
Mohammad Kaykobad
Rossella Petreschi (Eds.)

 123

LN
CS

 9
62

7

10th International Workshop, WALCOM 2016
Kathmandu, Nepal, March 29–31, 2016
Proceedings

WALCOM: Algorithms
and Computation

Lecture Notes in Computer Science 9627

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zürich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7407

http://www.springer.com/series/7407

Mohammad Kaykobad • Rossella Petreschi (Eds.)

WALCOM: Algorithms
and Computation
10th International Workshop, WALCOM 2016
Kathmandu, Nepal, March 29–31, 2016
Proceedings

123

Editors
Mohammad Kaykobad
Department of Computer Science
and Engineering

Bangladesh University of Engineering
and Technology

Dhaka
Bangladesh

Rossella Petreschi
Department of Computer Science
Sapienza University of Rome
Rome
Italy

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-30138-9 ISBN 978-3-319-30139-6 (eBook)
DOI 10.1007/978-3-319-30139-6

Library of Congress Control Number: 2015955363

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© Springer International Publishing Switzerland 2016
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by SpringerNature
The registered company is Springer International Publishing AG Switzerland

Preface

This volume contains the proceedings of the WALCOM 2016 (International Workshop
on Algorithms and Computation), held in Kathmandu, Nepal, March 29–31, 2016.

This was the tenth edition of an international workshop that was held for the first
time in 2007 in Dhaka, Bangladesh. Four editions (2008, 2010, 2012, and 2015) were
also held in Dhaka, and four other editions were held in India: 2009 (Kolkata), 2011
(New Delhi), 2013 (Kharagpur), and 2014 (Chennai).

WALCOM has established itself as a fully refereed conference for theoretical
computer science research in Asia. It has also strengthened the ties between local and
international scientific communities. We believe that this volume reflects the breadth
and depth of this interaction. We received 68 submissions from 170 different authors in
28 countries. Each paper was assigned to three Program Committee members: The
committee selected 27 papers based on approximately 190 reviewer reports. In addition
to these contributed presentations, the conference included four invited talks.

We thank all the authors who submitted papers, the members of the Program
Committee and the external reviewers. We are also grateful to the four invited speakers,
Sajal Das, Missouri University of Science and Technology – Rolla (USA), Costas S.
Iliopoulos, King’s College London – London (UK), Giuseppe F. Italiano, University
Tor Vergata – Rome (Italy), Giuseppe Persiano, University of Salerno – Fisciano
(Italy), who kindly accepted our invitation to give plenary lectures at the workshop.

The assistance of many organizations and individuals was essential for the success
of this meeting. We would like to thank all of our sponsors and supporting organi-
zations and in particular Pramod Prodhan for taking the initiative of hosting it in scenic
Nepal, Lena Sthapit of the Asian Institute of Technology and Management(AITM) and
members of the Organizing Committee, AITM, KHInt, and IT Professional Forum of
Nepal for their support for WALCOM 2016. Moreover, we thank the IEICE Technical
Committee on Theoretical Foundations of Computing (COMP) and the Special Interest
Group for Algorithms (SIGAL) of the Information Processing Society of Japan (IPSJ)
for their cooperation.

We finally would like to thank EasyChair for providing us with a very friendly
environment for handling the contributions and editing the proceedings of WALCOM
2016.

January 2016 Rossella Petreschi
Mohammad Kaykobad

Organization

Organizing Committee

Pramod Pradhan (Chair) Asian Institute of Technology and Management (AITM),
Nepal

Bhupa Das Rajbhandari Asian Institute of Technology and Management (AITM),
Nepal

Juddha Bahadur Gurung National Information Technology Institute (NITI), Nepal
Mahesh Singh Kathayat Convenor for Knowledge Management Seminar,

IT Professional Forum (ITPF), Nepal
Udaya Lal Pradhan National Information Technology Institute (NITI), Nepal
Prashant Lal Shrestha IT Professional Forum (ITPF), Islington College and

Knowledge Holding International (K-Hint), Nepal
Nayana Amatya IT Professional Forum (ITPF), and Knowledge Holding

International (K-Hint), Nepal
Jyoti Tandukar Institute of Engineering, IT Professional Forum (ITPF),

and Alternative Technology
Suresh K. Regmi Knowledge Holding International (K-Hint) and

Professional Computer System, Nepal
Bijendra Suwal Nepal Investment Bank Limited and IT Professional

Forum (ITPF), Nepal
Khusbu Sarkar Shrestha Knowledge Holding International (K-Hint) Lochan

Amatya – Nepal Telecom, IT Professional Forum
(ITPF), Society of Electronics & Communication
Engineers, Nepal

Shiv Bhusan Lal IT Professional Forum (ITPF), and Knowledge Holding
International (K-Hint), Nepal

Shashi Bhattarai Development Dynamics, Knowledge Holding International
(K-Hint) and IT Professional Forum (ITPF), Nepal

Madhav Narayan
Shrestha

Asian Institute of Technology and Management (AITM),
Nepal

Rabindra Raj Giri Asian Institute of Technology and Management (AITM),
Nepal

Basanta Prasad Joshi Asian Institute of Technology and Management (AITM),
Nepal

Hari Krishna Saiju Asian Institute of Technology and Management (AITM),
Nepal

Kushal Niroula Asian Institute of Technology and Management (AITM),
Nepal

Lena Sthapit Asian Institute of Technology and Management (AITM),
Nepal

Pravakar Pradhan Asian Institute of Technology and Management (AITM),
Nepal

Astha Bharijoo Asian Institute of Technology and Management (AITM),
Nepal

Sugandha K.C. Asian Institute of Technology and Management (AITM),
Nepal

Anil Byanjankar Asian Institute of Technology and Management (AITM),
Nepal

Surendra Joshi Asian Institute of Technology and Management (AITM),
Nepal

Steering Committee

Kyung-Yong Chwa KAIST, Korea
Costas S. Iliopoulos KCL, UK
M. Kaykobad BUET, Bangladesh
Petra Mutzel TU Dortmund, Germany
Shin-ichi Nakano Gunma University, Japan
Subhas Chandra Nandy Indian Statistical Institute, Kolkata, India
Takao Nishizeki Tohoku University, Japan
C. Pandu Rangan IIT, Madras, India
Md. Saidur Rahman BUET, Bangladesh

Program Committee

Ljiljana Brankovic University of Newcastle, Australia
Tiziana Calamoneri Università La Sapienza Roma, Italy
Rezaul A. Chowdhury State University of New York at Stony Brook, USA
Marek Chrobak University of California, Riverside, USA
Gautam K. Das Indian Institute of Technology Guwahati, India
Celina M.H. de

Figueiredo
Universidade Federal do Rio de Janeiro, Brazil

Antoine Deza McMaster University, Ontario, Canada
Raymond Greenlaw United States Naval Academy, Annapolis, USA
Pinar Heggernes University of Bergen, Norway
Seok-Hee Hong University of Sydney, Australia
Kazuo Iwama Kyoto University, Japan
Mohammad Kaykobad Bangladesh University of Engineering and Technology,

Dhaka
Dieter Kratsch Université de Lorraine, Metz, France
Moshe Lewenstein Bar Ilan University, Ramat Gan, Israel
Dániel Marx Hungarian Academy of Sciences, Budapest, Hungary
Vangelis Paschos LAMSADE, University of Paris-Dauphine, France
Rossella Petreschi Università La Sapienza Roma, Italy
Nadia Pisanti Università di Pisa, Italy; Erable Team, Inria, France
Sheung-Hung Poon National Tsing Hua University, Hsin-Chu, Taiwan

VIII Organization

Jakub Radoszewski University of Warsaw, Poland
Saidur Md. Rahman Bangladesh University of Engineering and Technology,

Dhaka
Sohel Rahman Bangladesh University of Engineering and Technology,

Dhaka
Sasanka Roy Chennai Mathematical Institute, India
Blerina Sinaimeri Inria Grenoble, France
Etsuji Tomita The University of Electro-Communications, Tokyo, Japan
Ryuhei Uehara Japan Advanced Institute of Science and Technology,

Nomi
Roger Wattenhofer ETH Zurich, Switzerland
Gerhard J. Woeginger TU Eindhoven, The Netherlands

Additional Reviewers

Bahreininejad, Ardeshir
Bandopadhyay, Sriparna
Bernasconi, Anna
Bigi, Giancarlo
Bläsius, Thomas
Boccardo, Davidson
Bonnet, Edouard
Brandstadt, Andreas
Bulteau, Laurent
Byrka, Jaroslaw
Da Fonseca, Guilherme D.
Dao, Minhson
De Agostino, Sergio
de Freitas, Rosiane
De, Minati
Dias, Zanoni
Eades, Peter
Epstein, Leah
Escoffier, Bruno
Felsner, Stefan
Fernau, Henning
Fertin, Guillaume
Finocchi, Irene
Franciosa, Paolo
Froese, Vincent
Gastaldello, Mattia
Giannakos, Aristotelis

Gourves, Laurent
Han, Xin
Inkulu, R.
Jaiswal, Ragesh
Jallu, Ramesh
Kammer, Frank
Karim, Md. Rezaul
Karmakar, Arindam
Kaufmann, Michael
Kaykobad, Mohammad
Kosowski, Adrian
Labarre, Anthony
Laura, Luigi
Lavor, Carlile
Le, Van Bang
Manlove, David
Mary, Arnaud
Mondal, Debajyoti
Monti, Angelo
Morgana, Aurora
Moscarini, Marina
Nakano, Shin-Ichi
Nandy, Subhas
Natarajan, Vijay
Niedermann, Benjamin
Nishat, Rahnuma Islam
Paixao, Joao

Peters, Daniel
Pirola, Yuri
Ray, Saurabh
Rutter, Ignaz
Sa, Vinicius
Sadakane, Kunihiko
Sarkar, Santanu
Scutella, Maria Grazia
Shafin, Md. Kishwar
Shende, Anil
Shparlinski, Igor
Simonetti, Luidi
Sinha Mahapatra,

Priya Ranjan
Stamoulis, Georgios
Sterbini, Andrea
Subrahmanyam, Venkata
Suomela, Jukka
Telelis, Orestis
Tiedemann, Morten
Wandelt, Sebastian
Wrochna, Marcin
Yamashita, Masafumi
Zhang, Yong
Živný, Stanislav

Organization IX

Sponsors

X Organization

Invited Talks (Abstracts)

Popping Superbubbles and Discovering
Clumps: Recent Developments in Biological

Sequence Analysis

Costas S. Iliopoulos, Ritu Kundu, Manal Mohamed,
and Fatima Vayani

Department of Informatics, King’s College London, UK
{costas.iliopoulos, ritu.kundu, manal.mohamed,

fatima.vayani}@kcl.ac.uk

Abstract. The information that can be inferred or predicted from knowing the
genomic sequence of an organism is astonishing. String algorithms are critical to
this process. This paper provides an overview of two particular problems that
arise during computational molecular biology research, and recent algorithmic
developments in solving them.

2-Edge and 2-Vertex Connectivity
Problems in Directed Graphs

Giuseppe F. Italiano

Università di Roma “Tor Vergata”, Italy
giuseppe.italiano@uniroma2.it

Abstract. We survey some recent results on 2-edge and 2-vertex connectivity
problems in directed graphs. Despite being complete analogs of the corre-
sponding notions on undirected graphs, in digraphs 2-vertex and 2-edge con-
nectivity have a much richer and more complicated structure. It is thus not
surprising that 2-connectivity problems on directed graphs appear to be more
difficult than on undirected graphs. For undirected graphs it has been known for
over 40 years how to compute all bridges, articulation points, 2-edge- and 2-
vertex-connected components in linear time, by simply using depth first search.
In the case of digraphs, however, the very same problems have been much more
challenging and have been tackled only recently.

Social Pressure can Subvert Majority
in Social Networks

Giuseppe Persiano

Università di Salerno, Italy
giuper@gmail.com

Abstract. It is often observed that agents tend to imitate the behavior of their
neighbors in a social network. This imitating behavior might lead to the strategic
decision of adopting a public behavior that differs from what the agent believes
is the right one and this can subvert the behavior of the population as a whole.

In this paper, we consider the case in which agents express preferences over
two alternatives and model social pressure with the majority dynamics: at each
step an agent is selected and its preference is replaced by the majority of the
preferences of her neighbors. In case of a tie, the agent does not change her
current preference. A profile of the agents' preferences is stable if the preference
of each agent coincides with the preference of at least half of the neighbors
(thus, the system is in equilibrium).

We ask whether there are network topologies that are robust to social
pressure. That is, we ask if there are graphs in which the majority of preferences
in an initial profile always coincides with the majority of the preference in all
stable profiles reachable from that profile. We completely characterize the
graphs with this robustness property by showing that this is possible only if the
graph has no edge or is a clique or very close to a clique. In other words, except
for this handful of graphs, every graph admits at least one initial profile of
preferences in which the majority dynamics can subvert the initial majority. We
also show that deciding whether a graph admits a minority that becomes
majority is NP-hard when the minority size is at most 1/4-th of the social
network size.

The talk is based on joint work with: V. Auletta, I. Caragiannis, D. Ferraioli,
and C. Galdi.

Beyond Cyber-Physical Era: What’s Next?

Sajal K. Das

Daniel St. Clair Endowed Chair Professor
Chair, Department of Computer Science

Missouri University of Science and Technology
Rolla, MO, USA

Abstract. We live in an era of “Internet of Things” where our physical and
personal environments are becoming increasingly smarter as they are immersed
with sensing, networking, computing and communication capabilities. The
availability of rich mobile devices like smartphones and wireless sensors have
also empowered humans as an integral part of cyber-physical systems. This
synergy has led to cyber-physical-social convergence exhibiting complex
interactions, interdependencies and adaptations among devices, machines, sys-
tems/environments, users, human behavior, and social dynamics. In such a
connected and mobile world, almost everything can act as information source,
analyzer and decision maker. This talk will highlight some of the emerging
research challenges and opportunities in cyber-physical-social convergence, and
then present some novel solutions to tackle them. It will also reflect on a
fundamental question: “What’s Next?”

Contents

Invited Talk

Popping Superbubbles and Discovering Clumps: Recent Developments
in Biological Sequence Analysis . 3

Costas S. Iliopoulos, Ritu Kundu, Manal Mohamed, and Fatima Vayani

Graphs Coloring

Tropical Dominating Sets in Vertex-Coloured Graphs 17
Jean-Alexandre Anglès d’Auriac, Csilia Bujtás, Hakim El Maftouhi,
Marek Karpinski, Yannis Manoussakis, Leandro Montero,
Narayanan Narayanan, Laurent Rosaz, Johan Thapper,
and Zsolt Tuza

On Hamiltonian Colorings of Block Graphs . 28
Devsi Bantva

Vertex-Coloring with Star-Defects . 40
Patrizio Angelini, Michael A. Bekos, Michael Kaufmann,
and Vincenzo Roselli

Graphs Exploration

Lower Bounds for Graph Exploration Using Local Policies 55
Aditya Kumar Akash, Sándor P. Fekete, Seoung Kyou Lee,
Alejandro López-Ortiz, Daniela Maftuleac, and James McLurkin

Optimal Distributed Searching in the Plane with and Without Uncertainty . . . 68
Alejandro López-Ortiz and Daniela Maftuleac

Formation of General Position by Asynchronous Mobile Robots Under
One-Axis Agreement . 80

Subhash Bhagat, Sruti Gan Chaudhuri, and Krishnendu Mukhopadhyaya

Graphs Algorithms

On Aligned Bar 1-Visibility Graphs . 95
Franz J. Brandenburg, Alexander Esch, and Daniel Neuwirth

A Necessary Condition and a Sufficient Condition for Pairwise
Compatibility Graphs. 107

Md. Iqbal Hossain, Sammi Abida Salma, and Md. Saidur Rahman

http://dx.doi.org/10.1007/978-3-319-30139-6_1
http://dx.doi.org/10.1007/978-3-319-30139-6_1
http://dx.doi.org/10.1007/978-3-319-30139-6_2
http://dx.doi.org/10.1007/978-3-319-30139-6_3
http://dx.doi.org/10.1007/978-3-319-30139-6_4
http://dx.doi.org/10.1007/978-3-319-30139-6_5
http://dx.doi.org/10.1007/978-3-319-30139-6_6
http://dx.doi.org/10.1007/978-3-319-30139-6_7
http://dx.doi.org/10.1007/978-3-319-30139-6_7
http://dx.doi.org/10.1007/978-3-319-30139-6_8
http://dx.doi.org/10.1007/978-3-319-30139-6_9
http://dx.doi.org/10.1007/978-3-319-30139-6_9

Mixing Times of Markov Chains of 2-Orientations 114
Stefan Felsner and Daniel Heldt

Computational Geometry

Computing a Minimum-Width Square Annulus in Arbitrary Orientation
[Extended Abstract] . 131

Sang Won Bae

A General Framework for Searching on a Line . 143
Prosenjit Bose and Jean-Lou De Carufel

An Optimal Algorithm for Computing the Integer Closure
of UTVPI Constraints . 154

K. Subramani and Piotr Wojciechowski

Covering Points with Convex Sets of Minimum Size. 166
Hwan-Gue Cho, William Evans, Noushin Saeedi, and Chan-Su Shin

Data Structures

Efficient Generation of Top-k Procurements in a Multi-item Auction 181
Biswajit Sanyal, Subhashis Majumder, and Wing-Kai Hon

Counting Subgraphs in Relational Event Graphs . 194
Farah Chanchary and Anil Maheshwari

Computational Complexity

Large Independent Sets in Subquartic Planar Graphs 209
Matthias Mnich

As Close as It Gets . 222
Mike Behrisch, Miki Hermann, Stefan Mengel, and Gernot Salzer

Shortest Reconfiguration of Sliding Tokens on a Caterpillar 236
Takeshi Yamada and Ryuhei Uehara

Approximation Algorithms

Fast and Simple Local Algorithms for 2-Edge Dominating Sets
and 3-Total Vertex Covers . 251

Toshihiro Fujito and Daichi Suzuki

Approximation Algorithms for Generalized Bounded Tree Cover 263
Barun Gorain, Partha Sarathi Mandal, and Krishnendu Mukhopadhyaya

XVIII Contents

http://dx.doi.org/10.1007/978-3-319-30139-6_10
http://dx.doi.org/10.1007/978-3-319-30139-6_11
http://dx.doi.org/10.1007/978-3-319-30139-6_11
http://dx.doi.org/10.1007/978-3-319-30139-6_12
http://dx.doi.org/10.1007/978-3-319-30139-6_13
http://dx.doi.org/10.1007/978-3-319-30139-6_13
http://dx.doi.org/10.1007/978-3-319-30139-6_14
http://dx.doi.org/10.1007/978-3-319-30139-6_15
http://dx.doi.org/10.1007/978-3-319-30139-6_16
http://dx.doi.org/10.1007/978-3-319-30139-6_17
http://dx.doi.org/10.1007/978-3-319-30139-6_18
http://dx.doi.org/10.1007/978-3-319-30139-6_19
http://dx.doi.org/10.1007/978-3-319-30139-6_20
http://dx.doi.org/10.1007/978-3-319-30139-6_20
http://dx.doi.org/10.1007/978-3-319-30139-6_21

Approximation Algorithms for Three Dimensional Protein Folding 274
Dipan Lal Shaw, A.S.M. Shohidull Islam, Shuvasish Karmaker,
and M. Sohel Rahman

Parameterization of Strategy-Proof Mechanisms in the Obnoxious
Facility Game . 286

Morito Oomine, Aleksandar Shurbevski, and Hiroshi Nagamochi

On-line Algorithms

Optimal Online Algorithms for the Multi-objective Time Series
Search Problem. 301

Shun Hasegawa and Toshiya Itoh

Fully Dynamically Maintaining Minimal Integral Separator for Threshold
and Difference Graphs . 313

Tiziana Calamoneri, Angelo Monti, and Rossella Petreschi

Algorithms

A Lagrangian Relaxation-Based Heuristic to Solve Large Extended
Graph Partitioning Problems. 327

Oliver G. Czibula, Hanyu Gu, and Yakov Zinder

Semimetric Properties of Sørensen-Dice and Tversky Indexes 339
Alonso Gragera and Vorapong Suppakitpaisarn

Finding Mode Using Equality Comparisons . 351
Varunkumar Jayapaul, Venkatesh Raman, and Srinivasa Rao Satti

Author Index . 361

Contents XIX

http://dx.doi.org/10.1007/978-3-319-30139-6_22
http://dx.doi.org/10.1007/978-3-319-30139-6_23
http://dx.doi.org/10.1007/978-3-319-30139-6_23
http://dx.doi.org/10.1007/978-3-319-30139-6_24
http://dx.doi.org/10.1007/978-3-319-30139-6_24
http://dx.doi.org/10.1007/978-3-319-30139-6_25
http://dx.doi.org/10.1007/978-3-319-30139-6_25
http://dx.doi.org/10.1007/978-3-319-30139-6_26
http://dx.doi.org/10.1007/978-3-319-30139-6_26
http://dx.doi.org/10.1007/978-3-319-30139-6_27
http://dx.doi.org/10.1007/978-3-319-30139-6_28

Invited Talk

Popping Superbubbles and Discovering Clumps:
Recent Developments in Biological

Sequence Analysis

Costas S. Iliopoulos(B), Ritu Kundu, Manal Mohamed, and Fatima Vayani

Department of Informatics, King’s College London, London, UK
{costas.iliopoulos,ritu.kundu,manal.mohamed,fatima.vayani}@kcl.ac.uk

Abstract. The information that can be inferred or predicted from
knowing the genomic sequence of an organism is astonishing. String algo-
rithms are critical to this process. This paper provides an overview of two
particular problems that arise during computational molecular biology
research, and recent algorithmic developments in solving them.

1 Introduction

Since the publication of the first human genome in 2001 [15,24], research in
the field of genomics has grown almost exponentially. Developments in next-
generation sequencing technologies (see [1], for example) have made it possible
to sequence new genomes at a fraction of the time and cost required only a few
years ago.

The information that can be inferred or predicted from knowing the genomic
sequence of an organism is astonishing. String algorithms are critical to the
process of analysis and discovery, and molecular biologists are becoming increas-
ingly reliant on accurate and efficient algorithms to process the vast amounts of
data they produce.

Genomics research is important in several areas of study, including cell biol-
ogy, medical and evolutionary genetics, synthetic biology, genomic medicine and
many more.

The study of genomes requires a large and complex computational pipeline.
From error correction during genome assembly, to motif discovery and gene
prediction; each stage of the pipeline presents many problems. This paper
provides an overview of two such cases, in the following format: Biological Moti-
vation (Sects. 2.1 and 3.1), Definitions (Sects. 2.2 and 3.2), Algorithms (Sects. 2.4
and 3.3) and Discussions (Sects. 2.5 and 3.4) for the superbubble and clumps
problems, respectively; concluded in Sect. 4.

2 Superbubbles

2.1 Biological Motivation

Copious data in the form of reads are generated by next-generation DNA
sequencing. Reads are short sequences that overlap to form contiguous sequences,
c© Springer International Publishing Switzerland 2016
M. Kaykobad and R. Petreschi (Eds.): WALCOM 2016, LNCS 9627, pp. 3–14, 2016.
DOI: 10.1007/978-3-319-30139-6 1

4 C.S. Iliopoulos et al.

which are then concatenated to form the whole genome of an organism. This
process is known as genome assembly.

Traditionally, assembly algorithms relied on the overlap-layout-consensus
approach [3], where each node represents a read and each directed edge signifies
an overlap between two reads. These methods have proved their use through
numerous de novo genome assemblies [7].

More recently, a fundamentally different approach based on de Bruijn graphs
was proposed [20]. Data elements in this approach are not reads, but strings of
k nucleotides, called k-mers. In a de Bruijn graph [6], in contrast to an overlap
graph, each node represents a k − 1 nucleotide long prefix and suffix of the k-
mers, and each edge denotes a k-mer between its prefix and suffix nodes. In
other words, the last nucleotide is the marginal information contained by a k-
mer. Thus, the assembly problem in a de Bruijn graph is reduced to finding an
Eulerian path, that is, a trail that visits each edge in the graph exactly once.

However, sequencing errors and genome repeats lead to adding false nodes
and edges to the de Bruijn graph, and hence complicating it [25]. Simplification
is achieved by filtering out motifs such as tips, bubbles, and cross links. In
particular, a bubble is commonly caused by a small number of errors in the
middle of reads, and it consists of multiple directed unipaths (where a unipath
is a path in which all internal nodes are of degree 2) between two nodes. The
simplicity of these motifs make them easy to identify and filter out efficiently,
but the case of more complex motifs is quite different.

Recently, a complex generalisation of a bubble, the so-called superbubble, was
proposed as an important subgraph class for analysing assembly graphs [19]. A
superbubble is defined as a minimal subgraph H in the de Bruijn graph with
exactly one start node s and one end node t such that: (1) H is a directed,
acyclic, single-source (s), single-sink (t) graph; (2) there is no edge from a node
not in H going to a node in H\{s} and (3) there is no edge from a node in H\{t}
going to a node not in H. Efficient detection of superbubbles is essential for the
application of genome assembly as many superbubbles are formed as a result
of sequencing errors, inexact repeats, diploid/polyploid genomes, or frequent
mutations [19].

2.2 Definitions

The concept of superbubbles was introduced and formally defined in [19] as
follows.

Definition 1. Let G = (V,E) be a directed graph. For any ordered pair of dis-
tinct nodes s and t, 〈s, t〉 is called a superbubble if it satisfies the following:

– reachability: t is reachable from s;
– matching: the set of nodes reachable from s without passing through t is equal

to the set of nodes from which t is reachable without passing through s;
– acyclicity: the subgraph induced by U is acyclic, where U is the set of nodes

satisfying the matching criterion;

Popping Superbubbles and Discovering Clumps 5

1 2 3 5 6 7 8

4

9

10

11

12 13

14

Fig. 1. A directed acyclic graph G = (V,E) with set of nodes V = {1, 2, · · · , 14}. Note
that G has single source 1 and single sink 10.

– minimality: no node in U other than t forms a pair with s that satisfies the
conditions above;

Nodes s and t, and U\{s, t} used in the above definition are the superbubbles
entrance, exit and interior, respectively.

We note that a superbubble 〈s, t〉 in the above definition is equivalent to a
single-source, single-sink, acyclic directed subgraph of G with source s and sink
t, which does not have any cut nodes and preserves all in-degrees and out-degrees
of nodes in U\{s, t}, as well as the out-degree of s and in-degree of t.

Example 1. For the given directed graph in Fig. 1, 〈1, 2〉, 〈2, 9〉, 〈3, 8〉, 〈5, 7〉,
〈9, 10〉, and 〈12, 13〉 are the superbubbles.

We are now able to define the Problem 1 formally as follows:

Problem 1: Report All Superbubbles
Input: a directed graph G = (V,E).
Output: all ordered pairs of distinct nodes s and t, such that 〈s, t〉 is a
superbubble.

2.3 Properties of Superbubbles

We next state a few important properties of superbubbles that form the basis of
possible solutions.

Lemma 1 [19]. Any node can be the entrance (respectively exit) of at most one
superbubble.

Note that Lemma 1 does not exclude the possibility that a node is an entrance
of a superbubble and an exit of another superbubble.

6 C.S. Iliopoulos et al.

Lemma 2 [23]. Let G be a directed acyclic graph. We have the following two
observations.

(1) Suppose (p, c) is an edge in G, where p has one child and c has one parent,
then 〈p, c〉 is a superbubble in G.

(2) For any superbubble 〈s, t〉 in G, there must exist some parent p of t such
that p has exactly one child t.

Lemma 3 [5]. For any superbubble 〈s, t〉 in a directed acyclic graph G, there
must exist some child c of s such that c has exactly one parent s.

2.4 Algorithms

The first solution to the superbubble-detection problem was proposed by
Onodera et al. which runs in O(nm) time, where n is the number of nodes
and m is the number of edges in the graph [19]. Subsequently, Sung et al. gave
an improved O(m log m)-time algorithm to solve the problem [23]. Very recently,
an even more efficient algorithm was designed by Brankovic et al. that has a lin-
ear time complexity [5]. We have named these solutions in accordance with the
order of their proposal. The outline of each of the three algorithmic designs is
provided as follows:

Solution 1: O(nm)-time algorithm [19]. The basic idea in this approach is
to visit nodes in an order that follows the standard topological sorting, starting
from a given node s in the given directed graph G = (V,E), to eventually report
a node t such that 〈s, t〉 is a superbubble (if any). This procedure is iterated
for all s ∈ V to report all the superbubbles in G. The procedure aborts every
time either a tip or a cycle is encountered. It works by arbitrarily visiting a node
from a maintained dynamic set (initially containing s only) of the vertices. A
visit consists of labeling the children of the picked node as ‘seen’; pushing its
children that have all the parents visited, into the dynamic set; testing whether
or not the next node to be visited is an exit node; and reporting the node if
the test is positive. The procedure takes O(n + m) time in the worst case, thus
making the total time complexity of the algorithm to be O(n(n + m)).

Solution 2: O(m log m)-time algorithm [23]. This algorithm begins by parti-
tioning the given graph into a set of subgraphs. The partitioning method ensures
that the set of superbubbles in all the subgraphs is the same as the set of super-
bubbles in the given graph. The subgraphs corresponding to each non-singleton
strongly connected component constitute the elements of this set, along with
an additional element consisting of the subgraph corresponding to the set of all
the nodes involved in singleton strongly connected components. Superbubbles
are then detected in each of the subgraphs of the set; if it is cyclic, it is first
converted into a directed acyclic subgraph by means of depth-first search and
by duplicating some nodes. Detection of the superbubbles in a directed acyclic
subgraph is done by visiting each of its nodes in topological order. Each visit
of a node t consists of iteratively merging t with its parents that have exactly
one child, if t has at least two parents and some of the parents have exactly one

Popping Superbubbles and Discovering Clumps 7

child; and reporting 〈s, t〉 where s is the only parent of t and t is the only child
of s.

Note that the cost of partitioning the graph and transforming it into directed
acyclic subgraphs is linear with respect to the size of the graph. However, com-
puting the superbubbles in each directed acyclic subgraph requires in total,
O(m log m) time, owing to the fact that for each parent of a node, the time
required for merging is O(log m).

Solution 3: O(n + m)-time algorithm [5]. This approach proposes a linear-
time algorithm to compute all superbubbles in a directed acyclic graph, thus
improving the dominating factor of the time bound in the second solution. It is
based on the topological ordering of vertices, obtained by the recursive form of
the standard topological sort algorithm. The algorithm proceeds by identifying
the potential entrance and exit candidates, in topological order; and checking
the validity of a potential superbubble ending at each exit candidate. For a
given pair of entrance and exit candidates, the possibility of a valid superbubble
formed by the pair is checked using Range Minimum Queries (RMQ) on arrays of
both the topologically furthest parent and child of each node. The total running
time required to report all superbubbles in a directed acyclic graph is O(n+m).
When it is combined with the two linear-time stages of the second solution,
namely, partitioning of a given directed graph into a set of subgraphs and con-
version of any cyclic subgraph into an acyclic subgraph, this solution reports all
superbubbles in the given directed graph in linear time.

2.5 Discussion

The linear-time algorithm (Solution 3) provides an efficient and practical solu-
tion to identify superbubbles, a complex generalisation of bubble motifs, for
analysing genome assembly graphs. An important research direction ahead will
be to investigate other superbubble-like structures in assembly graphs, such as
complex bulges [18]. It would also be interesting to look for ways of relaxing the
restrictive definition of superbubbles, from a biological point of view.

3 Clumps

3.1 Biological Motivation

Pattern matching algorithms have been studied extensively since the inception
of stringology. In molecular biology, there are several variations of the pattern
matching problem that have unique applications. The following section will dis-
cuss two such variations, both of which report so-called clumps found within
biological sequences.

DNA replication is arguably the most essential function of any organism.
The success of cell proliferation relies on replication of DNA required by the
daughter cells. The mechanism of DNA replication is initiated by the formation
of the pre-replication complex at the origin of replication (Ori). A replicon is a

8 C.S. Iliopoulos et al.

DNA molecule which has a single Ori. In most bacteria, the circular chromosome,
which represents the entire genome, is the replicon, and its origin of replication
is termed OriC. The bacterial pre-replication complex is a multi-protein com-
plex of which a key protein, DnaA, is of significant interest in computational
biology. This is because the activation of DNA replication is conditional upon
the concentration of DnaA in the bacterial cell, and the formation of DnaA-OriC
complexes are the first stage of DNA replication. Specifically, DnaA molecules
bind to DnaA boxes, which are repeated sequences within OriC.

The most well-studied bacterial species is E. coli. The following is a summary
of some review papers which cite such studies [16]. OriC in E. coli is 245 base
pairs long. It contains three AT-rich 13-mers and within this region, three 6-mers
(5’-AGATCT), which are DnaA boxes. Also within this region are seven out of the
eleven 4-mer (GATC) deoxyadenosine methyltransferase recognition sites which
occur in DnaA binding sites. The adjoining region contains more DnaA boxes,
approximately five 9-mers (5’-TTWTNCACA). Note that in the preceding sequence,
W represents T or A, and N represents any nucleic acid. More DnaA boxes, with
slightly different sequences, are also present within these regions. Hereafter, we
define this region as a clump.

As mentioned, the E. coli genome is highly annotated. However, many unan-
notated bacterial genomes exist, and therefore, an efficient way to find clumps
is needed. In summary, in order to locate OriC in bacteria, a set of patterns
must occur a certain number of times within a region in the genome. A formal
definition of this problem is Problem 2.

Another variation of this problem, which has been studied recently [4,22],
is to find clumps given a set of patterns, where the occurrences of the patterns
may overlap. These will be referred to as clustered-clumps hereafter. This can be
utilised, for example, for gene prediction. That is, to find genes within a genome
based on the occurrence of specific DNA sequence motifs before or after them.
Examples of such motifs include gene promoters; start and stop codons; and
poly(A) tails. An example of overlapping motifs, specifically, recognition sites to
which proteins bind, is presented in [14]. A formal definition of this problem is
Problem 3.

3.2 Definitions

To provide an overview of our results we begin with a few definitions.
We think of a string X of length n as an array X[1..n], where every X[i],

1 ≤ i ≤ n, is a letter drawn from some fixed alphabet Σ of size |Σ| = O(1). The
empty string is denoted by ε. The set of all strings over an alphabet Σ (including
empty string ε) is denoted by Σ∗. A string Y is a factor of a string X if there
exist two strings U and V , such that X = UY V . Hence, We say that there is an
occurrence of Y in X, or, simply, that Y occurs in X.

Consider the strings X,Y,U , and V , such that X = UY V . If U = ε, then Y
is a prefix of X. If V = ε, then Y is a suffix of X. We denote by SA the suffix
array of X of length n, that is, an integer array of size n storing the starting
positions of all lexicographically sorted suffixes of X, that is, for all 1 < i ≤ n,

Popping Superbubbles and Discovering Clumps 9

we have X[SA[i − 1]..n] < X[SA[i]..n] [17]. Let lcp(i, j) denote the length of the
longest common prefix between X[SA[i]..n] and X[SA[j]..n], for all positions i,
j on X, and 0 otherwise. We denote by LCP the longest common prefix array of
X defined by LCP[i] = lcp(i − 1, i), for all 1 < i ≤ n, and LCP[1] = 0. SA and
LCP of X can be computed in time and space O(n) [11].

A degenerate symbol σ̃ over an alphabet Σ is a non-empty subset of Σ, i.e.,
σ̃ ⊆ Σ and σ̃ �= ∅. |σ̃| denotes the size of the set and we have 1 ≤ |σ̃| ≤
|Σ|. A degenerate string is built over the potential 2|Σ| − 1 non-empty sets
of letters belonging to Σ. In other words, a degenerate string X̃ = X̃[1..n],
such that every X̃[i] is a degenerate symbol, 1 ≤ i ≤ n. For example, X̃ =
{a, b}{a}{c}{b, c}{a}{a, b, c} is a degenerate string of length 6 over Σ = {a, b, c}.
If |X̃[i]| = 1, that is, X̃[i] represents a single symbol of Σ, we say that X̃[i] is a
solid symbol and i is a solid position. Otherwise X̃[i] and i are said to be non-
solid symbol and non-solid position respectively. For convenience we often write
X̃[i] = σ (σ ∈ Σ), instead of X̃[i] = {σ}, in case of solid symbols. Consequently,
the degenerate string X̃ mentioned in the example previously will be written
as {a, b}ac{b, c}a{a, b, c}. A string containing only solid symbols will be called
a solid string. A conservative degenerate string is a degenerate string where its
number of non-solid symbols is upper-bounded by a fixed positive constant k.

For degenerate strings, the notion of symbol equality is extended to single-
symbol match between two degenerate symbols in the following way. Two degen-
erate symbols σ̃1 and σ̃2 are said to match (represented as σ̃1 ≈ σ̃2) if σ̃1∩σ̃2 �= ∅.
Extending this notion to degenerate strings, we say that two degenerate strings
X̃ and Ỹ match (denoted as X̃ ≈ Ỹ) if |X̃| = |Ỹ | and X̃[i] ≈ Ỹ [i], for
i = 1, · · · , |X̃|. Note that the relation ≈ is not transitive. A degenerate string Ỹ
is said to occur at position i in another degenerate (resp. solid) string X̃ (resp.
X) if Ỹ ≈ X̃[i..i + |Ỹ]| − 1] (resp. Ỹ ≈ X[i..i + |Ỹ]| − 1]).

We are now able to define Problem 2 formally, which follows [8].

Problem 2: Finding Clumps
Input: A text T of length n, and integers � < n, k < �/2, m < � and d < m.
Output: All (�, k)-clumps in T , that is, all factors T [i..i + �], which contain
a conservative degenerate pattern P̃ such that |P̃ | = m and

OccT [i..i+�](P̃) ≥ k,

where OccT (P̃) is the number of occurrences of pattern P̃ in T , and the
number of non-solid symbols in P̃ ≤ d.

In [2], a clustered-clump of a given set of patterns P = {P1, · · · , P|P|} is defined
as follows: a clustered-clump is a maximal set of occurrences of patterns of P
such that

– any consecutive letters of the clustered-clump is a f actor of at least one occur-
rence of a pattern from P.

10 C.S. Iliopoulos et al.

– either the clustered-clump is composed of a single occurrence that overlaps no
other occurrence, or each occurrence overlaps at least one other occurrence.

The clustered-clump in a text T is maximal in the sense that there exists no
occurrence of the set P in T that overlaps this clustered-clump without being a
factor of it.

Example 2. Consider the set P = {aba, bba} and the text T = bbbabababababb
bbabaababb, we have the following clumps underlined:

T = bbbabababababbbbabaababb

Notice that the factor ababa at position 6 is not a clustered-clump since it is
not maximal. Also, the factor bbabaaba at position 15, since its two-letter factor
aa is neither a factor of an occurrence of aba, nor an occurrence of bba.

We are now able to define Problem 3 formally, which follows [2].

Problem 3: Finding Clustered-Clumps
Input: A text T of length n, a set of conserved degenerate patterns P̃ =
{P̃1, · · · , P̃|P̃|}, and integers d and m.
Output: All clustered-clumps in T , where the total number of non-solid
symbols in P̃ ≤ d and m =

∑
1≤i≤|P̃| |P̃i|.

3.3 Algorithms

Finding Clumps. The following algorithm follows [10,13], and to the best of
our knowledge, is the first purely combinatorial solution to find OriC.

We first construct both the suffix array SA and longest common prefix array
LCP of the string T . Then, a rank is assigned for each prefix, of length m, of
each suffix, of length at least m, based on the order of the suffix array. In other
words, each distinct factor of length m is associated with rank r such that two
positions i and j in T are assigned rank r, if T [i..i + m − 1] = T [j..j + m − 1]
and 1 ≤ i, j ≤ n − m + 1.

In the suffix array, the first i0 suffixes, of length at least m, sharing the same
prefix, of length m, will get rank 0; the next i1 suffixes, of length at least m,
sharing a unique prefix of length m, will get rank 1, and so on. In this way, each
rank associates with a distinct factor of length m in T .

Next, based on the ranking, we construct a new string T ′ of length n−m+1,
such that T ′[i] = r, if r is the rank given to suffix T [i..n]. Clearly, the ranks go
up at most to the value (n − m).

Example 3. Suppose T = AGCTTGCTAGCT and m = 3. The following table shows
the string T , its suffix array SA, longest common prefix array LCP and the newly-
constructed string T ′.

Popping Superbubbles and Discovering Clumps 11

i 1 2 3 4 5 6 7 8 9 10 11 12

T [i] A G C T T G C T A G C T

SA[i] 9 1 11 7 3 10 6 2 12 8 5 4

LCP[i] 0 4 0 2 2 0 3 3 0 1 1 1

T ′[i] 0 3 2 6 5 3 1 4 0 3

Here, rank 0 represents AGC and occurs twice in T ′; rank 1 represents CTA;
rank 2 represents CTT; rank 3 represents GCT and occurs three times in T ′; rank
4 represents TAG; rank 5 represents TGC; and rank 6 represents TTG.

Additionally, we construct and maintain a Parikh vector V(T ′), where the
size of the vector is the highest rank value given to the m-length prefixes of
suffixes in T . Each component of V(T ′) denotes the number of occurrences
of the corresponding rank. In particular, for a given length �, Vj(T ′) denotes
OccT ′[i..i+�−m](j). In this way, each component Vj(T ′) denotes the occurrences
of distinct factor j of length m in T [i..i + � − 1].

The vector V(T ′) is initialised with the numbers of occurrences of all ranks
in the prefix of T ′ of length �′ = � + m − 1. After the initialisation, we proceed
using a sliding window of length �′ to maintain the Parikh vector V(T ′).

Example 4. Following Example 3, and supposing � = 7, the tables below repre-
sents V(T ′) when it is initialised (Step 0) and after each of the first 5 steps of
the computation.

Step 0
0 1

1 0

2 1

3 1

4 0

5 1

6 1

⇒

Step 1
0 0

1 0

2 1

3 2

4 0

5 1

6 1

⇒

Step 2
0 0

1 1

2 1

3 1

4 0

5 1

6 1

⇒

Step 3
0 0

1 1

2 0

3 1

4 1

5 1

6 1

⇒

Step 4
0 1

1 1

2 0

3 1

4 1

5 1

6 0

⇒

Step 5
0 1

1 1

2 0

3 2

4 1

5 0

6 0

At step i, when the window is shifted one position to the right, to position i+
1, we have to update V(T ′) by possibly decrementing VT ′[i](T ′) and incrementing
VT ′[i+�′](T ′). If VT ′[i+�′](T ′) is at least k; then the factor T [i..i+ �−1] is a (�, k)-
clump with at least k occurrences of a some solid pattern P of length m.

We still need to compute the number of occurrences of every possible con-
servative degenerate pattern P̃ that matches the factor of rank T ′[i+ �′] and, at
the same time, does not match the factor of rank T ′[i]. Each such pattern P̃ is
formed by merging components of V(T ′) which have at most d mismatches with
the factor of rank T ′[i + �′]. For each such pattern P̃ , we calculate the number
of occurrences by adding the appropriate components of V(T ′).

Note that for an integer d, the number of possible P̃ that need to be checked
at each position i is O(md). Careful preprocessing of all m-length factors allows
efficient identification of all possible P̃ at each step; the details of which are

12 C.S. Iliopoulos et al.

excluded here. Thus, reporting all possible (�, k)-clumps in a given text T can
be achieved in O(nmd) time.

Example 5. Following Examples 3 and 4, and supposing d = 0, two (7, 2)-clumps
are reported at Step 1 & Step 5 both associated with the solid pattern GCT of
rank 3. Instead suppose d = 1, then three more (7, 2)-clumps are reported at
Step 0, 2 & 3 associated with {A,T}GC, CT{A,T}, and T{A,T}G.

Finding Clustered-Clumps. To the best of our knowledge, this problem has
only been explored heretofore with a probabilistic approach [4,22].

The solution we propose for this problem is based on the idea used in [21].
Let the number of patterns in the given set be r (|P̃| = r), while m is the total
lengths of such patterns. We begin by splitting each of the non-solid patterns,
say P̃i, into subpatterns Pi,j , 1 ≤ i ≤ r and 1 ≤ j ≤ sub(i), where each Pi,j is
a solid pattern over Σ and sub(i) denotes the number of subpatterns obtained
from a pattern P̃i; we call the set of all new solid subpatterns P. Effectively, we
are breaking every pattern into subpatterns by chopping out the parts containing
non-solid symbols so that each of the subpatterns is solid.

Example 6. Suppose P̃ = {AC{TG}AA{CG}TAA, AT{C,G}TT{A,G}C}. Then P =
{AC, AA, TAA, AT, TT, C}, and sub(1) = sub(2) = 3.

We next build the Aho-Corasick Automaton of the set P; denoted S(P),
where S(P) is the minimal deterministic finite automaton whose language is
the set of suffixes of P (see [9, Sect. 6.6] for more description and for efficient
construction). This data structure allows us to compute all the occurrences of
the solid subpatterns in the text T in linear time.

In particular, we preprocess the occurrences of each of the subpatterns by
constructing a matrix such that when the matrix is duly filled we can test in
constant time whether or not a specific solid subpattern occurs in a given text
position. If an occurrence of Pi,j for j > 1 is found, then we need to check:

1. Whether the non-solid symbol in P̃i preceding Pi,j matches the corresponding
position in T .

2. Whether Pi,j−1 occurs in the corresponding position in T .

If both conditions are valid, then an occurrence of Pi,j is reported correctly
in the matrix. Notice that; in this way, an occurrence of Pi,sub(i) corresponds to
an occurrence of a non-solid pattern P̃i in T .

Using the information about the occurrences of the non-solid patterns in the
text, we populate an array of size n that stores the length of the longest pattern
occurring at each position of the text. It is easy to see that simple calculations
in a single scan of this array can report the indices of all clustered-clumps in T .

Computing both P and S(P) takes O(m) time, while O(dn) time is required
for finding the occurrences of all solid subpatterns (to fill the matrix) and the
occurrences of non-solid patterns subsequently. Scanning of the array in the last
step can be done in O(n) time. Thus, the solution finds all the clustered-clumps
in the text in time equal to O(n + m) (for constant d).

Popping Superbubbles and Discovering Clumps 13

3.4 Discussion

After publishing our algorithm design in detail, we intend to evaluate the
efficiency and accuracy of our approach to predicting the locus of OriC, with
that of OriFinder [12], a tool which analyses the distribution of bases in the
genome and as well as the locations of motifs associated with OriC. We are
currently extending our solutions for finding occurrences of clustered-clumps in
texts with non-solid symbols. These kind of texts are common in biology and
thus such an extension is likely to draw a lot of interest.

4 Conclusion

This paper has provided a review of recent developments in computational molec-
ular biology, focusing on two unique problems in two different stages of discovery.

References

1. Balasubramanian, S., Klenerman, D., Barnes, C., Osborne, M.: Patent
US20077232656 (2007)

2. Bassino, F., Clément, J., Fayolle, J., Nicodème, P.: Constructions for clumps sta-
tistics. CoRR abs/0804.3671 (2008). http://arxiv.org/abs/0804.3671

3. Batzoglou, S.: Algorithmic challenges in mammalian genome sequence assembly. In:
Dunn, M., Jorde, L., Little, P., Subramaniam, S. (eds.) Encyclopedia of Genomics,
Proteomics and Bioinformatics. Wiley, Hoboken (New Jersey) (2005)

4. Boeva, V., Clément, J., Régnier, M., Vandenbogaert, M.: Assessing the significance
of sets of words. In: Apostolico, A., Crochemore, M., Park, K. (eds.) CPM 2005.
LNCS, vol. 3537, pp. 358–370. Springer, Heidelberg (2005)

5. Brankovic, L., Iliopoulos, C.S., Kundu, R., Mohamed, M., Pissis, S.P., Vayani,
F.: Linear-time superbubble identification algorithm for genome assembly. Theor.
Comput. Sci. 609(Part 2), 374–383 (2016). http://www.sciencedirect.com/science/
article/pii/S0304397515009147

6. de Bruijn, N.G.: A combinatorial problem. Koninklijke Nederlandse Akademie v.
Wetenschappen 49, 758–764 (1946)

7. Butler, J., MacCallum, I., Kleber, M., Shlyakhter, I.A., Belmonte, M.K., Lander,
E.S., Nusbaum, C., Jaffe, D.B.: ALLPATHS: de novo assembly of whole-genome
shotgun microreads. Genome Res. 18(5), 810–820 (2008)

8. Compeau, P.: Bioinformatics Algorithms: An Active Learning Approach. Active
Learning Publishers, La Jolla (2014)

9. Crochemore, M., Hancart, C., Lecroq, T.: Algorithms on Strings, p. 392. Cambridge
University Press, Cambridge (2007)

10. Ehlers, T., Manea, F., Mercaş, R., Nowotka, D.: k-abelian pattern matching. J.
Discrete Algorithms 34, 37–48 (2015)

11. Fischer, J.: Inducing the LCP-array. In: Dehne, F., Iacono, J., Sack, J.-R. (eds.)
WADS 2011. LNCS, vol. 6844, pp. 374–385. Springer, Heidelberg (2011)

12. Gao, F., Zhang, C.T.: Ori-finder: a web-based system for finding orics in unanno-
tated bacterial genomes. BMC Bioinform. 9(1), 79 (2008)

http://arxiv.org/abs/0804.3671
http://www.sciencedirect.com/science/article/pii/S0304397515009147
http://www.sciencedirect.com/science/article/pii/S0304397515009147

14 C.S. Iliopoulos et al.

13. Grossi, R., Iliopoulos, C.S., Mercaş, R., Pisanti, N., Pissis, S.P., Retha, A., Vayani,
F.: Circular sequence comparison with q-grams. In: Pop, M., Touzet, H. (eds.)
WABI 2015. LNCS, vol. 9289, pp. 203–216. Springer, Heidelberg (2015)

14. Kvietikova, I., Wenger, R.H., Marti, H.H., Gassmann, M.: The transcription factors
ATF-1 and CREB-1 bind constitutively to the hypoxia-inducible factor-1 (HIF-1)
DNA recognition site. Nucleic Acids Res. 23(22), 4542–4550 (1995)

15. Lander, E.S., Linton, L.M., Birren, B., Nusbaum, C., Zody, M.C., Baldwin, J.,
Devon, K., Dewar, K., Doyle, M., FitzHugh, W., et al.: Initial sequencing and
analysis of the human genome. Nature 409(6822), 860–921 (2001)

16. Leonard, A.C., Grimwade, J.E.: Building a bacterial orisome: emergence of new
regulatory features for replication origin unwinding. Mol. Microbiol. 55(4), 978–985
(2005)

17. Manber, U., Myers, G.: Suffix arrays: a new method for on-line string searches.
SIAM J. Comput. 22(5), 935–948 (1993)

18. Nurk, S., Bankevich, A., Antipov, D., Gurevich, A.A., Korobeynikov, A., Lapidus,
A., Prjibelski, A.D., Pyshkin, A., Sirotkin, A., Sirotkin, Y., Stepanauskas, R.,
Clingenpeel, S.R., Woyke, T., McLean, J.S., Lasken, R., Tesler, G., Alekseyev,
M.A., Pevzner, P.A.: Assembling single-cell genomes and mini-metagenomes from
chimeric MDA products. J. Comput. Biol. 20(10), 714–737 (2013)

19. Onodera, T., Sadakane, K., Shibuya, T.: Detecting superbubbles in assembly
graphs. In: Darling, A., Stoye, J. (eds.) WABI 2013. LNCS, vol. 8126, pp. 338–
348. Springer, Heidelberg (2013)

20. Pevzner, P.A., Tang, H., Waterman, M.S.: An Eulerian path approach to DNA
fragment assembly. Proc. Nat. Acad. Sci. U.S.A. 98(17), 9748–9753 (2001)

21. Rahman, M.S., Iliopoulos, C.S.: Pattern matching algorithms with don’t cares. In:
van Leeuwen, J., Italiano, G.F., van der Hoek, W., Meinel, C., Sack, H., Plasil, F.,
Bielikova, M. (eds.) Proceedings of the 33rd International Conference on Current
Trends in Theory and Practice of Computer Science (SOFSEM 2007), pp. 116–126.
Institute of Computer Science AS CR, Prague (2007)

22. Régnier, M.: A unified approach to word statistics. In: Proceedings of the Second
Annual International Conference on Computational Molecular Biology, RECOMB
1998, pp. 207–213. ACM, New York (1998). http://acm.org/10.1145/279069.
279116

23. Sung, W., Sadakane, K., Shibuya, T., Belorkar, A., Pyrogova, I.: An O(m logm)-
time algorithm for detecting superbubbles. IEEE/ACM Trans. Comput. Biology
Bioinform. 12(4), 770–777 (2015)

24. Venter, J.C., Adams, M.D., Myers, E.W., Li, P.W., Mural, R.J., Sutton, G.G.,
Smith, H.O., Yandell, M., Evans, C.A., Holt, R.A., et al.: The sequence of the
human genome. Science 291(5507), 1304–1351 (2001)

25. Zerbino, D.R., Birney, E.: Velvet: algorithms for de novo short read assembly using
de Bruijn graphs. Genome Res. 18(5), 821–829 (2008)

http://acm.org/10.1145/279069.279116
http://acm.org/10.1145/279069.279116

Graphs Coloring

Tropical Dominating Sets
in Vertex-Coloured Graphs

Jean-Alexandre Anglès d’Auriac1, Csilia Bujtás2, Hakim El Maftouhi1,
Marek Karpinski3, Yannis Manoussakis1(B), Leandro Montero1,

Narayanan Narayanan1, Laurent Rosaz1, Johan Thapper4, and Zsolt Tuza2,5

1 Université Paris-Sud, L.R.I., Bât. 650, 91405 Orsay Cedex, France
{angles,yannis,lmontero,rosaz}@lri.fr, hakim.maftouhi@orange.fr,

narayana@gmail.com
2 Department of Computer Science and Systems Technology,

University of Pannonia, Veszprém, Egyetem u. 10 8200, Hungary
{bujtas,tuza}@dcs.uni-pannon.hu

3 Department of Computer Science, University of Bonn,
Friedrich-Ebert-Allee 144, 53113 Bonn, Germany

marek@cs.uni-bonn.de
4 Université Paris-Est, Marne-la-Vallée, LIGM,

Bât. Copernic, 5 Bd Descartes, 77454 Marne-la-Vallée Cedex 2, France
thapper@u-pem.fr

5 Alfréd Rényi Institute of Mathematics, Hungarian Academy of Sciences, Budapest,
Reáltanoda u. 13–15 1053, Hungary

Abstract. Given a vertex-coloured graph, a dominating set is said to
be tropical if every colour of the graph appears at least once in the set.
Here, we study minimum tropical dominating sets from structural and
algorithmic points of view. First, we prove that the tropical dominating
set problem is NP-complete even when restricted to a simple path. Last,
we give approximability and inapproximability results for general and
restricted classes of graphs, and establish a FPT algorithm for interval
graphs.

Keywords: Dominating set · Vertex-coloured graph · Approximation

1 Introduction

Vertex-coloured graphs are useful in various situations. For instance, the Web
graph may be considered as a vertex-coloured graph where the colour of a vertex
represents the content of the corresponding page (red for mathematics, yellow for
physics, etc.). Given a vertex-coloured graph Gc, a subgraph Hc (not necessarily
induced) of Gc is said to be tropical if and only if each colour of Gc appears
at least once in Hc. Potentially, any kind of usual structural problems (paths,
cycles, independent and dominating sets, vertex covers, connected components,
etc.) could be studied in their tropical version. This new tropical concept is

c© Springer International Publishing Switzerland 2016
M. Kaykobad and R. Petreschi (Eds.): WALCOM 2016, LNCS 9627, pp. 17–27, 2016.
DOI: 10.1007/978-3-319-30139-6 2

18 J.-A. Anglès d’Auriac et al.

close to, but quite different from, the colourful concept used for paths in vertex-
coloured graphs [1,15,16]. It is also related to (but again different from) the
concept of colour patterns used in bio-informatics [11]. Here, we study minimum
tropical dominating sets in vertex-coloured graphs. A general overview on the
classical dominating set problem can be found in [13].

Throughout the paper let G = (V,E) denote a simple undirected non-
coloured graph. Let n = |V | and m = |E|. Given a set of colours C = {1, ..., c},
Gc = (V c, E) denotes a vertex-coloured graph where each vertex has precisely
one colour from C and each colour of C appears on at least one vertex. The colour
of a vertex x is denoted by c(x). A subset S ⊆ V is a dominating set of Gc (or
of G), if every vertex either belongs to S or has a neighbour in S. The domi-
nation number γ(Gc) (γ(G)) is the size of a smallest dominating set of Gc (G).
A dominating set S of Gc is said to be tropical if each of the c colours appears
at least once among the vertices of S. The tropical domination number γt(Gc)
is the size of a smallest tropical dominating set of Gc. A rainbow dominating
set of Gc is a tropical dominating set with exactly c vertices. More generally,
a c-element set with precisely one vertex from each colour is said to be a rain-
bow set. We let δ(Gc) (respectively Δ(Gc)) denote the minimum (maximum)
degree of Gc. When no confusion arises, we write γ, γt, δ and Δ instead of γ(G),
γt(Gc), δ(Gc) and Δ(Gc), respectively. We use the standard notation N(v) for
the (open) neighbourhood of vertex v, that is the set of vertices adjacent to
v, and write N [v] = N(v) ∪ {v} for its closed neighbourhood. The set and the
number of neighbours of v inside a subgraph H is denoted by NH(v) and by
dH(v), independently of whether v is in H or in V (Gc) − V (H). Although less
standard, we shall also write sometimes v ∈ Gc to abbreviate v ∈ V (Gc).

Note that tropical domination in a vertex-coloured graph Gc can also be inter-
preted as “simultaneous domination” in two graphs which have a common vertex
set. One of the two graphs is the non-coloured G itself, the other one is the union
of c vertex-disjoint cliques each of which corresponds to a colour class in Gc. The
notion of simultaneous dominating set1 was introduced by Sampathkumar [17]
and independently by Brigham and Dutton [5]. It was investigated recently by
Caro and Henning [6] and also by further authors. Remark that δ ≥ 1 is regularly
assumed for each factor graph in the results of these papers that is not the case
in the present manuscript, as we do not forbid the presence of one-element colour
classes.

The Tropical Dominating Set problem (TDS) is defined as follows.

Problem 1. TDS
Input: A vertex-coloured graph Gc and an integer k ≥ c.
Question: Is there a tropical dominating set of size at most k?

1 Also known under the names ‘factor dominating set’ and ‘global dominating set’ in
the literature.

Tropical Dominating Sets in Vertex-Coloured Graphs 19

The Rainbow Dominating Set problem (RDS) is defined as follows.

Problem 2. RDS
Input: A vertex-coloured graph Gc.
Question: Is there a rainbow dominating set?

The paper is organized as follows. In Sect. 2 we give approximability and
inapproximability results for TDS. We also show that the problem is FPT (fixed-
parameter tractable) on interval graphs when parametrized by the number of
colours.

2 Approximability and Fixed Parameter Tractability

We begin this section noting that the problem is intractable even for paths.

Theorem 1. The RDS problem is NP-complete, even when the input is
restricted to vertex-coloured paths.

In the sequel, we assume familiarity with the complexity classes NPO and PO
which are optimisation analogues of NP and P. A minimisation problem in NPO
is said to be approximable within a constant r ≥ 1 if there exists an algorithm
A which, for every instance I, outputs a solution of measure A(I) such that
A(I)/Opt(I) ≤ r, where Opt(I) stands for the measure of an optimal solution.
An NPO problem is in the class APX if it is approximable within some constant
factor r ≥ 1. An NPO problem is in the class PTAS if it is approximable within r
for every constant factor r > 1. An APX-hard problem cannot be in PTAS unless
P = NP. We use two types of reductions, L-reductions to prove APX-hardness,
and PTAS-reductions to demonstrate inclusion in PTAS. In the Appendix we
give a slightly more formal introduction and a description of reduction methods
related to approximability. For more on these issues we refer to Ausiello et al. [3]
and Crescenzi [8].

A problem is said to be fixed parameter tractable (FPT) with parameter
k ∈ N if it has an algorithm that runs in time f(k) |I|O(1) for any instance (I, k),
where f is an arbitrary function that depends only on k.

In this section, we study the complexity of approximating and solving TDS
conditioned on various restrictions on the input graphs and on the number of
colours. First, we show that TDS is equivalent to MDS (Minimum Dominating
Set) under L-reductions. In particular, this implies that the general problem lies
outside APX. We then attempt to restrict the input graphs and observe that if
MDS is in APX on some family of graphs, then so is TDS. However, there is also
an immediate lower bound: TDS on any family of graphs that contains all paths
is APX-hard. We proceed by adding an upper bound on the number of colours.
We see that if MDS is in PTAS for some family of graphs with bounded degree,
then so is TDS when restricted to n1−ε colours for some ε > 0. Finally, we show
that TDS on interval graphs is FPT with the parameter being the number of
colours and that the problem is in PO when the number of colours is logarithmic.

20 J.-A. Anglès d’Auriac et al.

Proposition 1. TDS is equivalent to MDS under L-reductions. It is approx-
imable within ln n + Θ(1) but NP-hard to approximate within (1 − ε) ln n.

Proof. MDS is clearly a special case of TDS. For the opposite direction, we
reduce an instance of TDS to an instance I of the Set Cover problem which
is known to be equivalent to MDS under L-reductions [14]. In the Set Cover
problem, we are given a ground set U and a collection of subsets Fi ⊆ U such
that

⋃
i Fi = U . The goal is to cover U with the smallest possible number of sets

Fi. Our reduction goes as follows. Given a vertex-coloured graph Gc = (V c, E),
with the set of colours C, the ground set of I is U = V c ∪ C. Each vertex v
of V gives rise to a set Fv = N [v] ∪ {c(v)}, a subset of U . Every solution to I
must cover every vertex v ∈ V either by including a set that corresponds to v
or by including a set that corresponds to a neighbour of v. Furthermore, every
solution to I must include at least one vertex of every colour in C. It follows
that every set cover can be translated back to a tropical dominating set of the
same size. This shows that our reduction is an L-reduction.

The approximation guarantee follows from that of the standard greedy algo-
rithm for Set Cover. The lower bound follows from the NP-hardness reduction
to Set Cover in [9] in which the constructed Set Cover instances contain o(N)
sets, where N is the size of the ground set.

When the input graphs are restricted to some family of graphs, then mem-
bership in APX for MDS carries over to TDS.

Lemma 1. Let G be a family of graphs. If MDS restricted to G is in APX, then
TDS restricted to G is in APX.

Proof. Assume that MDS restricted to G is approximable within r for some
r ≥ 1. Let Gc be an instance of TDS. We can find a dominating set of the
uncoloured graph G of size at most rγ(G) in polynomial time, and then add one
vertex of each colour that is not yet present in the dominating set. This set is of
size at most rγ(G)+ c− 1. The size of an optimal solution of Gc is at least γ(G)
and at least c. Hence, the computed set will be at most r + 1 times the size of
the optimal solution of Gc.

For Δ ≥ 2, let Δ-TDS denote the problem of minimising a tropical domi-
nating set on graphs of degree bounded by Δ. The problem MDS is in APX for
bounded-degree graphs, hence Δ-TDS is in APX by Lemma 1. The same lemma
also implies that TDS restricted to paths is in APX. Next, we give explicit
approximation ratios for these problems.

Proposition 2. TDS restricted to paths can be approximated within 5/3.

Proof. Let P c = v1, v2, . . . , vn be a vertex-coloured path. For i = 1, 2, 3 let
σi = {vj | j ≡ i (mod 3), 1 ≤ j ≤ n}. Select any subset σ′

i of V that contains
precisely one vertex of each colour missing from σi. Let Si = σi∪σ′

i. By definition,
Si is a tropical set.

Taking into account that each colour must appear in a tropical dominating
set, moreover any vertex can dominate at most two others, we see the following
easy lower bounds:

Tropical Dominating Sets in Vertex-Coloured Graphs 21

n ≤ 3γt(P c),
2c ≤ 2γt(P c),

1
5
(n + 2c) ≤ γt(P c).

Suppose for the moment that each of S1, S2, S3 dominates Gc. Then, since
each colour occurs in at most two of the σ′

i, we have |S1| + |S2| + |S3| ≤ n + 2c
and therefore

γt(P c) ≤ min(|S1|, |S2|, |S3|) ≤ 1
3
(n + 2c).

Comparing the lower and upper bounds, we obtain that the smallest set Si pro-
vides a 5/3-approximation. It is also clear that this solution can be constructed
in linear time.

The little technical problem here is that the set Si does not dominate vertex
v1 if i = 3, and it does not dominate vn if i ≡ n − 2 (mod 3). We can overcome
this inconvenience as follows.

The set S3 surely will dominate v1 if we extend S3 with either of v1 and
v2. This means no extra element if we have the option to select e.g. v1 into σ′

3.
We cannot do this only if c(v1) is already present in σ3. But then this colour
is common in σ1 and σ3; that is, although we take an extra element for S3, we
can subtract 1 from the term 2c when estimating |σ′

1| + |σ′
2| + |σ′

3|. The same
principle applies to the colour of vn, too.

Even this improved computation fails by 1 when n ≡ 2 (mod 3) and c(v1) =
c(vn), as we can then write just 2c−1 instead of 2c−2 for |σ′

1|+ |σ′
2|+ |σ′

3|. Now,
instead of taking the vertex pair {v1, vn} into S3, we complete S3 with v2 and
vn. This yields the required improvement to 2c − 2, unless c(v2), too, is present
in σ3. But then c(v2) is a common colour of σ2 and σ3, while c(v1) is a common
colour of σ1 and σ3. Thus |σ′

1|+ |σ′
2|+ |σ′

3| ≤ 2c−2, and |S1|+ |S2|+ |S3| ≤ n+2c
holds also in this case.

Remark 1. In an analogous way — which does not even need the particular
discussion of unfavourable cases — one can prove that the square grid Pn�Pn

admits an asymptotic 9/5-approximation. (This extends also to Pn�Pm where
m = m(n) tends to infinity as n gets large.) A more precise estimate on grids,
however, may require a careful and tedious analysis.

Proposition 3. Δ-TDS is approximable within ln(Δ + 2) + 1
2 . Moreover, there

are absolute constants C > 0 and Δ0 ≥ 3 such that for every Δ ≥ Δ0, it is
NP-hard to approximate Δ-TDS within ln Δ − C ln lnΔ.

Proof. The second assertion follows from [7, Theorem 3]. For the first part, we
apply reduction from Set Cover, similarly as in the proof of Proposition 1. So, for
Gc = (V c, E) we define U = V c ∪C and consider the sets Fv = N [v]∪{c(v)} for
the vertices v ∈ V c. Every set cover in this set system corresponds to a tropical
dominating set in Gc. Moreover, the Set Cover problem is approximable within∑k

i=1
1
i − 1

2 < ln k + 1
2 [10], where k is an upper bound on the cardinality of any

set of I. In our case, we have k = Δ + 2 since |N(v)| ≤ Δ for all v. Hence, TDS
is approximable within ln(Δ + 2) + 1

2 .

22 J.-A. Anglès d’Auriac et al.

We now show that TDS for paths is APX-complete.

Theorem 2. TDS restricted to paths is APX-hard.

Proof. We apply an L-reduction from the Vertex Cover problem (VC): Given
a graph G = (V,E), find a set of vertices S ⊆ V of minimum cardinality such
that, for every edge uv ∈ E, at least one of u ∈ S and v ∈ S holds. We write
3-VC for the vertex cover problem restricted to graphs of maximum degree three
(subcubic graphs). The problem 3-VC is known to be APX-complete [2]. For a
graph G, we write OptV C(G) for the minimum size of a vertex cover of G.

Let G = (V,E) be a non-empty instance of 3-VC, with V = {v1, . . . , vn}
and E = {e1, . . . , em}. Assume that G has no isolated vertices. The reduction
sends G to an instance φ(G) of TDS which will have m + n + 1 colours: B (for
black), Ei with 1 ≤ i ≤ m (for the ith edge), and Sj with 1 ≤ j ≤ n (for the
jth vertex). The path has 9n + 3 vertices altogether, starting with three black
vertices of Fig. 1(a), we call this triplet V0. Afterwards blocks of 6 and 3 vertices
alternate, we call the latter V1, . . . , Vn, representing the vertices of G. Each Vj

(other than V0) is coloured as shown in Fig. 1(c). Assuming that vj (1 ≤ j ≤ n)
is incident to the edges ej1 , ej2 , and ej3 , the two parts Vj−1 and Vj are joined
by a path representing these three incidences, and coloured as in Fig. 1(b). If vj

has degree less than 3, then the vertex in place of Ej3 is black; and if d(vj) = 1,
then also Ej2 is black.

Fig. 1. Gadgets for the reduction of Theorem 2

Let σ ⊆ V be an arbitrary solution to φ(G). First, we construct a solution
σ′ from σ with more structure, and with a measure at most that of σ. For every
j, σ contains the vertex coloured Sj . Let σ′ contain these as well. At least one
of the first two vertices coloured B must also be in σ. Let σ′ contain the second
vertex coloured B. Now, if any Vj (0 ≤ j ≤ n) has a further (first or third) vertex
which is an element of σ, then we can replace it with its predecessor or successor,
achieving that they dominate more vertices in the path. This modification does
not lose any colour because the first and third vertices of any Vj are black, and
B is already represented in σ ∩ V0.

Tropical Dominating Sets in Vertex-Coloured Graphs 23

Now we turn to the 6-element blocks connecting a Vj−1 with Vj . Since the
third vertex of Vj−1 and the first vertex of Vj are surely not in the modified
σ, which still dominates the path, it has to contain at least two vertices of
the 6-element block. And if it contains only two, then those necessarily are the
second and fifth, both being black. Should this be the case, we keep them in σ′.
Otherwise, if the modified σ contains more than two vertices of the 6-element
block, then let σ′ contain precisely Ej1 , Ej2 , and Ej3 . Since σ is a tropical
dominating set, the same holds for σ′. It is also clear that |σ′| ≤ |σ|.

Next, we create a solution ψ(G, σ) to the vertex cover problem on G, using
σ′. Let vj ∈ ψ(G, σ) if and only if {Ej1 , Ej2 , Ej3} ⊆ σ′. Then, |ψ(G, σ)| =
|σ′| − 1 − 3n ≤ |σ| − 1 − 3n, and when σ is optimal, we have the equality
OptV C(G) = γt(φ(G)) − 1 − 3n. Therefore,

|ψ(G, σ)| − OptV C(G) ≤ |σ| − γt(φ(G)). (1)

We may assume that G does not contain any isolated vertices. Under this
assumption, we prove the lower bound OptV C(G) ≥ n/4 by induction, as follows:
The bound clearly holds for an empty graph. Suppose that the bound holds for all
graphs without isolated vertices with fewer than n vertices. Let σ∗ be a minimal
vertex cover of G and let v ∈ V \ σ∗. Then, all of v’s neighbours are in σ∗. Let
G′ be the graph G with N [v] removed as well as any isolated vertices resulting
from this removal. Let n′ be the number of vertices in G′. If v has 1 ≤ nv ≤ 3
neighbours, then 0 ≤ ni ≤ 2nv vertices become isolated when N [v] is removed,
so OptV C(G) = nv + OptV C(G′) ≥ nv + n′/4 = nv + (n − 1 − nv − ni)/4 ≥
nv + (n − 1 − 3nv)/4 ≥ n/4.

This allows us to upper-bound the optimum of φ(G):

γt(φ(G)) = OptV C(G) + 1 + 3n
≤ OptV C(G) + 1 + 12 · OptV C(G) ≤ 14 · OptV C(G). (2)

It follows from (1) and (2) that φ and ψ constitute an L-reduction.

Corollary 1. Fix 0 < ε ≤ 1, and let P be the family of all vertex-coloured paths
with at most nε colours, where n is the number of vertices. Then TDS restricted
to P is NP-hard.

Proof. We reduce from TDS on paths with an unrestricted number of colours
which is NP-hard by Theorem 2. Let P c be a vertex-coloured path on n ver-
tices with c ≤ n colours. Let Qc′

be the instance obtained by adding a path
v1, v2, . . . , vN with N = 	(n + 2)1/ε
 vertices to the end of P c (this is a
polynomial-time reduction for any fixed constant ε > 0). Let A and B be two
new colours. In the added path v1, v2, . . . , vN , let v2 have colour A and all the
other vertices have colour B. The instance Qc′

has n′ = n + N vertices and
c′ = c + 2 ≤ n + 2 ≤ N ε ≤ (n′)ε colours, so Qc′ ∈ P.

Given a minimum tropical dominating set σ of Qc′
, we see that v2 must be

in σ to account for the colour A. We may further assume that v1 is not in σ. If
it were, then we could modify σ by removing v1 and adding the last vertex of

24 J.-A. Anglès d’Auriac et al.

P c instead. It is now clear that taking σ restricted to {v1, v2, . . . , vN} together
with a tropical dominating set of P c yields a tropical dominating set of Qc′

and
that σ restricted to P c is a tropical dominating set of P c. Hence, σ restricted to
P c is a minimum tropical dominating set of P c.

We have seen that restricting the input to any graph family that contains at
least the paths can take us into APX but not further. To find more tractable
restrictions, we now introduce an additional restriction on the number of colours.
The following lemma says that if the domination number grows asymptotically
faster than the number of colours, then we can lift PTAS-inclusion of MDS to
TDS.

Lemma 2. Let G be a family of vertex-coloured graphs. Assume that there exists
a computable function f : Q∩ (0,∞) → N such that for every r > 0, γ(G) > c/r
whenever Gc ∈ G and n(Gc) ≥ f(r). Then, TDS restricted to G PTAS-reduces
to MDS restricted to G.
Proof. To design a polynomial-time (1+ε)-approximation for any rational ε > 0,
we pick r = ε/2; hence let n0 = f(ε/2). Let Gc ∈ G be a vertex-coloured
graph. The reduction sends Gc to φ(Gc) = G, the instance of MDS obtained
from Gc by simply forgetting the colours. Let σ be any dominating set in G.
Assuming that σ is a good approximation to γ(G), we need to compute a good
approximation ψ(Gc, σ) to γt(Gc). If n(Gc) < n0, then we let ψ(Gc, σ) be an
optimal tropical dominating set of Gc. Otherwise, let ψ(Gc, σ) be σ plus a vertex
for each remaining non-covered colour. Since n0 depends on ε but not on Gc or
σ, it follows that ψ can be computed in time that is polynomial in |V (Gc)| and
|σ|.

We claim that φ and ψ provide a PTAS-reduction. This is clear if n(Gc) <
n0 since ψ then computes an optimal solution to Gc. Otherwise, assume that
n(Gc) ≥ n0 and that |σ| /γ(G) ≤ 1+ ε/2, i.e., σ is a good approximation. Then,

|ψ(Gc, σ)|
γt(Gc)

≤ |σ| + c

γ(G)
≤ 2 + ε

2
+

c

γ(G)
< 1 + ε,

where the last inequality follows from n(G) ≥ n0 and the definition of f .

Example 1. The problem MDS is in PTAS for planar graphs [4], but NP-hard
even for planar subcubic graphs [12]. Let G be the family of planar graphs of
maximum degree Δ, for any fixed Δ ≥ 3, and with a number of colours c < n1−ε

for some fixed ε > 0. Let f(r) = 	(Δ+1
r)1/ε
 and note that γ(G) ≥ n/(Δ +

1) > cnε/(Δ + 1) ≥ cf(r)ε/(Δ + 1) ≥ c/r whenever n ≥ f(r). It then follows
from Lemma 2 that TDS is in PTAS when restricted to planar graphs of fixed
maximum degree.

Example 2. As a second example, we observe how the complexity of TDS on a
path varies when we restrict the number of colours. For an arbitrary number
of colours, it is APX-complete by Lemma 1 and Theorem 2. If the number of
colours is O(n1−ε) for some ε > 0, then it is in PTAS by Lemma 2, but NP-hard

Tropical Dominating Sets in Vertex-Coloured Graphs 25

by Corollary 1. Finally, if the number of colours is O(log n), then it can be shown
to be in PO by a simple dynamic programming algorithm.

In the rest of this section, we look at the restriction where we consider the
number of colours as a fixed parameter. We prove the following result.

Theorem 3. There is an algorithm for TDS restricted to interval graphs that
runs in time O(2cn2).

This shows that TDS for interval graphs is FPT and, furthermore, that if
c = O(log n), then TDS is in PO.

Let Gc be a vertex-coloured interval graph with vertex set V = {1, . . . , n}
and colour set C, and fix some interval representation Ii = [li, ri] for each vertex
1 ≤ i ≤ n. Assume that the vertices are ordered non-decreasingly with respect
to ri. For a, b ∈ V , we use (closed) intervals [a, b] = {i ∈ V | a ≤ i ≤ b} to denote
subsets of vertices with respect to this order.

Define an i-prefix dominating set as a subset U ⊆ V of vertices that contains
i and dominates [1, i] in Gc. We say that U is proper if, for every i, j ∈ U , we
have neither Ii ⊆ Ij nor Ij ⊆ Ii.

Let f : P(C)×[0, n] → N∪{∞} be the function defined so that, given a subset
S ⊆ C of colours and a vertex i ∈ V , f(S, i) is the least number of vertices in
a proper i-prefix dominating set that covers precisely the colours in S, or ∞ if
there is no such set. The value of f(S, 0) is defined to be 0 when S = ∅ and ∞
otherwise. Our proof is based on a recursive definition of f (Lemma 5) and the
fact that f determines γt (Lemma 4). First, we need a technical lemma.

Lemma 3. Let U ⊆ V and let i be the largest element in U . If U is i-prefix
dominating, then it dominates precisely the same vertices as [1, i]. In particular,
U dominates G if and only if [1, i] does.

Proof. Assume to the contrary that there is a j ∈ [1, i]−U that dominates some
k > i, and that k is not dominated by U . This means that j is connected to k in
G, so lk ≤ rj . But then we have lk ≤ rj ≤ ri ≤ rk, so [li, ri] ∩ [lk, rk] �= ∅, hence
i ∈ U dominates k, a contradiction.

Lemma 4. For every interval graph Gc, we have

γt(Gc) = min{f(S, i) + |C − S| | S ⊆ C, i ∈ V, [1, i] dominates Gc}.

Proof. f(S, i) is the size of some set U ⊆ V that covers the colours S and that,
by Lemma 3, dominates Gc. We obtain a tropical dominating set by adding a
vertex of each missing colour in C−S. Therefore, each expression f(S, i)+|C − S|
on the right-hand side corresponds to the size of a tropical dominating set, so
γt(Gc) is at most the minimum of these.

For the opposite inequality, let U be a minimum tropical dominating set of
Gc. Remove from U all vertices i for which there is some j ∈ U with Ii ⊆ Ij , and
call the resulting set U ′. By construction U ′ still dominates Gc. Let S be the set
of colours covered by U ′. Then U ′ is a minimum set with these properties, so by

26 J.-A. Anglès d’Auriac et al.

the definition of f , |U ′| = f(S, i), where i is the greatest element in U ′. Since
U ′ ⊆ [1, i], it follows that [1, i] dominates Gc. Therefore, the right-hand side is
at most f(S, i) + |C − S| = |U ′| + |C − S| ≤ |U | = γt(Gc).

The following lemma gives a recursive definition of the function f that per-
mits us to compute it efficiently when the number of colours in C grows at most
logarithmically.

Lemma 5. For every interval graph Gc, the function f satisfies the following
recursion:

f(S, 0) =

{
0 if S = ∅,

∞ otherwise;

f(S, i) = 1 + min{f(S′, j) | S′ ∪ {c(i)} = S, j ∈ Pi}, for i ∈ V,

where j ∈ Pi if and only if either j = 0 and {i} is i-prefix dominating, or j ∈ V ,
j < i, [1, j] ∪ {i} is i-prefix dominating, and Ii �⊆ Ij, Ij �⊆ Ii.

Proof. The proof is by induction on i. The base case i = 0 holds by definition.
Assume that the lemma holds for all 0 ≤ i ≤ k − 1 and all S ⊆ C.

Let U be a minimum proper k-prefix dominating set that covers precisely the
colours in S. We want to show that |U | = f(S, k). If U = {k}, then S = {c(k)},
and it follows immediately that f(S, k) = 1. Otherwise, U − {k} is non-empty.
Let j < k be the greatest vertex in U − {k}. Assume that U − {k} is not j-
prefix dominating. Then, there is some i < j that is not dominated by j but
that is dominated by k, hence l(k) ≤ r(i) < l(j). Therefore Ij ⊆ Ik, so U is
not proper, a contradiction. Hence, U − {k} is a proper j-prefix dominating
set. By induction, |U − {k}| ≥ min{f(S′, j) | S′ ∪ {c(k)} = S}. This shows the
inequality |U | ≥ f(S, k).

For the opposite inequality, it suffices to show that if [1, j] ∪ {k} is k-prefix
dominating, U ′ is any proper j-prefix dominating set, and Ik �⊆ Ij , Ij �⊆ Ik,
then U ′ ∪ {k} is a proper k-prefix dominating set. It follows from Lemma 3 that
U ′ ∪ {k} is k-prefix dominating. Since Ik �⊆ Ij , we must have ri ≤ rj < rk for all
i < j, hence Ik �⊆ Ii. Assume that Ii ⊆ Ik for some i < j. Then, since Ij �⊆ Ik,
we have lj < lk ≤ li ≤ ri ≤ rj , which contradicts U ′ being proper. It follows
that U ′ ∪ {k} is proper.

Proof of Theorem 3. The sets Pi for i ∈ V in Lemma 5 can be computed in time
O(n2) as follows. Let ai ∈ V be the least vertex such that i dominates [ai, i],
and let bj ∈ V be the least vertex such that [1, j] does not dominate bj , or ∞
if [1, j] dominates G. Note that i does not dominate any vertex strictly smaller
than ai since the vertices are ordered non-decreasingly with respect to the right
endpoints of their intervals. Therefore, Pi = {j < i | ai ≤ bj , Ii �⊆ Ij , Ij �⊆ Ii}.
The vectors ai and bj are straightforward to compute in time O(n2), hence Pi

can be computed in time O(n2) using this alternative definition.
When Pi is computed for all i ∈ V , the recursive definition of f in Lemma 5

can be used to compute all values of f in time O(2cn2), and it can easily be

Tropical Dominating Sets in Vertex-Coloured Graphs 27

modified to compute, for each S and i, some specific i-prefix dominating set
of size f(S, i), also in time O(2cn2). Therefore, by Lemma 4, one can find a
minimum tropical dominating set in time O(2cn2). ��

References

1. Akbari, S., Liaghat, V., Nikzad, A.: Colorful paths in vertex-colorings of graphs.
Electron. J. Comb. 18, P17 (2011)

2. Alimonti, P., Kann, V.: Some APX-completeness results for cubic graphs. Theor.
Comput. Sci. 237(1–2), 123–134 (2000)

3. Ausiello, G., Crescenzi, P., Gambosi, G., Kann, V.: Complexity and Approxima-
tion. Springer, Heidelberg (1999)

4. Baker, B.: Approximation algorithms for NP-complete problems on planar graphs.
J. ACM 41(1), 153–180 (1994)

5. Brigham, R.C., Dutton, R.D.: Factor domination in graphs. Discrete Math. 86(1–
3), 127–136 (1990)

6. Caro, Y., Henning, M.A.: Simultaneous domination in graphs. Graphs Combin.
30(6), 1399–1416 (2014)

7. Chleb́ık, M., Chleb́ıková, J.: Approximation hardness of dominating set problems
in bounded degree graphs. Inf. Comput. 206(11), 1264–1275 (2008)

8. Crescenzi, P.: A short guide to approximation preserving reductions. In: Proceed-
ings of the IEEE Conference on Computational Complexity, pp. 262–273 (1997)

9. Dinur, I., Steurer, D.: Analytical approach to parallel repetition. In: Proceedings
of the 46th Annual ACM Symposium on Theory of Computing (STOC 2014), pp.
624–633 (2014)

10. Duh, R., Fürer, M.: Approximation of k-set cover by semi-local optimization. In:
Proceedings of the 29th Annual ACM Symposium on the Theory of Computing
(STOC 1997), pp. 256–264 (1997)

11. Fellows, M., Fertin, G., Hermelin, D., Vialette, S.: Upper and lower bounds for
finding connected motifs in vertex-colored graphs. J. Comput. Syst. Sci. 77(4),
799–811 (2011)

12. Garey, M., Johnson, D.: Computers and Intractability: A Guide to the Theory of
NP-Completeness. W. H. Freeman, New York (1979)

13. Haynes, T., Hedetniemi, S., Slater, P.: Fundamentals of Domination in Graphs.
Marcel Dekker, New York (1998)

14. Kann, V.: On the Approximability of NP-complete Optimization Problems. Ph.D.
thesis, Department of Numerical Analysis and Computing Science, Royal Institute
of Technology, Stockholm (1992)

15. Li, A.: A generalization of the gallai-roy theorem. Graphs Comb. 17, 681–685
(2001)

16. Lin, C.: Simple proofs of results on paths representing all colors in proper vertex-
colorings. Graphs Comb. 23, 201–203 (2007)

17. Sampathkumar, E.: The global domination number of a graph. J. Math. Phys. Sci.
23(5), 377–385 (1989)

On Hamiltonian Colorings of Block Graphs

Devsi Bantva(B)

Lukhdhirji Engineering College, Morvi 363 642, Gujarat, India
devsi.bantva@gmail.com

Abstract. A hamiltonian coloring c of a graph G of order p is an assign-
ment of colors to the vertices of G such that D(u, v) + |c(u) − c(v)| ≥
p − 1 for every two distinct vertices u and v of G, where D(u, v) denotes
the detour distance between u and v. The value hc(c) of a hamiltonian
coloring c is the maximum color assigned to a vertex of G. The hamil-
tonian chromatic number, denoted by hc(G), is the min{hc(c)} taken
over all hamiltonian coloring c of G. In this paper, we present a lower
bound for the hamiltonian chromatic number of block graphs and give a
sufficient condition to achieve the lower bound. We characterize symmet-
ric block graphs achieving this lower bound. We present two algorithms
for optimal hamiltonian coloring of symmetric block graphs.

Keywords: Hamiltonian coloring · Hamiltonian chromatic number ·
Block graph · Symmetric block graph

1 Introduction

A hamiltonian coloring c of a graph G of order p is an assignment of colors (non-
negative integers) to the vertices of G such that D(u, v) + |c(u) − c(v)| ≥ p − 1
for every two distinct vertices u and v of G, where D(u, v) denotes the detour
distance which is the length of the longest path between u and v. The value of
hc(c) of a hamiltonian coloring c is the maximum color assigned to a vertex of
G. The hamiltonian chromatic number hc(G) of G is min{hc(c)} taken over all
hamiltonian coloring c of G. It is clear from definition that two vertices u and
v can be assigned the same color only if G contains a hamiltonian u − v path.
Moreover, if G is a hamiltonian-connected graph then all the vertices can be
assigned the same color. Thus the hamiltonian chromatic number of a connected
graph G measures how close G is to being hamiltonian-connected, minimum the
hamiltonian chromatic number of a connected graph G is, the closer G is to being
hamiltonian-connected. The concept of hamiltonian coloring was introduced by
Chartrand et al. [2] as a variation of radio k-coloring of graphs.

At present, the hamiltonian chromatic number is known only for handful
of graph families. Chartrand et al. investigated the exact hamiltonian chro-
matic numbers for complete graph Kn, cycle Cn, star K1,n and complete bipar-
tite graph Kr,s in [2,3]. Also an upper bound for hc(Pn) was established by
Chartrand et al. in [2] but the exact value of hc(Pn) which is equal to the
radio antipodal number ac(Pn) given by Khennoufa and Togni in [5]. In [6],
c© Springer International Publishing Switzerland 2016
M. Kaykobad and R. Petreschi (Eds.): WALCOM 2016, LNCS 9627, pp. 28–39, 2016.
DOI: 10.1007/978-3-319-30139-6 3

On Hamiltonian Colorings of Block Graphs 29

Shen et al. have discussed the hamiltonian chromatic number for graphs G with
max{D(u, v) : u, v ∈ V (G), u �= v} ≤ p

2 , where p is the order of graph G and
they gave the hamiltonian chromatic number for a special class of caterpillars
and double stars. The researchers emphasize that determining the hamiltonian
chromatic number is interesting but a challenging task even for some basic graph
families.

Without loss of generality, we initiate with label 0, then the span of any
hamiltonian coloring c which is defined as max{|c(u) − c(v)| : u, v ∈ V (G)}, is
the maximum integer used for coloring. However, in [2,3,6] only positive integers
are used as colors. Therefore, the hamiltonian chromatic number defined in this
article is one less than that defined in [2,3,6] and hence we will make necessary
adjustment when we present the results of [2,3,6] in this article. Moreover, for
standard graph theoretic terminology and notation we follow [8].

In this paper, we present a lower bound for the hamiltonian chromatic number
of block graphs and give a sufficient condition to achieve the lower bound. As
an illustration, we present symmetric block graphs (those block graphs whose
all blocks are cliques of size n, each cut vertex is exactly in k blocks and the
eccentricity of end vertices is same) achieving this lower bound. We present two
algorithms for optimal hamiltonian coloring of symmetric block graphs.

2 A Lower Bound for Hamiltonian Chromatic Number of
Block Graphs

A block graph is a connected graph all of whose blocks are cliques. The detour
distance between u and v, denoted by D(u, v), is the longest distance between
u and v in G. The detour eccentricity εD(v) of a vertex v is the detour distance
from v to a vertex farthest from v. The detour center CD(G) of G is the subgraph
of G induced by the vertex/vertices of G whose detour eccentricity is minimum.
In [4], Chartrand et al. shown that the detour center CD(G) of every connected
graph G lies in a single block of G. The vertex/vertices of detour center CD(G)
are called detour central vertex/vertices for graph G. In a block graph G, if u is
on the w − v path, where w is the nearest detour central vertex for v, then u is
an ancestor of v, and v is a descendent of u. Let ui, i = 1, 2, ..., n are adjacent
vertices of a block attached to a central vertex. Then the subgraph induced by
ui, i = 1, 2, ..., n and all its descendent is called a branch at w. Two branches are
called different if they are induced by vertices of two different blocks attached
to the same central vertex, and opposite if they are induced by vertices of two
different blocks attached to different central vertices. For a block graph G, define
detour level function L on V (G) by

L(u) := min{D(w, u) : w ∈ V (CD(G))}, for any u ∈ V (G).

The total detour level of a graph G, denoted by L(G), is defined as

L(G) :=
∑

u∈V (G)

L(u). (1)

30 D. Bantva

Note that if |CD(G)| = ω then the detour distance between any two vertices
u and v in a block graph G satisfies

D(u, v) ≤ L(u) + L(v) + ω − 1. (2)

Moreover, equality holds in (2) if u and v are in different branches when ω
= 1 and in opposite branches when ω ≥ 2.

Define ξ = min{|V (Bi)| − 1:Bi is a block attached to detour central vertex}
when ω = 1; otherwise ξ = 0.

We first give a lower bound for the hamiltonian chromatic number of block
graphs. A hamiltonian coloring c on V (G), induces an ordering of V (G), which is
a line up of the vertices with equal or increasing images. We denote this ordering
by V (G) = {u0, u1, u2, ..., up−1} with

0 = c(u0) ≤ c(u1) ≤ c(u2) ≤ ... ≤ c(up−1).
Notice that, c is a hamiltonian coloring, then the span of c is c(up−1).

Theorem 1. Let G be a block graph of order p and ω, ξ and L(G) are defined
as earlier then

hc(G) ≥ (p − 1)(p − ω) − 2L(G) + ξ. (3)

Proof. It suffices to prove that any hamiltonian coloring c of block graph G has
no span less than the right hand side of (3). Let c be an arbitrary hamiltonian
coloring for G, where 0 = c(u0) ≤ c(u1) ≤ c(u2) ≤ ... ≤ c(up−1). Then c(ui+1)−
c(ui) ≥ p − 1 − D(ui, ui+1), for all 0 ≤ i ≤ p − 2. Summing up these p − 1
inequalities, we get

c(up−1) − c(u0) ≥ (p − 1)2 −
p−1∑

i=0

D(ui, ui+1) (4)

We consider following two cases.

Case-1: ω = 1. In this case, note that L(u0)+L(up−1) ≥ ξ and by substituting
(2) into (4) we obtain,

c(up−1) − c(u0) ≥ (p − 1)2 −
p−1∑

i=0

D(ui, ui+1)

≥ (p − 1)2 −
p−1∑

i=0

(L(ui) + L(ui+1) + ω − 1)

= (p − 1)2 − 2
∑

u∈V (G)

L(u) + L(u0) + L(up−1) − (p − 1)(ω − 1)

≥ (p − 1)(p − ω) − 2L(G) + ξ

On Hamiltonian Colorings of Block Graphs 31

Case-2: ω ≥ 2. In this case, note that L(u0)+L(up−1) ≥ 0 and by substituting
(2) into (4) we obtain,

c(up−1) − c(u0) ≥ (p − 1)2 −
p−1∑

i=0

D(ui, ui+1)

≥ (p − 1)2 −
p−1∑

i=0

(L(ui) + L(ui+1) + ω − 1)

= (p − 1)2 − 2
∑

u∈V (G)

L(u) + L(u0) + L(up−1) − (p − 1)(ω − 1)

≥ (p − 1)(p − ω) − 2L(G)
= (p − 1)(p − ω) − 2L(G) + ξ

Thus, any hamiltonian coloring has span not less than the right hand side of (3)
and hence we obtain hc(G) ≥ (p − 1)(p − ω) − 2L(G) + ξ.

The next result gives sufficient condition with optimal hamiltonian coloring
for the equality in (3).

Theorem 2. Let G be a block graph of order p and, ω, ξ and L(G) are defined
as earlier then

hc(G) = (p − 1)(p − ω) − 2L(G) + ξ, (5)

if there exists an ordering {u0, u1,...,up−1} with 0 = c(u0) ≤ c(u1) ≤ ... ≤
c(up−1) of vertices of block graph G such that

1. L(u0) = 0, L(up−1) = ξ when ω = 1 and L(u0) = L(up−1) = 0 when ω ≥ 2,
2. ui and ui+1 are in different branches when ω = 1 and opposite branches

when ω ≥ 2,
3. D(ui, ui+1) ≤ p

2 , for 0 ≤ i ≤ p − 2.

Moreover, under these conditions the mapping c defined by

c(u0) = 0 (6)

c(ui+1) = c(ui) + p − 1 − L(ui) − L(ui+1) − ω + 1, 0 ≤ i ≤ p − 2 (7)

is an optimal hamiltonian coloring of G.

Proof. Suppose (1), (2) and (3) hold for an ordering {u0, u1,...,up−1} of the
vertices of G and c is defined by (6) and (7). By Theorem 1, it is enough to prove
that c is a hamiltonian coloring whose span is c(up−1) = (p − 1)(p − ω) − 2L(G)
+ ξ.

32 D. Bantva

Without loss of generality assume that j − i ≥ 2 then

c(uj) − c(ui) =
j−1∑

t=i

[c(ut+1) − c(ut)]

≥
j−1∑

t=i

[p − 1 − L(ut) − L(ut+1) − w + 1]

≥
j−1∑

t=i

[p − 1 − D(ut, ut+1)]

= (j − i)(p − 1) −
j−1∑

t=i

D(ut, ut+1)

≥ (j − i)(p − 1) − (j − i)(p
2)

= (j − i)
(

p−1
2

)

= p − 2

Note that D(ui, ui+1) ≥ 1; it follows that |c(uj) − c(ui)| + D(ui, ui+1) ≥ p − 1.
Hence, c is a hamiltonian coloring for G. The span of c is given by

span(c) =
p−2∑

t=0

[c(ut+1) − c(ut)]

=
p−2∑

t=0

[p − 1 − L(ut) − L(ut+1) − ω + 1]

= (p − 1)2 −
p−2∑

t=0

[L(ut) + L(ut+1)] − (p − 1)(ω − 1)

= (p − 1)(p − ω) − 2
∑

u∈V (G)

L(u) + L(u0) + L(up−1)

= (p − 1)(p − ω) − 2L(G) + ξ

Therefore, hc(G) ≤ (p − 1)(p − ω) − 2L(G) + ξ. This together with (3) implies
(5) and that c is an optimal hamiltonian coloring.

3 Hamiltonian Chromatic Number of Symmetric Block
Graphs

In this section, we continue to use the terminology and notation defined in pre-
vious section. We use Theorems 1 and 2 to determine the hamiltonian chromatic
number of symmetric block graphs.

A symmetric block graph, denoted by Bn,k(or Bn,k(d) if diameter is d), is a
block graph with at least two blocks such that all blocks are cliques of size n, each
cut vertex is exactly in k blocks and the eccentricity of end vertices is same (see
Fig. 1). It is straight forward to verify that the detour center of symmetric block
graph of diameter d is a vertex when d is even and a block of size n when d is
odd. Consequently, the number of detour central vertex/vertices for a symmetric

On Hamiltonian Colorings of Block Graphs 33

block graph Bn,k of diameter d is either 1 or n depending upon d is even or odd.
We observe that B2,k(2) are stars K1,k, Bn,k(2) are one point union of k complete
graphs (a one point union of k complete graphs, also denoted by Kk

n, is a graph
obtained by taking v as a common vertex such that any two copies of Kn are edge
disjoint and do not have any vertex common except v), B2,2(d) are paths Pd+1

and B2,k(d) are symmetric trees (see [7]). The hamiltonian chromatic number
of stars K1,k is reported by Chartrand et al. in [2]. The hamiltonian chromatic
number of paths which is equal to the antipodal radio number of paths given by
Khennoufa and Togni in [5] and the hamiltonian chromatic number of symmetric
trees is investigated by Bantva in [1]. Hence we consider k ≥ 2 and d, n ≥ 3.
However, for completeness we first give the hamiltonian chromatic number for
Bn,k(2) in Theorem 6 and next we consider general case.

Theorem 3. [2] For n ≥ 3, hc(K1,n) = (n − 1)2.

Theorem 4. [5] For any n ≥ 5,

hc(Pn) = ac(Pn) =
{

2p2 − 2p + 2, if n = 2p + 1,
2p2 − 4p + 4, if n = 2p.

Theorem 5. [1] Let T be a symmetric tree of order p ≥ 4 and Δ(T) ≥ 3. Then

hc(T) = (p − 1)(p − 1 − ε(T)) + ε
′
(T) − 2L(T),

where ε(T) = 0 when C(T) = {w} and ε(T) = 1 when C(T) = {w,w
′}; and

ε
′
(T) = 1 − ε(T)

The next result gives the hamiltonian chromatic number for one point union
of k copies of complete graph Kn.

Theorem 6. For n, k ≥ 2,

hc(Kk
n) =

{
(n − 1)2, if k = 2,
k(k − 2)(n − 1)2 + n − 1, if k ≥ 3.

Proof. Let Kk
n be one point union of k complete graph. To prove the result we

consider following two cases.

Case - 1: k = 2. Let G = K2
n with vertex set {x1, x2, ..., xn−1, y1, y2, ..., yn−1,

z}, where xi and yi, 1 ≤ i ≤ n − 1 be the vertices of block on each side and z is
the common vertex of two blocks in G. Let c be a minimum hamiltonian coloring
of G with 0 ∈ c(V (G)). Since G contains hamiltonian path between xi and yi for
1 ≤ i ≤ n−1, we can color xi and yi with same color. Since D(z, xi) = D(z, yi) =
D(xi, xj) = D(yi, yj) = n−1 and D(xi, yj) = 2n−2 = p−1, for 1 ≤ i, j ≤ n−1
and i �= j. It follows that |c(z) − c(xj)| ≥ n − 1 and |c(xi) − c(xj)| ≥ n − 1. This
implies that hc(G) = hc(c) ≥ 0 + (n − 1)(n − 1) = (n − 1)2.

Next we show that hc(G) ≤ (n − 1)2. To prove this, it is enough to give
hamiltonian coloring with span equal to (n − 1)2. Define a coloring c of G by

34 D. Bantva

c(z) = 0
c(xi) = c(yi) = i(n − 1), 1 ≤ i ≤ n − 1
Since c is a hamiltonian coloring, hc(G) ≤ hc(c) = c(xn−1) = c(yn−1) =

(n − 1)(n − 1) = (n − 1)2 and hence hc(G) = hc(K(2)
n) = (n − 1)2.

Case - 2: k ≥ 3. Let G = Kk
n with vertex set {vj

i , w : 1 ≤ i ≤ n − 1, 1 ≤ j ≤ k}
such that for each j = 1, 2, ..., k, vj

i where 1 ≤ i ≤ n − 1 are in same block and
w is the common vertex of G. Define a coloring c of G by

c(w) = 0
c(v1

1) = (k − 1)(n − 1)
c(v1

i+1) = c(v1
i) + k(n − 1), 2 ≤ i ≤ n − 1

For j = 1, 2, ..., k − 1
c(vj+1

i) = c(v
j

i) + (k − 2)(n − 1), 1 ≤ i ≤ n − 1.

Since c is a hamiltonian coloring, hc(G) ≤ hc(c) = (k−1)(n−1)+(k−1)(k−
2)(n − 1) + k(k − 2)(n − 1)(n − 2) = k(k − 2)(n − 1)2 + n − 1.

Now we show that hc(G) ≥ k(k − 2)(n − 1)2 + n − 1. Let c be a minimum
hamiltonian coloring of G. Since G contains no hamiltonian path no two vertices
can be colored the same. A hamiltonian coloring induces an ordering on V (G)
with increasing images. We may assume that 0 = c(u0) < c(u1) < ... < c(up−1).
We consider three subcases.

Subcase - 1: c(w) = c(u0) = 0. Since D(u0, u1) = D(w, u1) = n − 1, c(u1) ≥
(k − 1)(n − 1). Also D(vj

x, vj
y) = n − 1 for 1 ≤ j ≤ k, x �= y and D(vt

x, vl
y) for

1 ≤ x, y ≤ n − 1, 1 ≤ t, l(t �= l) ≤ k. It follows that c(u3) ≥ (k − 2)(n − 1) and
c(ui+1) ≥ c(ui) + (k − 2)(n − 1) for all 3 ≤ i ≤ k(n − 1) − 1. This implies that
c(up−1) ≥ (k−1)(n−1)+(k(n−1)−1)(k−2)(n−1) = k(k−2)(n−1)2 +n−1.
Therefore hc(c) ≥ k(k − 2)(n − 1)2 + n − 1.

Subcase - 2: c(w) = c(up−1) = hc(c). Since D(vj
x, vj

y) = n − 1 for 1 ≤ j ≤ k,
x �= y and D(vt

x, vl
y) for 1 ≤ x, y ≤ n − 1, 1 ≤ t, l(t �= l) ≤ k. For each i

with 1 ≤ i ≤ k(n − 1) − 1, c(v1) = 0 and c(vi+1) = (k − 2)(n − 1) and c(w) =
c(up−1) = c(uk(n−1)−1) + (k − 1)(n − 1). This implies that c(up−1) = c(w) ≥
(k(n−1)−1)(k −2)(n−1)+(k −1)(n−1) = k(k −2)(n−1)2 +n−1. Therefore
hc(c) ≥ k(k − 2)(n − 1)2 + n − 1.

Subcase - 3: c(ui) ≤ c(w) ≤ c(ui+1) for some i with 1 ≤ i ≤ k(n−1)−1. Since
D(vj

x, vj
y) = n−1 for 1 ≤ j ≤ k, x �= y and D(vt

x, vl
y) = n−2 for 1 ≤ x, y ≤ n−1,

1 ≤ t, l(t �= l) ≤ k. Define c(u0) = 0 and c(ui+1) = c(ui) + (k − 2)(n − 1) for
1 ≤ i ≤ m and m ≤ p − 3. Then c(um+1) = c(w) = c(um) + (k − 1)(n − 1)
and c(um+2) = c(um+1) + (k − 1)(n − 1), c(ui+1) = c(ui) + (k − 2)(n − 1) for
m + 2 ≤ i ≤ p − 1. Therefore hc(c) ≥ k(k − 2)(n − 1)2 + 2(n − 1).

Hence from Subcase - 1, 2 and 3, hc(G) = k(k − 2)(n − 1)2 + n − 1.
Thus, from Case - 1 and 2, we have

hc(Kk
n) =

{
(n − 1)2, if k = 2,
k(k − 2)(n − 1)2 + n − 1, if k ≥ 3.

On Hamiltonian Colorings of Block Graphs 35

We now determine the hamiltonian chromatics number for Bn,k(d) for k ≥ 2,
n, d ≥ 3 using Theorem 2. Note that B3,2(3), B3,3(3) and B3,2(4) block graphs
does not satisfies condition (c) of Theorem 2 but it is easy to verify that the
hamiltonian chromatic numbers for these three graphs are coincide with the
numbers produce by the formula stated in Theorem 7. Moreover, labels assigned
by Algorithms given in proof of Theorem 7 is the optimal hamiltonian coloring
for these graphs.

Theorem 7. Let k ≥ 1, n ≥ 2, d ≥ 3 be integers, r = �d
2� and Φr(x) =

1 + x + x2 + ... + xr−1. Then hc (Bn+1,k+1(d))

=

{
n2(k + 1)

[
Φr(kn) ((k + 1)Φr(kn) − 2r) + 2(Φr(kn)−r)

kn−1

]
+ n, if d is even,

kn2(n + 1)
[
Φr(kn) (k(n + 1)Φr(kn) − 2r + 1) + 2(Φr(kn)−r)

kn−1

]
, if d is odd.

(8)

Proof. The order p and total detour level of Bn+1,k+1(d) is given by

p =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 +
r∑

i=1

(k + 1)ki−1ni, if d is even,

1 + n +
r∑

i=1

kini+1, if d is odd.

(9)

L(G) =

⎧
⎨

⎩

n2(k + 1)
(
rΦr(kn) + r−Φr(kn)

kn−1

)
, if d is even,

kn2(n + 1)
(
rΦr(kn) + r−Φr(kn)

kn−1

)
, if d is odd.

(10)

Substituting (9) and (10) into (3) gives the right hand side of (8).
We now prove that the right hand side of (8) is the actual value for the

hamiltonian chromatics number of symmetric block graph. For this purpose we
give a systematic hamiltonian coloring whose span is the right hand side of (8).
We consider following two cases.

Case - 1: d is even. In this case, symmetric block graphs has only one detour
central vertex say w. We apply the following algorithm to find a hamiltonian
coloring of symmetric block graph of even diameter whose span is right-hand
side of (8).

Algorithm 1: An optimal hamiltonian coloring of symmetric block graphs
Bn+1,k+1(d), where d is even.

Input: A symmetric block graph Bn+1,k+1 of even diameter.

Idea: Find an ordering of vertices of block graphs Bn+1,k+1 of even diameter
which satisfies Theorem 2 and labeling defined by (6)–(7) is a hamiltonian col-
oring whose span is right-hand side of (8).

Initialization: Start with a central vertex w.

36 D. Bantva

Iteration: Define c : V (Bn+1,k+1) → {0, 1, 2,..} as follows:

Step-1: Let v1, v2, ..., v(k+1)n be the vertices adjacent to w such that any k +1
consecutive vertices in the list are in different blocks.

Step-2: Now kn descendent vertices of each vt, t = 1, 2, ..., (k + 1)n by vt
0,

vt
1,...,v

t
kn−1 such that any k consecutive vertices in the list are in different blocks.

Next the kn descendent vertices of each vt
l , 0 ≤ l ≤ kn − 1, 1 ≤ t ≤ (k + 1)n by

vt
l0, vt

l1,...,v
t
l(kn−1) such that any k consecutive vertices lies in different blocks;

inductively kn descendent vertices of vt
i1,i2,...,il

(0 ≤ i1, i2, ..., il ≤ kn − 1, 1 ≤
t ≤ (k+1)n) are indexed by vt

i1,i2,...,il,il+1
where il+1 = 0, 1, ..., kn−1 such that

any k consecutive vertices in the list are in different blocks.

Step-3: Rename vt
i1,i2,...,il,il+1

by vt
j , (1 ≤ t ≤ (k + 1)n), where

j = 1 + i1 + i2(kn) + ... + il(kn)l−1 +
∑

l+1≤t≤ d
2

(kn)t.

Step-4: Give ordering {u0, u1,...,up−1} of vertices of symmetric block graphs as
follows.
For 1 ≤ j ≤ p − (k + 1)n − 1, let

uj :=

{
vt

s, where s = 	 j
(k+1)n
, if j ≡ t(mod (k + 1)n), 1 ≤ t ≤ (k + 1)n − 1,

v
(k+1)n
s , where s = 	 j

(k+1)n
, if j ≡ 0(mod (k + 1)n)

For p − (k + 1)n ≤ j ≤ p − 1, let

uj := vj−p+(k+1)n+1.

Then above defined ordering {u0, u1,...,up−1} of vertices satisfies Theorem 2.

Step-5: Define c : V (Bn+1,k+1) → {0, 1, 2,...} by c(u0) = 0 and c(ui+1) =
c(ui) + p − 1 − L(ui) − L(ui+1) − ω + 1, 0 ≤ i ≤ p − 2.

Output:The span of c is span(c) = c(up−1) = c(u0)+(p−1)2−2

⎛

⎝
∑

u∈V (G)

L(u)

⎞

⎠+

n − 1 = (p − 1)2 − 2L(Bn+1,k+1) + n − 1 which is exactly the right-hand side of
(8) by using (9) and (10) in the case of symmetric block graphs.

Case - 2: d is odd. In this case, symmetric block graphs has n+1 central vertices
say v1, v2, ..., vn+1. We apply the following algorithm to find a hamiltonian
coloring of symmetric block graph of odd diameter whose span is right-hand
side (8).

On Hamiltonian Colorings of Block Graphs 37

Algorithm 2: An optimal hamiltonian coloring of symmetric block graphs
Bn+1,k+1(d), where d is odd.

Input: A symmetric block graph Bn+1,k+1(d) of odd diameter d.

Idea: Find an ordering of vertices of block graphs Bn+1,k+1 of odd diameter
which satisfies Theorem 2 and labeling defined by (6)–(7) is a hamiltonian col-
oring whose span is right-hand side of (8).

Initialization: Starts with central vertices v1, v2, ..., vn+1.

Iteration: Define c : V (Bn+1,k+1) → {0, 1, 2,...} as follows:

Step-1: Now kn descendent vertices of each vt, t = 1, 2, ..., (k + 1)n by vt
0,

vt
1,...,v

t
kn−1 such that any k consecutive vertices in the list are in different blocks.

Next kn descendent vertices of each vt
l , 0 ≤ l ≤ kn − 1, 1 ≤ t ≤ n + 1 by

vt
l0, vt

l1,...,v
t
l(kn−1) such that any k consecutive vertices are in different blocks;

inductively kn descendent vertices of vt
i1,i2,...,il

(0 ≤ i1, i2, ..., il ≤ kn − 1, 1 ≤
t ≤ n + 1) are indexed by vt

i1,i2,...,il,il+1
where il+1 = 0, 1, ..., kn − 1 such that

any k consecutive vertices in the list are in different blocks.

Step-2: We rename vt
i1,i2,...,il,il+1

by vt
j , (1 ≤ t ≤ n + 1), where

j = 1 + i1 + i2(kn) + ... + il(kn)l−1 +
∑

l+1≤t≤ d−1
2

(kn)t.

Step-3: Define an ordering {u0, u1,...,up−1} as follows:
For 1 ≤ j ≤ p − n − 1, let

uj :=
{

vt
s, where s = 	j/(n + 1)
, if j ≡ t(mod (n + 1)) with 1 ≤ t ≤ n,

vn+1
s , where s = 	j/(n + 1)
, if j ≡ 0(mod (n + 1))

For p − n ≤ j ≤ p − 1,

uj := vj−p+n+1.

Then above defined ordering {u0, u1,...,up−1} of vertices satisfies Theorem 2.
Step-4: Define c : V (Bn+1,k+1) → {0, 1, 2,...} by c(u0) = 0 and c(ui+1) =
c(ui) + p − 1 − L(ui) − L(ui+1) − ω + 1, 0 ≤ i ≤ p − 1.

Output: The span of c is c(up−1) = hc(G) = c(u0)+(p−1)2−2

⎛

⎝
∑

u∈V (G)

L(u)

⎞

⎠−

(p−1)(n−1) = (p−1)2 − 2 L(G) − (p−1)(n−1) which is exactly the right-hand
side of (8) by using (9) and (10) in the case of symmetric block graphs.
Thus, from Case - 1 and Case - 2, we obtain hc (Bn+1,k+1(d))

=

{
n2(k + 1)

[
Φr(kn) ((k + 1)Φr(kn) − 2r) + 2(Φr(kn)−r)

kn−1

]
+ n, if d is even,

kn2(n + 1)
[
Φr(kn) (k(n + 1)Φr(kn) − 2r + 1) + 2(Φr(kn)−r)

kn−1

]
, if d is odd.

38 D. Bantva

Example 1. An optimal hamiltonian coloring of B4,2(4) using the procedure of
Theorem 7 is shown in Fig. 1(a).

For B4,2(4), k = 1, n = 3, d = 4, r = �d
2� = 2 and Φ� d

2 �(kn) = Φ2(3) = 1 +
3 = 4. By Theorem 7, hc(B4,2(4))

= n2(k + 1)

⎡

⎣Φ� d
2 �(kn)

(
(k + 1)Φ� d

2 �(kn) − 2�d
2�

)
+

2

(
Φ� d

2 �(kn)−� d
2 �
)

kn−1

⎤

⎦ + n

= 32 · (1 + 1)
[
4((1 + 1) · 4 − 2 · 2) + 2(4−2)

3−1

]
+ 3 = 327.

Example 2. An optimal hamiltonian coloring of B4,2(5) using the procedure of
Theorem 7 is shown Fig. 1(b).

For B4,2(5), k = 1, n = 3, d = 5, r = �d
2� = 2 and Φ� d

2 �(kn) = Φ2(3) = 1 + 3
= 4. By Theorem 7, hc(B4,2(4))

= kn2(n + 1)

⎡

⎣Φ� d
2 �(kn)

(
k(n + 1)Φ� d

2 �(kn) − 2�d
2� + 1

)
+

2

(
Φ� d

2 �(kn)−� d
2 �
)

kn−1

⎤

⎦

= 1 · 32 · (3 + 1)
[
4(1 · (3 + 1) · 4 − 2 · 2 + 1) + 2(4−2)

3−1

]
= 1944.

Fig. 1. Optimal hamiltonian coloring of B4,2(4) and B4,2(5).

References

1. Bantva, D.: On hamiltonian colorings of trees, communicated
2. Chartrand, G., Nebeský, L., Zhang, P.: Hamiltonian coloring of graphs. Discrete

Appl. Math. 146, 257–272 (2005)
3. Chartrand, G., Nebeský, L., Zhang, P.: On hamiltonian colorings of graphs. Dis-

crete Math. 290, 133–143 (2005)
4. Chartrand, G., Escuadro, H., Zhang, P.: Detour distance in graphs. J. Combin.

Math. Combin. Comput. 53, 75–94 (2005)

On Hamiltonian Colorings of Block Graphs 39

5. Khennoufa, R., Togni, O.: A note on radio antipodal colourings of paths. Math.
Bohemica 130(3), 277–282 (2005)

6. Shen, Y., He, W., Li, X., He, D., Yang, X.: On hamiltonian colorings for some
graphs. Discrete Appl. Math. 156, 3028–3034 (2008)

7. Vaidya, S.K., Bantva, D.D.: Symmetric regular cacti - properties and enumeration.
Proyecciones J. Math. 31(3), 261–275 (2012)

8. West, D.B.: Introduction to Graph theory. Prentice-Hall of India, New Delhi (2001)

Vertex-Coloring with Star-Defects

Patrizio Angelini1, Michael A. Bekos1, Michael Kaufmann1(B),
and Vincenzo Roselli2

1 Institut Für Informatik, Universität Tübingen, Tübingen, Germany
{angelini,bekos,mk}@informatik.uni-tuebingen.de

2 Dipartimento di Ingegneria, Università Roma Tre, Rome, Italy
roselli@dia.uniroma3.it

Abstract. Defective coloring is a variant of traditional vertex-coloring,
according to which adjacent vertices are allowed to have the same color,
as long as the monochromatic components induced by the corresponding
edges have a certain structure. Due to its important applications, as for
example in the bipartisation of graphs, this type of coloring has been
extensively studied, mainly with respect to the size, degree, and acyclic-
ity of the monochromatic components.

In this paper we focus on defective colorings in which the monochro-
matic components are acyclic and have small diameter, namely, they
form stars. For outerplanar graphs, we give a linear-time algorithm to
decide if such a defective coloring exists with two colors and, in the pos-
itive case, to construct one. Also, we prove that an outerpath (i.e., an
outerplanar graph whose weak-dual is a path) always admits such a two-
coloring. Finally, we present NP-completeness results for non-planar and
planar graphs of bounded degree for the cases of two and three colors.

1 Introduction

Graph coloring is a fundamental problem in graph theory, which has been exten-
sively studied over the years (see, e.g., [4] for an overview). Most of the research
in this area has been devoted to the vertex-coloring problem (or coloring problem,
for short), which dates back to 1852 [18]. In its general form, the problem asks
to label the vertices of a graph with a given number of colors, so that no two
adjacent vertices share the same color. In other words, a coloring of a graph par-
titions its vertices into independent sets, usually referred to as color classes, as
all their vertices have the same color. A central result in this area is the so-called
four color theorem, according to which every planar graph admits a coloring with
at most four colors; see e.g. [11]. Note that the problem of deciding whether a
planar graph is 3-colorable is NP-complete [10], even for graphs of maximum
degree 4 [7].

Several variants of the coloring problem have been proposed. One of the most
studied is the so-called defective coloring, which was independently introduced

This work has been supported by DFG grant Ka812/17-1a and by the MIUR project
AMANDA, prot. 2012C4E3KT 001.

c© Springer International Publishing Switzerland 2016
M. Kaykobad and R. Petreschi (Eds.): WALCOM 2016, LNCS 9627, pp. 40–51, 2016.
DOI: 10.1007/978-3-319-30139-6 4

Vertex-Coloring with Star-Defects 41

by Andrews and Jacobson [1], Harary and Jones [13], and Cowen et al. [6]. In
the defective coloring problem edges between vertices of the same color class
are allowed, as long as the monochromatic components induced by vertices of
the same color maintain some special structure. In this respect, one can regard
the classical vertex-coloring as a defective one in which every monochromatic
component is an isolated vertex. In this work we focus on defective colorings in
which each component is acyclic and has small diameter. In particular, we say
that a graph G is tree-diameter-λ κ-colorable if the vertices of G can be colored
with κ colors, so that all monochromatic components are acyclic and of diameter
at most λ, where κ ≥ 1 and λ ≥ 0. Clearly, a classical κ-coloring corresponds to
a tree-diameter-0 κ-coloring.

We present algorithmic and complexity results for tree-diameter-λ κ-colorings
for small values of κ and λ = 2. For simplicity, we refer to this problem as
(star, κ)-coloring, as each monochromatic component is a star (i.e., a tree with
diameter two; see Fig. 1d). Similarly, we refer to the tree-diameter-λ κ-coloring
problem when λ = 1 as (edge, κ)-coloring problem. By definition, a (edge, κ)-
coloring is also a (star, κ)-coloring. Fig. 1a–c show a trade-off between number
of colors and structure of the monochromatic components.

Our work can be seen as a variant of the bipartisation of graphs, namely the
problem of making a graph bipartite by removing a small number of elements
(e.g., vertices or edges), which is a central graph theory problem with many
applications [12,14]. The bipartisation by removal of a (not-necessarily minimal)
number of non-adjacent edges corresponds to the (edge, 2)-coloring problem.
In the (star, 2)-coloring problem, we also solve some kind of bipartisation by
removing independent stars. Note that we do not ask for the minimum number
of removed stars but for the existence of a solution.

Fig. 1. (a-c) Different colorings of the same graph: (a) a traditional 4-coloring, (b) an
(edge, 3)-coloring (c) a (star, 2)-coloring; (d) a star with three leaves; its center has
degree 3.

To the best of our knowledge, this is the first time that the defective
coloring problem is studied under the requirement of having color classes of
small diameter. Previous research was focused either on their size or their
degree [1,6,13,16,17]. As byproducts of these previous works, one can obtain
results for the (edge, κ)-coloring problem. More precisely, from a result of
Lovász [16], it follows that all graphs of maximum degree 4 or 5 are (edge,
3)-colorable. However, determining whether a graph of maximum degree 7 is
(edge, 3)-colorable is NP-complete [6]. In the same work, Cowen et al. [6] prove
that there exist planar graphs that are not (edge, 3)-colorable and that the cor-
responding decision problem is NP-complete, even in the case of planar graphs

42 P. Angelini et al.

of maximum degree 10. Results for graphs embedded on general surfaces are also
known [3,5,6]. Closely related is also the so-called tree-partition-width problem,
a variant of the defective coloring problem in which the graphs induced by each
color class must be acyclic [8,9,21], i.e., there is no restriction on their diameter.
Our contributions are:

– In Sect. 2, we present a linear-time algorithm to determine whether an out-
erplanar graph is (star, 2)-colorable. Note that outerplanar graphs are 3-
colorable [20], and hence (star, 3)-colorable, but not necessarily (star, 2)-
colorable. On the other hand, we prove that it is always possible to construct
(star, 2)-colorings for outerpaths, which form a special subclass of outerplanar
graphs whose weak-dual1 is a path.

– In Sect. 3, we prove that the (star, 2)-coloring problem is NP-complete, even
for graphs of maximum degree 5 (note that the corresponding (edge, 2)-
coloring problem is NP-complete, even for graphs of maximum degree 4 [6]).
Since all graphs of maximum degree 3 are (edge, 2)-colorable [16], this result
leaves open only the case for graphs of maximum degree 4. We also prove
that the (star, 3)-coloring problem is NP-complete, even for graphs of max-
imum degree 9 (recall that the corresponding (edge, 3)-coloring problem is
NP-complete, even for graphs of maximum degree 7 [6]). Since all graphs
of maximum degree 4 or 5 are (edge, 3)-colorable [16], our result implies
that the computational complexity of the (star, 3)-coloring problem remains
unknown only for graphs of maximum degree 6, 7, and 8. For planar graphs,
we prove that the (star, 2)-coloring problem remains NP-complete even for
triangle-free planar graphs (recall that triangle-free planar graphs are always
3-colorable [15], while the test of 2-colorability can be done in linear time).

2 Coloring Outerplanar Graphs and Subclasses

In this section we consider (star, 2)-colorings of outerplanar graphs. To demon-
strate the difficulty of the problem, we first give an example (see Fig. 1) of a
small outerplanar graph not admitting any (star, 2)-coloring. Therefore, in The-
orem 1 we study the complexity of deciding whether a given outerplanar graph
admits such a coloring and present a linear-time algorithm for this problem; note
that outerplanar graphs always admit 3-colorings [20]. Finally, we show that a
notable subclass of outerplanar graphs, namely outerpaths, always admit (star,
2)-colorings by providing a constructive linear-time algorithm (see Theorem 2).

Lemma 1. There exist outerplanar graphs that are not (star, 2)-colorable.

Proof. We prove that the outerplanar graph of Fig. 2a is not (star, 2)-colorable.
In particular, we show that in any 2-coloring of this graph there exists a mono-
chromatic path of four vertices. Assume w.l.o.g. that vertex u has color gray.

1 Recall that the weak-dual of a plane graph is the subgraph of its dual induced by
neglecting the face-vertex corresponding to its unbounded face.

Vertex-Coloring with Star-Defects 43

Then, at least two vertices out of u1, . . . , u8 are gray, as otherwise there would
be a path of four white vertices. Hence, u is the center of a gray star.

This implies that both u2 and u3 are white, as otherwise paths u21, . . . , u24

and u31, . . . , u34 would have to consist of only white vertices. In this case, how-
ever, either one of paths u21, . . . , u24 and u31, . . . , u34 consists only of gray ver-
tices, or there exists a path from one of u21, . . . , u24 via u2 and u3 to one of
u31, . . . , u34, that consists only of white vertices. Hence, all the aforementioned
cases lead to a monochromatic path of four vertices. ��

Fig. 2. (a) An outerplanar graph that is not (star, 2)-colorable. (b) An outerpath,
whose spine edges are drawn as dashed segments. Dotted arcs highlighted in gray
correspond to edges belonging to the fan of each spine vertex. Note that |f6| = 0.

Lemma 1 implies that not all outerplanar graphs are (star, 2)-colorable. In
the following we give a linear-time algorithm to decide whether an outerplanar
graph is (star, 2)-colorable and in case of an affirmative answer to compute the
actual coloring.

Theorem 1. Given an outerplanar graph G, there exists a linear-time algorithm
to test whether G admits a (star, 2)-coloring and to construct a (star, 2)-coloring,
if one exists.

Proof. We assume that G is embedded according to its outerplanar embedding.
We can also assume that G is biconnected. This is not a loss of generality, as
we can always reduce the number of cut-vertices by connecting two neighbors a
and b of a cut-vertex c belonging to two different biconnected components with
a path having two internal vertices. Clearly, if the augmented graph is (star,
2)-colorable, then the original one is (star, 2)-colorable. For the other direction,
given a (star, 2)-coloring of the original graph, we can obtain a corresponding
coloring of the augmented graph by coloring the neighbors of a and b with
different color than the ones of a and b, respectively.

Denote by T the weak dual of G and root it at a leaf ρ of T . For a node
μ of T , we denote by G(μ) the subgraph of G corresponding to the subtree of

44 P. Angelini et al.

T rooted at μ. We also denote by f(μ) the face of G corresponding to μ in T .
If μ �= ρ, consider the parent ν of μ in T and their corresponding faces f(ν)
and f(μ) of G, and let (u, v) be the edge of G shared by f(ν) and f(μ). We
say that (u, v) is the attachment edge of G(μ) to G(ν). The attachment edge of
the root ρ is any edge of face f(ρ) that is incident to the outer face (since G is
biconnected and ρ is a leaf, this edge always exists). Consider a (star, 2)-coloring
of G(μ). In this coloring, each of the endpoints u and v of the attachment edge of
G(μ) plays exactly one of the following roles: (i) center or (ii) leaf of a colored
star; (iii) isolated vertex, that is, it has no neighbor with the same color; or (iv)
undefined, that is, the only neighbor of u (resp. v) which has its same color is
v (resp. u). Note that if the only neighbor of u (resp. v) which has its same
color is different from v (resp. from u), we consider u (resp. v) as a center. Two
(star, 2)-colorings of G(μ) are equivalent w.r.t. the attachment edge (u, v) of
G(μ) if in the two (star, 2)-colorings each of u and v has the same color and
plays the same role. This definition of equivalence determines a partition of the
colorings of G(μ) into a set of equivalence classes. Since both the number of
colors and the number of possible roles of each vertex u and v are constant, the
number of different equivalence classes is also constant (note that, when the role
is undefined, u and v must have the same color).

In order to test whether G admits a (star, 2)-coloring, we perform a bottom-
up traversal of T . When visiting a node μ of T we compute the maximal set C(μ)
of equivalence classes such that, for each class C ∈ C(μ), graph G(μ) admits at
least a coloring belonging to C. Note that |C(μ)| ≤ 38. In order to compute C(μ),
we consider the possible equivalence classes one at a time, and check whether
G(μ) admits a (star, 2)-coloring in this class, based on the sets C(μ1), . . . , C(μh)
of the children μ1, . . . , μh of μ in T , which have been previously computed. In
particular, for an equivalence class C we test the existence of a (star, 2)-coloring
of G(μ) belonging to C by selecting an equivalence class Ci ∈ C(μi) for each
i = 1, . . . , h in such a way that:

1. the color and the role of u in C1 are the same as the ones u has in C;
2. the color and the role of v in Ch are the same as the ones v has in C;
3. for any two consecutive children μi and μi+1, let x be the vertex shared by

G(μi) and G(μi+1). Then, x has the same color in Ci and Ci+1 and, if x is a
leaf in Ci, then x is isolated in Ci+1 (or vice-versa); and

4. for any three consecutive children μi−1, μi, and μi+1, let x (resp. y) be the
vertex shared by G(μi−1) and G(μi) (resp. by G(μi) and G(μi+1)). Then, x
(resp. y) has the same color in Ci and Ci−1 (resp. Ci+1); also, if x and y are
both undefined in Ci, then in Ci−1 and Ci+1 none of x and y is a leaf, and
at least one of them is isolated.

Note that the first two conditions ensure that the coloring belongs to C,
while the other two ensure that it is a (star, 2)-coloring. Since the cardinality of
C(μi) is bounded by a constant, the test can be done in linear time. If the test
succeeds, add C to C(μ).

Once all 38 equivalence classes are tested, if C(μ) is empty, then we conclude
that G is not (star, 2)-colorable. Otherwise we proceed with the traversal of T .

Vertex-Coloring with Star-Defects 45

At the end of the traversal, if C(ρ) is not empty, we conclude that G is (star,
2)-colorable. A (star, 2)-coloring of G can be easily constructed by traversing T
top-down, by following the choices performed during the bottom-up visit. ��

In the following, we consider a subclass of outerplanar graphs, namely out-
erpaths, and we prove that they always admit (star, 2)-colorings. Note that the
example that we presented in Lemma 1 is “almost” an outerpath, meaning that
the weak-dual of this graph contains only degree-1 and degree-2 vertices, except
for one specific vertex that has degree 3 (see the face of Fig. 2a highlighted in
gray). Recall that the weak-dual of an outerpath is a path (hence, it consists of
only degree-1 and degree-2 vertices).

Let G be an outerpath (see Fig. 2b). We assume that G is inner-triangulated.
This is not a loss of generality, as any (star, 2)-coloring of a triangulated out-
erpath induces a (star, 2)-coloring of any of its subgraphs. We first give some
definitions. We call spine vertices the vertices v1, v2, . . . , vm that have degree
at least four in G. We consider an additional spine vertex vm+1, which is the
(unique) neighbor of vm along the cycle delimiting the outer face that is not
adjacent to vm−1. Note that the spine vertices of G induce a path, that we call
spine of G2. The fan fi of a spine vertex vi consists of the set of neighbors
of vi in G, except for vi−1 and for those following and preceding vi along the
cycle delimiting the outer face3; note that |fi| ≥ 1 for each i = 1, . . . ,m, while
|fm+1| = 0. For each i = 1, . . . ,m + 1, we denote by Gi the subgraph of G
induced by the spine vertices v1, . . . , vi and by the fans f1, . . . , fi−1. Note that
Gm+1 = G. We denote by ci the color assigned to spine vertex vi, and by c(Gi)
a coloring of graph Gi. Finally, we say that an edge of G is colored if its two
endpoints have the same color.

Theorem 2. Every outerpath admits a (star, 2)-coloring, which can be com-
puted in linear time.

Proof. Let G be an outerpath with spine v1, . . . , vk. We describe an algorithm
to compute a (star, 2)-coloring of G. At each step i = 1, . . . , k of the algorithm
we consider the spine edge (vi−1, vi), assuming that a (star, 2)-coloring of Gi has
already been computed satisfying one of the following conditions (see Fig. 3):

Q0: The only colored vertex is v1;
Q1: ci �= ci−1, vertex vi−1 is the center of a star with color ci−1, and no colored

edge is incident to vi;
Q2: ci = ci−1, and no colored edge other than (vi−1, vi) is incident to vi−1 or vi;
Q3: ci �= ci−1, vertex vi−1 is a leaf of a star with color ci−1, and no colored edge

is incident to vi;

2 Note that the spine of G coincides with the spine of the caterpillar obtained from
the outerpath G by removing all the edges incident to its outer face, neglecting the
additional spine vertex vm+1.

3 Fan fi contains all the leaves of the caterpillar incident to vi, plus the following spine
vertex vi+1.

46 P. Angelini et al.

Fig. 3. Schematization of the algorithm. Each node represents the (unique) condition
satisfied by Gi at some step 0 ≤ i ≤ k. An edge label 0, 1, e, o represents the fact that
the cardinality of a fan fi is 0, 1, even �= 0, or odd �= 1. If the label contains two
characters, the second one describes the cardinality of fi+1. An edge between Qj and
Qh with label x ∈ {1, e, o} (with label xy, where y ∈ {0, 1, e, o}) represents the fact
that, if Gi satisfies condition Qj and |fi| = x (resp. |fi| = x and |fi+1| = y), then fi is
colored so that Gi+1 satisfies Qh.

Q4: ci �= ci−1, vertex vi−1 is the center of a star with color ci−1, and vertex vi is
the center of a star with color ci; further, i < k and |fi| > 1;

Q5: ci = ci−1, vertex vi−1 is the center of a star with color ci−1, and no colored
edge other than (vi−1, vi) is incident to vi; further, i < k and |fi| = 1.

In the first step of the algorithm, we assign an arbitrary color to v1, and
hence c(G1) satisfies Q0. For i = 1, . . . , k we color fi depending on the condition
satisfied by c(Gi). In particular, we color the vertices of fi in such a way that
c(Gi+1) is a (star, 2)-coloring satisfying one of the aforementioned conditions.
However, due to space constraints the detailed case analysis is given in [2]; refer
to Fig. 3 for a schematization. ��

3 NP-completeness for (Planar) Graphs of Bounded
Degree

In this section, we study the computational complexity of the (star, 2)-coloring
and (star, 3)-coloring problems for (planar) graphs of bounded degree.

Theorem 3. It is NP-complete to determine whether a graph admits a (star,
2)-coloring, even in the case where its maximum degree is no more than 5.

Proof. The problem clearly belongs to NP; a non-deterministic algorithm only
needs to guess a color for each vertex of the graph and then in linear time
can trivially check whether the graphs induced by each color-set are forests of
stars. To prove that the problem is NP-hard, we employ a reduction from the

Vertex-Coloring with Star-Defects 47

well-known Not-All-Equal 3-SAT problem or naesat for short [19, p. 187]. An
instance of naesat consists of a 3-CNF formula φ with variables x1, . . . , xn and
clauses C1, . . . , Cm. The task is to find a truth assignment of φ so that no clause
has all three literals equal in truth value (that is, not all are true). We show
how to construct a graph Gφ of maximum vertex-degree 5 admitting a (star,
2)-coloring if and only if φ is satisfiable. Intuitively, graph Gφ reflecting formula
φ consists of a set of subgraphs serving as variable gadgets that are connected
to simple 3-cycles that serve as clause gadgets in an appropriate way; see Fig. 4c
for an example.

Consider the graph of Fig. 4a, which contains two adjacent vertices, denoted
by u1 and u2, and four vertices, denoted by v1, v2, v3 and v4, that form a
path, so that each of u1 and u2 is connected to each of v1, v2, v3 and v4. We
claim that in any (star, 2)-coloring of this graph u1 and u2 have different colors.
For a proof by contradiction assume that u1 and u2 have the same color, say
white. Since u1 and u2 are adjacent, none of v1, v2, v3 and v4 is white. So,
v1, . . . , v4 form a monochromatic component in gray which is of diameter 3;
a contradiction. Hence, u1 and u2 have different colors, say gray and white,
respectively. In addition, the colors of v1, v2, v3 and v4 alternate along the path
v1 → v2 → v3 → v4, as otherwise there would exist two consecutive vertices vi

and vi+1, with i = 1, 2, 3, of the same color, which would create a monochromatic
triangle with either u1 or u2.

Fig. 4. Illustration of: (a) a graph with 6 vertices, (b) a chain of length 3, (c) the
reduction from naesat to (star, 2)-coloring: φ = (x1 ∨ x2 ∨ x3) ∧ (¬x1 ∨ ¬x2 ∨ ¬x3).
The solution corresponds to the assignment x1 = false and x2 = x3 = false. Sets
Ox1 , Ex2 and Ex3 (Ex1 , Ox2 and Ox3 , resp.) are colored gray (white, resp.).

For k ≥ 1, we form a chain of length k that contains k copies G1, G2, . . . , Gk

of the graph of Fig. 4a, connected to each other as follows (see Fig. 4b). For
i = 1, 2, . . . , k, let ui

1, ui
2, vi

1, vi
2, vi

3 and vi
4 be the vertices of Gi. Then, for

i = 1, 2, . . . , k − 1 we introduce between Gi and Gi+1 an edge connecting ver-
tices vi

4 and vi+1
1 (dotted in Fig. 4b). This edge ensures that vi

4 and vi+1
1 are not

48 P. Angelini et al.

of the same color, since otherwise we would have a monochromatic path of length
four. Hence, the colors of the vertices of the so-called spine-path v1

1 → v1
2 → v1

3 →
v1
4 → . . . → vk

1 → vk
2 → vk

3 → vk
4 alternate along this path. In other words, if

the odd-positioned vertices of the spine-path are white, then the even-positioned
ones will be gray, and vice versa. In addition, all vertices of the spine-path have
degree 4 (except for v1

1 and vk
4 , which have degree 3).

For each variable xi of φ, graph Gφ contains a so-called variable-chain Cxi
of

length 	ni−2
2
, where ni is the number of occurrences of xi in φ, 1 ≤ i ≤ n; see

Fig. 4c. Let O[Cxi
] and E[Cxi

] be the sets of odd- and even-positioned vertices
along the spine-path of Cxi

, respectively. For each clause Ci = (λj ∨λk ∨λ�) of φ,
1 ≤ i ≤ m, where λj ∈ {xj ,¬xj}, λk ∈ {xk,¬xk}, λ� ∈ {x�,¬x�} and j, k, � ∈
{1, . . . , n}, graph Gφ contains a 3-cycle of corresponding clause-vertices which, of
course, cannot have the same color (clause-gadget ; highlighted in gray in Fig. 4c).
If λj is positive (negative), then we connect the clause-vertex corresponding to
λj in Gφ to a vertex of degree less than 5 that belongs to set E[Cxj

] (O[Cxj
]) of

chain Cxj
. Similarly, we create connections for literals λk and λ�; see the edges

leaving the triplets for clauses C1 and C2 in Fig. 4c.
The length of Cxi, 1 ≤ i ≤ n, guarantees that all connections are accomplished

so that no vertex of Cxi
has degree larger than 5. Thus, Gφ is of maximum

degree 5. Since Gφ is linear in the size of φ, the construction can be done in
O(n + m) total time.

We show that Gφ is (star, 2)-colorable if and only if φ is satisfiable. Assume
first that φ is satisfiable. If xi is true (false), then we color E[Cxi

] white (gray) and
O[Cxi

] gray (white). Hence, E[Cxi
] and O[Cxi

] admit different colors, as desired.
Further, if xi is true (false), then we color gray (white) all the clause-vertices of
Gφ that correspond to positive literals of xi in φ and we color white (gray) those
corresponding to negative literals. Thus, a clause-vertex of Gφ cannot have the
same color as its neighbor at the variable-gadget. Since in the truth assignment
of φ no clause has all three literals true, no three clause-vertices belonging to
the same clause have the same color.

Suppose that Gφ is (star, 2)-colorable. By construction, each of E[Cxi
] and

O[Cxi
] is either white or gray, i = 1, . . . , n. If P [Cxi

] is white, then we set xi =
true; otherwise, we set xi = false. Assume, to the contrary, that there is a clause
of φ whose literals are all true or all false. By construction, the corresponding
clause-vertices of Gφ, which form a 3-cycle in Gφ, have the same color, which is
a contradiction. ��

The above construction highly depends on the presence of triangles (refer,
e.g., to the clause gadgets). In the following theorem, we prove that the (star, 2)-
coloring problem remains NP-complete, even in the case of triangle-free planar
graphs.

Theorem 4. It is NP-complete to determine whether a triangle-free planar
graph admits a (star, 2)-coloring.

Proof. We follow the same construction as for Theorem 3 but to ensure planarity
we replace the crossings with appropriate crossing-gadgets and to avoid trian-

Vertex-Coloring with Star-Defects 49

Fig. 5. (a) clause-gadget, (b) transmitter-gadget, (c) variable-gadget, (d) a chain of
length 11, (e) crossing-gadget.

gular faces we use slightly more complicated variable- and clause-gadgets (see
Fig. 5). A detailed description of our proof is given in [2]. ��

Next, we prove that the (star, 2)-coloring problem is NP-complete even if
one allows one more color and the input graph is either of maximum degree 9 or
planar of maximum degree 16. Recall that all planar graphs are 4-colorable.

Theorem 5. It is NP-complete to determine whether a graph G admits a (star,
3)-coloring, even in the case where the maximum degree of G is no more than 9
or in the case where G is a planar graph of maximum degree 16.

Proof. Membership in NP can be proved as in Theorem3. To prove that the
problem is NP-hard, we employ a reduction from the well-known 3-coloring
problem, which is NP-complete even for planar graphs of maximum vertex-degree
4 [7]. So, let G be an instance of the 3-coloring problem. To prove the first
part of the theorem, we will construct a graph H of maximum vertex-degree 9
admitting a (star, 3)-coloring if and only if G is 3-colorable.

Central in our construction is the complete graph on six vertices K6, which
is (star, 3)-colorable; see Fig. 6a. We claim that in any (star, 3)-coloring of K6

each vertex is adjacent to exactly one vertex of the same color. For a proof
by contradiction, assume that there is a (star, 3)-coloring of K6 in which three
vertices, say u, v and w, have the same color. From the completeness of K6, it
follows that u, v and w form a monochromatic components of diameter 3, which
is a contradiction.

Graph H is obtained from G by attaching a copy of K6 at each vertex u of
G, and by identifying u with a vertex of K6, which we call attachment-vertex.
Hence, H has maximum degree 9. As H is linear in the size of G, it can be
constructed in linear time.

If G admits a 3-coloring, then H admits a (star, 3)-coloring in which each
attachment-vertex has the same color as the corresponding vertex of G, and the
colors of the other vertices are determined based on the color of the attachment-
vertices. To prove that a (star, 3)-coloring of H determines a 3-coloring of G,
it is enough to prove that any two adjacent attachment-vertices v and w in H

50 P. Angelini et al.

Fig. 6. (a) The complete graph on six vertices K6. (b) The attachment-graph for the
planar case. (c) A planar graph of max-degree 4 that is not (star, 2)-colorable.

have different colors, which holds since both v and w are incident to a vertex of
the same color in the corresponding copies of K6 associated with them.

For the second part of the theorem, we attach at each vertex of G the planar
graph of Fig. 6b using as attachment its topmost vertex, which is of degree 12
(instead of K6 which is not planar). Hence, the constructed graph H is planar
and has degree 16 as desired. Furthermore, it is not difficult to be proved that
in any (star, 3)-coloring of the graph of Fig. 6b its attachment-vertex is always
incident to (at least one) another vertex of the same color, that is, it has exactly
the same property with any vertex of K6. Hence, the rest of the proof is analogous
to the one of the first part of the theorem. ��

4 Conclusions

In this work, we presented algorithmic and complexity results for the (star, 2)-
coloring and the (star, 3)-coloring problems. There exist several open questions
raised by our work.

– We proved that it is NP-complete to determine whether a graph of maximum
degree 5 is (star, 2)-colorable. An obvious extension is the question about
the complexity of the (star, 2)-colorability problem for graphs of maximum
degree 4. The question is of relevance even for planar graphs of maximum
degree 4. Note that not all planar graphs of maximum degree 4 are (star, 2)-
colorable (Fig. 6c shows such a counterexample), while all graphs of maximum
degree 3 are even (edge, 2)-colorable [16].

– Are there other meaningful classes of graphs, besides the outerpaths, that are
always (star, 2)-colorable?

– We proved NP-completeness for the question whether a graph of maximum
degree 9 is (star, 3)-colorable. The corresponding complexity question is still
open for the classes of graphs of maximum degree 6, 7 and 8. Recall that
graphs of maximum degree 4 or 5 are always (star, 3)-colorable [16].

– One possible way to expand the class of graphs that admit defective colorings
is to allow larger diameters for the graphs induced by the same color class.

Acknowledgments. We thank the participants of the special session GNV of IISA’15
inspiring this work.

Vertex-Coloring with Star-Defects 51

References

1. Andrews, J., Jacobson, M.S.: On a generalization of chromatic number. Congressus
Numerantium 47, 33–48 (1985)

2. Angelini, P., Bekos, M.A., Kaufmann, M., Roselli, V.: Vertex-coloring with star-
defects. Arxiv report arxiv.org/abs/1512.02505 (2015)

3. Archdeacon, D.: A note on defective coloring of graphs in surfaces. J. Graph Theor.
11(4), 517–519 (1987)

4. Chartrand, G., Lesniak, L.M.: Graphs and Digraphs. Wadsworth, Monterey (1986)
5. Cowen, L.J., Cowen, R.H., Woodall, D.R.: Defective colorings of graphs in surfaces:

partitions into subgraphs of bounded valency. J. Graph Theor. 10(2), 187–195
(1986)

6. Cowen, L.J., Goddard, W., Jesurum, C.E.: Defective coloring revisited. J. Graph
Theor. 24(3), 205–219 (1997)

7. Dailey, D.P.: Uniqueness of colorability and colorability of planar 4-regular graphs
are NP-complete. Discrete Math. 30(3), 289–293 (1980)

8. Ding, G., Oporowski, B.: On tree-partitions of graphs. Discrete Math. 149(13),
45–58 (1996)

9. Edelman, A., Hassidim, A., Nguyen, H.N., Onak, K.: An efficient partitioning
oracle for bounded-treewidth graphs. In: Goldberg, L.A., Jansen, K., Ravi, R.,
Rolim, J.D.P. (eds.) RANDOM 2011 and APPROX 2011. LNCS, vol. 6845, pp.
530–541. Springer, Heidelberg (2011)

10. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W.H. Freeman, San Francisco (1979)

11. Gonthier, G.: Formal proof–the four-color theorem. Not. Am. Math. Soc. 55(11),
1382–1393 (2008)

12. Hadlock, F.: Finding a maximum cut of a planar graph in polynomial time. SIAM
J. Comput. 4(3), 221–225 (1975)

13. Harary, F., Jones, K.: Conditional colorability II: bipartite variations. Congressus
Numerantium 50, 205–218 (1985)

14. Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E.,
Thatcher, J.W., Bohlinger, J.D. (eds.) Complexity of Computer Computations,
pp. 85–103. Springer, Heidelberg (1972)

15. Kowalik, L.: Fast 3-coloring triangle-free planar graphs. Algorithmica 58(3), 770–
789 (2010)

16. Lovász, L.: On decomposition of graphs. Studia Scientiarum Mathematicarum
Hungarica 1, 237–238 (1966)

17. Lovász, L.: Three short proofs in graph theory. J. Comb. Theor. Ser. B 19(3),
269–271 (1975)

18. Maritz, P., Mouton, S.: Francis guthrie: a colourful life. Math. Intell. 34(3), 67–75
(2012)

19. Papadimitriou, C.H.: Computational Complexity. Academic Internet Publ., Lon-
don (2007)

20. Proskurowski, A., Syso, M.M.: Efficient vertex- and edge-coloring of outerplanar
graphs. SIAM J. Algebraic Discrete Methods 7(1), 131–136 (1986)

21. Wood, D.R.: On tree-partition-width. Eur. J. Comb. 30(5), 1245–1253 (2009). Part
Special Issue on Metric Graph Theory

http://arxiv.org/abs/org/abs/1512.02505

Graphs Exploration

Lower Bounds for Graph Exploration
Using Local Policies

Aditya Kumar Akash1, Sándor P. Fekete2, Seoung Kyou Lee3,
Alejandro López-Ortiz4, Daniela Maftuleac4(B), and James McLurkin3

1 IIT Bombay, Mumbai, India
adityakumarakash@gmail.com

2 TU Braunschweig, Braunschweig, Germany
s.fekete@tu-bs.de

3 Rice University, Houston, TX, USA
{sl28,jmclurkin}@rice.edu

4 University of Waterloo, Waterloo, ON, Canada
{alopez-o,dmaftule}@uwaterloo.ca

Abstract. We give lower bounds for various natural node- and edge-
based local strategies for exploring a graph. We consider this problem both
in the setting of an arbitrary graph as well as the abstraction of a geomet-
ric exploration of a space by a robot, both of which have been extensively
studied. We consider local exploration policies that use time-of-last-visit
or alternatively least-frequently-visited local greedy strategies to select
the next step in the exploration path. Both of these strategies were previ-
ously considered by Cooper et al. (2011) for a scenario in which counters
for the last visit or visit frequency are attached to the edges. In this work
we consider the case in which the counters are associated with the nodes,
which for the case of dual graphs of geometric spaces could be argued to
be intuitively more natural and likely more efficient. Surprisingly, these
alternate strategies give worst-case superpolynomial/exponential time for
exploration, whereas the least-frequently-visited strategy for edges has a
polynomially bounded exploration time, as shown by Cooper et al. (2011).

1 Introduction

We consider the problem of a mobile agent or robot exploring an arbitrary graph.
This is a well-studied problem in the literature, both in geometric and combi-
natorial settings. The robot or agent may wish to explore an arbitrary graph,
e.g. a social network or the graph derived from the exploration of a geometric
space. In the latter case, this is often modeled as an exploration task in the dual
graph, where nodes correspond to rooms or regions, and edges corresponds to
paths from one region to another [1,4,6]. In either setting, the goal is to explore
every node in the graph (i.e., a corresponding region in space) in the smallest
possible worst-case time. More formally, the question is this:
Given an unknown graph G and a local exploration policy, what is the time when
the last node is visited as a function of the size of the graph G?

c© Springer International Publishing Switzerland 2016
M. Kaykobad and R. Petreschi (Eds.): WALCOM 2016, LNCS 9627, pp. 55–67, 2016.
DOI: 10.1007/978-3-319-30139-6 5

56 A.K. Akash et al.

There are several natural local strategy candidates for exploring a graph. We
consider only strategies that use a local policy at each node for selecting the
immediate neighbor that is visited next. The selection of neighbor can be done
using one of the following policies: (1) Least Recently Visited vertex (LRV-v), (2)
Least Recently Visited edge (LRV-e), (3) Least Frequently Visited vertex (LFV-v),
and (4) Least Frequently Visited edge (LFV-e).

In the strategies above, we assume that each vertex or node holds an asso-
ciated value, reflecting the last time it was visited (for the case of least recently
visited strategies) or a counter of the total times it has been explored (for
least frequently visited policies). Then the robot selects the neighboring ver-
tex or adjacent edge with lowest value, i.e., oldest time stamp or least frequently
visited.

Because we are hoping to minimize the time to visit every vertex (the dual of
a region in the geometric space), it would seem more natural to consider first the
LRV-v strategy or failing that, the LFV-v strategy. However, up until now, the
only strategies with known theoretical worst-case bounds are LRV-e and LFV-e.

However, it has been an open problem whether these natural node-based poli-
cies are efficient. In an experimental study [8], we consider the task of patrolling
(i.e. repeatedly visiting) a polygonal space that has been triangulated in a pre-
established fashion. This problem can be modelled as exploration of the dual
graph of the triangulation. This was the original motivation to study the prob-
lem of exploring graphs in general, and the dual graphs of triangulation in par-
ticular. In that paper we sketch an exponential lower bound for LRV-v. In this
work, we give a superpolynomial lower bound for LFV-v for exploring a graph.
This is in sharp contrast to the edge case, for which LFV-e has polynomially
bounded exploration time. In particular, we show that there exist a graph on n
vertices and n−1 edges corresponding to the dual of a convex decomposition of a
polygon where the convex polygons are fat and of limited area and such that the
exploration time is Θ(n

√
n/2) in the worst case. In the process we show full proofs

for lower bounds for the LRV-v, sketched in the experimental study [8], and give
lower bounds for the LRV-e and worst-case behavior for LFV-e in graphs of
degree 3, thus extending the results by Yanovski et al. and Cooper et al. [3,10]
which are shown only for graphs of higher degree in the so-called ANT model.
This model has also been studied by Bonato et al. [2] with expected coverage
time for random graphs Table 1.

Related Work. We study policies that require only local information, which can
be maintained by simple devices. The policy Least Recently Visited is known to
have worst-case exploration times that are exponential in the size of the graph,
as shown by Cooper et al. [3]. More recently, the present authors (inspired by
empirical considerations) studied LRV-v, LFV-v and LFV-e in the context of
robot swarms and studied the observed average case using simulations.

The exponential lower bound for LFV-v was shown by Koenig et al. [5] while
Malpani et al. [9] give exponential lower bounds for LRV-e on general graphs.

Lower Bounds for Graph Exploration Using Local Policies 57

Table 1. Summary of results

Local policy Graph class Lower bound Upper bound

LRV-v General graphs exp(Θ(n)) follows from Theorem 1 exp(Θ(n))

Duals of triangulations exp(Θ(n)) Theorem 1 exp(Θ(n))

LRV-e General graphs exp(Θ(n)) [3] exp(Θ(n))

Duals of triangulations Ω(n2) Theorem 2 exp(O(n))

LFV-v General graphs Ω(n
√

n/2) [5,9] O(n δd) Theorem 4

Duals of triangulations Ω(n2) Theorem 5 O(n
√

n/2) Theorem 9

LFV-e General graphs Ω(n2) follows from Theorem 6 O(n · d) [3]

Duals of triangulations Ω(n2) Theorem 6 O(n · d) Corollary 1

Summary of Results. In this work we suggest that LFV-e should be the preferred
choice and complement this result by giving (1) an exponential lower bound for
the worst case for LRV-v of triangulations, (2) a quadratic lower bound for the
worst case for LRV-e of triangulations, (3) an exact bound on the maximum
frequency difference of two neighboring nodes in LFV-v, (4) a quadratic lower
bound for LFV-v in graphs of degree 3, (5) a quadratic lower bound for LFV-
e in graphs of degree 3 and, most importantly, (6) a superpolynomial lower
bound for the worst-case of LFV-v when the graph corresponds to a small convex
decomposition of a polygon.

2 Worst-Case Behavior of LRV-e and LRV-v

The worst-case behavior of LRV-e in arbitrary graphs can be exponential in the
number of nodes in the graph, provided we allow a maximum degree of at least
4. That is, for every n, there exists a graph with n vertices in which the largest
exploration time for an edge is exp(Θ(n)) [3]. Figure 1 illustrates one such graph
(with vertices of degree 4). The starting edge is leftmost in the graph and the
last edge to be visited is the rightmost one. The diamond-like subgraph is such
that when reached by a left-to-right path results in the path not passing through
to the edges on the right on every two-out-of-three occasions. In this sense the
gadget reflects back 2/3rds of all paths.

If we connect Θ(n) such gadgets in series, we will require a total of (3/2)Θ(n)

paths, starting from the left for at least one of them to reach the rightmost
edge in the series. Given that our scenario is based on visiting (dual) vertices,
it is natural to consider the worst-case behavior of LRV-v for the special class
of planar graphs of maximum degree 3 that can arise as duals of triangulations.
Until now, this has been an open problem. Moreover, it also makes sense to
consider the worst-case behavior of LRV-e for the same special graph class,
which is not covered by the work of Cooper et al. [3].

Theorem 1. There are dual graphs of triangulations (in particular, planar
graphs with n vertices of maximum degree 3), in which LRV-v leads to a largest
exploration time for a node that is exponential in n.

58 A.K. Akash et al.

Fig. 1. Graph with n vertices with a chain of n/7 gadgets. A single gadget is colored
in red for illustration purposes. Exploring takes exponential time in the worst case [3]
(Color figure online).

Proof. Consider the graph GD with n vertices in Fig. 3, which contains (n−1)/9
identical components (each containing 9 vertices) connected in a chain. This
graph is the dual of the triangulation of the polygon in black lines shown in
Fig. 2. Observe that every vertex has degree at most 3. We prove the claimed
exponential time bound by recursively calculating the time taken to complete
one cycle in the transition diagram shown in Fig. 4.

Fig. 2. This figure depicts (1) a hexagonal polygonal region with holes in black lines
(2) its triangulation GP in red lines and (3) the dual graph of the triangulation GD

shown in blue lines (Color figure online).

Fig. 3. The dual graph GD illustrated in blue in Fig. 2 (Color figure online).

We monitor the movement of a robot from this situation onwards. Let Tn

denote the time taken to complete one cycle of GD, i.e., the time taken by a
robot to start from and return to the first vertex of the first component of GD.
Similarly, let Ti denote the cycle which starts on the leftmost vertex s reaching
the i gadget on the left-to-right path and back to s. Hence the graph will be fully
explored when we first reach the last component. This requires three consecutive
visits to the next-to-last (penultimate) component in the path, the first two visits
are reflected back to the starting node s, and the last goes through.

Lower Bounds for Graph Exploration Using Local Policies 59

Fig. 4. Two possible LRV-v alternating paths on each component of the graph GD.

From the possible paths illustrated in Fig. 4, we can observe that the vertex
u is visited only during the beginning and end of the cycle, while the vertex v is
visited twice in this cycle. It is not hard to check that the summation of visits
to all edges in one component during one cycle is 22. Using this we can see a
simple recursion as follows:

Ti ≥ 22 + 2 · Ti−1, T0 = 0

Solving this equation, we get Tn ≥ 22 ·(2n −1), and hence the last vertex t in the
path is visited after at least 2 · Tn−1 ≥ 22 · (2n − 2) steps, which is exponential
in the number n of nodes of graph GD, as claimed. ��

As it turns out, the lower bound for LRV-e in [3], i.e., for time stamping
vertices instead of edges, also holds for graphs of max degree 3 as follows.

Fig. 5. This figure depicts (1) a hexagonal polygonal region in black lines (2) its
triangulation GP in red lines and (3) the dual graph of the triangulation GD shown in
blue lines (Color figure online).

Fig. 6. The dual graph GD consisting of a chain of n/6 cycles from Fig. 5.

60 A.K. Akash et al.

Theorem 2. There are dual graphs of triangulations (in particular, planar
graphs with n vertices of maximum degree 3), in which LRV-e leads to a largest
exploration time for a node that is quadratic in n.

Proof. Consider the graph GD of Fig. 6 which consists of a chain of n/6 cycles of
length 4 connected in series. As illustrated in Fig. 7, each component is traversed
initially following the colored oriented paths from step 1 and further alternating
the paths from step 2k and 2k + 1, for k positive integer. When all nodes have
time stamp zero we can choose to visit the nodes in any arbitrary order.1

Fig. 7. LRV-e strategy on each component of the graph GD.

In other words, the first time a component is traversed, the path changes
direction and goes back to the start. The rest of the times when the component
is traversed, the direction does not change. Thus, in order to traverse the ith
component in the chain, we need to traverse the first i − 1 components in the
chain. The total time, i.e. the number of steps, to reach the rightmost vertex in
the chain comes to

∑n/6
i=1(i − 1) = n(n−6)

12 = Θ(n2). ��

3 Worst-Case Behavior of LFV-v and LFV-e

First, we provide evidence that a polynomial upper bound on the worst-case
latency (i.e. time between consecutive visits) is unlikely for LFV-v. We start by
showing some interesting properties of graphs explored under LFV-v. It would
seem at first that the nodes in a path followed by the robot form a non-increasing
sequence of frequency values. This is so as we seemingly always select a node of
lowest frequency. However, if all neighbors of a node have the same or higher
frequency, then the destination node will have strictly larger frequency than the
present node (see Figs. 8 and 9).
1 In general, this property holds whenever there are several neighboring nodes with

the lowest time stamp. For example, in a star starting from the center we visit all
neighboring nodes in arbitrary order until all of them have time stamp 1. At this
point we can once again choose an arbitrary order to visit the neighbors anew.

Lower Bounds for Graph Exploration Using Local Policies 61

Fig. 8. A path being traversed from left to right with its frequency histogram below.
Initially all nodes have frequency zero. Then half way through the path traversal nodes
to left have frequency 1 and nodes to the right are still at zero.

Fig. 9. A path with a corresponding staircase pattern in the histogram.

We also observe that it is possible to create dams or barriers by having a
flower configuration in the path (see Fig. 10). We reach the center of the flower
and then take the loops or petals, thus increasing the count of the center (see
histogram on Fig. 10). Then the robot moves past the center node of the flower,
which forms a barrier that impedes the robot from traversing from right to left
past the center of the flower, until the count of the nodes to the right of the path
has risen to match that of the barrier.

Fig. 10. A path with a “flower” configuration which creates a barrier.

With these three basic configurations (path, staircase, flower) in hand, we can
combine them to create a graph in which the starting node s has δ(s) neighbors
as shown in Fig. 11 where we can see that of the δ(s) neighbors δ(s) − 1 have
simple paths leading back to s. These paths go via a distinguished neighbor
called u which is shared by all the paths from which they connect by a single
shared edge to s. Each of the paths is a staircase with barriers (see Figs. 9 and
10). That is for each time we go from s to one of the first δ−1 neighbors we then

62 A.K. Akash et al.

climb a staircase up to u. Then from u we enter the other staircases from the
“high” side until stopped by a barrier, which makes us return to u and eventually
revisiting s from this last neighbor. This shows the following theorem.

Theorem 3. There exists a configuration for LFV-v in which some neighbors
of the starting vertex have a frequency count of k, while the starting point has a
frequency count of k δ. Moreover, the value of k can be as high as Θ(n/δ).

Fig. 11. A configuration in which the frequency of the starting point s is much larger
than the majority of its neighbors.

This result provides some indication that the worst-case ratio between smallest
and largest frequency labels of vertices may be exponential, which would arise if
we could construct an example in which the ratio of the respective frequencies
of two neighbors is the degree δ. Observe that δ can be Θ(n) in the worst case.
From this it can be shown that at most δd steps are required to explore the
graph, where d and δ are the diameter and the maximum degree of the graph.

Lemma 1. Consider a graph GD explored using the strategy LFV-v. Let g
denote the frequency of the starting node s at time t and let δ(s) be the number of
neighbors of s. Then there are at least g mod δ neighbors with frequency at least
�g/δ� + 1 and the remaining neighboring nodes have frequency at least �g/δ�.
Proof. By induction on g. Denote as g′ = g − 1, f = �g/δ�, f ′ = �g′/δ�.
Basis of induction. g = 0. In this case f = �0/δ� = 0, so we have trivially at
least (0 mod δ) = 0 nodes with frequency at least 1 and the rest of the nodes
have frequency at least 0. For good measure the reader may wish to prove the
case g = 1.
Induction step. When g increases by one, we have either (1) f = f ′ or (2)
f = f ′ + 1.
In case (1) the robot explores a neighbor with min frequency at least f ′ = f
whose frequency increases to f +1, thus increasing the number of neighbors with
that frequency by 1 (if no such neighbor exists this means all neighbors already
have frequency at least f +1 and hence it trivially holds that at least (g mod δ)
neighbors have frequency at least f + 1).
In case (2) when f = f ′ + 1 we have �(g − 1)/δ� + 1 = �g/δ� which implies
(g mod δ) = 0 and (g − 1 mod δ) = δ − 1. Hence all but one of the neighbors

Lower Bounds for Graph Exploration Using Local Policies 63

are guaranteed to have frequency at least f ′ + 1 (which is equal to f) and there
is at most one neighbor with frequency f ′ which is the min and gets visited
thus increasing its frequency to f ′ + 1 = f . This means that now all neighbors
have frequency at least f and trivially at least (δ(s) mod δ) = 0 neighbors have
frequency at least f + 1, as claimed. ��
Theorem 4. The highest frequency node in a graph with unvisited nodes, using
LFV-v, has frequency bounded by δd, where δ is the degree of the node and d the
diameter of the graph.

Proof. Consider any shortest path from an unvisited node to the node with
highest frequency. The path is of length at most the diameter d of the graph. In
each step the increase in frequency is at most a factor δ over the unvisited node
hence the frequency of the most visited node is bounded by δd. ��
However, there is no known example of a dual of a triangulation graph displaying
this worst-case behavior.

Theorem 5. There exist graphs with n vertices of maximum degree 3, in which
the largest exploration frequency for a node, using LFV-v, is Θ(n2).

Proof. This proof follows the outline of the proof of Theorem 2 for the same
graph GD represented in Fig. 5. As illustrated in Fig. 12, each of GD’s compo-
nents is traversed initially following the colored oriented paths from step 1 and
further alternating the paths from step 2k and 2k + 1.

Fig. 12. LFV-v strategy on each component of the graph GD.

In other words, the first time a component is traversed, the path changes
direction and goes back to the start. The rest of the times when the component
is traversed, the direction does not change. Thus, in order to traverse the ith
component in the chain, we need to revisit the first i − 1 components in the
chain, which is Θ(n2). ��

64 A.K. Akash et al.

Note that using LFV-e on the graph shown in Fig. 6, each component of the
graph is traversed using the exact same strategy as shown in Fig. 12 for LFV-v.

Theorem 6. There exist graphs with n vertices of maximum degree 3, in which
the largest exploration frequency for an edge, using LFV-e, is Θ(n2).

Theorem 7. [3] In a graph G with at most m edges and diameter d, the latency
of each edge when carrying out LFV-e is at most O(m · d).

This allows us to establish a good upper bound on LFV-e in our setting.

Corollary 1. Let GD = (VD, ED) be the dual graph of a triangulation, with
|VD| = n vertices and diameter d. Then the latency of each vertex when carrying
out LFV-e is at most O(n · d).

Proof. Since GD is planar, it follows that n ∈ Θ(m), where m = |ED| is the
number of edges of GD. Because patrolling an edge requires visiting both of its
vertices, the claim follows from the upper bound of Theorem 7. ��

We note that this bound can be tightened for regions with small aspect ratio,
for which the diameter is bounded by the square root of the area.

Corollary 2. For regions with diameter d ∈ O(
√

n), the latency of each dual
vertex when carrying out LFV-e is at most O(n1.5).

4 A Graph with Superpolynomial Exploration Time

Koenig et al. gave a graph requiring superpolynomial exploration time, thus
proving the theorem:

Theorem 8. [5] LFV-v has worst-case exploration time Ω(n
√

n/2) on an n
vertex graph. This holds even if the graph is planar and has sublinear maximum
degree.

We illustrate a similar construction for completeness. The graph is a caterpillar
tree where the central path has � + 2 = �√n� vertices, and without loss of
generality we assume � to be odd (see Fig. 13). The root which we term node 0,
has b+c+1 leaves (for some constant c > 10 and value b to be determined later)
as children plus one edge connecting to the path, for a total degree of b + c + 2.
The ith node in the path has b − i + 1 leaves as children and is connected in a
path; hence node i has degree b − i + 3, for 1 ≤ i ≤ �. The last node in the path
has b + 1 leaves as children and degree b + 2.

We start from the root and as all nodes have visit frequency 0 we can choose
to visit the nodes in any arbitrary order. Recall that this property holds whenever
there are several neighboring nodes with the lowest frequency.

From the root we visit all leaves save one, thus increasing the frequency of the
root to b + c + 1 and then proceed down the path. Then for a node i, 1 ≤ i ≤ �
in the path, if i is odd we arbitrarily follow the path leaving the leaves with

Lower Bounds for Graph Exploration Using Local Policies 65

Fig. 13. A caterpillar tree requiring superpolynomial exploration time. The exploration
starts with the red node and the red arrows indicate the direction of the exploration.
The upper node is visited only after Θ(n

√
n/2) steps (Color figure online).

Fig. 14. A dual graph of a convex polygonal decomposition of a simple polygon.
Observe that each subpolygon can be made as fat as required and of arbitrarily limited
area.

frequency 0, while if i is even we visit all leaves first and then proceed down the
path, thus increasing the frequency of node i to b− i+2. In the last node in the
path we visit all of its b + 1 children and then return to it with a final frequency
of b + 2.

It is not hard to verify that subsequent traversals lead to an Ω(n
√

d/2) lower
bound. See ARXIV paper for details [7].

66 A.K. Akash et al.

We note that this graph does not correspond to the dual of triangulation
since it is not of max degree 3. However, in contrast to the graph in Fig. 1 by
Cooper et al., this graph corresponds to the dual of the simple polygon without
holes under a small convex decomposition. We illustrate this in Fig. 14 where
each edge is fattened into a rectangle-like portion and each node of degree d ≥ 3
becomes a d-sided convex polygonal area.

Theorem 9. LFV-v has worst-case exploration time Ω(n
√

n/2) when exploring
the dual graph of a convex decomposition of a polygon, even under the restriction
that the convex polygonal areas be fat and of limited area.

5 Conclusions

In this paper we give (1) an exponential lower bound for the worst case for LRV-
v of triangulations, (2) a quadratic lower bound for the worst case for LRV-e of
triangulations, (3) an exact bound on the maximum degree difference between
two neighboring nodes in LFV-v, (4) a quadratic lower bound for LFV-v in
graphs of degree 3, (5) a quadratic lower bound for LFV-e in graphs of degree
3 and, most importantly, (6) a superpolynomial lower bound for the worst-case
of LFV-v when the graph corresponds to a small convex decomposition of a
polygon.

We conjecture that for graphs of maximum degree 3, the performance of
LFV-v is quadratic and its average coverage time is linear.

References

1. Becker, A., Fekete, S.P., Kröller, A., Lee, S.K., McLurkin, J., Schmidt, C.: Trian-
gulating unknown environments using robot swarms. In: Proceedings 29th Annual
ACM Symposium Computational Geometry, pp. 345–346 (2013)

2. Bonato, A., del Ŕıo-Chanona, R.M., MacRury, C., Nicolaidis, J., Pérez-Giménez,
X., Pral�lat, P., Ternovsky, K.: Workshop on algorithms and models for the web
graph. In: Gleich, D.F., Komjáthy, J., Litvak, N. (eds.) WAW 2006. LNCS, vol.
4936, pp. 18–23. Springer, Heidelberg (2008)

3. Cooper, C., Ilcinkas, D., Klasing, R., Kosowski, A.: Derandomizing random walks
in undirected graphs using locally fair exploration strategies. Distrib. Comput.
24(2), 91–99 (2011)

4. Fekete, S.P., Lee, S.K., López-Ortiz, A., Maftuleac, D., McLurkin, J.: Patrolling a
region with a structured swarm of robots with limited individual capabilities. In:
International Workshop on Robotic Sensor Networks (WRSN) (2014)

5. Koenig, S., Szymanski, B., Liu, Y.: Efficient and inefficient ant coverage methods.
Annals of Math. Artif. Intell. Spec. Issue Ant Rob. 31(1), 41–76 (2001)

6. Lee, S.K., Becker, A., Fekete, S.P., Kröller, A., McLurkin, J.: Exploration via
structured triangulation by a multi-robot system with bearing-only low-resolution
sensors. In: IEEE International Conference on Robotics and Automation, ICRA
2014, Hong Kong, China, pp. 2150–2157 (2014)

Lower Bounds for Graph Exploration Using Local Policies 67

7. Maftuleac, D., Lee, S., Fekete, S.P., Akash, A. K., López-Ortiz, A., McLurkin, J.:
Local policies for efficiently patrolling a triangulated region by a robot swarm.
CoRR, abs/1410.2295 (2014)

8. Maftuleac, D., Lee, S., Fekete, S.P., Akash, A.K., López-Ortiz, A., McLurkin, J.:
Local policies for efficiently patrolling a triangulated region by a robot swarm.
In: International Conference on Robotics and Automation (ICRA), pp. 1809–1815
(2015)

9. Malpani, N., Chen, Y., Vaidya, N.H., Welch, J.L.: Distributed token circulation in
mobile ad hoc networks. IEEE Trans. Mobile Comput. 4(2), 154–165 (2005)

10. Yanovski, V., Wagner, I.A., Bruckstein, A.M.: A distributed ant algorithm for
efficiently patrolling a network. Algorithmica 3(37), 165–186 (2003)

Optimal Distributed Searching in the Plane
with and Without Uncertainty

Alejandro López-Ortiz and Daniela Maftuleac(B)

Cheriton School of Computer Science, University of Waterloo,
Waterloo, ON N2L 3G1, Canada

{alopez-o,dmaftule}@uwaterloo.ca

Abstract. We consider the problem of multiple agents or robots search-
ing in a coordinated fashion for a target in the plane. This is motivated
by Search and Rescue operations (SAR) in the high seas which in the
past were often performed with several vessels, and more recently by
swarms of aerial drones and/or unmanned surface vessels. Coordinating
such a search in an effective manner is a non trivial task. In this paper,
we develop first an optimal strategy for searching with k robots starting
from a common origin and moving at unit speed. We then apply the
results from this model to more realistic scenarios such as differential
search speeds, late arrival times to the search effort and low probability
of detection under poor visibility conditions. We show that, surprisingly,
the theoretical idealized model still governs the search with certain suit-
able minor adaptations.

1 Introduction

Searching for an object on the plane with limited visibility is often modelled by
a search on a lattice. In this case it is assumed that the search agent identifies
the target upon contact. An axis parallel lattice induces the Manhattan or L1

metric on the plane. One can measure the distances traversed by the search
agent or robot using this metric. Traditionally, search strategies are analysed
using the competitive ratio used in the analysis of on-line algorithms. For a
single robot the competitive ratio is defined as the ratio between the distance
traversed by the robot in its search for the target and the length of the shortest
path between the starting position of the robot and the target. In other words,
the competitive ratio measures the detour of the search strategy as compared to
the optimal shortest route.

In 1989, Baeza-Yates et al. [1–3] proposed an optimal strategy for searching
on a lattice with a single searcher with a competitive ratio of 2n + 5 + Θ(1/n)
to find a point at an unknown distance n from the origin. The strategy follows a
spiral pattern exploring n-balls in increasing order, for all integer n. This model
has been historically used for search and rescue operations in the high seas where
a grid pattern is established and search vessels are dispatched in predetermined
patterns to search for the target [4,14].

c© Springer International Publishing Switzerland 2016
M. Kaykobad and R. Petreschi (Eds.): WALCOM 2016, LNCS 9627, pp. 68–79, 2016.
DOI: 10.1007/978-3-319-30139-6 6

Optimal Distributed Searching in the Plane with and Without Uncertainty 69

Historically, searches were conducted using a limited number (at most a hand-
ful) of vessels and aircrafts. This placed heavy constraints in the type of solutions
that could be considered, and this is duly reflected in the modern search and
rescue literature [6,8,11].

However, the comparably low cost of surface or underwater unmanned vessels
allows for searches using hundreds, if not thousands of vessels.1 Motivated by
this consideration, we study strategies for searching optimally in the plane with
a given, arbitrarily large number of robots.

Additionally, the search pattern reflects probabilities of detection and discov-
ery according to some known distribution that reflects the specifics of the search
at hand. For example, the search of the SS Central America reflected the prob-
abilities of location using known survivor accounts and ocean currents. These
probabilities were included in the design stage of the search pattern, with the ship
and its gold cargo being successfully recovered in 1989 after more than 130 years
of previous unsuccessful search efforts [13]. The case of parallel searchers without
communication was studied by Feinerman et al. [5] and Koenig et al. [7]. In this
paper they study robots without communication or a unique ID. In contrast we
assume both a unique ID from the outset and centralized communication for the
case when new agents join the search.

In this paper, we address the problem of searching in the plane with multiple
centrally-coordinated agents under probability of detection and discovery. We
begin with the theoretical model for two and four robots of López-Ortiz and
Sweet [9] that abstracts out issues of visibility and differing speeds of searchers.
Searching for an object on the plane with limited visibility is commonly mod-
elled by a search on a lattice. Under this setting, visual contact on the plane
corresponds to identifying the target upon contact on the grid.

Models. There are several parameters to model the cost of a SAR search. First
is the total cost of the search effort as measured in vessel and personnel hours
times the number of hours in the search, both for the worst case and average case
as compared to the shortest path to the target. The second is the effectiveness
of the search in terms of the probability of finding the target. Lastly, the time to
discovery or speed-to-destination as time is of the essence in most search rescue
scenarios. That is to say, a multiple robot search is preferable to a single agent
search with the same overall cost as the time to discovery is lower. In this paper
we aim to minimize the time to destination under a fixed number of robots as
compared to the shortest path.

Summary of Results and Structure of the Paper. We construct a theoretical
model and give an optimal strategy for searching with k robots with unit speed,
1 For example, the cost of an unmanned search vehicle is in the order of tens of

thousands of dollars which can be amortized over hundreds of searches, while the
cost of conventional search efforts range from the low hundred thousands of dollars
up to sixty million dollars for high profile searches such as Malaysia Airlines MH370
and Air France 447. This suggests that somewhere in the order of a few hundred to
a few tens of thousands of robots can be brought to bear in such a search.

70 A. López-Ortiz and D. Maftuleac

starting simultaneously from a common origin. We then progressively enrich this
model with practical parameters, specifically different search speeds, different
arrival times to the search effort and poor visibility conditions. We show that
the principles from the theoretical solution also govern the more realistic search
scenario under these conditions subject to a few minor adaptations. Lastly, we
deal with cases with a varying probability of location as well as probability of
detection (POD).

We first consider the case where all searchers start from a common point
which we term the origin, and second, when they start from arbitrary points
on the lattice. The robots proceed in a coordinated fashion determined at start
time. Once the search begins, there is no need for further communication or
interaction. Each robot has a unique serial identifier known to each robot and
used in determining the search path to follow.

Initially we consider the case where all k searchers move at the same speed
and give an optimal strategy for finding a target with k = 4r searchers, for some
r positive integer.

This is then generalized to any number of robots (not just multiples of four)
and using the same ideas, we show that the techniques developed also generalize
to searchers with various speeds. Lastly, we show that the proposed theoretical
strategy also governs a search under actual weather conditions, in which there is
a non-negligible probability of the target being missed in a search. We use tables
from the extensive literature on SAR (Search-and-Rescue) operations to conduct
simulations and give scenarios in which the proposed strategy can greatly aid in
the quest for a missing person or object in a SAR setting [6].

2 Parallel Searching

López-Ortiz and Sweet [9] consider the case of searches using two and four robots
(see Fig. 1(a)). In this case, the robots move in symmetric paths around the origin
and prove the following theorem.

Theorem 1. [9] Searching in parallel with k = 2, 4 robots for a point at an
unknown distance n in the lattice is (2n + 4 + 4/(3n))/k + o(1/n2) competitive.

This is in fact optimal for the two and four robots case, as the next theorem
shows. Let the n-ball consist of those points of distance n from the origin.

Theorem 2. Searching in parallel with k robots for a point at an unknown dis-
tance n in the lattice requires at least (2n2 + 4n + 4/3)/k + Ω(1/n) steps, which
implies a competitive ratio of at least (2n + 4 + 4/(3n))/k + Ω(1/n2).

Proof. Following the notation of [9], let A(n) be the combined total distance
traversed by all robots up and until the last point at distance n is visited. We
claim that in the worst case A(n) ≥ 2n2 + 5n + 3/2, for some n > 1. Define
g(n) as the number of points visited on the (n + 1)-ball before the last visit
to a point on the n-ball. First, note that there are 2n2 + 2n + 1 points in the

Optimal Distributed Searching in the Plane with and Without Uncertainty 71

interior of the closed ball of radius n and that visiting any m points requires at
least m − 1 steps. Hence, A(n) = 2n2 + 2n + g(n). If g(n) points have already
been visited, this means that after the last point at distance n is visited, there
remain 4(n + 1) − g(n) points to visit in the n-ball. Now, visiting m points in a
ball requires at least 2m − 1 steps with one robot, and 2m − k with k robots.
Thus, visiting the remaining points requires at least 2(4(n + 1) − g(n)) − k
steps. Hence, A(n + 1) = A(n)2 + 2(4(n + 1) − g(n)) − k as claimed. Now we
consider the competitive ratio at distance n and n + 1 for each of the robots
as they visit the last point at such distance in their described path. We denote
by Ai(n) the portion of the points A(n) visited by the ith robot. Hence, the
competitive ratio for robot i at distances n and n + 1 is given by Ai(n)/n and
Ai(n + 1)/(n + 1). Observe that

∑k
i=1 Ai(n) = A(n), for any n and hence, there

exist i and j such that Ai(n) ≥ A(n)/k and Aj(n + 1) ≥ A(n + 1)/k. Lastly,
the competitive ratio, as a worst case measure is minimized when Ai(n)/n =
Aj(n+1)/(n+1), or equivalently, when A(n)/n = A(n+1)/(n+1) with solution
g(n) = 2n+(4−k)n/(3n+1). Substituting in the expression for A(n), we obtain
A(n) = 2n2 + 4n + (4 − k)n/(3n + 1) = 2n2 + 4n + 4/3 + Θ(1/n) with a robot
searching, in the worst case at least A(n)/k steps for a competitive ratio of
2n+4+4/(3n)

k + Ω(1/n2). ��

3 Search Strategy

3.1 Even-Work Strategy for Parallel Search with k = 4r Robots

A natural generalization of the k = 2 and k = 4 robot cases suggest a spiral
strategy consisting of k nested spirals searching in an outward fashion. However,
because the pattern must replicate or echo the shape of inner paths, all attempts
lead to an unbalanced distribution of the last search levels and thus a suboptimal
strategy. A better competitive ratio gives us the strategy described in this section
that we call even-work strategy. Each of the r robots covers an equal region of a
quadrant using the pattern in Fig. 4. The entire strategy consists of four rotations
of this pattern, one for each quadrant in the plane.

Fig. 1. (a) Search with two robots. (b), (c) Covering the n-ball: best case scenario and
worst case scenario.

72 A. López-Ortiz and D. Maftuleac

Fig. 2. Allocation of additional search tasks as radius increases (x-axis). The y-axis
indicates which robot is activated in that ball.

Theorem 3. Searching in parallel with k = 4r robots for a point at an unknown
distance n in the lattice has asymptotic competitive ratio of at most (2n+7.42)/k.

Proof. We know the lower bound for asymptotic competitive ratio is 2n/k+5/k.
We want to describe the upper bound of even-work strategy of 2n/k + 7.428/k.
From the lower bound, we can deduce that for each ball the number of extra
points (i.e., points outside the ball) covered by the robots is 5 in the best case
(Fig. 1(b)). In the worst case, the robots perform 8 units of extra amount of
work (Fig. 1(c)). So in order to cover all the points on a ball, the robots traverse
a total of 13 units of extra distance. Thus, 13/5 = 2.6 is an upper bound on
the amount of work per point. When robots move from the ball of radius n to
n + 1, a single robot must pick up the extra point to be explored. We balance
the distribution of the new work as shown in Fig. 2. In this figure, the x-axis
marks the distance from the origin of the current ball being explored, while the
y-axis indicates the robot that is tasked with the exploration of the extra points
in ball n + 1 over the n ball. There are four such points in total, or one per side.
After covering the ball n, we have 2n2 + 2n points covered inside it. The lower
bound gives us 2n2 + 5n amount of work to cover all the points at distance n.
When we look at the last 4n points (on the n ball), for each of the 4n points, we
have 3n work. Thus, 7/4 amount of work per point (lower bound). From where
we get the relation: �n/k�(1+8/5)

�n/k�(1+3/4) = 13/5
7/4 = 1.486, and 5 · 1.486 = 7.428. ��

3.2 Parallel Search with Any Number of Robots

This case illustrates how the abstract search strategy for a number of robots
multiple of four can readily be adapted to an arbitrary number of robots. Let k
be the number of robots, where k is not necessarily divisible by 4.

We first design the strategy for 4k robots obtaining 4 times as many regions
as robots. We then assign to every robot 4 consecutive regions as shown in Fig. 3
for the case k = 7. Observe that now some of the regions span more than one
quadrant and how the search path for each robot transitions from region to
region while exploring the same ball of radius n in all four regions assigned to it.
Observe that from Theorems 2 and 3, it follows that this strategy searches the
plane optimally as well.

Theorem 4. Searching in parallel with k robots for a point at an unknown dis-
tance in the lattice has an asymptotic competitive ratio of at most (2n+7.42)/k.

Optimal Distributed Searching in the Plane with and Without Uncertainty 73

Fig. 3. Parallel search with k = 7 robots on the ball of radius 74.

The precise description of the search paths is shown in pseudocode of Sect. 4.1.
Each robot only needs to know its unique ID and the total number of robots
involved in the search. The code was implemented in Maple and used for drawing
the figures in this paper.

4 From Theory to Practice

4.1 The Search Strategy

In Fig. 4, we show the search strategy with k = 4r robots. Since the robots
traverse at unit speed, the total area explored by each robot is t while the
combination of all robots is kt. While we envision the swarm of robots being
usually deployed from a single vessel and as such all of them starting from the
same original position, for certain searches additional resources are brought to
bear as more searchers join the search-and-rescue effort. In this setting we must
consider an agent or agents joining a search effort already under way.

Fig. 4. Parallel search with k = 4r robots, where r = 7, at time t = 40, 80, 160, 240.
This figure illustrates the search only in one of the four quadrants.

74 A. López-Ortiz and D. Maftuleac

Algorithm 1. Strategy(r, n)
Input: Let k = 4r the number of
robots, and let n be the covered dis-
tance.
Output: parallel search strategy of r
robots in a quadrant.
Initialization(r, 0);
Robot-1(n).
for i = 2 to r − 1 do

Middle-robots(i, n).
end for
Robot-r(n).

Algorithm 2. Initialization(x, y)
Input: Starting point (x, y).
Output: Constructs the initial pattern
for a robot
2 up; 1 right; 2 down; 3 right.

Algorithm 3. Robot-1(n)
Input: k = 4r robots, n the covered
distance.
Output: The parallel search strategy of
the first robot in a quadrant.
for v = 1 to n do

for j = 1 to 2(r − 1) do
Stairs(8(v − 1) + 3, horiz, NW).
Stairs(8(v − 1) + 5, horiz, SE).

end for
for j = 1 to 2 do

Stairs(4j + 8(v − 1), horiz, NW).
Stairs(4j +2+8(v− 1), vert, SE).

end for
end for

Algorithm 4. Stairs(n, d, direction)
Input: Let n be the number of steps
in the stair, d - the initial horizontal or
vertical step and direction either NW
for North-West or SE for South-East.
Output: The stairs in direction
direction starting with the first step d.
if direction = NW then

1 up.
Init-Stair(n, d, NW).
1 up.

else
1 right.
Init-Stair(n, d, SE).
1 right.

end if

Algorithm 5. Init-Stair(n, d, direct
ion)

Input: Let n be the number of steps
in the stair, d - the initial horizontal or
vertical step and direction either NW
for North-West or SE for South-East.
Output: The n stairs in direction
direction starting with the first step d.
if n > 1 then

if d = horiz then
if direction = NW then

2 left.
else

2 right.
end if
Init-Stair(n − 1, vert, direction).

else
if direction = NW then

2 up.
else

2 down.
end if
Init-Stair(n − 1, horiz, direction).

end if
end if

Optimal Distributed Searching in the Plane with and Without Uncertainty 75

Algorithm 6. Middle-robots(i, n)
Input: k = 4r robots, i - the number
of the current robot and n the covered
distance.
Output: The parallel search strategy of
r − 2 (middle) robots in a quadrant.
Initialization(r − i + 1, 5 ∗ (i − 1)).
for v = 1 to n do

for j = 1 to 2(r − i) do
Stairs(3 + 8(v − 1), horiz, NW).
Stairs(5 + 8(v − 1), horiz, SE).

end for
Stairs(4 + 8(v − 1), horiz, NW).
Stairs(6 + 8(v − 1), vert, SE).
Stairs(8 + 8(v − 1), horiz, NW).
for j = 1 to 2(i-1) do

Stairs(7 + 8(v − 1), vert, SE).
Stairs(9 + 8(v − 1), vert, NW).

end for
Stairs(10 + 8(v − 1), vert, SE).

end for

Algorithm 7. Robot-r(n)
Input: k = 4r robots and n the covered
distance.
Output: The parallel search strategy of
the rth robot in a quadrant.
Initialization(1, 5(r − 1));
Stairs(8(v − 1) + 4, horiz, NW).
Stairs(8(v − 1) + 6, vert, SE).
Stairs(8(v − 1) + 8, horiz, NW).
for j = 1 to 2(r − 1) do

Stairs(8(v − 1) + 7, vert, SE).
Stairs(8(v − 1) + 9, vert, NW).

end for
for v = 2 to n do

for k = 1 to 2 do
Stairs(8(v−1)+4k−2, vert, SE).
Stairs(8(v − 1) + 4k, horiz, NW).

end for
for j = 1 to 2(r − 1) do

Stairs(8(v − 1) + 7, vert, SE).
Stairs(8(v − 1) + 9, vert, NW).

end for
end for

Theorem 5. There exists an optimal asymptotic strategy for parallel search with
k initial robots starting from a common origin and later adding new robots to
the search.

Proof (sketch). Given the distance to the origin for the additional robots, we
can compute the exact time at which the additional searcher will meet up with
the explored area. At this point the search agents switch from a k robot search
pattern to a k+1 search pattern. The net cost of this transition effort is bounded
by the diameter of the n ball at which the extra searcher joins, with no ill
effect over the asymptotic competitive ratio. Hence, the search is asymptotically
optimal. ��

A parallel search with k robots with different speeds is another case which
nicely illustrates how the abstract search strategy for robots with equal speed
can be readily adapted to robots of varying speeds.

Theorem 6. There exists an optimal strategy for parallel search with k robots
with different speeds.

Proof. Suppose we are given k robots with varying speeds. Let the speed of
the k robots be s1, s2, . . . , sk respectively. We consider the speeds to be integral,
subject to proper scaling and rounding. Let s =

∑k
i=1 si. We use the strategy for

4s robots and we assign for each robot respectively: 4s1, 4s2, . . . , 4sk regions. It
follows that every robot completes the exploration of its region at the same time
as any other robot since the difference in area explored corresponds exactly to

76 A. López-Ortiz and D. Maftuleac

the difference in search speed and the search proceeds uniformly and optimally
over the entire range as well. ��

4.2 Probability of Detection

In real life settings there is a substantial probability that the search agent might
miss the target even after exploring its immediate vicinity particularly in high or
stormy seas. The search-and-rescue literature provides ready tables of probabil-
ity of detection (POD) under various search conditions [6]. Figure 5(a) shows the
initial probability of location map for a typical man overboard event. Figure 5(b)
shows the probability of detection as a function of the width of the search area
spanned. The unit search width magnitude is computed using location, time, tar-
get and search-agent specific information such as visibility, lighting conditions,
size of target and height of search vessel. We consider then a setting in which a
suitable POD distribution has been computed taking into account present visi-
bility conditions and size of target (see Fig. 5(a)). Armed with this information,
a robot must then make a choice between searching an unexplored cell in the
lattice or revisiting a previously explored cell.

Fig. 5. (a) Initial probability map [6], (b) Average probabilities of detection (POD)
over an area for visual searches using parallel sweeps (in blue: ideal search conditions,
in red: normal search conditions) [6] (Color figure online).

Consider first an abstract model in which a robot can “teleport” from any
given cell to another, ignoring any costs of movement related to this switch. The
greedy strategy consists of robots moving to the cell with current highest proba-
bility of containing the target. Each cell is then searched using the corresponding
pattern for the number of robots deployed in the cell.

Lemma 1. Greedy is the optimal strategy for searching a probabilistic space
under the teleportation model.

Optimal Distributed Searching in the Plane with and Without Uncertainty 77

Proof. Let pji be the probability of discovering the target in cell i during the j
visit, sorted in decreasing order. We now relabel them p1, p2, . . . The expected
time of discovery is

∑∞
t=1 pt ·t which is minimized when pt are in decreasing order

as follows. Assume by way of contradiction that the given minimal order is not
in decreasing order, i.e., there exists i such that pi < pi+1. Now swap these two
cells in the visiting order and we get that the cost before the swap was

∑∞
t=1 pt ·t,

while after the swap is
∑∞

t=1,t�=i pt · t + i · pi+1 + (i + 1) · pi. Subtracting these
two quantities we get i · pi +(i+1) · pi+1 − i · pi+1 − (i+1) · pi = pi+1 − pi which
is strictly positive from the assumption that pi < pi+1. This is a contradiction
since

∑∞
t=1 pt · t was minimal. ��

Now we consider the case where moving from one search position to another
happens at the same speed as searching. Observe that the probability of each cell
evolves over time. It remains at its initial value so long as it is still unexplored
and it becomes qm times its initial value after m search passes, where q = 1 − p
is the probability of not detecting a target present in the current cell during a
single search pass.

Probabilistic Search Algorithm. The algorithm creates supercells of size
h×h unit cells, for some value of h, which depends on the total number of robots
available to the search effort. The algorithm computes the combined probability
of the target being found in a supercell which corresponds to the sum of the
individual probabilities of the unit cells as given by the POD map.

At each time t, the algorithm considers the highest probability supercell and
compares it to the lowest probability supercell being explored to determine a
balance of robots to be assigned to each cell, in this case a transfer of robots
from the low probability cell to the unexplored high probability cell. The search
process continues until the target is found or the probability of finding it falls
below a certain threshold. Once the probabilities have been rebalanced, we need
to determine the source/destination pair for each robot. This is important since
the distance between source and destination is dead search time, so we wish to
minimize the amount of transit time. To this end, we establish a minimum-cost
network flow [12] that computes the lowest total transit cost robot reassignment
that satisfies the computed gains and losses.

More formally, let Ct
1, C

t
2, . . . , C

t
j be the areas being explored at time t by

rt1, r
t
2, . . . , r

t
j robots respectively. The combined probability of a supercell is the

sum of the probabilities of the cells inside it. When it is clear from the context
what is the present t we will omit it from the superscript.

These combined probabilities are then sorted in decreasing order and the
algorithm dispatches robots to the highest probability supercell until the mar-
ginal value of the robots is below that of an unexplored supercell. More pre-
cisely, let Ci and Cj be the two supercells of highest combined probability, pi
and pj , respectively. The algorithm then assigns s robots to supercell Ci such
that pi/s ≥ pj > pi/(s + 1). In other words the algorithm assigns robots to cells
so that the expected gain per robot per cell is a approximately optimal. More
specifically, the algorithm maintains two priority queues. One is a max priority

78 A. López-Ortiz and D. Maftuleac

queue (PQ) of supercells using the combined probability per robot as key. That
is, supercell i appears with priority key equals to pi/(ri + 1) where ri is the
present number of robots assigned to it by the algorithm. The other is a min PQ
of supercells presently being explored with the residual probability key pi/ri.

The algorithm then compares the top element in the maxPQ with the top
element in the minPQ. If the probability of the maxPQ is larger than the minPQ
it transfers an additional robot to the maxPQ supercell, and decrements its key
with updated priority. Similarly, the minPQ supercell losses a robot and its
priority is incremented due to the loss of one robot. The algorithm continues
transferring robots from minPQ supercells to maxPQ supercells. The algorithm
however, does not remove the last robot from a supercell until all cells within it
have been explored at least once.

Fig. 6. Optimal robot reassignment via minimum cost network flow.

Once the algorithm has computed the number of robots gained/lost by each
supercell, it establishes a minimum cost network flow problem to compute the
lowest total transit cost robot-reassignment schedule that satisfies the computed
gains and losses. This is modelled as a network flow in a complete bipartite
graph (see Fig. 6). In this graph, nodes on the left side of the bipartite graph
correspond to supercells losing robots, while nodes on the right correspond to
supercells gaining robots. Every node (both losing and gaining) has an incoming
arc from the source node with capacity equal to the old number of robots in
the associated supercell and cost zero. Similarly, all nodes are connected to the
sink with an edge of capacity exactly equal to the updated robot count of the
associated supercell and cost zero as well. Lastly, the cross edges in the bipartite
graph have infinite capacity and cost equal to the distance between the supercells
represented by the end points.

From the construction it follows that the only way to satisfy the constraints
is to reassign the robots from the losing supercell nodes to the gaining supercell
nodes at minimum travel cost. This network flow problem can be solved in O(E2)
time using the algorithm of Orlin [11]. In this case E = O(n2) and hence, in the

Optimal Distributed Searching in the Plane with and Without Uncertainty 79

worst case the minimum cost network flow algorithm runs in time O(n4), where
n is the number of supercells.

Theorem 7. The probabilistically weighted distributed scheduling strategy for
the time interval [0, t] can be computed in O(t n4) steps, where n is the size of
the search grid.

5 Conclusion

We present optimal strategies for robot swarm searches under both idealized and
realistic considerations. We give pseudo-code showing that the search primitives
are simple and can easily be implemented with minimal computational and nav-
igational capabilities. We then give a heuristic to account for the probability of
detection map often available in real life searches. The strategies proposed have
a factor of k improved time to discovery as compared to a single searcher for the
same total travel effort.

References

1. Alpern, S., Gal, S.: The Theory of Search Games and Rendezvous. Kluwer, London
(2002)

2. Baeza-Yates, R., Culberson, J., Rawlins, G.: Searching in the plane. Inf. Comput.
106, 234–252 (1993)

3. Baeza-Yates, R., Schott, R.: Parallel searching in the plane. Comput. Geom.: The-
ory Appl. 5, 143–154 (1995)

4. Canadian Coast Guard/Garde Cotiere Canadienne. Merchant ship search and res-
cue manual (CANMERSAR) (1986)

5. Feinerman, O., Korman, A., Lotker, Z., Sereni, J.-S.: Collaborative search on the
plane without communication. In: PODC, pp. 77–86 (2012)

6. IMO. IAMSAR Manual. Organization and Management, vol. I. IAMSAR. Mission
Co-ordination, vol. II. IAMSAR. Mobile Facilities, vol. III (2010)

7. Koenig, S., Szymanski, B., Liu, Y.: Efficient, inefficient ANT coverage methods.
Ann. Math. Artif. Intell. (Special Issue on ANT Robotics) 31(1), 41–76 (2001)

8. Koopman, B.O.: Search and screening, Report No. 56 (ATI 64 627), Operations
Evaluation Group, Office of the Chief of Naval Operation (1946)

9. López-Ortiz, A., Sweet, G.: Parallel searching on a lattice. In: Proceedings of the
13th Canadian Conference on Computational Geometry (CCCG) (2001)

10. National Search and Rescue Secretariat/Secrétariat national Recherche et sauve-
tage. CANSARP, SARScene, vol. 4 (1994)

11. Orlin, J.B.: A polynomial time primal network simplex algorithm for minimum
cost flows. Math. Program. 78, 109–129 (1997)

12. Papadimitriou, C.H., Steiglitz, K., Optimization, C.: Algorithms Complex. Dover
Publications INC, New York (1998)

13. Stone, L.D.: Revisiting the SS central America search. In: International Conference
on Information Fusion (FUSION), pp. 1–8 (2010)

14. U.S. Coast Guard Addendum to the U.S. National Search and Rescue Supplement
(NSS) to the IAMSAR Manual. COMDTINST M16130.2F (2013)

Formation of General Position by Asynchronous
Mobile Robots Under One-Axis Agreement

Subhash Bhagat1(B), Sruti Gan Chaudhuri2, and Krishnendu Mukhopadhyaya1

1 Indian Statistical Institute, Kolkata, India
{sbhagat r,krishnendu}@isical.ac.in
2 Jadavpur University, Kolkata, India

srutiganc@it.jusl.ac.in

Abstract. In the traditional model of autonomous, homogeneous
mobile robots, the robots theoretically assumed to be transparent, i.e.,
they do not create any visual obstructions for the other robots. This
paper strengthens this model, by incorporating the notion of obstructed
visibility where the robots are considered to be opaque. Many of the
existing algorithms require that each robot should have the complete
knowledge of the positions of other robots. For this to happen in the new
model no three robots can be collinear. This paper proposes a distrib-
uted algorithm for obtaining a general position (where no three robots
are collinear) for the robots in finite time starting from an arbitrary
configuration. The algorithm also assures collision free motion for each
robot. The robots here are asynchronous, having no agreement in chiral-
ity. However, the robots agree on the direction of any one axis.

Keywords: Asynchronous · Oblivious · Obstructed visibility · General
position · One-axis agreement · Swarm robots

1 Introduction

An interesting offshoot of research in robotics is the study of multi-robot systems,
popularly known as swarm robots. A swarm of robots is a collection of identical,
tiny mobile robots. The robots together perform a complex job, e.g., moving
a big body, cleaning a big surface etc. A primary objective of a multi-robot
system is to co-ordinate motions of the robots to form certain patterns. The
traditional distributed model [12,14] for a swarm of robots or multi robot system,
represents the mobile entities by distinct points located in the Euclidean plane.
The robots are anonymous, indistinguishable, oblivious having no means of direct
communication. They may not have common agreement in directions, orientation
and unit distance. Each robot has sensing capability, by vision, which enables
it to determine the positions (within its own coordinate system) of the other
robots. The robots operate in rounds by executing Look-Compute-Move cycles.
All robots may or may not be active in all the rounds. In a round, when a robot
becomes active, it gets the positions (w.r.t its local coordinate system) of the

c© Springer International Publishing Switzerland 2016
M. Kaykobad and R. Petreschi (Eds.): WALCOM 2016, LNCS 9627, pp. 80–91, 2016.
DOI: 10.1007/978-3-319-30139-6 7

Formation of General Position by Asynchronous Mobile Robots 81

other robots in its surroundings (Look) by its sensing capability. This snapshot is
used to compute a destination point (Compute) for this robot. Finally, it moves
towards this destination (Move).

Since the robots do not communicate with each other explicitly, the vision
enables the robots to communicate with each other implicitly by sensing their
relative positions and coordinate their actions accordingly.

1.1 Earlier Works

Majority of the investigations on pattern formation by [10,11,14,15] mobile
robots assume that their visibility is unobstructed or full, i.e., if two robots
A and B are located at a and b, they can see each other though other robots lie
in between them on the line segment ab at that time. Very few observations on
obstructed visibility (where A and B are not mutually visible if there exist other
robots on the line segment ab) have been made in different scenarios; such as,

– Ando et al. [4] first considers obstructed visibility for solving memoryless point
convergence of mobile robots with limited visibility (a robot can see up to a
certain fixed region around itself).

– the robots in the one dimensional space [6] - it presents a study on the uniform
spreading of robots on a line, when the robots have obstructed visibility.

– the robots with visible lights [8,9] - in this model, each agent is provided with
a local externally visible light, which is used as colors [2,8–10,13,14,16]. The
robots implicitly communicate with each other using these colors as indicators
of their states.

– the unit disc robot called fat robots [1,7] - in this model, the robots are not
points but unit discs [1,5,7]. Unit disc robots obstruct the visibility of other
robots. Bolla et al. [5] have presented a simulation for gathering such fat
robots. [1,7] presents algorithm for gathering fat robots, where the robots
obstruct the visibility of other robots. However, the algorithms in both [1,7]
and do not assure collision free paths for the robots. The robots stop if they
collide.

The mechanism of removing obstructed visibility, have been addressed
recently in [2,3]. In [2] the authors have proposed algorithm for asynchronous
robots in light model. Here, the robots starting from any arbitrary configuration
form a circle which is itself an unobstructed configuration. The presence of a
constant number of visible light (color) bits in each robot, implicitly helps the
robots in communication and storing the past configuration. In [3], the robots
obtain a obstruction free configuration for semi-synchronous robots by getting
as close as possible.

1.2 Our Contribution

In this paper, we propose a distributed algorithm to remove obstructed visibility
for asynchronous, oblivious robots by making a general configuration under one-
axis agreement. The robots start from arbitrary distinct positions in the plane

82 S. Bhagat et al.

and reach a configuration where all of them can see each other. The algorithm
presented in this paper also assures that the robots do not collide. The obstructed
visibility model is no doubt improves the traditional model of multi robot system
by incorporating real-life like characteristic. The algorithm presented in this
paper can also be a preliminary step for any subsequent tasks which require
complete visibility.

The organization of the paper is as follows: Sect. 2, defines the assumptions
of the robot model used in this paper and presents the definitions and notations
used in the algorithm. Section 3 presents an algorithm for obtaining general
position by asynchronous robots. We also furnish the correctness of our algorithm
in this section. Finally in Sect. 4, we conclude by providing the future directions
of this work.

2 Model and Definitions

Let R = {r1, . . . , rn} be a set of n homogeneous robots represented by points. All
the robots may not be active at the same time. When active, the robots operate
by executing cycles consisting of three states look-compute-move repeatedly. In
Look state, a robot observes other robots and mark their positions in its local
coordinate system. Each robot can observe 360◦ around itself up to an unlimited
radius. However, they obstruct the visibility of other robots. In Compute state
it computes a destination to move to. In Move state it moves to the computed
destination. This cycle is executed asynchronously by the robots, i.e., the robots
may not be in same state at any point of time. Thus a robot can observe other
robots in motion and compute its destination based on obsolete locations of the
moving robots. The robots are oblivious, in the sense that, after completion of
a cycle they forget the computed data of that cycle and start a new cycle. The
robots can not communicate through explicit massages passing. The movement
of the robots are non-rigid, i.e., a robot may stop before reaching its destination.
However, if a robot moves, it travels at least a finite minimum distance δ > 0
towards its destination. The value of δ is not known to the robots. The total
number of robots i.e., n is known to all the robots. The robots do not share a
global coordinate system. Each of the robots has its own local coordinate system
which may differ from the others. However, the robots only agree on the direction
of one-axis. We consider the agreement on Y -axis which is conventionally north-
south direction (one can also take the agreement on X-axis).

Initially the robots are positioned in distinct locations and are stationary.
The robots are assumed to be fault free. Now we present some definitions and
notations which will be used throughout the paper.

– Position of a Robot: ri(t) denotes the position of robot ri at time t. A
configuration C(t) = {r1(t), . . . , rn(t)} is the set of positions occupied by the
robots at time t. We denote the set of all such configurations by C̃. We parti-
tion C̃ into two classes: C̃L and C̃NL, where C̃L contains all the configurations
in which all the robots in R lie on a straight line and C̃NL contains all the

Formation of General Position by Asynchronous Mobile Robots 83

Fig. 1. An example showing the construction of STR(ri(t)).

configurations in which there exist at least three non-collinear robot positions
occupied by the robots in R. We say that a configuration C(t) of R is in
general position if no three robot positions in C(t) are collinear. By C̃GP ,
we denote the set of all configurations of R which are in general position.
Clearly C̃GP ⊂ C̃NL.

– Measurement of Angles: By an angle between two line segments, if not
stated otherwise, we mean the angle which is less than or equal to π.

– V(ri(t)): The vision, V(ri(t)), of robot ri at time t is the set of positions
occupied by the robots visible to ri (ri is not included). Note that if rj(t) ∈
V(ri(t)), then ri(t) ∈ V(rj(t)) and vice versa.
We sort the robot positions in V(ri(t)) angularly in anti clockwise direction
w.r.t. ri(t). Starting point can be any robot position in V(ri(t)). We connect
them in that order to get a polygon STR(ri(t)) (Fig. 1).

– A robot ri is called an non-terminal robot at time t if it lies between two other
robot positions i.e., on the line segment joining two other robot positions. The
point ri(t) is called the non-terminal robot position. Otherwise, we call ri a
terminal robot.

– DISP (ri(t), rj(t)): When a robot ri moves from ri(t) to ri(t′), we call
∠ri(t)rj(t)ri(t′) as the angle of displacement of ri w.r.t. rj(t) and denote it
by DISP (ri(t), rj(t)) (Fig. 2). It gives a measure of change of vision of the
robots when they move.

– dk
ij(t): The straight line joining ri(t) and rj(j) is denoted by Lij(t). The

perpendicular distance of the line Lij(t) from the point rk(t) is denoted by
dk

ij(t).
– D(ri(t)): Let D(ri(t)) be minimum distance of any two robots in V(ri(t)).

3 Algorithm for Making of General Position

Let C(t0) be the initial configuration of the robots. If C(t0) ∈ C̃GP , then it is
done. Otherwise, the movements of the robots are planned in such a way that
after a finite number of movements they reach a configuration in C̃GP . If an
initial configuration C(t0) is in C̃L, it is converted into a configuration in C̃NL.
We describe our strategies in details as follows.

84 S. Bhagat et al.

Fig. 2. An example illustrating DISP (ri(t), rj(t)).

3.1 Eligible Robots for Movements

Our approach selects a terminal robot ri for movement at time t only if it satisfies
any one of the following three conditions:

– V(ri(t)) < n − 1 and Y -axis of ri does not contain any other robot position
on it.

– V(ri(t)) < n−1, Y -axis of ri contains at least one robot position and ri(t) has
the highest y−coordinate value among all the robot positions on its Y -axis.

– V(ri(t)) = n−1, Y -axis of ri contains at least one robot position and ri(t) has
the highest y−coordinate value among all the robot positions on its Y -axis.
This is essential to avoid deadlocks in the system.

The robots which are currently in non-terminal positions, do not move.

3.2 Computing Destination Point

Consider an arbitrary terminal robot ri which finds itself eligible to move at
time t. Note that, if there is collinearity in the configuration such a robot always
exists. While computing the destination points for the robots, our approach takes
care of the followings (i) the movements of the robots do not block the visibility
of the other robots (ii) they do not collide with each other. The destination point
for ri depends on whether C(t) is in C̃L or in C̃NL. Our algorithm decides two
things regarding the movement of a robot: (i) the amount of movement, and (ii)
the direction of movement.

– Case-1: C(t) ∈ C̃NL

Three robots become collinear if the triangle, formed by their respective posi-
tions, collapses into a line due to their movements. In other words, one of the
angles of the triangle must become zero. Our approach avoids the occurrences
of such situations by considering two sets of angles. Let Γ (ri(t)) denote the
set of all angles made at ri by two consecutive robot positions in STR(ri(t)),
i.e.,

Γ (ri(t)) = {∠rjrirk : rj , rkare two consecutive vertices onSTR(ri(t))}.

Formation of General Position by Asynchronous Mobile Robots 85

Let Γ ′(ri(t)) be the set of angles created by the neighbors of ri(t) at the other
robot positions on STR(ri(t)), i.e.,

Γ ′(ri(t)) = {∠ru(t)rj(t)ri(t) : rj ∈ V(ri(t)) and ru(t)is a neighbor of ri(t)
on STR(rj(t))}.

The set Γ (ri(t)) reflects the view of ri about the robots in V(ri(t)) whereas
Γ ′(ri(t)) gives the view the robots in V(ri(t)) about ri.

The Direction of Movement: Our approach also decides the direction of
the movement of ri. For a robot rj , consider the angle made by Lij(t) with
Y + and denote it by θij(t). Let α(ri(t)) = minimum{θij(t) : rj ∈ V(ri(t))
and rj does not lie on Y -axis of ri } (tie, if any, is broken arbitrarily). Let
Bisec(ri(t)) denote the 1

n2n th bisector of α(ri(t)) closest to Y +. It is a ray
from ri(t) and the angle made by it with Y + is strictly less than π

2 since
n ≥ 3. When there is no other robot position on Y -axis of ri, the robot ri

moves along Y +. Otherwise ri moves along Bisec(ri(t)).

The Amount of Displacement: The maximum amount of displacement
of ri should be restricted in such a way that it does not create any new
collinearity during or after the executions of their movements. If rj(t) and
rk(t) are in V(ri(t)), the destination point of ri should lie far enough from
Ljk(t) so that even if all the three robots ri, rj and rk move, they do not
become collinear. Let d(ri(t)) = minimum{dk

ij(t), d
j
ik(t), di

jk(t) : ∀rj , rk ∈
V(ri(t))}. Our algorithm computes the destination point of ri in such way
that DISP (ri(t), rj(t)) would be small enough to avoid creation of new
collinearities. Let β(ri(t)) be the minimum of Γ (ri(t)) ∪ Γ ′(ri(t)). Note that
β(ri(t)) ≤ π

3 . Our approach demands DISP (ri(t), rj(t)) to be smaller than
1

n2n th fraction of β(ri(t)).
Let

σ(ri(t)) =
1

n2n
minimum{d(ri(t)),D(ri(t))} ∗ sin(

β(ri(t))
n2n

)

– Case-2: C(t0) ∈ C̃L

In this case, all the robots lie on a straight line, say L̂. There are n−2 interme-
diate robots. The movement of even one terminal robot converts the present
configuration into a configuration in C̃NL. Suppose ri is one of the two termi-
nal robots which finds C(t0) ∈ C̃L.

The Direction of Movement: If the robots do not lie on Y -axis of ri, the
robot ri moves along Y +. Otherwise ri moves along X+.

The Amount of Displacement: In this case |V(ri(t0))| = 1. Let

σ(ri(t)) =
1

n2n
D(ri(t0))

86 S. Bhagat et al.

Algorithm 1. ComputeDestination()
Input: ri(t) and C(t).
Output: a distance
1. Case-1: |V(ri(t))| ≥ 2,

Compute σ(ri(t)) as defined in Case-1 of Subsect.3.1;
2. Case-2: |V(ri(t))| = 1,

Compute σ(ri(t)) as defined in Case-2 of Subsect.3.1;
3. return σ(ri(t));

Algorithm 2. MakeGeneralPosition()
Input: C(t), a configuration of a set robots R.
Output: C(t̂), which is in general position.

1 while |V(ri(t))| < n − 1 ∨ Y -axis contains other robots do
2 if ri is non-terminal then
3 p ← 0;
4 else
5 if Y -axis contains no other robots then
6 p ← ComputeDestination(ri(t), C(t));
7 else
8 if ri(t) is on the top of its own Y -axis then
9 p ← ComputeDestination(ri(t), C(t));

10 else
11 p ← 0;

12 Compute r̂i(t) along the direction of movement of ri and p distance apart
from ri(t);

13 Move to r̂i(t);

Let r̂i(t) be the point on the direction of movement of ri (i.e., on Y + or
Bisec(ri(t)) or X+) at distance σ(ri(t)) from ri(t). The destination point of
ri(t) is r̂i(t).

3.3 Correctness

The algorithm assures that the robots will form general position in finite num-
ber of movements. The termination of the algorithm is established by following
observation and lemmas.

Let ri, rj and rk be three arbitrary robots which are not collinear. In the
following lemmas, we prove that ri, rj and rk, never become collinear during
the execution of our algorithm. These three robots will become collinear when
	ijk(t) collapses into a line due to the movements of the robots at some time
point t ≥ t0. In other words all of dk

ij(t), dk
ij(t) and dk

ij(t) must become zero.
Without loss of generality we prove that dk

ij(t) will never vanish.

Formation of General Position by Asynchronous Mobile Robots 87

We estimate the maximum decrement in the value of dk
ij(t) i.e., minimum

value of dk
ij(t), t ≥ t0, while robots move to break the collinearities.

Lemma 1. Let ri, rj and rk be three arbitrary robots, which are not collinear at
time t0. If each robot moves at most once, they do not become collinear during
the whole execution of our algorithm.

Proof. The maximum decrement or increment in the value of dk
ij(t0) would occur

if the robots move along lines perpendicular to Lij(). Depending on the initial
positions of the robots, the following cases may arise.

– ri, rj and rk are Mutually Visible at t0: In a single movement of the
robot which moves first, the displacement of the robot would be bounded
above by 1

n2n dk
ij(t0). This could increase dk

ij(t0) to a value which would be
bounded above by (1 + 1

n2n)dk
ij(t0). So, the observed value of dk

ij(t
′), t′ > t0

for the second robot to move would be bounded above by (1 + 1
n2n)dk

ij(t0).
For a single movement of the second robot, the displacement of the robot

would be bounded above by (1 + 1
n2n)dk

ij(t0)

n2n < 2
n2n dk

ij(t0). Similarly, in a
single movement of the third robot, the displacement of the robot would be

bounded above by (1 + 3
n2n)dk

ij(t0)

n2n < 2
n2n dk

ij(t0) (since 3
n4n < 1

n2n and n ≥
3). This would convert dk

ij(t0) to the one which would be bounded above
by (1 + 5

n2n)dk
ij(t0). This implies that, in a single movement of a robot, the

displacement of the robot would be bounded above by (1 + 5
n2n)dk

ij(t0)

n2n <
2

n2n dk
ij(t0). Thus, in general, we can assume that in a single movement of a

robot, the displacement of the robot would be bounded above by 2
n2n dk

ij(t0).
This bound holds irrespective of the scheduling of actions of the robots. Thus,
if each of the three robots moves once, we have,

dk
ij(t) > (1 − 6

n2n
)dk

ij(t0) (1)

where t > t0.
– ri, rj and rk are Not Mutually Visible at t0 : Since the three robots are

not collinear, they form a triangle 	ijk(t0). Again, since they are not mutually
visible, at least one side of 	ijk(t0) contains at least one robot. Without loss
of generality, we consider the following scenarios.

• rj(t0), rk(t0) ∈ V(ri(t0)) and rk(t0) /∈ V(rj(t0)): Let ru and rv be
the robots (not necessarily distinct) on Ljk(t0), closest to rj and rk respec-
tively (Fig. 3). As seen earlier, the displacements of rj and rk, in single
movements, would be bounded above by 2

n2n du
ij(t0) and 2

n2n dk
iv(t0) respec-

tively. Both of these values are less than 2
n2n dk

ij(t0). The movement of ri

would be bounded above by 2
n2n dk

ij(t0) and the Eq. (1) holds.
• ri(t0) /∈ V(rk(t0)) ∪ V(rj(t0)) and rj(t0) ∈ V(rk(t0)): Let ru1 and

rv1 be the robots (not necessarily distinct) on Lik(t0), closest to ri and
rk respectively, ru2 and rv2 be the robots (not necessarily distinct) on
Lij(t0), closest to ri and rj respectively (Fig. 4). The displacements of ri,

88 S. Bhagat et al.

rj and rk, in single movements, would be bounded above by 2
n2n du1

iu2
(t0),

2
n2n dk

jv2
(t0) and 2

n2n dk
jv1

(t0) respectively. All of these values are less than
2

n2n dk
ij(t0) and the Eq. (1) holds.

• ri(t0) /∈ V(rk(t0)) ∪ V(rj(t0)) and rj(t0) /∈ V(rk(t0)): Let ru1 and
rv1 be the robots (not necessarily distinct) on Lik(t0), closest to ri and
rk respectively, ru2 and rv2 be the robots (not necessarily distinct) on
Lij(t0), closest to ri and rj respectively and ru3 and rv3 be the robots
(not necessarily distinct) on Ljk(t0), closest to rj and rk respectively
(Fig. 5). The displacements of ri, rj and rk, in single movements, would be
bounded above by 2

n2n du1
iu2

(t0), 2
n2n du3

jv2
(t0) and 2

n2n dk
v1v3

(t0) respectively.
All of these values are less than 2

n2n dk
ij(t0). Thus the Eq. (1) holds.

All the above bounds hold even if (i) robots are observed while they are
in motion, and (ii) stop before reaching their destinations. From Eq. (1) the
lemma follows.

Fig. 3. An example where two pairs of robots are mutually visible.

Fig. 4. An example where one pair of robots are mutually visible.

Lemma 2. Let ri, rj and rk be collinear robots at time t0. If each robot moves
at most once, they become non-collinear and remains non-collinear during whole
execution of our algorithm.

Proof. Without loss of generality, let rj lie between ri and rk (there may be
other robots on Lik(t0)). Depending upon the initial positions of the robots,
followings are the possible scenarios:

Formation of General Position by Asynchronous Mobile Robots 89

Fig. 5. An example where no pair of robots are mutually visible.

– Case-1 (Lik(t0) is Not Coincident with Y -axis): In this case, the direc-
tions of movements of all the three robots are on the same side of Lik(t). At
least one of ri and rk has to move before rj finds itself as terminal robot.
Thus, the movement of rj would be bounded above by 1

n2n dj
ik(t) (even if

ri /∈ V(rj(t))). Hence ri, rj and rk do not remain collinear.
– Case-2 (Lik(t0) is Coincident with Y -axis): In this case, the directions of

movements of the robots may be different sides of Lik(t). However, the robots
move one by one according to an ordering, depending upon their locations on
Lik(t0). Exactly one of ri and rk, say ri, moves first. Then rj finds itself as
terminal robot and moves. Finally, the rk moves. The displacement of rk is
bounded above by 1

n2n dk
ij(t). Thus, they become non-collinear.

In a single move, robot ri leaves all the initial lines of collinearity. Hence, it
become visible to all those robots which were initially not visible to it provided
no new collinearities are created with ri. By Lemma 1 and Case-1, Case-2 above,
ri does not create any new collinearity in a single move. Hence it becomes visible
to all other robots and remains so. Thus once ri, rj and rk become collinear they
never again become collinear.

Lemma 3. Each robot moves at most once during the whole execution of our
algorithm.

Proof. According to our algorithm, a terminal robot moves if it can not see all
other robots or one of the lines joining its position with other robot positions
is coincident with its Y -axis. In both the cases, one move would be sufficient
provided it does not create new collinearities. By Lemmas 1 and 2, in a single
move, a robot ri (i) does not create collinearities with the robots with which
it was not collinear initially, and (ii) breaks the initial collinearities. Once ri

becomes visible to all the robots, in our approach, the other robots avoid creating
collinearities with it. The robots which are still moving and have not noticed ri,
also do not create collinearities according to our approach. Hence, each robot in
the system moves at most once during the whole execution of our algorithm.

Lemma 4. The movements of the robots are collision free.

Proof. Let ri and rj be two arbitrary robots and at least one of them move.
Consider a robot rk visible to at least one of ri and rj . By Lemma 3, each robot

90 S. Bhagat et al.

moves at most once. If ri and rj collide, then ri, rj and rk would become collinear
or remain collinear which are contradictions to Lemmas 1 and 2. Hence in our
algorithm, the movements of the robots are collision free.

From the above results, we can state the following theorem:

Theorem 1. A set of asynchronous, oblivious robots, placed in distinct location
(initially not in general position) can form general position in finite time without
any collision under one-axis agreement.

4 Conclusion

In this paper we have presented a distributed algorithm for obtaining general
position in finite time by a set of autonomous, homogeneous, oblivious, asynchro-
nous robots having one-axis agreement. The algorithm assures that the robots
will have collision free movements. Once the robots obtain general position, the
next job could be to form any pattern maintaining the general position. Most
of the existing pattern formation algorithms have assumed that the robots are
transparent. Thus, designing algorithms for forming patterns by maintaining
general position of the robots, may be a direct extension of this work.

References

1. Agathangelou, C., Georgiou, C., Mavronicolas, M.: A distributed algorithm for
gathering many fat mobile robots in the plane. In: Proceedings of the 32nd ACM
Symposium on Principles of Distributed Computing (PODC), pp. 250–259 (2013)

2. Di Luna, G.A., Flocchini, P., Gan Chaudhuri, S., Santoro, N., Viglietta, G.: Robots
with lights: overcoming obstructed visibility without colliding. In: Felber, P., Garg,
V. (eds.) SSS 2014. LNCS, vol. 8756, pp. 150–164. Springer, Heidelberg (2014)

3. Di Luna, G.A., Flocchini, P., Poloni, F., Santoro, N., Viglietta, G.: The mutual vis-
ibility problem for oblivious robots. In: Proceedings of 26th Canadian Conference
on Computational Geometry (CCCG 2014) (2014)

4. Ando, H., Oasa, Y., Suzuki, I., Yamashita, M.: Distributed memoryless point con-
vergence algorithm for mobile robots with limited visibility. IEEE Trans. Robot.
Autom. 15(5), 818–828 (1999)

5. Bolla, K., Kovacs, T., Fazekas, G.: Gathering of fat robots with limited visibility
and without global navigation. In: Rutkowski, L., Korytkowski, M., Scherer, R.,
Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) EC 2012 and SIDE 2012. LNCS,
vol. 7269, pp. 30–38. Springer, Heidelberg (2012)

6. Cohen, R., Peleg, D.: Local spreading algorithms for autonomous robot systems.
Theor. Comput. Sci. 399, 71–82 (2008)

7. Czyzowicz, J., Gasieniec, L., Pelc, A.: Gathering few fat mobile robots in the plane.
Theor. Comput. Sci. 410(6–7), 481–499 (2009)

8. Das, S., Flocchini, P., Prencipe, G., Santoro, N., Yamashita, M.: The power of
lights: synchronizing asynchronous robots using visible bits. In: Proceedings of the
32nd International Conference on Distributed Computing Systems (ICDCS), pp.
506–515 (2012)

Formation of General Position by Asynchronous Mobile Robots 91

9. Das, S., Flocchini, P., Prencipe, G., Santoro, N.: Synchronized dancing of oblivious
chameleons. In: Ferro, A., Luccio, F., Widmayer, P. (eds.) FUN 2014. LNCS, vol.
8496, pp. 113–124. Springer, Heidelberg (2014)

10. Efrima, A., Peleg, D.: Distributed models and algorithms for mobile robot systems.
In: van Leeuwen, J., Italiano, G.F., van der Hoek, W., Meinel, C., Sack, H., Plášil,
F. (eds.) SOFSEM 2007. LNCS, vol. 4362, pp. 70–87. Springer, Heidelberg (2007)

11. Flocchini, P., Prencipe, G., Santoro, N., Widmayer, P.: Arbitrary pattern formation
by asynchronous, anonymous, oblivious robots. Theor. Comput. Sci. 407(1–3),
412–447 (2008)

12. Flocchini, P., Prencipe, G., Santoro, N.: Distributed Computing by Oblivious
Mobile Robots. Morgan & Claypool, San Rafeal (2012)

13. Flocchini, P., Santoro, N., Viglietta, G., Yamashita, M.: Rendezvous of two robots
with constant memory. In: Moscibroda, T., Rescigno, A.A. (eds.) SIROCCO 2013.
LNCS, vol. 8179, pp. 189–200. Springer, Heidelberg (2013)

14. Peleg, D.: Distributed coordination algorithms for mobile robot swarms: new direc-
tions and challenges. In: Pal, A., Kshemkalyani, A.D., Kumar, R., Gupta, A. (eds.)
IWDC 2005. LNCS, vol. 3741, pp. 1–12. Springer, Heidelberg (2005)

15. Suzuki, I., Yamashita, M.: Distributed anonymous mobile robots: formation of
geometric patterns. SIAM J. Comput. 28(4), 1347–1363 (1999)

16. Viglietta, G.: Rendezvous of two robots with visible bits. In: Flocchini, P., Gao,
J., Kranakis, E., der Heide, F.M. (eds.) ALGOSENSORS 2013. LNCS, vol. 8243,
pp. 291–306. Springer, Heidelberg (2014)

Graphs Algorithms

On Aligned Bar 1-Visibility Graphs

Franz J. Brandenburg(B), Alexander Esch, and Daniel Neuwirth

University of Passau, 94030 Passau, Germany
{brandenb,eschalex,neuwirth}@fim.uni-passau.de

Abstract. A graph is called a bar 1-visibility graph, if its vertices can
be represented as horizontal vertex-segments, called bars, and each edge
corresponds to a vertical line of sight which can traverse another bar.
If all bars are aligned at one side, then the graph is an aligned bar 1-
visibility graph, AB1V graph for short.

We investigate AB1V graphs from different angles. First, there is a
difference between maximal and optimal AB1V graphs, where optimal
AB1V graphs have the maximum of 4n − 10 edges. We show that opti-
mal AB1V graphs can be recognized in O(n2) time and prove that an
AB1V representation is fully determined by either an ordering of the
bars or by the length of the bars. Moreover, we explore the relations to
other classes of beyond planar graphs and show that every outer 1-planar
graph is a weak AB1V graph, whereas AB1V graphs are incomparable,
e.g., with planar, k-planar, outer-fan-planar, (1, j)-visibility, and RAC
graphs. For the latter proofs we also use a new operation, called path-
addition, which distinguishes classes of beyond planar graphs.

1 Introduction

There is recent interest in beyond planar graphs, which comprise all classes of
graphs that extend the planar graphs and are defined by restrictions on crossings.
Particular examples are 1-planar graphs [4,18], fan planar graphs [2,3], quasi-
planar graphs [20], right angle crossing (RAC) graphs [11], bar visibility graphs
[10], bar (1, j)-visibility graphs [7], rectangle visibility graphs [15], and map
graphs [8,23]. Besides, there are specializations, such as outer 1-planar graphs
[1,14], IC-planar graphs [5], outer-fan-planar graphs [2] and AB1V graphs. The
latter were introduced by Felsner and Massow [13] who called them semi bar
1-visibility graphs. The alignment of the bars is the important property to dis-
tinguish AB1V from general visibility representations.

Visibility is a major topic in graph drawing and computational geometry. A
bar visibility representation displays each vertex by a horizontal bar and each
edge by a vertical line of sight between the bars of the endvertices. There are
several versions of visibility including distinct, strong, ε and weak. In the distinct,
strong and ε-versions there is an edge if and only if there is a visibility by a line of
sight. In the distinct case the endpoints of bars must have different x-coordinates
[13,16]. Bars can be (half) open intervals in the strong case with a line of sight

Supported by the Deutsche Forschungsgemeinschaft (DFG), grant Br835/18-2.

c© Springer International Publishing Switzerland 2016
M. Kaykobad and R. Petreschi (Eds.): WALCOM 2016, LNCS 9627, pp. 95–106, 2016.
DOI: 10.1007/978-3-319-30139-6 8

96 F.J. Brandenburg et al.

of width zero. In the ε-version, the bars are closed intervals and the lines of sight
have width ε > 0. This version is most commonly used and is sometimes called
the strong version. In the weak version there is an edge if there is a visibility. Thus
edges can be omitted if there is a visibility. Clearly, graphs in the weak version
are exactly the subgraphs of graphs in the other versions. This assumption is
relevant for a comparison with other classes of graphs, which are generally closed
under taking subgraphs. In the planar case with non-transparent bars, distinct,
strong, ε and weak visibility graphs have been fully characterized [16,19,22,24].
In particular, for 2-connected graphs, the weak and the ε-visibility graphs are
exactly the planar graphs, whereas K2,3 has no strong visibility representation.
All versions coincide for triangulated or maximal planar graphs.

Aligned bar 1-visibility representations and graphs were introduced by
Felsner and Massow [13]. They used the distinct version of visibility and allow a
line of sight to traverse up to k bars. A distinct AB1V representation, dAB1V for
short, is characterized by two permutations, called t-order and r-order, respec-
tively. The t-order is the top-down (or after a rotation the left-to-right) order
of the bars of the vertices and the r-order is an ordering of the bars by length.
Felsner and Massow established important properties of dAB1V graphs. Every
dAB1V graph has a vertex of degree four and has at most 4n − 10 edges. This
bound is tight for all even n ≥ 4. The graphs are 5-colorable, have clique number
five and geometric thickness two. Last but not least they showed that for a given
graph an r-order can be computed from a t-order.

AB1V graphs are a proper subclass of bar 1-visibility graphs, which were
introduced by Dean et al. [10] and further investigated by Sultana et al. [21]
and by Evans et al. [12], who also compared them with other classes of beyond
planar graphs. Bar (1, j)-visibility graphs [7] and 1-visibility graphs [4] specialize
bar 1-visibility graphs and restrict the number of edges that may pass a bar to
j and one passes, respectively.

In this work, we extend the research on AB1V graphs. First, we show that
AB1V graphs are closed under path-addition. This is a novel operation that arbi-
trarily allows the addition of vertex-disjoint paths of sufficient length. The opera-
tion is later used to distinguish AB1V from other classes of graphs and may be of
interest on its own. Then we show that there are maximal AB1V graphs with less
than 4n − 10 edges. A main result is the recognition of optimal AB1V graphs in
quadratic time. In addition, we complement a result of Felsner and Massow and
show that the t-order can be computed from the r-order of a dAB1V graph in lin-
ear time. Finally, we show that every outer 1-planar graph is a weak AB1V graph
such that an AB1V representation can be constructed in linear time. However,
AB1V graphs are incomparable to e.g., planar, k-planar, outer-fan-planar, bar
(1, j)-visibility, and RAC graphs.

The paper is organized as follows. In Sect. 2 we introduce basic concepts.
Maximal graphs and path-additions are studied in Sects. 3 and 4. In Sect. 5
we investigate recognition problems. The relationship to other graph classes is
discussed in Sect. 6 and we conclude with some open problems.

On Aligned Bar 1-Visibility Graphs 97

2 Preliminaries

We consider simple, undirected graphs G = (V,E) with vertices listed in some
arbitrary order. Edges are denoted by e = (u, v). Let N(v) denote the set of
neighbors of a vertex v including v and G[U] the subgraph induced by U ⊆ V .

We represent graphs by aligned bar 1-visibility representations, AB1V for
short. As suggested by Felsner and Massow [13], we rotate the drawings, which
due to the alignment are more intuitive and compact than ordinary visibility
representations. In an AB1V representation, each vertex is represented by a ver-
tical bar with bottom at y = 0. Each edge e = (u, v) corresponds to a horizontal
line of sight between the bars of u and v which can traverse another bar. We dis-
tinguish between distinct, strong and weak visibility. In the distinct and strong
versions there is an edge if and only if there is a visibility, where in the distinct
case all bars have a different length. In the weak version, there is an edge if there
is a visibility. We denote this distinction by d, s or w, e.g., dAB1V.

A partial AB1V representation is the AB1V representation of an induced
subgraph G[U]. An extension of a partial AB1V representation is an
AB1V representation of G[U ∪ W] such that the restriction to G[U] is the
AB1V representation of G[U].

From Felsner and Massow [13] we adopt the t- and r-orders for the description
of dAB1V representations which are the orderings of the vertices by the position
from left to right and by the length of the bars, respectively. Then a partial
AB1V representation is the restriction of the t- and r-orders to the vertices
of U .

From the t-order we immediately obtain that every sAB1V graph has a
Hamilton path and every wAB1V graph is sub-Hamiltonian (with a Hamilton
cycle).

3 Maximality

AB1V graphs have a density of at most 4n − 10 [13], however, there are sparser
maximal AB1V graphs. An AB1V graph G is maximal if there is no proper
AB1V supergraph H on the same set of vertices with more edges. Then the
addition of any new edge violates AB1V . If there is no proper AB1V supergraph
of the same size, then G is optimal, i.e., G has 4n − 10 edges. The respective
classes of graphs are denoted by oAB1V and mAB1V, respectively.

Optimal and maximal coincide for some classes of graphs and they differ for
others. A planar graph is maximal if and only if it is optimal and has 3n − 6
edges. However, for outer 1-planar [1], 1-planar [6], and (1, j)-visibility graphs
[7] there are maximal graphs which are not optimal.

First, we show that there are AB1V graphs with a unique AB1V
representation: a rare result (and generally hard to prove) for beyond planar
graphs.

Lemma 1. There are AB1V graphs with a unique dAB1V representation, i.e.,
a unique t-order of the bars up to reflection.

98 F.J. Brandenburg et al.

Fig. 1. An AB1V graph with a unique AB1V representation

Proof. (Sketch). Our graphs Gk, for k ∈ N, consist of a base B and k K5 sub-
graphs, which are each connected to three distinguished vertices at the left.
The base is composed of three subgraphs with sets of vertices V0, U0 and W0,
respectively, see Fig. 1.

The subgraph G[V0] with V0 = {v1, . . . , v10} consists of six consecutive K5.
G[U0] with U0 = {u1, . . . , u5} is a path and adds a new path of length six
from v3 to v4. Finally, G[W0] is K5 with edges from some vertices of G[W0]
to v1, v3, and v5 and not to other vertices of V0 or U0. The uniqueness of the
AB1V -representation is based on Observation 1. In consequence, the vertices of
G[{v1, v2, v3, v4, v5}] and G[{v6, v7, v8, v9, v10}] must nest in t-order, vertices v1
and v10must be the first and last in any t-order, and the vertices of G0[W0] must
be places between v1 and v3 in any t-order. �
Observation 1. If (a1, . . . , a5) is the t-order of a K5 in an AB1V representation,
then a3 has the shortest bar of a1, . . . , a5 and thus is the first in the r-order of
the K5. In addition, there is no other vertex b with a1 < b < a5 in t-order with
a bar of length at least the bar of a3.

Theorem 1. There are maximal AB1V graphs with density 19
5 n − 7 for n =

5k + 20, k ∈ N.

Proof. Consider the graphs Gk from Lemma 1. Each K5 subgraph Gk[Wk] adds
19 edges, which finally results in 19

5 n − 7 edges for graphs of size n = 5k + 20.
The AB1V representation from Fig. 1 is maximal, and the graphs are maximal
since the AB1V representation is unique. �

In consequence, a strict hierarchy among AB1V graphs can be obtained.

Corollary 1. oAB1V ⊂ mAB1V ⊂ dAB1V ⊂ sAB1V ⊂ wAB1V.

4 Path-Addition

Next, we introduce a new operation, called path-addition, which can be used to
distinguish classes of beyond planar graphs. Some classes are closed under path-
addition, such as AB1V , bar 1-visibility and RAC graphs, whereas the planar,
k-planar and (1, j)-visibility graphs are not closed.

On Aligned Bar 1-Visibility Graphs 99

Definition 1. For a graph G = (V,E), two vertices u, v ∈ V and an internally
vertex disjoint path P = (u,w1, . . . , wt, v) with wi �∈ V for 1 ≤ i ≤ t from u
to v, the path-addition results in a graph G′ = (V ∪ W,E ∪ Q ∪ F) such that
W = {w1, . . . , wt} is the set of internal vertices of P , Q consists of the edges
of P and F is a set of edges with at least one endpoint in W . We denote G′ by
G ⊕ P ⊕ F .

Definition 2. A class of graphs G is closed under path-addition if for every
graph G in G and for every internally vertex disjoint path P of length at least
|G| − 1 between two vertices u and v of G there is a set of edges F such that
G ⊕ P ⊕ F is in G.

Path-addition is an extraordinary and powerful operation. If paths P1, . . . , Pr

are added successively to graph G, then the length of the paths increases at least
exponentially such that |Pi| ≥ |G|−1+|P1|+· · ·+|Pi−1| and |Pi| ≥ 2i−1(G−1)+1.
The edges of Fi are only constrained by the fact that one endvertex is from the
new path, and they are added to preserve the class of graphs G.

Theorem 2. The {w, d, s}AB1V graphs are closed under path-addition.

Proof. Consider an AB1V representation of Gi after paths P1, . . . , Pi have been
added to an AB1V graph G. Increase the length of the bars of the vertices of
Gi by |Gi|, such that they are long, and let the bars of the internal vertices of
Pi+1 have length 1, . . . , |Pi+1|, respectively, such that they are short. Insert the
bars of the internal vertices of Pi+1 between the bars of Gi, such that there is a
1-visibility between two consecutive vertices of Pi+1. This can be done in many
ways if Pi+1 is longer than the distance of its endvertices in the t-order of Gi.

The set of edges Fi+1 is determined by the obtained AB1V representation.
If the bars of two consecutive vertices a, b of Pi+1 are placed immediately to the
left and right of the bar of vertex c of Gi, then Fi+1 includes the edges (a, c)
and (b, c) and if a and b are placed immediately to the left and right of the
bar of another vertex c of Pi+1, then Fi+1 includes the edges (a, c), (b, c), and
probably more edges between vertices of Pi+1 according to the rules of AB1V .
In any case, an appropriate set of edges Fi+1 can be found to make Gi+1 an
AB1V graph. �

Note that we add paths one at a time and each path has sufficient length in
an AB1V representation to connect the distinguished vertices u and v. A path
may make some turns if it is too long. If an AB1V representation is given then
a path of length k would suffice, where k is the distance between the bars of u
and v.

In the theory of minors, disjoint paths are used for edge-contraction. A path-
addition introduces a disjoint path between any two vertices of a graph G. Hence,
we can fill any graph G to a graph H that includes Kn as a minor, where n ≥ |G|.
In particular, the discrete graph with five vertices can be filled by 15 paths to a
graph with a K5 minor.

Corollary 2. The planar graphs are not closed under path-addition.

100 F.J. Brandenburg et al.

Suppose there is a cycle C of length r separating a graph G into an inner
and an outer component such that the components are nonempty and C can be
traversed only c ·r times. Then we can add c ·r+1 paths to violate this property.
In consequence, we obtain:

Lemma 2. The 1-planar (k-planar) and the (1, j) bar 1-visibility graphs are not
closed under path-addition.

5 Recognition of Optimal AB1V Graphs

The recognition problem of beyond planar graphs is NP-hard, in general. From
the aforementioned classes it is known that outer 1-planar graphs can be recog-
nized in linear time [1,14], map graphs in cubic time [9], and maximal outer-fan-
planar graphs in polynomial time [2]. Here we solve the recognition problem for
optimal AB1V graphs. In addition, we show that the t-order can be computed
in linear time from the r-order of a dAB1V graph. This complements a result of
Felsner and Massow [13] who computed the r-order from the t-order.

For our algorithms we use the following observation:

Observation 2.

– Every optimal AB1V graph has a vertex of degree at most four, namely, the
vertex with the shortest bar.

– The maximum complete subgraphs have size at most five [13].
– If G is an optimal AB1V graph, then all vertices have degree at least four.
– If G is an optimal AB1V graph, then for every i = 5, . . . , n the vertex with the

i-th longest bar in a distinct AB1V representation forms a K5 with vertices
with longer bars and it must be placed between these neighbors.

– The vertices with the four longest bars are in pairs at the left and right sides
and they form a K4.

Our recognition algorithm for optimal AB1V graphs proceeds in two
phases. First, it computes all K5 subgraphs. Assuming the vertices of
the actual K5 have the longest bars in an AB1V representation, it
then takes an AB1V representation and incrementally extends the partial
AB1V representation by adding a vertex of degree four.

Lemma 3. If G is an optimal AB1V graph, then G has at most n − 4 K5 sub-
graphs, which can be computed in linear time.

Proof. Every optimal AB1V graph of size at least five has a vertex of degree
four and several such vertices are possible. Our algorithm gets a vertex v of
degree four, checks whether G[N(v)] induces a K5 and if so records the K5. The
algorithm removes v and proceeds on G − v, which is optimal, too.

Clearly, the access to v and the steps take O(1) time. Each K5 subgraph can
be assigned a vertex v of degree four in the actual graph, which results in at
most n − 4 K5 and a linear running time.

The correctness is clear by Observation 2. �

On Aligned Bar 1-Visibility Graphs 101

Lemma 4. There is a linear time algorithm which checks whether the par-
tial AB1V representation of a K5 subgraph of an optimal AB1V graph G
can be extended to an AB1V representation of G, and if so computes an
AB1V representation, i.e., the t- and r-orders.

Proof. The algorithm implements Observation 2. Let v1, . . . , v5 be the vertices
of the K5 with v1 > v2 > v3 > v4 > v5 > vi for i > 5 in r-order and v5 between
two pairs from v1, v2, v3, v4 in the t-order of a partial AB1V representation.

If there is a partial AB1V representation of G[Vi] and the vertices of Vi =
{v1, . . . , vi} are assigned the n + 1 − i longest bars, then the algorithm gets a
vertex vi+1 which has four neighbors in Vi, assigns the bar of length n − i and
places the bar between (at the median) the bars of its four neighbors from Vi.
This is a partial AB1V representation of G[Vi+1] with Vi+1 = Vi∪{vi+1}. If such
a vertex does not exist or the placement is invalid, then the algorithm stops and
rejects.

Processing a vertex takes O(1) time. If the algorithm succeeds it has
computed the t- and r-orders of G. �

Theorem 3. There is a quadratic time algorithm which checks whether a graph
G is an optimal AB1V graph, and if so computes an AB1V representation.

Proof. The algorithm takes each K5 subgraph of G and successively tests all
120 partial AB1V representations for an extension. The algorithm succeeds if it
finds an extension and rejects otherwise. If G is an optimal AB1V graph, the
algorithm must succeed and it cannot succeed otherwise. There are O(n) many
K5 and each test takes O(n) time. �

Next, we show that the left-to-right order of the bars can be computed from
an AB1V graph together with the knowledge on the length of the bars. The
converse was shown in [13].

Theorem 4. There is a linear time algorithm which computes a t-order given
an r-order of a dAB1V graph G such that the t- and r-orders describe a
dAB1V representation of G.

Proof. Let (r1, . . . , rn) be the given r-order of G in decreasing order. Thus, vertex
r1 has a bar of length n and rn has a bar of length one.

Consider a partial AB1V representation of G[{r1, r2, r3, r4}], i.e., a left-to-
right ordering of the vertices with the four longest bars. The algorithm suc-
cessively extends G[{r1, r2, r3, r4}] and in the i-th step adds vertex ri. Let
Vi−1 = {r1, . . . , ri−1} for i = 5, . . . , n.

For i = 5, . . . , n, if ri has four neighbors in Vi−1, then the partial
AB1V representation is extended by placing ri between (at the median) its four
neighbors in Vi−1. If ri has three neighbors in Vi−1, then one of its neighbors is
the first (resp. last) vertex in the actual partial AB1V representation, which is
extended by placing ri in second (last but one) place. Finally, if ri has only two
neighbors in Vi−1, then ri is an extreme vertex and is placed to the left (right)

102 F.J. Brandenburg et al.

of the vertices of Vi, if the former leftmost (rightmost) vertex is its neighbor.
The algorithm stops if this placement is invalid.

The correctness is due to the fact that the bars of ri, . . . , rn are shorter than
the bar of ri−1. Hence, the bar of ri can see the bars of its neighbors from Vi−1.

Each run with an extension of a partial AB1V representation of G[Vi−1] takes
linear time, and there are 24 such representations. �

Together with a result from [13] we can conclude:

Corollary 3. If G is a dAB1V graph, then it suffices to know (i) the t-order or
(ii) the r-order to completely specify a AB1V representation of a dAB1V graph.

6 Relationship to Other Classes of Graphs

For the comparison of AB1V graphs with other classes of graphs we switch to
weak AB1V graphs, since distinct and strong AB1V graphs are too restrictive,
e.g., by a degree four vertex. Moreover, the other classes of graphs are generally
closed under taking subgraphs. It is not difficult to transfer the later incompa-
rability results to the o,m, d, s versions of AB1V graphs.

Common drawings and visibility representations are equivalent in the pla-
nar case (and with 2-connectivity) when crossings are excluded. However, with
singleton crossings, visibility representations are more powerful than common
drawings, since the 1-planar graphs are a proper subclass of the 1-visibility
graphs, which are the bar 1-visibility graphs where each bar is passed by at
most one edge [4]. A similar result holds for AB1V graphs.

Theorem 5. There is a linear time algorithm that constructs a weak distinct
AB1V representation of an outer 1-planar graph.

Proof. There is a linear time algorithm of Auer et al. [1] which tests whether
a graph G is outer 1-planar and if so augments G to H by adding edges and
constructs a (planar) maximal outer 1-planar embedding of H. The embedding
of H consists of planar triangles and kites, which are K4 that are embedded with
a pair of crossing edges.

Let X be the set of crossing edges in the embedding of H and let H − X
be the graph after their removal. Then H − X is an outerplanar graph with a
Hamilton cycle where all inner faces are triangles or quadrangles. The dual of
H−X is a tree with t- and q-vertices corresponding to triangles and quadrangles,
respectively. The outer face is ignored. We mark a leaf of T as root r, which is
kept to the end.

First, we construct a (planar) bar visibility representation of H−X. Consider
the root r = (v1, . . . , vk) with k = 3, 4 and with the edge (v1, v2) in the outer
face. Then the t-order is the ordering of the vertices on the Hamilton cycle of H
with v1 = 1 and v2 = n. Now, two vertices u, v span an interval.

The length of each bar, i.e., the r-order of H−X, is computed by successively
removing a leaf from T . This extends Mitchell’s algorithm for the recognition of

On Aligned Bar 1-Visibility Graphs 103

maximal outerplanar graphs by successively removing a vertex of degree two [17].
A leaf b of T one-to-one corresponds to a vertex v of degree two if b is a triangle,
and to two vertices u, v of degree two with an edge (u, v) if b is a quadrangle.
Suppose that i − 1 vertices have been removed so far, where i = 1, . . . , n − i − j
for j = 0, 1 and j = 0 if and only if the root is a triangle. Assign v a bar of
length i if b is removed and v is a degree two vertices in the triangle b. The edges
(u, v) and (v, w) incident to v are lines of sight at level i, i.e., at the top end of
the bar of v. Increase i by one.

Accordingly, assign bars of length i and i+1 to u and v (in any order) if b is
a quadrangle and u, v are the degree two vertices corresponding to b and draw
the lines of sight at the top of the bars. Increase i by two. Finally, assign bars of
length n and n − 1 to the vertices v1 and v2 corresponding to the root and bars
of length n − 2 resp. n − 3 to the other vertices of r.

The algorithm preserves the invariants that all bars have a distinct length
and that the bars of all vertices in the interval between u and v have bars that
are shorter than the bars of u and v if there is an edge (u, v). The latter is due
to the fact that the vertices between u and v have been processed before u and
v and it guarantees that an edge at level i is unobstructed.

Finally, we reinsert the crossing edges of X. For each pair of crossing edges
(a, c) and (b, d) there is a quadrangle (a, b, c, d) with a < b < c < d in t-order
and {b, c} < {a, d} in r-order. The bars of b and c have length i and i + 1,
respectively. Then the bar of a vertex w in the interval from a to d has length
at most i − 1 if w �= b, c. Suppose the bar of b has length i, the case where the
bar of c has length i is similar. Then draw the edge (a, c) as a planar line of
sight at level i + 1 and draw the edge (b, d) as a line of sight at level (i − 0.5)
which traverses the bar of c. No other bars are affected. Hereby, we adapt the
technique of Brandenburg [4] for the bar 1-visibility representation of 1-planar
graphs to AB1V representations. For integer coordinates scale by two.

In total we have obtained a weak distinct AB1V representation of G where
lines of sight are ignored if there is no edge. All stages of the algorithm take
linear time. �

To establish inclusion relations we use Theorem 5 and the facts that outer
1-planar graphs are planar [1], that K5 is a wAB1V graph, and that K6 is a bar
1-visibility graph and not a wAB1V graph.

Corollary 4. The outer 1-planar graphs are a proper subclass of the wAB1V
graphs, which in turn, are a proper subclass of the weak bar 1-visibility graphs.

Next, we address the incomparability of AB1V graphs with other classes of
beyond planar graphs.

Theorem 6. The classes of planar resp. k-planar graphs and of {w, d, s}AB1V
graphs are incomparable.

Proof. As stated in Sect. 4, AB1V graphs are closed under path-addition and
planar and k-planar graphs are not. For the converse direction, note that every

104 F.J. Brandenburg et al.

AB1V graph has a vertex of degree at most four, however, there are planar graph
of degree five, such as the dual of the football graph C60, which has faces of size
five and six. �

Moreover, it is not difficult to find graphs which are AB1V graphs and are
not planar (k-planar).

Clearly, AB1V graphs are bar visibility graphs, however, there is an incom-
parability if there is a bound on the number of lines of sight passing a bar, as in
bar (1, j)-visibility graphs. The proof follows the reasoning behind Theorem6.

Theorem 7. The classes of bar (1, j)-visibility graphs and of {w, d, s}AB1V
graphs are incomparable.

RAC graphs [11] are closed under path-addition. Nevertheless, they are
incomparable to AB1V graphs, which can be proved by appropriate examples.
Similarly, there are counterexamples for outer-fan-planar graphs.

Theorem 8. The classes of {w, d, s}AB1V and of RAC graphs are incomparable.

Theorem 9. The classes of {w, d, s}AB1V and of outer-fan-planar graphs are
incomparable.

Proof. The graph K6−e consists of K5 and a vertex v of degree four and admits
an AB1V representation with v at the first (or last) place in the t-order. Its
density exceeds the maximum density of outer-fan-planar graphs [3].

Conversely, consider the outer-fan-planar graph G from Fig. 2, which is built
in three stages. First, G has a central K5 with vertices v1, . . . , v5. For each edge
(vi, vi+1) with i = 1, . . . , 5 and v6 = v1 there is a K2,4 with four new vertices
u1, . . . , u4 each, which are connected by edges (uj , uj+1) for j = 1, 2, 3 such that
there is a path (vi, u1, . . . , u4, vi+1). Finally, each edge (vi, u1), . . . , (u4, vi+1) on
this path belongs to a new K5 with three new vertices wa, wb, wc in each case.
In total G has 50 vertices.

G is outer-fan-planar as shown by Fig. 2.
Assume that G has an AB1V representation. For each K5 subgraph, Obser-

vation 1 applies. Suppose (vi1 , . . . , vi5) is the t-order of the vertices of the central
K5. Then there are vertices vp and vq with vi2 ≤ vp < vq ≤ vi4 in the t-order
which are consecutive in the central K5 and have a K2,4. The vertices u1, . . . , u4

of this K2,4 with the vertices vp, vq cannot be placed between the bars of vp and
vq, since their bars must be shorter than the ones of vp and vq by Observation 1,
and the shortest bar from u1, . . . , u4 were not 1-visible from the bars of vp and vq.

Next, the bars of u1, . . . , u4 must all be placed to the left of the bar of vp or
to the right of the bar of vq. This is due to the fact that the vertices ui, ui+1

together with their three new vertices wa, wb, wc form K5 and Observation 1
applies. Simply speaking, the bars of ui and ui+1 with i = 1, 2, 3 must be close
together and not separated by a long bar of v1, . . . , v5. These arguments also
apply to the K5 with vp, u1, and with u4, vq, respectively. Assume the bars of
u1, u2, u3, u4 are placed to the left of the bar of vp; the other case is symmetric.

On Aligned Bar 1-Visibility Graphs 105

Then the (long) bar of vp is placed between the bars of the K5 with the vertices
u4 and vq, which violates Observation 1. Hence, there is no AB1V representation
for G. �

Fig. 2. An outer-fan-planar graph which is not an AB1V graph. Gray areas in (a) are
the subgraphs displayed in (b).

7 Conclusion

In this work we have investigated AB1V representations and graphs, which are
an interesting class of beyond planar graphs. We have deepened the studies of
Felsner and Massow [13] and have added new properties and relationships.

Our studies have revealed many new problems, such as the closure of classes
of graphs under path-addition and the relation of AB1V graphs to other known
classes of beyond planar graphs. Of interest are recognition problems, in partic-
ular for weak AB1V graphs.

References

1. Auer, C., Bachmaier, C., Brandenburg, F.J., Gleißner, A., Hanauer, K., Neuwirth,
D., Reislhuber, J.: Outer 1-planar graphs. Algorithmica (to appear, 2016)

2. Bekos, M.A., Cornelsen, S., Grilli, L., Hong, S.-H., Kaufmann, M.: On the recogni-
tion of fan-planar and maximal outer-fan-planar graphs. In: Duncan, C., Symvonis,
A. (eds.) GD 2014. LNCS, vol. 8871, pp. 198–209. Springer, Heidelberg (2014)

3. Binucci, C., Di Giacomo, E., Didimo, W., Montecchiani, F., Patrignani, M., Symvo-
nis, A., Tollis, I.G.: Fan-planarity: properties and complexity. Theor. Comput. Sci.
589, 76–86 (2015)

4. Brandenburg, F.J.: 1-visibility representation of 1-planar graphs. J. Graph Algo-
rithms Appl. 18(3), 421–438 (2014)

5. Brandenburg, F.J., Didimo, W., Evans, W.S., Kindermann, P., Liotta, G., Montec-
chianti, F.: Recognizing and drawing IC-planar graphs. In: Di Giacomo, E., Lubiw,
A. (eds.) GD 2015. LNCS, vol. 9411, pp. 295–308. Springer, Heidelberg (2016)

106 F.J. Brandenburg et al.

6. Brandenburg, F.J., Eppstein, D., Gleißner, A., Goodrich, M.T., Hanauer, K., Reisl-
huber, J.: On the density of maximal 1-planar graphs. In: Didimo, W., Patrignani,
M. (eds.) GD 2012. LNCS, vol. 7704, pp. 327–338. Springer, Heidelberg (2013)

7. Brandenburg, F.J., Heinsohn, N., Kaufmann, M., Neuwirth, D.: On bar (1, j)-
visibility graphs. In: Rahman, M.S., Tomita, E. (eds.) WALCOM 2015. LNCS,
vol. 8973, pp. 246–257. Springer, Heidelberg (2015)

8. Chen, Z., Grigni, M., Papadimitriou, C.H.: Map graphs. J. ACM 49(2), 127–138
(2002)

9. Chen, Z., Grigni, M., Papadimitriou, C.H.: Recognizing hole-free 4-map graphs in
cubic time. Algorithmica 45(2), 227–262 (2006)

10. Dean, A.M., Evans, W., Gethner, E., Laison, J.D., Safari, M.A., Trotter, W.T.:
Bar k-visibility graphs. J. Graph Algorithms Appl. 11(1), 45–59 (2007)

11. Eades, P., Liotta, G.: Right angle crossing graphs and 1-planarity. Discrete Appl.
Math. 161(7–8), 961–969 (2013)

12. Evans, W.S., Kaufmann, M., Lenhart, W., Mchedlidze, T., Wismath, S.K.: Bar 1-
visibility graphs vs. other nearly planar graphs. J. Graph Algorithms Appl. 18(5),
721–739 (2014)

13. Felsner, S., Massow, M.: Parameters of bar k-visibility graphs. J. Graph Algorithms
Appl. 12(1), 5–27 (2008)

14. Hong, S., Eades, P., Katoh, N., Liotta, G., Schweitzer, P., Suzuki, Y.: A linear-time
algorithm for testing outer-1-planarity. Algorithmica 72(4), 1033–1054 (2015)

15. Hutchinson, J.P., Shermer, T., Vince, A.: On representations of some thickness-two
graphs. Comput. Geom. 13, 161–171 (1999)

16. Luccio, F., Mazzone, S., Wong, C.K.: A note on visibility graphs. Discrete Math.
64(2–3), 209–219 (1987)

17. Mitchell, S.L.: Linear algorithms to recognize outerplanar and maximal outerplanar
graphs. Inform. Process. Lett. 9(5), 229–232 (1979)

18. Ringel, G.: Ein Sechsfarbenproblem auf der Kugel. Abh. aus dem Math. Seminar
der Univ. Hamburg 29, 107–117 (1965)

19. Rosenstiehl, P., Tarjan, R.E.: Rectilinear planar layouts and bipolar orientations
of planar graphs. Discrete Comput. Geom. 1, 343–353 (1986)

20. Suk, A.: k-quasi-planar graphs. In: Speckmann, B. (ed.) GD 2011. LNCS, vol. 7034,
pp. 266–277. Springer, Heidelberg (2011)

21. Sultana, S., Rahman, M.S., Roy, A., Tairin, S.: Bar 1-visibility drawings of 1-planar
graphs. In: Gupta, P., Zaroliagis, C. (eds.) ICAA 2014. LNCS, vol. 8321, pp. 62–76.
Springer, Heidelberg (2014)

22. Tamassia, R., Tollis, I.G.: A unified approach a visibility representation of planar
graphs. Discrete Comput. Geom. 1, 321–341 (1986)

23. Thorup, M.: Map graphs in polynomial time. In: Proceedings of 39th FOCS, pp.
396–405. IEEE Computer Society (1998)

24. Wismath, S.: Characterizing bar line-of-sight graphs. In: Proceedings of 1st ACM
Symposium Computational Geometry, pp. 147–152. ACM Press (1985)

A Necessary Condition and a Sufficient
Condition for Pairwise Compatibility Graphs

Md. Iqbal Hossain1(B), Sammi Abida Salma1, and Md. Saidur Rahman1

Graph Drawing and Information Visualization Laboratory,
Department of Computer Science and Engineering,

Bangladesh University of Engineering and Technology, Dhaka, Bangladesh
{mdiqbalhossain,saidurrahman}@cse.buet.ac.bd, sammiq@gmail.com

Abstract. In this paper we give a necessary condition and a sufficient
condition for a graph to be a pairwise compatibility graph (PCG). Let G
be a graph and let Gc be the complement of G. We show that if Gc has
two disjoint chordless cycles then G is not a PCG. On the other hand,
if Gc has no cycle then G is a PCG. Our conditions are the first neces-
sary condition and the first sufficient condition for pairwise compatibility
graphs in general.

1 Introduction

Let T be an edge-weighted tree and let dmin and dmax be two non-negative
real numbers such that dmin ≤ dmax. A pairwise compatibility graph (PCG)
of T for dmin and dmax is a graph G = (V,E), where each vertex u′ ∈ V
represents a leaf u of T and there is an edge (u′, v′) ∈ E if and only if the
distance between u and v in T , denoted by dT (u, v), lies within the range from
dmin to dmax. We denote a pairwise compatibility graph of T for dmin and dmax

by PCG(T, dmin, dmax). A graph G is a pairwise compatibility graph (PCG) if
there exists an edge-weighted tree T and two non-negative real numbers dmin

and dmax such that G = PCG(T, dmin, dmax). An edge-weighted tree T is called
a pairwise compatibility tree (PCT) of a graph G if G = PCG(T, dmin, dmax)
for some dmin and dmax. Figure 1(a) depicts a pairwise compatibility graph G
and Fig. 1(b) of depicts a pairwise compatibility tree T of G for dmin = 4 and
dmax = 5. Evolutionary relationships among a set of organisms can be modeled
as pairwise compatibility graphs [5]. Moreover, the problem of finding a maximal
clique can be solved in polynomial time for pairwise compatibility graphs if one
can find their pairwise compatibility trees in polynomial time [5].

Constructing a PCT of a given graph is a challenging problem. It is interest-
ing that there are some classes of graphs with very restricted structural properties
whose PCT are unknown. For example, it is unknown that whether sufficiently
large wheel graphs and grid graphs are PCGs or not. It is known that some
specific graphs of 8 vertices, 9 vertices, 15 vertices, and 20 vertices are not
PCGs [4,8]. On the other hand, some restricted subclasses of graphs like, cycles,
paths, trees, interval graphs, triangle free outerplanar 3-graphs are known as

c© Springer International Publishing Switzerland 2016
M. Kaykobad and R. Petreschi (Eds.): WALCOM 2016, LNCS 9627, pp. 107–113, 2016.
DOI: 10.1007/978-3-319-30139-6 9

108 M.I. Hossain et al.

Fig. 1. (a) A pairwise compatibility graph G and (b) a pairwise compatibility tree
T of G.

PCGs [7–9]. It is also known that any graph of at most seven vertices [2] and
any bipartite graph with at most eight vertices [6] are PCGs. However the com-
plete characterization of a PCG is not known.

In this paper we give a necessary condition and a sufficient condition for a
graph to be a pairwise compatibility graph based on the complement of the given
graph. Let G be a graph and let Gc be the complement of G. We prove that if
Gc has two disjoint chordless cycles then G is not a PCG. On the other hand, if
Gc has no cycle then G is a PCG.

The rest of the paper is organized as follows. In Sect. 2 we give some defin-
itions that are used in this paper. In Sect. 3 we prove a necessary condition for
PCG. We give a sufficient condition for PCG in Sect. 4. Finally, Sect. 5 presents
some interesting open problems.

2 Preliminaries

Let G = (V,E) be a simple graph with vertex set V and edge set E. Let V ′

and E′ be subsets of V and E, respectively. The graph G′ = (V ′, E′) is called a
subgraph of G, and G′ is an induced subgraph of G if E′ is the set of all edges of
G whose end vertices are in V ′. The complement of G is the graph Gc with the
vertex set V but whose edge set consists of the edges not present in G. A chord
of a cycle C is an edge not in C whose endpoints lie in C. A chordless cycle of G
is a cycle of length at least four in G that has no chord. For a vertex v of a graph
G, N(v) = {u|(u, v) ∈ E} denotes the open neighborhood. Let G1 = (V1, E1) and
G2 = (V2, E2) be two induced subgraphs of G. We call the subgraphs G1 and
G2 disjoint if they do not share a vertex and there is no edge (u, v) ∈ E such
that u ∈ V1 and v ∈ V2. The cycles C1 and C2 drawn by thick lines in the graph
in Fig. 2 are disjoint cycles. On the other hand, the cycle C1 drawn by thick line
and the cycle C3 indicated by dotted lines are not disjoint since the edge (c, g)
has one end vertex c in C1 and the other end vertex g in C3.

Let G = PCG(T, dmin, dmax), and let v be a leaf of T . Then we denote the
corresponding vertex of v in G by v′ and vice versa. The following lemma is
known on a forbidden structure of PCG.

A Necessary Condition and a Sufficient Condition 109

Fig. 2. A graph G with two disjoint chordless cycles whose complement is not a PCG.

Lemma 1 [4]. Let C be the cycle a′, b′, c′, d′ of four vertices. If C =
PCG(T, dmin, dmax) for some tree T and values dmin and dmax, then dT (a, c)
and dT (b, d) cannot be both greater than dmax.

A graph G(V,E) is an LPG (leaf power graph) if there exists an edge-weighted
tree T and a nonnegative number dmax such that there is an edge (u, v) in E if
and only if for their corresponding leaves u′, v′ in T , we have dT (u′, v′) ≤ dmax.
We write G = LPG(T, dmax) if G is an LPG for a tree T with a specified
dmax. Again G is an mLPG (minimum leaf power graph) if there exists an edge-
weighted tree T and a nonnegative number dmin such that there is an edge
(u, v) in E if and only if for their corresponding leaves u′, v′ in T , we have
dT (u′, v′) ≥ dmin. We write G = mLPG(T, dmin) if G is an mLPG for a tree
T with a specified dmin. Both LPG and mLPG are subclasses of PCG [1]. The
following lemmas are known on LPG and mLPG.

Lemma 2 [3]. Let Cn be a cycle of length n ≥ 5, then Cn /∈ mLPG.

Lemma 3 [1]. The complement of every graph in LPG is in mLPG and con-
versely, the complement of every graph in mLPG is in LPG.

3 Necessary Condition

In this section our aim is to prove that for a given graph G, if Gc has two disjoint
chordless cycles of length four or more then G is not a PCG. We first prove the
following lemma.

Lemma 4. Let G = (V,E) be a graph. Let G1 = (V1, E1) and G2 = (V2, E2) be
two induced subgraphs of G with no common vertices in G1 and G2. Assume that
V2 ⊂ N(u′) and V1 ⊂ N(v′) in G for every u′ ∈ V1 and every v′ ∈ V2. Let T1

be a PCT of G1 such that G1 = PCG(T1, dmin1, dmax1) and T2 be a PCT of G2

such that G2 = PCG(T2, dmin2, dmax2). If there exist two leaves a, c in T1 such
that dT1(a, c) > dmax1, and two leaves b, d in T2 such that dT2(b, d) > dmax2,
then G is not a PCG.

110 M.I. Hossain et al.

G1 G2

a

c

b

d

Fig. 3. Illustration for Lemma 4.

Proof. Assume for a contradiction that G = PCG(T, dmin, dmax). Then T has
two subtrees T1 and T2 such that G1 = PCG(T1, dmin, dmax) and G2 =
PCG(T2, dmin, dmax). Since there exists a pair of leaves a, c in T1 such that
dT1(a, c) > dmax and exists a pair of leaves b, d in T2 such that dT2(b, d) > dmax,
both dT (a, c) and dT (b, d) are greater than dmax in T . Then G does not have
the edges (a′, c′) and (b′, d′). Hence the induced subgraph of vertices a′, b′, c′, d′

is a cycle in G because V2 ⊂ N(u′) and V1 ⊂ N(v′) in G for each u′ ∈ V1 and
each v′ ∈ V2 (see Fig. 3), a contradiction to Lemma 1. ��
Since every vertex of G1 is a neighbor of every vertex of G2 in Lemma 4, there is
no edge (u, v) in Gc where u ∈ V1 and v ∈ V2. That means Gc

1 and Gc
2 are disjoint

for the graph G1 and G2 in Lemma 4. Thus the following lemma is immediate.

Lemma 5. Let G be a graph. Let H1 and H2 be two disjoint subgraphs of Gc. For
any Hc

1 = PCG(T1, dmin1, dmax1) and Hc
2 = PCG(T2, dmin2, dmax2), if T1 has a

pair of leaves whose weighted distance is greater than dmax1 and T2 has a pair of
leaves whose weighted distance is greater than dmax2, then G is not a PCG.

It would be interesting to investigate what could be the smallest subgraph Hc
1

or Hc
2 where there always exists a pair of leaves with weighted distance greater

than dmax in its PCT. Our goal is to show that Hc
1 or Hc

2 could be a chordless
cycle or the complement of a cycle.

It is known that every cycle C and its compliment Cc are PCGs [1,7]. One
can easily observe that Cc

n (n ≥ 5) is not in mLPG. By Lemmas 2 and 3 we have
the following lemma.

Lemma 6. Let Cn be a cycle of length n ≥ 5, then both Cn and Cc
n are in PCG

but not in {mLPG, LPG}.
Lemma 6 implies that in any valid PCT of Cn or Cc

n (n ≥ 5) there exist a pair of
leaves whose weighted distance is greater than dmax and a pair of leaves whose
weighted distance is smaller than dmin. We now prove the following lemma.

A Necessary Condition and a Sufficient Condition 111

Lemma 7. Let Cn be a cycle graph of vertices n ≥ 4. Let Cc
n =

PCG(T, dmin, dmax). Then there exist a pair of leaves in T whose weighted dis-
tance is greater than dmax.

Proof. By Lemma 6 the claim is true for n ≥ 5. We thus only prove for the case
C4. Let C4 be the cycle a′, b′, c′, d′ of four vertices. Let Cc

4 = PCG(T1, dmin1,
dmax1). We prove that there exist a pair of leaves in T1 whose weighted distance
is greater than dmax1. Note that Cc

4 contains only two edges (a′, c′) and (b′, d′).
For contradiction assume that dT1(a, b), dT1(b, c), dT1(c, d), dT1(d, a) are smaller
than dmin1. Then Cc

4 = mLPG(T1, dmin1). By Lemma 3, C4 = LPG(T1, dmax)
or PCG(T1, 0, dmax) for some dmax. Since (a′, c′) and (b′, d′) are the non-adjacent
pair in C4, both dT1(a, c) and dT1(b, d) are greater than dmax. But both dT1(a, c)
and dT1(b, d) can not be greater than dmax by Lemma 1, a contradiction. ��

We are now ready to prove our main result of this section as in the following
theorem.

Theorem 1. Let G be a graph. Let H1 and H2 be two disjoint induced subgraphs
of Gc. If each of H1 and H2 is either a chordless cycle of at least four vertices
or Cc

n for n ≥ 5, then G is not a PCG.

Proof. Let H1 be a chordless cycle or compliment of a cycle of at least five ver-
tices. Let Hc

1 = PCG(T1, dmin1, dmax1) for any feasible T1, dmin1 and dmax1.
By Lemma 7, T1 has a pair of leaves a, b such that dT1(a, b) > dmax1. Simi-
larly, if Hc

2 = PCG(T2, dmin2, dmax2) then T2 has a pair of leaves c, d such that
dT2(c, d) > dmax2. Then by Lemma 5, G is not a PCG. ��

4 Sufficient Condition

In this section we show that if the complement of a graph has no cycle then the
graph is a PCG.

Salma et. al. [7] showed that every tree T is a PCG where T = PCG(T, 3, 3).
They compute the edge-weighted tree T easily by taking a copy of T and attach-
ing each vertex as a pendant vertex with its original one. Then set weight 1 to
each edge. It can be easily verified that T is a PCT of T for dmax = 3 and
dmin = 3. For the same settings it is also true that T = LPG(T, 3). We extend
this technique and show that every forest is a LPG as in the following lemma.

Lemma 8. Let T be a forest. Then T = LPG(T, 3). Furthermore the edge-
weighted tree T can be found in linear time.

Proof. Let T be a forest of trees T1, T2, · · · , Tk. We find Ti = LPG(Ti, 3) for
each tree as described above. Then for 2 ≥ i ≥ k we join Ti with

∑
Ti−1, where∑

Ti−1 is the resultant merged trees up to i − 1, as follows. Take two internal
vertices u and v from Ti and

∑
Ti−1, respectively. If no internal vertex exists in

Ti or
∑

Ti−1 then u or v could be a leaf. Then add an edge between u and v in∑
Ti with weight 2. In this way we get T =

∑
Tk. Figures 4(a) and 4(b) illustrate

a forest T and an edge-weighted tree T for T = LPG(T, 3), respectively. It is
easy to see that T for T = LPG(T, 3) can be constructed in linear time. ��

112 M.I. Hossain et al.

Fig. 4. (a) A forest T and (b) the edge-weighted tree T for T = LPG(T, 3).

Fig. 5. Illustration for open problems

We now show that if the complement of a graph has no cycle then the graph is
a PCG as in the follows theorem.

Theorem 2. Let G be a graph. If Gc has no cycle then G is a PCG.

Proof. Let G be a graph. If Gc has no cycle then Gc is a forest. By Lemma 8,
Gc = LPG(T, 3). It can be easily verified that G = mLPG(T, 4). ��

5 Conclusion

In this paper we have given a necessary condition and a sufficient condition for a
pairwise compatibility graph. We have shown that if the complement of a given

A Necessary Condition and a Sufficient Condition 113

graph G contains two disjoint chordless cycles or two disjoint complements of
cycles then G is not a PCG. On the other hand, if the complement of G do not
have any cycle then G is a PCG. The results of this paper suggest several open
problems which could be helpful to close the gap between our two conditions.
For example: decide whether G is PCG or not (a) if Gc has no chordless cycle,
i.e. length of each induced cycle is 3, (b) if Gc has two sufficiently large chordless
cycles and share some vertices (see the example in Fig. 5(b)) or join by some
edges (see the example in Fig. 5(c)), and (c) Gc has at most one sufficiently
large cycle (see the example in Fig. 5(d)).

Acknowledgment. This work is done in the Department of Computer Science and
Engineering (CSE) of Bangladesh University of Engineering and Technology (BUET).
The authors gratefully acknowledge the support received from BUET.

References

1. Calamoneri, T., Montefusco, E., Petreschi, R., Sinaimeri, B.: Exploring pairwise
compatibility graphs. Theor. Comput. Sci. 468, 23–36 (2013)

2. Calamoneri, T., Frascaria, D., Sinaimeri, B.: All graphs with at most seven vertices
are pairwise compatibility graphs. Comput. J. 56(7), 882–886 (2012)

3. Calamoneri, T., Petreschi, R., Sinaimeri, B.: On relaxing the constraints in pairwise
compatibility graphs. In: Rahman, M.S., Nakano, S. (eds.) WALCOM 2012. LNCS,
vol. 7157, pp. 124–135. Springer, Heidelberg (2012)

4. Durocher, S., Mondal, D., Rahman, M.S.: On graphs that are not PCGs. Theor.
Comput. Sci. 571, 78–87 (2015)

5. Kearney, P.E., Munro, J.I., Phillips, D.: Efficient generation of uniform samples
from phylogenetic trees. In: Benson, G., Page, R.D.M. (eds.) WABI 2003. LNCS
(LNBI), vol. 2812, pp. 177–189. Springer, Heidelberg (2003)

6. Mehnaz, S., Rahman, M.: Pairwise compatibility graphs revisited. In: International
Conference on Informatics, Electronics Vision (ICIEV), pp. 1–6, May 2013

7. Salma, S.A., Rahman, M.S., Hossain, M.I.: Triangle-free outerplanar 3-graphs are
pairwise compatibility graphs. J. Graph Algorithms Appl. 17(2), 81–102 (2013)

8. Yanhaona, M.N., Bayzid, M.S., Rahman, M.S.: Discovering pairwise compatibility
graphs. Discrete Math. Algorithms Appl. 2(4), 607–623 (2010). Springer

9. Yanhaona, M.N., Hossain, K.S.M.T., Rahman, M.S.: Pairwise compatibility graphs.
J. Appl. Math. Comput. 30, 479–503 (2009)

Mixing Times of Markov Chains
of 2-Orientations

Stefan Felsner1(B) and Daniel Heldt1

Institut Für Mathematik, Technische Universität Berlin, Berlin, Germany
felsner@math.tu-berlin.de

Abstract. We study Markov chains for α-orientations of plane graphs,
these are orientations where the outdegree of each vertex is prescribed
by the value of a given function α. The set of α-orientations of a plane
graph has a natural distributive lattice structure. The moves of the up-
down Markov chain on this distributive lattice corresponds to reversals
of directed facial cycles in the α-orientation.

A 2-orientation of a plane quadrangulation is an orientation where
every inner vertex has outdegree 2. We show that there is a class of
plane quadrangulations such that the up-down Markov chain on the 2-
orientations of these quadrangulations is slowly mixing. On the other
hand the chain is rapidly mixing on 2-orientations of quadrangulations
with maximum degree at most 4.

1 Introduction

Let G = (V,E) be a graph and let α : V → N be a function, an α-orientation
of G is an orientation with outdeg(v) = α(v) for all vertices v ∈ V . A vari-
ety of interesting combinatorial structures on planar graphs can be modeled
as α-orientations. Examples are spanning trees, Eulerian orientations, Schnyder
woods of triangulations, separating decompositions of quadrangulations. These
and further examples are discussed in [5,10]. In this paper we are interested in
Markov chains to sample uniformly from the α-orientations of a given planar
graph G for a fixed α.

A uniform sampler may be used to get data for a statistical approach to
typical properties of α-orientations. Under certain conditions it can also be used
for approximate counting of α-orientations.

In [10, Sect. 6.2] it is shown that counting α-orientations can be reduced to
counting perfect matchings of a related bipartite graph. The latter problem can
be approximately solved using the permanent algorithm of Jerrum et al. [12].
This algorithm also builds on random sampling.

For sampling α-orientations of plane graphs, however, there is a more nat-
ural Markov chain. The reversal of the orientation of a directed cycle in an
α-orientation yields another α-orientation. If G is a plane graph and �G, �G′ are
α-orientations of G, then we define �G < �G′ whenever �G′ is obtained by reverting
a clockwise cycle of �G. In [5] it has been shown that this order relation makes
the set of α-orientations of G into a distributive lattice.
c© Springer International Publishing Switzerland 2016
M. Kaykobad and R. Petreschi (Eds.): WALCOM 2016, LNCS 9627, pp. 114–127, 2016.
DOI: 10.1007/978-3-319-30139-6 10

Mixing Times of Markov Chains of 2-Orientations 115

A finite distributive lattice is the lattice of down-sets of some poset P . Let a
‘step’ consist in adding/removing a random element of P to/from the down-set.
These step yield the up-down Markov chain on the distributive lattice. A nice
feature of the up-down Markov chain is that it is monotone, see [16]. A monotone
Markov chain is suited for using coupling from the past, see [17]. This method
allows to sample exactly from the uniform distribution on the elements of a
distributive lattice.

The challenge in applications of the up-down Markov chain is to analyze its
mixing time. In [16] some examples of distributive lattices are described where
this chain is rapidly mixing but there are examples where the mixing is slow.
Miracle et al. [15] have investigated the mixing time of the up-down Markov
chain for 3-orientations, a class of α-orientations intimately related to Schnyder
woods. They show that there is a class of plane triangulations such that the
up-down Markov chain on the 3-orientations of these triangulations is slowly
mixing. They also show that the chain is rapidly mixing on 3-orientations of
plane triangulations with maximum degree at most 6.

In this paper we present similar results for the up-down Markov chain on
the 2-orientations of plane quadrangulations. These special 2-orientations are of
interest because they are related to separating decompositions, a structure with
many applications in floor-planning and graph drawing. We refer to [6,8,11] and
references given there for literature on the subject. Specifically we show that
there is a class of plane quadrangulations such that the up-down Markov chain
on the 2-orientations of these quadrangulations is slowly mixing. On the other
hand the chain is rapidly mixing on 2-orientations of quadrangulations with
maximum degree at most 4.

In the full paper [7] we also revisit the case of 3-orientations, there we have
somewhat simpler examples, compared to those from [15]. Our examples also
have a smaller maximum degree, O(

√
n) instead of O(n) on graphs with n ver-

tices. There we also exhibit a function α and a class of plane graphs of maximum
degree 6 such that the up-down Markov chain on the α-orientations of these
graphs is slowly mixing.

2 Preliminaries

In the first part of this section we give some background on the up-down Markov
chain on general α-orientations. Then we discuss 2-orientations and the associ-
ated separating decompositions. Finally we provide some background on mixing
times for Markov chains.

2.1 The Up-Down Markov Chain of α-orientations

Let G be a plane graph and α : V → N be such that G admits α-orientations.
For α-orientations �G, �G′ of G we define �G < �G′ when �G′ is obtained by reverting
a simple clockwise cycle of �G. The transitive closure of this relation makes the
set of α-orientations of G into a distributive lattice, see [5] or [9].

116 S. Felsner and D. Heldt

The steps of the up-down Markov chain on a distributive lattice L = (X,<)
correspond to changes x ↔ x′ for covering pairs x ≺ x′, i.e., pairs x < x′ such
that there is no y ∈ X with x < y < x′. In other words the up-down Markov
chain performs a random walk on the diagram of the lattice. The transition prob-
abilities are (usually) chosen uniformly with a nonzero probability for staying in
a state. Since the diagram of a lattice is connected the chain is ergodic. It is also
symmetric, hence, the unique stationary distribution is the uniform distribution.

The steps of the up-down Markov chain of α-orientations are given by cer-
tain reversals of cycles. For a clean description we need the notion of a rigid
edge. An edge of G = (V,E) is α-rigid if it has the same direction in every
α-orientation of G. Let R ⊆ E be the set of α-rigid edges. Since directed
cycles of an α-orientation �G can be reversed, rigid edges never belong to
directed cycles. Define r(v) as the number of rigid edges that have v as a tail
and let α′(v) = α(v) − r(v). Now α-orientations of G and α′-orientation of
G′ = (V,E − R) are in bijection. And with the inherited plane embedding of G′

the distributive lattices are isomorphic.
If G′ is disconnected then we can shift connected components of G′ to get a

plane drawing G# without nested components. Since the orientation, clockwise
or counterclockwise, of a directed cycle in G′ and G# is identical the distributive
lattices of α′-orientations are isomorphic. The steps of the up-down Markov chain
of α′-orientations of G# are easy to describe, they correspond to the reversal
of cycles that form the boundary of bounded faces, the face boundaries of G#

are the essential cycles for the up-down Markov chain of α-orientations of G.
In slight abuse of notation we also refer to the up-down Markov chain of α-
orientations of G as the face flip Markov chain, after all the essential cycles of G
are faces in G#.

From the previous description it follows that the elements of the poset Pα

whose down-sets correspond to elements of Lα(G), i.e., to α-orientations of G,
are essential cycles. It is important to keep the following in mind:

Fact A. An essential cycle can correspond to several elements of the
poset Pα.

This fact is best illustrated with an example. Figure 1(left) shows the octa-
hedron graph Goct with an Eulerian orientation, this is an α orientation with
α(v) = 2 for all v. The orientation is the minimal one in the lattice, it has no
counterclockwise oriented cycle. Figure 1(middle) depicts the poset Pα the labels
of the elements of Pα refer to the corresponding faces of Goct. The elements
1, 1′, 1′′ all correspond to the same face of Goct, this face has to be reversed three
times in a sequence of face flips that transforms the minimal Eulerian orientation
into the maximal.

The elements of Pα can be found as follows. Let �Gmin be the minimal α-
orientation, i.e., the one without counterclockwise cycles. Starting from �Gmin

perform flips, i.e., reversals of essential cycles from clockwise to counterclockwise,
in any order until no further flip is possible. The unique α-orientation that admits
no flip is the maximal one. The flips of a maximal flip-sequence S are the elements

Mixing Times of Markov Chains of 2-Orientations 117

2

4

7

56

3
1

2 3 4

3 42

5 6 7 1

1

1

2

4

7

56

3
1

Fig. 1. Left: A minimal α-orientation. Middle: The poset Pα. Right: The α-orientation
corresponding to the down set {1, 2, 3, 4, 1′, 6, 7, 4′} of Pα.

of Pα. Let p̂(f) be the number of times an essential cycle f has been flipped in
S. Hence, the elements of Pα are {(f, i) : f essential cycle, 1 ≤ i ≤ p̂(f)}.

If essential cycles f and f ′ share an edge e then from observing the orientation
of e we find that between any two appearances of f in a flip-sequence there is a
appearance of f ′. From this we obtain

Fact B. If essential cycles f and f ′ share an edge, then |p̂(f) − p̂(f ′)| ≤ 1.
The above discussion is based on [5] where α-orientations of G have been ana-

lyzed via α-potentials, an encoding of down-sets of Pα. If �G is an α-orientation,
then we say that an essential cycle f is at potential level i in �G if (f, i) belongs
to the down-set D�G of Pα corresponding to �G but (f, i + 1) 	∈ D�G.

2.2 2-Orientations and Separating Decompositions

A quadrangulation is a plane graphs whose faces are uniformly of degree 4.
Equivalently quadrangulations are maximal bipartite plane graphs.

Let Q be a quadrangulation, we call the color classes of the bipartition white
and black and name the two black vertices on the outer face s and t. A 2-
orientation of Q is an orientation of the edges such that outdeg(v) = 2 for all
v 	= s, t. Since a quadrangulation with n vertices has 2n− 4 edges it follows that
s and t are sinks.

Fig. 2. Edge orienta-
tions and colors (Color
figure online).

A separating decomposition of Q is an orientation and
coloring of the edges of Q with colors red and blue such
that two conditions hold:

(1) All edges incident to s are ingoing red and all edges
incident to t are ingoing blue.

(2) Every vertex v 	= s, t is incident to a nonempty
interval of red edges and a nonempty interval of blue
edges. If v is white, then, in clockwise order, the first
edge in the interval of a color is outgoing and all the
other edges of the interval are incoming. If v is black,
the outgoing edge is the last one of its color in clock-
wise order (Fig. 2).

118 S. Felsner and D. Heldt

Separating decompositions have been studied in [6,8,11]. Relevant to us is
that the ‘forget function’ that associates a 2-orientation with a separating decom-
position is a bijection, see [11].

2.3 Markov Chains and Mixing Times

We refer to [13] for basics on Markov chains. In applications of Markov chains
to sampling and approximate counting it is critical to determine how quickly
a Markov chain M converges to its stationary distribution π. Let M t(x, y) be
the probability that the chain started in x has moved to y in t steps. The total
variation distance at time t is ‖M t − π‖TV = maxx∈Ω

1
2

∑
y |M t(x, y) − π(y)|,

here The mixing time of M is defined as τmix = min(t : ‖M t − π‖TV ≤ 1/4).
The state space Ω of the Markov chains considered by us consists of sets of
graphs on n vertices. Such a chain is rapidly mixing if τmix is upper bounded by
a polynomial of n.

A key tool for lower bounding the mixing time of a Markov chain is the
conductance defined as ΦM = minS⊆Ω,π(S)≤1/2

1
π(S)

∑
s1∈S,s2 /∈S π(s1) ·M(s1, s2).

The connection with τmix is given by
Fact T. τmix ≥ (4ΦM)−1.
This is Theorem 7.3 from [13]. A similar result was already shown in [19].

Consider a partition Ω−, Ω0, Ω+ of the state space with the property that all
paths of the transition graph of the Markov chain that connect Ω− and Ω+

contain a vertex from Ω0, i.e., M(s1, s2) = 0 for all s1 ∈ Ω− and s2 ∈ Ω+. An
easy computation based on the definition of conductance shows:

Fact C. If Ω−, Ω0, Ω+ is such a partition of Ω, then ΦM ≤ π(Ω0)
min{π(Ω−),π(Ω+)} .

A state space has hour-glass shape if it has a partition that leads to a super-
polynomial lower bound on ΦM .

3 Markov Chains for 2-Orientations

In this section we study the Markov chain M2 for 2-orientations of plane quad-
rangulations. This is a special instance of an up-down Markov chain. A step of
the chain consists in the reversal of directed essential cycle.

Lemma 1. The essential cycles for the Markov chain M2 of a plane quadran-
gulation are the four-cycles that contain no rigid edge.

The Markov chain M2 can now be readily described. In each step it chooses
a four-cycle C and p ∈ [0, 1] uniformly at random. If C is directed in the current
orientation �Q and p ≤ 1/2, then C is reversed, otherwise the new state equals
the old one. The stationary distribution of M2 is the uniform distribution.

In Subsect. 3.2 we prove that M2 is rapidly mixing for quadrangulations of
maximum degree ≤ 4. First, however, we show an exponential lower bound for
the mixing time of M2 on a certain family of quadrangulations.

Mixing Times of Markov Chains of 2-Orientations 119

3.1 Slow Mixing for 2-Orientations

Theorem 1. Let Qn be the quadrangulation on 5n + 1 vertices shown in Fig. 3.
The Markov chain M2 on 2-orientations of Qn has τmix > 3n−3.

xn

ts x0
x1 x2 x3

v2 v3 vn
...v2v1 vnvn−1

w2 w3 wn

... wn−1 wnw2w1

Fig. 3. The graph Qn with the unique 2-orientation containing the edge (x0, x1). Rigid
edges are shown gray (Color figure online).

Proof. Let Ω be the set of 2-orientations of Qn. We define a partition
ΩL, Ωc, ΩR of this set. The edge (x0, s) is rigid, the second out-edge (x0, a)
of x0 is called left if a ∈ {v2, . . . , vn}, it is right if a ∈ {w2, . . . , wn} and it is
central if a = x1. Now ΩL, Ωc, ΩR are the sets 2-orientations where the second
out-edge of x0 is left, central, and right respectively. The next claim shows that
we can apply Fact C.

Claim 1. If �Q1 ∈ ΩL and �Q2 ∈ ΩR, the M2(�Q1, �Q2) = 0.
If �Q → �Q′ is a step of M2 which changes the second out-edge �e of x0, then

the step corresponds to the reversal of a four-cycle containing �e. There is no
four-cycle of Qn that contains a left and a right edge of x0. �
Claim 2. |Ωc| = 1 and Fig. 3 shows the unique 2-orientation in this set.

Claim 3. |ΩL| = |ΩR| ≥ 1
2 (3n−1 − 1).

From the symmetry of Qn we get |ΩL| = |ΩR|. Now let Pk be the set of directed
path from x0 to vk in �Q from Fig. 3. If p ∈ Pk then (vk, x0) together with p forms
a directed cycle in �Q. Reverting this cycle yields a 2-orientation that contains
the edge (x0, vk). This 2-orientation belongs to ΩL. Different paths in Pk yield
different orientations. Therefore, |ΩL| ≥ ∑

k |Pk|.

120 S. Felsner and D. Heldt

It remains to evaluate |Pk|. With induction we easily obtain that in �Q there
are exactly 3i−1 directed paths from x0 to either of vi and wi. Hence |Pk| = 3k−2

and |ΩL| ≥ ∑
2≤k≤n 3k−2 = 1

2 (3n−1 − 1). �
The three claims together with Fact C yield ΦM2(Qn) ≤ 2

3n−1−1 . Which
implies the theorem via Fact T. �

3.2 The Tower Chain for Low Degree Quadrangulations

Following ideas originating from [14] we define a tower Markov chain M2T that
extends M2. A single step of M2T can combine several steps of M2. Using a
coupling argument we show that M2T is rapidly mixing on quadrangulations of
degree at most 4. With the comparison technique this positive result will then
be extended to M2.

The basic approach for our analysis of M2T on low degree quadrangulations
is similar to what Fehrenbach and Rüschendorf [4] did on certain subgraphs of
the quadrangular grid. In the context of 3-orientations of triangulations similar
methods were applied by Creed [1] to certain subgraphs of the triangular grid
and later by Miracle et al. [15] to general triangulations. As Creed [1] noted
these is an inaccurate claim in the proof of [4]. Later [15] stepped into the same
trap. In 3.2.1 below we discuss these issues and show how to repair the proofs.

Let �Q be a 2-orientation and C be a simple cycle. With e+(C) we denote the
number of clockwise edges of C and with e−(C) the number of counterclockwise
edges. If f is a four-cycle and ν(f) = |e+(f) − e−(f)|, then ν(f) can take the
values 0, 2, and 4. The face f is oriented if ν(f) = 4, it is scrambled if ν(f) = 0,
and it is blocked is ν(f) = 2. If f is blocked, then three edges have the same
orientation and one edge does not. We call this the blocking edge of f .

A tower of length k is a sequence (f1, f2, . . . , fk) of four-cycles of �Q such
that each fi for i = 1, .., k − 1 is blocked and fk is oriented. Moreover, in fi the
blocked edge of fi−1 is opposite to the blocked edge of fi−1i for i = 2, .., k − 1.
Figure 4 shows a tower of length 5.

f5

f4

f3

f2

f1

Fig. 4. A tower of
length 5.

If T is a tower, then all edges that belong to some
f ∈ T but are non-blocking have the same orienta-
tion relative to f . This shows that non-blocking edges
belong to a unique f ∈ T . Hence after removing all block-
ing edges from a tower T of length k we obtain a con-
nected region whose boundary ∂T is an oriented cycle
with 2k+2 edges. This is the boundary cycle of the tower.
The boundary cycle need not be simple but each edge of
∂T only belongs to a single face fi ∈ T . Therefore, we
can also obtain the effect of reverting ∂T by reverting
fk, fk−1, . . . , f1 in this order.

Lemma 2. If f is a four-cycle, then there is at most one
tower starting with f = f1.

Mixing Times of Markov Chains of 2-Orientations 121

We are ready to describe the tower Markov chain M2T . If M2T is in state �X then
it performs the transition to the next step as follows: an essential four-cycle f ,
and a p ∈ [0, 1] are each chosen uniformly at random. If in �X there is a tower Tf

of length k starting with f then revert ∂Tf if

• ∂Tf is clockwise and either k = 1 and p ≤ 1/2 or k > 1 and p ≤ 1/(4k),
• ∂Tf is counterclockwise and either k = 1 and p > 1/2 or k > 1 and p ≥

1 − 1/(4k).

In all other cases the new state is again �X.
Since the steps of M2 are also steps of M2T the chain is connected. In the

orientation obtained by reverting the tower T = (f1, . . . , fk) there is the tower
T ′ = (fk, . . . , f1) whose reversal leads back to the original orientation. Since
both towers have the same length the chain is symmetric and its stationary
distribution is uniform. For the next lemma the degree condition is indispensable.

Lemma 3. Let Q have maximum degree ≤ 4 and let T = (f1, . . . , fk) be a tower
and f̂ 	= fk be an oriented face in a 2-orientation of Q. If T and f̂ share an
edge e but f̂ and f1 share no edge, then e is the edge of fk opposite to the blocking
edge of fk−1.

Proof. Let (ui, vi) be the blocking edge of fi. We extend the labeling of vertices
of T such that ∂T is the directed cycle v0, v1, . . . , vk−1, vk, uk, uk−1, . . . , u1, u0.

If (ui+1, ui) with i ≥ 1 is an edge of f̂ and ui−1 	∈ f̂ , then f̂ contains an
out-edge of ui which is not part of T . However, ui contains the out-edges (ui, vi)
and (ui, ui−1). This contradicts outdeg(ui) = 2.

If (vi, vi+1) with i ≥ 1 is an edge of f̂ and vi−1 	∈ f̂ , then f̂ contains an
in-edge of vi which is not part of T . Vertex vi also contains the in-edges (ui, vi)
and (vi−1, vi). Now vi has in-degree ≥ 3, since outdeg(vi) = 2 the degree is at
least 5. A contradiction.

We are not interested in edges shared by f̂ and f1, i.e., in edges containing
u0 or v0. Therefore, the only remaining candidate for e is the edge (vk, uk). �
Theorem 2. Let Q be a plane quadrangulation with n vertices so that each inner
vertex is adjacent to at most 4 edges. The mixing time of M2T on 2-orientations
of Q satisfies τmix ∈ O(n5).

The proof of Theorem 2 is based on the path coupling theorem of Dyer and
Greenhill [3]. The following simple version of the theorem suits our needs.

Theorem 3 (Dyer–Greenhill). Let M be a Markov chain with state space Ω.
If there is a graph GM with vertex set Ω and a coupling (Xt, Yt) of M such that
with the graph distance d : Ω × Ω → N based on GM we have:

122 S. Felsner and D. Heldt

E[d(Xt+1, Yt+1)] ≤ d(Xt, Yt) and Pr(d(Xt+1, Yt+1) 	= d(Xt, Yt)) ≥ ρ
then τmix(M) ≤ 2�e/ρ�diam(GM)2.

The coupling of M2T used for the proof of Theorem 2 is the trivial one, i.e.,
we run chains Xt and Yt with the same choices of f and p in each step.

The graph G will be the transition graph of M2, i.e., the distance between
2-orientations �X and �Y equals the number of four-cycles that have to be reversed
to get from �X to �Y .

Lemma 4. The maximum potential p̂max = maxf p̂(f) of an essential cycle is
less than n.

Proof. Let Q be the quadrangulation whose 2-orientations are in question. It
is convenient to replace Q by Q# so that essential cycles are just faces. Recall
that p̂ of the outer face is 0 and |p̂(f) − p̂(f ′)| ≤ 1 for any two adjacent faces
(Fact B). Since a quadrangulation has n − 2 faces we obtain (n − 3) as an upper
bound for p̂max. �
Lemma 5. The diameter of G is at most n2/2.

Proof. The height of the lattice Lα(Q#) is the length of a maximal flip sequence,
i.e.,

∑
f p̂(f). Using (Fact B) as in the proof of the previous lemma we find that

∑
f p̂(f) ≤ 0 + 1 + . . . + (n − 3). This is < n2/2.
In the diagram of a distributive lattice the diameter is attained by the dis-

tance between the zero and the one, i.e., between the global minimum and the
global maximum. This distance is exactly the height of the lattice. Since G is
the cover graph (undirected diagram) of the distributive lattice Lα(Q) we obtain
that the diameter of G is at most n2/2. �

3.2.1 Finding an Appropriate ρ.
To get a reasonable ρ the following argument is tempting and was actually used
in [4,15]: For given �X and �Y there is always at least one essential cycle f whose
reversal in �X reduces the distance to �Y . If (Xt, Yt) = (X,Y) and this cycle f is
chosen by M2T , then with probability 1/2 the distance is reduced. There are at
most n − 3 essential cycles. Hence we may set ρ = 1/(2n).

Indeed for up-down Markov chains on distributive such a statement holds. If
I and J are down-sets of the poset P , then there is an x ∈ P whose addition to
or removal from I decreases the distance to J . In the context of α-orientations,
however, an f whose reversal in �X reduces the distance to �Y may be oriented
in �Y with the same orientation as in �X. In that case if f is chosen by M2T the
reversal of f is applied to both or to none.

Mixing Times of Markov Chains of 2-Orientations 123

Fig. 5. A 2-orientation �Q
such that the 2-orientation �Q′

obtained by reverting the blue
cycle has the same oriented
faces (Color figure online).

Figure 5 shows that there are cases where a
pairs (Xt, Yt) exists such that Pr(d(Xt+1, Yt+1)
	= d(Xt, Yt)) = 0.

To overcome this problem we now define the
slow tower Markov chain MS2T . If MS2T is in
state �X then it performs the transition to the
next step as follows: an essential four-cycle f ,
a value i with 0 ≤ i < n and a p ∈ [0, 1] are
each chosen uniformly at random. If f is not at
potential level i in �X, then nothing is done and
�X is the new state. Otherwise, the step of MS2T

equals the step of M2T with the pair (f, p).

Lemma 6. If (Xt, Yt) is a trivial coupling of the
slow chain MS2T , then 1/(2n2) is a lower bound
on Pr(d(Xt+1, Yt+1) 	= d(Xt, Yt)).

Proof. For given �X and �Y there is always at least one essential cycle f1 whose
reversal in �X reduces the distance to �Y . If f1 appears in �X and �Y with the
same orientation then the potential level of f1 in �X and �Y is different. Hence,
if for the step of MS2T the triple (f, i, p) is chosen such that f = f1 and i is
the potential level of f in �X and p is such that f is actually reversed, then the
distance decreases.

The probability for choosing f is at least 1/n. For i and p the probabilities
are 1/n and 1/2 respectively. Together this yields the claimed bound. �

3.2.2 Completing the proof of Theorem 2.
In Lemma 7 we show that if (�X, �Y) is an edge of G and (�X+, �Y +) is the pair
obtained after a single coupled step of the tower chain M2T , then E[d(�X, �Y) −
d(�X+, �Y +)] ≤ 0. Note that a step of the coupled slow chain MS2T moves the
pair (�X, �Y) to one of (�X, �Y) or (�X+, �Y +). Hence Lemma 7 also applies to MS2T .

Assuming Lemma 7 we get the following:

Proposition 1. Let Q be a plane quadrangulation with n vertices so that each
inner vertex is adjacent to at most 4 edges. The mixing time of MS2T on 2-
orientations of Q satisfies τmix(MS2T) ∈ O(n6)

Proof. The condition E[d(Xt+1, Yt+1)] ≤ d(Xt, Yt) needed for the application
of Theorem 3 follows from Lemma 7 because on a single edge MS2T is just a
slowed down version of M2T a linearity of expectation. Applying Theorem 3
with parameters ρ = 1

2n2 (Lemma 6) and diam(G) ≤ n2/2 (Lemma 5) yields
τmix(MS2T) ≤ en6. �

The mixing time of the slow chain could thus be proven with a coupling
that allows an application of the theorem of Dyer and Greenhill. Now consider
a single state �Xt evolving according to the slow chain MS2T . Note that this is
exactly as if we would run the tower chain M2T but only allow a transition to

124 S. Felsner and D. Heldt

be conducted if an additional uniform random variable q ∈ {0, . . . , n − 1} takes
the value q = 0. It follows that the mixing times of MS2T and of M2T deviate
by a factor of n. Therefore, τmix(M2T) ≤ en5.

To complete the proof of Theorem 2 it remains to prove Lemma 7.

Lemma 7. If (�X, �Y) is an edge of G and (�X+, �Y +) is the pair obtained after a
single coupled step of M2T , then E[d(�X, �Y) − d(�X+, �Y +)] ≤ 0.

Proof. Since (�X, �Y) is an edge of G they differ in the orientation of exactly one
face f̂ . We assume w.l.o.g that f̂ is oriented clockwise in �X and counterclockwise
in �Y .

Let f be the face chosen for the step of M2T . Depending on f we analyze
d(�X+, �Y +) in three cases.

A. If f = f̂ , then depending on the value of p face f is reversed either in �X or
in �Y . After the step the orientations �X+, �Y + coincide. The expected change
of distance in this case is −1.

B. If f and f̂ share an edge and f 	= f̂ there are three options depending on
the type of f in �Y .

1. Face f is oriented in �Y , necessarily clockwise. It follows that in �X face f
starts the clockwise tower (f, f̂) of length two. In �Y a face f is a clockwise
tower of length 1. If p ≤ 1/8 both towers are reversed so that �X+ and �Y +

coincide. If 1/8 < p ≤ 1/2, then f is reversed in �Y while �X+ = �X, in this case
the distance increases by 1. If p > 1/2 both orientations remain unchanged.
The expected change of distance in this case is 1

8 ·(−1)+(12− 1
8)·(+1)+ 1

2 ·0 = 1
4 .

2. Face f is scrambled in �Y . In this case f is blocked in �X and it may start
a tower of length k. If p ≤ 1/(4k) this tower is reverted which results in a
increase of distance by k. In all other cases the distance remains unchanged.
hence, the expected change of distance in this case is ≤ 1/4.
3. Face f is blocked in �Y . Then it is either oriented or scrambled in �X. After
changing the role of �X and �Y we can use the analysis of the other two cases
to conclude that the expected change of distance is again ≤ 1/4.

C. Finally, suppose that f and f̂ have no edge in common.

1.If f starts a tower in �X which has no edge in common with f̂ , then f starts
the very same tower in �Y and the coupled chain will either revert both towers
or none of them. The distance remains unchanged.
2. Now let f start a tower T = (f1, . . . , fk) in �X which has an edge in common
with f̂ . The case where f̂ and f1 = f share an edge was considered in B.
Now Lemma 3 implies that either f̂ = fk or f̂ 	= fk and the shared edge is
such that (f1, . . . , fk, f̂) is a tower in �Y . Hence, with T there is a tower T ′ in
�Y that starts in f and has length k ± 1, moreover T and T ′ have the same
orientation. Let � be the larger of the lengths of T and T ′. With a probability
of 1/(4�) both towers are reversed and the distance decreases by 1. With

Mixing Times of Markov Chains of 2-Orientations 125

a probability of 1/(4(� − 1)) − 1/(4�) only the shorter of the two towers is
reversed and the distance increases by � − 1. With the remaining probability
both orientations remain unchanged. The expected change of distance in this
case is 1

4� · (−1) + (1
4(�−1) − 1

4�) · (� − 1) = 0.

Let m be the number of essential four-cycles, i.e., the number of options
for f . Combining the values for the change of distance in cases A, B, C and
the probability of these cases we obtain: E[d(�X, �Y) − d(�X+, �Y +)] ≤ 1

m (−1) +
4
m (1/4) + m−5

m 0 = 0. �

3.3 Comparison of M2T and M2

The comparison of the mixing times of M2T and M2 is based on a technique
developed by Diaconis and Saloff-Coste [2]. We will use Theorem 4 a variant due
to Randall and Tetali [18].

Let M and M̃ be two reversible Markov chains on the same state space Ω

such that M and M̃ have the same stationary distribution π. With E(M) we
denote the edges of the directed transition graph of M , i.e., (x, y) ∈ E(M)
whenever M(x, y) > 0. Define E(M̃) alike. For each (x, y) ∈ E(M̃) define a
canonical path γxy as a sequence x = v0, v1, . . . , vk = y of transitions of M , i.e.
(vi, vi+1) ∈ E(M) for all i. Let |γxy| be the length of γxy and for (x, y) ∈ E(M)
let Γ(x, y) := {(u, v) ∈ E(M̃) : (x, y) ∈ γuv}. Further let

A := max
(x,y)∈E(M)

⎧
⎨
⎩

1

π(x)M(x, y)

∑
(u,v)∈Γ(x,y)

|γuv|π(u)M̃(u, v)

⎫
⎬
⎭

and let π� := minx∈Ω π(x).

Theorem 4. In the above setting τmix(M) ≤ 4 log(4/π�) A τmix(M̃).

We are going to apply this theorem with M = M2 and M̃ = M2T . Both
chains are symmetric, hence reversible, and have the uniform distribution π as
stationary distribution.

The definition of the canonical paths comes quite natural. A transition (�U, �V)
of M2T corresponds to the reversal of ∂T for some tower T of �U . Suppose that
T = (f1, . . . , fk) and recall that the effect of reverting ∂T can also be obtained
by reverting fk, fk−1, . . . , f1 in this order. Reverting them one by one yields a
path in E(M), this path is chosen to be γ�U �V .

If |γ�U �V | = k, i.e., the transition (�U, �V) corresponds to a tower of length k,
then M2T (�U, �V) = 1/(4k), hence, |γ�U �V |M2T (�U, �V) = 1/4. Also π is constant
so that π(�U)/π(�X) = 1. For an upper bound on A we therefore only have to
estimate the number of tower moves that have a canonical path that contains
the face flip at f that moves �X to �Y . If T = (f1, . . . , fk) is such a tower with
f = fi, then (f1, . . . , fi−1, f) is a tower in �X and (fk, . . . , fi+1, f) is a tower in �Y .
Since a tower is defined by its initial face each of �X and �Y has at most n towers,

126 S. Felsner and D. Heldt

all the more each has at most n towers ending in f . This shows |Γ(�X, �Y)| ≤ n2

and A ≤ n2/4.
It remains to find π� = 1

|Ω| . Since a quadrangulation has 2n − 4 edges it has
at most 22n orientations this would suffice for our purposes. However, a better
upper bound of 1.9n for the number of 2-orientations was obtained in [10].

Given the above ingredients for the comparison theorem and the mixing time
of τmix(M2T) ∈ O(n5) from Theorem 2 we have the theorem:

Theorem 5. Let Q be a plane quadrangulation with n vertices so that each
inner vertex is adjacent to at most 4 edges. The mixing time of the face reversal
Markov chain M2 on 2-orientations of Q satisfies τmix(M2) ∈ O(n8).

4 Concluding Remarks and Open Problems

In this work we have studied 2-orientations, a special class of α-orientations. We
have obtained some of the few known results about the complexity of sampling α-
orientations of planar graphs. It would be of interest to extend the study to other
interesting instances, e.g. to the sampling of Eulerian orientations. Another chal-
lenge is to better understand the dependence on the degree. So far we have rapid
mixing for degree ≤ 4 and slow mixing examples with maximum degree O(n),
this is a huge gap.

References

1. Creed, P.J.: Sampling eulerian orientations of triangular lattice graphs. J. Discr.
Alg. 7, 168–180 (2009)

2. Diaconis, P., Saloff-Coste, L.: Comparison theorems for reversible Markov chains.
An. Appl. Prob. 3, 696–730 (1993)

3. Dyer, M., Greenhill, C.: A more rapidly mixing Markov chain for graph colourings.
Rand. Struct. Alg. 13, 285–317 (1998)

4. Fehrenbach, J., Rüschendorf, L.: Markov chain algorithms for Eulerian orientations
and 3-Colourings of 2-Dimensional cartesian grids. Statistics Decisions 22, 109–130
(2004)

5. Felsner, S.: Lattice structures from planar graphs. Electr. J. Combin. 11(1), 24
(2004)

6. Felsner, S., Fusy, É., Noy, M., Orden, D.: Bijections for Baxter families and related
objects. J. Combin. Theory Ser. A 18, 993–1020 (2011)

7. Felsner, S., Heldt, D.: Mixing times of markov chains on degree constrained ori-
entations of planar graphs (2015). http://page.math.tu-berlin.de/∼felsner/Paper/
mix-alpha.pdf

8. Felsner, S., Huemer, C., Kappes, S., Orden, D.: Binary labelings for plane quad-
rangulations and their relatives. Discr. Math. Theor. Comp. Sci. 12(3), 115–138
(2010)

9. Felsner, S., Knauer, K.: ULD-lattices and Δ-bonds. Comb. Probab. Comput. 18(5),
707–724 (2009)

10. Felsner, S., Zickfeld, F.: On the number of planar orientations with prescribed
degrees. Electr. J. Combin. 15, 41p (2008)

http://page.math.tu-berlin.de/~felsner/Paper/mix-alpha.pdf
http://page.math.tu-berlin.de/~felsner/Paper/mix-alpha.pdf

Mixing Times of Markov Chains of 2-Orientations 127

11. de Fraysseix, H., de Mendez, O.P.: On topological aspects of orientations. Discr.
Math. 229, 57–72 (2001)

12. Jerrum, M., Sinclair, A., Vigoda, E.: A polynomial-time approximation algorithm
for the permanent of a matrix with nonnegative entries. J. ACM 51, 671–697 (2004)

13. Levin, D., Peres, Y., Wilmer, E.: Markov Chains and Mixing Times. AMS, Provi-
dence (2009)

14. Luby, M., Randall, D., Sinclair, A.: Markov chain algorithms for planar lattice
structures. In: 36th FOCS, pp. 150–159 (1995)

15. Miracle, S., Randall, D., Streib, A.P., Tetali, P.: Mixing times of Markov chains
on 3-orientations of planar triangulations. In: Proceeding AofA 2012, pp. 413–
424, Proceeding AQ, Discrete Mathematics and Theory Computer Science (2012).
arxiv:1202.4945

16. Propp, J.: Generating random elements of finite distributive lattices. Electr. J.
Combin. 4(2), R15 (1997)

17. Propp, J.G., Wilson, D.B.: Exact sampling with coupled Markov chains and appli-
cations to statistical mechanics. Rand. Struct. Alg. 9(1&2), 223–252 (1996)

18. Randall, D., Tetali, P.: Analyzing Glauber dynamics by comparison of Markov
chains. J. Math. Phys. 41, 1598–1615 (1997)

19. Sinclair, A., Jerrum, M.: Approximate counting, uniform generation and rapidly
mixing Markov chains. Inf. Comput. 82, 93–133 (1989)

http://arxiv.org/abs/1202.4945

Computational Geometry

Computing a Minimum-Width Square Annulus
in Arbitrary Orientation

[Extended Abstract]

Sang Won Bae(B)

Department of Computer Science, Kyonggi University, Suwon, South Korea
swbae@kgu.ac.kr

Abstract. In this paper, we address the problem of computing a
minimum-width square annulus in arbitrary orientation that encloses a
given set of n points in the plane. A square annulus is the region between
two concentric squares. We present an O(n3 log n)-time algorithm that
finds such a square annulus over all orientations.

1 Introduction

An annulus informally depicts a ring-shaped region in the plane. More specifi-
cally, an annulus of a simple closed curve C, such as a circle, with a reference
point inside C can be regarded as the region between two concentric homothets
of C. Given a set P of n points in the plane, finding geometric shapes that
best fits P is an important variant of shape matching problems. If the shape
is restricted to C under a certain family of transformations, then this problem
is equivalent to finding the minimum-width annulus that contains P . Among
others, the case when C is chosen as a circle has been most intensively studied.
The minimum-width circular annulus problem has been first addressed indepen-
dently by Wainstein [16] and by Roy and Zhang [13], resulting in O(n2)-time
algorithms. The same time bound can be achieved by using the observation that
the center of a minimum-width circular annulus corresponds to a vertex of the
nearest-site Voronoi diagram of P , a vertex of the farthest-site Voronoi diagram
of P , or an intersection point of two edges of the two diagrams [9]. The currently
best exact algorithm takes O(n

3
2+ε) time by Agarwal and Sharir [3]. Linear-time

approximation schemes are also known by Agarwal et al. [2] and by Chan [7].
The minimum-width circular annulus problem has applications in facility

location in a sense that the center of the optimal annulus minimizes the difference
between the maximum and the minimum distances from the center to input
points with respect to the Euclidean metric. Of course, in some applications,
other metrics like the L1 or L∞ metric would be more appropriate. In this sense,
the square annulus or rectangular annulus problem naturally arises. Abellanas

This research was supported by Basic Science Research Program through the
National Research Foundation of Korea (NRF) funded by the Ministry of Science,
ICT & Future Planning (2013R1A1A1A05006927) and by the Ministry of Education
(2015R1D1A1A01057220).

c© Springer International Publishing Switzerland 2016
M. Kaykobad and R. Petreschi (Eds.): WALCOM 2016, LNCS 9627, pp. 131–142, 2016.
DOI: 10.1007/978-3-319-30139-6 11

132 S.W. Bae

et al. [1] considered minimum-width rectangular annuli that are axis-parallel,
and presented two algorithms taking O(n) or O(n log n) time: one minimizes
the width over rectangular annuli with arbitrary aspect ratio and the other does
over rectangular annuli with a prescribed aspect ratio, respectively. Gluchshenko
et al. [10] presented an O(n log n)-time algorithm that computes a minimum-
width axis-parallel square annulus, and proved a matching lower bound, while
the second algorithm by Abellanas et al. can do the same in the same time bound.
The log n gap between the rectangular and the square annulus problems could
be understood in a geometric point of view. In both cases, the outer boundary
of an optimal annulus can be chosen as a smallest axis-parallel rectangle or
square enclosing P , as shown in [1,10], but the smallest enclosing rectangle is
unique while there are in general infinitely many smallest enclosing squares. If
one considers rectangular or square annuli in arbitrary orientation, the problem
gets more difficult. Mukherjee et al. [12] presented an O(n2 log n)-time algorithm
that computes a minimum-width rectangular annulus in arbitrary orientation
and arbitrary aspect ratio. However, to our best knowledge, there is no known
algorithm for the minimum-width square annulus in arbitrary orientation. We
aim to give the first algorithmic results to this variant of the problem.

A variant of the problem where the outer or inner boundary of the result-
ing annulus is fixed has also been studied. Duncan et al. [8] and De Berg
et al. [6] independently showed that the minimum-width circular annulus can
be computed in O(n log n) time in this case. Barequet et al. [4] and Barequet
and Goryachev [5] considered the case when the prescribed shape C is given
as any convex or simple polygon for this variant of the problem. When C is a
square and its orientation can be chosen arbitrarily, their results imply that the
minimum-width square annulus can be computed in O(n4 log n) time, provided
that the side length of its outer, inner or middle square is given.

In this work, we consider the minimum-width square annulus problem in
arbitrary orientation, and present an O(n3 log n)-time exact algorithm. Note
that this is the first algorithm for the problem. Comparing to the results of
Barequet and Goryachev [5], our algorithm is more efficient while dropping the
restriction on the size of the resulting annulus.

The omitted proofs and additional figures will be provided in a full version.

2 Preliminaries

For any square in the plane R
2, its center is the intersection point of its two

diagonals and its radius is half its side length. Two squares are called concentric
if they share a common center and any pair of their sides are either parallel or
orthogonal. A square annulus A is the region between two concentric squares,
including its boundary. The width of a square annulus A is the difference of radii
of the two concentric squares determining A.

The orientation of a line or line segment � in the plane is a nonnegative
value θ ∈ [0, π) such that the rotated copy of the x-axis by θ counter-clockwise
is parallel to �. If the orientation of a line or line segment is θ, then we say that
the line or line segment is θ-aligned. A rectangle, a square, or a square annuls is

Computing a Minimum-Width Square Annulus in Arbitrary Orientation 133

wθ+π/2(p, q)

wθ(p, q)p

q

θpq

θ

(a) (b)

c

Aθ(c)

θ

Fig. 1. (a) wθ(p, q) and wθ+π/2(p, q). (b) The minimum-width θ-aligned square annuls
Aθ(c) with center c enclosing points P .

also called θ-aligned for some θ ∈ [0, π/2) if each of its sides is either θ-aligned
or (θ + π/2)-aligned.

For any two points p, q ∈ R
2, let pq denote the line segment joining p and

q, and |pq| denote the Euclidean length of pq. We will often discuss the dis-
tance between the orthogonal projections of p and q onto any θ-aligned line,
denoted by wθ(p, q). It is not difficult to see that wθ(p, q) = |pq| · | cos(θpq − θ)|,
where θpq denotes the orientation of pq. See Fig. 1(a). Also, we define dθ(p, q) :=
max{wθ(p, q), wθ+π/2(p, q)} to be the convex distance between p and q with its
unit disk being a unit θ-aligned square. Note that dθ(p, q) is exactly the radius
of the smallest θ-aligned square with center p that contains q in its boundary.

In a specific orientation θ ∈ [0, π/2), we regard any θ-aligned line to be
horizontal and directed from left to right, and any (θ + π/2)-aligned line to be
vertical and directed from bottom to above. For any p, q ∈ R

2, we say that p is
to the left of q, or q is to the right of p, in θ if the orthogonal projection of p
onto a θ-aligned line is prior to that of q. Similarly, p is below q or equivalently
q is above p in θ if the orthogonal projection of p onto a (θ +π/2)-aligned line is
prior to that of q. For example, in Fig. 1(a), p is to the left of and below q in θ.

Let P be a set of points in R
2. In orientation θ ∈ [0, π/2), let l∗θ , r∗

θ , t∗θ and b∗
θ

be the leftmost, rightmost, topmost, and bottommost points in θ among those in
P . Then, the smallest θ-aligned rectangle Rθ enclosing P is uniquely determined
by these four extreme points l∗θ , r∗

θ , t∗θ and b∗
θ. The height of Rθ is the length of a

vertical side of Rθ and the width of Rθ is the length of its horizontal side. That
is, the height of Rθ is equal to wθ+π/2(t∗θ, b

∗
θ) and its width is equal to wθ(l∗θ , r∗

θ).
In this paper, we are interested in square annuli enclosing P . If we fix an

orientation θ ∈ [0, π/2) and a center c ∈ R
2, then there is a unique minimum-

width θ-aligned square annulus containing P , which is determined by the smallest
square that encloses P and the largest square whose interior contains no point
of P . We denote this annulus by Aθ(c). See Fig. 1(b). Thus, the minimum-width
square annulus problem in a fixed orientation θ is to find an optimal center c∗

that minimizes the width of Aθ(c) over c ∈ R
2. If we further consider arbitrary

orientation, then the problem asks to find an optimal pair (θ∗, c∗) of orientation
and center that minimize the width of Aθ(c) over c ∈ R

2 and θ ∈ [0, π/2).

134 S.W. Bae

We will often face with functions of a particular form a sin(θ + b) for some
a, b ∈ R. Such a function is called sinusoidal functions of period 2π. Through
out this paper, we call them shortly sinusoidal functions, when their period is
2π. Obviously, the equation a sin(θ + b) = 0 has at most one zero over θ ∈ [0, π).
The following property of sinusoidal functions is well known and easily derived.

Lemma 1. The sum of two sinusoidal functions is also sinusoidal. Therefore,
the graphs of two sinusoidal functions cross at most once over [0, π). ��
Note that cos(θ) is also sinusoidal as cos(θ) = sin(θ + π/2). Observe that for
a fixed pair of points p, q ∈ R

2, the function wθ(p, q) is a piecewise sinusoidal
function of θ ∈ [0, π) with at most one breakpoint.

3 Square Annuli in Fixed Orientation

In this section, we discuss square annuli in a fixed orientation that contain a given
set P of n points. Throughout this section, we fix an orientation θ ∈ [0, π/2).
Let H = wθ+π/2(t∗θ, b

∗
θ) and W = wθ(l∗θ , r∗

θ) be the height and the width of Rθ,
and let o be the center of Rθ. Here, we assume without loss of generality that
H ≥ W . Let m be the midpoint of line segment t∗θb

∗
θ and Lθ be the θ-aligned line

through m. Consider smallest θ-aligned squares enclosing P . The trace of the
centers of all such squares forms a line segment Cθ ⊂ Lθ. Note that the length
of Cθ is exactly equal to H − W and its midpoint coincides with o ∈ Lθ, and
that wθ(o,m) = wθ(m′,m) where m′ denotes the midpoint of l∗θr∗

θ . Gluchshenko
et al. [10] proved the following lemma.

Lemma 2 (Gluchshenko et al. [10]). There exists a minimum-width θ-
aligned square annulus that contains P whose center lies on Cθ. ��
Hence, a minimum-width square annulus in orientation θ is Aθ(c∗) such that
c∗ ∈ Cθ minimizes the width of Aθ(c) over c ∈ Cθ. Observe further that, for all
c ∈ Cθ, the outer square of Aθ(c) is always determined by t∗θ and b∗

θ, that is, its
radius is always 1

2H, a constant. On the other hand, the inner square of Aθ(c)
is determined by a point p ∈ P that is the closest from c with respect to the dis-
tance function dθ(p, c), that is, the radius of the inner square of Aθ(c) is exactly
minp∈P dθ(p, c). Thus, the width of Aθ(c) is equal to 1

2H − minp∈P dθ(p, c), and
our goal is to maximize minp∈P dθ(c, p) over c ∈ Cθ.

For convenience, we introduce a parameter λ ∈ R for points on Lθ such that
those points c ∈ Lθ to the left of m are parameterized by λ = −wθ(m, c) while
the others c ∈ Lθ are parameterized by λ = wθ(m, c). We denote by c(λ) the
point c ∈ Lθ parameterized by a specific λ ∈ R. Observe that the endpoints of
Cθ are parameterized by λ = wθ(m,m′) ± 1

2 (H − W). Let fp(λ) := dθ(p, c(λ))
be a real-valued function for each p ∈ P . Our problem can thus be solved by
computing the lower envelope F of the n functions fp over λ ∈ R and searching
for a highest point on F over λ ∈ [wθ(m,m′)− 1

2 (H−W), wθ(m,m′)+ 1
2 (H−W)].

As also observed by Gluchshenko et al. [10], the function fp is continuous and
piecewise linear such that its graph consists of exactly three linear pieces whose
slopes are −1, 0, and 1 in order. We call the piece with slope 0 of the graph of

Computing a Minimum-Width Square Annulus in Arbitrary Orientation 135

λ

λp λq

fp fq
Lθ

p q

(a) (b)

Fig. 2. (a) Two points p, q ∈ P and the line Lθ. (b) The graphs of fp and fq.

fp the plateau of p, and the two other pieces with slopes −1 and 1 the left and
right wings of p, respectively. The plateau of p has length exactly 2wθ+π/2(p,m)
and is at height wθ+π/2(p,m). Also, the extensions of the two wings of p always
cross at λp ∈ R such that wθ(p, c(λp)) = 0. See Fig. 2.

Lemma 3. For p, q ∈ P , the graphs of fp and fq intersect exactly once, unless
wθ(m, p) = wθ(m, q) or wθ+π/2(m, p) = wθ+π/2(m, q).

Lemma 3 implies that the lower envelope F consists of O(n) pieces, as it corre-
sponds to a Davenport-Schinzel sequence of order 1 [14], and can be computed
in O(n log n) time [11]. The following lemma immediately follows from the fact
that the function fp for each p ∈ P is a convex function.

Lemma 4. A highest point of F over Cθ corresponds to a breakpoint of F or
an endpoint of Cθ, λ = wθ(m′,m) − 1

2 (H − W) or wθ(m′,m) + 1
2 (H − W). ��

Hence, for a fixed orientation θ ∈ [0, π/2), we can compute a minimum-width
θ-aligned square annulus containing P in O(n log n) time by computing the lower
envelope F and checking every breakpoint of F and each endpoint of Cθ.

4 Square Annuli over Arbitrary Orientations

In this section, we present an algorithm that finds a minimum-width square
annulus containing P over all orientations θ ∈ [0, π/2). For the purpose, as
θ continuously increases from 0 to π/2, we maintain the lower envelope F in
orientation θ, collect all information about candidates of highest points of the
envelope and find an optimal orientation using the collected information.

As done in [12], we start by decomposing [0, π/2) into primary intervals. A
primary interval is determined by a maximal interval I ⊆ [0, π/2) satisfying that
the four extreme points l∗θ , r∗

θ , t∗θ, and b∗
θ stay constant for all θ ∈ I and there is

no θ ∈ I such that the height and the width of Rθ are equal. In order to have
all primary intervals, we apply the rotating caliper algorithm by Toussaint [15]
after computing the convex hull of P , and then specify all θ ∈ [0, π/2) such that
the height and the width of Rθ are equal.

Lemma 5. There are O(n) primary intervals, and the decomposition of [0, π/2)
into the primary intervals can be specified in O(n log n) time.

Our algorithm works for each primary interval I ⊆ [0, π/2), separately, in an
event-driven way; it maintains its invariants by handling events.

136 S.W. Bae

4.1 The Invariants

In the following, let I be any fixed primary interval, and H(θ) and W (θ) be the
height and the width of Rθ as functions of θ ∈ I. Then, by definition, the four
extreme points l∗ = l∗θ , r∗ = r∗

θ , t∗ = t∗θ, b
∗ = b∗

θ are fixed, and H(θ) − W (θ) is
either always positive or always negative for all θ ∈ I. Without loss of generality,
we assume that H(θ) − W (θ) > 0 for θ ∈ I. We then define Lθ and Cθ, and use
the same parameterization λ of Lθ as done in Sect. 3. Note that Cθ corresponds to
interval [βθ −αθ, βθ +αθ] of R, where αθ = 1

2 (H(θ)−W (θ)) and βθ = wθ(m′,m),
where m′ denotes the midpoint of l∗r∗. For each p ∈ P , let fp(θ, λ) := dθ(p, c(λ))
be a function of two variables θ ∈ I and λ ∈ R. Then the lower envelope Fθ at
θ ∈ I corresponds to minp∈P fp(θ, λ), that is, Fθ(λ) = minp∈P fp(θ, λ).

We will maintain a few data structures as the invariants of the algorithm:
the combinatorial structure of Fθ, a balanced binary search tree T for points P ,
and the set E of pieces on Fθ corresponding to the two endpoints of Cθ.

– The combinatorial structure of Fθ is encoded by a sequence of the pieces
appearing on Fθ in the λ-increasing order. Each piece can be represented by
a pair (p, σ) for p ∈ P and σ ∈ {−1, 0, 1} if it is the piece of p whose slope is
σ. We store the combinatorial structure of Fθ into a balanced binary search
tree that supports the following operations in logarithmic time: (1) inserting
a new piece or removing an existing piece, and (2) finding the relevant piece
at a given λ ∈ R. By an abuse of notation, we denote by F this data structure
storing the envelope Fθ over θ ∈ I.

– For each p ∈ P , let λp and ζp be two sinusoidal functions of θ ∈ I associated
with p such that λp(θ) = −wθ(m, p) if p is to the left of m, or λp(θ) =
wθ(m, p), otherwise, and ζp(θ) = wθ+π/2(m, p). The binary search tree T at
θ stores points in P indexed by (λp(θ), ζp(θ)) for p ∈ P as follows. The leaves
of T correspond to all points of P in the increasing order of λp(θ) and also
store the descriptions of λp and ζp for each p ∈ P . Each internal node v of
T is associated with two points pv, qv ∈ P such that λpv

(θ) ≥ λp(θ) for all
p ∈ P (v) and ζqv

(θ) ≤ ζp(θ) for all p ∈ P (v), where P (v) denotes the set
of p ∈ P stored in a leaf contained in the subtree of T rooted at v. Thus,
T acts as a binary search tree on P with respect to the first index λp(θ)
of p ∈ P , and in addition supports the following operations in logarithmic
time: (1) inserting or removing a point, (2) given p, q ∈ P , finding r ∈ P
such that λp(θ) < λr(θ) < λq(θ) and ζr(θ) ≤ ζr′(θ) for all r′ ∈ P with
λp(θ) < λr′(θ) < λq(θ).

– The set E consists of exactly two pieces appearing in F that correspond to
the two endpoints of Cθ at θ.

4.2 Combinatorial Changes of the Invariants and Events

As θ continuously increases over I, the invariants F , T , and E suffer combinatorial
changes. To capture those changes, we handle events of several types defined to be
a specific value of θ ∈ I describing a degenerate scene:

Computing a Minimum-Width Square Annulus in Arbitrary Orientation 137

(a) An alignment event occurs at θ ∈ I such that λp(θ) = λq(θ) or ζp(θ) = ζq(θ)
for some p, q ∈ P with p 	= q.

(b) A midline event occurs when ζp(θ) = 0, that is, p lies on Lθ for some p ∈ P .
(c) A wing event occurs when the left (or right) endpoint of the plateau of p

lies on the right (or left, respectively) wing of q, for some p, q ∈ P with
p 	= q.

(d) A triple event occurs when the intersection of the right wing of p and the
left wing of p′ appears in F and lies on the plateau of q for some p, p′, q ∈ P .

(e) An endpoint event occurs when a breakpoint of F corresponds to an end-
point of Cθ.

A combinatorial change in F happens when a piece (p, σ) is about to appear
onto it or disappear from it. If the piece is the plateau of p, that is, σ = 0,
then either an alignment or a triple event occurs, while if the piece is a wing of
p, then either an alignment or a wing event occurs. See Fig. 3. Each structural
change of T happens exactly when an alignment event occurs, while the function
description of ζp for each p ∈ P may also be changed if and only if a midline
event occurs. Finally, each change of the set E corresponds to either an endpoint
event or an alignment event. Hence, by predicting all those events and handling
them correctly, we can maintain the structures F , T and E over θ ∈ I.

(a) (b) (c) (d)

Fig. 3. (a) Alignment events. (b) Midline event. (c) Wing event. (d) Triple event.

4.3 Computing Events

Here, we focus on how to compute events before they occur. The events of the
first three types are relatively easy to predict.

Lemma 6. All of the alignment, midline, and wing events can be computed
explicitly in O(n2) time.

By the above lemma, we can precompute all the alignment, midline, and
wing events before running the main loop of our algorithm. However, triple and
endpoint events are dependent on the current envelope F . They will be computed
while the main loop is being executed by exploiting the invariants.

For any p, p′, q ∈ P , let tri(p, q, p′) be θ′ ∈ I when the intersection of (p, 1)
and (p′,−1) lies on (q, 0). At θ′ = tri(p, q, p′), we have λp′(θ′)−λp(θ′) = 2ζq(θ′),
so given p, p′, q, one can compute tri(p, q, p′) in O(1) time by solving the sinu-
soidal equation. Note that tri(p, q, p′) is uniquely determined by Lemma 1. This
triple event tri(p, q, p′) indeed occurs at θ′ only if the intersection point of (p, 1)
and (p′,−1) appears in Fθ′ . There are two cases: whether the plateau (q, 0) of q
is about to appear or disappear at θ′. For the latter case, the three pieces (p, 1),

138 S.W. Bae

(q, 0), and (p′,−1) must be consecutive in F just before θ′, while for the former
case, (p, 1) and (p′,−1) are consecutive in F but q is not seen from F just before
θ′. For p, p′ ∈ P such that (p, 1) and (p′,−1) are consecutive in F at θ ∈ I,
let triθ(p, p′) be a triple event at θ′ > θ associated with p and p′ that indeed
occurs, assuming that there is no alignment or wing event between θ and θ′.

Lemma 7. Given p, p′ ∈ P such that (p, 1) and (p′,−1) are consecutive in F at
θ ∈ I, triθ(p, p′) can be computed in O(log n) time.

In a similar fashion, we predict the next endpoint event. Let endpt+
θ and

endpt−
θ be the next endpoint event at θ′ > θ that occurs at the endpoints

βθ′ + αθ′ and βθ′ − αθ′ of Cθ′ , respectively, assuming that there is no change
locally at the piece corresponding to each endpoint in F between θ and θ′.

Lemma 8. Each of endpt+
θ and endpt−

θ can be computed in O(1) time.

Note that the predicted triple event triθ(p, p′) or endpoint events endpt+
θ

and endpt−
θ may not really occur if another event that causes some changes in

the invariants occurs before it. Thus, we treat those predicted triple and endpoint
events as tentative events for a while and modify them whenever necessary while
handling other events, so that finally every occurred triple and endpoint event
is correctly handled.

4.4 The Main Loop: Handling the Next Event

Before the main loop, we initialize the invariants F , T and E for the start-
ing point θ0 of the primary interval I. This can be done in O(n log n) time as
discussed in Sect. 3.

We also maintain the event queue Q that is a priority queue storing events
indexed by its occurring time so that the earliest upcoming event can be
extracted from Q and adding or deleting a specific event in logarithmic time.

We compute all the alignment, midline and wing events in O(n2) time by
Lemma 6 and insert them into Q in O(n2 log n) time. For any two consecutive
pieces in F that are of the form (p, 1) and (p′,−1), we compute triθ0(p, p′) by
Lemma 7 and insert it into Q. Also, for any three consecutive pieces in F that
are of the form (p, 1), (q, 0), and (p′,−1), in order, we compute tri(p, q, p′) and
insert it into Q. Lastly, compute endpt+

θ0
and endpt−

θ0
by Lemma 8 and insert

them into Q. Note that Q will contain at most O(n) triple and endpoint events
at every time.

We are then ready to start the main loop. In the main loop, we extract the
upcoming event from Q and handle it according to its type. While handling
each event, (i) we update our invariants F , T and E, (ii) modify some triple and
endpoint events in Q that are turned to be invalid by the update by deleting
them from Q and inserting newly computed ones into Q.

We first describe how to update the invariants in the following.

(a) (Alignment event). Let p, q ∈ P be associated with this alignment event at
θ ∈ I. We first discuss how to update T . We have two cases: λp(θ) = λq(θ)

Computing a Minimum-Width Square Annulus in Arbitrary Orientation 139

or ζp(θ) = ζq(θ). In the former case, the order of p and q is about to be
reversed with respect to λ· at θ. Thus, we apply the new order of p and q
in T . This can be done simply by deleting p and q from T , and reinserting
them with the new order of λp(θ + ε) and λq(θ + ε) for an arbitrarily small
positive ε. In the latter case, the structure of T remains the same but the
order of p and q with respect to ζ· is about to be reversed. Thus, we update
all the internal nodes along the paths from p and q to the root by applying
the new order of ζp(θ + ε) and ζq(θ + ε).
Next, we update the envelope F . We also distinguish two cases: λp(θ) =
λq(θ) or ζp(θ) = ζq(θ).
(i) For the former case, we assume without loss of generality that ζp(θ) <

ζq(θ), and λp(θ−ε) > λq(θ−ε) for a sufficiently small positive real ε > 0.
So, we will have λp(θ + ε) < λq(θ + ε) right after θ. If the plateau (p, 0)
of p does not appear in F , then this alignment event causes no change
in F . We thus assume that (p, 0) appears in F . Since (q, 0) and (q, 1) are
going to stick out from the right wing (p, 1) of p, we decide if (q, 0) will
appear in the envelope F right after θ by checking the right neighbor of
(p, 0) or (p, 1). If so, we add (q, 0) and (q, 1) into F accordingly. On the
other hand, on the left wing (p,−1) of p, (q,−1) and (q, 0) get removed
from F if they appear in F to the left of (p,−1).

(ii) For the latter case, where we have ζp(θ) = ζq(θ), we assume that ζp(θ −
ε) < ζq(θ − ε) for a sufficiently small positive real ε > 0 but we are going
to have ζp(θ + ε) > ζq(θ + ε) right after θ. We further assume without
loss of generality that λp(θ) < λq(θ). Let Z be the intersection between
the plateaus (p, 0) and (q, 0) of p and q at θ. If Z has no intersection
with the current envelope Fθ, then we do not have any change in its
combinatorial structure F . Thus, we assume that Z intersects Fθ.

If the right wing (p, 1) of p also appears in F , then so does the plateau
(q, 0) of q. In this case, (p, 1) is about to disappear while (q,−1) is about
to appear in F right after θ. We thus delete (p, 1) from F and insert
(q,−1) into F between (p, 0) and (q, 0).

Otherwise, if (p, 1) is not in F , then (q, 0) is not in F , either. Further,
if Z contains the breakpoint of Fθ between (p, 0) and its left neighbor,
then (p, 0) is about to disappear and (q, 0) is about to appear in F right
after θ; so, we delete (p, 0) from F and insert (q, 0) into F instead. In
the other case, where Z does not contain the breakpoint of Fθ between
(p, 0) and its left neighbor, no piece is deleted while (q,−1) and (q, 0)
should be inserted into F in this order.

After having updated T and F , we update E by checking which piece of F
corresponds to each endpoint βθ − αθ and βθ + αθ of Cθ.

(b) (Midline event). Let p ∈ P be associated with this midline event at θ ∈ I.
We then have ζp(θ) = 0. In this case, there is no structural change in F , T ,
and E but the function description ζp of wθ+π/2(p,m) should be updated;
more precisely, the sinusoidal function ζp gets negated after θ.

(c) (Wing event). Let p, q ∈ P be associated with this wing event at θ ∈ I.
Assume without loss of generality that the right endpoint of the plateau of p

140 S.W. Bae

lies on the left wing of q at θ. The other cases can be handled in a symmetric
way. If not both of (p, 0) and (q,−1) appear in F in a consecutive way, then
we do not have any change in F , so ignore this event. Otherwise, this is the
case where the right wing (p, 1) is about to appear in F between (p, 0) and
(q,−1) or disappear from F . According to the case, we insert (p, 1) into F
between (p, 0) and (q,−1) or delete it from F . There is no change in T and
E by any wing event.

(d) (Triple event). Let tri(p, q, p′) be this event at θ ∈ I. Then, the plateau
(q, 0) of q is about to appear in F between (p, 1) and (p′,−1) or disappear
from F . According to the case, we insert (q, 0) into F between (p, 1) and
(p′,−1) or delete it from F . In this case, there is no change in T and E.

(e) (Endpoint event). Let (p, σ) ∈ E be the piece that is relevant to this end-
point event at θ ∈ I. Let (p′, σ′) be a piece in F neighboring (p, σ) such that
the breakpoint between (p, σ) and (p′, σ′) corresponds to this event. Then,
we remove (p, σ) from E and insert (p′, σ′) into E. There is no change in F
and T by any endpoint event.

After having updated the invariants as described above, we modify triple and
endpoint events in Q. For the two endpoint events in Q, we simply recompute
endpt+

θ and endpt−
θ by Lemma 8 and replace the existing ones by the new

ones. In order to modify triple events, we perform the following: For each (p, σ)
disappeared from F by this update, we delete every triple event that involves p
from Q, while for each (p, σ) newly inserted into F by this update, we compute
triple events that involves (p, σ) and its neighbors by Lemma 7, and insert them
into Q. Also, for the two points p, q ∈ P that have changed their order in T , we
delete the triple events of the form tri(r, p, r′) or tri(r, q, r′) from Q, if exist.
We then recompute triθ(r, r′) by Lemma 7 and insert it into Q. Note that the
update of the invariants F , T and E by a single event is local and involves a
constant number of pieces. Thus, we have the following lemma.

Lemma 9. Each event can be handled in O(log n) time.

While running the main loop of our algorithm, we create, delete, and handle
a number of events. The following lemma bounds the total number of events we
create by O(n2).

Lemma 10. The number of events created by the algorithm for a primary inter-
val I is at most O(n2).

Therefore, the invariants F , T , and E are maintained over θ ∈ I in
O(n2 log n) time by our algorithm.

Lemma 11. Our algorithm correctly maintain the invariants F , T and E in
O(n2 log n) time over a primary interval I.

4.5 Finding an Optimal Orientation over a Primary Interval

By maintaining F over θ ∈ I as described above, we now have enough informa-
tion to trace candidates of highest points of Fθ(λ) over λ ∈ Cθ and θ ∈ I. Recall

Computing a Minimum-Width Square Annulus in Arbitrary Orientation 141

Lemma 4 that there exists a highest point of Fθ at fixed θ that corresponds
to a breakpoint of Fθ or an endpoint of Cθ. As θ ∈ I continuously increases,
the height of each breakpoint of Fθ or the height of Fθ at each endpoint of Cθ

changes continuously as a function of θ.
Each breakpoint of Fθ is determined by two neighboring pieces (p, σ) and

(p′, σ′) in Fθ for p, p′ ∈ P and σ, σ′ ∈ {−1, 0, 1}. Conversely, for any pair
((p, σ), (p′, σ′)) of two pieces, we say that the pair is alive at θ ∈ I if (p, σ)
and (p′σ′) are consecutive in Fθ and the breakpoint between them falls into Cθ.
An alive interval of the pair ((p, σ), (p′, σ′)) is a maximal sub-interval I ′ of I
such that the pair is alive at every θ ∈ I ′ and no midline event is contained in I ′.
Note that there may be several alive intervals for a pair of pieces. Let gpσp′σ′(θ)
be the partial function defined over alive intervals of ((p, σ), (p′, σ′)) that maps θ
to the height of the breakpoint between the two pieces in Fθ. Similarly, an alive
interval of each piece (p, σ) is a maximal sub-interval I ′ of I such that (p, σ) ∈ E
corresponding to a common endpoint of Cθ at every θ ∈ I ′ and no midline event
is contained in I ′. Let gpσ be the partial function defined over alive intervals of
(p, σ) that maps θ to the height of (p, σ) at the corresponding endpoint of Cθ.

Let G be the set of all those partial functions defined above. We first observe
that each function in G is indeed sinusoidal.

Lemma 12. Any function g ∈ G is sinusoidal in its alive interval.

Another key observation on alive intervals is the following.

Lemma 13. The endpoints of each alive interval correspond to two events han-
dled by the above algorithm. Moreover, the number of alive intervals is O(n2).

By Lemma 13, we can explicitly collect all alive intervals and the corre-
sponding functions defined on them while maintaining the invariants F , T and
E. Thus, G together with the alive intervals can be obtained in the same time as
in Lemma 11. Let Γ be the set of curved segments corresponding to the graphs
of partial functions in G. Lemmas 12 and 13 immediately imply the following.

Lemma 14. The set Γ consists of O(n2) segments of sinusoidal curves. More-
over, any two segments in Γ cross at most once. ��

Now, let G(θ) := maxg∈G g(θ) be the pointwise maximum over g ∈ G at θ.
Note that the function G corresponds to the upper envelope of curved segments
in Γ . Lemma 14 implies that the upper envelope of curved segments in Γ forms
a Davenport-Schinzel sequence of order 3 [14]. The upper envelope of Γ can be
computed in O(n2 log n) time by Hershberger [11], though its complexity can be
as large as Θ(n2α(n)) [14]. Thus, the function G can be computed in O(n2 log n)
time and is piecewise sinusoidal with O(n2α(n)) breakpoints.

Recall that our goal is to minimize minλ∈Cθ
{ 1
2H(θ) − Fθ(λ)} over θ ∈ I

by Lemma 2, where Fθ(λ) = minp∈P fp(θ, λ). Since H(θ) is independent from
λ ∈ Cθ, it is equivalent to minimize 1

2H(θ) − maxλ∈Cθ
Fθ(λ) over θ ∈ I. By

Lemma 4, we now have maxλ∈Cθ
Fθ(λ) = maxg∈G g(θ) = G(θ). Thus, our last

task is to find a minimum of 1
2H(θ) − G(θ) over θ ∈ I. Since H(θ) is sinusoidal,

the function 1
2H(θ) − G(θ) is also piecewise sinusoidal by Lemma 1, so we can

find an optimal orientation that minimizes 1
2H(θ) − G(θ) in O(n2α(n)) time.

142 S.W. Bae

Therefore, in O(n2 log n) time, we can find an optimal orientation over a
primary interval. The corresponding annulus can be obtained simultaneously, or
by running the algorithm for fixed orientation described in Sect. 3. Since there
are O(n) primary intervals by Lemma 5, we finally conclude our main theorem.

Theorem 1. Given a set P of n points in R
2, a minimum-width square annulus

that contains P over all orientations can be computed in O(n3 log n) time. ��

References

1. Abellanas, M., Hurtado, F., Icking, C., Ma, L., Palop, B., Ramos, P.: Best fitting
rectangles. In: European Workshop on Computational Geometry (EuroCG 2003)
(2003)

2. Agarwal, P.K., Har-Peled, S., Varadarajan, K.R.: Approximating extent measures
of points. J. ACM 51(4), 606–635 (2004)

3. Agarwal, P., Sharir, M.: Efficient randomized algorithms for some geometric opti-
mization problems. Discrete Comput. Geom. 16, 317–337 (1996)

4. Barequet, G., Briggs, A.J., Dickerson, M.T., Goodrich, M.T.: Offset-polygon annu-
lus placement problems. Comput. Geom.: Theory Appl. 11, 125–141 (1998)

5. Barequet, G., Goryachev, A.: Offset polygon and annulus placement problems.
Comput. Geom.: Theory Appl. 47(3, Part A), 407–434 (2014)

6. de Berg, M., Bose, P., Bremner, D., Ramaswami, S., Wilfong, G.: Computing
constrained minimum-width annuli of point sets. Comput.-Aided Des. 30(4), 267–
275 (1998)

7. Chan, T.: Approximating the diameter, width, smallest enclosing cylinder, and
minimum-width annulus. Int. J. Comput. Geom. Appl. 12, 67–85 (2002)

8. Duncan, C., Goodrich, M., Ramos, E.: Efficient approximation and optimization
algorithms for computational metrology. In: Proceedings of the 8th ACM-SIAM
Symposium Discrete Algorithms (SODA 1997), pp. 121–130 (1997)

9. Ebara, H., Fukuyama, N., Nakano, H., Nakanishi, Y.: Roundness algorithms using
the Voronoi diagrams. In: Abstracts 1st Canadian Conference on Computational
Geometry (CCCG), pp. 41 (1989)

10. Gluchshenko, O.N., Hamacher, H.W., Tamir, A.: An optimal o(n log n) algorithm
for finding an enclosing planar rectilinear annulus of minimum width. Oper. Res.
Lett. 37(3), 168–170 (2009)

11. Hershberger, J.: Finding the upper envelope of n line segments in O(n log n) time.
Inf. Proc. Lett. 33, 169–174 (1989)

12. Mukherjee, J., Mahapatra, P., Karmakar, A., Das, S.: Minimum-width rectangular
annulus. Theor. Comput. Sci. 508, 74–80 (2013)

13. Roy, U., Zhang, X.: Establishment of a pair of concentric circles with the minimum
radial separation for assessing roundness error. Comput.-Aided Des. 24(3), 161–
168 (1992)

14. Sharir, M., Agarwal, P.K.: Davenport-Schinzel Sequences and Their Geometric
Applications. Cambridge University Press, New York (1995)

15. Toussaint, G.: Solving geometric problems with the rotating calipers. In: Proceed-
ings of the IEEE MELECON (1983)

16. Wainstein, A.: A non-monotonous placement problem in the plane. In: Software
Systems for Solving Optimal Planning Problems, Abstract: 9th All-Union Symp.
USSR, Symp., pp. 70–71 (1986)

A General Framework for Searching on a Line

Prosenjit Bose1 and Jean-Lou De Carufel2(B)

1 School of Computer Science, Carleton University, Ottawa, Canada
2 School of Electrical Engineering and Computer Science,

University of Ottawa, Ottawa, Canada
jdecaruf@uottawa.ca

Abstract. Consider the following classical search problem: a target is
located on the line at distance D from the origin. Starting at the origin,
a searcher must find the target with minimum competitive cost. The
classical competitive cost studied in the literature is the ratio between
the distance travelled by the searcher and D. Note that when no lower
bound on D is given, no competitive search strategy exists for this prob-
lem. Therefore, all competitive search strategies require some form of
lower bound on D.

We develop a general framework that optimally solves several variants
of this search problem. Our framework allows us to match optimal com-
petitive search costs for previously studied variants such as: (1) where the
target is fixed and the searcher’s cost at each step is a constant times the
distance travelled, (2) where the target is fixed and the searcher’s cost
at each step is the distance travelled plus a fixed constant (often referred
to as the turn cost), (3) where the target is moving and the searcher’s
cost at each step is the distance travelled.

Our main contribution is that the framework allows us to derive
optimal competitive search strategies for variants of this problem that
do not have a solution in the literature such as: (1) where the target is
fixed and the searcher’s cost at each step is α1x+β1 for moving distance
x away from the origin and α2x + β2 for moving back with constants
α1, α2, β1, β2, (2) where the target is moving and the searcher’s cost at
each step is a constant times the distance travelled plus a fixed constant
turn cost. Notice that the latter variant can have several interpretations
depending on what the turn cost represents. For example, if the turn
cost represents the amount of time for the searcher to turn, then this has
an impact on the position of the moving target. On the other hand, the
turn cost can represent the amount of fuel needed to make an instanta-
neous turn, thereby not affecting the target’s position. Our framework
addresses all of these variations.

1 Introduction

Consider the following classical search problem: a target is located on the line at
distance D from the origin. Starting at the origin, a searcher must find the target

This work was supported by FQRNT and NSERC.

c© Springer International Publishing Switzerland 2016
M. Kaykobad and R. Petreschi (Eds.): WALCOM 2016, LNCS 9627, pp. 143–153, 2016.
DOI: 10.1007/978-3-319-30139-6 12

144 P. Bose and J.-L. De Carufel

with minimum competitive cost. The classical competitive cost studied in the
literature is defined as the ratio between the distance travelled by the searcher
and D. This problem and many of its variants have been extensively studied
both in mathematics and computer science. For an encyclopaedic overview of
the field, the reader is referred to the following books on the area [1,2,10].
Techniques developed to solve this family of problems have many applications
in various fields such as robotics, scheduling, clustering, or routing to name a
few [4,5,8,11–14]. In particular, solutions to these problems have formed the
backbone of many competitive online algorithms (see [6] for a comprehensive
overview). Note that when no lower bound on D is given, no competitive search
strategy exists for this problem. If an adversary places the target at a distance
ε > 0 from the origin and the first step taken by the algorithm is ξ > 0 in the
wrong direction, the ratio ξ/ε cannot be bounded. Therefore, all competitive
search strategies require some form of lower bound on D.

We introduce a general framework to resolve several variations of this classical
search problem. Our framework allows us to match optimal competitive search
costs for previously studied variants. The first one is the classical problem where
the target is fixed and the searcher’s cost at each step is a constant times the
distance travelled. This was first studied by Gal [9,10] and subsequently by
Baeza-Yates et al. [3]. Given a lower bound of λ on D, an optimal strategy is
the following: xi = 2iλ (i ≥ 1). At step i, if i is even, move to xi and then
return to the origin. If i is odd, move to −xi and then return to the origin. All
known search strategies exhibit this alternating behaviour. The competitive cost
of this strategy is 9 in the worst case. With our framework, we find the strategy
xi = (i + 1)2iλ, which also has a competitive cost of 9 in the worst case (refer
to Lemma 1).

The following variant we can solve with our framework is the one where the
target is fixed and the searcher’s cost at each step is the distance travelled plus
a fixed constant (often referred to as the turn cost). This was first studied by
Alpern and Gal [2, Sect 8.4]. They provided a strategy with expected competitive
cost 9 + 2t/λ. They left open the question of whether this is optimal. Demaine
et al. [7] addressed a deterministic variant of the problem. Their strategy is
xi = 1

2

(
2i − 1

)
t (i ≥ 1). The total cost of this strategy is 9D + 2t in the worst

case. Their strategy does not require a lower bound on D, the distance from
the origin to the target. Therefore, their search strategy cannot be competitive
with respect to only D (by the adversarial argument presented above). However,
their search strategy is competitive with respect to the worst case cost of any
online search strategy. Notice that when there is a cost of t > 0 charged for each
turn made by the searcher, in essence t + D is a lower bound on the worst case
cost of any online search strategy. This is because in the worst case, any online
strategy may start in the wrong direction and have to make at least one turn.
Therefore, their search strategy is competitive with respect to t + D as opposed
to just D. Surprisingly, with our framework, we prove that when t/2λ ≤ 1, the
optimal competitive cost is still 9 in the worst case (refer to Lemma 1). When

t/2λ ≥ 1, the optimal search cost is
(

9 + 2(t
2λ −1)2

t
2λ

)

D (refer to Theorem 1).

A General Framework for Searching on a Line 145

Moreover, our framework allows us to resolve the more general variant where
the target is fixed and the searcher’s cost at each step is α1x + β1 for moving
distance x away from the origin and α2x + β2 for moving back with positive
constants α1, α2, β1, β2 such that α1 + α2 > 0 (refer to Sect. 4.1).

The third variant that is encompassed by our framework is the one where the
target is moving and the searcher’s cost at each step is a the distance travelled.
This was first studied by Gal [10]. Suppose that the searcher travels at speed 1
and the target travels at speed 0 < w < 1. Given a lower bound of λ on D, an

optimal strategy is xi =
(
2 1+w

1−w

)i

λ (i ≥ 1). The competitive cost of this strat-

egy is (3+w)2

(1−w)3 in the worst case. With our framework, we find the strategy xi =
(

1+3w
(1−w)(1+w) i + 1

1+w

) (
2 1+w
1−w

)i

λ, which also has a competitive cost of (3+w)2

(1−w)3 in
the worst case (refer to Lemma 3). Moreover, our framework allows us to resolve
the more general variant where the target is moving and the searcher’s cost at each
step is a constant times the distance travelled plus a fixed constant turn cost (refer
to Sect. 3). Surprisingly, even in this setting, when t/2λ is small compared to w,
the turn cost has no effect on the optimal competitive cost (refer to Lemma 3).
Notice that the latter variant can have several interpretations depending on what
the turn cost represents. For example, if the turn cost represents the amount of
time for the searcher to turn, then this has an impact on the position of the moving
target. On the other hand, the turn cost can represent the amount of fuel needed
to make an instantaneous turn, thereby not affecting the target’s position. Our
framework addresses all of these variations. To the best of our knowledge, the only
general framework for solving line-searching problems is due to Gal [9,10]. A pre-
cise description of our more general framework is outlined in Sect. 4.

2 Searching on a Line with Turn Cost

A search strategy for the problem of searching on a line is a function S(i) =
(xi, ri) defined for all integers i ≥ 1. At step i, the searcher travels a distance of
xi on ray ri ∈ {left, right}. If he does not find the target, he goes back to the
origin and proceeds with step i + 1. Let D be the distance between the searcher
and the target at the beginning of the search. Traditionally, the goal is to find
a strategy S that minimizes the competitive ratio CR(S) (or competitive cost)
defined as the total distance travelled by the searcher divided by D, in the worst
case. If D is given to the searcher, any strategy S such that S(1) = (D, left) and
S(2) = (D, right) is optimal with a competitive ratio of 3 in the worst case. If
D is unknown, a lower bound λ ≤ D must be given to the searcher, otherwise
the competitive ratio is unbounded in the worst case.

Let Left = {i | ri = left} and Right = {i | ri = right}. To guarantee that,
wherever the target is located, we can find it with a strategy S, we must have
supi∈Left xi = supi∈Right xi = ∞. We say that S is monotonic if the sequences
(xi)i∈Left and (xi)i∈Right are strictly increasing. The strategy S is said to be
periodic if r1 �= r2 and ri = ri+2 for all i ≥ 1. We know from previous work

146 P. Bose and J.-L. De Carufel

(see [3,10] for instance) that there is an optimal strategy that is periodic and
monotonic. Let us say that a strategy is fully monotonic if the sequence (xi)i≥1 is
monotonic and non-decreasing. We can make the following assumption without
loss of generality.

Periodic-Monotonic Assumption: There exists an optimal search strategy
that is periodic and fully monotonic.

We now address the problem where we are given a turn cost t. If the searcher
knows D, the optimal strategy is still xi = D and it has a competitive cost of
supD≥λ

3D+t
D = 3+ t

λ in the worst case. When t = 0, where we get a competitive
cost of 3 in the worst case. This corresponds to the case where D is known and
there is no turn cost. For the rest of the section, we suppose that the searcher
does not know D. Throughout this section, we let γ be the competitive cost of
the optimal strategy for searching on a line with turn cost, in the worst case.

In the worst case, it takes at least 2 steps to find the target. We find

2x1 + t + λ

λ
= sup

D≥λ

2x1 + t + D

D
≤ γ. (1)

In general, if the searcher does not find the target at step n but finds it at step
n + 2, we have xn < D ≤ xn+2. Therefore, we find

∑n+1
i=1 (2xi + t) + xn

xn
= sup

xn<D≤xn+2

∑n+1
i=1 (2xi + t) + D

D
≤ γ. (2)

We first show that if t
2λ ≤ 1, a competitive cost of 9 is still achievable in the

worst case.

Lemma 1. If t
2λ ≤ 1, the strategy xi =

(((
1 − t

2λ

)
i +

(
1 + t

2λ

))
2i − t

2λ

)
λ is

optimal and has a competitive cost of 9.

Proof. Using (1) and (2), we can show that the strategy xi has the prescribed
competitive cost in the worst case. The strategy xi is optimal since it cannot do
better than the optimal strategy for searching on a line. ��

When t = 0, we find xi = (i+1)2iλ, which has a competitive cost of 9 in the
worst case. Before presenting the result for the case where t

2λ > 1, we need the
following technical lemma whose proof is omitted due to lack of space.

Lemma 2. If t
2λ > 1, then γ > 9.

Theorem 1. If t
2λ ≥ 1, the strategy xi =

(
(
1 + t

2λ

) (
1 +

(
t
2λ

)−1
)i

− t
2λ

)

λ is

optimal and has a competitive cost of 2x1+t+λ
λ = 9 + 2(t

2λ −1)2
t
2λ

.

Proof. Using (1) and (2), we can show that the strategy xi has the prescribed

competitive cost in the worst case. Moreover, if t
2λ = 1, then 9 + 2(t

2λ −1)2
t
2λ

= 9.

For the rest of the proof, we suppose that t
2λ > 1 (hence, γ > 9 by Lemma 2).

A General Framework for Searching on a Line 147

From (1), we find

0 < λ ≤ x1 ≤ (γ − 1)λ − t

2
(3)

and from (2), we find

xn+1 ≤ τ0xn − μ0 − ν0

n−1∑

i=1

(xi + κ0) (4)

for all n ≥ 1, where τ0 = γ−3
2 , μ0 = t, ν0 = 1 and κ0 = 1

2 t. We can prove by
induction that for all 0 ≤ m ≤ n − 1,

xn+1 ≤ τmxn−m − μm − νm

n−1−m∑

i=1

(xi + κ0), (5)

where τm+1 = τ0τm − νm, μm+1 = μ0τm + μm + κ0νm and νm+1 = ν0τm + νm.
From the theory of characteristic equations, we find1

τm =
τ0(τ0 − r2) − ν0

r1 − r2
rm
1 − τ0(τ0 − r1) − ν0

r1 − r2
rm
2 ,

μm =
(τ0 + 1)μ0 + (ν0 − 1)κ0 + (κ0 − μ0)r2

r1 − r2
rm
1

− (τ0 + 1)μ0 + (ν0 − 1)κ0 + (κ0 − μ0)r1
r1 − r2

rm
2 + κ0,

νm =
ν0(τ0 + 1 − r2)

r1 − r2
rm
1 − ν0(τ0 + 1 − r1)

r1 − r2
rm
2 ,

where r1 > r2 are the roots of the polynomial X2 − (τ0 +1)X +(τ0 +ν0). Notice
that since γ > 9, we have τ0 > 3 and hence, 1 < r2 < r1.

From (5) with m := n − 1, we have xn+1 ≤ τn−1x1 − μn−1 for all n ≥ 1. By
the periodic-monotonic assumption, xn+1 is increasing with respect to n. Also,
xn+1 is unbounded. Therefore, δ(n) = τn−1x1 − μn−1 must be unbounded. Let
us study δ(n), which can be written as δ(n) = a rn

1 − b rn
2 − κ0, where

a =
τ0(τ0 − r2) − ν0

r1 (r1 − r2)
x1 − (τ0 + 1)μ0 + (ν0 − 1)κ0 + (κ0 − μ0)r2

r1 (r1 − r2)
,

b =
τ0(τ0 − r1) − ν0

r2 (r1 − r2)
x1 − (τ0 + 1)μ0 + (ν0 − 1)κ0 + (κ0 − μ0)r1

r2 (r1 − r2)
.

We will prove that a ≥ 0 by contradiction. Suppose that a < 0. We have

dδ

dn
= a log(r1) rn

1 − b log(r2) rn
2 = b log(r2) rn

2

(
a log(r1)
b log(r2)

(
r1
r2

)n

− 1
)

.

1 Even though ν0−1 = 0, we do not simplify the expressions for τ , μ and ν since later
in the paper, we re-use them with different values for τ0, μ0, ν0 and κ0.

148 P. Bose and J.-L. De Carufel

If b ≥ 0, then dδ
dn ≤ 0, which means that δ is not increasing. In other words, δ

is bounded, which is a contradiction. If b ≤ 0, since 1 < r2 < r1, there exists a
rank n0 such that a log(r1)

b log(r2)

(
r1
r2

)n

> 1 for all n ≥ n0. This implies that dδ
dn < 0 for

all n ≥ n0. Thus, δ(n) is decreasing for all n ≥ n0. In other words, δ is bounded.
Consequently, we must have a ≥ 0.

Thus, we can find a lower bound on γ by finding the smallest γ which satisfies
{

0 < λ ≤ x1 ≤ (γ−1)λ−t
2 ,

0 ≤ τ0(τ0−r2)−ν0
r1(r1−r2)

x1 − (τ0+1)μ0+(ν0−1)κ0+(κ0−μ0)r2
r1(r1−r2)

.
(6)

Equivalently, ⎧
⎪⎪⎨

⎪⎪⎩

γ ≥ t2+3tx1+(t+2x1)
√

t(t+2x1)

tx1
,

γ ≥ 2x1+t+λ
λ ,

x1 ≥ λ > 0.

This optimization problem solves to γ = 9 + 2(t
2λ −1)2

t
2λ

. ��

3 Searching a Moving Target on a Line with Turn Cost

In this section, we characterize an optimal strategy for searching a moving target
on a line with turn cost. We suppose that the searcher travels at speed 1. The
speed w of the target, where 0 ≤ w < 1, is known. In the worst case, the
target and the searcher start moving in opposite directions, the target never
slows down and never changes direction. Suppose that the turn cost t = 0. If the
searcher knows D and the side of the line where the target is, it has to travel
at distance D

1−w to reach the target. If only D is known, the optimal strategy is
to walk D

1−w in one direction, then go back to the origin and travel at distance
D+2 D

1−w w

1−w = 1+w
(1−w)2 D in the opposite direction. In the worst case, we get a

competitive cost of
2 D

1−w + 1+w

(1−w)2
D

D = 3−w
(1−w)2 .

The competitive cost of an online algorithm usually refers to the cost of the
algorithm in the worst case divided by the cost of an optimal offline algorithm.
When both a turn cost and a moving target are involved, this definition can be
interpreted in different ways. Traditionally, for line-searching problems, the cost
of the optimal offline algorithm is D. This is the framework that was used by
Gal to find an optimal strategy for searching a moving target on a line (see [10,
Sect 7.5]). However, the cost of the optimal offline algorithm is 1

1−wD since, even
if the searcher knows the exact position of the target, this target is still moving.
Therefore, both comparing to D or to 1

1−wD make sense. But then, the optimal
cost for one is a factor of (1−w) of the other. Therefore, in this section, we focus
on the cases where we compare the cost of the online algorithm to D.

When we introduce a turn cost, there are at least two ways of calculating
the cost of the online algorithm. The turn cost t can be seen as representing

A General Framework for Searching on a Line 149

time or fuel, which are different in this context. If t represents time, then the
searcher has to wait for t units of time before moving back to the origin. While
the searcher is waiting, the target has time to move a bit further. If t represents
fuel, then we can imagine that it takes no time for the searcher to turn. Hence,
it takes 0 units of time for the searcher to change direction and the target has
no time to move. In Sect. 3.1, we study the case where t is considered to be time.
In Sect. 3.2, we study the case where t is considered to be fuel.

3.1 Turn Cost Is Time — Competitive with Respect to D

Suppose that t is considered to be time. That is, when the searcher changes
direction, it takes time t and the target can take advantage of that extra time to
escape. When D is known, the optimal strategy is to travel at distance D

1−w in

one direction, then go back to the origin and travel at distance
D+(2 D

1−w +t)w

1−w =
1+w

(1−w)2 D + w
1−w t. In the worst case, we get a competitive cost of

sup
D≥λ

2 D
1−w + t + 1+w

(1−w)2 D + w
1−w t

D
=

3 − w

(1 − w)2
+

t

λ(1 − w)
.

For the rest of this section, we suppose that the searcher does not know D. Let
γ be the competitive cost of the optimal strategy for searching a moving target
on a line with turn cost, in the worst case.

In the worst case, it takes at least 2 steps to find the target. We get x2 ≥
D + (2x1 + t)w + x2w, from which D ∈ [λ, (1 − w)x2 − (2x1 + t)w] = I1.
When the searcher finds the target in two steps, it actually travels at distance
x′
2 = D + (2x1 + t)w + x′

2w during the second step, from which we have x′
2 =

D+(2x1+t)w
1−w . Therefore,

2x1 + t + λ+(2x1+t)w
1−w

λ
= sup

D∈I1

2x1 + t + x′
2

D
≤ γ. (7)

In general, if the searcher does not find the target at step n but finds it
at step n + 2, we get xn < D +

(∑n−1
i=1 (2xi + t)

)
w + xnw and xn+2 ≥ D +

(∑n+1
i=1 (2xi + t)

)
w + xn+2w, from which D ∈ In+1, where

In+1 =

]

(1 − w)xn −
(

n−1∑

i=1

(2xi + t)

)

w, (1 − w)xn+2 −
(

n+1∑

i=1

(2xi + t)

)

w

]

.

When the searcher finds the target in n + 2 steps, it actually travels at distance
x′

n+2 = D +
(∑n+1

i=1 (2xi + t)
)

w + x′
n+2w during the last step, from which we

find x′
n+2 =

D+(∑n+1
i=1 (2xi+t))w

1−w . Therefore,

150 P. Bose and J.-L. De Carufel

∑n+1
i=1 (2xi + t) + ((1−w)xn−(∑n−1

i=1 (2xi+t))w)+(∑n+1
i=1 (2xi+t))w

1−w

(1 − w)xn −
(∑n−1

i=1 2xi

)
w

(8)

= sup
D∈In+1

∑n+1
i=1 (2xi + t) + x′

n+2

D
(9)

≤γ. (10)

Gal [10, Sect 7.5] proved that the optimal strategy for searching a moving
target on a line has a competitive cost of (3+w)2

(1−w)3 in the worst case. We show that

if t
2λ ≤ 1+3w

(1−w)2 , a competitive cost of (3+w)2

(1−w)3 is still achievable in the worst case.

Lemma 3. If t
2λ ≤ 1+3w

(1−w)2 , the strategy

xi =

(
1 − w

1 + w

((
1 + 3w

(1 − w)2
− t

2λ

)

i +
(

1
1 − w

+
t

2λ

))(

2
1 + w

1 − w

)i

− t

2λ

)

λ

is optimal and has a competitive cost of (3+w)2

(1−w)3 .

Proof. Using (7) and (10), we can show that the strategy xi has the prescribed
competitive cost in the worst case. The strategy xi is optimal since it cannot do
better than the optimal strategy for searching a moving target on a line. ��

When t = 0, we find xi =
(

1+3w
(1−w)(1+w) i + 1

1+w

)(
2 1+w
1−w

)i

λ, which has a com-

petitive cost of (3+w)2

(1−w)3 in the worst case. Before presenting the result for the
case where t

2λ > 1+3w
(1−w)2 , we need the following technical lemma whose proof is

omitted due to lack of space.

Lemma 4. If t
2λ > 1+3w

(1−w)2 , then γ > (3+w)2

(1−w)3 .

Theorem 2. If t
2λ ≥ 1+3w

(1−w)2 , the strategy

xi =

⎛

⎝
(

1
1 + w

+
1 − w

1 + w

t

2λ

) (
(1 + w)

(
(1 − w) t

2λ + 1
)

(1 − w)2 t
2λ − 2w

)i

− t

2λ

⎞

⎠ λ.

is optimal and has a competitive cost of (3+w)2

(1−w)3 +
2((1−w)2 t

2λ −(1+3w))2

(1−w)3((1−w)2 t
2λ −2w) .

Proof. Using (7) and (10), we can show that the strategy xi has the prescribed
competitive cost in the worst case. Moreover, if t

2λ = 1+3w
(1−w)2 , then (3+w)2

(1−w)3 +
2((1−w)2 t

2λ −(1+3w))2

(1−w)3((1−w)2 t
2λ −2w) = (3+w)2

(1−w)3 . For the rest of the proof, we suppose that t
2λ >

1+3w
(1−w)2 (hence, γ > (3+w)2

(1−w)3 by Lemma 4).

A General Framework for Searching on a Line 151

From (7), we find 0 < λ ≤ x1 ≤ ((1−w)γ−1)λ−t
2 and from (10), we find

xn+1 ≤ τ0xn − μ0 − ν0
∑n−1

i=1 (xi + κ0) for all n ≥ 1, where τ0 = (1−w)2γ−3
2 + w

2 ,
μ0 = t, ν0 = (1 − w)(1 + γw) and κ0 = t

2 . The rest of the proof is identical to
that of Theorem 1. ��

3.2 Turn Cost Is Fuel — Competitive with Respect to D

Suppose that t is the amount of fuel needed to make an instantaneous turn, thereby
not affecting the target’s position. Using the same approach as in Sect. 3.1, we get
the following results.

Lemma 5. If t
2λ ≤ (1+3w)2

(1+w)(1−w)3 , the strategy

xi =

((
1+3w
1−w

(
1

1+w
− t(1−w)3

2λ(1+3w)2

)
i +
(

1
1+w

+ t(1−w)3

2λ(1+3w)2

))(
2 1+w

1−w

)i

− t(1−w)3

2λ(1+3w)2

)
λ

is optimal and has a competitive cost of (3+w)2

(1−w)3 .

Theorem 3. If t
2λ ≥ (1+3w)2

(1+w)(1−w)3 , the strategy xi =
(
p qi − r

)
λ, where

p =
(1+3w)2(2+(1−w)(1+w) t

2λ)
2(1+w)((1+3w)2+2(1−w)(1+w)2 t

2λ) + 1+3w

2((1+3w)2+2(1−w)(1+w)2 t
2λ) Φ,

q = −4w+(1−w)2(1+w) t
2λ

8w2 − (1+w)2

8w2 Φ,

r = (1−w)(1+2w+5w2) t
2λ

2((1+3w)2+2(1−w)(1+w)2 t
2λ) + 1+3w

2((1+3w)2+2(1−w)(1+w)2 t
2λ) Φ,

is optimal and has a competitive cost of
t
2λ (1−w)(1+2w+5w2)−4w(1−w)−(1+3w)Φ

4w2(1−w) ,

where Φ =
√

t
2λ (1 − w)

(
t
2λ (1 − w)3 − 8w

)
.

4 The General Framework

The line-searching problems we solved in Sects. 2 and 3 can all be encapsulated
in the same framework. For all these problems, we managed to rewrite the con-
straints on an optimal strategy xi so that they satisfy the general inequalities (3)
and (4). Inequality (3) is obtained by calculating what happens if the searcher
finds the target in two steps. Inequality (4) is obtained by calculating what hap-
pens if the searcher needs n+2 steps to find the target. It depends on the initial
parameters τ0, μ0, ν0 and κ0. These parameters are functions of the optimal cost
γ and the parameters of the problem that is being studied (for instance, λ and
t for searching on a line with turn cost). Then, (3) and (4) are converted into
an optimization problem which consists in finding the smallest value of γ that
satisfies (3) and

a =
τ0(τ0 − r2) − ν0

r1 (r1 − r2)
x1 − (τ0 + 1)μ0 + (ν0 − 1)κ0 + (κ0 − μ0)r2

r1 (r1 − r2)
≥ 0 (11)

(refer to (6)), where

r1 =
τ0 + 1 +

√
(τ0 − 1)2 − 4ν0
2

and r2 =
τ0 + 1 − √

(τ0 − 1)2 − 4ν0
2

(12)

152 P. Bose and J.-L. De Carufel

are the roots of the polynomial X2 − (τ0 + 1)X + (τ0 + ν0). In this section, we
describe how to solve any line-searching problem for which the constraints on an
optimal strategy xi can be written as (3) and (4). In Sect. 4.1, we solve a general
class of line-searching problems using our framework.

Let Θ be a finite set of parameters which contains λ. For instance, in Sect. 2,
Θ = {λ, t} and in Sect. 3, Θ = {λ, t, w}. Suppose that, for a given line-searching
problem, the cost of travelling at distance x depends on x and parameters from Θ.
Suppose that the constraints onanoptimal strategyxi canbewritten as (3) and (4),
where these inequalities depend on γ and parameters from Θ. Then τ0, μ0, ν0 and
κ0 are functions of γ and parameters from θ. We can solve the problem optimally
in the following way.

1. Write Inequality (3) as 0 < λ ≤ x1 ≤ ρ(γ,Θ), where ρ is a function of γ and
parameters from Θ.

2. Write Inequality (4) as xn+1 ≤ τ0(γ, Θ)xn − μ0(γ, Θ)− ν0(γ, Θ)
n−1∑

i=1
(xi + κ0(γ, Θ)),

where τ0, μ0, ν0 and κ0 are functions of γ and parameters from Θ.
3. Find the smallest γ such that 0 < λ ≤ x1 ≤ ρ(γ,Θ) and a(γ,Θ, x1) ≥ 0,

where a is a function of x1, γ and parameters from Θ, defined as in (11).
Let γ∗(Θ), which depends on parameters from Θ, be the solution to this
optimization problem.

4. Let x∗
i be the solution to the following linear recurrence where x1 = ρ(γ∗(Θ), Θ):

xn+1 = τ0(γ
∗(Θ), Θ)xn − μ0(γ

∗(Θ), Θ) − ν0(γ
∗(Θ), Θ)

n−1∑
i=1

(xi + κ0(γ
∗(Θ), Θ)) .

5. Notice that x∗
i is defined for as long as r1(γ∗(Θ), Θ) and r2(γ∗(Θ), Θ) are

real numbers, where r1 and r2 are functions of γ and parameters from Θ,
defined as in (12). Let γ(Θ), which depends on parameters from Θ, be the
value of γ for which (τ0(γ,Θ) − 1)2 − 4ν0(γ,Θ) = 0. The optimal solution
x∗

i is defined for any values of parameters from Θ for which γ∗(Θ) ≥ γ(Θ).
It has a competitive cost of γ∗(Θ) in the worst case.

6. Let xi be the solution to the following linear recurrence where x1 = ρ (γ(Θ), Θ):

xn+1 = τ0 (γ(Θ), Θ) xn−μ0 (γ(Θ), Θ)−ν0 (γ(Θ), Θ)
n−1∑

i=1

(xi + κ0 (γ(Θ), Θ)) .

The solution xi is optimal for all values of parameters from Θ for which
γ∗(Θ) ≤ γ(Θ). It has a competitive cost of γ(Θ) in the worst case.

4.1 One More Application of the General Framework

Consider an infinite family of line-searching problems. Let cost1(x) = α1x + β1

be the cost of walking distance x away from the origin and cost2(y) = α2y + β2

be the cost of walking distance y back to the origin. For instance, we have
cost1(x) = cost2(x) = x for the problem of searching on a line, and we have

A General Framework for Searching on a Line 153

cost1(x) = x and cost2(x) = x + t for the problem of searching on a line with
turn cost. In this section, we suppose that α1 ≥ 0, α2 ≥ 0, α1 + α2 > 0, β1 ≥ 0
and β2 ≥ 0. Also, we suppose that the target is immobile. Using our general
framework with Θ = {λ, α1, α2, β1, β2}, we can prove the following result.

Theorem 4. If 3β1+2β2
2(α1+α2)λ

≤ 1, the strategy

xi =
(((

1 − 3β1+2β2
2(α1+α2)λ

)
i +

(
1 + β1+β2

(α1+α2)λ

))
2i − β1+β2

(α1+α2)λ

)
λ

is optimal and has a competitive cost of 5α1 + 4α2.
If 3β1+2β2

2(α1+α2)λ
≥ 1, the strategy xi =

((
1 + β1+β2

(α1+α2)λ

)
Φi − β1+β2

(α1+α2)λ

)
λ, where

Φ = 1 +
(

2β1+β2−(α1+α2)λ+
√

(2β1+β2)
2−β2

2+(β2+(α1+α2)λ)
2

2(α1+α2)λ

)−1

, is optimal and

has a competitive cost of (α1+α2)x1+(β1+β2)+(α1λ+β1)
λ .

We can see where the “9” comes from in the original problem of searching
on a line by setting β1 = β2 = 0.

References

1. Alpern, S., Fokkink, R., Gasieniec, L., Lindelauf, R., Subrahmanian, V.S.: Search
Theory: A Game Theoretic Perspective. Springer, New York (2013)

2. Alpern, S., Gal, S.: The Theory of Search Games and Rendezvous. International
Series in Operations Research and Management Science, vol. 55. Springer, New
York (2003)

3. Baeza-Yates, R.A., Culberson, J.C., Rawlins, G.J.E.: Searching in the plane. Inf.
Comp. 106(2), 234–252 (1993)

4. Bose, P., Morin, P.: Online routing in triangulations. SIAM J. Comput. 33(4),
937–951 (2004)

5. Bose, P., Morin, P., Stojmenović, I., Urrutia, J.: Routing with guaranteed delivery
in ad hoc wireless networks. Wireless Netw. 7(6), 609–616 (2001)

6. Chrobak, M., Kenyon-Mathieu, C.: Sigact news online algorithms column 10: com-
petitiveness via doubling. SIGACT News 37(4), 115–126 (2006)

7. Demaine, E.D., Fekete, S.P., Gal, S.: Online searching with turn cost. Theor. Com-
put. Sci. 361(2–3), 342–355 (2006)

8. Dudek, G., Jenkin, M.: Computational principles of mobile robotics. Cambridge
University Press, Cambridge (2010)

9. Gal, S.: A general search game. Israel J. Math. 12(1), 32–45 (1972)
10. Gal, S.: Search Games. Mathematics in Science and Engineering, vol. 149. Acad-

emic Press, New York (1980)
11. LaValle, S.M.: Planning algorithms. Cambridge University Press, Cambridge

(2006)
12. O’Kane, J.M., LaValle, S.M.: Comparing the power of robots. Int. J. Robot. Res.

27(1), 5–23 (2008)
13. Pruhs, K., Sgall, J., Torng, E.: Handbook of Scheduling: Algorithms, Models, and

Performance Analysis. Chapter Online Scheduling. CRC Press, Boca Raton (2004)
14. Zilberstein, S., Charpillet, F., Chassaing, P.: Optimal sequencing of contract algo-

rithms. Annals Math. Artif. Intell. 39(1–2), 1–18 (2003)

An Optimal Algorithm for Computing
the Integer Closure of UTVPI Constraints

K. Subramani and Piotr Wojciechowski(B)

LCSEE, West Virginia University, Morgantown, WV, USA
k.subramani@mail.wvu.edu, pwojciec@mix.wvu.edu

Abstract. In this paper, we study the problem of computing the lat-
tice point closure of a conjunction of Unit Two Variable Per Inequality
(UTVPI) constraints. We accomplish this by adapting Johnson’s all pairs
shortest path algorithm to UTVPI constraints. This problem has been
extremely well-studied in the literature, inasmuch as it arises in a num-
ber of applications, including but not limited to, program verification and
operations research. The complexity of solving this problem has steadily
improved over the past several decades with the fastest algorithm for
this problem running in time O(n3) on a UTVPI constraint system with
n variables and m constraints. For the same input parameters, we detail
an algorithm that runs in time O(m · n + n2 · log n). It is clear that our
algorithm is superior to the state of the art when the constraint system
is sparse (m ∈ O(n)), and no worse than the state of the art when the
constraint system is dense (m ∈ Θ(n2)). It is worth noting that our algo-
rithm is time optimal in the following sense: The best known running
time for computing the closure of a conjunction of difference constraints
(m constraints, n variables) is O(m·n+n2 ·log n), and UTVPI constraints
subsume difference constraints.

Keywords: UTVPI constraints · Relaxation · Dijkstra steps · Optimal ·
Closure

1 Introduction

This paper is concerned with the design of a new algorithm for computing the
integer closure of a conjunction of UTVPI constraints. This is accomplished
by adapting Johnson’s all pairs shortest path algorithm to UTVPI constraints.
UTVPI constraints occur in a number of application domains, including but not
limited to, constraint solving [LM05], abstract interpretation [Min06], spatial
databases, and theorem proving. There are two principal problems associated
with UTVPI constraints, viz., the integer feasibility problem and the integer
closure problem. Both of these problems are closely related, and many algorithms
for the latter depend upon efficient strategies for the former. The class of UTVPI

P. Wojciechowski—This research is supported in part by the National Science Foun-
dation through Award CCF-1305054.

c© Springer International Publishing Switzerland 2016
M. Kaykobad and R. Petreschi (Eds.): WALCOM 2016, LNCS 9627, pp. 154–165, 2016.
DOI: 10.1007/978-3-319-30139-6 13

An Optimal Algorithm for Computing the Integer Closure of UTVPI 155

constraints clearly subsumes the class of difference constraints. Furthermore,
unlike difference constraint systems, it is possible for a UTVPI system to be
feasible, yet lack an integer solution. Likewise, for difference constraints, the
linear closure and integer closure are equivalent and can be computed by finding
the all pairs shortest path. However, for UTVPI constraints the linear closure
is not always equivalent to the integer closure. We formally define the integer
closure problem in Sect. 2.

We propose a new algorithm in this paper for the integer closure problem in
UTVPI constraints (IC). The IC problem has received a fair amount of attention
in the literature [LM05], with algorithms for this problem steadily improving in
time complexity. To date, the fastest algorithm for the IC problem is the one
proposed in [BHZ09]. Their algorithm runs in time O(n3) on a UTVPI system
having n variables and m constraints. In contrast, our algorithm runs in time
O(m · n + n2 · log n) on a UTVPI system having the same input parameters.
Inasmuch as the best known closure algorithm for difference constraints also
runs in time O(m · n + n2 · log n), our algorithm is optimal [CLRS01].

The principal contribution of this paper is the design and analysis of a new
algorithm for computing the integer closure of a conjunction of UTVPI con-
straints.

The rest of this paper is organized as follows: In Sect. 2, we formally describe
the problem under consideration. The motivation for our work as well as related
work in the literature are outlined in Sect. 3. A fast algorithm for a special class of
UTVPI constraints is described in Sect. 4. This algorithm forms the basis for the
new integer closure algorithm detailed in Sect. 5. The correctness of the integer
closure algorithm is discussed in Sect. 6. We conclude in Sect. 7 by summarizing
our contributions and identifying avenues for future research.

2 Statement of Problem

In this section, we formally define the integer closure problem in UTVPI con-
straints.

Definition 1. A constraint of the form ai · xi + aj · xj ≤ cij is said to be a
Unit Two Variable Per Inequality (UTVPI) constraint if ai, aj ∈ {−1, 0,+1}
and cij ∈ Z.

A constraint for which ai = 0 or aj = 0 is called an absolute constraint. Such
a constraint can be converted into constraints of the form: ai · xi + aj · xj ≤ cij ,
where both ai and aj are non-zero (see Sect. 2.1).

A constraint for which ai = −aj is called a difference constraint.

Definition 2. A conjunction of UTVPI constraints is called a UTVPI con-
straint system and can be represented in matrix form as A · x ≤ b.

If the constraint system has m constraints over n variables, then A has
dimensions m × n.

156 K. Subramani and P. Wojciechowski

Observe that a UTVPI system defines a polyhedron in n-dimensional space.
The Integer Feasibility problem (IF) in UTVPI systems is defined as follows:

Does the defined polyhedron A · x ≤ b enclose a lattice point?
Assuming that the answer to the IF problem is affirmative, the integer clo-

sure problem (IC) is defined as follows: For each pair (xi, xj), find the follow-
ing four values: (1) maxA·x≤b,x∈Zn(xi − xj), (2) maxA·x≤b,x∈Zn(xi + xj), (3)
minA·x≤b,x∈Zn(xi − xj), and (4) minA·x≤b,x∈Zn(xi + xj).

For each variable xi we also find the following two values:
(1) maxA·x≤b,x∈Zn(xi) and (2) minA·x≤b,x∈Zn(xi).

It should be clear that if the IF problem does not have a solution, then
neither does the IC problem. From this point onward, we use the terms max()
and min() as shorthand for maxA·x≤b,x∈Zn() and minA·x≤b,x∈Zn(). Note that if
x is restricted to R

n instead of Zn then the above bounds constitute the linear
closure of U.

2.1 Constraint Network Presentation

Let U : A · x ≤ b denote the UTVPI constraint system, and let X denote the
set of all (fractional and integral) solutions to U. Corresponding to this con-
straint system, we construct the constraint network G = 〈V,E, c〉 by utilizing
the network construction from [SW15].

The input UTVPI system is transformed into a constraint network as follows:
For each variable, one node is added to the constraint network. Each con-

straint corresponds to a single edge as follows:

1. The constraint xi − xj ≤ c corresponds to the edge xj
c
xi. We refer to this

as a grey edge. This edge is also denoted by xi
c
xj .

2. The constraint xi +xj ≤ c corresponds to the edge xj
c
xi . We refer to this

as a white edge.

3. The constraint −xi − xj ≤ c corresponds to the edge xj
c
xi . We refer to

this as a black edge.

To handle absolute constraints we add the vertex x0. Each absolute constraint
corresponds to a pair of edges as follows:

1. The constraint xi ≤ c corresponds to the edges xi
c
x0 and xi

c
x0.

2. The constraint −xi ≤ c corresponds to the edges xi
c
x0 and xi

c
x0 .

If U has n variables and m constraints, then G has (n + 1) vertices and up to
(m + 4 · n) edges.

We now introduce the notion of edge reductions.

An Optimal Algorithm for Computing the Integer Closure of UTVPI 157

Definition 3. An edge reduction is an operation which determines a single edge
equivalent to a two-edge path and represents the addition of the two UTVPI
constraints which correspond to the edges in question. If this addition results in
a UTVPI constraint, the reduction is said to be valid.

We use Definition 3 to define paths in the constraint network.

Definition 4. We say that a path has type t, if it can be reduced to a single edge
of type t, where t ∈ { , , , } .

Let U : A · x ≤ b denote a system of UTVPI constraints. To compute the
integer closure of U, we use the following inference rules [LM05].

The transitive rule is

a · xi + b · xj ≤ cij −b · xj + b′ · xk ≤ cjk
a · xi + b′ · xk ≤ cij + cjk

,

and the tightening rule is

a · xi + b · xj ≤ cij a · xi − b · xj ≤ c′
ij

a · xi ≤ � cij+c′
ij

2 �
.

The integer closure of U is the closure of U under the transitive and tighten-
ing inference rules [JMSY94]. This means that once the integer closure is com-
puted, additional applications of the transitive and tightening inference rules do
not create any additional constraints.

Note that the transitive inference rule corresponds to the addition of two
UTVPI constraints. Thus, the transitive inference rule preserves linear solutions
in addition to preserving integer solutions. In fact the closure of U under the
transitive inference rule is the linear closure of U [JMSY94]. This is also true
for systems of difference constraints.

3 Motivation and Related Work

In this section, we briefly motivate the study of UTVPI constraints and discuss
related work in the literature.

UTVPI constraints occur in a number of problem domains, including but not
limited to, program verification [LM05], abstract interpretation [Min06,PC77],
real-time scheduling [GPS95], and operations research. Indeed, many software and
hardware verification queries are naturally expressed using this fragment of inte-
ger linear arithmetic (i.e., the case in which the solutions of a UTVPI system are
required to be integral.) We note that when the goal is to model indices of an array
or queues in hardware or software, rational solutions are not usable [LM05]. Other
application areas include spatial databases [SS00] and theorem proving.

The first known procedure for finding the integer closure of a system of
UTVPI constraints is detailed in [JMSY94]. Their algorithm runs in O(m · n2)

158 K. Subramani and P. Wojciechowski

time and uses O(n2) space. [HS97] improves on the approach in [JMSY94] from
an ease-of-implementation standpoint. However, this does not improve on the
asymptotic running time of the algorithm.

A O(n3) algorithm for the IC problem was mentioned in [LM05], however few
details were provided. [BHZ09] implemented a O(n3) algorithm for this problem
and alluded to a O(m · n + n2 · log n) algorithm for finding the integer closure
of a system of UTVPI constraints. In this paper, we provide a fully justified
O(m · n + n2 · log n) algorithm for the IC problem in UTVPI constraints.

4 A Fast Integer Closure Algorithm for a Special
Subclass of UTVPI Constraints

In this section, we describe an algorithm for finding the integer closure of certain
systems of UTVPI constraints.

We first describe a modified version of Dijkstra’s shortest path algorithm,
adapted to handle the network construction used in this paper. Dijkstra’s short-
est path algorithm is a well-known method for solving the single source shortest
path problem in graphs with non-negative edge weights. It runs in O(m+n·log n)
time [CLRS01].

In Algorithm 4.1 we utilize the weight function c(e) defined in Sect. 2.1.
Algorithm 4.1 operates on the same basic principles as Dijkstra’s shortest

path algorithm. However, it has been adapted to utilize the graph construction
described in Sect. 2.1. We use it to find the shortest white, black, and gray paths
from xi to every vertex xj in G. This gives us max(xi + xj), max(−xi − xj),
max(xi − xj), max(−xi + xj), max(2 · xi), and max(−2 · xi). See Sect. 6 for a
proof of this statement.

If a finite upper bound cannot be established on one of these values, then
it is given the default value of ∞. Just like Dijkstra’s shortest path algorithm,
Algorithm 4.1 assumes that all edge weights are non-negative.

If we are given a system of pure difference constraints, then we cannot derive
max(xi + xj), max(−xi − xj), max(xi), or max(−xi) for any xi, xj . Thus, for
these bounds, Algorithm 4.1 returns a value of ∞.

We find the integer closure of a system of UTVPI constraints by converting
the system into an equivalent one in each constraint has a non-negative right hand
side. We also require that each constraint derivable from the tightening inference
rule is included. We run Algorithm 4.2 on the modified graph to obtain the integer
closure of the original system. This graph conversion is described in Sect. 5.

The constraints derived by the tightening rule need to be included. Other-
wise, the bounds generated only apply to linear solutions, with integer solutions
possibly requiring tighter bounds.

Example 1. Let us consider the system, x1+x2 ≤ 1, x1−x2 ≤ 0, and x2−x1 ≤ 0.
Without tightening constraints, the best upper bound on (x1 + x2) that we can
obtain by simply adding constraints is x1 + x2 ≤ 1. However, this bound is only
satisfied with equality when x1 = x2 = 1

2 . Since no integer solution satisfies this
bound with equality, this is not the tightest bound we can obtain.

An Optimal Algorithm for Computing the Integer Closure of UTVPI 159

Instead, if we add the constraints derived by the tightening inference rule,
then we see that the two constraints x1 ≤ 0 and x2 ≤ 0 would be added. This
would make the new best upper bound on (x1 + x2), x1 + x2 ≤ 0. This bound
can be satisfied with equality when x1 = x2 = 0, which is an integer solution to
the original system.

Once we get the system into this form we run Algorithm 4.2. From this, we
obtain the tightest bounds on each possible UTVPI constraint.

5 The New Algorithm

Algorithm 4.2 provides a method for obtaining the integer closure when all con-
straints have non-negative constants, and all results of the tightening inference
rule have been found.

To get all constraints to have non-negative constants, it suffices to find an
integer solution d to the system, and to adjust the constraints accordingly.

That is if the values for xi and xj are di and dj , then the adjusted version of
the constraint xi +xj ≤ cij would be xi +xj ≤ cij − (di +dj). Since di +dj ≤ cij
we have that cij − (di + dj) ≥ 0.

160 K. Subramani and P. Wojciechowski

j

Similarly, xi −xj ≤ cij would become xi −xj ≤ cij − (di −dj), −xi +xj ≤ cij
would become −xi + xj ≤ cij − (−di + dj), and −xi − xj ≤ cij would become
−xi − xj ≤ cij − (−di − dj).

Example 2. Consider the UTVPI constraint x1 + x2 ≤ −5. We have that the
vector (x1, x2) = (−3,−3) satisfies this constraint. If this is used as the initial
valid solution, then this constraint would become x1+x2 ≤ 1 in the new system.

To account for all constraints generated by the tightening inference rule, we
need to find the tightest bounds on (xi + xi) and (−xi − xi) for each xi.

Once these are found, if the tightest bound on (xi + xi) corresponds to a
constraint xi + xi ≤ 2 · a + 1 for some integer a, then the constraint xi ≤ a can
be added to the system as a result of the tightening inference rule.

To make this process easier, finding these bounds can be performed on the
adjusted graph where each constraint has non-negative constant. The proof of
this is in Sect. 6.

We need to reduce an arbitrary system of UTVPI constraints to a system in
which each constraint has non-negative constant, and all constraints added by
the tightening rule are included. This is done in Algorithm 5.1.

5.1 Analysis of Running Time

Algorithm 5.1 consists of two portions. The first converts a general system of
UTVPI constraints into one that can be accepted by Algorithm 4.2. Then Algo-
rithm 4.2 is run on this modified graph. We shall analyze these two portions
separately.

An Optimal Algorithm for Computing the Integer Closure of UTVPI 161

Converting the graph into the form required by our fast integer closure algo-
rithm consists of

– Finding an integer solution: Using the algorithm described in [LM05] this can
be done in O(m · n + n2 · log n) time.

162 K. Subramani and P. Wojciechowski

– Re-weighting the graph: since every edge needs to be re-weighted this portion
runs in O(m) time.

– Determining which edges need to be tightened: This consists of n runs of
UTVPI-Dijkstra(), and so takes O(m · n + n2 · log n) time.

– Adding tightened edges: for each xi we add at most 2 new edges, and so this
portion runs in O(n) time.

Thus, the graph conversion procedure runs in O(m · n + n2 · log n) time.
Algorithm 4.2 which computes the integer closure for certain types of UTVPI

systems consists of

– Creating the graph: since each edge and vertex of the graph need to be created,
this process takes O(m + n) time.

– Computing the transitive closure of the tightened graph: This consists of n
runs of Algorithm 4.1, and so takes O(m · n + n2 · log n) time.

– Determining min(xi −xj), max(xi −xj), max(xi +xj), min(xi +xj), max(xi),
and min(xi) for each xi and xj : There are O(n2) bounds that need to be
determined, so this portion of the algorithm runs in O(n2) time.

Thus, Algorithm 4.2 and the entire integer closure procedure run in O(m · n +
n2 · log n) time.

6 Correctness

We first show that Algorithm 4.2 generates the correct bounds on integer solu-
tions to U. This is done by showing that each of the desired bounds can be
obtained from applying the transitive and tightening inference rules.

Lemma 1. The bound xi − xj ≥ min(xi − xj) can be obtained through repeated
applications of the transitive and tightening inference rules.

Proof. Let cij = min(xi − xj). Thus, there exists a valid solution to U, say x′,
such that x′

i − x′
j ≤ cij . However, for any c < cij there is no such value of x.

This means that U ∪ {xi − xj ≤ cij} is feasible but U ∪ {xi − xj ≤ cij − 1} is
infeasible.

Since this second system is infeasible, repeated applications of the transitive
and tightening inference rules are able to produce the constraint 0 ≤ b < 0
[JMSY94].

Note that this proof of infeasibility must use the constraint xi −xj ≤ cij −1.
Thus, removing xi − xj ≤ cij − 1 from the proof of infeasibility, results in a
derivation of the constraint xi − xj ≥ c′

ij such that cij − 1 < c′
ij ≤ cij . Since c′

ij

and cij are both integers, c′
ij = cij .

Thus, through repeated applications of the transitive and tightening inference
rules we are able to derive the constraint xi − xj ≥ min(xi − xj). ��

The ability to construct the remaining bounds is shown without proof since
they are analogous to the proof of Lemma 1.

An Optimal Algorithm for Computing the Integer Closure of UTVPI 163

The distance labels, D[xj , t], in Algorithm 4.1 are computed by adding edge
weights. This corresponds to applications of the transitive inference rule. Thus,
we have that Algorithm 4.1 always generates valid bounds.

Lemma 2. After running Algorithm 4.1 from xi, we have the following:

(1) max(xi + xj) = D[xj ,].
(2) max(xi − xj) = D[xj ,].
(3) min(xi + xj) = −D[xj ,].
(4) min(xi − xj) = −D[xj ,].

(5) max(xi) = �D[xi,]
2 �.

(6) min(xi) = −�D[xi,]
2 �.

The proof of Lemma 2 will be included in the journal version of this paper.
As a direct result of Lemma 2, we have the following.

Corollary 1. After running Algorithm 4.2, we have the following:

(1) B[xi, xj , 0] = max(xi + xj).
(2) B[xi, xj , 1] = max(xi − xj).

(3) B[xi, xj , 2] = min(xi + xj).
(4) B[xi, xj , 3] = min(xi − xj).

Lemma 3. All bounds generated by Algorithm 4.2 can be satisfied with equality
by valid integer assignments to the variables.

Proof. Suppose otherwise, thus there exists a system of constraints U such that
the algorithm generates a bound, say xi +xj ≤ c, that can only be satisfied with
equality by a non-integer solution to the original system of equations. Because
the relaxation steps of Dijkstra correspond to the addition of constraints, the
constraint xi + xj ≤ c can be derived from the original system.

If no such constraint can be derived, then no upper bound on (xi + xj) can
be generated. Thus, there is no white path between xi and xj in the constraint
network. In this case, the algorithm correctly gives the upper bound as ∞.

Consider the system U∪{−xi −xj ≤ −c}. This system is linear feasible, but
not integer feasible. Thus, through repeated applications of the transitive and
tightening inference rules a contradiction can be generated. However, by con-
struction, U already contains all constraints generated by the tightening infer-
ence rule. This means that the contradiction can be obtained by only applying
the transitive inference rule.

This would mean that U∪ {−xi − xj ≤ −c} is also linearly infeasible. Thus,
U∪ {−xi − xj ≤ −c} must be integer feasible, and so the constraint xi + xj ≤ c
can be satisfied with equality by an integer solution.

A similar proof applies to constraints of type xi − xj ≤ c, −xi + xj ≤ c, and
−xi − xj ≤ c. ��
Theorem 1. Algorithm 4.2 correctly computes the integer closure of U.

Proof. From Lemma 1, and the corresponding results for the other constraint
types, we know that all bounds generated by Algorithm 4.2 are derivable from
U. Thus, these bounds are satisfied by all integer solutions to U.

From Lemma 3, every bound generated by Algorithm 4.2 is satisfied with
equality by some integer solution of U. Thus, these bounds are tight, and Algo-
rithm 4.2 correctly computes the integer closure of U.

164 K. Subramani and P. Wojciechowski

We now show that the graph conversion procedure in Algorithm 5.1 generates
all constraints derivable from the tightening inference rule.

Lemma 4. Re-weighting the graph does not change the parity of the bounds on
(xi + xi) and (−xi − xi).

Proof. When the constraints are re-weighted, the change to the bound on both
(xi + xi) and (−xi − xi) only depends on the value of di. We have that di is an
integer, so the bound changes by ±2 · di. Consequently, the parity of the weight
remains unchanged. Thus, re-weighting the graph does not change where the
tightening rule is applied. ��
Now, we show that only one pass of tightening is required. We do this by showing
that adding a constraint generated by the tightening rule does not result in
additional applications of the tightening rule.

Lemma 5. Adding a constraint generated by the tightening rule does not neces-
sitate adding any additional constraints as a result of the tightening inference
rule.

Proof. Suppose that adding the new constraint xi + xi ≤ 2 · ci results in an odd
tightest bound for (xj + xj).

The path p responsible for this bound must use the constraint xi+xi ≤ 2 ·ci.
Thus, the path consists of a path p1 from xj to xi, the newly added edge, and
a path p2 from xi to xj .

We have that p1 corresponds to a constraint of the form xj − xi ≤ w1, and
that the path p2 corresponds to a constraint of the form −xi + xj ≤ w2.

Since p is of odd weight, we have that (2·ci+w1+w2) is odd. Thus, (w1+w2)
is also odd. This means that, since w1 and w2 are both integers, either w1 < w2

or w2 < w1.
If w1 < w2, then we can construct the bound xj +xj = xi+xi+2 ·(xj −xi) ≤

2·(ci+w1) < 2·ci+w1+w2. This contradicts the assumption that (2·ci+w1+w2)
is the tightest bound on (xj + xj)

If w2 < w1, then we can construct the bound xj+xj = xi+xi+2·(−xi+xj) ≤
2·(ci+w2) < 2·ci+w1+w2. This contradicts the assumption that (2·ci+w1+w2)
is the tightest bound on (xj + xj)

A similar proof applies when the edge added is −xi −xi ≤ 2 · ci, or when the
odd bound is created for (−xj − xj). ��
Theorem 2. Algorithm 5.1 computes all constraints derivable by the tightening
inference rule.

Proof. The detailed proof is provided in the journal version of this paper.

7 Conclusion

In this paper, we described an optimal algorithm for computing the integer
closure of a conjunction of UTVPI constraints. The proposed algorithm is a

An Optimal Algorithm for Computing the Integer Closure of UTVPI 165

generalization of Johnson’s algorithm for difference constraints [CLRS01]. Our
algorithm runs in O(m·n+n2 ·log n) time on a UTVPI constraint system with m
constraints and n variables, which is superior to the O(n3) algorithm described
in [BHZ09].

From our perspective, there are is one issue worth pursuing, viz. implementa-
tion. As discussed previously, there exist several algorithms in the literature for
the IC problem, with various asymptotic running times. From a practical view-
point, it is important to establish the empirical efficiency of these algorithms.
A comprehensive empirical analysis should go a long way towards establishing
the relative efficiency of the various methodologies discussed in this paper.

References

[BHZ09] Bagnara, R., Hill, P.M., Zaffanella, E.: Weakly-relational shapes for numeric
abstractions: improved algorithms and proofs of correctness. Formal Meth.
Syst. Des. 35(3), 279–323 (2009)

[CLRS01] Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algo-
rithms. MIT Press, Cambridge (2001)

[PC77] Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for
static analysis of programs by construction or approximation of fixpoints. In:
Proceedings of the 4th ACM Symposium on the Principles of Programming
Languages (POPL), pp. 238–252. ACM Press (1977)

[GPS95] Gerber, R., Pugh, W., Saksena, M.: Parametric dispatching of hard real-
time tasks. IEEE Trans. Comput. 44(3), 471–479 (1995)

[HS97] Harvey, W., Stuckey, P.J.: A unit two variable per inequality integer con-
straint solver for constraint logic programming. In Proceedings of the 20th
Australasian Computer Science Conference, pp. 102–111 (1997)

[JMSY94] Jaffar, J., Maher, M.J., Stuckey, P.J., Yap, H.C.: Beyond finite domains.
In: Borning, A. (ed.) PPCP 1994. LNCS, vol. 874, pp. 86–94. Springer,
Heidelberg (1994)

[LM05] Lahiri, S.K., Musuvathi, M.: An efficient decision procedure for UTVPI
constraints. In: Gramlich, B. (ed.) FroCos 2005. LNCS (LNAI), vol. 3717,
pp. 168–183. Springer, Heidelberg (2005)

[Min06] Miné, A.: The octagon abstract domain. Higher-Order Symbolic Comput.
19(1), 31–100 (2006)

[SS00] Sitzmann, I., Stuckey, P.J.: O-trees: a constraint-based index structure. In:
Australasian Database Conference, pp. 127–134 (2000)

[SW15] Subramani, K., Wojciechowski, P.: A graphical theorem of the alternative
for UTVPI constraints. In: Leucker, M., Rueda, C., Valencia, F.D. (eds.)
ICTAC 2015. LNCS, vol. 9399, pp. 328–345. Springer, Heidelberg (2015)

Covering Points with Convex Sets
of Minimum Size

Hwan-Gue Cho1, William Evans2, Noushin Saeedi2, and Chan-Su Shin3(B)

1 Pusan National University, Busan, South Korea
hgcho@pusan.ac.kr

2 University of British Columbia, Vancouver, Canada
{will,noushins}@cs.ubc.ca

3 Hankuk University of Foreign Studies, Yongin, South Korea
cssin@hufs.ac.kr

Abstract. For a set P of n points in the plane and a fixed integer k � 2,
we present algorithms for finding k bounded convex sets that cover P
such that the total area or perimeter of the convex sets is minimized
in time O(n2k(k−1) log2 n) and O(nk(k−1) log2 n), respectively. The algo-
rithms can be applied to detect road intersections from the GPS traces
of moving objects.

1 Introduction

Let P be a set of n points in the plane. We want to find two bounded convex
sets whose union contains P and whose size is minimized. We measure the size
of a convex set by its area or perimeter. We consider two different optimization
versions; one to minimize the sum of their sizes, called min-sum optimization,
and the other to minimize their maximum size, called min-max optimization.

The optimal two bounded convex sets (A,B) covering P are, in fact, two con-
vex hulls on a partition (P1, P2) of P , that is, A = conv(P1) and B = conv(P2),
where conv(P) denotes the convex hull of P . Thus the problem is equiva-
lent to finding a partition (P1, P2) of P such that μ(conv(P1)) + μ(conv(P2))
or max(μ(conv(P1)), μ(conv(P2))) is minimized, where μ(C) is either the area
area(C) of C or the perimeter peri(C) of C. For the degenerate case that a con-
vex hull is a line segment, its area is zero, and its perimeter is defined as twice
the length of the segment. The problem naturally extends to covering P with
k > 2 convex hulls. To the best of our knowledge, no previous results on this
problem have been reported.

Related Work. Hershberger et al. [15] summarized the shape of streaming point
data using limited memory by covering the points approximately with a bounded
number of convex hulls, called a “ClusterHull”. They used a combined cost
function area(H) + c · peri(H) for each convex hull H, and clustered the points

W. Evans and N. Saeedi are supported by NSERC Discovery Grant. C.-S. Shin is
supported by Research Grant of Hankuk Univ. of Foreign Studies.

c© Springer International Publishing Switzerland 2016
M. Kaykobad and R. Petreschi (Eds.): WALCOM 2016, LNCS 9627, pp. 166–178, 2016.
DOI: 10.1007/978-3-319-30139-6 14

Covering Points with Convex Sets of Minimum Size 167

with k convex hulls to minimize total cost, where c is a constant, and k depends
on the memory size m � n. This is an “on-line” algorithm to cover the streaming
data approximately, so it is essentially different than our off-line algorithm to
cover the static data exactly.

Many researchers have focused on the problem of finding a subset P ′ ⊆ P of
size k whose convex hull has the minimum area or perimeter [1,4,9–11,13]. The
minimum-area subset P ′ of size k can be found in O(kn3) time [11] and O((k3 +
log n)n2) time [10], while the minimum-perimeter subset P ′ in O(k2n log n+k4n)
time [9].

Yet another related line of work addresses convex hull construction from
imprecise point data [14,19,20]. Löffler and van Kreveld [19] gave algorithms for
selecting the points from imprecise points modelled as line segments or squares
such that the convex hull of the selected points has a maximum/minimum
area/perimeter. They solved the minimum area and minimum perimeter prob-
lems for squares in O(n2) and O(n7) time. No polynomial time algorithm is
known for the minimum area problem on the line segments, nor is the problem
known to be NP-hard.

Covering a point set P by geometric objects is a widely investigated topic.
Perhaps the most related results consider covering P by two objects such as
disks [6], rectangles [5,18], and squares [17,22]. These problems search for two
optimal objects whose union covers P and the larger area is minimized. This is
a typical min-max optimization. The main difference with our problem is that
the two optimal objects are determined by a constant number of points in P ,
which always guarantees polynomial algorithms.

Our Results. We present two algorithms to cover an n-point set P in the plane
with two convex sets (or hulls) of minimum total area and minimum total perime-
ter, which run in O(n4 log2 n) and O(n2 log2 n) time, respectively. These are the
first results to cover P with two convex hulls of the minimum total area or
perimeter. They can be easily extended to cover P with k (> 2) convex hulls
with minimum total area or perimeter, running in time O(n2k(k−1) log2 n) and
O(nk(k−1) log2 n), respectively.

(a) (b) (c)

Fig. 1. Snapshots of GPS trajectories and the convex hulls at a 3-way intersection.

168 H.-G. Cho et al.

Applications. A recent advance in mobile services using GPS information trig-
gered the generation of massive GPS tracking data, which allows at a low cost
the generation of new street maps or refinement of existing maps using vehicular
GPS trajectories [2,3,7,8,12,23]. One of the issues in such problems is to iden-
tify the 3-way or 4-way intersections of the road precisely. If the car trajectories
are traced near the intersection within some time interval, then the change of
convex hulls that cover a point set (car locations at a certain time) can be used
to decide where or when the intersection exists. As in Fig. 1, the cars start to
move in the same group along the road, but they separate at a 3-way intersec-
tion, and take different roads afterwards. This change can be captured by the
convex hull coverage. In other words, the point set was initially covered with
minimum cost (possibly with minimum perimeter) by one convex hull, but after
the intersection, the cover by two convex hulls would cost less than that by one
convex hull. One can use this as a criterion in recognizing the intersection.

We first explain algorithms for finding two convex hulls to cover P with
minimum total area in Sect. 3 and the minimum total perimeter in Sect. 4, i.e.,
k = 2. We extend the algorithms to finding the optimal k convex hulls to cover
P for general k > 2 in Sect. 5.

2 Preliminary

Let P be a set of n points in the plane. We assume for the sake of the simple
description that points of P are in general position. This assumption can be
easily discarded by dealing with collinear cases carefully.

A partition (P1, P2) of P is said to be linearly separable if there is a line �
such that P1 lies on one side of � and P2 lies on the other side. Note that one
of P1 and P2 may be an empty subset. If there is an optimal partition (P1, P2)
which is linearly separable, then we can find its separation line by looking at all
lines defined by two points from P and their associated partitions. Since we have
O(n2) partitions, and compute two convex hulls for each partition in O(n log n)
time, we can compute an optimal partition in O(n3 log n) time, which can be
improved by the data structure for the dynamic convex hull.

As we show later, an area-optimal partition is not linearly separable, but a
perimeter-optimal partition is linearly separable. This makes the area-optimal
partition problem more interesting, but harder than the perimeter one.

The boundary of a bounded convex set C is denoted by ∂C. We refer to C (or
a polygon P) as a union of its interior and boundary. For simplicity, we also use
the notations area(P) and peri(P) for a point set P to represent area(conv(P))
and peri(conv(P)), respectively.

Suppose that A and B are two convex sets of minimum total size covering
P , equivalently, A = conv(P1) and B = conv(P2) for a partition (P1, P2) of P
with minimum total size. To handle the degenerate case when A or B is a line
segment, we simply assume that its boundary consists of two edges doubling the
segment, thus its perimeter is twice the length of the segment. We now observe
that:

Covering Points with Convex Sets of Minimum Size 169

Observation 1. There is an optimal partition (P1, P2) of P such that no point
of P1 on ∂A is contained in B, and no point of P2 on ∂B is contained in A.

Proof. It is trivially true that μ(P ′) � μ(P) for any P ′ ⊆ P , where μ is either
area or peri. Suppose that p ∈ P1 lying on ∂A is contained in B. Setting A′ =
conv(P ′

1) where P ′
1 := P1 \ {p} and B′ = conv(P ′

2) where P ′
2 := P2 ∪ {p} gives

μ(A′) � μ(A) since P ′
1 ⊂ P1, and μ(B′) = μ(B) since p is in B. This implies

that (P ′
1, P

′
2) has total size no larger than that of (P1, P2). ��

Observation 2. If ∂A and ∂B intersect, then they intersect at least even t � 4.

Proof. By Observation 1, no points of P1 on ∂A (and of P2 on ∂B) are contained
in B (and in A). So all the intersections are proper ones, i.e., defined between
the interiors of two edges of ∂A and ∂B. This furthermore guarantees at least
four even number of intersections. Note here that if at least one of them is a
degenerate set, i.e., a line segment, then the segment is counted twice as edges
of the hull, thus the boundaries of the hulls intersect exactly four times. ��

Fig. 2. Example that the area-optimal partition is not linearly separable.

3 Area-Optimal Covering with Two Convex Hulls

We first explain that there is a point set P whose area-optimal partition is
not linearly separable. Let us consider P as in Fig. 2. It is not hard to see
that its optimal hulls A and B are longish, and they intersect at their middle
parts. Their area sum can be made sufficiently small by putting the points closer
to the axes. For any arbitrary line separating P into two subsets P ′

1 and P ′
2,

area(P ′
1) + area(P ′

2) is at least a quarter of area(P), which is much larger than
area(A) + area(B). However, we can prove a crucial property that ∂A and ∂B
intersect at most four times. This allows us to find an area-optimal partition in
polynomial time.

Lemma 1. There exist two convex sets of minimum total area whose union
contains a given set P of points such that their boundaries intersect at most four
times.

170 H.-G. Cho et al.

2

x3

x1

x0

x4

x5

x6

x7

a2

b2

q

r

p

B

A

Fig. 3. Two convex hulls that intersect. Rays −−−−−−→xi−2xi−1 and −−−−−−→xi+2xi+1 do not diverge
(i = 2).

Proof. Suppose A and B are two convex sets of minimum total area whose union
contains P and whose boundaries intersect a minimum number of times. If either
A or B is a line segment, then their boundaries intersect at most four times, so
we assume from now on that neither A nor B is a line segment.

For the sake of contradiction, suppose the boundaries of A and B intersect
t > 4 times. By Observation 2, their boundaries intersect an even number of
times. Let x0, x1, . . . , xt−1 be these intersection points in clockwise order around
∂(A ∪ B). These intersection points are not on the boundary of the convex hull
of A∪B. Let aibi be the segment on this hull boundary, with ai ∈ A and bi ∈ B,
that “covers” xi; that is, the ray from a point in A ∩ B through xi intersects
aibi.

Let xi be such that the rays −−−−−−→xi−2xi−1 and −−−−−−→xi+2xi+1 do not diverge, where
index arithmetic is modulo t. In Fig. 3, the intersection point x2 satisfies this
property. Assume without loss of generality, that ai precedes bi in clockwise
order around the convex hull of A∪B. Let δi be the area of the “pocket” formed
by the segment aibi and the boundaries of A and B between ai and xi and xi

and bi (the pseudo-triangular-shaped shaded region in Fig. 3). We first show:

Claim. δi is at most the area of triangle xi−1xixi+1.

Proof. Refer to Fig. 3 for notation.

δi � area(qrxi) � area(pqr) � area(xi−1pxi+1) � area(xi−1xixi+1).

These inequalities all follow from the convexity of A and B except for the third
one, which follows from the fact that since −−−−−−→xi−2xi−1 and −−−−−−→xi+2xi+1 do not diverge,
area(qrxi+1) � area(xi−1rxi+1). ��

We now use Claim to prove the lemma.
Consider the lines xixi−1 and xi+2xi+3. First, suppose that −−−−→xixi−1 and−−−−−−→xi+2xi+3 do not diverge, as in Fig. 4. Since these two rays do not diverge and A

is convex, the rays −−−−→xixi−1 and −−−−−−→xi−4xi−3 do not diverge. In this case, we create
convex sets A′ and B′, whose union contains the union of A and B, and whose
total area is no bigger. The boundary of the convex set A′ is the same as that of

Covering Points with Convex Sets of Minimum Size 171

x2

x3

x1

x0

x4

x5

x6

x7

x2

x3

x1

x0

x4

x5

x6

x7

B′B

A′

(a) (b)

A

a2

b2

b0a0

Fig. 4. (a) Two convex hulls that intersect. Rays −−−−−−→xi−2xi−1 and −−−−−−→xi+2xi+1 do not diverge
and rays −−−−→xixi−1 and −−−−−−→xi+2xi+3 do not diverge (i = 2). (b) Convex sets A′ (dashed) and
B′ (solid) cover A ∪ B and have smaller total area.

A from xi−1 to ai, then it consists of the segment aibi followed by the boundary
of B from bi to xi−3 followed by the segment xi−3xi−1. The boundary of the
convex set B′ is the same as that of B from bi−2 to xi−1, then it consists of the
segment xi−1xi+1 followed by the boundary of A from xi+1 to ai−2 followed by
the segment ai−2bi−2. See Fig. 4. Notice that the union of A′ and B′ includes
A ∪ B.

The convex set A′ includes the pocket at xi and B′ includes the pocket
at xi−2, while neither pocket is in A ∪ B. On the other hand, both A and B
include the triangles xi−1xixi+1 and xi−3xi−2xi−1, while only A′ includes one
and only B′ includes the other. Since by Claim the area δi of the pocket at xi

is at most area(xi−1xixi+1) and the area δi−2 of the pocket at xi−2 is at most
area(xi−3xi−2xi−1), we conclude that area(A′) + area(B′) � area(A) + area(B).
Notice that the boundaries of A′ and B′ intersect two fewer times than those of
A and B.

The other possibility is that −−−−→xi−1xi and −−−−−−→xi+3xi+2 converge, as in Fig. 5. Again
we create convex sets A′ and B′ whose union contains A∪B and whose total area
is no more than area(A) + area(B). In this case, the boundary of the convex set
A′ is the same as that of A from ai+1 to ai, then it consists of the segment aibi
followed by the boundary of B from bi to bi+1 followed by the segment bi+1ai+1.
The boundary of the convex set B′ is the same as that of B from xi+2 to xi−1,
then it consists of the segment xi−1xi+2. See Fig. 5. Notice that the union of A′

and B′ includes A ∪ B.
The convex set A′ includes the pockets at xi and xi+1, while neither

pocket is in A ∪ B. On the other hand, both A and B include the quadri-
lateral xi−1xixi+1xi+2, while only A′ includes it. As shown above, the area
δi of the pocket at xi is at most area(xi−1xixi+1) and the area δi+1 of the
pocket at xi+1 is at most area(xixi+1xi+2). Together these areas are at most
area(xi−1xixi+1xi+2), since area(pxixi+1) < area(pxi−1xi+2) because −−−−→xi−1xi

172 H.-G. Cho et al.

x2

x3

x1

x0

x4

x5

x6

x7

B

x2

x3

x1

x0

x4

x5

x6

x7

B′

p

(a) (b)

A A′

a2

b2
b3a3

Fig. 5. (a) Two convex sets that intersect. Rays −−−−−−→xi−2xi−1 and −−−−−−→xi+2xi+1 do not diverge.
Rays −−−−→xi−1xi and −−−−−−→xi+3xi+2 converge (i = 2). (b) Convex sets A′ (dashed) and B′ (solid)
cover A ∪ B and have smaller total area.

and −−−−−−→xi+3xi+2 converge and hence the sides of the quadrilateral −−−−→xi−1xi and−−−−−−→xi+2xi+1 converge. We conclude that area(A′) + area(B′) � area(A) + area(B).

Theorem 1. For a set P of n points in R
2, an area-optimal partition of P can

be computed in O(n4 log2 n) time.

Proof. Lemma 1 directly gives an algorithm to find an optimal partition in
O(n5 log n) time as follows: There are two situations whether ∂A and ∂B inter-
sect or not. When they do not intersect, they are linearly separable, thus we can
compute an optimal partition in O(n3 log n) time. When they intersect, they do
exactly four times by Observation 2 and Lemma 1. We first specify two edges e
and e′ of ∂A which properly intersect the two edges f and f ′ of ∂B. Then the
points of P in the slab (or wedge) defined by the two lines extending e and e′

are covered by A, and the others by B. Since there are O(n4) candidates of such
edge pairs, it takes O(n5 log n) time.

The time-consuming case is when ∂A and ∂B intersect four times. Using
dynamic convex hull algorithms, we can handle this case in O(n4 log2 n) time.
See Fig. 6(a). Assume that e is horizontal and above e′. P1 is specified as a set of
points below the line �(e) extending e and above the line �(e′) extending e′. P2 is
the union of P ′ and P ′′, where P ′ is the set of points above �(e), and P ′′ is the set
of points below �(e′). Then A = conv(P1), B = conv(P2) = conv(P ′ ∪ P ′′), and
the two edges f and f ′ of ∂B are defined as the two “outer” tangent segments
between conv(P ′) and conv(P ′′).

Let p and q be the endpoints of e, and let p′ and q′ be the endpoints of e′.
Assume that p is to the left of q, and p′ is to the left of q′. We fix a pair (e, p′).
Then P ′ is determined, so is conv(P ′). Once a point among the ones below �(e) is
further fixed as q′, P1 and P ′′ are completely determined. We maintain conv(P1)
and conv(P ′ ∪ P ′′) dynamically for such a point q′ in angular sorted order with
respect to p′. We check if q′ is valid, that is, it satisfies both (1) e and e′ appear
on the boundary of conv(P1), and (2) the two tangent edges f and f ′ between

Covering Points with Convex Sets of Minimum Size 173

e

e′

p q

p′
q′

f
f ′

P ′

P ′′

P1

e

e′

p q

p′

q′

P ′

R(e, p′)

(a) (b)

Fig. 6. The situation that two hulls intersect four times.

conv(P ′) and conv(P ′′) intersect e and e′ properly. If q′ is valid, we compute the
total area of conv(P1) and conv(P2).

It is easy to see that e and e′ appear on the boundary of conv(P1) if and only
if (1) q′ is below �(e), (2) q′ is on the same side of the line �(p, p′) as q, and (3)
q′ is on the opposite side of �(p′, q) as p. Denote such a region by R(e, p′). Note
that R(e, p′) is determined only by e and p′, and is an unbounded convex region
with a constant complexity; for instance, refer to Fig. 6(b).

More precisely, we angular-sort the points below �(e) with respect to p′.
Initially, we build well-known dynamic data structures, presented by Overmars
and van Leeuwen [21], on conv(P1) and conv(P ′ ∪ P ′′) for the first point q′

in the sorted list. These data structures can support two update operations,
insert and delete, in O(log2 n) time, and several queries in O(log n) time, such
as intersecting the hull with a line or a line segment or finding the tangent from
an exterior point. As q′ varies through the sorted list, we maintain conv(P1) and
conv(P ′ ∪P ′′) dynamically in O(log2 n) time. After each update, we check if q′ is
valid. The first condition can be verified in constant time by checking whether q′

is in R(e, p′) or not. If so, we check the second one. For this, we identify the edges
of the boundary of conv(P ′ ∪P ′′) which e and e′ intersect. This type of query is
supported by the data structure in O(log n) time. If both e and e′ intersect the
same two edges properly, then these edges are f and f ′, and the second condition
holds. If q′ is valid, we record the area of conv(P1) and conv(P ′ ∪ P ′′) obtained
from the data structure in constant time. This is possible because the area can
be maintained for each update operation. As a result, for a fixed pair (e, p′), we
can find the minimum total area by considering all q′ in O(n log2 n) time. Since
there are O(n3) such pairs, the total time is O(n4 log2 n) time. ��
Remark 1. We actually know when each q′ is inserted and then deleted. This
allows us to use the semi-dynamic convex hull data structure that supports the
update operations and queries in O(log n) time [16]. But, since it stores the
hull in an implicit way, it cannot answer the queries related with the whole hull
structure in logarithmic time; for example, reporting the number of the points

174 H.-G. Cho et al.

on the hull, and the area/perimeter of the hull. That is why we do not use this
data structure.

4 Perimeter-Optimal Covering with Two Convex Hulls

Unlike the area-optimal partition, the perimeter-optimal partition is linearly
separable.

Lemma 2. For a point set P , there is a linearly separable partition (P1, P2) of
P with minimum total perimeter.

Proof. Suppose (P1, P2) is a minimum total perimeter partition of P , with |P1| �
|P2|, chosen so that the boundaries of A = conv(P1) and B = conv(P2) intersect
the minimum number of times. We assume that P1 and P2 are not degenerate
sets, that is, none of A and B are line segments; for the degenerate case, the same
argument can be easily applied. Let t be the number of times they intersect and
suppose, for the sake of contradiction, that t � 4 by Observation 2. We further
assume that |P2| � |P1| � 2 because they are linearly separable otherwise.

Like the area-optimal partition, let x0, x1, . . . , xt−1 be the intersection points
of A and B in clockwise order. They are not on the boundary of the convex hull
of A∪B. Let aibi be the segment on the boundary of conv(A∪B), with ai ∈ ∂A
and bi ∈ ∂B, that “covers” xi.

Consider four consecutive intersections, xi−1, xi, xi+1, and xi+2 as in
Fig. 7(a). Let p ∈ P2 be the last point on ∂B that appears before xi, and let
p′ ∈ P2 be the first point on ∂B that appears after xi+2. Let � be the line
through xi−1 and xi+2. Assume that the four intersections lie above �. Let P ′

be the points of P2 above or on �.

(a) (b)

p
p′

xi−1

xi xi+1

xi+2

ai ai+1

bi bi+1

A

B

p

xi−1

xi xi+1

xi+2�

p′

�

A′

B′

Fig. 7. (a) ∂A and ∂B intersect four or more times. A is shaded. (b) Set new convex
sets A′ and B′. A′ is shaded. The dashed chains are deleted from ∂A and ∂B, and the
thickest chains are added to ∂A′ and ∂B′.

Covering Points with Convex Sets of Minimum Size 175

We now consider new convex sets A′ = conv(P1 ∪P ′) and B′ = conv(P2 \P ′)
as in Fig. 7(b). The boundary of B′ has a new chain as its boundary from p
to p′ that lies below �. Since the new chain is upward convex, its length is less
than |C1| + |C2| + |C3|, where C1 is a chain between p and xi along ∂B, C2 is
a chain between xi and xi+1 along ∂A, and C3 is a chain between xi+1 and p′

along ∂B. The boundary of A′ gains two bridge segments aibi and bi+1ai+1. The
length of aibiis less than the sum of the lengths of two convex chains C4 and
C5; C4 from ai to xi along ∂A, and C5 from xi to bi along ∂B. For the other
bridge bi+1ai+1, its length is less than the sum of the lengths of two convex
chains C6 and C7; C6 from bi+1 to xi+1 along ∂B, and C7 from xi+1 to ai+1

along ∂A. Note that the chains C1, . . . , C7 of (∂A ∪ ∂B) are all disappeared in
(∂A′ ∪ ∂B′). As a result, the new segments added to ∂A′ and ∂B′ have smaller
total length than the old segments deleted from ∂A and ∂B. In other words,
peri(A′) + peri(B′) < peri(A) + peri(B), which is a contradiction. ��
Theorem 2. For a set P of n points in the plane, a perimeter-optimal partition
of P can be computed in O(n2 log2 n) time.

Proof. Lemma 2 gives a straightforward way to find a perimeter-optimal parti-
tion for P in O(n3 log n) time. This can be easily improved as we did in the
area-optimal partition. By Lemma2, there must be an optimal line � separating
P into P1 and P2, and passing through p ∈ P1 and q ∈ P2 such that A = conv(P1)
and B = conv(P2). In fact, � is an inner tangent supporting A and B. Fix a point
of P as one end p ∈ P1 of the inner tangent, and sort the other points angularly
with respect to p. Then we can maintain two convex hulls of the partition incre-
mentally with q from the sorted list [21]. Thus we can find a perimeter-optimal
partition for a fixed point p in O(n log2 n) time. This results in an O(n2 log2 n)-
time algorithm. ��

5 Extensions

We can generalize this optimization problem in several directions as follows.
Min-sum partition for general k � 2. Let A1, . . . , Ak be k convex hulls such
that Ai = conv(Pi) where (P1, . . . , Pk) is a perimeter-optimal partition of P .
Any pair of Ai and Aj is linearly separable by Lemma 2. Consider P1. There
are (k − 1) lines Hj separating A1 and Aj for any j > 1 such that they pass
through two points, each of P1 and Pj . Then A1 can be either in the half-
plane above Hj , denoting H+

j , or in the half-plane below Hj , denoting H−
j . We

denote by sign(j) ∈ {+,−} the sign of the half-plane of Hj in which A1 (and
P1) lies. There are 2(k−1) combinations of the signs, so we simply check all the
sign combinations. For a fixed sign combination, define H =

⋂k
j=2 H

sign(j)
j , then

we can say that P1 = P ∩ H. Each Hj is determined by a pair of points, so
there are O(|P |2(k−1)) point pairs. Therefore, there are total O(2(k−1)|P |2(k−1))
“configurations” to determine P1. For a fixed configuration, we identify the points
of P1 and compute A1 in O(|P | log |P |) time. What remains is to cover the points
in P \P1 optimally by (k−1) convex hulls. Let SP (k) denote the time complexity

176 H.-G. Cho et al.

to find k convex hulls to cover P with minimum total perimeter. By Theorem2,
SP (2) = |P |2 log2 |P |. Then

SP (k) = (SP\P1(k − 1) + O(|P | log |P |)) × O(2(k−1)|P |2(k−1))

= O(2
k(k−1)

2 |P |k(k−1) log2 |P |).
This gives an algorithm to find a perimeter-optimal k convex hulls to cover P
for a fixed k � 2, running in O(nk(k−1) log2 n) time.

For the area-optimal cover for k � 2, ∂Ai and ∂Aj for any pair i �= j can
intersect at most four times by Lemma 1. Assume that A1 is the convex hull with
the maximum intersections, and further assume that ∂A1 intersects m different
∂Aj ’s for some 0 � m < k. For the case that m = 0, i.e., Ai’s are pairwise
distinct, we apply the same argument used for the perimeter-optimal problem.
This can be done in O(nk(k−1)+2 log2 n) time. For other cases that 1 � m < k,
∂A1 intersect m ∂Aj ’s (at most) four times at two edges ej and e′

j of ∂A1. Let
Wj be the wedge bounded by �(ej) and �(e′

j) that includes ej an e′
j . Define

W =
⋂

j Wj . Since P1 ⊆ Wj , we know that P1 = P ∩ W. Once the total 2m
edges of ∂A1 that intersect m Aj ’s are fixed, P1 and A1 are determined. The
other points P \ P1 are optimally covered by (k − 1) convex hulls. Let TP (k)
denotes the time complexity to find k convex hulls to cover P with minimum
total area. By Theorem 1, TP (2) = |P |4 log2 |P |. Since there are O(|P |4m) edge
combinations, we have that,

TP (k) = (TP\P1(k − 1) + O(|P | log |P |)) × O(|P |4m) = O(|P |2k(k−1) log2 |P |).

Summing up over all 0 � m < k, TP (k) = O(kn2k(k−1) log2 n).

Theorem 3. For any fixed k � 2 and a set P of n points, we can find k convex
hulls with minimum area and minimum perimeter in O(n2k(k−1) log2 n) time and
O(nk(k−1) log2 n) time, respectively.

Min-Max Optimization Problems. We have mentioned the min-sum optimization
problems so far, but we can also consider k convex hulls to cover P such that
the maximum area or perimeter of them is minimized. We found an interesting
fact that the min-max perimeter partition is not linearly separable unlike the
min-sum perimeter partition. This makes the perimeter version much harder. Of
course, the min-max area partition is not linearly separable as in Fig. 2. But we
have no clue yet on how many times two optimal hulls for both problems can
intersect each other, e.g., at most four times as in Lemma 1.

Let us consider an example on the min-max perimeter problem when k = 2.
See n points of P as in Fig. 8(a), in which most points are collinear, but one
can easily make a similar configuration of the points in general position. For
simplicity, we assume here that n is odd. Such points in P are aligned along
two unit-length orthogonal segments so that the distance between two adjacent
points on a segment is 2

n .
We claim that the optimal convex hulls are indeed two segments which cross

at the origin o, thus the min-max perimeter becomes two. Consider an arbitrary

Covering Points with Convex Sets of Minimum Size 177

a = (x, 0)

b = (0, y)

�

P1

P2

2
n

(a) (b)

p p′

q

q′

ε

q

q′

pp′
o

Fig. 8. A non-separable example for the min-max perimeter problem.

line � separating P into two subsets P1 and P2, where P1 is above (or in the
right of) � and P2 is below (or in the left of) �, as in Fig. 8(b). It passes two
points a = (x, 0) and b = (0, y). For the special cases that x = 0 or y = 0, we
can easily verify that the maximum of peri(P1) and peri(P2) is larger than 2,
so it is not optimal. For another case that y < 0, peri(P1) > peri(Δopq) > 2
for any ε < 0.25, so not optimal either. The remaining case is that y > 0 as
in Fig. 8(b). Let Q1 be a quadrangle apqb, and let Q2 be a quadrangle bp′q′a.
Then we have that peri(P1) � peri(Q1) − 4

n and peri(P2) � peri(Q2) − 8
n . Set

ε = 8
n , then ε � 0.1 for any n � 80. We can check by a simple calculation that

max(peri(P1),peri(P2)) � max(peri(Q1),peri(Q2)) − ε > 2 for ε � 0.1. As a
result, there is an example whose optimal two convex hulls to cover P of any
large n intersect each other.

References

1. Aggarwal, A., Imai, H., Katoh, N., Suri, S.: Finding k points with minimum
diameter and related problems. J. Algorithms 12(1), 38–56 (1991)

2. Ahmed, M., Karagiorgou, S., Pfoser, D., Wenk, C.: A comparison and evalua-
tion of map construction algorithms using vehicle tracking data. GeoInformatica
19(3), 601–632 (2015)

3. Ahmed, M., Wenk, C.: Constructing street networks from GPS trajectories. In:
Algorithms - European Symposium on Algorithms, Ljubljana, Slovenia, Septem-
ber 10–12, pp. 60–71 (2012)

4. Atanassov, R., Morin, P., Wuhrer, S.: Removing outliers to minimize area and
perimeter. In: Proceedings of Canadian Conference on Computational Geometry,
August 14–16, Ontario, Canada (2006)

5. Bespamyatnikh, S., Segal, M.: Covering a set of points by two axis-parallel boxes.
Inf. Process. Lett. 75(3), 95–100 (2000)

6. Chan, T.M.: More planar two-center algorithms. Comput. Geom. 13(3), 189–198
(1999)

7. Chen, D., Guibas, L.J., Hershberger, J., Sun, J.: Road network reconstruction for
organizing paths. In: Proceedings of ACM-SIAM Symposium on Discrete Algo-
rithms, Texas, USA, January 17–19, pp. 1309–1320 (2010)

178 H.-G. Cho et al.

8. Davies, J.J., Beresford, A.R., Hopper, A.: Scalable, distributed, real-time map
generation. Pervasive Comput. 5(4), 47–54 (2006)

9. Dobkin, D., Drysdale, R., Guibas, L.: Finding smallest polygons. Comput. Geom.
Theor. Appl. 1, 181–214 (1983)

10. Eppstein, D.: New algorithms for minimum area k-gons. In: Proceedings of ACM-
SIAM Symposium on Discrete Algorithms, Orlando, Florida, January 27–29, pp.
83–88 (1992)

11. Eppstein, D., Overmars, M.H., Rote, G., Woeginger, G.J.: Finding minimum area
k-gons. Discrete Comput. Geom. 7, 45–58 (1992)

12. Fathi, A., Krumm, J.: Detecting road intersections from GPS traces. In: Fabrikant,
S.I., Reichenbacher, T., van Kreveld, M., Schlieder, C. (eds.) GIScience 2010.
LNCS, vol. 6292, pp. 56–69. Springer, Heidelberg (2010)

13. Guibas, L.J., Overmars, M.H., Robert, J.: The exact fitting problem in higher
dimensions. Comput. Geom. 6, 215–230 (1996)

14. Hassanzadeh, F.: Minimum perimeter convex hull of a set of line segments: An
approximation. Master’s thesis, Queen’s University (2008)

15. Hershberger, J., Shrivastava, N., Suri, S.: Summarizing spatial data streams using
clusterhulls. ACM J. Exp. Algorithmics 13 (2009)

16. Hershberger, J., Suri, S.: Off-line maintenance of planar configurations. J. Algo-
rithms 21(3), 453–475 (1996)

17. Jaromczyk, J., Kowaluk, M.: Orientation independent covering of point sets in
R

2 with pairs of rectangles or optimal squares. In: European Workshop on Com-
putational Geometry, pp. 71–78 (1996)

18. Kim, S., Bae, S.W., Ahn, H.: Covering a point set by two disjoint rectangles. Int.
J. Comput. Geometry Appl. 21(3), 313–330 (2011)

19. Löffler, M., van Kreveld, M.J.: Largest and smallest convex hulls for imprecise
points. Algorithmica 56(2), 235–269 (2010)

20. Mukhopadhyay, A., Kumar, C., Greene, E., Bhattacharya, B.K.: On intersecting a
set of parallel line segments with a convex polygon of minimum area. Inf. Process.
Lett. 105(2), 58–64 (2008)

21. Overmars, M.H., van Leeuwen, J.: Maintenance of configurations in the plane. J.
Comput. Syst. Sci. 23(2), 166–204 (1981)

22. Saha, C., Das, S.: Covering a set of points in a plane using two parallel rectangles.
Inf. Process. Lett. 109(16), 907–912 (2009)

23. Wu, J., Zhu, Y., Ku, T., Wang, L.: Detecting road intersections from coarse-gained
GPS traces based on clustering. J. Comput. 8(11), 2959–2965 (2013)

Data Structures

Efficient Generation of Top-k Procurements
in a Multi-item Auction

Biswajit Sanyal1(B), Subhashis Majumder2, and Wing-Kai Hon3

1 Department of Information Technology, Government College of Engineering
and Textile Technology, Serampore, West Bengal, India

Biswajit sanyal@yahoo.co.in
2 Department of Computer Science and Engineering,

Heritage Institute of Technology, Kolkata, West Bengal, India
subhashis.majumder@heritageit.edu

3 Department of Computer Science, National Tsing Hua University, Hsinchu, Taiwan
wkhon@cs.nthu.edu.tw

Abstract. We consider the top-k procurement decision problem in a
multi-item auction, where there exists only one prospective buyer and
the input consists of (i) a set of items, where each item is partitioned
into equal number of shares, (ii) a set of suppliers, and (iii) for each
supplier, her bids of selling different shares of each item; our target is to
find k procurements with the least total costs. Kelly and Byde [SIGE-
com 2006] studied the case where for each item, we may buy from each
supplier at most once; this setting is suitable in most of the cases where
total cost of a procurement is the primary concern.

In this paper, we assume a slightly different version where for any
item, we may buy from a supplier multiple times (but each time with a
different number of shares). We propose an anytime algorithm which can
report successive best procurements until a buyer is satisfied (or termi-
nates the algorithm). Our solution is based on preprocessing a metadata
structure (without knowing the actual bids) to speed up the reporting
steps. The metadata structure consists of (i) a DAG Mlocal for the valid
combination of shares for each item, and (ii) a DAG Mglobal that coor-
dinates the information from all Mlocal. We further show that the meta-
data structure can be generated on the fly, thereby saving a considerable
amount of storage space.

1 Introduction

The auction winner determination problem [1,4] is a procurement decision prob-
lem in a multi-item auction, where multi-sourcing of the items are allowed (i.e.,
fractions of an item may be procured from different suppliers). In a typical multi-
item auction, several suppliers can submit their bids for supplying different items.
In some cases, a buyer may request the same item to be purchased on a large
scale, making it difficult for a small-scale supplier to participate in the auction
for supplying all amount of the item for the request. Multi-sourcing of an item
should then be allowed so that the same item can be purchased from different
c© Springer International Publishing Switzerland 2016
M. Kaykobad and R. Petreschi (Eds.): WALCOM 2016, LNCS 9627, pp. 181–193, 2016.
DOI: 10.1007/978-3-319-30139-6 15

182 B. Sanyal et al.

suppliers in different units. This will be beneficial not only for the small-scale
suppliers, but also for the buyers (as they will get more competitive prices for
their items). In such situations, buyers become interested in identifying the best
winning bids, so that all the items can be procured entirely (from a combination
of suppliers) at the overall lowest cost. In general, it is better for the buyers to
have the k procurements with the least total costs, so that from which they can
choose the best procurement, had they got other intangible or strategic concerns.

We consider the top-k procurement decision problem in a multi-item auction,
where the input consists of the following parts:

1. A set I of n items, {I1, I2, . . . , In}, where each item is partitioned into equal
number Q of shares.

2. A set S of m suppliers, {S1, S2, . . . , Sm}.
3. Supplier Sj ’s bids for selling q shares of item Ii, for each i ∈ [1, n], j ∈ [1,m],

and integer q ∈ [1, Q].

Our target is to find k procurements with the least total costs. Kelly and Byde [4]
studied the case where for each item, we may buy from each supplier at most
once; this setting is suitable in most of the cases where total cost of a procurement
is the primary concern. They proposed an algorithm that runs in O(nR m log m)
time, where R = (Q + m − 1)!/(Q!(m − 1)!) denotes the number of ways to
partition Q into m nonnegative integral parts. Later, Byde et al. [1] improved
the solution that runs in O(nm(Q2+k)) time. Both results are based on reducing
the procurement problem into finding k shortest paths in a directed acyclic graph
(DAG).

In this paper, we assume a slightly different version of the problem, where
for any item we may buy from a supplier multiple times (but each time with a
different number of shares). We call this variant the basic problem. As opposed to
the original variant proposed by Kelly and Byde, this variant finds applications
in the cases where cost is a primary concern, but not the only concern. As an
example, consider a restaurant which wants to buy 100 L (L) of cooking oil;
suppliers may be selling oil with containers of size 1 L, 2 L, 10 L, and 20 L. For
storage and convenience concerns, some combinations (say, 10 containers with
10 L each, or 3 containers of 20 L + 4 containers of 10 L) may be more preferable
than other combinations (say, 5 containers of 20 L each, or 100 containers with 1 L
each), even if the former combinations cost more than the latter combinations.
In such a case, it is better to retain all possible combinations for consideration,
rather than over-simplifying the problem to treat costs as the only concern. By
applying the same reduction technique as used by Byde et al., we show that
for the basic problem, we can obtain the k cheapest procurements, in unsorted
order, in O(mnQ(k + Q)) time; an additional O(k log k) time can further be
applied to sort the procurements by their total costs.

We also consider designing an anytime algorithm which can report succes-
sive best procurements until a buyer is satisfied (or terminates the algorithm).
This algorithm will be useful when there is no prior knowledge how large (or
how small) k should be set to obtain meaningful procurements. Our solution is

Efficient Generation of Top-k Procurements in a Multi-item Auction 183

based on preprocessing a metadata structure (without knowing the actual bids)
to speed up the reporting steps. The metadata structure consists of (i) a DAG
Mlocal for the valid combination of shares for each item, and (ii) a DAG Mglobal

that coordinates the information from all Mlocal. We further show that the meta-
data structure can be generated on the fly, thereby saving a considerable amount
of storage space. Precisely, we show with O(nQ(m log m + partition(Q))) pre-
processing time, the tth cheapest procurement can be iteratively extracted from
the metadata structure in O(n(Q+log t)) time; here, partition(Q) denotes the
number of integer partition of Q, which is bounded by eO(

√
Q). Note that the

preprocessing time is now exponential in
√

Q, but as Kelly and Byde [4] have
pointed out, Q would be a small constant in practice, so that we may consider
Q = O(1), and thus partition(Q) = O(1),1 so that the proposed algorithm can
still work well in practice.

The paper is organised as follows. Section 2 shows how to reduce our problem
into finding k shortest paths in a DAG. In Sect. 3, we introduce the metadata
structure Mlocal for organising suppliers’ bids for a single item, while in Sect. 4 we
continue to show how to use Mlocal structures to give an anytime algorithm for
our problem, and discuss how the framework can be adapted for other variants
of the problem. We conclude the paper in Sect. 5.

2 Method I: Reduction to k Shortest Paths Problem

In this section, we use an analogous strategy by Byde et al. [1] to reduce a top-k
procurement decision problem into finding k shortest paths in an edge-weighted
DAG, where the latter problem can then be directly solved by Eppstein’s linear-
time algorithm [3]. For simplicity, we first discuss the special case where n =
|I| = 1, that is, there is only one item I to consider.

Initially, create a tuple (i, q) for each supplier Si and quantile q, and fix a
total ordering O among these tuples (any ordering will work). For instance,
we may order the tuples by the reverse lexicographical ordering as follows:
(1, 1), (2, 1), (3, 1), . . . , (m − 1, Q), (m,Q). Next, we create a directed graph that
contains mQ + 2 columns of nodes as follows (See Fig. 1 for an example):

1. Column 0 contains a single node s, the source node.
2. Column mQ + 1 contains a single node t, the sink node.
3. For each r with 1 ≤ r ≤ mQ, Column r contains Q + 1 nodes, labeled as

(i, q, 0), (i, q, 1), . . . , (i, q,Q), where (i, q) is the rth tuple in the ordering O.
4. Let (i, q) and (i′, q′) be the rth and the r + 1th tuples in O. For any r and

any j, (i) create a weighted edge from (i, q, j) to (i′, q′, j) with cost 0, and
(ii) a weighted edge from (i, q, j) to (i′, q′, j +q′) with cost bi′,q′ , where bi′,q′

is the bid of supplier Si′ for q′ quantiles of item I.

1 We quote some specific values of partition(Q) below: partition(10) = 42,
partition(20) = 627, partition(30) = 5604, partition(40) = 37338. See Online
Encyclopedia of Integer Sequences (http://oeis.org/A000041) for more details.

http://oeis.org/A000041

184 B. Sanyal et al.

5. Let (̂ı, q̂) be the first tuple in the ordering O. Create an edge from s (the
source) to (̂ı, q̂, 0) with cost 0, and an edge from s to (̂ı, q̂, q̂) with cost bı̂,q̂.

6. Let (̃ı, q̃) be the last tuple in the ordering O. Create an edge from to (̃ı, q̃, Q)
to t (the sink) with cost 0.

s

…
…

1,1,0

1,1,1

1,1,Q
…

…

2,1,0

2,1,1

2,1,Q

m-1,Q,0……

……

……

……

0

b1,1

0

b2,1

b2,1

0

0

1,1,2 2,1,2
0

b2,1

b2,1

m-1,Q,1

m-1,Q,2

m-1,Q,Q

m,Q,0

m,Q,1

m,Q,2

m,Q,Q

0

0

0

0

bm,Q

…
…

…
………

t0

Fig. 1. Reduction to k shortest paths. We assume that the corresponding total ordering
O orders the tuples (i, q) in reverse lexicographical ordering.

It is easy to verify that the graph is a DAG, and there is a one-to-one cor-
respondence between a path from s to t and a valid combination of suppliers’
bids for the procurement of item I. Thus, the k shortest paths in the DAG will
correspond to the top-k procurements for the item I. Also, the DAG contains
O(mQ2) nodes and O(mQ2) edges, and each path from s to t contains O(mQ)
edges. Using Eppstein’s algorithm [3], the k shortest paths can be obtained,
explicitly, in a total of O(kmQ) time (but these paths are not ordered by their
costs). This gives the following lemma.

Lemma 1. We can obtain the k cheapest procurements of an item I (in the
basic problem) in O(mQ(k + Q)) time. An extra O(k log k) time can be applied
to order these procurements according to their costs.

To solve the general case with two or more items, we simply construct a
separate DAG for each item, and then for each i ∈ [1, n − 1], link the sink of the
DAG for item i to the source of the DAG for item i + 1 with a cost 0 edge. This
gives the following theorem.

Theorem 1. Let n denote the number of items and m denote the number of
suppliers. Given a value k, the top-k procurement decision problem can be solved
in O(mnQ(k + Q) + k log k) time.

Efficient Generation of Top-k Procurements in a Multi-item Auction 185

3 The Metadata Structure Mlocal

In this section, we describe the metadata structure Mlocal that is maintained
for a fixed item with Q quantiles. We first introduce its key component, which
is a metadata structure to organise all the combinations of suppliers’ bids, with
those bids corresponding to the same partition of Q. After that, we show how to
combine the different key components (one for each possible way to partition Q)
into the desired Mlocal structure.

3.1 Metadata Structure Per Partition

Let π = π1+π2+ · · ·+πj be an integer partition of Q, such that each element πr

is an integer in [1, Q], and
∑j

r=1 πr = Q. Alternatively, we may represent π by
a vector (f1, f2, . . . , fQ) where fr is the frequency of r as a tuple in π. Given a
particular item in I, we define a valid combination of suppliers’ bids with respect
to π to be a combination that has exactly fr suppliers’ biddings for r quantiles
(thus, the total number of quantiles is Q). In the following, we define a metadata
structure that organises all the possible valid combinations with respect to π, so
that it supports efficient way to extract, iteratively, the next combination with
the least total cost.

Suppose that for each quantile r/Q, the m suppliers’ bids are sorted in non-
decreasing order. The cheapest combination with respect to π must be to select
the first fr bids for each quantile r/Q. Such a combination may be represented
by a bitvector with Q × m bits, logically divided into Q blocks of m bits, such
that the first fr bits in block r is marked 1, and all other bits 0. For instance,
suppose S = 4, Q = 4, and π = 1 + 1 + 2 which is represented by (2, 1, 0, 0).
Then, the bitvector corresponding to the cheapest combination with respect
to π is: 1100 1000 0000 0000. In fact, each valid combination has a one-to-one
correspondence with a bitvector that contains for each r exactly fr 1s in block r.

Using a similar concept from an earlier work [5], we define a bitvector v as
a one-shift of another vector u, if we can obtain v by swapping a 1 in u with
a neighboring 0 placed immediately on its right, without crossing block bound-
aries. For instance, 1100 1000 0000 0000 has two possible one-shifts, which
are 1010 1000 0000 0000 and 1100 0100 0000 0000; in contrast, 1001 0001
0000 0000 has only one possible one-shift 0101 0001 0000 0000, while 0011
0001 0000 0000 does not have any one-shift. Also, a vector may be a one-shift
of two or more distinct vectors. For instance, 0110 0100 0000 0000 is a one-
shift of both 1010 0100 0000 0000 and 0110 1000 0000 0000.

Each vector has at most j one-shifts, where j is the number of parts in
the partition π (or equivalently, the number of 1s in the vector); in the worst
case, j = Q. If v is a one-shift of u, the corresponding combination of v cannot
have total cost smaller than that of u (or, u is at least better than v). This
gives a natural way to organise all possible combinations as a DAG (each node
corresponds to a valid combination, and we will abuse the notation to refer the
node and the corresponding combination by the same label), with the cheapest

186 B. Sanyal et al.

combination as the root, and the children of a node u are all the one-shifts of u.2

See Fig. 2 for an example.

1100 1000

1010 1000 1100 0100

0110 1000 1001 1000 1010 0100 1100 0010

0101 1000 0110 0100 1001 0100 1010 0010 1100 0001

0011 1000 0101 0100 0110 0010 1001 0010 1010 0001

0011 0100 0101 0010 0110 0001 1001 0001

0011 0010 0101 0001

0011 0001

Fig. 2. A DAG containing all valid combinations of the case with n = 4, m = 4, π =
1 + 1 + 2 = 4. A node u is linked to another node v if v is a one-shift of u. For any
node in the DAG, the last 8 bits of its vector are 0000 0000, so that we omit them for
brevity.

Given a rooted DAG, we say a node u covers another node w, if w = u, or
there is a directed path from u to w; thus, the root of the DAG covers all the
nodes in the DAG. Similarly, we say a set U of nodes covers w if some node in
U covers w. Suppose that we want to find the cheapest combination among a set
W of combinations in the DAG; then, it is sufficient to consider a subset Z ∈ W
that covers all nodes in W , and find the cheapest combination in Z. This gives
the following algorithm for reporting iteratively the next cheapest combination
(when needed):

1. Maintain a set Z, which is initialized to contain the cheapest combination of
all combinations (i.e., the root of the DAG).

2. When reporting the next cheapest combination, find the cheapest combina-
tion u among Z.

3. After reporting u, extract u from Z, and insert to Z all the children (i.e.,
one-shifts) of u that is not currently in Z.

Note that the DAG can be constructed in advance, but the evaluation of the
cheapest combination u among Z (Step 2) can be done when the suppliers’ bids
2 We defer the formal proof to the full paper.

Efficient Generation of Top-k Procurements in a Multi-item Auction 187

1100 1000

1010 1000 1100 0100

0110 1000 1001 1000 1010 0100 1100 0010

0101 1000 0110 0100 1001 0100 1010 0010 1100 0001

0011 1000 0101 0100 0110 0010 1001 0010 1010 0001

0011 0100 0101 0010 0110 0001 1001 0001

0011 0010 0101 0001

0011 0001

Fig. 3. The implicit DAG corresponding to the DAG in Fig. 2. A node u is linked to
another node v if v is a mandatory-one-shift of u. For any node in the DAG, the last
8 bits of its vector are 0000 0000, so that we omit them for brevity.

are known. By maintaining a binomial heap on Z [2], and the DAG as well (to
speed up the checking for repeated insertion in Step 3), we obtain the following
lemma.

Lemma 2. Let W be a set of combinations with respect to a partition π of Q,
and Z be a subset in W such that Z covers all the combinations in W . Suppose
that the suppliers’ bids are all known, and for each quantile, the bids are sorted in
non-decreasing order. Let teval be the time to evaluate the cost of a combination.
Then, the cheapest combination in W can be extracted in O(log |Z|) time, and
the set Z can be updated in O(Q × teval) time.

In the above algorithm, storing the DAG seems to be unavoidable, or else
there may be multiple insertions of the same combination into Z. Interestingly,
the DAG can be avoided, if we slightly strengthen the definition of one-shift as
follows: We say v is a mandatory one-shift of u, if (i) v is a one-shift of u, and
(ii) among all the vectors of which v is its one-shift, u is lexicographically the
largest. For instance, v = 0110 0100 0000 0000 is a mandatory one-shift of 1010
0100 0000 0000, but v is not a mandatory one-shift of 0110 1000 0000 0000.

We may define a DAG based on the mandatory one-shifts (instead of one-
shifts) as before. See Fig. 3 for an example. There are some interesting observa-
tions about this DAG:

1. Each valid combination can be reached from the root. Note that to
obtain a particular vector from the root vector, we use a series of mandatory
one-shifts to move the rightmost 1 to its correct position, and then a series of

188 B. Sanyal et al.

mandatory one-shifts to move the second rightmost 1 to its correct position,
and so on.

2. The DAG is effectively a rooted tree, where each node (except the
root) has exactly one parent. It follows directly from the definition of
mandatory one-shift.

3. All children of a node can be deduced from the combination corre-
sponding to the node. Precisely, consider only those blocks that contain
1s. Let � be the number of contiguous blocks, from left to right, with all 1s
appearing before all 0s. Then, there are � children corresponding to swapping
the last 1 appearing in each of these blocks. Moreover, there may be 2 more
children corresponding to the swapping in the � + 1th block: If this block
begins with 1, then one child corresponds to swapping the last 1 appearing in
the first contiguous sequence of 1s. The other child corresponds to swapping
the 1 that immediately appears after the first sequence of 0; moreover, the
right neighbour of this 1 must be a 0 for swapping to be valid. For instance,
1100 1010 0000 0000 has exactly three mandatory one-shifts: 1010 1010
0000 0000, 1100 0110 0000 0000, and 1100 1001 0000 0000. In contrast,
1100 0110 0000 0000 has only one mandatory one-shift 1010 0110 0000
0000; this is because its other one-shift, 1100 0101 0000 0000, would be a
mandatory one-shift of 1100 1001 0000 0000 instead.

4. The above algorithm works for this DAG, with a minor change in
Step 3, where we always insert all the children (i.e., mandatory
one-shifts) of u after u is extracted, without the need to check Z
for repeated insertion.

Thus, the DAG need not be stored, and we call this an implicit DAG. Fur-
thermore, although we have described the algorithm based on bitvectors, this is
simply for the ease of illustration. The actual representation of a combination
may always be its j parts (i.e., the positions of 1s inside the vector). Alterna-
tively, we may refer a combination v by a rank ρ, such that v is the ρth child
of u in the implicit DAG; thus, apart from the root of the DAG, each node is
represented in O(1) space. Since we evaluate a combination v only if its parent
u in the implicit DAG was extracted before, and there are only O(1) differences
between u and v, evaluating a combination can be bounded by O(1) time, if the
combination of u is known. Thus, based on a particular combination u, we can
examine u and generate the costs of all its mandatory one-shifts in a total of
O(Q) time.This gives the following lemma.

Lemma 3. Let W be a set of combinations with respect to a partition π of Q,
and Z be a subset in W such that Z covers all the combinations in W . Suppose
that the suppliers’ bids are all known. Then, the cheapest combination in W can
be extracted from Z in O(log |Z|) time, and the set Z can be updated in O(Q)
time.

3.2 Metadata Structure Per Item

On the basis of the metadata structures for each partition, the metadata struc-
ture Mlocal, for each item in I, consists of partition(Q) implicit DAGs, one

Efficient Generation of Top-k Procurements in a Multi-item Auction 189

for each partition of Q. To find the next cheapest combination iteratively, we
use an analogous idea as follows:

1. Maintain a set Y , which is initialized to contain the cheapest combination in
each of the implicit DAGs. At anytime, Y covers all the remaining combina-
tions that have not been reported.

2. When reporting the next cheapest combination, find the cheapest combina-
tion u among Y .

3. After reporting u, extract u from Y , and from the implicit DAG D that
contains u, insert the children of u (i.e., mandatory one-shifts) to Y , and
update D.

Yamanaka et al. [6] showed that all the partitions of a positive integer Q
can be generated (implicitly) in O(partition(Q)) time, so that the cheapest
combinations in all implicit DAGs can be computed and evaluated in O(Q ×
partition(Q)) times. Consequently, we have the following lemma.

Lemma 4. Suppose that each item in I is divided into Q quantiles. Further-
more, suppose that the suppliers’ bids are all known, and for each item in I
the bids for each of the Q quantiles are sorted in non-decreasing order. Then,
we can initialize an index for storing a set Y in O(Q × partition(Q)) time,
such that the next cheapest combination can be iteratively extracted from Y in
O(Q+log |Y |) time, and the set Y can be updated in O(Q) time. The size of Y is
bounded by O(partition(Q) + tQ), where t is the total number of combinations
extracted, and the index space is bounded by O(Q(partition(Q) + t)).

4 Method II: Using Mlocal to Find Top-k Procurements

In this section, we first show how to use the Mlocal structure as a building block
to construct an index for solving the basic problem. After that, we discuss how
our method can be adapted to solve other variants of the procurement decision
problem.

4.1 The Basic Problem

In the previous section, we first designed a metadata structure to organise all
combinations with respect to a particular partioning of Q, and then designed
Mlocal to organise the metadata structure for all different partitionings of Q.
Since each Mlocal is designed for a particular item in I, to solve the basic prob-
lem, we will apply a similar trick, where we design a further metadata structure
Mglobal to organise all different Mlocal structures that correspond to all items
in I. The details are as follows.

Firstly, each procurement of the n = |I| items can be described as a choice
vector c = (c1, c2, . . . , cn), which indicates that the procurement takes, for each
item Ir, the corresponding crth cheapest combination of suppliers’ bids. Using
the same concept as before, we organise all possible procurements as an implicit

190 B. Sanyal et al.

DAG (each node corresponds to a valid procurement), with the cheapest pro-
curement being the root. Each procurement with a choice vector c may be rep-
resented by a bitvector with n blocks, such that in the rth block, the crth bit is
1 while all other bits are 0. The children of a node u in the implicit DAG are all
the mandatory one-shifts of u, and each node has at most n children. However,
to improve the time complexity we can also represent the choice vector c as a
string d of n digits, d = (d1d2 . . . dn), where dr ≥ 1 represents that we use the
drth cheapest combination of suppliers’ bids for item Ir. Then, we obtain the
following lemma.

Lemma 5. If the suffix of the digit string d of a node is a block of b consecutive
1’s, where 0 ≤ b < n, then the node will have b + 1 children whose digit strings
can be generated by increasing each of the last b + 1 digits one at a time.

Proof. We use the notation node(δ) to denote the unique node whose digit string
is δ. Firstly, if d′ is obtained by incrementing a digit in d at position p among
the last b+1 digits, then node(d′) must be a child of node(d), since any string d′′

that can construct d′ by incrementing exactly one of its digits, d is the one that
is lexicographically the largest (so that its corresponding choice vector is lexico-
graphically the largest). On the other hand, if d′ is obtained by incrementing a
digit in d at position p not among the last b + 1 digits, then node(d′) cannot be
a child of node(d). It is because in the digit string d, there exists a digit at some
position p′ on the right of p with value greater than 1. Then, a digit string d′′

obtained by decrementing the digit at position p′ in d′ will be lexicographically
larger than d, which indicates that node(d′) cannot be the child of node(d). ��
For illustration of the above lemma, note that a node with digit string 21134112
will have only one child node with digit string 21134113, whereas a node with
digit string 12113111 will have 4 children with digit strings 12113112, 12113121,
12113211, and 12114111, respectively. Hence every node will have at least one
child, as long as the last digit can be increased till it reaches k (as the search is
for top-k elements).

We maintain a cover X of all the procurements that have not been reported,
and use the following algorithm for reporting iteratively the next cheapest pro-
curement (when needed):

1. Maintain a set X, which is initialized to contain the cheapest procurement of
all items (i.e., the roots of all the DAGs). That is, X contains the procure-
ment which selects, for each item, the corresponding cheapest combination of
suppliers’ bids.

2. When reporting the next cheapest combination, find the cheapest procure-
ment u among X.

3. After reporting u, extract u from X, and insert to X all the children (i.e.,
mandatory one-shifts) of u.

This gives the main theorem of the paper.

Efficient Generation of Top-k Procurements in a Multi-item Auction 191

Theorem 2. Let I be a set of n items, and S be a set of m suppliers. Suppose
that each item is divided into Q quantiles, and the suppliers’ bids for each quantile
of each item are given. Then, we can initialize an index for storing a set X in
O(nQ(m log m + partition(Q))) time, such that the next cheapest procurement
can be iteratively extracted from X in O(log |X| + nQ) time, and the set X can
be updated in O(n(Q + log t)) time, where t is the total number of procurements
extracted. The size of X is bounded by O(nt+1), and the index space is bounded
by O(nQ(partition(Q) + t)).

Proof. For the initialization, it takes (i) O(nQ × m log m) time to sort the
m suppliers’ bids into non-decreasing order, for all of the nQ combinations of
items and quantiles; (ii) O(n(Q×partition(Q))) time to initialize n metadata
structure Mlocal; and (iii) O(n) time to construct the cheapest procurement,
and insert it to X.

Once X is maintained by an implicit DAG, the next cheapest procurement
can be extracted from X in O(nQ + log |X|) time, where the term nQ comes
from recovering, for each item and quantile, the corresponding suppliers and bids
in the procurement. As for the update after an extraction of u in X, it involves
the calculation of n procurements (corresponding to the mandatory one-shifts
of u), which in turn involves a total of at most n extractions and updates in the
Mlocal structures. The total time for the latter part is O(n log(partition(Q) +
tQ) + nQ) = O(n(Q + log t)), and then we can perform the former part in O(n)
time. The update time thus follows.

The size of X is trivially O(nt + 1), as we insert at most n procurements
for each extraction. The index space includes that of the n Mlocal structures
(one for each item), and one Mglobal structure for X. The space of the former
one is bounded by O(nQ(partition(Q) + t)) in total, while that of the latter
one is bounded by O(nt). Moreover, there is an additional O(tnQ) space for
the outputs, which are needed so that each node in the implicit DAGs can be
represented in O(1) space, which include a pointer to its parent which appears
in some output, and how they differ. ��

4.2 Other Variants

In the following, we list out some of the variants which can be solved by slightly
adapting our method.

1. When items are divided into different number of quantiles: For each
item I, we simply define its corresponding Mlocal structure, such that each
structure is defined on the basis of the number of quantiles I is divided into.
The algorithm remains correct.

2. When the same bid can be selected multiple times: A supplier may
be willing to offer the same bid (of a certain quantile for a certain item)
multiple times. In general, for a particular item I, a supplier S may want
to offer her bid for q quantiles xq times. In such a case, we simply create a
total of max{x1, x2, . . . , xQ} copies of the supplier S, so that the same bid

192 B. Sanyal et al.

for q quantiles is offered by exactly xq copies of S. The algorithm remains the
same.

3. Top-k version: The naive way is to apply Theorem2 directly to report the
k cheapest procurements. However, since the number of procurements, k, is
already determined, it is easy to see that there will be no point to maintain
more than k procurements in the implicit DAG of Mglobal, and similarly,
there will be no point to maintain more than k combinations in the implicit
DAG of each Mlocal structures. Thus, if we actively control the size of each of
these data structures by deleting redundant combinations or procurements,
the index space can be reduced by O(nk), though there will be an increase in
update time due to the deletion of those redundant objects from the binomial
heaps. The latter method will be particularly useful when index space or
working space is a major concern.

4. Kelly-Byde’s problem: We solve the problem by a post-filtering approach,
where we apply Theorem 2 to report, iteratively, the next cheapest procure-
ment, and each time verify if the reported procurement is valid (i.e., for each
item, no distinct bids from the same supplier); we stop until we obtain k
valid procurements. The post-filtering approach can be used when there are
other constraints, such as we may want to have at least a certain number of
suppliers, or no supplier is dominating the supply for a certain item (these
variants are suggested in Byde et al.’s paper [1]). Unfortunately, the post-
filtering approach is a heuristic method, and there is no worst case guarantee
about the running time.

5 Conclusions and Future Research

We have proposed a variant of the procurement decision problem, where we may
buy from a supplier multiple times (but each time with a different number of
shares), and designed an anytime algorithm which can report successive best
procurements until a buyer is satisfied. Our solution is based on preprocessing
a metadata structure Mglobal (without knowing the actual bids) to speed up
the reporting steps. We further show that Mglobal can be generated on the fly,
thereby saving a considerable amount of storage space.

We have also shown how to adapt our method to solve other variants of the
problem, including the existing variant proposed by Kelly and Byde [4]. Adding
different constraints to the problem, and designing tailormade algorithm with a
similar approach remains an interesting direction for future research.

References

1. Byde, A., Kelly, T., Zhou, Y., Tarjan, R.: Efficiently generating k-best solutions
to procurement auctions. In: Goldberg, A.V., Zhou, Y. (eds.) AAIM 2009. LNCS,
vol. 5564, pp. 68–84. Springer, Heidelberg (2009)

2. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms,
3rd edn. MIT press, Cambridge (2009)

Efficient Generation of Top-k Procurements in a Multi-item Auction 193

3. Eppstein, D.: Finding the k shortest paths. SIAM J. Comput. (SICOMP) 28(2),
652–673 (1998)

4. Kelly, T., Byde, A.: Generating k-best solutions to auction winner determination
problems. ACM SIGecom Exch. 6(1), 23–34 (2006)

5. Majumder, S., Sanyal, B., Gupta, P., Sinha, S., Pande, S., Hon, W.-K.: Top-K
query retrieval of combinations with sum-of-subsets ranking. In: Zhang, Z., Wu,
L., Xu, W., Du, D.-Z. (eds.) COCOA 2014. LNCS, vol. 8881, pp. 490–505. Springer,
Heidelberg (2014)

6. Yamanaka, K., Kawano, S., Kikuchi, Y., Nakano, S.: Constant time generation of
integer partitions. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. E90–
A(5), 888–895 (2007)

Counting Subgraphs in Relational Event Graphs

Farah Chanchary1(B) and Anil Maheshwari1

School of Computer Science, Carleton University, Ottawa, ON K1S 5B6, Canada
farah.chanchary@carleton.ca, anil@scs.carleton.ca

Abstract. Analysis of the structural properties of social networks has
gained much interest nowadays due to its diverse range of applications.
When communications between entities (i.e., edges) of a social network
(graph) are stamped with time, we want to analyze all subgraphs within
an arbitrary query time slice so that the number of a specific subgraph
can be counted and reported quickly. We present data structures to
answer such queries for triangles, quadrangles, complete subgraphs, and
maximal complete subgraphs.

Keywords: Dominance counting · Relational event graph · Subgraph
counting · Timestamp

1 Introduction

Problem Definition: A relational event graph G is an undirected graph with a
fixed set of vertices V and a sequence of edges E between pairs of vertices, where
each edge has a unique timestamp. Suppose the entire relational event graph G
is given. We want to construct data structures to efficiently count the number of
subgraphs (e.g., triangles, quadrangles, complete subgraphs of order l, maximal
cliques) in G having their timespans lying within a query pair of indices [i, j].
To be precise, let G = (V,E = {e1, e2, · · · , em}) be a relational event graph and
without loss of generality we assume that t(e1) < t(e2) < · · · < t(em), where
t(ei) is the timestamp of the edge ei. For a given query pair of indices [i, j], where
i ≤ j, we want to report the total number of a specific subgraph, for example
triangle, in the graph slice G′ = (V,E′ = {ei ∪ei+1∪· · ·∪ej}). A relational event
(RE) graph generally represents communication events between pair of entities,
where each event carries a timestamp.

The RE graph model was first proposed by Bannister et al. [2]. The authors
presented data structures to find the number of connected components, number
of components containing cycles, number of vertices with some predetermined
degree and number of reachable vertices on a time-increasing path.

In this paper, we present data structures to solve subgraph counting problems
in RE graphs. The triangle counting problem is fundamental to many graph
applications. This problem has been studied in various contexts, for example as a
base case for counting complete subgraphs of given orders [14], in minimum cycle
detection problem [12], and as a special case of counting given length cycles [1].
c© Springer International Publishing Switzerland 2016
M. Kaykobad and R. Petreschi (Eds.): WALCOM 2016, LNCS 9627, pp. 194–206, 2016.
DOI: 10.1007/978-3-319-30139-6 16

Counting Subgraphs in Relational Event Graphs 195

For analyzing large networks such as WWW or social networks, triangle counting
problem is also crucial as it can be used to compute important network structures
such as clustering coefficients [21] and transitivity coefficients [11]. However,
when analyzing bipartite graphs or two-mode networks, these coefficients require
total number of quadrangles [15,22]. Both complete subgraphs and maximal
complete subgraphs counting problems have applications in combinatorics (e.g.,
[19,20]) and network analysis (e.g., [9,17]).

In this paper, we use an edge searching technique, originally proposed by
Chiba and Nishizeki [3], to count the total number of subgraphs, i.e., trian-
gles, quadrangles, complete subgraphs and maximal complete subgraphs, in a
relational event graph. We maintain geometric structures such as, dominance
counting structure, interval tree and range tree to store all subgraphs so that
the structure can efficiently answer queries for arbitrary query time slices.

Previous Work: Some known results, i.e., by Itai and Rodeh [12] and Chiba
and Nishizeki [3], show that an n-vertex graph with m edges may have Θ(m3/2)
triangles and quadrangles, and all triangles and quadrangles can be found in
O(m3/2) time. It is also known that all cycles of length up to seven can be
counted in O(nw) time [1] where w is the exponent from the asymptotically
fastest known matrix multiplication algorithms. Other general problems of find-
ing and counting small cliques in graphs and hypergraphs have also utilized the
fast matrix multiplication technique [5,16].

Eppstein [6,7] shows that in planar graphs, or more generally graphs of
bounded local treewidth, the number of copies of any fixed subgraph may be
found in linear time. Papadimitriou and Yannakakis also show that all complete
subgraphs in planar graphs (Kl, l ≤ 4) can be found in linear time [18].

Our work presented in this paper utilizes an edge searching technique to
count all instances of subgraphs from a relational event graph. This technique
was first presented by Chiba and Nishizeki [3] for listing copies of all complete
subgraphs (Kl, l ≥ 3) in O(la(G)l−2m) time and an implicit representation of
quadrangles (C4) in O(a(G)m) time, where a(G) is the graph arboricity. Arboric-
ity a(G) of a graph G = (V,E) having m = |E| edges and n = |V | vertices is
defined as the minimum number of edge-disjoint spanning forests into which G
can be partitioned [10]. This graph variant has also been used in other studies
as parameters to bound the running time of algorithms. Eppstein [8] showed a
linear time algorithm to list all maximal complete bipartite subgraphs Kk,l for
any constant k in graphs of bounded arboricity.

New Results: Let G be a relational event graph consisting of m edges and
let a(G) be the arboricity of G. Let K be the total number of subgraphs in G
and w be the total number of subgraphs in Gi,j . The main contributions of this
paper are,

196 F. Chanchary and A. Maheshwari

1. The problem of determining the total number of triangles in the query time
slice [i, j] can be reduced to dominance counting in O(a(G)m) time. The
dominance counting takes O(log w/ log log K) time and linear space to report
the total number of triangles in Gi,j (Theorem 2).

2. We can construct a data structure in O(a(G)m + min{(|V |
2

)
, a(G)m} log |V |)

time using O(a(G)m log |V |) space so that the number of quadrangles in the
query time slice [i, j] can be reported in O(γ log |V | + w) time, where γ ≤
min{(|V |

2

)
, a(G)m} (Theorem 1).

3. The problem of determining the total number of complete subgraphs of order
l(≥ 2) in the query time slice [i, j] can be reduced to dominance counting in
O(a(G)l−2m) time. The dominance counting takes O(log w/ log log K) time
and O(K) space to report the total number of Kl within Gi,j (Theorem 3).

4. The problem of determining the total number of complete subgraphs Kk

of order 3 ≤ k ≤ l in the query time slice [i, j] can be reduced to
dominance counting in O(a(G)l−1m) time. The dominance counting takes
O((log K/ log log K)2) time and O(log K/ log log K) space to report the total
number of Kk within Gi,j (Theorem 4).

5. The problem of determining the total number of maximal complete sub-
graphs in the query time slice [i, j] can be reduced to dominance counting
in O(a(G)mK) time and using O(mK) space so that the total number of
maximal complete subgraphs in Gi,j can be reported in O(log w/ log log K)
time and O(K) space (Theorem 5).

Our results for subgraph counting are summarized in Table 1.

Table 1. Summarized results for subgraph counting.

Problems Preprocessing time Query time

Triangle O(a(G)m) O(log w/ log log K) (Theorem 2)

Quadrangle O(a(G)m +
min{(|V |

2

)
, a(G)m} log |V |)

O(γ log |V | + w) (Theorem 1)

CS (l ≥ 3) O(a(G)l−2m) O(log w/ log log K) (Theorem 3)

CS (3 ≤ k ≤ l) O(a(G)l−1m) O((log K/ log log K)2) (Theorem 4)

MCS O(a(G)mK) O(log w/ log log K) (Theorem 5)

2 Preliminaries

Definition 1. A relational event graph G is defined to be a graph with set of
vertices V and a sequence of edges (or relational events) E = {ek|0 ≤ k < m}
between pairs of vertices.

We assume that the graph is undirected so the pairs are unordered. We also
assume that each edge (or relational event) has a timestamp. We denote
timestamp of edge e = (u, v) by t(u, v). All timestamps are unique.

Counting Subgraphs in Relational Event Graphs 197

Definition 2. Given a relational event graph G, we define the slice graph Gi,j

to be the graph with vertices V and edges {ek|i ≤ k ≤ j}.
Figure 1(a) illustrates a relational event graph with 19 edges e0, e1, .., e18.
Figure 1(b) represents edges and vertices of slice graph G5,15 for range [5, 15].

In a given slice Gi,j , a subgraph (i.e., triangle, clique, quadrangle) forms only
if all its participating edges appear in that slice. So, to count these subgraphs
we define the high event (also mentioned as triad closure event in [2]) and the
low event as follows.

Definition 3. A high (low) event in an undirected relational event graph G is
defined to be an edge ek within a given slice Gi,j such that ek is the edge with
the highest (lowest) timestamp among all edges that form a particular subgraph.

We refer back to Fig. 1(a) and this time we are interested in counting how
many quadrangles (C4) are there in query slice [i, j]. For a given slice G0,11,
edges {e0, .., e11} do not form any C4, thus no high or low event occurs in this
slice. However, edges e8, e9, e11 and e12 create a C4 = (e8, e9, e11, e12) in G0,12.
Therefore, edges e8 and e12 become the low and the high event respectively for
this C4. It is possible that some edges participate in multiple subgraphs and thus
become high or low events for more than one subgraphs in the same slice. There
are three C4’s in G4,18, (e4, e5, e17, e18), (e8, e10, e12, e18) and (e9, e10, e11, e18).
For all of these subgraphs, e18 is the high event, though each of them have dif-
ferent low events.

Chiba and Nishizeki [3] gave an upper bound on a(G) for a general graph G as
a(G) ≤ �(2m + n)1/2/2�. Thus, for a connected graph G, a(G) ≤ O(m1/2). We
state the following lemma from their paper.

Lemma 1. (Chiba and Nishizeki [3] Lemma 2.1) If graph G = (V,E) has n
vertices and m edges, then

∑
(u,v)∈E min{d(u), d(v)} ≤ 2a(G)m, where d(x)

denotes the degree of vertex x in G.

Proof. Let G be partitioned into edge-disjoint forests Fi, where 1 ≤ i ≤ a(G),
such that E(G) = ∪1≤i≤a(G)E(Fi). For each tree T ∈ Fi, choose an arbitrary
vertex u as the root of T and consider all edges are now directed from the root
to descendants in T . Each edge e of T is now associated with its head vertex
h(e). Thus, except the roots, every vertex of Fi is associated with exactly one
edge of Fi. So, we have Σ(u,v)∈E min{d(u), d(v)} ≤ Σ1≤i≤a(G)Σe∈E(Fi)d(h(e)) ≤
Σ1≤i≤a(G)Σv∈V d(v) = 2a(G)m. �	
We represent each subgraph as a 2-dimensional point in R2 and apply dominance
counting [2] to determine the total number of subgraphs that exist within a given
query slice (Lemma 2). A point q = (qx, qy) dominates a point p = (px, py) if
px ≤ qx and qy ≤ py. Given a point set P with K points in plane, where ∀p ∈ P :
0 ≤ py < px < m, the dominance counting query is to determine the total
number of points of P dominated by a query point q.

198 F. Chanchary and A. Maheshwari

Lemma 2. The subgraphs of G can be mapped to points in R2 such that the total
number of subgraphs in slice Gi,j can be determined by a dominance counting
query.

Proof. For each instance of a specific type of subgraph in G, we continuously
update the high and low events by scanning the timestamp of each participating
edge. Once a subgraph is identified, we plot its corresponding (high, low) in R2.
For a given query slice [i, j], we translate the slice indices to a query point
q = (j, i) to count all points (high, low) dominated by q. For all cases we have
high > low, so the dominance counting query only have to look for points
between the range (high ≤ j) and (i ≤ low). �	

3 Counting Quadrangles

Throughout the paper we use adjacency linked lists to represent a relational event
graph G. There will be two copies of each edge (u, v) for each endpoints u and
v. Each node of the linked list for u stores its neighbour v and the timestamp
t(u, v). We follow the representation of quadrangles presented by Chiba and
Nishizeki [3]. A set of quadrangles is represented by a tuple (y, z, {a, b, c, ...}),
where y and z are vertices on two opposite sides of all quadrangles of this set and
each vertex v ∈ {a, b, c..} shares edges with both y and z. Within this setting,
any two vertices from {a, b, c..} together with y and z represent a quadrangle.

Figure 1(c) illustrates a relational event graph with eight quadrangles. The
search algorithm mentioned above represents these quadrangles using four tuples,
(a, b, {e, f, g}), (a, d, {c, e, h}), (b, n, {m, l}) and (e, i, {j, k}). We can see that the
first tuple (a, b, {e, f, g}) contains three quadrangles (a, e, b, f), (a, f, b, g) and
(a, e, b, g).

To process G we need the following data structures.

– For each tuple (y, z, {a, b, c, ...}), we use two linked lists E and E′ to store
edges adjacent to y and z respectively. i.e., E = {(y, a), (y, b), (y, c), ..} and
E′ = {(z, a), (z, b), (z, c), ..}. Each node in E points to a node in E′ that
contains edge having one common endpoint, i.e., (y, a) points to (z, a), (y, b)
points to (z, b) and so on.

– For each tuple, we use a two-dimensional range tree to store points
{(t(e1), t(e′

1)), (t(e2), t(e′
2)), ..., (t(ep), t(e′

p))}, where t(ei) is the timestamp
of edge ei, ei ∈ E and e′

i ∈ E′.
– We store the timespan of each tuple using an interval [x, x′]. For the given

graph G, we use an interval tree to store the set of horizontal intervals I =
{[x1, x

′
1], [x2, x

′
2], ..., [xp, x

′
p]}, where each interval represents the timespan of

a tuple.

Quadrangle counting algorithm contains a Preprocessing step and a Query step.

Preprocessing Step: The Preprocessing step takes a RE graph G consisting of
n vertices and m edges as input. G is processed by staring with the vertex having
the highest degree. So, the vertices v1, v2, . . . , vn are first sorted in non-increasing

Counting Subgraphs in Relational Event Graphs 199

f a c

e

b

n

g

k

ij

0 8

2

11

9
12

613

1

3

1614

15

m
104

l

7

18

h5

17

d

f a c

e

b

n

g

k

ij

8

11

9
12

613

14

15

m
10

l

7
h5

d

)b()a(

f a c

e

b

n

g

k

ij

0 8

2

11

9
12

613

1

3

1614

15

m
104

l

7

18

h5

17

d

)d()c(

)f()e(

Fig. 1. Counting quadrangles in a RE graph.

order of their degrees and without loss of generality, let d(v1) ≥ d(v2) ≥ · · · ≥
d(vn). Once all quadrangles containing v1 are identified correctly, v1 is deleted
from G to avoid duplication and the loop continues with the next vertex in the
sequence. We first describe below two major components of this Preprocessing
step.

(a) Finding Quadrangles: For each vertex y ∈ V of G, we apply the following
technique to find all quadrangles containing y: for each vertex z ∈ V within
distance 2 from y, we find all vertices which are adjacent to both y and z.
We store these vertices in a set U [z]. Thus, the tuple (y, z, U [z]) represents
a set of quadrangles, where every quadrangle has vertices y and z as two
opposite corner points.

200 F. Chanchary and A. Maheshwari

(b) Finding Intervals: Recall that we want to count the number of quadrangles
within a given time slice [i, j], but all we have is the representation of a set
of quadrangles or tuples. So, for each such tuple we mark its timespan and
maintain some geometric data structures so that we can answer the query.

First, we store each tuple (y, z, U [z] = {a, b, c, ...}) using two linked lists
E = {(y, a), (y, b), (y, c), ..} and E′ = {(z, a), (z, b), (z, c), ..} according to the
order of the vertices in {a, b, c, ..}. We also represent each tuple with a point set
P = {(t(y, a), t(z, a)), (t(y, b), t(z, b)), ..}, where t(y, a) is the timestamp of the
edge (y, a) and so on. We store P using a 2-dimensional range tree.

Next, we compute the timespan of each tuple and store it as an interval
segment using an interval tree. We sort linked lists E and E′ according to the
timestamps of their edges in non-decreasing order, such as, E = (e1, e2, ...ep),
and E′ = (e′

1, e
′
2, ...e

′
p), where t(e1) ≤ t(e2) ≤ ..t(ep) and t(e′

1) ≤ t(e′
2) ≤ ..t(e′

p).
Now we can create an interval segment x = [min(e1, e′

1),max(ep, e
′
p)] for each

tuple to mark its timespan. Similarly, we compute segments for all tuples and
store each segment xi in an interval tree.

The example presented in Fig. 1(c) shows a RE graph G with four tuples, each
tuple is highlighted with different colors. We first store the tuple (a, b, {e, f, g})
using linked lists E = (18, 0, 5) and E′ = (4, 2, 17). Then we create a point set
P = {(18, 4), (0, 2), (5, 17)} and store in a two-dimensional range tree. Next we
sort timestamps of edges in E = (0, 5, 18) and E′ = (2, 4, 17). Thus we store an
interval segment [0, 18] for this tuple in the interval tree. Interval segments and
point sets for all tuples are shown in Fig. 1(d).

Query Step: We query the interval tree T with a horizontal query segment [i, j]
and obtain a set of valid interval segments I ′ ⊆ I. We consider each segment
xi ∈ I ′ valid, if it intersects with the query slice indicating that xi might contain
quadrangles that exist within the query slice. As the next step to get the exact
number of quadrangles (#Quad), we need to know which of these valid segments
contains at least two sets of paired edges {(y, v′), (z, v′)} and {(y, v′′), (z, v′′)}
such that it makes a quadrangle (y, v′, z, v′′). Recall that for each segment we
already stored a set of points P that contains information of these paired edges.
So for each valid segment, we perform a 2-D rectangular range query on P using
a query rectangle with four corner points (i, i), (i, j), (j, j) and (j, i) that returns
a set of edges S. If |S| ≥ 2 we add

(|S|
2

)
to #Quad.

Figure 1(e) shows all valid segments after an interval tree query with query
point q = [2, 16]. Finally a rectangular query shows that only tuple (a, d, {c, e, h})
has 2 sets of edges that fall within the query range (Fig. 1(f)). Therefore, we
obtain

(
2
2

)
= 1 quadrangle (#Quad) within the query slice [2,16].

Preprocessing Analysis. Sorting vertices and identifying all quadrangles con-
taining vi by traversing all vertices take at most O(m + n) +

∑
vi∈V O(d(vi) +∑

u∈N(vi)
d(u)) time, where N(vi) is the set of neighbours of vi. This time can

be bounded as O(a(G)m) by Lemma 1.

Counting Subgraphs in Relational Event Graphs 201

The interval tree stores at most a(G)m intervals, which is a weak upper
bound. For complete graphs a(G) = �n/2�, whereas for planar graphs a(G) =
O(1). Each interval considers unique pair of vertices on opposite sides of a
quadrangle, so there can be at most

(|V |
2

)
quadrangles in G. Thus the num-

ber of intervals can be bounded as min{a(G)m,
(|V |

2

)}. Hence, the interval
tree can be created in time O(min{a(G)m,

(|V |
2

)} log{min{a(G)m,
(|V |

2

)}}) ≤
O(min{a(G)m,

(|V |
2

)} log |V |) [4].

Query Analysis. Suppose I ′ is the set of all valid interval segments and
|I ′| = γ, where γ ≤ min{(|V |

2

)
, a(G)m}. Reporting all γ segments requires

O(log min{(|V |
2

)
, a(G)m} + γ) = O(log |V | + γ) time [4]. Rectangular range

queries on γ range trees takes time O(
∑γ

i=1 log |V | + ki) = O(γ log |V | + w),
where ki is the number of reported quadrangles in segment i and w is #Quad
in Gi,j . Total number of quadrangles in our problem is bounded by a(G)m.
Each segment that represents a quadrangle is stored using a range tree. So, total
space required is O(a(G)m log a(G)m) = O(a(G)m log |V |). The following theo-
rem summarizes the results for quadrangle counting in a relational event graph.

Theorem 1. Given a RE graph G with m edges the number of quadrangles in
the query time slice [i, j] can be determined in O(γ log |V | + w) time, where γ ≤
min{(|V |

2

)
, a(G)m}. Preprocessing takes O(a(G)m + min{(|V |

2

)
, a(G)m} log |V |)

time and O(a(G)m log |V |) space.

4 Counting Triangles and Other Subgraphs

We first present the general overview of the techniques to count triangles, com-
plete subgraphs and maximal complete subgraphs. Similar to the previous algo-
rithm, all algorithms presented in this section contain a Preprocessing and a
Query step.

Preprocessing Step: Again the relational event graph G consisting of n ver-
tices and m edges is processed by staring with the vertex having the highest
degree. So, we sort the vertices v1, v2, . . . , vn in non-increasing order of their
degrees and without loss of generality, let d(v1) ≥ d(v2) ≥ · · · ≥ d(vn). Then
the search process starts with vertex v1 by marking the subgraph induced by
the neighbours N(v1) of v1, and finding all instances of a specified subgraph
containing v1. For each of these instances, the high and low values are computed
by comparing the timestamps of participating edges. Each subgraph is then rep-
resented by a point (high, low) in R2, where [low − high] shows the timespan of
that subgraph in G. After timespans of all subgraphs containing v1 are plotted
in R2, v1 is deleted from G to avoid duplication and the loop continues with
the next vertex in the sequence. This process continues until all subgraphs are
identified, represented by a point set P = {p1, p2, ..}, and plotted accordingly.

202 F. Chanchary and A. Maheshwari

Query Step: The Query step reports the number of specified subgraphs within
a given query time slice [i, j]. As input, it takes the point set P created in the
preprocessing step, and a time slice [i, j]. The given slice [i, j] is considered as the
query point q = (j, i). By Lemma 2, the dominance counting query with respect
to q on P returns the number of subgraphs within the query time slice.

4.1 Counting Triangles

Description of the Algorithm: Procedure PreprocessTriangle(G) pre-
processes G and identifies all instances of triangles in G (see Algorithm 1).
The triangle search process starts with the highest degree vertex vi by marking
the subgraph induced by the neighbours N(vi) of vi. Then it finds all marked
neighbours z ∈ u(vi) such that z �= vi. Each z forms a triangle (vi, u, z). The high
and low values for each of these triangles are then respectively the maximum
and the minimum timestamps of edges (vi, u), (u, z) and (z, vi). Each triangle is
now represented by a point (high, low) in R2. For a given query time slice [i, j],
we report the number of points in P dominated by the point (j, i).

Algorithm 1
Input. Relational event graph G.
Output. A point set P plotted in R2.

1: procedure PreprocessTriangle(G)
2: sort vertices v1, v2, . . . , vn in non-increasing order of their degrees. without loss

of generality, let d(v1) ≥ d(v2) ≥ · · · ≥ d(vn)
3: for each vertex vi from i = 1 to n − 2 do
4: mark all neighbours of vi
5: for each marked vertex u do
6: for each vertex z adjacent to u do
7: if z is marked then
8: high ← max{t(vi, u), t(u, z), t(z, vi)}
9: low ← min{t(vi, u), t(u, z), t(z, vi)}

10: plot (high, low) in R2

11: end if
12: unmark u
13: end for
14: end for
15: delete vi from G and without loss of generality, let G be the resulting graph.
16: end for
17: end procedure

Analysis: Lines 5–14 of Algorithm 1 require at most O(
∑

u∈N(vi)
d(u)) time,

where d(u) denotes the degree of vertex u in G and N(vi) denotes the set of
neighbours of vi in the current graph. So, total time required for the outer
for loop is

∑
vi∈V O(d(vi) +

∑
u∈N(vi)

O(d(u))). In the current graph, vi is the

Counting Subgraphs in Relational Event Graphs 203

vertex with the highest degree and for all other neighbouring vertices u ∈ N(vi),
d(u) ≤ d(vi). We explore all neighbouring vertices of vi and at the end of the for
loop, vi is deleted (line 15). Since

∑
vi∈V O(d(vi) +

∑
u∈N(vi)

O(d(u))) is same
as O(

∑
(u,v)∈E min{d(u), d(v)}) by [3], total time needed for the outer for loop

can be reduced to O(
∑

(u,v)∈E min{d(u), d(v)}). Thus the total time required for
preprocessing can be bounded by O(m+n)+O(

∑
(u,v)∈E min{d(u), d(v)}), and

by Lemma 1 it is O(a(G)m). By using dominance counting algorithm in [2], we
can determine the total number of triangles in slice Gi,j . The following theorem
summarizes our results.

Theorem 2. Given a RE graph G with m edges and K triangles, the prob-
lem of determining the number of triangles in the query time slice [i, j] can be
reduced to dominance counting in O(a(G)m) time. The dominance counting takes
O(log w/ log log K) time and O(K) space to count the total number of triangles
in Gi,j, where w is the total number of triangles in Gi,j.

4.2 Counting Complete and Maximal Complete Subgraphs

Counting Complete Subgraphs of Order l. We apply the basic strategy of
triangle counting to find all complete subgraphs of any fixed order l. That is, we
can find a complete subgraph Kl containing a vertex v by detecting a complete
subgraph Kl−1 in a subgraph induced by the neighbours of v. The algorithm
plots all points P = {p1, p2, ..pK} in R2, where K is the number of complete
subgraphs of order l and each point pi = (a, b) represents a complete subgraph
Kl, and a and b are the high and low values of Kl, respectively. We can find the
number of complete subgraphs Kl within a given query range [i, j] by using the
dominance counting data structure. We obtain the following result and detailed
proof of this theorem can be found in the full version of the paper.

Theorem 3. Given a RE graph G with m edges and K complete subgraphs of
order l(≥ 2), the problem of determining the number of complete subgraphs of
order l in the query time slice [i, j] can be reduced to dominance counting in
O(a(G)l−2m) time. The dominance counting takes O(log w/ log log K) time to
count the total number of complete subgraphs of order l in Gi,j, where w is the
total number of complete subgraphs of order l in Gi,j.

Proof. (Sketch) The main function recursively calls a procedure with parameters
k = l and Gk = G. Let T (k,m, n) be the time required by procedure to find all
Kk’s in Gk. When k = 2: for each edge in G2 we update low and high values of
Kk by comparing timestamps of edges connecting at most l vertices. This time
is upperbounded by O(m + n). So, we can state that T (2,m, n) = O(m + n).

Next for k ≥ 3: we find the subgraph Gk−1 induced by the neighbours of
the vertex with the current highest degree vi in O(dk(vi)+Σu∈N(vi)dk(u)) time.
The recursive call to find and store all complete subgraphs containing vi requires
T (k−1, (Σu∈N(vi)dk(u))/2, dk(vi)) time. Thus, total time requires for each vi is,
O(dk(vi) + Σu∈N(vi)dk(u)) + O(1) + T (k − 1, (Σu∈N(vi)dk(u))/2, dk(vi)).

204 F. Chanchary and A. Maheshwari

Therefore, to complete searching for all the complete subgraphs containing
all vertices of G requires,

Σvi∈Vk
(O(dk(vi) + Σu∈N(vi)dk(u)) + O(1)) + Σvi∈Vk

T (k −
1, (Σu∈N(vi)dk(u))/2, dk(vi)) time. Each vertex vi of Gk satisfies dk(vi) ≥ dk(u)
for every neighbour vertex u of vi. Therefore Lemma 1 implies that,
T (k,m, n) = O(a(Gk)m + n) + Σvi∈Vk

T (k − 1, Σu∈N(vi)dk(u)/2, dk(vi)).
Since a(Gk−1) ≤ a(Gk) for all k, we state that, T (k,m, n) = O(a(Gk)k−2m+n).
Recall that main algorithm calls the recursive procedure with k = l and Gk = G.
Therefore, finding all Kl’s in G requires at most O(a(G)l−2m) time. �	

Counting Complete Subgraphs of Orders l ≥ 3. We extend our algorithm
for computing all complete subgraphs of orders 3 to l. That is, if we are given
an order l, we can find all complete subgraphs Kk, where 3 ≤ k ≤ l, and their
corresponding timespans [low −high]. To accommodate the problem of multiple
orders, we modify our algorithm so that, for each complete subgraph of order k,
we plot a point p = (a, b, k) in R3 where a = high, b = low and k = order. Now
we can report total number of complete subgraphs of all orders within Gi,j by
using dominance counting in 3-dimensions [13]. Thus,

Theorem 4. Given a RE graph G with m edges, the problem of determining the
total number of complete subgraphs Kk of orders 3 ≤ k ≤ l in the query time slice
[i, j] can be reduced to dominance counting in O(a(G)l−1m) time. The dominance
counting query takes O((log K/ log log K)2) time and O(K log K/ log log K) space
to report the total number of complete subgraphs in Gi,j, where K is the total
number of complete subgraphs in G.

Maximal Complete Subgraphs. For counting maximal complete subgraphs,
we utilize algorithm CLIQUE [3] and assume that CLIQUE returns C, a set of
vertices representing a maximal complete subgraph, to the main calling program.
Our algorithm maintains an adjacency list MCS where each record represents
a maximal complete subgraph and stores all its vertices using a linked list. We
summarize our findings with the following theorem.

Theorem 5. Given a RE graph G with m edges and K maximal complete
subgraphs, the problem of determining the number of maximal complete sub-
graphs in the query time slice [i, j] can be can be reduced to dominance counting
in O(a(G)mK) time and O(mK) space. The dominance counting query takes
O(log w/ log log K) time to report the total number of complete subgraphs in Gi,j.

5 Conclusion

In this paper, we have developed data structures for relational event graphs to
efficiently count and report total number of subgraphs in an arbitrary query time
slice. We have applied an edge searching technique to identify and count total
number of subgraphs in a relational event graph. We have stored the timespans

Counting Subgraphs in Relational Event Graphs 205

of these subgraphs using geometric data structures. We have shown that these
structures can efficiently report the number of specified subgraphs within a query
time slice.

The techniques we presented here require the type of subgraphs to be spec-
ified at the preprocessing step. An interesting variation of this problem would
be to develop data structures that can count total number of subgraphs of any
pattern or a fixed graph on a small number of vertices within a given query time
slice.

References

1. Alon, N., Yuster, R., Zwick, U.: Finding and counting given length cycles. Algo-
rithmica 17(3), 209–223 (1997)

2. Bannister, M.J., DuBois, C., Eppstein, D., Smyth, P.: Windows into relational
event: data structures for contiguous subsequences of edges. In: Proceedings of the
24th Annual ACM-SIAM Symposium on Discrete Algorithms. SIAM (2013)

3. Chiba, N., Nishizeki, T.: Arboricity and subgraph listing algorithms. SIAM J.
Comput. 14(1), 210–223 (1985)

4. de Berg, M., Van Kreveld, M., Overmars, M., Schwarzkopf, O.: Computational
Geometry. Algorithms and Applications, 3rd edn. Springer, New York (1998)

5. Eisenbrand, F., Grandoni, F.: On the complexity of fixed parameter clique and
dominating set. Theoret. Comput. Sci. 326(1–3), 57–67 (2004)

6. Eppstein, D.: Subgraph isomorphism in planar graphs and related problems. J.
Graph Algorithms Appl. 3(3), 1–27 (1999)

7. Eppstein, D.: Diameter and treewidth in minor-closed graph families. Algorithmica
27, 275–291 (2000)

8. Eppstein, D.: Arboricity and bipartite subgraph listing algorithms. Inf. Process.
Lett. 51, 207–211 (1994)

9. Fortunato, S.: Community detection in graphs. Phys. Rep. 486(3), 75–174 (2010)
10. Harary, F.: Graph Theory, revised, Addision-Wesley Publishing Company, Reading

(1969)
11. Harary, F., Kommel, H.J.: Matrix measures for transitivity and balance. J. Math.

Sociol. 6, 199–210 (1979)
12. Itai, A., Rodeh, M.: Finding a minimum circuit in a graph. SIAM J. Comput. 7(4),

413–423 (1978)
13. JáJá, J., Mortensen, C.W., Shi, Q.: Space-efficient and fast algorithms for multidi-

mensional dominance reporting and counting. In: Fleischer, R., Trippen, G. (eds.)
ISAAC 2004. LNCS, vol. 3341, pp. 558–568. Springer, Heidelberg (2004)

14. Kloks, T., Kratsch, D., Muller, H.: Finding and counting small induced subgraphs
efficiently. Inf. Process. Lett. 74(3–4), 115–121 (2000)

15. Opsahl, T.: Triadic closure in two-mode networks: redefining the global and local
clustering coefficients. Soc. Netw. 35(2), 159–167 (2013)

16. Nešetřil, J., Poljak, S.: On the complexity of the subgraph problem. Commenta-
tiones Mathematicae Universitatis Carolinae 26(2), 415–419 (1985)

17. Newman, M.E.: Detecting community structure in networks. Eur. Phys. J. B-
Condensed Matter Complex Syst. 38(2), 321–330 (2004)

18. Papadimitriou, C., Yannakakis, M.: The clique problem for planar graphs. Inf.
Process. Lett. 13, 131–133 (1981)

206 F. Chanchary and A. Maheshwari

19. Ullmann, J.R.: An algorithm for subgraph isomorphism. J. ACM (JACM) 23(1),
31–42 (1976)

20. Valiant, L.G.: The complexity of enumeration and reliability problems. SIAM J.
Comput. 8(3), 410–421 (1979)

21. Watts, D.J., Strogatz, S.H.: Collective dynamics of “smallworld” networks. Nature
393, 440–442 (1998)

22. Zhang, P., Wang, J., Li, X., Li, M., Di, Z., Fan, Y.: Clustering coefficient and
community structure of bipartite networks. Phys. A 387(27), 6869–6875 (2008)

Computational Complexity

Large Independent Sets
in Subquartic Planar Graphs

Matthias Mnich1(B)

Universität Bonn, Bonn, Germany
mmnich@uni-bonn.de

Abstract. By the famous Four Color Theorem, every planar graph
admits an independent set that contains at least one quarter of its
vertices. This lower bound is tight for infinitely many planar graphs,
and finding maximum independent sets in planar graphs is NP-hard.
A well-known open question in the field of Parameterized Complexity
asks whether the problem of finding a maximum independent set in a
given planar graph is fixed-parameter tractable, for parameter the “gain”
over this tight lower bound. This open problem has been posed many
times [4,8,10,13,17,20,31,32,35,38].

We show fixed-parameter tractability of the independent set problem
parameterized above tight lower bound in planar graphs with maximum
degree at most 4, in subexponential time.

1 Introduction

In this paper we deal with independent sets in planar graphs G; let α(G) be the
size of a maximum independent set in G. Let n denote the number of vertices
in G, and call i(G) := α(G)/n the independence ratio of G. In the 1960s, Erdős
proposed what is known nowadays as the Erdős-Vizing Conjecture [3, p. 280]:
any planar graph has independence ratio at least 1/4. The lower bound of 1/4
on the independence ratio is tight for infinitely many planar graphs, such as a
set of disjoint K4’s connected by edges in a planar way.

The Erdős-Vizing Conjecture was proved in 1976 when Appel and Haken [2]
announced the Four Color Theorem: every planar graph admits a coloring of its
vertices with four colors such that adjacent vertices receive distinct color. Their
lengthy computer-assisted proof was later simplified by Robertson et al. [36],
who gave another computer-assisted proof and an algorithm that in time O(n2)
produces a proper vertex coloring of G with four colors. As of today, these
computer-assisted proofs of the Four Color Theorem are the only proofs of the
Erdős-Vizing Conjecture.

Our concern is a wide generalization of the Erdős-Vizing Conjecture. We
would like to find an algorithm that decides, for a given n-vertex planar graph G
and integer k ∈ N, whether G has an independent set of size at least (n+k)/4, in
time f(k) ·nO(1), for some computable function f . We call this problem Planar

This research was supported by ERC Starting Grant 306465 (BeyondWorstCase).

c© Springer International Publishing Switzerland 2016
M. Kaykobad and R. Petreschi (Eds.): WALCOM 2016, LNCS 9627, pp. 209–221, 2016.
DOI: 10.1007/978-3-319-30139-6 17

210 M. Mnich

Independent Set Above Tight Lower Bound, or Planar Independent
Set-ATLB for short. As the maximum independent set problem is NP-hard in
planar graphs, the problem Planar Independent Set-ATLB is NP-complete.

The question of whether Planar Independent Set-ATLB for parameter
the “gain” k is fixed-parameter tractable has been raised several times: first by
Niedermeier [35], later by Bodlaender [4], Mahajan et al. [31], by Sikdar [38],
and Crowston et al. [8]. Then the problem was raised as a “tough customer”
at WorKer 2012 [17], and asked again by Giannopoulou et al. [20], by Dvořák
and Mnich [13] and at the Bedlewo School on Parameterized Algorithms and
Complexity [10]. We remark that as of now, there is not even a polynomial-time
algorithm known for the case of k = 1 of Planar Independent Set-ATLB,
but such an algorithm for k = 1 is certainly necessary for a fixed-parameter
algorithm (or even an nO(k) time algorithm) for the general problem.

Recently, Dvořák and Mnich [13] (ESA 2014) considered the problem Pla-
nar Independent Set-ATLB for triangle-free planar graphs. There, the lower
bound on the independence ratio is 1/3 instead of 1/4, as Grötzsch’ theorem [22]
guarantees a proper vertex-coloring using only 3 colors. Dvořák and Mnich [13]
showed that the problem is fixed-parameter tractable, and admits an algorithm
with run time 2O(

√
k)n which is optimal under the Exponential-Time Hypothe-

sis. Their algorithm is based on combinatorial arguments around the treewidth
of triangle-free planar graphs, as well as certain precoloring extension theorems
(which extend certain proper 3-colorings of subgraphs to proper 3-colorings of
larger subgraphs). Unfortunately, it is unlikely their techniques could be used for
Planar Independent Set-ATLB in general planar graphs. The reason is that
almost any similar precoloring extension claim is false for general planar graphs,
and furthermore there exist planar graphs on n vertices with independence ratio
exactly 1/4 and arbitrarily large tree-width.

Our Contributions. Our main result is a proof that Planar Independent
Set-ATLB is fixed-parameter tractable in subquartic (maximum degree at
most 4) planar graphs. This is the first non-trivial case of the problem with
respect to maximum degree, because an easy argument yields a fixed-parameter
algorithm (and indeed linear kernel) for subcubic planar graphs (where the max-
imum independent set problem remains NP-hard [19]): remove any K4 from the
input graph G to obtain a graph G′, and answer “yes” if k ≤ |V (G′)|/3, or
return (G′, k) as a kernel with at most 3k vertices otherwise. Correctness follows
by Brooks’ Theorem [5].

For planar graphs G with maximum degree at most 4, Brooks’ theorem [5]
only ensures 4-colorability and thus α(G) ≥ |V (G)|/4. But until now there was
no combinatorial characterization or polynomial-time recognition algorithm even
to decide the case of k = 1; hence even finding an ng(k)-time algorithm is open.
We show fixed-parameter tractability of Planar Independent Set-ATLB in
subquartic planar graphs, in subexponential time.

Theorem 1. There is an algorithm that, given any n-vertex subquartic planar
graph G and k ∈ N, decides in time 2O(

√
k)n+O(nk2 log k +n2) if α(G) ≥ n+k

4 .

Large Independent Sets in Subquartic Planar Graphs 211

Thus, Theorem 1 solves the open question posed in [4,8,10,13,17,20,31,32,35,38]
for this restricted class of graphs. For k = O(log2 n), the algorithm runs in
polynomial time, which raises the boundary of polynomial-time tractability of
finding maximum independent sets in planar graphs of maximum degree 4.

To prove Theorem 1, we first apply certain reduction rules to the input planar
graph. We then resort to fractional colorings, which to the best of our knowledge
have not been used before in the design of fixed-parameter algorithms. For t ∈
R, a graph G is fractionally t-colorable, if for every assignment of weights to
V (G) there is an independent set that contains at least (1/t)-fraction of the
total weight. In particular, every fractionally t-colorable graph G contains an
independent set of size at least |V (G)|/t. However, reduced graphs G′ can still
contain K4-subgraphs and so we can only guarantee t ≥ 4 and hence α(G′) ≥
|V (G′)|/4. Fortunately, with more care we can use fractional colorings to argue
that if G′ has many (in terms of k) vertices outside K4’s then its independence
number exceeds |V (G′)|/4 by a linear function of k. In the other case, when
almost all vertices of G′ belong to K4-subgraphs, we can prove a sublinear bound
(in terms of k) on the treewidth of G; this case can then be solved by dynamic
programming.

Proving upper bounds on the fractional chromatic number χf (G) for classes
of planar graphs G often turns out to be quite challenging: when not relying on
the Four Color Theorem, only χf (G) ≤ 9/2 is known for planar graphs G [7].

Regarding complexity lower bounds, we note that the run time of our algo-
rithm is asymptotically optimal in k assuming the Exponential Time Hypothesis
(ETH), under which results by Cai and Juedes [6, Corollary 5.1] rule out the exis-
tence of an algorithm for Planar Independent Set-ATLB that runs in time
2o(

√
k) · nO(1). If instead of ETH we assume that P �= NP, then it follows from

results of Fleischner et al. [18, Theorem 5.3] that deciding α(G) ≥ (n+k)/4 is not
polynomial-time solvable for k = n/48 even if G is 4-regular and Hamiltonian.

As second result, we give a way to decide α(G) ≥ (n+ k)/4 from a class C of
planar graphs G with maximum degree 5. The step from maximum degree 4 to
maximum degree 5 poses major technical difficulties, which forces us to impose
severe restrictions on C. A vertex v is a d-vertex (resp. (≥ d)-vertex) if its degree
is equal to (resp. at least) d.

Theorem 2. There is an algorithm that, given any n-vertex planar graph G with
maximum degree 5 with no (≥ 4)-vertex in a triangle and 5-vertices independent
and k ∈ N, decides in time 2O(

√
k)n + O(nk2 log k + n2) if α(G) ≥ (n + k)/4.

As third result, we answer a special case of a question by Gutin et al. [23]
about the independence ratio of degenerate graphs. Recall that a graph G is
d-degenerate for some d ∈ N if every subgraph of G contains some vertex of
degree at most d. Thus, the greedy algorithm shows that d-degenerate n-vertex
graphs are (d + 1)-vertex-colorable, and thus admit independent sets of size at
least n/(d + 1). Gutin et al. [23] asked whether the following problem is fixed-
parameter tractable: given a d-degenerate n-vertex graph G and integer k ∈ N,
decide whether G admits an independent set of size at least (n + k)/(d + 1).

212 M. Mnich

Gutin et al.’s question is still unresolved for every value of d. Here we give a
result for (d, k) = (3, 1):

Theorem 3. There is a polynomial-time algorithm that, given any 3-degenerate
planar n-vertex graph, decides if it has an independent set of size at least n+1

4 .

Finally, we consider the case of k = 1 for Planar Independent Set-ATLB
in general planar graphs; recall that no polynomial-time algorithm is known for
this case. Already Erdős [3] in 1968 suggested that proving i(G) ≥ 1/4 for
planar graphs G might be easier than proving the Four Color Theorem. We
make partial progress in this direction by providing various families of planar
graphs with independence ratio exactly 1/4. To the best of our knowledge, this
is the first such description in the literature. Another motivation comes from the
fact that there are such graphs of small maximum degree (at most 5) that we
need to consider in our algorithms for general k.

Due to space constraints, the proofs of Theorems 2 and 3 are deferred to the
full version of this paper.

RelatedWork.The significance of parameterizing above apolynomial-time guar-
anteed lower bound on the solution value was first recognized by Mahajan and
Raman [30]. Only scattered results were known until a survey of Mahajan et al. [31]
stimulated the discovery of new techniques for fixed-parameter algorithms based
on algebra [8], combinatorics [9,33], probability theory [24,25] and linear program-
ming [12], to efficiently solve problems parameterized above tight lower bound.

Quite some work is currently done on finding large independent sets in sub-
classes of planar graphs. Heckman and Thomas [26] show that every subcubic
triangle-free planar graph G has α(G) ≥ 3

8 |V (G)|. For fullerenes, which are
planar 3-regular 3-connected graphs with only pentagonal and hexagonal faces,
Faria et al. [16] show that α(G) ≥ |V (G)|/2 − √

3|V (G)|/5, and this bound is
sharp. However, all graphs considered in the literature have maximum degree 3.

2 Preliminaries

Throughout, we consider graphs that are finite, undirected and simple. For a
graph G, let V (G) denote its vertex set and E(G) its set of edges. For each
vertex v ∈ V (G), let NG(v) be the set of vertices adjacent to v in G. The degree
of a vertex v ∈ V (G) is the number dG(v) = |NG(v)| of vertices adjacent to it. A
vertex of degree exactly (at most, at least) d is called a d-vertex ((≤ d)-vertex,
(≥ d)-vertex). Let Δ(G) denote the maximum degree over all vertices in G, and
let ω(G) denote the maximum clique size in G. For d ∈ N, a graph is d-degenerate
if each of its subgraphs has a (≤ d)-vertex.

A graph is planar if it admits an embedding in the plane such that no two
edges cross; a plane graph is an embedding of a planar graph without any edge
crossings. A graph is complete if every two of its vertices are connected by
an edge; let Kt denote the complete graph on t vertices. For t ∈ N≥3, the
t-cycle is the graph Ct with vertex set V (Ct) = {v0, . . . , vt−1} and edge set
E(Ct) = {{vi, vi+1 (mod t)} | i = 0, . . . , t − 1}. A graph is connected if there is a

Large Independent Sets in Subquartic Planar Graphs 213

path between any two of its vertices, and a connected component of a graph G is
a vertex-maximal connected subgraph of G. For t ∈ N0, a connected graph G is
t-connected if removing any subset of strictly less than t vertices from G leaves a
graph that is connected. A t-separator for G is a set S of t vertices such that the
graph G − S has strictly more connected components than G. A set I ⊆ V (G)
of vertices is independent for G if the vertices of I are pairwise non-adjacent.
The maximum size of an independent set of G is denoted by α(G), and the
independence ratio of G is defined as i(G) := α(G)/|V (G)|. A separation of G
is a pair {A,B} of subsets of G with A ∪ B = V (G) such that there are no
edges between A \ B and B \ A. The square of G is the graph G2 with vertex
set V (G2) = V (G) and in which two vertices are connected by an edge if their
distance in G is at most 2; thus G2 is a supergraph of G.

Tree Decompositions. For a graph G, a tree decomposition is a pair (T,B),
where T is a tree and B = {Bt | t ∈ V (T)} is a collection of bags, such that

(TW-1) for each edge {u, v} ∈ E(G), there is a bag Bt such that u, v ∈ Bt; and
(TW-2) for each v ∈ V (G), the set {t | v ∈ Bt} induces a non-empty tree of T .

The width of a tree decomposition (T,B) is maxB∈B{|B| − 1}, and the treewidth
tw(G) of G is the minimum width over all tree decompositions of G. A tree
decomposition for which T is a path is a path decomposition, and the pathwidth
pw(G) of G is the minimum width over all path decompositions of G.

Fractional Vertex Colorings. Fractional vertex colorings are a refinement
of ordinary vertex colorings. There are several definitions of fractional vertex
colorings and fractional chromatic number: as in the introduction, or by linear
programming, by Lebesgue measures, combinatorial and by homomorphisms to
Kneser graphs; the equivalence of the definitions is established by Molloy and
Reed [34, Chap. 21.1], Scheinerman and Ullman [37, Sects. 3.1–3.2], and Dvořák
et al. [14, Sect. 2]. Let G be a graph. The chromatic number of G is the smallest
integer χ(G) for which there is a function c : V (G) → {1, . . . , χ(G)} such that
c(u) �= c(v) for all edges {u, v} ∈ E(G). An a : b-coloring of G is a function that
assigns a non-empty set of b colors to each vertex such that adjacent vertices
receive disjoint sets of colors, in which each color is drawn from a palette of a
colors. The b-fold coloring number of G is the smallest integer χb(G) such that G
admits an χb(G) : b-coloring. Note that χ1(G) = χ(G). The fractional chromatic
number of G is χf (G) = infb→∞(χb(G)/b). We refer to Molloy and Reed [34,
Chap. 21] and Scheinerman and Ullman [37] for background on fractional color-
ings. By definition, χf (G) ≤ χ(G), and further χf (G) ≥ |V (G)|

α(G) .

3 Fixed-Parameter Algorithm in Subquartic Planar
Graphs

We provide an algorithm that, given any n-vertex planar graph G of maximum
degree 4 and k ∈ N, in time 2O(

√
k)n + O(nk2 log k + n2) decides if α(G) ≥ n+k

4 .

214 M. Mnich

First, the algorithm exhaustively applies reduction rules that successively
remove certain subgraphs of G until those are no longer present.

Reduction Rule 1. Remove any induced subgraph H from G that is isomorphic
to K4 and satisfies dG(v) = 3 for some vertex v ∈ V (H).

Reduction Rule 2. Remove any connected component of G isomorphic to C2
8 .

The reduction rules can run in time O(n) per application, as constant-size sub-
graphs can be found in linear time in planar graphs, e.g., using an algorithm by
Eppstein [15].

The proof of the following lemma is immediate.

Lemma 1. Let G be an n-vertex planar graph with Δ(G) ≤ 4, and let G′ be
the n′-vertex graph obtained from G by applying Reduction Rule 1 or Reduction
Rule 2. Then G′ is a planar graph with Δ(G′) ≤ 4. Further, for any integer
k ≥ 0, it holds that α(G) ≥ (n + k)/4 if and only if α(G′) ≥ (n′ + k)/4.

Call a subquartic planar graph G̃ reduced if applying Reduction Rules 1 and 2
do not change it. Hence, we can obtain a reduced graph in time O(n2).

Second, we handle clique separators, using a result by Lu and Peng [29].

Proposition 1 [29]. Let G1, G2 be subgraphs of a graph G with G1 ∪ G2 = G
and G1 ∩ G2 = Kr for some r ∈ N. Then χf (G) = max{χf (G1), χf (G2)}.
We next employ an upper bound on the fractional chromatic number of sub-
quartic {K4, C

2
8}-free graphs, due to King et al. [28].

Proposition 2 [28]. Any subquartic {K4, C
2
8}-free graph admits a 532 : 134-

coloring.

This directly yields a non-trivial upper bound on the fractional chromatic
number of reduced graphs G̃ that are K4-free.

Corollary 1. Any K4-free reduced graph G̃ admits a fractional coloring μ that
assigns each vertex 134p colors from a palette P = {1, . . . , 532p} for some p ∈ N.

This strengthens a theorem by Albertson et al. [1], who proved that {K4, C
2
8}-free

connected 4-regular planar graphs have independence ratio larger than 1/4 (and
so were not counterexamples to the Erdős-Vizing Conjecture, now -Theorem).

The advantage of proving the stronger claim of the upper bound on the
fractional chromatic number compared to proving a lower bound on the size of
a maximum independent set is a stronger inductive hypothesis when exhibiting
a hypothetical minimum counterexample.

However, our reduced graphs are not guaranteed to be K4-free. Therefore,
we need a stronger version of Proposition 2 for reduced graphs. To this end, for
a reduced plane graph G, consider a subgraph H of G that is isomorphic to K4.
Let TH denote the triangle of H such that the fourth vertex v̂H ∈ V (H) \ TH is
embedded inside TH . We say that a vertex v ∈ V (G) \TH is owned by TH if v is
not separated from v̂H by TH (that is, v is also embedded inside TH) and there

Large Independent Sets in Subquartic Planar Graphs 215

is no subgraph H ′ �= H isomorphic to K4 such that TH′ is embedded inside TH

and v is embedded inside TH′ . Intuitively, this means that v is owned by the
“innermost” K4 subgraph whose triangle encloses it. Notice that in particular,
v̂H is owned by TH . We illustrate this notion in Fig. 1.

v v̂H

TH

Fig. 1. A vertex v that is owned by TH .

We can now show that any subquartic plane graph admits a fractional color-
ing with few colors in which vertices belonging to K4 or C2

8 receive fewer colors
than the other vertices.

Lemma 2. For every subquartic plane graph G there is an integer q = q(G) ∈ N

such that G admits a fractional coloring ϕ that assigns 134q colors from a palette
Q = {1, . . . , 532q} to each vertex outside K4 and C2

8 , and every other vertex is
assigned 133q colors from Q.

Proof. We prove the statement of the lemma by induction on the number of
vertices of G. Clearly, we can assume that G is connected.

If G = K4 or G = C2
8 , then let ψ : V (G) → {0, 1, 2, 3} be a 4:1-coloring of G,

and set q = 1 and ϕ(v) = {133ψ(v) + 1, . . . , 133ψ(v) + 133} for each v ∈ V (G).
Hence, from now on assume that G /∈ {K4, C

2
8}. Since G is connected and has

maximum degree at most 4, it does not contain the 4-regular C2
8 as subgraph.

So, from now on assume that G is plane, subquartic, connected, and C2
8 -free.

If G is K4-free then (with the assumptions) G is reduced, and so by
Corollary 1 it has a fractional coloring μ with colors from P = {1, . . . , 532p}
so that |μ(v)| = 134p for each v ∈ V (G). We set q = p, and define ϕ(v) = μ(v)
for each v ∈ V (G).

The final case is that G contains a K4-subgraph; fix one such K4 subgraph H.
The unique embedding of H inside the plane graph G divides the plane into four
regions each of which is bounded by a triangle of H. Since G is not equal to K4,
at least one of these regions contains a vertex outside H; thus, H induces a
separating triangle T in G (i.e., a 3-separator that is a clique). Let G1 and G2

be the two connected induced subgraphs of G that intersect exactly in T and
whose union equals G; notice that both G1, G2 are C2

8 -free. Now each of G1, G2

is a subquartic plane graph with fewer vertices than G; therefore, we can apply
the induction hypothesis to each of G1, G2. Thus, for i = 1, 2 there is a qi and
a fractional coloring ϕi of Gi where each v ∈ V (Gi) outside K4 and C2

8 in Gi

is assigned a set ϕi(v) of 134qi colors from a palette Qi = {1, . . . , 532qi}, and
each v ∈ V (Gi) in some K4 or C2

8 is assigned a set ϕi(v) of 133qi colors from Qi.
Assume, without loss of generality, that the unique vertex v̂H ∈ V (H) \ T

216 M. Mnich

belongs to G1. Then H is a K4-subgraph in G1, and therefore each v ∈ V (T)
has |ϕ1(v)| = 133q1. However, some vertices v ∈ V (T) potentially have |ϕ2(v)| =
134q2, namely if they are outside of K4-subgraphs of G2. Thus, to “normalize”,
for i = 1, 2 let ϕ′

i be a fractional coloring obtained from ϕi by removing an
arbitrary subset of exactly qi colors from the color set ϕi(v) of those v ∈ V (T)
that are not contained in K4-subgraphs of Gi. At this point, we know that each
v ∈ V (T) has |ϕ′

i(v)| = 133qi for i = 1, 2.
Let q = q1q2, and let ϕ′′

i be the fractional coloring of Gi with the palette
{1, . . . , 532q} defined by ϕ′′

i (v) = {q3−i(c − 1) + 1, . . . , q3−ic | c ∈ ϕ′
i(v)} for

each v ∈ V (Gi). Then for any pair {u, v} ∈ V (T) the sets ϕ′′
i (u) and ϕ′′

i (v)
are disjoint, and for any v ∈ V (T) it holds |ϕ′′

1(v)| = |ϕ′′
2(v)|. Hence, there is a

bijection π : {1, . . . , 532q} → {1, . . . , 532q} such that π(ϕ′′
2(v)) = ϕ′′

1(v) for each
v ∈ V (T). Then the function ϕ defined by ϕ(v) = ϕ′′

1(v) for v ∈ V (G1) and
ϕ(v) = π(ϕ′′

2(v)) for v ∈ V (G2) is a fractional coloring of G as claimed.
�
Next, from Lemma 2 we derive that G has a large independent set (larger

than |V (G)|/4) if many vertices of G are outside K4 and C2
8 .

Lemma 3. For any r ∈ N, any reduced subquartic planar graph G with at least r

vertices outside K4 has an independent set of size at least |V (G)|
4 + r

532 .

Proof. Let q = q(G) be an integer, let Q = {1, . . . , 532q} and let ϕ : V (G) → Q
be a fractional coloring of G according to Lemma 2. For each i ∈ Q let ϕ−1(i)
denote the set of vertices in G that get assigned color i by ϕ. (Note that ϕ is a
set function as each vertex v ∈ V (G) gets assigned a list of 133q or 134q colors
from Q; so ϕ−1(i) is the list of vertices v ∈ V (G) for which i ∈ ϕ(v).) Then
∑

i∈Q

|ϕ−1(i)| =
∑

v∈V (G)

|ϕ(v)| =
∑

v∈V (G)
v∈K4

133q +
∑

v∈V (G)
v/∈K4

134q ≥ (133|V (G)| + r)q.

Note that ϕ−1(i) is an independent set for each i ∈ Q. Thus, G has an indepen-
dent set of size at least (133|V (G)|+r)q

|Q| = |V (G)|
4 + r

532 .
�

Consequently, for a reduced graph G, the algorithm checks if G has at least
r = 133k vertices outside K4; in this case, it accepts (G, k) as a “yes”-instance.

So henceforth assume that G has less than 133k vertices outside K4. We will
show that this implies that G has treewidth O(

√
k).

Lemma 4. For any r ∈ N0, any reduced subquartic planar graph G with at
most r vertices outside K4 has treewidth at most O(

√
r).

Proof. Note that any K4 in G induces a separating triangle, unless G = K4.
We first argue that for any separating triangle T of G, both the interior and

exterior of T contain some vertex outside any K4. To this end suppose, for sake
of contradiction, that all vertices in the interior T belong to some K4. Then
consider the separating triangle T ′ (of some K4 subgraph) in the interior of T
whose interior does not contain any other separating triangles; possibly T ′ = T .

Large Independent Sets in Subquartic Planar Graphs 217

Then there must be a single vertex vT ′ embedded inside T ′ that is adjacent
to all vertices of T ′ and no other vertices of G; however, such a vertex would
have been removed by Reduction Rule 1, contradicting that G is reduced. A
symmetric argument shows the existence of a vertex outside K4 in the exterior
of T .

Relabel the initial graph G = G0. Given Gi for some i ≥ 0, we will recursively
divide Gi into smaller graphs Gi

1, G
i
2. Then we proceed with Gi = Gi

j for j = 1, 2.
Precisely, we apply Proposition 1 to the graph G = Gi and a separation {A,B}
of V (Gi) such that A ∩ B induces a separating triangle of Gi. That is, as long
as Gi admits a separating triangle T we divide Gi into induced subgraphs Gi

1, G
i
2

with V (Gi
1) ∪ V (Gi

2) = V (Gi) and V (Gi
1) ∩ V (Gi

2) = V (T). We then repeat to
recursively divide Gi = Gi

j for j = 1, 2 whenever it has a separating triangle.
Once Gi (obtained by this recursive process) has no more separating triangles,

any vertex of Gi either does not belong to any K4 in the initial graph G0 (type I-
vertex) or lies on a separating triangle of G0 (type II-vertex). From the recursive
division process we obtain a family F of separating triangles; the size of F is
bounded by r (the number of vertices outside K4 in G0), since for each such
triangle we find a vertex outside K4 in its interior or exterior by the initial
claim.

Let G′ be the subquartic planar graph that is reached at the base case of the
recursion, that is, G′ is the union of subquartic planar graphs without separating
triangles. (In particular, G′ is either isomorphic to K4, or is K4-free.) Hence, it
consists of at most r vertices that were outside K4 in G0 (type I-vertices), along
with at most 3r vertices on the boundary of separating triangles of G0 (type II-
vertices). Therefore, G′ is a planar graph with O(r) vertices, and planar graphs
on O(r) vertices have treewidth O(

√
r) [21, Corollary 24]. Thus, since we only

recurse along separating triangles, by Proposition 1 also tw(G0) = O(
√

r).
�
Since r ≤ 133k, the graph G has treewidth O(

√
k). We use the linear time

constant-factor approximation by Kammer and Tholey [27] to compute a tree
decomposition (T,B) of G of width w = O(

√
k). The algorithm by Kam-

mer and Tholey runs in time O(nw2 log w) and produces no repeated bags;
therefore, (T,B) has O(nw2 log w) bags. Given (T,B), we turn it into a tree
decomposition (T ′,B′) of no larger width and |V (T ′)| = O(wn) bags in time
O(w2 · max{V (T), V (G)}) = O(n · w4 log w); this transformation is described
by Cygan et al. [11, Lemma 7.4]. Then we use a dynamic programming algo-
rithm [35, Theorem 10.14] over (T ′,B′) for computing a maximum independent
set of G in time O(2w ·w · |V (T ′)|). Since w = O(

√
k), in the bounded treewidth

case we can decide if α(G) ≥ (|V (G)| + k)/4 in time 2O(
√

k) · O(
√

kn) + O(n ·
k2 log k) = 2O(

√
k)n+O(nk2 log k). In summary, Independent Set-ATLB in n-

vertex subquartic planar graphs can be solved in time 2O(
√

k)n+O(nk2 log k+n2),
completing the proof of Theorem 1.

Remark 1. The idea of proving a sublinear bound on the treewidth in terms
of k was suggested to us by an anonymous reviewer. We had shown instead:

218 M. Mnich

Lemma 5. For any r ∈ N0, any reduced subquartic planar graph G with at
most r vertices outside K4 has pathwidth at most 8r − 1.

A disadvantage of using pathwidth over treewidth is that it is only linearly
bounded in k rather than sublinear. Also, we are not aware of any constant-factor
approximation for pathwidth in planar graphs that runs in (near-)linear time;
näıvely applying the treewidth approximation algorithm by Kammer and Tholey
only guarantees a path decomposition of width O(k log n) and an algorithm for
Independent Set-ATLB with run time 2O(k log n) · nO(1).

Remark 2. Notice that when our algorithm finds that G has at least 133k ver-
tices outside K4, it concludes that α(G) ≥ (n+k)/4—but how can we efficiently
find an independent set in G of this size? A simple self-reducibility argument
does not suffice, as this could blow up of the parameter beyond any function
of k.

Remark 3. Is there a polynomial kernel for Planar Independent Set-ATLB
in subquartic planar graphs G? If every K4 in G has some 3-vertex, then exhaus-
tively apply reduction rules 1 and 2 to obtain a graph G′ on n′ vertices. Then if
k/4 ≤ n′

532 , we accept (G, k) as a “yes”-instance, as α(G′) ≥ 134
532n′ = n′/4+n′/532

by Corollary 1. Else, if k/4 > n′
532 , we return (G′, k) as a kernel with n′ ≤ 133k

vertices. However, this argument does not work in general subquartic graphs.

4 Discussion

We showed fixed-parameter tractability for Planar Independent Set-ATLB
in graphs with maximum degree 4, and a certain (very restricted) class with max-
imum degree 5. This resolves an often-posed question [4,8,10,13,17,31,32,35,38]
on these restricted classes. It remains to resolve the parameterized complexity of
Planar Independent Set-ATLB in all planar graphs. As a first step towards
this result, one might consider for example planar graphs of average degree at
most four (recall that general planar graphs have average degree less than six).
Notice, however, that an application of Reduction Rule 1 to a planar graph might
yield a graph whose average degree is strictly larger than 4.

We observe that how to solve the Planar Independent Set-ATLB prob-
lem for planar graphs with few triangles. Let G be an n-vertex planar graph
with t ≤ n/12 triangles; we decide if α(G) ≥ (n + k)/4, for parameter k ≥ 0.
First, if G contains n ≤ 18k/4 vertices, then (G, k) forms a kernel. Hence,
suppose that k/4 ≤ n/18. Clearly, any (maximum) independent set of G
contains at most one vertex of each triangle of G. Therefore, remove a set
VT ⊆ V (G) of at most t vertices from G to obtain a triangle-free planar graph G′

with n′ := |V (G′)| vertices. By Grötzsch’ theorem, α(G′) ≥ n′/3. Since any
maximum independent set of G′ is an independent set of G, it follows that
α(G) ≥ α(G′) ≥ n′/3 ≥ (n − t)/3 ≥ (n − n/12)/3 = (11/36)n = n/4 + n/18.
Thus, as k/4 ≤ n/18, we can accept (G, k) as a “yes”-instance. In summary,
this solves Planar Independent Set-ATLB in planar graphs with at most

Large Independent Sets in Subquartic Planar Graphs 219

Fig. 2. A non-3-colorable planar graph with triangles at pairwise distance 3.

n/12 triangles in fixed-parameter time. Can one raise n/12 to n/4?—Notice that
there are connected non-3-colorable planar graphs whose triangles have pairwise
distance at least 3; thus they have at most n/4 triangles yet we only know
α(G) ≥ 1/χ(G) = 1/4 (see Fig. 2).

Acknowledgements. I am indebted to Zdeněk Dvořák for helpful remarks, and an
anonymous reviewer who suggested considering treewidth over pathwidth.

References

1. Albertson, M., Bollobas, B., Tucker, S.: The independence ratio and maximum
degree of a graph. In: Proceedings of the Seventh Southeastern Conference on
Combinatorics, Graph Theory and Computing, pp. 43–50. Congressus Numeran-
tium, No. XVII. Utilitas Math., Winnipeg, Man. (1976)

2. Appel, K., Haken, W.: Every planar map is four colorable. Bull. Amer. Math. Soc.
82(5), 711–712 (1976)

3. Berge, C.: Graphs and Hypergraphs, revised edn. North-Holland Publishing Co.,
Amsterdam (1976)

4. Bodlaender, H.L.: Open problems in parameterized and exact computation. Tech-
nical report UU-CS-2008-017, Utrecht University (2008)

5. Brooks, R.L.: On colouring the nodes of a network. Proc. Camb. Philos. Soc. 37,
194–197 (1941)

6. Cai, L., Juedes, D.: On the existence of subexponential parameterized algorithms.
J. Comput. Syst. Sci. 67(4), 789–807 (2003)

7. Cranston, D.W., Rabern, L.: Planar graphs are 9/2-colorable and have indepen-
dence ratio at least 3/13 (2015). http://arxiv.org/abs/1410.7233

8. Crowston, R., Fellows, M., Gutin, G., Jones, M., Rosamond, F., Thomassé, S.,
Yeo, A.: Simultaneously satisfying linear equations over F2: MaxLin2 and Max-r-
Lin2 parameterized above average. In: Proceedings of FSTTCS 2011, pp. 229–240
(2011)

9. Crowston, R., Jones, M., Mnich, M.: Max-cut parameterized above the Edwards-
Erdős bound. In: Czumaj, A., Mehlhorn, K., Pitts, A., Wattenhofer, R. (eds.)
ICALP 2012, Part I. LNCS, vol. 7391, pp. 242–253. Springer, Heidelberg (2012)

10. Cygan, M., Fomin, F., Jansen, B., Kowalik, �L., Lokshtanov, D., Marx, D.,
Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Open problems from the Bedlewo school
on parameterized algorithms and complexity (2014). http://fptschool.mimuw.edu.
pl/opl.pdf

11. Cygan, M., Fomin, F.V., Kowalik, �L., Lokshtanov, D., Marx, D., Pilipczuk, M.,
Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, New York (2015)

http://arxiv.org/abs/1410.7233
http://fptschool.mimuw.edu.pl/opl.pdf
http://fptschool.mimuw.edu.pl/opl.pdf

220 M. Mnich

12. Cygan, M., Pilipczuk, M., Pilipczuk, M., Wojtaszczyk, J.O.: On multiway cut
parameterized above lower bounds. ACM Trans. Comput. Theory 5(1), 3:1–3:11
(2013)

13. Dvořák, Z., Mnich, M.: Large independent sets in triangle-free planar graphs. In:
Schulz, A.S., Wagner, D. (eds.) ESA 2014. LNCS, vol. 8737, pp. 346–357. Springer,
Heidelberg (2014)

14. Dvořák, Z., Sereni, J.-S.S., Volec, J.: Subcubic triangle-free graphs have fractional
chromatic number at most 14/5. J. London Math. Soc. 89(3), 641–662 (2014)

15. Eppstein, D.: Subgraph isomorphism in planar graphs and related problems. J.
Graph Algorithms Appl. 3(3), 27 (electronic) (1999)

16. Faria, L., Klein, S., Stehĺık, M.: Odd cycle transversals and independent sets in
fullerene graphs. SIAM J. Discrete Math. 26(3), 1458–1469 (2012)

17. Fellows, M.R., Guo, J., Marx, D., Saurabh, S.: Data reduction and problem kernels
(Dagstuhl Seminar 12241). Dagstuhl Reports 2(6), 26–50 (2012)

18. Fleischner, H., Sabidussi, G., Sarvanov, V.I.: Maximum independent sets in 3- and
4-regular Hamiltonian graphs. Discrete Math. 310(20), 2742–2749 (2010)

19. Garey, M.R., Johnson, D.S.: Computers and Intractability. Freeman, New York
(1979)

20. Giannopoulou, A.C., Kolay, S., Saurabh, S.: New lower bound on Max Cut of
hypergraphs with an application to r-Set Splitting. In: Fernández-Baca, D. (ed.)
LATIN 2012. LNCS, vol. 7256, pp. 408–419. Springer, Heidelberg (2012)

21. Grohe, M.: Local tree-width, excluded minors, and approximation algorithms.
Combinatorica 23(4), 613–632 (2003)

22. Grötzsch, H.: Zur Theorie der diskreten Gebilde. VII. Ein Dreifarbensatz für
dreikreisfreie Netze auf der Kugel. Wiss. Z. Martin-Luther-Univ. Halle-Wittenberg.
Math.-Nat. Reihe, 8, 109–120 (1958/1959)

23. Gutin, G., Jones, M., Yeo, A.: Kernels for below-upper-bound parameterizations
of the hitting set and directed dominating set problems. Theoret. Comput. Sci.
412(41), 5744–5751 (2011)

24. Gutin, G., Kim, E.J., Mnich, M., Yeo, A.: Betweenness parameterized above tight
lower bound. J. Comput. System Sci. 76(8), 872–878 (2010)

25. Gutin, G., van Iersel, L., Mnich, M., Yeo, A.: Every ternary permutation constraint
satisfaction problem parameterized above average has a kernel with a quadratic
number of variables. J. Comput. System Sci. 78(1), 151–163 (2012)

26. Heckman, C.C., Thomas, R.: Independent sets in triangle-free cubic planar graphs.
J. Combin. Theory Ser. B 96(2), 253–275 (2006)

27. Kammer, F., Tholey, T.: Approximate tree decompositions of planar graphs in
linear time. In: Proceedings of SODA 2012, pp. 683–698 (2012)

28. King, A.D., Lu, L., Peng, X.: A fractional analogue of Brooks’ theorem. SIAM J.
Discrete Math. 26(2), 452–471 (2012)

29. Lu, L., Peng, X.: The fractional chromatic number of triangle-free graphs with
Δ ≤ 3. Discrete Math. 312(24), 3502–3516 (2012)

30. Mahajan, M., Raman, V.: Parameterizing above guaranteed values: MaxSat and
MaxCut. J. Algorithms 31(2), 335–354 (1999)

31. Mahajan, M., Raman, V., Sikdar, S.: Parameterizing above or below guaranteed
values. J. Comput. System Sci. 75(2), 137–153 (2009)

32. Mnich, M.: Algorithms in moderately exponential time. Ph.D. thesis, TU Eind-
hoven (2010)

33. Mnich, M., Zenklusen, R.: Bisections above tight lower bounds. In: Golumbic,
M.C., Stern, M., Levy, A., Morgenstern, G. (eds.) WG 2012. LNCS, vol. 7551, pp.
184–193. Springer, Heidelberg (2012)

Large Independent Sets in Subquartic Planar Graphs 221

34. Molloy, M., Reed, B.: Graph Colouring and the Probabilistic Method. Algorithms
and Combinatorics, vol. 23. Springer, Berlin (2002)

35. Niedermeier, R.: Invitation to Fixed-parameter Algorithms. Oxford Lecture Series
in Mathematics and its Applications, vol. 31. OUP, Oxford (2006)

36. Robertson, N., Sanders, D., Seymour, P., Thomas, R.: The four-colour theorem. J.
Combin. Theory Ser. B 70(1), 2–44 (1997)

37. Scheinerman, E.R., Ullman, D.H.: Fractional Graph Theory. Dover Publications
Inc., Mineola (2011)

38. Sikdar, S.: Parameterizing from the extremes. Ph.D. thesis, The Institute of Math-
ematical Sciences, Chennai (2010)

As Close as It Gets

Mike Behrisch1, Miki Hermann2, Stefan Mengel2, and Gernot Salzer1(B)

1 Technische Universität Wien, Vienna, Austria
{behrisch,salzer}@logic.at

2 LIX (UMR CNRS 7161), École Polytechnique, Palaiseau, France
hermann@lix.polytechnique.fr, mengel@cril.fr

Abstract. We study the minimum Hamming distance between distinct
satisfying assignments of a conjunctive input formula over a given set
of Boolean relations (MinSolutionDistance, MSD). We present a complete
classification of the complexity of this optimization problem with respect
to the relations admitted in the formula. We give polynomial time algo-
rithms for several classes of constraint languages. For all other cases we
prove hardness or completeness with respect to poly-APX, or NPO, or
equivalence to a well-known hard optimization problem.

1 Introduction

We study the following optimization problem related to Boolean constraint
satisfaction problems (CSPs): Given a formula built from atomic constraint rela-
tions by means of conjunction and variable identification, the task is to produce
two satisfying assignments having minimal Hamming distance among all dis-
tinct pairs in the solution space of the CSP instance represented by the formula
(MinSolutionDistance, MSD). Note that the dual problem MaxHammingDistance
has been studied in [9].

As usual our problem is parametrized by the set of atomic constraints allowed
to occur in the conjunctive formulas. With respect to this parametrization we com-
pletely classify the complexity of the minimization problemMSD: It turns out that
it is either polynomial-time solvable, or that it is complete for a well-known opti-
mization class, or else equivalent to some classical hard optimization problem.

Restricting the allowed relations to affine Boolean relations, our prob-
lem MSD becomes the well-known problem MinDistance of computing the mini-
mum distance of a linear code. As this quantity determines the number of errors
such a code can detect and correct, it is of central importance in coding theory.
Our work can thus be seen as a generalization of these questions from affine to
arbitrary relations.

M. Behrisch and G. Salzer— Supported by Austrian Science Fund (FWF) grant
I836-N23.
M. Hermann— Supported by ANR-11-ISO2-003-01 Blanc International grant

ALCOCLAN.
S. Mengel— Supported by QUALCOMM grant. Now at CRIL (UMR CNRS 8188),
Lens, France.

c© Springer International Publishing Switzerland 2016
M. Kaykobad and R. Petreschi (Eds.): WALCOM 2016, LNCS 9627, pp. 222–235, 2016.
DOI: 10.1007/978-3-319-30139-6 18

As Close as It Gets 223

In the course of investigations it appears that MSD lacks compatibility with
existential quantification, preventing classical clone theory from being applica-
ble. Consequently, we are lead to weak co-clones that need only be closed under
conjunction and equality. To deal with such structures we make use of the the-
ory established in [15], as well as the minimal weak bases of Boolean co-clones
described in [13].

This paper is part of a more general program to understand the Hamming
distance between solutions of constraint satisfaction problems. The results of
this program up to now, including those from this paper and some on other
problems, can be found in [4,5].

2 Preliminaries

An n-ary Boolean relation R is a subset of {0, 1}n; its elements (b1, . . . , bn) are
also written as b1 · · · bn. Let V be a set of variables. An atomic constraint, or
an atom, is an expression R(x), where R is an n-ary relation and x is an n-
tuple of variables from V. Let L be the collection of all non-empty finite sets of
Boolean relations, also called constraint languages. A (conjunctive) Γ -formula is
a finite conjunction of atoms R1(x1) ∧ · · · ∧ Rk(xk), where the Ri are relations
from Γ ∈ L and the xi are variable tuples of suitable arity.

An assignment is a mapping m : V → {0, 1} assigning a Boolean value m(x)
to each variable x ∈ V. If we arrange the variables in some arbitrary but fixed
order, say as a vector (x1, . . . , xn), then the assignments can be identified with
vectors from {0, 1}n. The i-th component of a vector m is denoted by m[i] and
corresponds to the value of the i-th variable, i.e., m[i] = m(xi). The Hamming
weight hw(m) = |{i | m[i] = 1}| of m is the number of 1s in the vector m. The
Hamming distance hd(m,m′) = |{i | m[i] �= m′[i]}| of m and m′ is the number
of coordinates on which the vectors disagree. The complement m of a vector m
is its pointwise complement, m[i] = 1 − m[i].

Table 1. Some relevant Boolean co-clones with bases

iD2 {x ⊕ y, x → y} iN {dup3}
iL {even4} iN2 {nae3}
iL2 {even4,¬x, x} iI {even4, x → y}
iV2 {x ∨ y ∨ ¬z,¬x, x} iI0 {even4, x → y,¬x}
iE2 {¬x ∨ ¬y ∨ z,¬x, x} iI1 {even4, x → y, x}

An assignment m satisfies the constraint R(x1, . . . , xn) if (m(x1), . . . ,
m(xn)) ∈ R holds. It satisfies the formula ϕ if it satisfies all of its atoms; m
is said to be a model or solution of ϕ in this case. We use [ϕ] to denote the
Boolean relation containing all models of ϕ. In sets of relations represented this

224 M. Behrisch et al.

way we usually omit the brackets. A literal is a variable v, or its negation ¬v.
Assignments m are extended to literals by defining m(¬v) = 1 − m(v).

The following Boolean functions and relations are of particular relevance to
us: we write x ⊕ y for addition modulo 2 and x ≡ y for x ⊕ y ⊕ 1. Further, we
define the relations nae3 := {0, 1}3

� {000, 111}, dup3 := {0, 1}3
� {010, 101}

and even4 := {(a1, a2, a3, a4) ∈ {0, 1}4 | ⊕4
i=1ai = 0}.

Throughout the text we refer to different types of Boolean constraint relations
following Schaefer’s terminology [14] (see also [6,8]). A Boolean relation R is (1)
1-valid if 1 · · · 1 ∈ R and it is 0-valid if 0 · · · 0 ∈ R, (2) Horn (dual Horn) if R
can be represented by a formula in conjunctive normal form (CNF) having at
most one unnegated (negated) variable in each clause, (3) monotone if it is both
Horn and dual Horn, (4) bijunctive if it can be represented by a CNF having
at most two variables in each clause, (5) affine if it can be represented by an
affine system of equations Ax = b over Z2, (6) complementive if for each m ∈ R
also m ∈ R. A set Γ of Boolean relations is called 0-valid (1-valid, Horn, dual
Horn, monotone, affine, bijunctive, complementive) if every relation in Γ has
the respective property.

We denote by 〈Γ 〉 the set of all relations that can be expressed using relations
from Γ ∪ {=}, conjunction, variable identification (and permutation), cylindrifi-
cation and existential quantification. The set 〈Γ 〉 is called the co-clone generated
by Γ . A base of a co-clone B is a set of relations Γ such that 〈Γ 〉 = B. The set of
all co-clones constitutes a lattice with regard to set inclusion. Their bases were
studied in [7]; those relevant in this paper are listed in Table 1. In particular the
sets of relations being 0-valid, 1-valid, complementive, Horn, dual Horn, affine,
and bijunctive each form a co-clone denoted by iI0, iI1, iN2, iE2, iV2, iL2, and
iD2, respectively.

We will also use a weaker closure than 〈Γ 〉, called conjunctive closure and
denoted by 〈Γ 〉∧, where the constraint language Γ is closed under conjunctive
definitions, but not under existential quantification or addition of explicit equal-
ity constraints.

Minimal weak bases of co-clones are bases with certain additional properties.
Since we rely on only some of them, we shall not define this notion but refer the
reader to [13,15].

Theorem 1 (Schnoor & Schnoor [15]). If Γ is a minimal weak base of a
co-clone, then Γ ⊆ 〈Γ ′〉∧ for any base Γ ′.

Lagerkvist computed minimal weak bases for all Boolean co-clones in [13].
From there we infer that {[even4(x1, x2, x3, x4)∧(x1∧x4 ≡ x2∧x3)]} constitutes
a minimal weak base of the co-clone iN; likewise {[(x1 ≡ x2 ∧ x3) ∧ (¬x4 ≡
¬x2 ∧ ¬x3)]} is one of iI.

We assume that the reader has a basic knowledge of approximation algo-
rithms and complexity theory, see e.g. [2,8]. For reductions among decision
problems we use polynomial-time many-one reduction denoted by ≤m. Many-one
equivalence between decision problems is written as ≡m. For reductions among
optimization problems we employ approximation preserving reductions (AP-
reductions), represented by ≤AP, while AP-equivalence of optimization problems

As Close as It Gets 225

is stated as ≡AP. Besides, the following approximation complexity classes in the
hierarchy PO ⊆ APX ⊆ poly-APX ⊆ NPO occur.

An optimization problem P1 AP-reduces to another optimization problem P2

if there are two polynomial-time computable functions f , g, and a constant α ≥ 1
such that for all r > 1 on any input x for P1 the following holds:

– f(x) is an instance of P2;
– for any solution y of f(x), the result g(x, y) is a solution of x;
– if y is an r-approximate solution for the instance f(x), then the solution

g(x, y) is (1 + (r − 1)α + o(1))-approximate for x.

If P1 AP-reduces to P2 with constant α ≥ 1 and P2 has an f(n)-approximation
algorithm, then there is an αf(n)-approximation algorithm for P1.

To relate our problem to well-known optimization problems we make the
following convention: For optimization problems P and Q we say that P is Q-
complete if P ≡AP Q. We use this notion in particular with respect to the
following well-studied problem.

Problem MinDistance. Given a matrix A ∈ Z
k×l
2 any non-zero vector x ∈ Z

l
2

with Ax = 0 is considered a solution. The objective is to minimize the Hamming
weight hw(x).

MinDistance is known to be NP-hard to approximate within a factor
2Ω(log1−ε(n)) for every ε > 0, see [10]. Thus if a problem P is equivalent to
it, then P /∈ APX unless P = NP.

We also use the classic satisfiability problem SAT(Γ), asking for a conjunctive
formula ϕ over a constraint language Γ , if ϕ is satisfiable. Schaefer presented
in [14] a complete classification of complexity for SAT. His dichotomy theorem
proves that SAT(Γ) is polynomial-time decidable if Γ is 0-valid (Γ ⊆ iI0), 1-valid
(Γ ⊆ iI1), Horn (Γ ⊆ iE2), dual Horn (Γ ⊆ iV2), bijunctive (Γ ⊆ iD2), or affine
(Γ ⊆ iL2); otherwise it is NP-complete. Moreover, we need the decision prob-
lem AnotherSAT(Γ), whose complexity was completely classified in [12]. Given
a conjunctive formula ϕ and a satisfying assignment m, it asks if there exists
another satisfying assignment m′ �= m for ϕ.

3 Results

The input to our problem is a conjunctive formula over a constraint language.
The satisfying assignments of the formula, being its solutions, constitute the
codewords of the associated code. The minimization target is the distance of
any two distinct solutions.

Problem MinSolutionDistance(Γ), MSD(Γ)
Input: A conjunctive formula ϕ over relations from Γ .
Solution: Two satisfying truth assignments m �= m′ to the variables occurring
in ϕ.
Objective: Minimum Hamming distance hd(m,m′).

226 M. Behrisch et al.

Theorem 2. For any constraint language Γ the optimization problem MSD(Γ) is

(i) in PO if Γ is
(a) bijunctive (Γ ⊆ iD2) or
(b) Horn (Γ ⊆ iE2) or
(c) dual Horn (Γ ⊆ iV2);

(ii) MinDistance-complete if Γ is exactly affine (iL ⊆ 〈Γ 〉 ⊆ iL2);
(iii) in poly-APX if Γ is both 0-valid and 1-valid, but does not contain an affine

relation (iN ⊆ 〈Γ 〉 ⊆ iI), where MSD(Γ) is n-approximable but not (n1−ε)-
approximable unless P = NP; and

(iv) NPO-complete otherwise (iN2 ⊆ 〈Γ 〉 or iI0 ⊆ 〈Γ 〉 or iI1 ⊆ 〈Γ 〉).
Proof. The proof is split into several propositions presented in the remainder of
the paper.

(i) See Propositions 7 and 8.
(ii) See Proposition 14.
(iii) For Γ ⊆ iI, every formula ϕ over Γ has at least two solutions since it is both

0-valid and 1-valid. Thus 2SolutionSAT(Γ) is in P, and Proposition 13 yields
that MSD(Γ) is n-approximable. By Proposition 18 this approximation is
indeed tight.

(iv) According to [12], AnotherSAT(Γ) is NP-hard for iI0 ⊆ 〈Γ 〉, or iI1 ⊆ 〈Γ 〉. By
Lemma 10 it follows that 2SolutionSAT(Γ) is NP-hard, too. For iN2 ⊆ 〈Γ 〉
we can reduce the NP-hard problem SAT(Γ) to 2SolutionSAT(Γ). Hence
MSD(Γ) is NPO-complete in all three cases. ��

The optimization problem can be transformed into a decision problem MSDd by
adding a bound k ∈ N to the input and asking if hd(m,m′) ≤ k. We obtain the
following dichotomy:

Corollary 3. MSDd(Γ) is in P if Γ ∈ L is bijunctive, Horn, or dual-Horn, and
it is NP-complete otherwise.

Proof. This follows immediately from Theorem 2: All cases in PO become
polynomial-time decidable, whereas the other cases, which are APX-hard,
become NP-complete. According to Post’s lattice this classification covers all
finite sets Γ of relations. ��

4 Duality and Inapplicability of Clone Closure

As the optimization problem MSD is not compatible with existential quantifica-
tion, we cannot prove an AP-equivalence result between any two MSD parame-
trized by constraint languages generating the same co-clone. Yet, similar results
hold for weak co-clones.

As Close as It Gets 227

Proposition 4. We have MSDd(Γ ′) ≤m MSDd(Γ) and MSD(Γ ′) ≤AP MSD(Γ)
for Γ, Γ ′ ∈ L satisfying Γ ′ ⊆ 〈Γ 〉∧.

Proof. For similarity it suffices to prove that Γ ′ ⊆ 〈Γ 〉∧ implies MSD(Γ ′) ≤AP

MSD(Γ).
Let a Γ ′-formula ϕ be an instance of MSD(Γ ′). Since Γ ′ ⊆ 〈Γ 〉∧, every

constraint R(x1, . . . , xk) of ϕ can be written as a conjunction of constraints
upon relations from Γ . Substitute the latter into ϕ, obtaining ϕ′. Now ϕ′ is an
instance of MSD(Γ), where ϕ′ is only polynomially larger than ϕ. As ϕ and ϕ′

have the same variables and hence the same models, also the closest distinct
models of ϕ and ϕ′ are the same. ��

For a relation R ⊆ {0, 1}n, its dual relation is dual(R) = {m | m ∈ R}, i.e.,
the relation containing the complements of tuples from R. We naturally extend
this to sets of relations Γ by putting dual(Γ) = {dual(R) | R ∈ Γ}. Since taking
complements is involutive, duality is a symmetric relation. By inspecting the
bases of co-clones in Table 1, we deduce that many co-clones are duals of each
other, e.g. iE2 and iV2.

We now show that it suffices to consider only one half of Post’s lattice of
co-clones.

Lemma 5. For any set Γ of Boolean relations we have MSDd(Γ) ≡m

MSDd(dual(Γ)) and MSD(Γ) ≡AP MSD(dual(Γ)).

Proof. For a Γ -formula ϕ and an assignment m to ϕ we construct a dual(Γ)-
formula ϕ′ by substitution of every atom R(x) by dual(R)(x). Then m satis-
fies ϕ if and only if m satisfies ϕ′, m being the complement of m. Moreover,
hd(m,m′) = hd(m,m′). ��

5 Finding the Minimal Distance Between Solutions

5.1 Polynomial-Time Cases

We use the following result based on a previous theorem of Baker and Pixley [3],
showing that it suffices to consider binary relations when studying bijunctive
constraint languages.

Proposition 6 (Jeavons et al. [11]). Any bijunctive constraint R(x1, . . . , xn)
is equivalent to

∧
1≤i≤j≤n Rij(xi, xj), where Rij is the projection of R to the

coordinates i and j.

Proposition 7. If Γ is bijunctive (Γ ⊆ iD2) then MSD(Γ) is polynomial-time
solvable.

By Proposition 6, an algorithm for bijunctive Γ can be restricted to at most
binary clauses. We extend the algorithm of Aspvall, Plass, and Tarjan [1].

228 M. Behrisch et al.

Algorithm
Input: An iD2-formula ϕ viewed as a collection of one- or two-element sets of
literals.
Output: “≤ 1 model” or the minimal Hamming distance of any two distinct
models of ϕ.
Method: Let V be the set of variables occurring in ϕ, let L = {v,¬v | v ∈ V}
be the set of corresponding literals, and let ū denote the complementary literal
to u ∈ L.

– Construct the relation R := {(ū, v), (u, v̄) | {u, v} ∈ ϕ} ∪ {(ū, u) | {u} ∈ ϕ}.
Let ≤ be the reflexive and transitive closure of R, i.e. the least preorder on L
extending R.
Let ∼ := {(u, v) ∈ L2 | u ≤ v ∧ v ≤ u} be the associated equivalence relation.
If v ∼ ¬v holds for some variable v, then return “≤ 1 model” (ϕ is unsatisfi-
able).

– Otherwise, let V0 := {v ∈ V | v ≤ ¬v} and V1 := {v ∈ V | ¬v ≤ v} be sets of
variables being false and true, respectively, in every model of ϕ.
If V0 ∪ V1 = V holds, then return “≤ 1 model” (ϕ has only one model).

– Otherwise, construct the sets
F0 := {L ∈ L/∼ | ∃v ∈ V0 : L ≤ [v]∼} ∪ {L ∈ L/∼ | ∃v ∈ V1 : L ≤ [¬v]∼} and
F1 := {L ∈ L/∼ | ∃v ∈ V0 : [¬v]∼ ≤ L} ∪ {L ∈ L/∼ | ∃v ∈ V1 : [v]∼ ≤ L}.
F0 (F1) is the set of equivalence classes of literals whose value is forced to false
(to true) by backward and forward propagation from variables in V0 and V1.
Let P := (L/∼) � (F0 ∪ F1) be the set of remaining equivalence classes.
Return min{|L| | L ∈ P} as minimal Hamming distance.

Complexity. The size of L is linear in the number of variables, the reflexive
closure can be computed in linear time in |L|, the transitive closure in cubic time
in |L|, see [16]. The equivalence relation ∼ is the intersection of ≤ and its inverse
(quadratic in |L|); from it we can obtain the partition L/∼ in linear time in |L|,
and combining this with the preorder ≤ we can compute the order on L/∼ in
polynomial time, as well. Similarly, the remaining sets from the proof can be
computed with polynomial time complexity.

Correctness. The pairs in R arise from understanding the atomic constraints
in ϕ as implications. Therefore, by transitivity of implication, in every model
of ϕ, literals u, v ∈ L satisfying u ≤ v have to be evaluated so that (m(u),m(v))
does not violate the Boolean order relation, i.e. [x → y]. Hence, literals u ∼ v
from one equivalence class have to share the same value in any model m. More-
over, since literals and their negations have to take on opposite values, we must
have m(v) = 0 for all v ∈ V0 and m(v) = 1 for all v ∈ V1. This proves that the
algorithm gives a correct answer in case there do not exist feasible solutions. Fur-
thermore, by transitivity, we see that literals in equivalence classes in Fi must be
evaluated to i ∈ {0, 1}. So any two models can only differ on the literals belong-
ing to members of P . Therefore, clearly, the return value of the algorithm is a
lower bound for the minimal solution distance. To prove the converse, we shall

As Close as It Gets 229

exhibit two models m0 �= m1 of ϕ having the least cardinality of equivalence
classes in P as their Hamming distance.

Let L ∈ P be a class of minimum cardinality. Define m0(u) := 0 for all
literals u ∈ L and likewise, m1(u) := 1. We extend this by m1(w) := m0(w) := 0
for all w ∈ L such that w ≤ u for some u ∈ L, and by m0(w) := m1(w) := 1
for all w ∈ L such that u ≤ w for some u ∈ L. For variables v ∈ V satisfying
v ≤ ¬v or ¬v ≤ v we have [v]∼ /∈ P ; in other words, for [v]∼ ∈ P the classes
[v]∼ and [¬v]∼ are incomparable. Thus, so far, we have not defined m0 and m1

on a variable v ∈ V and on its negation ¬v at the same time. Of course, fixing
a value for a negative literal ¬v to some value implicitly means that we bind
the assignment for v ∈ V to the opposite value. We complete the definition of
m0 and m1 by setting them to 0 on every v ∈ V where [v]∼ ∈ P and they are
not yet defined. Moreover, for v ∈ V where [v]∼ ∈ Fi we put mj(v) := i for
i, j ∈ {0, 1}. Obviously, m0 differs from m1 only in the variables corresponding
to the literals in L, so their Hamming distance is |L| as desired. Besides, both
assignments respect the order constraints in (L,≤). As these faithfully reflect all
original atomic constraints, m0 and m1 are indeed models of ϕ.

Proposition 8. MSD(Γ) is in PO for Γ ∈ L satisfying Γ ⊆ iE2 or Γ ⊆ iV2.

We only discuss the Horn case (Γ ⊆ iE2), dual-Horn (Γ ⊆ iV2) being sym-
metric.

Algorithm
Input: A Horn formula ϕ viewed as a set of Horn clauses.
Output: “≤ 1 model” or the minimal Hamming distance of any two distinct
models of ϕ.
Method:

Step 1: For each variable x in ϕ, add the clause (¬x∨x). Apply the following
rules to ϕ until no more clauses and literals can be removed and no new clauses
can be added.
– Unit resolution and unit subsumption: Let ū denote the complement of a
literal u. If the clause set contains a unit clause u, remove all clauses containing
the literal u and remove all literals ū from the remaining clauses.
– Hyper-resolution with binary implications: Resolve all negative literals of a
clause simultaneously with binary implications possessing identical premises.

(¬x ∨ y1) · · · (¬x ∨ yk) (¬y1 ∨ · · · ∨ ¬yk ∨ z)

(¬x ∨ z)

(¬x ∨ y1) · · · (¬x ∨ yk) (¬y1 ∨ · · · ∨ ¬yk)

(¬x)

Let D be the final result of this step. If D is empty or contains the empty clause,
return “≤ 1 model”.

Step 2: Let V be the set of variables occurring in D, and let ∼ ⊆ V2 be the
relation defined by x ∼ y if {¬x∨y,¬y ∨x} ⊆ D. Note that ∼ is an equivalence,
since the tautological clauses ensure reflexivity and resolution of implications
computes their transitive closure. We say that a variable z depends on variables

230 M. Behrisch et al.

y1, . . . , yk, if D contains the clauses ¬y1 ∨ · · · ∨¬yk ∨ z, ¬z ∨ y1, . . . , ¬z ∨ yk and
z �∼ yi holds for all i = 1, . . . , k.

Return min{|X| X ∈ V/∼,X does not contain dependent variables} as min-
imal Hamming distance.

Complexity. The run-time of the algorithm is polynomial in the number of
clauses and the number of variables in ϕ: Unit resolution/subsumption can be
applied at most once for each variable, and hyper-resolution has to be applied at
most once for each variable x and each clause ¬y1∨· · ·∨¬yk∨z and ¬y1∨· · ·∨¬yk.

Correctness. Let U be the set of unit clauses removed by subsumption. Adding
resolvents and removing subsumed clauses maintains logical equivalence, there-
fore D∪U is logically equivalent to ϕ, i.e., both clause sets have the same models.
If D is empty, the unit clauses in U define a unique model of ϕ. If D contains
the empty clause, the sets D and ϕ are unsatisfiable. Otherwise D has at least
two models, as we will show below. As each model m of D uniquely extends to
a model of ϕ by defining m(x) = 1 for (x) ∈ U and m(x) = 0 for (¬x) ∈ U , the
minimal Hamming distances of ϕ and D are the same.

We are thus looking for models m1,m2 of D such that the size of the difference
set Δ(m1,m2) = {x | m1(x) �= m2(x)} is minimal. In fact, since the models of
Horn formulas are closed under minimum, we may assume m1 < m2, i.e., we
have m1(x) = 0 and m2(x) = 1 for all variables x ∈ Δ(m1,m2). Indeed, given
two models m2 and m′

2 of D, m1 = m2 ∧m′
2 is also a model. Since hd(m1,m2) ≤

hd(m2,m
′
2) holds, the minimal Hamming distance will occur between models m1

and m2 satisfying m1 < m2.

Note the following facts regarding the equivalence relation ∼ and dependent
variables.

– If x ∼ y then the two variables must have the same value in every model
of D in order to satisfy the implications ¬x ∨ y and ¬y ∨ x. This means that for
all models m of D and all X ∈ V/∼, we have either m(x) = 0 for all x ∈ X or
m(x) = 1 for all x ∈ X.

– The dependence of variables is acyclic: If zi depends on zi+1 for i = 1, . . . , l
and zl depends on z1, then we have a cycle of binary implications between the
variables and thus zi ∼ zj for all i, j, contradicting the definition of dependence.

– If a variable z depending on y1, . . . , yk belongs to a difference
set Δ(m1,m2), then at least one of the yis also has to belong to Δ(m1,m2):
m2(z) = 1 implies m2(yj) = 1 for all j = 1, . . . , k (because of the clauses
¬z ∨ yi), and m1(z) = 0 implies m1(yi) = 0 for at least one i (because of the
clause ¬y1 ∨ · · · ∨¬yk ∨ z). Therefore Δ(m1,m2) is the union of at least two sets
in V/∼, namely the equivalence class of z and the one of yi.

Hence the difference between any two models cannot be smaller than the
cardinality of the smallest set in V/∼ without dependent variables. It remains
to show that we can indeed find two such models.

Let X be a set in V/∼ which has minimal cardinality among the sets without
dependent variables, and let m1,m2 be interpretations defined as follows: (1)
m1(y) = 0 and m2(y) = 1 if y ∈ X; (2) m1(y) = 1 and m2(y) = 1 if y /∈ X and

As Close as It Gets 231

(¬x ∨ y) ∈ D for some x ∈ X; (3) m1(y) = 0 and m2(y) = 0 otherwise. We have
to show that m1 and m2 satisfy all clauses in D. Let m be any of these models.
D contains two types of clauses.

Type 1: Horn clauses with a positive literal ¬y1 ∨ · · · ∨ ¬yk ∨ z. If m(yi) = 0
for any i, we are done. So suppose m(yi) = 1 for all i = 1, . . . , k; we have to show
m(z) = 1. The condition m(yi) = 1 means that either yi ∈ X (for m = m2) or
that there is a clause (¬xi ∨ yi) ∈ D for some xi ∈ X. We distinguish the two
cases z ∈ X and z /∈ X.
Let z ∈ X. If z ∼ yi for any i, we are done for we have m(z) = m(yi) = 1.
So suppose z �∼ yi for all i. As the elements in X, in particular z and the xis,
are equivalent and the binary clauses are closed under resolution, D contains
the clause ¬z ∨ yi for all i. But this would mean that z is a variable depending
on the yis, contradicting the assumption z ∈ X. Let z /∈ X, and let x ∈ X.
As the elements in X are equivalent and the binary clauses are closed under
resolution, D contains ¬x ∨ yi for all i. Closure under hyper-resolution with the
clause ¬y1 ∨ · · · ∨ ¬yk ∨ z means that D also contains ¬x ∨ z, whence m(z) = 1.

Type 2: Horn clauses with only negative literals ¬y1 ∨ · · · ∨ ¬yk. If m(yi) = 0
for any i, we are done. It remains to show that the assumption m(yi) = 1 for all
i = 1, . . . , k leads to a contradiction. The condition m(yi) = 1 means that either
yi ∈ X (for m = m2) or that there is a clause (¬xi ∨ yi) ∈ D for some xi ∈ X. Let
x be some particular element of X. Since the elements in X are equivalent and the
binary clauses are closed under resolution, D contains the clause ¬x ∨ yi for all i.
But then a hyper-resolution step with the clause ¬y1 ∨ · · · ∨ ¬yk would yield the
unit clause ¬x, which by construction does not occur in D. Therefore at least one
yi is neither in X nor part of a clause ¬x ∨ yi with x ∈ X, i.e., m(yi) = 0.

5.2 Hard Cases

Two Solution Satisfiability. In this section we study the feasibility problem of
MSD(Γ) which is, given a Γ -formula ϕ, to decide if ϕ has two distinct solutions.

Problem: 2SolutionSAT(Γ)
Input: Conjunctive formula ϕ over the relations from Γ .
Question: Are there two satisfying assignments m �= m′ of ϕ?

A priori it is not clear that the tractability of 2SolutionSAT is fully char-
acterized by co-clones. The problem is that the implementation of relations of
some language Γ by another language Γ ′ might not be parsimonious, that is, in
the implementation one solution to a constraint might be blown up into several
ones in the implementation. Fortunately we can still determine the tractability
frontier for 2SolutionSAT by combining the corresponding results for SAT and
AnotherSAT.

Lemma 9. For Γ ∈ L where SAT(Γ) is NP-hard, 2SolutionSAT(Γ) is NP-hard.

Proof. Since SAT(Γ) is NP-hard, there must be a relation R in Γ having more
than one tuple, because every relation containing only one tuple is at the same
time Horn, dual Horn, bijunctive, and affine. Given an instance ϕ for SAT(Γ),

232 M. Behrisch et al.

construct ϕ′ as ϕ∧R(y1, . . . , y�) where � is the arity of R and y1, . . . , y� are new
variables not appearing in ϕ. Obviously, ϕ has a solution if and only if ϕ′ has at
least two solutions. Hence, we have proved SAT(Γ) ≤m 2SolutionSAT(Γ). ��
Lemma 10. If Γ ∈ L and AnotherSAT(Γ) is NP-hard, 2SolutionSAT(Γ) is NP-
hard.

Proof. Let a formula ϕ and a satisfying assignment m be an instance of
AnotherSAT(Γ). Then ϕ has a solution other than m if and only if it has two
distinct solutions. ��
Lemma 11. If SAT(Γ) and AnotherSAT(Γ) are in P for Γ ∈ L, then the same
holds for 2SolutionSAT(Γ).

Proof. Let ϕ be an instance of 2SolutionSAT(Γ). All polynomial-time decidable
cases of SAT(Γ) are constructive, i.e., whenever that problem is polynomial-
time decidable, there exists a polynomial-time algorithm computing a satisfying
assignment. Thus we can compute in polynomial time a satisfying assignment m
of ϕ. Now use the algorithm for AnotherSAT(Γ) on the instance (ϕ,m) to decide
if there is a second solution to ϕ. ��
Corollary 12. For Γ ∈ L, the problem 2SolutionSAT(Γ) is polynomial-time
decidable if both SAT(Γ) and AnotherSAT(Γ) are polynomial-time decidable. Oth-
erwise, 2SolutionSAT(Γ) is NP-hard.

Proposition 13. For Γ ∈ L such that 2SolutionSAT(Γ) is in P, there is a
polynomial-time n-approximation algorithm for MSD(Γ), where n is the number
of variables.

Proof. Since 2SolutionSAT(Γ) is in P, both SAT(Γ) and AnotherSAT(Γ) must
be in P by Corollary 12. Since SAT(Γ) is in P, we can compute a model m of the
input ϕ in polynomial time if it exists. Now we check the AnotherSAT(Γ)-instance
(ϕ,m). If it has a solution m′ �= m, it is also polynomial time computable, and
we return (m,m′). If we fail somewhere in this process, then MSD(Γ) does not
have feasible solutions; otherwise, hd(m,m′) ≤ n ≤ n · OPT(ϕ). ��
MinDistance-Equivalent Cases. In this section we show that, as for the Nearest
Other Solution problem (see [4,5]), the affine cases of MSD are MinDistance-
complete.

Proposition 14. MSD(Γ) is MinDistance-complete if Γ ∈ L satisfies iL ⊆
〈Γ 〉 ⊆ iL2.

Proof. We prove MSD(Γ) ≡AP NearestOtherSolution(Γ), which is MinDistance-
complete by [4]. As Γ ⊆ iL2 = 〈{even4, [x], [¬x]}〉, any Γ -formula ψ is expressible
as ∃y(A1x + A2y = c). The projection of the affine solution space is again an
affine space, so it can be understood as solutions of a system Ax = b. If (ψ,m0)
is an instance of NSol(Γ), then ψ is an MSD(Γ)-instance, and a feasible solution
m1 �= m2 satisfying ψ gives a feasible solution m3 := m0+(m2−m1) for (ψ,m0),

As Close as It Gets 233

where hd(m0,m3) = hd(m2,m1). Conversely, a solution m3 �= m0 to (ψ,m0)
yields a feasible answer to the MSD-instance ψ. Thus, OPT(ψ) = OPT(ψ,m0)
and so NSol(Γ) ≤AP MSD(Γ). The other way round, if ψ is an MSD-instance,
then solve the system Ax = b defined by it; let m0 be a model of ψ. As above
we conclude OPT(ψ) = OPT(ψ,m0), and therefore, MSD(Γ) ≤AP NSol(Γ). ��

Tightness Results. It will be convenient to consider the following decision
problem, already studied in [5].

Problem: AnotherSAT<n(Γ)
Input: A conjunctive formula ϕ over relations from Γ and an assignment m
satisfying ϕ.
Question: Is there another satisfying assignment m′ of ϕ, different from m, such
that hd(m,m′) < n, where n is the number of variables of ϕ?

Note that AnotherSAT<n(Γ) is not compatible with existential quantifica-
tion. Let ϕ(y, x1, . . . , xn) with the satisfying assignment m be an instance of
AnotherSAT<n(Γ) and m′ its solution satisfying hd(m,m′) < n + 1. Let m1

and m′
1 be the corresponding vectors to m and m′, respectively, with the first

coordinate truncated. When we existentially quantify the variable y in ϕ, pro-
ducing ϕ1(x1, . . . , xn) = ∃y ϕ(y, x1, . . . , xn), then both m1 and m′

1 are solutions
of ϕ′, but we cannot guarantee that hd(m1,m

′
1) < n. Hence we need the equiv-

alent of Proposition 4 for this problem, whose proof is analogous.

Proposition 15 (Behrisch et al. [4,5]). For Γ, Γ ′ ∈ L with Γ ′ ⊆ 〈Γ 〉∧ we
have the reduction AnotherSAT<n(Γ ′) ≤m AnotherSAT<n(Γ).

The following proposition presents only a partial result for AnotherSAT<n(Γ)
already proved in [5]. An exhaustive complexity classification of the problem
AnotherSAT<n(Γ) has been performed in [4].

Proposition 16 (Behrisch et al. [4,5]). AnotherSAT<n(Γ) is NP-complete
for Γ ∈ L such that iN ⊆ 〈Γ 〉 ⊆ iI.

Remark 17. It is easy to see that AnotherSAT<n(Γ) is NP-complete for iI0 ⊆ 〈Γ 〉
and iI1 ⊆ 〈Γ 〉, since already AnotherSAT(Γ) is NP-complete for these cases, as
it was proved in [12]. It is also clear that AnotherSAT<n(Γ) is polynomial-time
decidable if Γ is Horn (Γ ⊆ iE2), dual Horn (Γ ⊆ iV2), bijunctive (Γ ⊆ iD2),
or affine (Γ ⊆ iL2), just for the same reason as for AnotherSAT(Γ). In all these
four Schaefer cases, for each variable xi we flip the value of m[i], substitute
m(xi) for xi, and construct another satisfying assignment if it exists. Consider
now the solutions which we get for every variable xi. Either there is no solution
for any variable, then AnotherSAT<n(Γ) has no solution; or there are only the
solutions which are the complement of m, then AnotherSAT<n(Γ) has no solution
as well; or else we get a solution m′ with hd(m,m′) < n, then AnotherSAT<n(Γ)
also has a solution. Hence, there is an easy to prove dichotomy result also for
AnotherSAT<n(Γ).

234 M. Behrisch et al.

We prove that Proposition 13 is essentially tight.

Proposition 18. For Γ ∈ L such that iN ⊆ 〈Γ 〉 ⊆ iI and any ε > 0 there is no
polynomial-time n1−ε-approximation algorithm for MSD(Γ), unless P = NP.

Proof. We show that any polynomial time n1−ε-approximation algorithm for
MSD(Γ) would also allow to decide AnotherSAT<n(Γ), being NP-complete by
Proposition 16, in polynomial time.

The algorithm works as follows. Given an instance (ϕ,m) for
AnotherSAT<n(Γ), the algorithm accepts if m is not a constant assignment.
Since Γ is 0-valid (and 1-valid), this output is correct. If ϕ has only one vari-
able, reject because ϕ has only two models; otherwise, proceed as follows.

For each variable x of ϕ, we construct a new formula ϕ′
x as follows. Let k be

the smallest integer greater than 1/ε. Introduce nk − n new variables xi for i =
1, . . . , nk −n. For every i ∈ {1, . . . , nk −n} and every constraint R(y1, . . . , y�) in ϕ,
such that x ∈ {y1, . . . , y�}, construct a new constraint R(zi

1, . . . , z
i
�) by zi

j = xi if
yj = x and zi

j = yj otherwise; add all the newly constructed constraints to ϕ in
order to get ϕ′

x. Note, that we can extend models s of ϕ to models s′ of ϕ′
x by setting

s′(xi) = s(x). Now run then1−ε-approximation algorithm forMSD(Γ) onϕ′
x. If for

every x the answer is a pair (m1,m2) with m2 = m1, then reject, otherwise accept.
This procedure is a correct polynomial-time algorithm for AnotherSAT<n(Γ).

For polynomial runtime is clear, it remains to show correctness. If ϕ has only
constant models, then the same is true for every ϕ′

x. Thus each approximation
must result in a pair of complementary constant assignments, and the output
is correct. Assume now that there is a model s of ϕ different from 0 and 1.
Hence, there exists a variable x such that s(x) = m(x). It follows that ϕ′

x has a
model s′ for which hd(s′,m′) < n holds, where n is the number of variables of ϕ.
But then the approximation algorithm must find two distinct models m1 �= m2

of ϕ′
x satisfying hd(m1,m2) < n · (nk)1−ε = nk(1−ε)+1. Since the inequality

k > 1/ε holds, it follows that hd(m1,m2) < nk. Consequently, we have m2 �= m1

and the output of our algorithm is again correct. ��

6 Concluding Remarks

Our problem is in PO for constraints, which are bijunctive, or Horn, or dual
Horn. The next complexity stage of the solution structure is characterized by
affine constraints. In fact, these constraints represent the error correcting codes
used in real-word applications. If we search for arbitrary two satisfying assign-
ments with minimum distance, we can apply standard linear algebra techniques
and perform an affine transformation, where we can enforce one of the assign-
ments to be the zero-vector. This is not surprising, since in linear algebra many
problems in an affine space can be transformed to the same problems in the cor-
responding vector space. The penultimate stage of solution structure complexity
is represented by constraints, for which the existence of a solution is guaranteed
by their definition, but we do not have any other exploitable information. For
MSD we need a guarantee of at least two solutions. Our problem belongs to the

As Close as It Gets 235

class poly-APX for these constraints. We can exactly pinpoint the polynomial
(n, i.e. arity of the formula) for which we can get a polynomial-time approxi-
mation. Our complexity results indicate moreover that we cannot get a suitable
approximation for these types of the considered optimization problem. All other
cases are not polynomial-time approximable at all. It is interesting to see that
our results differ considerably from those of [9] for MaxHammingDistance, asking
to produce two satisfying assignments having maximal Hamming distance, even
if the two problems are dual.

References

1. Aspvall, B., Plass, M.R., Tarjan, R.E.: A linear-time algorithm for testing the truth
of certain quantified Boolean formulas. Inf. Process. Lett. 8(3), 121–123 (1979)

2. Ausiello, G., Crescenzi, P., Gambosi, G., Kann, V., Marchetti-Spaccamela, A., Pro-
tasi, M.: Complexity and Approximation: Combinatorial Optimization Problems
and Their Approximability Properties. Springer, New York (1999)

3. Baker, K.A., Pixley, A.F.: Polynomial interpolation and the Chinese Remainder
Theorem for algebraic systems. Mathematische Zeitschrift 143(2), 165–174 (1975)

4. Behrisch, M., Hermann, M., Mengel, S., Salzer, G.: Minimal distance of proposi-
tional models (2015). abs/1502.06761

5. Behrisch, M., Hermann, M., Mengel, S., Salzer, G.: Give me another one!. In:
Elbassioni, K., Makino, K. (eds.) ISAAC 2015. LNCS, vol. 9472, pp. 664–676.
Springer, Heidelberg (2015). doi:10.1007/978-3-662-48971-0 56

6. Böhler, E., Creignou, N., Reith, S., Vollmer, H.: Playing with Boolean blocks, part
II: constraint satisfaction problems. SIGACT News 35(1), 22–35 (2004)

7. Böhler, E., Reith, S., Schnoor, H., Vollmer, H.: Bases for Boolean co-clones. Inf.
Process. Lett. 96(2), 59–66 (2005)

8. Creignou, N., Khanna, S., Sudan, M.: Complexity Classifications of Boolean Con-
straint Satisfaction Problems. SIAM Monographs on Discrete Mathematics and
Applications, vol. 7. SIAM, Philadelphia (2001)

9. Crescenzi, P., Rossi, G.: On the Hamming distance of constraint satisfaction prob-
lems. Theor. Comput. Sci. 288(1), 85–100 (2002)

10. Dumer, I., Micciancio, D., Sudan, M.: Hardness of approximating the minimum
distance of a linear code. IEEE Trans. Inf. Theory 49(1), 22–37 (2003)

11. Jeavons, P., Cohen, D., Gyssens, M.: Closure properties of constraints. J. Assoc.
Comput. Mach. 44(4), 527–548 (1997)

12. Juban, L.: Dichotomy theorem for the generalized unique satisfiability problem. In:
Ciobanu, G., Păun, G. (eds.) FCT 1999. LNCS, vol. 1684, pp. 327–337. Springer,
Heidelberg (1999)

13. Lagerkvist, V.: Weak bases of Boolean co-clones. Inf. Process. Lett. 114(9), 462–
468 (2014)

14. Schaefer, T.J.: The complexity of satisfiability problems. In: Proceedings of the
Tenth Annual ACM Symposium on Theory of Computing, STOC 1978, San
Diego, California, pp. 216–226. ACM, New York (1978). http://dx.doi.org/10.
1145/800133.804350

15. Schnoor, H., Schnoor, I.: Partial polymorphisms and constraint satisfaction prob-
lems. In: Creignou, N., Kolaitis, P.G., Vollmer, H. (eds.) Complexity of Constraints.
LNCS, vol. 5250, pp. 229–254. Springer, Heidelberg (2008)

16. Warshall, S.: A theorem on Boolean matrices. J. Assoc. Comput. Mach. 9(1), 11–12
(1962)

http://www.abs/1502.06761
http://dx.doi.org/10.1007/978-3-662-48971-0_56
http://dx.doi.org/10.1145/800133.804350
http://dx.doi.org/10.1145/800133.804350

Shortest Reconfiguration of Sliding Tokens
on a Caterpillar

Takeshi Yamada1 and Ryuhei Uehara1(B)

School of Information Science, JAIST, Nomi, Ishikawa, Japan
{tyama,uehara}@jaist.ac.jp

Abstract. For given two independent sets Ib and Ir of a graph, the
sliding token problem is to determine if there exists a sequence of inde-
pendent sets which transforms Ib into Ir so that each independent set in
the sequence results from the previous one by sliding exactly one token
along an edge in the graph. The sliding token problem is one of the
reconfiguration problems that attract the attention from the viewpoint
of theoretical computer science. These problems tend to be PSPACE-
complete in general, and some polynomial time algorithms are shown in
restricted cases. Recently, the problems for finding a shortest reconfigu-
ration sequence are investigated. For the 3SAT reconfiguration problem,
a trichotomy for the complexity of finding the shortest sequence has
been shown; it is in P, NP-complete, or PSPACE-complete in certain
conditions. Even if it is polynomial time solvable to decide whether two
instances are reconfigured with each other, it can be NP-complete to
find a shortest sequence between them. We show nontrivial polynomial
time algorithms for finding a shortest sequence between two independent
sets for some graph classes. As far as the authors know, one of them is
the first polynomial time algorithm for the shortest sliding token
problem that requires detours of tokens.

1 Introduction

Recently, the reconfiguration problems attract the attention from the viewpoint
of theoretical computer science. The problem arises when we wish to find a
step-by-step transformation between two feasible solutions of a problem such
that all intermediate results are also feasible and each step abides by a fixed
reconfiguration rule. The reconfiguration problems have been studied extensively
for several well-known problems, including satisfiability [7,13], independent
set [8–11,15], set cover, clique, matching [10], and so on.

The reconfiguration problem can be seen as a natural “puzzle” from the
viewpoint of recreational mathematics. The 15 puzzle is one of the most famous
classic puzzles, that had the greatest impact on American and European society
of any mechanical puzzle the word has ever known in 1880 (Fig. 1; see [18] for
its history). It is well known that it has a parity; for any two placements, we
can decide if they are reconfigurable or not by the parity. Thus, we can solve the
reconfiguration problem in linear time just by checking their parities. Moreover,
c© Springer International Publishing Switzerland 2016
M. Kaykobad and R. Petreschi (Eds.): WALCOM 2016, LNCS 9627, pp. 236–248, 2016.
DOI: 10.1007/978-3-319-30139-6 19

Shortest Reconfiguration of Sliding Tokens on a Caterpillar 237

1 2 3 4
5 6 7 8
9 10 11 12
13 14 15

Fig. 1. The 15 puzzle, Dad’s puzzle, and its Chinese variant.

the distance between any two reconfigurable placements is O(n3), i.e., we can
reconfigure from one to the other in O(n3) sliding pieces, where the board is
of size n × n. However, surprisingly, for these two reconfigurable placements,
finding a shortest path is NP-complete in general [17]. That is, although we
know that it is O(n3), finding a shortest one is NP-complete. Another interesting
property of the 15 puzzle is in another way of generalization. We have the other
famous classic puzzles that can be seen as a generalization from this viewpoint.
Namely, while every piece is a unit square in the 15 puzzle, when rectangles are
allowed, we have the other classic puzzles, called “Dad puzzle” and its variants
(Fig. 1). In 1964, Gardner said that “These puzzles are very much in want of
a theory” [6], and Hearn and Demaine gave it after 40 years [8]; they proved
that these puzzles are PSPACE-complete using their nondeterministic constraint
logic model [9]. That is, the sliding block puzzle is PSPACE-complete in general
decision problem, and it is linear time solvable for unit square pieces. However,
finding a shortest reconfiguration for unit square pieces is NP-complete. In other
words, we can characterize these three complexity classes using the model of the
sliding block puzzle.

From the viewpoint of theoretical computer science, one of the most impor-
tant problems is the 3SAT problem. Recently, for the 3SAT problem, a similar
trichotomy for the complexity of finding a shortest sequence has been shown;
that is, for the reconfiguration problem, finding a shortest sequence between two
satisfiable assignments is in P, NP-complete, or PSPACE-complete in certain
conditions [14]. In general, the reconfiguration problems tend to be PSPACE-
complete, and some polynomial time algorithms are shown in restricted cases.
However, finding a shortest sequence can be a new trend in theoretical computer
science because it has a potential to characterize the class NP and gives us a
new insight into this class.

Beside the 3SAT problem, one of the most important problems in theoretical
computer science is the independent set problem. For this notion, the natural
reconfiguration problem is called the sliding token problem introduced by
Hearn and Demaine [8]: Suppose that we are given two independent sets Ib and
Ir of a graph G = (V,E) and imagine that a token is placed on each vertex in Ib.
Then, the sliding token problem asks if there exists a sequence 〈I1, I2, . . . , I�〉
of independent sets of G such that (a) I1 = Ib, I� = Ir, and |Ib| = |Ii| for all
i with 1 ≤ i ≤ �; and (b) for each i, 2 ≤ i ≤ �, there is an edge {u, v} in E

238 T. Yamada and R. Uehara

(a) Ib=I1 (b) I2 (b) I3 (b) I4 (b) I5=Ir

Fig. 2. A sequence 〈I1, I2, . . . , I5〉 of independent sets of the same graph, where the
vertices in independent sets are depicted by small black circles (tokens).

such that Ii−1 \ Ii = {u} and Ii \ Ii−1 = {v}. Figure 2 illustrates a sequence
〈I1, I2, . . . , I5〉 of independent sets which transforms Ib = I1 into Ir = I5. Hearn
and Demaine proved that the sliding token problem is PSPACE-complete for
planar graphs.

For the sliding token problem, some polynomial time algorithms are inves-
tigated as follows: Linear time algorithms have been shown for cographs [11] and
trees [3]. Polynomial time algorithms are shown for bipartite permutation graphs
[5] and claw-free graphs [1]. On the other hand, PSPACE-completeness is also
shown for graphs of bounded tree-width [16] and planar graphs [9].

In this context, we investigate for finding a shortest sequence of the sliding
token problem, which is called the shortest sliding token problem defined
as follows:

Input: A graph G = (V,E) and two independent sets Ib, Ir with |Ib| = |Ir|.
Output: A shortest reconfiguration sequence Ib = I1, I2, . . ., I� = Ir such

that Ii can be obtained from Ii−1 by sliding exactly one token on a vertex
u ∈ Ii−1 to its adjacent vertex v along {u, v} ∈ E for each i, 2 ≤ i ≤ �.

We note that � is not necessarily in polynomial of |V |; this is an issue how we
formalize the problem, and if we do not know that � is in polynomial or not.
If the length k is given as a part of input, we may be able to decide if � ≤ k
in polynomial time even if � itself is not in polynomial. However, if we have to
output the sequence itself, it cannot be solved in polynomial time if � is not in
polynomial.

In this paper, we will show that the shortest sliding token problem is
solvable in polynomial time for the following graph classes [2]:

Proper interval graphs: We first prove that every proper interval graph with
two independent sets Ib and Ir is a yes-instance if |Ib| = |Ir|. Furthermore, we
can find the ordering of tokens to be slid in a shortest sequence in O(n) time
(implicitly), even though there exists an infinite family of independent sets on
paths for which any sequence requires Ω(n2) length.

Trivially perfect graphs: We then give an O(n)-time algorithm for trivially per-
fect graphs which actually finds a shortest sequence if such a sequence exists.
In contrast to proper interval graphs, any shortest sequence is of length O(n)
for trivially perfect graphs. Note that trivially perfect graphs form a subclass of
cographs, and hence its decision problem can be solved in polynomial time [11].

Shortest Reconfiguration of Sliding Tokens on a Caterpillar 239

Caterpillars: We finally give an O(n2)-time algorithm for caterpillars for the
shortest sliding token problem. To make self-contained, we first show a
linear time algorithm for decision problem that asks if two independent sets can
be transformed into each other. (We note that more general result for a tree
has been shown [3].) For a yes-instance, we next show an algorithm that finds a
shortest sequence between two independent sets.

We here remark that, since the problem is PSPACE-complete in general, an
instance of the sliding token problem may require the exponential number of
independent sets to transform. In such a case, tokens should make detours to
avoid violating to be independent (as shown in Fig. 2). As we will see, caterpillars
certainly require to make detours to transform. Therefore, it is remarkable that
any yes-instance on a caterpillar requires a sequence of token-slides of polynomial
length. This is still open even for a tree; in a tree, we can determine if two
independent sets are reconfigurable in linear time due to [3], however, we do not
know if the length of the sequence is in polynomial or not.

As far as the authors know, this is the first polynomial time algorithm for
the shortest sliding token problem for a graph class that requires detours.

Due to the lack of space, some proofs are omitted, and available in a draft
on arXiv [19].

2 Preliminaries

In this section, we introduce some basic terms and notations. In the sliding
token problem, we may assume without loss of generality that graphs are simple
and connected.

Sliding token: For two independent sets Ii and Ij in a graph G = (V,E), if
there exists exactly one edge {u, v} in G such that Ii \Ij = {u} and Ij \Ii = {v},
then we say that Ij can be obtained from Ii by sliding a token on the vertex
u ∈ Ii to its adjacent vertex v along the edge {u, v}, and denote it by Ii � Ij .

A reconfiguration sequence between two independent sets I1 and I� of G
is a sequence 〈I1, I2, . . . , I�〉 of independent sets of G such that Ii−1 � Ii for
i = 2, 3, . . . , �. We denote by I1 �∗ I� if there exists a reconfiguration sequence
between I1 and I�. We note that a reconfiguration sequence is reversible, that
is, we have I1 �∗ I� iff I� �∗ I1. Thus we say that two independent sets I1 and
I� are reconfigurable into each other if I1 �∗ I�. The length of a reconfiguration
sequence S is defined as the number of independent sets contained in S. For
example, the length of the reconfiguration sequence in Fig. 2 is 5.

The sliding token problem is to determine if two given independent sets
Ib and Ir are reconfigurable into each other. We may assume without loss of
generality that |Ib| = |Ir|; otherwise the answer is clearly “no.” In this paper, we
will consider the shortest sliding token problem that computes the length
of a shortest reconfiguration sequence between two independent sets. Note that
the length of a reconfiguration sequence may not be in polynomial of the size of
the graph when the sequence may contain detours of tokens.

240 T. Yamada and R. Uehara

We always denote by Ib and Ir the initial and target independent sets of G,
respectively, as an instance of the (shortest) sliding token problem; we wish
to slide tokens on the vertices in Ib to the vertices in Ir. We sometimes call the
vertices in Ib blue, and the vertices in Ir red; each vertex in Ib ∩ Ir is blue and
red.

Target-assignment: We here give another notation of the sliding token prob-
lem to explain our algorithm. Let Ib = {b1, b2, . . . , bk} be an initial independent
set of a graph G. For the sake of convenience, we label the tokens on the ver-
tices in Ib; let ti be the token placed on bi for each i, 1 ≤ i ≤ k. Let S be a
reconfiguration sequence between Ib and an independent set I of G, and hence
Ib �∗ I. Then, for each token ti, 1 ≤ i ≤ k, we denote by fS(ti) the vertex in I
on which the token ti is placed via the reconfiguration sequence S. Notice that
{fS(ti) | 1 ≤ i ≤ k} = I.

Let Ir be a target independent set of G, which is not necessarily reconfig-
urable from Ib. Then, we call a mapping g : Ib → Ir a target-assignment between
Ib and Ir. The target-assignment g is said to be proper if there exists a recon-
figuration sequence S such that fS(ti) = g(bi) for all i, 1 ≤ i ≤ k. Note that
there is no proper target-assignment between Ib and Ir if Ib 	�∗ Ir. Therefore,
the sliding token problem can be seen as the problem of determining whether
there exists at least one proper target-assignment between Ib and Ir.

Interval graphs and subclasses: The neighborhood of a vertex v in a graph G =
(V,E) is the set of all vertices adjacent to v, and denoted by N(v) = {u ∈ V |
{u, v} ∈ E}. Let N [v] = N(v)∪{v}. Two vertices u and v are called strong twins
if N [u] = N [v], and weak twins if N(u) = N(v). We only consider the graphs
without strong twins since only one of them can be used by a token for strong
twins.

A graph G = (V,E) with V = {v1, v2, . . . , vn} is an interval graph if there
exists a set I of intervals I1, I2, . . . , In such that {vi, vj} ∈ E iff Ii ∩ Ij 	= ∅
for each i and j with 1 ≤ i, j ≤ n.1 We call the set I of intervals an interval
representation of the graph, and sometimes identify a vertex vi ∈ V with its
corresponding interval Ii ∈ I. We denote by L(I) and R(I) the left and right
endpoints of an interval I ∈ I, respectively. That is, we always have L(I) ≤ R(I)
for any interval I = [L(I), R(I)].

We suppose that an interval graph G = (V,E) is given as an input by its
interval representation using O(n) space, where n = |V |. (An interval repre-
sentation of G can be found in O(n + m) time [12], where m = |E|.) More pre-
cisely, G is given by a string of length 2n over alphabets {L(I1), L(I2), . . . , L(In),
R(I1), R(I2), . . . , R(In)}.

An interval graph is proper if it has an interval representation such that no
interval properly contains another. An interval graph is trivially perfect if it has
an interval representation such that the relationship between any two intervals
is either disjoint or inclusion.
1 In this paper, a bold I denotes an “independent set,” an italic I denotes an “interval,”
and calligraphy I denotes “a set of intervals.”.

Shortest Reconfiguration of Sliding Tokens on a Caterpillar 241

A caterpillar G = (V,E) is a tree that consists of two subsets S and L of V
as follows. The vertex set S induces a path (s1, . . . , sk) in G, each vertex v in L
has degree 1, and its unique neighbor is in S. We call the path (s1, . . . , sk) spine,
and each vertex in L leaf. In this paper, without loss of generality, we assume
that k ≥ 2, deg(s1) ≥ 2, and deg(sk) ≥ 2. It is easy to see that the class of
caterpillars is a proper subset of the class of interval graphs.

3 Proper Interval Graphs

We show the main theorem in this section for proper interval graphs. Firstly,
the answer of sliding token is always “yes” for connected proper interval
graphs. We give a constructive proof of the claim, and it certainly finds a shortest
sequence in linear time.

Theorem 1. For a connected proper interval graph G = (V,E), any two inde-
pendent sets Ib and Ir with |Ib| = |Ir| are reconfigurable into each other, i.e.,
Ib �∗ Ir. Moreover, the shortest reconfiguration sequence can be found in poly-
nomial time.

We give an algorithm which actually finds a shortest reconfiguration sequence
between any two independent sets Ib and Ir of a connected proper interval
graph G. A connected proper interval graph G = (V,E) has a unique interval
representation (up to reversal), and we can assume that each interval is of unit
length in the representation [4]. Therefore, by renumbering the vertices, we can
fix an interval representation I = {I1, I2, . . . , In} of G so that L(Ii) < L(Ii+1)
(and R(Ii) < R(Ii+1)) for each i, 1 ≤ i ≤ n − 1, and each interval Ii ∈ I
corresponds to the vertex vi ∈ V .

Let Ib = {b1, b2, . . . , bk} and Ir = {r1, r2, . . . , rk} be any given initial and
target independent sets of G, respectively. W.l.o.g., we assume that the blue
vertices b1, b2, . . . , bk are labeled from left to right (according to the unique
interval representation I of G), that is, L(bi) < L(bj) if i < j; similarly, we
assume that the red vertices r1, r2, . . . , rk are labeled from left to right. Then,
we define a target-assignment g : Ib → Ir, as follows: for each blue vertex bi ∈ Ib

g(bi) = ri. (1)

To prove Theorem 1, it suffices to show that g is proper, and each token takes
no detours.

String representation: By traversing the interval representation I of a connected
proper interval graph G from left to right, we can obtain a string S = s1s2 · · · s2k

which is a superstring of both b1b2 · · · bk and r1r2 · · · rk, that is, each letter si in S
is one of the vertices in Ib ∪Ir and si appears in S before sj if L(si) < L(sj). We
may assume without loss of generality that s1 = b1 since the reconfiguration rule
is symmetric. If a vertex is in Ib ∩ Ir as bi and rj , then we define that it appears
as birj in S. Then, for each i, 1 ≤ i ≤ 2k, we define the height h(i) at i by the

242 T. Yamada and R. Uehara

number of blue vertices appeared in the substring s1s2 · · · si minus the number
of red vertices appeared in s1s2 · · · si. For the sake of notational convenience, we
define h(0) = 0. Then h(i) can be recursively computed as follows:

h(i) =

⎧
⎨

⎩

0 if i = 0;
h(i − 1) + 1 if si is blue;
h(i − 1) − 1 if si is red.

(2)

Note that h(2k) = 0 for any string S since |Ib| = |Ir|.
Using the notion of height, we split the string S into substrings S1, S2, . . . , Sh

at every point of height 0, that is, in each substring Sj = s2p+1s2p+2 · · · s2q, we
have h(2q) = 0 and h(i) 	= 0 for all i, 2p + 1 ≤ i ≤ 2q − 1. Then, the substrings
S1, S2, . . . , Sh form a partition of S, and each substring Sj contains the same
number of blue and red tokens. We call such a partition the partition of S at
height 0.

Lemma 1. Let Sj = s2p+1s2p+2 · · · s2q be a substring in the partition of the
string S at height 0. Then, (a) the blue vertices bp+1, bp+2, . . . , bq appear in Sj,
and their corresponding red vertices rp+1, rp+2, . . . , rq appear in Sj ; (b) if Sj

starts with the blue vertex bp+1, then each blue vertex bi, p + 1 ≤ i ≤ q, appears
in Sj before its corresponding red vertex ri; and (c) if Sj starts with the red
vertex rp+1, then each blue vertex bi, p + 1 ≤ i ≤ q, appears in Sj after its
corresponding red vertex ri.

Algorithm: Recall that we have fixed the unique interval representation I =
{I1, I2, . . . , In} of a connected proper interval graph G so that L(Ii) < L(Ii+1)
for each i, 1 ≤ i ≤ n − 1, and each interval Ii ∈ I corresponds to the vertex
vi ∈ V . Since all intervals in I have unit length, the following proposition clearly
holds.

Proposition 1. For two vertices vi and vj in G such that i < j, there is a path
P in G which passes through only intervals (vertices) contained in [L(Ii), R(Ij)].
Furthermore, if Ii′∩Ii = ∅ for some index i′ with i′ < i, no vertex in v1, v2, . . . , vi′

is adjacent to any vertex in P . If Ij ∩ Ij′ = ∅ for some index j′ with j < j′, no
vertex in vj′ , vj′+1, . . . , vn is adjacent to any vertex in P .

Let S be the string of length 2k obtained from two given independent sets
Ib and Ir of a connected proper interval graph G, where k = |Ib| = |Ir|. Let
S1, S2, . . . , Sh be the partition of S at height 0. The following lemma shows that
the tokens in each substring Sj can always reach their corresponding red vertices.
(Note that we sometimes denote simply by Sj the set of all vertices appeared in
the substring Sj , 1 ≤ j ≤ h.)

Lemma 2. Let Sj = s2p+1s2p+2 · · · s2q be a substring in the partition of S at
height 0. Then, there exists a reconfiguration sequence between Ib∩Sj and Ir ∩Sj

such that tokens are slid along edges only in the subgraph of G induced by the
vertices contained in [L(s2p+1), R(s2q)].

Shortest Reconfiguration of Sliding Tokens on a Caterpillar 243

Proof of Theorem 1. We now give an algorithm for sliding all tokens on the
vertices in Ib to the vertices in Ir. Recall that S1, S2, . . . , Sh are the substrings
in the partition of S at height 0. Intuitively, the algorithm repeatedly picks up
one substring Sj , and slides all tokens in Ib ∩Sj to Ir ∩Sj . By Lemma 2 it works
locally in each substring Sj , but it should be noted that a token in Sj may be
adjacent to another token in Sj−1 or Sj+1 at the boundary of the substrings. To
avoid this, we define a partial order over the substrings S1, S2, . . . , Sh, as follows.

Consider any two consecutive substrings Sj and Sj+1, and let Sj =
s2p+1s2p+2 · · · s2q. Then, the first letter of Sj+1 is s2q+1. We first consider the
case where both s2q and s2q+1 are the same color. Then, since s2q and s2q+1

are both in the same independent set of G, they are not adjacent. Therefore, by
Proposition 1 and Lemma 2, we can deal with Sj and Sj+1 independently. In
this case, we do not define the ordering between Sj and Sj+1. We next consider
the case where s2q and s2q+1 have different colors; in this case, we have to define
their ordering. Suppose that s2q is blue and s2q+1 is red; then we have s2q = bq

and s2q+1 = rq+1. By Lemma 2 the token tq on s2q is slid to left, and the token
tq+1 will reach rq+1 from right. Therefore, the algorithm has to deal with Sj

before Sj+1. Note that, after sliding all tokens tp+1, tp+2, . . . , tq in Sj , they are
on the red vertices rp+1, rp+2, . . . , rq, respectively, and hence the tokens in Sj+1

are not adjacent to any of them. By the symmetric argument, if s2q is red and
s2q+1 is blue, Sj+1 should be dealt with before Sj .

Such an ordering is defined only for two consecutive substrings Sj and Sj+1,
1 ≤ j ≤ h − 1. Therefore, the partial order over the substrings is acyclic, and
hence there exists a total order consistent with the partial order. The algorithm
certainly slides all tokens from Ib to Ir according to this total order. Therefore,
the target-assignment g defined in Eq. (1) is proper, and hence Ib �∗ Ir.

We now discuss the length of reconfiguration sequences between Ib and Ir,
together with the running time of our algorithm.

Proposition 2. For two given independent sets Ib and Ir of a connected proper
interval graph G with n vertices, (1) the ordering of tokens to be slid in a shortest
reconfiguration sequence between them can be computed in O(n) time and O(n)
space, and (2) a shortest reconfiguration sequence between them can be output in
O(n2) time and O(n) space.

This proposition also completes the proof of Theorem 1. �
It is remarkable that there exists an infinite family of instances for which

any reconfiguration sequence requires Ω(n2) length. Simple example is: G is
a path (v1, v2, . . . , v8k) of length n = 8k for any positive integer k, Ib =
{v1, v3, v5, . . . , v2k−1}, and Ir = {v6k+2, v6k+4, . . . , v8k}. In this instance, each
token ti must be slid Θ(n) times, and hence it requires Θ(n2) time to output
them all.

4 Caterpillars

The main result of this section is the following theorem.

244 T. Yamada and R. Uehara

Theorem 2. The sliding token problem for a caterpillar G = (V,E) and two
independent sets Ib and Ir of G can be solved in O(n) time and O(n) space,
where n = |V |. Moreover, for a yes-instance, a shortest reconfiguration sequence
between them can be output in O(n2) time and O(n) space.

Let G = (S ∪ L,E) be a caterpillar with spine S which induces the path
(s1, . . . , sm), and leaf set L. We assume that m ≥ 2, deg(s1) ≥ 2, and deg(sm) ≥
2. First we show that we can assume that each spine vertex has at most one leaf
without loss of generality.

Lemma 3. For any given caterpillar G = (S ∪ L,E) and two independent sets
Ib and Ir on G, there is a linear time reduction from them to another caterpillar
G′ = (S′ ∪ L′, E′) and two independent sets I′

b and I′
r such that (1) G with Ib

and Ir is a yes-instance of the sliding token problem if and only if G′ with I′
b

and Ir is a yes-instance of the sliding token problem, (2) the maximum degree
of G′ is at most 3, and (3) deg(s1) = deg(sm) = 2, where m = |S′|. In other
words, the sliding token problem on a caterpillar is sufficient to consider only
caterpillars of maximum degree 3.

Hereafter, we only consider the caterpillars stated in Lemma 3, and we denote
the unique leaf of si by �i if it exists. We here introduce a key notion of the prob-
lem on these caterpillars that is named locked path. Let G and I be a caterpillar
and an independent set of G, respectively. A path P = (p1, p2, . . . , pk) on G is
locked by I iff (a) k is odd and greater than 2, (b) I ∩ P = {p1, p3, p5, . . . , pk},
(c) deg(p1) = deg(pk) = 1 (in other words, they are leaves), and deg(p3) =
deg(p5) = · · · = deg(pk−2) = 2. This notion is simplified version of a locked tree
used in [3]. Using the discussion in [3], we obtain the condition for the immovable
independent set on a caterpillar:

Theorem 3 ([3]). Let G and I be a caterpillar and an independent set of G,
respectively. Then we cannot slide any token in I on G at all if and only if there
exist a set of locked paths P1, . . . , Ph for some h such that I is a union of them.

The proof can be found in [3], and omitted here. Intuitively, for any caterpillar
G and its independent set I, if I contains a locked path P , we cannot slide
any token through the vertices in P . Therefore, P splits G into two subgraphs,
and we obtain two completely separated subproblems. Therefore, we obtain the
following lemma:

Lemma 4. For any given caterpillar G = (S ∪ L,E) and two independent sets
Ib and Ir on G, there is a linear time reduction from them to another caterpillar
G′ = (S′ ∪ L′, E′) and two independent sets I′

b and I′
r such that (1) G, Ib, and

Ir are a yes-instance of the sliding token problem if and only if G′, I′
b, and

Ir are a yes-instance of the sliding token problem, and (2) both of I′
b and I′

r

contain no locked path.

Hereafter, without loss of generality, we assume that the caterpillar G with
two independent sets Ib and Ir satisfies the conditions in Lemmas 3 and 4.

Shortest Reconfiguration of Sliding Tokens on a Caterpillar 245

That is, each spine vertex si has at most one leaf �i, s1 and sm have one leaf �1
and �m, respectively, both of Ib and Ir contain no locked path, and |Ib| = |Ir|.
Then, by the result in [3], this is a yes-instance. Thus, it is sufficient to show an
O(n2) time algorithm that finds a shortest reconfiguration sequence between Ib

and Ir.
It is clear that each pair (si, �i) can have at most one token. Therefore,

without loss of generality, we can assume that the blue vertices b1, b2, . . . , bk in
Ib (and the red vertices r1, r2, . . . , rk) are labeled from left to right according to
the order (s1, �1), (s2, �2), . . ., (sm, �m) of G. Then, by a similar argument for
the proper interval graphs, we have g(bi) = ri for each i. To prove Theorem 2, it
suffices to show that we can move tokens with fewest detours by case analysis.

Now we introduce direction of a token t denoted by dir(t) as follows: when
t moves from vi ∈ {si, �i} in Ib to vj ∈ {sj , �j} in Ir with i < j, the direction
of t is said to be R and denoted by dir(t) = R. If i > j, it is said to be L and
denoted by dir(t) = L. If i = j, the direction of t is said to be C and denoted
by dir(t) = C.

cab d
LR

Fig. 3. The most right R token a has to precede the most left L token c.

We first consider a simple case: all directions are either R or L. In this case,
we can use the same idea appearing in the algorithm for a proper interval graph
in Sect. 3. We can introduce a partial order over the tokens, and move them
straightforwardly using the same idea in Sect. 3. Intuitively, a sequence of R
tokens are moved from left to right, and a sequence of L tokens are moved from
right to left, and we can define a partial order over the sequences of different
directions. The only additional considerable case is shown in Fig. 3. That is,
when the token a moves to �i from left and the other token c moves to si+1 from
right, a should precede c. It is not difficult to see that this (and its symmetric
case) is the only exception than the algorithm in Sect. 3 when all tokens move
to right or left.

We next suppose that Ib (and hence Ir) contains some token t with dir(t) =
C. In other words, t is put on si or �i for some i in both of Ib and Ir. We have
five cases. Among them, here we consider the most complicated case that t is
put on si in Ib and Ir, and �i does not exist (the other cases are simpler, and
omitted here). By assumption, 1 < s < m (since �1 and �m exist). Without
loss of generality, we suppose t is the leftmost spine with the condition. We
first observe that |Ib ∩ {si−1, �i−1, si+1, �i+1}| is at most 1. Clearly, we have no

246 T. Yamada and R. Uehara

token on si−1 and si+1. When we have two tokens on �i−1 and �i+1, the path
(�i−1, si−1, si, si+1, �i+1) is a locked path, which contradicts the assumption. We
also have |Ir ∩ {si−1, �i−1, si+1, �i+1}| ≤ 1 by the same argument.

Now we consider the most serious case since the other cases are simpler
and easier than this case. The most serious case is that Ib contains �i−1 and
Ir contains �i+1. Since any token cannot bypass the other, Ib contains an L
token on �i−1, and Ir contains an L token on �i+1. In this case, by the L token
on �i−1, first, t should make a detour to right, and by the L token in Ir, t
next should make a detour to left twice after the first detour. It is clear that
this three slides should not be avoided, and this ordering of three slides cannot
be violated. Therefore, t itself should slide at least four times to return to the
original position, and t can done it in four slides. During this slides, since t is the
leftmost spine with this condition, the tokens on s1, �1, s2, �2, . . . , si−1, �i−1 do
not make any detours. Thus we focus on the tokens on si+1, �i+1, Let t′ be
the token that should be on �i+1 in Ir. Since t is on si, t′ is not on {si+1, �i+1}.
If t′ is on one of �i+2, si+3, �i+3, si+4, . . . in Ib, we have nothing to do; just make
a detour for only t. The problem occurs when t′ is on si+2 in Ib. If there exists
�i+2, we first slide t′ to it, and it is not difficult to see that this detour for t′

is unavoidable. If �i+2 does not exist, we have to slide t′ to si+3 before slide
of t. This can be done immediately except the similar situation that the only
considerable case is that we have another L or S token t′′ on si+3. We can repeat
this process and confirm that each detour is unavoidable. Since G with Ib and
Ir contains no locked path, this process will halts. (More precisely, this process
will be stuck if and only if these sequence of tokens forms a locked path on G,
which contradicts the assumption.) Therefore, traversing this process, we can
construct the shortest reconfiguration sequence.

Proof of Theorem 2. Using the algorithm in [3], we can decide if the input is a
yes-instance. For a yes-instance, a shortest sequence can be constructed from the
case analysis above. For each token, the number of detours made by the token
is bounded above by O(n), the number of slides of the token is also bounded
above by O(n), and the computation for the token can be done in O(n) time.
Therefore, the algorithm runs in O(n2) time, and the length of the shortest
sequence is O(n2). (We note that, as shown before, there is a simple instance of
the problem that requires a shortest sequence of length Θ(n2).) �

5 Concluding Remarks

In this paper, we showed that the shortest sliding token problem can be
solved in polynomial time for three subclasses of interval graphs. The computa-
tional complexity of the problem for chordal graphs, interval graphs, and trees
are still open. Especially, tree seems to be the next target from the viewpoint of
finding a shortest sequence. We can decide if two independent sets are reconfig-
urable in linear time [3], then can we find a shortest sequence for a yes-instance?
As in the 15-puzzle, finding a shortest one can be NP-hard even if the decision
problem is polynomial time solvable. (In fact, the exact analysis for the 15-puzzle

Shortest Reconfiguration of Sliding Tokens on a Caterpillar 247

has been done up to 4 × 4 so far.) From the viewpoint of finding any sequence,
the next target can be interval graphs. In general, it is an interesting open ques-
tion whether there is any instance on some graph classes whose reconfiguration
sequence requires super-polynomial length.

References

1. Bonsma, P., Kamiński, M., Wrochna, M.: Reconfiguring independent sets in claw-
free graphs. In: Ravi, R., Gørtz, I.L. (eds.) SWAT 2014. LNCS, vol. 8503, pp.
86–97. Springer, Heidelberg (2014). arXiv:1403.0359

2. Brandstädg, A., Le, V.B., Spinrad, J.P.: Graph Classes: A Survey. SIAM, Philadel-
phia (1999)

3. Demaine, E.D., Demaine, M.L., Fox-Epstein, E., Hoang, D.A., Ito, T., Ono, H.,
Otachi, Y., Uehara, R., Yamada, T.: Linear-time algorithm for sliding tokens on
trees. Theor. Comput. Sci. 600, 132–142 (2015)

4. Deng, X., Hell, P., Huang, J.: Linear-time representation algorithms for proper
circular-arc graphs and proper interval graphs. SIAM J. Comput. 25, 390–403
(1996)

5. Fox-Epstein, E., Hoang, D.A., Otachi, Y., Uehara, R.: Sliding token on bipartite
permutation graphs. In: Elbassioni, K., Makino, K. (eds.) ISAAC 2015. LNCS, vol.
9472, pp. 237–247. Springer, Heidelberg (2015). doi:10.1007/978-3-662-48971-0 21

6. Gardner, M.: The hypnotic fascination of sliding-block puzzles. Sci. Am. 210, 122–
130 (1964)

7. Gopalan, P., Kolaitis, P.G., Maneva, E.N., Papadimitriou, C.H.: The connectiv-
ity of Boolean satisfiability: computational and structural dichotomies. SIAM J.
Computing 38, 2330–2355 (2009)

8. Hearn, R.A., Demaine, E.D.: PSPACE-completeness of sliding-block puzzles and
other problems through the nondeterministic constraint logic model of computa-
tion. Theor. Comput. Sci. 343, 72–96 (2005)

9. Hearn, R.A., Demaine, E.D.: Games, Puzzles, and Computation. A K Peters, Nat-
ick (2009)

10. Ito, T., Demaine, E.D., Harvey, N.J.A., Papadimitriou, C.H., Sideri, M., Uehara,
R., Uno, Y.: On the complexity of reconfiguration problems. Theor. Comput. Sci.
412, 1054–1065 (2011)

11. Kamiński, M., Medvedev, P., Milanič, M.: Complexity of independent set recon-
figurability problems. Theor. Comput. Sci. 439, 9–15 (2012)

12. Korte, N., Möhring, R.: An incremental linear-time algorithm for recognizing inter-
val graphs. SIAM J. Computing 18, 68–81 (1989)

13. Makino, K., Tamaki, S., Yamamoto, M.: An exact algorithm for the Boolean con-
nectivity problem for k-CNF. Theor. Comput. Sci. 412, 4613–4618 (2011)

14. Mouawad, A.E., Nishimura, N., Pathak, V., Raman, V.: Shortest reconfiguration
paths in the solution space of boolean formulas. In: Halldórsson, M.M., Iwama, K.,
Kobayashi, N., Speckmann, B. (eds.) ICALP 2015. LNCS, vol. 9134, pp. 985–996.
Springer, Heidelberg (2015)

15. Mouawad, A.E., Nishimura, N., Raman, V., Simjour, N., Suzuki, A.: On the para-
meterized complexity of reconfiguration problems. In: Gutin, G., Szeider, S. (eds.)
IPEC 2013. LNCS, vol. 8246, pp. 281–294. Springer, Heidelberg (2013)

16. Mouawad, A.E., Nishimura, N., Raman, V., Wrochna, M.: Reconfiguration over
tree decompositions. In: Cygan, M., Heggernes, P. (eds.) IPEC 2014. LNCS, vol.
8894, pp. 246–257. Springer, Heidelberg (2014)

http://arxiv.org/abs/1403.0359
http://dx.doi.org/10.1007/978-3-662-48971-0_21

248 T. Yamada and R. Uehara

17. Ratner, R., Warmuth, M.: Finding a shortest solution for the N × N -extension of
the 15-puzzle is intractable. J. Symb. Comp. 10, 111–137 (1990)

18. Slocum, J.: The 15 Puzzle Book: How it Drove the World Crazy. Slocum Puzzle
Foundation, Beverly Hills (2006)

19. Yamada, T., Uehara, R.: Shortest Reconfiguration of Sliding Tokens on a Cater-
pillar, 1 November 2015. arxiv:1511.00243

http://arxiv.org/abs/1511.00243

Approximation Algorithms

Fast and Simple Local Algorithms for 2-Edge
Dominating Sets and 3-Total Vertex Covers

Toshihiro Fujito1(B) and Daichi Suzuki1

Department of Computer Science and Engineering,
Toyohashi University of Technology, Toyohashi 441-8580, Japan

fujito@cs.tut.ac.jp

Abstract. A local algorithm is a deterministic (i.e., non-randomized)
distributed algorithm in an anonymous port-numbered network running
in a constant number of synchronous rounds, and this work studies the
approximation performance of such algorithms. The problems treated
are b-edge dominating set (b-EDS) that is a multiple domination version
of the edge dominating set (EDS) problem, and t-total vertex cover (t-
TVC) that is a variant of the vertex cover problem with a clustering
property. After observing that EDS and 2-TVC are approximable within
4 and 3, respectively, using a single run of the local algorithm for finding
a maximal matching in a bicolored graph, it will be seen that running
the maximal matching local algorithm for bicolored graph twice, 2-EDS
and 3-TVC can be approximated within factors 2 and 3, respectively.

1 Introduction

In the era of big data, it is almost mandatory to compute solutions an order of
magnitude faster than ever before, and sublinear or constant time algorithms are
urgently wanted in various areas of computation. It is fortunate meanwhile that
the high computation power has become relatively easily accessible nowadays,
and it is typically provided by computer networks of large scale. Distributed
algorithms of high efficiency can be regarded as lying at the crossing of these
demands and supplies, and this paper focuses on such algorithms running in
constant time.

A local algorithm is a distributed algorithm, under the message-passing model
of computation, that runs in a constant number of synchronous communication
rounds (An excellent survey on local algorithms can be found in [26]). Here, the
same computer network, called communication graph G = (V,E), is both the
input and the system for solving the problem. Each node of the communication
graph is a computational entity having an unlimited computing power. The
computation proceeds in rounds, in each of which each node can send and receive
messages of unbounded length to and from all of its neighboring nodes (although

T. Fujito—Supported in part by the Kayamori Foundation of Informational Science
Advancement and a Grant in Aid for Scientific Research of the Ministry of Education,
Science, Sports and Culture of Japan.

c© Springer International Publishing Switzerland 2016
M. Kaykobad and R. Petreschi (Eds.): WALCOM 2016, LNCS 9627, pp. 251–262, 2016.
DOI: 10.1007/978-3-319-30139-6 20

252 T. Fujito and D. Suzuki

the algorithms to be presented use only messages of O(1) length). There are
some variants in the communication graph models, and we assume a very weak
one among them throughout the paper. It is assumed that a port numbering
is assigned in G, which means that the edges incident to a node u ∈ V are
uniquely labeled and u can use those labels to choose which neighbors of u
it sends messages to and receives from, for all the nodes u in G. While no
other information such as unique identifiers are available to any nodes, it is
also assumed in this paper that G is a graph of bounded degree, and there is a
constant Δ such that any node in G has at most Δ neighbors. In this case, every
node in G is initially given Δ as the only local input, and must produce the local
output of its own, by running some algorithm common to all the other nodes in
G. The computing power of distributed algorithms of this sort can be said to be
severely limited, and independent sets or matchings, for instance, that can be
computed in cycles are empty (vertex or edge) sets only [19]. Nevertheless, some
nontrivial results, both positive and negative, are getting accumulated in recent
years and the lists of those results can be found in [26].

The main problem treated in the paper is a graph covering problem called
edge dominating set. In an undirected graph an edge is said to dominate itself
and all the edges adjacent to it, and a set of edges is an edge dominating set
(henceforth an eds) if the edges in it collectively dominate all the edges in a
graph. The edge dominating set problem (henceforth EDS) asks to find an eds
of minimum cardinality. The EDS problem is one of classic NP-complete graph
problems, and it was proven to be so even if graphs are planar or bipartite
of maximum degree 3 by Yannakakis and Gavril [28]. While the problem was
later shown to remain NP-hard under various classes of restricted graphs [17],
some polynomially solvable special cases have been also discovered [17,21,24].
Computing the minimum size edge dominating set is equivalent to that of the
minimum maximal matching, and simply computing any maximal matching is a
2-approximation algorithm for them. Whereas EDS is known to admit a PTAS
(polynomial time approximation scheme) for some special cases [4,18], no better
approximation algorithm has been found in the general case, and some nontrivial
approximation lower bounds have been obtained (under some likely complexity
hypothesis) [8,9,23]. The parameterized complexity of EDS has also been exten-
sively studied [7,9,10,13,27].

The b-edge dominating set problem (henceforth b-EDS) is a multi-domination
version of EDS, and it is a natural extension of EDS such as the (multi)set
multicover and multi-dominating set problems. Here, each edge e of an input
graph is associated with an integer b(e), and a solution is required to dominate
each e b(e) times (and hence, the ordinary EDS corresponds to the case when
b(e) ≡ 1,∀e ∈ E). Typically two versions of b-EDS can be considered, depending
on the types of feasible solutions, where a solution can be an edge multiset
(called an mb-eds henceforth) in one case, and it has to be an ordinary edge set
(called an sb-eds henceforth) in the other. The former is named multiple b-edge
dominating set (henceforth mb-EDS) and the latter simple b-edge dominating
set (henceforth sb-EDS). Whereas 8/3-approximation is known possible for the

Fast and Simple Local Algorithms for 2-EDS and 3-TVC 253

most general type of b-EDS [5], mb-EDS was shown approximable within 2 in
linear time [6], and sb-EDS within 2 when b(e) ≤ 3,∀e ∈ E [14]. The b-EDS
problem treated in this paper is 2-EDS, that is the case when b(e) ≡ 2,∀e ∈ E.

The EDS problem itself has some interesting applications, especially in view
of its close relation to minimum maximal matchings, such as telephone switch-
ing networking as described in [28], and b-EDS plays an important role in any
application of EDS when the fault tolerance and/or robustness need to be taken
into account. Another aspect of an eds is that it induces a vertex cover where
a vertex cover C ⊆ V is a set of nodes such that every edge in G is incident to
some node in C; namely, an edge set D ⊆ E is an eds for a graph G = (V,E)
if and only if the set of endnodes of the edges in D, denoted V (D), is a vertex
cover for G. It is perhaps worth pointing out here that the vertex set V (D)
thus induced from an eds D is not a mere vertex cover but with a clustering
property. A vertex set C ⊆ V is said to be a t-total vertex cover (t ≥ 1), hence-
forth a t-tvc, for a connected graph G if it is a vertex cover for G such that
each connected component of the subgraph of G induced by C has at least t
nodes. Hence, if C is a t-tvc, C is a vertex cover and each member of C belongs
to a “cluster” containing at least t members of C. The problem of computing
a minimum t-tvc is named t-TVC (thus, 1-TVC is the ordinary vertex cover
problem). It was introduced in [12,20], and was further studied in [11]. Having
such clustering properties could be desirable or required in some applications,
and variants with such properties enforced are considered in other combinato-
rial optimization problems as well, such as r-gatherings [1]. It is known that
the t-TVC problem is NP-hard, not approximable within 10

√
5 − 21 − ε (unless

P=NP), and approximable within 2, for each t ≥ 1 [12].

1.1 Previous Work and Ours

Not so many works are known for EDS in the area of distributed algorithms,
and it could be partially due to the fact that, at least under the model of local
algorithms considered (i.e., deterministic distributed algorithms in anonymous
port-numbered networks running in a constant number of rounds), the case is in
a sense settled. It was shown by Suomela that EDS can be approximated within
4−2/Δ in O(Δ2) rounds, and the matching lower bound for approximation ratios
was obtained at the same time [25]. Moreover, the same lower bound was shown
to hold even if each node is provided with a unique identifier [15]. The vertex
cover problem is known to be approximable within 2 by a local algorithm [2,3],
but nothing is known about the t-TVC problem for t ≥ 2.

This work is mainly concerned with local algorithms for approximating the
2-EDS problem. It will be shown that, after observing in passing that EDS is
approximable within 4 in only 2Δ rounds, m2-EDS is within 2 in the same run-
ning time. We then present a local algorithm for s2-EDS, designed by extending
that for m2-EDS. Interestingly, approximation becomes easier in either version
of 2-EDS than in EDS, and s2-EDS will be shown approximable within 2 in
4Δ + 2 rounds. Local algorithms for 2-TVC and 3-TVC are considered as well.
It follows from the way vertex covers are constructed by the 3-approximation

254 T. Fujito and D. Suzuki

algorithm of Polishchuk and Suomela [22] that 2-TVC can be approximated
within 3 in 2Δ + 1 rounds. It will be seen that 3-TVC can be approximated
equally well, within the same factor of 3. A 3-tvc is obtained from an s2-eds
computed by the previous algorithm, and it will be shown to become no larger
than thrice the minimum vertex cover size despite the fact that the s2-eds used
is, as constructed by extending an eds, in general larger than the eds used to
3-approximate 2-TVC.

2 Preliminaries

For an edge set F ⊆ E in a graph G = (V,E), V (F) denotes the set of nodes
induced by the edges in F (i.e., the set of all the endnodes of the edges in F). For
a node set S ⊆ V let δ(S) denote the set of edges incident to a node in S. When
S is an edge set, we let δ(S) = δ(∪e∈Se) where edge e is a set of two nodes; then,
δ(S) also denotes the set of edges dominated by S. When S is a singleton set
{s}, δ({s}) is abbreviated to δ(s). For a node set U ⊆ V , N(U) denotes the set
of neighboring nodes of those in U (i.e., N(U) = {v ∈ V | {u, v} ∈ E for some
u ∈ U}), and N(u) means N({u}).

An edge set in G is a simple 2-matching if at most two edges in it are incident
to any node in G.

3 A Local Algorithm for EDS, M2-EDS, and 2-TVC

For a graph G = (V,E) let GD = (VL ∪ VR, ED) denote the bipartite dou-
ble cover of G, where VL = {uL | u ∈ V }, VR = {uR | u ∈ V }, and
ED = {{uL, vR}, {uR, vL} | {u, v} ∈ E}. Thus, there exist exactly two edges,
{uL, vR} and {uR, vL}, in GD corresponding to any edge {u, v} in G. Let
p : ED → E denote the function mapping each of {uL, vR} and {uR, vL} to
{u, v}.

For any maximal matching MD ⊆ ED computed in GD, let M̃ denote the
mapping of MD into E; that is, M̃ = {p(e) | e ∈ MD}. The multiplicity of
an edge e ∈ M̃ is the number of edges in MD corresponding to e, and it is
defined by the function m : M̃ → N such that m(e) def= | p−1(e) ∩ MD |. Clearly,
m(e) ∈ {1, 2} for all e ∈ M̃ .

It is rather straightforward to verify that (1) M̃ ⊆ E is a simple 2-matching
in G, and (2) V (M̃) ⊆ V is a vertex cover for G [26]. While M̃ is not necessarily
a maximal simple 2-matching in G, this means that M̃ is an edge dominating
set for G as well, and we can say more:

Lemma 1. For any maximal matching MD in the bipartite double cover GD of
G,

1. M̃ ⊆ E is an eds and (M̃,m) is an m2-eds for G, and
2.

∑

e′∈δ(e)∩M̃

m(e′) ≤ 4 for any e ∈ E,

Fast and Simple Local Algorithms for 2-EDS and 3-TVC 255

where M̃ = p(MD) and m(e) =| p−1(e) ∩ MD |.
Proof. 1. Clearly, each of {uL, vR} and {uR, vL} is dominated by MD in GD for

any edge {u, v} of G as MD is a maximal matching in GD. Moreover, any edge
dominating {uL, vR} cannot simultaneously dominate {uR, vL} in GD, and
vice versa, from the way GD is constructed, for any {u, v} ∈ E. Therefore,
there exist two different edges in MD dominating {uL, vR} and {uR, vL} in
GD, and both of them appear in (M̃,m), either as two edges or as a single
edge with multiplicity of 2, and hence, (M̃,m) is an m2-eds for G.

2. Observe that
∑

e′∈δ(e)∩M̃

m(e′) denote the number of edges in MD dominating

either {uL, vR} or {uR, vL} for e = {u, v} ∈ E. Any edge in GD is domi-
nated by at most two edges of the matching MD, and hence, the number of
edges in MD dominating either {uL, vR} or {uR, vL} is at most 4 for any
{u, v} ∈ E. �
An eds M̃ can be computed by the following technique which has been often

used in designing local algorithms for various graph problems.

1. A key component of this technique is a simple local algorithm of Hańćkowiak
et al. for computing a maximal matching in a bounded-degree bipartite graph
G, with color classes L and R, where each node of G is informed of which color
class of G it belongs to by the local input [16]. Port numberings are assumed
but unique node identifies are not. The algorithm repeatedly performs the
following steps for i = 1, · · · ,Δ:
(a) Any unmatched left node (in L) sends a proposal to its ith neighbor.
(b) If any unmatched right node (in R) receives a proposal, it accepts the

proposal, becomes matched, and informs the proposal sender of its accep-
tance. In case more than one proposal arrives simultaneously, it accepts
the one received from a neighbor with the smallest port number.

(c) If an unmatched left node (in L) receives a reply of acceptance from its
ith neighbor, it becomes matched and halts (Otherwise, it goes on by
returning to Step (1a)).

As Steps (1a) and (1c) can be executed in a single round, a maximal matching
in a bipartite graph with the local inputs of color classes can be computed in
2Δ rounds.

2. Observe now that, by simulating the algorithm above on G for the problem of
finding a maximal matching in a bipartite graph, one can compute a maximal
matching MD in the bipartite double cover GD; each node u of G simulates
the behavior of both of its copies, the left node uL and the right node uR,
both inheriting the port numbering of the original node u.
Once MD is computed, M̃ is available almost immediately as {u, v} ∈ M̃
iff {uL, vR} or {uR, vL} ∈ MD. The multiplicity of each e ∈ M̃ is easy to
compute as well. For each u ∈ V matched by M̃ , check if both of uL and uR

are matched by MD, and if so, check if their mates are the same (m(e) = 2
in this case) or not (m(e) = 1 in this case).

256 T. Fujito and D. Suzuki

Mapping MD to M̃ and setting the multiplicity of each edge in M̃ require no
additional communication round, and hence, both M̃ and the multiset (M̃,m)
can be computed in 2Δ rounds.

To analyze the quality of an m2-eds (M̃,m) computed by the algorithm
above, let us consider an integer program formulation of the mb-EDS problem:

min {x(E) | x(δ(e)) ≥ b(e) and xe ∈ Z+,∀e ∈ E} ,

where x(F) =
∑

e∈F xe for F ⊆ E, and δ(e) = {e} ∪ {e′ ∈ E |e’is adjacent toe}
for e ∈ E. Replacing the integrality constraints by linear constraints 0 ≤ xe, we
obtain an LP and its dual LP in the following forms:

LP: (Peds) min zP (x) = x(E) LP: (Deds) max zD(y) =
∑

e∈E

b(e)ye

subject to: x(δ(e)) ≥ b(e), ∀e ∈ E subject to: y(δ(e)) ≤ 1, ∀e ∈ E

xe ≥ 0, ∀e ∈ E ye ≥ 0, ∀e ∈ E

Let ỹ ∈ R
E denote a vector of dual variables for the multiset (M̃,m) such

that

ỹe =

{
m(e)/4 if e ∈ M̃

0 otherwise

We are ready to show the performance of the algorithm above for approxi-
mating EDS and m2-EDS problems:

Theorem 1. The local algorithm given above computes a 4-approximation to
EDS and a 2-approximation to m2-EDS, in 2Δ rounds.

Proof. By Lemma 1.2 ỹ is dual feasible in LP:(Deds). In case of EDS, b(e) ≡
1,∀e ∈ E, and hence, its objective value is

zD(ỹ) =
∑

e∈M̃

ye =
∑

e∈M̃

(m(e)/4) ≥
∣
∣
∣M̃/4

∣
∣
∣ ,

whereas it is

zD(ỹ) =
∑

e∈M̃

2ye =
∑

e∈M̃

(m(e)/2) =

⎛

⎝
∑

e∈M̃

m(e)

⎞

⎠ /2

in case of m2-EDS where b(e) ≡ 2,∀e ∈ E. Therefore, the optimum of EDS is
lower bounded by |M̃/4| and that of m2-EDS by

(∑
e∈M̃ m(e)

)
/2. �

Clearly, the vertex set V (M̃) is a 2-tvc for G, and it can be computed by each
node checking if it is matched by M̃ after M̃ is computed. It is then exactly the
algorithm of Polishchuk and Suomela [22], who showed that V (M̃) is no larger
than thrice the minimum vertex cover size, and hence,

Corollary 1. The 2-TVC problem can be approximated within 3 in 2Δ rounds.

Remark: Better algorithms are known for the vertex cover problem [2,3] as stated
in Sect. 1, but their outputs are not necessarily 2-tvc’s.

Fast and Simple Local Algorithms for 2-EDS and 3-TVC 257

4 A Local Algorithm for S2-EDS and 3-TVC

As was seen already, M̃ ⊆ E computed by the algorithm of Sect. 3 is a simple
2-matching as well as an eds for G = (V,E). It is not necessarily a maximal
simple 2-matching, and even if it is so, it doesn’t have to be a simple 2-eds.

As observed in the proof of Lemma 1.1, there exist two different edges, say
e1 and e2, in MD dominating {uL, vR} and {uR, vL} in GD, for any {u, v} ∈ E.
When MD is mapped to M̃ , however, these two might become one result-
ing in a single domination of {u, v} in G. More precisely, when {uL, vR} (or
{uR, vL}) is dominated by these two edges e1 and e2 in GD, M̃ dominates
{u, v} twice as p(e1) �= p(e2). Therefore, {u, v} is dominated only once by
M̃ if and only if e1 (e2, respectively) is the only edge of MD dominating
{uL, vR} ({uR, vL}, respectively) in GD and p(e1) = p(e2). Formally, let M̃
be divided into M̃1 and M̃2 such that M̃2 = {e ∈ M̃ | p−1(e) ⊆ MD} and
M̃1 = M̃ \ M̃2 = {e ∈ M̃ | |p−1(e) ∩ MD| = 1}. We can then restate the above
argument as follows:

Lemma 2. An edge e is dominated only once by M̃ in G iff e is dominated only
by a single edge of M̃2 in G.

It thus suffices to dominate those edges specified in Lemma 2, on top of M̃ , to
construct an s2-eds. For this purpose, let V2 = V (M̃2) and then, the set of edges
subject to additional dominations is exactly M̃2 ∪ E2, where E2 = {{u, v} ∈ E |
u ∈ V2, v �∈ V (M̃)}.

To describe the algorithm for dominating those edges in M̃2 ∪ E2, consider
the bipartite graph GB = (V2 ∪ F,E2) that we can find once M̃ is computed
by the algorithm of Sect. 3, where F = N(V2) \ V (M̃), the set of nodes in the
neighborhood of V2 and unmatched by M̃ .

1. Compute a simple 2-matching M̃ ⊆ E by running the algorithm of Sect. 3 on
G = (V,E).

2. Compute a maximal matching MB in GB with color classes V2 and F . To do
so, we once again use the local algorithm of Hańćkowiak et al. [16]. Each node
of G knows if it belongs to V2 = V (M̃2) immediately after M̃ is computed
in Step 1, and any node unmatched by M̃ can know if it belongs to F by
checking if any of its neighbors belongs to V (M̃2) using one additional round.

Clearly, any edge in E2 is dominated by MB . On the other hand, there are three
cases for e = {u, v} ∈ M̃2 to consider: (1) {u, v} ⊆ V (MB) (i.e., both u and v
matched by MB), (2) |{u, v}∩V (MB)| = 1 (i.e., only one of them matched), and
(3) {u, v} ∩ V (MB) = ∅ (i.e., neither matched). For each {u, v} ∈ M̃2, u and v
can check which is the case, by exchanging messages between them in one round.
In cases (1) or (2) {u, v} is successfully dominated twice by M̃ ∪ MB , whereas
it is still dominated only once (by {u, v} itself) otherwise. So, we need to pick
one additional edge to dominate {u, v} in case (3), but picking exactly one edge
among those incident to either u or v requires the symmetry breaking in general,
and it is hard to do in an anonymous network. Therefore, instead of trying to

258 T. Fujito and D. Suzuki

do so, we let each of u and v to add one edge incident to it, other than {u, v},
to MB while dropping {u, v} from M̃2.

3. For any {u, v} ∈ M̃2, if {u, v} ∩ V (MB) = ∅, each of u and v picks an edge
incident to it other than {u, v}, and adds it to M̃2 while dropping {u, v} from
M̃2. In case when u or v cannot pick any edge other than {u, v}, then keep it
in M̃2.

Let M̃ ′
2 ⊆ E denote the edge set resulting from modifying M̃2 in Step 3 above,

and M̃2 the original subset of M̃ . It is then clear at this point that every edge in
M̃2 ∪E2 is dominated twice by M̃ ′

2 ∪MB , and hence, the output M̃1 ∪ M̃ ′
2 ∪MB

of the algorithm is a valid s2-eds for G, which is computed in 4Δ + 2 rounds
in total.

It remains to analyze the performance of this algorithm, and it will be based
again on the the dual LP:(Deds) of the LP relaxation for m2-EDS. Recall the
vector ỹ ∈ R

E of dual variables defined for the multiset (M̃,m) in Sect. 3, and
we also use it here as defined in terms of M̃1 and M̃2 such that

ỹe =

⎧
⎪⎨

⎪⎩

1/4 if e ∈ M̃1

1/2 if e ∈ M̃2

0 otherwise

By the same reasoning as the one used for an m2-eds (M̃,m), it can be seen that
ỹ is dual feasible in LP:(Deds), and moreover, the solution size |M̃1 ∪ M̃ ′

2 ∪ MB |
would be bounded above by twice the objective value of ỹ, which is zD(ỹ) =∑

e∈M̃ 2ye, if it is the case that |M̃ ′
2 ∪ MB | ≤ 2|M̃2|. Among the three cases

considered earlier for e = {u, v} ∈ M̃2, two edges of M̃ ′
2∪MB can be distinctively

associated with e in cases (2) and (3). In case of (1), however, where both u and v
are matched by MB, three edges (two from MB and e ∈ M̃ ′

2) must be balanced
with e. To deal with such a case, ỹ is modified as follows. Suppose that both
u and v are matched by MB for {u, v} ∈ M̃2, and let e1 and e2 denote those
two edges in MB matching u and v, respectively. Replace e = {u, v} in M̃2 by
these two edges e1 and e2, and do this operation for every e ∈ M̃2 corresponding
to case (1). Each of these operations can be seen to be an augmentation of the
matching M̃2 along an alternating path of length 3, and hence, the resulting
edge set M̃ ′′

2 remains as a matching in GB . Moreover, no edge in MB touches a
node in V (M̃1), and therefore, when ỹ is altered to ỹ′ such that

ỹ′
e =

⎧
⎪⎨

⎪⎩

1/4 if e ∈ M̃1

1/2 if e ∈ M̃ ′′
2

0 otherwise

it remains dual feasible in LP:(Deds). Since each edge e ∈ M̃2 corresponding to
case (1) is replaced by e1 and e2 in M̃ ′′

2 distinctively, each with the dual value of
1/2, those three edges associated with e, namely e1 and e2 in MB and e itself,

Fast and Simple Local Algorithms for 2-EDS and 3-TVC 259

can be accounted for by the values of ye1 and ye2 , in bounding the solution size
within a factor 2 of the optimum; or in other words,

|M̃1 ∪ M̃ ′
2 ∪ MB| ≤ 2zD(ỹ′).

We may thus conclude:

Theorem 2. The local algorithm given above computes a 2-approximation to
s2-EDS in 4Δ + 2 rounds.

Let us turn our attention to the 3-TVC problem. Each component of the
subgraph of G induced by any s2-eds S for G contains at least two edges, and
hence, V (S) is always a 3-tvc for G. Therefore, attaching the following step,
which requires no additional round of communication, to the above algorithm
at the end enables it to compute a 3-tvc for G:

4. For each u ∈ V check if any edge incident to it belongs to the previous output
of M̃1 ∪ M̃ ′

2 ∪ MB. Set the local output of u as “yes, I’m in a solution” if it
does, and “no, I’m not in a solution” otherwise.

So the output of this algorithm is V (M̃1 ∪ M̃ ′
2 ∪ MB), and it remains to

estimate its size. To do so, consider the following LP relaxation of the vertex
cover problem and its dual LP:

LP: (Pvc) min
∑

v∈V

xv LP: (Dvc) max
∑

e∈E

ye

subject to: xu + xv ≥ 1, ∀{u, v} ∈ E subject to: y(δ(v))≤ 1, ∀v ∈ V

xv ≥ 0, ∀v ∈ V ye ≥ 0, ∀e ∈ E

where y(F) =
∑

e∈F ye for F ⊆ E.
Recall now the feasible solution ỹ′ ∈ R

E of LP:(Deds) used in lower bounding
the size of a minimum s2-eds, and observe that ỹ′(δ(v)) ≤ 1/2 for all v ∈ V . It
then means that 2ỹ′ is feasible in LP:(Dvc).

Let us now consider V (M̃1) and V (M̃ ′
2 ∪ MB) separately:

– M̃1 is a simple 2-matching consisting of paths of length at least 2 and
cycles. For every component C of the subgraph induced by V (M̃1), let
V (C) and M̃1(C) denote the sets of nodes and edges in M̃1 contained in C,
respectively. Then, (1) |M̃1(C)| ≥ 2, and (2) |V (C)| ≤ |M̃1(C)|+1. Therefore,
when |V (C)| is compared with the duals assigned on the edges of M̃1(C), we
have |V (C)|

∑
e∈M̃1(C) 2ỹ′

e

=
|V (C)|

|M̃1(C)|/2
≤ 2k + 2

k
≤ 3.

– The edge set M̃ ′
2 is obtained from the matching M̃2 by adding more edges

than deleted. It should be noted, however, that V (M̃ ′
2 ∪ MB) remains the

same as V (M̃2 ∪ MB) because MB is a maximal matching in GB . Also recall
that nonzero duals are assigned, within GB , only on the edges in M̃ ′′

2 . We
here do the case analysis as was done earlier depending on the number of
edges in MB incident to u or v for {u, v} ∈ M̃2.

260 T. Fujito and D. Suzuki

Case {u, v} ⊆ V (MB) (i.e., both u and v matched by MB). In this case both
of u and v are matched by two edges of MB , say e1 and e2. It is also the
case that both e1 and e2 are in M̃ ′′

2 (but {u, v} is not). Therefore, the dual
value of 2(1/2 + 1/2) = 2 can be associated with those 4 nodes matched
by e1 and e2.

Case |{u, v} ∩ V (MB)| = 1 (i.e., only one of them matched). There exists
just one edge, say e, in MB incident to either u or v. For those 3 nodes,
u, v, and another one matched by e, the dual of 2 × (1/2) = 1 on {u, v}
can be associated.

Case {u, v} ∩ V (MB) = ∅ (i.e., neither matched). There are only two nodes
to account for in this case, namely, u and v, and the dual of 1 on the edge
{u, v} can be associated.

In either case the number of nodes is thus bounded by thrice the corresponding
dual values.

It follows that the number of nodes in a computed solution is no larger than
three times the objective value of dual feasible 2ỹ′; i.e.,

V (M̃1 ∪ M̃ ′
2 ∪ MB) ≤ 3

∑

e∈E

2ỹ′
e.

Therefore, although the 3-tvc V (M̃1 ∪ M̃ ′
2 ∪ MB) is in general larger than the

2-tvc V (M̃) as the former is constructed by augmenting the latter into a 3-tvc,
it is till within the range of 3-approximation of the minimum vertex cover, and
hence,

Theorem 3. The local algorithm given above computes a 3-approximation to
3-TVC in 4Δ + 2 rounds.

Acknowledgments. The authors are very grateful to the anonymous referees for their
valuable comments and suggestions.

References

1. Armon, A.: On min-max r-gatherings. Theor. Comput. Sci. 412(7), 573–582 (2011)
2. Åstrand, M., Floréen, P., Polishchuk, V., Rybicki, J., Suomela, J., Uitto, J.: A local

2-approximation algorithm for the vertex cover problem. In: Keidar, I. (ed.) DISC
2009. LNCS, vol. 5805, pp. 191–205. Springer, Heidelberg (2009)

3. Åstrand, M., Suomela, J.: Fast distributed approximation algorithms for vertex
cover and set cover in anonymous networks. In: Proceedings of the Twenty-second
Annual ACM Symposium on Parallelism in Algorithms and Architectures, SPAA
2010, pp. 294–302 (2010)

4. Baker, B.S.: Approximation algorithms for NP-complete problems on planar
graphs. J. ACM 41, 153–180 (1994)

5. Berger, A., Fukunaga, T., Nagamochi, H., Parekh, O.: Approximability of the
capacitated b-edge dominating set problem. Theor. Comput. Sci. 385(1–3), 202–
213 (2007)

Fast and Simple Local Algorithms for 2-EDS and 3-TVC 261

6. Berger, A., Parekh, O.: Linear time algorithms for generalized edge dominating set
problems. Algorithmica 50(2), 244–254 (2008)

7. Binkele-Raible, D., Fernau, H.: Enumerate and measure: improving parameter bud-
get management. In: Raman, V., Saurabh, S. (eds.) IPEC 2010. LNCS, vol. 6478,
pp. 38–49. Springer, Heidelberg (2010)

8. Chleb́ık, M., Chleb́ıková, J.: Approximation hardness of edge dominating set prob-
lems. J. Comb. Optim. 11(3), 279–290 (2006)

9. Escoffier, B., Monnot, J., Paschos, V.T., Xiao, M.: New results on polynomial inap-
proximabilityand fixed parameter approximability of edge dominating set. Theor.
Comput. Syst. 56(2), 330–346 (2015)

10. Fernau, H.: edge dominating set: Efficient enumeration-based exact algorithms.
In: Bodlaender, H.L., Langston, M.A. (eds.) IWPEC 2006. LNCS, vol. 4169, pp.
142–153. Springer, Heidelberg (2006)

11. Fernau, H., Fomin, F.V., Philip, G., Saurabh, S.: The curse of connectivity: t-total
vertex (edge) cover. In: Thai, M.T., Sahni, S. (eds.) COCOON 2010. LNCS, vol.
6196, pp. 34–43. Springer, Heidelberg (2010)

12. Fernau, H., Manlove, D.F.: Vertex and edge covers with clustering properties: com-
plexity and algorithms. J. Discrete Algorithms 7(2), 149–167 (2009)

13. Fomin, F.V., Gaspers, S., Saurabh, S., Stepanov, A.A.: On two techniques of com-
bining branching and treewidth. Algorithmica 54(2), 181–207 (2009)

14. Fujito, T.: On matchings and b-edge dominating sets: a 2-approximation algorithm
for the 3-Edge dominating set problem. In: Ravi, R., Gørtz, I.L. (eds.) SWAT 2014.
LNCS, vol. 8503, pp. 206–216. Springer, Heidelberg (2014)

15. Göös, M., Hirvonen, J., Suomela, J.: Lower bounds for local approximation. J.
ACM. 60(5), 1–23 (2013)

16. Hańćkowiak, M., Karoński, M., Panconesi, A.: On the distributed complexity of
computing maximal matchings. In: Proceedings of the Ninth Annual ACM-SIAM
Symposium on Discrete Algorithms, pp. 219–225 (1998)

17. Horton, J.D., Kilakos, K.: Minimum edge dominating sets. SIAM J. Discrete Math.
6(3), 375–387 (1993)

18. Hunt III, H.B., Marathe, M.V., Radhakrishnan, V., Ravi, S.S., Rosenkrantz, D.J.,
Stearns, R.E.: A unified approach to approximation schemes for NP- and PSPACE-
hard problems for geometric graphs. In: Proceedings 2nd Annual European Sym-
posium on Algorithms, pp. 424–435 (1994)

19. Linial, N.: Locality in distributed graph algorithms. SIAM J. Comput. 21(1), 193–
201 (1992)

20. Ma�lafiejski, M., Żyliński, P.: Weakly cooperative guards in grids. In: Gervasi, O.,
Gavrilova, M.L., Kumar, V., Laganá, A., Lee, H.P., Mun, Y., Taniar, D., Tan,
C.J.K. (eds.) ICCSA 2005. LNCS, vol. 3480, pp. 647–656. Springer, Heidelberg
(2005)

21. Mitchell, S., Hedetniemi, S.: Edge domination in trees. In: Proceedings 8th South-
eastern Conference on Combinatorics, Graph Theory, and Computing, pp. 489–509
(1977)

22. Polishchuk, V., Suomela, J.: A simple local 3-approximation algorithm for vertex
cover. Inform. Process. Lett. 109(12), 642–645 (2009)

23. Schmied, R., Viehmann, C.: Approximating edge dominating set in dense graphs.
Theor. Comput. Sci. 414(1), 92–99 (2012)

24. Srinivasan, A., Madhukar, K., Nagavamsi, P., Pandu, C., Pandu Rangan, C.,
Chang, M.S.: Edge domination on bipartite permutation graphs and cotriangu-
lated graphs. Inform. Process. Lett. 56, 165–171 (1995)

262 T. Fujito and D. Suzuki

25. Suomela, J.: Distributed algorithms for edge dominating sets. In: Proceedings of the
29th ACM SIGACT-SIGOPS Symposium on Principles of Distributed Computing,
PODC 2010, pp. 365–374 (2010)

26. Suomela, J.: Survey of local algorithms. ACM Comput. Surv. 45(2), 24–40 (2013)
27. Xiao, M., Kloks, T., Poon, S.-H.: New parameterized algorithms for the edge dom-

inating set problem. Theor. Comput. Sci. 511, 147–158 (2013)
28. Yannakakis, M., Gavril, F.: Edge dominating sets in graphs. SIAM J. Appl. Math.

38(3), 364–372 (1980)

Approximation Algorithms for Generalized
Bounded Tree Cover

Barun Gorain1, Partha Sarathi Mandal2, and Krishnendu Mukhopadhyaya1(B)

1 Indian Statistical Institute, Kolkata, India
{baruniittg123,krishnendu.mukhopadhyaya}@gmail.com

2 Indian Institute of Technology Guwahati, Guwahati, India
psm@iitg.ernet.in

Abstract. A tree cover is a collection of subtrees of a graph such that
each vertex is a part of at least one subtree. The bounded tree cover
problem (BTC) requires to find a tree cover with minimum number of
subtrees of bounded weight. This paper considers two generalized ver-
sions of BTC. The first problem deals with graphs having multiple weight
functions. Two variations called strong and weak tree cover problems are
defined. In strong tree cover, every subtree must be bounded with respect
to all weight functions, whereas in weak tree cover, each subtree must
be bounded with respect to at least one weight function. We consider
only metric weight functions. A 4-approximation algorithm for strong
tree cover and an O(log n)-approximation algorithm for weak tree cover
problem has been proposed. In the second problem, the objective is to
find a tree cover where the bounds of the subtrees are not necessarily
same. We show that this problem cannot be approximated within a con-
stant factor unless P=NP.

Keywords: Tree cover · TSP · k-MST · Approximation algorithms

1 Introduction

Covering the vertices of a graph with subgraphs like trees, tours or paths is a
widely studied topic of research [1,6]. For a given graph G = (V,E), a collec-
tion of subtrees (tours/paths) is called a tree (tour/path) cover of G if every
vertex of G appears in at least one of the subtrees (tours/paths). This problem
has applications in vehicle routing [1,8], where the objective is to serve a set of
clients by assigning some vehicles with proper scheduling. The objectives of the
problems vary depending on the applications. Two classes of problems are pop-
ular in literature. The Min-Max problems [1,2,6] aim to minimize the maximum
weight of a subtree in the tree cover where the number of subtrees is given. In
the mincover or bounded cover problems [1,6], the maximum weight of a subtree
is given. The objective is to find a tree cover with minimum number of subtrees
that covers all the vertices of the graph. Both the above tree cover problems are
NP-hard [1]. In this paper, we concentrate on bounded tree cover problem.

c© Springer International Publishing Switzerland 2016
M. Kaykobad and R. Petreschi (Eds.): WALCOM 2016, LNCS 9627, pp. 263–273, 2016.
DOI: 10.1007/978-3-319-30139-6 21

264 B. Gorain et al.

Definition 1 (Bounded tree cover problem (BTC)[6]). Let G = (V,E,w)
be an undirected graph with positive weights. For a given bound λ ≥ 0, the
objective is to find a tree cover of G with minimum number of subtrees such that
the weight of each subtree is at most λ.

In many applications, multiple weight functions may be associated with a
graph [9]. Consider an application, where geographic locations are represented
as vertices of a graph. Between a pair of locations several attributes like distance,
travel time and associated cost etc. may be associated. These attributes can be
represented as multiple weight functions of the graph. Some other problems may
also be equivalently restated as BTC of a graph with multiple weight functions.
For example, let us consider the following variation of BTC. Let G = (V,E,w)
be a weighted graph, λ a positive real number, and p a positive integer. The
objective is to find a tree cover of G such that the weight of each subtree is
at most λ and each subtree can have at most p vertices. This problem can be
reformulated on G by assigning it another weight function. Let w′ be another
weight function on G, where w′(e) = 1, for all e ∈ E. Now, the objective of the
problem is to find a tree cover of G such that for each subtree T of the tree
cover, w(T) ≤ λ and w′(T) ≤ p − 1.

Throughout this paper, we denote the vertex and edge set of a graph G by
V (G) and E(G), respectively. For any subgraph H and a weight function w of
G, w(H) denotes the sum of the edge weights of H. Without loss of generality,
we assume that the input graph G is a complete graph. If G is not complete
graph, it can be transformed into its shortest path metric completion G̃. A tree
cover of G can be constructed from a tree cover of G̃ by replacing each edge of
a subtree in G̃ with the shortest path between the corresponding vertices in G
[6]. (vi, vj) denotes the edge between two vertices vi and vj . A path P of G is
denoted by v1v2 · · · vj , where v1, v2, · · · , vj are consecutive vertices along P from
v1 to vj . For any set S, |S| denotes the number of elements in S.

Related Work: Many interesting results have been reported in the literature
on tree cover problems. Evan et al. [2] considered the rooted version of Min-Max
k-tree cover problem. In this problem a set of vertices called roots are given
as input with the graph. The objective is to find a tree cover with k subtrees
such that the weight of the maximum subtree is minimum. A 4-approximation
algorithm is proposed to solve the problem. Nagamochi [7] proposed a (3− 2

k+1)-
approximation algorithm for the Min-Max k-tree cover problem where each sub-
tree of the tree cover has a common root. If the underlying graph is a tree, the
authors proposed a (2 + ε)-approximation algorithm for the rooted version and
a (2 − 2

k+1)-approximation algorithm for the unrooted version of the Min-Max
k-tree cover problem, respectively. The objective of the Min-Max tree parti-
tion problem is to partition the graph into k equal size vertex sets such that
the maximum weight of the minimum spanning trees of each of the vertex sets
is minimized. Guttmann-Beck and Hassin [5] proposed (2k − 1)-approximation
algorithm to solve this problem for a graph with metric weight function.
Frederickson et al. [3] considered the k-TSP problem, where the objective is
to cover a graph with k tours rooted at a given vertex such that the total weight

Approximation Algorithms for Generalized Bounded Tree Cover 265

of the tours is minimized. An (e+1− 1
k)-approximation algorithm was proposed,

where e is the approximation ratio for the TSP problem.
Arkin et al. [1] proposed a 3-approximation algorithm for BTC. The algo-

rithm computes paths of bounded weight and the set of paths is returned as
the set of subtrees of the tree cover. For each k, 1 ≤ k ≤ n, minimum spanning
forest with k connected components is computed. Then paths of desired weights
are calculated from the tours which are computed on each of the components by
doubling the edges and shortcutting. Shortcutting is a technique to compute a
tour from an Eulerian tour by eliminating duplicate entries of all vertices except
the first vertex. The minimum number of subtrees over all iterations is returned
as the output of the algorithm. The authors also proposed a 4-approximation
algorithm for Min-Max k-tree cover problem. Khani and Salavatipour [6] pro-
posed a 2.5-approximation algorithm for BTC. The proposed algorithm joins the
smaller subtrees to reduce the number of trees in the tree cover. The authors also
proposed a 3-approximation algorithm for Min-Max k-tree cover problem. These
are the best known constant factor algorithms for the above two problems.

Our Contribution: In this paper we consider two variations of BTC. Strong
tree cover and weak tree cover problems are introduced on a graph with multiple
weight functions. A 4-approximation algorithm is proposed for strong tree cover
problem. For weak tree cover problem, an O(log n)-approximation algorithm
is proposed for a graph having two weight functions. The same algorithm is
extended to work for arbitrary numbers of weight functions. We establish an
inapproximability result for BTC when weights of the subtrees of the tree cover
are bounded by a set of given bounds which are not necessarily same.

2 Tree Cover for Graphs with Multiple Weight Functions

We introduce strong tree cover and weak tree cover on a graph with multiple
weight functions. In the strong tree cover, the subtrees in the tree cover need to
be bounded with respect to each of the weight functions. In weak tree cover, the
subtrees in the tree cover need to be bounded with respect to at least one of the
weight functions. The formal definitions of the problems are given below.

Definition 2 (Strong tree cover problem). Let G be a complete graph with
multiple metric weight functions w1, w2, . . . , wl, (l ≥ 1). For given bounds λ1, λ2,
· · · , λl ≥ 0, the objective is to find a tree cover with minimum number of subtrees
such that for each subtree T in the tree cover, wi(T) ≤ λi, for all i = 1, 2, · · · , l.

Definition 3 (Weak tree cover problem). Let G be a complete graph with
multiple metric weight functions w1, w2, · · · , wl (l ≥ 1). For given bounds λ1,
λ2, · · · , λl ≥ 0, the objective is to find a tree cover with minimum number of
subtrees such that for each subtree T in the tree cover, there exists a j, 1 ≤ j ≤ l,
with wj(T) ≤ λj.

Both of the above problems are NP-hard, since for l = 1, the problems reduce
to BTC which is NP-hard [1].

266 B. Gorain et al.

2.1 Strong Tree Cover

In this section, a 4-approximation algorithm for strong tree cover problem is pro-
posed. We define a weight function w′ on G = (V,E,w1, w2, · · · , wl) as follows.
For any edge e ∈ E(G),

w′(e) =

⎧
⎪⎪⎨

⎪⎪⎩

1 if there exists aj, 1 ≤ j ≤ l,

such that λj = 0

min
{

max{w1(e)
λ1

, w2(e)
λ2

, · · · , wl(e)
λl

}, 1
}

otherwise.

Note that w′ is a metric as the maximum of two metric is a metric and
minimum of a metric and a constant is also a metric.

Algorithm 1 (StrongTreeCover) is proposed to solve strong tree cover
problem on G.

Algorithm 1. StrongTreeCover(G)

1: SOL ={}.
2: Find the minimum spanning tree Γ of G with respect to w′.
3: Delete each edge e from Γ for which wj(e) > λj , for some j.

Let C1, C2, · · · Ch be the connected components after deletion of the edges.
4: for i = 1 to h do
5: Find a tour τi on Ci after doubling the edges and shortcutting.

Let Pi be the path after deleting an edge from τi.
6: while |V (Pi)| > 0 do

7: Pi := v1
i v

2
i · · · , v

|V (Pi)|
i .

8: Let vj
i be the first vertex on Pi such that w′(v1

i v2
i · · · vj+1

i) > 1.
9: SOL = SOL

⋃
(v1

i v2
i · · · vj

i) and Pi = Pi \ (v1
i v

2
i · · · vj

i) \ (vj
i , v

j+1
i).

10: end while
11: end for
12: return SOL.

Now we analyze the approximation factor of Algorithm 1. Let opt be the
number of subtrees in an optimal tree cover. The following lemma gives a lower
bound on the optimal solution.

Lemma 1. If Γ is a minimum spanning tree of G with respect to w′ then
�w′(Γ)� ≤ 2opt.

Proof. Let T1, T2, · · · , Topt be the subtrees in the optimal tree cover. Clearly,
w′(Ti) ≤ 1 for i = 1, 2, · · · , opt. Let vi be a vertex on Ti. Construct a spanning
tree H of G by adding the set of edges {(vi, vi+1)|i = 1, 2, · · · , opt − 1} with
opt⋃

i=1

Ti. Since w′(vi, vi+1) ≤ 1,

Approximation Algorithms for Generalized Bounded Tree Cover 267

w′(H) =
opt∑

i=1

w′(Ti) +
opt−1∑

i=1

w′(vi, vi+1) ≤ opt + opt − 1 ≤ 2opt − 1.

As Γ is a minimum spanning tree of G with respect to w′, w′(Γ) ≤ w′(H) ≤
2opt − 1. Hence, �w′(Γ)� ≤ 2opt. ��
Theorem 1. The approximation factor of Algorithm 1 is 4.

Proof. Let opt be the number of subtrees in an optimal solution and |SOL|
the number of subtrees calculated by Algorithm 1. Let C1, C2, · · · , Ch be the
connected components after deleting h − 1 edges in step 3 from the minimum
spanning tree Γ . Then,

w′(Γ) = w′(C1) + w′(C2) + · · · + w′(Ch) + h − 1 (1)

Since τi is a tour found after doubling the edges in Ci and shortcutting, and w′

is a metric, we have
w′(τi) ≤ 2w′(Ci) (2)

According to step 9, each time a subtree is computed from Pi, the weight of
modified Pi is reduced by at least one with respect to w′. Thus the number of
subtrees computed from τi can be at most �w′(τi)�. If no edge is deleted from Γ
in step 3, then |SOL| ≤ 2 �w′(Γ)� ≤ 4opt. When h ≥ 2, i.e., at least one edge is
deleted from Γ in step 3,

|SOL| ≤
h∑

i=1

�w′(τi)�

≤
h∑

i=1

w′(τi) + h

≤ 2
h∑

i=1

w′(Ci) + h (From Eq.2)

≤ 2w′(Γ) (From Eq.1)
≤ 4opt (From Lemma1)

Therefore, the approximation factor of Algorithm 1 is 4. ��

2.2 Weak Tree Cover

First we propose an algorithm to solve weak tree cover problem for a graph with
two weight functions. Then we extend the algorithm to solve the problem for a
graph with any given number of weight functions. We use the 2-approximation
algorithm for k-MST [4] as a subroutine in the proposed algorithm. The defini-
tion of k-MST problem is given below.

268 B. Gorain et al.

Definition 4 (k-MST problem [4]). Let G = (V,E,w) be a weighed graph,
where the edge weights are positive real numbers and k a given positive integer.
The objective is to find a minimum weighted tree of G that spans any k vertices
of G.

Let w1 and w2 be two metric weight functions on G. We define two weight
functions w′

1 and w′
2 as follows:

w′
1(e) =

{
w1(e)

λ1
if w1(e) ≤ λ1,

1 otherwise.

w′
2(e) =

{
w2(e)

λ2
if w2(e) ≤ λ2,

1 otherwise.

Algorithm 3 (WeakTreeCover) is proposed to solve weak tree cover prob-
lem on G. The algorithm calls the recursive Algorithm 2 (FindTree). Find-
Tree returns O(log n) subtrees, each of which is associated with an integer
i ∈ {1, 2}. (Γ1, 1) means the subtree Γ1 is calculated with respect to the weight
functions w′

1. Similarly, (Γ2, 2) means the subtree Γ2 is calculated with respect
to the weight functions w′

2. For each of the tuples (Γ ′, i) returned by FindTree,
each edge e with wi(e) > λi is deleted from Γ ′. This deletion may split Γ ′ into
several connected components. Then paths of weights at most λi with respect to
wi are calculated from the tours which are computed on each of the components
by doubling the edges and shortcutting. This set of paths is returned as the tree
cover of G.

Algorithm 2. FindTree(G)

1: n′ := |V (G)|.
2: if n′ = 1 then
3: Return (G, 1).
4: end if
5: Find a

⌈
n′
2

⌉
-MST Γ1 of G with respect to w′

1 using the 2-approximation

algorithm [4]. Let G1 be the induced subgraph with the remaining vertices.

6: Find a
⌈

n′
2

⌉
-MST Γ2 of G with respect to w′

2 using the 2-approximation

algorithm [4]. Let G2 be the induced subgraph with the remaining vertices.
7: if w′

1(Γ1) ≤ w′
2(Γ2) then

8: Return (Γ1, 1)
⋃

FindTree(G1).
9: else
10: Return (Γ2, 2)

⋃
FindTree(G2).

11: end if

Approximation Algorithms for Generalized Bounded Tree Cover 269

Lemma 2. If (Γ ′, i) ∈ S, then w′
i(Γ

′) ≤ 4opt′, where opt′ is the number of
subtrees in the optimal tree cover of G.

Proof. Since (Γ ′, i) is returned by FindTree, there exists a subgraph G′ of
G such that Γ ′ is a subtree spanning

⌈
|V (G′)|

2

⌉
vertices of G′. Let optG′ be the

number of subtrees in the optimal tree cover of G′. Let T1, T2, · · · , Topt1 , Topt1+1,
Topt1+2, · · · ToptG′ be the subtrees in the optimal tree cover of G′, where w1(Ti) ≤
λ1 for i = 1, 2, · · · , opt1 and w2(Ti) ≤ λ2 for i = opt1 + 1, opt1 + 2, · · · , optG′ .
Let vi ∈ V (Ti). Construct two subgraphs H1 and H2 as follows:

H1 =

(
opt1⋃

i=1

Ti

)
⋃

{(vi, vi+1)|i = 1, 2, · · · , opt1 − 1}

H2 =

⎛

⎝
optG′⋃

i=opt1+1

Ti

⎞

⎠
⋃

{(vi, vi+1)|i = opt1 + 1, opt1 + 2, · · · , optG′ − 1}

Now,

w′
1(H1) =

opt1∑

i=1

w′
1(Ti) +

opt1−1∑

i=1

w′
1(vi, vi+1)

≤ 2opt1 − 1

Therefore, �w′
1(H1)� ≤ 2opt1 ≤ 2optG′ . Similarly, �w′

2(H2)� ≤ 2optG′ .
Since {T1, T2, · · · , Topt1 , Topt1+1, Topt1+2, · · · , ToptG′ } is a tree cover of G′,

either |V (H1)| ≥
⌈

|V (G′)|
2

⌉
or |V (H2)| ≥

⌈
|V (G′)|

2

⌉
.

Without loss of generality let |V (H1)| ≥
⌈

|V (G′)|
2

⌉
. For j = 1, 2, let Γ opt

j be

the optimal
⌈

|V (G′)|
2

⌉
-MST of G′ with respect to w′

j . Since H1 is a spanning tree

that spans at least
⌈

|V (G′)|
2

⌉
vertices of G′, therefore,

⌈
w′

1(Γ
opt
1)

⌉ ≤ �w′
1(H1)� ≤ 2optG′

Let Γ1 and Γ2 be the
⌈

|V (G′)|
2

⌉
-MST of G′ with respect to w′

1 and w′
2, respec-

tively computed using 2-approximation algorithm [4] (Ref. step 5 and step 6 of
FindTree). Then, w′

1(Γ1) ≤ 2w′
1(Γ

opt
1).

Therefore,

�w′
i(Γ

′)� = min{�w1(Γ1)� , �w2(Γ2)�} ≤ 2
⌈
w′

1(Γ
opt
1)

⌉ ≤ 4optG′

Since optG′ ≤ opt′, therefore �w′
i(Γ

′)� ≤ 4opt′. ��

270 B. Gorain et al.

Algorithm 3. WeakTreeCover(G,w1, w2)

1: S=FindTree(G).
2: SOL′={}.
3: for each (Γ ′, p) ∈ S do
4: Delete every edge e from Γ ′ for which wp(e) > λp.
5: Let C1, C2, · · · Ch be the connected components after deletion of the edges.
6: for i = 1 to h do
7: Find a tour τi from Ci after doubling the edges and shortcutting.
8: Let Pi be the path after deleting any edge from τi.
9: while |V (Pi)| > 0 do

10: Pi := v1
i v2

i · · · v|V (Pi)|
i .

11: Let vj
i be the first vertex on Pi such that wp(v

1
i v

2
i · · · vj+1

i) > λp.
12: SOL′ = SOL′⋃(v1

i v2
i · · · vj

i) and Pi = Pi \ (v1
i v

2
i · · · vj

i) \ (vj
i , v

j+1
i).

13: end while
14: end for
15: end for
16: Return SOL′.

Theorem 2. The approximation factor of Algorithm 3 is O(log n), where n is
the number of vertices of G.

Proof. Let (Γ ′, i) ∈ S. By Lemma 2, �w′
i(Γ

′)� ≤ 4opt′. In step 5 through step
14 of Algorithm 3, a set of subtrees are computed from Γ ′. Let the total number
of subtree computed from Γ ′ be N1. If no edge from Γ ′ is deleted in step 5 of
Algorithm 3, i.e., h = 1 then N1 ≤ 2

⌈
wi(Γ

′)
λi

⌉
= �w′

i(Γ
′)� ≤ 4opt′.

Consider the case when at least one edge is deleted from Γ ′, i.e., h ≥ 2. After
the deletion of h−1 edges, Γ ′ splits into h connected components C1, C2, · · · , Ch.
The corresponding tours τ1, τ2, · · · , τh are computed after doubling the edges of
each component and shortcutting.

Therefore, N1 ≤
h∑

j=1

�w′
i(τj)� ≤

h∑

j=1

2w′
i(Cj) + h.

Also, w′
i(Γ

′) =
h∑

j=1

w′
i(Cj) + h − 1. Therefore,

N1 ≤
h∑

j=1

2w′
i(Cj) + h

≤ 2w′
i(Γ

′)
≤ 8opt′

Since the total number of subtrees returned by FindTree is O(log n), there-
fore |SOL′| ≤ O(log n) · 8opt′.

Hence, the approximation factor of Algorithm 3 is O(log n).
��

Approximation Algorithms for Generalized Bounded Tree Cover 271

Algorithm 3 can be extended to work for a graph with arbitrary number of
weight functions. Let G = (V,E,w1, w2, · · · , wl) be the given graph with bounds
λ1, λ2,· · · , λl. For each i, 1 ≤ i ≤ l, we define w′

i as follows:

w′
i(e) =

{
wi(e)

λi
if wi(e) ≤ λi,

1 otherwise.

Following modification on FindTree subroutine is made for the extended
version of Algorithm 3. The spanning trees Γ1, Γ2, · · · , Γl are computed with
respect to w′

1, w′
2, · · · , w′

l, respectively such that each Γi spans any
⌈

|V (G)|
l

⌉

vertices of G. FindTree returns (Γj , j)
⋃

FindTree(Gj) where j (1 ≤ j ≤ l)
is the index such that w′

j(Γj) = min{w′
i(Γi)|i = 1, 2, · · · , l}.

Since in each call of FindTree, the number of vertices of the graph is reduced
by a fixed fraction of 1

l , FindTree returns O(log n) number of subtrees in S.
Using arguments similar to those used in Theorem 2, one can show that the
approximation factor of this modified Algorithm 3 is O(log n).

3 Tree Cover with Different Bounds

In some practical applications it may be required that the subtrees of the tree
cover bounded by different limits. For example, consider a service provider having
a set vehicles with different speed limits. Vehicle Vi can travel maximum distance
Di in time t. With these vehicles the service provider can provide service to a set
of customers who are located at different locations. Suppose there are multiple
service requests from different customers at a time instance for providing service
within time t. Here the goal of the service provider is to schedule minimum
number of vehicles such that all the customers will be served within that time.
The problem can be formulated as BTC with different bounds. Formally, the
tree cover problem with different bounds (TCDB) may be defined as:

Definition 5 (TCDB). Let G = (V,E,w) be a weighted graph and λ1, λ2, · · · ,
λn ≥ 0 given real numbers. The objective is to find a tree cover {Ti1 , Ti2 , · · · , Tip}
with minimum number of subtrees such that w(Ti1) ≤ λi1 , w(Ti2) ≤ λi2 , · · · ,
w(Tip) ≤ λip , where ij ∈ {1, 2, · · · , n} and ij 	= iq for j 	= q for j, q = 1, 2, · · · , p.

We prove that there does not exist any constant factor approximation algorithm
for TCDB unless P=NP. Arkin et al. [1] proved the hardness of the following
decision version of BTC.

Definition 6 (k-BTC [1]). Given a graph G = (V,E,w), a real number λ ≥ 0
and a positive integer k, whether there is a tree cover of G with k subtrees such
that the weight of each subtree is at most λ.

Arkin et al. proved that k-BTC is NP-hard for k = |V |
3 . In [5], the authors proved

the hardness of the following decision version of the Min-Max tree partitioning
problem.

272 B. Gorain et al.

Definition 7. Given a graph G = (V,E,w) and a real number λ ≥ 0, whether G

can be partitioned into two subtrees T1 and T2 such that V (T1) = V (T2) = V (G)
2

and w(T1) ≤ λ, w(T2) ≤ λ.

It can be shown that k-BTC is NP-hard even for k = 2 using the same reduction
technique which is used to prove the hardness of the Min-Max tree partitioning
problem.

Theorem 3. It is not possible to design any constant factor approximation algo-
rithm for TCDB, unless P=NP.

Proof. We propose a polynomial time reduction from an instance of 2-BTC to an
instance of TCDB. We show that if there exist a constant factor approximation
algorithm for TCDB then 2-BTC can be decided in polynomial time. If possible,
suppose there exists a z-approximation algorithm A for TCDB. Without loss of
generality we assume that z is a positive integer. We consider an instance of 2-
BTC (G1, λ), where G1 = (V1, E1, w1) is a complete weighted graph with n > 2z
vertices. The weight w1 of each edge is integer and satisfies triangle inequality.
We construct a complete graph G2 = (V2, E2, w2) with n2 vertices from G1. For
each vertex vi ∈ V1, consider n vertices v1

i , v2
i , · · · vn

i in V2. Define weight of an
edge (vl

i, v
k
j) ∈ E2 as w2(vl

i, v
k
j) = w1(vi, vj) for i 	= j and w2(vl

i, v
k
i) = 1

2n(n−1) .
We show that the graph G1 has a tree cover with two subtrees having weights

at most λ iff G2 has a tree cover with two subtrees having weights at most
λ + 1

2 . Let {T1, T2} be a tree cover of G1 with w1(T1) ≤ λ and w1(T2) ≤ λ.
Let v1, v2, · · · , vq be the vertices of V (T1). We compute a subtree of T ′

1 of G2 as
follows. For every edge (vx, vy) ∈ E(T1), add (v1

x, v1
y) in T ′

1. Then add the edges
{vi

f , vi+1
f | i = 1 to n − 1, vf ∈ V (T1)}. Similarly, T ′

2 can be computed from T2.
It can be easily verified that {T ′

1, T
′
2} is a tree cover of G2 with w2(T ′

1) ≤ λ + 1
2

and w2(T ′
2) ≤ λ + 1

2 .
Conversely, let {T ′

1, T
′
2} be a tree cover of G2 with w2(T ′

1) ≤ λ + 1
2 and

w2(T ′
2) ≤ λ + 1

2 . A subtree T1 of G1 from T ′
1 is constructed as follows: remove

all the edges of type (vk
i , vl

i) from T ′
1. The remaining edges of T ′

1 are of the
form (vk

i , vl
j) for i 	= j. For each and every such edge (vk

i , vl
j) of T ′

1 we consider
the corresponding edge (vi, vj) in G1 and construct a graph G. Compute the
minimum spanning tree T1 of G. Note that w1(T1) ≤ λ + 1

2 . Since the edge
weights of G1 are integer, w1(T1) ≤ λ. Similarly, T2 can be constructed from T ′

2.
We consider an instance of TCDB as G2 with n2 bounds {λ + 1

2 , λ +
1
2 , 0 · · · , 0}. Let y be the number of subtree in the tree cover returned by algo-
rithm A on G2.

Case 1: (y ≤ 2z)] We show that there is a tree cover of G1 with two subtrees
having weights at most λ. In this case, among these y subtrees, y − 2 are
singleton vertices. The other two subtrees of weight λ + 1

2 cover at least
n2 − 2z + 2 vertices of G2. Since n2 − 2z + 2 > n2 − n, at least one vertex
from each of the set {v1

i , v2
i , · · · , vn

i } of G2 must be covered by at least one
of the subtrees having weights at most λ + 1

2 . From these two subtrees, two
subtrees of G1 with weight at most λ can be computed in the similar way

Approximation Algorithms for Generalized Bounded Tree Cover 273

as explained in the previous paragraph. Hence, G1 has a tree cover with two
subtrees having weights at most λ.

Case 2: (y > 2z)] As A is a z-approximation algorithm, we can say that there
is no tree cover of G2 with two subtrees having weight at most λ + 1

2 . This
implies that there does not exist any tree cover of G1 with two subtrees
having weight at most λ.

Hence, 2-BTC can be decided in polynomial time by applying A on G2, which
is a contradiction unless P=NP. Hence the statement of the theorem follows. ��

4 Conclusion

Some variations of bounded tree cover problem have been discussed in this paper.
We have introduced strong tree cover and weak tree cover for graphs with mul-
tiple weight functions. A 4-approximation algorithm is proposed for strong tree
cover and an O(log n)-approximation algorithm is proposed for weak tree cover.
An inapproximability result is established for bounded tree cover problem where
the subtrees are bounded by a set of given bounds which are not necessarily
same.Designing constant factor approximation algorithm for the weak tree cover
may an interesting open problem to be investigated in the future.

References

1. Arkin, E.M., Hassin, R., Levin, A.: Approximations for minimum and min-max
vehicle routing problems. J. Algorithms 59(1), 1–18 (2006)

2. Even, G., Garg, N., Könemann, J., Ravi, R., Sinha, A.: Min-max tree covers of
graphs. Oper. Res. Lett. 32(4), 309–315 (2004)

3. Frederickson, G.N., Matthew S. Hecht, Kim, C.E.: Approximation algorithms for
some routing problems. In: 17th Annual Symposium on Foundations of Computer
Science, pp. 216–227, October 1976

4. Garg, N.: Saving an epsilon: a 2-approximation for the k-MST problem in graphs.
In: Gabow, H.N., Ronald, F. (eds). Proceedings of the 37th Annual ACM Sympo-
sium on Theory of Computing, Baltimore May 22–24, pp. 396–402. ACM (2005)

5. Guttmann-Beck, N., Hassin, R.: Approximation algorithms for min-max tree par-
tition. J. Algorithms 24(2), 266–286 (1997)

6. Khani, M.R., Salavatipour, M.R.: Improved approximation algorithms for the min-
max tree cover and bounded tree cover problems. Algorithmica 69(2), 443–460
(2014)

7. Nagamochi, H.: Approximating the minmax rooted-subtree cover problem. IEICE
Trans. 88(5), 1335–1338 (2005)

8. Nagarajan, V., Ravi, R.: Approximation algorithms for distance constrained vehicle
routing problems. Networks 59(2), 209–214 (2012)

9. Rocklin, M., Pinar, A.: On clustering on graphs with multiple edge types. Internet
Math. 9(1), 82–112 (2013)

Approximation Algorithms for Three
Dimensional Protein Folding

Dipan Lal Shaw1,2(B), A.S.M. Shohidull Islam3, Shuvasish Karmaker1,
and M. Sohel Rahman1

1 ALEDA Group, Department of CSE, BUET, Dhaka 1205, Bangladesh
dshaw003@ucr.edu, msrahman@cse.buet.ac.bd

2 University of California, Riverside, CA 92521, USA
3 Department of Computational Engineering and Science,

McMaster University, Hamilton, ON, Canada
sohanas@mcmaster.ca

Abstract. Predicting protein secondary structures using lattice mod-
els is one of the most studied computational problems in bioinformatics.
Here the secondary structure or three dimensional structure of a protein
is predicted from its amino acid sequence. The secondary structure refers
to local sub-structures of a protein. Mostly founded secondary structures
are alpha helix and beta sheets. Simplified energy models have been pro-
posed in the literature on the basis of interaction of amino acid residues
in proteins. Here we use well researched Hydrophobic-Polar (HP) energy
model. In this paper, we propose the hexagonal prism lattice with diag-
onals that can overcome the problems of other lattice structures, e.g.,
parity problem. We give two approximation algorithms for protein fold-
ing on this lattice. Our first algorithm leads us to a similar structure
of helix structure that is commonly found in a protein structure. This
motivates us to propose the next algorithm with a better approximation
ratio.

1 Introduction

The HP model [6] is a widely used theoretical model for determining the pro-
tein structure from its amino acid sequence. The model assumes that, there are
only two types of amino acids instead of twenty different types: one type of
amino acid is hydrophobic or non-polar and the other is hydrophilic or polar. In
this paper, hydrophobic and hydrophilic amino acids are denoted as H and P,
respectively. The model also assumes that, hydrophobicity or contacts between
two hydrophobic amino acid, i.e., H-H contacts, is the dominant force in pro-
tein folding. Hence, the energy function of this model depicts the idea that for
optimal embedding, our main task is to maximize the H-H contacts. Although
the HP model abstracts away many details of the folding process, an optimal
or near-optimal solution in the HP model can give valuable insights into the
possible structure of the protein.

M.S. Rahman—Supported by a ACU Titular Fellowship.

c© Springer International Publishing Switzerland 2016
M. Kaykobad and R. Petreschi (Eds.): WALCOM 2016, LNCS 9627, pp. 274–285, 2016.
DOI: 10.1007/978-3-319-30139-6 22

Approximation Algorithms for Three Dimensional Protein Folding 275

Crescenzi et al. proved that protein folding problem in HP model is NP-
hard [5]. The authors used 2D square lattice and proved this by reducing the
Hamiltonian cycle problem to this problem. In 1998, Leighton and Berger proved
the NP-Completeness of protein folding in 3D cubic lattice [2]. Hence the num-
ber of developed approximation and heuristics algorithms using simplified lattice
structures increased over decades [4,7–11,18,20]. The first approximation algo-
rithm was proposed by Hart and Istrail [7], which gave an approximation ratio of
4 on the 2D square lattice. Mauri et al. [16] proposed a different approximation
algorithm, albeit having the same approximation ratio of 4; but they argued that
it worked better in practice. An improved algorithm of ratio 3 was proposed by
Newman [17]. He considered the protein primary structure as a folded loop. A
8
3 -approximation algorithm for the problem on the cubic lattice was given by
Hart and Istrail [7].

A significant drawback of the square lattice and cubic lattice is the parity
problem. Parity problem refers to the phenomenon that if two residues are at
even distance from one another in the sequence then they cannot be in topological
contact with each other when the protein is embedded in the lattice. Agarwala
et al. first suggested that triangular lattice was more suitable to remove this
parity problem [1]. Using a better upper bound, they proposed two approxima-
tion algorithms, one having an approximation ration of 2 and the other 11

6 . Face
Centered Cubic (FCC) lattice is a more generalized 3 dimensional version of the
triangular lattice. Agarwala et al. gave an 5

3 -approximation algorithm on FCC
lattice. Bockenhauer and Bongartz proposed another way to remove the parity
problem. They introduced the square lattice with diagonals [3] and achieved
an approximation ratio of 26

15 in this lattice. Jiang and Zhu used 2D hexagonal
lattice for this problem and gave an approximation algorithm of ratio 6 [14].
However, the hexagonal lattice also has the parity problem. Shaw et al. [19]
removed this problem by introducing diagonals into the hexagonal lattice and
gave two approximation algorithms for protein folding on hexagonal lattice with
diagonals.

In this paper, we introduce the hexagonal prism lattice with diagonals for
protein folding. Our prior work on the hexagonal lattice model with diagonals
achieved an approximation ratio of 5

3 for the primary protein structure [19]. We
now focus on the hexagonal prism lattice with diagonals which can be seen as
the 3 dimensional version of the hexagonal lattice with diagonals. It removes
the parity problem of other 3 dimensional lattices. In hexagonal prism lattice
with diagonals, contacts can occur through diagonals (see Fig. 1). Cubic lattices
with diagonals and FCC lattices can also remove this problem but the main
advantages of the hexagonal prism lattice with diagonals lay on its structure.
One vertex of this lattice have 20 neighbours, on the other hand, the same in the
cubic lattice and FCC lattice has 6 and 14 neighbours respectively. As a result,
probability of having more number of contacts increases for hexagonal prism
lattices with diagonals. Here, we present two novel approximation algorithms
for finding protein structures. Our first algorithm has an approximation ratio of
2 for k > 13 where k is the number of sequences of H’s in the HP string. Our
next algorithm improves the approximation ratio to 9

7 for k > 132.

276 D.L. Shaw et al.

2 Preliminaries

In this section, detail description of structure of the hexagonal prism lattice
with diagonals is given. Also the required notion for describing the algorithm
presented.

Definition 1. The three-dimensional hexagonal prism lattice with diagonals is
an infinite graph G = (V,E) in the Euclidean Space with vertex set V = R3

and edge set E = {(x, x′)|x, x′ ∈ R3 , |x − x′| ≤ 2}, where |.| denotes the
Euclidean norm. The hexagonal prism lattice is composed by stacking multi-
ple two-dimensional hexagonal lattices with diagonals on top of each other. On
a hexagonal prism lattice with diagonals each two-dimensional hexagonal lattice
with diagonals is called a layer. The edges connecting the two layers are called
layer edges. If and only if an edge has length |x − x′| = 1, it is a non-diagonal
edge or non-diagonal layer edge. Otherwise, it is diagonal-layer edge or diagonal
edge.

If two vertices are connected through an edge, they are called adjacent or
neighbour to each other. The difference between the usual hexagonal prism and
the hexagonal prism lattice with diagonals, lies in the fact that, in latter two
vertices can be called adjacent, though they are diagonally apart. The number
of total neighbours in hexagonal prism lattice with diagonals is 20 (see Fig. 1).

Fig. 1. A hexagonal prism lattice with
diagonals. Different layers are indicated
using black and red color. Connect-
ing edges between layers are indicated
using green color (Color figure online).

Fig. 2. Crossing between two binding
edges. This is not possible in valid con-
formation.

The input to the protein folding problem is a finite string p which is often refer
to as an HP string in our problem. P is a string over the alphabet {P, H}, where
p = {P}∗b1{P}+b2{P}+ · · · {P}+bk{P}∗. Here, bi ∈ {H}+ for 1 ≤ i ≤ k. Let,
n =

∑k
i=1 |bi|. Here, P denotes polar amino acids and H denotes non-polar

respectively. Consecutive string of H’s is named as H-run and consecutive P’s as
P-run. So, from the notation of string p the total number of H-runs is k and total
number of H is n. An H-run of odd (even) length is said to be an odd H-run (even
H-run). Now, let’s see the definition of a valid embedding and conformation into
this lattice.

Approximation Algorithms for Three Dimensional Protein Folding 277

Definition 2. Let, G = (V, E) be a lattice and p = p1 . . . pt be an HP string
of length t. An embedding into G of string p is a mapping function f : {1, . . . , t}
→ V . It assigns adjacent positions in p to adjacent vertices in G, (f(i), f(i+1))
∈ E for all 1 ≤ i ≤ t − 1. The edges (f(i), f(i + 1)) ∈ E for 1 ≤ i ≤ t − 1 are
called binding edges. An embedding of p into G is called a conformation, if the
embedding is a self-avoiding walk inside the grid. Self-avoiding walk means no
two binding edges cross each other (see Fig. 2).

Hydrophobic Residue

Polar Residue

Binding Edge

Fig. 3. Conformation of PHPHHHPH-
PHPHPHPHHH on the lattice (Color
figure online).

A

B

C D

E

F

Fig. 4. (C,D) and (B,C) are alternat-
ing edges. (A,C), (C,F) and (C,E) are
loss edges.

Figure 3 shows an example of a conformation. Edges coloured blue are binding
edges and all other edges between residues are non-binding edges. Throughout
the paper, the P-vertices are indicated by blank circles and the H-vertices are
indicated by filled circle.

Definition 3. In a conformation φ, if an edge (x, x′) of G is not a binding edge
and there exist i, j ∈ {1, . . . , t} such that f(i) = x, f(j) = x′, and pi = pj = H,
the edge is called a contact edge. In a continuation, if pi or pj anyone contains
P , the edge is named as loss edge. A binding edge connecting an H with a P is
called an alternating edge. Loss edge is a non-binding edge incident to an H
that is not a contact edge (see Fig. 4).

Definition 4. Let e = (x, y) be any edge in G. Neighbourhood N(e) of e can be
defined as the intersection of the neighbours of its endpoints x and y.

3 Our Approaches

3.1 Upper Bound

Based on a simple counting argument we will deduce a bound, which refers to
maximum contacts possible in hexagonal prism lattice with diagonals. We will
count the number of neighbours of a vertex in the lattice. Here we start our first
lemma.

278 D.L. Shaw et al.

x y

x

y

x

y

x

y

(a)

(b)

(c) (d)

Fig. 5. (a) 12 neighbourhood of the non-diagonal edge (x, y), (b) 4 neighbourhood
of the diagonal edge (x, y), (c) 2 neighbourhood of layer-diagonal edge (x, y), (d) 6
neighbourhood of layer non-diagonal edge (x, y).

Lemma 1. Let, G = (V, E) be a hexagonal lattice with diagonals and p is an
HP string. If p has a conformation in G, then any H in p can have at most 18
contact edges.

Proof: In the lattice G, every vertex has exactly 20 neighbours comprising 9
diagonal neighbours and 3 non-diagonal neighbours in one layer; 4 neighbour
from upper layer and 4 neighbour from lower layer (see Fig. 1). In this conforma-
tion, there are exactly two binding edges of every H-vertex. Hence the remaining
18 edges of adjacent edges of each vertex, can be contact edges. So every vertex
can have at most 18 contact edges. �

Lemma 2. Let, p be an input string for the problem and φ be a conformation
of p. Let e =(x, y) be a loss edge with respect to φ. Then there are at most four
alternating edges in N(e).

Proof: From Fig. 5 if e is a non-diagonal edge, then N(e) contain 12 vertices; if
e is a diagonal edge, then N(e) contain 4 vertices; if e is a layer-diagonal edge,
then N(e) contain 2 vertices; if e is a layer non-diagonal edge, then N(e) contain
6 vertices. Again, each of x and y can be incident to at most two binding edges.
So, there are at most four binding edges in N(e). It follows immediately that
there can be at most four alternating edges adjacent to e. �

Now we are ready to present the upper bound.

Lemma 3. Let, an HP string p with k H-runs and n H. The total number of
contacts in a conformation φ of string p is at most 18n − 1

2k.

Proof: From Lemma 1, since there are n H, total number of contacts is at most
18n.

From Lemma 2 we know that, for every loss edge there will be at most four
alternating edges in its neighbourhood. Alternatively, we can say that, there
will be at least one loss edge for every four alternating edges, assuming that
the alternating edges are in the neighbourhood of that loss edge. Clearly, the
number of loss edges will increase, if the alternating edges are not within the
neighbourhood. So, there will be at least 1

4 loss edge for every alternating edge.

Approximation Algorithms for Three Dimensional Protein Folding 279

In total there are 2k alternating edges. So, the total number of loss edges will
be, 1

4 × 2 × k = 1
2k.

In a confirmation one loss edge incident to H means that it would lose one
contact edge. That means 1

2k loss edges are not used to build contact. Hence,
total contact is at most 18n − 1

2k. �

3.2 Approximation Algorithms and Lower Bounds

In this section, for the protein folding problem, we present two novel approxi-
mation algorithms.

Z

1

2

3

4

5 6

7

8

9

10

11 12

13

14

15

1617

18

19
20

21

22

2324

25

26
27

28

29

30

31

32
33

34

35

36

Fig. 6. Folding of HP string H14P 2H8P 1H11 by Algorithm HelixArrangement. Dotted
black line represent the lattice, solid line represent binding edge of protein, blue dashed
line shows 9 contacts of a H. Binding edges are numbered sequentially. z indicates the
direction of side layers of Upper layer (Color figure online).

Algorithm HelixArrangement. The idea of first algorithm is to arrange all
H’s of the input string in helix structure. The main difference between conven-
tional helix structure, here we arrange P’s of input string outside of the main
helix structure. Figure 6 shows the way we arrange H’s and P’s.

Algorithm HelixArrangement.
Input: An HP string p.
1. Arrange the H’s as follows:

(a) Starting from a layer arrange the first six H’s in a hexagon. Let, called
this base hexagon.

(b) Using the layer diagonal edge climb to upper layer. In this layer arrange
next six H’s in a hexagon which is parallel to base hexagon.

(c) repeat step (b) until end of string p. The hexagon where the process
ended, let called that top hexagon.

2. Intermediate P-runs are arranged in the outer side of hexagon in a layer (see
Fig. 6).

280 D.L. Shaw et al.

Approximation Ratio for Algorithm HelixArrangement. Except the H’s
of base hexagon and top hexagon a H can achieve at least 9 contacts. A H from
its layer achieve 3 contacts, from its immediate upper layer 3 contacts and from
its immediate lower layer 3 contacts. H’s of base hexagon miss the contacts from
lower layer and H’s of top hexagon miss the contacts from upper layer. So, there
is in total 12 H in base hexagon and top hexagon which miss in total 12∗3 or 36
contacts. Note that, it is possible that top hexagon is not filled 6 H’s. But it
does not change any computation, because there is still 6 H’s in top hexagon
and lower layer hexagon of top hexagon, which miss 3 contacts.

Now, if we consider the P’s arrangement, we will achieve two contacts for
every alternating edge. If there is k alternating edge we will achieve 2k contacts.

So, for n H’s total number of contacts (C) can be achieved as follows:
C ≥ 9n − 36 + 2k

Hence we get the following approximation ratio A1:

A1 =
18n − 1

2k

(9n − 36 + 2k)
(1)

From Eq. 1 it can be seen that, A1 tends to reach 18
9 or 2, for large n. So we

compute the value of k so that our approximation ratio is at most 2 as shown
below.

18n − k
2

(9n − 36 + 2k)
≤ 18

9
⇒ 81k ≥ 18 × 30 × 2

⇒ k ≥ 48
3

≈ 16

So, if the total number of H-runs is greater than 16, then Algorithm
HelixArrangement will achieve an approximation ratio of 2.

Theorem 1. For any given HP string, Algorithm HelixArrangement gives a 2
approximation ratio for k > 16, where k is the total number of H-runs and n is
the total number of H.

Algorithm LayerArrangement. The idea of second algorithm is to arrange
all H’s occurring in the input string along the two layers. We arrange the H’s
in the prefix of the string up to the 	n

2
-th H on the upper layer and arrange
the rest of those on the lower layer. In a layer, H-runs are arranged in a spiral
manner. Then we arrange the P’s between the H’s outside these two layers. The
arrangements of the P-runs outside the two layers are shown in Fig. 7. Within
a layer the arrangement is done in chains (see Fig. 7). The arrangement in the
upper (lower) layer can be further divided into nine regions, namely, the left
region, the right region, the up region, the down region, the inside-left region,
the inside-right region, the inside-up region, the inside-down region and the
middle region (see Fig. 8).

Approximation Algorithms for Three Dimensional Protein Folding 281

Algorithm LayerArrangement.
Input: An HP string p.

1. Set f = 	n
2
.

2. Suppose F (f) denotes the position in p after the f -th H. The string up to
position F (p) is denoted by pref F (p) and the string after position F (p) is
denoted by suff F (p). Now,
(a) Arrange the H’s in pref F (p) in the upper layer as follows:

i. Let, i and j are two integers that divide m1 with reminder 0, such that
the |i−j| is minimal for all i and j. Let, r = min(i, j), which is number
of the chains in a layer. Let s = 	 f

r
, which is the number of residues
in a chain. Suppose, S1, S2, S3, . . . denote the position in p after the
s-th,2s-th,3s-th. . . H respectively. Denote, Si(p) = pSi−1 , . . . pSi−1 for
i = 1, 2, 3, Here S0 is starting position.

ii. Now arrange Si(p) in chain one by one from top to bottom for i =
1, 2, 3,

iii. Intermediate P-runs are arranged in the upper-side layers of the upper
layer (see Fig. 7).

(b) Arrange the H’s in suff F (p) along the lower layer following the same
strategy spelled out in Step 2(a); intermediate P-runs are arranged in the
lower-side layer of the lower layer (see Fig. 7).

Approximation Ratio for Algorithm LayerArrangement. Suppose that
m1 = 	n

2
. From Algorithm LayerArrangement, the upper (lower) layer will
contain m1 (m1 or m1+1) H’s. We consider two cases, namely, where m1 is odd,
i.e., m1 = 2x + 1 and m1 is even, i.e., m1 = 2x, with an integer x > 0.

Now, let, i and j are two integers that divide m1 with reminder 0, such that
|i−j| is minimal for all i and j. Let, r = min(i, j), which is number of the chains
in a layer. Now, let, s = m1/r which is number of residues in a chain. The chains
are arranged spirally in a layer.

z

Fig. 7. Folding of HP string H9P 6H18P 7H9 by Algorithm LayerArrangement only in
Upper layer. Z indicates the direction of side layers of Upper layer

282 D.L. Shaw et al.

z

Up Region

Inside Up Region

Right Region

Inside Right Region

Middle Region

Inside Left Region

Left Region

Inside Down Region

Down Region

Fig. 8. Divided into 9 region. They are up region, inside up region, right region, inside
right region, middle region, inside left region, left region, inside down region, down
region.

Now, we will use pq-upper layer (pq-lower layer) to denote a particular region
of the upper (lower) layer. So, pq could be one of the 9 options, namely, lR
(left region), rR (right region), uR (up region), dR (down region), ilR (inside-
left region), irR (inside-right region), iuR (inside-up region), idR (inside-down
region) and mR (middle region). To refer the conformation given by Algorithm
LayerArrangement, we use notation φCA.

The analysis can be easily understood with the help of Fig. 8. In φCA, every
vertex in the lR-up layer and rR-up layer has at least 8 contacts. Every vertex
in the ilR-upper layer and the irR-upper layer has at least 12 contacts. For each
of lR-upper layer, rR-upper layer, ilR-upper layer and the irR-upper layer,
there are r − 2 such vertices (see Fig. 8). Every vertex in the uR-upper layer
and the dR-upper layer has at least 6 contacts. There are s+3

2 such vertices for
each of the uR-upper layer and the dR-upper layer. Every vertex in the iuR-
upper layer and the idR-upper layer has at least 11 contacts. There are (s−3

2)
such vertices for each of the iuR-upper layer and the idR-upper layer. So there
remain (rs − 2r − 2s − 4) vertices in upper layer which fall to mR-upper layer,
where every vertex achieved 14 contacts.

So, for all the vertices of the upper layer, the total number of contacts (C)
can be computed as follows:

C ≥ 2 × 8 × (r − 2) + 2 × 12 × (r − 2) + 2 × 6

× s + 3
2

+ 2 × 11 × (
s − 3

2
) + 14 × (2x − 2r − 2s − 4)

⇒ C ≥ 16r − 32 + 24r − 48 + 6s + 18 + 11s − 33 + 14sr − 28r − 28s − 56
⇒ C ≥ 14sr + 12r − 11s − 151
⇒ C ≥ 14m1 + 12r − 11s − 151 ⇒ C ≥ 7n + 12r − 11s − 151

Approximation Algorithms for Three Dimensional Protein Folding 283

because of, the upper layer is symmetric to the lower layer, both layers will have
the same number of vertices if n = 2m1. Hence, all the vertices of the lower layer
will also have at least C contacts. So, total number of contacts will be at least
2C or 14n + 24r − 22s − 302.

Now, if n = 2m1 +1, then let n1 = n− 1. These n1 vertices will have at least
14n1+24r−22s−302 contacts. The remaining vertex will have at least 2 contacts.
So the total number of contacts will be at least 14(n−1)+24r−22s−302+2 or
14n+24r−22s−314. So, combining the two cases, we get that the total number
of contacts is at least 14n+24r−22s−314. Now if we consider alternating edges,
for every alternating edge we get two extra contacts for the two vertices (each
having one). So, we get a total of at least 14n + 24r − 22s − 314 + 2k contacts
for n H’s and k alternating edges. Approximation ratio A2 can be calculated as
follows:

A2 =
18n − 1

2k

(14n + 24r − 22s − 314 + 2k)
(2)

From Eq. 2 it can be seen that, A2 tends to reach 18
14 for large n. So we

compute the value of k so that our approximation ratio is at most 18
14 as shown

below.

18n − k
2

(14n + 24r − 22s − 314 + 2k)
≤ 18

14

⇒ 14 × 18n − k

2
≤ 18

(14n + 24r − 22s − 314 + 2k)
⇒ 252n − 7k ≤ 252n + 432r − 396s − (314 × 18) + 36k

⇒ 43k ≥ 36(11s − 12r) + (314 × 18) ⇒ k ≥ 36(11s − 12r) + (314 × 18)
43

Now, from this case if 11s = 12r, k ≥ (314×18)
43 ≈ 132

So, the Algorithm LayerArrangement will achieve an approximation ratio of 18
14

or 9
7 for 11s = 12r, if the total number of H-runs is greater than 132.

Theorem 2. For any given HP string, Algorithm LayerArrangement gives a 9
7

approximation ratio for k > 132, where k is the total number of H-runs and
11s = 12r where, n = 2rs and n is the total number of H.

Be noted that, the value of k is dependent on n and the HP string. This
leads us to deduce the expected value of k for a given HP string. This can
be mapped into the problem of Integer Partitioning which can be defined as
below. Notably, for deriving an expected approximation ratio, similar problem
mapping has recently been utilized in different algorithms [12,13,19].

From Integer Partitioning used in [12,15,19], we can say that, the expected
value of H-runs, k is less than or equal to

√
n × log n which implies that

√
n ×

log n ≥ 132 or n ≥ 500. Now, if 11s > 12r, lower bound of k increases, as a
result expected lower bound of n will increases. On the other side, if 11s < 12r,
expected lower bound of n will decreases. The above findings are summarized in
the following theorem.

284 D.L. Shaw et al.

Theorem 3. For any given HP string, Algorithm LayerArrangement is expected
to achieve an approximation ratio of 9

7 for n ≥ 500 and 11s = 12r where, n = 2rs
and n is the total number of H.

4 Conclusion

As has been already discussed above, a vertex in the SC (Simple Cubic) lattice
have 6 neighbours and the same in the FCC (Face Centered Cubic) or BCC
(Body Centered Cubic) lattice have 14 neighbours. On the other hand, one vertex
in the hexagonal prism lattice with diagonals have 20 neighbours. This useful
property has led us to find better approximation ratio. On the other hand this
lattice model removes some well known problems of protein folding in SC lattices
e.g., parity problem. Considering such properties of this lattice encourages us
to investigate further to develop even better approximation algorithms. Also
heuristics algorithm can be applied on this lattice, which can surely lead us to
better results.

References

1. Agarwala, R., Batzogloa, S., Dancik, V., Decatur, S., Hannenhalli, S., Farach,
M., Muthukrishnan, S., Skiena, S.: Local rules for protein folding on a triangular
lattice and generalized hydrophobicity in the HP model. J. Comput. Biol. 4(3),
276–296 (1997)

2. Berger, B., Leighton, T.: Protein folding in the hydrophobic-hydrophilic (HP)
model is NP-complete. J. Comput. Biol. 5(1), 27–40 (1998)

3. Böckenhauer, H.-J., Bongartz, D.: Protein folding in the hp model on grid lattices
with diagonals. Discrete Appl. Math. 155(2), 230–256 (2007)

4. Böckenhauer, H.-J., Dayem Ullah, A.Z.M., Kapsokalivas, L., Steinhöfel, K.:
A local move set for protein folding in triangular lattice models. In: Crandall,
K.A., Lagergren, J. (eds.) WABI 2008. LNCS, vol. 5251, pp. 369–381. Springer,
Heidelberg (2008)

5. Crescenzi, P., Goldman, D., Papadimitriou, C.H., Piccolboni, A., Yannakakis, M.:
On the complexity of protein folding. J. Comput. Biol. 5(3), 423–465 (1998)

6. Dill, K.A.: Theory for the folding and stability of globular proteins. Biochemistry
24, 1501–1509 (1985)

7. Hart, W., Istrail, S.: Fast protein folding in the hydrophobic-hydrophilic model
within three-eighths of optimal. J. Comput. Biol. 3(1), 53–96 (1996)

8. Hart, W., Istrail, S.: Lattice and o-lattice side chain models of protein folding:
linear time structure prediction better than 86 % of optimal. Comput. Biol. 4(3),
241–259 (1997)

9. Heun, V.: Approximate protein folding in the HP side chain model on extended
cubic lattices (extended abstract). In: Nešetřil, J. (ed.) ESA 1999. LNCS, vol.
1643, pp. 212–223. Springer, Heidelberg (1999)

10. Hoque, M.T., Chetty, M., Dooley, L.S.: A hybrid genetic algorithm for 2D FCC
hydrophobic-hydrophilic lattice model to predict protein folding. In: Sattar, A.,
Kang, B.-H. (eds.) AI 2006. LNCS, vol. 4304, pp. 867–876. Springer, Heidelberg
(2006)

Approximation Algorithms for Three Dimensional Protein Folding 285

11. Hoque, M.T., Chetty, M., Sattar, A.: Protein folding prediction in 3D FCC HP
lattice model using genetic algorithm. In: IEEE Congress on Evolutionary Com-
putation, pp. 4138–4145 (2007)

12. Islam, A.S.M.S., Rahman, M.S.: On the protein folding problem in 2D-triangular
lattices. Algorithms Mol. Biol. 8, 30 (2013)

13. Islam, A.S.M.S., Rahman, M.S.: Protein folding in 2D-triangular lattice revisited.
In: Lecroq, T., Mouchard, L. (eds.) IWOCA 2013. LNCS, vol. 8288, pp. 244–257.
Springer, Heidelberg (2013)

14. Jiang, M., Zhu, B.: Protein folding on the hexagonal lattice in the HP model. J.
Bioinform. Comput. Biol. 3(1), 19–34 (2005)

15. Kessler, I., Livingston, M.: The expected number of parts in a partition of n.
Monatshefte für Mathematik 81(3), 203–212 (1976)

16. Mauri, G., Piccolboni, A., Pavesi, G.: Approximation algorithms for protein fold-
ing prediction. In: Symposium on Discrete Algorithms (SODA), pp. 945–946
(1999)

17. Newman, A.: A new algorithm for protein folding in the HP model. In: Symposium
on Discrete Algorithms (SODA), pp. 876–884 (2002)

18. Newman, A., Ruhl, M.: Combinatorial problems on strings with applications to
protein folding. In: Farach-Colton, M. (ed.) LATIN 2004. LNCS, vol. 2976, pp.
369–378. Springer, Heidelberg (2004)

19. Shaw, D.L., Islam, A.S.M.S., Rahman, M.S., Hasan, M.: Protein folding in HP
model on hexagonal lattices with diagonals. BMC Bioinform. 15(S–2), S7 (2014)

20. Unger, R., Moult, J.: Genetic algorithms for protein folding simulations. J. Mol.
Biol. 231, 75–81 (1993)

Parameterization of Strategy-Proof Mechanisms
in the Obnoxious Facility Game

Morito Oomine, Aleksandar Shurbevski(B), and Hiroshi Nagamochi

Department of Applied Mathematics and Physics, Kyoto University,
Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501, Japan
{oomine1024,shurbevski,nag}@amp.i.kyoto-u.ac.jp

Abstract. In the obnoxious facility game, a location for an undesirable
facility is to be determined based on the voting of selfish agents. The
design of group strategy proof mechanisms has been extensively studied,
and it is known that there exists a gap between the social benefit (i.e.,
the sum of individual benefits) by a facility location determined by any
group strategy proof mechanism and the maximum social benefit over all
choices of facility locations; their ratio, called the benefit ratio can be 3
in the line metric space. In this paper, we investigate a trade-off between
the benefit ratio and a possible relaxation of group strategy proofness,
taking 2-candidate mechanisms for the obnoxious facility game in the line
metric as an example. Given a real λ ≥ 1 as a parameter, we introduce a
new strategy proofness, called “λ-group strategy-proofness,” so that each
coalition of agents has no incentive to lie unless every agent in the group
can increase her benefit by strictly more than λ times by doing so, where
the 1-group strategy-proofness is the previously known group strategy-
proofness. We next introduce “masking zone mechanisms,” a new notion
on structure of mechanisms, and prove that every λ-group strategy-proof
(λ-GSP) mechanism is a masking zone mechanism. We then show that,
for any λ ≥ 1, there exists a λ-GSP mechanism whose benefit ratio is at
most 1 + 2

λ
, which converges to 1 as λ becomes infinitely large. Finally

we prove that the bound is nearly tight: given n ≥ 1 selfish agents, the
benefit ratio of λ-GSP mechanisms cannot be better than 1 + 2

λ
when n

is even, and 1 + 2n−2
λn+1

when n is odd.

Keywords: Mechanism design · Facility game · Strategy-proof · Anony-
mous · Optimization

1 Introduction

1.1 Social Choice Theory

In social choice theory, we design mechanisms that determine a social decision
based on a vote. That is, for a set Ω of voting alternatives and a set N of
selfish voters with various utilities, we design a mechanism f : Ωn → Ω as
a collective decision making system. We call primary benefit the benefit that

c© Springer International Publishing Switzerland 2016
M. Kaykobad and R. Petreschi (Eds.): WALCOM 2016, LNCS 9627, pp. 286–297, 2016.
DOI: 10.1007/978-3-319-30139-6 23

Parameterization of Strategy-Proof Mechanisms 287

each voter obtains under the assumption that all votes are truthfull However,
each voter may try to manipulate the decision of a mechanism by changing her
voting to increase her personal utility. A voting which aims to manipulate the
decision of a mechanism is called a strategic voting. To the effect of making a
fair decision, we are interested in mechanisms in which no voter can benefit by
a single-handed strategic voting. Such a mechanism is called a strategy-proof
mechanism. Moreover, a mechanism is called a group strategy-proof mechanism,
if there is no coalition of voters such that each member in the coalition can
simultaneously benefit by their cooperative strategic-voting. Moulin [9] studied
social choice theory under the condition that the set of alternatives is the one-
dimensional Euclidean space and each utility function is a single peaked concave
function, and gave necessary and sufficient conditions of strategy-proofness under
such conditions. Following, Border and Jordan [2] extended the characterization
into the multi-dimensional Euclidean space, and characterized strategy-proof
mechanisms in those metrics. Schummer and Vohra [12] applied this result [2] to
the case when Ω is the set of all points in a tree metric and characterized strategy-
proof mechanisms in those metrics. Moreover, they characterized strategy-proof
mechanisms in the case when Ω is the set of all points in a graph metric which
has at least one cycle.

1.2 Facility Game

The facility game can be regarded as a problem in social choice theory where a
location of the facility in a metric space will be decided based on locations of
agents (votes by voters) and each agent tries to maximize the benefit from her
utility function defined based on the distance from her location to the location
of the facility.

In a facility game with a set N of agents in a space Ω, each agent reports a
point in the space, and a mechanism determines a location for a facility. Each
agent is selfish in the sense that she may misreport her point so that the output
by the mechanism becomes more beneficial to her. The facility can be classified as
either one of two types, one is desirable to agents (or each agent wants the facility
to be located near her actual location) and the other is obnoxious to agents (or
each agent wants the facility to be located far from her actual location).

Several extensive studies have been made on the desirable facility game,
such as designing mechanisms [1,2,7,8,11,12]. Procaccia and Tennenholtz [11]
proposed a group strategy-proof mechanism which returns the location of the
median agent as the facility location when all agents are located on a path.

Cheng et al. [4] studied the obnoxious facility game. For a given mechanism,
the benefit for each agent obtained under the assumption that all agents have
reported their true locations is called primary benefit. Mechanisms which only
output one of a predetermined set of k candidates for a facility location are called
k-candidate mechanisms.

An important aspect of mechanisms of facility games is a measure of the qual-
ity of mechanisms. In general, a location of a facility that maximizes some social
benefit, such as the sum of all individual benefits, is different from a location

288 M. Oomine et al.

output by a strategy-proof (or group strategy-proof) mechanism. In other words,
the maximum value of the social utility attained by a strategy-proof (or group
strategy-proof) mechanism is smaller than that attained just by choosing the
best location of the facility. This raises a problem of designing a strategy-proof
(or group strategy-proof) mechanism that outputs a location of a facility that
maximizes the social benefit among all strategy-proof (or group strategy-proof)
mechanisms. A possible measurement of the performance for a mechanism is a
benefit-ratio, the ratio of the social utility attained by the mechanism to that
attained by a theoretically maximum possible social benefit. For example, Alon
et al. [1] gave a complete analysis on benefit-ratios of group strategy-proof mech-
anisms for the desirable facility game in general graph metrics.

We review some recent results on the obnoxious facility game. Ibara and
Nagamochi [5,6] presented a complete characterization of 2-candidate (group)
strategy-proof mechanisms in any metric space, giving necessary and sufficient
conditions for the existence of such a mechanism in a given metric, and proved
that in any metric, a 2-candidate mechanism with a benefit ratio of 4 can always
be designed.

For the obnoxious facility game in the line metric, Ibara and Nagamochi [5,6]
showed that there exists no k-candidate group strategy-proof mechanism for any
k ≥ 3. Cheng et al. [4] gave a 2-candidate group strategy-proof mechanism in
the line metric with a benefit ratio of 3, and showed that this is the best possible
over all 2-candidate group strategy-proof mechanisms in the line metric.

1.3 Our Contribution

Since it has been shown that the best benefit ratio is 3 (see Cheng et al. [4])
over all 2-candidate group strategy-proof mechanisms for the obnoxious facility
game in the line metric, we propound the following questions on the game:

1. Is there any way of relaxing the definition of group strategy-proofness so
that the benefit ratio 3 is improved over such relaxed group strategy-proof
mechanisms?

2. With an adequate parameter λ ≥ 1, is there any trade-off between λ-group
strategy-proofness (group strategy-proofness relaxed with λ) and the benefit
ratio ρ for λ such that ρ approaches 1 as λ becomes infinitely large; and

3. For each fixed λ ≥ 1, what is the benefit ratio ρ of a λ-group strategy-proof
(or can tight upper and lower bounds on ρ be derived)?

This paper answers all of these questions affirmatively. First we introduce a
relaxed version of (group) strategy-proofness via a parameter λ ≥ 1 by assum-
ing that an agent has no incentive to misreport her own location unless she can
increase her benefit by strictly more than λ times her primary benefit. Respec-
tively, in every group of agents, at least one agent cannot get an increase of
strictly more than λ times from her primary benefit by strategically changing
her report in coalition with the rest of the group. This parameterization serves
as a relaxation of the notion of group strategy-proofness. Mechanisms which

Parameterization of Strategy-Proof Mechanisms 289

guarantee the above property are termed “λ-strategy-proof (λ-SP) mechanisms”
and “λ-group strategy-proof (λ-GSP) mechanisms,” where 1-group strategy-
proofness is equivalent to the previously known group strategy-proofness.

Second, we design a λ-GSP 2-candidate mechanism whose benefit ratio ρ
is at most 1 + 2/λ, which approaches 1 as the parameter λ tends to ∞. This
answers the first and second question.

Finally, we show that there is no λ-SP 2-candidate mechanism whose benefit
ratio ρ is smaller than 1 + 2/λ for an even n and 1 + (2n − 2)/(λn + 1) for an
odd n, where n (≥ 1) is the number of agents. This is an answer to the third
and second question, since our upper and lower bounds on the benefit ratio are
almost tight.

The above results are obtained by introducing a new concept of mechanism
design that follows naturally from the introduction of the parameter λ, called
“masking zone mechanisms,” which in their own right might lend interesting
directions for future research.

2 Preliminaries

2.1 Notation

Let R and R+ be the sets of real and nonnegative real numbers, respectively.
Let Ω be a universal set of points. For a positive integer n ≥ 1, let N be a set
of n agents. For a set S ⊆ N of agents (resp., an agent i ∈ N), let S = N \ S
(resp., i = N \ {i}). Each agent i ∈ N chooses a point p ∈ Ω as a reported value
χi = p. Let Ωagents ⊆ Ω denote a set of points that can be chosen by an agent.
A vector χ ∈ Ωn

agents with reported values χi, i ∈ N is called a profile of N .
A mechanism f is a function that given a profile χ of N outputs a point t ∈ Ω.

Let Ωfacility ⊆ Ω denote a set of points that can be output by a mechanism,
where a mechanism f is a mapping f(χ) : Ωn

agents → Ωfacility. It is common
in the literature, e.g., [3,4], to represent the locations reported by agents as
an n-dimensional vector x , where x i is the point reported by an agent i ∈ N .
Under these circumstances, the notion of anonymity plays an important role. A
mechanism f is anonymous if f(x) = f(x ′) holds for any two vectors x and x ′

that admit a bijection σ on N such that x ′
i = xσ(i) for all i ∈ N .

In what follows, we treat a profile χ of N as a multiset {χi | i ∈ N} of n
elements. For convenience, given a profile χ and a set S ⊆ N of agents, let χS

denote the multiset {χi | i ∈ S} of |S| elements. For a subspace Ω′ ⊆ Ω, the
restriction χ|Ω′ of a profile χ on Ω′ is defined to be the multiset

χ|Ω′ = {χi | i ∈ N,χi ∈ Ω′},

where |χ|Ω′ | means the number of elements in χ|Ω′ , i.e., the number of agents
in χ|Ω′ .

The benefit of an agent i ∈ N with respect to a point p ∈ Ωagents and a point
t ∈ Ωfacility is specified by a function βi : Ωfacility × Ωagents → R. We assume
that a larger value in βi is preferable to the agent i ∈ N . For a mechanism

290 M. Oomine et al.

f : Ωn
agents → Ωfacility, a point t ∈ Ωfacility is called a candidate if there is

a profile χ ∈ Ωn
agents such that f(χ) = t, and the set of all candidates of f is

denoted by C(f) ⊆ Ωfacility. A mechanism with |C(f)| = k is called a k-candidate
mechanism.

2.2 Strategy Proofness

In this paper, we assume that a larger value of βi is preferable to the agent i ∈
N . We define parameterized strategy-proofness by introducing a real parameter
λ ≥ 1 as follows.

A mechanism f is called λ-strategy-proof (λ-SP for short) if no agent can gain
strictly more than λ times her primary benefit by changing her report. Formally,
for any agent i ∈ N and any profile χ′ such that χ′

i
= χi, it holds that

λβi(f(χ), χi) ≥ βi(f(χ′), χi). (1)

A mechanism f is called λ-group strategy-proof (λ-GSP for short) if for every
group of agents, at least one agent in the group cannot gain strictly more than λ
times her primary benefit by changing her report in coalition with the rest of the
group. Formally, for any non-empty set S ⊆ N of agents and for any profile χ′

such that χ′
S

= χS , there exists an agent i ∈ S for whom

λβi(f(χ), χi) ≥ βi(f(χ′), χi). (2)

By definition, any λ-GSP mechanism is λ-SP. Also, 1-strategy-proofness
(resp., 1-group strategy-proofness) is equivalent to the strategy-proofness (resp.,
group strategy-proofness) of mechanisms as it is commonly defined in the
literature [1,4–6].

2.3 Masking Zone Mechanisms

In this paper, we introduce “masking zone mechanisms,” another new concept
on the structure of mechanisms.

Definition 1. Let S be a family of nonempty disjoint subsets of Ω, and S =
Ω \ ⋃

S∈S . A mechanism f is a masking zone mechanism with set of masking
zones S if it delivers the same output f(χ) = f(χ′) for any two profiles χ and
χ′ such that

χ|S = χ′|S and |χ|S | = |χ′|S | for all S ∈ S.

In other words, f(χ) of a profile χ never changes as long as a point χi ∈ S ∈ S
changes to a point in the same subset S.

Parameterization of Strategy-Proof Mechanisms 291

2.4 Social Benefit

We introduce an objective function sb(t, χ) that evaluates the quality of a point
t determined based on a given profile χ. For a point t ∈ Ωfacility and a profile χ,
we define the social benefit sb(t, χ) to be the sum of individual benefits over all
agents, i.e.,

sb(t, χ) =
∑

i∈N

βi(t, χi).

Given a profile χ, let opt(χ) denote the maximum social benefit over all choices
of points t ∈ Ωfacility; i.e.,

opt(χ) = max
t∈Ωfacility

{sb(t, χ)}.

The benefit ratio ρf ≥ 1 of a mechanism f is defined to be

ρf = sup
χ∈Ωn

agents

opt(χ)
sb(f(χ), χ)

.

When λ becomes infinitely large, the constraints of Eqs. (1) and (2) are no
longer effective. If there is no such constraint as in Eq. (1) or (2), then a λ-SP or
λ-GSP mechanism can deliver a point t ∈ Ωfacility that maximizes sb(t, χ) and
ρf = 1 always holds in this case.

2.5 Obnoxious Facility Game in the Line Metric

In this paper, we consider the obnoxious facility game in the line metric [4]. Let
(Ω, d) be a metric with a space Ω ⊆ R in the line and the distance function
d : Ω2 → R+ such that

d(x, y) = |x − y| =

{
x − y if x ≥ y,

y − x otherwise.

We assume that, for any agent i ∈ N , the benefit βi is given by

βi(t, p) = d(t, p) t ∈ Ωfacility, p ∈ Ωagents.

In interest of space and clarity, given a profile χ and a candidate location t ∈
Ωfacility, henceforth we omit referring to the benefit βi(t, χi) of agent i, and
directly write d(t, χi). Also we let d(t, P) denote

∑
p∈P d(t, p) for a point t ∈ R

and a multiset P of points in R, where sb(c, χ) = d(c, χ) for a profile χ of N and
a location c ∈ R.

Recall that there is no k-candidate SP mechanism in the line metric, for any
k ≥ 3 [5,6] and that ρf = 3 for a GSP mechanism f and no GSP mechanism f
attains ρf < 3 [4].

In this paper, we examine the benefit ratio of a 2-candidate λ-GSP mecha-
nism f , and assume without loss of generality that C(f) = {0, 1} = Ωfacility ⊆
Ω ⊆ R.

292 M. Oomine et al.

Given a real λ ≥ 1, we define subsets I0 and I1 of R as follows:

I0 =
(−1

λ − 1
,

1
λ + 1

)

, I1 =
(

λ

λ + 1
,

λ

λ − 1

)

for λ > 1,

and I0 = {p ∈ R | p < 1
2} and I1 = {p ∈ R | p > 1

2} for λ = 1. Let I = I0 ∪ I1
and I = R \ I. Then we observe the next property.

Proposition 1. Given a real λ ≥ 1, a point p ∈ R satisfies λd(0, p) < d(1, p)
(resp., λd(1, p) < d(0, p)) if and only if p ∈ I0 (resp., p ∈ I1).

Proof. We have that {p ∈ R | λd(0, p)−d(1, p) < 0} = {p ∈ R | λ2p2−(p−1)2 =
(λp + (p − 1))(λp − (p − 1)) < 0} = (−1

λ−1 , 1
λ+1) = I0. Analogously we see that

{p ∈ R | λd(1, p) − d(0, p) < 0} = (λ
λ+1 , λ

λ−1) = I1. In the case of λ = 1, we have
that d(0, p) − d(1, p) < 0 ⇔ p < 1

2 , and d(0, p) − d(1, p) > 0 ⇔ p > 1
2 , as

required. 	

In this paper, we first show that all 2-candidate λ-SP mechanisms are masking

zone mechanisms.

Theorem 2. Let λ ≥ 1. Every 2-candidate λ-SP mechanism f with candidate
set C(f) = {0, 1} in the line metric is a masking zone mechanism with set of
masking zones {I0, I1}.

Based on this, we next design a masking zone λ-GSP mechanism whose
benefit ratio is at most 1 + 2/λ.

Theorem 3. Let λ ≥ 1. In the line metric, there is a 2-candidate λ-GSP mech-
anism f such that ρf ≤ 1 + 2

λ .

Finally we examine the converse, showing that no masking zone λ-SP mech-
anism f attains a benefit ratio smaller than 1 + 2/λ for an even n = |N | or
1 + (2n − 2)/(λn + 1) for an odd n = |N |.
Theorem 4. Let λ ≥ 1 and n = |N | ≥ 1. In the line metric, there is no 2-
candidate λ-SP mechanism f such that

ρf <

{
1 + 2

λ if n is even,

1 + 2n−2
λn+1 otherwise.

3 Masking Zone Mechanisms

This section shows that any λ-SP mechanism is a masking zone mechanism. By
the following lemma, we derive a necessary condition for a mechanism in the line
metric to be λ-SP.

Parameterization of Strategy-Proof Mechanisms 293

Lemma 5. Given a real λ ≥ 1, let f be a λ-SP mechanism with candidate set
C(f) = {0, 1}. Let χ be a profile of N such that f(χ) = c ∈ {0, 1}. If there is
an agent i with χi ∈ Ic, then the profile χ̂ obtained from χ by changing χi to a
point in Ic still satisfies f(χ̂) = c, where χ̂i = χi and χ̂i ∈ Ic.

Proof. To derive a contradiction, we assume that f(χ̂) = 1− c. Since χi ∈ Ic, we
know λd(c, χi) < d(1 − c, χi) by Proposition 1, i.e., λd(f(χ), χi) = λd(c, χi) <
d(1 − c, χi) = d(f(χ̂), χi). Since χ̂i = χi, this contradicts that f is λ-SP. 	

We are now ready to prove Theorem 2.

Proof of Theorem 2. Let f be a λ-SP mechanism with candidate set C(f) =
{0, 1}. We say that two profiles χ and χ′ of N are zone-equivalent if χ|I = χ′|I
and |χ|Ic | = |χ′|Ic | for each c ∈ C(f) = {0, 1}. It suffices to show that, for
any zone-equivalent profiles χ and χ′, it holds that f(χ) = f(χ′). To derive
a contradiction, assume that there are zone-equivalent profiles χ and χ′ with
f(χ) �= f(χ′), and let χ and χ′ minimize the number |χ|I \ χ′|I | + |χ′|I \ χ|I | of
different locations between them among all such pairs.

Since χ and χ′ are zone-equivalent, there are two distinct locations χi ∈ Ic

and χ′
j ∈ Ic for some agents i, j ∈ N and some c ∈ {0, 1}. Without loss of

generality f(χ) = c and f(χ′) = 1 − c (if necessary we exchange the role of χ
and χ′). Let χ̂ be the profile obtained from χ by changing the location χi ∈ Ic

of agent i to the point χ′
j ∈ Ic. By Lemma 5 and f(χ) = c, we see that f(χ̂) = c.

Notice that χ̂ and χ′ remain zone-equivalent, and now they have a fewer
number of different locations than χ and χ′ have. Then by the choice of χ and
χ′, it must hold f(χ̂) = f(χ′) = 1 − c, which contradicts that f(χ̂) = c. 	

4 Upper Bounds on the Benefit Ratio

In this section, given a real λ ≥ 1, we prove Theorem 3 by constructing a 2-
candidate λ-GSP mechanism f whose benefit ratio ρf is at most 1 + 2/λ.

Having in mind that for a given profile χ, the condition for λ-group strategy-
proofness of Eq. (2) concerns exactly the agents i ∈ N with χi ∈ I, we define a
distorted distance between a point c ∈ {0, 1} and a point p ∈ Ω of to be

μ(c, p) =

⎧
⎨

⎩

d(c, p) if p ∈ I,
0 if p ∈ Ic,
1 if p ∈ I1−c,

where clearly −1 ≤ μ(c, p) − μ(1 − c, p) ≤ 1 always holds. Also we let μ(c, P)
denote

∑
p∈P μ(c, p) for a point c ∈ {0, 1} and a multiset P of points in R. Then

for a profile χ of N and a location c ∈ {0, 1}, we have

μ(c, χ) =
∑

i∈N

μ(c, χi) = d(c, χ|I) + |χ|I1−c
|.

Based on this, we propose the following masking zone mechanism f with candi-
date set C(f) = {0, 1}.

294 M. Oomine et al.

Mechanism f(χ): given a multiset χ, return a candidate c ∈ C(f) = {0, 1}

f(χ) =

{
0 if μ(0, χ) > μ(1, χ),
1 if μ(0, χ) ≤ μ(1, χ).

(3)

We claim that the mechanism f is λ-GSP.

Lemma 6. The mechanism f of Eq. (3) is λ-GSP.

Proof. To derive a contradiction, we assume that f is not λ-GSP; i.e., by defin-
ition, there is a non-empty subset S ⊆ N which influences two profiles χ and χ′

with
χ′

S
= χS and f(χ) �= f(χ′)

such that every agent i ∈ S satisfies

λd(f(χ), χi) < d(f(χ′), χi) or χi ∈ Ic for c = f(χ),

by Proposition 1, where f(χ) �= f(χ′) must hold by λ ≥ 1. Let S be minimal
subject to the above condition, and j be an arbitrary agent in S.

We prove that the profile χ′′ obtained from χ′ just by changing χ′
j to χj

satisfies f(χ′) = f(χ′′), or equivalently

μ(0, χ′) − μ(1, χ′) ≤ 0 if and only if μ(0, χ′′) − μ(1, χ′′) ≤ 0 (4)

by the definition of f of Eq. (3). Observe that χ′′
j

= χ′
j
, χ′′

j = χj , and

μ(c, χ′′) = μ(c, χ′) − μ(c, χ′
j) + μ(c, χj) for each c ∈ {0, 1}

by the definition of μ. From this, we have

μ(0, χ′′)−μ(1, χ′′) = μ(0, χ′)−μ(1, χ′)+[μ(1, χ′
j)−μ(0, χ′

j)]+[μ(0, χj)−μ(1, χj)],
(5)

where we know −1 ≤ μ(1, χ′
j) − μ(0, χ′

j) ≤ 1 by the definition of μ. By χj ∈ Ic

for f(χ) = c (i.e., f(χ′) = 1 − c), we also know

μ(0, χj)−μ(1, χj) =
{−1 if f(χ′) = 1 (i.e., μ(0, χ′) − μ(1, χ′) ≤ 0 by Eq. (3)),

1 if f(χ′) = 0 (i.e., μ(0, χ′) − μ(1, χ′) > 0).

Therefore, if μ(0, χ′) − μ(1, χ′) is nonnegative (resp., positive), then the right
hand side of Eq. (5) is also nonnegative (resp., positive), implying Eq. (4).

Finally we observe that f(χ′′) = f(χ′) contradicts the minimality of S.
(i) S = {j}: Since χ′

S
= χS , we see that χ′′ = χ and f(χ′′) = f(χ) �= f(χ′), a

contradiction.
(ii) S − {j} �= ∅: If f(χ′′) = f(χ′) then the subset T = S − {j} would satisfy
χ′′

S
= χ′

S
= χS , χ′′

j = χj and λd(f(χ), χj) < d(f(χ′), χj) = d(f(χ′′), χj) for all
i ∈ T , contradicting the minimality of S. 	

Now we derive an upper bound on the benefit ratio of the mechanism f .

Parameterization of Strategy-Proof Mechanisms 295

Lemma 7. The benefit ratio of the mechanism f of Eq. (3) is at most 1 + 2/λ
for any real λ ≥ 1.

Proof. We use the fact that f(χ) = c for c ∈ {0, 1} imply μ(c, χ) ≥ μ(1 − c, χ)
in Eq. (3), i.e.,

d(c, χ|I) ≤ d(1 − c, χ|I) + mc − m1−c, (6)

which is symmetric for c ∈ {0, 1}. For notational simplicity, we consider the case
of f(χ) = 0, because the other case of f(χ) = 1 can be treated symmetrically.

For each c ∈ {0, 1}, define I−
c = {h ∈ Ic | h < c}, I+c = {h ∈ Ic | h ≥ c},

m−
c = |χ|I−

c
|, m+

c = |χ|I+
c

| and mc = |χ|Ic | = m−
c + m+

c . For

D = d(0, χ|I) + d(0, χ|I−
0

) + d(0, χ|I+
1

) (≥ 0),

we prove

sb(0, χ) = d(0, χ) ≥ D + m−
1

λ

λ + 1
and

opt(χ) ≤ D + m−
1

(

1 +
1

λ + 1

)

,

which implies the desired result

opt(χ)
sb(0, χ)

≤ 1 +
2
λ

.

By noting that χ is a disjoint union of five multisets χ|I , χ|I−
0

, χ|I+
0

, χ|I−
1

and
χ|I+

1
, we get

d(0, χ) = d(0, χ|I) + d(0, χ|I−
0

) + d(0, χ|I+
0

) + d(0, χ|I−
1

) + d(0, χ|I+
1

)

≥ D + d(0, χ|I−
1

) ≥ D + m−
1

λ

λ + 1
(by I−

1 = (
λ

λ + 1
, 1)).

On the other hand, for opt(χ) = sb(1, χ) = d(1, χ), we get

opt(χ) = d(1, χ|I) + d(1, χ|I0) + d(1, χ|I1)
< d(0, χ|I) + m1 − m0 + d(1, χ|I0) + d(1, χ|I1) (by Eq. (6))

= d(0, χ|I) + m1 + d(0, χ|I−
0

) − d(0, χ|I+
0

) + d(0, χ|I+
1

) − m+
1 + d(1, χ|I−

1
)

≤ D + m1 − m+
1 + d(1, χ|I−

1
)

= D + m−
1 + d(1, χ|I−

1
)

≤ D + m−
1 + m−

1

1
λ + 1

(by I−
1 = (

λ

λ + 1
, 1)),

as required. 	

In conclusion, the results of Lemmas 6 and 7, together give a proof of

Theorem 3.

296 M. Oomine et al.

In light of a previous result by Cheng et al. [4], who have demonstrated
a strategy-proof GSP mechanism with a benefit ratio at most 3 in the line
metric, we see that the result of Theorem 3 follows as a natural extension of the
introduction of λ-strategy proofness, matching the result of Cheng et al. [4] for
λ = 1.

5 Lower Bounds on the Benefit Ratio

This section derives a lower bound on the benefit ratio of all 2-candidate λ-SP
mechanisms in the line metric.

By Theorem 2, we only need to handle a masking zone 2-candidate λ-SP
mechanism. We show that every such λ-SP mechanisms f admits a profile χf

such that opt(χf)
sb(f(χf),χf)

is not smaller than 1+2/λ if n is even; 1+(2n−2)/(λn+1)
otherwise.

The following lemma establishes a lower bound on the benefit ratio of any
2-candidate masking zone mechanisms in the line.

Lemma 8. Given a real λ ≥ 1 and a set N of n (≥ 1) agents, let f be a masking
zone mechanism f with candidate set C(f) = {0, 1} and set {I0, I1} of masking
zones. Then for any real δ > 0, there is a profile χ such that

opt(χ)
sb(f(χ), χ)

≥
{

1 + 2
λ (1−δ

1+δ), if n is even

1 + 2n−2
λn+1 (1−δ

1+δ), otherwise.

The proof of Lemma 8 follows by analysis on adversarially chosen profiles, but
is omitted here due to space requirements. The reader is referred to a working
version of this paper [10]. By Theorem 2 and Lemma 8, we obtain Theorem 4.

6 Concluding Remarks

This paper studied a trade-off between the benefit ratio and a relaxation of group
strategy proofs, taking 2-candidate mechanisms for the obnoxious facility game in
the line metric as an example. As a result we introduce λ-group strategy-proofness,
a parameterized strategy proofness, and demonstrated a mechanism that has a
desired property of a benefit ratio of at most 1+ 2

λ , which tends to 1, as the para-
meter λ tends to ∞. This result was obtained via a novel view on mechanism prop-
erties, and the introduction of the concept of masking zone mechanisms, which is
a necessary condition for λ-GSP mechanisms. On the other hand, we also derived
lower bounds on the benefit ratio of for masking zone mechanisms: 1 + 2

λ when
n = |N | is even and 1 + 2n−2

λn+1 when n = |N | is odd. The above bounds are tight
when |N | is even, meaning that the upper bound on the benefit ratio is the best
we can hope for, but it remains an open question to the slight gap between the
upper and lower bounds for the case when |N | is odd.

For future work, it remains to investigate the trade-off between the benefit
ratio and the λ-GSP mechanisms in other metrics such as trees, circles and
Euclidean space.

Parameterization of Strategy-Proof Mechanisms 297

References

1. Alon, N., Feldman, M., Procaccia, A.D., Tennenholtz, M.: Strategyproof
approximation mechanisms for location on networks. arXiv preprint (2009).
arxiv:0907.2049

2. Border, K.C., Jordan, J.S.: Straightforward elections, unanimity and phantom vot-
ers. The Rev. Econ. Stud. 50(1), 153–170 (1983)

3. Cheng, Y., Han, Q., Yu, W., Zhang, G.: Obnoxious facility game with a bounded
service range. In: Chan, T.-H.H., Lau, L.C., Trevisan, L. (eds.) TAMC 2013. LNCS,
vol. 7876, pp. 272–281. Springer, Heidelberg (2013)

4. Cheng, Y., Yu, W., Zhang, G.: Mechanisms for obnoxious facility game on a path.
In: Wang, W., Zhu, X., Du, D.-Z. (eds.) COCOA 2011. LNCS, vol. 6831, pp. 262–
271. Springer, Heidelberg (2011)

5. Ibara, K., Nagamochi, H.: Characterizing mechanisms in obnoxious facility game.
In: Lin, G. (ed.) COCOA 2012. LNCS, vol. 7402, pp. 301–311. Springer, Heidelberg
(2012)

6. Ibara, K., Nagamochi, H.: Characterizing mechanisms in obnoxious facility
game. Technical report 2015-006, Department of Applied Mathematics and
Physics, Kyoto University (2015). http://www.amp.i.kyoto-u.ac.jp/tecrep/ps file/
2015/2015-005.pdf

7. Lu, P., Sun, X., Wang, Y., Zhu, Z.A.: Asymptotically optimal strategy-proof mech-
anisms for two-facility games. In: Proceedings of the 11th ACM Conference on
Electronic Commerce (ACM-EC 2010), pp. 315–324. ACM (2010)

8. Lu, P., Wang, Y., Zhou, Y.: Tighter bounds for facility games. In: Leonardi, S.
(ed.) WINE 2009. LNCS, vol. 5929, pp. 137–148. Springer, Heidelberg (2009)

9. Moulin, H.: On strategy-proofness and single peakedness. Public Choice 35(4),
437–455 (1980)

10. Oomine, M., Shurbevski, A., Nagamochi, H.: Parameterization of strategy-proof
mechanisms in the obnoxious facility game. Technical report 2015-006, Department
of Applied Mathematics and Physics, Kyoto University (2015). http://www.amp.
i.kyoto-u.ac.jp/tecrep/ps file/2015/2015-006.pdf

11. Procaccia, A.D., Tennenholtz, M.: Approximate mechanism design without money.
In: Proceedings of the 10th ACM Conference on Electronic Commerce (ACM-EC
2009), pp. 177–186. ACM (2009)

12. Schummer, J., Vohra, R.V.: Strategy-proof location on a network. J. Econ. Theory
104(2), 405–428 (2002)

http://arxiv.org/abs/0907.2049
http://www.amp.i.kyoto-u.ac.jp/tecrep/ps_file/2015/2015-005.pdf
http://www.amp.i.kyoto-u.ac.jp/tecrep/ps_file/2015/2015-005.pdf
http://www.amp.i.kyoto-u.ac.jp/tecrep/ps_file/2015/2015-006.pdf
http://www.amp.i.kyoto-u.ac.jp/tecrep/ps_file/2015/2015-006.pdf

On-line Algorithms

Optimal Online Algorithms
for the Multi-objective Time Series

Search Problem

Shun Hasegawa and Toshiya Itoh(B)

Tokyo Institute of Technology, Yokohama 226-8502, Japan
hasegawa.s.aj@m.titech.ac.jp, titoh@ip.titech.ac.jp

Abstract. Tiedemann, et al. [Proc. of WALCOM, LNCS 8973, 2015,
pp. 210–221] defined multi-objective online problems and the compet-
itive analysis for multi-objective online problems, and presented best
possible online algorithms for the multi-objective online problems with
respect to several measures of competitive analysis. In this paper, we
first point out that the frameworks of the competitive analysis due to
Tiedemann, et al. do not necessarily capture the efficiency of online algo-
rithms for multi-objective online problems and provide modified defin-
itions of the competitive analysis for multi-objective online problems.
Under the modified framework, we present a simple online algorithm
Balanced Price Policy bppk for the multi-objective time series search
problem, and show that the algorithm bppk is best possible with respect
to any measure of the competitive analysis. For the modified framework,
we derive exact values of the competitive ratio for the multi-objective
time series search problem with respect to the worst component compet-
itive analysis, the arithmetic mean component competitive analysis, and
the geometric mean component competitive analysis.

Keywords: Multi-objective online algorithms · Worst component
competitive ratio · Arithmetic mean component competitive ratio ·
Geometric mean component competitive ratio

1 Introduction

Single-objective online optimization problems are fundamental in computing,
communicating, and many other practical systems. To measure the efficiency of
online algorithms for single-objective online optimization problems, a notion
of competitive analysis was introduced by Sleator and Tarjan [8], and since
then extensive research has been made for diverse areas, e.g., online paging
and caching (see [10] for a survey), metric task systems (see [6] for a survey),
asset conversion problems (see [7] for a survey), buffer management of network

T. Itoh—The author gratefully acknowledges the ELC project (Grant-in-Aid for
Scientific Research on Innovative Areas MEXT Japan) for encouraging the research
presented in this paper.

c© Springer International Publishing Switzerland 2016
M. Kaykobad and R. Petreschi (Eds.): WALCOM 2016, LNCS 9627, pp. 301–312, 2016.
DOI: 10.1007/978-3-319-30139-6 24

302 S. Hasegawa and T. Itoh

switches (see [4] for a survey), etc. All of these are single-objective online prob-
lems. In practice, there are many online problems of multi-objective nature,
but we have no general framework of competitive analysis and no definition of
competitive ratio. Tiedemann, et al. [9] first formulated a framework of multi-
objective online problems as the online version of multi-objective optimization
problems [2] and defined a notion of the competitive ratio for multi-objective
online problems by extending the competitive ratio for single-objective online
problems. To define the competitive ratio for multi-objective (k-objective) online
problems, Tiedemann, et al. [9] regarded multi-objective online problems as a
family of (possibly dependent) single-objective online problems and applied a
monotone (continuous) function f : Rk → R to the family of the single-objective
online problems. Given an algorithm alg for a multi-objective (k-objective)
online problem, regard alg as a family of algorithms algi for the ith objective
of the input sequence. For the set of k competitive ratios {c1, . . . , ck}, we say
that the algorithm alg is f(c1, . . . , ck)-competitive with respect to a monotone
continuous function f : Rk → R. In fact, Tiedemann, et al. [9] defined the worst
component competitive ratio, the arithmetic mean component competitive ratio,
and the geometric mean component competitive ratio by functions

f1(c1, . . . , ck) = max(c1, . . . , ck),
f2(c1, . . . , ck) = (c1 + · · · + ck)/k,

f3(c1, . . . , ck) = (c1 × · · · × ck)1/k,

respectively. Note that the functions f1, f2, and f3 are monotone and continuous.

1.1 Previous Work

El-Yaniv, et al. [3] initially investigated the single-objective time series search
problem. For the single-objective time series search problem, prices are revealed
time by time and the goal of the algorithm is to select one of them as with high
price as possible. Assume that m > 0 and M > m are the minimum and maxi-
mum values of possible prices, respectively, and let φ = M/m be the fluctuation
ratio of possible prices. Under the assumption that M > m > 0 are known to the
algorithms, El-Yaniv, et al. [3] presented a deterministic reservation price policy
rpp, which is

√
φ-competitive algorithm and best possible, and a randomized

algorithm exponential threshold expo, which is O(log φ)-competitive.
In a straightforward manner, Tiedemann, et al. [9] defined the multi-objective

time series search problem by generalizing the single-objective time series search
problem. For the multi-objective (k-objective) time series search problem, a vector
of k (possibly dependent) prices are revealed time by time and the goal of the algo-
rithm is to select one of the price vectors as with low competitive ratio as possible
with respect to the monotone continuous function f . Tiedemann, et al. [9] pre-
sented best possible online algorithms for the multi-objective time series search
problem with respect to the monotone continuous functions f1, f2, and f3, i.e.,
a best possible online algorithm for the multi-objective time series search prob-
lem with respect to the monotone continuous function f1 [9, Theorems 1 and 2],

Optimal Online Algorithms for the Multi-objective Time Series 303

a best possible online algorithm for the bi-objective time series search problem
with respect to the monotone continuous function f2 [9, Theorems 3 and 4] and a
best possible online algorithm for the bi-objective time series search problem with
respect to the monotone continuous function f3 [9, §3.2].

1.2 Our Contribution

We first observe that the definition and framework of competitive analysis given
by Tiedemann, et al. [9, Definitions 1, 2, and 3] do not necessarily capture the
efficiency of algorithms for multi-objective online problems. Then we introduce
modified definition and framework of competitive analysis for multi-objective
online problems and verify that each result [9] for the multi-objective time series
search problem holds under the modified framework of competitive analysis.

As mentioned in Subsect. 1.1, Tiedemann, et al. [9] showed best possible
online algorithms for the multi-objective time series search problem with respect
to the monotone continuous functions f1, f2 and f3, however, the optimal-
ity for the algorithm with respect to each of the monotone continuous func-
tions f1, f2 and f3 is discussed separately and independently. In this paper, we
present a simple online algorithm for the multi-objective time series search prob-
lem with respect to any monotone continuous function f : Rk → R and then
show that under the modified framework of competitive analysis, the proposed
algorithm is best possible for any monotone continuous function f : Rk → R (in
Theorems 1 and 2). With respect to the monotone continuous functions f1, f2,
and f3, we also derive best possible values of the competitive ratio under the
modified framework of competitive analysis in Theorems 3, 4, and 5, respectively.

By Theorems 1 and 2, we note that (1) Theorem 3 gives another proof of the
result that the algorithm [9, Theorem 1] is best possible for the multi-objective
time series search problem with respect to f1, (2) Theorem 4 disproves the result
that the algorithm [9, Theorem 3] is best possible for the bi-objective time series
search problem with respect to f2, and (3) Theorem5 gives a best possible online
algorithm for the multi-objective time series search problem with respect to f3,
which is an extension of the result that the algorithm [9, Theorem 3] is best
possible for the bi-objective time series search problem with respect to f3.

2 Preliminaries

For the subsequent discussions, we present some notations and terminologies.
For any pair of integers a ≤ b, we use [a, b] to denote a set {a, . . . , b} and for any
pair of vectors x = (x1, . . . , xk) ∈ Rk and y = (y1, . . . , yk) ∈ Rk, we use x � y
to denote a componentwise order, i.e., xi ≤ yi for each i ∈ [1, k]. It is immediate
that � is a partial order on Rk. A function f : Rk → R is said to be monotone
if f(x) ≤ f(y) for any pair of vectors x ∈ Rk and y ∈ Rk such that x � y .

304 S. Hasegawa and T. Itoh

2.1 Multi-Objective Online Problems

Tiedemann, et al. [9] formulated a framework of multi-objective online problems
by using that of multi-objective optimization problems [2]. In this subsection,
we present multi-objective maximization problems (multi-objective minimization
problems can be defined analogously).

Let Pk = (I,X , h) be a multi-objective optimization (maximization) problem,
where I is a set of inputs, X (I) ⊆ Rk is a set of feasible solutions for each input
I ∈ I, and h : I × X → Rk is a function such that h(I,x) ∈ Rk represents the
objective of each solution x ∈ X (I). For an input I ∈ I, an algorithm algk for
Pk outputs a feasible solution algk[I] ∈ X (I). For an input I ∈ I and a feasible
solution algk[I], let algk(I) = h(I,algk[I]) ∈ Rk be the objective associate
with algk[I] ∈ X (I). A feasible solution xmax ∈ X (I) is said to be maximal if
there exists no feasible solution x ∈ X (I)\{xmax} such that h(I,xmax) � h(I,x)
and for any input I ∈ I, let optk[I] ⊆ Rk be the set of maximal solutions to Pk.

A multi-objective online problem can be defined in a way similar to a single-
objective online problem [1]. We regard a multi-objective online problem as a
multi-objective optimization problem in which the input is revealed bit by bit
and an output must be produced in an online manner, i.e., after each new part
of input is revealed, a decision affecting the output must be made.

2.2 Competitive Analysis for Multi-Objective Online Problems

Tiedemann, et al. [9] defined a notion of competitive analysis for multi-objective
online problems1. In this subsection, we introduce the notion of competitive
analysis for multi-objective online problems with respect to maximization prob-
lems (the corresponding minimization problem can be defined analogously).

Definition 1 ([9]). Let Pk = (I,X , h) be a multi-objective maximization prob-
lem. For a vector c = (c1, . . . , ck) ∈ Rk, a multi-objective online algorithm algk

for Pk is c-competitive if for every input sequence I ∈ I and every maximal
solution x ∈ optk[I], h(I,x)i ≤ ci· algk(I)i +αi holds for each i ∈ [1, k], where
α = (α1, . . . , αk) ∈ Rk is a constant vector independent of inputs I ∈ I.

Let f : Rk → R be a monotone continuous function. For a multi-objective
online algorithm algk for Pk, the competitive ratio of the algorithm algk with
respect to f is the infimum of f(c) over all possible vectors c = (c1, . . . , ck) ∈ Rk

such that algk is c-competitive. We use C[algk] to denote the set of all possible
vectors c = (c1, . . . , ck) ∈ Rk such that algk is c-competitive.

Definition 2 ([9]). For a monotone continuous function f : Rk → R and
an online algorithm algk for a multi-objective maximization problem Pk, the
competitive ratio of algk with respect to f is Rf (algk) = infc∈C[ALGk] f(c).

1 Tiedemann, et al. [9] introduced notions of (strong) c-competitive and (strong) com-
petitive ratio. In this paper, we do not deal with the notion of c-competitive and com-
petitive ratio. Thus for simplicity, we refer to strong c-competitive and strong com-
petitive ratio as c-competitive and competitive ratio, respectively.

Optimal Online Algorithms for the Multi-objective Time Series 305

Several examples of a monotone continuous function f : Rk → R are given
by Tiedemann, et al. [9], e.g., f1(c1, . . . , ck) = max(c1, . . . , ck), f2(c1, . . . , ck) =
(c1 + · · · + ck)/k, f3(c1, . . . , ck) = (c1 × · · · × ck)1/k. We refer to the competitive
ratio of an algorithm algk with respect to f1, f2, and f3 as worst component
competitive ratio, arithmetic mean component competitive ratio, and geometric
mean component competitive ratio, respectively.

2.3 Multi-objective Time Series Search Problem

A single-objective time series search problem is initially investigated by El-Yaniv,
et al. [3] and it is defined as follows: An online player alg is searching for the
maximum price in a sequence of prices. At the beginning of each time period
t ∈ [1, T], a price pt is revealed to the online player alg and it must decide
whether to accept or reject the price pt. If the online player alg accepts the
price pt, then the game ends and the return for alg is pt. We assume that prices
are chosen from the real interval I = [m,M], where 0 < m ≤ M , and m and M
are known to the online player alg2. If the online player alg rejects the price pt

for every t ∈ [1, T], then the return for alg is defined to be m. A multi-objective
time series search problem [9] can be defined by a natural extension of the single-
objective time series search problem. In the multi-objective time series search
problem, a vector pt = (p1t , . . . , p

k
t) ∈ Rk is revealed to the online player algk

at the beginning of each time period t ∈ [1, T], and the online player algk must
decide whether to accept or reject the price vector pt. If the online player algk

accepts the price vector pt, then the game ends and the return for algk is pt. As
in the case of a single-objective time series search problem, assume that prices
pi

t are chosen from the real interval Ii = [mi,Mi] with 0 < mi ≤ Mi for each
i ∈ [1, k], and that the online player algk knows mi and Mi for each i ∈ [1, k].
If the online player algk rejects the price vector pt for every t ∈ [1, T], then the
return for algk is defined to be the minimum price vector pmin = (m1, . . . ,mk).
Without loss of generality, we assume that M1/m1 ≥ · · · ≥ Mk/mk.

3 Observations on the Competitive Analysis

For the multi-objective (k-objective) time series search problem, it is natural to
regard that mi and Mi are part of the problem (not part of inputs) for each i ∈
[1, k]. Set αi = Mi for each i ∈ [1, k] in Definition 1. Then we can take
c1 = · · · = ck = 0. This implies that any algorithm alg for the multi-objective
(k-objective) time series search problem is (0, . . . , 0)-competitive, i.e., for any
monotone continuous function f : Rk → R, the competitive ratio of the algo-
rithm alg is f(0, . . . , 0). Thus in Definition 1, we fix αi = 0 for each i ∈ [1, k].

For simplicity, assume that k = 2 and I1 = I2 = [m,M], where 0 < m < M .
Consider a simple algorithm alg2 that accepts the first price vector.
2 It is possible to show that if only the fluctuation ratio φ = M/m is known (but

not m or M) to alg, then no better competitive ratio than the trivial one of φ is
achievable.

306 S. Hasegawa and T. Itoh

Example 1. Let I1 = {s1, s2} be the set of input sequences. In the sequence s1,
p1 = (m,M), p2 = (M,m), and p3 = (m,m) are revealed to the algorithm alg2

at t = 1, t = 2, and t = 3, respectively, and in the sequence s2, q1 = (M,m),
q2 = (m,m), and q3 = (m,M) are revealed to the algorithm alg2 at t =
1, t = 2, and t = 3, respectively. Note that for the sequence s1, the algorithm
alg2 accepts p1 = (m,M) which is maximal in s1 and for the sequence s2,
the algorithm alg2 accepts p2 = (M,m) which is also maximal in s2. From
Definition 1, we have that the algorithm alg2 is (M/m,M/m)-competitive.

Example 2. Let I2 = {σ} be the set of input sequences. In the sequence σ, price
vectors r1 = (m,m), r2 = (m,M), and r3 = (M,m) are revealed at t = 1,
t = 2, and t = 3 to the algorithm alg2, respectively. Note that the algorithm
alg2 accepts r1 = (m,m) which is not maximal in σ. From Definition 1, we
have that the algorithm alg2 is (M/m,M/m)-competitive.

Notice that in Example 1, the algorithm alg2 accepts price vectors which is
maximal in the sequences s1 and s2, however, in Example 2, the algorithm alg2

accepts a price vector which is not maximal in the sequence σ. Thus it follows
that for any monotone continuous function f : R2 → R, the competitive ratio of
the algorithm alg2 is f(M/m,M/m) for both Examples 1 and 2, which does not
necessarily capture the efficiency of online algorithms. To derive a more realistic
framework, we modify the definition of competitive ratio.

Let algk be an online algorithm for a multi-objective maximization problem
Pk = (I,X , h) and CRf (algk; I) be the competitive ratio of the algorithm algk

for an input sequence I ∈ I with respect to a function f : Rk → R, i.e.,

CRf (algk; I) = sup
x∈optk[I]

f

(
h(I,x)1
algk(I)1

, . . . ,
h(I,x)k

algk(I)k

)

.

Definition 3. For a monotone continuous function f : Rk → R and an online
algorithm algk for a multi-objective maximization problem Pk, the competitive
ratio of algk with respect to f is CRf (algk) = supI∈I CRf (algk; I).

In fact, all of the proofs on the competitive ratio [9] hold under Definition 3.
In the rest of the paper, we analyze the algorithms according to Definition 3.

4 Online Algorithm: Balanced Price Policy

In this section, we present a simple online algorithm Balanced Price Policy
bppk (in Fig. 1) for the multi-objective (k-objective) time series search problem
with respect to an arbitrary monotone continuous function f : Rk → R.

Let Ik = I1 ×· · ·× Ik and zk
f = sup(x1,...,xk)∈Sk

f
f(M1/x1, . . . ,Mk/xk), where

Sk
f =

{

(x1, . . . , xk) ∈ Ik : f

(
M1

x1
, . . . ,

Mk

xk

)

= f

(
x1

m1
, . . . ,

xk

mk

)}

.

Optimal Online Algorithms for the Multi-objective Time Series 307

for t = 1, 2, . . . , T do
|| Accept pt = (p1t , . . . , p

k
t) if f(M1

p1t
, . . . , Mk

pkt
) ≤ f(

p1t
m1

, . . . ,
pkt
mk

).|
end

Fig. 1. Balanced price policy bppk

By setting xi =
√

miMi ∈ Ii = [mi,Mi] for each i ∈ [1, k], it is immediate that

f

(
M1

x1
, . . . ,

Mk

xk

)

= f

(
M1√
m1M1

, . . . ,
Mk√
mkMk

)

= f

(√
M1

m1
, . . . ,

√
Mk

mk

)

;

f

(
x1

m1
, . . . ,

xk

mk

)

= f

(√
m1M1

m1
, . . . ,

√
mkMk

mk

)

= f

(√
M1

m1
, . . . ,

√
Mk

mk

)

.

For any f , it follows that (
√

m1M1, . . . ,
√

mkMk) ∈ Sk
f . So we have that Sk

f 	= ∅
and zk

f = sup(x1,...,xk)∈Sk
f

f(M1/x1, . . . ,Mk/xk) is well-defined.

4.1 The Algorithm BPPk is Best Possible

In this subsection, we show that the algorithm bppk is best possible for any inte-
ger k ≥ 1. More precisely, we show that CRf (bppk) ≤ zk

f (in Theorem 1) and
that CRf (algk) ≥ zk

f for any algorithm algk (in Theorem 2).

Theorem 1. CRf (bppk) ≤ zk
f for any integer k ≥ 1.

Proof: Let I be the set of input sequences. Define Iacc, Irej ⊆ I as follows:

Iacc =

⎧
⎨

⎩
(p1, . . . ,pT) ∈ I :

∨

t∈[1,T]

[

f

(
M1

p1t
, . . . ,

Mk

pk
t

)

≤ f

(
p1t
m1

, . . . ,
pk

t

mk

)]
⎫
⎬

⎭
;

Irej =

⎧
⎨

⎩
(p1, . . . ,pT) ∈ I :

∧

t∈[1,T]

[

f

(
M1

p1t
, . . . ,

Mk

pk
t

)

> f

(
p1t
m1

, . . . ,
pk

t

mk

)]
⎫
⎬

⎭
.

For each I = (p1, . . . ,pT) ∈ Iacc, where pt = (p1t , . . . , p
k
t) ∈ Rk for each t ∈

[1, T], the algorithm bppk terminates at the earliest t ∈ [1, T] to accept pt =
(p1t , . . . , p

k
t) such that f(M1/p1t , . . . ,Mk/pk

t) ≤ f(p1t /m1, . . . , p
k
t /mk). Thus

CRf (bppk; I) = sup
x∈optk[I]

f

(
h(I,x)1

p1t
, . . . ,

h(I,x)k

pk
t

)

≤ f

(
M1

p1t
, . . . ,

Mk

pk
t

)

.

To show that f(M1/p1t , . . . ,Mk/pk
t) ≤ zk

f , consider the following subcases:

308 S. Hasegawa and T. Itoh

(1.1) f(M1/p1t , . . . ,Mk/pk
t) = f(p1t /m1, . . . , p

k
t /mk);

(1.2) f(M1/p1t , . . . ,Mk/pk
t) < f(p1t /m1, . . . , p

k
t /mk).

For the subcase (1.1), it is immediate that pt ∈ Sk
f and f(M1/p1t , . . . ,Mk/pk

t) ≤
zk

f . For the subcase (1.2), let J = {j ∈ [1, k] : Mj/pj
t ≤ pj

t/mj}. Notice that J 	=
∅3. For simplicity, we assume that J = {1, 2, . . . , u} for u ≥ 1. By setting pj

t = mj

for each j ∈ J , we have that

f

(
M1

m1
, . . . ,

Mu

mu
,
Mu+1

pu+1
t

, . . . ,
Mk

pk
t

)

≥ f

(

1, . . . , 1,
pu+1

t

mu+1
, . . . ,

pk
t

mk

)

.

Since f is monotone and continuous, there exist qi
t ∈ [mi, p

i
t] (1 ≤ i ≤ u) so that

f

(
M1

p1t
, . . . ,

Mk

pk
t

)

≤ f

(
M1

q1t
, . . . ,

Mu

qu
t

,
Mu+1

pu+1
t ,

. . . ,
Mk

pk
t

)

= f

(
q1t
m1

, . . . ,
qu
t

mu
,

pu+1
t

mu+1
, . . . ,

pk
t

mk

)

≤ f

(
p1t
m1

, . . . ,
pk

t

mk

)

.

Then it turns out that (q1t , . . . , qu
t , pu+1

t , . . . , pk
t) ∈ Sk

f and it follows that

f

(
M1

p1t
, . . . ,

Mk

pk
t

)

≤ f

(
M1

q1t
, . . . ,

Mu

qu
t

,
Mu+1

pu+1
t ,

. . . ,
Mk

pk
t

)

≤ zk
f .

For each I = (p1, . . . ,pT) ∈ Irej, the algorithm bppk rejects a price vector
pt for every t ∈ [1, T] and eventually settles in the minimum price vector pmin =
(m1, . . . ,mk), while the optimal offline algorithm can accept a price vector pτ =
(p1τ , . . . , pk

τ) = maxt∈[1,T] f(p1t /m1, . . . , p
k
t /mk). Thus

CRf (bppk; I) = sup
x∈optk[I]

f

(
h(I,x)1

m1
, . . . ,

h(I,x)k

mk

)

≤ f

(
p1τ
m1

, . . . ,
pk

τ

mk

)

.

We show that f(p1τ/m1, . . . , p
k
τ/mk) ≤ zk

f . Since the algorithm bppk rejects a
price vector pt for every t ∈ [1, T], it is immediate that

f(M1/p1τ , . . . ,Mk/pk
τ) > f(p1τ/m1, . . . , p

k
τ/mk).

Let H = {h ∈ [1, k] : Mh/ph
τ ≥ ph

τ /mh}. Note that H 	= ∅4. We assume that
H = {1, 2, . . . , v} for v ≥ 1. By setting ph

τ = Mh for each h ∈ H, we have that

f

(

1, . . . , 1,
Mv+1

pv+1
τ

, . . . ,
Mk

pk
τ

)

≤ f

(
M1

m1
, . . . ,

Mv

mv
,

pv+1
τ

mv+1
, . . . ,

pk
τ

mk

)

.

3 If J = ∅, then Mi/pi
t > pi

t/mi for each i ∈ [1, k]. Since f : Rk → R is a monotone
function, we have that f(M1/p1

t , . . . , Mk/pk
t) ≥ f(p1

t /m1, . . . , p
k
t /mk), which contra-

dicts the assumption that f(M1/p1
t , . . . , Mk/pk

t) < f(p1
t /m1, . . . , p

k
t /mk).

4 If H = ∅, then Mi/pi
τ < pi

τ/mi for each i ∈ [1, k]. Since f : Rk → R is a monotone
function, we have that f(M1/p1

t , . . . , Mk/pk
t) ≤ f(p1

t /m1, . . . , p
k
t /mk), which contra-

dicts the assumption that f(M1/p1
t , . . . , Mk/pk

t) > f(p1
t /m1, . . . , p

k
t /mk).

Optimal Online Algorithms for the Multi-objective Time Series 309

Since f is monotone and continuous, there exist qi
τ ∈ [pi

τ ,Mi] (1 ≤ i ≤ v) so
that

f

(
p1τ
m1

, . . . ,
pk

τ

mk

)

≤ f

(
q1τ
m1

, . . . ,
qv
τ

mv
,

pv+1
τ

mv+1
, . . . ,

pk
τ

mk

)

= f

(
M1

q1τ
, . . . ,

Mv

qv
τ

,
Mv+1

pv+1
τ

, . . . ,
Mk

pk
τ

)

≤ f

(
M1

p1τ
, . . . ,

Mk

pk
τ

)

.

Then it turns out that (q1τ , . . . , qv
τ , pv+1

τ , . . . , pk
τ) ∈ Sk

f and it follows that

f

(
p1τ
m1

, . . . ,
pk

τ

mk

)

≤ f

(
q1τ
m1

, . . . ,
qv
τ

mv
,

pv+1
τ

mv+1
, . . . ,

pk
τ

mk

)

≤ zk
f .

Since Iacc ∩Irej = ∅ and Iacc ∪Iacc = I, we have that CRf (bppk; I) ≤ zk
f for

any I ∈ I, and it follows that CRf (bppk) = supI∈I CRf (bppk; I) ≤ zk
f . �

Theorem 2. CRf (algk) ≥ zk
f for any integer k ≥ 1 and any algorithm algk.

Proof: Let algk be an arbitrarily online algorithm and (x∗
1, . . . , x

∗
k) ∈ Sk

f be a
price vector such that zk

f = f(M1/x∗
1, . . . ,Mk/x∗

k). The adversary first reveals
a price vector p = (x∗

1, . . . , x
∗
k). If the algorithm algk accepts the price vec-

tor p, then the adversary reveals another price vector pmax = (M1, . . . ,Mk)
and accepts pmax. Let I = (p,pmax) be an input sequence. Then from the
definition of p, we have that CRf (algk; I) = f(M1/x∗

1, . . . ,Mk/x∗
k) = zk

f .
If the algorithm algk rejects p, then the adversary accepts the price vec-
tor p but reveals no further price vectors until the algorithm algk even-
tually settles in the minimum price vector pmin = (m1, . . . ,mk). Let J =
(p) be an input sequence. From the definition of the price vector p, we
have hat zk

f = f(x∗
1/m1, . . . , x

∗
k/mk). Then it follows that CRf (algk;J) =

f(x∗
1/m1, . . . , x

∗
k/mk) = zk

f . Thus CRf (algk) = supI∈I CRf (algk; I) ≥ zk
f for

any algorithm algk. �
From Theorems 1 and 2, we immediately have the following result.

Corollary 1. CRf (bppk) = zk
f for any integer k ≥ 1.

4.2 Discussions

As mentioned in Subsect. 1.1, El-Yaniv, et al. [3] presented the algorithm rpp
for the single-objective time series search problem (see Fig. 2). We refer to p∗ as
the reservation price, where p∗ is the solution of M/p = p/m.

For the monotone continuous functions f1, f2, and f3, we have that f1(x) =
f2(x) = f3(x) = x if k = 1. This implies that the algorithm bpp1 coincides with
the algorithm rpp with respect to f1, f2, and f3, however, this is not necessarily
the case for arbitrary nondecreasing continuous functions f : R → R. Consider
the following nondecreasing continuous function g : R → R (see Fig. 3).

310 S. Hasegawa and T. Itoh

for t = 1, 2, . . . , T do
|| Accept pt if pt ≥ p∗ =

√
Mm.|

end

Fig. 2. Reservation price policy rpp

From the assumption that 0 < m < M , it follows that M/m > 1 and we can take
any constant c such that 1 < c <

√
M/m. Then we have that

g(M/p)

⎧
⎨

⎩

> g(p/m) for m ≤ p <
√

Mm/c;
= g(p/m) for

√
Mm/c ≤ p ≤ c

√
Mm;

> g(p/m) for c
√

Mm < p ≤ M.

Thus the algorithm bpp1 does not coincide with the algorithm rpp
[3] with respect to the function g : R → R in Fig. 3.

1

1

M
m

c M
m

M
m

c M
m

M
m

g(x)

x

g(x)

1
c

M
m

1
c

M
m

M
m

Fig. 3. Counterexample for nondecreasing continuous function g : R → R

Optimal Online Algorithms for the Multi-objective Time Series 311

5 Analysis for Competitive Ratio

In this section, we derive exact values of the competitive ratio for the multi-
objective time series search problem with respect to the worst component com-
petitive analysis, the arithmetic mean component competitive analysis, and the
geometric mean component competitive analysis.

All the proofs of Theorems 3, 4, and 5 are omitted due to the page limitation,
but those can be found in [5].

5.1 Worst Component Competitive Ratio

In this section, we show that CRf1(bppk) = zk
f1

= max{√
M1/m1,M2/m2}.

This implies that the algorithm rpp-high [9, Algorithm 1] can be regarded as a
special case of the algorithm bppk with respect to the function f1(c1, . . . , ck) =
max(c1, . . . , ck). For the function f1, let

Sk
f1

=
{

(x1, . . . , xk) ∈ Ik : max
(

M1

x1
, . . . ,

Mk

xk

)

= max
(

x1

m1
, . . . ,

xk

mk

)}

;

zk
f1

= sup
(x1,...,xk)∈Sk

f1

[

max
(

M1

x1
, . . . ,

Mk

xk

)]

.

Theorem 3. zk
f1

= max{√
M1/m1,M2/m2} for any integer k ≥ 2.

With respect to the function f1, Tiedemann, et al. [9] presented the algo-
rithm rpp-high and showed that CRf1(rpp-high) = max{√

M1/m1,M2/m2}
[9, Theorems 1 and 2]. By combining Corollary 1 and Theorem 3, we have that
CRf1(bppk) = zk

f1
= max{√

M1/m2,M2/m2}, and this is another proof for the
optimality on the worst component competitive ratio.

5.2 Arithmetic Mean Component Competitive Ratio

For c1, . . . , ck ∈ R, let f2(c1, . . . , ck) = (c1 + · · ·+ ck)/k. For the function f2, let

Sk
f2

=
{

(x1, . . . , xk) ∈ Ik :
1
k

(
M1

x1
+ · · · +

Mk

xk

)

=
1
k

(
x1

m1
+ · · · +

xk

mk

)}

;

zk
f2

= sup
(x1,...,xk)∈Sk

f2

1
k

(
M1

x1
+ · · · +

Mk

xk

)

=
1
k

sup
(x1,...,xk)∈Sk

f2

(
M1

x1
+ · · · +

Mk

xk

)

.

From Corollary 1, we have that Rf2
s (bppk) = zk

f2
with respect to f2. It would be

difficult to explicitly represent zk
f2

by m1, . . . ,mk,M1, . . . ,Mk. So we consider
the case that k = 2 and we give an explicit form of z2f2

by m1,m2,M1,M2.

Theorem 4. With respect to the function f2 for k = 2, the following holds:

z2f2
=

1
2

⎡

⎣

√{
1
2

(
M2

m2
− 1

)}2

+
M1

m1
+

1
2

(
M2

m2
+ 1

)
⎤

⎦ .

312 S. Hasegawa and T. Itoh

With respect to the function f2 for k = 2, Tiedemann, et al. [9] presented the
algorithm rpp-mult and showed that CRf2(rpp-mult) ≤ 4

√
(M1M2)/(m1m2)

[9, Theorem 3] (this holds under Definition 2, but can be shown by Definition 3).
Note that 4

√
(M1M2)/(m1m2) < z2f2

. Then from Theorems 2 and 4, we have that
CRf2(alg2) ≥ z2f2

for any algorithm alg2, which disproves the result [9, Theo-
rem 3]. This is because in the proof of the result [9, Theorem 3], the maximum
in Equation (9) cannot be achieved at

√
M1z∗/M2, where z∗ =

√
m1M2m2M1.

5.3 Geometric Mean Component Competitive Ratio

For c1, . . . , ck ∈ R, let f3(c1, . . . , ck) = (
∏k

i=1 ci)1/k. For the function f3, let

Sk
f3

=

⎧
⎨

⎩
(x1, . . . , xk) ∈ I1 × · · · × Ik :

(
k∏

i=1

Mi

xi

)1/k

=

(
k∏

i=1

xi

mi

)1/k
⎫
⎬

⎭
;

zk
f3

= sup
(x1,...,xk)∈Sk

f3

(
k∏

i=1

Mi

xi

)1/k

.

With respect to the function f3 for k = 2, it is immediate to see that the algo-
rithm rpp-mult [9] is identical to the algorithm bpp2. In fact, Tiedemann, et al.
[9] showed that CRf3(rpp-mult) = 4

√
(M1M2)/(m1m2) with respect to f3 for

k = 2, and this can be generalized to the result that CRf3
s (bppk) = zk

f3
for any

integer k ≥ 2 (see Corollary 1 with respect to f3).

Theorem 5. zk
f3

=
(∏k

i=1 Mi/mi

)1/2k

for any integer k ≥ 2.

References

1. Borodin, A., El-Yaniv, R.: Online Computation and Competitive Analysis. Cam-
bridge University Press, Cambridge (1998)

2. Ehrgott, M.: Multicriteria Optimization. Springer, Heidelberg (2005)
3. El-Yaniv, R., Fiat, A., Karp, R.M., Turpin, G.: Optimal search and one-way trading

online algorithms. Algorithmica 30(1), 101–139 (2001)
4. Goldwasser, M.H.: A survey of buffer management policies for packet switches.

ACM SIGACT New 41(1), 100–128 (2010)
5. Hasegawa, S., Itoh, T.: Optimal Online Algorithms for the Multi-Objective Time

Series Search Problem. CoRR abs/1506.04474 (2015)
6. Koutsoupias, E.: The k-server conjecture. Comput. Sci. Rev. 3(2), 105–118 (2009)
7. Mohr, E., Ahmad, I., Schmidt, G.: Online algorithms for conversion problems: a

survey. Surv. Oper. Res. Manag. Sci. 19(2), 87–104 (2014)
8. Sleator, D.D., Tarjan, R.: Amortized efficiency of list update and paging rules.

Commun. ACM 28(2), 202–208 (1085)
9. Tiedemann, M., Ide, J., Schöbel, A.: Competitive analysis for multi-objective online

algorithms. In: Rahman, M.S., Tomita, E. (eds.) WALCOM 2015. LNCS, vol. 8973,
pp. 210–221. Springer, Heidelberg (2015)

10. Young, N.E.: Online paging and caching. In: Kao, M.-Y. (ed.) Encyclopedia of
Algorithms, pp. 601–604. Springer, Heidelberg (2008)

Fully Dynamically Maintaining Minimal Integral
Separator for Threshold and Difference Graphs

Tiziana Calamoneri(B), Angelo Monti, and Rossella Petreschi

Computer Science Department, “Sapienza” University of Rome, Rome, Italy
{calamo,monti,petreschi}@di.uniroma1.it

Abstract. This paper deals with the well known classes of threshold
and difference graphs, both characterized by separators, i.e. node weight
functions and thresholds. We show how to maintain minimum the value
of the separator when the input (threshold or difference) graph is fully
dynamic, i.e. edges/nodes are inserted/removed. Moreover, exploiting the
data structure used for maintaining the minimality of the separator, we
handle the operations of disjoint union and join of two threshold graphs.

Keywords: Fully dynamic graphs · Threshold graphs · Difference
graphs · Chain graphs · Threshold signed graphs · Graph operations

1 Introduction

In many applications of graph algorithms, graphs are fully dynamic, i.e. both
edges and nodes may be inserted or eliminated.

Typically, one would like to answer to a precise query on the fully dynamic
graph, so the goal is to update the data structure after dynamic changes, rather
than having to recompute it from scratch each time.

Threshold graphs constitute a very important and well studied graph class,
since they find applications in several fields, such as psychology, parallel process-
ing, scheduling, and graph theory. For this reason, threshold graphs have been
defined many times in the literature (see, e.g. [2,5]), and have been widely stud-
ied. Difference graphs (also known as chain graphs)–that are strictly related to
threshold graphs, though incomparable–had similar destiny and have been inde-
pendently introduced (see, e.g. [3,9]). For a comprehensive survey on threshold
graphs, difference graphs and related topics, see [6].

Among the numerous equivalent definitions of threshold and difference
graphs, many of them exploit a node weight function and a threshold. This
pair is called a separator and of course it is not unique. It is of interest to deter-
mine a minimum separator, i.e. a separator with minimum value of the threshold.
Orlin [7] presented an algorithm for minimizing the threshold w.r.t. one of these
definitions in linear time in the number of nodes.

Partially supported by the Italian Ministry of Education and University, PRIN
project “AMANDA: Algorithmics for MAssive and Networked DAta”.

c© Springer International Publishing Switzerland 2016
M. Kaykobad and R. Petreschi (Eds.): WALCOM 2016, LNCS 9627, pp. 313–324, 2016.
DOI: 10.1007/978-3-319-30139-6 25

314 T. Calamoneri et al.

In this paper we consider a different (equivalent) definition, also based on a
threshold and a node weight function. After a pre-computation, we have always
available the minimum separator after fully dynamically changing the graph.
Both the pre-computation and each linear time operation of addition/deletion
of either an edge or a node with all its incident edges are performed in linear
time w.r.t. the number of different degrees of the current graph.

So, this is a contribution to the problem of the dynamic maintenance of
threshold and difference graphs. To the best of our knowledge, few works deal
with this topic. Namely, in [8] the problem of dynamically recognizing some
classes of graphs (and among them threshold graphs) is handled. In [4] the
authors consider the problem of adding/deleting edges with the aim of trans-
forming a given graph into a threshold graph with the minimum number of
changes.

We conclude this paper with a section that, exploiting the data structure
used for maintaining the minimality of the separator, handles the operations of
disjoint union and join of two threshold graphs.

2 Preliminaries

In this section, we list some definitions and properties, all from [6]. For the sake
of clarity, we reorganized them in order to optimize the presentation.

Definition 1. A graph G = (V,E) is a threshold graph if there is a mapping
a : V → IR+ and a positive real number S such that

a(v) < S for all v ∈ V (1)

{v, w} ∈ E if and only if a(v) + a(w) ≥ S (2)

The pair (a, S) will be called separator for graph G.

In Fig. 1a a threshold graph with one of its separators is depicted.

Definition 2. A graph G = (V,E) is a difference graph if there is mapping
a : V → IR and a positive real number T such that

|a(v)| < T for all v ∈ V (3)

{v, w} ∈ E if and only if |a(v) − a(w)| ≥ T (4)

The pair (a, T) will be called separator for graph G.

The node set of a difference graph G can be partitioned as V = U ∪W , where
U = {v ∈ V : a(v) ≥ 0} and W = {v ∈ V : a(v) < 0}; both U and W induce a
stable set and hence G is bipartite with bipartition (U,W). A difference graph
with one of its separators is shown in Fig. 1b.

Although Definitions 1 and 2 are very similar, the two defined classes are
incomparable. Nevertheless they are strictly related, as shown by the following
theorem:

Fully Dynamically Maintaining Minimal Integral Separator 315

� � � � �

5 4 3.5 2.2 2

� � � � � �

10 9.8 8.6 7 6.1 6.1

S = 12

� � � � �

7.5 5 4 2.2 1.4

� � � � � �

−8.5 −7 −5 −4.2 −3 −2.9

T = 9

� � � � �

7 5 4.2 2 1.5

� � � � � �

−8.4 −7 −5 −4 −3 −2.1

S = 10
T = 8.5

cba

Fig. 1. a. A threshold graph; b. A difference graph; c. A threshold signed graph.

Theorem 1. A bipartite graph G = (U ∪W,E) is a difference graph if and only
if adding to G all possible edges with both ends in the same side of the bipartition
(either U or W) yields a threshold graph.

Given a graph G = (V,E), we denote by deg(v) the degree of node v.

Definition 3. Let G = (V,E) be a graph whose distinct node-degrees are
δ1 < . . . < δm, and let δ0 = 0 (even if no node of degree 0 exists). Let
Di = {v ∈ V s.t. deg(v) = δi} for i = 0, . . . , m; Di is called i-th box; the
sequence D0, . . . , Dm is called the degree partition of G.

Definition 4. Let G = (U ∪ W,E) be a bipartite graph and let X be either U
or W . The distinct node-degrees for the nodes in X are δX

1 < . . . < δX
tX and let

δX
0 = 0 (even if no node of degree 0 exists in the partition X). Let DX

i = {v ∈
X s.t. deg(v) = δX

i } for 0 ≤ i ≤ tX ; the sequence DU
0 , . . . , DU

tU ,DW
0 , . . . , DW

tW is
called the bipartite degree partition of G.

Lemma 1. Let G = (V,E) be a threshold graph with degree partition
D0, . . . , Dm and whose node set is partitioned into a clique K and a stable set
I; let x ∈ Di and y ∈ Dj be two distinct nodes.

1. D0 ∪ . . . ∪ D�m/2� = I and D�m/2�+1 ∪ . . . ∪ Dm = K;
2. If e = {x, y} /∈ E, the graph G′ = (V,E ∪ {e}) is a threshold graph if and

only if i + j = m;
3. If e = {x, y} ∈ E, the graph G′ = (V,E \ {e}) is a threshold graph if and

only if i + j = m + 1;
4. e = {x, y} ∈ E if and only if i + j ≥ m + 1.

Lemma 2. Let G = (U ∪ W,E) be a difference graph with degree partition
DU

0 , . . . , DU
tU ,DW

0 , . . . , DW
tW , and let x ∈ DU

i and y ∈ DW
j be two distinct nodes.

1. tU = tW = t;
2. If e = {x, y} /∈ E, the graph G′ = (U ∪ W,E ∪ {e}) is a difference graph if

and only if i + j = t;

316 T. Calamoneri et al.

3. If e = {x, y} ∈ E, the graph G′ = (U ∪ W,E \ {e}) is a difference graph if
and only if i + j = t + 1;

4. e = {x, y} ∈ E if and only if i + j ≥ t + 1.

Given a graph G, we recall that the neighborhood N(v) of a node v is the set
of all neighbors of v, and its closed neighborhood is N [v] = N(v) ∪ {v}.

Lemma 3. Given a graph G = (V,E), the vicinal preorder is a binary relation
on the nodes of V such that u � v ⇔ N [u] ⊇ N(v). The vicinal preorder is total
on V if G is a threshold graph G and on U and V if G is a difference graph.

We now introduce a superclass of both threshold and difference graphs.

Definition 5. [1] A graph G = (V,E) is a threshold signed graph if there is a
mapping a : V → IR and two positive real numbers S and T such that

|a(v)| < min{S, T} (5)

{v, w} ∈ E iff either |a(v) + a(w)| ≥ S or |a(v) − a(w)| ≥ T. (6)

The triple (a, S, T) will be called separator for graph G.

Consider X = {x ∈ V s.t. a(x) < 0} and Y = {x ∈ V s.t. a(x) ≥ 0}.
As highlighted in Fig. 1c, we can see a threshold signed graph as constituted

by two threshold graphs, G− and G+ respectively induced by X and Y , that are
connected by a difference graph D. Notice that for X we consider the opposite
of the a’s values.

3 A Data Structure for Computing Minimal Integral
Separator for Threshold or Difference Graphs

Although in Definition 1 a threshold graph G = (V,E) is a graph having a
separator with non-negative real values, it is common to equivalently require the
separator to have non-negative integral values (i.e. an integral separator) [6]. We
say that an integral separator (a, S) for G is minimum if for any other integral
separator (a′, S′) for G we have S ≤ S′. In the following theorem we show
that the value of S of a minimum integral separator (a, S) of G is given by the
cardinality of the degree partition of G plus 1.

Theorem 2. Let G = (V,E) be a threshold graph with degree partition D0, . . . ,
Dm. The pair (a, S), where S = m + 1 and for each node v ∈ V , a(v) = i if
v ∈ Di, is a minimal integral separator of G.

Proof. First of all, we prove that (a, S) is a separator, i.e. that it satisfies the two
inequalities of Definition 1. Note that for each v ∈ V it holds 0 ≤ a(v) ≤ m < S
thus the pair (a, S) satisfies Inequality 1. Moreover, Inequality 2 follows from
Item 4 in Lemma 1. Trivially, (a, S) is integral.

Fully Dynamically Maintaining Minimal Integral Separator 317

Let us now prove that (a, S) is minimal. By contradiction, let (a, S) be not
minimal, and let (a′, S′) be an integral separator for G such that S′ < S. Observe
that only isolated nodes can have weight equal to zero (indeed, if {u, v} ∈ E and
a′(u) = 0 then a′(u) + a′(v) = a′(v) < S′ from Inequality 1, but this contradicts
Inequality 2). Moreover, notice that two nodes u and v having the same weight
necessarily behave in the same way (i.e. for any other node w ∈ V , it holds that
{u,w} ∈ E if and only if {v, w} ∈ E), so nodes having different degree cannot
have the same weight. All this implies that the function a′ on the non isolated
nodes assumes at least m different strictly positive weights. Thus Inequality 1
implies that S′ ≥ m+1. The chain m+1 = S > S′ ≥ m+1 proves the minimality
of (a, S).
�

From the same reasonings, we deduce the following theorem for a difference
graph G.

Theorem 3. Let G = (U ∪ W,E) be a difference graph with bipartite degree
partition DU

1 , . . . , DU
t , DW

1 , . . . , DW
t . The pair (a, S), where S = 2t + 1 and, for

each node v ∈ U , a(v) = −i if v ∈ DU
i and a(v) = i if v ∈ DW

i , is a minimal
integral separator of G.

Notice that Orlin [7] shows how to minimize the threshold for threshold
graphs considering an equivalent definition requiring that the sum of the weights
of the nodes of any independent set has to be smaller than the threshold. The
value of this threshold is larger than the value of S computed in this paper.

Now we present two data structures for representing threshold and difference
graphs allowing us to compute in a natural way minimal integral separators for
these graph classes, according to Theorems 2 and 3. Since a threshold graph
G = (V,E) is univocally determined by its degree partition D0, . . . , Dm, we
may store G using two arrays δ[0..m] and μ[0..m], where δ[i] represents the
degree δi of the nodes in the i-th box Di, and μ[i] represents its cardinality,
|Di|. Similarly, let G = (U ∪ W,E) be a difference graph with bipartite degree
partition DU

1 , . . . , DU
t , DW

1 , . . . , DW
t . This partition univocally determines G,

and G may be represented using the arrays δX [0..t] and μX [0..t], where δX [i]
represents the degree of the nodes in the i-th box DX

i , and μX [i] represents its
cardinality |DX

i |, X ∈ {U,W}. If G = (V,E) is a threshold graph, i is the weight
associated to all the μ[i] nodes belonging to the box Di of degree δi. Similarly, if
G = (U ∪ W,E) is a difference graph, i is the weight associated to all the μX [i]
nodes belonging to box DX

i of degree δX [i], with X ∈ {U,W}.

Exploiting these two data structures, the following theorem holds:

Theorem 4. Given a threshold (difference) graph G by means of its (bipartite)
degree partition, its minimal integral separator can be found in time linear w.r.t.
the number of different degrees in G.

In Sects. 4 and 5, each time we speak about a graph G (either threshold or
difference), G is represented by means of the arrays δ and μ.

318 T. Calamoneri et al.

4 Adding/deleting an Edge to Threshold/difference
Graphs

In this section we study how to get a new graph, obtained by adding/deleting
an edge from a graph that is either a threshold or a difference graph, and to
keep immediately available the knowledge of the minimum separator for the
new graph. In order to make easier the exposition, preliminarily we consider two
functions, operating on the data structures introduced in Sect. 3.

By IncreaseDeg(δ, μ, i, dim) we denote the operation of updating arrays
δ[0..dim] and μ[0..dim] when the degree of a node in box Di, 0 ≤ i ≤ dim,
is increased by one. IncreaseDeg can have as consequence the appearance of
a new box (if i = dim or if the degree of the nodes in Di+1 is different from
the degree of nodes in Di plus one). On the other hand, this increment can
also have as consequence the disappearance of box Di (if i �= 0, |Di| = 1 and
the degree of the nodes in Di+1 is equal to the degree of the nodes in Di plus
one). Symmetrically, we may consider the operation DecreaseDeg(δ, μ, i, dim)
of updating arrays δ[0..dim] and μ[0..dim] when the degree of a node in box Di,
0 < i ≤ dim, is decreased by one.

Let us now consider a threshold graph G. Let {x, y}, x ∈ Di and y ∈ Dj , the
edge to add/delete to/from G. Items 2 and 3 of Lemma 1 give a characterization
of the indices i and j to ensure that the modified graph is still a threshold graph;
namely, i + j = m in case of insertion, and i + j = m + 1 in case of deletion.

We present two operations, InsEdge(δ, μ, i,m) and DelEdge(δ, μ, i,m), that
update the data structure when an edge is added between a node in box Di and
a node in box Dm−i and when an edge is deleted between a node in box Di

and a node in box Dm+1−i, respectively. Observe that with the insertion of an
edge, the degrees of its endpoints are increased by one. Thus we can call twice
subroutine IncreaseDeg, once on a node in box Di and once on a node in
box Dm−i. We have just to take into account that the increment of the degree of
node in box Di can change the index of the box of the other endpoint. Analogous
considerations hold for the deletion of an edge. These observations give rise to
the following simple algorithms:

InsEdge(δ, μ, i, m) DelEdge(δ, μ, i, m)
j ← m − i; j ← m + 1 − i;
a ← m; a ← m;
IncreaseDeg(δ, μ, i, m); DecreaseDeg(δ, μ, i, m);
CASE(m − a) CASE(m − a)

−1 : IncreaseDeg(δ, μ, j − 1, m); −1 : DecreaseDeg(δ, μ, j − 1, m);
0 : IncreaseDeg(δ, μ, j, m); 0 : DecreaseDeg(δ, μ, j, m);

+1 : IncreaseDeg(δ, μ, j + 1, m); +1 : DecreaseDeg(δ, μ, j + 1, m);

Since after the execution of IncreaseDeg (DecreaseDeg), m may poten-
tially vary from m to m ± 1, with the execution of InsEdge (DelEdge) the
number of boxes can potentially vary from m to m ± 2. In Fig. 2 we show that
all the five possibilities may actually occur.

Fully Dynamically Maintaining Minimal Integral Separator 319

�

� � �

1

3 2 2

⇒

�

�

�

�

2 2

3 3

� �

� � �

1 1

4 2 2

⇒

� � �

� �

2 2 1

4 3

� � � �

� �

2 2 1 1

5 3

⇒

� � � �

� �

2 2 2 1

5 4

m = 3 m = 2 m = 3 m = 4 m = 4 m = 4
)0()1+()1-(

� � �

� �

2 2 1

4 3

⇒

� � �

� �

2 2 2

4 4

� �

� � � �

1 1

5 3 3 3

⇒

� �

� � � �

2 1

5 4 3 3

m = 4 m = 2 m = 3 m = 5
(-2) (+2)

Fig. 2. Examples proving that all 5 cases in algorithm InsEdge are possible. Grey
edges represent the edges that are going to be added. (In order to consider DelEdge,
figures must be read from right to left.)

Assume now that G is a difference graph.The algorithms for adding/ elimi-
nating an edge in G are based on the same idea presented for the algorithms on
threshold graphs, but they are even simpler because the data structure used for
representing these graphs keeps separated the bipartition (and so, adding a new
box after the first call of IncreaseDeg does not affect the index of the other
endpoint). Notice that Item 1 of Lemma 2 ensures that the number of boxes in
the two classes is the same t. So, for difference graphs, t can either remain unal-
tered or to change to t±1 and all the three possibilities may actually occur. The
two algorithms for inserting and deleting an edge in a difference graph follow:

D − InsEdge(δU , μU , δW , μW , i, t) D − DelEdge(δU , μU , δW , μW , i, t)
j ← t − i; j ← t + 1 − i;
IncreaseDeg(δU , μU , i, t); DecreaseDeg(δU , μU , i, t);
IncreaseDeg(δW , μW , j, t,); DecreaseDeg(δW , μW , j, t);

Note. All the algorithms described in this section are correct and maintain the
minimality of the integral separators.

5 Adding/deleting a Node to Threshold/difference
Graphs

In this section we will work with nodes in an analogous way as we did in Sect. 4
with edges. Also in this case, we keep immediately available the knowledge of
the minimum separator for the new graph. We start defining four functions,
operating on the data structures introduced in Sect. 3.

By +Node(δ, μ, d, dim) we denote the operation of giving space to a new
node of degree d either in a threshold graph or in a partition of a difference

320 T. Calamoneri et al.

graph, without caring about the update of its neighbors (that will be done with
another subroutine). This subroutine looks for the box where the new node must
be inserted: if there exists a box Di with degree d, μi is simply increased by one;
otherwise a new box for the new node is created.

By IncreaseDegOfSetNode(δ, μ, d, dim) we denote the operation of aug-
menting by one the degree of the d nodes of highest degree either in a threshold
graph or in a partition of a difference graph. This subroutine increases by one
the degree of all the boxes Di s.t. d − ∑m

s=j+1 |Ds| ≥ 0, while nodes of boxes
D1, . . . Dj−1 remain unchanged. For what concerns Dj , it is in general split into
two boxes (precisely d − ∑m

s=j+1 |Ds| nodes leave Dj to form a new box with
degree augmented by one). We can define even the symmetric functions: by -
Node(δ, μ, i, dim) we denote the operation eliminating from the data structure
storing either a threshold or a difference graph a node in box Di, 0 ≤ i ≤ dim,
regardless of its neighbors (whose degree will be updated with another sub-
routine). By DecreaseDegOfSetNode(δ, μ, d, dim) we denote the operation of
decreasing by one the degree of the d nodes of highest degree either in a threshold
graph or in a partition of a difference graph.

Let now G = (V,E) be a threshold graph. Adding a new node of degree d to
G yields a threshold graph if and only if the d neighbors of the new node are the d
nodes with highest degrees (this can be easily deduced from Item 4 of Lemma 1).
So, we can call IncreaseDegOfSetNode and observe that, after its execution,
m could be increased by one. Then, we have to update the data structure by
inserting the new node by means of +Node, and even in this case m could be
increased by one. So, the number of the different degrees can potentially vary
from m to m + 2. Figure 3 shows that all three possibilities can occur.

By InsNode(δ, μ, d,m) we denote the operation of updating the data struc-
ture storing threshold graph G when a node of degree d is added to the graph.
The previous reasonings can be repeated when G is a difference graph (assum-
ing, w.l.o.g., that the new node is inserted in partition U), so giving rise to
D-InsNode(δU , μU , δW , μW , i, t), that is the operation of updating the data
structure when a node of degree d is added to the difference graph.

InsNode(δ, μ, d, m) D− InsNode(δU , μU , δW , μW , d, t)
+Node(δ, μ, d, m) +Node(δU , μU , d, t)
IncreaseDegOfSetNode(δ, μ, d, m) IncreaseDegOfSetNode(δW , μW , d, t)

Now we consider the problem of deleting nodes to a threshold graph. Any
node-induced subgraph G′ of G is a threshold graph (indeed for the graph G′

use the mapping a restricted to the nodes of G′ and the same value S). Thus the
class of threshold graphs is closed under the deletion of an arbitrary node. Given
a threshold graph, by DelNode(δ, μ, i,m) we denote the operation of updating
the data structure when a node is deleted from box Di, 0 ≤ i ≤ m. This deletion
is performed by -Node that can have as consequence the disappearance of box
Di (if i �= 0 and |Di| = 1). Thus m can decrease by one. Moreover, the δ[i]
nodes with highest degree must have their degrees decreased by one. These
nodes belong to boxes Dm, . . . , Dm+1−i. It can occur that the degree of nodes

Fully Dynamically Maintaining Minimal Integral Separator 321

�

� � �

1

3 2 2

�

⇒

�

�

�

� �

1 1

3 2 2

� �

� � � �

2 1

5 4 3 3

�

⇒

� � �

� �

�

�

3 3 2 1

6 5 4

� �

� � � �

2 2

5 5 3 3

�

⇒

� � �

� � � �

2 2 1

6 5 3 3

m = 3 m = 3 m = 5 m = 6 m = 3 m = 5
)2+()1+()0(

Fig. 3. Examples proving that all 3 cases in algorithm InsNode are possible. Grey
nodes and edges represent the objects that are going to be added (in order to consider
DelNode figure must be read from right to left).

in box m + 1 − i becomes equal to the degree of the nodes in box m − i and,
in this case, the two boxes merge and the number of boxes further decrease by
one. Hence after deleting a node, the number of boxes in the degree partition
can potentially vary from m to m−2 and all cases can occur, as shown in Fig. 3.

Analogous reasonings can be done when G is a difference graph, and define D-
DelNode(δU , μU , δW , μW , i, t) as the operation of updating the data structure
when a node is deleted (assuming w.l.o.g. that the new node is deleted from
partition U).

DelNode(δ, μ, i, m) D − DelNode(δU , μU , δW , μW , i, t)
d ← δ[i] d ← δU [i]
−Node(δ, μ, i, m) −Node(δU , μU , i, t)
DecreaseDegOfSetNode(δ, μ, d, m) DecreaseDegOfSetNode(δW , μW , d, t)

Note. All the algorithms described in this section are correct and maintain the
minimality of the integral separators.

6 Disjoint Union and Join of Two Threshold Graphs

Given two graphs with disjoint node sets G1 = (V1, E1) and G2 = (V2, E2), their
disjoint union is the graph G1 ∪ G2 = (V1 ∪ V2, E1 ∪ E2); their join is the graph
G1 + G2 obtained adding to their disjoint union all the edges that connect the
nodes of the first graph with the nodes of the second graph. We observe that, if
G1 and G2 are both threshold graphs, G1 ∪G2 and G1 +G2 are threshold signed
graphs, where the difference graph connecting the two threshold graphs is either
the null graph (in G1 ∪ G2) or the complete bipartite graph (in G1 + G2).

In this section, exploiting the considerations done for the data structures pre-
sented in Sect. 3 for threshold and difference graphs, we introduce a data structure
for representing a threshold signed graph. Thanks to this data structure, we han-
dle the dynamic operations of disjoint union and join of two threshold graphs.

Given a threshold signed graph G = (X ∪Y,E), two nodes u and w are false
twins if they have the same neighborhood, i.e. N(u) = N(w); they are true twins
if they have the same closed neighborhood, i.e. N [u] = N [w]. We say that u and
w are simply twins if they are either true or false twins and they belong to the
same set, X or Y . Let us consider the partition of the node set into equivalence

322 T. Calamoneri et al.

classes, B1, . . . , BΔ, induced by the relation of being twins. Even though there
is not a tie between the degree partition of a threshold signed graph and its
structure, as in the case of threshold and difference graphs, it is possible to
extend the reasonings done in the proof of Theorem 2 to this class of graphs.
Indeed, if v is an isolated node it is not restrictive to assume a(v) = 0 and,
obviously, if a(v) = 0 then v is an isolated node. Moreover, it is easy to see that
two nodes having the same value of a are necessarily twins. From the other hand,
if there are two twins u and w having a(u) �= a(w) (w.l.o.g. let a(u) < a(w)),
we can easily modify function a in order to assign them the same value (that is
a(w) if u and w are connected and a(u) otherwise). So, from now on, we consider
only node weight functions assigning value 0 to each isolated node and the same
value to each set of twins.

As consequence of all these reasonings, we may store a threshold signed
graphs by means of two arrays α[0..Δ] and μ[0..Δ]: in α[i] there is the value of
the weight assigned to the μ[i] nodes of Bi, 0 ≤ i ≤ Δ; if there are no isolated
nodes α[0] and μ[0] are set to 0. Variables S and T store the two thresholds.

Let us now go back to consider the operations of disjoint union and join of
two threshold graphs G1 and G2 stored as δ1[0..m1], μ1[0..m1] and δ2[0..m2],
μ2[0..m2], respectively. Assume first that G1 and G2 have the same threshold S
(i.e. m1 = m2 = m). Informally, the array α[1..Δ] of both G1 ∪ G2 and G1 + G2

is obtained by opportunely transcribing the values of the node weight function
of the single threshold graphs (deduced through Theorem 2), the array μ[1..Δ] is
obtained by copying the values of μ1 and μ2, while threshold S is kept unaltered.
For what concerns threshold T , in the case of G1 ∪ G2 it is set to a sufficiently
large value in order to guarantee that no edges are in the difference subgraph,
in the case of G1 + G2 it is set to a sufficiently small value in order to guarantee
that the difference subgraph is a complete bipartite graph. In this latter case, T
assumes a too small value, contradicting Property 5 of Definition 5, so we need
to modify the values of the node weight function and of the two thresholds in
order to restore the property.

The following lemmas formalize the operations of disjoint union and join of
two threshold graphs:

Lemma 4. Let be given two threshold graphs G1 and G2 by means of δ1[0..m],
μ1[0..m] and δ2[0..m], μ2[0..m] and let S = m + 1 be their common threshold.
The following function determines the threshold signed graph G1 ∪ G2:

DisjointUnion(δ1, μ1, δ2, μ2, m)
μ[0] ← μ1[0] + μ2[0]; α[0] ← 0;
FOR i = 1 TO m DO

α[i] ← −i; μ[i] ← μ1[i];
FOR i = 1 TO m DO

α[m + i] ← i; μ[m + i] ← μ2[i];
Δ ← 2m;
S ← m + 1;
T ← 2m + 1;

RETURN (α, μ, S, T, Δ).

Fully Dynamically Maintaining Minimal Integral Separator 323

Proof. Both S and T determined by function DisjointUnion are greater than
the modulo of each α[i], i = 0, . . . ,Δ as far as they are defined.

Moreover, the two threshold subgraphs G− and G+ of G1 ∪ G2 are exactly
the same as G1 and G2, respectively. Finally, no edge can satisfy the condition
α[u] + α[v] ≥ T in view of the definition of T , so the difference subgraph D is
empty. It follows that α, μ, S and T correctly define G1 ∪ G2.
�
Lemma 5. Let be given two threshold graphs G1 and G2 by means of δ1[0..m],
μ1[0..m] and δ2[0..m], μ2[0..m] and let S = m + 1 be their common threshold.
The following function determines the threshold signed graph G1 + G2:

Join(δ1, μ1, δ2, μ2, m)
α[0] ← 0; μ[0] ← 0;
IF μ1[0] �= 0

THEN flag1 ← 0
ELSE flag1 ← 1

FOR i =flag1 TO m DO
α[i + 1 − flag1] ← −i; μ[i + 1 − flag1] ← μ1[i];

IF μ2[0] �= 0
THEN flag2 ← 0
ELSE flag2← 1

FOR i =flag2 TO m DO
α[m + i + 2 − flag1-flag2] ← i; μ[m + i + 2 − flag1-flag2] ← μ2[i];

Δ ← 2m + 2−flag1-flag2;
S ← m + 1;
T ← min1≤i≤Δ{|α[i]|};
k ← m − T + 1;
FOR i = 1 TO m + 1 − flag1 DO

α[i] ← α[i] − k;
FOR i = m + 2−flag1 TO 2m + 2−flag1-flag2 DO

α[i] ← α[i] + k;
S ← S + 2k;
T ← T + 2k;

RETURN (α, μ, S, T, Δ).

Proof. Preliminarily, observe that G1 +G2 cannot have isolated nodes, so we set
μ[0] to 0; moreover, if either G1 or G2 contain isolated nodes, a box needs to be
added: we do this exploiting the two boolean variables flag1 and flag2.

So, even in this case, the two threshold graphs G− and G+ of G1 + G2 are
exactly the same as G1 and G2, respectively. T is set to the modulo of the smallest
node weight in order to guarantee that the difference graph D is a complete
bipartite graph. In this way, T results in a value that contradicts Property 5 of
Definition 5. By incrementing the modulo of each α[i] of an opportune value k
and S and T by 2k, we are able to restore the inequality.
�
It remains to handle the case in which G1 and G2 have different thresholds. In
this case, we prepose to the functions described in the proofs of Lemmas 4 and 5
a preprocessing phase that equalize their thresholds as detailed in the following
lemma, where with the notation a′ = xa + y (where x and y are integer values

324 T. Calamoneri et al.

and a is a node weight function) we compactly mean that, for each node v,
a′(v) = xa(v) + y. We want to underline that now on we represent a threshold
graph in terms of its separator, instead of in terms of our data structure, because
the description of the equalization appears more comprehensive.

Lemma 6. Let be given two thresholds graphs G1 and G2 and let (a1, S1) and
(a2, S2) be their integral separators with S1 < S2. Then (a′

1, S
′
1) = (2a1 + S2 −

S1, 2S2) is an integral separator for G1 and (a′
1, a

′
2) = (2a2, 2S2) is an integral

separator for G2.

Proof. Let {v, w} be an edge in G1, i.e. a1(v)+a1(w) ≥ S1; then a′
1(v)+a′

1(w) =
2a1(v)+S2 −S1 +2a1(w)+S2 −S1 ≥ 2S2 = S′

1. In the same way, let v and w be
not connected in G1, i.e. a1(v)+a1(w) < S1; then a′

1(v)+a′
1(w) = 2a1+S2−S1 <

2S2 = S′
1. Finally, the pair (a′

1, S
′
1) is a feasible integral separator since, for any

node v, a1(v) < S1 implies a′
1(v) < S′

1. Analogous reasonings lead to prove that
(a′

2, S
′
2) is an integral separator for G2.
�

Notice that the values of the node weight function and of the two thresholds S
and T of the resulting threshold signed graphs will be integral but not necessarily
minimal.

References

1. Benzaken, C., Hammer, P.L., de Werra, D.: Threshold characterization of graphs
with Dilworth number two. J. Graph Theory 9, 245–267 (1985)

2. Chvátal, V., Hammer, P.L.: Aggregation of inequalities in integer programming.
Ann. Discrete Math. 1, 145–162 (1977)

3. Cogis, O.: Ferrers digraphs and threshold graphs. Discrete Math. 38, 33–46 (1982)
4. Heggernes, P., Papadopoulos, C.: Single-edge monitor sequences of graphs and

linear-time algorithms for minimal completions and deletions. Theor. Comput. Sci.
410, 1–15 (2009)

5. Henderson, P.B., Zalcstein, Y.: A graph-theoretic characterization of the PVchunk

class of synchronizing primitives. SIAM J. Comput. 6, 88–108 (1977)
6. Mahadev, N.V.R., Peled, U.N.: Threshold Graphs and Related Topics, Ann. Discrete

Math., vol. 56, North-Holland (1995)
7. Orlin, J.: The minimal integral separator of a threshold graph. Ann. Discrete Math.

1, 415–419 (1977)
8. Shamir, R., Sharan, R.: A fully dynamic algorithm for modular decomposition and

recognition of cographs. Discrete Appl. Math. 136, 329–340 (2004)
9. Yannakakis, M.: The complexity of the partial order dimension problem. SIAM J.

Algebraic Discrete Methods 3, 351–358 (1982)

Algorithms

A Lagrangian Relaxation-Based Heuristic
to Solve Large Extended Graph Partitioning

Problems

Oliver G. Czibula1,2(B), Hanyu Gu2, and Yakov Zinder2

1 Ausgrid, 570 George Street, Sydney 2000, NSW, Australia
oliver.g.czibula@student.uts.edu.au

2 School of Mathematical and Physical Sciences, University of Technology Sydney,
15 Broadway, Ultimo, NSW 2007, Australia

Abstract. The paper is concerned with the planning of training ses-
sions in large organisations requiring periodic retraining of their staff.
The allocation of students must take into account student preferences
as well as the desired composition of study groups. The paper presents
a bicriteria Quadratic Multiple Knapsack formulation of the considered
practical problem, and a novel solution procedure based on Lagrangian
relaxation. The paper presents the results of computational experiments
aimed at testing the optimisation procedure on real world data originat-
ing from Australia’s largest electricity distributor. Results are compared
and validated against a Genetic Algorithm based matheuristic.

1 Introduction

This paper is concerned with the optimisation of class formation at large organi-
sations, typically with thousands of workers of different types, that require peri-
odic retraining of their staff. Finding good solutions to this problem is important
as it allows more effective training sessions to be provided.

This research is motivated by the problem of providing training to workers at
Ausgrid, Australia’s largest electricity distributor. Due to the multitude of haz-
ards that exist when working with high voltages at heights or in confined spaces,
Ausgrid is required by Australian law to deliver regular safety, technical, and
professional training to all its employees who work on or near the electricity net-
work. Ausgrid provides regular training to thousands of employees, contractors,
and third parties. Many of these people have very different learning outcomes
from courses, different learning styles, different levels of education or English
proficiency, and different levels of technical proficiency for certain tasks.

Consider an example where field workers and upper management are under-
taking a particular course: while the core material would remain the same for
both groups, if they are taught in separate classes the trainers can take the
opportunity to better tailor the delivery to the specific needs of their group,
allowing for more productive training sessions. It is often not possible to run
segregated classes due to the scarcity of training resources and the associated
c© Springer International Publishing Switzerland 2016
M. Kaykobad and R. Petreschi (Eds.): WALCOM 2016, LNCS 9627, pp. 327–338, 2016.
DOI: 10.1007/978-3-319-30139-6 26

328 O.G. Czibula et al.

cost of delivering additional classes, therefore some blending of different student
types is often necessary. Ideally, differing student types should be combined into
a single class only when they have a high compatibility with one another.

In similar problems where students are preferentially assigned to classes, it is
customary to give each student-class pair a weight (or cost). Most of the training
provided by Ausgrid has a limited period in which it is valid, and therefore
courses should be periodically retrained. Workers are only permitted to work
in roles for which they have up-to-date training. The date at which a worker’s
training expires is considered their due date for that course. If there are a number
of scheduled classes for a given course that a worker requires, we can designate
a cost of assigning the worker to any one of those classes: classes that run on or
before their due date have low or zero cost, while classes that run after the due
date have a high cost that increases the later the class is scheduled.

The considered problem has a bi-criteria objective: we wish to find an assign-
ment of students to classes that minimises incompatibility between student types
within classes, and that minimises the assignment cost of individual students to
classes. Each class has a minimum and maximum number of students it can hold,
and of student types it can be assigned.

Johnson et al. [10] discuss the problem of partitioning the vertices of a graph
G(V,E) with nonnegative weights wv, v ∈ V and costs ce, e ∈ E, into K dis-
joint clusters partitioning V , such that the sum of the weights in each cluster is
bounded between wmin and wmax and the sum of the costs within each cluster
is minimised. This problem is known as the graph partitioning problem, and is
known to be NP-hard [4,7]. Johnson et al. proposed a column generation app-
roach, and tested the approach on graphs with between 30 and 61 nodes, and
between 47 and 187 edges. For the 12 test cases the authors considered, their
proposed approach provided integer solutions for all but two, and for those, solu-
tions obtained by a branch-and-bound scheme were very close to the fractional
solutions provided by column generation.

The problem considered in this paper can be modelled as a generalised
graph partitioning problem. Each student j is represented by a vertex vj ∈ V ;
the preference between students i and j is represented by an undirected edge
e = (vi, vj) ∈ E with edge cost ce. The problem is to find a partition
Γ = {W1,W2, . . . ,WN} of V that solves

Minimise: α

N∑

i=1

∑

e∈E(Wi)

ce + β

N∑

i=1

∑

vk∈Wi

wi
vk

(1)

Subject To: wmin ≤ |Wi| ≤ wmax i = 1, . . . , k (2)

where N is the number of classes, Wi is the set of students assigned to class i,
E(Wi) = {(vk, vl)|vk ∈ Wi, vl ∈ Wi}, wi

vk
is cost of assigning student k to class

i, α and β are weights for the assigning cost and preference cost respectively. A
special case of the problem considered in this paper, in which w1

vk
= w2

vk
= . . . =

A Lagrangian Relaxation-Based Heuristic 329

wN
vk

, is equivalent to the graph partitioning problem. Therefore our problem is
also NP-hard.

Chopra and Rao [3] discuss several forms of the graph partitioning problem
as well as IP models for each. The authors do not assume a complete graph,
allowing them to take advantage of the graph structure when clustering. They
also discuss several valid inequalities and facet-defining inequalities for the GPP.

The considered problem can also be modelled as an extended Quadratic
Multiple Knapsack Problem (QMKP) with additional constraints. The QMKP is
a generalization and combination of the well-known multiple knapsack problem
and the quadratic knapsack problem. The QMKP received little attention in
the literature until recently, and most solution approaches are based on meta-
heuristics [2,6,9]. The main contributions of this paper include: (i) formulation
of the considered practical problem as an extended bicriteria QMKP. (ii) design
of a Lagrangian relaxation (LR) based, fast heuristic capable of solving large,
real-world instances.

Caprara et al. [1] discuss an LR-based approach to solving the QMKP exactly,
whereby a tighter upper bound (for their maximisation objective) is computed
using the subgradient method in linear expected time. The presented approach
is able to solve instances with up to 400 binary variables exactly. The authors
note that the presented approach can also be used to solve Max Clique problems
almost as fast as with the cutting plane approaches available at the time.

Julstrom [11] discusses greedy, genetic, and greedy genetic algorithms for
the QMKP. The author presents two greedy heuristics that build solutions by
choosing objects according to their value densities, and two genetic algorithm
(GA) heuristics. One GA is a standard implementation, whereas the other is
extended with greedy techniques that probabilistically favour objects of high
value density. The four algorithms are tested on 20 problem instances, and the
extended GA is reported to perform best on all but one test case.

The remainder of this paper is organised as follows: Sect. 2 introduces a
quadratic programming formulation and its linearisation for the considered prob-
lem; Sect. 3 introduces a Lagrangian relaxation formulation for the quadratic pro-
gramming model; Sect. 4 discusses the proposed LR-based heuristic technique;
Sect. 5 presents a GA matheuristic for the problem; Sect. 6 presents the compu-
tational results of the proposed heuristic on a number of industry-inspired test
cases; and Sect. 7 discusses our conclusions and outlines possibilities for future
research.

2 Quadratic Programming Formulation

Let N = {1, · · · , N}, M = {1, · · · ,M}, and K = {1, · · · ,K} be the set of
classes available, the set of students to be assigned, and the set of student types
respectively. Denote the cost of assigning students j ∈ M to class i ∈ N by ci,j ,
the cost of pairing student types k ∈ K and l ∈ K together in the same class by
bk,l. Each student has exactly one type. The set of students who are of type k is
represented by Tk, k ∈ K. Each student must be assigned to exactly one class,

330 O.G. Czibula et al.

but not all classes need to be run. Each class i ∈ N that is run must contain at
least ai and at most bi students, and at least pi and at most qi student types.
Students or student types cannot be assigned to any class that is not run. In this
problem, we assume there are more scheduled classes than needed, i.e. a feasible
solution always exists. The following Quadratic Program describes the problem:

(QP) Minimise: α

N∑

i=1

K∑

k=1

K∑

l=1

bk,lYi,kYi,l + β

N∑

i=1

M∑

j=1

ci,jXi,j (3)

Subject To:
N∑

i=1

Xi,j = 1 j = 1, . . . , M (4)

aiZi ≤
M∑

j=1

Xi,j ≤ biZi i = 1, . . . , N (5)

piZi ≤
K∑

k=1

Yi,k ≤ qiZi i = 1, . . . , N (6)

Xi,j ≤ Yi,k i = 1, . . . , N ; k = 1, . . . ,K; j ∈ Tk (7)
Xi,j ∈ {0, 1} i = 1, . . . , N ; j = 1, . . . ,M (8)
Yi,k ∈ {0, 1} i = 1, . . . , N ; k = 1, . . . ,K (9)
Zi ∈ {0, 1} i = 1, . . . , N (10)

where the binary variable Xi,j is defined to be 1 if student j is assigned to class
i, or 0 otherwise; the binary variable Yi,k is defined to be 1 if student type k is
assigned to class i, or 0 otherwise; The binary variable Zi is defined to be 1 if
class i is run, or 0 otherwise.

In the objective function (3), the quadratic term represents the cost of pairing
student types together, and the linear term represents the cost of assigning
students to classes, weighted by coefficients α and β, respectively.

The constraints (4) express the requirement that each student be assigned
to exactly one class. The constraints (5) and (6) express the requirement that
each running class has between ai and bi students and between pi and qi student
types, respectively, if the class is run, or zero otherwise. The constraints (7)
express the requirement that a student may only be assigned to a class if that
student’s type has also been assigned to that class.

It is possible to linearise the quadratic term in (3) by introducing Ŷi,k,l =
Yi,kYi,l together with constraints:

Ŷi,k,l ≤ Yi,k i = 1, . . . , N ; k = 1, . . . , K; l = 1, . . . ,K (11)

Ŷi,k,l ≤ Yi,l i = 1, . . . , N ; k = 1, . . . , K; l = 1, . . . , K (12)

Ŷi,k,l ≥ Yi,k + Yi,l − 1 i = 1, . . . , N ; k = 1, . . . , K; l = 1, . . . ,K (13)

to give the linearised model:

A Lagrangian Relaxation-Based Heuristic 331

(LQP) Minimise: α

N∑

i=1

K∑

k=1

K∑

l=1

bk,lŶi,k,l + β

N∑

i=1

M∑

j=1

ci,jXi,j (14)

Subject To: (4) − (13) (15)

Ŷi,k,l ∈ {0, 1} i = 1, . . . , N ; k = 1, . . . ,K; l = 1, . . . ,K (16)

The (QP) model has N(K+M+1) variables and M+2N+MNK constraints,
whereas the (LQP) model has N(K + M2 + M + 1) variables and M + 2N +
MNK + 3NK2 constraints.

The time required to find an optimal solution to the (QP) and (LQP) models
grows rapidly, where even some small test cases with just a few dozen students
can take hours to solve. As the problem instances we hope to solve are signifi-
cantly larger than this, we propose to use a heuristic approach.

3 Lagrangian Relaxation

To improve the convergence of the subgradient algorithm, the equalities (4) are
first converted into inequalities:

N∑

i=1

Xi,j ≥ 1 j = 1, . . . ,M (17)

By moving the constraints (4) into the objective function, we obtain the
Lagrangian relaxation model:

(QR) Minimise: α
N∑
i=1

K∑
k=1

K∑
l=1

bk,lYi,kYi,l + β
N∑
i=1

M∑
j=1

ci,jXi,j +
M∑
j=1

λj(1 −
N∑
i=1

Xi,j)

(18)

Subject To: (5) − (10) (19)

where λj ≥ 0, j = 1, . . . ,M , is the Lagrangian multiplier corresponding to the
cost of not assigning student j to any class. The quadratic term in (18) can be
linearised in the same way as with (3).

In (QP), only constraints (4) couple together the N sub-problems of assigning
students to a particular class i. In (QR), these constraints are moved to the
objective function, therefore it is possible to express (QR) as N smaller, class-
specific sub-problems (QRi):

(QRi) Minimise: α

K∑

k=1

K∑

l=1

bk,lYi,kYi,l + β

M∑

j=1

ci,jXi,j −
M∑

j=1

λjXi,j (20)

332 O.G. Czibula et al.

Subject To: aiZi ≤
M∑

j=1

Xi,j ≤ biZi (21)

piZi ≤
K∑

k=1

Yi,k ≤ qiZi (22)

Xi,j ≤ Yi,k k = 1, . . . , K; j ∈ Tk (23)
Xi,j ∈ {0, 1} j = 1, . . . , M (24)
Yi,k ∈ {0, 1} k = 1, . . . , K (25)
Zi ∈ {0, 1} (26)

where the N combined solutions to (QRi) for 1 ≤ i ≤ N forms the solution
to (QR).

Solving the Lagrangian relaxation (QR) provides a lower bound to the opti-
mal objective value of (QP). We wish to find the tightest possible lower bound
for (QP) by solving the Lagrangian dual problem, the solution of which are
the optimal Lagrangian multipliers λ∗ that give the largest objective value of
(QR) [5,8]. A typical way to numerically approximate λ∗ is by using the iterative
subgradient algorithm.

In the subgradient algorithm, λ is iteratively updated with the relationship

λk+1 = λk +
sk · εk(η∗ − ηk)

||sk||2 (27)

where λk is the value of the Lagrangian multipliers λ at the kth iteration; η∗ is
an upper bound of the optimal objective value of the Lagrangian dual problem,
and ηk is the objective value of (QR) at the kth iteration; and εk is a positive
scaling factor, typically with the initial value of ε0 = 2 and halved whenever
the objective value hasn’t been improved in certain number of iterations; sk is
a subgradient of the Lagrangian dual at iteration k given by

skj = 1 −
N∑

i=1

Xk
i,j j = 1, . . . ,M (28)

where Xk is from the solution of (QR) at the kth iteration.

4 Lagrangian Heuristic

In our proposed heuristic, we solve the Lagrangian dual using the subgradient
algorithm. In doing so, we generate many solutions in this iterative process, and
we record the following characteristics about them:

– The number of times class i is running (ξi), and the number of times it is not
(ξ̄i).

– The number of times type k is assigned to class i (φi,k), and the number of
times it is not (φ̄i,k).

A Lagrangian Relaxation-Based Heuristic 333

– The number of times students j1 and j2 are assigned to the same class (ψj1,j2),
and the number of times they are not (ψ̄j1,j2).

Based on these values, one or more assumptions are made about the final
solution with some probability. The higher the value, the greater the probability
the assumption will be made. Each value has a corresponding counter-value, such
as the number of times class i is running (ξi), and the number of times class i is
not running (ξ̄i). An assumption can be made according to the value/counter-
value that has greater magnitude, for example if ξi = 7649 and ξ̄i = 1008
then, since ξi > ξ̄i, we would be making the assumption that class i will be
run, with some probability. The probability with which we make an assumption
according to some value v (or counter-value v̄) is v

v+v̄
2 (or v̄

v+v̄

2), so if ξi = 7649
and ξ̄i = 1008 then with probability (7649

7649+1008)2 ≈ 0.7807 we will make the
assumption that class i will run in the final solution.

Each kind of imposed assumption reduces the number of feasible solutions
of the model being solved. In the case of the first kind of assumption, the Zi

variable is fixed to 1, if class i is assumed running, or if class i is assumed not
running then the Zi and the related Xi,j and Yi,k variables, 1 ≤ j ≤ M and
1 ≤ k ≤ K, can be all fixed to zero. For the assumption that type k is or is
not assigned to class i, the constraints (7) can be omitted for j ∈ Tk, and all
the related Xi,j variables are also fixed to zero if type k is assumed to be not
assigned to class i. For the assumption that students j1 and j2 should be assigned
together, we introduce the additional constraints Xi,j1 = Xi,j2 for 1 ≤ i ≤ N ,
and for the assumption that they should be assigned separately, we introduce
the constraints Xi,j1 + Xi,j2 ≤ 1 for 1 ≤ i ≤ N .

Once an assumption is made, the model is updated and the Lagrangian dual is
once again solved using the subgradient algorithm. With each new assumption
the size of the model becomes smaller or the number of feasible solutions is
reduced. Once the model is sufficiently small, the optimal solution, subject to
the assumptions, can be found using a commercial solver.

The initial value of λ = λ0 is likely to be quite distant from λ∗. It is expected
that there would be an initial period of convergence from λ0 towards the neigh-
bourhood of λ∗, followed by a period of convergence within this neighbourhood.
Since these early values of λk are likely to produce fairly poor solutions, we treat
this early period of convergence towards the neighbourhood of λ∗ as a “burn-in
stage”, and do not record these solutions.

To calculate an upper bound for the Lagrangian dual in (27), we relax con-
straints (7) from the (QP) model. The resulting capacitated assignment problem
can be solved quickly, and a repair heuristic is used to make the solution feasible
with respect to the original problem. The objective value of this feasible solution
is used as η∗ in the updating rule (27) of the subgradient algorithm.

Our LR-based heuristic is described as follows:
LR-based Heuristic:

Step 1. Initialise an empty set of assumptions A.
Step 2. Construct the (QP) model, together with assumptions A.

334 O.G. Czibula et al.

i. If the size of the model is sufficiently small to solve in practically acceptable
time, attempt to solve it:
(a) If a solution with sufficiently small relative IP gap can found within a

short time limit, terminate the algorithm returning the optimal solution
to the (QP) subject to assumptions A.

(b) If no solution with sufficiently small relative IP gap can be found within
a short time limit, continue to Step 3.

(c) If no feasible solution exists, determine which assumptions are causing
the infeasibility, remove them, and continue to Step 3.

ii. If the size of the model is expected to be too large to solve in practically
acceptable time, continue to Step 3.

Step 3. Run LD-Subroutine and retrieve all the values of ξ, ξ̄, φ, φ̄, ψ, and ψ̄.
Step 4. For each of the value and counter-value pairs {v, v̄} obtained in Step

3, add an assumption to A with probability v
v+v̄

2 (or v̄
v+v̄

2) and then
return to Step 2.

LD-Subroutine:

Step 1. Initialise the λ vector to its starting value λ0, ε0 := 2, determine an
estimate for η∗, initialise the iteration counter k := 0, and initialise all
ξ, ξ̄, φ, φ̄, ψ, and ψ̄ values to zero.

Step 2. Construct the N (QRi) models according to the input data and the set
of assumptions A, for 1 ≤ i ≤ N .

Step 3. Solve the N (QRi) models, and update λ according to (27).
Step 4. If εk ≤ 1

2 , update the values of ξ, ξ̄, φ, φ̄, ψ, and ψ̄ according to obser-
vations about solution Xk.

Step 4. If the ηk has not been improved in the last 10 × N iterations, then
εk+1 := 1

2εk.
Step 5. If εk < 0.1 then terminate LD-Subroutine and return the values of ξ,

ξ̄, φ, φ̄, ψ, and ψ̄; otherwise set k := k + 1 and return to Step 2.

5 Genetic Algorithm Based Matheuristic

Although Genetic Algorithms (GA) are often used in solving the QKP and
QMKP [9,13,14], these publications on GA are not directly applicable to our
problem due to the existence of lower bounds on class sizes. Moreover, the exis-
tence of lower and upper bounds on class sizes renders classical operations of
crossover and mutation inefficient, i.e. both operations produce too many infea-
sible solutions. The computational experiments indicated that the common app-
roach of introducing penalty for infeasibility does not improve the performance
of the classical version of GA. These observations lead to the development of a
matheuristic, presented in this paper, which is an amalgamation of GA and IP.
This matheuristic was compared with the LR-based approach described above.

In the developed version of GA, feasible solutions in the initial population
are be generated using a two-step procedure. First, we decide which classes will

A Lagrangian Relaxation-Based Heuristic 335

be run, and how many students will be in each class by solving a straightforward
IP. For all test cases, including all cases where CPLEX failed to solve the original
QP problem, this IP was solved in under a second. Next, we randomly assign
students to classes according to the numbers obtained in the previous step.

The crossover operator, which addresses the challenge imposed by the exis-
tence of lower and upper bounds on class sizes, is defined as follows. As with
conventional crossover operators, the designed crossover operates on two solu-
tions, referred to as parents. The results of the designed crossover is a single
solution, referred to as a child. As with the procedure that generates solutions
for the initial population, the crossover operator involves two stages. First, an
IP is solved that determines which classes should be run in the child, and the
number of students in each class. In this IP, those classes that are run in both
parents must run in the child, and those classes that are not run in either parent
will not run in the child.

Next, students are assigned to classes in numbers specified by the IP. In this
stage, first, students are assigned starting with students who are assigned to
the same class in both parents. Each of these students is assigned to the that
class in the child as well. The remaining students are assigned one at a time.
If at least one class chosen for the student in the parents is available for this
student in the child, then the student is assigned to one of these classes. If there
are two such classes, the actual class is chosen at random. Students who were
not allocated are then randomly allocated to the classes in the child solution
according numbers specified by the IP.

6 Computational Results

Using Ausgrid’s training data as a template, we generated a series of random
test cases1. Each test case had between 100 and 500 students, with between 4
and 12 student types, and between 56 and 98 classes.

We used IBM ILOG CPLEX 12.5.0.0 64-bit on an Intel i7-4790K quad-core
4.00 Ghz system with 16 GB of RAM, running Windows 7 Professional. Our
code was written in C# 4.0, and interacted with CPLEX using the IBM ILOG
Concert API. We used default CPLEX settings, except we increased the maxi-
mum allowed memory usage to the total amount of free physical memory. Since
the proposed heuristic is probabilistic, we applied it to each of the test cases 10
times. The pseudorandom number generator we used was the MT19937 Mersenne
Twister [12]. For the weighted objective function, we used α = β = 1. We also
applied the GA matheuristic to each of the test cases 10 times for the same
amount of time that the LR-based heuristic used on average.

Table 1 shows the results of the computational experiments. The tables shows
the test case (Case), the number of students (Std), the number of classes (Cls),
the number of student types (Typ), the number of variables in the QP (Vars),
the minimum (tMin), average (tAvg), and maximum (tMax) solution time for

1 All test cases and solution files are available on request.

336 O.G. Czibula et al.

Table 1. The results of the computational experiments for many of the test cases.

Case Std Cls Typ Vars tMin tAvg tMax lrMin lrMax gaMin gaMax
1 300 56 3 62776 12.1 125.4 327.1 1700.5 14101.5 7979 13904.5
2 300 66 3 73986 10.3 13.4 18.4 1483.5 3009 20452 26405.5
4 300 88 3 98648 47.5 110.1 383.8 1526.5 6277 12868.5 20827.5
5 300 98 3 109858 39.7 94.4 261.1 1328.5 3012 19947.5 21808.5
7 291 66 4 73392 20.8 29 48.4 1883.5 2405 13872 20788
8 291 78 4 86736 13.1 24.7 62.5 2160 2739.5 16303.5 22527.5
10 291 98 4 108976 19.2 54.4 147.6 1904 6210 14350.5 22959.5
11 206 56 4 57512 6.5 43.4 241.5 1437 17346.5 5930.5 10101
13 206 78 4 80106 9.8 14.6 20.5 1443.5 3482 12167 16141
14 206 88 4 90376 10 15 23 1236 12347 13018.5 16949
16 300 56 6 62776 8.6 14.7 19.4 1597 7193.5 21518.5 31016
17 300 66 6 73986 13.5 44.3 113.4 1574.5 3314 11135.5 21437
19 300 88 6 98648 35.4 140.5 303.9 1341 3251 10727 18855
20 300 98 6 109858 22.3 35.6 73.2 1136.5 3634.5 20977 25647
22 400 66 5 80586 39.9 99 290.6 2181 5061 13182.5 28905
23 400 78 5 95238 69.8 194.1 349.9 2078 2665.5 11723.5 25204
25 400 98 5 119658 41.8 304.8 642.1 1665 7581 11361.5 26601
26 500 56 6 73976 14.4 205.8 638.5 3004.5 16429 16148 38892.5
28 500 78 6 103038 37.6 129.6 377.8 3117 4130.5 28708 43548.5
29 500 88 6 116248 46.1 175.2 361.3 2389.5 7289 23430 45908.5
31 132 56 7 53368 51.2 159.1 411 1454.5 1654.5 4324.5 7100
32 132 66 7 62898 19.7 61.1 138.6 1383 2549.5 5418 6608
34 132 88 7 83864 30.7 90.7 186.4 1518.5 2106 4081 6520
35 132 98 7 93394 60 317.4 985.1 1292 1890 4297.5 6680
37 400 66 5 80586 52.5 145.4 285.9 1889 3319.5 11636.5 24165
38 400 78 5 95238 29 194.7 547.5 2262 3835.5 23962 26256.5
40 400 98 5 119658 57.9 279.1 546.7 1639 5139.5 11082.5 25742
41 500 56 8 73976 64.9 224.9 587 3786.5 11623 14888.5 37871.5
43 500 78 8 103038 480.3 774.3 954.3 3095.5 7006.5 13194 29130.5
44 500 88 8 116248 58.3 594.7 991.5 2574 3868.5 10993.5 32387.5
46 300 56 6 62776 25.1 45.1 69.6 2274.5 18798 9859 21706.5
47 300 66 6 73986 33.6 57.2 85.3 2183.5 8768 10534 19975.5
49 300 88 6 98648 45.7 130.2 466 2308 7697.5 9481.5 19685
50 300 98 6 109858 58.9 193.2 397.4 1778.5 3082 10332 18988
52 168 66 6 65274 19 44.7 74.1 1637 2614 6321.5 8415
53 168 78 6 77142 41.2 172.9 532.7 1605.5 12674 6406 8189
55 168 98 6 96922 46.1 95.1 224.9 1404.5 4050.5 7505.5 9456
56 500 56 5 73976 44.7 168 1084.7 2825 13742 15216.5 40438
58 500 78 5 103038 21.7 72.7 199.1 2550.5 3835 32732.5 44762.5
59 500 88 5 116248 45.3 122.9 276.3 2465.5 13736.5 36664.5 47615.5
61 300 56 7 62776 149.9 640.6 904.9 2286 3305.5 7636.5 12557
62 300 66 7 73986 90.6 678.1 978 2312.5 2786.5 10760.5 14360
64 300 88 7 98648 728 1071.9 1556.5 2215 2666.5 9325 12500.5
65 300 98 7 109858 123.3 719.3 1256.1 1999.5 4367.5 9902.5 16164
67 400 66 8 80586 72.6 188.6 519.3 2105.5 3174.5 16810.5 24442.5
68 400 78 8 95238 60 161.5 416.2 1992.5 3147.5 14011 26611.5
70 400 98 8 119658 33.3 239.1 597.3 1584.5 2056.5 11480.5 27258
71 132 56 7 53368 26.8 56.4 120.8 1237 9558 5303 7409.5
73 132 78 7 74334 13.4 25 65 1230.5 1910.5 6667.5 7684.5
74 132 88 7 83864 32.6 48.2 63.6 1296 1665 5611.5 6721
76 300 56 9 62776 84.4 544.1 1542.1 2189 13773 6696 11942.5
77 300 66 9 73986 44.1 200.3 438.4 1982.5 2979 10571.5 16390
79 300 88 9 98648 109.9 542.2 938 2254 3810.5 7113 15953.5
80 300 98 9 109858 95 534.7 802.9 1958.5 3169.5 8544 12726
82 400 66 11 80586 79.5 663.1 1082.2 2577 6110 10912 16338
83 400 78 11 95238 52.5 540.4 1021.6 2681.5 3984 10771.5 23656.5
84 400 88 11 107448 267.5 1078.4 1563.9 2512.5 5764.5 10662 14386.5
85 400 98 11 119658 83.4 818.2 1316.3 2404.5 5749 10067.5 23096
86 500 56 11 73976 181.8 543.3 946.7 3735 17272.5 16703 17796
87 500 66 11 87186 185.1 961.3 1643.4 3624 8932.5 14413.5 20936
88 500 78 11 103038 339.4 788 1465 3709.5 7593 13059.5 30584.5
89 500 88 11 116248 1130.2 1501 2035.3 3185 16049.5 10998 21648.5
90 500 98 11 129458 821.2 1347.1 2401 2724.5 9361 10298.5 29047

A Lagrangian Relaxation-Based Heuristic 337

the LR-based heuristic, the minimum (lrMin) and maximum (lrMax) objective
value obtain by applying the LR-based heuristic, and the minimum (gaMin) and
maximum (gaMax) objective value obtain by applying the GA matheuristic.
Since the two approaches tested are quite different, time is reported in CPU
time. It is clear from the results that the LR-based heuristic outperformed the
GA matheuristic.

In Fig. 1, the horizontal axis depicts the 90 test cases. The vertical axis gives
the time taken, in seconds. The graph shows the range of solution times across
the 10 runs of the LR-based heuristic. The solid line shows the average time
across the 10 runs of the heuristic. The largest value was about 40 min, however
the overall average was only about 272 s. In contrast, the attempts to obtain
exact solutions by solving the corresponding quadratic programming problem
using CPLEX failed in most cases given a six hour limit.

10 20 30 40 50 60 70 80 90

0

500

1,000

1,500

2,000

2,500

Test Case

T
im

e
(s

ec
o
n
d
s)

LR-based Heuristic Solution Times

Min

Average

Max

Fig. 1. The time taken for the LR-based heuristic to produce a solution.

7 Conclusions

In this paper we presented a heuristic solution approach, based on the Lagrangian
relaxation, for the problem of assigning students to classes. This problem arises
in large organisations that require training and retraining of staff. The objective
function reflects the preference of assigning certain groups of students to the
same class, which often occurs in practice. The proposed heuristic was tested
by computational experiments on a number of randomly generated test cases,

338 O.G. Czibula et al.

based on data supplied by Ausgrid. The proposed heuristic was able to pro-
vide solutions to all test cases in a practically acceptable time. In contrast, the
straight forward quadratic programming based approach failed in most cases
with a time limit of six hours. In both cases, CPLEX was used as the solver.
The Lagrangian relaxation-based heuristic was also compared with a specifically
designed matheuristic based on Genetic Algorithms. This comparison indicated
the superiority of the Lagrangian relaxation-based heuristic. The integer pro-
gramming components of the matheuristic were also solved with CPLEX.

The proposed Lagrangian relaxation-based heuristic includes a number of
parameters, and future research can be focussed on an investigation of the influ-
ence of these parameters on the performance of the entire procedure.

References

1. Caprara, A., Pisinger, D., Toth, P.: Exact solution of the quadratic knapsack prob-
lem. INFORMS J. Comput. 11(2), 125–137 (1999)

2. Chen, Y., Hao, J.K.: Iterated responsive threshold search for the quadratic multiple
knapsack problem. Ann. Oper. Res. 226, 101–131 (2015)

3. Chopra, S., Rao, M.R.: The partition problem. Math. Program. 59(1–3), 87–115
(1993)

4. Dahlhaus, E., Johnson, D.S., Papadimitriou, C.H., Seymour, P.D., Yannakakis,
M.: The complexity of multiway cuts. In: Proceedings of the twenty-fourth annual
ACM Symposium on Theory of computing, pp. 241–251. ACM (1992)

5. Fisher, M.L.: The lagrangian relaxation method for solving integer programming
problems. Manage. Sci. 50(12-supplement), 1861–1871 (2004)

6. Garćıa-Mart́ınez, C., Rodriguez, F., Lozano, M.: Tabu-enhanced iterated greedy
algorithm: a case study in the quadratic multiple knapsack problem. Eur. J. Oper.
Res. 232, 454–463 (2014)

7. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to NP-
completeness. W. H. Freeman and co., New York (1979)

8. Guignard, M.: Lagrangean relaxation. Top 11(2), 151–200 (2003)
9. Hiley, A., Julstrom, B.A.: The quadratic multiple knapsack problem and three

heuristic approaches to it. In: Proceedings of the 8th Annual conference on Genetic
and Evolutionary Computation, pp. 547–552. ACM (2006)

10. Johnson, E.L., Mehrotra, A., Nemhauser, G.L.: Min-cut clustering. Math. Pro-
gram. 62(1–3), 133–151 (1993)

11. Julstrom, B.A.: Greedy, genetic, and greedy genetic algorithms for the quadratic
knapsack problem. In: Proceedings of the 7th Annual Conference on Genetic and
Evolutionary Computation, pp. 607–614. ACM (2005)

12. Matsumoto, M., Nishimura, T.: Mersenne twister: a 623-dimensionally equidis-
tributed uniform pseudo-random number generator. ACM Trans. Model. Comput.
Simul. (TOMACS) 8(1), 3–30 (1998)

13. Saraç, T., Sipahioglu, A.: A genetic algorithm for the quadratic multiple knapsack
problem. In: Mele, F., Ramella, G., Santillo, S., Ventriglia, F. (eds.) BVAI 2007.
LNCS, vol. 4729, pp. 490–498. Springer, Heidelberg (2007)

14. Singh, A., Baghel, A.S.: A new grouping genetic algorithm for the quadratic mul-
tiple knapsack problem. In: Cotta, C., van Hemert, J. (eds.) EvoCOP 2007. LNCS,
vol. 4446, pp. 210–218. Springer, Heidelberg (2007)

Semimetric Properties of Sørensen-Dice
and Tversky Indexes

Alonso Gragera1 and Vorapong Suppakitpaisarn1,2(B)

1 Department of Computer Science, The University of Tokyo, Tokyo, Japan
{alonso,vorapong}@is.s.u-tokyo.ac.jp

2 JST ERATO Kawarabayashi Large Graph Project, Tokyo, Japan

Abstract. In this work we prove a semimetric property for distances
used for finding dissimilarities between two finite sets such as the
Sørensen-Dice and the Tversky indexes. The Jaccard-Tanimoto index
is known to be one of the most common distances for the task. Because
the distance is a metric, when used, several algorithms can be applied to
retrieve information from the data. Although the Sørensen-Dice index is
known to be more robust than the Jaccard-Tanimoto when some infor-
mation is missing from datasets, the distance is not a metric as it does not
satisfy the triangle inequality. Recently, there are several machine learn-
ing algorithms proposed which use non-metric distances. Hence, instead
of the triangle inequality, it is required that the distance satisfies the
approximate triangle inequality with some small value of ρ. This moti-
vates us to find the value of ρ for the Sørensen-Dice index. In this paper,
we prove that this value is 1.5. Besides, we can find the value for some
of the Tversky index.

Keywords: Distance · Metric · Approximate triangle inequality ·
Sørensen-Dice index · Tversky index

1 Introduction

In this work, we consider distances used for finding a dissimilarity between
two finite sets. The most common dissimilarity between sets is called Jaccard-
Tanimoto index (JT index) [1,2]. The Jaccard-Tanimoto distance between a
finite set A and a finite set B, dJT (A,B), can be defined as follows:

dJT (A,B) := 1 − |A ∩ B|
|A ∪ B| .

Because the JT distance is known to be a metric [3], we can use algorithms
proposed for any metric space to obtain information from the data. Examples
of those algorithms include the approximation algorithms for facility location
problem [4], nearest neighbor problem [5], and the Steiner tree problem [6].

Besides the JT index, there are other dissimilarity indexes considered in
literature. Among them, the most well-known indexes include the Sørensen-Dice
c© Springer International Publishing Switzerland 2016
M. Kaykobad and R. Petreschi (Eds.): WALCOM 2016, LNCS 9627, pp. 339–350, 2016.
DOI: 10.1007/978-3-319-30139-6 27

340 A. Gragera and V. Suppakitpaisarn

index [7,8] (SD index), in which the distance between a finite set A and a finite
set B, dSD(A,B), can be defined as follows:

dSD := 1 − 2|A ∩ B|
|A| + |B| = 1 − 2|A ∩ B|

|A ∪ B| + |A ∩ B| .

The SD dissimilarity is known to be robust in datasets of which some data points
are missing [9]. Because of that, the distance is widely used in the ecological
community data [10]. In our previous work [11], for some Go board position G,
we know the set of positions PG which is the set of positions that professional
Go players choose to play when the board position is G. Because there is a lot of
information missing in the database, we need to use a robust dissimilarity such
as the SD distance.

Consider the case when A = B = {1, 2, 3}, suppose not all elements can
be observed so A is observed as A′ = {1, 2} and B as B′ = {2, 3}. For such
case, the JT dissimilarity dJT is 1 − 1/3 ≈ 0.67, while the SD dissimilarity is
1−(2 ·1)/(2+2) ≈ 0.5. We can see from this example that with only one element
missing the JT dissimilarity can increase to 2/3, while the ST dissimilarity is
still as small as 1/2.

Although the ST index is robust, the dissimilarity is not a metric. That
is because the dissimilarity does not satisfy the triangle inequality [12]. For
example, when A = {1}, B = {1, 2} and C = {3}, we have dST (A,C) = 1,
dST (A,B) = 1/3, and dST (B,C) = 1/3. By that, we have dST (A,C) >
dST (A,B) + dST (B,C). Because the distance is not a metric, we cannot use
the algorithms devised for metric spaces.

Recently, there are several algorithms proposed for semi-metric distances that
satisfy the ρ-approximate triangle inequality [13–15] for some ρ > 1. A distance
D satisfies the inequality, if for any finite sets A,B,C,

d(A,C) ≤ ρ (d(A,B) + d(B,C)) .

Those algorithms are more efficient, when the value of ρ is smaller. Knowing the
value of ρ for a specific dissimilarity can help in analyzing the efficiency of the
algorithms, when it is applied to the distance.

1.1 Our Contribution

By the previous example, we know that the value of ρ for the SD index must be
at least 3/2. In this paper, we will show that the lower bound is tight, meaning
that the SD index satisfies the 3/2-approximate triangle inequality.

As discussed previously, the SD index is more robust than the JT index. We
extend that idea to propose a dissimilarity called robust Jaccard index (RJ
index). We define the RJ dissimilarity between a finite set A and a finite set B,
dRJ,α(A,B), as follows:

dRJ,α(A,B) := 1 − α|A ∩ B|
|A ∪ B| + (α − 1)|A ∩ B| .

Semimetric Properties of Sørensen-Dice and Tversky Indexes 341

Clearly, when α = 1, the dissimilarity dRJ,1 is equal to the JT index. When α = 2,
the dissimilarity dRJ,2 is equal to the SD index. When α → ∞, dRJ,∞(A,B)
is always 0 when A ∩ B �= ∅ and the distance is 1 when A ∩ B = ∅. The
dissimilarity is very robust because we still get the distance equals 0 even when
a lot of information are missing and |A∩B| = 1. When A′ = {1, 2}, B′ = {2, 3},
dRJ,α = 2/(2 + α). The distance will get smaller and more robust when α is
larger.

The robust Jaccard index is known to be a subclass of the Tversky index [16].
The Tversky index is proposed for differentiating the importance between two
sets obtained as inputs [17]. They do not consider the robustness as one of the
applications of the distance, but we believe that their index can also be used for
this purpose.

The RJ index is a semi-metric. We can find an example to show that the
value of ρ of dRJ,α is at least (α + 1)/2. We also show that the lower bound is
tight. The distance dRJ,α satisfies the (α+1)/2-approximate triangle inequality.

The remainder of this paper is divided into five sections. Section 2 describes
the robust Jaccard index and its interpretation and discusses the relation of our
proposed coefficient with other similarity indexes. Section 3 consist of the proof
of its semimetric properties. Then, the final section summarizes this paper and
present the future direction of our research.

2 Robust Jaccard Index

In order to be able to properly study how the concept of robustness of a set
similarity index, and how it affects its metric properties, we propose a new
coefficient that captures its fundamental idea.

Definition 1 (Robust Jaccard index). For sets X and Y the robust Jaccard
index is a number between 0 and 1 given by:

SRJ,α(X,Y) :=
α|X ∩ Y |

|X ∪ Y | + (α − 1)|X ∩ Y | .
By using this index, we not only expect to make the following proofs clearer
to the reader; but also provide a powerful yet easy to use tool that can be
directly applied when a more customized approach for dealing with uncertainty
in experimental data is required.

2.1 Relation with Other Indexes

In this section, we proceed to investigate the relation between our similarity index
and the three best-known indexes on sets; the Jaccard-Tanimoto, Sørensen-Dice
and Tversky.

Definition (Jaccard-Tanimoto Index). For sets X and Y the Jaccard-
Tanimoto index is a number between 0 and 1 given by:

SJT (X,Y) :=
|X ∩ Y |
|X ∪ Y | .

342 A. Gragera and V. Suppakitpaisarn

The robust Jaccard index is equivalent to the Jaccard-Tanimoto index
when α = 1.

Definition (Sørensen-Dice Index). For sets X and Y the Sørensen-Dice
index is a number between 0 and 1 given by:

SSD(X,Y) :=
2|X ∩ Y |
|X| + |Y | .

The robust Jaccard index is equivalent to the Sørensen-Dice index when
α = 2.

Definition (Tversky Index). For sets X and Y the Tversky index is a number
between 0 and 1 given by:

ST,β,γ(X,Y) :=
|X ∩ Y |

|X ∩ Y | + β|X − Y | + γ|Y − X| .

Proposition 1. The Tversky index is equivalent to the robust Jaccard index
when β = γ = 1

α , i.e. ST,1/α,1/α = SRJ,α.

Proof. By the definitions of Tversky and robust Jaccard index, we have

ST,1/α,1/α(X,Y) =
|X ∩ Y |

|X ∩ Y | + 1
α |X − Y | + 1

α |Y − X|

=
|X ∩ Y |

|X ∩ Y | + 1
α (|X ∪ X| − |X ∩ Y |)

=
α|X ∩ Y |

|X ∪ X| − (α − 1)|X ∩ Y | = SRJ,α

�

3 Metric Properties

Once that we have defined the robust Jaccard similarity index, it is only natural
to define a distance (or dissimilarity) coefficient as well.

Definition 2 (Robust Jaccard Distance). For sets X and Y and the robust
Jaccard similarity index, the expression as a distance is given by:

dRJ(X,Y) = 1 − SRJ(X,Y)

Then one could start questioning about the metric properties of this distance.
In our case, since a counter example that show that it is not a metric can be
easily found, we are more interested on the possibility of it being a semimetric.

Semimetric Properties of Sørensen-Dice and Tversky Indexes 343

Definition (Semimetric). A semimetric on X is a function d : X × X → R

that satisfies the first three axioms of a metric, but not necessarily the triangle
inequality:

(1) d(x, y) ≥ 0
(2) d(x, y) = 0 ⇐⇒ x = y
(3) d(x, y) = d(y, x)

Among all possible semimetrics, some of the most interesting ones are the so
called “near-metrics”, that are useful to guarantee a good performance in several
approximation algorithms [13–15].

Definition (ρ-relaxed Semimetric). ρ-relaxed semimetric is a semimetric
that also satisifies a ρ-relaxed triangle inequality:

(4) d(x, z) ≤ ρ(d(x, y) + d(y, z)).

In order to make the following proofs simpler, let us define XA,B , YB,C , and ZA,C

as follows:

XA,B =
SRJ,α(A,B)

α
=

|A ∩ B|
|A ∪ B| + (α − 1)|A ∩ B| ,

YB,C =
SRJ,α(B,C)

α
=

|B ∩ C|
|B ∪ C| + (α − 1)|B ∩ C| ,

ZA,C =
SRJ,α(A,C)

α
=

|A ∩ C|
|A ∪ C| + (α − 1)|A ∩ C| .

Also, f(A,B,C) :=
1
α −ZA,C

2
α −XA,B−YB,C

, and let

A∗, B∗, C∗ := arg max
A,B,C

f(A,B,C).

In Lemma 3, we show that

f(A∗, B∗, C∗) =
α + 1

2
.

Using that result, we can obtain our main result stated in the following theorem.

Theorem 1. For α ∈ Z+, dRJ,α is a ρ-relaxed semimetric, with ρ = (α + 1)/2,
i.e., for any finite sets A,B,C,

dRJ,α(A,C) ≤ α + 1
2

(dRJ,α(A,B) + dRJ,α(B,C)) .

Furthermore, there are finite sets A,B,C such that

dRJ,α(A,C) =
α + 1

2
(dRJ,α(A,B) + dRJ,α(B,C)) .

344 A. Gragera and V. Suppakitpaisarn

Proof. Equation (4) can be rewritten as

1 − αZA,C ≤ ρ(1 − αXA,B + 1 − αYB,C)

ρ ≥ 1 − αZA,C

2 − αXA,B − αYB,C

=
1
α − ZA,C

2
α − XA,B − YB,C

.

By the above inequality and Lemma 3, we can prove this theorem.
�
By substituting the value of α in the previous theorem by 2, we have the

following corollary.

Corollary 1. dSD is a 3/2-relaxed semimetric, i.e., for any finite sets A,B,C,

dSD(A,C) ≤ 3
2

(dSD(A,B) + dSD(B,C)) .

Furthermore, there are finite sets A,B,C such that

dSD(A,C) =
3
2

(dSD(A,B) + dSD(B,C)) .

In order to prove Lemma 3, we show several properties of A∗, B∗, C∗ though
Propositions 2–5, Lemmas 2 and 3. As shown in Fig. 1(a), we show that B∗\(A∗ ∪
B∗), (A∗∪C∗)\B∗, A∗\(B∗∪C∗), and C∗\(A∗∪B∗) must be empty sets in Propo-
sitions 2, 3, 4, 5 respectively. By those propositions, we can consider A∗, B∗, C∗ in
the form shown in Fig. 1(b). Then, we will prove that all sets A∗, B∗, C∗ in that
form must have ρ less than or equal to (α + 1)/2 in Lemmas 1 and 2.

Fig. 1. An outline of our proof of Theorem 1

Proposition 2. If B′ \ (A′ ∪ C ′) �= ∅ then f(A′, B′, C ′) < max
A,B,C

f(A,B,C).

Proof. Assume e ∈ B′ \ (A′ ∪ C ′). Let A′′ = A′, B′′ = B′ \ {e} and C ′′ = C ′.
Since |A′ ∩ B′| = |A′′ ∩ B′′| and |A′ ∪ B′| − 1 = |A′′ ∪ B′′|, we have

Semimetric Properties of Sørensen-Dice and Tversky Indexes 345

XA′′,B′′ =
|A′′ ∩ B′′|

|A′′ ∪ B′′| + (α − 1)|A′′ ∩ B′′|
=

|A′ ∩ B′|
|A′ ∪ B′| + (α − 1)|A′ ∩ B′| − 1

>
|A′ ∩ B′|

|A′ ∪ B′| + (α − 1)|A′ ∩ B′| = XA′,B′ .

Similarly, |B′ ∩ C ′| = |B′′ ∩ C ′′| and |B′ ∪ C ′| − 1 = |B′′ ∪ C ′′|, we have

YB′′,C′′ =
|B′′ ∩ C ′′|

|B′′ ∪ C ′′| + (α − 1)|B′′ ∩ C ′′|
=

|B′ ∩ C ′|
|B′ ∪ C ′| + (α − 1)|B′ ∩ C ′| − 1

>
|B′ ∩ C ′|

|B′ ∪ C ′| + (α − 1)|B′ ∩ C ′| = XB′,C′ .

Since A′′ = A′ and C ′′ = C ′, we have ZA′′,C′′ = ZA′,C′ . Then,

f(A′′, B′′, C ′′) =
1/α − ZA′′,C′′

2/α − XA′′,C′′ − YA′′,C′′

>
1/α − ZA′,C′

2/α − XA′,C′ − YA′,C′
= f(A′, B′, C ′)

�
To show the next proposition, we need the following lemma.

Lemma 1. Let N,M be positive integers such that M ≥ hN and c be a natural
number smaller or equal to h. We have

N + 1
M + c

≥ N

M
.

Furthermore, when c is strictly smaller than h. We have

N + 1
M + c

>
N

M
.

Proof. From the first part of this lemma statement, we have

(N + 1)M ≥ N(M + c)
NM + M ≥ NM + Nc

M ≥ Nc.

By the same argument, we can also prove the second part of this lemma.
�

346 A. Gragera and V. Suppakitpaisarn

Proposition 3. If (A′ ∩ C ′) \ B′ �= ∅ then f(A′, B′, C ′) < max
A,B,C

f(A,B,C).

Proof. Assume e ∈ (A′ ∩ C ′) \ B′. Let A′′ = A′, B′′ = B′ ∪ {e} and C ′′ = C ′.
Then, |A′ ∩ B′| + 1 = |A′′ ∩ B′′| and |A′ ∪ B′| = |A′′ ∪ B′′|. By Lemma 1, we
have

XA′′,B′′ =
|A′′ ∩ B′′|

|A′′ ∪ B′′| + (α − 1)|A′′ ∩ B′′|
=

|A′ ∩ B′| + 1
|A′ ∪ B′| + (α − 1)|A′ ∩ B′| + α − 1

>
|A′ ∩ B′|

|A′ ∪ B′| + (α − 1)|A′ ∩ B′| = XA′,B′ .

Similarly, |B′ ∩ C ′| + 1 = |B′′ ∩ C ′′| and |B′ ∪ C ′| = |B′′ ∪ C ′′|. By Lemma 1,

YB′′,C′′ =
|B′′ ∩ C ′′|

|B′′ ∪ C ′′| + (α − 1)|B′′ ∩ C ′′|
=

|B′ ∩ C ′| + 1
|B′ ∪ C ′| + (α − 1)|B′ ∩ C ′| + α − 1

>
|B′ ∩ C ′|

|B′ ∪ C ′| + (α − 1)|B′ ∩ C ′| = YB′,C′ .

Since A′′ = A′ and C ′′ = C ′, we have ZA′′,C′′ = ZA′,C′ . Then,

f(A′′, B′′, C ′′) =
1/α − ZA′′,C′′

2/α − XA′′,C′′ − YA′′,C′′

>
1/α − ZA′,C′

2/α − XA′,C′ − YA′,C′
= f(A′, B′, C ′)

�
Up until now, we know that B∗ − (A∗ ∪ C∗) and (A∗ ∪ C∗) − B∗ must be

an empty set. In the next proposition, we will show that there must be sets
A∗, B∗, C∗ that maximize function f and A∗ − (B∗ ∪ C∗) is also an empty set.

Proposition 4. If A′ \ (B′ ∩ C ′) �= ∅ then there exists A,B,C such that
B−(A∪C) = ∅, (A∪C)−B = ∅, A−(B∪C) = ∅ and f(A,B,C) ≥ f(A′, B′, C ′).

Proof. Assume e ∈ A′ \ (B′ ∩ C ′). Let A′′ = A′ \ {e}, B′′ = B′ ∪ {e} and
C ′′ = C ′ ∪ {e}. Since |A′′ ∩ B′′| = |A′ ∩ B′| and |A′′ ∪ B′′| = |A′ ∪ B′|, we have
XA′′,B′′ = XA′,B′ .

By |B′′ ∩ C ′′| = |B′ ∩ C ′| + 1, |B′′ ∪ C ′′| = |B′′ ∪ C ′′| + 1, and Lemma 1, we
have

YB′′,C′′ =
|B′′ ∩ C ′′|

|B′′ ∪ C ′′| + (α − 1)|B′′ ∩ C ′′|
=

|B′ ∩ C ′| + 1
|B′ ∪ C ′| + (α − 1)|B′ ∩ C ′| + α

≥ |B′ ∩ C ′|
|B′ ∪ C ′| + (α − 1)|B′ ∩ C ′| = YB′,C′ .

Semimetric Properties of Sørensen-Dice and Tversky Indexes 347

Since |A′′ ∩C ′′| = |A′ ∩C ′| and |A′′ ∪C ′′| = |A′ ∪C ′|, we have ZA′′,C′′ = ZA′,C′ .
Then,

f(A′′, B′′, C ′′) =
1/α − ZA′′,C′′

2/α − XA′′,C′′ − YA′′,C′′

≥ 1/α − ZA′,C′

2/α − XA′,C′ − YA′,C′
= f(A′, B′, C ′).

If A′′ − (B′′ ∪ C ′′) is an empty set, then we can prove this proposition. If not,
we can take another element out of A′′ − (B′′ ∪ C ′′) and add that element to
(B′′ ∩ C ′′) − A′′. By the same argument, we know that the value of function
f is not decreased. We can do the same action until the set A′′ − (B′′ ∪ C ′′)
becomes an empty set. After the loop, we will have A,B,C that satisfy the
lemma statement.

By the previous proposition, we know there exists at least one set of
A∗, B∗, C∗ such that B∗ −(A∗ ∪C∗) = ∅, (A∗ ∪C∗)−B∗ = ∅, A∗ −(B∗ ∪C∗) = ∅
and A∗, B∗, C∗ = arg max A,B,Cf(A,B,C). The next theorem will show that
C∗ − (A∗ ∪ B∗) can also be an empty set.

Proposition 5. Suppose that B′ − (A′ ∪ C ′) = ∅, (A′ ∪ C ′) − B′ = ∅, A′ −
(B′ ∪C ′) = ∅. Then, if C ′ − (A′ ∪B′) �= ∅, there are finite sets A,B,C such that
B−(A∪C) = ∅, (A∪C)−B = ∅, A−(B∪C) = ∅, and f(A,B,C) ≥ f(A′, B′, C ′).

Proof. Assume e ∈ C ′ \ (A′ ∪ B′). Let A′′ = A′ ∪ {e}, B′′ = B′ ∪ {e} and
C ′′ = C ′ \ {e}. By |A′′ ∩ B′′| = |A′ ∩ B′| + 1, |A′′ ∪ B′′| = |A′′ ∪ B′′| + 1, and
Lemma 1, we have

XA′′,B′′ =
|A′′ ∩ B′′|

|A′′ ∪ B′′| + (α − 1)|A′′ ∩ B′′|
=

|A′ ∩ B′| + 1
|A′ ∪ B′| + (α − 1)|A′ ∩ B′| + α

≥ |A′ ∩ B′|
|A′ ∪ B′| + (α − 1)|A′ ∩ B′| = XA′,B′ .

Since |B′′∩C ′′| = |B′∩C ′| and |B′′∪C ′′| = |B′∪C ′|, we have YB′′,C′′ = YB′,C′ .
Since |A′′∩C ′′| = |A′∩C ′| and |A′′∪C ′′| = |A′∪C ′|, we have ZA′′,C′′ = ZA′,C′ .

Then,

f(A′′, B′′, C ′′) =
1/α − ZA′′,C′′

2/α − XA′′,C′′ − YA′′,C′′

≥ 1/α − ZA′,C′

2/α − XA′,C′ − YA′,C′
= f(A′, B′, C ′).

If A′′ − (B′′ ∪ C ′′) is an empty set, then we can prove this proposition. If not,
we can take another element out of A′′ − (B′′ ∪ C ′′) and add that element to
(B′′ ∩ C ′′) − A′′. By the same argument, we know that the value of function

348 A. Gragera and V. Suppakitpaisarn

f is not decreased. We can do the same action until the set A′′ − (B′′ ∪ C ′′)
becomes an empty set. After the loop, we will have A,B,C that satisfy the
lemma statement.

By Propositions 2–5, we know that if e ∈ (A∗ ∪ B∗ ∪ C∗), either e ∈ (A∗ ∩
B∗) \ C∗, e ∈ (A∗ ∩ B∗ ∪ C∗, or e ∈ (B∗ ∩ C∗) \ A∗. Meaning that

B∗ = A∗ ∪ C∗.

With this result, we can state the following lemmas:

Lemma 2. When α > 1, |A∗| = |C∗|
Proof. Let assume that |A∗ ∩ C∗| = h and |A∗| + |C∗| = m. With this, ZA∗,C∗

is always equal to h/(m + (α − 2)h), and A∗, B∗, C∗ = arg max
A,B,C

(XA,B + YB,C).

Let 0 ≤ k ≤ 1. We can denote now |A∗| = km, and |C∗| = (1 − k)m. Thus,

XA,B + YB,C =
km

(α − 1)km + m − h
+

(1 − k)m
(α − 1)(1 − k)m + m − h

.

Because

d(XA,B + YB,C)
dk

=
(α − 1)(2k − 1)m2(h − m)((α + 1)m − 2h)

(m(α(k − 1) − k) + h)2(m(−αk + h − 1) + h)2
,

and for α > 1 it can only be equal to 0 when k = 1
2 .

Therefore |A∗| = 1
2m = |C∗|.
�

Lemma 3. When α > 1, f(A∗, B∗, C∗) = (α + 1)/2.

Proof. Recall that |A∗ ∩ C∗| = h and |A∗| = |C∗|.
In that case |A∗ \ C∗| = |A∗| − |A∗ ∩ C∗| = |C∗| − |A∗ ∪ C∗| = |C∗ \ A∗|.

Thus, we can denote |A∗ \ C∗| = |C∗ \ A∗| = r.
Also recall that ρ =

1
α −ZA∗,C∗

2
α −XA∗,B∗ −YB∗,C∗ , so

XA∗,B∗ =
r + h

(α + 1)r + αh
,

YB∗,C∗ =
r + h

(α + 1)r + αh
,

ZA∗,C∗ =
h

2r + αh
.

Then

ρ =
1
α − h

2r+αh
2
α − 2r+2h

(α+1)r+αh

=
(α + 1)r + αh

2r + αh
.

Therefore ρ is maximized when |A∗ ∩ C∗| = h = 0.
�

Semimetric Properties of Sørensen-Dice and Tversky Indexes 349

The proof of Lemma 2 works only for the case when α > 1, but we know
from [3] that the RJ distance is a metric (ρ = 1) when α = 1. That makes our
theorem hold for any positive integer α.

We can easily construct an example to show that the bound obtained in
Theorem 1 is tight. That is when A = {1}, B = {1, 2}, C = {2}. We have

dRJ,α(A,B) = dRJ,α(B,C) = dRJ,α(B,C) = 1 − α

1 + α
=

1
α

,

and dRJ,α(B,C) = 1. Then,

1 ≤ ρ

(
1
α

+
1
α

)

ρ ≥ α

2
.

4 Conclusions and Future Work

In this paper, we have proposed a family of similarity indexes, named as the
robust Jaccard index, for datasets with missing information. The only parameter
of the index is α. When α gets larger, the dissimilarity becomes more robust.
However, we have shown in this paper that the value of ρ in the approximate
triangle inequality also becomes larger, when the value of α increases. Because,
when the value of ρ gets larger, the algorithms proposed for this semi-metric
spaces will be less efficient, we have to trade between the robustness and the
efficiency of algorithms.

Because of that, we plan to perform experiments to see what is the optimal
value of α in each dataset. Besides, We are aiming to find the value of ρ for the
general Trevsky distance in our future work. We want to find the relationship
between the symmetricity, robustness, and efficiency with those results.

Acknowledgement. The authors would like to thank Mr. Naoto Osaka and Prof.
Hiroshi Imai for several useful comments during the course of this research.

References

1. Jaccard, P.: Lois de distribution florale dans la zone alpine. Corbaz (1902)
2. Tanimoto, T.: An elementary mathematical theory of classification and prediction.

Technical report, IBM Report (1958)
3. Lipkus, A.H.: A proof of the triangle inequality for the Tanimoto distance. J. Math.

Chem. 26(1–3), 263–265 (1999)
4. Jain, K., Vazirani, V.V.: Primal-dual approximation algorithms for metric facility

location and k-median problems. In: FOCS 1999, pp. 2–13 (1999)
5. Ruiz, E.V.: An algorithm for finding nearest neighbours in (approximately) con-

stant average time. Pattern Recogn. Lett. 4(3), 145–157 (1986)
6. Sankoff, D., Rousseau, P.: Locating the vertices of a steiner tree in an arbitrary

metric space. Math. Program. 9(1), 240–246 (1975)

350 A. Gragera and V. Suppakitpaisarn

7. Sørensen, T.: A method of establishing groups of equal amplitude in plant sociology
based on similarity of species and its application to analyses of the vegetation on
danish commons. Biol. Skr. 5, 1–34 (1948)

8. Dice, L.R.: Measures of the amount of ecologic association between species. Ecology
26(3), 297–302 (1945)

9. McCune, B., Grace, J.B., Urban, D.L.: Analysis of Ecological Communities, vol.
28. MjM software design, Gleneden Beach (2002)

10. Looman, J., Campbell, J.: Adaptation of Sorensen’s K (1948) for estimating unit
affinities in prairie vegetation. Ecology, 409–416 (1960)

11. Gragera, A.: Approximate matching for Go board positions. In: GPW 2015 (2015)
12. Schubert, A., Telcs, A.: A note on the Jaccardized Czekanowski similarity index.

Scientometrics 98(2), 1397–1399 (2014)
13. Braverman, V., Meyerson, A., Ostrovsky, R., Roytman, A., Shindler, M., Tagiku,

B.: Streaming k-means on well-clusterable data. In: SODA 2011, pp. 26–40 (2011)
14. Mettu, R.R., Plaxton, C.G.: The online median problem. SIAM J. Comput. 32(3),

816–832 (2003)
15. Jaiswal, R., Kumar, M., Yadav, P.: Improved analysis of D2-sampling based PTAS

for k-means and other clustering problems. Inf. Process. Lett. 115(2), 100–103
(2015)

16. Tversky, A., Gati, I.: Similarity, separability, and the triangle inequality. Psychol.
Rev. 89(2), 123 (1982)

17. Jimenez, S., Becerra, C., Gelbukh, A., Bátiz, A.J.D., Mendizábal, A.:
Softcardinality-core: Improving text overlap with distributional measures for
semantic textual similarity. In: SEM 2013, pp. 194–201 (2013)

Finding Mode Using Equality Comparisons

Varunkumar Jayapaul1(B), Venkatesh Raman2, and Srinivasa Rao Satti3

1 Chennai Mathematical Institute,
H1, SIPCOT IT Park, Siruseri, Chennai 603 103, India

varunkumarj@cmi.ac.in
2 The Institute of Mathematical Sciences, CIT Campus,

Taramani, Chennai 600 113, India
vraman@imsc.res.in

3 Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-744, Korea
ssrao@cse.snu.ac.kr

Abstract. We consider the problem of finding the mode (an element
that appears the maximum number of times) in a list of elements that
are not necessarily from a totally ordered set. Here, the relation between
elements is determined by ‘equality’ comparisons whose outcome is =
when the two elements being compared are equal and �= otherwise. In
sharp contrast to the Θ(n lgn

m
) bound known in the classical three way

comparison model where elements are from a totally ordered set, a recent

paper gave an O(n
2

m
) upper bound and Ω(n

2

m
) lower bound for the num-

ber of comparisons required to find the mode, where m is the frequency
of the mode. While the number of comparisons made by the algorithm is

roughly n2

m
, it is not clear how the necessary bookkeeping required can

be done to make the rest of the operations take Θ(n
2

m
) time.

In this paper, we give two mode finding algorithms, one taking at

most 2n2

m
comparisons and another taking at most 3n2

2m
+ O(n2

m2) com-
parisons. The bookkeeping required for both the algorithms are simple

enough to be implemented in O(n
2

m
) time. The second algorithm gener-

alizes a classical majority finding algorithm due to Fischer and Salzberg.

1 Introduction

Selection problems (finding min, max, median, mode) constitute one of the fun-
damental data processing tasks that have been well studied in the classical and
modern models of computation [4,9]. While there has been a lot of work on
algorithms for finding the median, finding the mode (an element that appears
the maximum number of times) is an equally interesting and an important prob-
lem. In the standard comparison model, given a set of n elements from a total
order, a classical paper by Dobkin and Munro [6] gives a Θ(n log n

m) algorithm
and a matching lower bound for finding the mode whose frequency is m. In this
paper, we consider the problem under the constraint that elements in the given
list do not form a total order. Here, the only way the relation between a pair of
elements is determined is by making an equality comparison. While this is a nat-
ural variant that occurs when dealing with heterogenous sets of elements, to the
c© Springer International Publishing Switzerland 2016
M. Kaykobad and R. Petreschi (Eds.): WALCOM 2016, LNCS 9627, pp. 351–360, 2016.
DOI: 10.1007/978-3-319-30139-6 28

352 V. Jayapaul et al.

best of our knowledge the only other problem studied extensively in this model
is the problem of determining the majority element (an element that appears
more than �n

2 � times) if exists, and there is a classical linear time algorithm
for this [5]. Exact comparison complexity and average case complexity of this
problem have been studied [1–3,7,13].

In general, the lack of transitivity of the ‘not equal’ operation throws inter-
esting challenges in this model. An earlier paper [8] studied the mode problem
in this model, and showed that Ω(n2

m) (equality) comparisons are necessary and
this many comparisons are sufficient to find an element that appears at least m
times. However, it appears difficult to make the bookkeeping required to imple-
ment the remaining operations in O(n2

m) time.
In the next section, we summarize the earlier algorithm and formulate a

data structure problem on a family of sets that is required to implement the
algorithm in detail. In Sect. 3.1 we first give a simple algorithm that makes at
most 2n2

m comparisons but it can be run in O(n2

m) time where m is the frequency
of the mode. Then, in Sect. 3.2 we give another algorithm which improves the
comparison bound to at most 3n2

2m +O(n2

m2). This is a generalization of the classical
Fischer-Salzberg [7] algorithm to find the majority of a given list of elements.
Both our algorithms require the knowledge of m, the frequency of the mode.
In Sect. 4, we explain how this assumption can be worked around to give a
general algorithm even without the knowledge of m with only twice the number
of comparisons. Section 5 concludes with remarks and open problems.

1.1 Related Work

As referred earlier, we know of only the majority problem [5] studied with =, �=
comparisons. In one of the earliest papers studying optimal algorithms on sets,
Reingold [12] proved lower bounds for determining the intersection/union of two
sets if only =, �= comparisons are allowed. Munro and Spira [10] considered
optimal algorithms and lower bounds to find the mode and the spectrum (the
frequencies of all elements), albeit in the three way comparison model. Misra
and Gries [11] gave algorithms to determine an element that appears at least n

k
times for various values of k, in the three way comparison model.

2 Finding Mode Using O(n
2

m
) Comparisons

The following theorem summarizes some of the main results given in [8].

Theorem 1. Given a list of n elements and an integer k, all elements (if any)
with frequency at least k can be found using at most O(n2

k) comparisons. In
particular, the mode of a given list of elements can be found in O(n2

m) compar-
isons, where m is the frequency of the mode, even if the algorithm does not know
m. Furthermore Ω(n2

m) comparisons are required to find the mode even if the
algorithm knows m.

Finding Mode Using Equality Comparisons 353

The algorithm that achieves the optimum bound is described in pseudocode
below. Basically, it maintains the given input in a circular list, and for an element
at position i, it maintains the list of elements EQ(i) that are known to be equal
to it, and the list NEQ(i) of elements that are known not to be equal to it.
Then it finds the first element (wrapping around if necessary) after i, not in
EQ(i) ∪ NEQ(i) and compares the element with it. Based on the outcome of
the comparison, the sets EQ and NEQ, of not just i, but other appropriate
elements as well, are updated. Then the algorithm proceeds to the next element
at position i + 1 and continues in a circular fashion. The algorithm stops when
it finds an element with frequency m if m is known, or when it finds an element
with frequency at least roughly n

r after r ‘rounds’ of comparisons. We refer to
[8] for details.

Initialize r = 0; for i = 1 to n eq(ai) = {i}; neq(ai) = ∅;
Repeat

r = r + 1
for i = 1 to n

find the next j if any, starting from i + 1, wrapped around after n
if necessary, such that j /∈ eq(ai) ∪ neq(ai).
if such a j is found then
if ai = aj then

for all x ∈ eq(ai) ∪ eq(aj),
eq(ax) ← eq(ai) ∪ eq(aj) and
neq(ax) ← neq(ai) ∪ neq(aj)

else if ai �= aj then
for all x ∈ eq(ai), neq(ax) ← neq(ax) ∪ eq(aj) and
for all y ∈ eq(aj), neq(ay) ← neq(ay) ∪ eq(ai)

endfor
until there exists an element i such that |eq(ai)| ≥ (n−1)

r

It is shown in [8] that the above algorithm finds the mode in at most n
 n
m�

comparisons. To actually implement the above algorithm to take O(n2

m) time,
we need a data structure to maintain the sets EQ(i) and NEQ(i) so that the
updation of the two sets after each comparison, and the query of the smallest
element larger than i (wrapping around if necessary) not in EQ(i)∪NEQ(i) can
be supported in constant time. We can maintain all elements that are known to
be equal to each other as a single set referred to by elements in the set (as their
EQ() sets). Thus if two positions i and j refer to different EQ() sets, then they
are mutually disjoint. Similarly, the NEQ(i) sets themselves are disjoint union
of some EQ(j) sets. Now after every comparison, several EQ sets may need to
be updated. We leave it as an interesting open problem to implement the above
algorithm to take overall O(n2

m) time.

354 V. Jayapaul et al.

3 Finding Mode in O(n
2

m
) Time

Here we provide two algorithms that not only use O(n2

m) comparisons, but also
spend only O(n2

m) time for the rest of the operations. The first one takes at
most 2n2

m comparisons, and the number of comparisons made by the second one
is 3n2

2m + O(n2

m2). The first one is relatively simple to argue correctness, and the
second algorithm generalizes a classical majority finding algorithm.

For now, we assume that m is known, and in Sect. 4, we explain how this
assumption can be removed.

3.1 A Simple Mode Finding Algorithm

Let k be the smallest integer such that �n
k � ≤ m − 1. I.e. �n

k � ≤ m − 1 < � n
k−1�.

Let a1, a2, . . . an be the given list of n elements. We give an algorithm that
finds all elements with frequency more than �n

k � from an input of size n. The
pseudocode description is given below. Here B is a set of distinct elements with
some frequencies associated with each element.

Initialize B = {a1}; i = 1;
While i ≤ n − 1

i = i + 1
if ai already appears in B,

then increment the frequency of the value that equals ai in B
else add ai to B with frequency 1.
If the number of distinct elements in B is k

then decrement the frequency of each element in B;
delete elements with (the new) frequency 0.

Endwhile
Find frequency in the entire list, of all elements (if any) of B,
and output those whose frequency over entire input is at least m.

We show that the algorithm finds all elements with frequency more than �n
k �

using at most 2n(k − 1) comparisons. As k ≤ n
m + 1, the total running time of

the algorithm is then at most 2n2

m .
Suppose after every decrement, one copy of each of the elements is placed in

a (separate) set, then as each set has k elements, the total number of such sets
is at most �n

k � < m. Also each of the sets has distinct elements. So if an element
has frequency more than �n

k �, it will have a copy in the final set B. Thus all
elements with frequency at least m have a copy in B.

Every new element (after the first k − 1 distinct elements) is compared with
at most k−1 distinct elements of B for a total of (n−k+1)(k−1)+ (k−1)k

2 com-
parisons. Also finally B has at most k − 1 distinct elements which are compared
with the remaining elements for a total of at most n(k − 1) comparisons for the
confirmation phase. This results in an overall at most 2n(k−1) comparisons. As
m ≤ n

k−1 , we have k − 1 ≤ n
m . Thus we have the following theorem.

Finding Mode Using Equality Comparisons 355

Theorem 2. Given a multiset of n elements and a frequency m, we can find all
elements with frequency at least m using at most 2n2

m comparisons and O(n2

m)
time.

3.2 An Improved Algorithm – Generalization of the
Fischer-Salzberg Majority Algorithm

Fischer and Salzberg [7] developed an algorithm to find a majority element
(if exists) in a list of n elements using at most 3n

2 − 2 comparisons. (Recall
that a majority element is an element that appears more than �n

2 � times.). We
generalize this to find the mode to improve the coefficient of n2

m in Theorem 2
to 3

2 , resulting in at most 3n
2 (� n

m�) comparisons.
As before, let k be the integer such that �n

k � ≤ m − 1 < � n
k−1�. We will

give an algorithm to find an element with frequency at least m ≥ �n
k � + 1 using

at most 3n(k−1)
2 comparisons and other operations. When k = 2, the problem

degenerates to the majority problem and the bound becomes at most 3n
2 as in

the case of Fischer and Salzberg’s algorithm.
Let a1, a2, . . . an be the given sequence of n elements. The algorithm main-

tains a list L, and an array B with the following invariants:

– For any index i, L[i] is not equal to any element in the set S = {L[j], |j − i| <
k}. I.e. in L, any set of consecutive k elements are distinct.

– B, if non-empty, contains up to k−1 distinct elements, all of which appear in
the last k − 1 elements of L. Each cell in B contains the value of an element
x, its last location in L and a frequency f which has the following property:
the frequency of x in the input sequence (up to the point we have processed)
is the frequency of x in L plus f . We maintain elements of B in a queue by
increasing order of their (last occurrence) locations in L.

We can interpret that the input sequence is partitioned into L and B; i.e. every
element of the input sequence is in L or in B. Initially B is empty, and L contains
the first element in the input sequence. Then it processes each element ai(i > 1)
in the sequence as follows.

– If ai equals an element in the last k − 1 positions of L, then if ai appears in
B, find its occurrence and increment its frequency. If ai does not appear in
B, then create a new entry for in B, with a frequency of 1, and set its last
occurrence location to its last occurrence in L.

– If ai does not equal any element in the last k − 1 positions of L, then add ai

to L, and repeat the following step until not possible:
• Take the element x in the first location of B. This is an element that

has the least (last) location in L among those in B. If the last location
in L of that element is at least k positions away from the current last
position, then add x to the end of L after decrementing its frequency
in B. Remove it from B if its frequency becomes 0, and update its last
location to the current location in L otherwise. Move that element to the
last location of B.

356 V. Jayapaul et al.

At the end, we claim that only the last k − 1 elements of L are possible
candidates for the mode, and so we check the frequency of each of those elements
with all elements of L and output all those with frequency m. We call the step of
finding the frequency of the last k − 1 elements of L as the ‘confirmation phase’.

The following pseudocode gives the details of the algorithm.

Initialize L = a1; i = 1; B = ∅;
While i ≤ n − 1

i = i + 1

if ai equals an element in the last k − 1 elements of L

then if ai ∈ B

find and increment frequency of ai in B by one

else if ai /∈ B

Create a new entry in B with ai as value, frequency as 1, and its position as

last known position of ai in L.

Sort B in increasing order of the ‘position’ field of its elements.

if ai does not equal any of the last k − 1 elements of L

Add ai to the end of L

While |B(first).location − L(last)| > k

decrease frequency of B(first) by 1

add B(first).value to the end of list L

update B(first).location = last + 1

if B(first)’s frequency is nonzero then

move B(first) to end of B,

else remove it from B

Endwhile

Endwhile

Comment: Confirmation Phase

For all elements in the last k − 1 elements of L

find their actual frequency in the input

and output those whose total frequency in the entire input is equal to m

In the initial phase, the only comparisons made for each element are to test
whether it equals an element in the last k − 1 elements of L. We can use the last
location entry to find its existence (if at all) in B which involves no comparisons
with the element. So at most n(k−1) comparisons and n(k−1) other operations
are made in the first processing phase of the algorithm to construct L and B. The
confirmation phase takes at most (k − 1)n comparisons for a total of 2n(k − 1)
comparisons.

In what follows, we tighten the analysis to show a bound of at most n(k−1)
2

for the confirmation phase resulting in an overall comparison bound of 3n(k−1)
2 ,

and prove the correctness of the algorithm.
First it is clear that the algorithm maintains the two invariants (on L and

B) mentioned above after every step. Invariant on L is maintained as and when
we add new elements to L (either from the input sequence or from B). B always
contains at most k − 1 elements. We add an element to B only when a new
element does not appear in the last k−1 elements of L, and when that happens,
B had less than k − 1 elements, as the elements of B appear in the last k − 1
elements of L, and so the addition to B does not make the number of elements
of B go above k − 1. Also when we add new elements to L, if B is non-empty,

Finding Mode Using Equality Comparisons 357

we add elements from B to L ensuring that elements of B are in the last k − 1
elements of L, for if an element of B is not in the last k − 1 elements of L, then
that element would have been added to the last element of L.

Suppose that the size of L is divisible by k. Then every element in L can
appear at most n

k ≤ m − 1 times (as every consecutive k elements are distinct).
And hence B has to be non-empty (for the mode to appear m times), and the
only candidates for elements appearing more than �n

k � times are those in B
which are anyway in the last k − 1 elements of L by the invariant on B.

Suppose the size of L is not divisible by k. Then the only possible input
elements that appear more than �n

k � ≤ m − 1 times are those in B and those in
the last n − k(�n

k �) locations of L, and the last k − 1 elements of L cover these.
This completes the correctness of the algorithm. Now we give a slight modifi-

cation of the confirmation phase and give a careful calculation of the number of
comparisons made in the confirmation phase and show it to be at most n(k−1)

2 .

The Confirmation Phase. For any element in the last k − 1 locations of L
that is not in B, the confirmation phase starts by comparing it with an element
that is k locations apart to the left of it (as we know that the intermediate k −1
elements are distinct from it). For an element in B, the confirmation phase starts
with its copy in the last k − 1 locations and continues as above. And during the
confirmation phase, if we find an element which is not equal to the element being
compared, then we move left by a position and continue the comparison. And if
we find an element which is equal to the element being compared, then we skip
k − 1 positions to the left and continue our comparison.

Let � ≤ k − 1 be the number of distinct elements in B and let f1, f2, . . . f� be
their respective frequencies in B at the end of the algorithm. Let f =

∑�
i=1 fi.

Lemma 1. Let � ≤ k − 1 be the number of distinct elements in B and let
f1, f2, . . . , f� be their respective frequencies in B at the end of the algorithm.
Let f =

∑�
i=1 fi. The number of comparisons done by candidates from B in the

confirmation phase is at most f(k − 1) + �(n
k − f) + (k − 1)2.

Proof. Let b be an element of B with frequency f1. Then for b to qualify as a
mode, it should have at least �n

k �−f1 copies in L, not counting its copy in the last
k−1 locations of L. View L as a contiguous sequence of k-sized blocks. There are

n−f

k � such blocks. Hence b may not be present in at most
n−f
k �−1−(�n

k �−f1)
such blocks and may get not equal outcomes in comparisons with elements in
these blocks for a total of at most k(
n−f

k � − 1 − �n
k � + f1) comparisons with

not equal outcomes. It is easy to see that it may make at most k − 1 more
comparisons with not equal outcomes, and has to get at least �n

k � − f1 equality
comparisons. If the number of comparisons with not equal outcomes or equal
outcomes exceeds these quantities, we can stop the confirmation phase of that
element.

358 V. Jayapaul et al.

Now summing these comparisons for every element of B, the number of
comparisons made by elements of B in the confirmation phase is at most

�∑

i=1

(�n

k
� − fi+(k − 1) + k(
n − f

k
� − 1 − �n

k
� + fi))

≤ �(�n

k
�(1 − k) + (n − f) + k − 1) + f(k − 1)

≤ f(k − 1) + �(
n

k
− f + k − 1)

≤ f(k − 1) + �(
n

k
− f) + (k − 1)2 �

Now we continue with the analysis of the total number of comparisons in the
confirmation phase.

Case 1: f ≥ n
2 .

This implies that |L| ≤ n
2 . The confirmation phase finds the frequency of each

of the last k − 1 elements of L with the other elements of L which, in this case,
will take at most n(k−1)

2 comparisons.

Case 2: n mod k < f < n
2 .

In this case, |L| ≤ k�n/k�, and hence any element of L that is not in B, appears
at most �n

k � times and hence they don’t qualify to become a mode.
From Lemma 1, the number of comparisons made by elements of B during

the confirmation phase is at most f(k − 1) + �(n
k − f) + (k − 1)2.

If f ≥ n
k , then

f(k − 1) + �(
n

k
− f) + (k − 1)2 ≤ f(k − 1) + (k − 1)2

< n(k−1)
2 + (k − 1)2.

If f < n
k , then

f(k − 1) + �(
n

k
− f) + (k − 1)2 <

n(k − 1 − �)
k

+
�n

k
+ (k − 1)2

=
n(k − 1)

k
+ (k − 1)2

≤ n(k − 1)
2

+ (k − 1)2

Case 3: f ≤ (n mod k).
Let S be the set of all the elements which occur in last k − 1 positions of L,
but which do not occur in B. Let |S| = p. These p elements need at least �n

k �
additional copies for each of them to become a candidate for mode. I.e. each

Finding Mode Using Equality Comparisons 359

of them should appear in every block of L. Hence, the verification process for
each element in S ends in at most �n

k � equality comparisons and possibly at most
k−1 comparisons with not equal outcomes, totally making at most pn

k +p(k−1)
comparisons.

The remaining � = (k −1−p) elements in the last k −1 positions of L have a
copy in B. From Lemma 1, the number of comparisons made by these � elements
for verification is at most f(k − 1) + �(n

k − f) + (k − 1)2.

f(k − 1) + �(
n

k
− f) + (k − 1)2 = f(p + �) + �(

n

k
− f) + (k − 1)2

= fp +
�n

k
+ (k − 1)2

Thus the total number of comparisons made by all the last (k − 1) elements
of L is

pn

k
+ p(k − 1) + fp +

�n

k
+ (k − 1)2 =

(p + �)n
k

+ 3(k − 1)2

≤ n(k − 1)
2

+ 3(k − 1)2

Thus, the total number of comparisons is at most n(k−1)
2 + 3(k − 1)2.

Thus in all three cases, the confirmation phase takes at most n(k−1)
2 + O(k2)

comparisons. So the total number of comparisons made by the algorithm in
Theorem 2 is 3n(k−1)

2 +O(k2), which is at most 3n
2 � n

m�+O(n2

m2) as k −1 ≤ � n
m�.

Theorem 3. Given a multiset of n elements and a frequency m, all elements
with frequency more than m can be found using 3n

2 � n
m�+3(n2

m2) comparisons and
O(n2

m) time.

4 Finding the Mode When m is Not Known

The algorithms presented in Theorems 2 and 3 can be made to find the mode,
even if the value of m is not known. This is achieved by guessing the values of
m, in turn guessing the values of k.

We keep running the algorithm for k = 1, 2, 4... and so on till we find a power
of 2 (say x) at which the algorithm returns a non-empty set of all elements with
frequency greater than n

2x thereby finding all elements which have the frequency
of the mode.

The total number of comparisons performed by the algorithm in Theorem 2,
when m is not known would be S =

∑x
i=1(2n)(2i) which is 4n2

m (as (k −1) ≤ n
m)

which is about twice the amount of time taken by algorithm in Theorem 2 when
m is known. Similarly, we can show that the algorithm in Theorem 3 takes 3n2

m
comparisons to find the mode (with frequency m) when m is not known.

360 V. Jayapaul et al.

5 Conclusions

We have given two mode finding algorithms that take O(n2

m) time to find an ele-
ment with frequency m, when the relation between elements can be determined
only by equality comparisons. Our best algorithm takes at most n2

m comparisons
and the lower bound proved in [8] is n2

2m . Tightening this gap is an interesting
open problem. Fischer and Salzberg [7] also present a lower bound to find the
majority which matches the upper bound for finding majority (i.e. 3n

2 − 2 com-
parisons). Can this lower bound be generalized to get a better (than n2

2m) lower
bound for mode?

Another interesting open problem is to implement the algorithm of [8] sum-
marized in Sect. 2, that takes at most n2

m comparisons, in O(n2

m) time.

References

1. Alonso, L., Reingold, E.M., Schott, R.: The average-case complexity of determining
the majority. SIAM J. Comput. 26, 1–14 (1997)

2. Alonso, L., Reingold, E.M., Schott, R.: Determining the majority. Inf. Process.
Lett. 47, 253–255 (1993)

3. Alonso, L., Reingold, E.M., Schott, R.: Analysis of Boyer and Moore’s MJRTY.
Inf. Process. Lett. 113, 495–497 (2013)

4. Blum, M., Floyd, R.W., Pratt, V.R., Rivest, R.L., Tarjan, R.E.: Time bounds for
selection. J. Comput. Syst. Sci. 7(4), 448–461 (1973)

5. Boyer, R.S., Moore, J.S.: MJRTY—a fast majority vote algorithm. In: Boyer, R.S.
(ed.) Essays in Honor of Woody Bledsoe. Automated Reasoning Series, vol. 1, pp.
105–117. Springer, Netherlands (1991)

6. Dobkin, D.P., Munro, J.I.: Determining the mode. Theor. comput. sci. 12, 255–263
(1980)

7. Fischer, M.J., Salzberg, S.L.: Solution to problem 81–5. J. Algorithms 3, 376–379
(1982)

8. Jayapaul, V., Munro, J.I., Raman, V., Satti, S.R.: Sorting and selection with equal-
ity comparisons. In: Dehne, F., Sack, J.-R., Stege, U. (eds.) WADS 2015. LNCS,
vol. 9214, pp. 434–445. Springer, Heidelberg (2015)

9. Knuth, D.E.: The Art of Computer Programming. Sorting and Searching, vol. III.
Addison-Wesley, Reading (1973)

10. Munro, J.I., Spira, P.M.: Sorting and searching in multisets. SIAM J. Comput.
5(1), 1–8 (1976)

11. Misra, J., Gries, D.: Finding repeated elements. Sci. Comput. Program. 2(2), 143–
152 (1982)

12. Reingold, E.M.: On the optimality of some set algorithms. J. ACM 19(4), 649–659
(1972)

13. Saks, M.E., Werman, M.: On computing majority by comparisons. Combinatorica
11(4), 383–387 (1991)

Author Index

Akash, Aditya Kumar 55
Angelini, Patrizio 40
Anglès d’Auriac, Jean-Alexandre 17

Bae, Sang Won 131
Bantva, Devsi 28
Behrisch, Mike 222
Bekos, Michael A. 40
Bhagat, Subhash 80
Bose, Prosenjit 143
Brandenburg, Franz J. 95
Bujtás, Csilia 17

Calamoneri, Tiziana 313
Chanchary, Farah 194
Chaudhuri, Sruti Gan 80
Cho, Hwan-Gue 166
Czibula, Oliver G. 327

De Carufel, Jean-Lou 143

El Maftouhi, Hakim 17
Esch, Alexander 95
Evans, William 166

Fekete, Sándor P. 55
Felsner, Stefan 114
Fujito, Toshihiro 251

Gorain, Barun 263
Gragera, Alonso 339
Gu, Hanyu 327

Hasegawa, Shun 301
Heldt, Daniel 114
Hermann, Miki 222
Hon, Wing-Kai 181
Hossain, Md. Iqbal 107

Iliopoulos, Costas S. 3
Islam, A.S.M. Shohidull 274
Itoh, Toshiya 301

Jayapaul, Varunkumar 351

Karmaker, Shuvasish 274
Karpinski, Marek 17
Kaufmann, Michael 40
Kundu, Ritu 3

Lee, Seoung Kyou 55
López-Ortiz, Alejandro 55, 68

Maftuleac, Daniela 55, 68
Maheshwari, Anil 194
Majumder, Subhashis 181
Mandal, Partha Sarathi 263
Manoussakis, Yannis 17
McLurkin, James 55
Mengel, Stefan 222
Mnich, Matthias 209
Mohamed, Manal 3
Montero, Leandro 17
Monti, Angelo 313
Mukhopadhyaya, Krishnendu 80, 263

Nagamochi, Hiroshi 286
Narayanan, Narayanan 17
Neuwirth, Daniel 95

Oomine, Morito 286

Petreschi, Rossella 313

Rahman, M. Sohel 274
Rahman, Md. Saidur 107
Raman, Venkatesh 351
Rosaz, Laurent 17
Roselli, Vincenzo 40

Saeedi, Noushin 166
Salma, Sammi Abida 107
Salzer, Gernot 222
Sanyal, Biswajit 181
Satti, Srinivasa Rao 351
Shaw, Dipan Lal 274
Shin, Chan-Su 166
Shurbevski, Aleksandar 286
Subramani, K. 154

Suppakitpaisarn, Vorapong 339
Suzuki, Daichi 251

Thapper, Johan 17
Tuza, Zsolt 17

Uehara, Ryuhei 236

Vayani, Fatima 3

Wojciechowski, Piotr 154

Yamada, Takeshi 236

Zinder, Yakov 327

362 Author Index

	Preface
	Organization
	Invited Talks (Abstracts)
	Popping Superbubbles and Discovering Clumps: Recent Developments in Biological Sequence Analysis
	2-Edge and 2-Vertex Connectivity Problems in Directed Graphs
	Social Pressure can Subvert Majority in Social Networks
	Beyond Cyber-Physical Era: What’s Next?

	Contents
	Invited Talk
	Popping Superbubbles and Discovering Clumps: Recent Developments in Biological Sequence Analysis
	1 Introduction
	2 Superbubbles
	2.1 Biological Motivation
	2.2 Definitions
	2.3 Properties of Superbubbles
	2.4 Algorithms
	2.5 Discussion

	3 Clumps
	3.1 Biological Motivation
	3.2 Definitions
	3.3 Algorithms
	3.4 Discussion

	4 Conclusion
	References

	Graphs Coloring
	Tropical Dominating Sets in Vertex-Coloured Graphs
	1 Introduction
	2 Approximability and Fixed Parameter Tractability
	References

	On Hamiltonian Colorings of Block Graphs
	1 Introduction
	2 A Lower Bound for Hamiltonian Chromatic Number of Block Graphs
	3 Hamiltonian Chromatic Number of Symmetric Block Graphs
	References

	Vertex-Coloring with Star-Defects
	1 Introduction
	2 Coloring Outerplanar Graphs and Subclasses
	3 NP-completeness for (Planar) Graphs of Bounded Degree
	4 Conclusions
	References

	Graphs Exploration
	Lower Bounds for Graph Exploration Using Local Policies
	1 Introduction
	2 Worst-Case Behavior of LRV-e and LRV-v
	3 Worst-Case Behavior of LFV-v and LFV-e
	4 A Graph with Superpolynomial Exploration Time
	5 Conclusions
	References

	Optimal Distributed Searching in the Plane with and Without Uncertainty
	1 Introduction
	2 Parallel Searching
	3 Search Strategy
	3.1 Even-Work Strategy for Parallel Search with k=4r Robots
	3.2 Parallel Search with Any Number of Robots

	4 From Theory to Practice
	4.1 The Search Strategy
	4.2 Probability of Detection

	5 Conclusion
	References

	Formation of General Position by Asynchronous Mobile Robots Under One-Axis Agreement
	1 Introduction
	1.1 Earlier Works
	1.2 Our Contribution

	2 Model and Definitions
	3 Algorithm for Making of General Position
	3.1 Eligible Robots for Movements
	3.2 Computing Destination Point
	3.3 Correctness

	4 Conclusion
	References

	Graphs Algorithms
	On Aligned Bar 1-Visibility Graphs
	1 Introduction
	2 Preliminaries
	3 Maximality
	4 Path-Addition
	5 Recognition of Optimal AB1VGraphs
	6 Relationship to Other Classes of Graphs
	7 Conclusion
	References

	A Necessary Condition and a Sufficient Condition for Pairwise Compatibility Graphs
	1 Introduction
	2 Preliminaries
	3 Necessary Condition
	4 Sufficient Condition
	5 Conclusion
	References

	Mixing Times of Markov Chains of 2-Orientations
	1 Introduction
	2 Preliminaries
	2.1 The Up-Down Markov Chain of -orientations
	2.2 2-Orientations and Separating Decompositions
	2.3 Markov Chains and Mixing Times

	3 Markov Chains for 2-Orientations
	3.1 Slow Mixing for 2-Orientations
	3.2 The Tower Chain for Low Degree Quadrangulations
	3.3 Comparison of M2T and M2

	4 Concluding Remarks and Open Problems
	References

	Computational Geometry
	Computing a Minimum-Width Square Annulus in Arbitrary Orientation
	1 Introduction
	2 Preliminaries
	3 Square Annuli in Fixed Orientation
	4 Square Annuli over Arbitrary Orientations
	4.1 The Invariants
	4.2 Combinatorial Changes of the Invariants and Events
	4.3 Computing Events
	4.4 The Main Loop: Handling the Next Event
	4.5 Finding an Optimal Orientation over a Primary Interval

	References

	A General Framework for Searching on a Line
	1 Introduction
	2 Searching on a Line with Turn Cost
	3 Searching a Moving Target on a Line with Turn Cost
	3.1 Turn Cost Is Time --- Competitive with Respect to D
	3.2 Turn Cost Is Fuel | Competitive with Respect to D

	4 The General Framework
	4.1 One More Application of the General Framework

	References

	An Optimal Algorithm for Computing the Integer Closure of UTVPI Constraints
	1 Introduction
	2 Statement of Problem
	2.1 Constraint Network Presentation

	3 Motivation and Related Work
	4 A Fast Integer Closure Algorithm for a Special Subclass of UTVPI Constraints
	5 The New Algorithm
	5.1 Analysis of Running Time

	6 Correctness
	7 Conclusion
	References

	Covering Points with Convex Sets of Minimum Size
	1 Introduction
	2 Preliminary
	3 Area-Optimal Covering with Two Convex Hulls
	4 Perimeter-Optimal Covering with Two Convex Hulls
	5 Extensions
	References

	Data Structures
	Efficient Generation of Top-k Procurements in a Multi-item Auction
	1 Introduction
	2 Method I: Reduction to k Shortest Paths Problem
	3 The Metadata Structure Mlocal
	3.1 Metadata Structure Per Partition
	3.2 Metadata Structure Per Item

	4 Method II: Using Mlocal to Find Top-k Procurements
	4.1 The Basic Problem
	4.2 Other Variants

	5 Conclusions and Future Research
	References

	Counting Subgraphs in Relational Event Graphs
	1 Introduction
	2 Preliminaries
	3 Counting Quadrangles
	4 Counting Triangles and Other Subgraphs
	4.1 Counting Triangles
	4.2 Counting Complete and Maximal Complete Subgraphs

	5 Conclusion
	References

	Computational Complexity
	Large Independent Sets in Subquartic Planar Graphs
	1 Introduction
	2 Preliminaries
	3 Fixed-Parameter Algorithm in Subquartic Planar Graphs
	4 Discussion
	References

	As Close as It Gets
	1 Introduction
	2 Preliminaries
	3 Results
	4 Duality and Inapplicability of Clone Closure
	5 Finding the Minimal Distance Between Solutions
	5.1 Polynomial-Time Cases
	5.2 Hard Cases

	6 Concluding Remarks
	References

	Shortest Reconfiguration of Sliding Tokens on a Caterpillar
	1 Introduction
	2 Preliminaries
	3 Proper Interval Graphs
	4 Caterpillars
	5 Concluding Remarks
	References

	Approximation Algorithms
	Fast and Simple Local Algorithms for 2-Edge Dominating Sets and 3-Total Vertex Covers
	1 Introduction
	1.1 Previous Work and Ours

	2 Preliminaries
	3 A Local Algorithm for EDS, M2-EDS, and 2-TVC
	4 A Local Algorithm for S2-EDS and 3-TVC
	References

	Approximation Algorithms for Generalized Bounded Tree Cover
	1 Introduction
	2 Tree Cover for Graphs with Multiple Weight Functions
	2.1 Strong Tree Cover
	2.2 Weak Tree Cover

	3 Tree Cover with Different Bounds
	4 Conclusion
	References

	Approximation Algorithms for Three Dimensional Protein Folding
	1 Introduction
	2 Preliminaries
	3 Our Approaches
	3.1 Upper Bound
	3.2 Approximation Algorithms and Lower Bounds

	4 Conclusion
	References

	Parameterization of Strategy-Proof Mechanisms in the Obnoxious Facility Game
	1 Introduction
	1.1 Social Choice Theory
	1.2 Facility Game
	1.3 Our Contribution

	2 Preliminaries
	2.1 Notation
	2.2 Strategy Proofness
	2.3 Masking Zone Mechanisms
	2.4 Social Benefit
	2.5 Obnoxious Facility Game in the Line Metric

	3 Masking Zone Mechanisms
	4 Upper Bounds on the Benefit Ratio
	5 Lower Bounds on the Benefit Ratio
	6 Concluding Remarks
	References

	On-line Algorithms
	Optimal Online Algorithms for the Multi-objective Time Series Search Problem
	1 Introduction
	1.1 Previous Work
	1.2 Our Contribution

	2 Preliminaries
	2.1 Multi-Objective Online Problems
	2.2 Competitive Analysis for Multi-Objective Online Problems
	2.3 Multi-objective Time Series Search Problem

	3 Observations on the Competitive Analysis
	4 Online Algorithm: Balanced Price Policy
	4.1 The Algorithm BPPk is Best Possible
	4.2 Discussions

	5 Analysis for Competitive Ratio
	5.1 Worst Component Competitive Ratio
	5.2 Arithmetic Mean Component Competitive Ratio
	5.3 Geometric Mean Component Competitive Ratio

	References

	Fully Dynamically Maintaining Minimal Integral Separator for Threshold and Difference Graphs
	1 Introduction
	2 Preliminaries
	3 A Data Structure for Computing Minimal Integral Separator for Threshold or Difference Graphs
	4 Adding/deleting an Edge to Threshold/difference Graphs
	5 Adding/deleting a Node to Threshold/difference Graphs
	6 Disjoint Union and Join of Two Threshold Graphs
	References

	Algorithms
	A Lagrangian Relaxation-Based Heuristic to Solve Large Extended Graph Partitioning Problems
	1 Introduction
	2 Quadratic Programming Formulation
	3 Lagrangian Relaxation
	4 Lagrangian Heuristic
	5 Genetic Algorithm Based Matheuristic
	6 Computational Results
	7 Conclusions
	References

	Semimetric Properties of Sørensen-Dice and Tversky Indexes
	1 Introduction
	1.1 Our Contribution

	2 Robust Jaccard Index
	2.1 Relation with Other Indexes

	3 Metric Properties
	4 Conclusions and Future Work
	References

	Finding Mode Using Equality Comparisons
	1 Introduction
	1.1 Related Work

	2 Finding Mode Using O(n2m) Comparisons
	3 Finding Mode in O(n2m) Time
	3.1 A Simple Mode Finding Algorithm
	3.2 An Improved Algorithm -- Generalization of the Fischer-Salzberg Majority Algorithm

	4 Finding the Mode When m is Not Known
	5 Conclusions
	References

	Author Index

