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Benign Chlorine-Free Approaches
to Organophosphorus Compounds

Maria Caporali, Manuel Serrano-Ruiz, and Maurizio Peruzzini

Abstract Organophosphorus compounds have widespread use throughout the

world, as agricultural chemicals, medicinal agents, flame retardants, plasticizing

and stabilizing agents, selective extractants for metal salts from ores, additives for

petroleum products and corrosion inhibitors. Moreover, they are also endowed with

metal binding properties, for this reason they have a paramount role in catalysis,

being able to direct the activity and selectivity of a metal. Currently, organophos-

phorus compounds are produced on industrial scale using white phosphorus and

chlorine, through an environmentally harmful process which generates equimolar

amount of chlorinated waste. In the quest for alternative environmentally benign

technology, several routes have been envisaged starting either from elemental

phosphorus or from one of its direct low-valent derivative as hypophosphite.

In this contribution, we summarize the latest findings on “green” synthetic

approaches towards organophosphorus derivatives. Reactions of elemental phos-

phorus with organic molecules by means of photochemical irradiation, through a

radical mechanism, by electrophilic/nucleophilic addition, mediated by a transition

metal or by electrochemical means, will be described. Moreover, a synthetic

strategy that uses hypophosphorus acid and its alkali salts as phosphorylating agents

towards organic molecules will be as well depicted.

Keywords Elemental phosphorus • Hypophosphite • Organophosphorus •

Carbenes • Transition metals • Electrochemistry • Phosphate

3.1 Metal-Mediated Formation of P-C Bond from White
Phosphorus

Currently, organophosphorus compounds are produced on industrial scale using

white phosphorus as large scale commodity which is first halogenated to phospho-

rus chloride, PCl3. In a subsequent step, the chlorine atoms are substituted with
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organic groups by salt metathesis, generating the desired phosphane R3P and three

molar equivalents of chlorinated waste. On the other hand, reaction of OPCl3 with

an alcohol affords the corresponding organic phosphate, (O)P(OR)3, and three

times the molar amount of HCl (Scheme 3.1). In other words, the current industrial

technology is atom- and energy inefficient and utterly remote from being a sustain-

able and environmentally benign process. Therefore, the direct and selective pro-

cesses are needed to avoid the use of chlorine gas, whose production and

transportation is highly risk and to circumvent the formation of halogenated

intermediates and by-products, which are environmentally harmful and require a

high cost to get rid of [1].

Many efforts in academia have been devoted to produce phosphanes, phosphates

and phosphites through an alternative route. These compounds are indeed highly

valuable in many important industrial fields. Thus, phosphanes as ligand towards a

metal center play a key role in catalysis, triorgano phosphates, phosphonates and

phosphinates are used as additives to polymers, since are endowed with peculiar

properties and can act as plasticizers and flame retardants. Plasticizers play a key

role because they increase the flexibility of the polymers and make them easier to

process. Additionally, they contribute to lower the glass transition temperature of

the polymer, making it more suitable for low temperature applications. Nowadays,

the most common plasticizers are phthalates, anyway triorgano phosphates still

attract the market in some particular applications thanks to their stability, their

rheological properties at low temperature and flame retardants properties.

According to the EU legislation [2], halogen-based flame retardants are banned,

which is pushing both the academia and the industry to search and develop new

materials which behave as efficient flame retardants and do not contain any

halogen. Several aryl phosphates fulfill the rule of laws and among them, both

triphenyl and tritolyl phosphate are sold commercially as flame retardants, the latter

being more common due to its compatibility with PVC.

In the quest for alternative ways of the production of organophosphorus com-

pounds, a huge amount of knowledge about P4 chemistry has been developed in the

last decades, though direct functionalization methods are still scarce and applicable

mainly on a laboratory scale [2].

One of the most spread approaches is based on the use of a transition metal,

either early or late, that can firstly activate white phosphorus through coordination

to the metal center, and afterwards the coordinated P4-moiety is prone to react

further with a suitable organic reagent. On this regard, a milestone has been the

work by Ginsberg and Lindsell in 1971 [3], who showed for the first time that

white phosphorus can bind to a transition metal-ligand system, namely the

1/4 P4 + 6 Cl2 4 PCl3

PCl3 + 1/2 O2 (O)PCl3

(O)PCl3 + 3 ROH (O)P(OR)3 + 3 HCl

PCl3 + 3 RMgBr R3P + 3 MgBrCl

Scheme 3.1 “Chlorine”

route for the bulk

production of

organophosphorus

compounds from white

phosphorus
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rhodium Wilkinson’s complex. Since then, more than 40 years of studies have

focused on the key role played by a transition metal, or a main group element or

compound, which in principle can carry out the activation and subsequently either

aggregation or fragmentation of P4 to yield a variety of naked Px units (x� 24)

well suited to bind one or more metals. Although subsequent functionalization of

the P4 moiety and liberation reactions from the metal centers are not common due

to the strong bond between the metal and the P4 moiety [4]. In this regard, the

Florentine group lead by Peruzzini discovered that rhodium and iridium trihydride

complexes bearing as ancillary ligand a tripodal phosphane named triphos (1,1,1-

tris(diphenylphosphanylmethyl)ethane) were prone to react with P4, which upon

the displacement of molecular hydrogen was coordinated to the metal center in a

di-hapto fashion, see Scheme 3.2. The remaining hydride, being in cis position

respect to the P4 moiety, can interact and migrate on the phosphorus moiety,

resulting in the formation of a P-H bond. Applying a hydrogen pressure to this

P

P

P

P

M
P

P H

H

P

H

M = Rh, Ir
H2

M
P

P
P

H
P

P P

P

M
P

P
P

P

P
P

P

H2M
P

P
P

P

P
P

PH3

H2

RPH2

M
P

P
P

R

P
P

P

P

C2H4

M
P

P
P

P

P
P

P

R

H

P

P
P

= H3CC(CH2PPh2)3
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derivative, it is observed formation of PH3 and the other three P atoms (coming

from P4) forms a highly stable cyclotriphosphorus unit η3-coordinated to the

metal. The latter represents a resting state that does not evolve to an active species

able to activate either molecular hydrogen or P4. Therefore, the reaction of the

trihydride metal precursor, P4, and hydrogen is stoichiometric and cannot be

catalytic.

Similarly, the reaction of the ethylene complex [(triphos)RhR(C2H4)], R¼H,

alkyl, aryl, with P4 in the presence of positive hydrogen pressure gave a stoichio-

metric amount of the corresponding phosphane RPH2 and cyclo-triphosphorus

rhodium complex [5a–b], see Scheme 3.2.

Another example of a stoichiometric route to access a phosphane derivative

starting directly from P4 in the presence this time of a main group metal was shown

by Power in 2005 [5c]. Surprisingly, by reacting the weakly dimerized “dithallene”

[TlArDipp2]2 (Ar
Dipp2¼C6H3-2,6-(C6H2-2,6-iPr2)2) with white phosphorus, the tet-

rahedral structure of the latter was completely disrupted, resulting in an open chain

of four P atoms sandwiching the two metal atoms, see Scheme 3.3. Notably, the two

aryl groups ArDipp2 (¼ C6H3-2,6-(C6H2-2,6-iPr2)2) were transferred from the metal

to the two opposite end of the phosphorus chain. Subsequent mild oxidation with

iodine resulted in the quantitative formation of a tetraphosphabicyclobutane deriv-

ative, Aryl2P4, with the elimination of thallium iodide. Later, in Sect. 3.4, we will

discuss the formation of tetraphosphabicyclobutane derivative, in the absence of a

metal.

Concerning the “chlorine free” production of di- and tri-alkyl phosphates, di-

and tri-alkyl phosphites, a remarkable catalytic protocol was developed in the 1990s

by Dorfman and Abdreimova [6]. They carried out a mild catalytic oxidative

alkoxylation of P4 dissolved in arene/alcohol solution, using Cu(II) or Fe(III) as

catalysts in aerobic conditions, being O2 necessary as oxidant. Intriguingly, it was

observed in the case of copper that the product distribution was strongly influenced

by the nature of the ligands. In the presence of copper halides, the main product was

alkyl phosphate, while copper sulfate or acetate enhanced the formation of alkyl

phosphite. However, these catalytic systems did not work well with phenol or aryl

alcohols and lack of narrow selectivity.

A further relevant contribution on this regard comes from Kilian, who recently

found out that P4 can react with phenol in aerobic conditions in the presence of

iodine and Fe(acac)3 (acac¼ acetylacetonate) as catalyst affording quantitative

(TlArDipp2)2
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Scheme 3.3 Synthesis of Phosphane derivatives from P4 and dimeric “dithallene”
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conversion of the desired triphenyl phosphate [7] producing only water as

by-product. Mechanistic studies were carried out to understand the reaction path-

way and in particular the rate-limiting steps in order to optimize the process. Iodine,

also used in catalytic amount, served to oxidize P4 to phosphorus(III) by forming

instantaneously PI3. Additionally, it was observed that the reaction did not proceed

under anaerobic conditions, being oxygen indispensable first to oxidize P(III) to P

(V) in the catalytic step where PI3 reacted with phenol. Secondly, O2 was respon-

sible for the reoxidation of the by-product HI back to iodine as shown in

Scheme 3.4. The reaction, carried out at 80 �C and with 25 mol% Fe(acac)3 loading,

was applied successfully also to functionalized phenols giving high conversion and

very good selectivity.

Another advantage of this process is that iron is a desirable metal for the

catalysis of industrial processes due to its low toxicity, low cost and ready

availability.

However, phosphites cannot be synthesized through this route since the iron/

iodine catalyst system does oxidize phosphites to phosphates.

Unlike main-group and late-transition metal mediated activation of P4, the

applications of early transition metals in this field are far less common. Aiming to

circumvent the use of PCl3 as an intermediate in the synthesis of organophosphorus

compounds and in the search for a catalytic process producing organophosphanes

directly from white phosphorus, Cummins [8] has put a lot of efforts to study the

activation of white phosphorus mediated by early transition metals. Indeed, nio-

bium and molybdenum complexes have been shown by Cummins et al. to carry out
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Scheme 3.4 Catalytic synthesis of triphenyl phosphate from white phosphorus
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in an efficient way the activation of molecular dinitrogen and to promote N-transfer

reactions, thus synthesizing, for instance, organo-nitriles. This study was extended

to other early transition metals and, intriguingly, it was observed that a niobium

complex could firstly coordinate P4 and, then, the phosphorus moiety could be

transferred to an organic substrate. A beautiful example of this chemistry is shown

in Scheme 3.5, where complex [Na(thf)3][(η3-P3)Nb(ODipp)3] (Dipp¼ 2,6-

iPr2C6H3), easily prepared by reduction of [Cl2Nb(ODipp)3] in the presence of

P4, has an anionic nature which imparts to the P3 ring a strong nucleophilic

character which makes possible the straightforward reaction with a range of mild

electrophiles [9]. For instance, the reaction with Ph3SnCl, proceeds quickly at room

temperature forming [(η3-Ph3SnP3)Nb(ODipp)3] while sodium chloride is elimi-

nated. To free from the metal center the triphosphirene moiety, Ph3SnP3, a stoi-

chiometric amount of pyridine-N-oxide together with an excess of

1,3-cyclohexadiene were used. The latter serves as a trapping agent of the

phosphirane, yielding the desired Diels-Alder adduct Ph3SnP3(C6H8) as shown in

Scheme 3.5.

The stable Ph3SnP3(C6H8) can be regarded as a P3
� synthon, since the reactive

P-Sn bond can be cleaved with elimination of Ph3SnCl and the cyclic olefin, formed

by trapping the P¼P unit with 1,3-cyclohexadiene, can be readily lost as it has been

shown that retrocycloaddition reactions are accessible for such protected

diphosphanes [10]. Significantly, the Ph3Sn
+ moiety can be replaced by other

electrophiles as Ph3C
+, Ph3Si

+ and Me3Si
+ by the salt elimination procedure. This

modularity may allow the assembly of a library of P3
� transfer reagents opening the

way to the synthesis of a wide range of organophosphorus compounds. Formal

abstraction of P� from Na[(η3-P3)Nb(ODipp)3] was mediated by the molybdenum

complex IMo(N[tBu]Ar)3 and resulted in the formation a labile niobium complex

[11] bearing a P2 side-on coordinated ligand as shown in Scheme 3.6.

In the presence of a 20-fold excess 1,3-cyclohexadiene, the P2 unit is released

from the metal center and a formal [4 + 2] Diels-Alder cycloaddition takes place

affording the diphosphane (Scheme 3.6).

Replacing the ancillary ligands ODipp at niobium center with the more hindered

(OC[2Ad]Mes)3 where 2Ad¼ 2-adamantylidene, Mes¼ 2,4,6-trimethylphenyl,

Cummins discovered [12] that by reacting four equivalents of [NbI{(OC[2Ad]

Mes}3(thf)] with two equivalents of P4, a new niobium complex was formed,

[(P8){Nb(OC[
2Ad]Mes)3}2], which is a unique dinuclear species having a P7

Nb
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Scheme 3.5 Release of the P3
� fragment from the niobium complex and subsequent cycloaddi-

tion reaction
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nortricyclic core with a phosphino-phosphinidene moiety connected to one of the

two niobium center, as shown in Scheme 3.7. The phosphino-phosphinidene moiety

is endowed with a special reactivity and easily reacts with a suitable organic

substrate as benzophenone detaching the coordinated niobium fragment as oxide.

Since the remaining niobium-phosphorus interaction in the complex can be

regarded as a side-on coordination of a diphosphene unit (RP¼PR) to a strongly

π-donating d2 niobium center, a 20-fold excess of 1,3-cyclohexadiene together with

pyridine-N-oxide were added. The corresponding Diels-Alder cyclo-adduct A was

obtained in good yield, eliminating a second niobium-oxo fragment as above.

Herein, the synthetic cycle could be completed by addition of triflic anhydride

(2 equiv) followed by Me3SiI (4 equiv) to recycle the two niobium-oxo complexes

to the catalytic precursor, [I2Nb{(OC[
2Ad]Mes}3] as shown in Scheme 3.7. The

latter in the presence of samarium (II) iodide, undergoes the displacement of one

iodide, generating a coordinatively unsaturated species [INb(thf){(OC[2Ad]

Mes}3], prone to react with P4 [13].

Noticeably, instead of 1,3-cyclohexadiene, spiro[2.4]hepta-1,6-diene and

2,3-dimethylbutadiene were also tested in the catalytic cycle. They resulted to be

very reactive Diels-Alder diene, in particular the first one, and trapped efficiently

the carbophosphorus cluster contained in the key intermediate complex [Ph2CP8Nb

(OC[2Ad]Mes)3] giving respectively the organophosphanes B and C (Scheme 3.7),

in good yield.

Despite their potentially strong reducing nature, group 3 and 4f-block metals

have been sparely considered for the activation of white phosphorus, presumably

because of the hard-soft mismatch between the electropositive metal and soft

phosphorus. The direct activation of P4 using group 3 metal was only recently

achieved in mild conditions by Diaconescu et al. [14]. Unexpectedly, the reaction
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between the scandium naphthalene complex, [{(NNfc)Sc}2(μ-C10H8)] (Sc-naph:
NNfc¼ 1,1’-fc(NSitBuMe2)2, fc¼ ferrocenylene) and white phosphorus afforded

two different metal complexes, containing respectively [P8]
4� and [P7]

3� unit, that

could be separated thanks to their different solubilities. The bonding motif of [P8]
4�

in the cluster Sc4P8 recalls a realgar-type structure with four (NNfc)Sc fragments

standing at the corners, each of them bonding to two phosphorus atoms, while the

cluster Sc3P7 contains the [P7]
3� unit having a heptaphosphanortricyclane structure

and represents the first example of the Zintl anion [P7]
3� obtained directly from P4
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without using an alkali metal or its equivalent as a reducing agent. Interestingly, the

reaction of white phosphorus with the yttrium analogue, [{(NNfc)Y(THF)}2(-

μ-C10H8)} went to completion at room temperature in a much shorter time and

afforded uniquely the product Y3P7.

Aiming to activate the polyphosphide from the clusters Sc3P7 and Y3P7,

these were allowed to react with three equivalents of Me3SiI as shown in

Scheme 3.8. These reactions led to (Me3Si)3P7 and gave as by-product the scan-

dium/yttrium iodide, which in turn can be recycled to synthesize the starting metal

arene complex. This constitutes the first example of transferring the Zintl anion [P7]
3� to an organic species and establishes a synthetic cycle for the direct transforma-

tion of P4 to organophosphorus compounds.

Studies on P4 activation and functionalization mediated by 5f metals are excep-

tionally rare, there is one report concerning thorium [15] and a few about uranium

[16, 17]. In the first publications concerning uranium [16], it was shown this metal

can favor the cleavage of a P-P bond forming a [P4]
2� ring, but no fragmentation or

catenation of P4 was observed [16]. Recently, Liddle and co-workers [17] showed

that a diuranium(V)-arene-tetraanion complex (1) reductively cleaves P4 to form a

triuranium cluster tris(triamidouranium)μ3-η2:η2:η2-heptaphosphanortricyclane (2)
containing a heptaphosphanortricyclane cage connecting the three uranium centers.

This represents not only the first example of fragmentation and catenation of P4 to a

higher oligomer promoted by uranium but also the first example of a molecular

actinide [P7] Zintl complex. As shown in Scheme 3.9, by reaction of 2 with three

equivalents of Me3SiCl, the derivative P7(SiMe3)3 was quantitatively afforded

together with [(TsTOL)U(Cl)(μ-Cl)U(THF)2(TsTOL)] (3) as a by-product where Ts
TOL¼HC(SiMe2NAr)3, Ar¼ 4-MeC6H4. Other electrophiles have been tested, like

LiCl, MeI and PhI, and in all cases the corresponding organophosphorus derivative

was obtained in good yield while complex 3 was released.

This new pathway is of great relevance, since it makes feasible and straightfor-

ward the preparation of alkali-metal or organic derivatives of [P7]
3� that is
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otherwise challenging. Moreover, the reduction of 3 with potassium graphite can

restore complex 1 and in this way two turnovers can be achieved, demonstrating the

ability of uranium complexes to activate and liberate P-functionalized organic

molecules, working effectively as in a catalytic cycle (Scheme 3.10).

While in the past [P7]
3� and its derivatives were considered as a dead end in

synthetic phosphorus chemistry, recent works involving the demolition of P7 cage

into P5 and P2 fragments indicate that P7 compounds can be seen as useful platforms

in the field of phospha-organic chemistry [18]. Recently, Goicoechea’s group has

shown that [P7]
3� clusters are reactive towards unsaturated organic substrates [19],

in particular they react with alkynes with transfer of a [P3]
� unit to form an unusual

class of cyclopentadienide analogue, the 1,2,3-tripnictolides (Scheme 3.11).
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The reaction mechanism that leads to the products is still unraveled, presumably

the driving force for the formation of the 1,2,3-tripnictolide anions is their aroma-

ticity. Routes to access this class of compounds are still scarce and underdeveloped,

with only a few examples existing in literature [20]. Intriguingly, [P7]
3� is endowed

with a special reactivity towards carbon monoxide, in refluxing dimethylformamide

good yield of the phosphaethynolate anion, [PCO]� as [K(18-crown-6)]+ salt, can

be formed [21], see Scheme 3.12. This anion is known since decades [22], but no

chemistry has been performed upon it, only recently it has been a renaissance and

several studies have flourished. Among them, Gr€utzmacher’s group [23] has refined
the synthesis obtaining Na(O-C�P) through a large-scale procedure (hundreds of

grams) based on the phosphination of carbon monoxide using NaPH2 us “P” source

or from the reaction of NaPH2 with diethyl carbonate as source of CO

(Scheme 3.12).

Cummins demonstrated that Na(OCP) can be synthesized also through a

completely different way [24], using a niobium phosphide complex as source

of “P” and carbon dioxide as source of CO, see Scheme 3.12. The salt Na(OCP)

is remarkably stable and can be seen as a valuable building block for the

synthesis of organophosphorus compounds. For instance, Goicoechea found out
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that the reaction of [K(18-crown-6)][PCO] with diphenylketene or bis

(2,6-diisopropylphenyl)carbodiimide, see Scheme 3.13, gives in both cases an

anionic four-membered ring [21] resulting from a [2 + 2] cycloaddition product

of P�C triple bond across the C¼C or C¼N double bond.

This constitutes the first example of an isolated monoanionic four-membered

phosphorus-containing heterocycle.

The [OCP]� anion can be regarded as an adduct of carbon monoxide and P�, so
it can work as a “P” transfer reagent, the by-product being simply gaseous CO,

which facilitates the reaction work-up. On the other hand, P7(SiMe3)3 (or similar

derivatives) can also be regarded as a phosphorus donor, thus becoming highly

promising building blocks to access organophosphorus derivatives in a sustainable

way, avoiding the use of chlorine. An outstanding example of the synthetic
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relevance of the above-mentioned synthons is offered in Scheme 3.14, where

starting from either Na(OCP) or P7(TMS)3, the N-heterocyclic carbene adduct

was synthesized in high yield on the gram scale [25].

3.2 P-C Bond Formation by Photochemical Irradiation

As underlined in the beginning of the chapter, a well-recognized imperative for the

industrial synthesis of organophosphorus compounds is to avoid PCl3 as an inter-

mediate and to develop instead methods for the direct incorporation of phosphorus

atoms into organic molecules using as building block elemental phosphorus, white

or red. An old paper by von Rathenau [26] reported that photolysis of P4 at room

temperature using a mercury lamp induced polymerization of white phosphorus

which is transformed into the less reactive red allotrope. Most importantly, he stated

that the possible intermediate in this reaction is the transient species P2, higher

congener of N2, generated by UV irradiation. A recent work by Cummins et al. has

been inspired by this result and has shown that photolysis of white phosphorus

under UV light generates a diphosphorus unit P2 which may be immediately

trapped by a diene molecule. The final product is consistent with a double Diels-

Alder addition, affording the diphosphane derivative shown in Scheme 3.15. The

process converts, in a straightforward way, P4 into a phosphane; however the yield

of the cycloadduct is moderate [27].

3.3 Carbene-Mediated Functionalization of P4 as a Route
to Organophosphorus Compounds

It is well known that transition metals can activate small molecules as white

phosphorus and can stabilize highly reactive species. The group of Bertrand verified

whether singlet carbenes may behave in a way similar to transition metals in the

presence of P4. It was shown that a bulky and rigid cyclic alkyl amino carbene,

CAAC, see Scheme 3.16, is able to open P4 and at the same time can stabilize the

resulting highly reactive species, without inducing fragmentation or aggregation of

P

P

P

P

R R

+
hv P P

R R R = H, Me

R
R

4.4
12 h

2

Scheme 3.15 One-pot synthesis of diphosphanes from white phosphorus by photochemical

irradiation
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P4. In this way, 2,3,4,5-tetraphosphatrienes constituted by an open chain of four P

atoms bridging the two carbene units were isolated in good yields [28].

Moreover, it was studied the reactivity of the (E)-diphosphene with

2,3-dimethylbutadiene and surprisingly the reaction proceeded cleanly giving

quantitatively the Diels-Alder product coming from a [4 + 2] cycloaddition of

the diene with the phosphalkene, see Scheme 3.17. In this way, two phosphorus-

carbon bonds were constructed and the isolated product shows very good

diastereoselectivity.

Since the chemical behavior of cyclic alkyl amino carbenes, CAACs, is usually

different than that of N-heterocyclic carbenes, NHCs, these results pushed to

investigate the reactivity of NHCs towards P4. Bertrand and co-workers showed

[29] that NHC not only reacts easily with P4 but also induces an aggregation of three

P4 units and a P12 cluster is formed in high yield and stabilized by two NHC units.

The architecture of P12 core is unprecedented and differs from that found in

transition metal complexes having as ligand P12 derived from metal-mediated

activation of white phosphorus [30]. Though it is not the largest cluster obtained

from P4: recently, a contribution by Scheer et al. was published [31] and demon-

strated that via cobalt-mediated activation of P4, a huge cluster of 24 phosphorus

N
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Scheme 3.16 Reactivity of half equivalent of P4 with CAAC
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Scheme 3.17 Diastereoselective [4 + 2] cycloaddition of CAAC-P4 adduct and

2,3-dimethylbutadiene
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atoms can be prepared. These results prove that singlet carbenes are excellent

organic building blocks for the formation of organophosphorus compounds directly

from white phosphorus without any need of a metal. Since the most synthetically

useful organophosphorus compounds contain only one or two P atoms, it was

mandatory to study the possible fragmentation, if any, of white phosphorus in the

presence of a suitable carbene. Depending on the nature of the latter, carbene-

stabilized P3, P2 and P1 species have been isolated by Bertrand and co-workers [32]

as shown in Schemes 3.18 and 3.19.

Carbonyl-decorated carbenes have been shown [33] to exhibit a rich and versa-

tile reactivity, this motivated Hudnall and co-workers to investigate their reactivity

towards white phosphorus. Gratifyingly, treatment of the latter with three equiva-

lents of the highly electrophilic carbene A shown in Scheme 3.20 resulted in a rapid

P
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Scheme 3.18 Reaction of P4 with the non-hindered CAAC
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Scheme 3.20 Reactivity of white phosphorus towards carbonyl-functionalized carbene
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activation at room temperature and formation of a triscarbene-P4 cluster [34],

analogue to the one prepared by Bertrand shown in Scheme 3.18.

Interestingly, the reaction of the less electrophilic carbene B, see Scheme 3.21,

with white phosphorus in identical reaction conditions, provided a drastically

different product, a neutral tetrakiscarbene-P8 cluster. The X-ray analysis revealed

a central P4 butterfly structure that is capped at each P atom with a phosphalkene

moiety. Taking into account that a tetraanionic P8 cluster was previously prepared

by Wiberg et al. [35] via a [2 + 2] cycloaddition dimerization of a linear

P4-diphosphene, Hudnall repeated the reaction of P4 with carbene B by adding

2,3-dimethyl-1,3-butadiene and the corresponding Diels-Alder cycloaddition prod-

uct was isolated, confirming the hypothesized reaction pathway. Therefore, it is

evident the dramatic influence of the electrophilicity of the chosen carbene on the

identity of the final product.

In the same time, Bertrand’s group was working on this matter, and shortly after

Hudnall, published that the tetrakis carbene P8 cluster can be obtained from P4 and

the cyclic six-membered diamido carbene (as shown by Hudnall) and also by using

a less electrophilic carbene as cyclic(alkyl)(amino)carbene [36]. Moreover, he
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Scheme 3.21 Reactivity of white phosphorus towards carbonyl-functionalized carbene
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demonstrated that a carbene can insert into a single P-P bond of P4, resulting in the

formation of a carbene-P4 adduct (Scheme 3.22). Thus the extremely electrophilic

seven-membered cyclic benzamido carbene can behave as a transition metal

towards P4 showing a η2-coordination.
Future efforts will be necessary to investigate these compounds coming from the

carbene-mediated activation of P4, as potential phosphorus transfer reagents for the

preparation of useful organophosphorus compounds.

3.4 Synthesis of Organophosphorus Compounds by
Nucleophilic Addition

In this section, we review two main different approaches: (a) phosphorus-centered

anion, usually directly derived from elemental phosphorus, which does a nucleo-

philic attack (addition) on organic substrates; (b) carbon-centered anion, which

does a nucleophilic attack (addition) on P4; in both cases a new P-C bond is formed.

Concerning the chemistry of phosphorus-centered anion, it is worth mentioning

the work developed by Trofimov and Gusarova. They choose red phosphorus as

“P”-source to accomplish the phosphorylation of unsaturated organic compounds,

as alkenes and alkynes. Since red phosphorus has a polymeric chain-like structure

which reduces strain and reactivity in comparison to the white allotrope giving

greater stability, harsher treatments are required for the activation of the red

allotrope. Strongly basic conditions, as aqueous potassium hydroxide in

dimethylsulfoxide under heating or microwave irradiation were used, and the

final reaction mixtures gave primary, secondary and tertiary phosphanes and

phosphane oxides. A similar procedure was applied by the same authors to carry

out the direct phosphorylation of alkenes and alkynes with P4, but using milder

conditions, as shorter reaction time and heating at lower temperature [37]. From the

mechanistic point of view, it is believed that in such heterogeneous and strongly

basic media, highly active P-centered nucleophiles (as polyphosphides and

polyphosphinites) are formed and prone to interact with the suitable electrophile

(styrenes, vinylpyridines, acetylenes and similar). This methodology avoids the use

of chlorine but has the disadvantage to produce mainly oxidized products,

i.e. phosphane oxides.

In the late 1990s, Brandsma and Trofimov [38] refined this methodology and

triggered a way to avoid the formation of the oxide selectively achieving the desired

phosphane. They reacted the elements, red phosphorus and potassium in liquid

ammonia and using tert-butanol as mild source of protons, potassium phosphide,

KPH2, was formed quantitatively (Scheme 3.23). Subsequent addition of an alkene

brought the formation of tertiary phosphane and the reaction is supposed to proceed

through a series of nucleophilic addition of the phosphides, formed in situ, to the

double bond of the alkene. Importantly, the reaction generated selectively and

exclusively tertiary phosphanes. Electrophilic alkenes are preferred being able to
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react with the phosphorus-centered anion [PH2]
�, while less electrophilic alkenes

were left un-reacted.

A similar method was followed for the preparation of primary

alkylphosphanes [39].

Since the pioneer work of Rauhut et al. [40] and later by King et al. [41]

described the nucleophilic addition of phosphane, PH3 and R2PH, respectively, to

the C-C double bond of acrylonitrile and [PhmP(CH¼CH2)n](m¼1,2; n¼2,1)

respectively, in the presence of bases, further contribution to this field came from

Trofimov and co-workers [37] who foresee in the use of PH3 as P-source replacing

elemental phosphorus, a great advantage from the atom economy point of view,

which is fully respected in the presence of phosphane.

Using as phosphorylating agent PH3 produced in situ from the basic hydrolysis

of red phosphorus, the hydrophosphination of weakly electrophilic double bonds of

aryl- and heteroarylethenes was performed affording selectively secondary

phosphanes previously unknown or difficult to prepare phosphane (Scheme 3.24).

As in the phosphorylation carried out with elemental phosphorus, strong basic

conditions are required in this process as well, which is believed to proceed via a

nucleophilic addition to the olefinic bond of the phosphorus-centered anion, PH2
�,

which can be generated only by action of a strong base on PH3.

Complete and selective formation of tertiary aryl(heteroaryl) phosphanes was

accomplished at atmospheric pressure of PH3 in KOH/DMSO heating in the range

45–120 �C and with additional introduction of the alkene (styrenes or

vinylpyridines) in the reaction mixture at the end of the process, see Scheme 3.23.

Notwithstanding the reaction goes to completion in a selective way, working at

Pred + 3 K
liq. NH3 / 2 tBuOH

- 2 tBuOH
KPH2

liq. NH3 / 2 tBuOH

3 RCH=CH2
(RCH2CH2)3P
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Scheme 3.23 Synthesis of tertiary phosphanes from red phosphorus
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atmospheric pressure of PH3 constitutes a great advantage, considering the flam-

mability and toxicity of this gas. Previously, PH3 was added to styrene in the

presence of a radical initiator under elevated phosphane pressure [42] but a mixture

of primary, secondary or tertiary phosphanes difficult to separate was obtained.

The first example of a suitable anionic carbon centered-nucleophile used to

activate directly P4 was published by Rauhut et al. in 1963. He reacted organo-

alkali reagents with white phosphorus obtaining a complex mixture of

polyphosphides and upon hydrolysis primary and secondary phosphanes were

isolated in moderate yield [43]. Afterwards, the nucleophilic functionalization of

P4 has been widely explored using milder conditions and softer reagents with the

aim to direct it selectively to one main product.

Mathey and co-workers studied the reaction of lithium(trimethylsilyl)

diazomethanide with white phosphorus, considering that the first reagent can be

seen as the synthetic equivalent of a [RC]� fragment and in principle could provide

a direct way to get [RCP4]
� thanks to the driving force of the reaction due to the

aromatic stabilization of the final five-membered ring. The reaction proceeded

cleanly as a formal [3 + 2] cycloaddition between a P2 unit, [P�P], extruded from

P4, and the diazomethyl anion, giving as a sole product the previously unknown

aromatic 1,2,3,4-diazadiphospholide anion, shown in Scheme 3.25. The proton-

ation of the latter by trifluoroacetic acid at low temperature afforded the stable 2H-
1,2,3,4-di-azadiphosphole. This work [44] showed for the first time that white

phosphorus can be a useful starting material for the direct synthesis of new aromatic

polyphosphorus compounds.

In the last decades, several efforts have been carried out to accomplish the direct

synthesis of organophosphorus compounds by nucleophilic addition of an organic

reagent to P4 bypassing the use of a metal and are summarized in Scheme 3.26. The

common intermediate in all these reactions is believed to be the highly reactive

bicyclo[1.1.0]tetraphosphabutane anion A formed upon a P-P bond cleavage of the

P4 tetrahedron, which is susceptible of degradation and re-aggregation forming a

complex mixture of products.

Fluck et al. found out that P4 in the presence of Mes*Li (Mes*¼ 2,4,6-C6H2
t

Bu3) is opened to give a di-substituted butterfly compound in low yield

(Scheme 3.26, route I) and a diphosphene [45]. Lerner et al. [46] by using a

threefold excess of the less bulky MesLi (Mes¼ 2,4,6-C6H2Me3) obtained a com-

plete degradation of the P4 tetrahedron and isolated a trianionic tetraphosphide

(Scheme 3.26, route II). Direct reaction of P4 with hypersilyl complex [(Me3Si)3Si]

2 [Me3Si(CN2)]Li + P

P

P

P P N

NP

SiMe3

Li+ CF3CO2H
P N

NP

SiMe3

H

Scheme 3.25 Synthesis of 1,2,3,4-diazadiphosphole ring from P4

3 Benign Chlorine-Free Approaches to Organophosphorus Compounds 115



(K(18-crown-6)] gave a Zintl-type P7-cage compound [47], probably arising from

dimerization of anion A (Scheme 3.26, route III). A few years ago, Tamm and

co-workers studied the behavior of P4 in the presence of a frustrated carbene-borane

Lewis pair. In this condition, the selective heterolytic cleavage of one of the six P-P

bonds of the P4 tetrahedron took place, and the resulting highly reactive P4 butterfly

was stabilized by formation of a P-C and P-B bond respectively at the two opposite

site of the butterfly cage [48]. Recently, Lammertsma and his group [49] accom-

plished the activation and functionalization of P4 with a bulky nucleophile as

ArylLi [Aryl¼Dmp (2,6-dimesitylphenyl), Mes*] in the presence of a Lewis

acid as B(C6F5)3, mimicking a frustrated Lewis pairs approach, similar to

Tamm’s group. Methylation of the P4 butterfly derivative as shown in Scheme 3.27

favored the elimination of Lewis acid B(C6F5)3 and the formation of a new P-C

bond in quantitative yield.

This represents a new method enabling the formation of organophosphorus

compounds starting directly from white phosphorus, forming two P-C bonds in a

controlled stepwise fashion and avoiding chlorinated reagents.
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3.5 P-C Bond Formation Mediated by Radicals

White phosphorus can be an efficient radical trap and can react with carbon-

centered radicals in solution under mild conditions. The work developed by Barton

et al. [50] shows the great ability of P4 to react in a long radical chain reaction with

carbon radicals generated from carboxylic acids via photolysis of the corresponding

Barton PTOC ester. Subsequent oxidation with aqueous hydrogen peroxide affords

the phosphonic acid derivatives in good yields. In this way, a wide range of

carboxylic acids, including those derived from natural products, as oleic and

linoleic acid, can be converted into the corresponding phosphonic acids, see

Scheme 3.28. Moreover, a clear mechanistic picture for the addition of carbon

radicals to P4 has been presented, where the chain reaction is initiated by the

reaction of dioxygen with P4.

Subsequent to the work of Barton, it has been shown by Sato et al. that P-P bonds

other than those in P4 may serve as a trap for organic radicals; for instance

Ar � radical, coming from ArX, can react with the diphosphane Ph2P-PPh2
accomplishing in this way a radical phosphination of organic halides [51].

Lappert prepared the diphosphane [P{N-(Me3Si)2}(NPr
i
2)]2 which reversibly

dissociates in solution to phosphinyl radical and when refluxed for short time in

toluene in the presence of white phosphorus, generated as main product a

tetraphosphabicyclobutane derivative, present in solution as a 1:1 mixture of

meso- and rac-diastereoisomers [52]. Similarly, the diphosphane

[({Me3Si}2CH)2P]2 is known in the literature as a molecular “jack in the box”

radical [53] since it is endowed with potential energy stored in the central P-P

bond, due to the strained rotation of the bulky peripheral trimethylsilyl ligands.

As a result, the P-P bond in the diphosphane can easily undergo homolysis

forming two equivalents of the phosphinyl radical. The latter can react at room

temperature with half equivalent of P4, causing the cleavage of one P-P bond of

the tetrahedron, and the resulting tetraphosphabicyclobutane is stabilized by the

highly hindered substituents on the heterocycle. The structure, shown in

Scheme 3.29, was confirmed by X-ray crystallography [54] with the molecule

assuming a trans,trans configuration to minimize steric interactions.

The contribution to this chemistry from Cummins and co-workers is based on the

discovery that the three-coordinate titanium(III) complex Ti(N[tBu]Ar)3 (Ar¼ 3,5-

C6H3Me2) is a powerful abstractor of halogen-atoms, as chloride, bromide, iodide,

from various donor molecules at room temperature in aprotic organic media
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Scheme 3.28 Radical synthesis of phosphonic acids from P4
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[55]. On these basis, Cummins developed a high yield synthesis of phosphanes,

PR3, starting from P4 and an alkyl or aryl halide in the presence of Ti(N[
tBu]Ar)3 as

promoter [56], according to the equation shown in Scheme 3.30. In terms of

recycling, the titanium by-product XTi(N[tBu]Ar)3 (X¼Cl, Br, I) can be reduced

by Na/Hg amalgam back to the active species Ti(N[tBu]Ar)3.

This represents a powerful and clean method to prepare a wide array of

phosphane directly from P4; based on the ability of P-P bonds to work as efficient

radical traps, the next step will be trying to make this process catalytic.

A recent paper by Scheer et al. [57] shows a new methodology involving the

intermediary formation of CpR radicals that selectively open one P-P bond of the P4
tetrahedron. The process is mediated by a transition metal which is in the end

eliminated as a salt by-product, and the main product is a carbon-substituted

bicyclic P4 butterfly compound as shown in Scheme 3.31. Two different methods

have been used: the first one (a) is based on the addition of a stoichiometric amount

of Cu(I) salt, which readily reduces to Cu metal allowing the oxidation of (CpBIG)�

to CpBIG radical [CpBIG¼C5(4-
nBuC6H4)5], and the second (b) can activate P4

yielding a modest amount of (CpBIG)2P4.

Any attempt to extend the reaction to smaller CpR radicals failed, probably the

latter being less hindered and more reactive than CpBIG, which made a radical
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decomposition faster than the reaction with P4 so that the formation of the desired

P4 butterfly does not proceed. It is known [58] that [{Cp
”’Fe(μ-Br)}2] [Cp”’¼ 1,3,5-

CpHtBu3) reacts with one equivalent of P4 leading to the formation of [{Cp”’Fe}2
(μ,η4:4–P4)] as well as to the carbon-substituted butterfly compound (Cp”’)2P4
together with a small amount of FeBr2, meaning in the process an oxo-reduction

takes place bringing initial Fe(III) to Fe(II) and [CpR]� to [CpR]� radical. On this

basis, Scheer et al. carried out the straightforward reaction of FeBr3 and CpRM

(M¼Na or Li) in the presence of white phosphorus. The desired, symmetrically

substituted, P4-butterfly shown in Scheme 3.31, was isolated with good yield.

Interestingly, while the “copper” route is feasible only in the presence of CpBIG,

the “iron” route has a wider applicability.

3.6 Electrochemical Activation of P4: An Alternative Way
to Access Organophosphorus Compounds

Electrochemistry can be considered as a “green” technique since it uses electrons as

reagents and generally the electrochemical processes proceed under mild condi-

tions where the rate and selectivity of the process can be easily adjusted by tuning

both the working electrode potential and electric current. Therefore, a chemical

process can be directed in a very clean way, obtaining high purity products and

avoiding the formation of waste. For all these reasons, electrochemical methods

become attractive for synthesizing pharmaceuticals and fine chemicals. An out-

standing contribution to the development of electrochemical synthesis of inorganic

and organic phosphorus compounds starting directly from white phosphorus comes

from the Arbuzov Institute of the Russian Academy of Sciences in Kazan [59]. It

was shown that depending on the experimental conditions, as solvent (water or

alcohol), electrode material (graphite, platinum, mercury) temperature and pH, the

electrochemical process may be modulated to give predominantly the desired

phosphorus derivatives. It is believed [60] that the first step is the reduction of P4
at the cathode electrode with formation of a highly reactive phosphido radical anion

2 CpBIGNa

NaBr, Cu(0)

2 CpBIG
P42 CuBr

FeBr3 + CpRM
P4

FeBr2, MBr
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P
P CpRCpR
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CpR = C5H2tBu3 M = Na (38%)
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Scheme 3.31 Functionalization of P4 mediated by a metal radical
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[P4]
�. Soon after, a fast protonation of this species takes place being the process

carried out in protic media, resulting in cleavage of P-P bonds and formation of P-H

bonds. Several studies have been carried out on the electrochemical hydrogenation

of white phosphorus, which can be considered as the suitable method for in situ
generation of highly pure PH3 directly from P4. Gaseous PH3, meanwhile is

generated, can be collected in another reaction vessel in presence of the appropriate

organic reagent to synthesize the desired organo-phosphorus derivative [60]. The

yields of PH3 vary in the range 60–83% at the lead cathode in an aqueous solution

of NaOH in a range of temperature from 70 to 100 �C. In a classical chemical

process, operating without electrochemistry, boiling a basic emulsion of P4 ends up

with a mixture of products: hypophosphite (50%), phosphite (25%) and PH3

(25%) together with hydrogen evolution. Noteworthy, the electrochemical process

transforming selectively P4 into hypophosphorus acid has been studied [61] ana-

lyzing carefully the reaction mixture at equal interval of time by 31P NMR spec-

troscopy. This allowed to intercept for the first time, a key intermediate, H3PO,

which is formed at the zinc anode as an oxidation product of PH3 released at the

lead cathode, as shown in Scheme 3.32.

The generation in solution of H3PO was completely unexpected, being known as

highly labile species that previously was generated only under extreme conditions

and characterized in argon matrices [61]. A detailed study evidenced that the

formation of this species is related to electrode-surface processes and it is observed

only in the presence of a zinc electrode as anode and operating in acidic ethanol/

water mixture.
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When the electrochemical reduction of white phosphorus is performed in the

presence of alcohols and ammonium salts used as supporting electrolyte, in prin-

ciple a mixture of esters of different phosphorus oxyacids may be produced. The

accepted mechanism is based on the reduction of the alcohol at the cathode with

formation of the alkoxide anion, RO�, which does a nucleophilic attack on P4;

meanwhile at the anode, the oxidation of the halide coming from the supporting

electrolyte takes place, generating an electrophilic reagent. The joint action of the

alkoxy anion and the electrophile on P4 results in various derivatives as shown in

Scheme 3.33, depending on the nature of the alcohol, on the ratio water/P4 and on

the temperature used to carry out the process,

Under specific conditions, trialkyl phosphates were prepared in a quantitative

yield; Scheme 3.34 shows the equation for the overall process which looks like

highly clean, only gaseous hydrogen is formed as by-product [59].

Electrolysis of an emulsion of white phosphorus in the presence of an alcohol

and an amine generates the corresponding triamidophosphates, as shown in

Scheme 3.35 [60].

Interestingly, the electrolysis of an emulsion of P4 and an aromatic halide in

dimethyl formamide leads to triphenylphosphane without using any metal catalyst

+2 e

+2 e -2 e

2 ROH

2 RO-

ANODECATHODE

DC power
supply

- 2 e
P4

(O)P(OR)3 up to 90%
(O)PH(OR)2 up to 60%
[P(O)(OR)2]2O up to 80%
H3PO3 (80%)

X-

X+

X = I, Br

Scheme 3.33
Electrochemical process for

the transformation of P4 into

phosphates and

phosphorous oxyacids

P4 + 12 ROH + 4 H2O
±20 e-

4 (RO)3 PO + 10 H2

Scheme 3.34 Electrochemical synthesis of organophosphates

P4 + 12 R2NH + 4 ROH
±20 e-

4 (NR2)3 PO + 10 H2

Scheme 3.35 Electrochemical synthesis of triamidophosphates
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as shown in Scheme 3.36. The process patented by Budnikova et al. works under

mild conditions [62] and results in the selective formation of triphenylphosphane

with up to 82% yield relative to P4.

To shed light on the reaction mechanism, it was investigated the reactivity of

organozinc species, as diphenylzinc, in the presence of white phosphorus outside

the electrochemical cell. In the final reaction mixture, only phenylphosphane and

diphenyl phosphane were identified, demonstrating that via the transition-metal

mediated synthesis the process is not selective and stops at the product with

maximum two phosphorus-carbon bonds [63]. On the other hand, under electro-

chemical conditions using zinc as sacrificial anode, the interactions of electro-

generated organozinc reagents with P4 causes the opening of all P-P bonds of the

tetrahedron, resulting in the selective formation of organophosphorus compounds

with three phosphorus-carbon bonds.

In conclusion, the interest in the electrosynthesis of organophosphorus com-

pounds from P4 arises from a series of advantages compared to common chemical

methods: (a) mild conditions required by the process (ambient pressure and tem-

perature); (b) atom economy (the supporting electrolyte can be recycled at the end

of the process); (c) high environmentally safety, avoiding the use of chlorinated

reagents; (d) the electrosynthesis can be highly selective, affording high purity

products.

3.7 Hypophosphorous Pathway: From H3PO2 and Its
Alkali Salts to Organophosphorus Compounds

In the way to avoid PCl3 as P-source for the preparation of organophosphorus

compounds, many efforts have been devoted either to functionalize directly ele-

mental phosphorus, both allotropes, white and red, or to transform elemental

phosphorus into a variety of different inorganic phosphorus compounds as

phosphane (PH3) [64], hypophosphorous acid (H3PO2) and its alkali salts [65] as

shown in Scheme 3.37.

However, white and red phosphorus usually uses hard conditions such as the

superbasic system: aqueous solution KOH (86%)/DMSO or HMPA/organic sub-

strate (Trofimov-Gusarova reaction), and PH3 is a highly toxic and pyrophoric gas.

Nevertheless, as stated in the beginning of this chapter, all of them, together with

the highly reactive and hazardous PCl3, are currently the basis of organophosphorus

manufacturing [66].

P
P

P

P
+

X

X = Br, I
DMF

Pt cathode
Zn anode

PPh3

Scheme 3.36
Electrochemical synthesis

of triphenylphosphane

directly from white

phosphorus
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The use of hypophosphorus acid and its derivatives in the synthesis of organo-

phosphorus compounds is nowadays becoming a widespread methodology, due to

its low toxicity and low environmental impact in comparison with PCl3.

3.7.1 Phosphorylation with Elemental Phosphorus

While white phosphorus is formed by single tetrahedral molecules endowed with a

certain tension due to ring strain, which makes it highly unstable and reactive, red

phosphorus has a polymeric structure, where one of the P-P bond of the P4
tetrahedron is broken and one additional bond is formed with a neighboring

tetrahedron to form a chain-like structure. This polymeric network of P-atoms

reduces strain and reactivity in comparison to the white allotrope and gives greater

stability. The activation of red phosphorus requires therefore harsher treatments.

According to the procedure developed by Trofimov and Gusarova in the late 1980s,

using “superbasic” conditions, as aqueous KOH/DMSO under heating or micro-

wave irradiation, directly convert a mixture of red phosphorus and unsaturated

organic compounds, as alkenes and alkynes, into primary, secondary and tertiary

phosphanes and phosphane oxides. A similar procedure was applied by the same

authors to carry out the direct phosphorylation of alkenes and alkynes with P4, but

using milder conditions, i.e. shorter reaction time and heating at lower temperature.

From the mechanistic viewpoint, it is believed that in such heterogeneous highly

basic media, KOH/DMSO (or HMPA), KOH/organic solvent/phase-transfer cata-

lyst as shown in Scheme 3.38, highly active P-centered nucleophiles

350°C Pred

OH, H2O
H2PO2

H H3PO2

PH3

P4

(50,000, 45.4
kt∙a-1 ton/y)

(10,000, 9.09
kt∙a-1 ton/y)

OH  /Organic solvent
organic substrate

aldehydes or alkenes

(1,500, 4.09
kt∙a-1 ton/y)

OH  /Organic solvent/organic substrate

Trofimov-Gusarova reaction

Scheme 3.37 Access to organophosphorus compounds avoiding the use of chlorine
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(as polyphosphides and polyphosphinites) are formed and prone to interact with the

suitable electrophile (styrenes, vinylpyridines, acetylenes and similar) [67].

A further development has been lately introduced by Trofimov et al. which

consists in the preparation of nanocomposites of red phosphorus, nano-Pn, with

carbon, graphite or organophosphorus inclusions, obtained by radiation-induced

polymerization (60Co γ-radiation) of P4 at room temperature [68]. Nano-Pn contain

mainly phosphorus (80%), the rest is carbon, oxygen and hydrogen and consist of

nanoparticles having diameter in the range of 30–50 nm. Interestingly, nano-Pn
have shown higher reactivity in the phosphorylation of styrene and its derivatives

compared to common red phosphorus, see Scheme 3.38.

3.7.2 Phosphorylation with PH3

The approach based on elemental phosphorus, white or red, does not solve the

problem of phosphorus atom economy, since not all P-atoms of the reagent are

found in the final product, but some are lost in the process usually as unidentified

by-products. In this respect, PH3 and MH2PO2 (M¼H, metal, alkyl) have the

potential to incorporate all the phosphorus content into an organic product. Alkali

hypophosphites (and consequently hypophosphorus acid) and PH3 come from the

alkaline hydrolysis of white phosphorus, which is still nowadays a process not fully

understood and its improvement would be desirable. PH3 is a highly toxic and

pyrophoric gas requiring very careful handling, its use is therefore strongly limited

to small amounts in the electronic industry and as a starting material for the

synthesis of trialkylphosphanes, R3P, and related compounds. Since the pioneer

work of Rauhut et al. [40] and later by King et al. [41] who described the

nucleophilic addition of PH3 to the C-C double bond of alkenes bearing strong

electron-withdrawing substituents, in the presence of bases, further developments

have been studied by Trofimov and co-workers [37]. Using as phosphorylating

agent the mixture PH3/H2 coming from the basic hydrolysis of red phosphorus, they

performed the hydrophosphination of weakly electrophilic double bonds of aryl-

and heteroarylethene affording previously unknown or difficult to prepare second-

ary or tertiary phosphanes as shown in Scheme 3.39.

KOH/DMSO
H2OPred or P4 or nano-Pn

Ar
+

N
N N

N
P

O

from Pred: 70-75°C, 3h, 52%
from P4: RT, 5-6h, 72%
from nano-Pn: RT, 5-6h, 48%

Scheme 3.38 Phosphorylation of elemental phosphorus using “superbasics” conditions

(Trofimov-Gurasova reaction)
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As in the phosphorylation with elemental phosphorus, strong basic conditions

have been used, notwithstanding the reaction goes to completion in a selective way,

working at atmospheric pressure of PH3, which constitutes a great advantage.

Previously, PH3 was added to styrene in the presence of a radical initiator under

elevated phosphane pressure [42] to give a mixture of primary, secondary or tertiary

phosphanes. In the process discovered by Trofimov, the pathway is not radical but

entails a nucleophilic addition of PH2
�, generated from PH3 under strong basic

conditions, to the olefinic bond in the presence of water.

3.7.3 Organophosphorus Compounds from H3PO2 or Its
Salts

Owing to the problem of toxicity and handling related to PH3, only MH2PO2 and/or

their derivatives represent a real alternative to PCl3. The higher homologue, H3PO3,

currently produced from the hydrolysis/alcoholysis of PCl3, is much less reactive

than H3PO2, so it is not a valuable option. Hypophosphorous acid, which can be

prepared by boiling white phosphorus with an inorganic base and subsequent

acidification, represents a much more environmentally benign phosphorous source

than PCl3, coming from the high temperature reaction of white phosphorus and

chlorine. Hypophosphorous acid and its salts, being more easily handled and less

toxic than other P-sources (P4, red P, PCl3, PH3), constitute an industrial commod-

ity, inexpensive and highly versatile. The key challenge is to find out the shortest

pathway leading to the desired organophosphorus compound from the

hypophosphorous acid or its derivatives, in particular H-phosphinate, H-phosphinic
acid, H-phosphonate diester, H-phosphonate monoester, phosphonate, phosphinate

and hypophosphite esters have the great advantage to offer access to various

functional groups, see Scheme 3.40.

Unexpectedly, hypophosphites have not received a great attention yet from the

industry, one of the best examples is the production of the heart drug Monopril, in

PH3 / H2 +

H

R

KOH/DMSO(H2O)
Ar

H P
R

R

R = EDG

P
R

R
R

EDG = Me, tert-Bu, MeO.
N

Me

45°-96°C

45°-120°C

Scheme 3.39 Phosphorilation of PH3 using alkenes under harsh conditions
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which the radical addition of H3PO2 to olefins, initiated by AIBN, is employed

(Scheme 3.41) [69].

The other industrial process patented [70] and developed by Montchamp et al. is

the synthesis of the herbicide Glyphosate, in which H3PO2 or its salts are converted

O
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O
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O
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Scheme 3.40 Synthetic versatility of hypophosphorous acid its salts and their derivatives. (a) (b)
[70, 83, 158], (c) [131–134], (d ) (e) [69, 83, 131, 132, 135, 136, 144, 145, 147], (e) (m) [139, 147],
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[103], (�i2) (i3) [150], ( j1) [83, 151], (�j1) [152–155], ( j2) [113–137], ( j3) [157], ( j4)
[155, 157], (k1) [155, 156]

50% H3PO2 aq.
AIBN

MeOH, reflux

PO2H2

yield: 93%

MONOPRIL

Scheme 3.41 Radical addition of H3PO2 to a terminal double bond in the synthetic pathway to the

drug Monopril
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first to an alkyl phosphinate and then to anH-phosphonate diester, thus avoiding the
use of PCl3 as shown in Scheme 3.42.

The addition of H3PO2 to olefins under radical conditions was discovered by

Williams and Hamilton [71] in 1955. Since then, improvements to the reaction were

carried out by Nifant’ev, though the low solubility of H3PO2 and of its sodium salt

in organic solvents, the need of high initiation temperature and large amounts of

initiator, usually AIBN, make this reaction quite unfeasible.

In 2001, Montchamp [72] published that the radical addition of

hypophosphorous derivatives to unsaturated hydrocarbons is feasible in mild con-

ditions at room temperature by using a trialkylborane and air as the initiator.

Another advantage of this methodology is its wide applicability with respect to

the kind of alkene and phosphinate reagent. Another important discovery by the

same group was the hydrophosphinylation of alkenes catalysed by palladium or

nickel [73]. It was shown that in the presence of a suitable phosphane ligand, i.e.
Xantphos, a low loading of palladium was enough to reach a complete conversion.

An heterogenous catalyst, stable in aqueous environment, was prepared by

supporting palladium on polystyrene and this allowed to carry out the reaction in

water, which was advantageous since in this medium hypo acid and hypophosphite

are perfectly soluble. On the other hand, the nickel-catalyzed hydrophosphinylation

was less effective, since it gave only up to 70% of conversion.

In the case of alkynes, the hydrophosphinylation in the presence of Et3B worked

well only for terminal ones, a nickel-catalysed reaction was developed to add alkyl

phosphinates to internal alkynes [74]. Pd2dba3 together with a suitable phosphane

ligand was used as a catalyst to accomplish a regioselective hydrophosphinylation

of terminal alkynes to either (E)- or (Z )- alkenes. Both palladium- and nickel-

catalyzed hydrophosphinylation proceed under microwave heating to deliver a high

yield of the desired product in a few minutes.

In the last years, the most used precursors in the synthesis of organophosphorus

compounds have been H-phosphinates [75–87], H-phosphonates [88–112],

H
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phosphonates [113–137] and H-phosphinic acids [138–149]. Although most of the

precursors are still synthesized from chlorinated derivatives, some research groups,

as Montchamp’s [65, 83], are exploring new synthetic pathways based on

hypophosphites and H-phosphinates. These synthetic procedures are working well

at laboratory scale, therefore the challenge in the coming years will be to transfer

the new synthetic routes based on hypophosphite to an industry level.
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