
Chapter 2
Lebesgue Sequence Spaces

Abstract In this chapter, we will introduce the so-called Lebesgue sequence spaces,
in the finite and also in the infinite dimensional case. We study some properties of
the spaces, e.g., completeness, separability, duality, and embedding. We also ex-
amine the validity of Hölder, Minkowski, Hardy, and Hilbert inequality which are
related to the aforementioned spaces. Although Lebesgue sequence spaces can be
obtained from Lebesgue spaces using a discrete measure, we will not follow that
approach and will prove the results in a direct manner. This will highlight some
techniques that will be used in the subsequent chapters.

2.1 Hölder and Minkowski Inequalities

In this section we study the Hölder and Minkowski inequality for sums. Due to their
importance in all its forms, they are sometimes called the workhorses of analysis.

Definition 2.1. The space �n
p, with 1 ≤ p < ∞, denotes the n-dimensional vector

space R
n for which the functional

‖x‖�n
p
=

(
n

∑
i=1

|xi|p
) 1

p

(2.1)

is finite, where x = (x1, . . . ,xn). In the case of p = ∞, we define �n
∞ as

‖x‖�n
∞
= sup

i∈{1,...,n}
|xi|.

�
From Lemma 2.4 we obtain in fact that‖·‖�n

p
defines a norm in R

n.
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24 2 Lebesgue Sequence Spaces

Example 2.2. Let us draw the unit ball for particular values of p for n = 2, as in
Figs. 2.1, 2.2, and 2.3.
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Fig. 2.1 Unit ball for �2
1
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Fig. 2.2 Unit ball for �2
∞

Lemma 2.3 (Hölder’s inequality). Let p and q be real numbers with 1 < p < ∞
such that 1

p +
1
q = 1. Then

n

∑
k=1

|xkyk| ≤
(

n

∑
k=1

|xk|p
)1/p(

n

∑
k=1

|yk|q
)1/q

. (2.2)
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Fig. 2.3 Unit ball for �2
2

for xk, yk ∈ R.

Proof. Let us take

α =
|xk|(

∑n
k=1 |xk|p

)1/p
, β =

|yk|(
∑n

k=1 |yk|q
)1/q

.

By Young’s inequality (1.15) we get

|xk||yk|(
∑n

k=1 |xk|p
)1/p (

∑n
k=1 |yk|q

)1/q
≤ 1

p
|xk|p

∑n
k=1 |xk|p +

1
q

|yk|q
∑n

k=1 |yk|q .

Termwise summation gives

∑n
k=1 |xk||yk|(

∑n
k=1 |xk|p

)1/p (
∑n

k=1 |yk|q
)1/q

≤ 1
p
+

1
q

and from this we get

n

∑
k=1

|xkyk| ≤
(

n

∑
k=1

|xk|p
)1/p(

n

∑
k=1

|yk|q
)1/q

.

��
We can interpret the inequality (2.2) in the following way: If x ∈ �n

p and y ∈ �n
q

then x�y ∈ �n
1 where � stands for component-wise multiplication and moreover

‖x�y‖�n
1
≤‖x‖�n

p
‖y‖�n

q
.
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Lemma 2.4 (Minkowski’s inequality). Let p ≥ 1, then

(
n

∑
k=1

|xk + yk|p
)1/p

≤
(

n

∑
k=1

|xk|p
)1/p

+

(
n

∑
k=1

|yk|p
)1/p

(2.3)

for xk, yk ∈ R.

Proof. We have

n

∑
k=1

|xk + yk|p =
n

∑
k=1

|xk + yk|p−1|xk + yk|

≤
n

∑
k=1

|xk||xk + yk|p−1 +
n

∑
k=1

|yk||xk + yk|p−1

By Lemma 2.3 we get

n

∑
k=1

|xk + yk|p ≤
⎡
⎣
(

n

∑
k=1

|xk|p
)1/p

+

(
n

∑
k=1

|yk|p
)1/p

⎤
⎦
(

n

∑
k=1

|xk + yk|(p−1)q

)1/q

.

Since
1
p
+

1
q
= 1, then p = (p−1)q, from which

n

∑
k=1

|xk + yk|p ≤
⎡
⎣
(

n

∑
k=1

|xk|p
)1/p

+

(
n

∑
k=1

|yk|p
)1/p

⎤
⎦
(

n

∑
k=1

|xk + yk|p
)1/q

,

then (
n

∑
k=1

|xk + yk|p
)1− 1

q

≤
(

n

∑
k=1

|xk|p
)1/p

+

(
n

∑
k=1

|yk|p
)1/p

,

which entails (2.3). ��

2.2 Lebesgue Sequence Spaces

We now want to extend the n-dimensional �n
p space into an infinite dimensional

sequence space in a natural way.

Definition 2.5. The Lebesgue sequence space (also known as discrete Lebesgue
space) with 1 ≤ p < ∞, denoted by �p or sometimes also by �p(N), stands for the set
of all sequences of real numbers x = {xn}n∈N such that ∑∞

k=1 |xk|p < ∞. We endow
the Lebesgue sequence space with the norm,

‖x‖�p = ‖{xn}n∈N‖�p =

(
∞

∑
k=1

|xk|p
)1/p

, (2.4)

where x ∈ �p. �
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We leave as Problem 2.24 to show that this is indeed a norm in �p, therefore
(�p,‖·‖�p

) is a normed space.

We will denote by R
∞ the set of all sequences of real numbers x = {xn}n∈N.

Example 2.6. The Hilbert cube H is defined as the set of all real sequences {xn}n∈N
such that 0 ≤ xn ≤ 1/n, i.e.

H := {x ∈ R
∞ : 0 ≤ xn ≤ 1/n}.

By the hyper-harmonic series we have that the Hilbert cube is not contained in �1

but is contained in all �p with p > 1. �
Let us show that �p is a subspace of the space R

∞. Let x and y be elements of �p

and α, β be real numbers. By Lemma 2.4 we have that

(
n

∑
k=1

|αxk +βyk|p
)1/p

≤ |α|
(

n

∑
k=1

|xk|p
)1/p

+ |β |
(

n

∑
k=1

|yk|p
)1/p

. (2.5)

Taking limits in (2.5), first to the right-hand side and after to the left-hand side,
we arrive at(

∞

∑
k=1

|αxk +βyk|p
)1/p

≤ |α|
(

∞

∑
k=1

|xk|p
)1/p

+ |β |
(

∞

∑
k=1

|yk|p
)1/p

, (2.6)

and this shows that αx+βy is an element of �p and therefore �p is a subspace of R∞.

The Lebesgue sequence space �p is a complete normed space for all 1 ≤ p ≤ ∞.
We first prove for the case of finite exponent and for the case of p = ∞ it will be
shown in Theorem 2.11.

Theorem 2.7. The space �p(N) is a Banach space when 1 ≤ p < ∞.

Proof. Let {xn}n∈N be a Cauchy sequence in �p(N), where we take the sequence

xn as xn = (x(n)1 ,x(n)2 , . . .). Then for any ε > 0 there exists an n0 ∈ N such that if
n, m ≥ n0, then ‖xn −xm‖�p < ε , i.e.⎛

⎝ ∞

∑
j=1

|x(n)j − x(m)
j |p

⎞
⎠

1/p

< ε , (2.7)

whenever n, m ≥ n0. From (2.7) it is immediate that for all j = 1,2,3, . . .

|x(n)j − x(m)
j |< ε , (2.8)

whenever n, m ≥ n0. Taking a fixed j from (2.8) we see that (x(1)j ,x(2)j , . . .) is a

Cauchy sequence in R, therefore there exists x j ∈ R such that limm→∞ x(m)
j = x j.
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Let us define x = (x1,x2, . . .) and show that x is in �p and limn→∞ xn = x.
From (2.7) we have that for all n, m ≥ n0

k

∑
j=1

|x(m)
j − x(n)j |p < ε p, k = 1,2,3, . . .

from which
k

∑
j=1

|x j − x(n)j |p =
k

∑
j=1

| lim
m→∞

x(m)
j − x(n)j |p ≤ ε p,

whenever n≥ n0, This shows that x−xn ∈ �p and we also deduce that limn→∞ xn = x.
Finally in virtue of the Minkowski inequality we have

⎛
⎝ ∞

∑
j=1

|x j|p
⎞
⎠

1/p

=

⎛
⎝ ∞

∑
j=1

|x(n)j + x j − x(n)j |p
⎞
⎠

1/p

≤
⎛
⎝ ∞

∑
j=1

|x(n)j |p
⎞
⎠

1/p

+

⎛
⎝ ∞

∑
j=1

|x j − x(n)j |p
⎞
⎠

1/p

,

which shows that x is in �p(N) and this completes the proof. ��
The next result shows that the Lebesgue sequence spaces are separable when the

exponent p is finite, i.e., the space �p admits an enumerable dense subset.

Theorem 2.8. The space �p(N) is separable whenever 1 ≤ p < ∞.

Proof. Let M be the set of all sequences of the form q = (q1,q2, . . . ,qn,0,0, . . .)
where n ∈N and qk ∈Q. We will show that M is dense in �p. Let x = {xk}k∈N be an
arbitrary element of �p, then for ε > 0 there exists n which depends on ε such that

∞

∑
k=n+1

|xk|p < ε p/2.

Now, since Q= R, we have that for each xk there exists a rational qk such that

|xk −qk|< ε
p
√

2n
,

then
n

∑
k=1

|xk −qk|p < ε p/2,

which entails

‖x−q‖p
�p
=

n

∑
k=1

|xk −qk|p +
∞

∑
k=n+1

|xk|p < ε p,

and we arrive at ‖x−q‖�p < ε . This shows that M is dense in �p, implying that �p is
separable since M is enumerable. ��
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With the notion of Schauder basis (recall the definition of Schauder basis in Def-
inition B.3), we now study the problem of duality for the Lebesgue sequence space.

Theorem 2.9. Let 1 < p < ∞. The dual space of �p(N) is �q(N) where 1
p +

1
q = 1.

Proof. A Schauder basis of �p is ek = {δk j} j∈N where k ∈ N and δk j stands for the
Kronecker delta, i.e., δk j = 1 if k = j and 0 otherwise. If f ∈ (�p)

∗, then f (x) =
∑k∈N αk f (ek), x = {αk}k∈N. We define T ( f ) = { f (ek)}k∈N. We want to show that
the image of T is in �q, for that we define for each n, the sequence xn = (ξ (n)

k )∞
k=1

with

ξ (n)
k =

{
| f (ek)|q

f (ek)
if k ≤ n and f (ek) = 0,

0 if k > n or f (ek) = 0.

Then

f (xn) = ∑
k∈N

ξ (n)
k f (ek) =

n

∑
k=1

| f (ek)|q.

Moreover

f (xn)≤ ‖ f‖‖xn‖p

= ‖ f‖
(

n

∑
k=1

|ξ (n)
k |p

) 1
p

= ‖ f‖
(

n

∑
k=1

| f (ek)|qp−p

) 1
p

= ‖ f‖
(

n

∑
k=1

| f (ek)|q
) 1

p

,

from which (
n

∑
k=1

| f (ek)|q
)1− 1

p

=

(
n

∑
k=1

| f (ek)|q
) 1

q

≤ ‖ f‖.
Taking n → ∞, we obtain

(
∞

∑
k=1

| f (ek)|q
) 1

q

≤ ‖ f‖

where { f (ek)}k∈N ∈ �q.
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Now, we affirm that:

(i) T is onto. In effect given b = (βk)k∈N ∈ �q, we can associate a bounded linear
functional g ∈ (�p)

∗, given by g(x) = ∑∞
k=1 αkβk with x = (αk)k∈N ∈ �p (the

boundedness is deduced by Hölder’s inequality). Then g ∈ (�p)
∗.

(ii) T is 1-1. This is almost straightforward to check.

(iii) T is an isometry. We see that the norm of f is the �q norm of T f

| f (x)|=
∣∣∣∣∣∑k∈Nαk f (ek)

∣∣∣∣∣
≤
(

∑
k∈N

|αk|p
) 1

p
(

∑
k∈N

| f (ek)|q
) 1

q

= ‖x‖
(

∑
k∈N

| f (ek)|q
) 1

q

.

Taking the supremum over all x of norm 1, we have that

‖ f‖ ≤
(

∑
k∈N

| f (ek)|q
) 1

q

.

Since the other inequality is also true, we can deduce the equality

‖ f‖=
(

∑
k∈N

| f (ek)|q
) 1

q

,

with which we establish the desired isomorphism f →{ f (ek)}k∈N.
��

The �p spaces satisfy an embedding property, forming a nested sequence of
Lebesgue sequences spaces.

Theorem 2.10. If 0 < p < q < ∞, then �p(N)� �q(N).

Proof. Let x ∈ �p, then ∑∞
n=1 |xn|p < ∞. Therefore there exists n0 ∈ N such that if

n ≥ n0, then |xn|< 1. Now, since 0 < p < q, then 0 < q− p and |xn|q−p < 1 if n > n0,
by which |xn|q < |xn|p if n > n0. Let M = max{|x1|q−p, |x2|q−p, . . . , |xn0 |q−p,1}, then

∞

∑
n=1

|xn|q =
∞

∑
n=1

|xn|p|xn|q−p < M
∞

∑
n=1

|xn|p <+∞,

implying that x ∈ �q.
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To show that �p(N) = �q(N), we take the following sequence xn = n−1/p for all

n ∈ N with 1 ≤ p < q ≤ ∞, and since p < q, then
q
p
> 1. Now we have

∞

∑
n=1

|xn|q =
∞

∑
n=1

1
nq/p

< ∞.

The last series is convergent since it is a hyper-harmonic series with exponent bigger
than 1, therefore x ∈ �q(N). On the other hand

∞

∑
n=1

|xn|p =
∞

∑
n=1

1
n

and we get the harmonic series, which entails that x /∈ �p(N). ��

2.3 Space of Bounded Sequences

The space of bounded sequences, denoted by �∞ or sometimes �∞(N), is the set of
all real bounded sequences {xn}n∈N (it is clear that �∞ is a vector space). We will
take the norm in this space as

‖x‖∞ = ‖x‖�∞ = sup
n∈N

|xn|, (2.9)

where x = (x1,x2, . . . ,xn, . . .). The verification that (2.9) is indeed a norm is left to
the reader.

An almost immediate property of the �∞-space is its completeness, inheriting this
property from the completeness of the real line.

Theorem 2.11. The space �∞ is a Banach space.

Proof. Let {xn}n∈N be a Cauchy sequence in �∞, where xn = (x(n)1 ,x(n)2 , . . .). Then
for any ε > 0 there exists n0 > 0 such that if m,n ≥ n0 then

‖xm −xn‖∞ < ε .

Therefore for fixed j we have that if m,n ≥ n0, then

|x(m)
j − x(n)j |< ε (2.10)

resulting that for all fixed j the sequence (x(1)j ,x(2)j , . . .) is a Cauchy sequence in R,

and this implies that there exists x j ∈ R such that limm→∞ x(m)
j = x j.

Let us define x = (x1,x2, . . .). Now we want to show that x ∈ �∞ and
limn→∞ xn = x.
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From (2.10) we have that for n ≥ n0, then

∣∣∣x j − x(n)j

∣∣∣=
∣∣∣∣ lim
n→∞

x(m)
j − x(n)j

∣∣∣∣≤ ε , (2.11)

since xn = {x(n)j } j∈N ∈ �∞, there exists a real number Mn such that
∣∣∣x(n)j

∣∣∣ ≤ Mn for

all j.
By the triangle inequality, we have

∣∣x j

∣∣≤ ∣∣∣x j − x(n)j

∣∣∣+ ∣∣∣x(n)j

∣∣∣≤ ε +Mn

whenever n≥ n0, this inequality being true for any j. Moreover, since the right-hand
side does not depend on j, therefore {x j} j∈N is a sequence of bounded real numbers,
this implies that x = {x j} j∈N ∈ �∞.

From (2.11) we also obtain

‖xn −x‖�∞ = sup
j∈N

∣∣∣x(n)j − x j

∣∣∣< ε .

whenever n ≥ n0. From this we conclude that limn→∞ xn = x and therefore �∞ is
complete. ��

The following result shows a “natural” way to introduce the norm in the �∞ space
via a limiting process.

Theorem 2.12. Taking the norm of Lebesgue sequence space as in (2.4) we have
that limp→∞ ‖x‖�p = ‖x‖�∞ .

Proof. Observe that |xk| ≤
(
∑n

k=1 |xk|p
) 1

p , therefore |xk| ≤ ‖x‖�p for k = 1,2,3, . . . ,n,
from which

sup
1≤k≤n

|xk| ≤ ‖x‖�p ,

whence
‖x‖�∞ ≤ liminf

p→∞
‖x‖�p . (2.12)

On the other hand, note that

(
n

∑
k=1

|xk|p
) 1

p

≤
⎛
⎝ n

∑
k=1

(
sup

1≤k≤n
|xk|

)p
⎞
⎠

1
p

≤ n
1
p ‖x‖�∞ ,

then for all ε > 0, there exists N such that

‖x‖�p ≤
(

N

∑
k=1

|xk|p + ε

) 1
p

≤
(
‖x‖p

�∞
N + ε

) 1
p ≤ ‖x‖�∞

(
N +

ε
‖x‖p

�∞

) 1
p

,

therefore
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limsup
p→∞

‖x‖�p ≤ ‖x‖�∞ . (2.13)

Combining (2.12) and (2.13) results

‖x‖�∞ ≤ liminf
p→∞

‖x‖�p ≤ limsup
p→∞

‖x‖�p ≤ ‖x‖�∞ ,

and from this we conclude that limp→∞ ‖x‖�p = ‖x‖�∞ . ��
Now we study the dual space of �1 which is �∞.

Theorem 2.13. The dual space of �1 is �∞.

Proof. For all x ∈ �1, we can write x = ∑∞
k=1 αkek, where ek = (δk j)

∞
j=1 forms a

Schauder basis in �1, since

x−
n

∑
k=1

αkek = (0, . . . ,0︸ ︷︷ ︸
n

,αn+1, . . .)

and ∥∥∥∥∥x−
n

∑
k=1

αkek

∥∥∥∥∥
�1

=

∥∥∥∥∥
∞

∑
k=n+1

αkek

∥∥∥∥∥
�1

→ 0

since the series ∑∞
k=1 αkek is convergent.

Let us define T ( f ) = { f (ek)}k∈N, for all f ∈ (�1)
∗. Since f (x) = ∑k∈N αk f (ek),

then | f (ek)≤‖ f‖, since ‖ek‖�1 = 1. In consequence, supk∈N | f (ek)| ≤ ‖ f‖, therefore
{ f (ek)}k∈N ∈ �∞.

We affirm that:

(i) T is onto. In fact, for all b = {βk}k∈N ∈ �∞, let us define q : �1 → R as g(x) =
∑k∈N αkβk if x = {αk}k∈N ∈ �∞. The functional g is bounded and linear since

|g(x)| ≤ ∑
k∈N

|αkβk| ≤ sup
k∈N

|βk| ∑
k∈N

|αk|= ‖x‖�1 · sup
k∈N

|βk|,

then g ∈ (�1)
∗. Moreover, since g(ek) = ∑ j∈N δk jβ j,

T (g) = {g(ek)}k∈N = {βk}k∈N = b.

(ii) T is 1-1. If T f1 = T f2, then f1(ek) = f2(ek), for all k. Since we have
f1(x) = ∑k∈N αk f1(ek) and f2(x) = ∑k∈N αk f2(ek), then f1 = f2.

(iii) T is an isometry. In fact,

‖T f‖∞ = sup
k∈N

| f (ek)| ≤ ‖ f‖ (2.14)
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and

| f (x)|=
∣∣∣∣∣∑k∈Nαk f (ek)

∣∣∣∣∣≤ sup
j∈N

| f (ek)| ∑
k∈N

|αk|= ‖x‖�1 sup
k∈N

| f (ek)|.

Then
‖ f‖ ≤ sup

k∈N
| f (ek)|= ‖T f‖∞. (2.15)

Combining (2.14) and (2.15) we get that ‖T f‖∞ = ‖ f‖. We thus showed that
the spaces (�1)

∗ and �∞ are isometric.
��

One of the main difference between �p and �∞ spaces is the separability issue. The
space of bounded sequence �∞ is not separable, contrasting with the separability of
the �p spaces whenever 1 ≤ p < ∞, see Theorem 2.8.

Theorem 2.14. The space �∞ is not separable.

Proof. Let us take any enumerable sequence of elements of �∞, namely {xn}n∈N,
where we take the sequences in the form

x1 =
(

x(1)1 ,x(1)2 ,x(1)3 , . . . ,x(1)k , . . .
)

x2 =
(

x(2)1 ,x(2)2 ,x(2)3 , . . . ,x(2)k , . . .
)

x3 =
(

x(3)1 ,x(3)2 ,x(3)3 , . . . ,x(3)k , . . .
)

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
xk =

(
x(k)1 ,x(k)2 ,x(k)3 , . . . ,x(k)k , . . .

)
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

We now show that there exists an element in �∞ which is at a distance bigger than
1 for all elements of {xn}n∈N, showing the non-separability nature of the �∞ space.

Let us take x = {xn}n∈N as

xn =

{
0, if |x(n)n | ≥ 1;

xn = x(n)n +1, if |x(n)n |< 1.

It is clear that x ∈ �∞ and ‖x−xn‖�∞
> 1 for all n ∈ N, which entails that �∞ is not

separable. ��
We now define some subspaces of �∞, which are widely used in functional anal-

ysis, for example, to construct counter-examples.

Definition 2.15. Let x = (x1,x1, . . .).
By c we denote the subspace of �∞ such that limn→∞ xn exists and is finite.
By c0 we denote the subspace of �∞ such that limn→∞ xn = 0.
By c00 we denote the subspace of �∞ such that supp(x) is finite. �
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These newly introduced spaces enjoy some interesting properties, e.g., c0 is the
closure of c00 in �∞. For more properties, see Problem 2.20.

2.4 Hardy and Hilbert Inequalities

We now deal with the discrete version of the well-known Hardy inequality.

Theorem 2.16 (Hardy’s inequality). Let {an}n∈N be a sequence of real positive
numbers such that ∑∞

n=1 ap
n < ∞. Then

∞

∑
n=1

(
1
n

n

∑
k=1

ak

)p

≤
(

p
p−1

)p ∞

∑
n=1

ap
n .

Proof. Let αn =
An
n where An = a1 +a2 + · · ·+an, i.e., An = nαn, then

a1 +a2 + · · ·+an = nαn, (2.16)

from which we get that an = nαn − (n−1)αn−1. Let us consider now

α p
n − p

p−1
α p−1

n an = α p
n − p

p−1

[
nαn − (n−1)αn−1

]
α p−1

n

= α p
n − pn

p−1
αnα p−1

n +
p(n−1)

p−1
αn−1α p−1

n .

In virtue of Corollary 1.10 we have

p(n−1)
p−1

αn−1α p−1
n ≤ p(n−1)

p−1

α p
n−1

p
+

p(n−1)
p−1

αq(p−1)
n

q

=
n−1
p−1

α p
n−1 +

p(n−1)
p−1

(
1− 1

p

)
α p

n

=
n−1
p−1

α p
n−1 +(n−1)α p

n ,

therefore

α p
n − p

p−1
α p−1

n an ≤ α p
n − pn

p−1
α p

n +
n−1
p−1

α p
n−1 +(n−1)α p

n

=
pα p

n −α p
n − pnα p

n

p−1
+

(n−1)α p
n−1 +(p−1)(n−1)α p

n

p−1

=
pα p

n −α p
n − pnα p

n +(n−1)α p
n−1 +(pn− p−n+1)α p

n

p−1

=
1

p−1

[
(n−1)α p

n−1 −nα p
n

]
,



36 2 Lebesgue Sequence Spaces

from which

N

∑
n=1

α p
n − p

p−1

N

∑
n=1

α p−1
n an ≤ 1

p−1

N

∑
n=1

[
(n−1)α p

n−1 −nα p
n

]
=

1
p−1

[−α p
1 +α p

1 −2α p
2 + · · ·−Nα p

N

]
=− Nα p

N

p−1
≤ 0.

Then
N

∑
n=1

α p
n ≤ p

p−1

N

∑
n=1

α p−1
n an.

By Hölder’s inequality we have that

∞

∑
n=1

α p
n ≤ p

p−1

(
∞

∑
n=1

ap
n

) 1
p
(

∞

∑
n=1

αq(p−1)
n

) 1
q

=
p

p−1

(
∞

∑
n=1

ap
n

) 1
p
(

∞

∑
n=1

α p
n

) 1
q

,

then (
∞

∑
n=1

α p
n

)1− 1
q

≤ p
p−1

(
∞

∑
n=1

ap
n

) 1
p

and this implies
∞

∑
n=1

(
1
n

∞

∑
k=1

ak

)p

≤
(

p
p−1

)p ∞

∑
n=1

ap
n .

��
We now want to study the so-called Hilbert inequality. We need to remember

some basic facts about complex analysis, namely

π
sin(πz)

=
1
z
+

∞

∑
n=1

(−1)n

(
1

z+n
+

1
z−n

)
. (2.17)

Let us consider the function

f (z) =
1

p
√

z(z+1)
(p > 1)

defined in the region D1 = {z ∈ C : 0 < |z| < 1}. We want to obtain the Laurent
expansion. In fact, if |z|< 1, then
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1
1+ z

=
1

1− (−z)
=

∞

∑
n=0

(−z)n =
∞

∑
n=0

(−1)nzn,

therefore

f (z) =
∞

∑
n=0

(−1)nzn− 1
p . (2.18)

By the same reasoning, let us consider

g(z) =
1

z1+ 1
p

(
1+ 1

z

)

defined in the region D2 = {z ∈ C : |z|> 1}. Since
∣∣∣ 1

z

∣∣∣< 1, then

1

1+ 1
z

=
1

1− (− 1
z )

=
∞

∑
n=0

(
−1

z

)n

=
∞

∑
n=0

(−1)nz−n.

Therefore

g(z) =
∞

∑
n=0

(−1)nz−n−1− 1
p . (2.19)

We now obtain some auxiliary inequality before showing the validity of the
Hilbert inequality (2.20).

Theorem 2.17 For each positive number m and for all real p > 1 we have

∞

∑
n=1

m
1
p

n
1
p (m+n)

≤ π

sin
(

π
p

) .
Proof. Note that

∞

∑
n=1

m
1
p

n
1
p (m+n)

≤
∞̂

0

m
1
p

x
1
p (m+ x)

dx

=

∞̂

0

dz

z
1
p (1+ z)

=

1ˆ

0

dz

z
1
p (1+ z)

+

∞̂

1

dz

z1+ 1
p

(
1+ 1

z

) .
By (2.18) and (2.19) we deduce that

∞

∑
n=1

m
1
p

n
1
p (m+n)

≤
1ˆ

0

(
∞

∑
n=0

(−1)nzn− 1
p

)
dz+

∞̂

1

(
∞

∑
n=0

(−1)nz−n−1− 1
p

)
dz
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=
∞

∑
n=0

(−1)n

1ˆ

0

zn− 1
p dz+

∞

∑
n=0

(−1)n

∞̂

1

z−n−1− 1
p dz

=
∞

∑
n=0

(−1)n

n− 1
p +1

+
∞

∑
n=0

(−1)n

1
p +n

=
∞

∑
n=1

(−1)n

1
p −n

+ p+
∞

∑
n=1

(−1)n

1
p +n

= p+
∞

∑
n=1

(−1)n

(
1

1
p −n

+
1

1
p +n

)

=
π

sin
(

π
p

) .
This last one is obtained by (2.17) with z = 1

p . ��
Remark 2.18. In fact the proof of Theorem 2.17 is a two line proof if we remember
that

∞̂

0

xα−1

(1+ x)α+β dx = B(α,β )

and the fact that B(1−α,α) = π
sinπα , 0 < α < 1, see Appendix C. �

Before stating and proving the Hilbert inequality we need to digress into the
concept of double series. Let

{
xk, j

}
j,k∈N be a double sequence, viz. a real-valued

function x : N×N→R. We say that a number L is the limit of the double sequence,
denoted by

lim
k, j→∞

xk, j = L,

if, for all ε > 0 there exists n = n(ε) such that

|xk, j −L|< ε

whenever k > n and j > n. We can now introduce the notion of double series using
the known construction for the series, namely

∞

∑
k, j=1

xk, j = Σ

if there exists the double limit

lim
k, j→∞

Σk, j = Σ
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where Σk, j is the rectangular partial sum given by

Σk, j =
k

∑
m=1

j

∑
n=1

xm,n.

A notion related to the double series is the notion of iterated series, given by

∞

∑
k=1

⎛
⎝ ∞

∑
j=1

xk, j

⎞
⎠ and

∞

∑
j=1

(
∞

∑
k=1

xk, j

)
.

We can visualize the iterated series in the following way. We first represent the
double sequence as numbers in an infinite rectangular array and then sum by lines
and by columns in the following way:

x1,1 x1,2 x1,3 · · · → ∑∞
j=1 x1, j =: L1

x2,1 x2,2 x2,3 · · · → ∑∞
j=1 x2, j =: L2

x3,1 x3,2 x3,3 · · · → ∑∞
j=1 x2, j =: L3

...
...

...
↓ ↓ ↓

C1 := ∑∞
k=1 xk,1 C2 := ∑∞

k=1 xk,2 C3 := ∑∞
k=1 xk,3

and now the iterated series are given by ∑∞
j=1 Cj and ∑∞

k=1 Lk.
It is necessary some caution when dealing with iterated series since the equality

∑∞
j=1 Cj =∑∞

k=1 Lk is in general not true even if the series converges, as the following
example shows

1
2 − 1

2 0 0 0 · · · → 0
0 3

4 − 3
4 0 0 · · · → 0

0 0 7
8 − 7

8 0 · · · → 0
0 0 0 15

16 − 15
16 · · · → 0

...
...

...
...

...
↓ ↓ ↓ ↓ ↓
1
2

1
4

1
8

1
16

1
32

and clearly the obtained series are different. Fortunately we have a Fubini type the-
orem for series which states that when a double series is absolutely convergent then
the double series and the iterated series are the same, i.e.

∞

∑
k, j=1

xk, j =
∞

∑
k=1

⎛
⎝ ∞

∑
j=1

xk, j

⎞
⎠=

∞

∑
j=1

(
∞

∑
k=1

xk, j

)
.

Not only that, it is also possible to show a stronger result, that if the terms of an
absolutely convergent double series are permuted in any order as a simple series,
their sum tends to the same limit.
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Theorem 2.19 (Hilbert’s inequality). Let p,q > 1 be such that 1
p +

1
q = 1 and

{an}n∈N, {bn}n∈N be sequences of nonnegative numbers such that ∑∞
m=1 ap

m and
∑∞

n=1 bq
n are convergent. Then

∞

∑
m,n=1

ambn

m+n
≤ π

sin
(

π
p

)
(

∞

∑
m=1

ap
m

) 1
p
(

∞

∑
n=1

bq
n

) 1
q

. (2.20)

Proof. Using Hölder’s inequality and Proposition 2.17 we get

∞

∑
m,n=1

ambn

m+n

=
∞

∑
m,n=1

m
1
pq

n
1
pq

am

(m+n)
1
p

n
1
pq

m
1
pq

bn

(m+n)
1
q

≤
⎛
⎝ ∞

∑
m,n=1

(
m

1
q

n
1
q (m+n)

)
ap

m

⎞
⎠

1
p
⎛
⎝ ∞

∑
m,n=1

(
n

1
p

m
1
p (m+n)

)
bq

n

⎞
⎠

1
q

=

⎛
⎝ ∞

∑
m=1

(
∞

∑
n=1

m
1
q

n
1
q (m+n)

)
ap

m

⎞
⎠

1
p
⎛
⎝ ∞

∑
n=1

(
∞

∑
m=1

n
1
p

m
1
p (m+n)

)
bq

n

⎞
⎠

1
q

≤
(

∞

∑
m=1

π
sin π

q

ap
m

) 1
p
(

∞

∑
n=1

π
sin π

p

bq
n

) 1
q

≤
(

∞

∑
m=1

π
sin π

p

ap
m

) 1
p
(

∞

∑
n=1

π
sin π

p

bq
n

) 1
q

=

(
π

sin π
p

) 1
p
(

π
sin π

p

) 1
q
(

∞

∑
m=1

ap
m

) 1
p
(

∞

∑
n=1

bq
n

) 1
q

=
π

sin π
p

(
∞

∑
m=1

ap
m

) 1
p
(

∞

∑
n=1

bq
n

) 1
q

,

which shows the result. ��

2.5 Problems

2.20. Prove the following properties of the subspaces of �∞ introduced in Defini-
tion 2.15

(a) The space c0 is the closure of c00 in �∞.
(b) The space c and c0 are Banach spaces.
(c) The space c00 is not complete.
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2.21. Show that (s,ρ) is a complete metric space, where s is the set of all sequences
x = (x1,x2, . . .) and ρ is given by

ρ(x,y) =
∞

∑
k=1

1
2k

|xk − yk|
1+ |xk − yk| .

2.22. Let �p(w), p ≥ 1 be the set of all real sequences x = (x1,x2, . . .) such that

∞

∑
k=1

|xk|pwk < ∞

where w = (w1,w2, . . .) and wk > 0. Does N : �p(w)−→ R given by

N (x) :=

(
∞

∑
k=1

|xk|pwk

) 1
p

defines a norm in �p(w)?

2.23. As in the case of Example 2.2, draw the unit ball for �3
1, �3

∞, and �3
2.

2.24. Prove that (2.4) defines a norm in the space �p(N).

2.25. Prove the Cauchy-Bunyakovsky-Schwarz inequality

(
n

∑
i=1

xiyi

)2

�
(

n

∑
i=1

x2
i

)(
n

∑
i=1

y2
i

)

without using Jensen’s inequality. This inequality is sometimes called Cauchy,
Cauchy-Schwarz or Cauchy-Bunyakovsky.
Hint: Analyze the quadratic form ∑n

i=1 (xiu+ yiv)
2 = u2 ∑n

i=1 x2
i + 2uv∑n

i=1 xiyi +
v2 ∑n

i=1 y2
i .

2.26. Let {an}n∈Z and {bn}n∈Z be sequences of real numbers such that

k =
∞

∑
n=−∞

|an|< ∞ and
∞

∑
m=−∞

|bm|p < ∞

where p > 1. Let Cn = ∑∞
m=−∞ an−mbm. Prove that

(a) |Cn| ≤ k1/q
(
∑∞

m=−∞ |an−m||bm|p
)1/p

where 1
p +

1
q = 1.

(b)
(
∑∞

n=−∞ |Cn|p
)1/p ≤ k

(
∑∞

n=−∞ |bn|p
)1/p

.

2.27. If an > 0 for n = 1,2,3, . . . show that

∞

∑
n=1

n
√

a1a2 · · ·an ≤ e
∞

∑
n=1

an.
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If a1 ≥ a2 ≥ ·· · ≥ ak ≥ ·· · ≥ an ≥ 0 and α ≥ β > 0. Demonstrate that

(
n

∑
k=1

aα
k

)1/α

≤
(

n

∑
k=1

aβ
k

)1/β

.

2.28. Use Theorem 10.5 to show the Theorem 2.16.
Hint: Choose a sequence {an}n∈N of positive numbers such that an+1 ≥ an ∀n ∈N.
Consider AN = ∑N

n=1 an and define f = ∑∞
n=1 anχ(n−1,n).

2.29. Demonstrate that �1 is not the dual space of �∞.

2.30. Show that
‖x‖�q

≤‖x‖�p
(2.21)

whenever 1 ≤ p < q < ∞.
Hint: First, show the inequality (2.21) when ‖x‖�p

≤ 1. Use that result and the ho-
mogeneity of the norm to get the general case.

2.6 Notes and Bibliographic References

The history of Hölder’s inequality can be traced back to Hölder [32] but the paper of
Rogers [61] preceded the one from Hölder just by one year, for the complete history
see Maligranda [48].

The Minkowski inequality is due to Minkowski [51] but it seems that the classical
approach to the Minkowski inequality via Hölder’s inequality is due to Riesz [58].

The Hardy inequality (Theorem 2.16) appeared in Hardy [26] as a generalization
of a tool to prove a certain theorem of Hilbert.

According to Hardy, Littlewood, and Pólya [30], the Hilbert inequality (Theo-
rem 2.19) was included by Hilbert for p = 2 in his lectures, and it was published by
Weyl [82], the general case p > 1 appeared in Hardy [27].

The Cauchy-Bunyakovsky-Schwarz inequality, which appears in Problem 2.25,
was first proved by Cauchy [6].
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