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          Introduction 

 The prevalence of dementia, representing a category of age- 
associated disorders, is continuously increasing in our aging 
society. Currently, more than 9 Mio patients are supposed to 
be affected by this devastating condition in Europe (  http://
www.alzheimer-europe.org/    ), not including a presumably 
high number of patients who have not yet been diagnosed or 
patients in early stages of disease. Approximately 20 % of 
persons in an age greater than 80 years are suffering from 
clinically manifest dementia [ 1 ,  2 ]. With regard to the rising 
life expectancy, this poses a massive burden not only on 
patients and their relatives but also on the healthcare/socio-
economic systems. These facts appear even more alarming in 
the light of the very limited therapeutic options which are 
currently available for most forms of dementia. 

 In short, dementia itself is defi ned as an impairment of 
cognitive abilities suffi cient to affect the activities of daily 
living, which is developing gradually and is not associated 
with a loss of consciousness [ 3 ]. Different causal patholo-
gies can underlie the clinical manifestation of a dementia, 
the most frequent being Alzheimer’s disease which holds 
responsible for approximately 60 % of all cases, followed 
by vascular dementia, dementia with Lewy body disease, 
and the frontotemporal lobar degenerative disorders [ 4 ,  5 ]. 
A common factor contributing to the development of neuro-
degenerative forms of dementia appears to be the pathologi-
cal aggregation of proteins in the brain. For Alzheimer’s 
disease, this includes the deposition of ß-amyloid protein 
aggregates in the form of extracellular plaques and of tau 
protein aggregates in the form of intraneuronal neurofi bril-
lary tangles [ 6 ]. According to current disease concepts, 

these aggregates  contribute to neuronal dysfunction and 
later neuronal loss [ 7 ]. Modern therapy approaches are 
directed toward the removal/prevention of these protein 
aggregation pathologies. However, so far these studies have 
not resulted in very promising results. As for factors possi-
bly contributing to this limited success, it has been discussed 
that attempts to treat have been initiated too late in the 
course of disease, i.e., when irreversible neuronal damage 
has already occurred. Furthermore, it has been demonstrated 
that a relevant proportion of patients included in these trials 
may have been clinically misdiagnosed [ 8 ]. 

 These insights underline the need for a reliable and early 
diagnosis of ongoing neurodegeneration. However, clinical 
diagnosis of dementia is hampered in many respects. First, 
it is well accepted that the causal neuropathologies leading 
to dementia are usually starting to develop years to decades 
ahead of the symptomatic onset of disease. Consequently, 
today preclinical and pre-dementia mild clinical stages (the 
so-called mild cognitive impairment or MCI) are discussed, 
particularly with regard to Alzheimer’s disease [ 9 ]. From 
this perspective, dementia can be considered a late stage of 
disease and early diagnosis on the basis of the assessment 
of clinical symptoms is limited per defi nition. In the same 
context, biomarker-supported diagnosis of Alzheimer’s 
disease is recently recommended, all the more if early diag-
nosis of ongoing neurodegeneration is required [ 10 – 13 ]. 
Also, differential diagnosis of different forms of dementia 
is diffi cult, because different causal pathologies can result 
in similar cognitive defi cits. Finally, clinical symptomatol-
ogy of dementia may not be an optimal parameter for fol-
low-up and therapy monitoring, because of a limited 
association between neuropathology and extent of symp-
toms as well as fl uctuation of the latter. Consequently, the 
role of imaging biomarkers in the diagnosis of pathologies 
underlying the development of dementia may be of grow-
ing importance. In this context, nuclear medicine offers 
particularly promising methods for imaging molecular 
pathologies and neuronal dysfunction.  
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    [18F]FDG-PET 

 It is well known that glucose represents the source of energy 
for the brain and that cerebral neuronal activity is tightly 
coupled to the uptake and metabolism of glucose, prob-
ably mediated by the glial cells [ 14 ]. Consequently, regional 
cerebral uptake of [18F]FDG as a tracer for measuring glu-
cose metabolism refl ects neuronal function or dysfunction. 
It has been demonstrated by numerous studies – including 
studies with in vivo versus postmortem histopathological 
cross evaluation – that typical patterns of hypometabolism 
can be observed in manifest neurodegenerative forms of 
dementia [ 15 ]. In Alzheimer’s disease, a characteristic pat-
tern of hypometabolism in the temporoparietal, posterior 
cingulate, and later also frontal cortex can be observed [ 16 ]. 
The pattern of affected brain regions fi ts to the functional 
abnormalities which are usually involving memory, lan-
guage functions, visual-spatial abilities, and later personality 
changes. The sensorimotor regions as well as the primary 
visual cortex and cerebellum are usually spared from meta-
bolic changes, in correspondence with maintained motor and 
sensory functions in these patients. The topography of these 
hypometabolic changes is highly specifi c for Alzheimer’s 
disease, and it has been demonstrated that FDG-PET allows 
more accurate diagnosis as compared to neuropsychological 
assessment [ 17 ]. Importantly, hypometabolic abnormalities 
are not only observed in patients with manifest dementia 
of Alzheimer’s type but also in earlier stages of disease. A 
number of studies analyzed the value of FDG-PET in the 
early detection of Alzheimer’s disease in the stage of MCI. It 
has been demonstrated that mild hypometabolism in poste-
rior cingulate cortical regions, often accompanied by subtle 
parietal and temporal hypometabolism, has a high predictive 
value with regard to later conversion to manifest dementia 
in these patients [ 16 ,  18 ]. On the other hand, patients with 
MCI symptoms but without signs of hypometabolism on 
FDG- PET have a very low risk of conversion to dementia of 
Alzheimer’s type. FDG-PET has also been demonstrated to 
have a very high value in the differential diagnosis between 
different forms of neurodegenerative disorders [ 19 ]. For 
non-Alzheimer forms of dementia, disease-specifi c patterns 
of hypometabolism have been described. Dementia with 
Lewy bodies has been shown to be associated with a pattern 
of temporoparietal hypometabolism similar to Alzheimer’s 
disease, however, extending clearly into the occipital cor-
tex, involving primary visual cortical areas [ 20 ]. This goes 
hand in hand with the known visual hallucinations in these 
patients. FDG-PET has also been shown to have a high value 
for differentiation between Alzheimer’s-type dementia and 
the frontotemporal lobar degenerative disorders [ 21 ]. Also, 
for the different subtypes of frontotemporal lobar degen-
eration (FTLD), specifi c patterns of hypometabolism have 
been described [ 22 – 27 ], with the behavioral variant (bvFTD) 

showing stronger frontal and temporal polar abnormalities 
[ 28 ], the semantic variant of primary progressive aphasia 
(svPPA) displaying bilateral temporal hypometabolism [ 25 , 
 29 ,  30 ], and the logopenic variant as well as the nonfl uent vari-
ant (lvPPA, nfvPPA) both demonstrating clearly asymmetric 
unilateral (usually left-hemispheric) hypometabolism of the 
temporal and in part frontal and parietal cortex. In nfvPPA, 
involvement of left frontal cortical regions (often including 
Broca’s area) has been shown [ 31 ,  32 ], and in lvPPA hypo-
metabolic regions have been observed within the left lateral 
temporal and parietal lobe as well as in the precuneus and 
posterior frontal lobe [ 33 – 36 ]. It has to be mentioned that 
the FDG pattern is refl ecting the symptomatic appearance 
of these subtypes of neurodegeneration without allowing a 
clear distinction of the underlying neuropathology. FTLD 
has been demonstrated to comprise a number of different 
causal pathologies which can result in similar clinical phe-
notypes of disease [ 37 ,  39 ]. This includes tau-positive forms, 
TDP-43 aggregation-positive forms, and even atypical forms 
of Alzheimer’s disease. In particular the variant of logope-
nic aphasia has been demonstrated to frequently represent 
an atypical variant of Alzheimer’s disease [ 31 ]. However, 
other neuropathological changes such as TDP-43 may result 
in the clinical appearance of lvPPA accompanied by a simi-
lar hypometabolic pattern in FDG-PET [ 33 ]. In addition to 
the phenotype of logopenic aphasia, Alzheimer’s disease can 
appear in other atypical variants. This includes the so-called 
posterior cortical atrophy, which is characterized by pre-
dominantly visual-constructive defi cits in the early phases of 
disease, often leading the patients to see an ophthalmologist 
[ 39 ]. In the FDG-PET scan these patients exhibit a distinct 
bilateral occipitoparietal hypometabolism [ 40 ,  41 ]. Another 
atypical form of Alzheimer’s disease is the frontal/execu-
tive subtype [ 42 ]. Patients may show symptoms more simi-
lar to the behavioral variant of frontotemporal dementia in 
early cases. In the FDG-PET scan, they show frontal corti-
cal hypometabolism, but in contrast to bvFTD usually some 
involvement of temporoparietal cortices is to be expected. 
Using amyloid imaging (see below) doubts about the causal 
pathology in these atypical cases of Alzheimer’s disease can 
be cleared. Finally, FDG-PET represents a valuable tool to 
differentiate pseudodementia in patients with depression and 
cognitive symptoms (who will show a rather normal fi nding 
on the FDG-PET scan) versus patients suffering from early 
Alzheimer’s disease with depressive symptoms [ 43 ].  

    Amyloid Imaging 

 Since their fi rst description by Alois Alzheimer himself, 
amyloid plaques represent one key hallmark for the diagno-
sis of Alzheimer’s disease. Until very recently, defi nite diag-
nosis of Alzheimer’s disease has only been possible by 
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means of postmortem histopathological assessment of brain 
tissue. The advent of tracers for amyloid imaging now allows 
the detection of this core pathology in vivo. Consequently, 
for the fi rst time, noninvasive in vivo proof of amyloid depo-
sition in the brain and longitudinal observation of the onset 
and course of this pathology became possible. A great num-
ber of studies on in vivo imaging of amyloid deposits in the 
brain have been performed with the tracer [11C]PiB [ 44 ]. 
These studies form the basis of our current knowledge on the 
potential value of amyloid imaging in clinical practice. In 
addition, for a number of 18F-labeled tracers (with longer 
half-life), FDA approval has been achieved and they are now 
also commercially available. This includes [18F]fl orbetaben 
(NeuraCeq TM ), [18F]fl orbetapir (Amyvid TM ), and [18F]fl ute-
metamol (Vizamyl TM ) [ 45 – 47 ]. All tracers had to undergo 
extensive evaluation before approval, including in vivo ver-
sus postmortem evaluation of their properties [ 48 – 57 ]. 

 For all tracers, typically intense tracer uptake is observed 
in the frontal, temporoparietal, and posterior cingulate cor-
tex, the precuneus, and also the caudate nucleus. Sensorimotor 
and visual cortices are usually somewhat less affected and 
the cerebellum is spared of amyloid aggregates and, thus, 
can serve as a reference region [ 45 ,  47 ,  58 ,  59 ]. 

 Regarding early diagnosis, several studies were now able 
to demonstrate that the proof of amyloid pathology in the 
brain in patients with MCI has a high sensitivity with regard 
to prediction of later conversion to manifest Alzheimer’s 
dementia [ 60 – 65 ]. The specifi city varied depending on the 
selected follow-up periods. Importantly, studies consistently 
demonstrated that in approximately 25–30 % of elderly sub-
jects (>60 years), signifi cant amyloid pathology could be 
detected using amyloid imaging in the presence of normal 
cognitive function [ 58 ,  66 – 69 ]. A recent study demonstrated 
the rate of amyloid positivity appears to increase exponen-
tially with age in otherwise healthy elderly subjects in depen-
dence of the ApoE genotype, with homozygous carriers of 
the e4 allele showing the highest risk [ 69 ]. It is yet unclear if 
“amyloid positivity” translates inevitably into symptomatic 
Alzheimer’s disease in all of these subjects. Several studies 
indicate that amyloid-positive elderly subjects may in fact 
be suffering from preclinical Alzheimer’s disease by demon-
strating abnormalities in other imaging tests, comparatively 
lower cognitive performance and steeper cognitive decline in 
these subjects as compared to amyloid-negative age-matched 
controls [ 70 – 72 ]. However, even in this case the informa-
tion on the potential time to conversion in these subjects is 
still very limited. It appears possible that amyloid pathology 
may be detected in the brain 10–20 years ahead of clinical 
disease onset [ 63 ]. Consequently, according to recently pub-
lished appropriate use criteria for amyloid imaging, it would 
not be recommended to offer an amyloid PET scan in oth-
erwise healthy elderly subjects [ 73 ]. First, the interpretation 
of a positive amyloid scan in terms of prognosis would be 

diffi cult to judge. Second, at this time no therapeutic options 
would be on hand. Thus, the disclosure of the information 
of amyloid positivity to an otherwise healthy person would 
in fact be ethically problematic. On the other hand, in the 
context of clinical trials, it obviously stands to reason to 
include subjects with only mild or even no clinical symptoms 
into studies aiming for the removal or prevention of amy-
loid deposition in the brain. In fact, large clinical trials have 
been initiated following this concept [ 74 ]. Thus, in summary, 
there is a value of amyloid imaging with regard to early diag-
nosis/exclusion of Alzheimer pathology in patients with mild 
symptoms. However, in asymptomatic stages, amyloid imag-
ing would currently be restricted to systematic clinical trials. 

 Regarding differential diagnosis, it has been demonstrated 
that the available amyloid tracers are specifi c with regard to 
amyloid pathology, i.e., they would not bind to other forms 
of protein aggregation such as tau or alpha-synuclein [ 52 , 
 75 – 78 ]. However, it is also known that amyloid plaques do 
not only develop in Alzheimer’s disease but can also be 
found in up to 80 % of cases of dementia with Lewy bodies 
[ 79 – 81 ]. Thus, differential diagnosis between AD and DLB 
cannot be performed using amyloid imaging. For this diag-
nostic question, it has been demonstrated that dopamine 
transporter imaging can be applied which reveals normal 
fi ndings in AD but reduced transporter density in patients 
with DLB [ 82 ]. Amyloid imaging may be of high value to 
differentiate between the amyloid-negative forms of fronto-
temporal lobar degeneration and Alzheimer’s disease [ 83 ]. 
As mentioned above, atypical clinical variants of Alzheimer’s 
disease may appear in symptomatic forms typically associ-
ated with frontotemporal lobar degeneration, e.g., in logope-
nic aphasia [ 31 ,  84 ,  85 ]. Inversely, frontotemporal lobar 
degenerative disorders may mimic Alzheimer’s disease as 
well. Consequently, according to the appropriate use criteria, 
it can be recommended to clinically employ amyloid imag-
ing in cases of early-onset dementia and in cases with atypi-
cal appearance of suspected Alzheimer’s disease [ 73 ]. 
Amyloid imaging is currently not recommended in cases of 
clinically typical Alzheimer’s disease. This position can 
however be challenged with regard to recent insights from 
clinical trials, indicating that a high proportion (>30 %) of 
patients clinically diagnosed with Alzheimer’s disease by 
experts in fact do not show amyloid pathology in their amy-
loid scans [ 8 ]. Amyloid imaging may therefore be crucial for 
inclusion of patients into  anti- amyloid therapy trials. Some 
studies have also employed amyloid imaging to monitor 
therapy response [ 86 ]. It may not be useful for disease fol-
low-up, however, because it has been demonstrated that 
amyloid deposition shows a stagnation or plateau in the 
symptomatic stages of disease [ 87 ]. Regarding differential 
diagnosis with amyloid PET, it should be kept in mind that 
the probability of amyloid positivity increases with age not 
only in healthy subjects but also in patients suffering from 
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clinical forms of neurodegeneration other than Alzheimer’s 
disease, as recently demonstrated [ 88 ]. Consequently, in 
elderly subjects, the possibility of amyloid deposition, which 
is not disease related, or the presence of dual pathology 
should be taken into account.  

    Tracers for Tau Imaging 

 In addition to now established tracers for amyloid imaging, 
recently introduced experimental tracers are promising to be 
suitable for imaging tau aggregates [ 89 ,  90 ]. The imaging of 
tau is considerably more complicated as compared to amy-
loid imaging, as tracers have to enter not only the brain 
across the blood-brain barrier but also enter the neurons 
because tau aggregates occur intracellularly. 

 For several tracers promising results in humans have 
already been published. This includes tracers developed at 
Tohoku University, Japan [ 91 – 94 ], and the tracer [18F]T807 
([18F]AV1451) now licensed by Avid Radiopharmaceuticals 
[ 95 ,  96 ]. The fi rst studies with these tracers in humans dem-
onstrate an uptake pattern which is different from amyloid 
deposition in the same patients with Alzheimer’s disease and 
consistent with the distribution of tau pathology, as known 
from neuropathology. In a fi rst study, the binding behavior of 
T807 has also been evaluated on human brain tissue [ 97 ]. 
However, for all of these tracers, histopathological in vivo 
versus postmortem cross evaluation is still pending. A clini-
cal value of tau imaging tracers with regard to early diagno-
sis of Alzheimer’s disease may be discussed [ 89 ,  90 ]. 
However, according to currently discussed concepts on the 
order of appearance of biomarkers of Alzheimer’s disease, it 
would be expected that amyloid pathology would be detect-
able ahead of tau pathology [ 98 ]. On the other hand, neuro-
pathological studies suggest that cerebral tau aggregation 
correlates with the extent of cognitive decline (in contrast to 
amyloid plaque deposition). Correspondingly, the fi rst tau 
imaging studies indicate that the uptake of tau correlates 
closely with the level of cognitive impairment [ 96 ]. Thus, tau 
imaging may represent a suitable biomarker for disease fol-
low- up but rather not for very early detection of Alzheimer 
pathology in the asymptomatic stages. It may, however, be 
helpful to detect the onset of neurodegeneration in amyloid- 
positive subjects. Future studies will need to demonstrate an 
added value in this context, as compared to markers of neu-
ronal dysfunction such as [18F]FDG. With regard to differ-
ential diagnosis, the application of tau imaging may be very 
complicated, because tau as a target is highly heterogeneous 
[ 99 ,  100 ]. There are two different haplotypes and 6 isoforms, 

tau can occur in phosphorylated/non-phosphorylated forms, 
and there are different structural variants of aggregation 
(straight fi laments, helical fi laments/tangles, coiled bodies, 
etc.). Depending on the disorder, aggregates can occur in 
neurons and in the glial cells [ 101 ]. Tau imaging may be 
helpful to differentiate between tau-positive and tau-negative 
forms of syndromes, e.g., tau-positive corticobasal syndrome 
versus synuclein-positive multiple system atrophies (MSA). 
However, tau pathology can be found in a number of differ-
ent neurodegenerative disorders, summarized under the term 
“tauopathies” [ 102 ]. This includes Alzheimer’s disease, cor-
ticobasal syndrome, progressive supranuclear palsy, Pick’s 
disease, FTLD-MAPT (FTD/parkinsonism, chromosome 17 
(FTDP-17)), and also brain trauma. Thus, differential diag-
nosis between these neurodegenerative disorders on the basis 
of tau positivity or negativity will not be possible. However, 
patterns of cerebral tau aggregation are different between the 
various tauopathies, thus potentially providing information 
beyond the bare presence of tau pathology. The fact that lev-
els and anatomical distribution of tau aggregation pathology 
may be detected by tau imaging potentially also represents 
an added value over CSF tests (Fig.  1 ).

       Summary 

 Recent guidelines for diagnosis of Alzheimer’s disease rec-
ommend a three-step biomarker-supported categorization 
[ 10 ]. According to these guidelines, increased levels of amy-
loid pathology in the brain are coding for a low risk, presence 
of additional neuronal injury for an intermediate risk, and the 
additional proof of cognitive decline for a high risk of suffer-
ing from Alzheimer’s disease. Molecular imaging methods 
offer the unique opportunity to monitor these parameters 
in vivo, noninvasively. Amyloid imaging has entered the 
clinical arena and may allow to detect subjects at risk for 
Alzheimer’s disease in very early stages, to select patients 
for therapy trials, and (if negative) to exclude Alzheimer’s 
disease as a reason for cognitive decline. FDG-PET as the 
best established tracer for imaging neurodegeneration can be 
considered the Swiss Knife in dementia diagnosis. It allows 
reliable prediction in the stages of mild cognitive impairment 
and provides information on the pattern and extent of neuro-
nal dysfunction in different forms of neurodegenerative dis-
orders. Novel tau imaging procedures are still in an 
experimental stage but may allow to detect onset of neurode-
generation in amyloid-positive subjects, select patients for 
tau trials, and differentiate between tau-positive and tau- 
negative forms of neurodegeneration in the future.     
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