arise during software development projects. They are either actions
that violate the SP model constraints or those performed out of the control of
the PSEE. In both cases, the PSEE becomes unable to support the software
development and useless, though.

Many solutions have been proposed to address this issue that is related to
the evolution aspect of software processes [4,5]. Most approaches deal with devi-
ations at two different levels: (1) how to detect them, at a first time and (2) how
to cope with them. Several methods have been used to address the first point
like logic formulas evaluation [6–8] and algebraic-based analysis [9]. On the other
hand, correcting the occurred deviations has not been much considered except
of some proposals that aim at changing the process model so it could further
support the software development as done in [4] or the reconciliation approach
adopted in [8].

Through this paper, we aim at offering an original analysis of most approaches
that have addressed the problem of deviations on software processes. Our main
goal is to have a suitable classification that highlights a set of important features
we believe they should be considered when choosing an existing approach or
proposing a new one. Such classification would be very useful to have a clear
insight on what has been achieved so far and what has been left and worth to be
considered by future works. Although we have looked over several studies that
have considered the problem of deviations within different kinds of processes, we
will focus through this paper on studying the most representative approaches
that have explicitly considered this issue in the context of software processes.

The paper is structured as follows. Section 2 gives a general overview of devi-
ations on software processes, the deviation concept is introduced as well as the
motivations that have raised the interest devoted to this research area. In Sect. 3,
we focus on how deviations are detected within the existing approaches. The
comparison framework we have elaborated at this aim is introduced after defin-
ing each item belonging to the set of criteria we have selected for this purpose.
Another comparison framework is given in Sect. 4. Unlike the first one, this sec-
ond framework is concerned with solutions proposed to correct deviations. This
framework is also built around a set of criteria we define. Section 5 discusses the
results achieved within both frameworks. A covering graph is elaborated for each
classification framework in order to get a clear insight about what criteria have
been covered/ignored by each approach. Through Sect. 6, we introduce the gen-
eral outlines of a new contribution that we are currently working on to overcome
some shortcomings of the existing approaches. Section 7 concludes the paper.

2 Deviations on Software Processes

2.1 Deviation Concept

A deviation is an action that violates the process model constraints. It is the
difference between what is expected and what is carried out in real world.

Supporting Deviations on Software Processes: A Literature Overview 193

In [7], a consistency relationship, which describes an ideal SP enactment, has
been defined based on the interactions between SP agents and the PSEE. Thus,
deviations have been defined as actions that break this consistency relationship.

When a deviation occurs, the PSEE becomes unable to support SP agents
through the development steps. The state resulting from such situation is called
inconsistency [7]. Such situations are very likely to arise within any software
development project. Moreover, experience has shown that the appearance of
such situations is not an exception [10] because SP agents have often to deviate
from the software process model. Thus, deviations are unescapable situations
that need to be considered from the beginning of the software development
process.

2.2 Motivation

The huge software applications that companies claim nowadays have increased
the interest devoted to the software process area. This interest results in many
contributions especially in SP modeling and SP enactment fields [11]. The SP
modeling field has reached an advanced level thanks to the wide panoply of
PMLs that have been proposed [2]. Furthermore, the proposition of the standard
SPEM [12] by the OMG has facilitated the integration of such formalisms within
industry. Whereas, most PSEEs have failed to gain such success because of
multiple reasons, among them:

– PSEEs are built around SP models that are very rigid while SP agents are
requiring more and more flexibility to be able to act using their skills and
their previous experiences;

– New ways of development, like agile methods, are based on customers’ implica-
tion within all of the software development steps. Thus, final requirements are
often changed or modified during the software development life cycle, which
often leads to deviate from the SP model in order to cope with these changes;

– Organizations often change their structures and their strategies within (large-
scale) software development. New people are engaged while others left, new
tools are integrated and much certifications are required. All these are impor-
tant factors that need to be considered within software processes and their
dedicated supports;

– Competition within software development companies to gain international
markets is based on two important factors: time and cost of software develop-
ment. Thus, having special environments that are able to support SP agents
in a controlled fashion has become very challengeable.

3 Detecting Deviations

The most important research works that have been led during the last twenty
years to deal with deviations on software processes are considered through this
paper. These approaches are classified and discussed through a set of criteria we
have selected.

194 M. Smatti et al.

At a first time, we start by classifying the addressed approaches based on
how they proceed to detect the encountered deviations. To achieve this goal, we
project each solution on the set of criteria designed for this purpose. We define
within the next subsection each criterion, its role and the values it could have.

3.1 Criteria

1. Deviation Object: We believe that it is very important to have information
about the responsible element for the deviation occurrence. Based on the
SPEM conceptual meta-model [13], the deviation object could be the activity,
SP agent through his role or the artefacts consumed and/or generated within
a software process activity. Getting a clear insight about the identity of this
element would make the correction much easier.

2. Deviation Type: Based on their causes/consequences, several kinds of devi-
ations could be distinguished. Even if there is no standard classification, most
approaches have been built around a precise set of deviations they define.
Through the classification framework we have elaborated (Sect. 3.2), we will
highlight the most relevant deviation classes by enumerating the different
types that have been proposed by the existing approaches.

3. Deviation Cause: Enumerating the possible causes makes the analysis much
easier and the solution much effective. Based on the existing approaches, devi-
ations may occur because of different reasons. Depending on the nature/size
of the process, the chosen process model and the SP agents skills, a deviation
may occur because of:
– A bad choice of the process model;
– Misunderstanding of customers needs or misallocation of resources;
– Wrong execution of activities or a bad sequencing;
– etc.

4. Deviation Moment: Most approaches define deviations as a problem related
to SP enactment and/or SP evolution. In fact, most deviations are detected
while the process is enacting but they are not all the reason of an execution
problem. Deviations could be static, which means that they are related to
the SP specification and that the problem has been encountered within the
software process model before any deployment. Deviations may also occur
during deployment due to a misunderstanding of the SP model constraints
or even because of a bad assignment of roles.

5. Detection Process: Detecting the occurred deviations within software
processes falls into finding mechanisms to analyze and evaluate the software
process along all its steps. Based on the chosen process model, the PML used
to describe it and the tools integrated within the PSEE, several methods have
been implemented for this purpose. For instance, visualization-based method
and evaluation of first order logic formulas are two options that have been
widely adopted by the existing approaches.

6. Automation Level: PSEEs are supposed to support SP agents to achieve
the desired quality within the final products. The automation level offered

Supporting Deviations on Software Processes: A Literature Overview 195

by these environments play a key role in the success of any software devel-
opment project. Thus, the ability of the PSEE to detect incorrect actions
or transitions without human intervention is very important. In spite of the
great number of prototypes that have been designed to support deviations on
software processes, we have noticed that detecting such situations still require
human intervention in most cases. As a result, the detection operation is often
semi-automatic or manual.

7. Execution Environment: A software process could be enacted either
within a mono machine environment or a distributed one. Moreover, some
recent research works are focusing on finding out solutions to easily integrate
nomadic users within software development projects. Thus, proposing a sup-
port for deviations, or for any other problem encountered within the software
engineering field, requires a good estimate of the runtime environment. It is
obvious that the larger is the environment, the more difficult is the solution
to implement.

3.2 Classification Framework

Deviations have been considered by researchers from the beginning of the 90s.
Since that, several approaches have been proposed to address this problem within
the different kinds of processes. The most relevant approaches are listed in
Table 1. To select the appropriate papers, our work was partially inspired from
the methodology followed in [11] when performing a systematic review. The
papers related to our study have been selected based on a rigorous search using
one of the three words: deviation, inconsistency, evolution conjointly with the
software process expression. Searchers were performed on the most known digi-
tal libraries such: IEEE Digital Library, Springer and ACM Digital Library. As

Table 1. Approaches dealing with deviations.

Year

1990–2000 2000–2010 2010–Today

Proposed
App-
roach

Bandinelli et al. [4] Thompson et al. [14] Yong & Zhou [15]

Cugola et al. [6] Yang et al. [9] Almeida da Silva et al. [8]

Bolcer & Taylor [16] Egyed et al. [17] Cugola et al. [18]

Dami et al. [19] Kabbaj et al. [7] Ge et al. [20]

Bendraou et al. [21]

Zhang et al. [22]

Hull et al. [23]

Rangiha & Karakostas [24]

196 M. Smatti et al.

a second step, papers that have not treated the studied issue as a main subject,
but have just given an insight about it, have been discarded.

Moreover, As we are interested to the Software Process area, and to not have
a cluttered tables and graphs, we consider through this study only the most
representative approaches that have been proposed within this field.

We start within this section by classifying the selected approaches based on
how they proceed to detect deviations on software processes. Each solution is
projected on the aforementioned set of criteria. The results obtained from this
classification are presented in Table 2. Some of the values listed in this table have
been explicitly extracted from their sources while others constitute the outcome
of the analysis we have performed on each of the selected works.

Table 2. Classification framework for detecting deviations on SP.

Deviation
object

Deviation type Deviation causes Deviation
moment

Detection
process

Automation
level

Execution
environment

[4] -Activity -Static -Changing in
requirements

-Execution Ad-hoc
analysis

Manual Mono
machine

-Dynamic -Changing in the
environ-
ment/
organization

[6] -Role -Environment
level

Violation of
activities’
constraints

Deployment Evaluation of
logic
formulas

Semi-
automatic

Mono
machine

-Domain level

[14] -Activity None A predefined set
of seven
causes

-Deployment Evaluation of
SQL
queries

Semi-
automatic

Mono
machine

-Role -Execution

[7] -Activity -Environment
level

-Violation of
activities’
constraints

Execution Evaluation of
logic
formulas

Automatic Mono
machine

-Role -Domain level -Misallocation of
roles

[8] -Activity None -Sequencing Execution Evaluation of
logic
formulas

Automatic Mono
machine

[21] -Activity -Organizational -Activities’
sequencing

-Deployment Comparing
the
execution
trace to a
prede-
fined set
of rules

Automatic Distributed

-Artefact -Behavioral -Violation of
methodologi-
cal
guidelines

-Execution

-Structural

Discussion. As we have mentioned before, the problem of deviations on SP
enactment is not recent. SPADE [4] and SENTINEL [6] are the most known
approaches that have dealt with this issue. Based on the SLANG and LATIN
languages respectively, these two prototypes have been the basis of all the
approaches that have been proposed later. Although they have reached an

Supporting Deviations on Software Processes: A Literature Overview 197

advanced level, especially after the proposition of their successors SPADE-1 [25]
and PROSYT [26] respectively, these prototypes have failed in being adopted
within industry because of multiple reasons such as the complexity of the lan-
guages used to conceive them and the lack of flexibility within SPADE that
does not support deviations until the process model is changed. Moreover, the
wide panoply of PMLs that have been proposed in addition of the proposition of
SPEM has led to consider new features to model software processes and enacting
them.

On the other hand, recent approaches take advantage from what has been
achieved within the software engineering field and its dedicated tools and lan-
guages. For instance, [7] propose to support deviations within software processes
described as a UML profile. Authors use XMI (XML Metadata Interchange) to
automatically generate first order logic formulas from the UML description of the
SP model. The analysis performed upon the obtained formulas enable authors
to easily detect the occurred deviations.

4 Correcting Deviations

Detecting the unexpected situations that could arise during a given software
development project is very important but the most important is to be able to
handle them. Among all the approaches considered within this study, few have
proposed a correction plan to fix the occurred deviations. Through this section,
correction mechanisms that have been adopted by the covered approaches are
highlighted. First, we start by enumerating some motivations that have incited to
propose these correction plans. Then, we provide a brief definition of the possible
solutions that have been widely adopted to deal with deviations on software
processes. Finally, as done for the detection aspect, a classification framework is
elaborated after defining each item belonging to the selected set of criteria.

4.1 Motivation

Offering a suitable development environment that meets all the SP agents
requirements, including flexibility, still remains a big challenge within the Soft-
ware Engineering field.

Deviations are very likely to occur within any software development project.
At each moment, SP agents may decide not to follow the software process model
because they think they are able to accomplish things better than as described
within the SP model. Thus, they decide to act based on their skills or on their
previous experiences. Such deviations, even if they are performed with a good
faith, could be the main reason of any software project failure. Offering a good
support for software processes results in:

– Considering the SP model as a plan that is supposed to guide SP agents to
achieve the final goals without imposing a specific manner;

– Offering a suitable tool that brings together all the SP modeling benefits and
the required flexibility within a single environment;

198 M. Smatti et al.

– Obtaining a complete environment that could be easily integrated into
industry.

4.2 Correction Plans

After detecting the occurred deviations, three possible solutions have been dis-
tinguished in [27], these solutions have been adopted by all the approaches that
have been proposed later:

1. Nothing to Do: In this case, deviations are detected but ignored. The
software project is pursued without correcting deviations consequences. The
PSEE has an erroneous view of what is carried out in real world and becomes
useless, though.

2. Changing the Model: The process model is changed to meet the new
requirements that have led to the triggered deviation. This solution is very
costly and may generate other problems especially if there are several running
instances of that model. In addition, a deviation may occur temporarily and
does not require changing the entire SP model.

3. Tolerating the Deviation: In this case, the SP model is not changed but
mechanisms are integrated within the PSEE to tolerate deviations under its
control. Moreover, the PSEE supports SP agents to reconcile the observed
process (the observed process is the partial view, of what is carried out in real
world, owned by the PSEE [7,27], the expression Process definition enactment
has been used in [9,27] to indicate the same view) with the process model
(the planned process in [28]).

Unlike Sect. 3 where we have focused on the problem itself. Through this
section, we will be dealing with deviations from a solution perspective. To be
on the same wavelength, we start within the next subsection by defining each
item belonging to the chosen set of criteria. Approaches that have proposed a
correction plan are then discussed according to these criteria.

4.3 Criteria

1. Correction Object: A deviation is always caused within one (or more) of the
SP elements: activity, role or product. As well, the correction step is applied
within one, or more, of these items. It could be the same that has caused the
deviation or another one. For instance, the deviation may be detected within
an output product while the correction is applied within the activity that has
produced it.

2. Correction Type: Based upon the correction plans we have explained above.
SP managers may decide even to change the model to cope with the triggered
deviations or to change just the running instance within which the deviation
has occurred. Thus, we are talking about static and dynamic changes, respec-
tively. We consider the first kind of corrections as preventive correction while
the second as curative correction.

Supporting Deviations on Software Processes: A Literature Overview 199

3. Correction Reason: While interested to deviations on software processes,
most researchers have focused their studies on how to detect these deviations
and how to correct their consequences. We believe that holding this problem
may have more benefits than just correction. For instance, the implementation
of a given correction could have a perfective effect by improving the process
functionalities. Moreover, such correction may improve the reusability of SP
models by offering reusable configurations.

4. Correction Process: When deviations occur, SP agents/managers may
choose multiple options while performing their correction plans. For instance,
changing the component (activity, role or product) parameters could be very
useful to reconcile the enacting process with the process model. The problem
may also be solved by applying a set of transformations or even by changing
the component by another one to add new concepts while keeping the old
ones (inheritance concept).

5. Correction Moment: To correct a given deviation, changes could be applied
to the process specification, while deployment or even during the process
enactment. Thus, the deviation is not necessarily corrected at the same
moment where it has been detected. For instance, the deviation may be
detected at enactment time while changes are applied to the process spec-
ification (process model) to correct it or to avoid it in future time.

6. Automation Level: As for the detection process, correcting the occurred
deviations may be done manually by SP agents. In best cases, the correction is
automatic if it is entirely done by the PSEE without any human intervention.
However, based on what has been achieved by former research works, this is
almost impossible. Thus, a suitable correction always involves both the PSEE
and SP agents (semi-automatic).

7. Execution Environment: Through the different approaches that have been
proposed in the literature, we have noticed that the solution, when proposed,
is not always applicable at the same level within which the process is con-
ducted. Therefore, the process may be led trough a distributed environment
while the deviation support is implemented in a mono machine environment.

4.4 Classification Framework

The approaches that have proposed a correction policy are considered in this
section. As mentioned before, we are interested at those approaches that have
explicitly proposed a correction plan within the context of software processes.
These approaches are classified according to the set of criteria listed above. The
results obtained from this classification are summarized in Table 3.

Discussion. As we can notice from this classification, in spite of the great num-
ber of contributions that have addressed the problem of deviations on software
processes, just few of them have been interested at proposing correction mech-
anisms. The others have been much concerned with studying the problem itself
than finding out solutions for it. The results are several classifications and pro-
totypes that aim at detecting those deviations.

200 M. Smatti et al.

Table 3. Classification framework for correcting deviations on SP.

Correction
object

Correction
type

Correction
reason

Correction
moment

Correction
process

Automation
level

Execution
environ-
ment

SPADE
[4,5]

All SP
ele-
ments

Static Perfective Specification Transformation Manual Mono
machine

SENTINEL
[6]

All SP
ele-
ments

-Static -Perfective -Specification Transformation Semi-
automatic

Mono
machine

-Dynamic -Corrective -Execution

Almeida Da
Silva
et al. [8]

All SP
ele-
ments

Dynamic Corrective Execution Restructuring Semi-
automatic

Mono
machine

Through this section, we have highlighted those approaches that aim at
proposing some policies to correct deviations. Approaches like [28] have been
discarded from this classification because they do not propose an explicit solu-
tion except pieces of advice authors give to help SP managers finding out some
resolutions that are supposed to fix the occurred deviations once applied.

Almost all approaches that have proposed correction mechanisms have been
validated on simple prototypes within mono machine environments. Some
authors have focused on studying the problem of deviations within distributed
environments as done in [21] but, as we have already mentioned, they have been
much concerned with the problem than the solution.

5 Results and Discussion

Within the previous sections, we have highlighted the most relevant approaches
that have dealt with the problem of deviations on software processes. These
approaches have been classified according to two different axes: (1) how they
detect deviations and; (2) how they correct them.

As we may decide to choose one method or one tool among the existing
ones, and since this choice is strongly based on the constraints (criteria) that are
most relevant to us, offering an explicit covering graph for both detection and
correction aspects is very important to make the choice much effective.

Through this section, and based on the results obtained within Sects. 3 and 4,
we draw a covering graph for each classification framework. For a sake of simplic-
ity, each criterion, in both graphs, will have three possible values: low, medium
and high1. For instance, for the Deviation Object criterion, if a given approach
is able to detect the occurred deviations within just one SP element, the value
low is assigned to this criterion. If two SP elements are considered within the
detection mechanisms, this criterion would have medium as value. Otherwise,
if all SP elements are covered, the value high is assigned to this criterion. On
the other hand, when correcting a deviation, we are interested at involving as
less components as possible into the correction procedure. This is because the
more components are involved, the more expensive the correction is to apply,
1 This is a choice of our own, authors may prefer to assign other values for both sets

of criteria.

Supporting Deviations on Software Processes: A Literature Overview 201

Table 4. Signification of Covering Graphs values.

Qualification Detection Correction

Criterion Description Criterion Description

Low Deviation

object

Detecting deviations

within just one

SP element

Correction

object

All the SP elements

Medium Two SP elements

are considered

Two SP elements are

considered

High All the basic SP

elements are

considered

One SP element is corrected

Low Deviation

type

Behavioral Correction

type

Static

Medium Functional Dynamic

High Behavioral &

Functional

Static & Dynamic

Low Deviation

causes

One kind of

deviations

Correction

reasons

Corrective or Perfective

Medium A predefined set of

possible causes

Corrective & Perfective

High Causes related to

each SP elements

are distinguished

Promote reusing

Low Deviation

moment

Execution or

deployment

Correction

moment

Specification

Medium Execution and

deployment

Deployment

High Execution,

deployment and

specification

Execution

Low Detection

process

Ad-hoc Correction

process

Transformation or

restructuring

Medium Using external tools Inheritance or parametrizing

High Integrated within

the process

specification

Design pattern

Low Automation

level

Manual Automation

level

Manual

Medium Semi-automatic Semi-automatic

High Automatic Automatic

Low Execution

environ-

ment

Mono machine Execution

environ-

ment

Mono machine

Medium Distributed Distributed

High Mobile Mobile

especially if there are several instances of that SP model. Thus, if a given app-
roach proposes to change/modify just one SP element to correct the occurred
deviation, the criterion Correction Object gets High as value, if two elements
are involved, Medium is assigned to this criterion. Otherwise, Low is assigned.

202 M. Smatti et al.

The signification of all the adopted values for each criterion is summarized
in Table 4.

To not have cluttered graphs, we will project three approaches on each cov-
ering graph: detection and correction. The results are shown on Fig. 1. We have
intentionally projected the same three approaches on both graphs. Thus, the
reader may have a clear insight on how the same approach proceeds to treat
both detection and correction aspects.

Fig. 1. Coverings Graphs for detecting and correcting deviations on SP.

As we may decide to choose one method or one tool among the existing
ones, and since this choice is strongly based on the constraints (criteria) that are
most relevant to us, offering an explicit covering graph for both detection and
correction aspects is very important to make the choice much effective.

6 New Trends to Support Deviations on Software
Processes

From the study conducted though this paper, we have noticed that all of the
existing approaches consider the problem of deviations from two different per-
spectives: detection and correction. However, most of them have focused on
finding out mechanisms to detect deviations than to correct them.

Unfortunately, despite the great number of approaches dealing with the
detection issue, some interesting observations could be pointed out:

– Most of researchers have not considered the process model concept while deal-
ing with this problem. Moreover, within the former approaches, some authors
do not give any insight about how they define their processes [6,29] (which
are the different conceptual parts that build up the process). Through recent
approaches, more interest has been devoted to process modelling and most
of authors have explicitly defined their processes as the interaction between

Supporting Deviations on Software Processes: A Literature Overview 203

activities responsible for delivering the products and the agents that perform
them. These concepts (activity, agent, and artefact) are considered as the core
of SPEM [12], the OMG standard. However, despite the interest that process
modelling has acquired, holding the problem of deviations has not been much
concerned with this aspect and much research works still consider them as
problem related to SP execution and have no relationship with the process
model. Thus, no approach has focused on integrating the solution into the
process model, consequently;

– As the approaches are very dependent to the tools they invoke, the reusing
aspect has not been considered at all. In each approach, authors treat devi-
ations within just one context: the process they consider. No insights have
been given about how to extend a solution to another process kind and no
approach has offered a concrete flexibility about the choice of tools to imple-
ment, differently, the solution introduced. In other words, authors have not
been concerned with proposing conceptual solutions or giving an abstraction
of the prototypes they introduced, so they could be reused.

Through this section, we aim at introducing, through an informal description,
a new approach to deal with deviations on software processes. Our main objective
is not just to propose a support for this problem but also to be able to integrate
it into the process model. Thus, as deviations are very likely to happen within
any software process, project managers would be given a solution that is already
integrated within the process model they choose. Moreover, such solution would
be very useful because of the abstraction level it offers. As the solution is endowed
within the process model, and have no relationship with the tools used to define
it, it promotes to be reusable.

To achieve our goal, we proceed differently from the existing works. First,
we consider deviations as a problem related to the evolution aspect of software
processes. Thus, we assume that even if most deviations are detected during
execution time, they are not all the results of an execution problem. The need
to deviate from the SP model could be noticed during different phases of the
development project. Therefore, as much as the process evolves in time, the need
to deviate from the process model becomes much required.

In addition, within the approach we conceive, we do not define the SP model
as the starting point of the development project, it is considered as the target
result. Thus, to prevent the occurrence of deviations, the goal is to ensure that
the SP agents are performing the right transitions while enacting the different
activities of the process.

6.1 Deviation Identity

We start by giving a complete definition of the deviation as we consider it. The
most relevant information required to treat deviations are covered within this
identification. We define the following features as the most important to consider
(Fig. 2):

204 M. Smatti et al.

Fig. 2. Deviation Identity.

– The Deviation Object: That depicts the SP element within which the deviation
has been detected; based on the SPEM meta model, the deviation object could
be either the activity, the process agent or the artefact ;

– The Deviation Type: In spite of the great number of classifications proposed in
the literature, we have gathered these classes, because of their similarities, into
behavioral and functional. Thus, a behavioral deviation concerns the actions
performed by the SP agents whereas a functional deviation is related to the
SP activities and transitions between them;

– The Deviation Consequence: Instead of focusing on the deviations causes, as
done by most of the existing approaches, we focus within the approach we
conceive on the deviations consequences. Thus, the most important for us is
not what has caused the deviation but what its results are. Therefore, our
goal is to answer the question: what constraints have been violated by the
deviation occurrence?

6.2 Detecting deviations

Through our proposal, we consider the software process as a set of steps or
sub-processes. Each sub-process is either an activity or a set of activities. The
process manager does the definition of each sub-process, and the activities that
make it up. Theses sub-processes are linked though a set of transitions; we define
a transition as the ending of a sub-process and the starting of the one(s) that
succeeds it.

In order to detect the occurred deviations, a set of analysis should be per-
formed at different phases of the process. Most of the existing approaches propose
to perform the required analysis upon each elementary activity of the process
[7,14,21]. Moreover, in [8] authors propose to perform three kinds of analysis for
each activity: when it is launched, during its execution and when it finishes. We
believe that performing too much analysis could be very costly, especially within
large-scale processes.

To face this problem, we propose to minimize the number of analysis phases.
Thus, instead of performing them upon each elementary activity, an analysis step
is executed at the end of each sub process (it is up to the process manager to

Supporting Deviations on Software Processes: A Literature Overview 205

define the boundaries of each sub process and the number of activities involved
within it). We assume that if we are able to control the right ending of each step
of the process (outputs and costs), we would be able to control the whole process.
The ending of a sub process is notified whenever its outputs are delivered.

As the deviation occurs due to a constraints violation, appropriate mecha-
nisms should be provided to enable a suitable verification in order to detect such
violation. Within our approach, constraints are defined for each sub process;
they are integrated at the same time of the process modeling.

6.3 Correcting Deviations

When a deviation is triggered, the process has to be adapted. We define an
adaptation pattern as a set of steps/actions that are supposed to restore the
consistency state of the process once applied. We admit that one or several adap-
tation patterns could exist for a single deviation. Thus, based on the deviation
identification, the most appropriate adaptation pattern is selected.

Within some of the existing approaches [7,21], the proposed correction mech-
anisms are strongly based on the languages/tools used to enact the process. How-
ever, as the occurrence of deviations is unavoidable within most of the processes,
we believe that for a solution to be feasible; it has to be integrated to the process
model at the same time as its design.

Through the adaptation patterns we introduce, we aim at proposing a
reusable approach to solve the problem of deviations on software processes. An
adaptation pattern should be endowed with the required information that enable
its use. We consider the following features as the most important to identify an
adaptation pattern (Fig. 3):

Fig. 3. Adaptation pattern.

– The Adaptation Kind: many alternatives could exist to adapt the process. For
instance, operating changes upon the existing SP elements, changing the SP
activities sequencing or adding new elements (activities or agents) are some
examples of the possible solutions;

– The Associated Deviation Type: each adaptation pattern is designed to treat
either behavioral or functional deviations;

– The number of activities involved within the adaptation process;

206 M. Smatti et al.

– The adaptation impact: all the possible consequences of the adaptation pat-
terns application on the remaining SP elements.

In addition of these main features, an adaptation pattern must ensure the
following basic functionalities:

– Restore the SP model consistency that has been violated by the deviation
occurrence;

– Applying the required actions/changes upon the SP elements within which
the deviation has occurred without affecting the remaining elements;

– Avoid the appearance of new deviations while adapting the existing ones.

7 Conclusion

Through this paper, we have highlighted the problem of deviations on Software
Processes. The most relevant approaches that have dealt with this issue have
been considered within this study.

The paper starts by introducing the deviation concept. A deviation is an
unexpected situation that could arise within a software development process.
The appearance of such situation, if not corrected, often leads to the violation
of SP model constraints and to the software development failure, consequently.
The paper gives also an insight about the relevant reasons that have incited to
devote such interest to this research area.

As it is almost impossible to cover, in one study, all what has been achieved
within a given research field. We have covered, through this paper, the most
important approaches that have explicitly considered the deviation issue as a
separate problem. Moreover, approaches that have been concerned with this
issue within business processes have been discarded.

We have classified the selected approaches using two comparative frame-
works. These frameworks deal with: (1) detecting deviations and (2) correcting
them. Our choice to make such a distinction while developing this study is jus-
tified by the following reasons:

– Holding the problem on software processes falls into two important directions:
finding ways to detect the occurred deviations and offering mechanisms to
correct them;

– Separating the classification from these two perspectives makes the analysis
much effective. The reader would be easily awards of what has been achieved
and what has been left within both directions.

For both classification frameworks, we have conceived a set of criteria. Then,
we have detailed every set by defining each item belonging to it. After that, we
have projected the selected approaches on each set. To facilitate the comprehen-
sion of each classification, we have listed the obtained results within tables.

As a result, we can notice that besides the great number of approaches pro-
posed to deal with deviations within software processes, just few works have

Supporting Deviations on Software Processes: A Literature Overview 207

explicitly offered mechanisms to correct them. Moreover, we have realized that
most of approaches are tool-dependent. For instance, in [21], authors say “Having
different modeling languages would not change anything to the proposed solution
because of the use of Praxis”. On the other side, within the Software Engineer-
ing field, we are not interested at having the same execution tool. The goal has
always been to offer generic solutions and let the developers free about the choice
of the execution features.

To consider this last issue, we have introduced at the end of this paper a
general description of a new contribution of our own. To make this contribution
effective, we are currently working on proposing a platform-independent solution
to detect deviations and correcting them at a second time. Our main objective
is to offer a conceptual-level approach that facilitate the detection of deviations
within a large spectrum of software processes. Moreover, the challenge for us
is to offer a reusable approach since it is one of the main objectives within the
Software Engineering field. This new approach is strongly based on the Soft-
ware Architecture field that has reached an advanced level regarding the reusing
aspect.

References

1. Matinnejad, R., Ramsin, R.: An analytical review of process-centered software engi-
neering environments. In: 2012 IEEE 19th International Conference and Workshops
on Engineering of Computer Based Systems (ECBS), pp. 64–73 (2012)

2. Garćıa-Borgoñon, L., Barcelona, M., Garćıa-Garćıa, J., Alba, M., Escalona, M.:
Software process modeling languages: a systematic literature review. Inf. Softw.
Technol. 56, 103–116 (2014)

3. Fuggetta, A.: Software process: a roadmap. In: Proceedings of the Conference on
the Future of Software Engineering, pp. 25–34. ACM (2000)

4. Bandinelli, S., Fuggetta, A., Ghezzi, C.: Software process model evolution in the
spade environment. IEEE Trans. Softw. Eng. 19, 1128–1144 (1993)

5. Bandinelli, S., Di Nitto, E., Fuggetta, A.: Policies and mechanisms to support
process evolution in PSEEs. In: Proceedings of the Third International Conference
on the Software Process, ‘Applying the Software Process’, 1994, pp. 9–20 (1994)

6. Cugola, G., Nitto, E., Ghezzi, C., Mantione, M.: How to deal with deviations
during process model enactment. In: 17th International Conference on Software
Engineering, 1995, ICSE 1995, p. 265 (1995)

7. Kabbaj, M., Lbath, R., Coulette, B.: A deviation management system for handling
software process enactment evolution. In: Wang, Q., Pfahl, D., Raffo, D.M. (eds.)
ICSP 2008. LNCS, vol. 5007, pp. 186–197. Springer, Heidelberg (2008)

8. Almeida da Silva, M., Bendraou, R., Robin, J., Blanc, X.: Flexible deviation han-
dling during software process enactment. In: 2011 15th IEEE International Enter-
prise Distributed Object Computing Conference Workshops (EDOCW), pp. 34–41
(2011)

9. Yang, Q., Li, M., Wang, Q., Yang, G., Zhai, J., Li, J., Hou, L., Yang, Y.: An alge-
braic approach for managing inconsistencies in software processes. In: Wang, Q.,
Pfahl, D., Raffo, D.M. (eds.) ICSP 2007. LNCS, vol. 4470, pp. 121–133. Springer,
Heidelberg (2007)

208 M. Smatti et al.

10. Almeida Da Silva, M.A., Blanc, X., Bendraou, R., Gervais, M.P.: Experiments on
the impact of deviations to process execution. Ingénierie des systèmes d’information
18, 95–119 (2013)

11. Ruiz-Rube, I., Dodero, J.M., Palomo-Duarte, M., Ruiz, M., Gawn, D.: Uses and
applications of spem process models. a systematic mapping study. J. Softw. Main-
tenance Evol. Res. Pract. 1, 999–1025 (2012)

12. Object Management Group: Software Process Engineering Metamodel (SPEM) 2.0
(2008)

13. Object Management Group: Software Process Engineering Metamodel (SPEM) 1.1
(2005)

14. Thompson, S., Torabi, T., Joshi, P.: A framework to detect deviations during
process enactment. In: 6th IEEE/ACIS International Conference on Computer
and Information Science, 2007, ICIS 2007, pp. 1066–1073 (2007)

15. Yong, Y., Zhou, B.: Software process deviation threshold analysis by system
dynamics. In: 2010 The 2nd IEEE International Conference on Information Man-
agement and Engineering (ICIME), pp. 121–125 (2010)

16. Bolcer, G.A., Taylor, R.N.: Endeavors: a process system integration infrastructure.
In: Proceedings of the Fourth International Conference on the Software Process,
1996, pp. 76–89. IEEE (1996)

17. Egyed, A., Letier, E., Finkelstein, A.: Generating and evaluating choices for fixing
inconsistencies in UML design models. In: 23rd IEEE/ACM International Confer-
ence on Automated Software Engineering, 2008, ASE 2008, pp. 99–108 (2008)

18. Cugola, G., Ghezzi, C., Pinto, L.: Process programming in the service age: old prob-
lems and new challenges. In: Tarr, P.L., Wolf, A.L. (eds.) Engineering of Software,
pp. 163–177. Springer, Heidelberg (2011)

19. Dami, S., Estubler, J., Amiour, M.: Apel: a graphical yet executable formalism
for process modeling. In: Di Nitto, E., Fuggetta, A. (eds.) Process Technology, pp.
61–96. Springer, US (1998)

20. Ge, X., Paige, R.F., McDermid, J.A.: Failures of a business process in enterprise
systems. In: Cruz-Cunha, M.M., Varajão, J., Powell, P., Martinho, R. (eds.) CEN-
TERIS 2011, Part I. CCIS, vol. 219, pp. 139–146. Springer, Heidelberg (2011)

21. Bendraou, R., Almeida da Silva, M.A., Gervais, M.P., Blanc, X.: Support for devi-
ation detections in the context of multi-viewpoint-based development processes.
In: CAiSE Forum, pp. 23–31 (2012)

22. Zhang, H., Kitchenham, B., Jeffery, R.: Toward trustworthy software process mod-
els: an exploratory study on transformable process modeling. J. Softw. Evol.
Process 24, 741–763 (2012)

23. Hull, R., Su, J., Vaculin, R.: Data management perspectives on business process
management: tutorial overview. In: Proceedings of the 2013 International Confer-
ence on Management of data, pp. 943–948. ACM (2013)

24. Rangiha, M., Karakostas, B.: Process recommendation and role assignment in
social business process management. In: Science and Information Conference (SAI),
pp. 810–818 (2014)

25. Bandinelli, S., Di Nitto, E., Fuggetta, A.: Supporting cooperation in the SPADE-1
environment. IEEE Trans. Softw. Eng. 22, 841–865 (1996)

26. Cugola, G., Ghezzi, C.: Design and implementation of PROSYT: a distributed
process support system. In: Proceedings of the IEEE 8th International Workshops
on Enabling Technologies: Infrastructure for Collaborative Enterprises, 1999 (WET
ICE 1999), pp. 32–39 (1999)

27. Cugola, G.: Tolerating deviations in process support systems via flexible enactment
of process models. IEEE Trans. Softw. Eng. 24, 982–1001 (1998)

Supporting Deviations on Software Processes: A Literature Overview 209

28. Zazworka, N., Basili, V., Shull, F.: Tool supported detection and judgment of non-
conformance in process execution. In: 3rd International Symposium on Empirical
Software Engineering and Measurement, 2009, ESEM 2009, pp. 312–323 (2009)

29. Bandinelli, S., Ghezzi, C., Fuggetta, A., Lavazza, L.: SPADE: an environment for
software process analysis, design, and enactment. In: Software Process Modeling
and Technology, pp. 223–248. Wiley (1994)

Protection of Customers’ and Suppliers’
Knowledge in Software Development Projects
with Fixed-Price Contract: Using Property

Rights Theory

Cornelia Gaebert(&)

Research Group on Strategic Information Management,
European Research Center for Information Systems,

University of Muenster, Leonardo Campus 11, 48149 Muenster, Germany
cg@indal.de

Abstract. In software development projects (SDP), both the supplier and the
customer must share their business knowledge for reaching the project success.
However, this business knowledge is an essential intellectual property, and thus
needs protection from misuse. In this paper, we present an analysis of knowl-
edge difficult to protect. We enact a strategy to achieve SDPs success despite
these barriers. Our theoretical and empirical analysis also found that SDP suc-
cess is largely an uncertainty problem between the contractual parties on the
management level, and thus technical-organizational approaches alone are
inadequate for achieving success. Based on property rights theory, we introduce
two models for protecting knowledge depending on uncertainties. Our findings
offer managers important insights how they can design and enact especially
fixed-price contracts. Moreover, we show how the economic theories can
enhance understanding of SDP dynamics and advance the development of a
theory of effective control of SDP success.

Keywords: Software development project � Information � Knowledge �
Intellectual property rights � Property rights theory

1 Introduction

The number of failing software development projects (SDP) has remained high for
decades [1–3] notwithstanding of the professionalization of the software development
process and project management improvements. Due to researchers and practitioners,
changing requirements are the main reason for failure (cf. [4, 5]). Organizations expect
to mitigate this risk by outsourcing [6]. The supplier shall take the risk for the project
failing when working independently. Researchers recommend that in this situation a
fixed-price contract (FPC) with a predetermined price for the software system is not
suitable for completion of the SDP in line with the expectations of the contractual
parties [7, 8]. Indeed, the contract influences the success or failure of SDPs [9]. This is
not a question of trust, but an economic issue of uncertainty due to incomplete
information on both sides [10].

© Springer International Publishing Switzerland 2016
P. Lorenz et al. (Eds.): ICSOFT 2015, CCIS 586, pp. 210–227, 2016.
DOI: 10.1007/978-3-319-30142-6_12

Against this background, we argue that ineffective contract provisions regarding the
protection of property rights (PR) on information and knowledge (I&K) are at the root
of causes for ineffective FPCs. This is because both contractual parties must share
business I&K to be successful in software development outsourcing (SDO), at least if
the project regards a novelty [11]. Nevertheless, this I&K belongs to the organizations’
intellectual properties [12]. Consequently, both sides have an interest in protecting their
I&K for securing their intellectual PR (cf. [13]). Problems arise, because the contract
does not contain effective instruments securing these PR. We conclude that among
others the inadequate protection of I&K causes changing requirements. However, there
is a paucity of research on how contractual parties can improve SDP performance or
outcome by protecting PR on I&K under FPC.

In this paper, we bring different research fields together: Information Management,
Requirement Engineering, and New Institutional Economics. First, we analyze I&K in
general by means of insights from Information Management Research. Second, for
I&K in SDPs in particular, we draw from Requirement Engineering special insights.
Finally, we can use PR Theory from New Institutional Economics to develop theo-
retical models describing the situation. From these models, we will derive suggestions
for an adequate use of FPCs for SDPs.

The PR theory is directed to the available rights on the exchange object, a central
approach of New Institutional Economics [14, 15]. The research focuses on the
incentives triggered by regulatory, ownership and the institutional framework; the use
of economic theories proved to be appropriate (cf. [16–19]). In this paper, we will
investigate how the PR theory can improve our understanding of the options of pro-
tection of PR to attenuate reasons for requirement change and therefore, reasons for
failure of SDPs.

We have conducted an empirical investigation regarding the role of sharing I&K in
SDPs, the fears and worries of customers and suppliers. The collected empirical data
will guide our theoretical considerations. Therefore, we start with a brief description of
our empirical study in Sect. 2. Afterwards, we will discuss the kind of knowledge and
information customers and suppliers must share and protect within the project in
Sect. 3. We will distinguish this from other kinds of information needed to share
between the parties without the problem of protecting it from misuse. In addition, we
will tell it apart from intellectual PR. We will develop a schema of knowledge kinds of
both contractual parties that are worth to protect. However, the parties have to share
this knowledge to facilitate the project success.

The conflict description between the need of sharing the knowledge and the
necessity of protecting it by means of the PR theory is in the focus of Sect. 4. We will
develop two new theoretical models, a rent and a wage model concerning the PR on
I&K in SDPs under FPC, depending on the net gain of the cooperation.

In Sect. 5 we will finally discuss possible decision criteria regarding the derived
options. Above all, we will suggest instruments for securing PR on I&K while sharing
it during the project phases.

Protection of Customers’ and Suppliers’ Knowledge 211

2 The Empirical Support

Throughout this paper, we use an abductive research approach [20, 21]. We are “in the
discovery stage of scientific hypothesis formation and testing” [22]. For the collection
of empirical data on the I&K role in SDPs under FPC, we conducted a two-step
evaluation. First, we developed a questionnaire in the form of a standardized online
survey as a special kind of standardized survey [23]. Next, we conducted personal
interviews to deepen our understanding of the questionnaire results. The evaluation
period lasted one year.

For the questionnaire, we chose the standardized online survey to give the respon-
dents an opportunity to reflect and to question their own companies [24]. The format of
the online survey itself was legitimate because the interviewees were an IT-savvy
group. Open answers supplemented closed questions so the questionnaire would not be
too restrictive. In addition, they helped gather the covered information [25].

We interviewed experienced project participants on both sides (customer and
supplier side). The questionnaire had to take into account the management perspective
as well as the project management’s view. Since it is not possible to address the
population of all SDP customers and suppliers, and given that questioning the popu-
lation about any associated and unacceptably high cost is not realistic, we chose a
smaller population. Therefore, we could not achieve complete representativeness [24].
For practical reasons, we addressed the 45 members of an IT company’s network in
Germany. Fifty additional addressees were available from other contacts. To expand
the circle of respondents and to amplify the customer side, we used contacts in social
networks such as Facebook (approximately 30), Xing (approximately 20), and Twitter
(approximately 50). This ensured that the respondents had experience in different
possible project contexts. Of the 200 addressees requested to participate in the survey,
29 actually completed the questionnaire (14 suppliers, 5 customers, 9 suppliers and
customers, and 1 other).

An independent survey evaluating the willingness to participate in the survey
suggested a conscientious answering of the questions. 48.3 % of the respondents
indicated that they belong to management and have contract responsibility; 27.6 % are
project managers; 6.9 % are employees at the working level, and 17.2 % perform other
activities, such as consulting. 89.7 % of the respondents had 10 or more years of SDP
experience. The participants represented a broad range of project sizes with regard to
duration and number of employees.

For the exemplary and in-depth interviews, we conducted semi-structured expert
interviews. On the one side, we questioned a consultant with an SDP experience of
approximately 15 years. He supports big companies in defining and organizing the
contractual issues of SDPs. On the other side, we spoke with a supplier having an SDP
experience of approximately 20 years. He is the owner of a software development
company employing 10 programmers. Considering the sensitivity of failure research
and the resulting difficulty in gaining access to project details, this methodology was
most appropriate. The incomplete script of the semi-structured interview format left
room for improvised questions [26]. The first interview lasted approximately 3 h, the
second 1.5 h. We made extensive notes during the interviews, which we evaluated

212 C. Gaebert

afterwards through a qualitative content analysis. Since we demanded appointed
circumstances and facts, we were able to avoid free interpretation problems [27].

We designed the investigation in preparation of the following analyses. We draw
our legitimation for the subsequent sections. Therefore, we will use some study results
in connection with the corresponding theoretical considerations in the next sections.

3 Knowledge and Information in Software Development
Projects

Before we can develop models for the protection of knowledge from misuse in Sect. 4,
we need to analyze I&K in SDPs. Therefore, in this section we link insights from
Information Management literature with Requirement Engineering. The requirement
specification is a fundamental document for the FPC and the SDP itself, and it consists
in particular of the customer’s I&K. However, the supplier must also provide I&K. In
this section, we show that not all provided I&K are worthy of protection. For this, we
will discuss at first the difference between knowledge and information using the lit-
erature. Second, we will detect which kinds of I&K are worthy of protection in the
context of SDPs. Finally, we will summarize the chain of reasoning derived from that.
Concerning both parties’ interests, we enhance the research. We will identify a sym-
metrical distribution of protection worthy knowledge.

3.1 Knowledge and Information

According to Information Management literature, it is difficult to distinguish between
knowledge and information in a way that for every single situation it is clear, if some
set of statements, documents, or data contains knowledge or information [28]. For
systematic reasons, we will clearly differentiate between information and knowledge as
follows.

According to Ackoff [29], an information contains useful data and provides answers
to questions like who, where, when, and what, whereas knowledge is an application of
information, which answers how questions. In addition, Zeleny [30] describes infor-
mation as knowing what, whereas knowledge as knowing how. One can describe a
business process by saying who is the process actor, what the actor does within this
process, and in which situation (where and when) he does it. These descriptions are
information about the business process. On the other hand, one can describe how the
actor meets a business goal by carrying out a business process. This provides knowl-
edge, the know how to reach the goal. In order to have knowledge it is therefore not
enough to be able to describe process details, but you must also know the goal, for which
the process is a tool on the way to reach it.

Both Ackoff and Zeleny point out further kinds of knowing something. If one not
only knows what (where, when, who) and how, but also has the answer to the why
question, then, according to Ackoff, the person has understanding. Zeleny calls the
ability to provide answers to why questions wisdom. As knowledge is inherited from

Protection of Customers’ and Suppliers’ Knowledge 213

information, understanding and wisdom are inherited from knowledge. Thus, data is the
quasi common denominator of information, knowledge, understanding, and wisdom.

There is a broad discussion going on regarding the differences between informa-
tion, knowledge, understanding, and wisdom [28, 31]. It is not the supplier’s task to
understand the customer’s business model in the broadest sense. However, there is no
clear divide between knowledge and understanding. The purpose of a software system
is in some sense connected to the customer’s business goal. For our purposes, it is
therefore sufficient to mark the difference between information and knowledge. For that
reason, we will use the notion of information for data regarding processes, events,
objects, and methods without answering how these described data are used to reach a
goal, and why these data are necessary as a means for someone’s purpose. On the other
hand, knowledge offers us such answers. He who has knowledge knows the purposes
the data are used for. He knows how these data should be used to reach these purposes,
and why these data are suitable for the purposes.

In the next section, we will use these findings for an analysis of I&K in an SDP
context.

3.2 Knowledge and Information in Software Development Projects

Our empirical study shows that during the proposal phase and during
contract-negotiations, both sides must provide detailed information on the customer’s
requirements and the supplier’s abilities. We aim to clarify which kind of I&K is a
property the contractual parties wish to protect against misuse by the other side.
During SDP preparation and execution, the customer and the supplier must share
different kinds of I&K.

For analyzing purposes, we will first take the customer’s perspective. There is
broad research in the field of software engineering regarding I&K provided by the
customer in SDPs. After that, we will be able to develop a consistent view of the
supplier’s perspective. From this contribution of research, we will summarize which
are the kinds of I&K worthy of protection in the context of an SDP.

The Customer’s Perspective: Requirements. The research about customer-delivered
information focuses on requirements representation and specification [32]. Researchers
have been distinguishing for long three kinds of requirements: project requirements (a),
process requirements (b), and system requirements (c) [33, 34].

(a) We have to consider information on the project’s timeline, the budget, and mile-
stones to be met (what, when, where, and who). These are the project requirements.
Obviously, the customer must share this information, because the supplier will set
up the project plan based on it. In our expert interview, the business side consultant
stated that the customer shares this information in the early phases, and mostly long
before signing the contract. Often the customer delivers such information to more
than one potential supplier. Obviously, there is no problem as long as it is only
information as defined in the previous section. However, problems arise during the
project if it gets impossible to achieve the needed milestones. Due to external
reasons, meeting a milestone is sometimes prioritized, but in other cases, it may be

214 C. Gaebert

possible to shift the timeline if changes in requirements or other problems arise. To
find the right decisions, the customer must share more than information with the
supplier. It is necessary to deliver the answer to the question why a milestone was
set to a special due date. According to our definition in the previous section, this is
part of the customer’s knowledge. This knowledge may be connected with other
knowledge from the customer’s side, for instance a marketing strategy for a new
product launch. There is good reason to hide this knowledge from external
suppliers.

(b) There is information needed directly for work processing and for the coordination
of the involved staff’s activities. From the customer’s perspective, such infor-
mation is part of process requirements. Due dates, contact persons’ names and
data as well as the meeting schedule are examples of such information, which
controls the process. This kind of information is not in the focus of our study.
There is no reason to hide such information, because it is only valuable during the
project and in case the contractors share it.

(c) When we use the notion of requirements during SDPs, we mostly refer to system
requirements. Requirement specification is mostly the first part of each project.
Since changing and ambiguous requirements are one of the main reasons for
project failure (cf. Introduction and our empirical investigation), researchers have
been focusing on methods of software requirements engineering during the last
decades.

System requirements are divided into functional and non-functional requirements,
and constraints. Functional requirements define what the system is bound to do. In the
sense of Ackoff and Zeleny, these requirements belong to information to be shared by
the customer. Obviously, this information is crucial for producing the right software
system. On the other hand, the customer is often not able to define in a clear and
detailed way how the system should look like, how it should react to user input, or how
it should process data. As the manager from the supplier’s side stated in our interview,
in order to design an appropriate system it is useful to share knowledge about how the
users do their work, about what the business processes are, and why they need support
from the required software system. This knowledge is the know-how of the customer’s
organization.

Consequently, we must consider not only information, but also knowledge of the
customer. There are good reasons for sharing this knowledge with the supplier, but on
the other hand, there are also reasons to hide this know-how: it is the internal
knowledge of an organization and it is its competitive advantage.

The customer may also define non-functional requirements as information.
Requirement specifications must contain statements about needed response times or
data volumes. Sometimes it is necessary to prioritize non-functional requirements. For
this, it is useful to know why the customer needs the defined system parameters, and
why it is important to meet these requirements. Then, it is not enough to deliver
information, but it is also useful to deliver knowledge about the business know-how.

Last, we have to consider constraints. Constraints are legal or cultural restrictions
that the supplier must take into consideration during the software system development.

Protection of Customers’ and Suppliers’ Knowledge 215

Such information is mostly publicly available, and is not the customer’s private
property. Therefore, we must not examine it in detail in this study.

Table 1 shows an overview of the I&K to be provided and shared by the customer
during an SDP. As our analysis shows, the customer may share nearly each input either
as information or as knowledge. At the knowledge level, the customer may have an
interest in protecting it from usage by external parties [13]. Therefore, we can depict
this knowledge as customer property. Properties are worthy of protection. We will
further develop this idea and its consequences in Sect. 4 of this paper. Before, we will
take the supplier’s perspective.

The Supplier’s Perspective: Abilities. In order to achieve a suitable and systematic
description of I&K provided and shared by the supplier, we will develop in the fol-
lowing this description in analogy to the kinds of I&K found for the customer. In the
previous section, we have identified three kinds of I&K for the customer to deliver
during the SDP. These are (a) project requirements: organizational project embedding
within the organization’s processes, its connections with customer strategies and
business goals, (b) process requirements: project management and organization,
(c) system requirements: the organization’s business know-how as far as it is relevant
for the development of the needed software system.

On the suppliers’ side, we can identify three corresponding kinds of I&K.

(a) Project requirements: The supplier has to embed the single project within his
production processes. He must answer the following questions: When is the
needed staff available? Which experts are necessary? When will they be able to
work on the project? Which other resources, like development and test systems,
are needed for the project?
This information influences the overall project plan. The supplier must deliver
these data to the customer by at least partly committing to timelines and mile-
stones. Sometimes, the sequence of the project’s working steps will depend on

Table 1. Kinds of information and knowledge provided by the customer.

Information Knowledge Protection-relevant

Project
requirements

Project’s due dates Project business
goals

Relevant, maybe interesting
for competitors

Process
requirements

Project internal
due dates
availability of
resources

Current business
processes and
activities outside
the project

Not relevant, because only
valid during a short time
period

System
requirements

Functional and
non-functional
requirements,
constraints

business goals,
business
knowledge

Relevant, interesting for
competitors, usable by
the supplier in other
projects, define the
customer’s competitive
advantage

216 C. Gaebert

such external basic conditions. If the supplier does not just deliver the plain
information, but also the reasons underlying the decisions for a certain setting, the
supplier shares organizational knowledge with the customer. This knowledge
concerns the supplier’s organization ability to handle and process projects as
needed in order to produce the desired software system.

(b) Process requirements: As in the customers’ case, sharing project management
information is not worthy of protection because it has no value outside the project.
This information is in no way connected with the organization’s knowledge.
Therefore, we will not consider this information in our study.

(c) System requirements: We must consider information regarding the core of the
supplier’s business expertise. During the proposal and negotiation phase, the
supplier must deliver information to show that the organization is able to produce
the needed software system. Therefore, the supplier shares relevant parts of the
business expertise. Furthermore, during system development of the system, it may
be useful to share information on the used employed tools and methods. In
addition, the supplier has to share technical implementation details to justify
prioritizing the implementation of non-functional requirements. Often, the cus-
tomer and the supplier must make such decisions in common. In order to make
possible such decisions, the supplier must share the information in a way that the
customer can generate knowledge regarding the underlying technical facts,
methods, and constraints. This knowledge is worthy of protection for the supplier,
because the generation of such knowledge makes the customer more independent
from the supplier’s services [35]. Furthermore, the customer may use this
knowledge in other projects and may share it with the supplier’s competitors [36].
We have summarized the supplier’s perspective on I&K he has to share in
Table 2.

Table 2. Supplier’s knowledge and information.

Information Knowledge Protection-relevant

Project
abilities

Commitment of
project’s due
dates

Supplier’s overall
strategy

Relevant, maybe interesting for
competitors

Process
abilities

Project internal
due dates
availability of
resources

Current business
processes and
activities outside the
project

Not relevant, because only
valid during a short time
period

System
abilities

Development
methods, used
tools and
frameworks

Know-how in
development,
experiences,
problem- solving
strategies

Relevant, interesting for
competitors, make the
customer independent, define
the supplier’s competitive
advantage

Protection of Customers’ and Suppliers’ Knowledge 217

3.3 Summary: The Character of Information and Knowledge
as Properties

Summarizing the theoretical analysis of I&K needed in SDPs, we have to accept the
fact that both parties have reason to protect knowledge from misuse by the other side.
We substantiate our empirical investigation. There is knowledge regarding the internal
business processes, regulations, experiences, and goals making the organization
powerful and successful in the market and in the context of competition with other
firms. These are intellectual properties of the firm [12].

Consequently, this knowledge is an important asset for both firms as long as each
organization protects it against competitors. The customer possibly maintains a rela-
tionship with the supplier’s competitors and vice versa. Therefore, both contractual
parties have reason to protect their own knowledge. Both parties may withhold the
needed I&K as long as possible.

On the other hand, sharing this knowledge is crucial for a successful project.
Knowledge is needed to make the right decisions in designing the right system. In
addition, at the beginning of an SDP both parties do not know the exact I&K is needed.
Therefore, both parties deliver I&K as late as possible, a reason for changing
requirements. With the next section, we develop a possibility for a balance of the
protection of I&K in spite of the FPC.

4 The Protection of Knowledge: The Property Rights Model
for the SDP

In this section, we will provide the announced theoretical ex-ante investigation of the
contract impact on reaching customer and supplier-specific economic outcome goals in
an SDO project. We will investigate how PR theory can improve our understanding of
how the protection of PR can attenuate reasons for changing requirements and there-
fore, reasons for failure.

First, we will give a summary of our literature review on efforts made to date. We
argue that the protection of knowledge needs further research; this paper will contribute
to that. Second, we are adopting Barzel’s [37] classical landowner model on our
situation under investigation. We will develop two new models describing the property
rights situation in SDPs. With this, we can get a balance of knowledge protection.

4.1 Excursus: Protection of Knowledge by Credible Commitments

Copyright or patent laws are formal protection measures, yet they are not suitable for
protecting knowledge in an SDP context [38, 39]. As shown by Liebeskind [38], the
firm itself has the power to protect the knowledge, making it invisible from the outside.
Friesike [39] calls these options “informal protection measures”. However, contractors
have to share knowledge in an SDP. Consequently, preventing visibility is not useful.

In long-term collaborations, contractual parties can reach trustworthy behavior by
credible commitments [40–42]. For that, reciprocal specific investments are most effective.

218 C. Gaebert

Reciprocal specific investments create a mutual hostage situation that serves as a safe-
guard against the misuse of knowledge. However, these investments are not suitable for a
single SDP. This also applies to non-disclosure agreements; they are effectively reachable
only in long-term collaborations [43, 44]. Thus far, the contractual parties are aware that
the SPD’s end is within the range of vision. Therefore, trustworthy behavior is hardly to
ensure, especially after the project’s end.

Consequently, we must search for alternative incentives to secure knowledge
protection during an SDP. In the next section, we will find such options by starting
from models of the economic PR theory.

4.2 Protection of Knowledge by Property Rights: The Landowner Model

A classic model introduced by Barzel [37] analyzes the contractual situation between a
landowner having PR on land and a worker having PR on labor. In order to produce
goods, at least one of them must assign the PR to the other. They have three options:
first, the landowner may assign the land-using right to the worker through a fixed-rent
contract. Second, the worker may assign the labor-using right to the landowner via a
wage contract. Finally, they can sign a shared tenancy contract to share the profit from
the crop sale. In each case, both parties will overuse the contractual partner’s resources,
which they control themselves. On the contrary, each party will reduce its support for
resources, which are now under control of the other side. Therefore, the decision for a
contract type depends on the net gain of the cooperation. No contract type will always
be the best under all circumstances. With a fixed-rent contract, the landowner will
maintain his land less improved; with a wage contract, the tenant will shirk more. Half
way between both of them, there is a bit of everything. In this case, output specification
and monitoring will be additionally necessary.

I&K does not need maintenance in the sense of physical wear and tear. At first
sight, I&K cannot be overused, because it cannot be damaged by using and sharing.
Nevertheless, we can interpret it as an overuse when a party, having received I&K from
the other side, shares this with a third party or uses it in another project. In such cases,
I&K as a property of the owner may lose its value.

The fixed-price contract, as under our investigation, is the most commonly chosen
contract design [45] in SDPs; our empirical investigation supports this. However, we
must be careful: using the fixed-rent model for managing the usage of I&K in an SDP
does not imply a FPC for the SDP, such as a wage model does not imply a time and
material contract. We will see as follows that the crucial question does not relate to the
price model of the underlying contract. It is the question who controls the usage of I&K
and labor.

However, with respect to SDPs, the landowner model has some weaknesses. First,
the I&K needed by the other party plays the role of the land. This raises the question
whether someone is willing to pay for the use of a requirement specification. Second, in
our case landowner and crop buyer are the same party. Consequently, no independent
third party (the market) will validate the value of the I&K. Incidentally, this explains
why shared contracts are unusual in SDPs.

Protection of Customers’ and Suppliers’ Knowledge 219

Therefore, we will analyze the consequences of these problems in the following,
and discuss the fixed-rent model as well as the wage model.

4.3 The Fixed-Rent Model

In the most obvious application of Barzel’s model to the situation of an SDP, the
customer plays the role of the landowner, whereas the supplier is the worker.
Requirement specification and the business knowledge behind it are customer prop-
erties. In case of a rent model, the supplier rents this knowledge. After finalizing
software development, the supplier sells the software solution to the customer.

However, according to Sect. 3, we must consider the opposite situation, too. We
will look for situations in the SDP, when the customer uses supplier’s knowledge to
contribute to the project success.

In the next section, we discuss the following questions: is it possible to rent the
knowledge needed by the other party inside the SDP? How can we interpret the model
in this situation, and what are the consequences of that? In the following two sections,
we will analyze both cases where supplier or customer rent knowledge.

Knowledge Regarding Requirements. At first glance, it seems to be an unusual idea
for a supplier in an SDP to rent knowledge from the customer. Two questions arise:
(a) Should the supplier pay a rent for the knowledge, which is necessary for the SDP?
(b) How it is possible to give the knowledge back to the owner after finalizing the
project?

Concerning the first question (a), we can take the view that the parties offset the
knowledge rent against the price for the software solution delivered at the end of the
project. Customer information on business goals and the business knowledge lying
behind this information is valuable for the supplier. This knowledge helps the supplier
in understanding and thus developing the required software. Consequently, customer
knowledge is valuable for the supplier, and the supplier can rent this knowledge. The
contractors can offset this rent with the calculated overall SDP fixed-price.

Nonetheless, we must discuss the possibility of project failure. The supplier does
not deliver any software and the customer will not pay the agreed price. Should the
contractors stipulate a penalty regarding the delivered knowledge? We are facing the
same question as in the landlord-worker model: should the worker pay a rent after crop
failure, if he cannot harvest grain? The answer the rent model gives us is yes, because
the landowner does not know the reasons for the failure. Therefore, it is the worker’s
risk. Dispensing the rent would be only possible in the case of a sharing model. Thus,
also in an SDP, the parties should agree on a penalty in case the customer shares
business knowledge, but the supplier delivers no software system.

We are now coming to the more interesting second question (b). Here, the parties
must avoid that the supplier integrates the knowledge rented from the customer into the
knowledge of his own organization. As our empirical study shows, 77 % of the sup-
pliers admit using received information outside the project. If the knowledge given
from customer to supplier becomes a part of the suppliers’ business knowledge, the
supplier cannot give back this knowledge when the rent ends. We can interpret this as

220 C. Gaebert

an overuse of information as defined by Barzel [37]. If the supplier uses the customer’s
business knowledge in other projects, namely to support competitors of the customer,
the value of this knowledge decreases as does the value of overused land.

One can argue that the supplier must integrate knowledge into his own knowledge
in order to develop the required software. Nevertheless, we must distinguish three
cases: integration of knowledge into the knowledge of the supplier as a knowing
organization (i) [46], integration of knowledge into the knowledge of a project team
(ii), and integration of knowledge into the knowledge of a single person (iii), for
instance the requirements engineer or solution designer. (i) For software system
development, it is not necessary for the supplier to integrate knowledge about
requirements into the knowledge of his own organization. The contract should contain
rules to avoid this. (ii) In our empirical online survey, 77 % of the interview partners
say that such knowledge will be discussed in joint project teams. The project team
knowledge disappears when the project ends. (iii) Last, a person’s knowledge about
complex facts often requires this person to have access to detailed documentation. We
can interpret this documentation as the expert’s extended mind [47]. For proper use of
the knowledge, the expert needs access to the documentation. If this access is denied
after the end of the project, the value of such knowledge decreases within short periods.

Furthermore, we must take into account the different kinds of information as dis-
cussed in the previous section of this paper. As we have seen there, two kinds are likely
to raise problems: the knowledge behind the information regarding project require-
ments, and the knowledge behind the information concerning functional and
non-functional requirements.

First, the knowledge regarding project requirements, such as reasons for timelines
or customer business goals, which the customer will only deliver to project leaders.
This knowledge should remain inside the project management team. These people
should sign a non-disclosure agreement regarding this knowledge. Since the value of
such knowledge decreases very fast after the project is finished, it is possible to
supervise this agreement and to demand a penalty in the case of knowledge misuse.

Second, functional, and non-functional requirements and the associated knowledge
are mostly very complex and recorded in voluminous documents. Making impossible
to copy these documents is a technical issue. Consequently, the experts from the
supplier’s side can only use this knowledge without integrating it into the knowledge of
their organization. At the end of the project, the customer must prevent the supplier’s
experts from having access to the documents.

Therefore, it is possible to rent relevant knowledge to the supplier. A prerequisite
for this lies in agreeing on some special contract regulations and in securing that the
documents delivered be difficult to copy. This is just a technical issue [48].

Renting Knowledge Regarding Abilities. Following the same arguments, we can
apply the rent model to knowledge about the abilities of the supplier as analyzed in the
previous section. First, the parties may also offset the rent with the delivered software
price. We suggest calculating the rent within the project price. If possible, the parties
should agree that the customer pays a certain amount of the overall price for this
knowledge. It is particularly worth noting that this amount is even due if the customer
cancels the SDP.

Protection of Customers’ and Suppliers’ Knowledge 221

Nonetheless, we have to consider knowledge regarding the supplier’s technical
abilities, especially regarding the core of business expertise. The customer may be
interested in this information for two reasons. First, it may help in negotiations and
cooperation with other suppliers, namely with direct competitors of the supplier who
delivers the knowledge. Second, the customer may use it to be more independent from
the supplier after finishing the project, especially in the field of maintenance and when
it comes to developing future software releases. In our empirical survey, 50 % of the
interview partners, acting at least partly as customers, admit using received knowledge
outside the project.

Especially in the case that the customer cancels the contract, the supplier will fear
that the customer uses the knowledge he has got during the project for future devel-
opments. Therefore, the parties should agree on a price for the delivered knowledge,
which must be paid by the customer also in case of cancellation.

However, the supplier can protect his knowledge, too. This knowledge about the
supplier’s abilities is also very complex and mostly documented in repositories and
libraries. In order to use this information outside the single project, the customer must
get permanent access to these documents. The supplier should present this knowledge
without really sharing it. It is possible to show the needed knowledge proving that the
needed knowledge is available, and without delivering all the documents specifying
details of the supplier’s business know-how.

Consequences of Renting Knowledge. As shown by Barzel [36], the rent of a
property is connected with the problem of overusing this property. In the case of
knowledge, this means that using it outside the project may reduce its value dramati-
cally. Therefore, both parties, customer and supplier, should assess the situation and the
potential for such misuse before signing the contract. If they know the value of their
business knowledge, they can agree on a rent model on knowledge as described before.

To sum up the Sect. 4.3, both parties signing a fixed-price SDP contract must be
aware of the fear of delivering part of one’s own business knowledge to the other side.
As we have shown, it is possible to offset a rent of this knowledge with the agreed
fixed-price. For some kinds of knowledge, a penalty can be agreed upon in case of
misuse or if the project fails and the customer do not pay the agreed price.

To implement a rent model regarding this knowledge it is necessary to secure that
the other party has no permanent access to the documents containing the knowledge.
This is just a technical issue. “Show and present, but do not deliver your documents”
may be seen as the golden rule of implementing the rent model for PR on business
knowledge.

We will now discuss the opportunity for a wage model agreement under FPC.

4.4 The Wage Model

Let us recall that the parties sign a fixed-price contract in most SDP cases. Therefore, at
first glance, there is no place for a wage model regarding knowledge. However, we
claim that this view is wrong in connection with knowledge in SDPs.

222 C. Gaebert

First, we must face the problem that also in the case of a time and material contract
the factual PR on knowledge may go over to the other side. If the customer completely
delivers all the documents to the supplier, the sender cannot be sure that the receiver
might use it in other projects. Therefore, also in this case the customer may lose PR on
own knowledge. This is the same problem as in the case of the fixed-price contract.

Second, we can also apply Barzel’s wage model to the FPC in SDPs. It is not about
an overall fixed-price connected with the project result, it is about knowing if the PR on
I&R are rented to the other side, or if the owner uses the other side’s labor just to
produce some goods.

The goods produced by using the customer’s business knowledge are the technical
specifications and the software designs needed by the programmers for software
realization. In an SDP, it is possible to integrate the business analysts, the requirement
engineers, and the system designers needed for this work into the customer’s organi-
zation for the time required to produce these specifications. It is not important whether
the work of these experts is paid by time and material or if the wage is part of the
overall fixed-price. The crucial fact is that they lose the PR on used knowledge when
they leave the location where they had access.

One might object that they will mentally take this knowledge with them.
Nonetheless, as discussed before, in cases of complex business information the value of
the individual knowledge decreases fast if this person has no longer access to the
documents containing knowledge details and describing information connections and
relations.

Consequently, if the supplier’s business analysts are working under the control of
the customer, with no option of taking away business information from the customer’s
offices, we can see this part of the project as work done with a wage model, and with or
without payment of an overall fixed-price.

Following Barzel [37], the customer must be aware of possible shirking from the
supplier’s side in this case. Given that the supplier’s experts produce technical spec-
ifications for the software and even software architecture under the customer’s control,
the customer is responsible for the quality of these documents. It is difficult to identify
the origin problems with the result of the software development: they might be due to
low information quality delivered by the customer, or to poor work of the experts
producing the specifications, or to that of developers.

On the other hand, the supplier must face potential misuse of the intellectual
property under the customer’s control. In the case of an SDP, this means that the
customer might try to use the abilities. There can especially be a transfer of the experts’
knowledge to the customer. Consequently, the customer will be more independent as
foreseen by the supplier.

According to Barzel’s conclusion, the customer should only use the wage model if
the quality of his own property is unclear. In the SDP case, this means that the customer
is not sure about the quality of the specified requirements and the availability of the
needed information and business know-how. However, the customer must in this case
be capable of effectively controlling the work of the supplier’s experts and of evalu-
ating the quality of the produced results. However, the last mentioned issue will be
difficult because specifications and designs are not testable in the same way as
developed software [49].

Protection of Customers’ and Suppliers’ Knowledge 223

Finally, we will discuss the case of a wage model regarding the supplier’s business
knowledge. This is possible when experts from the customer’s side are working under
the supplier’s control, using the supplier’s information and knowledge. In an SDP,
there are a few cases where such a setting can happen, for instance during the design of
user interfaces or during software system integration tests. We can interpret this part of
the project as a wage model, in which the supplier must pay the customer a wage. We
can expect the parties to offset this wage with the overall fixed-price. We suggest that
the parties evaluate the value of this work during the contract negotiation.

4.5 Summary: Rent and Wage Model

We have described two models, considering two options: a rent model and a wage
model. From our theoretical consideration, in both cases, we face two issues for the
application of these models in practice: how to pay the rent respectively the wage, and
how to protect PR, especially after the project is finished.

We suggest offsetting the price for the delivered knowledge with the overall
fixed-price in the case of knowledge renting. Consequently, the parties should consider
the value of the needed knowledge during contract negotiation. The price should take
into account the risk of knowledge misuse outside the project. If both parties are aware
of these problems, they are able to arrive at a satisfactory solution.

On the other side, the parties should prefer technical solutions for the protection of
PR, granting knowledge access just for the time needed. Such technical restrictions are
possible by the implementation of knowledge management software and the use of
document management systems. Considering the fact that knowledge about complex
business processes rapidly decreases if the access to documentations is denied, an
effective rent system is possible if such a system is used.

A rent model option is a possible model for using both customer and supplier
knowledge, however, the wage model is just an option for the use of customer
knowledge during technical specification and system design. The customer might pay
the wage as part of the overall fixed-price. Designers and analysts may work under the
customer’s control and use the customer’s facilities. Then, it is easy to protect knowl-
edge from misuse, because controlling the access to customer documentations and
knowledge management systems is easy to organize.

5 Conclusions

In SDPs with FPCs, the protection of contractual parties’ knowledge is at risk. Our
paper shows possibilities to get protection in spite of the FPC using Information
Management and Requirement Engineering Research, and New Institutional Eco-
nomics. We have analyzed the different kinds of I&K needed in SDPs that customers
and suppliers have to share. The supplier must deliver I&K regarding his own abilities.
The customer must deliver I&K derived from business goals. Sometimes, delivering
only the pure information is sufficient. Confirmed through our empirical investigation
we have shown, that the parties must often share their business knowledge, which can

224 C. Gaebert

lead to misuse outside the project by the party receiving the knowledge. Our empirical
study shows that the contractual parties fear of this misuse. Hence, both sides need
protection.

The knowledge of an organization is an intellectual property of its owner. However,
the owner cannot protect most of the knowledge needed in an SDP by copyright,
patent, or trademark. Consequently, we have developed theoretical models (rent or
wage) for the protection of PR on knowledge straight from a classic model of the PR
theory.

Which option the parties should prefer? The answer to this question will depend on
the quality of the needed knowledge and on the possibilities of securing it by technical
means. If the knowledge is contained in documents and if it is possible to protect these
delivered documents by technical means from misuse, the parties should prefer the rent
model. Such protection systems are possible especially by granting limited online
access by using digital documents in document management systems.

Otherwise, the wage model is a better way to share knowledge. In this case, both
parties give only access to the knowledge inside their own properties. The knowledge
delivering party will provide equipment and working places for the experts of the other
party. The experts can do their job, using and transforming the knowledge for con-
tributing to the project’s success without taking the knowledge away from the owner.

In both cases, the parties should be aware of the following principles.

(a) Both sides have protection-worthy knowledge.
(b) Both sides have to set a price for this knowledge. They should agree upon the

value of the shared knowledge during contract negotiation and offset it with the
overall price.

(c) The parties should agree upon payment for received and used knowledge in case
the project fails and the customer does not pay the negotiated price for the soft-
ware system.

The customer as well as the supplier can minimize the risks resulting from sharing
knowledge in SDPs by using these suggestions. Further research can just tie here.

References

1. Manifesto, C.: The Laws of Chaos and the CHAOS 100 Best PM Practices. The Standish
Group International, Boston (2010)

2. El Emam, K., Koru, A.G.: A replicated survey of IT software project failures. IEEE Softw.
25(5), 84–90 (2008)

3. Dijkstra, E.W.: The humble programmer. Assoc. Comput. Mach. 15(10), 859–866 (1972)
4. Al-Ahmad, W., Al-Fagih, K., Khanfar, K., Alsamara, K., Abuleil, S., Abu-Salem, H.:

A taxonomy of an IT project failure: root causes. Int. Manage. Rev. 5(1), 93–104 (2009)
5. Dwivedi, Y.K., Ravichandran, K., Williams, M.D., Miller, S., Lal, B., Antony, V., Muktha,

K.: IS/IT project failures: a review of the extant literature for deriving a taxonomy of failure
factors. IFIP Adv. Inf. Commun. Technol. 402, 73–88 (2013)

6. Chua, C.E.H., Lim, W.K., Soh, C., Sia, S.K.: Client strategies in vendor transition: a threat
balancing perspective. J. Strateg. Inf. Syst. 21(1), 72–83 (2012)

Protection of Customers’ and Suppliers’ Knowledge 225

7. Dey, D., Fan, M., Zhang, C.: Design and analysis of contracts for software outsourcing. Inf.
Syst. Res. 21(1), 93–114 (2010)

8. Fink, L., Lichtenstein, Y.: Why project size matters for contract choice in software
development outsourcing. Data Base Adv. Inf. Syst. 45(3), 54–71 (2014)

9. Chen, Y., Bharadwaj, A.: An empirical analysis of contract structures in IT outsourcing. Inf.
Syst. Res. 20(4), 484–506 (2009)

10. Williamson, O.E.: The Economic Institutions of Capitalism. Firms, Markets, Relational
Contracting, New York (1985)

11. Tiwana, A.: Beyond the black box: knowledge overlaps in software outsourcing. IEEE
Softw. 21(5), 51–58 (2004)

12. Teece, D.J.: Strategies for managing knowledge assets: the role of firm structure and
industrial context. Long Range Plan. 33(1), 35–54 (2000)

13. Norman, P.M.: Are your secrets safe? knowledge protection in strategic alliances. Bus.
Horiz. 44(6), 51–60 (2001)

14. Hart, O., Moore, J.: Property rights and the nature of the firm. J. Polit. Econ. 98(6), 1119–
1158 (1990)

15. Cole, D.H., Grossman, P.Z.: The meaning of property rights: law versus economics? Land
Econ. 78(3), 317–330 (2002)

16. Benaroch, M., Lichtenstein, Y., Wyss, S.: Contract Design Choices in IT Outsourcing: New
Lessons from Software Development Outsourcing Contracts, 20 April 2012. http://ssrn.com/
abstract=2137174 or http://dx.doi.org/10.2139/ssrn.2137174

17. Aubert, B.A., Patry, M., Rivard, S.: A tale of two outsourcing contracts. An
agency-theoretical perspective. Wirtschaftsinformatik 45, 181–190 (2003)

18. Lichtenstein, Y.: Puzzles in software development contracting. Commun. ACM 47(2),
61–65 (2004)

19. Beulen, E., Ribbers, P.: IT Outsourcing contracts: practical implications of the incomplete
contract theory. Proceedings of the 36th HICSS (2003)

20. Osei-Bryson, K.M., Ngwenyama, O.: Using decision tree modelling to support Peircian
abduction in IS research: a systematic approach for generating and evaluating hypotheses for
systematic theory development. Inf. Syst. J. 21(5), 407–440 (2011)

21. Schurz, G.: Patterns of abduction. Synthese 164(2), 201–234 (2008)
22. Walton, D.: Abductive reasoning. University of Alabama Press, Tuscaloosa (2014)
23. Klammer, B.: Empirische Sozialforschung. Eine Einführung für Kommunikationswis

senschaftler und Journalisten. Utb, Konstanz (2005)
24. Schnell, R., Hill, P., Esser, E.: Methoden der Sozialforschung, 9th edn. Oldenbourg

Wissenschaftsverlag, München (2011)
25. Mayer, H.: Interview und Schriftliche Befragung. Entwicklung, Durchführung und

Auswertung. Oldenbourg Wissenschaftsverlag, München (2012)
26. Myers, M.D., Newman, M.: The qualitative interview in IS research: Examining the craft.

Inf. Organ. 17(1), 2–26 (2007)
27. Gläser, J., Laudel, G.: Experteninterviews und Qualitative Inhaltsanalyse, 4th edn. VS

Verlag, Wiesbaden (2010)
28. Rowley, J.: The wisdom hierarchy: representations of the DIKW hierarchy. J. Inf. Sci. 33(2),

163–180 (2007)
29. Ackoff, R.L.: From data to wisdom. J. Appl. Syst. Anal. 16, 3–9 (1989)
30. Zeleny, M.: Management support systems: towards integrated knowledge management.

Hum. Syst. Manage. 7(1), 59–70 (1987)
31. Swigon, M.: Personal knowledge and information management – conception and

exemplification. J. Inf. Sci. 39(6), 832–845 (2013)

226 C. Gaebert

http://ssrn.com/abstract=2137174
http://ssrn.com/abstract=2137174
http://dx.doi.org/10.2139/ssrn.2137174

32. Pohl, K.: The three dimensions of requirements engineering. In: Bubenko, J., Krogstie, J.,
Pastor, O., Pernici, B., Rolland, C., Sølvberg, A. (eds.) Seminal Contributions to Information
Systems Engineering, pp. 63–80. Springer, Heidelberg (2013)

33. IEEE Recommended Practice for Software Requirements Specifications. Institute of
Electrical and Electronics Engineers (1998)

34. Glinz, M.: On non-functional requirements. In: Requirements Engineering Conference,
pp. 21–26 (2007)

35. Gassmann, O., Kausch, C., Ellen, E.: Negative side effects of customer integration. Int.
J. Technol. Manage. 50(1), 43–63 (2010)

36. Paasi, J., Luoma, T., Valkokari, K., Lee, N.: Knowledge and intellectual property
management in customer–supplier relationships. Int. J. Innov. Manage. 14(04), 629–654
(2010)

37. Barzel, Y.: Economic Analysis of Property Rights. Cambridge University Press, Cambridge
(1997)

38. Liebeskind, J.P.: Knowledge, strategy, and the theory of the firm. Strateg. Manage. J.
17(S2), 93–107 (1996)

39. Friesike, S.: Profiting from Innovation by Managing Intellectual Property. Doctoral
Dissertation, University of St. Gallen (2011)

40. Williamson, O.E.: Credible commitments: using hostages to support exchange. Am. Econ.
Rev. 73, 519–540 (1983)

41. North, D.C.: Institutions and credible commitment. J. Inst. Theor. Econ. (JITE)/Zeitschrift
für die gesamte Staatswissenschaft 149, 11–23 (1993)

42. Ebers, M., Semrau, T.: What drives the allocation of specific investments between buyer and
supplier? J. Bus. Res. 68(2), 415–424 (2015)

43. Crasswell, R.: Taking information seriously: misrepresentation and nondisclosure in contract
law and elsewhere. Va Law Rev. 92, 565–632 (2006)

44. Bogers, M.: The open innovation paradox. knowledge sharing and protection in R&D
collaborations. Eur. J. Innov. Manage. 14(1), 93–117 (2011)

45. Badenfelt, U.: Fixing the contract after the contract is fixed: A study of incomplete contracts
in IT and construction projects. Int. J. Project Manage. 29, 568–576 (2011)

46. Choo, C.W.: The knowing organization: how organizations use information to construct
meaning, create knowledge and make decisions. Int. J. Inf. Manage. 16(5), 329–340 (1996)

47. Clark, A., Chalmers, D.: The extended mind. Analysis 58, 7–19 (1998)
48. Krogh, G.V.: How does social software change knowledge management? toward a strategic

agenda. J. Strateg. Inf. Syst. 21, 154–164 (2012)
49. Wiegers, K., Beatty, J.: Software Requirements. Pearson Education, Boston (2013)

Protection of Customers’ and Suppliers’ Knowledge 227

GQM-Based Definition and Evaluation
of Software Project Success Indicators

Luigi Lavazza1,2(B), Enrico Frumento2, and Riccardo Mazza3

1 Dipartimento di Scienze Teoriche e Applicate,
Università degli Studi dell’Insubria, Varese, Italy

luigi.lavazza@uninsubria.it
2 CEFRIEL, Milano, Italy

enrico.frumento@cefriel.com
3 WIND, Ivrea, Italy

riccardo.mazza@wind.it

Abstract. KPI (Key Process Indicators) are usually defined very early
in the project’s life, when little details about the project are known.
Moreover, the definition of KPI does not always follow a systematic and
effective methodology. As a result, KPI and project success indicators
are often defined in a rather generic and imprecise manner. We need
to precisely define KPI and project success indicators, guarantee that
the data upon which they are based can be effectively and efficiently
measured, and assure that the computed indicators are adequate with
respect to project objectives, and represent the viewpoints of all the
involved stakeholders. In this paper a complete and coherent process for
managing KPI and success indicators lifecycle is proposed. The process
is instrumented by well integrated techniques and tools, including the
Goal/Question/Metrics (GQM) method for the definition of measures
and the R statistic language and environment for analyzing data and
computing indicators. The proposed process was applied in the evalu-
ation of the research project MUSES. The MUSES case study shows
that the proposed process provides an easy and well supported path to
the definition and implementation of effective KPI and project success
indicators.

Keywords: Software measurement process · Goal/Question/Metrics ·
GQM · Key performance indicators · KPI · Success indicators

1 Introduction

KPI and success indicators are usually defined very early in the project’s life,
often even before starting the project. As a consequence, they tend to be defined
in a rather generic way and with no precise context. Important details –such as
the data upon which they have to be computed, or how such data are measured–
are very often omitted, just because the knowledge that is necessary to clarify
these details is not yet available. Therefore, it is generally convenient (sometimes
c© Springer International Publishing Switzerland 2016
P. Lorenz et al. (Eds.): ICSOFT 2015, CCIS 586, pp. 228–249, 2016.
DOI: 10.1007/978-3-319-30142-6 13

Software Project Success Indicators with GQM 229

even necessary) to revise the definitions of the KPI and success indicators in the
light of such increased knowledge.

In this paper, we describe a process of refining KPI and success indicators’
definitions and the consequent data collection, analysis and evaluation activ-
ities. The methods that can be used in process activities are also described.
The considered process is expected to provide convincing answers to the follow-
ing questions, which usually are left unanswered (sometimes they are not even
explicitly formulated):

– What is the purpose of each specific KPI or indicator, i.e., what does it mean,
actually?

– Do the KPI or indicators represent the actual needs of the project?
– Is there agreement on the definition of the KPI or indicators? In particular,

is there agreement between the people in charge of developing the software
product, end users and those who pay for the product?

– KPI or indicators’ definitions typically involve the measurement of products
or processes. Are the required measures well defined and viable?

– How are KPI and indicators computed and visualized?

In many cases, even though the project owners have a fairly good knowledge
of the project, they do not use such knowledge effectively in the definition of KPI
and success indicators, just because they do not follow a proper methodology
that guides the definition and computation of KPI and success indicators.

In this paper we illustrate and evaluate –via a case study– a process that can
be used to define KPI and success indicators in software development projects.
Namely, the process is applied to the evaluation of the MUSES (Multiplatform
Usable Endpoint Security) project. MUSES is a research project partly funded
by the EU [1]. The purpose of MUSES is to foster corporate security by reducing
the risks introduced by user behavior. To this end, MUSES provides a device-
independent, user-centric and self-adaptive corporate security system, able to
cope with the concept of seamless working experience on different devices, in
which a user may start a session on a device and location and follow up the
process on different ones, without loss of corporate digital assets.

The remainder of the paper is organized as follows. Section 2 presents a com-
plete process for the definition of KPI and the enactment of the activities through
which measures are collected and indicators are computed. Section 3 describes
the definition of KPI and success indicators via GQM. Section 4 shows how the
schema of the measure database can be defined on the basis of the knowledge
gained during the definition of GQM plans. Section 5 deals with the interpre-
tation of the collected data, and the precise definition of how KPI and success
indicators have to be computed. Section 6 illustrates the obtained indicator val-
ues and their visualization and discusses the final evaluation of the delivered KPI
and success indicators. Section 7 accounts for related work, while Sect. 8 draws
the conclusions and outlines future work.

230 L. Lavazza et al.

2 The Evaluation Process

To achieve the objectives mentioned in the introduction, a coherent and com-
prehensive process is needed: the UML activity diagram in Fig. 1 describes such
process.

Activity GQM goal definition aims at specifying the purpose of KPI or
success indicators, i.e., what they actually mean. This activity is performed
according to the GQM method. Usage of tools supporting the GQM is advisable,
but not mandatory.

Activity Product&Process modelling assures that the KPI and success indi-
cators are coherent with the properties of the product or process they refer to.
Product or process analysis is performed according to typical analysis method-
ologies; models are written in UML.

Activity GQM plan definition assures that the measurements required by
KPI and success indicators are well defined and can be performed at reasonable
cost. This activity is performed according to GQM. Usage of tools supporting
the GQM is advisable, but not mandatory.

Activity Measure DB schema design is carried out with the purpose that
evaluators and developers agree on the data to be provided by measurement
activities; it guarantees that the right data are provided, and the data are pro-
vided right, i.e., as required for evaluation. UML class diagrams can be used for
conceptual modelling.

In activity Project Trials, the process to be evaluated is carried out, and
measures are collected. Actually, “Project trials” is MUSES terminology to indi-
cate beta testing. The process is instrumented to provide the required measures.

Review and validation of measures are also performed before using the col-
lected data, to further increases the confidence on the validity of the representa-
tiveness of measures, hence of the derived indicators. Depending on the specific
process/product, measurement tools, questionnaires, monitoring activities, etc.
can be used.

Activity Indicator definition provides a well defined (actually, a formal
and executable) (re)definition of KPI and success indicators, also highlighting
what data are used and how. The R language is used to code the data analysis
and processing that yields KPI and success indicators.

Activity Indicator computation presents indicators in a form that can be
easily understood by users and stakeholders, and whose representativeness of the
actual product and process can be easily assessed. The R environment is used
to compute KPI and success indicators and graphically represent them.

3 Using GQM to Define KPI and Success Indicators

KPI and success indicators are (re)defined as GQM goals. We start from the
indications given in the MUSES Description of Work (DoW): The achievement
of the project objectives will be measured based on the success and progress indi-
cators given in Table 1. The indicators will be revised and updated in the course

Software Project Success Indicators with GQM 231

of the project in order to reflect the detailed user needs and related technical
objectives of the project.

In Table 1, the success and progress indicators are given without specifying
why they have been introduced and what quality they are intended to represent.
In an evaluation activity, one should always start from the definition of the
evaluation goal, so that the data to be collected and the indicators to be used
can be consequently defined. The GQM technique [2–4] formalized these ideas.

3.1 The GQM

In general, every project calls for specific measures and evaluation criteria,
depending on the specific goals of the projects. The GQM method is a gen-
eral purpose, goal-driven method, which has been successfully used in several

Fig. 1. A process for the systematic definition and computation of KPI and project
success indicators.

232 L. Lavazza et al.

Table 1. A few success indicators from MUSES DoW.

evaluation activities [5,6,8]. The GQM provides a systematic approach to for-
malize the goals of a project and to refine them into a measurement plan.

A GQM plan is organized into a few levels: at the topmost level, one or
more goals are specified. Each goal includes: an object (what is evaluated: typi-
cally a process, an activity or a product); a quality (i.e., the characteristic(s) of
the object that have to be evaluated); a purpose (such as evaluation, analysis,
understanding, etc.); a point of view (since the same objective may be evalu-
ated differently by different stakeholders); an environment (where is the object
evaluated: the environment can affect the evaluation).

As shown in Fig. 2, a GQM goal is always the formalization of needs: it must
be clear where each goal comes from and why it was conceived.

An example of a goal is: “Evaluate the throughput of a given process, from
the point of view of the process manager, in environment X”.

For every goal, an “abstraction sheet” is built. It identifies 4 groups of items:

1. Quality foci (QF): the qualities of interest.
2. Variation factors (VF): variables that are not of interest themselves, but can

affect the values of the measures associated to the quality foci.
3. Baseline hypotheses (BH): the expected values for quality foci and variation

factors. These will be used in the analysis of the data.
4. Impact of variation factors on baseline hypothesis: how VF are expected to

affect BH.

The abstraction sheets are a preparation step to address the operational level
of the plan: for every element of the abstraction sheet, one or more questions are
defined. These are used to describe the object of the study and the attributes,
properties, characteristics and aspects that should be taken into considerations.
Accordingly, questions have to be defined having in mind –as shown in Fig. 2–
a model of the objects of measurement and of the environment where the mea-
surement will take place and the results will be used.

The final level is the metric level, which is quantitative. According to the
model defined at the questions level, a set of metrics is identified. Measurement
activities will provide data (i.e., a quantitative knowledge of the elements of the
model) that will allow answering the questions. The process of defining a GQM

Software Project Success Indicators with GQM 233

Fig. 2. GQM goal, questions and metrics.

Fig. 3. GQM goal top-down refinement and bottom-up interpretation.

plan is thus a top-down refinement, from goals to metrics. Once the measure-
ment has been performed, the GQM plan guides the interpretation of data in a
bottom-up way (Fig. 3). Measures provide the data associated with the metrics
definitions. The analysis of such data provides answers to questions. The answers
contribute to achieving the goal.

The GQM method is general-purpose; however, it has been proposed in the
software engineering arena, as a reaction to the idea of predefined measures and
criteria for interpreting them. The spirit of the GQM is that individual processes
and products call for specific sets of measures and criteria for interpreting them.
A possible strategy is to identify the measures that characterize the process or
product being examined, and set target values for the measures that characterize
it. The measurements are performed only a-posteriori, to check if the target has
been reached. In any case, the GQM is an extremely flexible conceptual tool,
which can be easily adapted to a great variety of situations.

234 L. Lavazza et al.

Finally, it has to be noted that GQM plans are conceptual plans, without
indication of the resources to be employed, the timing and duration of activities,
etc. All these issues have to be tackled in the creation of the execution and
evaluation plan, which will provide traditional planning instruments like Work
Breakdown Structure, Gantt charts, etc.

The GQM has been used in the evaluation of several EU funded projects
(including CEMP, SACHER, CASCADOSS projects and others) as well as in
industrial settings [5,6,8–10]

3.2 Definition of KPI as GQM Goals

In this section we show how KPI and success indicators can be redefined at
a high level as GQM goals. This section describes in detail activity GQM goal
definition of the process in Fig. 1.

To limit the length of the paper, we considered only a few of the MUSES KPI
and success indicators (namely, those given in Table 1). We started by analyzing
the first row of Table 1 critically, considering how MUSES is structured internally
and in which contexts it is intended to be used. We found that MUSES is shaped
around several different general working scenarios (named “use cases”, or “UC”
in the project). Not all UC are exercised in all domains, but are generic enough to
adapt to different situations; UC are the building blocks of most of the situations
where MUSES adds layers of security. Accordingly, it is important to evaluate
all the relevant (UC, domain) pairs.

The analysis revealed also that the evaluation activity had to address two
complementary aspects: (1) the applicability of MUSES in all the scenarios in
which it is intended to be used, (2) the success of the application of every MUSES
UC. By the way, in the original definition, it was not clear what “successfully
conducted” should mean.

Although MUSES will be usable in many application domains, in the context
of the research project only a couple of domains were considered. Accordingly,
the KPI and success indicators evaluated within the project have to apply only
to the domains in which the tests are carried out.

So, the first row of Table 1 can be stated as a GQM goal as follows:

Goal 1. Evaluate the applicability of MUSES UCs in selected domain-
specific scenarios from the point of view of the companies operating in
such domains.

To define KPI and success indicators we use the GQM, therefore we start
from GQM goals. Part of the knowledge about the product acquired during the
definition of the GQM goals is not embedded in the goal definition, rather it is
used in the definition of the GQM plan, which is discussed in Sect. 3.3.

In the MUSES project, we reformulated all the indications given in Table 1,
even when the resulting GQM goal definition is very close to the original defi-
nition. For instance, the second row in Table 1 led to formulating the following
GQM goal:

Software Project Success Indicators with GQM 235

Goal 11. Evaluate the MUSES framework with respect to perceived user
experience, in the selected industry domains from the point of view of
domain users.

In this goal, the “perceived user experience” has to be further specified, since
there are so many factors that can affect the user experience. The detailed defi-
nition of “user experience” within MUSES is specified in Sect. 3.3.

3.3 Detailing KPI and Success Indicators in a GQM Plan

Having defined the GQM goals, the next step consists of refining the goals into
questions and metrics. Here is where the GQM is most useful: via a step-by-step
refinement, we make sure that the metrics definitions obtained at the end of the
process are coherent with the goals, and take into consideration (a) all the issues
connected with the product or process to be evaluated, and (b) the points of
view of the involved stakeholders.

Product and Process Modelling – MUSES Goal 1 Activities. The defi-
nition of an effective measurement plan must include the definition of a model of
the empirical, real-world context in which the measurement is to take place [7].

The GQM does not prescribe how one should represent or document such
model, which includes the knowledge of the relevant product and process. It was
suggested that such knowledge can be represented via UML models [11]: here
we follow such proposal.

Fig. 4. Conceptual model of MUSES Goal 1 testing and evaluation activities.

236 L. Lavazza et al.

The class diagram given in Fig. 4 illustrates the elements of the MUSES
testing and evaluation activities, upon which the evaluation of the project is
based. The diagram specifies that in each domain, a specific configuration of
MUSES is used. Every configuration includes a possibly different set of UC.
These are the UC that are useful in the domain where the particular MUSES
configuration will be used.

Every MUSES configuration is used in one or more trial session. There are
trial sessions where no MUSES configuration is used. These sessions are useful
to get data on the behaviour of a domain not equipped with MUSES, to enable
comparisons between the without-MUSES and with-MUSES situations.

MUSES UC are characterized in terms of UC features. Trial activities exercise
UC features. The execution of UC features within an activity is observable, hence
it can be classified with respect to completeness and correctness. Trial activities
are carried out in specific contexts, whose main characterization is given by the
participating users’ roles.

GQM Plan Definition – Goal 1. By taking into account the situation
described in Fig. 4, we can identify QF Application of MUSES UC and VF
Application domain. Then, still making reference to Fig. 4, we can derive the
following questions:

Q1.1. How many UC were executed per domain?
Q1.2. How many UC were successfully applied in each domain?

Figure 4 indicates that although the MUSES evaluation is carried out at the
granularity level of UC, we need to consider that every trial activity involves a
set of UC features. Accordingly, question Q1.1 was associated with metrics that
account for both UC and UC features (see Fig. 5).

Question Q1.2 was associated with the metrics shown in Fig. 5, which account
for the fact that the absolute number of successful executions of UC features is
not relevant per se, rather it is the ratio of successful execution to total executions
that provides a clear idea of MUSES success rate.

Fig. 5. GQM plan of Goal 1.

Software Project Success Indicators with GQM 237

Fig. 6. Conceptual model of MUSES Goal 11 testing and evaluation activities.

Product and Process Modelling – MUSES Goal 11 Activities. When
considering the second row in Table 1 –which was formalized by the definition
of Goal 11 in Sect. 3.2– we found different problems than with the indicators
considered previously:

– The characterization of user experience is incomplete, as only a few prop-
erties –namely, ease of use, usability and flow– are mentioned. Besides, the
mentioned properties are not precisely defined: for instance, the meaning of
“usability” (and how it differs from “ease of use”) is not defined.

– Having multiple experience aspects, a single satisfaction measure can be
obtained via multiple composition criteria. It should also be decided if it is the
user who has to express a single satisfaction measure, or the user evaluates
separately his/her satisfaction with respect to ease of use, usability, etc. and
the global user satisfaction is computed later by the project evaluators.

– The measure of user satisfaction is not defined. In particular, user satisfac-
tion is hardly expressible as a Boolean value. Usually values of this type are
measured via Likert scales [12], in which case the satisfaction threshold has to
be identified. If scale rates are “Very dissatisfied”, “Moderately dissatisfied”,
“Moderately satisfied”, “Very satisfied”, one could place the threshold either
at the “Moderately satisfied” or at the “Very satisfied” level.

To clarify all these issues, we proceeded as for the previously described goals,
i.e., we built a conceptual model of perceived user experience. Such model –
derived with the help of experts– is given in Fig. 6 (where the connections of the
Perceived user experience to the trial activities have been omitted to simplify
the picture).

238 L. Lavazza et al.

Perceived usability of the MUSES applications is assessed with the 10-item
System Usability Scale (SUS) [13], including usability and learnability [14]. The
goal for MUSES is to achieve the score of 60 for the overall usability (combining
the factors usability and learnability).

Complementary aspects are assessed via the Usability Metric of User Expe-
rience (UMUX) [13] to address effectiveness, satisfaction and efficiency. A 7 level
Likert scale is used for the measurement: evaluations are considered successful
when the grade is above level 4.

Technology acceptance is measured via the Technology Acceptance Model 3
(TAM3) [15]. Also in this case a 7 level Likert scale is used: evaluations are
considered successful if the grade is above level 4.

GQM Plan Definition – Goal 11. Based on Fig. 6, for Goal 11 we can identify
QF MUSES user experience and VF Application domain.

Then, still making reference to the situation described in Fig. 6, we can derive
the following questions:

Q11.1. How many users used MUSES in each domain?
Q11.2. What is the percentage of satisfied users, for each domain?

The definition of user experience given in Fig. 6 suggests that overall users’ satis-
faction is evaluated based on SUS, TAM-3 and UMUX evaluations. Accordingly,
the metrics shown in Fig. 7 were defined.

Fig. 7. GQM plan of Goal 11.

3.4 Validating the Plans: Involving Stakeholders

The conceptual definition of the product and process –as given in Figs. 4 and 6–
is the basis for the definition of the GQM plan and project evaluation. Of course,
someone has to supply the data and/or carry out the activities described in the
model, otherwise the required measures will not be available and the evaluation
will not be possible.

In general, people in charge of project evaluation (i.e., those aiming at
computing KPI and showing to what extent the project outcomes satisfy the
original objectives) and those participating in carrying out research and develop-
ment activities (i.e., those who make the “real work”) belong to disjoint subsets.
Accordingly, the conceptual definition of the product and process can be seen as
a “contract” between evaluators on one side and researchers, developers, users,

Software Project Success Indicators with GQM 239

stakeholders, etc. on the other side. Hence, it is necessary that everybody agrees
that the conceptual model is a faithful representation of the project product and
processes, and that the corresponding data and measures will be provided.

In some cases the agreement on the model is achieved a priori: for instance
the model of the data that are relevant for Goal 11 (Fig. 6) was defined with the
help of the people working in the project, who had a clear idea of both the type
of usability that MUSES had to provide, and how to characterize it. In other
cases, the conceptual model was derived by the evaluators, who had in mind the
need of getting data that could support the KPI and success indicator defined
in the DoW. In fact, we should remember that the DoW is the technical annex
of the contract, thus the project must deliver all what is described in the DoW,
including the measures of the KPI and success indicators.

Discussions and adjustments of the model were caused by Goal 12:

Goal 12. Evaluate the MUSES framework with respect to acceptance by
users involved in trials, in the selected industry domains from the point of
view of domain users.

In this case, the issue raised by the people in charge of the project trials
concerned the type of activity in which the users had to be involved in order to
provide the required data concerning the acceptance of the MUSES framework.
This is a particularly interesting case, because the metric is defined in a straight-
forward way: it is a Boolean, representing the fact that the user continued using
MUSES for his/her work throughout the trials period, or he/she preferred to
drop MUSES and go on working without its support. The concerns of project
people were that the trials could not be carried out in a real production environ-
ment, and trials could not last so long as to allow users appreciate all MUSES
features in all possible conditions.

The solution was that the trials were organized in a way that relevant situa-
tions occurred in a realistic environment, rather than in real production environ-
ments. So, the benefits of modelling, documenting and discussing the KPI and
success indicators did not result in a better definition of the indicators them-
selves, but in clarifying the activities that had to provide the raw measures. In
any case, the important point is that an agreement on what had to be done for
evaluating MUSES was achieved.

4 The Measure DB Schema

Data are usually measured from the field and collected into a database. This is
a good practice for several reasons, including the fact that data measurement
activities are isolated from the evaluation activities. Actually, the definition of
the database acts as a “contract” between the parties: people in charge of data
collection do not need to worry about the technicalities concerning the usage
of the collected data and measures. Similarly, people in charge of the project
evaluation do not need to worry about how data and measures are collected,
provided that the measured data have the meaning that has been agreed upon.

240 L. Lavazza et al.

The GQM plan usually provides precise indications about the needed data: it
is thus easy to derive the measure database schema from the GQM plan. More
precisely, the conceptual descriptions of the product and process provided by
UML diagrams like the one in Fig. 4 can be used as conceptual data models
for the design of the measure database. For instance, class Feature execution in
Fig. 4 suggests the definition of the table shown in Table 2.

Table 2. Feature execution table.

Attribute Type

Feature execution ID Int

UC feature ID Int

Feature execution date Date

Feature completely executed Boolean

Feature successfully executed Boolean

The definition of the GQM metrics tells us also how the relevant data should
be derived from the database tables. For instance, by properly joining the tables
designed on the basis of UML class diagrams it is possible to get the view
described in Table 3.

Table 3. Goal 1-oriented data view.

Attribute Type

Domain name Text

UC ID Int

UC feature ID Int

Feature completely executed Boolean

Feature successfully executed Boolean

Given such view, the data associated to the metrics of Goal 1 are obtained
very easily. E.g., the number of UC features successfully executed in domain
“Domain A” is obtained via the following query:

SELECT Count(UC_feature_ID) AS M1
FROM SELECT DISTINCT View1.UC_feature_ID
FROM View1
WHERE (((View1.Domain_name)="Domain_A")
AND ((View1.Feature_completely_executed)=Yes)
AND ((View1.Feature_successfully_executed)=Yes));

Other metrics are obtained via similar queries.

Software Project Success Indicators with GQM 241

5 Implementing Indicators

5.1 Determining the Interpretation of Measures

Most importantly, the GQM plan can be used as a basis for specifying the inter-
pretation of the questions, goals, and –ultimately– the indicators that represent
the KPI and success indicators. We face two needs: (1) computing the numbers
needed to answer the questions, and (2) specifying how such numbers have to
be interpreted to provide suitable indicators at the goal level.

Considering the metrics associated to question Q1.2 of Goal 1 (How many
UC were applied successfully in each domain?), it is quite evident that we have
to solve the problem of determining if a given UC was successful or not, given the
results of its features’ executions. Do we need that all UC feature executions are
successful? If not, what is the criterion for deciding if a given mix of UC features
executions should be considered an overall success of the UC they belong to?
Consider the following case: a given UC includes two UC features: fA and fB; fA
has been executed 10 times: it was successful 8 times and it failed 2 times; fB has
been executed 4 times: it was successful 3 times and it failed once. Should the
UC be considered successful? To decide, we need to establish success thresholds
for UC features. There are several ways to do it; here it is not important how you
define the success thresholds, instead, it is important stressing that considering
the definitions of questions and metrics leads to realizing the need for aggregating
results obtained at the UC feature level into results at the UC level.

When moving to the goal level, we can observe that the role of Goal 1
questions is different: Q1.2 quantifies the achievements of the project in terms
of successful UC, while Q1.1 quantifies the extent of the work done and –by
difference– it indicates how many tested UC were not successful. The MUSES
DoW indicates that at least 4 UC must be successfully applied in each domain,
therefore we stick to such interpretation: the indicator is simply the result of
checking if the number of successfully applied UC is not smaller than 4.

From a strictly contractual point of view, we could stop here, as far as Goal 1
is concerned, since showing that at least 4 UC per domain have been successfully
tested is enough to comply with the contract. However, answering question Q1.1
could provide additional insight to project participants: in fact, knowing that
one or more UC were tested but were not successful provides indications that
could foster improvements in the concerned research area.

5.2 Implementing KPI

The definitions of KPI and success indicators have to be translated into actual
code that processes measures and yields the values of the KPI and success indi-
cators. In doing this, it is useful considering that graphical, easy to read rep-
resentations of KPI and indicators are usually very welcome, especially by non
technical managers.

This step can be performed in several ways. In this paper we use the statistical
language and programming environment R [25,26]. We use R because it is open-
source, reliable, extremely well supported and very flexible.

242 L. Lavazza et al.

A general consideration concerning the implementation of KPI and indicators
is that there is always some processing that can be effectively performed by the
database management system. Therefore, a decision to be taken concerns the
amount of processing that is demanded to the DBMS: at one extreme we get
from the DB raw data, and all the processing is carried out in the data analysis
and elaboration environment (in our case, R); at the other extreme the DBMS
makes most of the required computation, and the data analysis and elaboration
environment has just to carry out some –possibly trivial– data elaboration and
visualization task.

Also in this case the GQM plan helps: a very simple and effective choice is
that the DBMS provides exactly the metrics data as defined in the GQM plan,
while the rest of the elaboration is carried out by R programs. For instance,
metric M1.1.1 can be easily extracted from the DB by the following R code:

library(RODBC)

channel <- odbcConnect("MUSES",uid="root",pwd="**",believeNRows=FALSE)

Domains <- as.matrix(sqlQuery(channel

"SELECT Dom_name FROM MUSES.Domains"))

Num_tested_UC = c()

for(i in 1:length(Domains)) {

query_text = sprintf("SELECT DISTINCT View1.UC_ID FROM MUSES.View1

WHERE(((View1.Domain_name)=\"%s\") AND

(View1.Feature_completely_exec=1))", Domains[i])

S1 <- as.matrix(sqlQuery(channel, query_text))

Num_tested_UC = append(Num_tested_UC, length(S1))

}

print(Num_tested_UC)

The R code shown above works in a rather straightforward way:

1. Package rodbc [16] is loaded.
2. A connection to the DB is created.
3. A first query retrieves the list of domain names from the Domain table.
4. For each domain, the set of UC identifiers for which at least one feature was

completely executed is also retrieved. The cardinality of the set is added to
vector Num tested UC.

5. Vector Num tested UC is printed.

The shown R code does very little more than retrieving data via a query. The
R code shown below performs slightly more complex processing: on the one
hand the queries are more complex (they do not just retrieve data, but group
UC features per UC), on the other hand, the percentages of successful UC feature
per UC and per domain are computed.

library(RODBC)

channel <- odbcConnect("MUSES",uid="root",pwd="**", believeNRows=FALSE)

Domains <- as.matrix(sqlQuery(channel,

"SELECT Domain_name FROM MUSES.Domains"))

for(i in 1:length(Domains)) {

Software Project Success Indicators with GQM 243

cat("domain:", Domains[i], "\n")

query_text = sprintf("SELECT View1.UC_ID, Count(View1.UC_feature_ID)

AS Num_UC_feature_ID FROM View1 WHERE (((View1.Domain_name)=\"%s\"))

GROUP BY View1.UC_ID;", Domains[i])

All <- sqlQuery(channel, query_text)

cat("=============================\n");

query_text = sprintf("SELECT View1.UC_ID, Count(View1.UC_feature_ID)

AS Num_UC_feature_ID FROM View1 WHERE (((View1.Domain_name)=\"%s\")

AND ((View1.Feature_completely_executed)=1) AND

((View1.Feature_successfully_executed)=1)) GROUP BY View1.UC_ID;",

Domains[i])

Good <- sqlQuery(channel, query_text)

query_text = sprintf("SELECT View1.UC_ID, Count(View1.UC_feature_ID)

AS Num_UC_feature_ID FROM View1 WHERE (((View1.Domain_name)=\"%s\")

AND (((View1.Feature_completely_executed)=0) OR

((View1.Feature_successfully_executed)=0))) GROUP BY View1.UC_ID;",

Domains[i])

Bad <- sqlQuery(channel, query_text)

for (j in 1:length(All[,1])) {

x = subset(Good, Good$UC_ID==j);

num_good=ifelse(length(x[,1])==0, 0, x$Num_UC_feature_ID);

x = subset(Bad, Bad$UC_ID==j);

num_bad=ifelse(length(x[,1])==0, 0, x$Num_UC_feature_ID);

cat("UC_ID =", j, ": UC feature success =",

100*num_good/(num_good+num_bad), "%\n")

}

cat(" \n")

}

odbcCloseAll()

The output of this code is shown in Fig. 8. Of course, it is possible to represent
the output in a more sophisticated and easy to read way, e.g., graphically, as
illustrated Sect. 6.1.

Fig. 8. Indicators concerning UC feature success in each domain, generated by the
code shown above.

244 L. Lavazza et al.

6 Indicator Computation

6.1 Computing Results

When the measure database has been populated (in the case of MUSES by
project trials) R programs can read data from the DB and produce both textual
and graphical results, possibly in comprehensive reports. For instance, the results
yielded by the R programs associated to Goal 11 are given in Fig. 9. In the
examples reported here, R is used for its basic data manipulation and graphic
display capabilities. When necessary, R –being provided with numerous libraries,
which implement almost any desirable statistical function– can perform more
complex statistical computations. An example is given in Fig. 10, where Goal 10
indicators are given: communication delays are plotted, with respect to security
violations occurrence times (the red line is the maximum delay threshold, while

Fig. 9. Results of Goal 11.

Fig. 10. Results of Goal 10 (Color figure online).

Software Project Success Indicators with GQM 245

the blue line indicates the “lowess” –locally weighted scatterplot smoothing–
line, which can be interpreted as the trend of the delays.

Quite noticeably, the R code that computes the required KPI and success
indicators can get the needed data directly from the measurement DB and then
process them to produce the required indicators. This approach is very effective,
because when new measures are inserted in the database, it is sufficient to re-run
the R program to get updated indicators.

6.2 Final Evaluations

The KPI and success indicators computed as shown in the previous sections
make the effectiveness of the project apparent. However, to be sure that these
indications are reliable, some validation is advisable To this end, we found that
two-fold validation is usually quite effective.

First, during the trial activities that generate measures, project people exam-
ine the computed indicators and verify that the computed KPI and success indi-
cators actually reflect reality (i.e., what happened in the trials). To this end, it
is essential that the KPI and success indicators are provided as soon as the mea-
surement data are available; in fact, if the delay between the events in the field
and their effects on the indicators is too long, it is possible that project people
do not remember precisely the situation against which the correctness of indi-
cators must be verified. With the considered process, indicators are computed
and visualized as soon as measurement data are loaded in the database, hence
real-time feedback is available to people running the product to be evaluated, so
that they can evaluate the current indicators against the current situation.

Second, the proposed process instrumentation allows for presenting users
and stakeholders with KPI that are very easy to understand. In the case of
MUSES, the EU officer and reviewers could easily realize that the KPI actually
represented what they needed to know about the product/process.

The two-fold validation assures not only that KPI and success indicators are
correct, but also that they represent well the situation they are meant to disclose,
i.e., that we have built the right KPI, and that we have built them right.

7 Related Work

The definition and implementation of indicators concerning the performance
of processes has received a great deal of attention in the past. Initially, the
literature concentrated on the definition of KPI and the associated measurement
plans, but gave little or no attention to measurement, data collection and actual
computation of KPI [17].

Researchers also addressed the role of techniques like the GQM in process
evaluations [7]. In general, these proposals focused on the generation and execu-
tion of measurement plan at a quite high level of abstraction, without mentioning
the tools to be used, or the techniques that could help reasoning about the prod-
uct and process to be measured, or how to ensure that the measurement plans

246 L. Lavazza et al.

actually matched the objects of measurement and the users’ goals. Even a rather
extensive guidebook like [20] does not deal with the aforementioned details.

A more comprehensive and detailed view of software project measurement
illustrated software project control centers (SPCC) [18]. SPCC are sets of activ-
ities and tools aiming at collecting, interpreting, and visualizing measures to
provide purpose- and role-oriented information to all parties involved in project
development and quality assurance. Although our approach has some similari-
ties with the SPCC described by Muench and Heidrich (for instance, some of the
activities of our process comply with their classification) a fundamental differ-
ence is that SPCC are meant primarily to provide indications to project people
during the execution of a project, while we address a broader objective, including
providing useful indications to end users and payors of the project. Thus, making
KPI understandable and evidently coherent with the project scope and aims is
a primary objective. Issues such as supporting multiple types of visualizations
for different stakeholders, and making indicators easy to understand are typical
of the situation we target, while they are not relevant in SPCC.

A more recent proposal [19] addresses IT governance by proposing the inte-
gration of CoBIT [21] and GQM.

The point of view of stakeholders is introduced in project monitoring as a
central issue in [22]. Although Tsunoda et al. have the merit of introducing
stakeholder-oriented concepts like the stakeholder’s goal and the key goal indi-
cator, they describe the project measurement and monitoring process at a quite
abstract level.

Several researchers are addressing KPI for software-supported business
processes: see for instance [24]. When dealing with business processes, the prob-
lem of defining and computing KPI is the same as discussed in this paper, but
the object of the evaluation –i.e., business processes instead of software devel-
opment processes– makes a big difference. In the former case, the KPI are more
homogenous and easy to describe than in the case of software development; more-
over software is given, and KPI tend to consider its qualities only with reference
to supporting a specific process rather than development project goals, as in
the case of MUSES. Consequently, the literature on KPI for software-supported
business processes is hardly interesting for software projects.

When dealing with business processes, it is often the case that software is
involved as an instrument to achieve business goals. The GQM+strategies tech-
nique [23] was introduced as a way for linking indicators to business goals in
a systematic and structured way. In any case, the need for addressing hierar-
chies of business goals and related strategies (possibly supported by software) is
out of the scope of this paper. Adapting the approach proposed here to hierar-
chies of business goals and related strategies is a subject for future work.

Overall, none of the mentioned articles addresses in an organic and sys-
tematic manner all of the issues we dealt with in the paper, namely: Defining
stakeholders’ goals; Connecting measures to goals that are relevant for stake-
holders; Assuring that measures are coherent with the product and/or process
of interest; Making the relationships between measurement data, measure

Software Project Success Indicators with GQM 247

definitions and process and product properties explicit; Making the definition
of indicators explicit, formal and supported by tools that can be used to retrieve
data, compute and visualize indicators.

In summary, we can state that our proposal provides practitioners with guide-
lines –encompassing well defined activities, which are effectively supported by
tools– more extensively and at a much more concrete level than previous work.

8 Conclusions

Defining adequate KPI and project success indicators for software development
projects is made difficult by several concurrent issues:

– We need that indicators are really representative of the project’s achievements,
and account for the viewpoints of all the involved stakeholders.

– Indicators have to be precisely defined, otherwise they can be misinterpreted,
both in the data collection and indicator computation phase and in the usage
phase (i.e., when the project’s success has to appear).

– Indicators must be feasible, i.e., the measures upon which they are based have
to be obtainable effectively and efficiently.

– Activities ranging from defining indicators to delivering results (i.e., indica-
tors’ values based on measures) call for specific techniques and tools, otherwise
they can be quite time and effort consuming and error-prone.

As a consequence, we need to provide people in charge of software project eval-
uation with guidelines, techniques and tools to effectively manage the KPI and
success indicator lifecycle.

In this paper, we have described the phases of the lifecycle of KPI and project
success indicators, highlighting problems and suggesting techniques and tools
that can be used to support the various activities. We have also proposed a
model of the KPI and success indicator definition and computation process.

Our process model and guidelines are derived from a careful analysis of the
problems connected with the KPI and success factor lifecycle; such analysis –
which in principle can be applied in any software development process– led to
identifying techniques, tools and practices that can make the process efficient and
relatively easy. In fact, the identified activities and the supporting methods and
techniques are highly integrated and work in a quite cooperative manner: UML
models describe the elements of the GQM plan; the GQM plan indicates the
measures to be collected, while UML diagrams indicate their logical structure;
the measurement database schema is coherent with both UML models ad GQM
plans; R procedures implement the interpretation criteria that are implicit in
the GQM plan; R procedures are fed by the measure database (actually they
can directly query the database). Thanks to this tight integration, the process
of defining and computing KPI and success indicators is fairly smooth and easy
to enact.

The described process, techniques, tools and practices have been used in
the research project MUSES. Despite its research nature, MUSES is like any

248 L. Lavazza et al.

other software development project, with respect to KPI and success indicators:
developers had difficulties in defining proper indicators, and had no systematic
approach to measurement and indicator computation and visualization.

The results achieved within the MUSES project were very satisfactory, espe-
cially in that project people were challenged to thoroughly discuss –and eventu-
ally approve– the definitions of indicators and the measures to be collected and
their interpretations. Finally, the measurement plan provided several hints for
the organization of the project trials, and even suggested a few data collection
and logging features to be included in the MUSES platform and tools.

In conclusion, we believe that whoever has to evaluate the success of a soft-
ware development process can get several useful suggestions from this paper,
both at the methodological level –e.g., concerning the activities to be carried
out and the overall process– and practically –e.g., concerning the usage of the
methods and tools described in the paper to make activities easier and cheaper.

Future work includes the construction of a toolset that integrates the GQM
plan management, the measure database and the R environment.

Acknowledgements. The work presented here was partly supported by the EU Col-
laborative project MUSES – Multiplatform USable Endpoint Security, under grant
agreement n. 318508 and by project “Metodi, tecniche e strumenti per l’analisi,
l’implementazione e la valutazione di sistemi software,” funded by Università degli
Studi dell’Insubria.

References

1. MUSES project. https://www.musesproject.eu/
2. Basili, V., Weiss, D.: A methodology for collecting valid software engineering data.

IEEE Trans. Softw. Eng. 10(6), 728–738 (1984)
3. Basili, V., Rombach, H.D.: The TAME project: towards improvement-oriented

software environments. IEEE Trans. Softw. Eng. 14(6), 758–773 (1988)
4. Basili, V., Caldiera, G., Rombach, H.D.: Goal/Question/Metric paradigm. In:

Marciniak, J.J. (ed.) Encyclopedia of Software Engineering, vol. 1. Wiley,
New York (1994)

5. Fuggetta, A., Lavazza, L., Morasca, S., Cinti, S., Oldano, G., Orazi, E.: Applying
G/Q/M in an industrial software factory. ACM Trans. Softw. Eng. Methodol. 7(4),
411–448 (1998)

6. Birk, A., van Solingen, R., Jarvinen, J.: Business impact, benefit, and cost of
applying gqm in industry: an in-depth, long-term investigation at Schlumberger
RPS. In: 5th International Symposium on Software Metrics (1998)

7. Birk, A., Hamann, D., Pfahl, D., Jrvinen, J., Oivo, M., Vierimaa, M., van Solingen,
R.: The Role of GQM in the PROFES Improvement Methodology (1999)

8. van Solingen, R., Berghout, E.: Integrating goal-oriented measurement in indus-
trial software engineering: industrial experiences with and additions to the
Goal/Question/Metric method (GQM). In: 7th International Software Metrics
Symposium (2001)

9. Lavazza, L.: Multi-scope evaluation of public administration initiatives in process
automation. In: 5th European Conference on Information Management and Eval-
uation (2011)

https://www.musesproject.eu/

Software Project Success Indicators with GQM 249

10. Lavazza, L., Mauri, M.: Software process measurement in the real world: dealing
with operating constraints. In: Wang, Q., Pfahl, D., Raffo, D.M., Wernick, P. (eds.)
SPW/ProSim 2006. LNCS, vol. 3966, pp. 80–87. Springer, Heidelberg (2006)

11. Lavazza, L., Barresi, G.: Automated support for process-aware definition and exe-
cution of measurement plans. In: International Conference on Software Engineering
(2005)

12. Likert, R.: Technique for the measure of attitudes. Arch. Psychol. 22(140), 1–55
(1932)

13. Brooke, J.: SUS: a “quick and dirty” usability scale. In: Jordan, P., Thomas, B.,
Weerdemeester, B. (eds.) Usability Evaluation in Industry. Taylor and Francis,
London (1996)

14. Lewis, J.R., Sauro, J.: The factor structure of the system usability scale. In: Kurosu,
M. (ed.) HCD 2009. LNCS, vol. 5619, pp. 94–103. Springer, Heidelberg (2009)

15. Venkatesh, V., Bala, H.: Technology acceptance model 3 and a research agenda on
interventions. Decis. Sci. 39(2), 273–312 (2008)

16. Ripley, B., Lapsley, M.: Package RODBC - ODBC Database Access (2014)
17. Basili, V.: Applying the Goal/Question/Metric paradigm in the experience factory.

In: 10th Annual CSR Workshop, Application of Software Metrics and Quality
Assurance in Industry (1993)

18. Muench, J., Heidrich, J.: Software project control centers: concepts and approaches.
J. Syst. Softw. 70(1), 3–19 (2004)

19. Nicho, M., Cusack, B.: A metrics generation model for measuring the control objec-
tives of information systems audit. In: 40th Annual Hawaii International Confer-
ence on System Sciences (2007)

20. Park, R.E., Goethert, W.B., Florac, W.A.: Goal-Driven Software Measurement. A
Guidebook. Software Engineering Inst., Carnegie-Mellon Univ. (1996)

21. ISACA: COBIT 5: A Business Framework for the Governance and Management of
Enterprise IT (2012)

22. Tsunoda, M., Matsumura, T., Matsumoto, K.I.: Modeling software project moni-
toring with stakeholders. In: 9th International Conference on Computer & Infor-
mation Science (2010)

23. Basili, V., Lindvall, M., Regardie, M., Seaman, C., Heidrich, J., Munch, J.,
Rombach, D., Trendowicz, A.: Linking software development and business strategy
through measurement. Computer 43(4), 57–65 (2010)

24. Souza Cardoso, E.C.: Towards a methodology for goal-oriented enterprise manage-
ment. In: Enterprise Distributed Object Computing Conference Workshops (2013)

25. Ihaka, R., Gentleman, R.: R: a language for data analysis and graphics. J. Comput.
Graphical Stat. 5(3), 299–314 (1996)

26. The R Project for Statistical Computing. http://www.r-project.org

http://www.r-project.org

Dynamic Analysis Techniques to Reverse
Engineer Mobile Applications

Philippe Dugerdil(&) and Roland Sako

Geneva School of Business Adminsitration,
University of Applied Sciences Western Switzerland,

7 route de Drize, 1227 Geneva, Switzerland
philippe.dugerdil@hesge.ch, roland.sako@gmail.com

Abstract. Nowadays mobile applications have moved to mainstream. Service
companies such as IBM advise us to develop on the “Mobile First”. Although
earlier mobile apps were simple data access front ends, today’s apps are quite
complex. Therefore the same problem of code maintenance and comprehension
of poorly documented apps, as in the desktop world, happen to the mobile today.
Hence we need techniques to reverse engineer mobile applications starting from
the mere source code. In this paper we present the methodology and suite of
tools we developed that helps with the reverse engineering and understanding of
mobile apps. The performance of these tools is demonstrated on two case studies
of iPhone applications. The contribution of the paper is to show how dynamic
analysis techniques can be applied to mobile applications and the techniques we
develop to make educated guesses about the role and structure of the classes that
make up the app.

Keywords: Mobile application � Dynamic analysis � Reverse engineering �
Program understanding

1 Introduction

According to several surveys, mobile business applications are the trend of the day,
although not all surveys agree on the strength of the trend [2, 17, 30]. With the growing
interest in B2B and B2E mobile apps [17], mobile development becomes mainstream
[14, 16]. Then the very same problems of application maintenance and understanding
arise as in desktop applications. There are no reasons to believe that mobile apps will
be any easier to maintain than desktop ones. In particular the lack of documentation
could even be higher, on average, than on traditional desktop platform since these
applications are notoriously developed using agile approaches such as Scrum which
leaves a lot of freedom to the developer as to what documentation to produce. Then we
decided to develop a mobile version of our methodology for the reverse engineering of
applications. This is a complete set of techniques and tools to analyze the functional
structure of an application [8] to improve its understanding hence its maintenance.
Indeed it is known for a long time that to “understand” a large software system, the
structural aspects of the system are more important than any single algorithmic com-
ponent [29]. Since there are several views of software architecture [5], each targeting

© Springer International Publishing Switzerland 2016
P. Lorenz et al. (Eds.): ICSOFT 2015, CCIS 586, pp. 250–268, 2016.
DOI: 10.1007/978-3-319-30142-6_14

a particular purpose, we propose new ones specifically targeted at software under-
standing. First we developed the functional structure view of the system [8] i.e. the
classes, their relationships and the methods that implement some business relevant
scenario. Second we developed the classes’ time series that let us observe when a given
class or set of classes are involved in the execution of some business relevant scenario.
These views rests on dynamic analysis techniques i.e. the analysis of the execution
trace of the program corresponding to some scenarios (use-cases) relevant to the
business. One key problem in dynamic analysis is to cope with the amount of data to
process. In fact, the execution trace file can contain several hundreds of thousands of
events. To cope with this data volume, we developed a trace segmentation technique
[6] that has showed to be very efficient at analyzing the interactions between the
components of the system. In [26] we investigated the way to apply our tools and
techniques to the analysis of iPhone apps. This led us to extend the interpretation of our
tools’ and methodology’s results in the mobile environment. In this paper we first
present our reverse engineering framework for software system (Sect. 2). Section 3
presents the technique we use to recover the use-cases from users of the apps. Next we
show the tools we developed specifically to adapt our framework to the reverse
engineering of Objective-C applications on the iPhone (Sect. 4). In Sect. 5, we present
two case studies and the way the results can be interpreted to make educated guesses
about the structure and roles of the classes of the app. Section 6 presents the related
work and Sect. 7 concludes the paper.

2 Reverse Engineering Technique

The goal of our reverse engineering process is to recover the functional structure of the
program [8] i.e. to analyze what classes or components support the business relevant
function of the application. The process starts with the recovery of the use-cases of the
system, if they are not readily available from the documentation of the app (which is
generally the case), by watching the users interacting with the system. We simply ask a
user to go through all the business-relevant scenario and we take note of all the actions
he does with the app. In the case of legacy desktop applications we even video-record
the actions of the user. But this is not required here because the use-cases for mobile
apps are usually much simpler. Next we instrument the source code of the app to be
able to generate the execution traces (i.e. the sequence of method calls in a given run of
the system). Code instrumentation consists of inserting extra statements in the source
code to record events when the methods are executed. An event is generated when the
method is entered and exited. Next, the system is run according to the use-cases and the
corresponding execution trace is recorded. Finally, an off-line analysis of the execution
trace is performed to recover the functional structure of the system using many views.
Figure 1 illustrates a simplified version of the reverse engineering process with only the
key tasks. This process has been implemented using a set of tools that are presented in
Fig. 2. To instrument the source code, many variants exist among which:

• Developing an instrumentor for the programing language of the system;
• Leveraging anAOP environment to inject the “instrumentation aspects” into the code.

Dynamic Analysis Techniques 251

Depending on the programming language considered, the second option may not be
available. For Objective-C (iPhone) it is indeed the case and we developed our own
code instrumentor that will be detailed in the next section. Once the code has been
instrumented it is compiled and shipped onto the mobile phone. Then the app is run
according to the use-cases and the execution trace is recorded in a file on the device.
Next, the file is downloaded from the device and uploaded into a trace database using a
trace loader which performs a few integrity checks. Finally, the trace is analyzed using
our trace analysis tools. The latter is able to present the information from the trace using
several views. There are two formats for the events to be recorded in the execution
trace. The first is for method entry and the second for method exit. By recording these
two kinds of events, we can reconstruct the call graph with the call hierarchy.

The syntax of the events is the following:
[SCI] [DCI] ’[‘[TN] ’]’ [Sign] ’AS’ [Type] ‘[‘[TS] ‘]’ [Param]
or
‘END’ [SCI] [DCI] ’[‘[TN] ’]’ [Sign] ’AS’ [Type] ‘[‘[TS] ‘]’
With:

[SCI]: Static class identifier: the package name and class name in which the
executed method is implemented.

Fig. 1. Reverse engineering process.

Fig. 2. Tools workflow.

252 P. Dugerdil and R. Sako

[DCI]: Dynamic class identifier: the package name and class name corresponding
to the class of the instance that executed the method.

[TN]: Thread number.
[Sign]: Method signature.
[Type]: Type of the element returned by the method.
[TS]: Time stamp of the event.
[Param]: List of the comma-separated values for the primitive-typed parameters of

the method. Non primitive-typed values are replaced by ‘_’.

The first event represents the entry into a method and the second, headed by the
keyword ‘END’, indicates the exit from the method. The thread number allows us to
gather all the events that belong to the same thread for further analysis. Since Objective-C
does not have any package construct, the class identifiers of the events uses only the class
name (in our tool we append the “default” keyword to replace the package name in the
long name of the class).

3 Use Case Recovery

The first step of our approach is to recover the use-cases of the app. This is compulsory
since the dynamic analysis rests on the execution of a relevant business scenario. If no
user documentation is available, which is the common situation, the technique is first to
identify all the user categories (the actors in the UML parlance). Then, we ask each
representative of each user categories what he would use the app for, what is for him
the expected result of using the app. This represents the “business goal” of each
use-case to recover. Next, starting from each of these goals, we ask each representative
to show the manipulations of the app they would perform get the expected result, with
the main variants. This allows us to re-document the use-cases with the main flow and
the alternative flows. In complex situations (like in the reverse engineering of large
desktop application) we even video-recorded the interaction of the users with the
application to make sure we remembered all the interactions. Then by slowly watching
the video we can write down the sequence of action the user made to get the expected
result from the app. Then we abstract the manipulations and write down the use-cases.
The last step it to present the use cases to the users for validation. In particular we ask
each user to manipulate the device according to the recovered use-case in order to get
the expected result. Then we can immediately observe if the user feels comfortable with
the scenario or if something is missing.

4 App Instrumentation

4.1 Introduction

Dynamic analysis as opposed to static analysis aims at observing the application’s
behavior while it is running. Although many techniques can be used [15] we decided to
use code instrumentation because, on the mobile device, there are not many alterna-
tives. Indeed one cannot install any profiling or debugging environment without deeply

Dynamic Analysis Techniques 253

impacting the behavior of the code. The least intrusive technique is simply to add
lightweight tracing statements in the application source code to write the events in a flat
file. Each of the recorded events must contain the signature of the method called. As for
the class identifier we record the name of the class and, in case of the languages using
module or package declarations, the package or module in which the class is defined.
Once the trace file is generated (that could hundreds of thousands of events), it is
loaded into a database for further processing. Many of the existing dynamic techniques
focus on the monitoring of the low level instructions of the program, in particular when
the purpose is to analyze an app for which only the compiled code is available. Since
we wish to reverse engineer and understand the source code of the app, access to the
source code is a must. The first step to build our own instrumentor is to be able to parse
the source code. To build such a parser, several possibilities exist. Tools like JavaCC
[21] YaCC [31] or ANTLR [1] are capable of generating a parser given the syntax
definition of the programming language in the EBNF format. Such parser is completed
by adding some extra parsing instructions in the target language. The main difference
between these tools is the language in which the parser is generated. Our choice was
JavaCC which generates a parser in Java. This is because JavaCC-encoded grammars
are available for several programming languages, including Objective-C, and also
because we had some previous successful experience with it. However we do not only
need to parse the code, we also need to build an abstract syntax tree (AST) of the code
in memory so that we could add the extra trace event generation code to some of the
nodes in the AST. We used the Java Tree Builder [22] to produce the AST. Some
Visitor [10] classes are generated by the same tool to visit each node of the AST. We
use these “Visitor” classes to add the instrumentation instructions at the proper loca-
tions in the code. For the method start event we add the instrumentation instruction as
the first statement of the method. For the method end event we enclose all the state-
ments of the method in a try-finally construct and write the instrumentation instruction
in the finally block. With this technique we can catch the method end whatever the way
the method is ended. The output of the parser generation process is represented by two
packages named “syntaxtree” and “visitor” which respectively contain the AST ele-
ments and their associated “visitors”. Because every single abstract syntax tree element
comes with its own “visitor” class, we focused on the ones responsible for the handling
of methods. The added instructions in the source code must satisfy two conditions:

1. Do not produce any changes to the application semantics;
2. Limit as much as possible the impact on the application processing time.

The first constraint is self-evident. The second constraint aims at avoiding any
impact on the scheduling of multi-threaded applications. To be able to record the events
during the execution of the app, we need to build a little runtime program to write the
events to a flat file. This is specific to each programming language. The instrumentation
instructions we insert in the source code of the methods are simple calls to the functions
of the run time. Because of the above constraint on the processing time, using a
database to record the events is not an option. We must record them as fast as possible
hence the choice of a flat file.

254 P. Dugerdil and R. Sako

4.2 The Case of Objective-C

In the case of Objective C, the runtime program contains:

• A class with two methods to write an event at the entry and at the exit of the
instrumented method.

• A class responsible for converting the primitive-typed values of the parameters into
NSString, to write these values in the trace event (see the [Param] element of the
trace event grammar).

Every iOS application has its own set of directories in which it can read and write
files. An application’s private file system is called a Sandbox [3] and it is specific to the
application. Inside a sandbox, there are three predefined directories: Documents, Library
and tmp. To store a trace file, the runtime program can write in either the Library or
Documents directory. But we should avoid tmp, since its content may be cleared away
by the system when the application stops running. Because these folders generally
contain user-generated content and other resources used by the application’s logic, we
need to make sure the trace files we write will not interfere with the existing files. To do
so, we create the trace files in a custom folder inside the Library folder:

\Application Home[=Library=HEG TRACE=trace ½timestamp�:

This will not only ensure that our tool does not hamper the application’s behavior
but also allows the running of our use-cases in sequence to get several trace files all at
once. Next, to upload the trace file into the desktop machine for further analysis we pull
it out of the iPhone using iExplorer [18] which gives access to the part of the device’s
file system where the applications reside. A technique to shortcut the creation of the
trace file could have been to embed a socket communication module in our runtime
program to “pipe” all the data in real time to a listening socket. However this would
require a permanent connection to server and this would not respect our second con-
straint to have as little an impact on the processing time as possible. Another alternative
technique to trace file writing could have been to monitor the application execution
using an embarked version of a debugger such as GDB [11]. Unlike C++ or Java, the
runtime of Objective-C [24] uses a specific syntax to do message sending. A message
sending is a statement like “[object1 foo:@ arg]” meaning that object1 is sent a
message whose “selector” is foo: and whose argument is “arg”. This syntax is con-
verted to: “objc_msgSend(object1,foo(arg))” by the Objective-C runtime. Then, using
the debugger, we would set a breakpoint on every “objc_msgSend” to monitor the
execution. As the iOS devices use the ARM processor, fetching the right registers
could give access to all the methods’ execution context. But this technique would delay
the program execution at each message sending and then would exaggeratedly slow
down the whole application, therefore not respecting the second constraint. The chosen
instrumentation technique using our own instrumentor has the extra advantage to be
applicable to any programming language provided that a LALR-analyzable grammar is
available. Hence the technique presented in this paper can be extended to the Android
platform [25] since it uses Java as the programming language.

Dynamic Analysis Techniques 255

5 Case Studies

5.1 Data Access Application

We will first present the technique and tool we developed on a simple app that allows
the user to search and display the acts and articles of the Swiss Law recorded in a
database on the phone. With our reverse engineering technique we can quickly identify
what classes are involved in the delivery of a given functionality and what are the
dynamic caller-callee relationships for the use-case. As an example, here is the analysis
of the classes involved in the use-case “Read a judgment of the Swiss Federal Court”.
The execution trace is rather short (*2000 calls) and the number of classes involved is
small (6 classes). But this app is well suited to show the power of the analysis we may
perform with our tools. Once we loaded the execution trace in our analysis tool, we can
display the main features of the execution.

For example, in Fig. 3 the trace analyzer tool displays the classes involved in the
use-case and specifically what class calls what other classes.

As we can see in the display, the class RootViewController is called by 3 other
classes:

• CPCAppDelegate 12 times
• homeViewController only once
• RootViewController 170 times.

Fig. 3. Trace analyzer.

256 P. Dugerdil and R. Sako

Figure 4 displays the call graph with all the involved classes. In this figure we can
see that four classes are coupled bi-directionally which, on the point of view of code
quality, could be something to investigate further. But this is neither the case of the
ArticleViewController nor the Preferences classes. The call graph is generated by our
tool using the Graphviz open source library [13].

Now we are interested to know when, in the course of the execution, the classes are
involved. Then our trace analysis tool could display a “time series” graph of the
classes’ execution in the trace. But the problem is that the trace could be quite huge.
Then the display of each and every method in the trace would lead to a very dense
graph. To overcome the problem we introduced a little bit of statistical processing: we
segment the trace in contiguous segments of a predefined size and, for each segment,
we count the number of times a given class is called. Figure 5 presents such a time
series graph for the Preference class.

On the top of the window we see the segment size (35 calls in this example). The
horizontal axis shows the location of each of the segment. To make the time series
comparable between use-cases, we normalize the horizontal axis to 100. The position
of a class execution is therefore relative to the trace size.

Fig. 4. Caller-callee graph.

Dynamic Analysis Techniques 257

As we can see, the Preference class is executed at the beginning of the processing
and close to the end. Figure 6 displays the methods that are called in the Preferences
class. We observe that very few calls are made in this class. Indeed this class holds the

Fig. 5. Preference class time series.

Fig. 6. Methods called in preference class.

258 P. Dugerdil and R. Sako

application’s preferences parameters. All the behavior, showed by Figs. 5 and 6,
rightfully represents what we could expect from a class which holds preferences
information. Next, we could compare the time series of two classes. Figure 7 shows the
joint time series for the classes RootViewController and Article.

Interestingly, the involvement of these two classes seems opposite. In the few
segment where the Article class is much less involved then the RootViewController
class is heavily involved. A further source code investigation revealed that the hun-
dreds of Article instances (i.e. articles of the law) to be loaded in memory from a file
are loaded all at once. Because this process is not in a dedicated thread, it blocks
everything else until it is finished. The RootViewController contains a UITableView
and implements its delegate and datasource protocols [4]. Because the structure of the
law acts and articles is hierarchical, a RootViewController is reclusively created every
time the user browses a subcategory of the law acts and articles. Then the relevant
Article objects are accessed in memory, inserted into the UITableView cells and the
RootViewController is quit. This explains the sudden “bursts” of activity of the
RootViewController following the activity on Article objects. With this information
we can now reconstruct the UML class diagram corresponding to the executed use
case (Fig. 8). This diagram represents the implementation classes of the functional
structure of the system in relation to the use-case. It contains the classes, methods and
dynamic associations involved in the execution of the use-case. In some sense this
represents a “projection” of the use-case to the whole system (in the relational data-
base sense). Today, this UML class diagram is built by hand from the output of the
tool. We intend however to integrate our tool with the software modeling environment
we use (IBM’s Rational Software Architect) so that this class diagram could be created
automatically.

Fig. 7. Joint time series for 2 classes.

Dynamic Analysis Techniques 259

5.2 Word Press

As a second example, we ran the WordPress framework to create a blog from the
iPhone. This open source framework was instrumented, compiled and then shipped to
the iPhone. Then we used the app to create a blog (“create blog” use case). The
execution trace is about 1 Mb long and has 4252 calls which involve 53 classes. First
we can analyze the diversity of methods called per class (the number of different
method called in the classes). While more than half of the classes (30) have 5 of less
distinct methods called, a single class, ReaderPostsViewController, has 55 distinct
methods called and CreateAccountAndBlogViewController has 29. Table 1 shows the
15 classes that get 10 or more distinct method executed.

Next we can analyze the coupling between the classes: what are the classes called
by each of the classes. A class that calls many classes may play the role of a “con-
troller” class i.e. a class that organizes the work of other classes (following the MVC

Fig. 8. Class diagram of the functional structure.

260 P. Dugerdil and R. Sako

style). A close look at the classes that call the most of other classes show that their
name include the term “controller” in 50 % of the cases (Table 2).

If one displays the location where these classes are involved one finds that
ReaderPostsViewController is involved in almost every part of the execution trace
while WordPressAppDelegate is much more localized (Fig. 9) although the number of
classes they call is similar. ReaderPostsViewController seems to be a key class in the
implementation of the use-case.

On Fig. 10 we compare ReaderPostsViewController and LoginViewController
whose number of class it calls is close (16). The execution of LoginViewController is
somewhat more localized than ReaderPostsViewController and seems to play less of a
central role.

The sequence of screens that we get when the use-case is executed is presented in

Table 1. Number of distinct method executed per class, for classes with 10 methods or more.

Class #methods

ReaderPostsViewController 55
CreateAccountAndBlogViewController 29
WordPressAppDelegate 24
ReaderPostView 21
ReaderPostService 19
LoginViewController 18
NotificationsViewController 16
ReaderPostServiceRemote 15
WPStyleGuide 13
WPAvatarSource 12
WPAnalyticsTrackerMixpanel 11
WPNUXUtility 11
ReaderPostTableViewCell 10
WPTableImageSource 10
WPWalkthroughTextField 10

Table 2. Classes calling other classes.

Class name # class called

ReaderPostsViewController 17
WordPressAppDelegate 17
LoginViewController 16
WPImageSource 15
CreateAccountAndBlogViewController 12
ReaderPostView 10

Dynamic Analysis Techniques 261

Fig. 11 (as recorded on September 20st, 2015). The screen on the left is displayed for a
short period of time (1 s) after wich the second screen is displayed. Once the infor-
mation have been entered into this screen and the account created the third screen
opens to sign in.

Fig. 9. Time series comparison of WordPressAppDelegate and ReaderPostViewController.

Fig. 10. Time series comparison of LoginViewController and ReaderPostViewController.

262 P. Dugerdil and R. Sako

Since we suspect the classes whose name start with “UI” to be involved in the
implementation of the displays we draw their time series in the same graph. These may
represent screens or parts of screens. This is presented on Fig. 12.

We see that UIDevice, which represents the current device and which is used to
retrieve the device parameters, is called at the beginning of the use-case as we could
have guessed. On the other hand UIColor is used to manage the colors and could be
involved in every screen. There is not much information to infer from the location of
the execution of this class in the time series except that each time it is executed there
must be some screen involved. UITableView is a class used to display a list of items as
a single column that is vertically scrollable. But the first screen in Fig. 11 has exactly
this kind of behavior. Therefore we can identify where in the execution trace this screen
is located. It is at coordinates 13 in the time series. Finally, UILabel represents a

Fig. 11. Sequence of screen in the create blog use-case.

Fig. 12. Execution of UI classes.

Dynamic Analysis Techniques 263

read-only text view. Since the last two screen are full of these, the time series let us
observe where in the trace these screens might be displayed.

Now we could observe the execution of the UILabel, UITableView and
LoginViewController classes in the trace (Fig. 13).

We remark that LoginViewController is located close to the other classes which
could mean, as its name suggests, that it performs some access control once the view is
displayed. Of course all these are only educated guesses. But they gives us a good
starting hypotheses from which we could explore the source code.

5.3 Interpretation Process

The above analysis shows that some simple statistical comparison among classes as
well as the timing of their executions may help us formulate hypotheses when trying to
understand some unknown code. Here are the steps of our interpretation process. From
each execution trace we identify:

(a) The list of classes involved
(b) The methods called in each of the classes
(c) The classes called by each class (i.e. the classes implementing the methods called

by some method in the other classes)
(d) The classes calling each class (i.e. the classes implementing the methods calling

methods in the other classes)
(e) The places in the execution trace where the methods of each classes are executed,

displayed as a time series.

From (a), (b), (c) and (d) we can build the functional structure of the system for each
use-case (see Fig. 8 as an example). This gives us an overview of the classes, their
methods and their associations required to implement each use case. But such a structure

Fig. 13. UI classes and login view controller.

264 P. Dugerdil and R. Sako

may not be complete since we usually do not recover all the alternative flows of a
use-case. From (c) and (d) we can see if some class interacts with a lot of other classes.
This would suggest the role of a controller in the MVC paradigm. The time series of the
executions let us find classes that work closely together. Indeed if the execution of some
classes is repeatedly adjacent in the time series, forming a pattern of executions, we can
make the hypothesis that these classes together implement some function or subfunc-
tion. Of course, this is not directly observable in the source code since it is difficult to
infer when a given class will call a method in another class. In contrast, the time series let
us observe when the classes are called in the context of a business relevant use-case. For
example, we leveraged this dynamic technique to retrieve the functional components of
a system using a clustering algorithm [7]. From (c) and (e) we could infer the scope of a
controller class. If the number of class called in high but the activity of the class is spread
all over the time series, then it is probably a global controller class, whereas if the
activity of this class is localized it is more like a subfunction controller.

6 Related Work

Dynamic analysis of apps has been a subject of interest for a few years. For example, it
has been used to check the security of the app when its source code is unavailable and
specifically to do black-box penetration testing. However, when the source code of the
app is available, the tester generally turns to static code review and white box testing.
Gianchandani [12] uses snoop-it [27] to hook into a chosen application’s process and to
monitor network and file system activities. He also uses Introspy [19] which is com-
posed of a tracer module and an analyzer module. After having selected the API to
trace, the tracer will log the corresponding calls to a database.

Next, the analyzer will produce a human readable report in HTML. However the
tool does not target all the custom application classes but focuses on the specific ones
related, but not limited to cryptography, data storage and networking. Szydlowski et al.
[28] proposed a technique to perform automatic dynamic analysis of iOS applications
by hooking to the application’s delegate and triggering all of the UI controls on every
view. The result is a state model of the application. However, most of the dynamic
analysis methods operate on the low level instructions. Hence, hooking to the running
process is needed. But Apple does not include any default debugger on the device and
installing one requires to jailbreak the iPhone. An alternative consists of running the
application on the iOS Simulator [20] that comes with XCode then monitoring its
process using GDB [11] or LLDB [23]. But the dynamic analysis of a simulated
application using a debugger does not provide as much information as is available
when writing the trace events to a file and analyzing the file off-line. Indeed the latter
method let us perform statistical analysis which is difficult when using a debugger.
Moreover, working on a simulated device, the technique does not allow analyzing apps
that involve sensors such as accelerometer, compass or camera as they cannot be
reproduced in the iOS Simulator.

Dynamic Analysis Techniques 265

7 Conclusion

The contribution of this paper is to present a reverse-engineering process and the
associated tools to reverse-engineer and mobile applications. Indeed the technique is
not limited to iPhone apps since the only specific part is the generation of the trace file.
Hence the technique is applicable to whatever environment, provided that we can build
a source code instrumentor for the associated programming language to generate an
application trace in a standard format. In particular, since we already developed an
instrumentor for Java, we are ready to analyze any Android application. The trace
analyzer we developed provides a rich set of views through which the maintenance
engineer can study the running of the code. In our case studies, we observed that the
“time series” technique can visually present the mutual behavior of the classes in a
convenient format. It provides some useful clues as to how classes interact when
running the use-cases. The UML class diagram of the functional structure of the
use-case summarizes all the programming elements involved in the execution of some
use-case. It is important to highlight that our technique is based first and foremost on
business relevant use-cases, i.e. whole scenarios that make sense for the user of the app,
and not on the execution of some arbitrary function. This allows us to make hypothesis
about the business semantics of the observed patterns of classes’ execution. But the
difficulty of the technique comes from the very same reason. Since we are not sure to
recover all the relevant alternative paths in each of the scenarios, because the use-cases
are drawn from the observation of the user, the analysis will be incomplete. To
overcome the problem, in the case of legacy desktop applications, we investigated a
semi-automated technique to recover the use cases directly from the legacy code [9]
with moderate success however, due to the complexity of the task. Indeed, use-case
recovery from source code is still an open problem. As future work we will integrate
our tool with IBM’s RSA to be able to generate the UML class diagram of the
functional structure automatically. We also intend to develop new views to directly
represent the dynamic business-level application semantics. Indeed we are building
domain concept ontologies whose concepts will be dynamically identified in the
executed code. This technique will help us to close the semantic gap between the high
level business domain concepts and the code level.

References

1. ANTLR: ANother Tool for Language Recognition (2014). http://www.antlr.org/. Accessed
12 October 2014

2. Appcelerator/IDC: Mobile Developer report (2013). www.appcelerator.com.s3.amazonaws.
com/pdf/developer-survey-Q2-2013.pdf. Accessed 5 March 2015

3. Apple iOS: File System Programming Guide (2014). https://developer.apple.com/library/
mac/documentation/FileManagement/Conceptual/FileSystemProgrammingGuide/
FileSystemOverview/FileSystemOverview.html. Accessed 12 October 2014

4. Apple UITableView: UITableView Class Reference (2014). https://developer.apple.com/
library/ios/documentation/UIKit/Reference/UITableView_Class/. Accessed 12 October
2014

266 P. Dugerdil and R. Sako

http://www.antlr.org/
http://www.appcelerator.com.s3.amazonaws.com/pdf/developer-survey-Q2-2013.pdf
http://www.appcelerator.com.s3.amazonaws.com/pdf/developer-survey-Q2-2013.pdf
https://developer.apple.com/library/mac/documentation/FileManagement/Conceptual/FileSystemProgrammingGuide/FileSystemOverview/FileSystemOverview.html
https://developer.apple.com/library/mac/documentation/FileManagement/Conceptual/FileSystemProgrammingGuide/FileSystemOverview/FileSystemOverview.html
https://developer.apple.com/library/mac/documentation/FileManagement/Conceptual/FileSystemProgrammingGuide/FileSystemOverview/FileSystemOverview.html
https://developer.apple.com/library/ios/documentation/UIKit/Reference/UITableView_Class/
https://developer.apple.com/library/ios/documentation/UIKit/Reference/UITableView_Class/

5. Bachmann, F.: Documenting Software Architectures: Views and Beyond, 2nd edn.
Addison-Wesley, Reading (2010)

6. Dugerdil, P.: Using trace sampling techniques to identify dynamic clusters of classes.
IBM CAS Software and Systems Engineering Symposium (CASCON) October 2007

7. Dugerdil, P., Jossi, S.: Computing dynamic clusters. In: 2nd Indian Conference on Software
Engineering (ISEC) 2009. ACM Digital Lib (2009)

8. Dugerdil, P., Niculescu, M.: Visualizing software structure understandability. In: 23rd
Australasian Software Engineering Conference (ASWEC) 2014. IEEE Digital Library,
Sydney (2014)

9. Dugerdil, P., Sennhauser, D.: Dynamic decision tree for legacy use-case recovery. In: 28th
ACM Symposium On Applied Computing (SAC 2013), Coimbra, Portugal, 18–22 March
2013

10. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns Elements of Reusable
Object Oriented Software. Addison-Wesley, Reading (1995)

11. GDB: GNU Debugger (2014). http://www.gnu.org/software/gdb/ Accessed 12 October 2014
12. Gianchandani, P.: Damn Vulnerable iOS Application (DVIA) (2014). http://damnvulner

ableiosapp.com/#learn. Accessed 12 October 2014
13. Graphviz (2015). http://www.graphviz.org/Home.php. Accessed 17 April 2015
14. Hammond, J.S.: Development Landscape: 2013, Forrester Research (2013)
15. Hamou-Lhadj, A., Lethbridge, T.C.: A Survey of Trace Exploration Tools and Techniques.

In: Proceedings of the IBM Conference of the Centre for Advanced Studies on Collaborative
Research (2004)

16. IBM: IBM Mobile First initiative (2014). www.03.ibm.com/press/us/en/presskit/39172.wss.
Accessed 12 October 2014

17. IDC: IDC Predictions 2013 Competing on the 3rd Platform (2013). www.idc.com/getdoc.
jsp?containerId=WC20121129. Accessed 5 March 2015

18. iExplorer (2014). http://www.macroplant.com/iexplorer/. Accessed 12 October 2014
19. Introspy-iOS (2014). https://github.com/iSECPartners/Introspy-iOS. Accessed 12 October

2014
20. iOS Simulator (2014). https://developer.apple.com/library/ios/documentation/IDEs/Conceptal/

iOS_Simulator_Guide/GettingStartedwithiOSStimulator/GettingStartedwithiOSStimulator.
html. Accessed 12 October 2014

21. JavaCC: Java Compiler Compiler – The Java Parser Generator (2014). https://www.javacc.
java.net/. Accessed 12 October 2014

22. JTB: Java TreeBuilder (2014). http://compilers.cs.ucla.edu/jtb/. Accessed 12 October 2014
23. LLDB: LLDB Debugger (2014). http://lldb.llvm.org/. Accessed 12 October 2014
24. Objective, C: Runtime Reference (2014). https://developer.apple.com/library/mac/

documentation/Cocoa/Reference/ObjCRuntimeRef/Reference/reference.html. Accessed 12
October 2014

25. Parada, A.G., de Brisolara, L.B.: A model driven approach for android applications
development. In: Proceedings of the Brazilian Symposium on Computing SystemEngineering
(SBESC) (2012)

26. Sako, R.: Reverse engineering d’une application mobile Apple. Bachelor Thesis (2011)
27. Snoop-it (2014). https://code.google.com/p/snoop-it/. Accessed 12 October 2014
28. Szydlowski, M., Egele, M., Kruegel, C., Vigna, G.: Challenges for dynamic analysis of iOS

applications. In: Camenisch, J., Kesdogan, D. (eds.) iNetSec 2011. LNCS, vol. 7039,
pp. 65–77. Springer, Heidelberg (2012)

29. Tilley, S.R., Santanu, P., Smith, D.B.: Toward a framework for program understanding. In:
Proceedings of the IEEE International Workshop on Program Comprehension (1996)

Dynamic Analysis Techniques 267

http://www.gnu.org/software/gdb/
http://damnvulnerableiosapp.com/%23learn
http://damnvulnerableiosapp.com/%23learn
http://www.graphviz.org/Home.php
http://www.03.ibm.com/press/us/en/presskit/39172.wss
http://www.idc.com/getdoc.jsp?containerId=WC20121129
http://www.idc.com/getdoc.jsp?containerId=WC20121129
http://www.macroplant.com/iexplorer/
https://github.com/iSECPartners/Introspy-iOS
https://developer.apple.com/library/ios/documentation/IDEs/Conceptal/iOS_Simulator_Guide/GettingStartedwithiOSStimulator/GettingStartedwithiOSStimulator.html
https://developer.apple.com/library/ios/documentation/IDEs/Conceptal/iOS_Simulator_Guide/GettingStartedwithiOSStimulator/GettingStartedwithiOSStimulator.html
https://developer.apple.com/library/ios/documentation/IDEs/Conceptal/iOS_Simulator_Guide/GettingStartedwithiOSStimulator/GettingStartedwithiOSStimulator.html
https://www.javacc.java.net/
https://www.javacc.java.net/
http://compilers.cs.ucla.edu/jtb/
http://lldb.llvm.org/
https://developer.apple.com/library/mac/documentation/Cocoa/Reference/ObjCRuntimeRef/Reference/reference.html
https://developer.apple.com/library/mac/documentation/Cocoa/Reference/ObjCRuntimeRef/Reference/reference.html
https://code.google.com/p/snoop-it/

30. Wasserman, A.I.: Software engineering issues for mobile application development. In:
Proceedings of the 2nd Workshop on Software Engineering for Mobile Application
Development MobiCase 2011 (2011)

31. YaCC: Yet Another Compiler-Compiler (2014). http://dinosaur.compilertools.net/yacc/.
Accessed 12 October 2014

268 P. Dugerdil and R. Sako

http://dinosaur.compilertools.net/yacc/

Annotating Goals with Concerns
in Goal-Oriented Requirements Engineering

Shinpei Hayashi1(B), Wataru Inoue1, Haruhiko Kaiya2, and Motoshi Saeki1

1 Department of Computer Science, Tokyo Institute of Technology,
Ookayama 2–12–1–W8–83, Meguro-ku, Tokyo 152–8552, Japan

{hayashi,inouew,saeki}@se.cs.titech.ac.jp
2 Department of Information Sciences, Kanagawa University,

Tsuchiya 2946, Hiratsuka, Kanagawa 259–1293, Japan
kaiya@kanagawa-u.ac.jp

Abstract. In goal-oriented requirements analysis, goals specify multi-
ple concerns such as functions, strategies, and non-functions, and they
are refined into sub goals from mixed views of these concerns. This inter-
mixture of concerns in goals makes it difficult for a requirements analyst
to understand and maintain goal refinements. Separating concerns and
specifying them explicitly is one of the useful approaches to improve the
understandability of goal refinements, i.e., the relations between goals
and their sub goals. In this paper, we propose a technique to annotate
goals with the concerns they have in order to support the understanding
of goal refinement. In our approach, goals are refined into sub goals refer-
ring to the annotated concerns, and these concerns annotated to a goal
and its sub goals provide the meaning of its goal refinement. By trac-
ing and focusing on the annotated concerns, requirements analysts can
understand goal refinements and modify unsuitable ones. We have devel-
oped a supporting tool and made an exploratory experiment to evaluate
the usefulness of our approach.

Keywords: Goal-oriented requirements engineering · Concern · Goal
refinement

1 Introduction

In information system development, it is necessary to elicit requirements from
customers and users as early in the development process as possible, in order to
reduce the development cost and to develop the information system of higher
quality. To support requirements elicitation, various techniques and/or methods
have been studied and made some of them into practice.

Goal-oriented requirements engineering (GORE) is one of the promising
approaches to elicit requirements, and in this approach, elicited requirements and
their relationships are represented with a graph, called a goal graph [6]. We can
reason about how a goal is derived by means of tracing the edges incoming to and
outgoing from it. However, as elicited requirements are increasing more and more
c© Springer International Publishing Switzerland 2016
P. Lorenz et al. (Eds.): ICSOFT 2015, CCIS 586, pp. 269–286, 2016.
DOI: 10.1007/978-3-319-30142-6 15

270 S. Hayashi et al.

in a goal graph, it is more difficult to analyze them using the graph because the
numbers of the goals and their relationships are larger. As a result, the structure
of the goal graph is more complicated. A case study of analyzing a large-scale sys-
tem was reported where goals exceeded more than 500 in a goal graph [6]. The
complicated graph results in the difficulties of analyzing it, especially of finding
specific goals and of tracing their relationships to the other goals such as their par-
ent and/or sub goals. As a result, maintaining the goal graph can be error-prone
tasks for human analysts. In addition to the larger number of goals and edges, goal
refinements cause the difficulties in maintaining the goal graph.

A (parent) goal is refined into the sub goals that contribute to its achieve-
ment. More precisely, the achievement of the parent goal is a logical entailment
of its sub goals’ achievement from logical view [2,5,10], i.e., if the achievement
of the sub goals holds, that of the parent goal also holds. This rule on the logical
entailment of goal achievement dominates the formal meaning of goal refine-
ments. Although some techniques propose the patterns of goal refinements such
as Divide-and-Conquer and Guard-Introduction [6], most of them are based on
logical entailment. For requirements analysts as practitioners, they refine goals
into sub goals from various views not only from the view of logical entailment.
In some cases, analysts may refine a goal into actions or tasks that can realize
its achievement, and in other cases they may do the goal into the conditions or
constraints that should hold for achieving it. The former case is based on oper-
ational view of goal refinements, i.e., a sequence of actions or tasks is necessary
to be executed for the achievement of the goal, and the latter is on a logical view
of the conditions or assumptions of the goal. The wide variety of goal refinement
views causes the difficulties in analysts’ constructing and/or maintaining a goal
graph. To use GORE practically, it is necessary for analysts to understand goal
refinements well [9].

The paper proposes a technique to classify goal refinement views and show
them for analysts so as to understand the goal graph easily. The basic idea of
our approach is annotating goals with concerns that they have. Goals specify
multiple concerns such as functions, strategies, and non-functions, and they are
refined into sub goals from mixed views of these concerns. This intermixture of
concerns in goals causes the wide varieties of goal refinement views and makes
it difficult for a requirements analyst to understand and maintain goal refine-
ments, i.e., relations between goals and their sub goals. Separating concerns
and specifying them explicitly is one of the useful approaches to clarify goal
refinements to improve their understandability. In our approach, a concern of
requirements analysts corresponds to annotations and the analysts attach their
concerns as annotations to the goals that specify the concerns during construct-
ing a goal graph. Suppose that an analyst has a goal “Deliver stock to franchise
stores just-in-time” in the development of an information system for convenience
store chains. It has two concerns: functional aspect (stock delivery) and busi-
ness strategic one (just-in-time). The analyst picks up one concern, say strategic
one, and consider what sub goals can achieve this goal from a single view of
the picked concern, strategic one, without considering another concern. As a
result, sub goals to achieve “just-in-timeliness”, e.g., “Coordinate supply chain

Annotating Goals with Concerns in Goal-Oriented Requirements Engineering 271

: Coordinate supply chain
participants via data network

linking them

: Deliver stock to franchise
stores just-in-time

: Send product orders to
suppliers

: Send shipping requests to
delivery center

Fig. 1. Part of a goal graph in B-SCP: excerpt from [1].

participants” can be obtained. Our approach can help analysts derive sub goals,
i.e., goal refinements and provide the explicit meaning of goal refinements. In
the above example, the goal refinement from “Deliver stock to franchise stores
just-in-time” to “Coordinate supply chain participants” represents the deriva-
tion of more concrete strategic goal. By tracing and focusing on the annotated
concerns of goals, the requirements analysts can understand goal refinements
and furthermore correct unsuitable ones.

The rest of the paper is organized as follows. In Sect. 2, we show a motivating
example and clarify where our problem to be solved is. Section 3 presents our
approach, and in Sect. 4, we show the supporting tool based on our approach.
We assess our approach with an experiment and discuss its effectiveness based
on the experimental results in Sect. 5. Sections 6 and 7 are for related work and
concluding remarks.

2 Motivating Example

In GORE, the customers’ and users’ abstract needs can be considered as goals
to be achieved, and the goals are decomposed or refined into more concrete sub
goals. The achievement of the sub goals contributes to the achievement of their
parent goals. We have two types of goal refinement; one is AND refinement,
and the other is OR. In AND refinement, if all of the sub goals are achieved,
their parent goal can be achieved, while in OR refinement, the achievement of
at least one sub goal leads to the achievement of its parent goal. The meaning
of refinement is “logical entailment” only.

Figure 1 illustrates a part of the goal graph excerpted from [1], which was the
result of analyzing the business strategy of Seven Eleven Japan [7]. In the figure,
rounded boxes and arrows stand for goals and goal refinements, respectively.
For example, the goal n2 is refined into sub goals n3 and n4 in OR refinement.
Considering the meaning of these goals, their goal refinement is not easy to
understand underlying ideas on how these sub goals n2, n3, and n4 had been
derived from the root goal n1. The goal n1 specifies stock delivery just-in-time,
and it includes both a functional aspect (stock delivery) and a strategic one
(just-in-time)1. Its direct sub goal n2 specifying the coordination of supply chain
1 Here, we regard the constraints of goals as strategic.

272 S. Hayashi et al.

contributes to the achievement of the strategic aspect of n1, just-in-timeliness of
stock delivery, but less contributes to its functional aspect, i.e., stock delivery.
Rather, n3 and n4, which are direct sub goals of n2 not n1, seem to directly
contribute to the achievement to the stock delivery of n1. It can be considered
that the refinement of n1 to n2 is done based on a strategic aspect, and on the
other hand, the refinement of n2 to n3 and n4 is on functional aspect of n1, not
of n2. Thus, n3 and n4 are not so suitable as the result of refining directly the
goal n2, rather it is better to consider that the goal n1 is directly refined into
them following a functional viewpoint. The point is that this example includes
mixed views of a goal refinement, strategic view, and functional view in a goal
graph. More concretely, goals derived from multiple views are intermixed in
the same graph, and this intermixture leads the difficulty of understanding and
furthermore maintaining the goal graph.

We call the aspects that a goal specifies and that a requirements analyst has
an interest for her/his analysis concerns, and the analyst refines the goal into its
sub goals from the view of these concerns. The goal refinements based on these
concerns are more natural for human analysts rather than based on the view of
logical entailment. A goal specifies more than one concern as shown in the goal
n1, and a requirements analyst tries to refine it into sub goals from the view of
its concerns. Suppose that the analyst refines the goal n1 directly into n3 and n4

from the view of a functional concern and into n2 from the view of a strategic
concern. The resulting goal graph includes two types of goal refinement, and as
a result, it is difficult to understand the meaning of the relationships between
the parent goal n1 and its sub goals (n2, n3, and n4) because of the intermixture
of goal refinement having different meaning. This paper addresses this problem,
and the next section presents how to tackle it.

3 Our Approach

3.1 Basic Idea

The problem that we address in this paper is the intermixture of multiple goal
refinements based on the concerns related to information systems development.
We adopt the idea of annotating goals with concerns and clarifying the meaning
of goal refinements using the annotations in order to address this problem. In
our technique, we construct a goal graph annotating goals with concerns, and we
concentrate on goal refinements for a single concern by tracing them along the
concern. The aim of our work is to develop the supporting technique to maintain
goal graphs, especially to understand the relationships among goals through the
meaning of goal refinements.

3.2 Concerns of Goals

Let C be a set of concerns: C = {c1, . . . , cn}. An annotation or annotation
value is a n-tuple 〈v1, . . . , vn〉 where vi ∈ {ci,−} (1 ≤ i ≤ n). As shown in

Annotating Goals with Concerns in Goal-Oriented Requirements Engineering 273

: Coordinate supply chain
participants via data network

linking them

: Deliver stock to franchise
stores just-in-time

: Send product orders to
suppliers

: Send shipping requests to
delivery center

<function, strategy>

<–, strategy>

<function,–> <function, –>

: Coordinate supply chain
participants via data network

linking them

: Deliver stock to franchise
stores just-in-time

: Send product orders to
suppliers

: Send shipping requests to
delivery center

<function, strategy>

<–, strategy>

<function, –>

<function, –>

(a) Original graph with annotated concerns. (b) Modifying the goal refinement.

Fig. 2. Concerns of the motivating example.

Fig. 2(a), the goals of the motivating example in Fig. 1 can have two concerns: a
function concern and a strategy one, so c1 = function and c2 = strategy . Since
n1 specifies these two concerns, on one hand, we set its annotation value to
be 〈function, strategy〉. On the other hand, n2 specifies only one concern, i.e.,
strategy, and so its value is 〈−, strategy〉. The value “−” denotes a null value,
and it means that the goal does not specify the corresponding concern. In the
example, n2 does not specify the function concern. The annotations are similar
to the attributes or semantic tags attached to goals [4,11,12].

Our approach has three beneficial points to support maintaining goal graphs.
The first one is that we can reason about the meaning of goal refinements and can
understand how sub goals are derived. For example, the refinement from n1 into
n2 has a meaning of the refinement of the strategy “just-in-time” because both
of these goals have a strategy concern. If a requirements analyst tries to focus
on a strategy concern, she/he can trace the goals having a concern “strategy”
and their refinements. As a result, she/he can understand why and how the
strategic goals were derived while constructing the goal graph. We can classify
the meaning of goal refinements as follows, and this clarification is useful to
reason about how goals specifying a certain concern are derived.

– A parent: strategy, a sub goal: strategy (both a parent goal and its sub goal
specify strategy concerns)
→ The parent goal is divided or refined into a more concrete strategy denoted

by the sub goal.
– A parent: strategy, a sub goal: function

→ The sub goal is a function or an operation to realize the strategy denoted
by the parent goal.

– A parent: function, a sub goal: strategy
→ The sub goal is a strategy to implement the function denoted by the parent

goal.
– A parent: function, a sub goal: function

→ The function denoted by the parent goal has the sub function denoted by
the sub goal.

274 S. Hayashi et al.

<function, strategy>

<–, strategy>

Strategy
concern Function

concern

<function, –>
<function, –>

<function, strategy>

Function
concern

<function, –>
<function, –>

Hiding
strategy concern

Fig. 3. Focusing on a concern.

In the first category of the above classification, if both a parent and a sub
goal specify a strategy concern, the parent goal is divided or refined into the
strategy denoted by the sub goal. By reading these meaning descriptions on
tracing a sequence of goal refinements, a requirements analyst can reason about
the derivation process of the related goals.

The second benefit is to support the detection of unsuitable goal refine-
ments in a goal graph as shown in Fig. 1. Suppose that we have the rule of goal
refinement “A goal should be refined into sub goals from the view of at least
one of the concerns that it specifies”. In our approach, this rule can be trans-
lated into “If the i-th element of the annotation of a parent goal is null, i.e.,
〈v1, . . . , vi−1,−, vi+1, . . . , vn〉, then the i-th element of its sub goals should also
be null”. Figure 2(a) violates this rule at the refinement from n2 into n3 and
n4, because the annotation at the function concern in n1 is null while its value
is neither null at n3 nor at n4. Thus, we can obtain the modified version as
shown in Fig. 2(b) by letting n3 and n4 be direct sub goals of n1. This approach
allows us to automate detecting the occurrences of semantically unsuitable goal
refinements. Note that this rule is an extreme but comprehensive example. We
used it only for the explanation of the second benefit.

The third beneficial point is the mechanism to filter out the goals specifying
irrelevant concerns, i.e., the goals that a requirements analyst has less interest
in can be hidden. For a human analyst, it is difficult to analyze a goal graph
recognizing many types of concerns at the same time, especially in the case
when the graph is larger and more complicated. The analyst can select a small
number of the concerns that she/he wants to focus on at first. Figure 3 illustrates
hiding a strategy concern from the motivating example. As a result, the analyst
can devote herself/himself to focusing on goals and their refinements from the
viewpoint of a function concern.

We can summarize the beneficial points to improve the existing GORE app-
roach by using our approach as follows:

1. understandability on why and how sub goals are derived by clarifying the
meaning of goal refinements,

2. detectability of unsuitable goal refinements by considering the concerns anno-
tated at goals, and

Annotating Goals with Concerns in Goal-Oriented Requirements Engineering 275

3. easiness to analyze goal graphs by reducing their size by means of hiding the
goals having less interesting concerns.

Goal refinements are subjective tasks of requirements analysts in the sense
that the results greatly depend on the analysts. The aim of our research is not
automating goal refinements but assisting in the analysts’ tasks. Although our
approach can improve the quality of goal refinements, it does not provide a mean
to automate them. Our approach allows an analyst to focus on a single and simple
concern, not on multiple and intermixture concerns, when she/he refines goals,
and to be assisted in getting goal refinements of higher quality because she/he
can avoid considering varieties of aspects of a goal at its refinement. Although
she/he can refine a goal along a single concern, the task of its refinement is still
subjective. The efforts of subjective tasks can be reduced in our approach.

3.3 Applying Our Approach

In this subsection, we mention how to apply our approach to GORE. There are
two alternatives to apply it. The first alternative is its application to the con-
struction of a goal graph specifying no unsuitable goal refinements. A require-
ments analyst decides what concerns she/he has an interest and then starts
constructing a goal graph. While constructing the graph, the analyst can find
and add new concerns that she/he must consider. She/he considers what con-
cerns that a goal represents and annotates it with the suitable concerns. The
annotations play a role of the guideline on goal refinements. Suppose that a
requirements analyst has a goal n1 shown in Fig. 2 and that she/he focuses on a
function concern and a strategy one. The analyst recognizes that n1 has both of
function and strategy concerns, and for each concern, the analyst tries to decom-
pose n1 into sub goals. As a result, as shown in Fig. 2(b), the analyst refines n1

into n3 and n4 from the viewpoint of a function concern, while into n2 from a
strategy view.

The second alternative is the application of our approach to already con-
structed goal graphs. A requirement analyst has constructed a goal graph by
using an existing technique such as KAOS, the strategic rationale model in i*,
or AGORA, and then she/he identifies what concerns each goal in the graph
has. After finishing annotating the goals with the concerns, the analyst checks
the suitability of goal refinements and improves them by changing sub goals or
adding new sub goals if any unsuitability exists. To understand the goal graph for
maintaining it, the analyst can trace the goal graph along a goal refinement of a
certain concern. In addition, the analyst can remove goals having the other con-
cerns from her/his view. These supports result from the three beneficial points
mentioned in the previous subsection.

4 Supporting Tool

We have implemented a tool for supporting our approach by using an AGORA
tool that had been developed before by the authors’ group [11]. Figure 4 illus-
trates the screenshot for editing a goal graph. The example goal graph shown in

276 S. Hayashi et al.

Fig. 4. Screenshot of the supporting tool (Color figure online).

this screenshot is the same as the one shown in Fig. 2(a). The following is a list
of the functions of this tool.

1. Getting a Concern Definition File: Before starting and/or while con-
structing a goal graph, a requirements analyst can define new coordinates.
The tool can obtain a file having information on the concerns that the analyst
(also the tool user) newly defines in XML form. The definition of a concern
includes the name of the concern, new goal refinement rules in which the con-
cern participate, and semantic information on the goal refinements related
to the concern. The refinement rules are represented in a matrix form whose
entries are suitable goal refinements, and are used to detect the occurrences of
unsuitable goal refinements. The semantic information is written in text and
presents the explanations of the goal refinements as shown in the previous
section. It is shown to an analyst and useful for her/him to understand how
the corresponding sub goals have been derived.

2. Attaching Annotations to a Goal and Displaying Them: An analyst
selects a goal that she/he tries to attach annotations, i.e., concerns, by clicking
it with a pointing device and chooses suitable concerns from a pop-up menu.
In the screen of the tool, concerns are differentiated by coloring a goal. For
example, a function, a strategy, and a non-function concern are assigned to
red, green, and blue respectively, and goals specifying these concerns are
colored following this color assignment. Like the goal n1 specifying function

Annotating Goals with Concerns in Goal-Oriented Requirements Engineering 277

and strategy concerns, it is colored with yellow, which is the mixture of red
and green.

3. Hiding Goals: When an analyst selects the concerns that she/he likes or
does not like to focus on, the tool displays the goals specifying the selected
concerns or not specifying them.

4. Showing Semantic Information of a Goal Refinement: See the Prop-
erties tab in the bottom screen of Fig. 4. This tab is for the area where the
meaning of the selected goal refinements is displayed in a textual form. More
precisely, when an analyst points a goal, the tool displays the meaning of its
refinement to sub goals and their contents in a tree form. In the figure, the
analyst points the goal n2, and the tool shows the meaning of the refinements
to n3 and n4 “[parent strategy] is realized by [sub function(s)]”. This means
that strategy n2 is realized by sub function(s) n3, etc. The analyst considers
if the strategy “Coordinate supply chain participants via data network link-
ing them” (n2) can be realized by “Send product orders to suppliers” (n3) or
not. Perhaps, she/he may be doubtful for this refinement and consider that
it is not sufficient from the view of realizing a strategy by functions. In this
way, considering the meaning of goal refinements, the analyst may also find
an unsuitable goal refinement.

5 Exploratory Experiment

As mentioned in Sect. 3, our approach and tool have three beneficial points:

– understandability on why and how sub goals are derived by clarifying the
meaning of goal refinements,

– detectability of unsuitable goal refinements by checking annotations of
goals, and

– easiness to analyze goal graphs by reducing their size by means of hiding the
goals having less interesting concerns.

In this section, we made an experiment to assess if these beneficial points are
obtained or not.

5.1 Procedure

The aim of our experiment is to confirm that our approach including the support-
ing tool can have the above three beneficial points. To do, we made a comparative
experiment with two settings; one is the situation that our subjects analyze goal
graphs using the existing technique, and the other is that they analyze the goal
graphs using the supporting tool. Their processes and outcomes are compared.
Figure 5 illustrates this experimental procedure. Our subjects were provided with
goal graphs and questions about them, and they answered the questions by ana-
lyzing the goal graphs. The subjects were grouped into two sets; one is for the
subjects who use the existing goal graph editor such as [11], and the other is for
the subjects who use our tool mentioned in Sect. 4. Subjects made answers to

278 S. Hayashi et al.

Subject Subject

Goal Graph

Subject

Tooll

Compare

1. Explanation 2. Solving questions 3. Solving questions
using the tool

AnswerResponse time

+ Questions

Goal Graph

+ Questions

AnswerResponse time

Fig. 5. Experiment.

the several questions related to sample goal graphs that might include unsuit-
able goal refinements. We observed their answering processes and their resulting
answers and extracted the following information.

1. The numbers of wrong answers and missing answers: We checked if the
answers of a subject using our approach included wrong answers and missing
ones less than those of a subject not using our approach.

2. The time spent in making answers (response time): We measured the time
when a subject spent in making answers. This is for checking if our subjects
could reduce their efforts or not.

We made questions to observe and evaluate the following items;

Item (a): our subjects can understand goal refinements,
Item (b): our subjects can detect unsuitable goal refinements, and
Item (c): our subjects can focus on goals specifying a certain concern.

We designed three types of questions to obtain the information on the above
items from our subjects as follows.

– Question Type 1 (QT 1): Selecting Goals Playing the Specific Roles
on Deriving the Given Goals. Given two goals that are connected in a
goal graph, a subject is required to identify the goals having specific roles on
deriving these given two goals. Since the given two goals, letting a descendant
goal and its ancestor be n1 and n2 respectively, are connected, one goal n1

is transitively derived from the other goal n2. There are goals on the path
between n1 and n2 that more contribute to the derivation of n1 from n2

based on a certain concern. The subjects were asked to look for such goals as
these. To find them correctly, the subjects should understand the derivation
process from n2 to n1, i.e., how and why n1 is derived from n2 from a view
of a certain concern. The example of the question of this type is “Goal n1

Annotating Goals with Concerns in Goal-Oriented Requirements Engineering 279

n1

n2 n3 n4

n1

n2

n4

n3

Fig. 6. Modifying edges in a goal.

can contribute to the achievement of Goal n2. Which can goals on the path
between n1 and n2 play a role of Function for their achievement?”.

– Question Type 2 (QT 2): Identify Goals Refinements to be Modified.
We gave goal graphs of lower quality that had been artificially generated and
asked our subjects to find the goal refinements to be modified. To generate the
goal graphs of lower quality, we picked up original goal graphs whose quality
was high and deteriorate them by reconnecting some of sub goals to wrong
parent goals so that we got goal graphs having unsuitable goal refinements.
See Fig. 6. Given the produced unsuitable goal graphs, a subject is required
to identify unsuitable goal refinements.

– Question Type 3 (QT 3): Identifying Insufficient Derivation of Sub
Goals from a Certain Concern. Given a certain concern and a goal spec-
ifying it, a subject is required to check if there exist the goals that contribute
to the given goal from the view of the other relevant concerns, or not. The
example of the question of this type is “Where are the goals specifying the
non-function concern whose their achievement as function are not considered,
if any?” In a completed goal graph, the goals representing non-functional
requirements should be finally refined into sub goals that denote the func-
tions to implement these non-functional requirements. If these sub goals do
not exist yet in a goal graph, the goals of the non-functional requirements
should be analyzed and refined further. This type of questions is for the sub-
jects to select the goals necessary to be analyzed and refined further.

These types of questions correspond to the observation Items (a), (b), and
(c) mentioned above. For example, to answer QT 1 correctly, a subject should
understand the meaning of goal refinements between the given two goals, e.g.,
the goal n1 and n2 in the example question. We prepared 3, 1, and 2 questions
for QT 1, 2, and 3, respectively. Some of the questions correspond to multiple
solutions. For example, the question of QT 2 for each graph correspond to 8
solution goals.

In our experiments, we use three concerns: function, non-function, and strat-
egy. Note that we did not use goal refinement rules, i.e., any concern combina-
tion was allowable in this example, and we made the textual explanations of the
meaning of 9 (= 3 concerns × 3) types of goal refinements. The textual expla-
nations of the meaning of refining a strategy concern into a function concern
are displayed to our subjects on the screen of the tool, as shown in Sect. 4. The
reason we did not use the rules is as follows. It is obvious that our tool can detect

280 S. Hayashi et al.

Table 1. Details of used goal graphs.

goals # functions # non-functions # strategies # edges

GSEJ 50 26 11 15 61

GCRE 50 22 15 16 60

Table 2. Goal graphs that subjects used.

No support Our approach

Subject A GCRE GSEJ

Subject B GCRE GSEJ

Subject C GSEJ GCRE

Subject D GSEJ GCRE

the violation of the rules in an instant, and the comparison of correct answers
and answering time is not so meaningful. Rather, we would like to show our
semantic information of goal refinements can contribute to detecting unsuitable
goal refinements as well.

We used two goal graphs GSEJ and GCRE. GSEJ is for the strategies of Seven
Eleven in Japan [7], and GCRE is for an information system where university
students apply for class credits. Table 1 shows their size such as the numbers of
goals, edges and the occurrences of concerns. For example, the graph GSEJ had
50 goals and 61 edges, and a function concern was attached to 26 goals out of
the 50 ones.

We had four student subjects of the computer science department who had
learned requirements engineering. All of them had experiences in developing
information systems, but were not expertized to requirements analysis tech-
niques. Thus, as shown in Fig. 5, we gave the subjects a short lecture of GORE
and the existing goal graph editor, which had no support of our approach and
our tool in 20 min. They tried out these tools in this lecture. Table 2 shows the
assignment of the goal graphs GSEJ and GCRE to our subjects. For example,
Subject A analyzed GCRE with the existing goal graph editor and GSEJ with
our tool, i.e., she/he proceeded the step 2 with GCRE and the step 3 with GSEJ.
We use the term “No support” to express the group of the subjects who did not
use our tool but the existing goal graph editor.

5.2 Results

Table 3 shows the results of the subjects’ answers. The numerals of the table
represent the average numbers of correct answers, wrong answers, and missing
answers over the four subjects. In the case where a subject did not find a correct
answer, we count it as a missing answer. Suppose that a goal n is one of the
correct answers. If a subject answered as n, we count this answer as a correct
one in the table. On the other hand, if she/he did not, we count it as a missing

Annotating Goals with Concerns in Goal-Oriented Requirements Engineering 281

Table 3. Average of correct and wrong answers.

GSEJ GCRE

Correct Wrong Missing Correct Wrong Missing

QT 1 No support 2.5 2.5 0.5 1 3.5 2

Our approach 2.5 1 0.5 3 4.5 0

QT 2 No support 3 0 5 3 0 5

Our approach 3.5 0 4.5 3.5 0 4.5

QT 3 No support 2 1 3 1 2 2

Our approach 5 1 0 3 3 0

Table 4. Average time spent in answering.

GSEJ GCRE

QT 1 No support 2’48” 1’44”

Our approach 2’39” 2’16”

QT 2 No support 10’15” 10’34”

Our approach 10’47” 10’44”

QT 3 No support 3’14” 4’44”

Our approach 3’31” 3’59”

answer, but if she/he did the different goal n′, it is a wrong answer. In the
example of QT 1 and the goal GSEJ, each subject answered three questions, and
two subjects of four used our approach. The total number of real correct answers
to these questions was just 3. Subject A answered the three questions correctly,
i.e., she/he could find all three goals that were correct answers to the questions.
However, Subject B listed four goals as her/his answers, and two of the four were
correct. She/he identified two wrong goals and missed one real correct goal. For
the two subjects using our approach, 2.5 in average were correct one, and they
selected one wrong answer and missed 0.5 correct answers in average.

Table 4 shows the average time spent on subjects’ answering the questions.
In the example of the graph GSEJ and QT 1, the average time of the subjects
was 2 min 48 s.

5.3 Discussion

According to the experimental results, we can consider that our approach allows
to prevent requirements analysts from missing the goals necessary to understand
goal refinements from the viewpoint of a certain concern. In QT 1 to the graph
GCRE of Table 3, our approach was successful in reducing missing answers at
two and increasing correct answers. However, for GSEJ we could not observe the
same result, so we need more experiments and investigations further. In addition,
we could not observe considerable differences on wrong answers between no

282 S. Hayashi et al.

support and our approach, so we cannot conclude that our approach reduced
misunderstanding of goal refinements.

As for detectability of unsuitable goal refinements, we could not obtain pos-
itive results. We can conclude that our approach might be useful to reduce the
efforts of our subjects because the time spent in finding the unsuitable goal
refinements was decreasing. See the column QT 2 of Table 4. Our subjects using
the tool could reduce their average times of GSEJ and GCRE at only 32 and 10 s
respectively, and we could not conclude that the difference is enough large. Also,
in QT 1 and QT 3, we could not obtain the evidence of the benefits of our app-
roach. Rather, in these cases the time spent in making answers was increasing.
The manipulation time of our tool, e.g., the manipulation time for retrieving
the goals specifying certain coordinates, might cause additional time. As a goal
graph to be analyzed is larger and more complicated, we might obtain clearer
results.

Let us turn back to Table 3 and see the column of QT 3. For the subjects using
our tool, the number of missing correct answers was reduced at 3 in GSEJ and
2 in GCRE respectively, and the correct answers were increasing. Thus, we can
conclude that our approach reduced missing the goals necessary to be analyzed.

To sum up, our approach has possibilities of preventing analysts from miss-
ing goal refinements to be recognized and goals to be analyzed. Regarding the
reduction of the efforts in detecting unsuitable goal refinements in a goal graph,
the new usages of the tool might be the obstacle to detecting such refinements
quickly.

5.4 Threats to Validity

External Validity. External validity is related to generalization of our exper-
imental results. We used students as subjects of the experiment, and in this
sense, it may be doubtful whether the experimental results can hold in prac-
titioners. However, our subjects had been involved in practical projects and
had experiences in system development. Although they were not practitioners of
requirements analysis or GORE, they took lectures related to requirements engi-
neering. Thus, although experiments for practitioners may be necessary, we do
not consider that experimental results extremely different. In addition, the two
goal graphs and the concerns that we used are limited. The domain of the goal
graphs was business application. We need to make experiments using goal graphs
in different problem domains and different concerns. In particular, we consider
concerns more than three: Function, Strategy, and Non-Function. Interrelated
concerns and the larger number of them may result in more positive effects of
our approach.

Internal Validity. It may be a problem that the questions that we made really
reflect on the items to be evaluated. For example, we made a question like “Where
are the goals specifying the concern Non-Function whose their achievement as
Function are not considered?” to check if the subjects could identify insufficient

Annotating Goals with Concerns in Goal-Oriented Requirements Engineering 283

goal refinements or not. Suppose that we have a goal specifying a Non-Function
concern and that it should be achieved. The Non-Function concern should be
implemented by functions in an information system, so the goal graph should
include some goals specifying a Function concern that can contribute to the Non-
Function goal. If this kind of a Function goal does not exist, the goal refinement
can be insufficient, and we should add sub goals specifying Function concern
to achieve the Non-Function goal. To identify these insufficient refinements, the
subjects should understand the meaning of goal refinements in the goal graph
well. Thus, the question can contribute to evaluating Item (c) (our subjects can
understand goal refinements) mentioned in Sect. 5.1. In this way, we designed
the questions carefully, but we do not consider that the used questions can cover
all the aspects of the items to be evaluated. Thus, we should consider wide
varieties of questions that cover more aspects of the evaluation items in further
experiments.

Construct Validity. Our experiment was based on a comparative way, i.e., we
had two experiments where only one factor was different from them. This factor
is the usage of the supporting tool for our approach, and the other factors such as
the characteristics of subjects should be the same in the two experiments. Con-
struct validity guarantees that nothing but the difference of this factor causes
the experimental results. We chose the subjects who had the same experiences
and skills as prudently as possible. We used two tools having editing functions
of goal graphs. One is the AGORA editor [11] as the tool having no functions of
our approach. The other is the tool supporting our approach and is an extended
version of AGORA editor. That is to say, two tools have the same user interface
and the functions except for the functions related to annotating and manipulat-
ing concerns. Thus, we do not consider there are any effects of the experimental
results caused by the differences on the tools.

6 Related Work

The idea of separating concerns is not new. Tarr et al. proposed a technique to
manage software documents by separating them from the multiple viewpoints
based on concerns [13]. Our approach is the extension of this basic idea to goal
graphs. Moreira et al. developed a technique of handling multiple concerns to
analyze cross-cutting functional requirements [8]. In their approach, concerns
are separated and relationships among them are defined. These relationships
are helpful to understand cross-cutting functional requirements. Their aim and
concrete approach are similar to ours. However, it applied to XML documents,
not goal graphs. Rather, they tried to support the selection of software architec-
tures to implement the functional requirements. Giorgini et al. introduced the
concept of perspective into Tropos method in order to model data warehouse
systems [3]. In their method, a perspective is attached to a goal, and it looks like
a check item that is necessary to confirm the achievement of the goal. They set
up two perspectives for modeling: organizational perspective and decisional one,

284 S. Hayashi et al.

and these perspectives are conceptually closer to the idea of annotations. i* app-
roach adopts different notations of graph nodes, e.g., Hard Goal, Soft Goal, Task,
and Resource [14]. It may be useful for requirements analysts to understand the
meaning of goal refinements, e.g., they can understand that the refinement from
a soft goal to tasks via Means-End links expresses the implementation of the soft
goal. However, in this approach varieties of notation are limited, and the goals
derived from multiple concerns cannot be handled. In addition, it is difficult for
human analysts to understand at a glance the underlying various intents of goal
refinement. In i* and NFR, it is also possible to tag goals, e.g., via contribution
links to soft goals. However, our approach can use varieties of semantic tags
as annotations, and furthermore requirements analysts can individually define
them.

Similarity to the proposed approach, our previous work [4,12] can handle
semantic information to goals. Although this approach aims to support the
change impact analysis of a goal graph, the proposed approach aims to obtain
the goal refinement of higher quality.

7 Conclusion

This paper addresses the problem of the intermixture of goals specifying vari-
ous concerns in a goal graph so as to make it difficult to understand the goal
graph, especially goal refinements. Our approach is to adopt the idea of anno-
tating goals with concerns. Goals are refined following the rules of concerns. We
provide the meaning of a goal refinement based on concerns, more concretely
combinations of the concerns of a parent goal and those of sub goals. Further-
more, we developed a supporting tool, where a requirements analyst can define
her/his interesting concerns and annotate goals with them. The tool also has
functions for displaying the meaning of goal refinements, of retrieving goals hav-
ing a specific concern, of hiding the goals having irrelevant concerns, etc. These
functions are embedded to the existing goal graph editor AGORA as a plug-
in. Although our experimental results did not show positive observations for all
beneficial points that we expected, some of them were observed.

Our future work can be listed up as follows:

More Case Studies. As future work, we have to make more experiments using
various problem domains, more concerns, and practitioners.

Considering Separation of Concerns. The basis underlying our approach
is that concerns are not interrelated and can be clearly separated. However,
some concerns may be interrelated to each other and although we can separate
them, we should consider them concurrently when we refine a goal. In our
approach, some kinds of dependencies among concerns in goal refinement can
be handled by means of goal refinement rules on these concerns. However,
more elaborated techniques to handle interrelated concerns and interactions
among concerns should be developed.

Improving the Usability of the Tool. When the number of concerns would
increase, the usability of the technique might decrease because the effects of

Annotating Goals with Concerns in Goal-Oriented Requirements Engineering 285

hiding and showing goals become large. A further technique to visualize and
analyze a goal graph on a display screen of the tool should be considered in
the future.

Using Different Types of Concerns. Using new types of concerns can be
used. For example, some quality attributes of goals, such as performance or
security [12], can also be regarded as the concerns. Moreover, we are also able
to regard the view from a stakeholder as a specific concern.

Handling the Type of Refinements. Although we adopted the three con-
cerns in this paper as an example, our approach can handle with various types
of goal refinements such as causality relationship. Its reason is that a concern
denotes an atomic meaning of goal relationship on refinement, and require-
ments analysts can define the concerns that they will use. Furthermore, by
combining concerns, we can express complex meaning of goal relationships. It
is also one of the future work to illustrate this issues and to show an additional
effectiveness of our approach.

Acknowledgements. This work was partly supported by JSPS Grants-in-Aid for
Scientific Research (#15K00088 and #15K00109).

References

1. Bleistein, S.J., Cox, K., Verner, J., Phalp, K.T.: B-SCP: a requirements analysis
framework for validating strategic alignment of organizational it based on strategy,
context, and process. Inf. Softw. Technol. 48(9), 846–868 (2006)

2. Giorgini, P., Mylopoulos, J., Nicchiarelli, E., Sebastiani, R.: Reasoning with goal
models. In: Spaccapietra, S., March, S.T., Kambayashi, Y. (eds.) ER 2002. LNCS,
vol. 2503, pp. 167–181. Springer, Heidelberg (2002)

3. Giorgini, P., Rizzi, S., Garzetti, M.: Goal-oriented requirements analysis for data
warehouse design. In: Proceedings of the 8th ACM International Workshop on
Data Warehousing and OLAP (DOLAP 2005), pp. 47–56 (2005)

4. Hayashi, S., Tanabe, D., Kaiya, H., Saeki, M.: Impact analysis on an attributed
goal graph. IEICE Trans. Inf. Syst. E95–D(4), 1012–1020 (2012)

5. van Lamsweerde, A.: Goal-oriented requirements engineering: a guided tour. In:
Proceedings of the 5th IEEE International Symposium on Requirements Engineer-
ing (RE 2001), pp. 249–263 (2001)

6. van Lamsweerde, A.: Requirements Engineering: From System Goals to UML Mod-
els to Software Specifications. Wiley, Hoboken (2009)

7. Makino, N., Suzuki, T.: Convenience stores and the information revolution. Jpn.
Echo 24(1), 44–49 (1997)

8. Moreira, A., Rashid, A., Araujo, J.: Multi-dimensional separation of concerns in
requirements engineering. In: Proceedings of the 13th IEEE International Confer-
ence on Requirements Engineering (ICSE 2005), pp. 285–296 (2005)

9. Munro, S., Liaskos, S., Aranda, J.: The mysteries of goal decomposition. In: Pro-
ceedings of the 5th International i* Workshop (iStar 2011), pp. 49–54 (2011)

10. Mylopoulos, J., Chung, L., Nixon, B.: Representing and using non-functional
requirements: a process-oriented approach. IEEE Trans. Softw. Eng. 6(4), 489–
497 (1992)

286 S. Hayashi et al.

11. Saeki, M., Hayashi, S., Kaiya, H.: A tool for attributed goal-oriented require-
ments analysis. In: Proceedings of the 24th IEEE/ACM International Conference
on Automated Software Engineering (ASE 2009), pp. 670–672 (2009)

12. Tanabe, D., Uno, K., Akemine, K., Yoshikawa, T., Kaiya, H., Saeki, M.: Support-
ing requirements change management in goal oriented analysis. In: Proceedings
of the 16th IEEE International Requirements Engineering Conference (RE 2008),
pp. 3–12 (2008)

13. Tarr, P., Ossher, H., Harrison, W., Sutton Jr., S.M.: N degrees of separation:
multi-dimensional separation of concerns. In: Proceedings of the 10th International
Conference on Software Engineering (ICSE 1999), pp. 107–119 (1999)

14. Yu, E.: Towards modeling and reasoning support for early-phase requirements engi-
neering. In: Proceedings of the 3rd IEEE International Symposium on Require-
ments Engineering (RE 1997), pp. 226–235 (1997)

A Model-Based Approach for Integrating Executable
Architectural Design Patterns in Space Flight Software

Product Lines

Julie Street Fant1,2, Hassan Gomaa1(✉), and Robert G. Pettit2

1 George Mason University, Fairfax, VA, USA
hgomaa@gmu.edu

2 The Aerospace Corporation, Chantilly, VA, USA
{julie.s.fant,robert.g.pettit}@aero.org

Abstract. The unmanned space flight software (FSW) domain contains a signif‐
icant amount of variability within its required capabilities. Because of the large
degree of architectural variability in FSW, it is difficult to develop a FSW software
product line (SPL) architecture that covers all possible variations. In order to
address this challenge, this paper presents a model-based SPL approach for FSW
SPLs that manages variability at a higher level of granularity using executable
software architectural design patterns and requires less modeling during SPL
engineering but more modeling at the application engineering phase. The execut‐
able design patterns are tailored to individual FSW applications during applica‐
tion engineering. The paper describes in detail the application and validation of
this approach to FSW.

Keywords: Software product lines (SPL) · UML · Software architectural design
patterns · Executable patterns · Application engineering · Unmanned space flight
software

1 Introduction

The unmanned space Flight Software (FSW) domain is well-suited for applying Soft‐
ware Product Line (SPL) modeling approaches due to its commonalities and variability.
All FSW must be able to communicate with ground stations, to execute ground
commands, and to control spacecraft attitude. However, within each of the capabilities
there is a significant amount of variability, such as the volume of commands that must
be processed, the amount of control that is given to the ground station versus onboard
autonomy, and the amount and type of hardware that requires controlling. Choices made
on this variability will affect the underlying software architectures and component inter‐
actions. This degree of architectural variability makes it difficult to develop a FSW
Software Product Line (SPL) architecture that covers all possible variations.

Leveraging the benefits of software design patterns is particularly important in the
FSW domain. The FSW industry is experiencing a growing number of software related
spacecraft anomalies. In fact, it is reported that “in the period between 1998 and 2000

© Springer International Publishing Switzerland 2016
P. Lorenz et al. (Eds.): ICSOFT 2015, CCIS 586, pp. 287–306, 2016.
DOI: 10.1007/978-3-319-30142-6_16

nearly half of all observed spacecraft anomalies were related to software” [1]. This trend
has continued as FSW continues to grow in complexity. This challenge can be addressed
through this research. First, this research effort uses software design patterns to produce
higher quality designs. Second, this research provides validation during the design
phase. Therefore, design flaws that lead to in-flight software anomalies can be identified
and remedied early in the software lifecycle. Additionally, this research aligns with a
recommendation from the National Aeronautics and Space Administration (NASA) to
help improve FSW acquisitions by performing early analysis and architecting of
FSW [2].

This paper addresses the needs of FSW SPL architectures by reducing the amount
of SPL engineering modeling through the incorporation of variable architectural design
patterns and giving the application developer the capability of customizing the patterns
to the needs of the application. Variable design patterns contain customizable compo‐
nents, connectors, and interactions rather than specific components, connectors, and
interactions. Therefore several different combinations of specific components, connec‐
tors, and interactions are abstracted into one design pattern and do not need to be indi‐
vidually modeled. Thus less modeling is required during the SPL engineering phase.
The trade-off is that the application engineering phase does require additional modeling
since the application specific components, connectors, and interactions must be derived
from the design patterns. However, guidance is provided to help assist the application
engineer and ensure the SPL architecture is maintained. A key piece of this approach
lies in the ability to interconnect design patterns to form software architectures. This
paper specifically addresses how to systematically interconnect design patterns to create
a FSW SPL software architecture.

This paper is organized as follows. After surveying related work, it describes the
overall approach, including the interconnection of variable design patterns during SPL
engineering and how this approach was applied to the FSW SPL. Then the application
engineering process is described and illustrated using a real world case study. Next,
discuss how this FSW SPL derived applications were validated. Finally, this paper
includes a discussion on conclusions and areas of future work.

2 Related Work

There are many notable SPL approaches including [3–6]. Many existing SPL approaches
typically focus on capturing all possible SPL variability in the SPL engineering phase. This
becomes challenging in the FSW domain because all possible variability in components,
connectors, and interactions must be individually modeled. On the other hand, other
approaches focus on modeling the commonality of the SPL and define variation points
where variability is permitted to be introduced during application engineering [7].
However, this approach defers most development of variable components to application
engineering. The approach described and applied in this paper takes an intermediate
approach in between modeling all variability and limited variability by modeling SPL
variability at the architectural design pattern level.

288 J.S. Fant et al.

Currently, there are very few works that discuss building FSW from software archi‐
tectural design patterns [8–11]. These works describe the application of a small number
of design patterns to FSW, but do not provide an overall approach for building FSW
from design patterns. There are several reference architectures for FSW that can be used
as a starting point for building FSW [12–14]. However, none of the reference architec‐
tures are design pattern based and therefore they do not guarantee that the benefits of
design patterns will be leveraged in the architectures produced using them.

Finally, Bennett et al. [15, 16] are working on related research called the Mission
Data System (MDS) project. The MDS provides a system level control architecture,
framework, and systems engineering methodology for developing state-based models
for planning and execution. The approach described in this paper can be used to comple‐
ment and support this work.

A second set of related work describes approaches to build real-time and embedded
software architectures from design patterns [5, 17–20] and software architectural design
patterns [21–24]. While these approaches identify several useful patterns for this
domain, they only provide high-level guidance on their application to develop variable
software architectures. In particular, they do not explicitly capture SPL variability in the
patterns to assist with selection of SPL members.

This paper builds on the authors’ previous work in [5, 25, 26]. In [25] executable
design patterns were used to build FSW architectures for single systems. This paper
extends this work by addressing variability in the FSW domain and describing how
variable design patterns are interconnected to form SPL and SPL member architectures.
In [27], we addressed the concept of a design pattern based SPL at a very high level and
did not include the specific details about the approach. This paper extends the previous
works to describe the details of how variable design patterns are interconnected to form
SPL architectures and relates this information to the validation.

3 SPL Engineering with Architectural Design Patterns

The design pattern approach to SPL engineering involves creating domain specific
patterns, which are based on well-known general-purpose patterns [20, 21] during the
domain-engineering phase. The purpose of creating SPL architectural design patterns is
to add SPL domain knowledge and variability to the general-purpose architectural
design patterns as described next. The architectural design patterns need to be related
to the feature model in order to allow the selection of the appropriate design patterns for
application engineering. The main steps include: (1) Build a set of variable distributed
real-time and embedded (DRE) architectural design patterns that can be leveraged as a
starting point, (2) Develop a set of use cases and features that are used to define SPL,
(3) Perform use case activity modeling to precisely capture the sequencing in use cases,
(4) Create a feature to design pattern mapping, (5) Customize the variable DRE design
patterns to become variable SPL specific design patterns, (6) Define the design pattern
sequencing and interconnection. The subsections below describes each of the main steps
in more detail and describe the application to the FSW SPL’s command and data
handling (C&DH) subsystem.

A Model-Based Approach 289

3.1 Variable Distributed Real-time and Embedded (DRE) Design Patterns

The first step in our approach is to create variable DRE architectural and executable
design patterns, which serve as the foundation for the developed SPLs. Each variable
DRE architectural pattern contains several UML views including collaboration
diagrams, interaction diagrams, and component diagrams. Variable design patterns are
modeled at the DRE level so that they can be reused and customized across multiple
domains. Each variable DRE design pattern is supplemented by an executable design
pattern that consists of interacting objects that execute state machines. The purpose of
the executable version of the design pattern is to specify the internal behavior of a
representative set of the pattern’s objects and to facilitate validation of the pattern. Each
executable design pattern is individually simulated and validated using Harel’s approach
of executable object modeling with statecharts [28] We created a total 21 DRE design
patterns [25] using this approach, including the centralized control, distributed control,
hierarchical control and layers design patterns. The approach enables architectures
produced by interconnecting these design patterns to be fully executable and validated,
as described in Sect. 5.

The process to create executable DRE design patterns is illustrated using a central‐
ized control design pattern. The centralized control design pattern involves a single
controller that provides overall control by conceptually executing a state machine [5]
The first view is a collaboration diagram that captures the components that participate
in the design pattern and their variability. At the DRE level, the design patterns are
composed of domain components that will be later customized to first the SPL and then
the SPL member. Variability is captured using SPL stereotypes from the PLUS method
[5]. A collaboration diagram for the Centralized Control design pattern [19] is given in
Fig. 1. This depicts the kernel Centralized Controller and optional Input, Output, and
IO components, as well as the multiplicity of the components.

Fig. 1. Collaboration diagram for DRE level Centralized Control executable design pattern.

290 J.S. Fant et al.

The second architectural view uses interaction diagrams, which capture how the
objects within the design pattern interact. Because of the wide range of variability in
which DRE design pattern can be applied, the interaction diagrams only capture a repre‐
sentative set of object interactions. For instance, the interaction diagram will show the
Centralized Controller receiving an input from an Input_Component and in response it
will invoke an action on an Output_Component.

The third architectural view uses a component diagram that models the intercon‐
nection between components in the DRE design pattern. The component diagram shows
the components with required ports, provided ports, and connectors that interconnect
the components. Component variability is modeled with SPL stereotypes.

Finally, an executable version of the design pattern is also created using communi‐
cating state machines. The purpose of the executable version of the design pattern is to
specify the internal behavior of a representative set of the pattern’s objects and to facil‐
itate validation of the pattern. Each executable design pattern is individually simulated
and validated using Harel’s approach [28]. The state machine for the Centralized
Controller component is depicted in Fig. 2.

Fig. 2. Centralized Controller state machine.

3.2 Use Case and Feature Modeling

Next, SPL use cases are developed applying the PLUS method [5]. This involves iden‐
tifying the use cases and variability within the use cases through variation points,
optional and alternative use cases. From the use case variability, an initial feature model
can be developed [5]. Features represent common and variable characteristics or require‐
ments of the SPL. Features are analyzed and categorized as common, optional, or alter‐
native. Related features can be grouped into feature groups, which constrain how
features are used by a SPL member [5].

When use case modeling was applied to the FSW SPL C&DH subsystem, three
kernel use cases with internal variability were identified. Within these use cases,
numerous variation points were identified. These variation points resulted in identifying
52 features. A subset of the FSW C&DH feature model is shown in Fig. 3. This feature
model contains an «exactly-one-of feature group» called Command Execution that is
based on the Command Execution use case’s Command Volume variation point. This
feature group has three «alternative» features. The Low Volume Command Execution
feature is used when a small amount of commands needs processing, the High Volume
Command Execution feature is used when a large amount of commands needs
processing, and Time Triggered Command Execution is used when commands must be
executed with strict temporal predictability. There is also a significant amount of

A Model-Based Approach 291

variability in the amount and type of hardware that must be commanded, which are
captured in variation points.

Fig. 3. Subset of FSW C&DH feature model.

3.3 Use Case Activity Modeling

The next step is to create variable use case activity models [25]. Use case activity models
are activity diagrams that make the sequencing of interactions between actor(s) and
system in a use case description more precise. In variable use case activity diagrams
[25], SPL variability is captured in two ways. First, feature based conditions are used
when the flow in activity is associated with SPL features. Feature based conditions, such
as [CommandExecution = “LowVolume”], are modeled as branches from decision
nodes. Second, steps with variability, which are denoted using the «adaptable» stereo‐
type, can be successively refined in separate sub-activity diagrams. Our approach only
refines adaptable steps when they are impacted by a small number of variation points.
If an adaptable step has a significant amount of variation points, then modeling is
deferred until the application engineering phase.

Use case activity modeling was performed on three uses cases of the FSW SPL’s
C&DH subsystem. The FSW SPL’s Execute Commands use case involves executing
commands from the ground station to ensure the spacecraft is not put into an unsafe state
and the actions taken are appropriate for the spacecraft’s mode. This use case is impacted
by the Command Execution feature condition as it influences which steps are performed.
Thus the path taken through the Execute Commands use case activity diagram (see
Fig. 4) is heavily impacted by the Command Execution feature condition.

292 J.S. Fant et al.

As seen in Fig. 4, several variation points including modes and spacecraft IO devices
(listed in parentheses after the step’s description) influence the adaptable steps in the
use case activity diagram. The Spacecraft IO device variation point specifies variations
in the optional and alternative I/O devices. These devices include antennas, antenna
gimbals, memory storage devices, power appendages, power devices, attitude control
devices, attitude determination devices, payload devices, thrusters, heaters, louvers, and
temperature sensors. Since all adaptable steps in this use case have significant amount
of variability as seen by the multitude of variation points, more detailed activity
modeling was deferred to application engineering.

Fig. 4. Execute Commands use case activity model.

3.4 Feature to Design Pattern Mapping

The next step is to create a feature to design pattern mapping. The purpose of the feature
to design pattern mapping is to determine which variable design patterns could be
mapped to SPL features. To accomplish this goal, a dynamic SPL interaction model [5]
is created for each feature, which captures the objects and object interactions that realize
each feature. Then the dynamic interaction models are analyzed to identify where vari‐
able design patterns can be applied in the SPL and then relates these patterns back to
the SPL features. Features that are mapped to variable design patterns are called pattern
specific features. Pattern specific features are coarse grained features that relate to a

A Model-Based Approach 293

design pattern and differentiate among other related features. Pattern variability features
are fine grained features, which influence the variability within a pattern specific feature.

The feature to design pattern mapping is demonstrated using the Low Volume
Command Execution feature. The interaction model for the Low Volume Command
Execution alternative feature is shown in Fig. 6. Since this feature is typically associated
with small spacecraft, only the kernel input, output, and IO devices are modeled. The
objects and interaction sequence supporting this feature are consistent with the Central‐
ized Control design pattern [5]. Thus the Low Volume Command Execution feature is
categorized as a pattern specific feature and is mapped to the Centralized Control design
pattern.

When this step was applied to the FSW SPL, a SPL interaction model was created
for each of the pattern specific features, 24 in total. A subset of the FSW C&DH feature
to design pattern mapping is shown in Table 1.

3.5 Executable Design Patterns

The next step is to derive the variable SPL architectural and executable design patterns
from the variable DRE architectural and executable design patterns for each of the
pattern specific features. The purpose of the variable SPL design patterns is to add
domain specific knowledge to the design patterns so they can be systematically incor‐
porated into SPL architectures. This process involves systematically updating the

Table 1. Subset FSW SPL C&DH feature to design pattern mapping.

Feature Group Var. Feature DRE Design Pattern
<<exactly-one-of

feature group>>
Command Execution

alt. High Vol. Command
Execution

Hierarchical Control

alt. Low Vol. Command
Execution

Centralized Control

alt. Time-Triggered Command
Execution

Distributed Control

alt. High Vol. Command
Execution with
Command Flexibility

Hierarchical Control
with Command
Dispatcher

alt. Low Vol. Command
Execution with
Command Flexibility

Centralized Control with
Command Dispatcher

alt. Time-Triggered Command
Execution with
Command Flexibility

Distributed Control with
Command Dispatcher

<<exactly-one-of
feature group>>
Telemetry Storage
and Retrieval

alt. High Vol. Telemetry
Storage and Retrieval

Compound Commit

alt. Low Vol. Telemetry
Storage and Retrieval

Client Server

294 J.S. Fant et al.

components, interactions, and component behavior to reflect the SPL specific
components and variability based on the SPL features.

This process is illustrated using the DRE Centralized Control design pattern (Fig. 1)
in the FSW SPL (Fig. 5). This design pattern captures the I/O devices the FSW interacts
with based on the ground commands it receives. To realize this mapping, the Centralized
Controller and the I/O components in Fig. 1 are updated to give the CDH Centralized
Controller and FSW I/O components in Fig. 5. SPL components are categorized as
kernel, optional, or variant.

For example, the SPL requires ground commands that adjust the spacecraft’s
attitude by invoking actions on attitude control devices. This is achieved by updating
an Output_Component in the DRE level design pattern to become an Atti‐
tude_Control_Device_OC kernel component. Since there can be different versions of
attitude control in different missions, different attitude control devices are modeled as
variants. Additionally, since a heating device is optional, another Output_Component
is updated to an optional Heater_OC. The Centralized Control design pattern is only
used when there are a small amount of commands to execute and hardware to control.
Therefore, when this pattern is customized to an application, only an application specific
subset of the optional devices is selected.

Fig. 5. FSW SPL centralized control collaboration diagram.

Second, the interaction diagrams capture the object interactions within a design
pattern. If the precise sequence of object interactions is known, then it should be
modelled. However, in design patterns where there is variability in the object interac‐
tions, then only a subset of object interactions is modelled, as shown in Fig. 3. Detailed
interaction modelling, in which other application specific I/O objects and interactions
might be added to the pattern, is deferred to the application engineering phase. For the
FSW SPL’s C&DH subsystem, 24 interaction diagrams were created, one for each of

A Model-Based Approach 295

the pattern specific features. As an example, Fig. 3 shows an interaction diagram for the
FSW Centralized Control design pattern that is mapped to the specific feature.

This feature captures the FSW processing and execution for a set of ground
commands, which involves invoking actions on the input, output, and IO components.
The type and amount of input, output, and IO components in the FSW Centralized
Control design pattern is influenced by several pattern variability features. For example,
the optional Heater pattern variability feature captures whether or not the spacecraft has
heaters. This results in an optional Heater superclass component, as seen in Fig. 6. The
specific Heater subclasses are not modeled until the application engineering phase.

Next, the component diagrams, which capture the interconnection between compo‐
nents, must be updated. This involves updating the diagram with the required compo‐
nents identified in the collaboration diagram. Then subsequently, updating all the
required ports, provided ports, and connectors that interconnect the components.

Finally, state machines [5] capture the internal behavior of each active component
in the design pattern. For the FSW SPL’s C&DH subsystem, a state machine was created
for each active component in the FSW SPL’s 24 patterns. A subset of the state machine
for the CDH Centralized Controller from the Centralized Control Design pattern is
illustrated in Fig. 7, which is derived from the DRE Centralized Control Pattern in
Fig. 1. In FSW the Centralized Controller must validate all ground commands or
responses to onboard events to ensure that it does not put the spacecraft in an unsafe
state. Therefore this logic is added to the Centralized Controller’s state machine. Addi‐
tionally, the Centralized Controller component must also manage and take into account
the spacecraft mode. Therefore common modes, including launch mode, safe mode, and
normal mode should also be added to the state machine. Other common modes including
launch mode and safe mode are also modeled, but not depicted in Fig. 7. The states
comprising the modes and controlling logic are based on the SPL pattern specific feature.

Fig. 6. Interaction diagram for the Low Volume Command Execution pattern.

296 J.S. Fant et al.

The actions within the states, which are not depicted in Fig. 7, are determined from the
pattern specific and pattern variability features.

Fig. 7. State machine subset for centralized controller.

3.6 Design Pattern Interconnection

The next step is to capture how the variable design patterns are integrated together to
form software architectures. A use case scenario driven approach is used to interconnect
variable design patterns to achieve the SPL functionality. For each use case scenario,
an interaction overview diagram is created based on the use case activity diagram. This
is accomplished by using the same control flow in the use case activity diagrams but
replacing each activity with a reference to the variable SPL design pattern’s interaction
diagram that supports that step. On feature based condition paths, the variable design
pattern used to achieve one or more of the steps along the path can be determined from
the feature to design pattern mapping.

After an interaction overview diagram is created, the design pattern interconnections
are determined. When the interaction diagrams for two design patterns appear sequen‐
tially, they must communicate with each other and must be interconnected. Interaction
modeling and the design pattern integration process is illustrated using the FSW SPL
Execute Commands use case. An interaction overview diagram is created using the same
control flow in the use case activity diagram. For instance, since the Execute Commands
use case activity diagram (Fig. 4) begins with a feature based decision, the Execute
Commands interaction overview diagram (Fig. 8) also begins with this same decision
point. Each of the steps in the use case activity diagram in Fig. 4 is updated to reflect
the supporting variable design pattern’s interaction diagram using the feature to design
pattern mapping table, as depicted in Fig. 8. For example, Step 1 on Fig. 4 involves
sending a time update. This step is supported by the Spacecraft Clock pattern specific

A Model-Based Approach 297

feature, which is mapped to the FSW Spacecraft Clock Multicast executable design
pattern. Therefore the FSW Spacecraft Clock Multicast’s interaction diagram is refer‐
enced on Fig. 8. Step 2 on Fig. 4 involves executing a small number of commands. This
feature is supported by the Low Volume Command Execution feature, which is mapped
to the FSW Centralized Control interaction diagram, as shown in Fig. 8.

Fig. 8. Execute Commands interaction overview diagram.

After all the FSW SPL interaction overview diagrams were created, they were
analyzed. If there are two sequential variable design patterns, then these design patterns
must be interconnected. For instance, in Fig. 8, the FSW Spacecraft Clock Multicast
executable design pattern interconnects with the FSW Centralized Control and FSW
Hierarchical Control executable design patterns. Patterns are interconnected using
connectors. The last interacting component (client or producer) of one pattern sends a
message to the receiving component (consumer or server) of the other pattern. The
appropriate provided and required interfaces are specified during architectural design.

4 Application Engineering

After the development of the FSW SPL architecture and components, applications are
derived from them. This is accomplished by first selecting the appropriate FSW SPL
features based on the application’s requirements. From the feature to design pattern
mapping, the appropriate FSW SPL executable design patterns are then determined and

298 J.S. Fant et al.

customized to create the application executable design patterns. This approach is
illustrated with the case studies described in the next section.

5 Case Studies

This section describes case studies of the application engineering process, where FSW
applications are derived from the FSW SPL assets. The process is applied to the Student
Nitric Oxide Explorer (SNOE) and Solar TErrestrial RElations Observatory (STEREO)
application case studies, which are real-world space programs [29, 30]. SNOE mission
involves using a small spin stabilized spacecraft in a low earth orbit to measure ther‐
mospheric nitric oxide and its variability. SNOE is a low earth orbit and relies heavily
on the ground station to control the spacecraft’s small amount of hardware. STEREO
mission involves using two nearly identical three-axis stabilized spacecraft orbiting
around the sun to study the studying the nature of coronal mass ejections. Since STEREO
is not in constant communication with the ground station, it relies on a significant amount
of autonomy and stored ground commands to control the spacecraft. These case studies
were selected because they cover a wide variety of spacecraft in the FSW domain.

5.1 Feature Selection

SPL pattern specific and pattern variability features are selected based on the applica‐
tion’s requirements. SNOE’s C&DH subsystem is derived from the FSW SPL by
choosing a total of seven pattern specific features and seven pattern variability features.
Because SNOE is only required to process a low volume of ground commands, the Low
Volume Command Execution alternative feature is selected from the Command Execu‐
tion pattern specific feature group. Since this feature depends on the Spacecraft Clock
pattern specific feature, SNOE must also select this feature.

For STEREO’s C&DH subsystem’s derivation from the FSW SPL, a total of 10
pattern specific features and 15 pattern variability features were chosen. Because
STEREO must store and process a large number of commands from the ground station,
the High Volume Command Execution alternative feature was selected from the
Command Execution pattern specific feature group. Some pattern variability features
are also selected. Because STEREO is required to have onboard active thermal control,
the optional Heater pattern variability feature is selected.

5.2 Design Pattern Customization

The next step in application engineering process is to determine the design patterns that
an application utilizes. This information is derived from the SPL feature to design pattern
mapping and the application’s selected features.

When this step is applied to SNOE, seven variable design patterns were selected
based on SNOE’s seven pattern specific features. STEREO selected a total of 10 variable
design patterns based on its pattern specific features selection. For example, SNOE
selected the FSW Centralized Control design pattern since it is mapped to its Low

A Model-Based Approach 299

Volume Command Execution pattern specific feature, as shown in Fig. 9. In contrast,
STEREO selected the FSW Hierarchical Control design pattern since it is mapped to
the High Volume Command Execution pattern specific feature.

Fig. 9. SNOE specific centralized control collaboration diagram.

The interaction diagrams for SNOE are also systematically updated. Figure 10
depicts a subset of the SNOE specific interactions for Command Execution interaction
diagram. This interaction diagram is based on the FSW SPL execute low volume
commands interaction diagram in Fig. 6, which contains a representative set of object
interactions. First, the SNOE specific variant components are selected based on SNOE’s
pattern variability features. There are selected SPL pattern variability features for the
specific type of antenna and memory storage device, see Fig. 10. The variant components
are developed during the application derivation process and customized to meet the
needs of the application. After the interaction diagram is updated with the application
specific variants, the object interactions are also updated. In Fig. 10, the CDH Controller
receives an input EventNotification to reinitialize the spacecraft’s low gain antenna.
Since the specific antenna and memory storage device variants are known based on the
pattern variability feature selection, the specific interactions with this output component
can now be modeled in Fig. 10, which depicts different commands that can be invoked
on a device.

Next, the application’s executable design patterns are derived from the variable SPL
executable design patterns. This involves systematically customizing the variable SPL
design pattern specification and executable pattern based on the application’s features.
As part of this process, if an SPL design pattern’s interaction diagram only contained a
representative set of interactions, then the interaction diagram must be updated to reflect
the precise sequence of interactions.

300 J.S. Fant et al.

5.3 Design Pattern Interconnection

The application’s design pattern interconnections are determined based on the applica‐
tion feature selection. The interaction overview diagrams from the FSW SPL’s C&DH
subsystem were customized for each application. As SNOE selected to use the Low
Volume Command Execution feature, therefore only the feature based conditions corre‐
sponding to this feature are selected for SNOE. This includes the FSW Spacecraft Time
Multicast interaction diagram and the FSW Centralized Control interaction diagram.

STEREO’s interaction overview modeling follows the same customization process.
However, STEREO selected the High Volume Command Execution feature, therefore
only the feature-based conditions corresponding to this feature are selected. This
includes the FSW Spacecraft Time Multicast interaction diagram and the FSW Hier‐
archical Control interaction diagram.

6 Validation

The approach to validate the DRE patterns, the FSW product line, and the SNOE and
STEREO application case studies involved several validation steps throughout the
development. First, the individual DRE design patterns were validated by ensuring
functional correctness of the individual executable design patterns. This was accom‐
plished by creating test cases to cover all states, transitions, and actions for the state
machines of all the components in the DRE executable design pattern. Input data to the
test cases included source states and event sequences that trigger a test case and output
data including the expected destination states and actions.

Second, the FSW SPL individual design patterns were also validated for functional
correctness. Again, test cases were created that covered all states, transitions, and actions
for the state machines of all the components. Then the expected results of the test cases

Fig. 10. SNOE command execution interaction diagram.

A Model-Based Approach 301

were compared with the actual behavior of the state machines. Table 2 shows a subset
of the FSW SPL design patterns that were validated using this approach.

Thirdly, the SNOE and STEREO design patterns were individually validated. Again,
test cases were created to cover all states, actions, and transitions for the design patterns.
However, test cases are different from the FSW SPL test cases because they must test
all of the application customizations, including data, logic, and additional states. Then
the test cases were compared with the actual behavior of the state machines. A subset
the design patterns that were validated for SNOE and STEREO are listed in Table 2.
The design patterns are listed next to the FSW SPL design patterns they were derived
from, in order to show which SPL patterns are reused in SNOE and STEREO. Finally,
the entire SNOE and STERO architectures, including the design pattern interconnec‐
tions, were validated. To achieve this, a feature based validation approach based on
CADeT [27] was applied. This approach helps to reduce the overall validation effort by
created reusable SPL test assets that can be customized for SPL applications. The vali‐
dation is described below in more detail.

The first step was to create a decision table of reusable test specifications for each
SPL use case activity diagram and sub-activity diagram. This step is demonstrated using
the Execute Commands’ activity diagram from Fig. 2. Each unique path through the use
case activity diagram is given a test specification column in the decision table. The
«adaptable» stereotype on the test specifications implies it contains adaptable steps. The
feature condition rows indicate under what feature selections this test specification
applies. The action rows indicate what steps are executed for the test specification.

The second step is to customize the FSW SPL test specifications for SNOE and
STEREO. This is accomplished by updating the decision tables to include just the test
specifications that are applicable the application.

The next step in the validation process is to refine the adaptable steps in the test speci‐
fications to the application. This involves refining each adaptable test specification into
non-adaptable steps based on the application’s feature selection and populating the steps.
Steps are made into non-adaptable steps by using the application’s specific variants, such
as replacing the Antenna superclass with the Low Gain Antenna variant and listing the
application specific actions, such as turn on Low Gain Antenna.

Next, the test specifications input data, steps, and output data are populated with the
state, transitions, and actions from the design pattern component state machines.
Creating this level of test specifications detail ensures that integration testing of indi‐
vidual design patterns is performed at application testing, as well as testing intercon‐
nected design patterns.

The final step in the functional validation is to execute the tests against the software
architecture, which consists of concurrent executable state machines. This testing is
different from validation of the individual design patterns because it not only tests the
design patterns, but also how the design patterns are integrated together. A total of 22
feature-based test specifications were created and passed for SNOE and 32 feature-based
test specifications were created and passed for STEREO.

302 J.S. Fant et al.

7 Benefits and Limitations

Our design pattern based SPL solution has several benefits. First, it offers a practical
and scalable SPL approach for domains that have significant architectural variability,

Table 2. Subset of design patterns validation.

FSW SPL Design Patterns SNOE Design Patterns STEREO Design Patterns
FSW Hierarchical Control STEREO Hierarchical

Control
FSW Distributed Control
FSW Centralized Control SNOE Centralized Control
FSW Hierarchical Control

with Command
Dispatcher

FSW Centralized Control
with Command
Dispatcher

FSW Distributed Control
with Command
Dispatcher

FSW Telemetry Storage
and Retrieval Compound
Commit

STEREO Telemetry
Storage and Retrieval
Compound Commit

FSW Telemetry Storage
and Retrieval Client
Server

SNOE Telemetry Storage
and Retrieval Client
Server

FSW Telemetry Formation
Master Slave with Pipes
and Filters

FSW Telemetry Formation
Master Slave with Pipes
and Filters & Strategy

FSW Telemetry Formation
Pipes and Filters

SNOE Telemetry Forma‐
tion Pipes and Filters

FSW Telemetry Formation
Pipes and Filters with
Strategy

STEREO Telemetry
Formation Pipes and
Filters with Strategy

FSW Telemetry Formation
Reliability Protected
Single Channel

FSW Telemetry Formation
Reliability Sanity Check

STEREO Telemetry
Formation Reliability
Sanity Check

A Model-Based Approach 303

such as the FSW domain. This means that there is less modeling required during the
SPL engineering and maintenance phases. This makes developing and maintaining a
SPL that must cover a wide amount of variability less time consuming. The tradeoff is
that additional work is required during the application engineering phase. This tradeoff
is acceptable in FSW domain where maintaining a traditional SPL can be too cumber‐
some and time consuming. A second benefit of the solution is that the design patterns
and architectures produced can be validated for functional correctness. This is accom‐
plished by executing the components’ state machines to validate that the actual behavior
follows the expected behavior. Finally, the last major benefit of our solution is the
architectures produced are composed of software architectural design patterns, which
are best practice solutions. Therefore the benefits associated with the design patterns are
included in the architecture. The stakeholders that can most benefit from this approach
are acquisition, development, and over-sight organizations involved in the development
of FSW. However, our solution is not limited to the FSW domain. Other domains that
experience similar architectural variability in the products could also benefit from our
solution. Our current solution does have some limitations. First, the SPL product deri‐
vation process and application customization process are manual processes. However,
the SPL product derivation process could be automated using existing approaches, such
as [18–20]. These approaches should be evaluated and applied to our solution. Another
limitation of our approach is that is currently does not include information to perform
model-driven software performance analysis. In the FSW domain, meeting the software
performance requirements is just as important as meeting the functional requirements.
Therefore, approaches and tool support for performing model-driven software perform‐
ance analysis should also be explored.

8 Conclusions

This paper has described the application of a design pattern based SPL approach for
building FSW SPL. This approach is useful in the FSW domain because architectural
variability is captured at a larger degree of granularity using software architectural
design patterns, thus less modeling is required during the SPL engineering phase. The
trade-off with this approach is that additional modeling is required during the application
engineering phases. This trade-off is acceptable in domains such as FSW, where
modeling all possible variations during the SPL engineering phase can be time
consuming and may not always be known in advance.

In addition, in certain domains, application variability, such as payload variability
in FSW, is mission specific and hence specific to a single application. It is thus consid‐
ered an advantage to develop mission specific components during application engi‐
neering rather than domain engineering.

Using the design pattern based approach for the FSW SPL required significantly less
component modeling during SPL Engineering than a component/connector based SPLE
approach. In the FSW SPL, during the SPL Engineering phase, the design pattern based
approach required modeling only 29 components containing representative SPL
behavior, while the component/connector based SPLE approach required 53

304 J.S. Fant et al.

components containing parameterized or specialized behavior for all the different SPL
variants. As previously discussed, the trade-off is that additional modeling is required
during the application engineering phases. During the application engineering of SNOE,
10 FSW SPL components were customized to the application and in STEREO 22 FSW
SPL components were customized.

The approach described in this paper has several benefits. First, the approach
provides domain specific architectural design patterns that can be applied to FSW
product lines. Second, executable versions of the patterns are developed to allow the
patterns to be validated. Third, providing domain specific design patterns provides a
systematic approach, which leverages best design practices, for incorporating these
patterns into the SPL architecture and its member applications. Furthermore, executable
architectures produced from these patterns using executable state machines can be vali‐
dated during the design phase for functional correctness.

Several avenues of future investigation could be pursued. First, this work should be
extended to address model-driven software performance validation since meeting
performance requirements is as important as meeting functional requirements in DRE
systems. Additionally, this approach can be applied to other distributed real-time appli‐
cation domains to illustrate its applicability across other domains. Finally, future work
should address additional automation to increase the practicality of this work.

References

1. Hecht, M., Buettner, D.: Software Testing in Space Programs. Crosslink 6(3), 58–64 (2005)
2. Dvorak, D. (ed.): NASA Study on Flight Software Complexity, NASA Office of Chief

Engineer (2009)
3. Clements, P., Northrop, L.: Software Product Lines: Practices and Patterns. Addison-Wesley,

Boston (2002)
4. Pohl, K., Böckle, G., van der Linden, F.: Software Product Line Engineering Foundations,

Principles, and Techniques. Springer, Heidelberg (2005)
5. Gomaa, H.: Designing Software Product Lines with UML: From Use Cases to Pattern-Based

Software Architectures. Addison-Wesley, Boston (2005)
6. Weiss, D.M., Lai, C.T.R.: Software Product-Line Engineering: A Family-Based Software

Development Process. Addison Wesley, Reading (1999)
7. Webber, D., Gomaa, H.: Modeling variability in software product lines with the variation point

model. J. Sci. Comput. Program. 53(3), 305–331 (2004)
8. Herrmann, A., Schöning, T.: Standard telemetry processing – an object oriented approach

using software design patterns. Aerosp. Sci. Technol. 4(4), 289–297 (2000)
9. van Katwijk, J., Schwarz, J.-J., Zalewski, J.: Practice of real-time software architectures. In:

IFAC Conference on New Technologies for Computer Control, Hong Kong (2001)
10. Wilmot, J.: A core flight software system. In: 3rd IEEE/ACM/IFIP International Conference

on Hardware/software Codesign and System Synthesis, Jersey City, NJ, USA (2005)
11. Wilmot, J.: Implications of responsive space on the flight software architecture. In: 4th

Responsive Space Conference, Los Angles, CA (2006)
12. Bass, L., Clements, P., Kazman, R.: Software Architecture in Practice. Addison-Wesley

Professional, Boston (2003)
13. Gomaa, H.: Software Modeling and Design: UML, Use Cases, Architecture, and Patterns.

Cambridge University Press, New York (2011)

A Model-Based Approach 305

14. Selic, B., Gullekson, G., Ward, P.T.: Real-Time Object-Oriented Modeling. Wiley, New York
(1994)

15. Bennett, M., Dvorak, D., Hutcherson, J., Ingham, M., Rasmussen, R., Wagner, D.: An
architectural pattern for goal-based control. In: IEEE Aerospace Conference. IEEE Computer
Society (2008)

16. Bennett, M., Knight, R., Rasmussen, R., Ingham, M.: State-based models for planning and
execution. In: 15th International Conference on Planning and Scheduling (ICAPS 2005). Jet
Propulsion Laboratory, National Aeronautics and Space Administration (2005)

17. Selic, B.: Architectural patterns for real-time systems: using UML as an architectural description
language. In: Lavagno, L., Martin, G., Selic, B. (eds.) UML for Real, pp. 171–188. Springer,
New York (2004)

18. Douglass, B.: Real-Time Design Patterns. Addison-Wesley, Boston (2003)
19. Bellebia, D., Douin, J.-M.: Applying patterns to build a lightweight middleware for embedded

systems. In: 2006 Conference on Pattern Languages of Programs, Portland, Oregon, USA
(2006)

20. Fliege, I., Geraldy, A., Gotzhein, R., Kuhn, T., Webel, C.: Developing safety-critical real-
time systems with SDL design patterns and components. Comput. Netw. 49, 689–706 (2005)

21. Gamma, E., Helm, R., Johnson, R., John, V.: Design Patterns: Elements of Reusable Object-
Oriented Software. Addison-Wesley, Reading (1995)

22. Buschmann, F., Henney, K., Schmidt, D.C.: Pattern Oriented Software Architecture. On
Patterns and Pattern Languages, vol. 5. Wiley, Hoboken (2007)

23. Pettit IV, R., Gomaa, H.: Modeling behavioral design patterns of concurrent objects. In:
Proceedings of ICSE 2006, Shanghai, China (2006)

24. Kalinsky, D.: Design patterns for high availability. Embed. Syst. Prog., Aug 2002 [18].
Dupire, B., Fernandez, E.B.: The command dispatcher pattern. In: 8th Conference on Pattern
Languages of Programs, Monticello, Illinois, USA (2001)

25. Fant, J., Gomaa, H., Pettit IV, R.: Architectural design patterns for flight software. In: 2nd
IEEE Workshop on Model-Based Engineering for Real-Time Embedded Systems, Newport
Beach, California (2011)

26. Fant, J.: Building domain specific software architectures from software architectural design
patterns. In: Presented at the 33rd International Conference on Software Engineering (ICSE)
ACM Student Research Competition (SRC) 2011, Honolulu, Hawaii USA (2011)

27. Olimpiew, E.M., Gomaa, H.: Reusable model-based testing. In: Edwards, S.H., Kulczycki,
G. (eds.) ICSR 2009. LNCS, vol. 5791, pp. 76–85. Springer, Heidelberg (2009)

28. Harel, D.: Executable object modeling with statecharts. In: 18th International Conference on
Software Engineering (ICSE), Boston, MA (1997)

29. Laboratory For Atmospheric and Space Physics at the University of Colorado at Boulder.
Student Nitric Oxide Explorer Homepage. http://lasp.colorado.edu/snoe/ 21 April 2010

30. Johns Hopkins University Applied Physics Laboratory. STEREO Web Site, 26 April 2010.
http://stereo.jhuapl.edu/index.php

306 J.S. Fant et al.

http://lasp.colorado.edu/snoe/
http://stereo.jhuapl.edu/index.php

Model Checking Feature Interactions

Thibaut Le Guilly(B), Petur Olsen, Thomas Pedersen, Anders P. Ravn,
and Arne Skou

Department of Computer Science, Aalborg University,
Selma Lagerlofs Vej 300, 9220 Aalborg, Denmark

{thibaut,petur,tpd,apr,ask}@cs.aau.dk

Abstract. This paper presents an offline approach to analyzing feature
interactions in embedded systems. The approach consists of a systematic
process to gather the necessary information about system components
and their models. The model is first specified in terms of predicates,
before being refined to timed automata. The consistency of the model is
verified at different development stages, and the correct linkage between
the predicates and their semantic model is checked. The approach is
illustrated on a use case from home automation.

1 Introduction

Some of the first large scale embedded software was for telephone exchanges. The
flexibility of software allowed a modular realization of much new functionality.
One example is call forwarding from one number to another, another is putting
a call on hold in a waiting queue. These and many others are seen as a matter of
course today. These functionalities were programmed in a modular way, indepen-
dent of each other, so they could be introduced gradually in the software. They
were developed by competent professionals and of course tested very carefully, so
they did not introduce errors in the system, when they were put into operation.
Everything seemed well; but nevertheless there were something reminiscent of
defects in the systems. A standard example for a phone is when call on hold
and call forward are activated. What happens if a new call comes, when there is
already one active, should it be on hold or should it be forwarded? The outcome
of such conflicts can be arbitrary and timing dependent. The result is certainly a
puzzled user who believes to have found a bug. This type of error was named by
Pamela Zave from ATT Bell Lab in the early 1990’s [1], as being a “feature inter-
action”, an (unwanted) interaction of functionality. The problem attracted much
attention, see for example the survey by Keck and Kuhn a few years later [2].
Since then the phenomenon has been detected in many other systems where
functionality is built incrementally using parallel programs. A recent example is
the work on software product lines, where features are added incrementally [3].

The motivation for studying feature interactions in this paper is from the
domain of Smart Homes. In this application domain it is also called policy con-
flicts, because it appears as a consequence of network protocol conflicts, see for
instance the paper [4], as well as [5]. An example of a feature interaction in a
c© Springer International Publishing Switzerland 2016
P. Lorenz et al. (Eds.): ICSOFT 2015, CCIS 586, pp. 307–325, 2016.
DOI: 10.1007/978-3-319-30142-6 17

308 T. Le Guilly et al.

Fig. 1. Example of a feature interaction in a Smart Home.

Smart Home is shown in Fig. 1. In this example, the system is composed of two
features. The first is an alarm feature, which uses a movement sensor to mon-
itor movements and trigger an alarm when needed. The second is a humidity
feature, keeping the humidity at an acceptable level using a window to let some
fresh air in the home when needed. Here the interaction problem is that when
the humidity feature opens the window, it creates a movement detected by the
movement sensor, which then triggers the alarm.

Detecting these interactions in complex systems with independently devel-
oped modules is not an easy task, and there is thus a need for methods and
tools to assist in detecting them, see for example the discussion in [6]. Ideally
this should be done before the system is put into operation.

In this paper, which extends a previous contribution [7]1, we propose to use
model checking to detect feature interactions. However, as with any model based
approach, it is essential to obtain a sufficiently accurate model of the system for
the analysis to be of interest. Deriving such a model is not trivial and requires
rigorous methodology. In Sect. 2, we propose a general model for systems with
features, that includes the necessary and sufficient information to detect inter-
actions. Also sanity checks are proposed to ensure that the model is rational
and consistent. This generic model must then be mapped to a concrete environ-
ment, which consists of a specific configuration of components. This mapping is
thus a recurring task that needs to be done for each specific environment. To
support this process, Sect. 3 introduces a list of activities that will help care-
fully gathering the information required to build a realistic system model. This
paper uses Timed Automata [8] to model the system. Timed Automata fit well
with the dynamic nature of embedded systems, and can be model checked for
reachability, safety and liveness. Furthermore they admit checking for interac-
tion of extra-functional features, see [9]. Section 4 shows a translation of the
information gathered on the system into formal models, and a translation of
the requirements into logic to verify the models against them, and to ensure
that the models are correct with respect to their specifications. The approach

1 Note to reviewers only: The entire paper was rewritten. The model in Sect. 2 was
refined, and consistency checks are detailed. The identification process in Sect. 3 was
extended to include considerations about requirements. In Sect. 4 we add information
on how to link the predicates to the timed automata model. Finally the use case in
Sect. 5 was extended and updated to take into account the changes.

Model Checking Feature Interactions 309

Fig. 2. A feature based control system model.

is then illustrated through a use case in a Smart Home in Sect. 5, using the
Uppaal model checker for verifying the correctness of the system. We continue
by discussing related work, before concluding and presenting further work.

2 System Model

Modeling a system makes it possible to understand its components, their behav-
iors and properties. The model proposed here is inspired by the online feature
manager from [10] but aims at adapting it to home automation and other sim-
ilar control systems. A system is a tuple (F, P l) where F is a set of features
or controls and Pl a plant or environment. We prefer the control engineering
terminology and thus see the uncontrolled home as a plant. The plant represents
the system to control and is a tuple Pl = (V,A, P), where:

– V is a set of controllable variables that define its state space. They are func-
tions of time, and thus at any point of time the plant is in a specific state.
The behavior of the plant is its possible trajectories through time.

– A is a set of actuators that enable control by affecting the plant state; their
state is defined by a set of variables representing set points or configurations
for example.

– P is a set of disturbances that influence the variables in an uncontrollable,
although defined manner. Their state is also represented by a set of variables.

A feature is a concrete and well defined component that controls the evolution
of some of the variables in V through the set of actuators A, as illustrated in
Fig. 2. A feature fi is specified by a tuple (Ri, Si), where Ri is a predicate on V
that specifies its requirements, and Si is its specification which is a predicate on
V and A.

An example of such a system is a Smart Home. In this case, the plant is
the house with a set of variables such as temperature, humidity or luminosity,
a set of actuators that can be used to control them (heater, AC, lights. . .), and
the disturbances created by its walls or windows for example. Note that in this
paper we do not include sensors in the model, and instead consider directly
plant variables. The plant state is thus directly observable. The approach can
be generalized to consider sensors in a similar way as actuators. It would then
be reasonable to assume that the sensors provided full observability of the plant
state. Figure 3 shows an example of a control system controlling a Smart Home.

310 T. Le Guilly et al.

Fig. 3. Example of a control system with two features controlling a Smart Home.

2.1 Assumptions

The assumptions define the effect that actuators and disturbances have on plant
variables V . They are composed of assumptions on actuators, Wa(V) with a ∈ A,
and on disturbances, Wp(V) with p ∈ P . For a system the combined assump-
tions are:

W =
∧

a∈A

Wa(V) ∧
∧

p∈P

Wp(V)

Assumptions can describe interactions on common plant variables, and actu-
ators can have multiple effects. For actuators, we distinguish between their pri-
mary and side effects [11]. A primary effect is one that is the primary function of
an actuator. A side effect is one that is induced by the actuator but is not part
of its function. For example, a fridge cools down its compartment as a primary
effect. But to do so, it needs to dissipate heat to its environment, thus warming
up the room as a side effect. Side effects are generally acceptable, but need to be
considered in the model to ensure that they don’t lead to undesired interactions.
This could be the case for example if we place a large fridge in a small room
with little ventilation. Finally, the effect of disturbances on plant variables is
called an environmental effect. In order to specify each type of effect on each
plant variable, we assign to each variable a set of dynamic boolean variables that
represent a certain effect being applied to it, increasing or decreasing it. These
variables depend on the behavior of actuators and are thus function of time. For
each plant variable v ∈ V :

v inc pe: represents an increase of v by an actuator as a primary effect;
v dec pe: represents a decrease of v by an actuator as a primary effect;
v inc se: represents an increase of v by an actuator as a side effect;
v dec se: represents a decrease of v by an actuator as a side effect;
v inc env: represents an increase of v by a disturbance as an environmental

effect;
v dec env: represents a decrease of v by a disturbance as an environmental effect.

Model Checking Feature Interactions 311

Using these booleans, we can for example represent an assumption for a
heater in the form Heater.On =⇒ temp inc pe, to indicate that when the heater
is on, it increases the variable temp as a primary effect. Note that we do not detail
here communication errors and delays that could arise from home automation
middleware, but these could be introduced using stochastic transitions as shown
in [12]. It is possible to specify assumptions that are inconsistent, resulting in
an ill-formed plant model, without any trajectories. The plant state cannot be
continued in such cases, or it may even be that it cannot be initialized. Validation
of a model is considered in the next section.

2.2 Feature and System Consistency

We say that a feature fi is consistent when its specifications Si validate its
requirements Rk with respect to the assumptions W . A consistent feature is
then defined as follow:

Definition 1 (Feature Consistency). A feature fi is consistent, if and only
if, given Si, W and Ri as predicates, then Si,W � Ri.

Si is usually a disjunction of specifications each specifying a particular behav-
ior for a certain value of the plant variables it considers. For our analysis, it is
important that specifications be complete, that is, they consider all possible
values of the plant variables they use, subject to constraints imposed by W .
Ri here represents a conjunction of requirements that need to be satisfied by a
specification Si. From the definition of feature consistency follows the definition
of system consistency.

Definition 2 (System Consistency). Let C be a system with n features. Let
the tuple (R,W,S) be the combination of those features such that: S =

∧n
i=1 Si,

and R =
∧p

k=1 Ri. C is consistent if and only if S,W � R, and S is in itself
consistent in the context of W .

Assuming the consistency of each feature does not imply the consistency
of their combinations. This is in fact the feature interaction problem. Let us
assume that Si,W � Ri is satisfied for any feature fi. First the requirements can
be trivially satisfied if there exists two specifications Si and Sj that contradict
each other, such that: Si ∧ Sj ∧ W cannot be satisfied. To avoid contradiction,
sufficient conditions are:

– No two actuators can be used simultaneously in a contradicting manner;
– No variable can be updated by a primary effect simultaneously in a contra-

dicting manner.

To ensure the absence of contradiction and errors in the model, we propose
the following sanity checks:

S 1. S ∧W is satisfiable; this ensures that there is no contradiction in the state
of actuators when controlled by the features. This check is somewhat similar to

312 T. Le Guilly et al.

the consistency proofs in [13]. It can be checked by verifying the satisfiability of
the following formula:

∀v1, · · · , vn ∈ V ∪ P ∃z1, · · · , zk ∈ A : S ∧ W

The universal quantifier is used for uncontrollable variables - the plant and
disturbances variables - and the existential quantifier for controllable variables -
actuator variables. This makes sure that there exist a consistent control for each
valuation of the uncontrollable variables.

S 2. The second sanity check ensures the absence of conflicting effect on a plant
variable. It is somewhat similar to the lock used in the online feature man-
ager [10], but here used offline. It can be checked by verifying the satisfiability
of the following formula:

∀v1, · · · , vn ∈ V ∪ P ∃z1, · · · , z ∈ A :
S ∧ W ∧ ¬((v1 inc pe ∧ v1 dec pe) ∧ · · · (vn inc pe ∧ vn dec pe))

This ensures that a plant variable cannot be increased and decreased simul-
taneously as a primary effect. Some feature interactions can thus already be
caught at this stage. However, these two checks do not ensure the absence of
feature interaction, as the system can be underspecified, but ensure the absence
of contradictions in the specifications. Moreover, they do not take into consider-
ation extra functional requirements, which is why they will be refined to timed
automata as shown in Sect. 4. They can be checked using a theorem prover as
we will demonstrate in Sect. 5.

3 Identifying Components

To obtain a sound and useful model, it is essential to clearly identify each com-
ponent of the system as well as its behavior. This task is specific for each system
and each plant, and can hardly be automated. It needs to rely on the knowledge
of practitioners. However, following a systematic process to derive the informa-
tion necessary to model each component can help and reduce the likelihood of
errors. This section proposes such a process based on a series of questions.

Question 1: What are the Requirements? The requirements represent the
expected behavior of the plant when the features control it. To be usable in
the consistency proof, it is important that requirements be refined to testable
requirements, precise, unambiguous, and not divisible into lower level require-
ments. The first level of requirements are usually informal and derived from
either customer expectations or use cases. The requirements are then refined to
semi-formal requirements or testable requirements, and finally to formal require-
ments which constrain the behavior of the plant variables. This is a common step
in formal engineering methodology as in SOFL [14] for example.

Model Checking Feature Interactions 313

Question 2: What are the Plant Variables? From the semi-formal requirements,
the set V of plant variables that will have to be controlled by the features are
identified.

Question 3: What are the Features? The next step is then to group the require-
ments that should be satisfied by a single feature. Thus for each group is defined
a feature that will have to satisfy them.

Question 4: What are the Actuators? For each feature, the actuators required
to satisfy its requirements must be determined. The choice of actuators depends
on availability and cost or performance constraints that are not discussed here.
However, at this point features may be further refined based on the choice of
actuator. For example, the set of requirements {“temperature > 19 ◦C”, “tem-
perature < 24 ◦C”} could be realized by a single feature using a single HVAC
actuator capable of heating and cooling, or by two features, one using a heater
and the other an air conditioner.

Question 5: What are the Disturbances? We need to identify the disturbances
that can affect the plant variables in V . This is dependent on the specificity of
the plant and its dynamics.

Question 6: What are the Assumptions? The next step is to identify the assump-
tions. Following the identification of the set V of plant variables, A of actuators,
and P of disturbances, their behaviors are described. This step is specific to each
set of actuator and each plant. Note that only assumptions involving controlled
variables are of interest for the analysis.

Question 7: What are the Features Specifications? Once the set of actuators is
determined, the action of the features on actuators must be specified. At this
stage will be defined the different states of the feature and its behavior.

4 Timed Automata Model

To build the model, we use timed automata. The interest of this formalism is that
it can capture the dynamics of the system by the use of timing constraints, and
can be formally model checked against a set of properties. Recall that the objec-
tive is to verify the consistency proof of a system C with n features, combined
in: S =

∧n
i=1 Si.

At this stage the specifications are implemented in the form of timed
automata. Each predicate in S and W is thus assigned a timed automata seman-
tics, and the requirements are assumed written in a temporal logic. The consis-
tency proof thus becomes:

M(Si) ‖ · · · ‖ M(Wj) ‖ · · · |=
p∧

i=1

Ri

314 T. Le Guilly et al.

Thus the parallel composition of the specifications (modeling the behavior
of the features) with the assumptions (modeling the behavior of the plant) need
to satisfy the conjunction of requirements. We will now look into the details of
creating the model of each constituent.

4.1 Variables

The first elements to introduce in the model are the plant variables in V . Each
plant variable is declared in the model as an integer value, representing its state,
as well as a guardian automaton per boolean variable representing the dynamics
of the effect applied by actuators and disturbances. The guardian automata are
introduced to monitor the effect applied to the boolean variables. However, we
allow them to be read directly as it does not affect their behavior. An example
of a guardian automaton is shown in Fig. 4. The act? in the first transition
denotes receiving a synchronization on communication channel act (! is used to
trigger synchronizations). A communication channel in Uppaal allows processes
to synchronize and exchange information (see [15] for more details). Here they
enable the models to update the plant variables by applying an effect, but they
also enable the features to change the state of actuators for example. When
triggered, the caller needs to specify the duration for which the effect is being
applied, and the value is updated (+1 for increase −1 for decrease). The mapping
between the channels, variables and update values is done by the parameters

Fig. 4. A guardian automaton constraining and observing the actions on the temper-
ature variable, and the associated variables declaration.

Model Checking Feature Interactions 315

given to each process shown in the system declaration. A separate process also
initializes the variable at random within a given interval to cover a range of initial
values. Using the guardian automaton makes it possible to check if different
effects can be applied simultaneously, which can be a feature interaction.

4.2 Assumptions

Once the variables are declared in the model, we add the set of assumptions
W , that define the influence of actuators and disturbances on plant variables.
To each actuator and disturbance is associated a timed automaton model that
interacts with the variables using the guardian automata. The models define
their behavior with respect to the variables they influence and their own state.
Actuator models also contain transitions equipped with channel communications
so features can change their states. An example of an actuator model is shown
in Fig. 5. When this heater is On, it increases the temperature as its primary
effect every time unit, and does nothing while it is Off. We can see here the
use of communication to a guardian automaton to increase the temperature.
Two communication channels are defined to enable features to turn it On or Off.
Channels for controlling actuators are defined as urgent to force the feature to
react immediately.

Fig. 5. Example of a timed automata representing the behavior of a heater.

4.3 Features

The set of feature F is then added to the model. A feature essentially reads the
values of plant variables, which they read directly, and sends control commands
to actuators using their communication channels. An example is shown in Fig. 6.

Fig. 6. An example of a feature model.

316 T. Le Guilly et al.

In this example, a heating feature monitors the temperature and turns the heater
on when it goes below 17◦C, and off when it goes above 20◦C.

4.4 Requirements

The requirements are properties that should be verified by the system. As we
have chosen timed automata as a modeling formalism, a temporal logic is used
for representing them. In this case a subset of Timed Computational Tree Logic
(TCTL), used by the Uppaal [15] model checker that we will use to perform
the model checking. TCTL formulae are composed of state formulae, expressions
that can be evaluated for a state such as temp ≥ 19, and path formulae that
quantify state formulae over paths or traces. Uppaal also makes use of the
keyword deadlock to denote deadlocking states. Path formulae are generally
separated into three categories:

Reachability. Properties are used to check whether a state formula is satisfied
by any reachable state. For a state formula ϕ, the query is encoded as E♦ ϕ.

Safety. Properties are used to express that “something bad should never hap-
pen”, or “something will possibly never happen”. For a state formula ϕ, A�ϕ
expresses that ϕ should be true for all reachable states, while E�ϕ expresses
that there should exist a maximal path (infinite or whose last state has no out-
going transition) such that ϕ is always true. A common safety query is to check
for the absence of deadlock: A�¬deadlock.

Liveness. Properties are used to express that “something good will eventually
happen”. For state formula ϕ and ψ, A♦ϕ expresses that ϕ is eventually satisfied,
and ϕ � ψ that whenever ϕ is satisfied, then ψ is eventually satisfied.

Typically, formal requirements are translated into liveness properties that
ensure that the desired control is correctly applied by the system. Examples of
formal requirements and their translation will be shown in Sect. 5. Sanity checks
will usually take the form of safety properties ensuring the absence of conflicts
at any state of the system, but can also take the form of liveness properties in
certain cases.

4.5 Correctness of Models

After constructing the models, it is important to validate that they verify the
specifications and assumptions they implement, such that:

– for each feature fi ∈ F : M(Si) |= Si;
– for each assumption Wj ∈ W : M(Wj) |= Wj .

However, due to the temporal dimension introduced in the models, we cannot
directly verify the predicates, but have transform them into temporal logic. The
translation from predicates to temporal logic is dependent on the model and the

Model Checking Feature Interactions 317

semantics of the specifications and assumptions. In general liveness queries are
well suited for checking that the system will eventually satisfy its specification
or requirements. Finally we define some sanity checks to ensure that the models
are rational:

S 3. The models do not contain deadlock: A�¬deadlock. This is a basic require-
ments for a model, as deadlock can make some properties trivially satisfiable,
because it indicates an inconsistent system with trajectories that are only partial
and stop after a time.

S 4. The model is a model for the specifications: Si ∈ S : M |= Si. Similarly
for the assumptions: Wi ∈ W : M |= Wi.

S 5. For each variable v ∈ V : A�¬(v inc pe ∧ v dec pe); this is the translation
of S2, ensuring that a variable is not simultaneously increased and decreased by
primary effects.

5 Use Case

This section illustrates the proposed methodology through a use case in the
domain of home automation. In this use case there are two main actors: a com-
pany specialized in home automation system and a home owner who desires a
number of intelligent features to be implemented in his house. The company can
potentially have many customers each with a different set of requirements and a
different house. Before buying the equipments required to build a control system
that satisfy the requirements, the company would like to ensure that its design
will behave as expected once deployed. Here performing an offline analysis of
the system can help at detecting unwanted behavior and in particular feature
interactions. If undesired behavior is detected, the company can update it until
it is fixed, avoiding having to debug already deployed components. The company
starts the process by asking the first question, what are the requirements?

5.1 Requirements

The requirements are first obtained from a discussion between the company and
the home owner in the form of informal requirements written in natural language.
The home owner has three requirements, all related to a single room. The first
is related to Heating, Ventilation and Air-Conditioning (HVAC), the second to
Humidity Control (HC) and the last one to Home Security (HS).

uHVAC : The temperature shall be kept between 17◦C and 24◦C.
uHC : An automatic ventilation system, that will improve humidity.
uHS: An alarm that should be triggered when an intruder is detected, but only

when the intruder is actually present.

The requirements are then refined into formal requirements:

uHVAC : 17 < temp < 24.
uHC : hum < 50.
uHS: burglar ⇐⇒ alarm.on.

318 T. Le Guilly et al.

5.2 Plant Variables

In this simple example, the variables to be controlled are easily identified:

vtemp: The indoor temperature, initialized in [16, 25] to cover cases above and
under every set points.

vhum: The indoor humidity, initialized in [40, 60] to cover above and under 50 %.
vmove: The detection or not of movement in the room initialized at zero.

5.3 Features

The features can be directly mapped to the three requirements. We thus have
three features:

– FHVAC .

– FHC.

– FHS.

5.4 Actuators

The company decides to use:

– a window motor to let fresh air in and control the humidity, with two states,
open and close;

– an alarm which can be triggered;
– a heater and an Air Conditioner (AC) to control the temperature.

Based on this, the FHVAC feature is refined into two features, one using a heater
and the other the AC. Another company could choose a single actuator to control
the temperature and keep this feature as one. The refined feature results in two
requirements:

uHVAC Heat: temp > 17.
uHVAC Cool: temp < 24.

5.5 Disturbances

This use case considers two disturbances:

pwall: the disturbance on the temperature and humidity created by the thermo-
dynamics of the walls, dependent on the outdoor temperature;

pburglar: which represents the action of a burglar breaking into the house.

5.6 Assumptions

With the set of actuators, disturbances and variables in place, the assumptions
are defined:

Model Checking Feature Interactions 319

W (pwall, {temp}): (temp > temp out =⇒ temp dec env) ∧ (temp <
temp out =⇒ temp inc env) ∧ hum inc env

W (pburglar, {move}): burglar =⇒ move inc env
W (heater, {temp}): on =⇒ temp inc pe
W (ac, {temp}): on =⇒ temp dec pe
W (window, {temp,move}): ((open ∧ temp out < temp) =⇒ temp dec env) ∧

((open ∧ temp out > temp) =⇒ temp inc env) ∧ (opening =⇒
move inc se).

5.7 Specifications

The specifications determine how the features will use the actuators to satisfy
the requirements:

SHVAC Heat: (temp < 17 =⇒ heater.on) ∧ (temp > 20 =⇒ heater.off)
SHVAC Cool: (temp > 24 =⇒ ac.on) ∧ (temp < 20 =⇒ ac.off)
SHS: (active ∧ move) ⇐⇒ alarm.on
SHC : hum > 50 =⇒ window.open

With all the components of the system specified, the consistency of the model
can be checked. We use the Z3 theorem prover to verify that it passes the two
sanity checks2.

Note that the specifications are still under-specified, and do not validate the
requirements, as the behavior of the plant variables are not specified, and the
assumptions do not take into account the dynamics of the system. Therefore a
network of timed automata is used to give this information.

5.8 Modeling

The plant variables vtemp, vhum and vmove are first introduced, using the tem-
plates shown in Fig. 4. The assumptions for actuators are shown in Fig. 7 and the
assumptions for disturbances in Fig. 8. The models are described in more details
in [7]. The biggest changes are related to the use of the guardian automata and
minor changes to adapt to the various checks that the model must satisfy, as
well as the specification of duration for the effect by actuators and disturbances
models.

The Uppaal queries and their results are shown in Table 13. Queries q0−18

ensure the rationality of the model and that the assumptions and specifications
are correctly modeled. Queries q19−22 show that the corresponding requirements
are satisfied while query q23 shows that uHS is not satisfied. The window move-
ment can in fact trigger the alarm while the burglar is still inactive. Query q24
shows an example of queries that can be perform to check for interaction with
side effect for example. Here the window can decrease the temperature while the
heater is on. One can then decide if this side effect is an acceptable or not.
2 Code available at http://rise4fun.com/Z3/q9Vd.
3 Max execution time per query 47.3 s on a regular laptop.

http://rise4fun.com/Z3/q9Vd

320 T. Le Guilly et al.

Table 1. Uppaal queries and their results.

(a) Heater model. (b) AC model.

(c) Window model. (d) Alarm
model.

Fig. 7. Actuator models.

Model Checking Feature Interactions 321

(a) Burglar model.

(b) Wall model.

Fig. 8. Disturbance models.

6 Limitations

The proposed approach has some limitations. The first is that the detection of
interactions and inconsistencies in the system relies on information about the
plant that may not be trivial to obtain. Moreover, one might argue that once the
information about primary, side and environmental effect are obtained, detect-
ing interactions is easy. However, this is a common drawback for any analytical
approach to the feature interaction problem. For example, the feature manager
in [16], even though being an online approach, also relies on that type of knowl-
edge. We also note that the series of question proposed in this paper aims at
facilitating the analysis and reducing the risk of omission. The second limita-
tion comes from the use of model checking, that faces the state space explosion
problem when system specifications become too large. Two solutions can be
considered for it. Firstly a static pruning of the models, isolating the models
having common variables. In fact, interactions can only occur between compo-
nents sharing a common plant variable. This can lead to considerable reduction
of the state space to explore. Secondly Statistical Model Checking (SMC) can
be used, to obtain estimates of the satisfaction of properties. As SMC relies on
runs on the system and not a systematic exploration of its states, it does not
encounter issues with state space explosions. Examples of using SMC are shown
in [12,17]. The drawback is of course that it gives only probabilities about the
satisfiability of the queries. However with a large enough number of runs, the
confidence in the result is usually sufficient.

7 Related Work

The definitions of feature, consistency and interaction were originally proposed
in [13]. They also use a SAT solver to verify the consistency of the system. In this

322 T. Le Guilly et al.

paper they are reused and refined, and we show how the predicates can be linked
to timed automata models. We extended also the proofs to include consideration
about primary effects of actuators.

Online approaches to the feature interaction problem are shown in [10,11].
The notions of primary and side effect are reused in this paper. The use of lock on
plant variables is also similar to the check performed for contradicting primary
effects on plant variables in our approach.

An object-oriented approach to feature interaction analysis is shown in [18].
The view of features, devices and variables is essentially similar to ours, except
that their early work did not include branches, loops or time. These were later
added to the language [19], which is checked using the SMV model checker [20].
The language, as well as the queries used are similar to ours, except that time is
not part of the models. They have also tried to use the Java Modeling Language
(JML) [21], but the verification of the models was uneasy, long and not always
successful. An interesting point they make however, is on the need to abstract
from implementation specific details and on requirements elicitation by reading
safety instructions. Chains of services are also considered using Event Condition
Action rules in [22]. They propose to quantify the impact of assumptions in [23].

An approach based on requirements analysis using an existing development
platform is shown in [24]. They use dependency graphs, and hint at possible
interactions at the requirement level. Compared to our approach, they consider
larger systems at a more abstract level, and do not model the internals of the
features.

Verification of intelligent environments is discussed also in [25]. The method-
ology is similar to the one we propose, but the steps are not in the same order.
In fact their analysis is based on existing systems, while ours starts from require-
ments. However the details for each step of the process are of interest and could
be applied to our approach as well.

Modeling home automation systems in Uppaal has also been shown in [26],
even though the focus is not on feature interactions. Using stochastic and hybrid
models for modeling the dynamics of a heating system is shown in [17,27], and
could be applied to our approach as well. Uppaal is also used in [9] to detect
non functional feature interactions in the automotive domain.

We also mention work on software product line and safe configuration as
shown in [28]. The focus there is on feature composition and efficient algorithms
for the combinatorial problem of composition in software product lines. Similar
is the work on componentization of timed automata in [29].

8 Conclusion and Future Work

An offline approach to analyzing feature interactions has been presented. The
approach helps ensuring consistency of the models along the development
process, and the absence of undesired interactions. It is shown how to link
the predicates obtained from the formalization of requirements to their timed
automata models. Timed automata makes it possible to include time constraints,

Model Checking Feature Interactions 323

and to verify system properties using temporal logic. The approach is applied to
a use case from home automation, showing how to use a SAT solver to ensure the
correctness of the system when in the form of predicates, and the Uppaal model
checker for verifying that the timed automata model of the system satisfies its
requirements.

We foresee different improvements to this work. A first one is the introduc-
tion of a quantification of the effect that actuators and disturbances have on
plant variables, as done in [23]. A second one would be to provide more details
on how to obtain the system requirements. Inspiration could be taken from [30]
where requirements are obtained by eliciting safety properties. Another interest-
ing question that was not discussed in this paper is how to resolve the interactions
once detected. Here one could have a look at controller synthesis using timed
games for example [31,32]. Another interesting direction would be to consider
the proposed models for online feature interaction detection. This could be done
using previous work on interpreting and abstracting timed automata [33,34].
Finally, as mentioned in Sect. 6, SMC could be introduced to improve the scal-
ability of the approach.

References

1. Zave, P.: Feature interactions and formal specifications in telecommunications.
Computer 26, 20–28 (1993)

2. Keck, D., Kuehn, P.: The feature and service interaction problem in telecommuni-
cations systems: a survey. IEEE Trans. Softw. Eng. 24, 779–796 (1998)

3. Lochau, M., Oster, S., Goltz, U., Schürr, A.: Model-based pairwise testing for
feature interaction coverage in software product line engineering. Softw. Qual. J.
20, 567–604 (2012)

4. Maternaghan, C., Turner, K.J.: Policy conflicts in home automation. Comput.
Netw. 57, 2429–2441 (2013)

5. Al-Baltah, I.A., Ghani, A.A.A., Ab Rahman, W.N.W., Atan, R.: Semantic conflicts
detection of heterogeneous messages of web services: challenges and solution. J.
Comput. Sci. 10, 1428 (2014)

6. Calder, M., Kolberg, M., Magill, E.H., Reiff-Marganiec, S.: Feature interaction: a
critical review and considered forecast. Comput. Netw. 41, 115–141 (2003)

7. Pedersen, T., Le Guilly, T., Ravn, A., Skou, A.: A method for model checking fea-
ture interactions. In: Proceedings of the 10th International Conference on Software
Engineering and Applications, pp. 219–228 (2015)

8. Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126, 183–
235 (1994)

9. Répási, T., Giessl, S., Prehofer, C.: Using model-checking for the detection of non-
functional feature interactions. In: 2012 IEEE 16th International Conference on
Intelligent Engineering Systems (INES), pp. 167–172. IEEE (2012)

10. Kolberg, M., Magill, E.H., Wilson, M.: Compatibility issues between services sup-
porting networked appliances. IEEE Commun. Mag. 41, 136–147 (2003)

11. Wilson, M., Kolberg, M., Magill, E.H.: Considering side effects in service interac-
tions in home automation-an online approach. In: Feature Interactions in Software
and Communication Systems IX, p. 172 (2008)

324 T. Le Guilly et al.

12. Le Guilly, T., Olsen, P., Ravn, A.P., Skou, A.: Modelling and analysis of component
faults and reliability. In: Petre, L., Sekerinski, E. (eds.) From Action System to
Distributed Systems: The Refinement Approach (2015, accepted for publication)

13. Classen, A., Heymans, P., Schobbens, P.-Y.: What’s in a feature: a requirements
engineering perspective. In: Fiadeiro, J.L., Inverardi, P. (eds.) FASE 2008. LNCS,
vol. 4961, pp. 16–30. Springer, Heidelberg (2008)

14. Liu, S.: Formal Engineering for Industrial Software Development. Springer,
Heidelberg (2004)

15. Behrmann, G., David, R., Larsen, K.G.: A tutorial on Uppaal 4.0 (2006)
16. Wilson, M., Magill, E.H., Kolberg, M.: An online approach for the service interac-

tion problem in home automation. In: Consumer Communications and Networking
Conference, CCNC. 2005 Second IEEE, pp. 251–256. IEEE (2005)

17. David, A., Larsen, K.G., Legay, A., Mikučionis, M., Poulsen, D.B.: Uppaal SMC
tutorial. Int. J. Softw. Tools Technol. Transf. 17, 1–19 (2015)

18. Nakamura, M., Igaki, H., Matsumoto, K.I.: Feature interactions in integrated ser-
vices of networked home appliances. In: Proceedings of International Conference
on Feature Interactions in Telecommunication Networks and Distributed Systems
(ICFI05), pp. 236–251 (2005)

19. Leelaprute, P., Nakamura, M., Tsuchiya, T., Matsumoto, K.I., Kikuno, T. :
Describing and verifying integrated services of home network systems. In: Soft-
ware Engineering Conference, APSEC 2005. 12th Asia-Pacific, p. 10 (2005)

20. Cimatti, A., Clarke, E., Giunchiglia, F., Roveri, M.: Nusmv: a new symbolic model
checker. Int. J. Softw. Tools Technol. Transfer 2, 410–425 (2000)

21. du Bousquet, L., Nakamura, M., Yan, B., Igaki, H.: Using formal methods to
increase confidence in a home network system implementation: a case study. Inno-
vations Syst. Softw. Eng. 5, 181–196 (2009)

22. Inada, T., Igaki, H., Ikegami, K., Matsumoto, S., Nakamura, M., Kusumoto, S.:
Detecting service chains and feature interactions in sensor-driven home network
services. Sensors 12, 8447–8464 (2012)

23. Nakamura, M., Ikegami, K., Matsumoto, S.: Considering impacts and requirements
for better understanding of environment interactions in home network services.
Comput. Netw. 57, 2442–2453 (2013)

24. Metzger, A., Webel, C.: Feature interaction detection in building control systems
by means of a formal product model. In: FIW, pp. 105–122 (2003)

25. Corno, F., Sanaullah, M.: Modeling and formal verification of smart environments.
Secur. Commun. Netw. 7, 1582–1598 (2014)

26. Augusto, J.C., McCullagh, P.: Ambient intelligence: concepts and applications.
Comput. Sci. Inf. Syst. 4, 1–27 (2007)

27. David, A., Du, D., Guldstrand Larsen, K., Legay, A., Mikučionis, M.: Optimizing
control strategy using statistical model checking. In: Brat, G., Rungta, N., Venet,
A. (eds.) NFM 2013. LNCS, vol. 7871, pp. 352–367. Springer, Heidelberg (2013)

28. Classen, A., Heymans, P., Schobbens, P.Y., Legay, A., Raskin, J.F.: Model check-
ing lots of systems: efficient verification of temporal properties in software product
lines. In: Proceedings of the 32nd ACM/IEEE International Conference on Soft-
ware Engineering, vol. 1, pp. 335–344. ACM (2010)

29. David, A., Larsen, K.G., Legay, A., Nyman, U., Wasowski, A.: Timed I/O
automata: a complete specification theory for real-time systems. In: Proceedings
of the 13th ACM International Conference on Hybrid Systems: Computation and
Control, pp. 91–100. ACM (2010)

Model Checking Feature Interactions 325

30. Yan, B., Nakamura, M., du Bousquet, L., Matsumoto, K.: Characterizing safety
of integrated services in home network system. In: Okadome, T., Yamazaki, T.,
Makhtari, M. (eds.) ICOST. LNCS, vol. 4541, pp. 130–140. Springer, Heidelberg
(2007)

31. Jessen, J.J., Rasmussen, J.I., Larsen, K.G., David, A.: Guided controller synthesis
for climate controller using Uppaal Tiga. In: Raskin, J.-F., Thiagarajan, P.S.
(eds.) FORMATS 2007. LNCS, vol. 4763, pp. 227–240. Springer, Heidelberg (2007)

32. Behrmann, G., Cougnard, A., David, A., Fleury, E., Larsen, K.G., Lime, D.:
UPPAAL-Tiga: time for playing games!. In: Damm, W., Hermanns, H. (eds.) CAV
2007. LNCS, vol. 4590, pp. 121–125. Springer, Heidelberg (2007)

33. Dalsgaard, P.H., Le Guilly, T., Middelhede, D., Olsen, P., Pedersen, T., Ravn, A.P.,
Skou, A.: A toolchain for home automation controller development. In: 2013 39th
EUROMICRO Conference on Software Engineering and Advanced Applications
(SEAA), pp. 122–129. IEEE (2013)

34. Le Guilly, T., Smedegard, J.H., Pedersen, T., Skou, A.: To do and not to do:
constrained scenarios for safe smart house. In: 2015 International Conference on
Intelligent Environments (IE), pp. 17–24 (2015)

Deriving Tailored UML Interaction Models
from Scenario-Based Runtime Tests

Thorsten Haendler(B), Stefan Sobernig, and Mark Strembeck

Institute for Information Systems and New Media,
Vienna University of Economics and Business (WU), Vienna, Austria

{thorsten.haendler,stefan.sobernig,mark.strembeck}@wu.ac.at

Abstract. Documenting system behavior explicitly using graphical
models (e.g. UML activity or sequence diagrams) facilitates communica-
tion about and understanding of software systems during development
and maintenance tasks. Creating graphical models manually is a time-
consuming and often error-prone task. Deriving models from system-
execution traces, however, suffers from resulting model sizes which render
the models unmanageable for humans. This paper describes an approach
for deriving behavior documentation from runtime tests in terms of UML
interaction models. Key to our approach is leveraging the structure of
scenario-based runtime tests to render the resulting interaction models
and diagrams tailorable by humans for a given task. Each derived model
represents a particular view on the test-execution trace. This way, one
can benefit from tailored graphical models while controlling the model
size. The approach builds on conceptual mappings (transformation rules)
between a test-execution trace metamodel and the UML2 metamodel. In
addition, we provide means to turn selected details of test specifications
and of testing environment (i.e. test parts and call scopes) into views on
the test-execution trace (scenario-test viewpoint). A prototype imple-
mentation called KaleidoScope based on a software-testing framework
(STORM) and model transformations (Eclipse M2M/QVTo) is available.

Keywords: Test-based documentation · Scenario-based testing ·
Test-execution trace · Scenario-test viewpoint · UML interactions ·
UML sequence diagram

1 Introduction

Scenarios describe intended or actual behavior of software systems in terms
of action and event sequences. Notations for defining and describing scenarios
include different types of graphical models such as UML activity and UML inter-
action models. Scenarios are used to model systems from a user perspective and
ease the communication between different stakeholders [3,17,18]. As it is almost
impossible to completely test a complex software system, one needs an effective
procedure to select relevant tests, to express and to maintain them, as well as
to automate tests whenever possible. In this context, scenario-based testing is a
c© Springer International Publishing Switzerland 2016
P. Lorenz et al. (Eds.): ICSOFT 2015, CCIS 586, pp. 326–348, 2016.
DOI: 10.1007/978-3-319-30142-6 18

Deriving Tailored UML Interaction Models 327

means to reduce the risk of omitting or forgetting relevant test cases, as well as
the risk of insufficiently describing important tests [21,32].

Tests and a system’s source code (including the comments in the source code)
directly serve as a documentation for the respective software system. For exam-
ple, in Agile development approaches, tests are sometimes referred to as a living
documentation [35]. However, learning about a system only via tests and source
code is complex and time consuming. In this context, graphical models are a pop-
ular device to document a system and to communicate its architecture, design,
and implementation to other stakeholders, especially those who did not author
the code or the tests. Moreover, graphical models also help in understanding
and maintaining a system, e.g., if the original developers are no longer available
or if a new member of the development team is introduced to the system. Alas,
authoring and maintaining graphical models require a substantial investment of
time and effort. Because tests and source code are primary development arti-
facts of many software systems, the automated derivation of graphical models
from a system’s tests and source code can contribute to limiting documenta-
tion effort. Moreover, automating model derivation provides for an up-to-date
documentation of a software system, whenever requested.

A general challenge for deriving (a.k.a. reverse-engineering) graphical models
is that their visualization as diagrams easily becomes too detailed and too exten-
sive, rendering them ineffective communication vehicles. This has been referred
to as the problem of model-size explosion [1,33]. Common strategies to cope with
unmanageable model sizes are filtering techniques, such as element sampling and
hiding. Another challenge is that a graphical documentation (i.e. models, dia-
grams) must be captured and visualized in a manner which makes the resulting
models tailorable by the respective stakeholders. This way, stakeholders can fit
the derived models to a certain analysis purpose, e.g., a specific development or
maintenance activity [9].

Fig. 1. Deriving tailored UML interaction models from scenario tests.

In this paper, we report on an approach for deriving behavior documentation
(esp. UML2 interaction models depicted via sequence diagrams) from scenario-
based runtime tests in a semi-automated manner (see Fig. 1). Our approach is
independent of a particular programming language. It employs metamodel map-
pings between the concepts found in scenario-based testing, on the one hand,
and the UML2 metamodel fragment specific to UML2 interactions [27], on the
other hand. Our approach defines a viewpoint [4] which allows for creating dif-
ferent views on the test-execution traces resulting in partial interaction models

328 T. Haendler et al.

and sequence diagrams. Moreover, we present a prototypical realization of the
approach via a tool called KaleidoScope1. This paper is a revised and extended
version of our paper from ICSOFT 2015 [15]. This post-conference revision incor-
porates important changes in response to comments by reviewers and by confer-
ence attendees. For example, we included the OCL consistency constraints for
the derived UML interaction models.

Fig. 2. Conceptual overview of deriving tailored UML interaction models from
scenario-based runtime tests.

Figure 2 provides a bird’s-eye view on the procedure of deriving tailored inter-
action models from scenario-based runtime tests. After implementing the source
code of the SUT and specifying the scenario-test script, the respective tests are
executed (see steps 1© and 2© in Fig. 2). A “trace provider” component instru-
ments the test run (e.g. using dynamic analysis) and extracts the execution-
trace data2 for creating a corresponding scenario-test trace model (see step 3©).
After test completion, the test log is returned (including the test result). Based
on a view configuration and on the extracted trace model (see steps 4© and
5©), an interaction model (step 6©) is derived. This transformation is executed

by a “model builder” component, which implements the conceptual mappings
between the test-execution trace metamodel and the UML2 metamodel. The
concrete source and target models are instances of the corresponding metamod-
els. Notice that based on one trace model (reflecting one test run), multiple
tailored interaction models can be derived in steps 4© through 6©.3 Finally,
1 Available for download from our website [14].
2 For the purposes of this paper, a trace is defined as a sequence of interactions between

the structural elements of the system under test (SUT), see e.g. [38].
3 The process described so far is supported by our KaleidoScope tool [14].

Deriving Tailored UML Interaction Models 329

the models can be rendered by a diagram editor into a corresponding sequence
diagram (step 7©) to assist in analysis tasks by the stakeholders (step 8©).

The remainder of this paper is structured as follows: In Sect. 2, we explain how
elements of scenario tests can be represented as elements of UML2 interactions.
In particular, we introduce in Sect. 2.1 our metamodel of scenario-based testing
and in Sect. 2.2 the elements of the UML2 metamodel that are relevant for
our approach. In Sect. 2.3, we present the conceptual mappings (transformation
rules) between different elements of the scenario-test metamodel and the UML2
metamodel. Subsequently, Sect. 3 proposes test-based tailoring techniques for the
derived interaction models. In Sect. 3.1, we explain the option space for tailoring
interaction models based on a scenario-test viewpoint and illustrate a simple
application example in Sect. 3.2. Section 3.3 explains how tailoring interaction
models is realized by additional view-specific metamodel mappings. In Sect. 4,
we introduce our prototypical implementation of the approach. Finally, Sect. 5
gives an overview of related work and Sect. 6 concludes the paper.

2 Representing Scenario Tests as UML2 Interactions

2.1 Scenario-Test Structure and Traces

We extended an existing conceptual metamodel of scenario-based testing [34].
This extension allows us to capture the structural elements internal to sce-
nario tests, namely test blocks, expressions, assertions, and definitions of fea-
ture calls into the system under test (SUT; see Fig. 3). A trace describes the
SUT’s responses to specific stimuli [4]. We look at stimuli which are defined
by an executable scenario-test specification and which are enacted by execut-
ing the corresponding scenario test. In the following, we refer to the combined
structural elements of the scenario-test specifications and the underlying test-
execution infrastructure as the scenario-test framework (STF). This way, an
execution of a scenario-based TestSuite (i.e. one test run) is represented
by a Trace instance. In particular, the respective trace records instances of
FeatureCall in chronological order, describing the SUT feature calls defined
by the corresponding instances of FeatureCallDefinition that are owned
by a block. Valid kinds of Block are Assertion (owned, in turn, by Pre- or
Postcondition block) or other STF features such as Setup, TestBody or
Cleanup in a certain scenario test. In turn, each SUT Feature represents a
kind of Block. A block aggregates definitions of SUT feature calls. Instances
of FeatureCall represent one interaction between two structural elements
of the SUT. These source and target elements are represented by instan-
tiations of Instance. Every feature call maintains a reference to the calling
feature (caller) and the corresponding called feature (callee), defined and
owned by a given class of the SUT. Features are divided into structural fea-
tures (e.g. Property) and behavioral features (e.g. Operation). Moreover,
Constructor and Destructor owned by a class are also kinds of Feature.
A feature call additionally records Argument instances that are passed into the

330 T. Haendler et al.

Fig. 3. Test-execution trace metamodel extends [34] to include test-block structure
and scenario-test traces.

called feature, as well as the return value, if any. The sum of elements specific
to a call is referred to as “call dependencies”.

2.2 Interaction-Specific Elements of UML2

UML interaction models and especially sequence diagrams offer a notation for
documenting scenario-test traces. A UML Interaction represents a unit of
behavior (here the aforementioned trace) with focus on message interchanges
between connectable elements (here SUT instances). In this paper, we focus on
a subset of interaction-specific elements of the UML2 metamodel that specify
certain elements of UML2 sequence diagrams (see Fig. 4). The participants in a
UML interaction model are instances of UML classes which are related to a given
scenario test. The sequence diagram then shows the interactions between these
instances in terms of executing and receiving calls on behavioral features (e.g.
operations) and structural features (e.g. properties) defined for these instances
via their corresponding UML classes. From this perspective, the instances
interacting in the scenario tests constitute the SUT. Instances which repre-
sent structural elements of the scenario-testing framework (STF; e.g. test cases,
postconditions), may also be depicted in a sequence diagram; for example as

Deriving Tailored UML Interaction Models 331

Fig. 4. Selected interaction-specific elements of the UML2 metamodel.

a test-driver lifeline [5]. The feature calls on SUT instances originating from
STF instances rather than other SUT instances represent the aforementioned
stimuli. This way, such feature calls designate the beginning and the end of a
scenario-test trace.

2.3 Mapping Test Traces to Interactions

To formalize rules for transforming scenario-test traces into UML interactions,
we define a metamodel mapping between the scenario-test trace metamodel, on
the one hand, and the corresponding excerpt from the UML2 metamodel, on the
other hand. For the purposes of this paper, we specified the corresponding map-
pings using transML diagrams [13], which represent model transformations in a
tool- and technology- independent manner compatible with the UML. In total,
18 transML mapping actions are used to express the correspondences. These
mapping actions (M1–M18) are visualized in Figs. 5, 6 and 12. The transML
mapping diagrams are refined by OCL expressions [24] to capture important
mapping and consistency constraints for the resulting UML interaction models.
The mapping constraints are depicted below each related transML mapping.
The mapping action represents the context for the OCL constraints and, this
way, allows for navigating to elements of the source and target model. The OCL
consistency constraints are fully reported in the Appendix of this paper.

In general, i.e. independent of a configured view, each Trace instance,
which comprises one or several feature calls, is mapped to an instance of UML

332 T. Haendler et al.

Fig. 5. Mapping elements of scenario-test traces (specific to a feature call fC) to UML2
elements.

Interaction (see M10 in Fig. 5). This way, the resulting interaction model
reflects the entire test-execution trace (for viewpoint mappings, see Sect. 3.3).
However, each instance of FeatureCall (fC) contained by a given trace is
mapped to one UML Message instance (see M4). Each of the mappings of the
other trace elements (i.e. “call dependencies”) depends on mapping M4 and is
specific to fC. Each instance that serves as source or target of a feature
call is captured in terms of a pair of a ConnectableElement instance and
a Lifeline instance. A Lifeline, therefore, represents a participant in the
traced interaction, i.e., a ConnectableElement typed with the UML class
of the participant. See the transML mapping actions M1 and M2 in Fig. 5. An
instance of MessageOccurrence in the resulting interaction model represents
the feature call at the calling feature’s end as a sendEvent (see M5). Likewise,

Deriving Tailored UML Interaction Models 333

at the called feature’s end, the feature call maps to a receiveEvent (see M6).
Depending on the kind of the feature call, the resulting Message instance is
annotated differently. For constructor and destructor calls, the related message
has a create or delete signature, respectively. In addition, the corresponding
message is marked using messageSort createMessage or deleteMessage,
respectively (see M8 and M9). Note that in case of a constructor call, the target
is represented by the class of the created instance and the created instance is the
return value. This way, in this specific case, the return value is mapped to life-
line and connectable element typed by the target (see M8). Other calls map to
synchronous messages (i.e. messageSort synchCall). In this case, the name
of the callee feature and the names of the arguments passed into the call are
mapped to the signature of the corresponding Message instance (see M7). In
addition, an execution is created in the interaction model. An Execution rep-
resents the enactment of a unit of behavior within the lifeline (here the execution
of a called feature). The resulting Execution instance belongs to the lifeline of
the target instance and its start is marked by the message occurrence cre-
ated by applying M6. For the corresponding OCL consistency constraints based
on mapping M4, see Listing 1.3 in the Appendix.

Fig. 6. Mapping return value (specific to a feature call fC) to UML2 elements.

If a given feature call fC reports a return value, a second Message
instance will be created to represent this return value. This second message
is marked as having messageSort reply (see M12 in Fig. 6). Moreover, two
instances of MessageOccurrence are created acting as the sendEvent and
the receiveEvent (covering the lifelines mapped from target and source
instance related to fC, respectively). An instance of NamedElement acts as
the signature of this message, reflecting the actual return value (see M12).
In case of a missing return value, an ExecutionOccurrence instance is

334 T. Haendler et al.

provided to consume the call execution (finish) at the called feature’s end
(see M11). Listing 1.4 in the Appendix provides the corresponding OCL consis-
tency constraints based on mapping M12.

The chronological order of the FeatureCall instances in the recorded trace
must be preserved in the interaction model. Therefore we require that the mes-
sage occurrences serving as send and receiveEvents of the derived mes-
sages (see M5, M6, M12) preserve this order on the respective lifelines (along
with the execution occurrences). This means, that after receiving a message
(receiveEvent), the send events derived from called nested features are added
in form of events covering the lifeline. In case of synchronous calls with owned
return values, for each message, the receive event related to the reply message
enters the set of ordered events (see M12) before adding the send event of the
next call.

3 Views on Test-Execution Traces

In this section, we discuss how the mappings from Sect. 2 can be extended to
render the derived interaction models tailorable. By tailoring, we refer to specific
means for zooming in and out on selected details of a test-execution trace; and
for pruning selected details. For this purpose, our approach defines a scenario-
test viewpoint. A viewpoint [4] stipulates the element types (e.g. scenario-test
parts, feature-call scopes) and the types of relationships between these element
types (e.g. selected, unselected) available for defining different views on test-
execution traces. On the one hand, applying the viewpoint allows for control-
ling model-size explosion. On the other hand, the views offered on the derived
models can help tailor the corresponding behavior documentation for given
tasks (e.g. test or code reviews) and/or stakeholder roles (e.g. test developer,
software architect).

Fig. 7. Example of an option space for configuring views on test-execution traces by
combining scenario-test parts and feature-call scopes.

Deriving Tailored UML Interaction Models 335

3.1 Scenario-Test Viewpoint

To tailor the derived interaction models, two characteristics of scenario tests and
the corresponding scenario-test traces can be leveraged: the whole-part structure
of scenario tests and trackable feature-call scopes.

Scenario-Test Parts. Scenario tests, in terms of concepts and their specifica-
tion structure, are composed of different parts (see Sect. 2.1 and Fig. 3):

– A test suite encompasses one or more test cases.
– A test case comprises one or more test scenarios.
– A test case, and a test scenario can contain assertion blocks to specify pre-

and post-conditions.
– A test suite, a test case, and a test scenario can contain exercise blocks, as
setup, or cleanup procedures.

– A test scenario contains a test body.

Feature-Call Scopes. Each feature call in a scenario-test trace is scoped
according to the scenario-test framework (STF) and the system under test
(SUT), respectively, as the source and the target of the feature call. This way,
we can differentiate between three feature-call scopes:

– feature calls running from the STF to the SUT (i.e. test stimuli),
– feature calls internal to the SUT (triggered by test stimuli directly and indi-

rectly),
– feature calls internal to the STF.

The scenario-test parts and feature-call scopes form a large option space for
tailoring an interaction model. In Fig. 7, these tailoring options are visualized as
a configuration matrix. For instance, a test suite containing one test case with
just one included test scenario offers 14,329 different interaction-model views
available for configuration based on one test run (provided that the correspond-
ing test blocks are specified).4

3.2 Example

In this section, we demonstrate by example the relevance of specifying differ-
ent views on the test-execution traces for different tasks and/or stakeholder
roles. A stack-based dispenser component (one element of an exemplary SUT)
is illustrated in Fig. 8. A Stack provides the operations push, pop, size,
and full as well as the attributes limit and element, which are accessible
via corresponding getter/setter operations (i.e. getElements, getLimit and
setLimit).

4 The number of views computes as follows: There are (23−1) non-empty combinations
of the three feature-call scopes (SUT internal, STF internal, STF to SUT) times the
(211 − 1) non-empty combinations of at least 11 individual test parts (e.g. setup of
test case, test body of test scenario).

336 T. Haendler et al.

Fig. 8. Excerpt
from a UML class
diagram of an
exemplary SUT.

Listing 1.1. Natural-language notation of scenario
pushOnFullStack.

1 Given: ’that a specific instance of Stack contains elements of the size of 2
and has a limit of 2’

2 When: ’an element is pushed on the instance of Stack’
3 Then: ’the push operation fails and the size of elements is still 2’

Listing 1.2. Excerpt from an exemplary test script specifying
test scenario pushOnFullStack.

1 set fs [::STORM::TestScenario new -name pushOnFullStack -testcase pushElement]
2 $fs expected_result set 0
3 $fs setup_script set {
4 [::Stack info instances] limit set 2
5 }
6 $fs preconditions set {
7 {expr {[[::Stack info instances] size] == 2}}
8 {expr {[[::Stack info instances] limit get] == 2}}
9 }
10 $fs test_body set {
11 [::Stack info instances] push 1.4
12 }
13 $fs postconditions set {
14 {expr {[[::Stack info instances] size] == 2}}
15 }

Consider the example of a test developer whose primary task is to conduct a
test-code review. For this review, she is responsible for verifying a test-scenario
script against a scenario-based requirements description. The scenario is named
pushOnFullStack and specified in Listing 1.1. The excerpt from the test script
to be reviewed is shown in Listing 1.2. To support her in this task, our approach
can provide her with a partial UML sequence diagram which reflect only selected
details of the test-execution trace. These details of interest could be interactions
triggered by specific blocks of the test under review, for example. Such a view
provides immediate benefits to the test developer. The exemplary view in Fig. 9
gives details on the interactions between the STF and the SUT, i.e. the test
stimuli observed under this specific scenario. To obtain this view, the configura-
tion pulls feature calls from a combination of setup, precondition, test body and
postcondition specific to this test scenario. The view from Fig. 9 corresponds to
configuration 1© in Fig. 7.

As another example, consider a software architect of the same SUT. The
architect might be interested in how the system behaves when executing the
test body of the given scenario pushOnFullStack. The architect prefers a
behavior documentation which additionally provides details on the interaction
between SUT instances. A sequence diagram for such a view is presented in
Fig. 10. This second view effectively zooms into a detail of the first view in
Fig. 9, namely the inner workings triggered by the message push(1,4). The
second view reflects configuration 2© in Fig. 7.

3.3 Viewpoint Mappings

UML interaction models and corresponding sequence diagrams allow for realiz-
ing immediate benefits from a scenario-test viewpoint. For example, sequence

Deriving Tailored UML Interaction Models 337

Fig. 9. Sequence diagram derived from
pushOnFullStack highlighting calls
running from STF to SUT.

Fig. 10. Sequence diagram derived
from pushOnFullStack zooming in
on test body and representing both,
calls running from STF to SUT and
calls internal to the SUT.

diagrams provide notational elements which can help in communicating the
scenario-test structure (suite, case, scenario) to different stakeholders (architects,
developers, and testers). These notational features include combined fragments
and references. This way, a selected part can be visually marked in a diagram
showing a combination of test parts (see, e.g., Fig. 9). Alternatively, a selected
part of a scenario test can be highlighted as a separate diagram (see Fig. 10). On
the other hand, interaction models can be tailored to contain only interactions
between certain types of instances. Thereby, the corresponding sequence diagram
can accommodate views required by different stakeholders of the SUT. In Fig.
9, the sequence diagram highlights the test stimuli triggering the test scenario
pushOnFullStack, whereas the diagram in Fig. 10 additionally depicts SUT
internal calls.

Conceptually, we represent different views as models conforming to the view
metamodel in Fig. 11. In essence, each view selects one or more test parts and
feature-call scopes, respectively, to be turned into an interaction model. Gen-
erating the actual partial interaction model is then described by six additional
transML mapping actions based on a view and a trace model (see M13–18 in
Fig. 12). In each mapping action, a given view model (view) is used to ver-
ify whether a given element is to be selected for the chosen scope of test parts
and call scopes. Upon its selection, a feature call with its call dependencies is
processed according to the previously introduced mapping actions (i.e. M1-M9,
M11, and M12).

Mappings Specific to Call Scope. As explained in Sect. 3.1, a view can define
any, non-empty combination of three call scopes: STF internal, SUT internal,
and STF to SUT. In mapping action M18, each feature call is evaluated according

338 T. Haendler et al.

Fig. 11. View metamodel.

Fig. 12. Mappings specific to a given configured view with callScope and
testPartition. For clarity, the case for configuring a view with one call scope and
one test partition is depicted.

to the structural affiliations of the calling and the called feature, respectively.
For details, see the OCL helper operation conformsToCallScope(v:View)
in Listing 1.5 shown in the Appendix. Note that in case of explicitly docu-
menting SUT behavior (i.e. SUT internal and STF to SUT), lifelines can alter-
natively just represent SUT instances. In this case, the sendEvent of each
call running from STF to SUT (and, in turn, each receiveEvent of the
corresponding reply message) is represented by a Gate instance (instead of
MessageOccurrence) which signifies in the UML a connection point for relat-
ing messages outside with inside an interaction fragment.

Mappings Specific to Test Partition. The viewpoint provides for map-
ping structural elements of the STF to structural elements of UML interac-
tions to highlight feature calls in their scenario-test context. Relevant contexts
are the STF and scenario-test blocks (see M13–M17 in Fig. 12). Feature calls
relate directly to a test block, with the call definition being contained by a

Deriving Tailored UML Interaction Models 339

block, or indirectly along a feature-call chain. This way, the STF and the respec-
tive test parts responsible for a trace can selectively enter a derived interaction
as participants (e.g. as a test-driver lifeline). Besides, the scenario-test blocks
and parts nested in the responsible test part (e.g. case, scenario, setup, pre-
condition) can become structuring elements within an enclosing interaction,
such as combined fragments. Consider, for example, a test suite being selected
entirely. The trace obtained from executing the TestSuite instance is mapped
to an instance of Interaction (M13 in Fig. 12). Scenario-test parts such as
test cases and test scenarios, as well as test blocks, also become instances of
Interaction when they are selected as active partition in a given view (M14,
M16). Alternatively, they become instances of CombinedFragment along with
corresponding interaction operands (M15, M17), when they are embedded with
the actually selected scenario-test part (see isNestedIn(p:Partition) in
Listing 1.5 in the Appendix). Hierarchical ownership of one (child) test part by
another (parent) part is recorded accordingly as enclosingOperand relation-
ship between child and parent parts. The use of combined fragments provides for
a general structuring of the derived interaction model according to the scenario-
test structure. All feature calls associated with given test parts (see M18 in
Fig. 12 and the mapping constraint conformsToTestPartition(v:View)
in Listing 1.5 in the Appendix) are effectively grouped because their corre-
sponding message occurrences and execution occurrences (both being a kind
of InteractionFragment) become linked to a combined fragment via an
enclosing interaction operand. Combined fragments also establish a link to the
Lifeline instances representing the SUT instances interacting in a given view.
To maintain the strict chronological order of feature calls in a given trace, the
resulting combined fragments must apply the InteractionOperator strict
(see Sect. 2.1).5

4 Prototype Implementation

The KaleidoScope6 tool can derive tailored UML2 interaction models from
scenario-based runtime tests. Figure 13 depicts a high-level overview of the
derivation procedure supported by KaleidoScope. The architectural components
of KaleidoScope (STORM, trace provider, and model builder) as well as the
diagram editor are represented via different swimlanes. Artifacts required and
resulting from each derivation step are depicted as input and output pins of the
respective action.

4.1 Used Technologies

The “Scenario-based Testing of Object-oriented Runtime Models” (STORM)
test framework provides an infrastructure for specifying and for executing
5 The default value seq provides weak sequencing, i.e. ordering of fragments just along

lifelines, which means that occurrences on different lifelines from different operands
may come in any order [27].

6 Available for download from our website [14].

340 T. Haendler et al.

Fig. 13. Process of deriving tailored interaction models with KaleidoScope.

scenario-based component tests [34]. STORM provides all elements of our
scenario-based testing metamodel (see Fig. 3). KaleidoScope builds on and
instruments STORM to obtain execution-trace data from running tests defined
as STORM test suites. This way, KaleidoScope keeps adoption barriers low
because existing STORM test specifications can be reused without modifica-
tion. STORM is implemented using the dynamic object-oriented language “Next
Scripting Language” (NX), an extension of the “Tool Command Language”
(Tcl). As KaleidoScope integrates with STORM, we also implemented Kaleido-
Scope via NX/Tcl. In particular, we chose this development environment because
NX/Tcl provides numerous advanced dynamic runtime introspection techniques
for collecting execution traces from scenario tests. For example, NX/Tcl pro-
vides built-in method-call introspection in terms of message interceptors [36] and
callstack introspection. KaleidoScope records and processes execution traces, as
well as view configuration specifications, in terms of EMF models (Eclipse Mod-
eling Framework; i.e. Ecore and MDT/UML2 models). More precisely, the mod-
els are stored and handled in their Ecore/XMI representation (XML Metadata
Interchange specification [26]). For transforming our trace models into UML
models, the required model transformations [6] are implemented via
“Query/View/Transformation Operational” (QVTo) mappings [25]. QVTo
allows for implementing concrete model transformations based on conceptual
mappings in a straightforward manner.

4.2 Derivation Actions

Run Scenario Tests. For deriving interaction models via KaleidoScope, a
newly created or an existing scenario-test suite is executed by the STORM
engine. At this point, and from the perspective of the software engineer,
this derivation-enabled test execution does not deviate from an ordinary one.

Deriving Tailored UML Interaction Models 341

Fig. 14. Trace metamodel, EMF Ecore.

View
callScope : CallScopeKind
name : EString

TestPartition
testBlock : TestBlockKind
testScenario : EString
testCase : EString
isEntireTestSuite : EBoolean
name : EString

<<enumeration>>
CallScopeKind
sftToSut
sutIntern
all

<<enumeration>>
TestBlockKind
setup
preconditions
testbody
postconditions
cleanup

partition 1

Fig. 15. View meta-
model, EMF Ecore.

The primary objective of this test run is to obtain the runtime data required to
build a trace model. Relevant runtime data consist of scenario-test traces (SUT
feature calls and their call dependencies) and structural elements of the scenario
test (a subset of STF feature calls and their call dependencies).

Build Trace Models. Internally, the trace-provider component of KaleidoScope
instruments the STORM engine before the actual test execution to record the
corresponding runtime data. This involves intercepting each call of relevant fea-
tures and deriving the corresponding call dependencies. At the same time, the
trace provider ascertains that its instrumentation remains transparent to the
STORM engine. To achieve this, the trace provider instruments the STORM
engine and the tests under execution using NX/Tcl introspection techniques.
In NX/Tcl, method-call introspection is supported via two variants of message
interceptors [36]: mixins and filters. Mixins [37] can be used to decorate entire
components and objects. Thereby, they intercept calls to methods which are
known a priori. In KaleidoScope, the trace provider registers a mixin to intercept
relevant feature calls on the STF, i.e. the STORM engine. Filters [23] are used by
the trace provider to intercept calls to objects of the SUT which are not known
beforehand. To record relevant feature-call dependencies, the trace provider uses
the callstack introspection offered by NX/Tcl. NX/Tcl offers access to its opera-
tion callstack via special-purpose introspection commands, e.g. nx::current,
see [22]. To collect structural data on the intercepted STF and SUT instances, the
trace provider piggybacks onto the structural introspection facility of NX/Tcl,
e.g., info methods, see [22]. This way, structural data such as class names, fea-
ture names, and relationships between classes can be requested. The collected
runtime data is then processed by the trace provider. In particular, feature calls
at the application level are filtered to include only calls for the scope of the
SUT. This way, calls into other system contexts (e.g., external components or
lower-level host language calls) are discarded. In addition, the execution traces
are reordered to report “invocations interactions” first and “return interactions”

342 T. Haendler et al.

second. Moreover, the recorded SUT calls are linked to the respective owning
test blocks. The processed runtime data is then stored as a trace model which
conforms to the Trace metamodel defined via Ecore (see Fig. 14). This result-
ing trace model comprises the relevant structural elements (test suite, test case
and test scenario), the SUT feature calls and their call dependencies, each being
linked to a corresponding test block.

Configure Views. Based on the specifics of the test run (e.g. whether an entire
test suite or selected test cases were executed) and the kind of runtime data
collected, different views are available to the software engineer for selection. In
KaleidoScope, the software engineer can select a particular view by defining
a view model. This view model must conform to the View metamodel speci-
fied using Ecore (see Fig. 15). KaleidoScope allows for configuring views on the
behavior of the SUT by combining a selected call scope (SUT internal, STF to
SUT, or both) and a selected test partition (entire test suite or a specific test
case, scenario, or block), as described in Sect. 3.

Build Interaction Models. The model-builder component of KaleidoScope
takes the previously created pair of a trace model and a view model as input
models for a collection of QVTo model transformations. The output model of
these QVTo transformations is the UML interaction model. The conceptual map-
pings presented in Subsects. 2.3 and 3.3 are implemented in QVT Operational
mappings [25], including the linking of relationships between the derived ele-
ments. In total, the transformation file contains 24 mapping actions.

Display Sequence Diagrams. Displaying the derived interaction models as
sequence diagrams and presenting them to the software engineer is not handled
by KaleidoScope itself. As the derived interaction models are available in the
XMI representation, they can be imported by XMI-compliant diagram editors.
In our daily practice, we use Eclipse Papyrus [8] for this task.

5 Related Work

Closely related research can be roughly divided into three groups: reverse-
engineering sequence diagrams from system execution, techniques addressing
the problem of model-size explosion in reverse-engineered behavioral models and
extracting traceability links between test and system artifacts.

Reverse-Engineering UML Sequence Diagrams. Approaches applying
dynamic analysis set the broader context of our work [2,7,12,28]. Of partic-
ular interest are model-driven approaches which provide conceptual mappings
between runtime-data models and UML interaction models. Briand et al. [2] as
well as Cornelissen et al. [5] are exemplary for such model-driven approaches.
In their approaches, UML sequence diagrams are derived from executing
runtime tests. Both describe metamodels to define sequence diagrams and for
capturing system execution in form of a trace model. Briand et al. define map-
pings between these two metamodels in terms of OCL consistency constraints.

Deriving Tailored UML Interaction Models 343

Each test execution relates to a single use-case scenario defined by a system-level
test case. Their approaches differ from ours in some respects. The authors build
on generic trace metamodels while we extend an existing scenario-test meta-
model to cover test-execution traces. Briand et al. do not provide for scoping
the derived sequence diagrams based on the executed tests unlike Cornelissen et
al. (see below). They, finally, do not capture the mappings between trace and
sequence model in a formalized way.

Countering Model-Size Explosion. A second group of related approaches
aims at addressing the problem of size explosion in reverse-engineered behav-
ioral models. Fernández-Sáez et al. [10] conducted a controlled experiment on
the perceived effects of derived UML sequence diagrams on maintaining a soft-
ware system. A key result is that derived sequence diagrams do not necessarily
facilitate maintenance tasks due to an excessive level of detail. Hamou-Lhadj
and Lethbridge [16] and Bennett et al. [1] surveyed available techniques which
can act as counter measures against model-size explosion. The available tech-
niques fall into three categories: slicing and pruning of components and calls
as well as architecture-level filtering. Slicing (or sampling) is a way of reducing
the resulting model size by choosing a sample of execution traces. Sharp and
Rountev [33] propose interactive slicing for zooming in on selected messages and
message chains. Grati et al. [11] contribute techniques for interactively high-
lighting selected execution traces and for navigating through single execution
steps. Pruning (or hiding) provides abstraction by removing irrelevant details.
For instance, Lo and Maoz [20] elaborate on filtering calls based on different
execution levels. In doing so, they provide hiding of calls based on the distinc-
tion between triggers and effects of scenario executions. As an early approach of
architectural-level filtering, Richner and Ducasse [31] provide for tailorable views
on object-oriented systems, e.g., by filtering calls between selected classes. In our
approach, we adopt these techniques for realizing different views conforming to
a scenario-test viewpoint. In particular, slicing corresponds to including interac-
tions of certain test parts (e.g., test cases, test scenarios) only, selectively hiding
model elements to pulling from different feature-call scopes (e.g., stimuli and
internal calls). Architectural-level filtering is applied by distinguishing elements
by their structural affiliation (e.g., SUT or STF).

Test-to-System Traceability. Another important group of related work pro-
vides for creating traceability links between test artifacts and system artifacts
by processing test-execution traces. Parizi et al. [29] give a systematic overview
of such traceability techniques. For instance, test cases are associated with SUT
elements based on the underlying call-trace data for calculating metrics which
reflect how each method is tested [19]. Qusef et al. [30] provide traceability links
between unit tests and classes under test. These links are extracted from trace
slices generated by assertion statements contained by the unit tests. In gen-
eral, these approaches do not necessarily derive behavioral diagrams, however
Parizi et al. conclude by stating the need for visualizing traceability links. These
approaches relate to ours by investigating which SUT elements are covered by
a specific part of the test specification. While they use this information, e.g.,

344 T. Haendler et al.

for calculating coverage metrics, we aim at visualizing the interactions for doc-
umenting system behavior. However, Cornelissen et al. [5] pursue a similar goal
by visualizing the execution of unit tests. By leveraging the structure of tests,
they aim at improving the understandability of reverse-engineered sequence dia-
grams (see above), e.g., by representing the behavior of a particular test part
in a separate sequence diagram. While they share our motivation for test-based
partitioning, Cornelissen et al. do not present a conceptual or a concrete solu-
tion to this partitioning. Moreover, we leverage the test structure for organizing
the sequence diagram (e.g., by using combined fragments) and consider different
scopes of feature calls.

6 Conclusion

In this paper, we presented an approach for deriving tailored UML interaction
models for documenting system behavior from scenario-based runtime tests. Our
approach allows for leveraging the structure of scenario tests (i.e. test parts and
call scopes) to tailor the derived interaction models, e.g., by pruning details and
by zooming in and out on selected details. This way, we also provide means
to control the sizes of the resulting UML sequence diagrams. Our approach is
model-driven in the sense that test-execution traces are represented through a
dedicated metamodel. Conceptual mappings (transformation rules) between this
metamodel and the UML metamodel are captured by transML diagrams refined
by inter-model constraint expressions (OCL). To demonstrate the feasibility of
our approach, we developed a prototype implementation called KaleidoScope.
The approach is applicable for any software system having an object-oriented
design and implementation, provided that suitable test suites and a suitable test
framework are available. A test suite (and the guiding test strategy) is qualified
if tests offer structuring abstractions (i.e. test parts as in scenario tests) and if
tests trigger inter-object interactions. The corresponding test framework must
offer instrumentation to obtain test-execution traces.

In a next step, we will investigate via controlled experiments how the derived
interaction models can support system stakeholders in comprehension tasks on
the tested software system and on the test scripts. From a conceptual point of
view, we plan to extend the approach to incorporate behavioral details such as
measured execution times into the interaction models. From a practical angle,
we seek to apply the approach on large-scale software projects. For this, our
KaleidoScope must be extended to support runtime and program introspection
for other object-oriented programming languages and for the corresponding test
frameworks.

Deriving Tailored UML Interaction Models 345

Appendix

Listing 1.3. OCL consistency constraints
based on mapping M4 in Fig. 5.

1 context M4 inv:
2 message.name=featureCall.name and
3 (featureCall.argument->notEmpty() implies message.

argument.name=featureCall.argument.name) and
4 message.sendEvent.oclIsTypeOf(

MessageOccurrenceSpecification) and
5 message.sendEvent.name=featureCall.caller.name and
6 message.sendEvent.covered.name=featureCall.source.

name and
7 message.sendEvent.covered.represents.name=

featureCall.source.name and
8 message.sendEvent.covered.represents.type.name=

featureCall.source.definingClass.name and
9 message.receiveEvent.oclIsTypeOf(

MessageOccurrenceSpecification) and
10 message.receiveEvent.name=featureCall.callee.name

and
11 if(featureCall.callee.oclIsTypeOf(Constructor)) then

{
12 message.messageSort=MessageSort::createMessage and
13 message.signature.name=’create’ and
14 message.receiveEvent.covered.name=featureCall.

returnValue.value and
15 message.receiveEvent.covered.represents.name=

featureCall.returnValue.value and
16 message.receiveEvent.covered.represents.type.name=

featureCall.target.name
17 } else {
18 message.receiveEvent.covered.name=featureCall.

target.name and
19 message.receiveEvent.covered.represents.name=

featureCall.target.name and
20 message.receiveEvent.covered.represents.type.name=

featureCall.target.definingClass.name and
21 if (featureCall.callee.oclIsTypeOf(Destructor))

then {
22 message.messageSort=MessageSort::deleteMessage and
23 message.signature.name=’delete’
24 } else {
25 message.messageSort=MessageSort::synchCall and
26 message.signature.name=featureCall.callee.name and
27 (featureCall.returnValue->isEmpty() implies

message.receiveEvent.execution.finish.
oclIsTypeOf(ExecutionOccurrence))

28 } endif
29 } endif

Listing 1.4. OCL consistency constraints
based on mapping M12 in Fig. 6.

1 context M12 inv:
2 message.messageSort=MessageSort::reply and
3 message.name=returnValue.value and
4 message.signature.name=returnValue.value and
5 message.argument->isEmpty() and
6 message.sendEvent.oclIsTypeOf(

MessageOccurrenceSpecification) and
7 message.sendEvent.name=returnValue.featureCall.

callee.name and
8 message.sendEvent.covered.name=returnValue.

featureCall.target.name and
9 message.sendEvent.covered.represents.name=

returnValue.featureCall.target.name and
10 message.sendEvent.covered.represents.type.name=

returnValue.featureCall.target.definingClass.
name and

11 message.receiveEvent.oclIsTypeOf(
MessageOccurrenceSpecification) and

12 message.receiveEvent.name=returnValue.featureCall.
caller.name and

13 message.receiveEvent.covered.name=returnValue.
featureCall.source.name and

14 message.receiveEvent.covered.represents.name=
returnValue.featureCall.source.name and

15 message.receiveEvent.covered.represents.type.name=
returnValue.featureCall.source.definingClass.
name

Listing 1.5. OCL helper operations
applied in mappings M15, M17 and M18
in Fig. 12.

1 context FeatureCall
2 def: conformsToCallScope(v:View) : Boolean =
3 if (v.callScope=’sutIntern’) then {
4 self.isDefinedByStfBlock=false and
5 self.calleeOwnedByStfClass=false
6 } else {
7 if (v.callScope=’stfToSut’) then {
8 self.isDefinedByStfBlock and
9 self.calleeOwnedByStfClass=false
10 } else {
11 if (v.callScope=’stfIntern’) then {
12 self.isDefinedByStfBlock and
13 self.calleeOwnedByStfClass
14 } else { false } endif
15 } endif
16 } endif
17 def: conformsToTestPartition(v:View) : Boolean =
18 self.owningBlock.isNestedIn(v.testPartition)
19 def: isDefinedByTestBlock : Boolean =
20 block.oclIsTypeOf(Setup) or
21 block.oclIsTypeOf(TestBody) or
22 block.oclIsTypeOf(Cleanup) or
23 (block.oclIsTypeOf(Assertion)implies(block.block.

oclIsTypeOf(Precondition) or
24 block.block.oclIsTypeOf(Postcondition))
25 def: calleeOwnedByStfClass : Boolean =
26 Set{TestSuite, TestCase, TestScenario, Setup,

Precondition, TestBody, Postcondition,
Cleanup}->includes(self.callee.owningClass.
name)

27 def: block : Block = self.definition.Block
28
29 context TestPart
30 def: isNestedIn(p:TestPartition) : Boolean =
31 if (p.oclIsTypeOf(TestSuite)) then {
32 true
33 } else {
34 if (p.oclIsTypeOf(TestCase)) then {
35 (self.oclIsTypeOf(TestCase) implies p.name=self.

name) and
36 (self.oclIsTypeOf(TestScenario) implies p.name=

self.testCase.name) and
37 (self.oclIsTypeOf(Block) implies (
38 (self.testCase->notEmpty() and p.name=self.

testCase.name) or
39 (self.testScenario->notEmpty() and p.name=self.

testScenario.testCase.name)))
40 } else {
41 if (p.oclIsTypeOf(TestScenario)) then {
42 (not self.oclIsTypeOf(TestCase)) and
43 (self.oclIsTypeOf(TestScenario) implies (
44 p.name=self.name and
45 p.testCase.name = self.testCase.name
46)) and
47 (self.oclIsTypeOf(Block) implies (
48 p.name=self.testScenario.name and
49 p.testCase.name=self.testScenario.testCase.name

))
50 } else {
51 if (p.oclIsTypeOf(Block)) then {
52 self.oclIsTypeOf(Block) and p.name=self.name

and
53 ((p.testCase->notEmpty() and self.testCase->

notEmpty()) implies p.testCase.name =
self.testCase.name) and

54 (p.testScenario->notEmpty() and self.
testScenario->notEmpty()) implies p.
testScenario.name = self.testScenario.
name))

55 } else { false } endif
56 } endif
57 } endif
58 } endif

346 T. Haendler et al.

References

1. Bennett, C., Myers, D., Storey, M.A., German, D.M., Ouellet, D., Salois,
M., Charland, P.: A survey and evaluation of tool features for understanding
reverse-engineered sequence diagrams. Softw. Maint. Evol. 20(4), 291–315 (2008).
doi:10.1002/smr.v20:4

2. Briand, L.C., Labiche, Y., Miao, Y.: Toward the reverse engineering of UML
sequence diagrams. In: Proceedings of WCRE 2003, pp. 57–66. IEEE (2003).
doi:10.1109/TSE.2006.96

3. Carroll, J.M.: Five reasons for scenario-based design. Interact. Comput. 13(1),
43–60 (2000). doi:10.1016/S0953-5438(00)00023-0

4. Clements, P., Bachmann, F., Bass, L., Garlan, D., Ivers, J., Little, R., Merson,
P., Nord, R., Stafford, J.: Documenting Software Architecture: Views and Beyond.
SEI, 2nd edn. Addison-Wesley, Boston (2011)

5. Cornelissen, B., Van Deursen, A., Moonen, L., Zaidman, A.: Visualizing testsuites
to aid in software understanding. In: Proceedings of CSMR 2007, pp. 213–222.
IEEE (2007). doi:10.1109/CSMR.2007.54

6. Czarnecki, K., Helsen, S.: Classification of model transformation approaches. In:
WS Proceedings of OOPSLA 2003, pp. 1–17. ACM Press (2003)

7. Delamare, R., Baudry, B., Le Traon, Y., et al.: Reverse-engineering of UML 2.0
sequence diagrams from execution traces. In: WS Proceedings of ECOOP 2006.
Springer (2006)

8. Eclipse Foundation: Papyrus (2015). http://eclipse.org/papyrus/. Accessed 25
September 2015

9. Falessi, D., Briand, L.C., Cantone, G., Capilla, R., Kruchten, P.: The value of
design rationale information. ACM Trans. Softw. Eng. Methodol. 22(3), 21:1–21:32
(2013). doi:10.1145/2491509.2491515

10. Fernández-Sáez, A.M., Genero, M., Chaudron, M.R., Caivano, D., Ramos, I.: Are
forward designed or reverse-engineered UML diagrams more helpful for code main-
tenance? a family of experiments. Inform. Softw. Tech. 57, 644–663 (2015). doi:10.
1016/j.infsof.2014.05.014

11. Grati, H., Sahraoui, H., Poulin, P.: Extracting sequence diagrams from execution
traces using interactive visualization. In: Proceedings of WCRE 2010, pp. 87–96.
IEEE (2010). doi:10.1109/WCRE.2010.18

12. Guéhéneuc, Y.G., Ziadi, T.: Automated reverse-engineering of UML v2.0 dynamic
models. In: WS Proceedings of ECOOP 2005. Springer (2005)

13. Guerra, E., Lara, J., Kolovos, D.S., Paige, R.F., Santos, O.M.: Engineering model
transformations with transML. Softw. Syst. Model. 12(3), 555–577 (2013). doi:10.
1007/s10270-011-0211-2

14. Haendler, T.: KaleidoScope. Institute for Information Systems and New Media.
WU Vienna (2015). http://nm.wu.ac.at/nm/haendler. Accessed 25 September
2015

15. Haendler, T., Sobernig, S., Strembeck, M.: An approach for the semi-automated
derivation of UML interaction models from scenario-based runtime tests. In:
Proceedings of ICSOFT-EA 2015, pp. 229–240. SciTePress (2015). doi:10.5220/
0005519302290240

16. Hamou-Lhadj, A., Lethbridge, T.C.: A survey of trace exploration tools and tech-
niques. In: Proceedings of CASCON 2004, pp. 42–55. IBM Press (2004). http://
dl.acm.org/citation.cfm?id=1034914.1034918

http://dx.doi.org/10.1002/smr.v20:4
http://dx.doi.org/10.1109/TSE.2006.96
http://dx.doi.org/10.1016/S0953-5438(00)00023-0
http://dx.doi.org/10.1109/CSMR.2007.54
http://eclipse.org/papyrus/
http://dx.doi.org/10.1145/2491509.2491515
http://dx.doi.org/10.1016/j.infsof.2014.05.014
http://dx.doi.org/10.1016/j.infsof.2014.05.014
http://dx.doi.org/10.1109/WCRE.2010.18
http://dx.doi.org/10.1007/s10270-011-0211-2
http://dx.doi.org/10.1007/s10270-011-0211-2
http://nm.wu.ac.at/nm/haendler
http://dx.doi.org/10.5220/0005519302290240
http://dx.doi.org/10.5220/0005519302290240
http://dl.acm.org/citation.cfm?id=1034914.1034918
http://dl.acm.org/citation.cfm?id=1034914.1034918

Deriving Tailored UML Interaction Models 347

17. Jacobson, I.: Object-Oriented Software Engineering: A Use Case Driven Approach.
ACM Press Series. ACM Press, New York (1992)

18. Jarke, M., Bui, X.T., Carroll, J.M.: Scenario management: an interdisciplinary
approach. Requirements Eng. 3(3), 155–173 (1998). doi:10.1007/s007660050002

19. Kanstrén, T.: Towards a deeper understanding of test coverage. Softw. Maint. Evol.
20(1), 59–76 (2008). doi:10.1002/smr.362

20. Lo, D., Maoz, S.: Mining scenario-based triggers and effects. In: Proceedings of
ASE 2008, pp. 109–118. IEEE (2008). doi:10.1109/ASE.2008.21

21. Nebut, C., Fleurey, F., Le Traon, Y., Jezequel, J.: Automatic test generation:
a use case driven approach. IEEE Trans. Softw. Eng. 32(3), 140–155 (2006).
doi:10.1109/TSE.2006.22

22. Neumann, G., Sobernig, S.: Next scripting framework. API reference (2015).
https://next-scripting.org/xowiki/. Accessed 25 September 2015

23. Neumann, G., Zdun, U.: Filters as a language support for design patterns in object-
oriented scripting languages. In: Proceedings of COOTS 1999, pp. 1–14. USENIX
(1999). http://dl.acm.org/citation.cfm?id=1267992

24. Object Management Group: Object Constraint Language (OCL) - Version 2.4
(2014). http://www.omg.org/spec/OCL/2.4/. Accessed 25 September 2015

25. Object Management Group: Meta Object Facility (MOF) 2.0 Query/View/Trans-
formation Specification, Version 1.2, February 2015. http://www.omg.org/spec/
QVT/1.2/. Accessed 25 September 2015

26. Object Management Group: MOF 2 XMI Mapping Specification, Version 2.5.1,
June 2015. http://www.omg.org/spec/XMI/2.5.1/. Accessed 25 September 2015

27. Object Management Group: Unified Modeling Language (UML), Superstruc-
ture, Version 2.5.0, June 2015. http://www.omg.org/spec/UML/2.5. Accessed 25
September 2015

28. Oechsle, R., Schmitt, T.: JAVAVIS: Automatic program visualization with object
and sequence diagrams using the java debug interface (JDI). In: Diehl, S. (ed.)
Dagstuhl Seminar 2001. LNCS, vol. 2269, pp. 176–190. Springer, Heidelberg (2002).
doi:10.1007/3-540-45875-1 14

29. Parizi, R.M., Lee, S.P., Dabbagh, M.: Achievements and challenges in state-of-the-
art software traceability between test and code artifacts. Trans. Reliab. IEEE 63,
913–926 (2014). doi:10.1109/TR.2014.2338254

30. Qusef, A., Bavota, G., Oliveto, R., de Lucia, A., Binkley, D.: Recovering test-to-
code traceability using slicing and textual analysis. J. Syst. Softw. 88, 147–168
(2014). doi:10.1016/j.jss.2013.10.019

31. Richner, T., Ducasse, S.: Recovering high-level views of object-oriented applica-
tions from static and dynamic information. In: Proceedings of ICSM 1999, pp.
13–22. IEEE (1999). http://dl.acm.org/citation.cfm?id=519621.853375

32. Ryser, J., Glinz, M.: A scenario-based approach to validating and testing software
systems using statecharts. In: Proceedings of ICSSEA 1999 (1999)

33. Sharp, R., Rountev, A.: Interactive exploration of UML sequence diagrams. In:
Proceedings of VISSOFT 2005, pp. 1–6. IEEE (2005). doi:10.1109/VISSOF.2005.
1684295

34. Strembeck, M.: Testing policy-based systems with scenarios. In: Proceedings of
IASTED 2011, pp. 64–71. ACTA Press (2011). doi:10.2316/P.2011.720-021

35. Van Geet, J., Zaidman, A., Greevy, O., Hamou-Lhadj, A.: A lightweight approach
to determining the adequacy of tests as documentation. In: Proceedings of PCODA
2006, pp. 21–26. IEEE CS (2006)

36. Zdun, U.: Patterns of tracing software structures and dependencies. In: Proceedings
of EuroPLoP 2003, pp. 581–616. Universitaetsverlag Konstanz (2003)

http://dx.doi.org/10.1007/s007660050002
http://dx.doi.org/10.1002/smr.362
http://dx.doi.org/10.1109/ASE.2008.21
http://dx.doi.org/10.1109/TSE.2006.22
https://next-scripting.org/xowiki/
http://dl.acm.org/citation.cfm?id=1267992
http://www.omg.org/spec/OCL/2.4/
http://www.omg.org/spec/QVT/1.2/
http://www.omg.org/spec/QVT/1.2/
http://www.omg.org/spec/XMI/2.5.1/
http://www.omg.org/spec/UML/2.5
http://dx.doi.org/10.1007/3-540-45875-1_14
http://dx.doi.org/10.1109/TR.2014.2338254
http://dx.doi.org/10.1016/j.jss.2013.10.019
http://dl.acm.org/citation.cfm?id=519621.853375
http://dx.doi.org/10.1109/VISSOF.2005.1684295
http://dx.doi.org/10.1109/VISSOF.2005.1684295
http://dx.doi.org/10.2316/P.2011.720-021

348 T. Haendler et al.

37. Zdun, U., Strembeck, M., Neumann, G.: Object-based and class-based composition
of transitive mixins. Inform. Softw. Tech. 49(8), 871–891 (2007). doi:10.1016/j.
infsof.2006.10.001

38. Ziadi, T., Da Silva, M.A.A., Hillah, L.M., Ziane, M.: A fully dynamic approach
to the reverse engineering of UML sequence diagrams. In: Proceedings of ICECCS
2011, pp. 107–116. IEEE (2011). doi:10.1109/ICECCS.2011.18

http://dx.doi.org/10.1016/j.infsof.2006.10.001
http://dx.doi.org/10.1016/j.infsof.2006.10.001
http://dx.doi.org/10.1109/ICECCS.2011.18

Documenting and Designing QVTo Model
Transformations Through Mathematics

Ulyana Tikhonova(B) and Tim Willemse

Technische Universiteit Eindhoven,
P.O. Box 513, 5600 MB Eindhoven, The Netherlands

{u.tikhonova,t.a.c.willemse}@tue.nl

Abstract. Model transformations play an essential role in Model Driven
Engineering (MDE), as they provide the means to use models as first-
class artifacts in the software development process. While there exist a
number of languages specifically designed to program model transfor-
mations, the practical challenges of documenting and designing model
transformations are hardly addressed. In this paper we demonstrate how
QVTo model transformations can be described and designed informally
through the mathematical notation of set theory and functions. We align
the QVTo concepts with the mathematical concepts, and, building on the
latter, we formulate two design principles of developing QVTo transfor-
mations: structural decomposition and chaining model transformations.

Keywords: Model driven engineering · Model transformation · QVTo ·
Documentation · Software design

1 Introduction and Motivation

Model transformations are the key technology of Model Driven Engineering
(MDE). Model transformations make models meaningful and exploitable and,
thus, allow for (software) development using models as first-class artifacts.
Employing model transformations as the key development technology poses chal-
lenges typical for software engineering, such as design, documentation, and main-
tenance. To address these challenges one needs to be able to describe model
transformations in an unambiguous and clear way.

Nowadays, there exist a number of languages specifically devoted for imple-
menting model transformations, such as: ATL (Atlas Transformation Language),
QVT (Query/ View/Transformation) family of languages, ETL (Epsilon Trans-
formation Language), etc. These languages can be viewed as DSLs for model
transformations. Consequently, a notation for designing and documenting pro-
grams written in such languages should be specifically tailored to describing
model transformations, more or less disqualifying general purpose notations such
as UML. In the current practice there exist no specific notation for describing
model transformations (except those provided by the model transformation lan-
guages themselves). The common approach for documenting and/or explaining
c© Springer International Publishing Switzerland 2016
P. Lorenz et al. (Eds.): ICSOFT 2015, CCIS 586, pp. 349–364, 2016.
DOI: 10.1007/978-3-319-30142-6 19

350 U. Tikhonova and T. Willemse

model transformations is to use concrete examples of their inputs and the corre-
sponding outputs. Clearly, this approach provides an incomplete picture of the
transformation and it fails to provide an overview of the transformation design,
which are essential for describing complex model transformations bridging big
semantic gaps and/or having complex organizational structures.

In this paper we focus on QVT-Operational (QVTo), that was introduced as
part of the MOF (Meta Object Facility) standard [1]. QVTo allows for impera-
tive implementations of model transformations using various tool support, such
as plug-ins of Eclipse Modeling Project. The language comprises both high-level
concepts specific for model transformation development, such as constructs of the
Object Constraint Language (OCL), traceability, inheritance of subroutines; and
low-level concepts of the imperative languages, such as loops, conditional state-
ments, explicit invocation of subroutines. Consequently, using QVTo requires
strong language expertise. However, in practice QVTo is used by engineers who
are experts in their own domains but typically have little to no computer sci-
ence training and lack the required language expertise. Moreover, gaining the
required expertise in QVTo is hampered by the fact that the language is poorly
documented and especially lacks documentation on its pragmatics.

Following our experience of developing and maintaining a complex QVTo
model transformation and of teaching QVTo to students, we propose to adopt
functions and set theory as a notation-independent approach for documenting,
explaining, and designing QVTo model transformations. Typically such mathe-
matical concepts are familiar to most engineers. In this paper we demonstrate
how this notation can be aligned with the QVTo concepts, and thus can be
used for explaining QVTo concepts and for documenting model transformations
(Sect. 3). Moreover, using this notation we formulate two common design prin-
ciples of developing model transformations and show how the corresponding
organization structure and information flow can be described (Sect. 4). In the
rest of the paper, in Sect. 5 we discuss and assess the proposed approach based
on interviews with QVTo practitioners. Related work is discussed in Sect. 2.
Conclusions and directions for future work are given in Sect. 6.

2 Related Work

The broad problem of supporting the whole life-cycle of the model transforma-
tion development with a proper description notation is raised by Guerra et al.
in [2]. In this study they propose a family of different visual languages for various
phases of the development process: requirements, analysis (testing), architectural
design, mappings overview and their detailed design. Although the authors state
that the resulting diagrams should guide the construction of the software arti-
facts, there is no discussion in the paper on how to design model transformations.
In contrast, in our paper we use a single mathematical notation for describing
three of the listed phases: architectural design (transformation chains), map-
pings overview (function signatures) and their detailed design (formulas). The
mathematical notation of function signatures applied in our paper is close to the
notation of rewrite rules of the Stratego language [3].

Documenting and Designing QVTo Model Transformations 351

The earlier works on a notation for describing and designing model trans-
formations, such as [4,5], propose graphical representations that are based on
UML class diagrams. The major disadvantage of such approaches is the difficulty
to describe the organizational structure of a transformation and the informa-
tion flow through this structure from source to target models. This challenge is
managed in the visual notation of the MOLA transformation language [6], that
combines ‘structured flowcharts’ for describing a transformation algorithm with
(model) patterns for defining input and output of a transformation. Though
MOLA aims for describing model transformations in a ‘natural and easy read-
able way’, it introduces a number of specific visual means, which might require
certain experience from a user.

The existing studies that specify model transformations using mathematical
formalisms, e.g. [7], mostly aim for formal analysis of transformations rather
than for designing and maintaining them. An exception to this is [8,9] by Lano
and Rahimi, who define a systematic development process for model transforma-
tions with the focus on their formal specification and further verification. They
propose to describe a model transformation as a set of abstract constraints on
the relation between source and target models that is realized by this transfor-
mation. For this, they identify and classify common patterns for specifying con-
straints on model transformations [10]. The authors also give guidelines on how
the (implementation) design of a model transformation can be derived based on
the pattern that has been applied for its specification - using one of the proposed
implementation patterns, or implementation strategies. The structural decom-
position approach—the design principle that we discuss in Sect. 4.1—is similar
to the recursive pattern in [8]. In particular, our decomposition method can
be used to determine the structural dependency ordering of the target model,
which is required when applying this implementation pattern. Chaining of model
transformations—our second design principle, discussed in Sect. 4.2—is similar
to the auxiliary metamodels pattern in [8].

The principle of structuring a program (or in our case, a transformation)
according to the structure of its input and/or output goes back to the method
proposed by M. Jackson in 1970 s and known as Jackson Structured Program-
ming (JSP) [11,12]. This method was developed in the domain of data processing
systems, where an input data stream is processed and an output data stream is
produced as a result. JSP gives guidelines on how to decompose, i.e. to design,
a program that performs such processing. According to JSP, program structure
should be dictated by the structure of its input and output data streams. The
JSP method uses diagrams to represent structures of input and output streams,
to merge them and to derive a corresponding program structure. We apply ideas,
similar to those of the JSP method, to structure model transformations along
the structure of its input and output metamodels (Sect. 4.1).

3 Notation for Describing Model Transformations

A model transformation takes as an input one or more source models and gener-
ates as an output one or more target models. An algorithm for such generation

352 U. Tikhonova and T. Willemse

is defined in terms of source and target metamodels. In particular, the smallest
units of a model transformation (such as mappings in QVTo, or rules in ATL
and ETL) are defined in terms of classes and associations specified in the source
and target metamodels. In order to provide a description of a model transfor-
mation using the mathematical notation of set theory, we need to specify how
we refer to the metamodel concepts in this notation.

3.1 Describing Metamodel Concepts

In the context of MDE, a metamodel is usually defined using the MOF stan-
dard. This standard can be seen as a subset of UML class diagrams. There
have been a number of studies on formalizing UML class diagrams, see e.g. [13].
A common approach is to view a class as a set of objects that instantiate this
class, and the associations between classes as relations on the corresponding
sets of objects. Following this approach, we notate classes as sets and objects
of classes as elements of sets. For instance, the example metamodel depicted
in Fig. 1 introduces the sets StateMachine, State, Transition, CompositeState,
etc. In model transformations, associations are used as references to access and
assign the associated objects, rather than elements of relations on the sets of
objects. Therefore, we do not use the notation of relations, but stick to the nota-
tion common in object-oriented languages (including QVTo), and refer to the
associated classes using association names and dot notation; for instance s.states
where s ∈ StateMachine.

Fig. 1. Metamodel of the UML state machine.

Associations between classes are the key metamodel elements that determine
the structure of the resulting models. From the point of view of a model structure,
we may treat an object as a tuple of its referenced objects and its attributes.
This permits a different view on classes: a class can be seen as a relation on the
classes it is associated with. For example, the class StateMachine is determined
by a relation on the classes with which it is associated through the associations
states, transitions, initial, and final:

Documenting and Designing QVTo Model Transformations 353

1 mapping Trans i t i on :: CloneTrans i t ion () : Trans i t i on { . . . }
2

3 mapping Trans i t i on :: MultiplyTransByState (in s t a t e : State)
4 : Trans i t i on { . . . }
5

6 mapping Tuple (s1 : State , s2 : State) :: MultiplyTwoStates ()
7 : State { . . . }
8

9 mapping Set (StateMachine) :: MultiplySTMs ()
10 : StateMachine { . . . }

Listing 1.1. Mapping declarations of the example QVTo transformation.

StateMachine ⊆ P(State) × P(Transition) × State × P(State) (1)

Note that here we use the powerset P(S) of a set S to indicate that multiplicity of
an association end has an upper bound greater than one. We will use the inclusion
relationship (1) as a rewriting rule when constructing transformations in Sect. 4.1.

3.2 Describing Model Transformations

In general, a model transformation defines a relation between a set of source
models and a set of target models [14]. A QVTo mapping is more restrictive,
realizing a function that maps one or more source model objects into one or
more target model objects. Thus, we can denote a QVTo mapping as a function
from a set representing the source class to a set representing the target class. For
example, the simple mapping depicted in the line 1 of Listing 1.1 can be viewed
as a function with the following signature:

CloneTransition : Transition → Transition (2)

Mappings with multiple inputs and/or outputs can be treated in the same way,
using Cartesian products of sets to indicate these inputs and/or outputs; e.g. the
QVTo mappings of lines 3 and 6 in Listing 1.1 can be represented as follows:

MultiplyTransByState : Transition × State → Transition (3)

MultiplyTwoStates : State × State → State (4)

Note, that in QVTo multiple inputs and outputs for a mapping can be realized
in two different ways: using in/out parameters of the mapping (lines 3–4 in the
Listing 1.1) or using tuples as source/target types (lines 6–7 in the Listing 1.1).1

QVTo also allows a collection of objects to be used as an input and/or output
of a mapping (line 9 in Listing 1.1). We treat an instance of a collection defined
on a class as a set of objects of this class2, meaning that we treat the collection
class as a power set of the set that represents the class of the collection elements:
1 This syntactic difference influences results of the traceability and resolving mecha-

nisms of QVTo, as only the object before the symbol ‘::’ is traced and resolved.
2 Note, that strictly speaking a collection can be realized as a list or a bag, and thus

cannot be formally specified as a set. We use this notation rather as an approximation
in order to describe a transformation conceptually.

354 U. Tikhonova and T. Willemse

1 mapping Trans i t i on :: CloneTrans i t ion () : Trans i t i on {
2 result . t r i g g e r := s e l f . t r i g g e r −> map CloneTrigger () ;
3 result . guard := s e l f . guard . map CloneConstra int () ;
4 result . e f f e c t := s e l f . e f f e c t −> map CloneBehavior () ;
5 result . source := s e l f . source . map CloneState () ;
6 result . t a r g e t := s e l f . t a r g e t . map CloneState () ;
7 }

Listing 1.2. QVTo code of the CloneTransition mapping.

MultiplySTMs : P(StateMachine) → StateMachine (5)

Function signatures allow us to concisely capture the purpose of a mapping
in terms of source and target metamodels, and in line with the QVTo code.
However, they do not suffice to describe what a mapping actually does. For
this, we need to describe how elements of target objects are calculated from the
elements of source objects. We use formulas of the following form (which we
explain below) to achieve this:

CloneTransition(self) : trigger =
⋃

t∈self.trigger

{CloneTrigger(t)},

guard = CloneConstraint(self.guard),

effect =
⋃

e∈self.effect

{CloneBehavior(e)},

source = CloneState(self.source),

target = CloneState(self.target)

(6)

Formula 6 describes the QVTo mapping depicted in Listing 1.2. It shows
how each element of the target object is calculated by the invocation of other
mappings on elements of the source object. We denote a calculation that is
performed on a collection by a quantified union over elements of the collection
(lines 1 and 3 of the formula)3. The invocation of a mapping is indicated by the
application of the corresponding function, such as CloneConstraint(self.guard).4

This formula moreover specifies the order of invocation of the mappings, which
might be essential due to the operational nature of QVTo.

3 In QVTo invocation of a mapping on a collection is denoted by arrow “–> map”,
while invocation on a single object uses dot-notation: “. map”.

4 According to the execution semantics of QVTo implemented in the Eclipse project,
the result of a mapping invocation is the corresponding target object, which is newly
constructed or resolved depending on whether this mapping has been already invoked
on this source object.

Documenting and Designing QVTo Model Transformations 355

4 Design of Model Transformations

Designing model transformations is a challenging part of the model transfor-
mation development process. When designing a model transformation one must
answer questions such as ‘what are the mappings that constitute a model trans-
formation?’ and ‘how are these mappings related with each other, i.e. invoked by
each other?’. In practice, there exist a number of design principles that develop-
ers can follow when creating their model transformations [8,15]. In this section
we demonstrate how the presented mathematical notation can facilitate appli-
cation of some of these design principles.

4.1 Structural Decomposition of Model Transformations

Model transformations construct target models from source models. Such models
typically consist of objects connected with each other by associations. Therefore,
mappings that constitute a model transformation should construct both target
objects and the associations between them. In QVTo each mapping constructs
a new object via assigning values to its properties, i.e. by constructing objects
it is associated with. This observation is captured by the following principle for
designing model transformations:

mappings should be related to (invoked by) each other in the same way
as the objects that they construct are associated with (composed of) each
other.

In other words, the structure of a model transformation follows the structure
defined by the target metamodel. In [15], this was identified as one of the best
practices for understandability and maintainability of transformations. To apply
this principle in our design process we take the following steps:

1. We identify the inputs and outputs of the transformation and define their
structures,

2. We establish the correspondence between the elements in input and output
structures,

3. We capture these correspondences in signatures of the constituent mappings,
4. We decompose the transformation into constituent mappings.

In what follows, we illustrate and explain these steps through the following
example: we show how these steps help design a mapping that takes two state
machines and constructs a state machine representing their product. The source
and target metamodel of this transformation is depicted in Fig. 1. The function
signature of the mapping is as follows.

MultiplyTwoSTMs : StateMachine × StateMachine → StateMachine (7)

The task of writing such a transformation may not seem challenging, taking
into account that we know the definition of a product of two state machines.
However, it might be not so obvious how to implement this transformation in
QVTo code.

356 U. Tikhonova and T. Willemse

Identifying the Structure of the Inputs and Outputs. That is, we estab-
lish what kind of objects we have to implement the transformation. For this we
‘rewrite’ each of the classes in the initial function signature with the classes that
are associated with this one. The rule we use to rewrite is based on the inclusion
relation captured in Formula (1). According to this formula, an object of the
class StateMachine can be viewed as a tuple of objects referenced through the
associations states, transitions, initial, and final, i.e. as an object that belongs
to P(State) × P(Transition) × State × P(State). Thus, as a result of rewriting
signature (7), we obtain the following:

(P(State) × P(Transition) × State × P(State))×
(P(State) × P(Transition) × State × P(State)) →
P(State) × P(Transition) × State × P(State).

(8)

Connecting Elements in Input to Output Structures. Compared to sig-
nature (7), signature (8) is much richer, but it is still very ‘monolithic’. We next
strive towards breaking down the structure in the formula, allowing for a modular
solution. To this end, we redistribute the inputs on the left of the arrow and the
outputs on the right of the arrow according to our understanding of which input
elements are required to construct which output elements. For example, we know
that the states of the resulting state machine are constructed from the states of
the input machines. We capture this by grouping the input collections of States
and the output collection of States in a separate sub-signature in Formula (9).

(P(State) × P(State) → P(State))×
(P(Transition) × P(Transition) × P(State) × P(State)) → P(Transition))×
(State × State → State)×
(P(State) × P(State) → P(State))

(9)

We do the same for the output transitions, the initial state, and the final states.
The output transitions depend both on the input transitions and on the input
states, thus we duplicate the input state collections on the left of the arrow for
the second sub-signature. The resulting initial state is composed of the input
initial states, see the third sub-signature in Formula (9). The same holds for the
collection of final states, see the fourth sub-signature in Formula (9).

Deriving Signatures of the Constituent Mappings. Each sub-signature,
underlying the signature obtained in the previous step, captures a correspon-
dence between source and target objects. We decompose the mapping Multi-
plyTwoSTMs into invocations of the constituent mappings according to these
correspondences. This means that, as a first approximation, each sub-signature
of signature (9) corresponds to an invocation of a constituent mapping.

To derive signatures of the constituent mappings, we consider each sub-
signature separately. The first sub-signature of Formula (9) is

P(State) × P(State) → P(State) (10)

Documenting and Designing QVTo Model Transformations 357

In QVTo a P-symbol that appears evenly on both sides of an arrow corresponds
to the invocation of a mapping on an input collection and assigning the result of
this mapping to an output collection. If the mapping operates on elements of the
collections rather than on the collections, then we can reduce the corresponding
collection symbols P that appear evenly on both sides of an arrow. Mathemati-
cally, such a reduction of P-symbols corresponds to an inverse of function lifting.
After applying this technique to signature (10), we derive the following under-
lying signature:

MultiplyTwoStates : State × State → State (11)

The resulting mapping MultiplyTwoStates constructs a state of the target state
machine as a pair of states from the two source machines. The initial and final
states are constructed in the same way. Thus, the signature of MultiplyTwoStates
can be derived from the first, third, and fourth sub-signatures of formula (9).

Using our knowledge of what the transformation should do, we can further
refine the sub-signature from the second line of Formula (9). Each output tran-
sition is a copy of an input transition duplicated as many times as its source
and target states have been duplicated to construct the output states. As each
state of an input machine is paired with all states of the other input machine,
we conclude that each transition of an input machine is paired with all states of
the other input machine. This knowledge is captured by regrouping the corre-
sponding collections in the second line of formula (9):

(P(Transition) × P(State)) × (P(Transition) × P(State)) → P(Transition) (12)

The described pairing of transitions with states is applied symmetrically to both
input machines. The target collection of transitions is constructed as the union of
the two resulting collections. Therefore, we reduce signature (12) to the following
underlying signature:

P(Transition) × P(State) → P(Transition) (13)

Observing that we can once more use a reverse function lifting, we finally arrive
at the following signature for a constituent mapping:

MultiplyTransByState : Transition × State → Transition. (14)

Describing the Implementation of a Mapping. Function signature (9)
helps to identify signatures of the mappings that compose the MultiplyTwoSTMs
mapping, but it does not capture how this composition is implemented. There-
fore, as a final step of the design procedure, we describe the implementation of
the MultiplyTwoSTMs mapping in a formula using the notation we introduced
in Sect. 3.2. Such formula should capture our knowledge of the transformation
functionality discussed above using invocations of the constituent mappings Mul-
tiplyTwoStates and MultiplyTransByState.

358 U. Tikhonova and T. Willemse

MultiplyTwoSTMs(m1,m2) :

states =
⋃

s1∈m1.states

⋃

s2∈m2.states

{MultState(s1, s2)},

transitions =
⋃

t∈m1.transitions

⋃

s∈m2.states

{MultTrans(t, s)} ∪
⋃

t∈m2.transitions

⋃

s∈m1.states

{MultTrans(t, s)},

initial = MultState(m1.initial,m2.initial),

final =
⋃

f1∈m1.final

⋃

f2∈m2.final

{MultState(f1, f2)}

(15)

After we have come up with the design of the mapping and captured it
in a formula, we write the QVTo code according to this formula. Listing 1.3
corresponds to formula (15).

1 mapping Tuple(stm1 : StateMachine , stm2 : StateMachine)
2 :: MultiplyTwoSTMs () : StateMachine

3 {
4 result . s t a t e s := stm1 . s t a t e s −> c o l l e c t (s1 |
5 stm2 . s t a t e s −> c o l l e c t (s2 |
6 Tuple{ s t1=s1 , s t2=s2 } .map MultiplyTwoStates ())) ;

7

8 result . t r a n s i t i o n s := stm1 . t r a n s i t i o n s −> c o l l e c t (t |
9 stm2 . s t a t e s −> c o l l e c t (s |

10 t .map MultiplyTransByState (s)))

11 −> union (

12 stm2 . t r a n s i t i o n s −> c o l l e c t (t |
13 stm1 . s t a t e s −> c o l l e c t (s |
14 t .map MultiplyTransByState (s)))) ;

15

16 result . i n i t i a l := Tuple{ s t1=stm1 . i n i t i a l , s t2=stm2 . i n i t i a l } .
17 map MultiplyTwoStates () ;

18 result . f i n a l := stm1 . f i n a l −> c o l l e c t (f 1 |
19 stm2 . f i n a l −> c o l l e c t (f 2 |
20 Tuple{ s t1=f1 , s t2=f2 } .map MultiplyTwoStates ())) ;
21 }
22

23 mapping Tuple(s t1 : State , s t2 : State) :: MultiplyTwoStates ()
24 : State
25 { . . . }
26

27 mapping Trans i t i on :: MultiplyTransByState (in s t a t e : State)

28 : Trans i t i on

29 { . . . }

Listing 1.3. QVTo code of the MultiplyTwoSTMs transformation.

Documenting and Designing QVTo Model Transformations 359

In this section, we derived the structured design of a mapping by gradual
refinement of our knowledge about the mapping implementation. The same pro-
cedure can be applied recursively for designing the constituent mappings Multi-
plyTwoStates and MultiplyTransByState.

4.2 Chaining Model Transformations

In the previous section we discussed how a model transformation can be decom-
posed into constituent mappings by following the structure of the target model(s)
and matching it with the corresponding elements of the source model(s). How-
ever, this principle is difficult to apply if source and target models have very
different structures; for example, if mappings that match source and target ele-
ments are scattered over the metamodels structures, or if there are mutual depen-
dencies between constructed objects. This type of situation is described in the
literature as structure clash [12], or semantic gap [16]. Such design difficulty is
usually solved using a chain of model transformations. One or more intermediate
structures (or metamodels) are introduced to split a model transformation into
two or more steps (links of the chain). In this way, a structure clash is managed
in a chain of separate model transformations each of which with a minimal clash.

Using our notation this design principle can be explained as follows. Consider
a model transformation f : A → B, where the gap between structures A and
B is too wide to manage in a one-step transformation. Therefore, we split this
model transformation by introducing an intermediate structure C that mediates
between A and B. We develop two model transformations f1 : A → C and
f2 : C → B. Then we connect those into a chain using function composition:
f(m) = f2(f1(m)). A function composition can be denoted in a more ‘chain-like’
style using the ’◦’ operator, allowing us to write f(m) = (f1 ◦ f2)(m). We prefer
to use the latter notation, as it is more readable when we have more than two
steps in a transformation chain. Function composition cannot always be applied
immediately. For instance, if the result of a function application is of a form that
is different from the form that is accepted by the next function, then the function
composition fails. An indispensable tool in many such cases is to use currying.
Currying basically entails the translation of a function of the form f : A×B → C
to a function of the form g : A → (B → C), by setting g(a)(b) = f(a, b).

Below, we illustrate through an example transformation how the concepts
of function composition and currying can be used to design a transformation
chain. The example transformation flattens a UML state machine (specified by
the metamodel in Fig. 1) by removing its composite states and replacing them
with equivalent sets of simple states and transitions. The mapping that performs
such replacement can be described by the following signature:

SimplifyComposite : CompositeState → P(State) × P(Transition) (16)

According to our metamodel in Fig. 1, each composite state can be either
sequential or orthogonal. A sequential composite state contains only one subma-
chine, while an orthogonal (or parallel) composite state contains more than one

360 U. Tikhonova and T. Willemse

submachine. Intuitively, when transforming a sequential state, we can simply
substitute its submachine into the parent machine by ‘erasing’ borders of the
submachine and redirecting and adding the necessary transitions. When trans-
forming an orthogonal state, we need to consider its parallel nature and express
it in terms of simple states. In other words, we first need to transform parallel
submachines into one sequential submachine. After this we can apply the same
transformation as for a sequential state. This is a simple example of a transfor-
mation chain that constitutes the mapping (16). The transformation chain will
therefore consist of two mappings: Orthogonal2Sequential and SubstituteMa-
chine. The first mapping transforms a collection of parallel state machines into
one state machine and can thus be described as follows:

Orthogonal2Sequential : P(StateMachine) → StateMachine (17)

The second mapping substitutes a nested state machine into the parent state
machine. When substituting a nested machine from a composite state we need
to update two sets of transitions: those that have the composite state as a target,
and those that have the composite state as a source. The former should be
redirected to the initial substate of the composite state; the latter should be
exiting from all substates of the composite state. Therefore, we consider these
sets of transitions as an input of the mapping. As an output, the mapping thus
creates a set of new states and a set of new and updated transitions:

SubstituteMachine : P(Transition) × P(Transition) × StateMachine →
P(State) × P(Transition) (18)

Observe that the output of the Orthogonal2Sequential mapping does not
directly match with the input of the SubstituteMachine mapping. Therefore, we
cannot connect these two mappings using a function composition. To overcome
this problem, we apply currying: we rewrite Function (18), which takes a tuple of
inputs, as a sequence of functions, each of which takes a single input. Put simply,
we replace the Cartesian products on the left of the arrow with a sequence of
arrows to obtain the following:

SubstituteMachine : P(Transition) → P(Transition) → StateMachine →
P(State) × P(Transition) (19)

When calculating such function, we calculate each of the functions in the
sequence separately and as a result of each separate calculation we get a new
function. For example, if we calculate Function (18) for a tuple (x, y, z), we start
from the first function in the sequence (19) and apply it for the first argument
of the tuple. As a result we get a new function:

SubstituteMachine(x) : P(Transition) → StateMachine →
P(State) × P(Transition) (20)

Then we do the same for function (20) and the rest of the tuple (y, z). As a
result we get a new function:

SubstituteMachine(x, y) : StateMachine → P(State) × P(Transition) (21)

Documenting and Designing QVTo Model Transformations 361

1 helper CompositeState :: Simpl i fyComposite ()
2 : s t a t e s : Set (State) , t r a n s i t i o n s : Set (Trans i t i on)

3 {
4 return se l f . submachine −> map Orthogona l2Sequent ia l () .
5 map Subst i tuteMachine (s e l f . in , s e l f . out) ;

6 }

Listing 1.4. QVTo code of the SimplifyOrthogonal transformation.

Note that input of function (21) matches with the output of function (17).
Therefore, we can apply function composition to these two functions. The result-
ing definition of the SimplifyComposite mapping connects the mapping Substi-
tuteMachine (with two fixed inputs) and the mapping Orthogonal2Sequential
into a transformation chain:

SimplifyComposite(state) = (Orthogonal2Sequential(state.submachine)
◦SubstituteMachine(state.in, state.out)) (22)

Formula (22) demonstrates how the notation of function composition can
enhance the description of a model transformation chain and the flow of infor-
mation through the separate steps of this chain. The corresponding QVTo code
is depicted in Listing 1.4.

5 Discussion and Validation

In the previous section, we demonstrated how the mathematical notation of set
theory can be used to describe QVTo mappings, their signatures and imple-
mentations, to derive organizational structure of mappings, and to describe the
information flow in chains of model transformations. While the proposed app-
roach requires further investigation and experiments, we have applied it to a
large practical example, and we performed an early evaluation of its potential
by consulting with QVTo practitioners through interviews.

Applications. The proposed approach for describing and designing model
transformations was formulated while developing, documenting, and refactoring
a model transformation that implements the semantics of a high-level metalan-
guage. According to the taxonomy proposed in [17], this model transformation
can be classified as an exogenous vertical semantical transformation with multi-
ple source and target models; and it can be characterized as a fully automated
and complex (about 40 mappings and one thousand lines of code). This means
that the transformation is objectively sophisticated, which corresponds to our
subjective experience. The proposed approach helped us in streamlining the
development of this transformation.

Applying the proposed approach, we found that:

– the described design principles can assist in the creative process of designing
model transformations;

362 U. Tikhonova and T. Willemse

– designing a model transformation in the form of formulas prior to coding it
in QVTo improves readability and understandability of the resulting code;

– describing a model transformation using the proposed notation facilitates
explaining its meaning to peers.

Interviews. We conducted three interviews with developers from three different
affiliations and different engineering domains. The interviews were based on 25
open questions aiming to (1) assess an interviewee’s experience of developing and
maintaining QVTo transformations, (2) gauge his understanding of the employed
mathematical notation, and (3) get the interviewee’s feedback on the usability
and usefulness of the proposed approach. The interviewees used QVTo in the
following situations:

1. developing large-scale software systems for further industrial usage in a team
of software developers that also continues to maintain and extend the QVTo
source code;

2. prototyping software architectures for further delegation of found solutions
to software developers, without need for documentation and long-term main-
tenance of the QVTo code;

3. developing a domain specific language for conducting research in the field of
electrical engineering by an engineer without computer science expertise.

In the first situation, the developers find the maintenance and documenta-
tion of their model transformations especially challenging and experience a lack of
notation for this. The developers believe that the proposed notation can be used
for these purposes. In the second situation, the architect does not see the need for
notation for describing his transformations and, moreover, presumes that the pro-
posed design guidelines might restrict his experiments. Thus, we conclude that our
proposed approach may not be suited for situations such as this one. In the third
situation, the (non-software) engineer finds it especially important to discover the
pragmatics of QVTo and to have guidelines on how to design a model transforma-
tion. He believes that the proposed decomposition principle and the corresponding
design process can be very useful. Furthermore, all interviewees find the descrip-
tion of QVTo mappings in the form of formulas clear and understandable. This
includes the engineer with no computer science expertise.

Discussion. In addition to these results, we conclude that for the success-
ful application of the proposed notation the following questions require further
investigation:

– does the proposed notation restrict the resulting design of a model
transformation;

– what are the limits of the proposed notation, whether all essential situations
and QVTo constructs can be naturally described using mathematical con-
cepts;5

5 For instance, there is no mathematical operator that naturally matches the QVTo
concept of inheritance of mappings.

Documenting and Designing QVTo Model Transformations 363

– how scalable is the proposed approach, how much effort it might require in
general to apply the proposed notation for describing and designing a complete
complex transformation.

Several aspects of our proposed approach are indirectly supported by the
results of the exploratory study performed by Gerpheide et al. [15] for construct-
ing a QVTo quality model. In this work they formalize a quality model for QVTo
based on the interviews with four QVTo experts. According to their results,
understandability and maintainability are the most ubiquitous quality goals for
QVTo experts. Moreover, among the best practices that address these goals are
(1) the preference for a declarative style of programming over an imperative
style (for example, avoiding loop-statements); and (2) structuring a transforma-
tion along the hierarchy of either the input or output metamodel. According
to our experience, both these best practices can result from using the notation
and the design principles described above in this paper. This indicates that the
proposed approach can contribute to improving the quality of QVTo code with
respect to the understandability and maintainability.

6 Conclusion and Future Work

According to Kurtev [18], the current QVT standard lacks a formal basis, which
causes risks when using model transformations. These risks are amplified by the
current lack of documentation on the QVT execution semantics and pragmatics.

In this paper we showed how the mathematical notation of set theory and
functions can be used to explain QVTo concepts, to facilitate the design process
of model transformations, and to document model transformations. The result-
ing formulas give an overview of the organizational structure and the informa-
tion flow of a transformation in an unambiguous and concise way. To assess
the applicability of this approach, we applied it when designing, developing,
and refactoring two model transformations6; one of these transformations was a
non-elementary transformation bridging a wide semantic gap and involved com-
plex structures. Moreover, we performed interviews with QVTo practitioners.
While the results of these experiments and interviews are positive, the approach
requires further investigation and experiments. In addition to the research ques-
tions listed in Sect. 5, we aim to examine if the proposed approach is language
independent and can be used for developing in other model transformation lan-
guages, e.g. ATL.

Acknowledgements. We are very grateful to the QVTo experts who agreed to access
our approach and provided us with very useful insights in its potential benefits and
flaws. We also would like to thank Tom Verhoeff and Mark van den Brand (Eindhoven
University of Technology, The Netherlands) for their useful comments on this work.

6 The source code and the description of the transformation used as an example in
this paper are available online at http://code.google.com/p/qvto-flatten-stm/.

http://code.google.com/p/qvto-flatten-stm/

364 U. Tikhonova and T. Willemse

References

1. OMG: Meta Object Facility (MOF) 2.0 Query/View/Transformation Specification
(2015). Version 1.2

2. Guerra, E., de Lara, J., Kolovos, D., Paige, R., dos Santos, O.: Engineering model
transformations with transML. Softw. Syst. Model. 12, 555–577 (2013)

3. Visser, E.: Program transformation with Stratego/XT: Rules, strategies, tools,
and systems. In: Lengauer, C., Batory, D., Blum, A., Odersky, M. (eds.) Domain-
Specific Program Generation. LNCS, vol. 3016, pp. 216–238. Springer, Heidelberg
(2004)

4. Etien, A., Dumoulin, C., Renaux, E.: Towards a Unified Notation to Represent
Model Transformation. Research Report 6187, INRIA (2007)

5. Rahim, L.A., Mansoor, S.B.R.S: Proposed design notation for model transforma-
tion. In: ASWEC, pp. 589–598. IEEE Computer Society (2008)

6. Kalnins, A., Barzdins, J., Celms, E.: Model transformation language MOLA. In:
Aßmann, U., Akşit, M., Rensink, A. (eds.) MDAFA 2003. LNCS, vol. 3599, pp.
62–76. Springer, Heidelberg (2005)

7. Idani, A., Ledru, Y., Anwar, A.: A rigorous reasoning about model transformations
using the B method. In: Nurcan, S., Proper, H.A., Soffer, P., Krogstie, J., Schmidt,
R., Halpin, T., Bider, I. (eds.) BPMDS 2013 and EMMSAD 2013. LNBIP, vol. 147,
pp. 426–440. Springer, Heidelberg (2013)

8. Lano, K., Rahimi, S.K.: Model-transformation design patterns. IEEE Trans. Softw.
Eng. 40, 1224–1259 (2014)

9. Kolahdouz-Rahimi, S., Lano, K.: A model-based development approach for model
transformations. In: Arbab, F., Sirjani, M. (eds.) FSEN 2011. LNCS, vol. 7141,
pp. 48–63. Springer, Heidelberg (2012)

10. Lano, K.: Model transformation design pattern catalogue. http://www.dcs.kcl.ac.
uk/staff/kcl/mtdp. Accessed August 2015

11. Jackson, M.: Designing and coding program structures. In: Stevenson, H.P. (ed.)
Proceedings of a Codasyl Programming Language Committee Symposium on
Structured Programming in COBOL Future and Present, pp. 22–53 (1975)

12. Jackson, M.: JSP in perspective. In: Broy, M., Denert, E. (eds.) Software Pioneers,
pp. 480–493. Springer, Heidelberg (2002)

13. Snook, C., Butler, M.: UML-B: formal modeling and design aided by UML. ACM
Trans. Softw. Eng. Methodol. 15, 92–122 (2006)

14. Czarnecki, K., Helsen, S.: Feature-based survey of model transformation
approaches. IBM Syst. J. 45, 621–645 (2006)

15. Gerpheide, C.M., Schiffelers, R.R.H., Serebrenik, A.: A Bottom-Up quality model
for QVTo. In: QUATIC, pp. 85–94. IEEE (2014)

16. van Amstel, M.F., van den Brand, M.G.J., Protić, Z., Verhoeff, T.: Transforming
process algebra models into UML state machines: bridging a semantic gap? In:
Vallecillo, A., Gray, J., Pierantonio, A. (eds.) ICMT 2008. LNCS, vol. 5063, pp.
61–75. Springer, Heidelberg (2008)

17. Mens, T., Gorp, P.V.: A taxonomy of model transformation. Electr. Notes Theor.
Comput. Sci. 152, 125–142 (2006)

18. Kurtev, I.: State of the art of QVT: a model transformation language standard.
In: Schürr, A., Nagl, M., Zündorf, A. (eds.) AGTIVE 2007. LNCS, vol. 5088, pp.
377–393. Springer, Heidelberg (2008)

http://www.dcs.kcl.ac.uk/staff/kcl/mtdp
http://www.dcs.kcl.ac.uk/staff/kcl/mtdp

An Approach for the Automatic Adaptation
of Domain-Specific Modeling Languages

for Model-Driven Mobile
Application Development

Xiaoping Jia and Christopher Jones(B)

School of Computing, DePaul University, Chicago, IL, USA
{xjia,cjones}@cdm.depaul.edu

Abstract. The use of domain-specific modeling languages (DSMLs) is
a common approach to support cross-platform development of mobile
applications. However, most DSML-based approaches suffer from a num-
ber of limitations such as poor performance. Furthermore, DSMLs that
are written ab initio are not able to access the entire range of capabil-
ities supported by the native mobile platforms. This paper presents a
novel approach of using an adaptive domain-specific modeling language
(ADSML) to support the model-driven development of cross-platform
mobile applications emphasizing the Android and iOS platforms. We
will discuss the techniques in the design of an ADSML including meta-
model extraction, meta-model elevation, and meta-model alignment. We
discuss how these techniques can be incorporated into an automated
process where a common, platform-independent DSML is dynamically
synthesized from the native APIs of multiple target mobile platforms.
Our approach is capable of generating high performance native applica-
tions; is able to access the full capabilities of the target native platforms;
and is adaptable to the rapid evolutions of those platforms.

Keywords: Model-driven development · Domain-specific modeling
languages · Cross-platform development · Mobile application
development

1 Introduction

Mobile applications are popular and are becoming increasingly sophisticated. In
addition to some unique constraints and requirements, such as high responsive-
ness, limited memory, and low energy consumption, mobile application develop-
ment faces particular challenges with a short time-to-market, rapid evolution of
technologies, and competing platforms. Currently, there are several competing
mobile platforms on the market, including Google’s Android and Apple’s iOS,
which are similar in capabilities, but drastically different in their programming
languages and APIs. It is highly desirable and often necessary for a mobile appli-
cation to run on all major mobile platforms. However, it is very expensive to
port mobile applications from one platform to another.
c© Springer International Publishing Switzerland 2016
P. Lorenz et al. (Eds.): ICSOFT 2015, CCIS 586, pp. 365–379, 2016.
DOI: 10.1007/978-3-319-30142-6 20

366 X. Jia and C. Jones

One approach for supporting cross-platform mobile application development
is to use programming languages and virtual machines that are available on
different platforms, such as HTML5 and JavaScript [1,2]. While this approach
is adequate for certain types of applications, it is less than satisfactory with
some serious shortcomings, including slower response times when compared to
equivalent native applications [7,8]. This approach also suffers from significant
limitations, such as being able to use only a small subset of the features sup-
ported by the underlying platforms. Canappi [6] uses a domain-specific language
(DSL) to define and generate cross-platform mobile applications as front-ends to
web services, but does not define the web services themselves. Other DSL-based
approaches include Mobl [11] and md2 [12].

A promising approach that may offer some solutions to the challenges
of mobile application development is model-driven development (MDD) [27],
and the use of domain-specific modeling languages (DSMLs) to represent the
platform-independent models (PIM) [17,18]. While DSMLs can concisely rep-
resent the model entities of various target platforms, they often adopt the
least-common denominator approach to be able to model applications in
a platform-independent manner, and then transform the models into implemen-
tations on different mobile platforms. One limitation of this approach is that
harnessing the full capabilities of the target platform would either lead to lan-
guage “bloat”, or render the language platform-specific. Consequently, DSMLs
that are designed ab initio are not capable of harnessing the full power of the
native APIs for the underlying platforms. Currently, there is no satisfactory
solution to developing cross-platform mobile applications that is capable of both
delivering high performance and providing full access to the API features sup-
ported by the underlying platforms.

In this paper, we present a novel approach of designing adaptive domain-
specific modeling languages (ADSML) to support model-driven development of
cross-platform mobile applications. We will discuss the techniques in the design
of an ADSML for developing mobile applications targeting the Android and iOS
platforms, including meta-model extraction, meta-model elevation, meta-model
alignment, and meta-model unification. Our approach will be able to address
the following challenges in cross-platform development of mobile applications:
(a) generating high performance native applications; (b) accessing the full capa-
bilities of the native APIs of the underlying platforms; and (c) adapting to rapid
evolutions of the target platforms.

2 DSML-Based MDD

The AXIOM project [14–16] has successfully demonstrated the feasibility and
effectiveness of using a DSML to support model-driven development of mobile
applications. An internal DSML, hosted in Groovy, is used to represent mobile
applications in the form of abstract model trees (AMTs). As shown in Fig. 1,
a model represented as an AMT is passed through a series of transformations,
resulting in new AMTs and ultimately in native Android and iOS code. Prelim-
inary experiments have shown significantly reduced source code size, along with

An Approach for the Automatic Adaptation 367

Fig. 1. AXIOM model transformations.

improved developer productivity, with the quality of the generated native code
being comparable to handwritten native code produced by experienced mobile
application developers.

The AXIOM DSML supports capabilities that are common across our tar-
get platforms as well as platform-specific capabilities when required. However,
the mappings of the DSML elements to the native platforms is static and not
easily adaptable. It requires changes to the DSML itself when there are changes
to the underlying native API. Similarly, extending the AXIOM DSL to a new
platform, such as the Windows Mobile OS, requires significant effort to align the
DSML to the new native platform. The maintenance of such a DSML requires
familiarity not only with the underlying native mobile platforms, but also the
ability to synthesize a common representation across all of them, maintaining
the appropriate semantics in the face of different development models. Wernik,
et al. summarized these challenges when they wrote “DSL development is hard,
requiring both domain and language development expertise. Few people have
both.” [21]

The creation of a DSML for mobile platforms would be more effective if it
could evolve and adapt, automatically incorporating new elements of its tar-
get platforms and APIs. This is the motivation for an adaptive domain-specific
modeling language (ADSML).

3 Adaptive DSML

A domain-specific modeling language is a domain-specific language (DSL)
designed to represent platform-independent models (PIM) for model-driven
development (MDD).

3.1 Meta-Models and Mappings

The definition and design of a DSML is based on a meta-model. We introduce
the following definitions.

368 X. Jia and C. Jones

Definition 1. A meta-model, MM , is formally defined as (C,R), where C is
the set of classes in the meta-model, and R is the set of relations among the
classes.

Each class contains a set of attributes and methods. We use Att(C), and
Mtd(C) to denote the set of all attributes and methods of classes in C, respec-
tively:

Att(C) = {c.a | c ∈ C, a is an attribute of c}
Mtd(C) = {c.m | c ∈ C,m is a method of c}

A model entity in a meta-model refers to any entity contained in the meta-
model, which can be a class, an attribute, or a method. We use E(MM) to
denote the set of model entities in meta-model MM , that is:

E(MM) = C ∪ Att(C) ∪ Mtd(C)

We use MM∗ to denote a platform-independent meta-model, and use MMa

to denote the platform-specific meta-model for platform a. For example, to sup-
port cross-platform development of mobile applications on Android and iOS,
we will deal with platform-specific meta-models, MMAndroid and MMiOS, and
platform-independent meta-model MM∗.

Definition 2. A simple mapping, Φ[MMa,MMb], from meta-model MMa =
(Ca, Ra) to another meta-model MMb = (Cb, Rb) is a function from E(MMa)
to E(MMb), i.e., every model element in MMa is mapped to a unique model
element in MMb.

At the class level, Φ[MMa,MMb] is a function from Ca to Cb, that is, every
class in Ca is mapped to a unique class in Cb.

Φ[MMa,MMb] is the union of the following three disjoint functions:

– Φcla[MMa,MMb] is a function from Ca to Cb;
– Φatt[MMa,MMb] is a function from Att(Ca) to Att(Cb), (c1.a1, c2.a2) ∈

Φatt[MMa,MMb] implies (c1, c2) ∈ Φcla[MMa,MMb];
– Φmtd[MMa,MMb] is a function from Mtd(Ca) to Mtd(Cb), (c1.m1, c2.m2) ∈

Φmtd[MMa,MMb] implies (c1, c2) ∈ Φcla[MMa,MMb].

We can also define complex mappings, where some classes in Ca are mapped
to auxiliary classes that need to be added to the native platform.

A platform-independent meta-model, MM∗, supports both Android and iOS
if there exist two mappings, ΦAndroid and ΦiOS, that map MM∗ to MMAndroid

and MMiOS, respectively. A DSML for representing PIMs of mobile applications
can be designed based on the meta-model MM∗. We call a DSML designed based
on a fixed meta-model and fixed mappings a static DSML.

Figure 2 shows examples of platform-specific meta-models for mobile
platforms iOS and Android, MMiOS and MMAndroid. Figure 3 shows a platform-
independent meta-model MM∗ that supports both Android and iOS. The cor-
responding mappings to each platform are as follows:

An Approach for the Automatic Adaptation 369

Fig. 2. Platform-specific meta-models for iOS and Android.

Fig. 3. A platform-independent meta-model for MMiOS and MMAndroid.

ΦiOS = Φ[MM∗, MMiOS] = { View �→ UIView, ViewContainer �→ UIView,
Label �→ UILabel, Button �→ UIButton, Switch �→ UISwitch,
TextField �→ UITextField, Picker �→ UIPickerView, DatePicker �→ UIDatePicker,
TimePicker �→ UIDatePicker, }

ΦAndroid = Φ[MM∗, MMAndroid] = { View �→ View, ViewContainer �→ ViewGroup,
Label �→ TextView, Button �→ Button, Switch �→ Switch,
TextField �→ EditText, Picker �→ Spinner, DatePicker �→ DatePicker,

TimePicker �→ TimePicker, }.

3.2 Characteristics of Adaptive DSML

We propose the concept of adaptive DSMLs, which possess the following char-
acteristics:

– The platform-independent meta-model on which the DSML is based is adap-
tive and is not defined ab initio. The platform-independent meta-model is
constructed automatically from the native platform-specific meta-models, so
that it can evolve over time to accommodate changes in the native platforms.

– As the native platforms change and evolve, the mappings from the platform-
independent to platform-specific meta-models are constructed automatically.
The transformation and code generation tools are also adaptive to automati-
cally accommodate the changes.

370 X. Jia and C. Jones

– While the basic syntactic structure of an adaptive DSML is fixed, its vocabu-
lary may include entities in the platform-independent as well as the platform-
specific meta-models. The interpretation of the vocabulary is dependent on
the target platform and the current mappings among the meta-models.

We will discuss some of the techniques to implement adaptive DSML in the
next several sections.

Due to the adaptive nature of the language, it is more practical to implement
adaptive DSML as an internal DSL in a host language with strong support for
DSL. In our prototype, the adaptive DSML for modeling mobile applications and
targeting the Android and iOS platforms is implemented as an internal DSL of
Groovy. Its basic syntactic rules are defined by the host language. Our adaptive
DSML uses the Groovy Builder pattern to construct the object hierarchies that
represent models of mobile applications. The Builder pattern offers a simple and
intuitive syntax to express the model compositions. Each component is expressed
as follows:

ComponentName (attributes ...) {
... nested child components ...

}

The components can be nested to form a hierarchy, with the root component
representing the application. The allowable component names are the names of
the classes in the platform-independent meta-model, MM∗, as well as the names
of the classes in the platform-specific meta-models, MMAndroid and MMiOS. In
other words the component names supported by the adaptive DSML can evolve
over the time.

3.3 Meta-Model Evolution

A meta-model evolution is triggered when the API of one or more of the native
platforms have been updated, such as changes or new releases of the API. The
meta-model evolution process involves:

– Meta-model extraction (Sect. 4),
– Meta-model elevation (Sect. 5), and
– Meta-model alignment (Sect. 6).

Meta-model evolution constructs an updated and unified platform-
independent meta-model, MM∗, and a set of updated transformation rules to
transform models in MM∗ to each of the platform-specific meta-models, e.g.,
MMAndroid or MMiOS. The updated MM∗ will become the new basis of the
adaptive DSML.

As shown in Fig. 4, the evolution process begins with one or more native APIs
for their associated target mobile platforms. Through the processes of meta-
model extraction and meta-model elevation, platform-specific meta-models,
MMA and MMB, are generated, which can then be used as the basis for the cor-
responding platform-specific ADSMLs, ADSMLA and ADSMLB . At the end

An Approach for the Automatic Adaptation 371

Fig. 4. AXIOM meta-model evolution.

of the meta-model alignment process, we have a derived platform-independent
meta-model, MM∗, that unifies all of the original native APIs in such a way that
they can be represented using a single, platform-independent DSML, ADSML∗.

4 Meta-Model Extraction

Meta-model Extraction is a process that extracts platform-specific meta-models
from the native API of the target platforms. The primary source of input for
meta-model extraction is the API documentation of the native platform in
HTML. We extract the following information for each class:

– The name, inheritance, subtype, and use relation.
– The textual description of the class (in English).
– For each attribute of the class, the name, type, and textual description.
– For each method of the class, the name, signature, and textual description of

the method and each parameter.

The initial platform-specific meta-model extracted from the native API of plat-
form a is denoted as MM0

a , which is a complete and accurate representation
of the native API, and serves as the starting point of the subsequent model
elevation and model alignment.

For programming languages that support reflection, part of the information
can also be extracted from the binary code of the libraries. However, all infor-
mation obtainable from the binaries that is useful in our analysis should also
be obtainable from the API documentation. The textual descriptions and some
other useful information are not available in the binaries. Hence, we choose not
to use the binaries as the sources of meta-model extraction.

5 Meta-Model Elevation

Meta-model Elevation simplifies and elevates the level of abstraction of platform-
specific meta-models. Meta-model elevation is carried out through the following
operations on the meta-model:

372 X. Jia and C. Jones

1. Visibility analysis: to determine the public portion of the native APIs;
2. Tagging key architectural elements: to identify the key elements of the meta-

models;
3. Pattern-based transformation: to simplify the meta-models through a series

of semantics preserving transformations of the meta-models.

The result of meta-model elevation is a set of elevated platform-specific meta-
models for each native platform. For native platform a, the elevated meta-model
is denoted as MM1

a .

5.1 Visibility Analysis

The API of a native platform typically consists of two parts: the public part,
which is intended to be used directly by developers; and the protected part,
which is intended for customizing and extending the native API. We will limit
our DSML to support the public API only. It is more sensible to customize and
extend the native API using the native languages supported by the platform.
The additional classes for the customized or extended API can be incorporated
in the DSML as auxiliary classes.

We define a set of rules to identify the classes, attributes, and methods that
are intended solely for the purpose of customizing and extending the native API.
These entities will be removed from the meta-model.

5.2 Tagging Key Architectural Elements

Tagging is the process of attaching tags, which are simple keywords or strings, as
meta-data to model entities in a meta-model. Tagging associates model entities
with key concepts in the domain. A model entity may be tagged with multiple
tags.

In a given domain, there are usually a number of key architectural elements
(KAE) that are typically present and play important roles in every application
in the given domain. For example, in the domain of user interfaces (UI) of mobile
applications, we can identify the following key architectural elements:

– View: a self-contained unit of UI, e.g., a single screen, a popup, etc. Typically
contains a hierarchy of view objects.

– Transition: a connection between two views, the source, and the destination
of the transition. It is also commonly associated with a trigger event.

– Action: code to be executed in response to certain event. It can also be asso-
ciated with a source object that triggers the event, or a transition.

One or more tags can be associated with a key architectural element to indicate
its potentially different roles and subtypes. We define a set of rules to determine
whether a model entity is tagged as being associated with a key architecture
element.

An Approach for the Automatic Adaptation 373

5.3 Pattern-Based Transformation

We start by identifying common design patterns and idioms. When a pattern
is recognized, it is replaced with a more concise but equivalent representation.
Some of the patterns and idioms being considered are:

– The property pattern. APIs often define the getter and setter methods asso-
ciated with a property following a number of well-established naming conven-
tions. When such a pattern is recognized, the getter and setter method can
be replaced with the associated property.

– The enumeration pattern. APIs of mobile platforms often use integers rather
than enumerations for the sake of better performance. However, enumerations
are often safer and easier to use. When such a pattern is recognized, we replace
the integers with enumerated types.

– The callback pattern. APIs often contains methods or listener (observer)
objects that are designed to provide callbacks, i.e., actions or code blocks,
in response to various types of events.

– The delegation pattern. APIs often include methods that are delegated to one
of its members.

For each of the transformations of the meta-model, we also introduce code gen-
eration rules that reverse the transformation at code generation time.

6 Meta-Model Alignment

Meta-model Alignment establishes alignment relations among the entities in dif-
ferent platform-specific meta-models. Entities in different meta-models are con-
sidered aligned if the entities are considered to have the similar functions or
behaviors, or play a similar role in their respective platform.

Definition 3. Given two platform-specific meta-models MMa = (Ca, Ra) and
MMb = (Cb, Rb), an alignment relation among the meta-models, denoted
as Ξ[MMa,MMb], is a relation that contains all the pairs of aligned enti-
ties (e1, e2), where e1 ∈ E(MMa), and e2 ∈ E(MMb). At the class level,
Ξ[MMa,MMb] is the relation of aligned classes, between Ca and Cb.

Ξ[MMa,MMb] is the union of the following three disjoint relations:

– Ξcla[MMa,MMb] is a relation between Ca and Cb, i.e., the relation of aligned
classes;

– Ξatt[MMa,MMb] is a relation between Att(Ca) and Att(Cb), i.e., the relation
of aligned attributes, (c1.a1, c2.a2) ∈ Ξatt[MMa,MMb] implies (c1, c2) ∈
Ξcla[MMa,MMb];

– Ξmtd[MMa,MMb] is a relation between Mtd(Ca) and Mtd(Cb), i.e., the
relation of aligned methods, (c1.m1, c2.m2) ∈ Ξmtd[MMa,MMb] implies
(c1, c2) ∈ Ξcla[MMa,MMb].

Meta-model alignment is carried out through the following steps:

374 X. Jia and C. Jones

1. Similarity analysis: to discover the similarities between the model entities in
different platform-specific meta-models.

2. Entity alignment: to determine the alignment relation among the entities in
different platform-specific meta-models.

3. Meta-model unification: to construct a platform-independent meta-model by
unifying the aligned entities in the platform-specific meta-models.

6.1 Similarity Analysis

We first analyze the similarity among the classes in MMa = (Ca, Ra) and
MMb = (Cb, Rb). For each pair of classes c1 ∈ Ca and c2 ∈ Cb, we define a
class similarity function θ0(c1, c2) ∈ [0, 1]. The similarity function is calculated
based on the following factors:

– the tags of each class and the relation with other classes;
– the similarity of the attributes and methods belong to the respective classes;
– the similarity of the words in the class names;
– the similarity of the textual descriptions of the classes.

We will use the text analysis techniques developed in Natural Language Process-
ing (NLP) research [23] to calculate the semantic similarity between words and
textual descriptions.

We first establish a threshold T−
0 for two classes to be considered possibly

similar. For each pair of classes c1 and c2 that θ0(c1, c2) ≥ T−
0 , we perform

further similarity analysis on the attributes and methods of the classes. For
each pair of attributes c1.a1 and c2.a2, we define an attribute similarity function
θ1(c1.a1, c2.a2) ∈ [0, 1]. For each pair of methods c1.m1 and c2.m2, we define a
method similarity function θ2(c1.m1, c2.m2) ∈ [0, 1]. The attribute and method
similarity functions are calculated using the following factors:

– the tags of each attribute or method and the respective types or signature;
– the similarity of the words in the attribute or method names;
– the similarity of the textual descriptions of the attribute or method.

6.2 Entity Alignment

Entity alignment is the key step in model alignment to compute the alignment
relation Ξ[MMa,MMb] among the model entities in MMa and MMb.

We start with a relation of anchored alignments Ξ0[MMa,MMb], which con-
sists of pairs of aligned model entities that are manually identified and verified.
The computed alignment relation must be a super set of the anchored alignment
relation, i.e., Ξ0[MMa,MMb] ⊆ Ξ[MMa,MMb].

We then establish the alignment threshold T+
0 for similarity functions θ0, to

compute the alignment relation:

– For a pair of classes c1 ∈ Ca and c2 ∈ Cb, if θ0(c1, c2) ≥ T+
0 , we consider

classes c1 and c2 to be aligned.

An Approach for the Automatic Adaptation 375

– For a pair of attributes c1.a1 and c2.a2, if θ1(c1.a1, c2.a2) ≥ T+
1 and c1 and c2

are aligned, we consider attributes c1.a1 and c2.a2 to be aligned.
– For a pair of methods c1.m1 and c2.m2, if θ2(c1.m1, c2.m2) ≥ T+

2 and c1 and
c2 are aligned, we consider methods c1.m1 and c2.m2 to be aligned.

For an alignment relation, we define the following metrics to measure its
degree of success in aligning the meta-models:

– Aligned class ratio: the ratio of the classes that are aligned with some class
over the total number of classes.

ACa =
|domain(Ξcla[MMa,MMb])|

|Ca|

ACb =
|range(Ξcla[MMa,MMb])|

|Cb|
– One-to-one ratio: the ratio of the number of one-to-one class alignment pairs

over the total number of class alignment pairs.
– Degree of alignments: the maximum number of classes that are aligned with

any class.

A successful alignment relation should satisfy the following requirements:

– The aligned class ratio for both meta-models should be sufficiently high;
– A majority of the alignments should be one-to-one, i.e., the one-to-one ratio

should be near 100 %
– The degree of alignments should be fairly low, typically 3 or less.

We will also apply the techniques in ontology alignment [10,26] in entity
alignment.

6.3 Meta-Model Unification

A unified platform-independent meta-model, MM∗, can be derived from
the platform-specific meta-models, MMa and MMb, as well as the align-
ment relation Ξ[MMa,MMb]. Meta-model unification produces two mappings:
Φ[MM∗,MMa] and Φ[MM∗,MMb].

If we have a one-to-one alignment between classes c1 and c2, a unified class
U(c1, c2) is added to the unified meta-model, MM∗. The class, U(c1, c2), can be
referred to using the name of c1 or c2 or a new unique name. All these names
are considered aliases. The mappings are updated as follows:

– U(c1, c2) �→ c1 is added to Φ[MM∗,MMa]
– U(c1, c2) �→ c2 is added to Φ[MM∗,MMb]

If we have a one-to-many alignment between class c1 and classes c2,1 . . . c2,n,
and none of c2,1 . . . c2,n is aligned with any other class, n unified classes
U(c1, c2,1) . . .U(c1, c2,n) will be added to the unified meta-model, MM∗. The
class U(c1, c2,i) can be referred to using the name of c1 or c2,i or a new unique
name. All these names are considered aliases. The mappings are updated as
follows:

376 X. Jia and C. Jones

– U(c1, c2,1) �→ c1, ... , U(c1, c2,n) �→ c1 are added to Φ[MM∗,MMa]
– U(c1, c2,1) �→ c2,1, ... , U(c1, c2,n) �→ c2,n are added to Φ[MM∗,MMb]

The mappings, Φ[MM∗,MMa] and Φ[MM∗,MMb], produced during the
unification process can be used to derive transformation rules from MM∗ to
MMa and MMb.

A similar approach is used to unify the aligned attributes and methods for
each pair of aligned classes, which will produce the attribute and method level
model mappings.

7 Discussion

The use of an ADSML has some practical implications to the development of
software. Perhaps one of the most significant is that while the core language
itself may remain more or less static, it can be extended at will by performing
the various extraction, elevation, and unification processes. This means that code
written using one version of Φ[MM∗,MMa] might not work under a different
version of Φ[MM∗,MMa] because the mapping functions might be different.
This suggests that we must be able to indicate the version of Φ[MM∗,MMa] on
which a model, Ma, depends.

The construction of an ADSML also comes with some significant challenges.
One such challenge is that the documentation on which many of the proposed
processes depend is of varying levels of completeness and utility. It is possible
that additional information might be derived from an inspection of the compiled
API code or even the source code, but that is by no means a certainty. Languages
such as Java allow for annotations to be placed on key elements of the API. The
ADSML could consume such meta-data, but that approach places the burden of
defining and maintaining those annotations on API developers.

A second challenge concerns tag management and how it relates to the ele-
ments of the API. That is, people are often inconsistent in how they apply
meta-data because those tags often represent their own ideas of how to organize
and locate the item that they are tagging. For example, one developer might tag
an entity based on its functional role within the domain, while another might
tag that same entity based on its technical role within the API. This can become
even more pronounced when we consider that there are different terms for similar
constructs across platforms. A well-defined and maintained ontology is critical
for the identification of the key architectural elements described in Sect. 5.

8 Related Work

There are many DSL-based approaches to MDD in the mobile application
domain including Rhodes [24], Appcelerator, mobl, Canappi, MobDSL, DIMAG,
Mobia Modeler, and md2. Many of these have been summarized by Ribeiro [25]
and each generates either VM-based or native code for their target platforms.

An Approach for the Automatic Adaptation 377

Appcelerator [2] and JQueryMobile [19] support the development of cross-
platform mobile applications by emphasizing common languages and virtual
machines such as HTML and JavaScript.

Canappi [6] uses the “m|dsl” DSL to define and generate cross-platform
mobile applications as front-ends to web services. Unlike ADSML, these
approaches do not allow access to native APIs or customizable code generation.

Mobl [11] is a DSL that targets mobile applications. However, it does not
address the model-driven aspects of MDD. Thus while the DSL code may indeed
be transformed into executable code, the models themselves are not major arti-
facts of the software development process.

MobDSL [20] is a DSL that uses a VM as the intermediary between the
MobDSL application and the underlying platform. This is a similar approach
as that taken by tools like Cannapi or Appcelerator save that the VMs are not
based on existing cross-platform technologies such as HTML5 and CSS, but
rather based on the native platform APIs. This provides less separation between
the modeling language and the executable environments, but still requires that
changes in the underlying platform APIs be re-integrated into the DSL.

DIMAG (Device Independent Mobile Application Generation frame-
work) [22] is a framework that allows for a single, declarative application defini-
tion to be used to generate applications across a range of devices. The model is
separated into the DIMAG-root language, the DIMAG-ui user interface lan-
guage, and an SCXML [13] workflow description to address the behavioral
aspects of the application. DIMAG can not directly take advantage of different
APIs on the target platforms instead enabling the developer to provide “wrap-
pers” that expose those APIs in a way that can be easily incorporated into the
model.

Mobia Modeler [3,4] attempts to make it possible for non-technical people to
easily build their own applications. Mobia Modeler follows the standard separa-
tion of PIM from PSM while still generating native code that can be deployed
to the target application. As with the other DSL-based approaches, effectively
integrating with platform-specific APIs is difficult.

md2 [12] was developed top-down and with a business-centric focus. It gen-
erates native code md2 though with differences in the role of the developer in
advising the transformation process. As with many of the previous approaches,
md2 suffers from a least-common denominator approach in terms of incorporat-
ing and accessing platform-specific capabilities.

Other work has been done on deriving DSLs from patterns. [5] provides a
means of enabling end-users to construct DSLs from primitive DSL constructs.
In such cases the DSL is not necessarily required to bridge to native APIs across
multiple platforms, a requirements that adds significant technical complexity to
the task of writing the DSL.

As described by [9,21], the development of DSLs has traditionally followed a
process of analysis and organization of the domain in question. This process can
be slow to incorporate new changes. ADSML attempts to automate much of the
analysis, organization and synthesis to speed up the inclusion of new elements
into the DSML while keeping core syntactic elements fixed.

378 X. Jia and C. Jones

9 Conclusion

Domain-specific modeling languages make the development of applications for
a particular domain much simpler than hand-written approaches. However,
DSMLs are often “frozen” as static mappings from DSML elements to native
language elements.

An adaptive domain-specific modeling language uses information about the
target platforms and APIs to evolve its syntax and capabilities. Our approach
extracts a meta-model for each target platform. These platform-specific meta-
models undergo a process of elevation, where an appropriate subset of the
extracted meta-model is selected for further analysis. Similarity analysis aligns
the meta-models by mapping one platform to the other. Finally, these mappings
are unified into a platform-independent meta-model on which the DSML can be
based.

Our approach enables access to the full capabilities of the native platforms
and is thus capable of generating high performance native applications. It is also
adaptable to rapid evolutions of the target platforms. This adaptability depends
on effective ontology and tag management since it is based on the derivation of
semantically useful information from the documentation of the native platform
and its APIs.

References

1. Apache Cordova (2015). https://cordova.apache.org/
2. Appcelerator (2015). http://www.appcelerator.com/
3. Balagtas-Fernandez, F., Tafelmayer, M., Hussmann, H.: Mobia modeler: easing

the creation process of mobile applications for non-technical users. In: Proceedings
of the 15th International Conference on Intelligent User Interfaces, IUI 2010, pp.
269–272. ACM, New York (2010)

4. Balagtas-Fernandez, F., Hussmann, H.: Applying domain-specific modeling to
mobile health monitoring applications. In: Sixth International Conference on Infor-
mation Technology: New Generations, ITNG 2009, pp. 1682–1683, April 2009

5. Barrientos, P., Martinez Lopez, P.: Developing dsls using combinators. A design
pattern. In: International Multiconference on Computer Science and Information
Technology, IMCSIT 2009, pp. 635–642, October 2009

6. Canappi (2011). http://www.canappi.com/
7. Charland, A., Leroux, B.: Mobile application development: web vs. native. Com-

mun. ACM 54(5), 49–53 (2011)
8. Corral, L., Sillitti, A., Succi, G.: Mobile multiplatform development: an experiment

for performance analysis. Procedia Comput. Sci. 10, 736–743 (2012)
9. van Deursen, A., Klint, P.: Domain-specific language design requires feature

descriptions. J. Comput. Inf. Technol. 10, 1–17 (2002)
10. Granitzer, M., Sabol, V., Onn, K.W., Lukose, D., Tochtermann, K.: Ontology

alignment - a survey with focus on visually supported semi-automatic techniques.
Future Internet 2(3), 238–258 (2010)

11. Hammel, Z., Visser, E., et al.: mobl: the new language of the mobile web (2010).
http://www.mobl-lang.org/

https://cordova.apache.org/
http://www.appcelerator.com/
http://www.canappi.com/
http://www.mobl-lang.org/

An Approach for the Automatic Adaptation 379

12. Heitkötter, H., Majchrzak, T.A., Kuchen, H.: Cross-platform model-driven devel-
opment of mobile applications with md2. In: Proceedings of the 28th Annual ACM
Symposium on Applied Computing, SAC 2013, pp. 526–533. ACM, New York
(2013)

13. IETF: State Chart XML (SCXML): State Machine Notation for Control Abstrac-
tion, April 2015. http://www.w3.org/TR/scxml/

14. Jia, X., Jones, C.: Dynamic languages as modeling notations in model driven engi-
neering. In: ICSOFT 2011, Seville, Spain, pp. 220–225, July 2011

15. Jia, X., Jones, C.: AXIOM: a model-driven approach to cross-platform application
development. In: ICSOFT 2012, Rome, Italy, pp. 24–33, July 2012

16. Jia, X., Jones, C.: Cross-platform application development using AXIOM as an
agile model-driven approach. In: Cordeiro, J., Hammoudi, S., van Sinderen, M.
(eds.) ICSOFT 2012. CCIS, vol. 411, pp. 36–51. Springer, Heidelberg (2013)

17. Jones, C., Jia, X.: The AXIOM model framework: transforming requirements to
native code for cross-platform mobile applications. In: ENASE, Lisbon, Portugal,
pp. 26–37, April 2014

18. Jones, C., Jia, X.: Using a domain specific language for lightweight model-driven
development. In: Maciaszek, L.A., Filipe, J. (eds.) Evaluation of Novel Approaches
to Software Engineering. Communications in Computer and Information Science,
vol. 551, pp. 46–62. Springer, Heidelberg (2015)

19. JQuery: JQuery mobile framework (2015). http://www.jquerymobile.com/
20. Kramer, D., Clark, T., Oussena, S.: Mobdsl: a domain specific language for multi-

ple mobile platform deployment. In: 2010 IEEE International Conference on Net-
worked Embedded Systems for Enterprise Applications (NESEA), pp. 1–7, Novem-
ber 2010

21. Mernik, M., Heering, J., Sloane, A.M.: When and how to develop domain-specific
languages. ACM Comput. Surv. 37(4), 316–344 (2005)

22. Miravet, P., Maŕın, I., Ort́ın, F., Rionda, A.: Dimag: a framework for automatic
generation of mobile applications for multiple platforms. In: Proceedings of the
6th International Conference on Mobile Technology, Applications, and Systems,
Mobility Conference 2009, pp. 23:1–23:8. ACM, New York (2009)

23. Noyrit, F., Gérard, S., Terrier, F.: Computer assisted integration of domain-specific
modeling languages using text analysis techniques. In: Moreira, A., Schätz, B.,
Gray, J., Vallecillo, A., Clarke, P. (eds.) MODELS 2013. LNCS, vol. 8107, pp.
505–521. Springer, Heidelberg (2013)

24. RhoMobile, Inc.: Rhodes (2015). http://docs.rhomobile.com/en/5.1.1/home
25. Ribeiro, A., da Silva, A.: Survey on cross-platforms and languages for mobile apps.

In: 2012 Eighth International Conference on the Quality of Information and Com-
munications Technology (QUATIC), pp. 255–260, September 2012

26. Shvaiko, P., Euzenat, J.: Ontology matching: state of the art and future challenges.
IEEE Trans. Knowl. Data Eng. 25(1), 158–176 (2013)

27. Vaupel, S., Taentzer, G., Harries, J.P., Stroh, R., Gerlach, R., Guckert, M.: Model-
driven development of mobile applications allowing role-driven variants. In: Dingel,
J., Schulte, W., Ramos, I., Abrahão, S., Insfran, E. (eds.) MODELS 2014. LNCS,
vol. 8767, pp. 1–17. Springer, Heidelberg (2014)

http://www.w3.org/TR/scxml/
http://www.jquerymobile.com/
http://docs.rhomobile.com/en/5.1.1/home

Automated Testing of Distributed
and Heterogeneous Systems Based on UML

Sequence Diagrams

Bruno Lima1,2(B) and João Pascoal Faria1,2

1 INESC TEC, FEUP campus, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal
2 Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias,

s/n, 4200-465 Porto, Portugal
{bruno.lima,jpf}@fe.up.pt

Abstract. The growing dependence of our society on increasingly
complex software systems makes software testing ever more important
and challenging. In many domains, several independent systems, form-
ing a distributed and heterogeneous system of systems, are involved in
the provisioning of end-to-end services to users. However, existing test
automation techniques provide little tool support for properly testing
such systems. Hence, we propose an approach and toolset architecture for
automating the testing of end-to-end services in distributed and hetero-
geneous systems, comprising a visual modeling environment, a test execu-
tion engine, and a distributed test monitoring and control infrastructure.
The only manual activity required is the description of the participants
and behavior of the services under test with UML sequence diagrams,
which are translated to extended Petri nets for efficient test input gen-
eration and test output checking at runtime. A real world example from
the Ambient Assisted Living domain illustrates the approach.

Keywords: Software testing · Distributed systems · UML sequence
diagrams · Heterogeneous systems · Systems of systems

1 Introduction

Due to the increasing ubiquity, complexity, criticality and need for assurance
of software based systems [2], testing is a fundamental lifecycle activity, with a
huge economic impact if not performed adequately [21].

In a growing number of domains, the provision of services to end users
depends on the correct functioning of large and complex systems of systems
[5]. A system of systems consists of a set of small independent systems that
together form a new system, combining hardware components and software sys-
tems. Systems of systems are in most cases distributed and heterogeneous, involv-
ing mobile and cloud-based platforms.

Testing these distributed and heterogeneous systems is particularly impor-
tant and challenging. Some of the challenges are: the difficulty to test the system
c© Springer International Publishing Switzerland 2016
P. Lorenz et al. (Eds.): ICSOFT 2015, CCIS 586, pp. 380–396, 2016.
DOI: 10.1007/978-3-319-30142-6 21

Automated Testing of Distributed and Heterogeneous Systems 381

as a whole due to the number and diversity of individual components; the diffi-
culty to coordinate and synchronize the test participants and interactions, due
to the distributed nature of the system; the difficulty to test the components
individually, because of the dependencies on other components.

An example of a distributed and heterogeneous system is the Ambient
Assisted Living (AAL) ecosystem that was prototyped in the context of the
nationwide AAL4ALL project [1]. The AAL4ALL ecosystem comprises a set of
interoperable AAL products and services (sensors, actuators, mobile and web-
based applications and services, middleware components, etc.), produced by dif-
ferent manufacturers using different technologies and communication protocols
(web services, message queues, etc.). To assure interoperability and the integrity
of the ecosystem, it was developed and piloted a testing and certification method-
ology [6], to be applied on candidate components of the ecosystem. A major
problem faced during test implementation and execution was related with test
automation, due to the diversity of component types and communication inter-
faces, the distributed nature of the system, and the lack of support tools. Similar
difficulties have been reported in other domains, such as the railway domain [22].
In fact, we found in the literature limited tool support for automating the whole
process of specification-based testing of distributed and heterogeneous systems.

Hence, the main objective of this paper is to propose an approach and a
toolset architecture to automate the whole process of model-based testing of
distributed and heterogeneous systems in a seamless way, with a focus on inte-
gration testing, but supporting also unit (component) and system testing. As
compared to existing approaches, the proposed approach and architecture pro-
vide significant benefits regarding efficiency and effectiveness: the only man-
ual activity required from the tester is the creation (with tool support) of
partial behavioral models of the system under test (SUT), using feature-rich
industry standard notations (UML 2 sequence diagrams), together with model-
to-implementation mapping information, being all the needed runtime test
components provided by the toolset for different platforms and technologies; the
ability to test not only the interactions of the SUT with the environment, but
also the interactions among components of the SUT, following an adaptive test
generation and execution strategy, to improve fault detection and localization
and cope with non-determinism in the specification or the SUT.

The rest of the paper is organized as follows: Sect. 2 describes the state of the
art. Section 3 presents an overview of the proposed approach and test process.
Section 4 introduces the toolset architecture. Section 5 summarizes the novelties
and benefits of the proposed approach. Section 6 concludes the paper and points
out future work. A running example from the AAL domain is used to illustrate
the approach presented.

2 State of the Art

The highest level of test automation is achieved by automating both test gen-
eration and test execution, but the approaches for automating test generation

382 B. Lima and J.P. Faria

and automating test execution are in most cases orthogonal. Hence, we analyze
in separate subsections approaches for automatic test generation (from models
or specifications) and automatic test execution that have the potential to be
applied for distributed and heterogeneous systems.

2.1 Model-Based Test Generation

Model-based testing (MBT) techniques and tools have attracted increasing inter-
est from academia and industry [24], because of their potential to increase the
effectiveness and efficiency of the test process, by means of the automatic gener-
ation of test cases (test sequences, input test data, and expected outputs) from
behavioral models of the system under test (SUT).

However, MBT approaches found in the literature suffer from several limita-
tions [4]. The most common limitation is the lack of integrated support for the
whole test process. This is a big obstacle for the adoption of these approaches
by industry, because of the effort required to create or adapt tools to implement
some parts of the test process.

Another common problem with existing MBT approaches is the difficulty
to avoid the explosion of the number of test cases generated. In recent MBT
approaches [8,18], researchers try to overcome the test case explosion problem
by the usage of behavioral models focusing on specific scenarios, i.e., by following
a scenario-based testing approach instead of a state-based testing approach.
Being a feature-rich industry standard, UML 2 sequence diagrams (SDs) are
particularly well suited for supporting scenario-based MBT approaches. With
the features introduced in UML 2, parameterized SDs can be used to model both
simple and complex behavioral scenarios, with control flow variants, temporal
constraints, and conformance control operators. UML SDs are also well suited
for modeling the interactions that occur between the components and actors of
a distributed system.

In the literature it can be found some test automation approaches based
on UML SDs, but those approaches has some limitations for the testing of dis-
tributed and heterogeneous systems, namely regarding the support for features
specific to those systems, such as parallelism, concurrency and time constraints.

Of particular relevance in the context of this paper is the UML Checker
toolset developed in recent work of the authors [7,8], with several advantages over
other approaches, namely regarding the level of support of UML 2 features. The
toolset supports the conformance testing of standalone object-oriented applica-
tions against test scenarios specified by means of so called test-ready SDs. Test-
ready SDs are first translated to extended Petri Nets for efficient incremental
conformance checking, with a limited support for parallelism and concurrency.
Besides external interactions with users and client applications, internal inter-
actions between objects in the system are also monitored using Aspect-Oriented
Programming (AOP) techniques [16], and checked against the ones specified in
the model. The testing of distributed systems is not supported, but some of
the techniques developed have the potential to be reused for the modeling and

Automated Testing of Distributed and Heterogeneous Systems 383

testing of interactions between components in a distributed system, instead of
interactions between objects in a standalone application.

Other examples of test automation approaches based on UML SDs are the
SCENTOR tool, targeting e-business EJB applications [27], the MDA-based
approach of [14], and the IBM Rational Rhapsody TestConductor AddOn [13],
targeting real-time embedded applications. A comparison of the strengths and
weaknesses of these approaches can be found in [8]. The main limitations of these
approaches are the limited support for the new features of UML 2 SDs and the
limited support for testing internal interactions (besides the interactions with
the environment).

2.2 Test Execution Frameworks

Regarding test concretization and execution for distributed systems, we found in
the literature several frameworks that can be adapted and integrated for building
a comprehensive test automation solution.

The Software Testing Automation Framework (STAF) [20] is an open source,
multi-platform, multi-language framework designed around the idea of reusable
components, called services (such as process invocation, resource management,
logging, and monitoring). STAF removes the tedium of building an automation
infrastructure, thus enabling the tester to focus on building an automation solu-
tion. The STAF framework provides the foundation upon which to build higher
level solutions, and provides a pluggable approach supported across a large vari-
ety of platforms and languages.

Torens and Ebrecht [22] proposed the RemoteTest framework as a solution
for the testing of distributed systems and their interfaces. In this framework, the
individual system components are integrated into a virtual environment that
emulates the adjacent modules of the system. The interface details are thereby
abstracted by the framework and there is no special interface knowledge neces-
sary by the tester. In addition to the decoupling of components and interface
abstraction, the RemoteTest framework facilitates the testing of distributed sys-
tems with flexible mechanisms to write test scripts and an architecture that can
be easily adapted to different systems.

Zhang et al. [28] developed a runtime monitoring tool called FiLM that can
monitor the execution of distributed applications against LTL specifications on
finite traces. Implemented within the online predicate checking infrastructure
D3S [17], FiLM models the execution of distributed applications as a trace of con-
sistent global snapshots with global timestamps, and it employs finite automata
constructed from Labelled transition systems (LTL) specifications to evaluate
the trace of distributed systems.

Camini et al. [3] proposed DiCE, an approach that continuously and auto-
matically explores the system behavior, to check whether the system deviates
from its desired behavior. At a highlevel DiCE (i) creates a snapshot consisting
of lightweight node checkpoints, (ii) orchestrates the exploration of relevant sys-
tem behaviors across the snapshot by subjecting system nodes to many possible
inputs that exercise node actions, and (iii) checks for violations of properties

384 B. Lima and J.P. Faria

that capture the desired system behavior. DiCE starts exploring from current
system state, and operates alongside the deployed system but in isolation from
it. In this way, testing can account for the current code, state and configuration
of the system. DiCE reuses existing protocol messages to the extent possible for
interoperability and ease of deployment.

One difficulty in testing distributed systems is that their distributed nature
imposes theoretical limitations on the conformance faults that can be detected by
the test components, depending on the test architecture used [11,12]. Hierons
[11] devised a hybrid framework for solving the problem that exist in many
systems that interact with their environment at distributed interfaces without
the possibility in some cases to place synchronised local testers at the ports of the
SUT. Before this framework existed only two main approaches to test this type
of systems: having independent local testers [23] or a single centralised tester
that interacts asynchronously with the SUT. The author proved that the hybrid
framework is more powerful than the distributed and centralised approaches.

2.3 Synthesis

Although we didn’t find in the literature an integrated approach for fully
automating the testing of distributed and heterogeneous systems, the concepts
used by each can be harnessed in the development of an architecture that can
be fully supported by tools, so that all the testing process can be automated.

3 Approach and Process

Our main objective is the development of an approach and a toolset to automate
the whole process of model-based testing of distributed and heterogeneous sys-
tems in a seamless way, with a focus on integration testing, but supporting also
unit (component) and system testing. The only manual activity (to be performed
with tool support) should be the creation of the input model of the SUT.

To that end, our approach is based on the following main ideas:

– the adoption of different ‘frontend’ and ‘backend’ modeling notations, with
an automatic translation of the input behavioral models created by the user
in an accessible ‘frontend’ notation (using industry standards such as UML
[19]), to a formal ‘backend’ notation amenable for incremental execution at
runtime (such as extended Petri Nets as in our previous work for object-
oriented systems [8]);

– the adoption of an online and adaptive test strategy, where the next test
input depends on the sequence of events that has been observed so far and
the resulting execution state of the formal backend model, to allow for non-
determinism in either the specification or the SUT [11];

– the automatic mapping of test results (coverage and errors) to the ‘frontend’
modeling layer.

Figure 1 depicts the main activities and artifacts of the proposed test process
based on the above ideas. The main activities are described in the next subsec-
tions and illustrated with a running example.

Automated Testing of Distributed and Heterogeneous Systems 385

Fig. 1. Dataflow view of the proposed test process.

3.1 Visual Modeling

The behavioral model is created using an appropriate UML profile [10,19] and an
existing modeling tool. We advocate the usage of UML 2 SDs, with a few restric-
tions and extensions, because they are well suited for describing and visualizing
the interactions that occur between the components and actors of a distributed
system. UML deployment diagrams can also be used to describe the distrib-
uted structure of the SUT. Mapping information between the model and the
implementation, needed for test execution (such as the actual location of each
component under test), may also be attached to the model with tagged values.

To illustrate the approach, we use a real world example from the AAL4ALL
project, related with a fall detection and alert service. As illustrated in Fig. 2,
this service involves the interaction between different heterogeneous components

386 B. Lima and J.P. Faria

Fig. 2. UML deployment diagram of a fall detection scenario.

running in different hardware nodes in different physical locations, as well as
three users.

A behavioral model for a typical fall detection scenario is shown in Fig. 3. In
this scenario, a care receiver has a smartphone that has installed a fall detec-
tion application. When this person falls, the application detects the fall using
the smartphone’s accelerometer and provides the user a message which indicates
that it has detected a drop giving the possibility for the user to confirm whether
he/she needs help. If the user responds that he/she does not need help (the fall
was slight, or it was just the smartphone that fell to the ground), the application
does not perform any action; however, if the user confirms that needs help or
does not respond within 5 s (useful if the person became unconscious due to the
fall), the application raises two actions in parallel. On the one hand, it makes a
call to a previously clearcut number to contact a health care provider (in this
case can be a formal or informal caregiver); on the other hand, it sends the fall
occurrence for a Personal Assistance Record database and sends a message to a

Automated Testing of Distributed and Heterogeneous Systems 387

Fig. 3. UML sequence diagram representing the interactions of the fall detection sce-
nario. The diagram is already painted after a failed test execution in which the fall
detection application didn’t send an emergency call.

portal that is used by a caregiver (e.g. a doctor or nurse) that is responsible for
monitoring this care receiver. The last two actions are performed through a cen-
tral component of the ecosystem called AALMQ (AAL Message Queue), which
allows incoming messages to be forwarded to multiple subscribers, according to
the publish-subscribe pattern [9]. To facilitate the representation of a request for
input from the user with a timeout and a default response, we use the special
syntax request(confirm fall, {yes, no}, yes, 5 sec), where the first argument iden-
tifies the message, the second argument is the set of valid answers, the third is
the default answer in case of timeout, and the last argument is the timeout time.

3.2 Visual to Formal Model Translation

For the formal runtime model, we advocate the usage of Event-Driven Colored
Petri Nets – a sort of extended Petri Nets proposed in our previous work for test-
ing object-oriented systems [8], with the addition of time constraints as found in
Timed Petri Nets. We call the resulting Petri Nets Timed Event-Driven Colored
Petri Nets, or TEDCPN for short. Petri Nets are well suited for describing in a
rigorous and machine processable way the behavior of distributed and concurrent
systems, usually requiring fewer places than the number of states of equivalent
finite state machines. Translation rules from UML 2 SDs to Event-Driven Col-
ored Petri Nets have been defined in [8]. Rules for translating time and duration
constraints in SDs to time constraints in the resulting Petri Net can also be
defined.

388 B. Lima and J.P. Faria

Fig. 4. TEDCPN derived from the SD of Fig. 3. The net is marked in a final state of a
failed test execution in which the fall detection application didn’t send an emergency
call.

Figure 4 shows the TEDCPN derived from the SD of Fig. 3, according to the
rules described in [8] and additional rules for translating time constraints.

The generated TEDCPN is partitioned into a set of fragments corresponding
to the participants in the source SD. Each fragment describes the behavior local
to each participant and the communication with other participants via boundary
places.

Transitions may be optionally labeled with an event, a guard (with braces)
and a time interval (with square brackets). Events correspond to the sending or
receiving of messages in the source SD. Guards correspond to the conditions of
conditional interaction fragments in the source SD. Time intervals correspond
to duration and time constraints in the source SD. A transition can only fire
when there is at least one token in each input place, the event (if defined) has
occurred, the guard (if defined) holds, and the time elapsed since the transition
became enabled (i.e., since there is a token in each input place) lies within the
time interval (if defined).

Incoming and outgoing arcs of a transition may be labeled with a pattern
matching expression describing the value (token) to be taken from the source
place or put in the target place, respectively, being 1 the default. For example,
in Fig. 4 the transition labeled “?answer(x)” has an input arc labeled “x”, where
“x” represents a local variable of the transition. The transition can only fire if the
value of the token in the source place is the same as the value of the argument
of the event. Then, the value of “x” is placed in the target place.

Automated Testing of Distributed and Heterogeneous Systems 389

For testing purposes, the events in the runtime model are marked as observ-
able (default) or controllable. Controllable events (underlined) are to be injected
by the test harness (playing the role of a test driver, simulating an actor) when
the corresponding transition becomes enabled. Controllable events correspond
to the sending of messages from actors in the source SD. All other events are
observable, i.e., they are to be monitored by the test harness. For example, when
the TEDCPN of the example starts execution (i.e., a token is put in the start
place), the initial unlabeled transition is executed and a token is placed in the
initial place of each fragment. At that point, the only transition enabled is the
one labeled with the “!fall signal” controllable event, so the test harness will
inject that event (simulating the user) and test execution proceeds.

This mechanism provides a unified framework with monitoring, testing and
simulation capabilities. In one extreme case, all events in the model may be
marked as observable, in which case the test system acts as a runtime monitoring
and verification system. In the other extreme case, all events in the model may
be marked as controllable, in which case the test system acts as a simulation
system. This also allows the usage of the same model with different markings of
observable and controllable events for integration and unit testing.

3.3 Test Generation and Execution

Test Generation. Using the UML 2 interaction operators, a single SD, and
hence the TEDCPN derived from it, may describe multiple control flow variants,
that require multiple test cases for being properly exercised.

In the running example, from the reading of the set of interactions repre-
sented in Fig. 3, one easily realizes that there are three test paths to be exercised
(with at least one test case for each test path). The first test path (TP1) is
the case where the care receiver responds negatively to the application and the
application doesn’t trigger any action. The second test path (TP2) is the situa-
tion where the user confirms to the application that he/she needs help and after
that the application triggers the actions. The last test path (TP3) corresponds
to the situation where the user doesn’t answer within the defined time limit and
the application triggers the remaining actions automatically. If one wants also
to exercise the boundary values of allowed response time (close to 0 and close to
5 seconds), then two test cases can be considered for each of the test paths TP1
and TP2, resulting in a total of 5 test cases.

Equivalently, in order to exercise all nodes, edges and boundary values in
the TEDCPN, several test cases are needed. In the example, one could exercise
the two outgoing paths after the “?conf fall” event, the two possible values of
variable “x” in the “!answer(x)” event, and the two boundary values of the “[0,
5 sec]” interval, in a total of 5 test cases.

In general, the required test cases can be generated using an offline strategy
(with separate generation and execution phases) or an online test strategy (with
intermixed generation and execution phases) [25]. In an offline strategy, the
test cases are determined by a static analysis of the model, assuming the SUT
behaves deterministically. But that is not often the case, so we prefer an online,

390 B. Lima and J.P. Faria

adaptive, strategy, in which the next test action is decided based on the current
execution state. Whenever multiple alternatives can be taken by the test harness
in an execution state, the test harness must choose one of the alternatives and
keep track of unexplored alternatives (i.e., model coverage information) to be
exercised in subsequent test repetitions.

Test Execution. Test execution involves the simultaneous execution of: (i) the
set of components under test (CUTs); (ii) the formal runtime model (TEDCPN),
dictating the possible test inputs and the expected outputs from the CUTs in
each step of test execution; (iii) a local test component for each CUT, running
in the same node of the CUT, able to perform the roles of test driver (i.e., send
test inputs to the CUT, simulating an actor) and test monitor (i.e., monitor all
the messages sent or received by the CUT).

The collection of monitored events (message sending and receiving events)
forms an execution trace. Testing succeeds if the observed execution trace con-
forms to the formal behavioral model, in the sense that it belongs to the (possibly
infinite) set of valid traces defined by the model.

Conformance checking is performed incrementally as follows: (i) initially, the
execution of the TEDCPN is started by placing a token in the start place and
firing transitions until a quiescent state is reached (a state where no transition
can fire); (ii) each time a quiescent state is reached having an enabled transi-
tion labeled with a controllable event, the test harness itself generates the event
(i.e., the message specified in the event is sent to the target CUT by the appro-
priate test driver) and the execution status of the TEDCPN is advanced to a
new quiescent state; (iii) each time an observable event is monitored (by a test
monitor), the execution state of the TEDCPN is advanced until a new quiescent
state is reached; (iv) the two previous steps are repeated until the final state of
the TEDCPN is reached (i.e., a token is placed in the final place), in which case
test execution succeeds, or until a state is reached in which there is no control-
lable event enabled and no observable event has been monitored for a defined
wait time, in which case test execution fails. The latter situation is illustrated in
Fig. 4. Depending on the conformance semantics chosen, the observation of an
unexpected event may also be considered a conformance error.

To minimize communication overheads, the TEDCPN can itself be executed
in a distributed fashion, by executing each fragment of the ‘global’ TEDCPN
(describing the behavior local to one participant and the communication with
other participants via boundary places) by a local test component. Communica-
tion between the distributed test components is only needed when tokens have
to be exchanged via boundary places.

When a final (success or failure) state is reached, the Test Diagnosis and
Reporting activity is responsible to analyze the execution state of the TEDCPN
and the collected execution trace, and produce meaningful error information.

Model coverage information is also collected during test execution, to guide
the selection of test inputs and the decision about when to stop test execution,
as follows: when it is reached a quiescent state of the TEDCPN with multiple

Automated Testing of Distributed and Heterogeneous Systems 391

controllable events enabled leading to different execution paths, the test harness
shall generate an event that leads to a previously unexplored path; when a final
state of the TEDCPN is reached, test execution is restarted if there are still
unexplored (but reachable) paths.

3.4 Test Results Mapping

At the end of test execution it is important to reflect the test results back in the
visual behavioral model created by the user. As an example, the marking shown
in the net of Fig. 4 corresponds to the final state of a failed test execution in
which the Fall Detection App didn’t send an emergency call. By a simple analysis
of this final state (and traceability information between the source SD and the
TEDCPN), it is possible to point out to the tester which messages in the source
SD were covered and what was the cause of test failure (missing “emergency
call” message), as shown in Fig. 3.

4 Toolset Architecture

Figure 5 depicts a layered architecture of a toolset for supporting the test process
described in the previous section, promoting reuse and extensibility.

At the bottom layer in Fig. 5, the SUT is composed by a set of components
under test (CUT), executing potentially in different nodes [19]. The CUT interact
with each other (usually asynchronously) and with the environment (users or
external systems) through well defined interfaces at defined interaction points
or ports [10,11].

The three layers of the toolset are described in the following sections.

4.1 Visual Modeling Environment

At the top layer, we have a visual modeling environment, where the tester can
create a visual behavioral model of the SUT, invoke test generation and execution,
and visualize test results and coverage information back in the model.

This layer also includes a translation tool to automatically translate the visual
behavioral models created by the user into the formal notation accepted by the
test execution manager in the next layer, and a mapping tool to translate back
the test results (coverage and error information) to annotations in the visual
model.

The model transformations can be implemented using existing MDA tech-
nologies and tools [26].

4.2 Test Execution Engine

At the next layer, the test execution engine is the core engine of the toolset.
It comprises a model execution & conformance checking engine, responsible for
incrementally checking the conformance of observed execution traces in the SUT

392 B. Lima and J.P. Faria

Fig. 5. Toolset architecture.

against the formal runtime model derived from the previous layer, and a test
execution manager, responsible for initiating test execution (using the services
of the next layer), forward execution events (received from the next layer) to
the model execution & conformance checking engine, decide next actions to be
performed by the local test driving and monitoring components in the next layer
of the system, and produce test results and diagnosis information for the layer
above.

The model execution & conformance checking engine can be implemented by
adapting existing Petri net engines, such as CPN Tools [15].

Automated Testing of Distributed and Heterogeneous Systems 393

4.3 Distributed Test Monitoring and Control Infrastructure

We adopt a hybrid test monitoring approach as proposed in [11], combining a
centralized ‘tester’ and a local ‘tester’ at each port (component interaction point)
of the SUT, that was shown to lead to more effective testing than a purely cen-
tralized approach (where a centralized tester interacts asynchronously with the
ports of the SUT) or a purely distributed approach (where multiple independent
distributed testers interact synchronously with the ports of the SUT).

Hence, the Distributed Test Monitoring and Control Infrastructure comprises
a set of local test driving and monitoring (LTDM) components, each communi-
cating (possibly synchronously) with a component under test (CUT), performing
the roles of test monitor, driver and stub; and a test communication manager
(TCM) component, that (asynchronously) dispatches control orders (coming
from the previous layer) to the LTDMs and aggregates monitoring information
from the LTDMs (to be passed to the previous layer).

During test execution, the TEDCPN may be executed in a centralized or
a distributed mode, depending on the processing capabilities that can be put
in the LTDM components. In centralized mode, the LTDM components just
monitor all observable events of interest and send them to the central TEM;
they also inject controllable events when requested from the central TEM. In
distributed mode, a copy of each fragment (up to boundary places) is sent to the
respective LTDM component for local execution. When there is the need to send
a token to a boundary place, the LTDM sends the token to the central TEM,
which subsequently dispatches it to the consumer LTDM. Because of possible
delays in the communication of tokens through boundary places, the LTDM
components must be prepared to tentatively accept observable events before
receiving enabling tokens in boundary places.

This infrastructure may be implemented by adapting and extending existing
test frameworks for distributed systems, such as the ones described in Sect. 2.2.

Different LTDM components have to be implemented for different platforms
and technologies under test, such as WCF (Windows Communication Founda-
tion), Java EE (Java Platform, Enterprise Edition), Android, etc. However, a
LTDM component implemented for a given technology may be reused without
change to monitor and control any CUT that uses that technology. For exam-
ple, in our previous work for automating the scenario-based testing of standalone
applications written in Java, we developed a runtime test library able to trace and
manipulate the execution of any Java application, using AOP (aspect-oriented
programming) instrumentation techniques with load-time weaving. In the case
of a distributed Java application, we would need to deploy a copy of that library
(or, more precisely, a modified library, to handle communication) together with
each Java component under test. In the case of a distributed system implemented
using other technologies (with different technologies for different components in
case of heterogeneous systems), similar test monitoring components suitable for
the technologies involved will have to be deployed.

394 B. Lima and J.P. Faria

5 Synthesis of Novelties and Benefits

As compared to existing approaches (see Sect. 2), the approach proposed in this
paper provides the following novelties and benefits.

Our approach provides a higher level of automation of the testing process
because all phases of the test process are supported in an integrated fashion.
The only manual activity needed is the development in a user friendly notation
of the model required as input for automatic test case generation and execution;
there is no need to develop test components specific for each SUT.

This approach also provides a higher fault detection capability. The use of
a hybrid test architecture allows the detection of a higher number of errors as
compared to purely distributed or centralized architectures. Interactions between
components in the SUT are also monitored and checked against the specifica-
tion, besides the interactions of the SUT with the environment. To facilitate fault
diagnosis, it is used an incremental conformance checking algorithm allowing to
capture the execution state of the SUT as soon as a failure occurs. Because of the
support for temporal constraints, timing faults can also be detected. Our app-
roach has the ability to test non-deterministic SUT behaviors, using an online,
adaptive, test generation strategy.

The proposed approach provides easier support for multiple test levels
because the same input model can be used to perform tests at different lev-
els (unit, integration, and system testing), simply by changing the selection of
observable and controllable events in the input model. A scenario-oriented app-
roach simplifies the level of detail required in the input models.

With this approach the test execution process is more efficient. With a dis-
tributed conformance checking algorithm, communication overheads during test
execution are minimized and the usage of a state-oriented runtime model allows
a more efficient model execution and conformance checking.

6 Conclusions

In this paper, it was presented a novel approach and process for automated
scenario-based testing of distributed and heterogeneous systems. It was also
presented the architecture of a toolset able to support and automate the pro-
posed test process. Based in a multilayer architecture and using a hybrid test
monitoring approach combining a centralized ‘tester’ and a local ‘tester’ this
toolset promotes reuse and extensibility. In the approach proposed, the tester
interacts with a visual modeling front-end to describe key behavioral scenarios
of the SUT using UML sequence diagrams, invoke test generation and execution,
and visualize test results and coverage information back in the model using a
color scheme (see Fig. 3). Internally, the visual modeling notation is converted to
a formal notation amenable for runtime interpretation (see Fig. 4) in the back-
end. A distributed test monitoring and control infrastructure is responsible for
interacting with the components of the SUT, under the roles of test driver, mon-
itor and stub. At the core of the toolset, a test execution engine coordinates

Automated Testing of Distributed and Heterogeneous Systems 395

test execution and checks the conformance of the observed execution trace with
the expectations derived from the visual model. For better understanding the
approach and toolset architecture proposed, a real world example from the AAL
domain was presented along the paper.

As future work we will implement a toolset following the architecture (repre-
sented in Fig. 5) and working principles presented in this paper, taking advantage
of previous work for automating the integration testing of standalone object-
oriented systems. To experimentally assess the benefits of the approach and
toolset, industrial level case studies will be conducted, with at least one in the
AAL domain.

With such a toolset, we expect to significantly reduce the cost of testing
distributed and heterogeneous systems, from the standpoint of time, resources
and expertise required, as compared to existing approaches.

References

1. AAL4ALL: Ambient Assisted Living For All (2015). http://www.aal4all.org
2. Boehm, B.: Some future software engineering opportunities and challenges. In:

Nanz, S. (ed.) The Future of Software Engineering, pp. 1–32. Springer, Heidelberg
(2011). http://dx.doi.org/10.1007/978-3-642-15187-3 1

3. Canini, M., Jovanović, V., Venzano, D., Novaković, D., Kostić, D.: Online testing
of federated and heterogeneous distributed systems. SIGCOMM Comput. Com-
mun. Rev. 41(4), 434–435 (2011). http://doi.acm.org/10.1145/2043164.2018507

4. Dias Neto, A.C., Subramanyan, R., Vieira, M., Travassos, G.H.: A survey
on model-based testing approaches: a systematic review. In: Proceedings of
the 1st ACM International Workshop on Empirical Assessment of Software
Engineering Languages and Technologies: Held in Conjunction with the 22nd
IEEE/ACM International Conference on Automated Software Engineering (ASE)
2007, WEASELTech 2007, pp. 31–36. ACM, New York (2007). http://doi.acm.
org/10.1145/1353673.1353681

5. DoD: Systems Engineering Guide for Systems of Systems. Technical report, Office
of the Deputy Under Secretary of Defense for Acquisition and Technology, Systems
and Software Engineering Version 1.0 (2008)

6. Faria, J.P., Lima, B., Sousa, T.B., Martins, A.: A testing and certification method-
ology for an open ambient-assisted living ecosystem. Int. J. E-Health Med. Com-
mun. (IJEHMC) 5(4), 90–107 (2014)

7. Faria, J.: A toolset for conformance testing against UML sequence diagrams
(2014). https://blogs.fe.up.pt/sdbt/

8. Faria, J., Paiva, A.: A toolset for conformance testing against UML sequence
diagrams based on event-driven colored Petri nets. Int. J. Softw. Tools Technol.
Transf., pp. 1–20 (2014). http://dx.doi.org/10.1007/s10009-014-0354-x

9. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements
of Reusable Object-Oriented Software. Pearson Education, Upper Saddle River
(1994)

10. Gross, H.G.: Component-Based Software Testing with UML. Springer, Heidelberg
(2005)

11. Hierons, R.M.: Combining centralised and distributed testing. ACM Trans. Softw.
Eng. Methodol. 24(1), 5:1–5:29 (2014). http://doi.acm.org/10.1145/2661296

http://www.aal4all.org
http://dx.doi.org/10.1007/978-3-642-15187-3_1
http://doi.acm.org/10.1145/2043164.2018507
http://doi.acm.org/10.1145/1353673.1353681
http://doi.acm.org/10.1145/1353673.1353681
https://blogs.fe.up.pt/sdbt/
http://dx.doi.org/10.1007/s10009-014-0354-x
http://doi.acm.org/10.1145/2661296

396 B. Lima and J.P. Faria

12. Hierons, R.M., Merayo, M.G., Núñez, M.: Scenarios-based testing of systems
with distributed ports. Softw. Pract. Experience 41(10), 999–1026 (2011).
http://dx.doi.org/10.1002/spe.1062

13. IBM: IBM R© Rational R© Rhapsody R© Automatic Test Conductor Add On User
Guide, v2.5.2 (2013)

14. Javed, A., Strooper, P., Watson, G.: Automated generation of test cases using
model-driven architecture. In: Second International Workshop on Automation of
Software Test, 2007, AST 2007, p. 3, May 2007

15. Jensen, K., Kristensen, L., Wells, L.: Coloured Petri Nets and CPN tools for
modelling and validation of concurrent systems. Int. J. Softw. Tools Technol.
Transf. 9(3–4), 213–254 (2007). http://dx.doi.org/10.1007/s10009-007-0038-x

16. Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C., Loingtier,
J.M., Irwin, J.: Aspect-oriented programming. In: Akşit, M., Matsuoka, S.
(eds.) ECOOP 1997. LNCS, vol. 1241, pp. 220–242. Springer, Heidelberg (1997).
http://dx.doi.org/10.1007/BFb0053381

17. Liu, X., Guo, Z., Wang, X., Chen, F., Lian, X., Tang, J., Wu, M., Kaashoek,
M.F., Zhang, Z.: D3S: debugging deployed distributed systems. In: NSDI, vol. 8,
pp. 423–437 (2008)

18. Moreira, R.M., Paiva, A.C.: PBGT tool: an integrated modeling and testing envi-
ronment for pattern-based GUI testing. In: Proceedings of the 29th ACM/IEEE
International Conference on Automated Software Engineering, ASE 2014, pp.
863–866. ACM, New York (2014). http://doi.acm.org/10.1145/2642937.2648618

19. OMG: OMG Unified Modeling LanguageTM (OMG UML), Superstructure. Tech-
nical report, Object Management Group (2011)

20. STAF: Software Testing Automation Framework (STAF) (2014). http://staf.
sourceforge.net/

21. Tassey, G.: The Economic Impacts of Inadequate Infrastructure for Software Test-
ing. Technical report, National Institute of Standards and Technology (2002)

22. Torens, C., Ebrecht, L.: RemoteTest: a framework for testing distributed sys-
tems. In: 2010 Fifth International Conference on Software Engineering Advances
(ICSEA), pp. 441–446 August 2010

23. Ulrich, A., König, H.: Architectures for testing distributed systems. In: Csopaki,
G., Dibuz, S., Tarnay, K. (eds.) Testing of Communicating Systems. IFIP – The
International Federation for Information Processing, vol. 21, pp. 93–108. Springer,
US (1999). http://dx.doi.org/10.1007/978-0-387-35567-2 7

24. Utting, M., Legeard, B.: Practical Model-Based Testing: A Tools Approach. Mor-
gan Kaufmann Publishers Inc., San Francisco (2007)

25. Utting, M., Pretschner, A., Legeard, B.: A taxonomy of model-based test-
ing approaches. Softw. Test. Verification Reliab. 22(5), 297–312 (2012).
http://dx.doi.org/10.1002/stvr.456

26. Völter, M., Stahl, T., Bettin, J., Haase, A., Helsen, S.: Model-Driven Software
Development: Technology, Engineering, Management. Wiley, Chichester (2013)

27. Wittevrongel, J., Maurer, F.: SCENTOR: scenario-based testing of e-business
applications. In: Proceedings of the Tenth IEEE International Workshops on
Enabling Technologies: Infrastructure for Collaborative Enterprises, 2001, WET
ICE 2001, pp. 41–46 (2001)

28. Zhang, F., Qi, Z., Guan, H., Liu, X., Yang, M., Zhang, Z.: FiLM: a runtime
monitoring tool for distributed systems. In: Third IEEE International Conference
on Secure Software Integration and Reliability Improvement, 2009, SSIRI 2009,
pp. 40–46, July 2009

http://dx.doi.org/10.1002/spe.1062
http://dx.doi.org/10.1007/s10009-007-0038-x
http://dx.doi.org/10.1007/BFb0053381
http://doi.acm.org/10.1145/2642937.2648618
http://staf.sourceforge.net/
http://staf.sourceforge.net/
http://dx.doi.org/10.1007/978-0-387-35567-2_7
http://dx.doi.org/10.1002/stvr.456

Guiding Cloud Developers to Build Energy
Aware Applications

Christophe Ponsard(B), Jean-Christophe Deprez, and Raphael Michel

CETIC Research Centre, Gosselies, Belgium
{cp,jcd,rm}@cetic.be

Abstract. ICT energy efficiency is a growing concern. A great effort was
already done making hardware more energy efficient and aware. Although
a part of that effort is devoted to specific software areas like embed-
ded/mobile systems, much remains to be done at the software level,
especially for applications deployed in the Cloud. There is a increas-
ing need to help Cloud application developers to learn to reason about
how much energy is consumed by their applications on the server-side.
This paper presents a set of tools which guides the developers of Cloud
applications in key steps. First, at requirements stage, in order to cap-
ture energy goals in a measurable way and relate them with important
Non-Functional Requirements (NFR). Second, at design level, an UML
profile supporting energy Key Performance Indicators (KPI) is used in
order to keep tracking off those goals and metrics across the functional
design of the application. Third, at runtime, measurements probes are
automatically deployed and the collected data is processed in order to
be analysed at the previously goal level. Specific tools for analysing the
energy behaviour and helping in making a choice among different design
alternatives are also proposed.

Keywords: Cloud computing · Energy efficiency · Green IT · Goal-
oriented requirements engineering · Non-functional requirements · Data
visualization

1 Introduction

The expansion of ICT both at professional and personal levels induces increas-
ingly larger amounts of data exchanged (high resolution pictures, videos) and
processed (Big Data), increasing connectivity of all devices (mobile devices,
Internet of Things) and higher penetration (on business domains, emerging coun-
tries). This evolution raises the energy required to run ICT to a level that would
be dramatic if ICT energy efficiency was not improving simultaneously. Between
2007 and 2012, global ICT consumption raised from 3.4 % to 4.6 % of the overall
energy consumption and the ratio for data centres also grew from 1 % to 1.3 % of
the global energy consumption hence a 30 % increase [1]. Another US study con-
firms that evolution of energy consumption by data centres (+56 % Worldwide
and +36 % in the US between 2005 and 2010) in the context of a large market
c© Springer International Publishing Switzerland 2016
P. Lorenz et al. (Eds.): ICSOFT 2015, CCIS 586, pp. 397–414, 2016.
DOI: 10.1007/978-3-319-30142-6 22

398 C. Ponsard et al.

Fig. 1. Evolution of power consumption.

expansion boosted by Cloud Computing and Social Networks [2]. In contrast,
the increase for the 2000-2005 period was about 200 % (Fig. 1).

A reason for the slower increase between 2007 and 2012 is the use of more
efficient hardware. Virtualisation techniques also enable data centres to operate
hardware at higher load. The average Power Usage Effectiveness (PUE) metric
of data centres currently ranges from 1.7 to 1.1 for the most efficient ones.
This metric compares the amount of energy spent by servers against the overall
energy consumed by the whole infrastructure, thus the best theoretical PUE
measurement is 1.0.

In order to reach another level of energy saving, it is now required to con-
sider the software layer. Several initiatives have already studied how to reduce
energy consumption of mobile or embedded devices. For the Cloud Computing
domain, an important amount of work has focused on lower layers such as the
physical infrastructure [3] or on the infrastructure virtualisation layer [4]. A sys-
tematic survey of sustainability showed a dedicated attention to Cloud as well
as a number of proposals turned to the energy efficiency of software applications
[5]. However, much remains to be done, especially to help developers to learn
how much energy is consumed by their applications on the server side.

To bootstrap the process of energy based pricing model for Cloud service at
infrastructure, platform or application level, it is necessary to develop a Cloud
stack capable to record energy consumption at each layer and to facilitate negoti-
ations between a customer and a provider where energy consumption is one of the
factors. In a second step, self-adaptation capabilities will enable dynamic energy
savings. However, such effort should not be limited to the Cloud stack middle-
ware. Development tools that support the requirements, design and construction
of Cloud applications will enable additional savings on energy consumption. This
is the overall goal of projects like [6–8].

Energy requirements are part of the system Non-Functional Requirements
(NFRs), i.e. constraints on the way the software-to-be should satisfy its func-
tional requirements or on the way it should be developed [9]. A number of tax-
onomies have been defined to classify NFRs, such as the NFR framework [10] or
the SQuaRE standard [11].

Guiding Cloud Developers to Build Energy Aware Applications 399

Unlike certain performance or security characteristics already understood by
users and developers, the behaviour of energy consumption in server-side com-
ponents is often largely unknown. Rare are those who could state quantifiable
requirements on the energy consumption behaviour on the server side for partic-
ular features of their application. For example, who could say how much energy
is consumed when searching for a bug in a given bug tracker and whether or
not this consumption behaviour is within a normal range. In addition, energy is
rarely considered as a main NFR and raising awareness in energy efficiency can
only be reached by an approach considering it together with other NFRs by iden-
tifying synergies (e.g. efficient design both for energy and performance) or the
best trade-off among with conflicting NFRs (like response time or availability).

Our work aims at helping developers to take more explicitly the energy
dimension in consideration through the whole process of building a Cloud appli-
cation and more specifically at the requirements and design stages. In order to
structure our work, we defined a global framework structured across a require-
ments, design and run-time life-cycle phases. It is depicted in Fig. 2 and is fully
detailed in [12].

Fig. 2. Eco-aware evolution framework.

The aim of this paper is to describe how we could implement this vision
based on a set of technical contributions at each phase and the validation we
conducted so far based on a supporting case study. We can summarise them at
each of the three key layers depicted in Fig. 2.

At Requirements Level - To structure the approach, the Goal-Question-
Metric paradigm is used [13]. In particular, we proposed a way to define generic
goals and questions that developers will often want answers to in order to gain
a more precise knowledge of the energy consumed by various features or compo-
nents of their application [14]. We also show how to rely on a number of already

400 C. Ponsard et al.

identified energy-related metrics [15] and how to related energy with other key
NFRs, possibly related to defined Service Level Agreements (SLA).

At Design Level - To capture the information in a way that is both stan-
dard for the analyst and easy to process for further processing, an UML profile
was defined and implemented on top of Papyrus [16]. This profile enhances the
analysis process of a Cloud application with energy awareness both for the devel-
opment of a new application or the migration of an existing application to the
Cloud. It helps in identifying a set of possible application design/configuration
alternatives. It also supports the automated deployment of measurement probes
to monitor the specified KPI and their reporting in terms of the questions and
goals of the GQM identified at requirements level.

At Runtime Level - Probes collect the specified data and report them to a
monitoring infrastructure part of the energy-aware Cloud stack. This monitoring
itself is efficient in terms of data collection strategy (frequency of sampling, data
transmission, data aggregation). Application monitoring occurs at the SaaS level
but relies on data from the lower PaaS and IaaS layers, for example, for collecting
Watt-hour of a blade or CPU percentage time of a process running in a VM. The
data is then aggregated in order to be reported back at the QGM level. A specific
visualisation tool is also provided to navigate into the collected data and to help
identifying configurations that are balanced trade-off between energy behaviour
and other NFRs [17].

This paper is organized as follows. Sections 2, 3 and 4 detail the require-
ments, design and runtime phases sketched above. Section 3 describes our ref-
erence implementation. Section 4 illustrates it on a representative case study.
Then Sect. 5 discusses some related work. Finally Sect. 6 draws conclusions and
highlights the next steps of our work.

2 Requirements Level Support: GQM and NFR
Reasoning

This section details, at the requirements level, the methodological support cen-
tred on energy goals. First, it details how to define energy goals in a measurable
way on a target Cloud infrastructure using the Goal-Question-Metric approach.
Second, it provides guidelines for reasoning with other important NFRs for Cloud
applications.

2.1 Goal-Question-Metric Approach to Energy Awareness

The Goal-Question-Metric paradigm defined by Basili [13] is structured into
three different levels of abstraction:

– Conceptual Level: A Goal is defined for an object, for a variety of reasons,
with respect to various models of quality, from several points of view and
relative to a particular environment. It specifies the domain vocabulary and

Guiding Cloud Developers to Build Energy Aware Applications 401

the relationships between terms. In our context, it describes the Cloud domain
(SaaS/PaaS/IaaS layers, VM and virtualised resources like CPU, RAM and
storage) and captures energy goals along with other possibly related NFRs as
described in Sect. 2.3.

– Operational Level: A Set of Questions that specifies the quality questions
connecting the domain vocabulary to quality measures. In our case, they will
be phrased in a way that directly relate them with measurable KPIs on the
Cloud, possibly in connection with SLA.

– Quantitative Level: A Set of Metrics, based on the models, is associated
with every question in order to answer it in a measurable way. In our case, it
specifies the list of Quality-related Metrics and KPIs whose measures can be
taken when running a application on the target Cloud Stack. It will also rely
on standardised metrics such as surveyed by [15].

2.2 Helping a Development Team to Improve the Energy Efficiency
of a Cloud Application

A development team is willing to consider improving the energy efficiency of its
application when savings on energy cost can offset the cost incurred by the effort
of refactoring the code. Consequently, refactoring for energy improvement would
normally be considered as part of a larger refactoring effort, for example, when
migrating a legacy client-server application to operate in the Cloud. In such a
case, the effort for improving energy efficiency would become a small portion of the
overall cost with direct benefit if the company developing the Cloud application
subsequently operates it in its private Cloud. In the present context, it is assumed
that the development team is willing to change the code of the Cloud application
to improve its energy efficiency under several workloads (Table 1).

Table 1. GQM goal related to energy efficiency.

Energy efficiency

Object Server-side software features or components of a cloud application

Purpose Characterization of the energy efficiency behaviour effectiveness on
representative workloads

Quality focus Energy efficiency

Point of view Development team and project manager of a cloud application

Context Identify the energy consumption of various features or components
of an application to be provided as a service in the cloud to
facilitate later refactoring activities to improve the application
code with regards to energy consumption

For the Goal of Energy Efficiency, questions related to the operational level
of the GQM depend on the variety of

– deployment alternatives considered by the service providers,
– technical characteristics of the virtual machines available at the data centre(s)

of the service provider,

402 C. Ponsard et al.

– workloads for representative customer profiles,
– features or components of the Cloud application for which developers want to

learn the energy consumption.

As the context is application refactoring, it is important to approach the
quest to learn about energy consumption behaviour of various application fea-
tures or components as an integral part of the development process. As Cloud
development practice commonly uses a iterative development approach based
on continuous integration and continuous deployment heavily relying on nightly
builds, a natural approach is to rely on this infrastructure to also gain knowl-
edge on the energy consumption of application features or components. The
continuous integration process can be used to run various workloads on a set of
design/deployment alternatives that can be explored. We can characterise such
a deployment alternative in the following way:

– E is a set of elements of a Cloud application where an element in E is a feature
or software component

– W is a subset of workloads wl for representative customer profiles.

GQM Questions related to the Goal on Energy Efficiency, generally follow
the pattern: How much energy is consumed by an element e in E when
the workload wl is applied? This question can be asked for every element in
E and every workload wl of every representative customer profile in W .

The generic question above purposely leaves room for semantic interpreta-
tions on what it means to measure the energy consumption for a feature or a
component of a cloud application. To enable an incremental knowledge build-
ing of various portions of the application as well as a zoom-in approach to spot
abnormal energy consumption behaviour that may later need refactoring, it is
important that the development team can quickly specify what application fea-
tures or components must be measured, as well as how to measure them so as to
obtain new energy consumption data during the next nightly build. For exam-
ple, after learning from a previous nightly built that the feature “search for a
bug in a given bug tracker” under various workloads exhibits a fairly constant
energy profile due to the inclusion of the energy consumed by the VM hosting
the database, the development team may want to ignore the energy consumption
of the database hosting VM and only obtain focus on the energy consumption
for the business logic layer (on the server side) of the feature.

2.3 Capturing and Structuring Energy-Related NFRs

We will not present here an exhaustive catalogue of such NFRs but rather high-
light our general design approach with a focus on Cloud computing. Given that
our approach was goal-based, it is quite natural to consider a goal-oriented
requirements engineering (GORE) framework to deal with such NFRs in a larger
perspective, since it provides all the tools to capture NFR as well as their inter-
relationship like contributions or conflicts.

Guiding Cloud Developers to Build Energy Aware Applications 403

Fig. 3. High Level Structure of NFR and some relationships.

In order to identify the key NFRs, we also need to consider the concerned
stakeholders, because the subsequent reasoning can be done with different sets
of stakeholders, depending on the kind of deployment considered. From a service
consumer’s point of view, response time and price are the most common met-
rics used to evaluate services and applications, for these are the ones that will
directly impact end users. From a service host’s point of view, the overall cost
is the most obvious parameter to minimise. This cost minimisation is subject to
multiple constraints which are affected by NFRs. For the service to remain useful
and profitable, the quality of service must reach a certain level. Service Level
Agreements (SLAs) contractually ensure that the required quality of service is
achieved consistently by defining measurements.

We rely here on the large amount of work already carried out by several
European projects [18]. Figure 3 structures the most frequently NRFs encoun-
tered such as availability, performance (response time, resource and also energy),
security/privacy of data, location/access/portability of data, exit strategy using
a structure similar to SQuaRE. A distinctive feature of our work is of course
the inclusion of energy NFRs, which also relate to “Green SLAs” that are being
considered in the efficient use of resources, particularly the energy, by services
and applications [19]. At this high-level, we can state some generic conflicts, e.g.
redundancy will increase energy consumption, security will also require more
resources (CPU, transfer volume) to cope with encryption for example and
thus increase energy demand. However, other contributions might depend on
the application, e.g. a good data replication strategy which can have a positive
energy balance for data intensive applications. In the end, the assessment will
need to be evaluated in the scope of a specific application which can be designed
or deployed in different ways. This will require to explore a design space with
the energy efficiency becoming a parameter of the total cost function.

Figure 3 was elaborated for a specific case study. The SQUaRE taxonomy was
used as check-list and all (sub-)characteristics where not relevant here. However
our belief is that some of the identified relations can be generalized in order to
be reused, for example under the form of patterns which could make the link
with functional requirements (e.g. requirements on availability for data storage).

404 C. Ponsard et al.

3 Design Level Support: UML KPI Profile

To gather energy requirements, the design annotation and mapping with deploy-
ment time probes, we augmented UML with two stereotypes at different level of
granularity. A first stereotype, preparedForMeasurement, provides information
to prepare a UML model for a measurement session while a second stereotype,
forMeasurement, provides information on each application elements relevant to
measure (e.g. a method, a class, a deployment element such as a service, a
VM,...). The definition of those two stereotypes also relies on a number of aux-
iliary DataTypes and Enumerations. In the rest of this section, we will use italic
font to refer to concepts in the metamodel diagrams.

3.1 Stereotype for Measurement Sessions

The preparedForMeasurement stereotype is used to specify global information
related to monitoring goals. It is depicted in Fig. 4

Fig. 4. Metamodel - Goal-Questions-Metrics.

Users can provide general information on a model for specifying monitoring
needs. Notably, Information provided at the model level relate to

1. the explicit specification of MonitoringGoal and associated QualityQuestions
to answer. Stereotyped KPIs modelled by user will then have to explicitly
identify and define the questions (QuestionID and QuestionText) they help
to answer.

2. a set of information (GlobalNPIDefInput) to define globally:
– measures: global repository where probing information are found,
– workload: global repository where invocation commands to exercise work-

loads on the application are found,
– visualisation: global repository where visualisation information are found.

The information location is implementation independent but a URL to some
configuration repository is expected, e.g. [20].

Guiding Cloud Developers to Build Energy Aware Applications 405

3.2 Stereotype for Measured Elements

The forMeasurement stereotype can be attached to an UML element on which
measurement can be conducted (statically or dynamically). The top of Fig. 5
shows the standard UML element to which it can be attached (operation, class,
component, etc.). To address the need of dynamic measurements for those type
of elements, it is necessary to define the forMeasurement facet which is mainly
composed of a list of KPI definition and some technology specific information
that will be useful at deployment time. Each KPI associated to a UML element
is captured by the KPIDefInput. In addition to a identifying KPIName and
KPIRepositoryURL, it contains a link to relevant questions it addresses (at least
one) and the following defining fields:

Fig. 5. Metamodel - KPI and visualisation.

– MeasurementDef (mandatory): defines on what to perform the measurement
as KPIMeasureDefInput. This scope can be finely specified using strategies
related to the container level (package, class, method, process,...) or inheri-
tance/call level (self, self+children, self+children+called)

– WorkloadDef information (mandatory): needed to conduct dynamic test ses-
sions on an execution environment to capture the desired measurement for
relevant workload categories, defined using the KPIWorkloadDefInput.

– VisualizationDef data (optional): to further precise dashboards and other
visualization widgets useful to present and to interpret measurement results.
Note it is optional because all required information may already be present in
the global GlobalVisualizationDefInput.

406 C. Ponsard et al.

4 Run-Time Support: Goal-Level Data Analysis

Our approach is to keep the application designer in control of design space
exploration. However, finding the right trade-off between multiple concerns may
quickly become a daunting problem as the complexity increases dramatically
with each new parameter. To help service and application designers to find the
right balance between their different concerns, we developed a visualization tool
that allows (1) to compare how the different parameters behave on different
versions of an application or service, and (2) to easily define the trade-off and
see which versions of the application or service match the constraints set by the
trade-off.

4.1 Comparing Versions

The first and simplest visualization uses a simple chart to compare a given metric
between multiple measurement sets. A measurement set is a set of measures
taken in given conditions. For example, a measurement set may contain data
about the response time, CPU, RAM, and energy usage of one virtual machine
(VM) during one particular test, while another measurement set may contain
the same information during the same test, but with a different version of the
search code, or with a different application deployment. These tests are repeated
multiple times and measures are aggregated to obtain reasonable estimates.

Fig. 6. CPU comparison between two nodes in the same test run.

Then, these measures can be compared on a graph. For example, the CPU
usage can be displayed using a line chart, where the CPU usage can be visual-
ized on the duration of the test. Figure 6 illustrates a visualization comparing
CPU history on two nodes of the same experiment. This kind of graphs allows
developers to:

– identify potential peaks or long CPU intensive operations that could be inves-
tigated further and optimized locally.

– compare two versions or deployments of their code to see the actual effects of
a change.

Guiding Cloud Developers to Build Energy Aware Applications 407

4.2 Trade-Off Definition

The second view approaches the data set from the opposite side. Instead of taking
different tests and versions and showing how they compare on one specific aspect,
this view takes multiple aspects and for each of them, displays how the various
measurement sets are distributed, then it allows to filter out the unwanted parts
of the distributions and see which measurements sets match the filter.

Figure 7 illustrates this: three bar graphs display the distributions of the mea-
surements sets over the Energy consumption, Cost, and Time dimensions. On
each chart, the X axis represents the measurement range (in the relevant unit,
e.g. Wh for Energy), and the Y axis represents the corresponding number of mea-
surements sets. We selected those three dimensions as the most relevant in our
current experiments but other dimensions can be explored too. Our visualization
is also not restricted to three dimensions.

Fig. 7. Filtering on aspects. Fig. 8. Energy (kWh) vs Time (s).

Figure 7 also shows the filtering mechanism. Using sliders on each graph, the
user can easily select the parts of each chart that he wants to include in the
filter. The user can immediately see the impact of the filters on a scatter plot
restricted to two selected parameters. Figure 8 shows the result of the filtering
on cost and time on the energy versus time plot. We can clearly see that the
time dimension (Y axis) has been capped at a given level: all the blue points are
under the level selected by the filter. We can also see however that not all the
points under that line are blue. On the left side for example, a few dots are grey,
even though there is no filter on the energy (X axis) aspect. This is an effect of
the filter on the cost. The grey dots on the left side of the graph (low energy)
had a higher cost, and they were excluded by the filter on the cost aspect.

The list of corresponding measurements sets and versions of the service that
match the filters is also updated, so that the user can then make an informed
choice about which version of his service he can ship and deploy.

5 Reference Implementation

Our work is part of the ASCETiC toolbox [6] which aims at improving the
lifecycle of Cloud services to reduce carbon footprint and optimise energy effi-
ciency. The toolbox relies on Open Source component and will be released under
Open Source terms. The platform is an energy-enhanced OpenStack. The design
tools are based on the Eclipse IDE while the runtime components are integrated
within a web portal based on Bootstrap [21].

408 C. Ponsard et al.

The Requirement level tooling is based on the jUCMNav Eclipse plugin [22].
It takes the form of a catalogue of goal-question-metric refinements from high
level goals (such as Energy Efficiency presented in Sect. 2.2 and also covering
key relationship across NFR. This work is specific to the Cloud domain.

The KPI UML profile was developed on top of Papyrus, an Open Source
Eclipse-based UML tool [16]. Papyrus supports the definition of profiles through
.profile projects that can be specified with the tool itself and can then be applied
to normal UML projects. Papyrus automatically generates all the input forms
required to captures the structured and typed information specified in the profile.
In order to retrieve the energy-related information encoded in an instantiated
model, we used [23] which provides a nice declarative language to transform
the source UML model into some target such as the monitoring deployment
descriptor in an OVF format for instance.

Finally, the data visualisation relies on the BIRT Eclipse plugin [24] and is
also available as a web-portal using D3 [25] and SVG [26].

6 Photo Album Case Study

6.1 Case Study Description

Photo Album is a 3-tier web application that is designed to be desktop-like on-
line photo manager [27]. It provides social services for uploading photos, storing
and previewing them, creating albums and sharing them with other users. The
visualisation layer is implemented in JavaScript while the business logic in Java
runs on the server side and a database for storing issue data can run on the same
server or on a different machine. It is very representative of applications that
can be deployed in SaaS mode on a Cloud and that can benefit of the PaaS and
IaaS layers elasticity/reconfigurability features.

6.2 GQM Energy Analysis

We restrict ourselves to a simple goal together with related questions as described
in Table 2. Those elements are encoded into a preparedForMeasurement entry
which is directly attached the to the Photo Album UML design project.

Table 2. Goal and question definition for the Photo Album.

Type ID Description
Goal EE Study the impact of executing the following features and components of Photo Album on

the energy consumption to determine if a refactoring effort is worth undertaking:
– Upload a multimedia item in an album
– Compile an album

Questions EE TQ1 What is the overall energy consumed when exercising the given feature or component for
each workload category?

EE SQ1 How does the energy consumed every second varies when exercising the given feature or
component for each workload category?

... ...

Guiding Cloud Developers to Build Energy Aware Applications 409

6.3 Use Case Annotation

The UML Use Case diagram is the simplest to use because it easily relates to
business level services typically in the application server. Figure 9 shows the two
identified features of our GQM analysis.

Fig. 9. Annotated use case for the Photo Album.

The first use case Upload a multimedia item is annotated with a forMeasure-
ment stereotype. This was done using the KPIDefInput partly shown in Fig. 10.
It is worth noting that such appropriate dialogue windows are automatically
generated by Papyrus from information described in the metamodel.

For the PhotoAlbum Use Case, the recommended measurement strategy is
coarse grained, i.e. measuring all the contained elements and following both the
inheritance and call graphs. Note that the fullName field can accept a specific
language for specifying the deployment target to monitor with some facilities
like regular expression. It is used to specify a upload entry-point method and a
samba process performing the file upload.

6.4 Deployment Annotations and Monitoring Process

Figure 11 shows a deployment view. It should normally only show the photo
album related VM, i.e. the application VM PA-APP-VM and the database VM)
PA-BD-VM along side the Test VM is used to inject specific workloads in a
controlled way on the application under energy monitoring. However, to give
some insight on the monitoring process, Fig. 11 also represents the infrastructure
VMs managing the energy monitoring: the SaaS Modelling VM offers developer
front-end tools such as Papyrus, aggregation, reporting and visualisation tools
and the PaaS Infrastructure VM runs a global efficient monitoring service.

Regarding the deployment process, information for generating the probe
descriptor and the test load specification is extracted from the UML model using
Acceleo. Those elements are then passed respectively to the probe deployment
and load generator services.

Beside application features of components, as illustrated earlier, a UML
model can also use annotated application VMs with forMeasurement informa-
tion, for example to capture VM level monitoring and measure the impact of
specific Cloud architectural components, in our case, it could be used to deter-
mine the energy consumption of a load balancer which distributes the load to
keep good response times and therefore identify explicitly a time-energy trade-off
that could take place.

410 C. Ponsard et al.

Fig. 10. KPI Definition for photo upload.

Fig. 11. Deployment view.

6.5 Reporting the Results

Figure 12 shows a typical report generated from BIRT. It shows historical data
gathered from the monitoring service on virtualised components such as CPU,
IO, memory access. Those are transparently translated into Watt history and

Guiding Cloud Developers to Build Energy Aware Applications 411

total Joule consumption based on an energy model. The link with the related
question and goal is also reported. The data can then be analysed, for example
to correlate the Watt consumption with some element (CPU, network access...)
and/or some specific load event. Based on this measurement information, bottle-
necks could be identified and improvements to a specific service or more globally
to an architecture refactoring can be triggered.

Fig. 12. Reporting at KPI level (partial).

7 Related Work and Discussion

As already mentioned, much work has been devoted to energy efficiency in the
embedded domain given the limited resource available. The MARTE profile is
capturing a lot of resource categories, including energy [28]. In a SysML context,
they can be related to requirements however the profile does not support our
richer traceability to KPI and based on a systematic GQM approach. Further
extensions dealing more specifically with energy have been developed [29]. Their
aim is more directed towards design time energy estimation rather than runtime
monitoring and evolution as ours.

Concerning energy requirements and goals, there is little room for them in the
current analysis literature: standards structuring non-functional requirements
like the ISO9126 and even the more recent SQuaRE essentially captures them
from a performance efficiency point of view and do not enable any reasoning on
them [11]. They are also not present in goal-oriented frameworks like Chung’s
NFRs [10] or KAOS [9]. However, they provide very effective reasoning means

412 C. Ponsard et al.

that were applied to Energy requirements in this work. As pointed by a Microsoft
report, most of the time energy consideration are simply not present in software
specifications, except for specific systems like embedded systems, and fail to
address fundamental issues such as the available power budget, the impact of
energy in the selection of a specific design, or the resolution of conflicts with
other requirements. At the organisation level, the situation is different, with a
current trend to help organisations in their energy management strategies, for
example using goal-oriented techniques [30]. Although this work seems farther
away from the context presented in this article, the framework presented could
be well used to collect measurement data needed as evidence for compliance to
[31] on Energy Management.

Overall, the SaaS KPI and visualization tools propose an operational app-
roach to perform a particular assessment of the architecture trade-off analy-
sis method (ATAM) [32] focused on runtime quality characteristics of various
deployment alternatives of a SaaS application to be operated in Cloud infrastruc-
tures. However, unlike traditional assessment with ATAM or other approaches
to quantify NFRs, our approach assumes an executable application, e.g. a legacy
application being migrated to operate in the Cloud or a SaaS application being
developed incrementally. As both scenarios are commonplace, we believe that we
will cover a significant percentage of Cloud application development projects.

On the visualization side, there exists other tools like the ClaferMoo Visual-
izer, a tool aimed at visualizing Pareto fronts to help making a choice between
optimal configurations of a product line in [33]. This work uses a 4 dimensional
bubble chart by using the size and the colour of the bubble as additional visual
variables. Our work, while similar in appearance, takes a different approach.
Our constraints can take the form of boundaries on different dimensions and we
limit to use 2-dimensional charts to keep the comparison simple. Also, we do not
address the issue of optimisation.

This work can to some extend be generalized to other kinds of software appli-
cations as the GQM analysis and UML profile are generic, as well as the visual-
ization tool. However, the elaborated models are specific to the Cloud domain.
This domain knowledge is part of the tool delivered to the Cloud application
developer. The global approach can of course be applied to other domains but
will only be worth the investment if it exhibits enough specificities/constraints
and has a large enough developer base (e.g. mobile ecosystems, smart card prod-
uct families, etc.).

8 Conclusion and Future Work

In this paper, we presented an integrated approach to guide Cloud developers in
building their applications in a more energy-aware way and helping them to make
the right trade-offs among different energy related non-functional requirements.
Our approach consists of a requirements phase where relationships and impacts
among NFR are identified, a design phase where design alternatives are specified
in a measurable way, and a run-time phase where the collected data are visualised

Guiding Cloud Developers to Build Energy Aware Applications 413

for the specified set of alternatives and an appropriate trade-off is identified inside
the explored design space. Our work is supported by an Open Source tooling.

Our experimentation so far is still limited to partial data sets, which have
been manually collected from a news publication application currently being
migrated to the Cloud, and complemented by a test data generator. The next
steps in our work will be to achieve a complete integration with the ASCETiC
test-bed and validate the approach on two other case studies (microservice-based
shopping cart and numeric simulation for building optimization). In this process,
we also enrich our goal refinement pattern database to document links between
NFR and energy effectiveness. In order to provide the best assistance to the
Cloud application developer, we also plan to further develop the visualization
capabilities of the tool and to integrate some data analysis capacities helping
with the identification of interesting trade-offs. Finally, we also plan to develop
specific support for the coding phase under the form of a static code analysis
tool able to detect possible energy “hotspots” and inform developers about green
code patterns that can address them.

Acknowledgement. This work was partly funded by the European Commission
under the FP7 ASCETiC project (nr 610874).

References

1. Internet Science NoE: D8.1. Overview of ICT energy consumption (2013). http://
www.internet-science.eu

2. Masanet, E.R., Brown, R.E., Shehabi, A., Koomey, J.G., Nordman, B.: Estimating
the energy use and efficiency potential of u.s. data centers. Proc. IEEE 99, 1440–
1453 (2011)

3. Dougherty, B., White, J., Schmidt, D.C.: Model-driven auto-scaling of green cloud
computing infrastructure. Future Gener. Comp. Syst. 28, 371–378 (2012)

4. Mastelic, T., et al.: Cloud computing: survey on energy efficiency. ACM Comput.
Surv. 47, 33:1–33:36 (2014)

5. Penzenstadler, B., et al.: Systematic mapping study on software engineering for
sustainability (SE4S). In: 18th International Conference on Evaluation and Assess-
ment in Software Engineering, EASE 2014, pp. 14: 1–14: 14, London, UK, May
2014

6. ASCETIC: Adapting Service lifeCycle towards EfficienT Clouds - FP7 Project.
http://www.ascetic.eu

7. ENTRA: Whole-Systems ENergy TRAnsparency (2013). http://entraproject.eu/
8. ECO2Cloud: Experimental Awareness of CO2 in Federated Cloud Sourcing (2012).

http://eco2clouds.eu
9. Van Lamsweerde, A.: Requirements engineering: from system goals to UML models

to software specifications, Wiley (2009)
10. Chung, L., Nixon, B.A., Yu, E., Mylopoulos, J.: Non-Functional Requirements in

Software Engineering. Kluwer Academic Publishers, Hardbound (2000)
11. ISO/IEC: 25010: 2011: Systems and software engineering - Systems and software

Quality Requirements and Evaluation (SQuaRE) -Quality models (2011)

http://www.internet-science.eu
http://www.internet-science.eu
http://www.ascetic.eu
http://entraproject.eu/
http://eco2clouds.eu

414 C. Ponsard et al.

12. Deprez, J.C., Ramdoyal, R., Ponsard, C.: Integrating energy and eco-aware require-
ments engineering in the development of services-based applications on virtual
clouds. In: First International Workshop on Requirements Engineering for Sus-
tainable Systems (2012)

13. Basili, V.R., Caldiera, G., Rombach, D.H.: The Goal Question Metric Approach.
Wiley, UK (1994)

14. Deprez, J.C., Ponsard, C.: Energy related goals and questions for cloud services,
measurement and metrics for green and sustainable software. In: Measurement and
Metrics for Green and Sustainable Software (MeGSuS 2014) (2014)

15. Bozzelli, P., Gu, Q., Lago, P.: A systematic literature review on green software
metrics. Technical report, VU University Amsterdam (2013)

16. Foundation, E.: Papyrus graphical editing tool for UML2. http://www.eclipse.org/
papyrus

17. Ponsard, C., Michel, R., Saadaoui, S.J.C.D.: Guiding cloud application developers
in designing balanced trade-off among energy impacting requirements. In: Mea-
surement and Metrics for Green and Sustainable Software (MeGSuS 2015) (2015)

18. Commission, E.: Cloud Computing Service Level Agreements - Exploitation of
Research Results (2013)

19. Haque, M.E., et al.: Providing green SLAs in high performance computing clouds.
In: International Green Computing Conference, IGCC 2013, Arlington, USA (2013)

20. Chef: Automation for Web-Scale IT. http://www.getchef.com/chef
21. Twitter: Bootstrap. http://getbootstrap.com
22. University Ottawa: jUCMNav: juice up your modelling (2001). http://goo.gl/

gyElGB
23. Foundation, E.: Acceleo, a pragmatic MOF Model to Text Language Implementa-

tion. http://www.eclipse.org/acceleo
24. BIRT: Business Intelligence and Reporting Tool (2005). http://eclipse.org/birt
25. Bostock, M.: D3 - data driven documents. http://d3js.org
26. W3C: Scalable vector graphics (svg) 1.1 2nd edn (2011). http://www.w3.org/TR/

SVG
27. Tsebro, A., Mukhina, S., Galkin, G., Sorokin, M.: Rich faces photo album appli-

cation (2009). http://tinyurl.com/ncd77zp
28. OMG: The UML Profile for MARTE: Modeling and Analysis of Real-Time and

Embedded Systems. http://www.omgmarte.org
29. Shorin, D., Zimmermann, A.: Evaluation of embedded system energy usage with

extended uml models. Softwaretechnik-Trends 33 (2013)
30. Stefan, D., Letier, E., Barrett, M., Stella-Sawicki, M.: Goal-oriented system mod-

elling for managing environmental sustainability. In: 3rd International Workshop
on Software Research and Climate Change (2011)

31. ISO 50001: Energy Management (2011). http://www.iso.org
32. Kazman, R., Klein, M., Clements, P.: Atam: method for architecture evaluation.

Technical report CMU/SEI-2000-TR-004, SEI, Carnegie Mellon University (2000)
33. Murashkin, A.: Web-based gui for pareto front visualization and analysis

http://www.eclipse.org/papyrus
http://www.eclipse.org/papyrus
http://www.getchef.com/chef
http://getbootstrap.com
http://goo.gl/gyElGB
http://goo.gl/gyElGB
http://www.eclipse.org/acceleo
http://eclipse.org/birt
http://d3js.org
http://www.w3.org/TR/SVG
http://www.w3.org/TR/SVG
http://tinyurl.com/ncd77zp
http://www.omgmarte.org
http://www.iso.org

SPACES: Subjective sPaces Architecture
for Contextualizing hEterogeneous Sources

Daniela Micucci, Marco Mobilio(B), and Francesco Tisato

Department of Informatics, Systems and Communication,
University of Milano-Bicocca, Milano, Italy

{micucci,marco.mobilio,tisato}@disco.unimib.it
http://www.sal.disco.unimib.it

Abstract. The growing use of sensors in smart environments appli-
cations like smart homes, hospitals, public transportation, emergency
services, education, and workplaces not only generates constantly
increasing of sensor data, but also rises the complexity of integration
of heterogeneous data and hardware devices. Existing infrastructures
should be reused under different application domain requirements, appli-
cations should be able to manage data coming from different devices
without knowing the intrinsic characteristics of the sensing devices, and,
finally, the introduction of new devices should be completely transpar-
ent to the existing applications. The paper proposes a set of architectural
abstractions aimed at representing sensors’ measurements that are inde-
pendent from the sensors’ technology. Such a set can reduce the effort
for data fusion and interpretation, moreover it enforces both the reuse of
existing infrastructure and the openness of the sensing layer by providing
a common framework for representing sensors’ readings. The abstractions
rely on the concepts of space. Data is localized both in a positing and in
a measurement space that are subjective with respect to the entity that
is observing the data. Mapping functions allow data to be mapped into
different spaces so that different entities relying on different spaces can
reason on data.

Keywords: Sensor heterogeneity · Modularisation · Software architec-
ture · Knowledge representation

1 Introduction

Smart environments are usually instrumented with various typologies of sen-
sors. Sensors may have a fixed position, like a thermometer or a light sensor,
or they may move inside the environment, like the sensors embedded in smart-
phones. Moreover, sensors are heterogeneous, thus producing measurements that
are semantically linked to their sources. Applications that rely on sensors’ mea-
surements usually fall under the umbrella of Ambient Intelligence (AmI) that
includes specific domains like smart homes, health monitoring and assistance,
hospitals, transportation, emergency services, education, and workplaces [1].
c© Springer International Publishing Switzerland 2016
P. Lorenz et al. (Eds.): ICSOFT 2015, CCIS 586, pp. 415–429, 2016.
DOI: 10.1007/978-3-319-30142-6 23

416 D. Micucci et al.

Such applications often are required to know the specific device that originated
the measurement in order to understand and use the information provided. This
leads to vertical systems, which feature low modularity and scarce openness.

When modeling sensors and related measurements, architectural solutions
should face the challenge related to both heterogeneity and semantics. For exam-
ple, authors in [7] propose a layered architecture that provides the low-level soft-
ware, the middleware, and the upper-level services with detailed specifications
of the involved sensors. This way sensors are well modeled, but their knowledge
is distributed throughout all the system.

Authors in [2] focus on issues related to the management of large amount of
data from sensors: the proposed approach consists in transforming sensor data in
what authors call a set of observations that are meaningful for the applications.
Lower levels embed semantics that is strictly related to the specific application.
This lead to scarce reusability as the same abstraction rules for a specific sensor
may not be applicable in different contexts.

Finally, database approach is growing interest. Indeed, the database approach
allows heterogeneous applications to access the same sensor data via declarative
queries. This kind of solutions may resolve data heterogeneity at the application
level, but there still persists the issue of sensor data management, since most of
the existing solutions suppose homogeneous sensors generating data according
to the same format [4].

Fig. 1. Abstraction of sensed information.

The identification of a suitable set of architectural abstractions, able to repre-
sent sensor measurements independently from the hardware characteristics of the

SPACES: Subjective sPaces Architecture 417

source, could improve reusability, openness, and modularity of software systems.
In this paper we present SPACES (Subjective sPaces Architecture for Contextu-
alizing hEterogeneous Sources), a set of architectural abstractions that remove
the dependency from the sensor by contextualizing the measurements in a spatio-
temporal frame. In detail, measurements have a time-stamp and are localized in
both a measurement and a positioning space. Such spaces are subjective to the
software components that manage them. For example, a sensor component that
is in charge of acquiring temperature expressed in a Celsius measurement unit,
will localize the sensed data in a Celsius measurement space and in a Cartesian
2D space that is local to the sensor. Mapping functions allow to project local-
izations defined in source spaces in target spaces (possibly different) that are in
turns subjective to the software component interested in managing the sensed
data. In the example above, a software component that controls the temperature
of a room reasoning on Fahrenheit degrees and by operating on actuators placed
in the room, will reason on a Fahrenheit measurement space and on a Cartesian
positioning space.

The general concept is that a space is the source with respect to a target space.
A mapping function is in charge of mapping the couple of spaces. This hold for
both the measurement and the positioning spaces. The general pattern defined
by the abstractions can be replicated many times, at different abstraction layer.

Figure 1 sketched a visual representation of the core concepts of SPACES. In
the example, a temperature sensor and a camera are the sensing devices. Data
acquired are localized in the subjective spaces of the acquisition components at
different time-stamps. Moreover, data is also localized in the subjective space of a
software components that reason in terms of room. In this example, only the local-
ization spaces have been changed (the measurement spaces remain unchanged).
As it can be possible to notice, images acquired by the camera are localized in a
bi-dimensional Cartesian Space (image plane). A mapping function projects the
image plane in a cone on the Cartesian 2D space representing the room.

Measurements may also result in spatio-temporal events that can be stored
inside a Data Base Management System (DBMS) or streamed inside a Data
Stream Management System (DSMS) [6], as proposed in [4]. The main benefit is
that applications no longer need to know the kind and the numbers of deployed
sensors. Upon the occurrence of an event of interest, applications can decide to
access all the other events that are related both spatially and temporally. In
this paper neither the storage nor distribution of data is handled, but the focus
is on the definition of such a set of architectural abstractions that could solve
sensors heterogeneity issue, in order to be able to apply one of the mentioned
approaches for data distribution, storage, and usage.

This paper will present the basic concepts along with the following simpli-
fied case of study. Consider a smart building composed by different rooms; in
each room different sensors are located. In our example, we consider a room
only (room1) that is instrumented as follow: in the top corner there is a camera
(cam1) facing the centre of the room. Hanged on the wall there is also a ther-
mometer (therm1). Moreover, a person in the room owns a smartphone with the

418 D. Micucci et al.

accelerometer acc1. In this kind of contexts, smartphones are usually considered
as extensions of the user, which means that their position is the same. Several
applications can rely on the above listed sensors: a tracking application could try
to follow the user (either a specific one or any user) and could make the position
available to the system; an application could exploit the locations of the users
to control the temperature in the rooms accordingly, based on their needs or
preferences. These are just a few examples that can benefit from the proposed
approach.

The paper is organized as follows: Sect. 2 introduces core concepts related
to spaces and zones; Sect. 3 discusses stimuli as measurements from the sen-
sors and their contextualization in the measurement space and the positioning
space; Sect. 4 presents how sources have been modeled be they sensors or soft-
ware components reasoning on their subjective spaces; Sect. 5 presents the way
subjective spaces can be related; finally Sect. 6 sketches some conclusions and
future directions.

2 Spaces and Zones

Spatial contextualization have been derived from previously defined concepts
[5,8]. Those concepts have been revisited and enriched in order to capture and
model the meta representation of a space.

A Space is defined as a set of potential locations, that are all the locations that
could be theoretically considered in that space. In a graph, the potential locations
are all the nodes and the edges. On the other hand, if a Cartesian space is used
to localize entities within a room, then the potential locations are every point
in R

2 of the area delimited by the room perimeter. Applications, when dealing
with a space, explicitly manage effective locations, which are a subset of space’s
potential locations. For example, an application that calculates the trajectory
of a mobile entity will only explicitly consider a finite number of locations in
the Cartesian space, that is, the locations belonging to the trajectory (known
as effective locations). Each space defines at least a premetric. The premetric
defines the distance between two locations as a positive, non-zero number if the
two locations are distinct, and zero if the locations are the same.

The main extension to the original model consists in defining spaces as an
aggregation of Dimensions. A Dimension literally represents a dimension in a
space: it is characterized by a UnitOfMeasure, a Precision related to its values,
and a set of Boundaries related to the values that each dimension can assume.
Locations are aggregations of dimension values. For example a location in a 3
dimensional Cartesian space, would be represented as an aggregation of 3 values,
one for each dimension of such space. Considering the scenario introduced in
Sect. 1, room1 is represented by a 3D Cartesian Space (a positioning space).
Suitable locations for this kind of space are 3D points.

Spaces and (effective) locations are respectively created from Space Model
and Location Type as depicted in Fig. 2: a space model thus specifies the type
of allowable locations and at least one premetric that can be applied to a

SPACES: Subjective sPaces Architecture 419

Fig. 2. Core concepts: meta representation and instances.

Fig. 3. 3D Cartesian space example.

420 D. Micucci et al.

pair of locations. Of course, if a space is defined as an aggregation of dimen-
sions, a space model will be composed by at least one Dimension Model that
exhaustively describes a dimension and all its components. Space models, loca-
tion types, and premetric specifications are meta-level concepts that define the
base-level concepts (spaces, locations and premetrics) applications deal with.

For example, Fig. 3 pictures a three dimensional Cartesian space, composed
by three dimensions (x, y and z). Each dimension has its own unit of measure
and precision. Boundaries are expressed as values, each dimension has a min and
a max admissible value.

Fig. 4. Space, location, and zone.

A zone ZS is a subset of potential locations of a space S. It is defined by a set
of effective locations termed characteristic locations in S and by a membership
function that states if a given location of S belongs to the zone. Essentially,
the membership function is a boolean function that is true when a location falls
within the zone. According to the membership function used, different kinds of
zones can been identified, such as: enumerative, premetric declarative, polygonal,
and pure functional. Figure 4 represents the relationship between the concepts
of zone, space, and location.

A zone characterized by an enumerative membership function (also defined
as an enumerative zone) has a non-empty set of characteristic locations: the
membership function is based on the standard belonging relationship defined in
set theory and all the locations belonging to the zone are identified through the
enumeration of the set of characteristic locations. As an example, a specific area
of a grid space can be represented with an enumerative zone by listing all the
cells included in such area. On the other hand, a polygonal membership func-
tion is related to a polygonal zone in which the characteristic locations are the

SPACES: Subjective sPaces Architecture 421

vertexes of a polygon, and indicates the inclusion of a location in such polygon.
As an example, the zone representing a specific room within a two dimension
space that depicts a floor of a building can be obtained by a polygonal mem-
bership function with the vertexes of the polygon as the zone’s characteristic
locations. A premetric declarative zone, which is a zone that has a premetric
membership function, only features a single characteristic location. Its member-
ship function thus includes all and only the locations situated at a given distance
from the characteristic locations. A clear example of this kind of zone can be
the representation of the detection area of a RFID reader in a Cartesian space.
Finally, a pure functional zone has a functional membership function that uses
mathematical expressions defined in terms of the space coordinate system. An
example can be the following one: for each pair of locations (x, y) in a space S
and for any given location (x0, y0) and (x1, y1),

f(x) =

{
true, if x0 < x < x1andy0 < y < y1

false, otherwise

This example defines a rectangular zone, in which all locations between
(x0, y0) and (x1, y1) are included. Figure 4 also pictures that a zone can be seen
as an aggregation of other zones. This allows to create a zone that contains
sub-zones, this can be useful in many cases, as an example, when dealing with
continuous spaces and locations defined by real values, a simple enumeration
can be an issue: it is impossible to get a positive response when using an enu-
meration of numbers with infinite precision. Using the concept of sub-zones, the
enumeration of real numbers can be expressed as an enumeration of zones, where
each zone features a premetric declarative membership function with each real
value as characteristic location and a distance ε as small as needed that defines
the precision of acceptance.

Fig. 5. The zone model.

As pictured in Fig. 5, zones and membership functions are build respectively
from the meta level descriptors ZoneModel and MembershipFunctionModel.

422 D. Micucci et al.

3 Stimuli

Usually, data coming from physical or software sensors, is strictly related to the
sensor itself. This means that without the knowledge of the characteristic of the
source it is difficult, if not impossible, to understand and manipulate such data.
One of the main contribution of this work deals with the representation of data
from sensors that have been completely dissociated from the sensing devices
exploiting the concepts of spaces, zones, and locations introduced in Sect. 2.
Figure 6 represents the general structure of a Stimulus.

Fig. 6. The stimulus.

A stimulus is defined as any information related to a physical event and it is
composed by three main information:

– Time Interval, the acquisition time.
– Measure Zone, the reading payload.
– Position Zone, the reading location.

The time interval represents the instant of acquisition and, thus, of validity,
of the sample. The concept of Time Interval is presented in [3].

As pictured in Fig. 6, the measure zone is a specialization of zone and it is
referred to a Measurement Space, which is a special kind of space, devoted to
represent all the possible values that an information source can produce. Within
the measurement space are represented all the characteristics of the allowable
locations. As an example, Fig. 7 pictures the details of a possible representation of
the Temperature Space subjective to the thermometer therm1. In this example,
the space features a single dimension, which is the dimension of temperature
values, the precision is referred to the precision with which values are expressible
and their unit of measure is Celsius. The dimension also has its boundaries
specified as two temperature values, −10 and 40 that represents respectively the
lowest and highest temperatures sensible by the sensor. From this example it is
clear that all the information of the sensor therm1 that are related to the values
it can provide, are embedded within the specification of its measurement space.

SPACES: Subjective sPaces Architecture 423

Fig. 7. Therm1 temperature space example.

The definition of a zone on a measurement space can be seen as expressing the
payload of a single reading. At first, the use of a zone instead of a single location
in order to represent the payload of a stimulus may seem an over-complication,
but after a more careful examination this choice allows the representation of
more meaningful information. For example, a simple temperature probe such as
the one in the thermometer defined in the example scenario, is composed by
a metal component that is physically designed to output a voltage signal that
is linearly proportional to the local temperature. The most intuitive approach
would be to use a temperature value representing the conversion from the voltage
signal to the corresponding Celsius value. However, the precision of sensors may
differ with respect of the values read. As an example, the data sheet of therm1
could reasonably states something like:

Accuracy =

⎧
⎪⎨

⎪⎩

±0.2◦ C, from − 10◦ C to 0◦C
±0.1◦ C, from 0◦ C to 30◦C
±0.2◦ C, from 30◦ C to 40◦C

Using a location to represent the current reading, such information would
be needed at any level, in order to correctly interpret and use the temperature
value. On the other hand, by using a premetric declarative zone, the accuracy
of each reading could be embedded within the measure itself: so for a value
between −10◦ C and 0◦ C, the value of the ε parameter would be 0.2.

The positioned zone, represents where, by the sensor’s perspective, the mea-
sure zone is placed. A simple thermometer like therm1, does not provide (or
know) any information about where its readings are positioned: in this scenario,
the position zone, would be irrelevant and usually corresponds to the origins
of the position space. A more interesting scenario, is the one where the sensor
is a different kind of thermometer, like an infrared thermometer, which infers

424 D. Micucci et al.

Fig. 8. Cone model and representation.

the temperature from the thermal radiation emitted by the object toward it is
pointed at. In this case, the position zone is represented by a cone as in Fig. 8.

Figure 8(b) pictures a cone in a three dimension Cartesian space, the apex of
the cone is placed on the origin of the axes and it opens toward the positive Z
axis. The opening angle α determines the radius r at the height zp. In sensors
it is usually expressed as a ratio between height of the cone section and depth
of the base, also known as distance to spot ratio. Infrared thermometers usually
do not provide distance measures, which is why the representation in Fig. 8(b)
does not includes the point P : the cone is supposed to extend itself indefinitely,
but it consider the apex of the cone in (0, 0, 0) and the direction represented by
the vector (0, 0, 1) (it opens toward the positive Z axis).

It is worth noting that the distinction between positioning and measurement
concepts is purely conceptual: they are all spaces and zones, as defined in Sect. 2.

4 Sources

Section 3 introduced the concept of stimulus. This section deals with the way
sources of information (such as the physical devices) are modeled. One of the
main issue of currently available proposals is the fact that the knowledge of low

SPACES: Subjective sPaces Architecture 425

level physical devices is spread at each level of the system, up to the applica-
tions. In this work the more general concept of Source is introduced. A source is
intended as a role, instead of a physical object. For example, when considering
the thermometer therm1, it acts as a source with respect to the component that
manages the temperature in room room1; at the same time, the temperature
component manager could act as a source to another component that regulates
the temperature in the floor.

As pictured in Fig. 9 a source can be fully defined by:

– A MeasurementSpaceModel, which defines the characteristics of the measure-
ments that the source provides.

– One or more MeasureZoneModel, which states how the measurements belong-
ing to the measurement space are expressed.

– A PositioningSpaceModel, representing the positioning space in which those
measurements are contextualized.

– One or more PositionZoneModel, which expresses how measurements are posi-
tioned inside the po4sitioning space.

A source can feature more than one measure and position zone model, this
allows for more complex sources that could represent their data in different
manners.

Fig. 9. The source model.

5 Mapping Functions

Given two different spaces, the concept of Mapping relates one zone defined on
one space with another zone defined on the other one. Starting from [8] three
kind of mappings can be defined:

– Explicit Mappings.
– Projective Mapping.
– Implicit Mappings.

An explicit mapping is an ordered pair of zones defined of different spaces,
possibly build from different models: given the spaces S1 and S2, with S1 �= S2,
the ordered pair (ZS1 , ZS2) is an explicit mapping between the zones (ZS1) ⊆ S1

(the source) and (ZS2) ⊆ S2 (the target). It is important to note that the target

426 D. Micucci et al.

zone may be defined independently from the source zone. If, on the other hand,
the target zone is the result of the application of a projection to the source zone,
the mapping is a projective mapping, and it is described by the types of the
involved spaces and the types of the respective zones. Finally, defined SM the
set of all the defined mappings and Za and Zb defined as two zones referred to
different spaces, an implicit mapping (Za, Zb) is derived if there exist n zones
Z1, ..., Zn such that (Za, Z1), (Z1, Z2), ..., (Zn, Zb) ∈ SM for n ≥ 1 (Fig. 10).

Fig. 10. The mapping function.

As mentioned, an explicit mapping is used to relate zones that are indepen-
dent, projective mappings functions (mapping functions from now on) are thus
the best choice, because the zones they produce can be seen as the representation
of the source zone in the target space. In this work, mapping functions are used
as connecting components between abstraction layers: for example, they can be
used to abstract stimuli coming from physical sensors that are contextualized in
subjective spaces, into other stimuli, referred to spaces that are subjective with
respect to the software component interested in the readings. This pattern can
be repeated many times as required by the abstractions needed.

For example, the stimuli produced by the simple thermometer therm1 rep-
resents the temperature in a specific position of the sensor subjective space. By
applying a projection mapping to the position zone of the therm1 it is possible to
obtain a new position, that represents the same information within the position
space of room1.

With the aim of using a mapping function in order to position a stimuli (for
example, from a sensor subjective space, to a space representing a room), the
real position of the sensor itself inside the room comes in place. Since the aim
of this work is to move from physical devices toward the concept of spaces, the
position of a generic source with respect to a destination space is expressed as
the Pose of the source position space with respect to its reference (target) space.
For example Fig. 11 gives a graphical representation of the concept of pose of
the therm1 positioning space within the room1 positioning space, it also gives a
glimpse of how the conical zone defined in Fig. 8(a) needs to be represented with
respect of the room1 perspective. The pose of a space with respect to another

SPACES: Subjective sPaces Architecture 427

Fig. 11. The pose of the therm1 space.

space is strictly dependent on the types of the two spaces: for example, when
dealing with Cartesian spaces, the most common information needed to define
a pose are:

– a rotation and translation matrix
– a set of multipliers, in order to address the differences in scales between the

two spaces. It may be one for each dimension, or a single one for all of them.

Figure 12 shows the mapping of the cone zone from the subjective space
of therm1 to the equivalent zone in the room1 space. The conversion of the
apex location its base on the roto-translation matrixes (they are not reported
here, but can be calculated by different tools already available). The ratio of
the destination zone depends on a interpolation of the scale values and the
direction, finally, the destination direction vector is calculated applying to it the
same rotation matrixes. What could also be included in the room perspective is
the point P as showed in Fig. 11 as it is reasonable to delimit the cone to the
boundaries of the room, nonetheless this could need a different and more complex
polyhedric representation if the cone intersects the corners of the space.

While it is more common to think about the concepts of pose and mapping
with positioning spaces, the same paradigm can be applied to measurement
spaces. Referring to the temperature measurements considered until now, it is
possible to define, as an example, the mapping between the measure contex-
tualised in the subjective space of therm1, in a measure contextualised in a
different temperature space, like the one referred to room1. Considering that
therm1’s temperature space is expressed in Celsius degrees, while the room1’s
is in Fahrenheit degrees, the mapping function can be seen as the conversion
function, while the pose are the parameters that align the Celsius scale with
respect to the Fahrenheit scale.

428 D. Micucci et al.

Fig. 12. The mapping of a cone.

Fig. 13. The stimulus mapping chain.

By putting together both a positioning and a measurement mapping func-
tion, it is then possible to completely contextualize a stimulus in a different
space. Figure 13 shows how abstraction of information works under the presented
paradigm.

6 Conclusions

The proposed model has been object of a proof-of-concept Java implementation.
It has proved the effectiveness and the feasibility of the proposal, while high-
lighting the aspects that require further investigations, such as how complex
mapping function can been easily included into the model.

SPACES: Subjective sPaces Architecture 429

The first experimentation has dealt with static configuration of all the actor
involved. Dynamic presentation of sources is also under development, by allowing
a source to present itself to an upper layer by providing an exhaustive description
of the spaces upon which it contextualize the data it provide.

A first experimentation with real world sensors is also being carried on: a
number of heterogenous sources are being used. For example, the image infor-
mation and the skeleton structure from a Kinect and onboard sensors from a
Samsung Galaxy S5 smartphone, which dynamically present themselves to an
integration component. The acquisition is currently controlled by a web appli-
cation. A solid and wider implementation is still required, as the realisation of
data-flow mechanisms that domain applications can exploit in order to consis-
tently access and query stimuli at different levels of abstraction.

References

1. Cook, D.J., Augusto, J.C., Jakkula, V.R.: Ambient intelligence: technologies, appli-
cations, and opportunities. Pervasive Mob. Comput. 5(4), 277–298 (2009)

2. Dasgupta, R., Dey, S.: A comprehensive sensor taxonomy and semantic knowledge
representation: energy meter use case. In: 2013 Seventh International Conference
on Sensing Technology (ICST), pp. 791–799. IEEE (2013)

3. Fiamberti, F., Micucci, D., Morniroli, A., Tisato, F.: A model for time-awareness.
In: Bajec, M., Eder, J. (eds.) CAiSE Workshops 2012. LNBIP, vol. 112, pp. 70–84.
Springer, Heidelberg (2012)

4. Gurgen, L., Roncancio, C., Labbé, C., Bottaro, A., Olive, V.: Sstreamware: a service
oriented middleware for heterogeneous sensor data management. In: Proceedings of
the 5th International Conference on Pervasive Services, pp. 121–130. ACM (2008)

5. Micucci, D., Vertemati, A., Fiamberti, F., Bernini, D., Tisato, F.: A spaces-based
platform enabling responsive environments. Int. J. Adv. Intell. Syst. 7(1), 179–193
(2014)

6. Motwani, R., Widom, J., Arasu, A., Babcock, B., Babu, S., Datar, M., Manku, G.,
Olston, C., Rosenstein, J., Varma, R.: Query processing, resource management,
and approximation in a data stream management system. CIDR (2003)

7. Pirkl, G., Munaretto, D., Fischer, C., An, C., Lukowicz, P., Klepal, M.,
Timm-Giel, A., Widmer, J., Pesch, D., Gellersen, H., et al.: Virtual lifeline: multi-
modal sensor data fusion for robust navigation in unknown environments. Pervasive
Mob. Comput. 8(3), 388–401 (2012)

8. Tisato, F., Simone, C., Bernini, D., Locatelli, M., Micucci, D.: Grounding ecologies
on multiple spaces. Pervasive Mob. Comput. 8(4), 575–596 (2012)

Author Index

Ahmed Nacer, Mohamed 191

Ben-Abdallah, Hanene 175
Bernardi, Mario L. 99
Bettini, Lorenzo 63
Boukadi, Khouloud 175
Buchmann, Thomas 19
Budgen, David 3

Cimitile, Marta 99
Crescenzi, Pierluigi 63

De Ruvo, Giuseppe 99
Deprez, Jean-Christophe 397
Di Lucca, Giuseppe A. 99
Dugerdil, Philippe 250

Fant, Julie Street 287
Faria, João Pascoal 380
Fernández-Álvarez, Alberto-Manuel 137
Fernández-Lanvin, Daniel 137
Frey, Georg 118
Frumento, Enrico 228

Gaebert, Cornelia 210
Gomaa, Hassan 287

Haendler, Thorsten 326
Hayashi, Shinpei 269
Heisel, Maritta 79

Inoue, Wataru 269

Jia, Xiaoping 365
Jones, Christopher 365

Kaiya, Haruhiko 269
Khalgui, Mohamed 118
Kirk, Diana 155

Lagos, Nikolaos 42
Lavazza, Luigi 228
Le Guilly, Thibaut 307
Lima, Bruno 380

MacDonell, Stephen 155
Mazza, Riccardo 228
Meis, Rene 79
Michel, Raphael 397
Micucci, Daniela 415
Mobilio, Marco 415
Mosbahi, Olfa 118

Olsen, Petur 307
Oussalah, Mourad 191

Pedersen, Thomas 307
Pettit, Robert G. 287
Ponsard, Christophe 397

Quintela-Pumares, Manuel 137

Ravn, Anders P. 307
Rekik, Mouna 175

Saeki, Motoshi 269
Sako, Roland 250
Salem, Mohamed Oussama Ben 118
Santone, Antonella 99
Schwägerl, Felix 19
Skou, Arne 307
Smatti, Manel 191
Sobernig, Stefan 326
Strembeck, Mark 326

Tikhonova, Ulyana 349
Tisato, Francesco 415

Vion-Dury, Jean-Yves 42

Westfechtel, Bernhard 19
Willemse, Tim 349

	Preface
	Organization
	Contents
	Invited Paper
	What Do We Know and How Well Do We Know It? Current Knowledge About Software Engineering Practices
	1 Introduction
	2 Empirical Knowledge in Computing
	2.1 Research Practice
	2.2 Empirical Practice

	3 Secondary Studies
	3.1 Systematic Reviews
	3.2 Performing a Systematic Review
	3.3 Influence upon Primary Studies

	4 The Outcomes
	4.1 Tertiary Studies
	4.2 Some Examples

	5 Improving Knowledge
	5.1 Improving Empirical Quality
	5.2 Replication of Primary Studies
	5.3 Size of Studies

	6 Conclusions
	References

	Software Paradigm Trends
	Filtered Model-Driven Product Line Engineering with SuperMod: The Home Automation Case
	1 Introduction
	2 Software Product Line Development Processes
	2.1 The Traditional SPLE Process
	2.2 Iterative and Incremental Software Product Line Engineering
	2.3 SPLE Processes with SuperMod

	3 The Tool SuperMod
	3.1 Underlying Principles
	3.2 Tool Architecture and Editing Model
	3.3 Check-Out, Modify, and Commit

	4 The Home Automation Case Study
	4.1 Requirements Analysis
	4.2 Design
	4.3 Implementation
	4.4 Handling a New Customer Request
	4.5 Results and Observations

	5 Related Work
	6 Discussion
	7 Summary and Outlook
	8 Accompanying Resources
	References

	A Semantic Versioning Service Based on Formal Certification
	1 Introduction
	2 Related Work
	3 Key Ideas
	4 The Versioning Model
	4.1 Invariants, Specifications, Theories
	4.2 Structure of Version Labels
	4.3 Version-Based Ordering
	4.4 Designation and Selection of Resources

	5 The Certification Model
	5.1 Dynamics of Resources and Specifications
	5.2 Underlying Logic and Its Implementations
	5.3 Certification of Resources and Specifications

	6 Version Broker Service
	6.1 Overview of the VBS Process
	6.2 The Resource Owner
	6.3 The Resource User

	7 Illustrative Example
	7.1 Fundamental Invariant
	7.2 The External Specification
	7.3 The Internal Specification
	7.4 Verification of Specifications
	7.5 First Certification
	7.6 A Change and Its Co-Evolution

	8 Conclusion
	References

	An Eclipse IDE for Teaching Java--
	1 Introduction
	2 The Original Java-- Application
	3 The Java-- IDE
	3.1 The IDE Interface
	3.2 On the Value of an IDE

	4 The Debugging Feature
	5 The Self-Assessment Feature
	6 Related Work
	6.1 Educational Related Work
	6.2 Implementation Framework Related Work

	7 Conclusions
	References

	Supporting Privacy Impact Assessments Using Problem-Based Privacy Analysis
	1 Introduction
	2 Running Example
	3 Background
	4 Method
	4.1 Context Elicitation
	4.2 Graph Generation
	4.3 Identification of Personal Data
	4.4 Personal Data Flow Analysis
	4.5 Using the Elicited Knowledge for a PIA Report

	5 Related Work
	6 Conclusions
	References

	Integrating Model Driven and Model Checking to Mine Design Patterns
	1 Introduction
	2 Related Work
	3 Background
	3.1 Basic LOTOS
	3.2 Selective--Calculus

	4 The Integrated Approach
	4.1 Graph-Matching DPs Detection
	4.2 DPF Refinement

	5 Case Study
	5.1 Motivation of the Use of the Selective--Calculus Logic

	6 Conclusions and Future Works
	References

	R-UML: An UML Profile for Verification of Flexible Control Systems
	1 Introduction
	2 Background
	2.1 Timed Net Condition/Event System
	2.2 Reconfigurable Timed Net Condition/Event System
	2.3 Priority Ceiling Protocol

	3 Running Example
	4 Conception and Validation of Flexible Control Systems
	4.1 R-UML
	4.2 Tranformation

	5 Conclusions
	References

	Invariant Implementation for Domain Models Applying Incremental OCL Techniques
	Abstract
	1 Introduction
	2 Proposal
	3 Constraint Implementation Issues
	4 Running Example
	5 The Tool
	5.1 Processing Every Constraint
	5.2 Code Generation for Event Detection
	5.3 Creation and Deletion of Objects: Extent of a Class
	5.4 Code Generation of Invariants
	5.5 Execution Context

	6 Results
	7 Related Work
	8 Conclusions
	Acknowledgements
	References

	An Ontological Analysis of a Proposed Theory for Software Development
	1 Introduction
	2 Related Work
	3 Theory Overview
	3.1 Objectives
	3.2 Process
	3.3 Context

	4 Ontological Considerations
	4.1 Unified Foundational Ontology (UFO)
	4.2 Application of UFO to Proposed Theory
	4.3 Discussion

	5 Summary
	References

	Software Engineering and Applications
	Specifying Business Process Outsourcing Requirements
	1 Introduction
	2 Business Process Outsourcing Criteria
	2.1 Cost Saving
	2.2 Focus on Core Competence
	2.3 Security Concerns
	2.4 Quality Improvement

	3 BPMN 2.0 Extension with Outsourcing Concerns
	4 Outsourced Activity Identification
	4.1 Problem Formulation
	4.2 Implementation of Genetic Algorithm to Select Suitable Activities for Outsourcing

	5 Experiment and Result
	5.1 Experiment A
	5.2 Experiment B

	6 Conclusions
	References

	Supporting Deviations on Software Processes: A Literature Overview
	1 Introduction
	2 Deviations on Software Processes
	2.1 Deviation Concept
	2.2 Motivation

	3 Detecting Deviations
	3.1 Criteria
	3.2 Classification Framework

	4 Correcting Deviations
	4.1 Motivation
	4.2 Correction Plans
	4.3 Criteria
	4.4 Classification Framework

	5 Results and Discussion
	6 New Trends to Support Deviations on Software Processes
	6.1 Deviation Identity
	6.2 Detecting deviations
	6.3 Correcting Deviations

	7 Conclusion
	References

	Protection of Customers' and Suppliers' Knowledge in Software Development Projects with Fixed-Price Contract: Using Property Rights Theory
	Abstract
	1 Introduction
	2 The Empirical Support
	3 Knowledge and Information in Software Development Projects
	3.1 Knowledge and Information
	3.2 Knowledge and Information in Software Development Projects
	3.3 Summary: The Character of Information and Knowledge as Properties

	4 The Protection of Knowledge: The Property Rights Model for the SDP
	4.1 Excursus: Protection of Knowledge by Credible Commitments
	4.2 Protection of Knowledge by Property Rights: The Landowner Model
	4.3 The Fixed-Rent Model
	4.4 The Wage Model
	4.5 Summary: Rent and Wage Model

	5 Conclusions
	References

	GQM-Based Definition and Evaluation of Software Project Success Indicators
	1 Introduction
	2 The Evaluation Process
	3 Using GQM to Define KPI and Success Indicators
	3.1 The GQM
	3.2 Definition of KPI as GQM Goals
	3.3 Detailing KPI and Success Indicators in a GQM Plan
	3.4 Validating the Plans: Involving Stakeholders

	4 The Measure DB Schema
	5 Implementing Indicators
	5.1 Determining the Interpretation of Measures
	5.2 Implementing KPI

	6 Indicator Computation
	6.1 Computing Results
	6.2 Final Evaluations

	7 Related Work
	8 Conclusions
	References

	Dynamic Analysis Techniques to Reverse Engineer Mobile Applications
	Abstract
	1 Introduction
	2 Reverse Engineering Technique
	3 Use Case Recovery
	4 App Instrumentation
	4.1 Introduction
	4.2 The Case of Objective-C

	5 Case Studies
	5.1 Data Access Application
	5.2 Word Press
	5.3 Interpretation Process

	6 Related Work
	7 Conclusion
	References

	Annotating Goals with Concerns in Goal-Oriented Requirements Engineering
	1 Introduction
	2 Motivating Example
	3 Our Approach
	3.1 Basic Idea
	3.2 Concerns of Goals
	3.3 Applying Our Approach

	4 Supporting Tool
	5 Exploratory Experiment
	5.1 Procedure
	5.2 Results
	5.3 Discussion
	5.4 Threats to Validity

	6 Related Work
	7 Conclusion
	References

	A Model-Based Approach for Integrating Executable Architectural Design Patterns in Space Flight Soft ...
	Abstract
	1 Introduction
	2 Related Work
	3 SPL Engineering with Architectural Design Patterns
	3.1 Variable Distributed Real-time and Embedded (DRE) Design Patterns
	3.2 Use Case and Feature Modeling
	3.3 Use Case Activity Modeling
	3.4 Feature to Design Pattern Mapping
	3.5 Executable Design Patterns
	3.6 Design Pattern Interconnection

	4 Application Engineering
	5 Case Studies
	5.1 Feature Selection
	5.2 Design Pattern Customization
	5.3 Design Pattern Interconnection

	6 Validation
	7 Benefits and Limitations
	8 Conclusions
	References

	Model Checking Feature Interactions
	1 Introduction
	2 System Model
	2.1 Assumptions
	2.2 Feature and System Consistency

	3 Identifying Components
	4 Timed Automata Model
	4.1 Variables
	4.2 Assumptions
	4.3 Features
	4.4 Requirements
	4.5 Correctness of Models

	5 Use Case
	5.1 Requirements
	5.2 Plant Variables
	5.3 Features
	5.4 Actuators
	5.5 Disturbances
	5.6 Assumptions
	5.7 Specifications
	5.8 Modeling

	6 Limitations
	7 Related Work
	8 Conclusion and Future Work
	References

	Deriving Tailored UML Interaction Models from Scenario-Based Runtime Tests
	1 Introduction
	2 Representing Scenario Tests as UML2 Interactions
	2.1 Scenario-Test Structure and Traces
	2.2 Interaction-Specific Elements of UML2
	2.3 Mapping Test Traces to Interactions

	3 Views on Test-Execution Traces
	3.1 Scenario-Test Viewpoint
	3.2 Example
	3.3 Viewpoint Mappings

	4 Prototype Implementation
	4.1 Used Technologies
	4.2 Derivation Actions

	5 Related Work
	6 Conclusion
	References

	Documenting and Designing QVTo Model Transformations Through Mathematics
	1 Introduction and Motivation
	2 Related Work
	3 Notation for Describing Model Transformations
	3.1 Describing Metamodel Concepts
	3.2 Describing Model Transformations

	4 Design of Model Transformations
	4.1 Structural Decomposition of Model Transformations
	4.2 Chaining Model Transformations

	5 Discussion and Validation
	6 Conclusion and Future Work
	References

	An Approach for the Automatic Adaptation of Domain-Specific Modeling Languages for Model-Driven Mobile Application Development
	1 Introduction
	2 DSML-Based MDD
	3 Adaptive DSML
	3.1 Meta-Models and Mappings
	3.2 Characteristics of Adaptive DSML
	3.3 Meta-Model Evolution

	4 Meta-Model Extraction
	5 Meta-Model Elevation
	5.1 Visibility Analysis
	5.2 Tagging Key Architectural Elements
	5.3 Pattern-Based Transformation

	6 Meta-Model Alignment
	6.1 Similarity Analysis
	6.2 Entity Alignment
	6.3 Meta-Model Unification

	7 Discussion
	8 Related Work
	9 Conclusion
	References

	Automated Testing of Distributed and Heterogeneous Systems Based on UML Sequence Diagrams
	1 Introduction
	2 State of the Art
	2.1 Model-Based Test Generation
	2.2 Test Execution Frameworks
	2.3 Synthesis

	3 Approach and Process
	3.1 Visual Modeling
	3.2 Visual to Formal Model Translation
	3.3 Test Generation and Execution
	3.4 Test Results Mapping

	4 Toolset Architecture
	4.1 Visual Modeling Environment
	4.2 Test Execution Engine
	4.3 Distributed Test Monitoring and Control Infrastructure

	5 Synthesis of Novelties and Benefits
	6 Conclusions
	References

	Guiding Cloud Developers to Build Energy Aware Applications
	1 Introduction
	2 Requirements Level Support: GQM and NFR Reasoning
	2.1 Goal-Question-Metric Approach to Energy Awareness
	2.2 Helping a Development Team to Improve the Energy Efficiency of a Cloud Application
	2.3 Capturing and Structuring Energy-Related NFRs

	3 Design Level Support: UML KPI Profile
	3.1 Stereotype for Measurement Sessions
	3.2 Stereotype for Measured Elements

	4 Run-Time Support: Goal-Level Data Analysis
	4.1 Comparing Versions
	4.2 Trade-Off Definition

	5 Reference Implementation
	6 Photo Album Case Study
	6.1 Case Study Description
	6.2 GQM Energy Analysis
	6.3 Use Case Annotation
	6.4 Deployment Annotations and Monitoring Process
	6.5 Reporting the Results

	7 Related Work and Discussion
	8 Conclusion and Future Work
	References

	SPACES: Subjective sPaces Architecture for Contextualizing hEterogeneous Sources
	1 Introduction
	2 Spaces and Zones
	3 Stimuli
	4 Sources
	5 Mapping Functions
	6 Conclusions
	References

	Author Index

