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Abstract We consider an inverse scattering problem in which small dielectric
inhomogeneities in two-dimensional space are surrounded by randomly distributed
scatterers. We approach this problem using a Multiple Signal Classification
(MUSIC) algorithm. This is motivated by the fact that collected Multi-static
Response (MSR) matrix data can be represented as an asymptotic expansion for-
mula in the presence of such inhomogeneities. The results obtained by numerical
simulations show that MUSIC performs satisfactorily, even under conditions where
a significant number of random scatterers affect the data.

1 Introduction

One of the main purposes of the inverse scattering problem is to find the locations
of unknown inhomogeneities from scattered field data. This problem is challenging,
owing to the its ill-posedness. However, it is an interesting problem as it arises in
multiple fields, such as physics, medical science, and material engineering. Various
detection algorithms have been suggested for approaching this problem, most being
based on Newton-type iteration schemes. Related research can be found in [3, 13,
18, 24–27, 31, 37, 39, 42] and references therein. However, in order for such
algorithms to be successfully applied, a good initial guess is required, which is close
enough to the unknown object. Without this, one might suffer from large compu-
tational costs, with the risk of non-convergence issues. Moreover, these schemes
require suitable regularization terms, which are highly dependent on the problem at
hand; a priori information about unknown inhomogeneities; and the complex cal-
culations of so-called Fréchet derivatives at each iteration step. Even if the above
conditions are fulfilled, iteration schemes are very difficult to extend to multiple
inhomogeneities.
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Motivated by this difficulties, alternative noniterative algorithms have been suc-
cessfully developed and applied to the various inverse problems, such as theMUltiple
SIgnal Classification (MUSIC) [2, 4, 5, 7, 8, 15, 21, 22, 33, 35, 36, 43], linear
sampling method [12, 14, 16, 17, 23], topological derivative [1, 9, 11, 13, 29, 30],
and subspace migration algorithms [20, 28, 32, 34, 38]. Among these, MUSIC
(MUltiple SIgnal Classification)-type algorithms have been successfully applied to
the imaging of various types of inhomogeneities at fixed single frequency. However,
their feasibility has only been confirmed for cases where the background medium is
homogeneous. Therefore, the examination of the imaging performance of MUSIC
when unknown inhomogeneities are surrounded by random scatterers presents an
interesting research subject.

In this paper, we apply a MUSIC-type imaging algorithm to the detection of the
locations of small dielectric inhomogeneities that are surrounded by dielectric
random scatterers. This is based on the fact that the elements of the so-called
Multi-Static Response (MSR) matrix can be represented by an asymptotic expan-
sion formula, owing to the existence of inhomogeneities. For more details, we refer
the reader to refer [4]. Using this property, we introduce a MUSIC-type imaging
algorithm and perform various numerical simulations.

The rest of this paper is organized as follows. In Sect. 2, we briefly discuss the
two-dimensional direct scattering problem and present an asymptotic expansion
formula in the presence of small inhomogeneities. In Sect. 3, a MUSIC-type
imaging functional is introduced. In Sect. 4, we present various results of numerical
simulations, illustrating the effectiveness and limitations of MUSIC. A short con-
clusion follows in Sect. 5.

2 Direct Scattering Problem and Asymptotic
Expansion Formula

In this section, we review a two-dimensional direct scattering problem and intro-
duce an asymptotic expansion formula. For a more detailed description, we refer the
reader to refer [4]. Let Rm, m ¼ 1; 2; . . .;M be a dielectric inhomogeneity with a
small diameter rm, in the two-dimensional space R

2. Throughout this paper, we
assume that every Rm can be expressed as

Rm ¼ zm þ rmBm;

where zm denotes the location of Rm and Bm is a simply connected smooth domain
containing the origin. For the sake, we let R be the collection of all Rm. Throughout
this paper, we assume that inhomogeneities are well separated from each other, i.e.,
that there exists d 2 R such that
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0\r � d � jzm � zm0 j

for all m;m0 ¼ 1; 2; . . .;M and m 6¼ m0.
Let us denote Ds, s ¼ 1; 2; . . .; S, be the random scatterer with small a radius

rs\r, and let D be the collection of all Ds. Similarly to the above, we assume that
Ds is of the form

Ds ¼ ys þ rsBs:

and Ds [Ds0 ¼ ; for all s; s0 ¼ 1; 2; . . .; S and s 6¼ s0.
In this paper, we assume that all inhomogeneities are characterized by their

dielectric permittivity at a given positive angular frequency x ¼ 2p=k, where k
denotes the wavelength. Let em, es, and e0 be the electric permittivities of Rm, Ds,
and R

2, respectively. Then, we can introduce the piecewise-constant electric per-
mittivity eðxÞ, such that

eðxÞ ¼
em for x 2 Rm;
es for x 2 Ds;
e0 for x 2 R

2nð�R [ �D:Þ

8<
:

For the sake of simplicity, we let e0 ¼ 1 and em [ es, for all m and s. Hence, we can
set the wave number k ¼ x

ffiffiffiffi
e0

p ¼ x.
For a given fixed frequency x, let

uincðx; hÞ ¼ eixh�x

be the plane-wave incident field with the incident direction h 2 S
1, where S

1

denotes a two-dimensional unit circle. Let uðx; hÞ denotes the time-harmonic total
field that satisfies the Helmholtz equation

Muðx; hÞþx2eðxÞuðx; hÞ ¼ 0;

with transmission conditions on the boundaries of Rm and Ds. It is well known that
uðx; hÞ can be decomposed as

uðx; hÞ ¼ uincðx; hÞþ uscatðx; hÞ;

where uscatðx; hÞ denotes the unknown scattered field that satisfies the Sommerfeld
radiation condition

lim
jxj!0

ffiffiffiffiffiffi
jxj

p @uscatðx; hÞ
@jxj � ixuscatðx; hÞ

� �
¼ 0
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uniformly in all directions # ¼ x
jxj 2 S

1. The far-field pattern u1ð#; hÞ of the

scattered field uscatðx; hÞ is defined on S
1. It can be expressed as

uscatðx; hÞ ¼ eixjxjffiffiffiffiffiffijxjp u1ð#; hÞþ o
1ffiffiffiffiffiffijxjp

 !
; jxj ! þ1:

Then, by virtue of result in [10], the far-field pattern u1ð#; hÞ can be written using
the following asymptotic expansion formula, which plays a key role in the
MUSIC-type algorithm that will be designed in the next section:

u1ð#; hÞ ¼x2ð1þ iÞ
4
ffiffiffiffiffiffiffi
xp

p
XM
m¼1

r2mðem � e0ÞjBmjeixðh�#Þ�zm
 

þ
XS
s¼1

r2s ðes � e0ÞjBsjeixðh�#Þ�ys
!
:

ð1Þ

3 MUSIC-type Imaging Algorithm

In this section, we introduce a MUSIC-type algorithm for detecting the locations of
small inhomogeneities. For the sake of simplicity, we exclude the constant term
x2ð1þ iÞ
4
ffiffiffiffiffi
xp

p from (1). To proceed, let us consider the eigenvalue structure of the MSR

matrix

K ¼
u1ð#1; h1Þ u1ð#1; h2Þ � � � u1ð#1; hNÞ
u1ð#2; h1Þ u1ð#2; h2Þ � � � u1ð#2; hNÞ

..

. ..
. . .

. ..
.

u1ð#N ; h1Þ u1ð#N ; h2Þ � � � u1ð#N ; hNÞ

2
6664

3
7775 :

Suppose that #j ¼ �hj for all j. Then, K is a complex symmetric matrix, but is not
Hermitian. Therefore, instead of Eigenvalue decomposition, we perform singular
value decomposition (SVD) on K (see [16]):

K �
XM
m¼1

rmUmV�
m þ

XMþ S

s¼Mþ 1

rsUsV�
s ; ð2Þ

where the superscript � is used to denote the Hermitian. Then, U1;U2; . . .;UMþ Sf g
is an orthogonal basis for the signal space of K. Therefore, one can define the
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projection operator onto the null (or noise) subspace, Pnoise : C
N�1 ! C

N�1. This
projection is given explicitly by

Pnoise :¼ IN �
XMþ S

m¼1

UmU�
m; ð3Þ

where IN denotes the N � N identity matrix. For any point x 2 R
2, we define a test

vector fðxÞ 2 C
N�1 as

fðxÞ ¼ 1
N
½eixh1�x; eixh2�x; . . .; eixhN �x	T :

Then, by virtue of [4], there exists an N0 2 N such that for any N
N0, the fol-
lowing statement holds:

fðxÞ 2 RangeðK�KÞ if and only if x 2 Rm or x 2 Ds;

for m ¼ 1; 2; . . .;M and s ¼ 1; 2; . . .; S. This means that if x 2 Rm or x 2 Ds, then

jPnoiseðfðxÞÞj ¼ 0:

Thus, the locations of Rm and Ds follow from computing the MUSIC-type imaging
function

IðxÞ ¼ 1
jPnoiseðfðxÞÞj : ð4Þ

The resulting plot of IðxÞ will have peaks of large magnitudes at zm 2 Rm and
ys 2 Ds.

Remark 3.1 If the size or permittivity of Ds is sufficiently small such that either
rs � rm or es � em, for all m ¼ 1; 2; . . .;M and s ¼ 1; 2; . . .; S, then the values of
the singular value rs can be negligible. In this case, the locations of the Ds cannot
be detected via the map of IðxÞ. If neither the size nor the permittivity of Ds is that
small, then rs cannot be negligible, i.e., the locations of Ds will be detected via the
map of IðxÞ.

4 Results of Numerical Simulations

In this section, the results of some numerical simulations are exhibited in order to
examine the imaging performance of MUSIC. The radii of all Rm and Ds are set to
0.1 and 0.03 (or 0.05), respectively, and permittivities of Ds are selected as random
values between 1 and 2. For the incident (and observation) directions, we set
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hj ¼ � cos
2pðj� 1Þ

N
;
2pðj� 1Þ

N

� �T
:

The corresponding test configuration is shown in Table 1, and distribution of three
inhomogeneities and random scatterers is presented in Fig. 1.

It is worth emphasizing that the dataset of the MSR matrix K is generated by
means of the Foldy-Lax framework in order to avoid inverse crime. For more
details, we refer the reader to refer [38, 41]. After the generation, the singular value
decomposition of K is performed via the MATLAB command ‘svd.’ In order to
distinguish nonzero singular values of K, a 0.1-threshold scheme is applied, i.e.,
choosing the first j singular values rj such that rj

r1

 0:1. For a more detailed

description, we refer the reader to refer [35, 36].
Figure 2 shows the distribution of the normalized singular values of K and map

of IðxÞ under setting 1. Because the radius and the permittivities of the random
scatterers are small, the three nonzero singular values are successfully determined,
so one can detect the locations of the Rm exactly.

Figure 3 shows the distribution of the normalized singular values of K and map
of IðxÞ under setting 2. Although some artifacts are included in the map of IðxÞ,
the locations of the Rm are successfully identified.

Table 1 Test configuration Settings Value
of N

Value
of k

Value
of em

Value
of rs

Setting 1 32 0.5 5 0.03

Setting 2 48 0.2 5 0.03

Setting 3 48 0.4 3 0.05

Setting 4 128 0.2 3 0.05

−1 −0.5 0 0.5 1
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0

0.5

1
Distribution of inhomogeneities

x−axis

y−
ax

is

Fig. 1 Distribution of
inhomogeneities (red-colored
circle) and random scatterers
(blue-colored ‘×’ mark)
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Note that if the values jem � esj and jrm � rsj are small, then the rs is no longer
negligible. This means that the locations of the Ds will be identified in the map of
IðxÞ, and this will disturb the identification of the Rm. This is evident in Fig. 4.

For the final example, let us consider the results in Fig. 5. Although N is suf-
ficiently large and the value of k is sufficiently small, it is very difficult to identify
the true locations of the Rm.

Based on Figs. 2, 3, 4, and 5, we can conclude that MUSIC is an effective
detection technique when the values of the permittivity and the radii of random
scatterers are small compared to those of the inhomogeneities. On the other hand, as
in the case of our settings 3 and 4, a method of improvement is highly necessary.
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Fig. 3 Similar to Fig. 2, except under setting 2 configuration
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Fig. 2 Distribution of normalized singular values (left) and map of IðxÞ (right) under setting 1
configuration
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5 Conclusion

In this paper, we have considered a MUSIC-type imaging algorithm that is based on
an asymptotic expansion formula in the presence of small inhomogeneities and
random scatterers. Furthermore, the imaging performance of this MUSIC-type
algorithm has been considered when small inhomogeneities are surrounded by
random scatterers. Through numerical results, we have observed that MUSIC is an
effective technique for identifying inhomogeneities when the random scatterers can
be considered negligible, but still required an improvement when the random
scatterers cannot be neglected.

In this paper, we focused on the numerical study of MUSIC. A mathematical
analysis of the MUSIC-type imaging functional will be considered in future
research, by establishing a relationship with Bessel functions of integer order of first
kind. We expect that this analysis will illuminate some theoretical properties of
MUSIC and suggest some methods of improvements.
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Presently, we have considered a purely dielectric case. However, it could be
extended to the contrasting purely magnetic case. Moreover, based on the mathe-
matical treatment of the asymptotic formula, the imaging algorithm could be
extended to a three-dimensional problem. For more details, we refer the reader to
refer [6, 19, 40].
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