
Chapter 15

Numerical Studies on the Reduced Order Modeling
of Frictionless Joint Contact Interfaces

M. Breitfuss and H.J. Holl

Abstract This contribution focuses on the consideration of contact interface stresses within reduced order models of

mechanical systems comprising frictionless lap joints. The reduced order models investigated are based on two types of

extensions to the trial vector basis utilized in the fixed interface reduction method following Craig and Bampton.

After a short introduction the problem formulation, the motivation for investigating a frictionless contact interface and the

according discretization for obtaining a numerical model are given. The zero thickness element based numerical model for

the contact stresses within the frictionless joint contact interface is mentioned as well. This is followed by a recapitulation of

the model order reduction process utilizing a Galerkin projection and referring to the reduction basis according to Craig and

Bampton. The methods for obtaining the above mentioned extensions to this basis are outlined as well. Finally some

meaningful results obtained from static and dynamic loading of the reduced order models are discussed. The respective

numerical model represents a cantilever beam consisting of two solid metal components.

The methods are evaluated in terms of the required number of additional trial functions necessary for obtaining a

satisfying approximation of the acting contact stresses. It turns out that one method allows for a lower number of trial

functions while keeping accuracy at an very acceptable level.

Keywords Bolted connection • Contact interface • Model order reduction • Proper orthogonal decomposition • Zero

thickness element

15.1 Introduction

The model order reduction of linear dynamic systems is state of the art. A well known approach for this kind of problems is

the fixed interface reduction method following Craig and Bampton [3]. In contrast the model order reduction of systems

involving nonlinearities, either local or globally distributed, is still under investigation. The reduced order modelling of

mechanical structures comprising a joint, like a bolted connection, is such a demanding problem due to the nonlinear

relations involved within the contact interface.

The method according to Craig and Bampton utilizes a set of trial vectors, which are used as approximation of the system

displacement fields and as subspace where the resulting equation of motion gets projected on. An approach, which extends

this set of trial vectors with an additional type of trial vectors for the local displacements within the contact interface, was

proposed by [8]. Subsequent contributions [9], [10] and [11] further refined this approach.

The suggested set of trial vectors already lead to very promising results during own investigations of the authors. Within

this contribution the convergence of the computed contact stresses is investigated. The explanation starts with the problem

formulation and the discretization to obtain a numerical model. This is followed by a brief review of the Galerkin projection

based model reduction approach. In this section the computation of the additional trial vector set according to [11] is given

and followed by an approach, which is intended to deliver an “optimal” set of additional trial vectors. These two sets of trial

vectors are evaluated in terms of accuracy of the contact stresses obtained from the reduced order model. Finally some

conclusions are drawn from the numerical studies carried out.
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15.2 Problem Formulation

15.2.1 Governing Equations

The body Ω with the surface Γ comprising a contact interface Γjc as depicted in Fig. 15.1a is investigated. As boundary

conditions the surface Γd is constrained and the stresses tb on the surface Γt are prescribed. The surfaces Γd and Γt

are disjunct surface regions ofΓ. The dynamic equilibrium of a physical particle within the domainΩ at the position denoted

by x is given by

ρ€u � divS� k ¼ 0 8x2Ω ð15:1aÞ
with the boundary conditions

u ¼ 0 8x2Γd and Sn ¼ tb 8x2Γt ð15:1bÞ

and the initial conditions for time t ¼ t0 ¼ 0

0u ¼ u0 8x2 0Ω and 0 _u ¼ v0 8x2 0Ω ð15:1cÞ

where ρ denotes the mass density,u the displacement, _u ¼ v the velocity, €u ¼ a the acceleration,S the Cauchy stress tensor, k
the imposed force density and n the surface normal pointing outwards. The left superscript 0(.) is supposed to

emphasize that a certain quantity (.) is evaluated at time t0 or on the bodies initial configuration 0Ω ¼ Ω� t0 respectively.
The body comprises a contact interface Γjc depicted in Fig. 15.1b. Contact stresses

S�n� ¼ t�jc 8x2Γjc ð15:2Þ

will occur where t�jc denotes the acting joint contact stresses. The superscript � is used to denote that a certain quantity is

related to the respective side of the contact interface.

To define the relations within the contact interfaceΓjc all physical particles P
�on the contact surfaceΓ�

jc have to be related

with the physical particles Pþ on Γþ
jc . Once determined for the initial configuration all contact pairs P�,Pþf g remain

associated due to the assumption of small relative displacement within the contact interface.

Utilizing the interface normal direction 0njc¼0n� one can define the gap function

gn ¼ ½xþ � x��T0njc 8x2Γjc ð15:3Þ

which expresses the contact pair distance in contact interface normal direction. As the contact in surface normal direction is of

main interest for the upcoming explanations the kinematics in contact surface tangential direction are not further discussed.
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Fig. 15.1 Body Ω comprising a contact interface in actual configuration at time t (a) and contact stresses within the contact interface Γjc for the

contact pair P�,Pþf g (b)
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The occurring contact stresses for a contact pair P�,Pþf g, arbitrarily selected from the currently contacting (tjc 6¼ 0)

sub domain of the contact interface Γjc are, according to Newton’s 3rd Law, equal in magnitude but acting in opposing

directions

tjc ¼ t�jc ¼ �tþjc 8x2Γjc: ð15:4Þ

The contact interface stress vector can be separated into two components

tjc ¼ tn þ tt ð15:5Þ

where tn is defined to point in contact interface normal direction and the remaining part tt is oriented tangential to the contact
surface.

The latter component is neglected as this contribution focuses on the computation of the stress component in normal

direction. The energy dissipation due to friction within the contact interface will not be investigated. However it is required

to suppress the tangential relative movement of the contact partners, at least to obtain a correct global behaviour of the body.

This can be achieved by a permanent tangential coupling of the contact partners within a small area of the contact interface.

This small area is assumed to permanently comprise a sufficiently high contact stress normal component due to the bolt

pretension. This finally leads to a contact stress vector

tjc ¼ tn ¼ tnnjc: ð15:6Þ

where tn denotes the scalar valued contact stress component in interface normal direction.

Utilizing the gap function gn and the contact stress component tn one can finally formulate the nonlinear contact

conditions of the frictionless contact interface Γjc

gn � 0, tn � 0, gntn ¼ 0 8x2Γjc: ð15:7Þ

15.2.2 Discretization

For the whole body domain Ω a linear constitutive law without rate dependencies is assumed and the occurring

displacements u are expected to be small compared to the body dimensions. From the virtual displacements denoted by

δu, which are presumed to be small in relation to the body dimension as well, one can derive the virtual strain tensor δe.
Utilizing the principle of virtual work one obtains the weak formulation of the dynamic equilibrium

δWΩ þ δWΓjc
¼ 0 ð15:8aÞ

where the virtual work of the body domain Ω reads

δWΩ ¼
ð
Ω

ρ€u � δu dΩþ
ð
Ω

S : δe dΩ�
ð
Γt

Sn � δu dΓ�
ð
Ω

k � δu dΩ ð15:8bÞ

and the virtual work of the contact interface domain Γjc is given by

δWΓjc
¼ �

ð
Γ�
jc

t�jc � δu�dΓ�
ð
Γþ
jc

tþjc � δuþdΓ: ð15:8cÞ

Both quantities, Eqs. (15.8b) and (15.8c), are treated separately.
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15.2.2.1 Body Domain

The body domain 0Ω is discretized with the finite element discretization bΩ comprising the node locations bx and the

elements bΩðeÞ 	 bΩ. The discretization of the surface regions Γd and Γt are denoted by bΓd and bΓt respectively. Based on

the interpolation of the displacement field within the domain of each element e, given by

uðeÞ 
 NðeÞ buðeÞ, ð15:9Þ

whereNðeÞ holds the shape functions of the respective element formulation andbuðeÞ denotes the nodal degrees of freedom of

all nodes connected to the element, one can evaluate the integrals in Eq. (15.8b) using a numerical integration scheme. It is

assumed that the prescribed displacement boundary conditions are directly incorporated into the principle of virtual work,

see e.g. [1] or [12] for a detailed description. Performing these tasks leads to the linear, undamped equation of motion

without contact consideration

M €bu þ Kbu ¼ fe ð15:10Þ

where M denotes the mass matrix and K denotes the stiffness matrix of the constrained system. Displacements and

accelerations of each node are collected in bu and €bu respectively. The vector of external forces fe considers both the

prescribed stresses tb and the imposed force density k.

15.2.2.2 Contact Interface Domain

The contact interface domain is discretized utilizing zero thickness elements which implement a penalty approach for

regularization of the contact interface conditions Eq. (15.7). In this case the finite element discretization bΩ is required to

comprise a matching mesh of all element surfaces adjacent to the contact interface. Then the discretization bΓjc of the joint

contact interface Γjc is obtained by a composition of zero thickness elements bΓðeÞ
jc where one surface connects to a single

element belonging to bΓ�
jc and the other surface to a single element part of bΓþ

jc .

Formulations for obtaining a zero thickness element related contribution to the stiffness matrix ΔKjc � ΔKjcðbuÞ can be

found in literature, e.g [4] or [6]. In case of reduced order modeling, e.g. using a Galerkin projection based approach, the

authors suggest a formulation which contributes to the nodal force vector on the right hand side of Eq. (15.10). Such an

approach is outlined in [2] where the formulation of a 3 (6) node zero thickness element is provided as well. For easier

reference the contact stress equivalent nodal force vector of the zero thickness element is given in a slightly modified writing

f
ðeÞ
jc ¼

ð
bΓðeÞ

jc

½NðeÞ �NðeÞ�T t
ðeÞ
jc dbΓ : ð15:11Þ

NðeÞ denotes the matrix of element shape functions and bΓðeÞ
jc denotes the domain of the respective zero thickness element

surface. The contact stress component is computed via the “constitutive” relation

tn ¼
0 if gn � 0,

cngn if gn < 0

(
: ð15:12Þ

with the penalty parameter cn. The resulting nonlinear equation of motion with contact consideration is given by

M €bu þ K bu ¼ f e þ f jc: ð15:13Þ

where fjc denotes the contact stress equivalent nodal force vector representing all zero thickness elements. The quantity fjc is
formally obtained utilizing the linear assembly Operator A on the nodal force vectors of each zero thickness element

fjc ¼ AbΓ jc

f
ðeÞ
jc : ð15:14Þ
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15.3 Model Order Reduction

15.3.1 Basics

It is assumed that an approximation of the nodal displacements bu in Eq. (15.13) is given by the Ritz ansatz

bu 
 Φq ð15:15Þ

with the mode matrixΦwhich columnwise holds the displacement trial vectorsφi and the according generalized coordinates

q. If the number of generalized coordinates q is significantly smaller than the dimension of bu the mode matrix Φ can be

utilized as reduction basis to obtain a reduced order model.

Substituting the ansatz Eq. (15.15) into Eq. (15.13) and performing a Galerking projection by premultiplying the

resulting equation with ΦT finally leads to the reduced equation of motion

Mred€qþ Kredq ¼ fred þΦTfjc ð15:16Þ

whereMred ¼ ΦTMΦ denotes the reduced mass matrix,Kred ¼ ΦTKΦ denotes the reduced stiffness matrix and fred ¼ ΦTfe
denotes the projected vector of external forces.

An reduced order model is intended to approximate a high dimensional solution space by a lower dimensional solution

space with acceptable tradeoff in accuracy. One has to keep in mind that the solution obtained from such a reduced order

model is constrained to the low dimensional solution space spanned by the trial vectors Φ. Therefore a proper trial vector

basis is crucial for obtaining a satisfactory reduced order model.

For this sake the vector of nodal displacements is partitioned

bu ¼ buibub
� �

ð15:17Þ

where bui denotes the displacement of the inner degrees of freedom and bub denotes the displacement of the nb boundary
degrees of freedom within the discretized surfaces bΓd and bΓt. Appropriate trial vectors for the investigation of the vibrational

behavior of a linear mechanical system (up to a certain frequency limit) are suggested in [3]. With the help of these trial

vectors one can construct a mode basis

Φclassic ¼ ½ΨcΦn� ð15:18Þ

which holds nb constraint modes Ψc and nn fixed interface normal modes Φn. The computation of these two types of trial

vectors is described in detail in [3].

Unless a very high number of trial vectors is considered this mode basis does not guarantee to accurately capture the local

displacements within the contact interface. As consequence the computed contact stresses might not be sufficiently accurate

as well. To overcome this limitation [8] proposed to extend an existing mode base, like the above mentioned classic mode

basis following Craig and Bampton, by a set of so called joint interface modes Φjim. These modes account for the local

displacements due to the contact interface. Furthermore Newtons 3rd law is explicitly considered within their formulation.

Methods for the computation are given in [8], [9] and [11], the resulting extended transformation matrix reads

Φ ¼ ½Ψc Φn Φjim�: ð15:19Þ

15.3.2 Brief Review on Proper Orthogonal Decomposition

The Proper Orthogonal Decomposition (POD) is a method for extracting the essential information out of a given collection

of k snapshots yj. This essential information is expressed by a low dimensional set of ℓ < k basis vectors vi which
approximate the collection of snapshots in an optimal sense, see [7]. These POD basis vectors are a solution to the

minimization problem
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min
υ1, ..., υ‘

Xk
j¼1

yj �
X‘

i¼1

yj,υi
D E

W
υi

�����
�����
2

ð15:20aÞ

so that

υi,υj
� �

W
¼ δij for i, j ¼ 1, . . . , ‘ ð15:20bÞ

where

a,bh iW ¼ a,Wbh i ¼ Wa, bh i ¼ aTWb ð15:21Þ

denotes the weighted inner product of two vectors with a positive definite weighting matrix W. A basis V ¼ ½v1, . . . , vℓ�,
which is a solution to the above minimization problem, can be obtained by solving the symmetric eigenvalue problem

YTWY�υi ¼ λiυi for i ¼ 1, . . . , ‘ ð15:22aÞ

where Y ¼ ½y1, . . . , yk�. The final POD basis vectors are obtained by evaluating

vi ¼ 1ffiffiffiffi
λi

p Y�υi: for i ¼ 1, . . . , ‘ ð15:22bÞ

This procedure is sometimes called the method of snapshots [7].

15.3.3 Test Load Based Joint Interface Modes

In [11] it was suggested to define test loads within the contact interface and utilize the POD on the resulting displacement

fields for computation of the joint interface modes. The respective steps are briefly recalled in this subsection.

First step is the decomposition of the discretized contact interface bΓjc into n subareas as suggested in [9]. Each of these

subareas is loaded by a unit pressure distribution, according to Newton’s 3rd law on both sides � of the contact interface. The

resulting equivalent nodal force vectors are collected in the matrix of test loadcases

F
ð∗Þ
jc ¼ f

ð∗Þ
jc, 1, . . . , f

ð∗Þ
jc,n

h i
: ð15:23Þ

These test load cases are utilized within the static equilibrium

KbU ð∗Þ ¼ Fspc þ F
ð∗Þ
jc ð15:24Þ

where the body is fixed at bΓd and bΓt as well. The constraints at bΓd are already considered within the principle of virtual work,

the constraints at bΓt are enforced by the respective column vectors of the matrix Fspc. The resulting displacement fields are

collected in the matrix bU ð∗Þ ¼ buð∗Þ
1 , . . . ,buð∗Þ

n

h i
.

By settingY ¼ bU ð∗Þ andW ¼ I the application of the snapshot method Eq. (15.22) for computation of the joint interface

modes ΦA
jim ¼ V is pretty straight forward.

Furthermore [11] suggests to use the stiffness matrix for weighting,W ¼ K, which lead to promising results during own

investigations of the authors. This requires a positive definite stiffness matrix, which is ensured in our case as K represents

the constrained body. This method will be denoted as “method A” for the remainder of this contribution.
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15.3.4 Contact Simulation Based Joint Interface Modes

To improve the convergence of the computed contact stresses with respect to the required number of joint interface modes

the authors propose to utilize the contact forces resulting from selected contact simulations for the computation of joint

interface modes. These contact simulations, which comprise static and dynamic loadcases, are presented in this subsection.

15.3.4.1 Static Loadcases

By means of the partitioning scheme introduced in Eq. (15.17) the static equilibrium equation of the body fixed at bΓd is

given by

KbuðsÞ ¼ Kii Kib

Kbi Kbb

� � buiðsÞbubðsÞ
� �

¼ fðsÞe þ f
ðsÞ
jc ¼ 0ie

f
ðsÞ
be

� �
þ f

ðsÞ
ijc

0bjc

� �
ð15:25Þ

The k nodal contact force f
ðsÞ
jc, j snapshots due to different external force vectors f

ðsÞ
e, j are collected in the matrix

F
ðsÞ
jc ¼ ½fðsÞjc, 1, . . . , f

ðsÞ
jc,k� ð15:26Þ

for subsequent processing. It is worth to note that, due to the nonlinear relations within the contact interface, superposition is

not possible any longer. For this reason the external force vectors f
ðsÞ
e, j need to comprise meaningful load combinations

covering each boundary degree of freedom.

15.3.4.2 Dynamic Loadcases

By means of the partitioning scheme introduced in Eq. (15.17) the initial value problem of the body fixed at bΓd is given by

the equation of motion

M€bu ðdÞ þ KbuðdÞ ¼ Mii Mib

Mbi Mbb

� � €bu ðdÞ
i

€bu ðdÞ
b

" #
þ Kii Kib

Kbi Kbb

� � buiðdÞbubðdÞ
� �

¼ fðdÞe þ f
ðdÞ
jc ¼ 0ie

f
ðdÞ
be

� �
þ f

ðdÞ
ijc

0bjc

� �
: ð15:27aÞ

with the initial conditions

0buðdÞ ¼ u0 8bx 2 bΩ and 0 _bu ðdÞ ¼ 0 8bx 2 bΩ : ð15:27bÞ

The initial displacement is either intended to consider the prestressed state due to pretension of the bolted connection or

simply u0 ¼ 0. To obtain stable responses, independently from the respective numerical time integration scheme, some

damping should be introduced into the equation of motion. The authors suggest to utilize a Rayleigh damping approach

where the damping matrix is a linear combination of mass and stiffness matrix. This is feasible as the main purpose of the

simulations is to obtain meaningful snapshots due to the evolvement of the inner degrees of freedom resulting from the

dynamic excitation of the boundary degrees of freedom.

The suggested k excitations are formally given by

f
ðdÞ
e, j ¼

0 t � 0

f
ðsÞ
e, j t > 0

for j ¼ 1, . . . , k

�
ð15:28Þ

where f
ðsÞ
e, j corresponds to the static loadcases investigated in Sect. 15.3.4.1. The response to each of these k excitations, up to

at least one period of the dominant vibration, is computed. To lower the computational burden a prior model reduction step,

e.g. [5], is highly recommended.
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The time discretized evolvement of the jth solution leads to nj nodal contact force f
ðd, jÞ
jc, i snapshots which are collected in

the matrix

F
ðd, jÞ
jc ¼ ½fðd, jÞjc, 1 , . . . , f

ðd, jÞ
jc,nj

� ð15:29Þ

for subsequent processing.

15.3.4.3 Trial Vectors

To compute the trial vectors all contact force snapshots Eqs. (15.26) and (15.29) are combined in a single matrix

F
ðsdÞ
jc ¼ ½FðsÞ

jc ,F
ðd, 1Þ
jc , . . . ,F

ðd,kÞ
jc �: ð15:30Þ

By setting Y ¼ F
ðsdÞ
jc and W ¼ I the application of the snapshot method Eq. (15.22) again is pretty straight forward.

Finally the resulting contact force vectors Fjim ¼ V are utilized within the static equilibrium Eq. (15.24). The resulting

displacement shapes already represent the vector space of the suggested joint interface modes ΦB
jim.

This method will be denoted as “method B” for the remainder of this contribution.

15.4 Numerical Example

15.4.1 Model Description

The reference method Sect. 15.3.3 and the proposed method Sect. 15.3.4 for computation of the joint interface modes are

applied to the finite element model of a bolted cantilever beam depicted in Fig. 15.2.

Fig. 15.2 Finite element model of the bolted cantilever (the beam element based bolt model is hidden)
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The body consists of two substructures with rectangular shaped cross section (a ¼ 10 mm, b ¼ 20 mm) and an overall

length of l ¼ 110 mm. The substructures are connected by a contact interface and a single bolt. All structural components

are modeled using a linear elastic material with Young’s Modulus E ¼ 210,000 N/mm2, Poisson ratio ν ¼ 0.29 and density

ρ ¼ 7820 kg/m3.

The discretization bΩ of the full model comprises 1834 elements and 2780 nodes. The CHEXA, CBEAM, RBE2 and

RBE3 element formulations of the commercial FEM software package MSC Nastran are used to generate the system

matrizes within Eq. (15.10). The contact interface bΓjc is discretized with an 4 (8) node zero thickness element formulation

which allows to obtain the contact stress equivalent nodal force vector within Eq. (15.13).

A convergence study regarding the meshsize of the full model is not within the scope of this contribution. It is assumed

that the accuracy of the contact stresses obtained from this numeric model are sufficiently accurate for the purpose of this

model. The purpose of the reduced order model is to reproduce these contact stresses with sufficiently low error but

significantly higher computational efficiency.

15.4.2 Sticking Friction Definition

During generation of the system matrices using a commercial FEM software package there is no connection of the two

contacting substructures except the beam element based bolt model. The resulting Eq. (15.13) is utilized for a contact

simulation where the structure is constrained at bΓd and the bolt is incrementally pretensioned to a nominal value. The

resulting contact stresses are depicted on the left hand side of Fig. 15.3.

All contact node pairs possessing a contact pressure over a certain threshold are assumed to stick together in tangential

direction during all subsequent simulations. The node pairs selected this way are marked on the right hand side of Fig. 15.3.

The sticking friction condition within this area is approximated utilizing a penalty approach. All subsequent steps consider

these additional penalty stiffness related entries in the stiffness matrix.

15.4.3 Reduction Basis

The computation of static and dynamic loadcases to generate snapshots for obtaining a reduction basis was carried out

according to Sect. 15.3.4. The static loadcases represent load combinations of bolt pretension, vertical tip load and torsional

moment at the free end of the cantilever.

The dynamic loadcases, computed with a nominal pretension of the bolt, are limited to combinations of vertical load and

torsional moment at the free end of the cantilever. For easier computation the equation of motion comprises an additional

Rayleigh approach based damping matrix. The step responses are obtained from the equation of motion, which is

transformed to a system of first order differential equations, utilizing the implizit Euler integration scheme.

Fig. 15.3 Contact stresses in surface normal direction resulting from a nominal pretension of the bolted joint (left). Locations with sticking

friction are identified based on a contact stress threshold. To suppress the tangential relative movement of the adjoining contact node pairs a

penalty approach is utilized at the marked node pairs (right)
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15.4.4 Contact Stress Accuracy Evaluation

15.4.4.1 Static Loadcases

Two exemplary loadcases are documented within this section. The first loadcase denoted as LC1 is a vertical tip load while

the second loadcase denoted as LC2 additionally comprises a torsional moment. It is noted that both loadcases are not

explicitly considered as certain load combination during computation of the snapshots for obtaining the reduction basis

(Fig. 15.4).

The according contact pressure distributions in surface normal direction are depicted in Fig. 15.5.

The relative error of the contact stresses in surface normal direction is chosen as evaluation criteria. This quantity

illustrates whether the computed contact stresses are useful for subsequent computations, e.g. for the computation of shear

stresses due to friction. For a vector y the relative error vector is given by

erel ¼
y� yref

yref
�� ��

1
ð15:31Þ

where :k k1 denotes the maximum norm of a vector and yref denotes the reference values obtained from the full model. For

computation of the contact pressure relative error the maximum contact pressure value of the reference solution is used as

reference value.

Fig. 15.4 Resulting displacement of the two substructures for LC1 (left) and LC2 (right)

Fig. 15.5 Contact pressure obtained from the full model for loadcase LC1 (left) and loadcase LC2 (right)
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The respective error distributions for the reduced order models are depicted in Fig. 15.6. The following conclusions can

be drawn:

• Symmetric contact pressure distributions lead to symmetric error distributions.

• The maximum relative error is significantly larger than 10 % when utilizing 20 JIMs obtained by method A

• The maximum relative error is less than 5 % when utilizing 20 JIMs obtained by method B.

It can be noted that further investigations indicate a more rapid convergence rate of the joint interface modes computed by

method B than those computed by method A.

15.4.4.2 Dynamic Loadcase

The response of the cantilevers free end due to LC2 applied as a step function is depicted in Fig. 15.7. Already five joint

interface modes, either computed using method A or method B, are sufficient to resemble the cantilevers free end

displacement of the reference solution. Evaluation of the maximum contact pressure leads to a different conclusion:

• Method A based JIMs lead to a significantly higher maximum contact pressure.

• Method B based JIMs almost resemble the maximum contact pressure of the reference solution.

Fig. 15.6 Relative error of the contact pressure obtained from the reduced order model with method A based joint interface modes (top row) and
method B based joint interface modes (bottom row)
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15.5 Conclusion

The numerical example reveals that an POD reduction basis obtained from a methodical defined collection of contact

simulation based snapshots is superior to an reduction basis obtained from snapshots based on test loads within the

investigated contact interface. This conclusion is based on the relative error of the contact stresses computed utilizing the

according reduced order models with respect to the contact stresses obtained from the full model.

But it has to be noted that the test load based reduction basis can be obtained with reasonable effort while the

computational burden involved to realize the contact simulations quickly gets tremendous, especially for complex structures

comprising many boundary degrees of freedom. Therefore the results suggest the existence of an optimal basis of trial

vectors for contact interfaces, but an efficient approach for obtaining such a basis still has to be found.
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