
Optimal Distributed Searching in the Plane
with and Without Uncertainty

Alejandro López-Ortiz and Daniela Maftuleac(B)

Cheriton School of Computer Science, University of Waterloo,
Waterloo, ON N2L 3G1, Canada

{alopez-o,dmaftule}@uwaterloo.ca

Abstract. We consider the problem of multiple agents or robots search-
ing in a coordinated fashion for a target in the plane. This is motivated
by Search and Rescue operations (SAR) in the high seas which in the
past were often performed with several vessels, and more recently by
swarms of aerial drones and/or unmanned surface vessels. Coordinating
such a search in an effective manner is a non trivial task. In this paper,
we develop first an optimal strategy for searching with k robots starting
from a common origin and moving at unit speed. We then apply the
results from this model to more realistic scenarios such as differential
search speeds, late arrival times to the search effort and low probability
of detection under poor visibility conditions. We show that, surprisingly,
the theoretical idealized model still governs the search with certain suit-
able minor adaptations.

1 Introduction

Searching for an object on the plane with limited visibility is often modelled by
a search on a lattice. In this case it is assumed that the search agent identifies
the target upon contact. An axis parallel lattice induces the Manhattan or L1

metric on the plane. One can measure the distances traversed by the search
agent or robot using this metric. Traditionally, search strategies are analysed
using the competitive ratio used in the analysis of on-line algorithms. For a
single robot the competitive ratio is defined as the ratio between the distance
traversed by the robot in its search for the target and the length of the shortest
path between the starting position of the robot and the target. In other words,
the competitive ratio measures the detour of the search strategy as compared to
the optimal shortest route.

In 1989, Baeza-Yates et al. [1–3] proposed an optimal strategy for searching
on a lattice with a single searcher with a competitive ratio of 2n + 5 + Θ(1/n)
to find a point at an unknown distance n from the origin. The strategy follows a
spiral pattern exploring n-balls in increasing order, for all integer n. This model
has been historically used for search and rescue operations in the high seas where
a grid pattern is established and search vessels are dispatched in predetermined
patterns to search for the target [4,14].

c© Springer International Publishing Switzerland 2016
M. Kaykobad and R. Petreschi (Eds.): WALCOM 2016, LNCS 9627, pp. 68–79, 2016.
DOI: 10.1007/978-3-319-30139-6 6



Optimal Distributed Searching in the Plane with and Without Uncertainty 69

Historically, searches were conducted using a limited number (at most a hand-
ful) of vessels and aircrafts. This placed heavy constraints in the type of solutions
that could be considered, and this is duly reflected in the modern search and
rescue literature [6,8,11].

However, the comparably low cost of surface or underwater unmanned vessels
allows for searches using hundreds, if not thousands of vessels.1 Motivated by
this consideration, we study strategies for searching optimally in the plane with
a given, arbitrarily large number of robots.

Additionally, the search pattern reflects probabilities of detection and discov-
ery according to some known distribution that reflects the specifics of the search
at hand. For example, the search of the SS Central America reflected the prob-
abilities of location using known survivor accounts and ocean currents. These
probabilities were included in the design stage of the search pattern, with the ship
and its gold cargo being successfully recovered in 1989 after more than 130 years
of previous unsuccessful search efforts [13]. The case of parallel searchers without
communication was studied by Feinerman et al. [5] and Koenig et al. [7]. In this
paper they study robots without communication or a unique ID. In contrast we
assume both a unique ID from the outset and centralized communication for the
case when new agents join the search.

In this paper, we address the problem of searching in the plane with multiple
centrally-coordinated agents under probability of detection and discovery. We
begin with the theoretical model for two and four robots of López-Ortiz and
Sweet [9] that abstracts out issues of visibility and differing speeds of searchers.
Searching for an object on the plane with limited visibility is commonly mod-
elled by a search on a lattice. Under this setting, visual contact on the plane
corresponds to identifying the target upon contact on the grid.

Models. There are several parameters to model the cost of a SAR search. First
is the total cost of the search effort as measured in vessel and personnel hours
times the number of hours in the search, both for the worst case and average case
as compared to the shortest path to the target. The second is the effectiveness
of the search in terms of the probability of finding the target. Lastly, the time to
discovery or speed-to-destination as time is of the essence in most search rescue
scenarios. That is to say, a multiple robot search is preferable to a single agent
search with the same overall cost as the time to discovery is lower. In this paper
we aim to minimize the time to destination under a fixed number of robots as
compared to the shortest path.

Summary of Results and Structure of the Paper. We construct a theoretical
model and give an optimal strategy for searching with k robots with unit speed,
1 For example, the cost of an unmanned search vehicle is in the order of tens of

thousands of dollars which can be amortized over hundreds of searches, while the
cost of conventional search efforts range from the low hundred thousands of dollars
up to sixty million dollars for high profile searches such as Malaysia Airlines MH370
and Air France 447. This suggests that somewhere in the order of a few hundred to
a few tens of thousands of robots can be brought to bear in such a search.



70 A. López-Ortiz and D. Maftuleac

starting simultaneously from a common origin. We then progressively enrich this
model with practical parameters, specifically different search speeds, different
arrival times to the search effort and poor visibility conditions. We show that
the principles from the theoretical solution also govern the more realistic search
scenario under these conditions subject to a few minor adaptations. Lastly, we
deal with cases with a varying probability of location as well as probability of
detection (POD).

We first consider the case where all searchers start from a common point
which we term the origin, and second, when they start from arbitrary points
on the lattice. The robots proceed in a coordinated fashion determined at start
time. Once the search begins, there is no need for further communication or
interaction. Each robot has a unique serial identifier known to each robot and
used in determining the search path to follow.

Initially we consider the case where all k searchers move at the same speed
and give an optimal strategy for finding a target with k = 4r searchers, for some
r positive integer.

This is then generalized to any number of robots (not just multiples of four)
and using the same ideas, we show that the techniques developed also generalize
to searchers with various speeds. Lastly, we show that the proposed theoretical
strategy also governs a search under actual weather conditions, in which there is
a non-negligible probability of the target being missed in a search. We use tables
from the extensive literature on SAR (Search-and-Rescue) operations to conduct
simulations and give scenarios in which the proposed strategy can greatly aid in
the quest for a missing person or object in a SAR setting [6].

2 Parallel Searching

López-Ortiz and Sweet [9] consider the case of searches using two and four robots
(see Fig. 1(a)). In this case, the robots move in symmetric paths around the origin
and prove the following theorem.

Theorem 1. [9] Searching in parallel with k = 2, 4 robots for a point at an
unknown distance n in the lattice is (2n + 4 + 4/(3n))/k + o(1/n2) competitive.

This is in fact optimal for the two and four robots case, as the next theorem
shows. Let the n-ball consist of those points of distance n from the origin.

Theorem 2. Searching in parallel with k robots for a point at an unknown dis-
tance n in the lattice requires at least (2n2 + 4n + 4/3)/k + Ω(1/n) steps, which
implies a competitive ratio of at least (2n + 4 + 4/(3n))/k + Ω(1/n2).

Proof. Following the notation of [9], let A(n) be the combined total distance
traversed by all robots up and until the last point at distance n is visited. We
claim that in the worst case A(n) ≥ 2n2 + 5n + 3/2, for some n > 1. Define
g(n) as the number of points visited on the (n + 1)-ball before the last visit
to a point on the n-ball. First, note that there are 2n2 + 2n + 1 points in the



Optimal Distributed Searching in the Plane with and Without Uncertainty 71

interior of the closed ball of radius n and that visiting any m points requires at
least m − 1 steps. Hence, A(n) = 2n2 + 2n + g(n). If g(n) points have already
been visited, this means that after the last point at distance n is visited, there
remain 4(n + 1) − g(n) points to visit in the n-ball. Now, visiting m points in a
ball requires at least 2m − 1 steps with one robot, and 2m − k with k robots.
Thus, visiting the remaining points requires at least 2(4(n + 1) − g(n)) − k
steps. Hence, A(n + 1) = A(n)2 + 2(4(n + 1) − g(n)) − k as claimed. Now we
consider the competitive ratio at distance n and n + 1 for each of the robots
as they visit the last point at such distance in their described path. We denote
by Ai(n) the portion of the points A(n) visited by the ith robot. Hence, the
competitive ratio for robot i at distances n and n + 1 is given by Ai(n)/n and
Ai(n + 1)/(n + 1). Observe that

∑k
i=1 Ai(n) = A(n), for any n and hence, there

exist i and j such that Ai(n) ≥ A(n)/k and Aj(n + 1) ≥ A(n + 1)/k. Lastly,
the competitive ratio, as a worst case measure is minimized when Ai(n)/n =
Aj(n+1)/(n+1), or equivalently, when A(n)/n = A(n+1)/(n+1) with solution
g(n) = 2n+(4−k)n/(3n+1). Substituting in the expression for A(n), we obtain
A(n) = 2n2 + 4n + (4 − k)n/(3n + 1) = 2n2 + 4n + 4/3 + Θ(1/n) with a robot
searching, in the worst case at least A(n)/k steps for a competitive ratio of
2n+4+4/(3n)

k + Ω(1/n2). ��

3 Search Strategy

3.1 Even-Work Strategy for Parallel Search with k = 4r Robots

A natural generalization of the k = 2 and k = 4 robot cases suggest a spiral
strategy consisting of k nested spirals searching in an outward fashion. However,
because the pattern must replicate or echo the shape of inner paths, all attempts
lead to an unbalanced distribution of the last search levels and thus a suboptimal
strategy. A better competitive ratio gives us the strategy described in this section
that we call even-work strategy. Each of the r robots covers an equal region of a
quadrant using the pattern in Fig. 4. The entire strategy consists of four rotations
of this pattern, one for each quadrant in the plane.

Fig. 1. (a) Search with two robots. (b), (c) Covering the n-ball: best case scenario and
worst case scenario.



72 A. López-Ortiz and D. Maftuleac

Fig. 2. Allocation of additional search tasks as radius increases (x-axis). The y-axis
indicates which robot is activated in that ball.

Theorem 3. Searching in parallel with k = 4r robots for a point at an unknown
distance n in the lattice has asymptotic competitive ratio of at most (2n+7.42)/k.

Proof. We know the lower bound for asymptotic competitive ratio is 2n/k+5/k.
We want to describe the upper bound of even-work strategy of 2n/k + 7.428/k.
From the lower bound, we can deduce that for each ball the number of extra
points (i.e., points outside the ball) covered by the robots is 5 in the best case
(Fig. 1(b)). In the worst case, the robots perform 8 units of extra amount of
work (Fig. 1(c)). So in order to cover all the points on a ball, the robots traverse
a total of 13 units of extra distance. Thus, 13/5 = 2.6 is an upper bound on
the amount of work per point. When robots move from the ball of radius n to
n + 1, a single robot must pick up the extra point to be explored. We balance
the distribution of the new work as shown in Fig. 2. In this figure, the x-axis
marks the distance from the origin of the current ball being explored, while the
y-axis indicates the robot that is tasked with the exploration of the extra points
in ball n + 1 over the n ball. There are four such points in total, or one per side.
After covering the ball n, we have 2n2 + 2n points covered inside it. The lower
bound gives us 2n2 + 5n amount of work to cover all the points at distance n.
When we look at the last 4n points (on the n ball), for each of the 4n points, we
have 3n work. Thus, 7/4 amount of work per point (lower bound). From where
we get the relation: �n/k�(1+8/5)

�n/k�(1+3/4) = 13/5
7/4 = 1.486, and 5 · 1.486 = 7.428. ��

3.2 Parallel Search with Any Number of Robots

This case illustrates how the abstract search strategy for a number of robots
multiple of four can readily be adapted to an arbitrary number of robots. Let k
be the number of robots, where k is not necessarily divisible by 4.

We first design the strategy for 4k robots obtaining 4 times as many regions
as robots. We then assign to every robot 4 consecutive regions as shown in Fig. 3
for the case k = 7. Observe that now some of the regions span more than one
quadrant and how the search path for each robot transitions from region to
region while exploring the same ball of radius n in all four regions assigned to it.
Observe that from Theorems 2 and 3, it follows that this strategy searches the
plane optimally as well.

Theorem 4. Searching in parallel with k robots for a point at an unknown dis-
tance in the lattice has an asymptotic competitive ratio of at most (2n+7.42)/k.



Optimal Distributed Searching in the Plane with and Without Uncertainty 73

Fig. 3. Parallel search with k = 7 robots on the ball of radius 74.

The precise description of the search paths is shown in pseudocode of Sect. 4.1.
Each robot only needs to know its unique ID and the total number of robots
involved in the search. The code was implemented in Maple and used for drawing
the figures in this paper.

4 From Theory to Practice

4.1 The Search Strategy

In Fig. 4, we show the search strategy with k = 4r robots. Since the robots
traverse at unit speed, the total area explored by each robot is t while the
combination of all robots is kt. While we envision the swarm of robots being
usually deployed from a single vessel and as such all of them starting from the
same original position, for certain searches additional resources are brought to
bear as more searchers join the search-and-rescue effort. In this setting we must
consider an agent or agents joining a search effort already under way.

Fig. 4. Parallel search with k = 4r robots, where r = 7, at time t = 40, 80, 160, 240.
This figure illustrates the search only in one of the four quadrants.



74 A. López-Ortiz and D. Maftuleac

Algorithm 1. Strategy(r, n)
Input: Let k = 4r the number of
robots, and let n be the covered dis-
tance.
Output: parallel search strategy of r
robots in a quadrant.
Initialization(r, 0);
Robot-1(n).
for i = 2 to r − 1 do

Middle-robots(i, n).
end for
Robot-r(n).

Algorithm 2. Initialization(x, y)
Input: Starting point (x, y).
Output: Constructs the initial pattern
for a robot
2 up; 1 right; 2 down; 3 right.

Algorithm 3. Robot-1(n)
Input: k = 4r robots, n the covered
distance.
Output: The parallel search strategy of
the first robot in a quadrant.
for v = 1 to n do

for j = 1 to 2(r − 1) do
Stairs(8(v − 1) + 3, horiz, NW ).
Stairs(8(v − 1) + 5, horiz, SE).

end for
for j = 1 to 2 do

Stairs(4j + 8(v − 1), horiz, NW ).
Stairs(4j +2+8(v− 1), vert, SE).

end for
end for

Algorithm 4. Stairs(n, d, direction)
Input: Let n be the number of steps
in the stair, d - the initial horizontal or
vertical step and direction either NW
for North-West or SE for South-East.
Output: The stairs in direction
direction starting with the first step d.
if direction = NW then

1 up.
Init-Stair(n, d, NW ).
1 up.

else
1 right.
Init-Stair(n, d, SE).
1 right.

end if

Algorithm 5. Init-Stair(n, d, direct
ion)

Input: Let n be the number of steps
in the stair, d - the initial horizontal or
vertical step and direction either NW
for North-West or SE for South-East.
Output: The n stairs in direction
direction starting with the first step d.
if n > 1 then

if d = horiz then
if direction = NW then

2 left.
else

2 right.
end if
Init-Stair(n − 1, vert, direction).

else
if direction = NW then

2 up.
else

2 down.
end if
Init-Stair(n − 1, horiz, direction).

end if
end if



Optimal Distributed Searching in the Plane with and Without Uncertainty 75

Algorithm 6. Middle-robots(i, n)
Input: k = 4r robots, i - the number
of the current robot and n the covered
distance.
Output: The parallel search strategy of
r − 2 (middle) robots in a quadrant.
Initialization(r − i + 1, 5 ∗ (i − 1)).
for v = 1 to n do

for j = 1 to 2(r − i) do
Stairs(3 + 8(v − 1), horiz, NW ).
Stairs(5 + 8(v − 1), horiz, SE).

end for
Stairs(4 + 8(v − 1), horiz, NW ).
Stairs(6 + 8(v − 1), vert, SE).
Stairs(8 + 8(v − 1), horiz, NW ).
for j = 1 to 2(i-1) do

Stairs(7 + 8(v − 1), vert, SE).
Stairs(9 + 8(v − 1), vert, NW ).

end for
Stairs(10 + 8(v − 1), vert, SE).

end for

Algorithm 7. Robot-r(n)
Input: k = 4r robots and n the covered
distance.
Output: The parallel search strategy of
the rth robot in a quadrant.
Initialization(1, 5(r − 1));
Stairs(8(v − 1) + 4, horiz, NW ).
Stairs(8(v − 1) + 6, vert, SE).
Stairs(8(v − 1) + 8, horiz, NW ).
for j = 1 to 2(r − 1) do

Stairs(8(v − 1) + 7, vert, SE).
Stairs(8(v − 1) + 9, vert, NW ).

end for
for v = 2 to n do

for k = 1 to 2 do
Stairs(8(v−1)+4k−2, vert, SE).
Stairs(8(v − 1) + 4k, horiz, NW ).

end for
for j = 1 to 2(r − 1) do

Stairs(8(v − 1) + 7, vert, SE).
Stairs(8(v − 1) + 9, vert, NW ).

end for
end for

Theorem 5. There exists an optimal asymptotic strategy for parallel search with
k initial robots starting from a common origin and later adding new robots to
the search.

Proof (sketch). Given the distance to the origin for the additional robots, we
can compute the exact time at which the additional searcher will meet up with
the explored area. At this point the search agents switch from a k robot search
pattern to a k+1 search pattern. The net cost of this transition effort is bounded
by the diameter of the n ball at which the extra searcher joins, with no ill
effect over the asymptotic competitive ratio. Hence, the search is asymptotically
optimal. ��

A parallel search with k robots with different speeds is another case which
nicely illustrates how the abstract search strategy for robots with equal speed
can be readily adapted to robots of varying speeds.

Theorem 6. There exists an optimal strategy for parallel search with k robots
with different speeds.

Proof. Suppose we are given k robots with varying speeds. Let the speed of
the k robots be s1, s2, . . . , sk respectively. We consider the speeds to be integral,
subject to proper scaling and rounding. Let s =

∑k
i=1 si. We use the strategy for

4s robots and we assign for each robot respectively: 4s1, 4s2, . . . , 4sk regions. It
follows that every robot completes the exploration of its region at the same time
as any other robot since the difference in area explored corresponds exactly to



76 A. López-Ortiz and D. Maftuleac

the difference in search speed and the search proceeds uniformly and optimally
over the entire range as well. ��

4.2 Probability of Detection

In real life settings there is a substantial probability that the search agent might
miss the target even after exploring its immediate vicinity particularly in high or
stormy seas. The search-and-rescue literature provides ready tables of probabil-
ity of detection (POD) under various search conditions [6]. Figure 5(a) shows the
initial probability of location map for a typical man overboard event. Figure 5(b)
shows the probability of detection as a function of the width of the search area
spanned. The unit search width magnitude is computed using location, time, tar-
get and search-agent specific information such as visibility, lighting conditions,
size of target and height of search vessel. We consider then a setting in which a
suitable POD distribution has been computed taking into account present visi-
bility conditions and size of target (see Fig. 5(a)). Armed with this information,
a robot must then make a choice between searching an unexplored cell in the
lattice or revisiting a previously explored cell.

Fig. 5. (a) Initial probability map [6], (b) Average probabilities of detection (POD)
over an area for visual searches using parallel sweeps (in blue: ideal search conditions,
in red: normal search conditions) [6] (Color figure online).

Consider first an abstract model in which a robot can “teleport” from any
given cell to another, ignoring any costs of movement related to this switch. The
greedy strategy consists of robots moving to the cell with current highest proba-
bility of containing the target. Each cell is then searched using the corresponding
pattern for the number of robots deployed in the cell.

Lemma 1. Greedy is the optimal strategy for searching a probabilistic space
under the teleportation model.



Optimal Distributed Searching in the Plane with and Without Uncertainty 77

Proof. Let pji be the probability of discovering the target in cell i during the j
visit, sorted in decreasing order. We now relabel them p1, p2, . . . The expected
time of discovery is

∑∞
t=1 pt ·t which is minimized when pt are in decreasing order

as follows. Assume by way of contradiction that the given minimal order is not
in decreasing order, i.e., there exists i such that pi < pi+1. Now swap these two
cells in the visiting order and we get that the cost before the swap was

∑∞
t=1 pt ·t,

while after the swap is
∑∞

t=1,t�=i pt · t + i · pi+1 + (i + 1) · pi. Subtracting these
two quantities we get i · pi +(i+1) · pi+1 − i · pi+1 − (i+1) · pi = pi+1 − pi which
is strictly positive from the assumption that pi < pi+1. This is a contradiction
since

∑∞
t=1 pt · t was minimal. ��

Now we consider the case where moving from one search position to another
happens at the same speed as searching. Observe that the probability of each cell
evolves over time. It remains at its initial value so long as it is still unexplored
and it becomes qm times its initial value after m search passes, where q = 1 − p
is the probability of not detecting a target present in the current cell during a
single search pass.

Probabilistic Search Algorithm. The algorithm creates supercells of size
h×h unit cells, for some value of h, which depends on the total number of robots
available to the search effort. The algorithm computes the combined probability
of the target being found in a supercell which corresponds to the sum of the
individual probabilities of the unit cells as given by the POD map.

At each time t, the algorithm considers the highest probability supercell and
compares it to the lowest probability supercell being explored to determine a
balance of robots to be assigned to each cell, in this case a transfer of robots
from the low probability cell to the unexplored high probability cell. The search
process continues until the target is found or the probability of finding it falls
below a certain threshold. Once the probabilities have been rebalanced, we need
to determine the source/destination pair for each robot. This is important since
the distance between source and destination is dead search time, so we wish to
minimize the amount of transit time. To this end, we establish a minimum-cost
network flow [12] that computes the lowest total transit cost robot reassignment
that satisfies the computed gains and losses.

More formally, let Ct
1, C

t
2, . . . , C

t
j be the areas being explored at time t by

rt1, r
t
2, . . . , r

t
j robots respectively. The combined probability of a supercell is the

sum of the probabilities of the cells inside it. When it is clear from the context
what is the present t we will omit it from the superscript.

These combined probabilities are then sorted in decreasing order and the
algorithm dispatches robots to the highest probability supercell until the mar-
ginal value of the robots is below that of an unexplored supercell. More pre-
cisely, let Ci and Cj be the two supercells of highest combined probability, pi
and pj , respectively. The algorithm then assigns s robots to supercell Ci such
that pi/s ≥ pj > pi/(s + 1). In other words the algorithm assigns robots to cells
so that the expected gain per robot per cell is a approximately optimal. More
specifically, the algorithm maintains two priority queues. One is a max priority



78 A. López-Ortiz and D. Maftuleac

queue (PQ) of supercells using the combined probability per robot as key. That
is, supercell i appears with priority key equals to pi/(ri + 1) where ri is the
present number of robots assigned to it by the algorithm. The other is a min PQ
of supercells presently being explored with the residual probability key pi/ri.

The algorithm then compares the top element in the maxPQ with the top
element in the minPQ. If the probability of the maxPQ is larger than the minPQ
it transfers an additional robot to the maxPQ supercell, and decrements its key
with updated priority. Similarly, the minPQ supercell losses a robot and its
priority is incremented due to the loss of one robot. The algorithm continues
transferring robots from minPQ supercells to maxPQ supercells. The algorithm
however, does not remove the last robot from a supercell until all cells within it
have been explored at least once.

Fig. 6. Optimal robot reassignment via minimum cost network flow.

Once the algorithm has computed the number of robots gained/lost by each
supercell, it establishes a minimum cost network flow problem to compute the
lowest total transit cost robot-reassignment schedule that satisfies the computed
gains and losses. This is modelled as a network flow in a complete bipartite
graph (see Fig. 6). In this graph, nodes on the left side of the bipartite graph
correspond to supercells losing robots, while nodes on the right correspond to
supercells gaining robots. Every node (both losing and gaining) has an incoming
arc from the source node with capacity equal to the old number of robots in
the associated supercell and cost zero. Similarly, all nodes are connected to the
sink with an edge of capacity exactly equal to the updated robot count of the
associated supercell and cost zero as well. Lastly, the cross edges in the bipartite
graph have infinite capacity and cost equal to the distance between the supercells
represented by the end points.

From the construction it follows that the only way to satisfy the constraints
is to reassign the robots from the losing supercell nodes to the gaining supercell
nodes at minimum travel cost. This network flow problem can be solved in O(E2)
time using the algorithm of Orlin [11]. In this case E = O(n2) and hence, in the



Optimal Distributed Searching in the Plane with and Without Uncertainty 79

worst case the minimum cost network flow algorithm runs in time O(n4), where
n is the number of supercells.

Theorem 7. The probabilistically weighted distributed scheduling strategy for
the time interval [0, t] can be computed in O(t n4) steps, where n is the size of
the search grid.

5 Conclusion

We present optimal strategies for robot swarm searches under both idealized and
realistic considerations. We give pseudo-code showing that the search primitives
are simple and can easily be implemented with minimal computational and nav-
igational capabilities. We then give a heuristic to account for the probability of
detection map often available in real life searches. The strategies proposed have
a factor of k improved time to discovery as compared to a single searcher for the
same total travel effort.

References

1. Alpern, S., Gal, S.: The Theory of Search Games and Rendezvous. Kluwer, London
(2002)

2. Baeza-Yates, R., Culberson, J., Rawlins, G.: Searching in the plane. Inf. Comput.
106, 234–252 (1993)

3. Baeza-Yates, R., Schott, R.: Parallel searching in the plane. Comput. Geom.: The-
ory Appl. 5, 143–154 (1995)

4. Canadian Coast Guard/Garde Cotiere Canadienne. Merchant ship search and res-
cue manual (CANMERSAR) (1986)

5. Feinerman, O., Korman, A., Lotker, Z., Sereni, J.-S.: Collaborative search on the
plane without communication. In: PODC, pp. 77–86 (2012)

6. IMO. IAMSAR Manual. Organization and Management, vol. I. IAMSAR. Mission
Co-ordination, vol. II. IAMSAR. Mobile Facilities, vol. III (2010)

7. Koenig, S., Szymanski, B., Liu, Y.: Efficient, inefficient ANT coverage methods.
Ann. Math. Artif. Intell. (Special Issue on ANT Robotics) 31(1), 41–76 (2001)

8. Koopman, B.O.: Search and screening, Report No. 56 (ATI 64 627), Operations
Evaluation Group, Office of the Chief of Naval Operation (1946)

9. López-Ortiz, A., Sweet, G.: Parallel searching on a lattice. In: Proceedings of the
13th Canadian Conference on Computational Geometry (CCCG) (2001)

10. National Search and Rescue Secretariat/Secrétariat national Recherche et sauve-
tage. CANSARP, SARScene, vol. 4 (1994)

11. Orlin, J.B.: A polynomial time primal network simplex algorithm for minimum
cost flows. Math. Program. 78, 109–129 (1997)

12. Papadimitriou, C.H., Steiglitz, K., Optimization, C.: Algorithms Complex. Dover
Publications INC, New York (1998)

13. Stone, L.D.: Revisiting the SS central America search. In: International Conference
on Information Fusion (FUSION), pp. 1–8 (2010)

14. U.S. Coast Guard Addendum to the U.S. National Search and Rescue Supplement
(NSS) to the IAMSAR Manual. COMDTINST M16130.2F (2013)


	Optimal Distributed Searching in the Plane with and Without Uncertainty
	1 Introduction
	2 Parallel Searching
	3 Search Strategy
	3.1 Even-Work Strategy for Parallel Search with k=4r Robots
	3.2 Parallel Search with Any Number of Robots

	4 From Theory to Practice
	4.1 The Search Strategy
	4.2 Probability of Detection

	5 Conclusion
	References


