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Preface

This book is not a treatise on Lebesgue spaces, since this would not be a feasible
work due to the extension of their usage, e.g., in physics, probability, statistics,
economy, engineering, among others. The objective is more realistic, being the in-
troduction of the reader to the study of different variants of Lebesgue spaces and the
common techniques used in this area. Since the Lebesgue spaces measure integra-
bility of a function, they can be seen as the father of all integrable function spaces
where more fine properties of functions are sought.

We can find many books where the subject of Lebesgue spaces is touched upon,
for example, books dealing with measure theory and integration. In the literature,
we can also find some books dealing with Sobolev spaces and they dedicate, in
general, not more than one chapter to Lebesgue spaces. A book dedicated solely
to Lebesgue spaces is unknown to the authors. With this in mind, we decided to
write a book devoted exclusively to Lebesgue spaces and their direct derived spaces,
viz., Marcinkiewicz spaces, Lorentz spaces, and the more recent variable exponent
Lebesgue spaces and grand Lebesgue spaces and also to basic harmonic analysis in
those spaces. We think this will be a welcome to any serious student of analysis,
since it will give access to information that otherwise is spread among different
books and articles, as well as more than two hundred problems.

For example, one of the attractiveness of Lorentz and weak Lebesgue spaces is
that the subject is sufficiently concrete and yet the spaces have fine structure and
importance in applications. Moreover, the area is quite accessible for young people,
leading them to gain sophistication in mathematical analysis in a relatively short
time during their graduate studies. These features, among others, make the subject
particularly interesting.

We think it is appropriate to comment on the choice of the writing style and some
peculiarities. In the first part dealing with function spaces, we tried to be as thorough
as possible in the proofs, although this could sound prolix for some readers. Another
aspect is the inclusion of proofs of classical results that deviate from the standard
ones, e.g., in the proof of the Minkowski inequality, we used the classical approach

vii



viii Preface

via Holder’s inequality for the Lebesgue sequence space and the less-known di-
rect approach for the Lebesgue spaces. We also decided to include a chapter briefly
touching upon the so-called nonstandard Lebesgue spaces, namely, on variable ex-
ponent Lebesgue spaces and on grand Lebesgue spaces since these are areas where
intense research is being made nowadays. The topic of variable exponent spaces be-
came very fashionable in recent years, not only due to mathematical curiosity, but
also to the wide variety of their applications, e.g., in the modeling of electrorheolog-
ical fluids as well as thermorheological fluids, in the study of image processing, and
in differential equations with nonstandard growth. Grand Lebesgue spaces attracted
the attention of many researchers and turned out to be the right spaces in which
some nonlinear equations in the theory of PDEs have to be considered, among other
applications.

This text is addressed to anyone that knows measure theory and integration, func-
tional analysis, and rudiments of complex analysis.

Part of the content of this book has been tested with the students from Univer-
sidad Nacional de Colombia and also from the Pontificia Universidad Javeriana in
the classes of advanced topics in analysis and also in measure theory and integration.

Since many of the results were collected in personal notebooks throughout the
years, a considerable number of exact references were lost. We want to emphasize
that the content is NOT original of the authors, except maybe the rearrangement
of the topics and some (hopefully a small number) mistakes. If the reader finds
misprints and errors, please let us know.

H.R. was partially supported by the research project “Study of non-standard
Banach spaces”, ID-PPTA: 6326 in the Faculty of Sciences of the Pontificia Uni-
versidad Javeriana, Bogota, Colombia.

Bogota, Colombia René Erlin Castillo
Bogota, Colombia Humberto Rafeiro
October 2015
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Chapter 1
Convex Functions and Inequalities

All analysts spend half their time hunting through the literature
for inequalities which they want to use but cannot prove.
HARALD BOHR

Abstract Inequalities play an important role in Analysis, and since many inequalities
are just convexity in disguise, we get that convexity is one of the most important
tools in Analysis in general and not only in Convex Analysis. In this chapter we
will introduce the notion of convexity in its various formulations, and we give some
characterizations of convex functions and a few applications of convexity, namely,
some classical inequalities as well as not so known inequalities.

1.1 Convex Functions

The concept of convex function is a relatively new one, introduced in the begin-
nings of the 20th century, although it was implicitly used before. The importance
of convex functions, among other reasons, steams from the fact that amid nonlinear
functions, they are the ones closest in some sense to linear functions.

We now introduce the concept of convexity in a more analytical way, namely

Definition 1.1. Let f be a real-valued function defined on an interval (a,b). The
function is said to be convex in (a,b) if, for every x,y € (a,b), it satisfies

flx+(1—=1)y) <tf@)+(1-1)f(©) (1.1)

for all 0 < ¢ < 1. Similar definition can be given for a closed interval. Strict convex-
ity is when we have strict inequality in (1.1). Inequality (1.1) is sometimes called
Jensen’s inequality, although this is also reserved for the more general case (1.22).
A function is called concave if — f is convex. If f is both convex and concave, f is
said to be affine. @

The notion of convexity introduced in the Definition 1.1 has a very nice geometric
interpretation, namely, the graph of the function f is below the secant line that passes
through the points (a, f(a)) and (b, (b)), as shown in Figure 1.1.

© Springer International Publishing Switzerland 2016 1
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2 1 Convex Functions and Inequalities

V
S(x)
S(x)
””” tf(xa)+(1=1) /()
S(x) | St +(1=1)x)
X X Jr(i 7t)x2 X2 X

Fig. 1.1 Convexity defined by having the graph below the secant line.
It is possible to define convexity in a more geometric fashion, namely, a function
f is convex if its epigraph

Bpi(f) = {(xy) e R ixe (@), y> /()]
is a convex set (epigraph is also designated as supergraph). Both definitions of con-

vexity are equivalent, see Problem 1.15.
We can characterize convexity in a number of forms.

Y

Epi(/) J(x)

g

Fig. 1.2 Convexity defined via convex epigraph.



1.1 Convex Functions 3

Theorem 1.2. Let f be a real-valued function defined on [o, B]. Then f is convex in
(0, ] if and only if

(1.2)

witha <x < b in [o,b].

Proof. Taking the convexity of f and # = ;=% in (1.1), we get (1.2).

Conversely, let a <x <y <band 0 <t < 1, then 0 < 1 —1, then clearly that
tx<tyand (1 —t)x < (1 —t)yandso

x=tx+(1-t)x<tx+(1—-t)y<ty+(1—t)y=y
ie.
x<tx+(l—-t)y<y,
which, from hypothesis, we have

Flet (1-0y) ~ £ _ f0)—F ()
tx+(1—-t)y—x  y—x

and, as before, we get

flx+(1=1)y) <tf () +(1=1) f ().
O

As a consequence of the previous theorem we get the inequalities in (1.3) which
are quite important, and are sometimes referred to as the fundamental inequalities.

Corollary 1.3 Let f be a convex real-valued function defined on [ot, ] and a < x <
y<z<bin[c,p]. Then

(1.3)
y—x =X =y

Proof. Taking x,y,z such that x <y < z, then by Theorem 1.2 we have

f) —f) <f(Z)—f(X). (1.4)

y—x = 7—x

On the other hand x < y < z implies that —z < —y < —x or equivalently 0 < z—y <

. y . Ty
z— x, then we obtain 0 < =< 1. Taking t = =, we get




4 1 Convex Functions and Inequalities

then

) =f(y_xZ+Z_yx>

—X —X

and now from the convexity of f it follows that

FO) ST @+ T2 f )

N
|
=

f@-10) _ f&-f0)
=x z=y
which, together with (1.4), proves the fundamental inequalities (1.3). O

Definition 1.4. Let f be a real-valued function defined on an interval (a,b). The
function is said to have midpoint convexity in (a,b) if, for all x,y € (a,b), it satisfies

(55Y) < 37w+ 3000, (1)

Sometimes this convexity is also called convexity in the Jensen sense, J-convex and
midconvex. @

The following theorem tells us that we can obtain convexity just from conti-
nuity and midpoint convexity. Therefore, for nice functions, the two concepts are
equivalent.

Theorem 1.5. Let f be a real-valued continuous function defined in (a,b) such that
satisfies (1.5). Then f is convex in (a,b).

Proof. Proceeding by induction, let n € N. For n = 1, we have

f<;x+ (1—;>y) —r(532) <50+ (1-3) £0).

Suppose that, for 0 < k < 2", we have

/ <2"nx+ <12")y> <5l 0+ (125 )70

Now consider

k k k+1 k+1
X 2,1x+< Zn)y, =" x+< o )y

2k+1 2k+1\  xo+y 2k+1 2k+1
x+|2- Y, = ===y

Xo+Yyo = on on 2 T oontl X on+1



1.1 Convex Functions

and for all & < 2"*! choose k such that h = 2k + 1, then

h h +

< 5/ o)+ 5 00)

h h
<2n+1f(x)+<1_2n+1>f(y)'

Let A € (0,1], n € N then there exists k, € Z* such that

k, k,+1
— <A<
n n
from which we obtain that
. ky
T

From the continuity of f we have
f(Ax+(1=21)y) = f| lim ﬁx+ -2y
n—yoo N on

. kn kn
= lim f <2nx+ (1 ‘zn)y>

.k, . ky,
gigr;?f(x)—kl}gll (1 - 2n>f()’)

and we obtain f (Ax+(1—21)y) <Af(x)+(1=21)f(y).

a

One consequence of convexity is continuity, as stated in Theorem 1.6. Another
approach to prove continuity of convex functions is showing the existence of finite

left-hand and right-hand derivatives, see Problem 1.45.

Theorem 1.6. Let f be a real-valued convex function defined on (a,b). Then f is

continuous on (a,b).

Proof. Let x; be any point in (a,b) and 6 a positive real number such that the closed

ball of center x¢ and radius 6 is contained in (a,b), i.e.

Bs(xg) = {x€R:|[x—x| <8} C (a,b).

Let M = max { f (xo— &), f (xo+ &) }. We note that any x € Bs (x9) = (y1,y) where

vy =xo— 6 and y; = xo + 0 can be written in the following manner

_ X X

X 1
Y2—y1 Y2 =1

»
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and we obtain

Y2 —X X—)1
fx) < yzfylf(y1>+yzfy1f(y2)

which implies that f (x) < M, and this means that f is bounded in B (xp).
For x # xo, define u = & (sgn (x — xo)) ! then x has two possibilities:

(a) xisin (x,xo+u), or
(b) xisin (xg—u,xp).

Consider the possibility (a), i.e., xg < x < xo + u. From this we obtain

X— X0

0< <1
writing
fo XX |x — xo]
w6
we get
X—Xg=1tu (1.6)

operating properly in (1.6) we obtain

X t
=t 11 = —(xo—u).
x=t(xo+u)+( )Xo, X0 1—|—t+ T (xo —u)

Since f is convex

FO) 15 (o) 4 (1=1) £ (30), f0) S o f ()4 T flro—w) (L)

considering that f is bounded on Bg (x) and operating properly in (1.7) we obtain
—t (M= f(x0)) < f(x) = f(x0) <t (M~ f(x0))
|f(x) = f(x0)| <t (M= f(x0)).
Xo|

Since t = pch we have

’f(x)—f(xo)‘SWV—xd- (1.8)

When considering (b) also gives (1.8), concluding that f is continuous at (a,b). O
‘We cannot drop the hypothesis in Theorem 1.6 that the interval is open.

Theorem 1.7. The following claims, for f : [a,b] — R a differentiable function, are
equivalent:

(a) f is convex;
(b) f':]a,b] — R is a nondecreasing monotone function;
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(c) For all x,y € [a,b] we have f(x) > f(y)+ f'(y)(x—Y), in other words, the graph
of f lies above its tangent lines at each point.

Proof. (a) = (b): Let a < x < 3, then by the fundamental inequalities (1.3) and
making x — o+ and then x — _, we obtain that

f(B) - fla)
B—o

filo) < < f.(b).

(b) = (c): Let y < x. By the mean value theorem, there exists z € (y,x) such that
f(x)=f()+f'(z)(x—y). Since f is a nondecreasing monotone function, we get
that f(x) > f(y) + f'(y)(x —y). For y > x the proof is analogous.
(¢) = (a): Let x; < x < x, then by (¢) we have

fx) = f1(x) (1 —x)+ f(x) and  f(x2) > f/(x) (x2 —x) + (%)
The convexity of f now follows multiplying the first inequality by A = (x; —x)/
(x2 —x1), the second inequality by 1 — A and taking the sum. O

The next corollary is quite useful since it characterizes in an easy way the set of
convex function which are “regular” enough.

Corollary 1.8. Let f be a real-valued function defined in (a,b) which is twice dif-
ferentiable. Then f is convex if and only if f”(x) > 0, for all x € (a,b).

1.2 Young Inequality

In this section we study Young’s inequality, or to be more precise, different versions
of Young’s inequality. We give an alternative analytic proof of Young’s inequal-
ity different from the usual one which is based upon geometric considerations, see
Problem 1.40 for the classical proof of (1.9).

Theorem 1.9 (Young’s inequality). Ler y = f(x) be a strictly increasing function
on [0,00) with f(0) = 0. Suppose f € C'[a,b] with a and b nonnegative real numbers.

Then ,
w</ﬂﬂﬁ+/f%w% (1.9)
0 0

where f~1(y) is the inverse function of f. The equality holds if b = f(a).
Proof. If f € C'[a,b], then by integration by parts we get

b

b
/ﬂmwzww—w@—/ﬁQMn (1.10)

a
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Let y = f(x), then dy = f'(x)dx, and x = f~'(y). Replacing in (1.10) we obtain

b f(b)
/ Fx)dx = bf(b) —af(a) - / £ ) dy. (L11)
a fla)
Now, if r < x < g, then f(r) < f(x), so
"< / £
) —rf(r) /f (1.12)

Note that

By (1.12), we have

af(r)—rf(r) < — [ f(x)dx+ | f(x)dx. (1.13)
[rome]
By (1.11)
r f(r)
[rwa=rio- [ £10)e (1.14)
0 0
Replacing (1.14) in (1.13) we get
f(r) a
af ()= rf0) < ~rf)+ [ 10+ [ fas
0 0
which entails
a f(r)
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If 0 < b < f(a), we can choose r = f~!(b). Thus,
a b
ab < /f(x)dﬁ/f*‘(y)dy.
0 0

Finally, by (1.14) for r = a and b = f(a) we have

!ﬂnmww/f%w®

then
a b
[roa=a- [0
0 0
giving
a b
a= [ ot [0
0 0

O

For a particular choice of f in Theorem 1.9, we can obtain such inequalities
as (1.15) and (1.16) which are also called Young’s inequality.

Corollary 1.10 (Young’s inequality) Ler 1 < p < g < o be such that % + é =1

Then
I N
ab< a7+7
p q

for a and b positive real numbers. The equality holds if a? = b1.

(1.15)

Proof. First, if a? = b4, then a = b%'. Thus, ab = b (5 + 5) e.ab=L 42
Now, consider f(x) = x® with o > 0 and f~'(y) = y'/%, note that f satisfies the
hypothesis of Theorem 1.9, then

a b
o+1 bl/a-H
b< [x%dx+ [y/edy="2 :
¢ /x +/y Y a+1+1/a+1
0 0
przOH—landq:%“,thusabg“;"+%,sincel/p+1/q:l. O

It is noteworthy to mention that inequality (1.15) can be demonstrated in several
conceptually different ways, see Problem 1.38 for another approach.
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Corollary 1.11 (Young’s inequality) For a > 0, b > 0, we have that
ab < alogta+e 1, (1.16)

where

logx, ifx > 1;
+ ., ’ s
log x‘{ 0, fo<x<l.

Proof. Let ¢ and y be functions defined by

(x) = logx+1,if x > 1;
p\x) = 1, ifo<x<l1.

)

and
el ify > 1,
"’(y):{ 0, if0O<y<1.

Now, let us define
e(x)=0k+1)—1 and y'(y)=y(+1)-1

Note that ¢* is of class C! on [0,) and @*(0) = 0. Note also that y* is the inverse
function of ¢*, then by Theorem 1.9 fora > 1 and b > 1 we have

(a—1)(b-1) /<p /wy)dy

1

b—
:/(p(x—H) a—l+/l/!y+ldy (b-1)
0 0
a b

:/qo(u)du+ ()t — (a+b)+2

1 1

Then

b
ab—(a+b)+ /(p du+/l//(t)dt—(a+b)+2

1

b
abg/(p(u)dqu/l//(t)dtJrl
1 1

a

b
abg/(logu+1)du+/e”ldt+l
1 1
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=alogta+e e’ —e]+1

=alogta+e ' —1+1
finally

ab < alogta+e’ 1,

which finishes the proof. O

The following theorem is the integral version of Jensen’s inequality, which is
termed as Jensen’s integral inequality. Since we want to give a generalization of
this inequality in Corollary 1.14 in a general framework, we will also give the Jensen
integral inequality with the same generality.

Theorem 1.12 (Jensen’s integral inequality). Let U be a positive measure on a
C-algebra of in a set Q, such that L (Q) = 1. Let f be an integrable function on

Q ie.
/fdu < oo,

Q

Ifa< f(x) <bforall x € Q and @ is a convex function on (a,b), then

o| [rau| < [ooran. (1.17)
Q Q
The equality is obtained if f(x) = c, for all x € Q, where ¢ is a real number.

Note: The cases a = —oo and b = o are not excluded.

Proof. Let to = [ fdu. Since a < f(x) < b for all x € Q and pu () = 1, we have
Q
that

a<ty<b,

and by Corollary 1.3 yields

@) —¢(s) _ 9(u) —¢ (1)

< 1.18
fo—S u—rty ( )
foralla <s <ty <u<b.
Let
l‘ —
B= sup {‘p(o)‘p(s)}. (1.19)
a<s<ty fy—s
We affirm that

o) = oto)+B(y—to)
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forall y € (a,b). Indeed

(1) If y =1, there is nothing to prove.
(i) If#p <y < b, then by (1.18) and (1.19) we have

() —¢()

y—l

B<
from which we get @ (y) = ¢ (1)) + B (y —10).
(iii) Ifa <y <ty, then by (1.19) we get @ (y) = ¢ (to) + B (y — o).

From (i), (ii), and (iii) we concluded that
o) =) +B(y—10)
for all y € (a,b). Now taking y = f (x) then

@ (f(x) =0 t0)+B(f(x)—1)

integrating over (2

/(p(f(x))du > (1) + B /f(X)du—to

It follows that

Q/fdu </<pofdu-

Q
O

Remark 1.13. The condition p(€) =1 is necessary to the validity of Jensen’s in-
equality, as the next example shows. Let Q = [1,16], f(x) =x/* and ¢(x) = x> be
defined in £2. We have

16 16

0 /x*/“dx :16>/(p<x’3/4>dx:3/2.

1 1

The formulation of Theorem 1.12 can be presented in various ways, depending
on the type of proof. One alternative route of demonstration is to show the result
for simple functions and use a density argument to obtain the result. For example,
taking (X,.o7, 1) as a probability space, f a simple function with f(X) ={ry,...,r,}
and the fact that ¢ is convex we have

/fdu — o (St () < Sl ) = [ oo fan.
!
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where the inequality follows from Problem 1.24. Now the result is a consequence
of the fact that the set of simple functions is dense in L' (X,.<7, tt) and the Lebesgue
monotone convergence theorem.

The following corollary generalizes Jensen’s integral inequality.

Corollary 1.14 Under the assumptions of Theorem 1.12 it holds that

[redu\  [o(f)edu
Q Q

<
Jgdu Jgdu
Q Q

9

where g is a positive and integrable function on €.

Proof. In the proof of Theorem 1.12 it was shown that if ¢ is convex, there is 3
such that
@ ()= ¢ (t)+B(y—1t) (1.20)

forally € (a,b). Now write y = f (x) and multiplying (1.20) by a positive g function
and integrating we obtain

[o(r)san> Q/ o (10) gdu + B Q/ sedu—puo [ean.  a2n

Q Q
Defining
Jedu
d

J gdu
Q

Iy

and substituting in (1.21) we have

S{fgdu ({fgdu
Q/(P(f)gdli>(P ng.U /gdLH'ﬁ/fgd.U—ﬁ ngu /gdu
Q Q Q 0 0

where

[redu\  [o(f)gdu
Q Q

< 9
Jedu | = [gdu
Q Q

¢

and we finish the proof. a
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1.3 Problems

1.15. Show that Definition 1.1 is equivalent to the definition of convexity via convex
epigraph as given in Figure 1.2.

1.16. An increasing function f is called superadditive if f(x) — f(y) < f(x+y). If
fis a convex function with £(0) = 0 then f is superadditive.

1.17. Prove that Definition 1.1 is equivalent to the following:
For x,y € (a,b), p,q >0, p+q > 0 we have

px+qy p q
7(ZE2) <L g+ s

1.18. Prove that Definition 1.1 is equivalent to the following:
If x1,x2,x3 € (a,b) such that x; < x; < x3 we have

x flxi) 1
x2 f(x2) 1| = (x5 —x2) f (1) + (x1 —x3) f (x2) + (x2 —x1) f (x3) > 0.
x3 f(x3) 1

1.19. Let ¢ : [0, +) — [0,+<2) be a function such that: (i) ¢ is convex, and (ii)
@(x) = 0 if and only if x = 0. Prove that:

(a) @ is strictly increasing on [0, +eo).

(b) If 0 < x <y, then @ < %

(¢) If0 < x < 1, then ¢(x) < x@(1).

1.20. Show that the supremum of any collection of convex functions in (a,b) is
convex and that the specific limits of sequences of convex functions are too. What
can be said of the upper and lower limits of sequences of convex functions?

1.21. Suppose that ¢ is convex in (a,b) and v is convex nondecreasing in the path
of @. Prove that yo ¢ is convex in (a,b). For ¢ > 0, show that the convexity of
log ¢ implies that of @, but not the other way.

Note: When logo@ is a convex function, we say that ¢ is logarithmically convex,
log-convex or superconvex.

1.22. Prove that the composition of convex functions may not be convex.

1.23. Let f : (a,b) — R be differentiable from the right at every point. If the deriva-
tive is increasing, show that f is convex.

1.24. If f is convex in (a,b), prove that

F 2 A | <2400 (1.22)
J=1 j=1

J

when 3/ 4; = 1.



1.3 Problems 15

1.25. Suppose that () = 1 and h : Q — [0, +o0) is measurable. If A = [ hdp,
Q

show that

V1+A? </\/1+h2du <1+A.
Q

1.26. Suppose that ¢ is a real-valued function such that

¢ /lf(x)dx </]<p(f(x))dx
0 0

for every f bounded and measurable. Show that ¢ is convex.

1.27. Suppose that @ is strictly convex and p() = 1. Show that the Jensen
inequality

¢ /fdu </<pofdu

Q Q

is an equality if and only if f is almost everywhere constant.

1.28. Suppose that y(2) = 1 and f, g are nonnegative measurable functions in Q

with fg > 1. Prove that
/fdu/gdu > 1.
Q Q

1.29. Let u be a positive measure on X and suppose that f : X — (0, 4-o0) satisfies
J fdu = 1. Show that the inequalities

¥
1
(a) E/log(f)d/,t QH(E)logm,

(b) /f”du <uE),  o<p<l,
E

are valid for all measurable set E with 0 < U(E) < .

1.30. Let g be a nonnegative measurable function on [0, 1]. Show that
1 1
log/g(t) dr > /logg(t) dr.
0 0

1.31. Let f be a positive measurable function on [0, 1]. Which of the two quantities
1 1 1
/ F)log f(x)dx  or / F(s)ds / log £(1)dr
0 0 0

is greater?
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1.32. Let {, }1en be a sequence of nonnegative numbers such that Z;V:I o, =1 and
{&, }nen be a sequence of positive numbers. Show that

N N
[16% <> ané. (1.23)
n=1 n=1

Use inequality (1.23) to show that the geometric mean is always less or equal to the
arithmetic mean, namely

,”/61.52..'..§n<w_ (1.24)

n

1.33. Show that the sequence x,, = (1 + %) is increasing using solely the arithmetic-

geometric mean inequality (1.24).

1.34. Show that the harmonic mean is always less or equal to the geometric mean,
namely

n
1 1 ] KA/X| X2 e Xy
(E—’_E—F...—’—E)
for nonnegative x;, i = 1,2,...,n.

(a) Using (1.24) and reciprocals;
(b) Using the convexity of the function f(x) = xlogx.
Hint: Obtain the inequality

EPi)fi log (Zpi?fi) < 2 DiXi log(xi)7
2pi 2pi 2.pi

use properties of the log function and specify p; = 1/x;.

1.35. Show that
a®bP < aa+ b

when o, B,a,b are nonnegative and o+ 3 = 1.
Hint: Study the convexity of the function f(x) = e*.

1.36. Let (£2,.97, 1) be a measure space such that u(2) =1 and [ |f]du < e with
Q

a < f(x) < bforall x € Q. Show that if y is concave in (a,b) then

v Q/fdu > [vorau.

Q

1.37. Let p and g be two real numbers with 0 < p < 1 and —eo < ¢ < 0 such that
% + é = 1. Prove that
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P e
a>L Y
p q
for a and b positive real numbers.
1.38. Use the functions
1
ploga if0<x<< —
u(x) = 1 p
qlogh if —<x<1
p

(a,b>0) and f(x) = e* to demonstrate that
LA 1 1
ab<“+=  with  —4-=1
p q P q
1.39. Given a,b > 0 and € > 0. Prove that

ab < ga’ +c(e)b? (1.25)

-4q/p
where ¢(g) = m

Note: Inequality (1.25) is sometimes called the Peter-Paul inequality and examples
of its usefulness can be found in ODEs and PDE:s.

1.40. Show the Young inequality (1.9) by purely geometric insight.
Hint: See Fig. 1.3.

y/\

Fig. 1.3 Young’s inequality via geometric inspection.

1.41. Prove that, for x > 0 and p; > 0, we have
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n
(Hn xﬁ)z” < ziilpixi’
i1 pi

studying the concavity of the function f(x) = log(x).

1.42. The Legendre transform, also known as Legendre-Fenchel transform, is
defined in the following way. Take f : R — R a function and f*: R — RU {400} is
its Legendre transform given by

f ) =sup{xy—f(»)}

xeR
for y € R. Prove:

@ xy < f(x)+1*(), forallxyE]R
(b) Using (a) show that xy <X + Jforl/p+1/g=1.
Hint: Take f(x) = x and calculate its Legendre transform.

(c) Using (a) show that Xy S e’ +ylog(y) —y, for x,y > 0.
Hint: Take f(x) =%, x € R and calculate its Legendre transform.

1.43. Let 1 < p < eo. Minimize the function ¢(¢) = % —t and show that t < % + i,
where 1/p+1/g = 1. Taking t = <7+ show the validity of Young’s inequality rs <
ersq for all r,s > 0.

1.44. 1. Show that @(x) = xlogx defined in (0,°) is a convex function.
2.1f [ f(x)du =1, and f is nonnegative with f |f]dp < oo, show that
b'e

/f Ylog(f(x))du > 0.

1.45. Let f : [a,b] — R be a convex function. Prove that for all x € (a,b), the function
f has finite left-hand derivative and finite right-hand derivative.

1.46. Try to give a proof of Theorem 1.6 by using geometric insight and the defini-
tion of convexity.

1.47. Show the generalized Young inequality

P1 P
a et O ay"

pi Pm

al...am<

where py > 1,...,pp>1 and Y2, 1/pp = 1.

1.48. Prove the inequality

T
q
where A >0,B>0,p>0,4>0,and 1 +7 %

(ABY < ZAP ¢
P
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1.4 Notes and Bibliographic References

The subject of convexity is a vast field, we will give only some small historical
tidbits.

In 1889 Holder [32] considered the concept of convexity connected with real
functions having nonnegative second derivative. In 1893 Stolz [75] in his Grundziige
der Differential- un Integralrechnung showed already that if a continuous real-
valued function is continuous and is mid-convex then it has lateral derivatives. On
the other hand Hadamard [25] obtained an inequality between integrals for func-
tions having increasing first derivative. It can be said that the father of convexity
was Jensen [37, 38] which gave a detailed study where the Holder and Minkowski
inequalities are derived from Jensen’s inequality.

A thrust in the study of convex functions was influenced by the classical book of
Hardy, Littlewood, and Pdlya [30]. For an encyclopedic monograph on inequalities
see Mitrinovi¢, Pecari¢, and Fink [52] and for a thorough introduction to contempo-
rary convex function theory see Niculescu and Persson [54].
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Chapter 2
Lebesgue Sequence Spaces

Abstract In this chapter, we will introduce the so-called Lebesgue sequence spaces,
in the finite and also in the infinite dimensional case. We study some properties of
the spaces, e.g., completeness, separability, duality, and embedding. We also ex-
amine the validity of Holder, Minkowski, Hardy, and Hilbert inequality which are
related to the aforementioned spaces. Although Lebesgue sequence spaces can be
obtained from Lebesgue spaces using a discrete measure, we will not follow that
approach and will prove the results in a direct manner. This will highlight some
techniques that will be used in the subsequent chapters.

2.1 Holder and Minkowski Inequalities

In this section we study the Holder and Minkowski inequality for sums. Due to their
importance in all its forms, they are sometimes called the workhorses of analysis.

Definition 2.1. The space ¢, with 1 < p < o, denotes the n-dimensional vector
space R” for which the functional

Il = <2 xﬂ’) @.1)
i=1

is finite, where x = (x1,...,x,). In the case of p = o, we define ¢, as
X[ = sup |xi].
ie{l,...,n}
@
From Lemma 2.4 we obtain in fact that||- y defines a norm in R".
© Springer International Publishing Switzerland 2016 23

R.E. Castillo, H. Rafeiro, An Introductory Course in Lebesgue Spaces, CMS Books
in Mathematics, DOI 10.1007/978-3-319-30034-4_2
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Example 2.2. Let us draw the unit ball for particular values of p for n = 2, as in
Figs.2.1,2.2, and 2.3.

Fig. 2.1 Unit ball for £3

Fig. 2.2 Unit ball for 2

Lemma 2.3 (Holder’s inequality). Let p and q be real numbers with 1 < p < oo
such that ‘% + é = 1. Then

n " e s, 1/q
Y o] < (2 |xk|1’> (2 ka|q> - (22)
k=1 k=1

k=1
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Fig. 2.3 Unit ball for £}

for xi, yr € R,

Proof. Let us take

NV 5h oty
(Ziy [al) " (T [yxle) fa
By Young’s inequality (1.15) we get

el [yl
B —

e | B S 273 GO S V1
(S )P (e Lele) 74— P T PP g Xy Il

Termwise summation gives

z’k’:l}llxkllykl < 1,
(S0 blP) 7 (2= Iel) p

1
q

and from this we get

" " Up s, 1/q
2 [xeyie| < (2 |xk|p> (2 |yk|q> .
k=1 k=1 k=1
O

We can interpret the inequality (2.2) in the following way: If x € £} and y € £}
then x ©y € ¢] where © stands for component-wise multiplication and moreover

1XO ¥l <Xl ¥
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Lemma 2.4 (Minkowski’s inequality). Let p > 1, then

" 1/p " 1/p N 1/p
(Zurmﬂﬁ s<2aﬂﬂ <+<Zywj (2.3)
k=1 k=1 k=1
for xi, ye € R.

Proof. We have

n n
kvl = i+ vl o+ vl
=1 =1

n n
< el e+ v P Y e ey P
k=1 s

By Lemma 2.3 we get

n n 1/p n 1/p ; 1/q
N e+ yil” < <2|xkp> + <Z|Ykp> <Z|Xk+yk|(pl)q> .
pa k=1 k=1

k=1

1 1
Since — + — =1, then p = (p — 1)g, from which
P q

. " 1/p " 1/p " 1/q
N e+ yil? < <Z|xkp> + <Z|Yk|p> <Z|xk+)’k|p> )
k=1 k=1

k=1 k=1

then
n 17% n I/p n 1/p
3+ vl = WAL D el ;
k=1 k=1 k=1
which entails (2.3). a

2.2 Lebesgue Sequence Spaces

We now want to extend the n-dimensional £}, space into an infinite dimensional
sequence space in a natural way.

Definition 2.5. The Lebesgue sequence space (also known as discrete Lebesgue
space) with 1 < p < oo, denoted by ¢,, or sometimes also by ¢, (N), stands for the set
of all sequences of real numbers X = {x, },.x such that ¥ [x|? < eo. We endow
the Lebesgue sequence space with the norm,

- 1/p
@—<2um> , (2.4)

k=1

[1%[le, = [1{xn }nen|

where x € /,,. %
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We leave as Problem 2.24 to show that this is indeed a norm in ¢,, therefore
(¢y,|-ll,,) is a normed space.

We will denote by R* the set of all sequences of real numbers X = {x, },,.y-

Example 2.6. The Hilbert cube $) is defined as the set of all real sequences {x, }nen
such that 0 < x, < 1/n, i.e.

H={xeR”:0<x,<1/n}.

By the hyper-harmonic series we have that the Hilbert cube is not contained in ¢,
but is contained in all £, with p > 1. ©

Let us show that ¢, is a subspace of the space R”. Let x and y be elements of ¢,
and o, B be real numbers. By Lemma 2.4 we have that

n 1/p " 1/p " 1/p
(Z Iaxk+ﬁykp> <|e (Z |xklp) +1BI (Z |yk|”> . @)
k=1 k=1 k=1

Taking limits in (2.5), first to the right-hand side and after to the left-hand side,
we arrive at

- 1/p - 1/p - 1/p
(Z Ian+ﬁyk”> <laf (Z ka|”) +1B| (Z ka|”> , (2.6)
k=1

k=1 k=1

and this shows that ax+ By is an element of £, and therefore £, is a subspace of R™.

The Lebesgue sequence space £, is a complete normed space for all 1 < p < oo,
We first prove for the case of finite exponent and for the case of p = oo it will be
shown in Theorem 2.11.

Theorem 2.7. The space £,(N) is a Banach space when 1 < p < oo,

Proof. Let {X,}.cn be a Cauchy sequence in £,(N), where we take the sequence
(m) ()

X, as X, = (x] ,%, ,...). Then for any & > 0 there exists an ny € N such that if
n, m > n, then ||x, —X,,[|¢, <&, i.e.
1/p
S <, 2.7)
j=1

whenever n, m > ny. From (2.7) it is immediate that for all j = 1,2,3,...

| x(.ﬂ)

x| <, 2.8)

whenever n, m > ny. Taking a fixed j from (2.8) we see that (x_(jl),x‘(jz)7 e

Cauchy sequence in R, therefore there exists x; € R such that lim,,,_,.. xﬁm =Xx;.
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Let us define X = (x,x2,...) and show that X is in ¢, and lim, .. X, = X.
From (2.7) we have that for all n, m > ng

k
Sl e <er k=123,
j=1

from which

k k
=2l = | fim " -2 <
J= J=

whenever n > ng, This shows that x —x, € £, and we also deduce that lim,_,.. X, = x.
Finally in virtue of the Minkowski inequality we have

1/p 1/p
p o (n) o (n) P
2|xj| = Z‘xj +TXj—x; |
=1 =1
1/p 1/p
<\ W) ()
=1 =1
which shows that x is in £,(N) and this completes the proof. O

The next result shows that the Lebesgue sequence spaces are separable when the
exponent p is finite, i.e., the space £, admits an enumerable dense subset.

Theorem 2.8. The space £,(N) is separable whenever 1 < p < oo,

Proof. Let M be the set of all sequences of the form q = (¢1,42,-..,4,0,0,...)
where n € N and ¢, € Q. We will show that M is dense in £,,. Let X = {x; }scn be an
arbitrary element of £, then for £ > 0 there exists n which depends on € such that

oo

3 ulr <2

k=n+1

Now, since Q = R, we have that for each x; there exists a rational qr such that

€
X — qi| < ,,7\/27,

then

n

z |)Ck 7qk|p < EP/Z,
k=1

which entails

n S

Ix—qll] =X w—al+ X |ul”<e”,
k=1 k=n+1

and we arrive at ||x —q||¢, < €. This shows that M is dense in /,,, implying that ¢, is
separable since M is enumerable. a
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With the notion of Schauder basis (recall the definition of Schauder basis in Def-
inition B.3), we now study the problem of duality for the Lebesgue sequence space.

Theorem 2.9. Let 1 < p < eo. The dual space of £,(N) is £,(N) where % + é =1

Proof. A Schauder basis of ¢, is ex = {6;}jcn Where k € N and &; stands for the
Kronecker delta, i.e., &; = 1 if k = j and 0 otherwise. If f € (¢,)*, then f(x) =
Sien 0 f(er), x = {0 pren. We define T(f) = {f(ex) }ren- We want to show that
the image of T is in /,, for that we define for each n, the sequence x" = (é,f">)°°:
with

() el 3¢ g < nand f(ey) #
& =9

0 if k>norf(e) 0
Then .
= & fle) = If (el
keN k=1
Moreover
F&) < A=l
= I (2 |&£”>|ﬁ)
k=1
=1l (Z |f(ex)|*"™ ”)
k=1
=1l ( If(ek)l"> :
k=1
from which

mw@'F(imm@q
1 k=1

<71
;

M=

;

Taking n — oo, we obtain

1
q

If(ek)l"> <l

M s

where {f(ex) hren € 4.
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Now, we affirm that:

(i) T is onto. In effect given b = (B )ken € ¢, We can associate a bounded linear
functional g € (¢,)*, given by g(x) = ¥, oufx with X = (0t )ken € £, (the
boundedness is deduced by Holder’s inequality). Then g € (£,,)*.

(ii) T is 1-1. This is almost straightforward to check.

(iii) T is an isometry. We see that the norm of f is the £, norm of T' f

fx)| =Y owf(ex)

keN

< (z |ak|P> p (2 |f(ek)|q>q
keN keN

1

— x| (2 f(ek>|Q> y

keN

Taking the supremum over all x of norm 1, we have that

1

TE (2 f(ek>|q> B

keN

Since the other inequality is also true, we can deduce the equality

1l = (Z f<ek>|q>

keN

with which we establish the desired isomorphism f — {f(ex) hren-
O

The ¢, spaces satisty an embedding property, forming a nested sequence of
Lebesgue sequences spaces.

Theorem 2.10. If0 < p < g < oo, then £,(N) C £,(N).

Proof. Let x € £, then ¥, |x,|” < oo. Therefore there exists ny € N such that if
n > ny, then |x,| < 1. Now, since 0 < p < ¢, then 0 < g— p and |x,|9? < 1 if n > ny,
by which |x,|? < |x,|? if n > ng. Let M = max{|x; |97, |x|777,...,|xs|9 7, 1}, then

z X, |7 = Z P |30 |7 < MZ x| < oo,

n=1 n=1 n=1

implying that x € /.
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To show that ¢,(N) # £,(N), we take the following sequence x, = n~'/? for all
n € Nwith 1 < p < g <o, and since p < ¢, then 4 > 1. Now we have
p

1

2|xn - 2;1‘1/17 <

The last series is convergent since it is a hyper-harmonic series with exponent bigger
than 1, therefore x € £,(N). On the other hand

and we get the harmonic series, which entails that x ¢ £, (N). O

2.3 Space of Bounded Sequences

The space of bounded sequences, denoted by /.. or sometimes £..(N), is the set of
all real bounded sequences {x, }nen (it is clear that £ is a vector space). We will
take the norm in this space as

X[l = [Ixl[r. = suplxal, (2.9)

neN

where x = (x1,%2,...,X,,...). The verification that (2.9) is indeed a norm is left to
the reader.

An almost immediate property of the {..-space is its completeness, inheriting this
property from the completeness of the real line.

Theorem 2.11. The space (.. is a Banach space.

Proof. Let {x,},en be a Cauchy sequence in 4., where x,, = (xg'”, xg"), ...). Then
for any € > 0 there exists ny > 0 such that if m,n > ny then

(1% — X || < €.
Therefore for fixed j we have that if m,n > ng, then

< g (2.10)

resulting that for all fixed j the sequence (x (1) (2 ..) is a Cauchy sequence in R,

jo%i
and this implies that there exists x; € R such that lim,, .. xi-m) = Xj.
Let us define x = (x1,x2,...). Now we want to show that x € /. and

lim, .. X, = X.



32 2 Lebesgue Sequence Spaces

From (2.10) we have that for n > ny, then

-

lim x\™ —xﬁ")’ <e, (2.11)

n—yoo J

since X, = {xﬁ")} jen € Lo, there exists a real number M, such that ‘x(»")

i <M, for

all j.
By the triangle inequality, we have

| < ‘xj'*x;m‘ * ’xﬁ-")‘ <e+M,

whenever n > ny, this inequality being true for any j. Moreover, since the right-hand
side does not depend on j, therefore {x j} jen is a sequence of bounded real numbers,
this implies that x = {x;} jen € L.

From (2.11) we also obtain

(n)

J

lIx, — x|l =sup|x;” —x;| <e&.
jeN

whenever n > ngy. From this we conclude that lim,_...X, = X and therefore /., is
complete. a

The following result shows a “natural” way to introduce the norm in the ¢, space
via a limiting process.

Theorem 2.12. Taking the norm of Lebesgue sequence space as in (2.4) we have
that lim, . || X 6, = [Ix]]e...

1
Proof. Observe that |x| < (X} |x|?) 7, therefore |x| < [|x||¢, fork=1,2,3,...,n,
from which
sup |xe| < [x]le,,
1<k<n

whence
[Ix|le. <liminf|x][,. (2.12)
p—roo

On the other hand, note that

1

. 1

n F n P ’ 1

Z x|? | < 2 sup | x| <nr
k=1 k=1 \I<k<n

then for all € > 0, there exists N such that

X”(mv

1 1

P

N » 1
» )
z,,s<2|xk|"+e> < (IxIz.N+e)” < e <N+|X”p> ,
le

k=1

Ix

therefore
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timsup |||, < [x]_. (2.13)

P —
preo

Combining (2.12) and (2.13) results

[[x[[r. <liminf[[x|[;, <Timsup||x[|s, <||x]|c.,
p—re° p—roo

and from this we conclude that lim, .. |x||,, = [|x]|.. . O
Now we study the dual space of ¢; which is /...

Theorem 2.13. The dual space of £y is {...

oo

7=y forms a

Proof. For all x € {,, we can write X = Y, oxex, where e, = (J;)
Schauder basis in £y, since

n
X—Zockek: (07...,07Otn+17...)
k=1 SN——

n
and

—0
0

= 2 Oyex

k=n+1

X— i Oy €
k=1

since the series Y,;_; Oxey is convergent.

Let us define 7(f) = {f(ex) }xen, for all f € (¢1)*. Since f(x) = Yren O f(ex),
then | f(ex) < ||f]], since ||ex]|s, = 1. In consequence, sup,y | f(ex)| < || f], therefore

{f(ex) bren € Lo
We affirm that:

0

(i) T is onto. In fact, for all b = {Pi }ren € e, let us define g : £; — R as g(x) =
S weny 0B if X = {0 }ren € Lo. The functional g is bounded and linear since

lg(x)| < D lowBil <sup Bl Y lox| = x|, - sup|Bel,
keN keN keN keN

then g € (£;)*. Moreover, since g(ex) = X jen &, B;s

T(g) = {g(ex) tken = { B }ren = b.

(ii)) T is 1-1. If Tf; = Tf>, then fi(ex) = fa(ex), for all k. Since we have
J1(X) = Ziew 0k f1(ex) and fo(x) = Xyen 0ufo(ex), then fi = fo.

(iii) T is an isometry. In fact,

1T fl-e = sup |/ (ex)] < [|£] (2.14)
keN



34 2 Lebesgue Sequence Spaces

and

fx) =Y onfle)

< sup|f(ex)]
keN eN

J

Y loul = [x]|¢, sup | f(ex)].
keN

keN

Then
[I£1l < sup|f(ex)| = [IT fll- (2.15)
keN

Combining (2.14) and (2.15) we get that ||T f||.. = || f||. We thus showed that
the spaces (¢;)* and /.. are isometric.
O

One of the main difference between ¢, and {.. spaces is the separability issue. The
space of bounded sequence /.. is not separable, contrasting with the separability of
the £, spaces whenever 1 < p < oo, see Theorem 2.8.

Theorem 2.14. The space L., is not separable.

Proof. Let us take any enumerable sequence of elements of /.., namely {X,},cx,
where we take the sequences in the form

1= (50800, 0
Xy = (x<12>,x§2>,x52),. ,x,(cz), )
o= (302, )

We now show that there exists an element in /.. which is at a distance bigger than
1 for all elements of {x,},.y, showing the non-separability nature of the (.. space.
Let us take X = {x, }ne as

0, if [ > 1
In = (n) o1 ()
Xo=xn +1, if 7] < 1.

It is clear that x € /., and ||x —x,||,_ > 1 for all n € N, which entails that /., is not
separable. O

We now define some subspaces of /.., which are widely used in functional anal-
ysis, for example, to construct counter-examples.

Definition 2.15. Let x = (x1,x,...).
By ¢ we denote the subspace of /.. such that lim,,_,., x,, exists and is finite.
By ¢y we denote the subspace of /.., such that lim,,_,..x, = 0.
By coo we denote the subspace of /.. such that supp(x) is finite. @
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These newly introduced spaces enjoy some interesting properties, €.g., g is the
closure of ¢y in /... For more properties, see Problem 2.20.

2.4 Hardy and Hilbert Inequalities

We now deal with the discrete version of the well-known Hardy inequality.

Theorem 2.16 (Hardy’s inequality). Let {a,},cn be a sequence of real positive
numbers such that 3, al < oo. Then

oo 1 & P p P o
— < [ 4= P
2<2> <(557) 2

Proof. Let o, = % where A, =a;+a,+---+a,, ie., A, = na,, then
ai+a+---+a, =noy, (2.16)

from which we get that a, = noy, — (n — 1) og,—1. Let us consider now

P, P
o= o = o= Ty o= (= oy
pn , pn—1)
= = ooy Ly ST o

In virtue of Corollary 1.10 we have

~1
P=1) ot o P=D e, p=) Y
p—1 """ T p—1 p p—1 ¢
:n—lap +p(n71) 1_1 o
p—l n—1 -1 n
n—1
= _106'11)714»(”71)&5’
therefore
)4 _ pn , n—1
oc,{’——p_la,f 1a,,§oc,’j——p_la,§+p—_1a,’,’,1+(n—1)a,f
7pa,ﬁ’—af—pna,{’+(n—l)a5_1+(p—1)(n—1)065
B p—1 p—1
_ pof —of —pnof +(n— 1oy +(pn—p—n+1)af
- i
1
— ]fl [(n— 1)06571 —nOC,’,’] ,
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from which

N p N 1 N
Sof— LY arta, < LS [n-1)ef ,—nag]
n=1 -

n=1 n=1

:—l[—a{’+a{’—2a§’+~--—Na,’;]
P
:_NaN <0
p—1-
Then
N PR
Yoar<——% ala,
n=1 p_ln:l

M
8
3%
IA
~
|
S
T
N——— N—
| ~|
=
M
R
=
L
~
Q-

then

S
i yok
R
N——
-
IA
<
(IS
-
—
1P
Q
s
N———
ST

and this implies

a

We now want to study the so-called Hilbert inequality. We need to remember
some basic facts about complex analysis, namely

T 1

= 1
sin(mz) :E+,§’1(_1) <z+n+z—n)' @17

Let us consider the function

1
Vz(z+1)

defined in the region D; = {z € C: 0 < |z| < 1}. We want to obtain the Laurent
expansion. In fact, if |z| < 1, then

fl@)= (p>1)
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1 1 > 0 > v
14z 1—(—2)_;’)(_2) _Z{)( D',
therefore _
f@) =3 (-1 . 2.18)
n=0

By the same reasoning, let us consider

g(2) = m

lil - 1—(1—1) -3 <1>n— NSRS

n=0
Therefore

g) =Y (=12 " n. (2.19)

We now obtain some auxiliary inequality before showing the validity of the
Hilbert inequality (2.20).

Theorem 2.17 For each positive number m and for all real p > 1 we have

By (2.18) and (2.19) we deduce that

rgln%(m_’_n) < J (%(—1)"Z”—ﬂ> dz—|—l/ (%(—1)”1_”— —p) dz
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=)

1
:Z(—l)"/znﬁ dz+z / 1oy dg
0

I
M
—~
|
=
S
+
DM
_/-\
|
=

il
S
|

Il

gk
—~

I
—
~—
=
8

I
[
~—
=

3
Il

This last one is obtained by (2.17) with z = %. a

Remark 2.18. In fact the proof of Theorem 2.17 is a two line proof if we remember

that N
0
)=

and the fact that B(1 — o/, o 0 < o < 1, see Appendix C. @

unna’

Before stating and proving the Hilbert inequality we need to digress into the
concept of double series. Let {xk_ j}j,k cy be a double sequence, viz. a real-valued
function x : N x N — R. We say that a number L is the limit of the double sequence,
denoted by

lim Xk.j = L
ke

if, for all € > 0 there exists n = n(€) such that
|XkJ‘—>l4 <€

whenever k£ > n and j > n. We can now introduce the notion of double series using
the known construction for the series, namely

:E: xk7j =X
k,j=1
if there exists the double limit

11n1 Z%j =X

k,j—eo
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where % ; is the rectangular partial sum given by

k=1 \ j=1 j=1 \k=1

We can visualize the iterated series in the following way. We first represent the
double sequence as numbers in an infinite rectangular array and then sum by lines
and by columns in the following way:

X1,1 X1.2 X13 = XX =

X2.1 X22 X213 e — 27,:1 X2,j = L2

X3.1 X32 X33 = Y=L
\ 1 \

Cri=Y X1 Coi=20  xk2 C3i= X207 X3

and now the iterated series are given by 37 C; and 3,7 Ly.

It is necessary some caution when dealing with iterated series since the equality
2721 Cj =i Li is in general not true even if the series converges, as the following
example shows

-0 0 0 =0
03 -320 020
00 -2 0 =0
00 0 2-£-->0
Ll
i1 1 1 1
2 4 8 16 32

and clearly the obtained series are different. Fortunately we have a Fubini type the-
orem for series which states that when a double series is absolutely convergent then
the double series and the iterated series are the same, i.e.

=3

IETEDH DIETEEDY X

kj=1 k=1 \ j=1 j=1 \k=

Not only that, it is also possible to show a stronger result, that if the terms of an
absolutely convergent double series are permuted in any order as a simple series,
their sum tends to the same limit.
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Theorem 2.19 (Hilbert’s inequality). Let p,q > 1 be such that %‘Fé =1 and
{an}nen, {bn}lnen be sequences of nonnegative numbers such that Y n_, ab, and
S bi are convergent. Then

y b T <iaf,;> ,, (ibg)q. (2.20)

el MR i (%)

Proof. Using Holder’s inequality and Proposition 2.17 we get

oo

amby
m,n=1 m+n

1 1
mri a, nr b,
T T T T
mn=1 11 (m~+n)r mri (m+n)a

IN
— {\
ng
7N
N
ENE}
Tl
S
~—
Q
SRS
~ — I

IN

which shows the result. O

2.5 Problems

2.20. Prove the following properties of the subspaces of /.. introduced in Defini-
tion 2.15

(a) The space ¢y is the closure of ¢y in /...
(b) The space ¢ and ¢y are Banach spaces.
(c) The space cqp is not complete.
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2.21. Show that (s, p) is a complete metric space, where s is the set of all sequences
X = (x1,Xx2,...) and p is given by

i 1 o=
S22 1+ I —yk|
2.22. Let £,(w), p > 1 be the set of all real sequences X = (x1,X»,...) such that
Z |k [Py < oo
k=1

where w = (wy,wy,...) and wy > 0. Does 4" : £,(w) — R given by

N(X):= (i |Xk|ka> ”

k=1
defines a norm in £, (w)?

2.23. As in the case of Example 2.2, draw the unit ball for £3, £2, and 3.
2.24. Prove that (2.4) defines a norm in the space £,(N).

2.25. Prove the Cauchy-Bunyakovsky-Schwarz inequality

(8) <(2) (5)

without using Jensen’s inequality. This inequality is sometimes called Cauchy,
Cauchy-Schwarz or Cauchy-Bunyakovsky.

Hint: Analyze the quadratic form Y/, (xju—+yiv)> = i? 37 5% + 2uv Y xiy; +
VLT

2.26. Let {ay, }nez and {b, },cz be sequences of real numbers such that

oo

k= i |y <o and Y |by|P < oo

n—=—oco m=—oo

where p > 1. LetC, =3

= oo An—mby. Prove that

@) Gl <KV (S5 ltnom|[bn]?)"” where L+ 1 =1,
1 1

) (S 1) <k (3 |bal?)"”.

2.27.Ifa, >0forn=1,2,3,... show that

oo

2 ” aya - eZan.

n=1
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Ifaj>a;>--->a > >a,>0and o > B > 0. Demonstrate that

" 1/o " 1/B
(80)"<(54)"
k=1 k=1

2.28. Use Theorem 10.5 to show the Theorem 2.16.
Hint: Choose a sequence {ay, },en of positive numbers such that @, > a, Vn € N.
Consider Ay = Y a, and define f = 37| apX(n1.,)-

n=1
2.29. Demonstrate that ¢; is not the dual space of /...

2.30. Show that

[IxIl,, <IIxl,, (2.21)

whenever 1 < p < g < oo,
Hint: First, show the inequality (2.21) when ||x|| ¢, < 1. Use that result and the ho-
mogeneity of the norm to get the general case.

2.6 Notes and Bibliographic References

The history of Holder’s inequality can be traced back to Holder [32] but the paper of
Rogers [61] preceded the one from Holder just by one year, for the complete history
see Maligranda [48].

The Minkowski inequality is due to Minkowski [51] but it seems that the classical
approach to the Minkowski inequality via Holder’s inequality is due to Riesz [58].

The Hardy inequality (Theorem 2.16) appeared in Hardy [26] as a generalization
of a tool to prove a certain theorem of Hilbert.

According to Hardy, Littlewood, and Pélya [30], the Hilbert inequality (Theo-
rem 2.19) was included by Hilbert for p = 2 in his lectures, and it was published by
Weyl [82], the general case p > 1 appeared in Hardy [27].

The Cauchy-Bunyakovsky-Schwarz inequality, which appears in Problem 2.25,
was first proved by Cauchy [6].



Chapter 3
Lebesgue Spaces

There is much modern work, in real or complex function theory,
in the theory of Fourier series, or in the general theory of
orthogonal developments, in which the ‘Lebesgue classes L*’
occupy the central position.

GODFREY HAROLD HARDY, JOHN EDENSOR LITTLEWOOD &
GEORGE POLYA

Abstract Lebesgue spaces are without doubt the most important class of function
spaces of measurable functions. In some sense they are the prototype of all such
function spaces. In this chapter we will study these spaces and this study will be used
in the subsequent chapters. After introducing the space as a normed space, we also
obtain denseness results, embedding properties and study the Riesz representation
theorem using two different proofs. Weak convergence, uniform convexity, and the
continuity of the translation operator are also studied. We also deal with weighted
Lebesgue spaces and Lebesgue spaces with the exponent between 0 and 1. We give
alternative proofs for the Holder inequality based on Minkowski inequality and also
study the Markov, Chebyshev, and Minkowski integral inequality.

The reader will notice that some of the results are not given in full generality. We
invite the reader to try to obtain such statements in an appropriate more general
setting.

3.1 Essentially Bounded Functions

Definition 3.1. Let (X, .o, 1) be a measure space and f an .2/ -measurable function.
For each M > 0 define Eyy = {x € X : | f(x)| > M}. We have Ej, € < since f is an
o/ -measurable function. Let

A={M>0:u(Ey)=0}={M>0:|f(x)| <Mpu-ae.}.
The essential supremum of f, denoted by esssup f or || f||«, is defined by

£l = If1|. = esssup f = inf(A),

with the usual convention that inf(@) = +-oce. @

© Springer International Publishing Switzerland 2016 43
R.E. Castillo, H. Rafeiro, An Introductory Course in Lebesgue Spaces, CMS Books
in Mathematics, DOI 10.1007/978-3-319-30034-4_3
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Note that if A # 0, then 0 is a lower bound on A, and thus inf(A) € R. Let o =
If ||« < oo, we state that o € A. Notice that

oo

Eo={xeX:[f(0)|>a}=J{reX:|f®)]>a+1/n}

n=1

moreover, for each n the set {x € X : |f(x)| > ¢+ 1/n} € A. As a = inf(A), then
for every n € N there exists o, € A such that o < o, < or + 1/, hence

{xeX:|f&x)|>o+1/n}C{xeX:|f(x)|> o}

then
p{xeX:[f()]>a+1/n}) Sp({xeX:|f(x)]>a}) =0,

therefore (Eq) = pu({x € X : |f(x)| > a}) = 0, showing that & € A, then if o =
[ £l < oo we get
FOI < flle  p-ace.

Now we define

)= { F(x) ifx & Eq,

0 ifxekEy,,

since f*(x) = f(x) u-a.e. it follows

[l = 1l = Slel)lg|f*(x)| = sup |f(x)].

xeX\Ey

Definition 3.2. We define L..(X,.o7, i), called the set of essentially bounded func-
tions, by

L..(X,o,u) ={f:X — R is an «/-measurable function and || f||.. <o} .

%)

The set L..(X, 97, 1) is a very large set, since it includes all bounded functions in X.

Example 3.3. Let f be a Dirichlet-type function given by

) 1ifxe (R\Q)N[0,1],
flx) = {ooifxe(@ﬂ[O, 1].

Since ||fl|. = inf{M >0:u({xe[0,1]: |f(x)] >M}) = O} = 1 we have that
[ € La(X, ). @

Example 3.4. Let X =R, o/ =%, u =m, and Q = {r(,r2,...,rp,...} be an enu-
meration of the rational numbers in R. Define

_Jnifx=r,€Q,
)= { 1ifxe R\ Q.
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We want to show that A = {M>0:m({x€X: |[f(x)| >M}) :0} =[1,e0). In fact,

let M € [1,0), then
xeX:|fx)|>M}CQ,

therefore
m({x e X : [f(x)| > M}) <m(Q) =0,

which gives M € A, i.e.
[1,00) C A. (3.1)

On the other hand, suppose that y ¢ [1,e0), then y < 1, which implies
R\QC{xeX:[f(x)| >y},

and we obtain that

m({x € X 1 |f(x)] >y}) #0

which means that y ¢ A, then
A C[1,00). (3.2)

From (3.1) and (3.2) we have
A={M>0:m({xeX:|f(x)] >M}) =0} =[I,e).
Note that
inf{M>0:m({x€X: |f(x)] >M}) :0} =1,
therefore f € Lo.(X, o/, 11). %)

Example 3.5. Let X =N, o = &(N), u = # the counting measure and the function
f N — N given by n — n . We state that

A={M>0:#{xe X |f(x)|>M})=0}=0.
In fact, let M > 0 be arbitrary, and choose k > M, k € N then
#({x e X ()] > MY) > #({k}) = 1,
which implies that M ¢ A and since M is arbitrary, we conclude that A = @, therefore

£l = oo %

3.2 Lebesgue Spaces with p > 1

We now study the set of p-th integrable functions.

Definition 3.6. Let (X, o7, 1) be a measure space and p a positive real number. The
function f : X — R is said to belong to the pre-Lebesgue space L,(X, </, 1) if
J1f]P du < oo, that is,

X
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L,(X,o,u) =< f:X — Ris an o/-measurable and / |f1Pdu < eo
X

Sometimes we use other notation, e.g., L, (X) or L,(u) if it will be clear from the
context and we want to emphasize the underlying space or the measure. %)

We now give some examples.

-1
Example 3.7. Let X = [0,1/2] and f: X — R be defined by f(x) = {xlogz (;)] ,
then f € Li(m). %)

Example 3.8. Let X = (0,00) and f : X — R be defined by f(x) = (14 x)~'/2, then
feLy(X, o/, ) for2 < p<ee. @

The following example show us that, in general, the spaces L, are not comparable
for different values of p.

Example 3.9. Let X = [0,16] and f : X — R be defined by f(x) = x~'/4. We have
that f € Ly (m) but f ¢ La4(m), where m denotes the Lebesgue measure. @

The next theorem tells us under what conditions it is possible to compare L,
spaces with different exponents.

Theorem 3.10. Let (X, o7, ) be a measure space such that [1(X) < eo. Then
LII(XWQ{J'L) QLP(deJJ)
Jorany 1 < p < g <oo.

Proof. We first prove when p = oo. Indeed, let f € L..(X, <7, 1), thus |f] < || f|l-
u-a.e., then

[urrau<isie [au=ucolsz <

X X

sofeL,(X,o,u).
For the remaining cases, let f € L,(X,o/,u) if A ={x € X : |f(x)| < 1}, then
Xx = Xa+ Xx\a and | f(x)[P < [f(x)|? forx € X\ A and |f(x)| < 1, for x € A, then

\mw=/mw#=/mvwm+/mmmwu
X X X

< /xAdu+/xX\A|f|”du S“(A)+/%X\A|f|qd.u

X X X
SUX)+[fIIF <o,

therefore f € L, (X, o/, ). O
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The inclusion in Theorem 3.10 is strict. To see this, consider the following
example.

Example 3.11. Let X = [0,1] and 1 < p < o < g < o0, where o = ”TJ”] then if p <
o < g we have that p/oc < 1 and g/ > 1. Choose 8 = 1/ and define

& ifx £0,
f(x):{ 0 ifx=0

then consider

1 1 1
dx dx
P —
Jirwra= [ = [ S5 <
0 0 0

since p/a < 1, then f € L, (m), on the other hand,

1 1 1
dx dx
q = _— =
[irera= [ 5= [ 55
0 0 0
and this last integral is divergent since g/o¢ > 1, which gives that f ¢ L,(m). Thus
Ly(m) & Ly (m). %

We cannot drop the condition (t(X) = o in Theorem 3.10 as the next example
shows.

Example 3.12. Consider the constant function f(x) = ¢ with ¢ # 0 in (0,0), it is
easy to see that f € Lo.(u) but f ¢ L,(X, .o, 1) for 0 < p < eo. On the other hand,
let X = [1,o0) and define f: X — R with f(x) =1, then

is divergent, therefore f ¢ L (m). @

It is not difficult to verify that L, with 1 < p < oo, is a vector space. In fact, note
that if f,g € L, (X, 27, 1), then by the inequality

[f 8" < (IF1+[8))" < (2max{[f],[g[})" = 2" max{|f]",[¢]"} <2°(|fI" +[¢]"),
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we have that f+g € L,(X, o7, ). Moreover, if f € L,(X, </, 1) and o € R, then
of € L,(X, 4, 1). On the other hand, the inequalities 0 < f+ < |f[,0 < f~ <|f|
imply that f*, f~ and |f] are in L,(X, .7, u).

The following result permits to obtain ¢” by means of L,(X, <7, 1) choosing an
appropriate measure space.
Theorem 3.13. Let X be a countable set and # be the counting measure over X, then
L,(X,2(X).#) =1".

Proof. Let # be the counting measure over X, i.e.

#(E) = number of elements of £ if E is a finite set;
T ) e if E is an infinite set.

Without loss of generality, we suppose that X = Z*, since X, endowed with the

counting measure, is isomorphic to Z", then we can write Z* = G {k}. Let f €
L,(Z*, (L"), #) and .
CENICIET
be a sequence of simple functions such that
351010 o,(k) =|f(k)|? foreach k,

now

[ owan= S rwra(z o) = i) = X

since #({k}) =1.

Itis clear that ¢; < ¢, < 3 < ..., and using the monotone convergence theorem
we get

[irwras= [ 1mg,0ar =3 110,
o k=1

7+

UG / )P

7+
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This last result shows that | f]? is integrable if and only if
D fR)|P < eo.
k=1

In other words, to say that f belongs to L, (X, &(X),#) endowed with the count-
ing measure is equivalent to say that the sequence {f(k)}ren is @ member of £7,
therefore

L,(X,Z(X)#) =1/

which ends the proof. ad

Let (X, .47, 11) be a measure space, define the functional || - ||, : L, (X, </, u) —
R* by
1/p

1Al = I£l, = / 1P du
X

with 1 < p < oo,

We now show that the functional |-, is not a norm since it does not hold the
definite positive property of the norm.

Example 3.14. Let X = [0, 1] and consider the Dirichlet function

_J1ifxeQnio,1],
[l = {Oifxe R\Q)N][0,1].

For p =1, we have

||f||l=/f(x)dm: / 1dm =m(QnNJ0,1]) = 0.
0,1 Q

[0,1]

On the other hand, if p = e, we obtain
1]l :inf{M> 0:m({xe[0,1]:|f(x)| >M}) :O} =0.

However f(x) # 0 for all x € X. This shows that both || - ||; and || - || do not define
anorm in L; and L., respectively. @

To correct this nuisance we resort to the notion of quotient space, i.e., we will split
all the elements of L, into equivalence classes. In other words, two functions f
and g in L, are said to belong to the same equivalence class if and only if = g
u-almost everywhere, in symbols f ~ g < f = g p-almost everywhere. It is just
a matter of routine calculations to verify that the relation ~ defines an equivalence
relation. Once this is verified, we denote the class generated by f as
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[f]:{gELP(Xa’Q{vu):ng} (3.3)

and we define the norm of g as ||g||, = |[|[f]||, for g € [f]. For arbitrary g, € [f]
and g, € [f] we have that g; = g, u-a.e. since g, ~ f and g, ~ f. This tell us
that ||[f]|l, = |lgll, is well defined being independent of the representative of the
class [f].

With the above taken into account, we now define a normed space based upon
the pre-Lebesgue space.

Definition 3.15. We define the Lebesgue space L,(X,.7, 1) as the set of equiva-
lence classes

Ly(X, o/, 1) = {[f]: f € Lp(X, o/, 1) },
where [] is defined in (3.3). %)

We went to a lot of work to define the Lebesgue space L, space via quotient
spaces just to have || f||, = 0 if and only if f = [0], but in practice we never think of
L, spaces as equivalence classes. With some patience, we can see that L, is a vector
space over R.

We now show that the functional || - ||, satisfies the triangle inequality.

Theorem 3.16 (Minkowski’s inequality). Ler 1 < p <eoand f,g € L,(X, o/, 10).
Then f+g € L,(X, o/, 1) and

1 +elly, < 1171+ lgllp-

The equality holds if A|f| = B|g| u-a.e. for A and B of the same sign and not simul-
taneously zero.

Proof. Let us check equality. Let A and B be numbers of the same sign and not
simultaneously zero such that A|f| = B|g| p-a.e., then A|| f||, = B||g||p. i.e., || f]|, =
ngﬂp. Moreover,

B B+A
28t = sl = ||g||p+\|g||p I1£1lp + llgllp-
p

Ir-+¢l, = |5

When p = o and p = 1 the inequality is immediate, as well as when || f||, = ||g||»
= 0. Suppose that 1 < p < eoand ||f]|, = ot # 0 and ||g||, = B # O, then there are
functions fy and go such that | f| = afp and |g| = Bgo with || fol|, = |80, = 1.

Now, consider A = ﬁ and1 —A = a1p hote that 0 < A < 1, then
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1f () +e@)" < (If ()] +[g(x)])”
= (0tfo(x) + Bgo(x))”
[(ac+B)Afo(x) + (e +B)(1 = A)go(x)]” 3.4)
= (0 +B)"(Afo(x) + (1 = 24)go(x))"”
< (a4 B)7[A(fo(x)” + (1 =2)(g0(x))"].

Since @(¢) =t is convex in [0, ), integrating in (3.4) we have

/ [f(x)+g)]"du < (a+B)[A[lfoll; + (1= 2)[|goll7)]

=(a+p)”
ie., f+g€L,(X,o,u). Finally,

1F+elly < (1Al + llell»)”

thus
If+gll, < I£1lp+llgllp,

which ends the proof. ad

We are now in condition to introduce a norm in the Lebesgue space.

Definition 3.17. The Lebesgue space (L,, X, o, 1)l Lp) is a normed space with
the norm

1l = 1], = / A | (3.5)
X

whenever 1 < p < oo, @

To see that (3.5) does not define a norm when p < 1, we can take f = yjo,1/2,
g = X[1/2,1) and we see that we have a reverse triangle inequality in L? ([0,1],Z,m).

We could hope to define another norm in L2 that could turn the vector space into a
normed space but this is not possible, see Theorem 3.79.

We now want to see if the product of two functions in some L,, is still in L,. The
following example shows us that this is not always true.

Example 3.18. Consider the function

) TV x| < 1
f(x)_{ 0 iflx|> 1L
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note that &
[ rae= —4,
J B
(-1.1]
therefore f € L, (m), but
dx
[P [ 2
R ~1,1]
is a divergent integral, therefore f2 ¢ L;(m). @

Now, we study under which conditions the product of two functions stays in
Li(X, 9, ). The following result says that if f € L,(X, </, ) and g € L, (X, </, 1)
for p and g conjugated numbers, i.e., % +1 =1, we have that fg € L;(X,o,u).
Prior to the demonstration of this powerful result, we need the following lemma.

Lemma 3.19. Let 1 < p < oo. Then for nonnegative numbers a, b, and t we have
(a+tb)P > a’ + ptba"".
Proof. Let us define
0(t) = (a+1b)’ —aP — ptha” .

Note that ¢(0) = 0 and ¢'(t) = bp[(a+1tb)?~' —aP~!] > 0 since p > 1 and a, b,
t are nonnegative numbers. Therefore @ is increasing in [0,e) which gives that is
nonnegative for r > 0. Thus, ¢(¢) > ¢(0) and (a+1tb)? > a” + ptha?~ . O

The next proof of the Holder inequality is not the standard textbook proof. Tra-
ditionally, the Minkowski inequality is obtained using the Holder inequality as was
done in the case of Lebesgue sequence space in Lemma 2.4. Here we get the Holder
inequality from Minkowski’s inequality, which highlights the fact that both inequal-
ities are intertwined in some sense. If we carefully analyze the situation in question,
we can see that the Young inequality (Corollary 1.10) provides us with a tool which
allows us to prove Holder’s inequality without using Minkowski’s inequality as was
done in Lemma 2.3.

Theorem 3.20 (Holder’s inequality.). Let p and q be extended nonnegative num-
bers such that %—I—i =1and feL,(X,d 1), g € Ly(X,,1). Then fg €
Li(X,o,u) and

/ Felda < 11, gl (3.6)
X

Equality holds if there are constants a and b, not simultaneously zero, such that
alf|P = blgl? p-a.e.

Proof. First consider p = 1 and g = oo, then clearly

gl <llgll p-ae.
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since | f| > 0, we have that | fg| < |f]|/g||- 1-a.e. therefore

/ feldu < / Al | gl
X X

[ 17elau < £l
X

thus

Now, suppose that 1 < p <o, 1 < g <ooand f >0, g > 0. Define h(x) = [g(x)]*/?,
then
g(x) = [h(x0)]"* = [n(x)]""".

Using Lemma 3.19 we have

prf()g(x) = prf(x)[AE)] " < (h(x) +1f(x))" = [A(x)]".

thus,
pt [ Fau < [ o+ er)au— [0l dua = 115~ ol
X X X
From Minkowski’s inequality (Theorem 3.16) we have
/f thlp+t||f|\ )"~ lIAly
t
Taking f(¢) = ([|All, + (1), we get £(0) = [[A][. Then
p/fgdu SlimM = f(0)
1—0 t
X
= p(llAll,)" 1111,
Note that
5
Juoran | = | [lewia
X X
—| flstiran |
X

then, [[4[[5~" = []],- Thus



54 3 Lebesgue Spaces

/mwswwwm
X

Finally, choosing a = ||g||§ and b = || f||% such that a| f|” = b|g|?, then

|g‘q/p

1= 1Al

b)
lgll4/”

and integrating we get (3.6). ad

We will give another proof of the Holder inequality using Minkowski’s inequal-
ity, but first an auxiliary lemma.

Lemma 3.21. Let a,b, and 6 be real numbers such that 0 < 0 < 1 and a,b > 0.
Then "
lim_[0a'/"+ (1= 0)p/"|" = a®p!-0).

n—y—+oo
Proof. Leta,b > 0. Taking I(n) := [Bal/" +(1— Q)b'/”} , we have

I(n) =exp {nlog [Gal/” +(1- e)bl/n} }

o(4) -0

= exp ;
n

where @(r) = log [6a’ + (1 — 0)b']. Passing now to the limit, we get

. _ ’
Jim 1(n) = exp (¢'(0))
= exp (6log(a) + (1 —6)log(b))
—a0pi-0
which ends the proof. a

We are now in a position to provide one more alternative proof of the Holder in-
equality.

Proof (Alternative proof of Theorem 3.20). Let f € L, and g € L,. Define F = | f|?
and G = |g|?, which entails that F'/? € L, and G'/? € L,,. Now we get

HeFl/PJr(l—e)Gl/ﬂ

<|ere| +||ja-e)c
L, L,

L,

e

+(1—9)HGV”

L, Ly
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or in integral terms

P+ (1-6)G"") du
/(3}7/ /)p

X
1/p 1/p] P

<o /qu +(1-0) /Gdu . GO

X X

Applying Lemma 3.21 and Lebesgue theorem in (3.7) we obtain

0 (1-6)

/F"G“*")du < /qu : /Gdu

X X X

which is exactly

0
/ 179 g0 Oy < / FlPdu / lgldu
X X X

Taking 6 = 1/p we get Holder’s inequality (3.6). a

(1-6)

The Holder inequality can be extended in the following way.

Corollary 3.22 Let py > 1 be such that Y}_, ﬁ =1 1If fi € Lp (X, 1), for all
k=1,2,...,n, than we have that fi X f,-+- X f, € Li(X, 7,1t and

/

X

[T
k=1

k=1

Proof. We give the proof for n = 3. Let % + é + lv =1 and take 11;, then %—i—; =1,
implying that %—}—% = 1. We want to show that fg € Ly(X,</, ). Indeed, by

Theorem 3.20
s/p
Jirevaus{ fiemean| | [rer o
X X X

1/s
[ireban | <irllel
X

s/q

i.e.
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therefore fg € Ly(X, </, ). Finally, once again invoking Theorem 3.20 we get

1/s 1/r
[irentan< | [irsbaun| | [iaran]  <islela.
X X X

The general case follows by similar arguments. a

Example 3.23. As an application of Holdér’s inequality, we show that the Gamma
function (see Appendix C for more details) I : (0,00) — R given by

I'(p)= /e_’t”_ldt
0

is a log-convex function, i.e., it satisfies @(Ax+ (1 —A)y) < @(x)*@(y)'~* for 0 <
A < 1 and x,y in the domain of @. Let x,y € (0,00), 0 <A <1, p=1/1 and ¢ =
1/(1—A4). Let us take

x—1 t y-1

fe)y=t7er, glt)=t7e,

YR

and now by Holdér’s inequality we get

/Nf(t)g(t)dté /Nf(t)Pdt ; /Ng(t)th

Now taking € — 0 and N — o we get
Xy 1 1
r(Z+2) <rwiro)
(2+2) <twito)
since f(t)g(t) = t*/P/a=Te | f(t)P =t*le " and g(1)? =" le ™. %)

There is a reverse Holder type inequality where we can obtain information from
one of the integrand functions knowing an a priori uniformly bound with respect to
the other integrand function, see Lemma 3.40 and Lemma 3.41.

The following result provides us with another characterization of the norm || - || ..
Theorem 3.24. Let f € L,(X, o/, u) with 1 < p < oo, then
-1, 11
1Al = Al = sup  qlifelhllell,” g #0, —+—=1,. (3.8)
8EL (X, . 1t) P q

Proof. Using Holder’s inequality we have
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£l = / Feld < 171Nl
X

then

Ifglillglly" < 11411
for g # 0, which implies

_ 1 1
sup {Ifglllllglql eA0 Ll 1} <17l (3.9)

gELL]<Xa'Q/su)

Moreover, suppose f # 0 and g = c|f|"~! (c constant), then

el =clf1",
thus
178l =cllfII7-
If we choose ¢ = || || "7 we obtain
Ifglle =117 IS = A1l (3.10)
Now
gl = e o

and integrating both sides give us
1/q

lel=e | [lrmau | =UrI5oIo1ge = Wiy 7o =1
X

since f # 0, then ||g|| ' = 1.

Thus, we can write (3.10) as

_ _ 1 1
If1l, = l7glllgll," < sup ){Ilfglh|g||q1:gaé0,p+q=1}. 3.11)

gELy(X o u
combining (3.9) and (3.11) we obtain the result. O

We now give a result, sometimes called the integral Minkowski inequality or
even generalized Minkowski inequality, which is a corollary of the characterization
of the Lebesgue norm given in (3.8). Nonetheless this inequality is widely used, for
example in the theory of integral equations, among many others.

Theorem 3.25 (Integral Minkowski inequality). Let (X, .o/, ) and (Y, o5, L) be
O-finite measure spaces. Suppose that f is a measurable <f) x @/ function and
f(,y) € Ly(u) forally € Y. Then for 1 < p < e we have
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Y

/ fendy| < / [FACR] e (3.12)
L "

where the dot means that the norm is taken with respect to the first variable.

Proof. Let us define a(x) = [ f(x,y)dy. We have
Y

Jall o= sup [ latoig(a)las

geLd(X)
llell,=1 X

= sup //f(x,y)g(X)dy dx

geL9(X)
llgl,=1 X |¥

geL9(x)
llell,=1 ¥

< swp [ [ irtenelay

= [l 0
Y

where the first and last equalities are just consequences of the characterization given
in (3.8) for the norm of an L, function whereas the inequality is a consequence of

Fubini-Tonelli theorem and the inequality | [ f| < [|f]. 0

As an immediate consequence of the integral Minkowski inequality we get the
so-called Young’s Theorem for convolution, see Chapter 11 for definitions and in
particular Theorem 11.10 for a different proof.

Theorem 3.26. Let k € L'(R") and f € L,(R"). Then

/ kar—0f 0| <Kl ] e -

R/I
Ly(R")

Proof. By a linear change of variables we have

[ke=nswa= [ ks,

Rn R»
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which gives

/ Kx—o)f(@)d| = / k() f (x— 1)de

R" R"

/ Jkto)s
/ KO-l o,
< [wolls

R»
= [kl ey

The first inequality is a consequence of the integral Minkowski inequality, the third
inequality is due to the fact that || f(- —1) =|f1lz, (> see Problem 3.85. O

Ly(R") L,(R")

dr

]7 Rn)

(e 4

fllz, @) -

e e

We now show that the L..-norm can be obtained from the L,-norm by a limiting
process.

Theorem 3.27. Let f € Ly (X, o/, 0) N Lo (X, o/, 1L). Then
(a) feL,(X,qo, 1) for 1 < p <eo
(®) lim [|£ll, = [l£1l-

Proof. (a) Let f € Li(X,o/,u) NLo(X, 7, ). Since |f| < | fl||- u-a.e., then we
have |71 < || |12 therefore |£]? < |[£]}2-'| | whence

-1 1
1 1lp < 1AMl "IAT (3.13)
ie., feL,(X, o ).
(b) By (3.13) we have
limsup || f{|, < [|f]l (3.14)
pree

On the other hand, let 0 < & < 3| f||- and
A={xeX:[f(xX)]>|fll-—e},

note that (1(A) > 0, then

/ P> / FPdi > (fll — )i (A),
X A
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then 1
. - o .
liminf[lf]l, 2 (/. —&)liminflu(A)]r,

since € is arbitrary, we get
liminf > || f||«, (3.15)
p—ree

combining (3.14) and (3.15) we get

[[fllee < Timinf [ ]|, < Timsup [ f]|, < || f]---
p—ree p—roo

So timy e | fllp = /]l N

The following result gives an upper bound for the measure of a set that depends
on the function f using an integral upper bound depending on the function f,
namely:

Lemma 3.28 (Markov’s inequality). Ler f € L,(X, o/, 1) and g be an increasing
function in [0,0). Then

1
S / gofldu, (3.16)

X
where g(x) # 0 for all x € [0,00).

Proof. Let Ay ={x € X :|f(x)| > A} with A > 0. Then, for all x € A;, we have
A < |f(x)], and thus

8(A)xa, () < g(If (X)) xa; ()
Now integrating both sides we obtain (3.16). O

In the case g is the identity function, the Markov inequality is widely known as
Chebyshev’s inequality.

The next results show that the Lebesgue spaces L,, 1 < p < oo, are not only
normed spaces, but are in fact Banach spaces.

Theorem 3.29. Let 1 < p < eo. Then (L,(X, 27 ,1),| - |l,) is a complete space.

Proof. We will split the proof in two cases.
Case 1. When 1 < p < eo. Take {f; },en @ Cauchy sequence in L,(X, </, ut). Then,
for all € > 0 there exists ng € N such that

an _fm”; <’

if n,m > ny. By the Markov inequality with g(A) = A”, we obtain

ePu({x: [fu(x) = fu(x)| = €}) < I fa = Fnll}

if n,m > ng. The latter tells us that { f,, } ,cry is a Cauchy sequence in measure, there-
fore there exists a subsequence { f;,, }ren of {fy hnen that converges p-a.e. to a mea-
surable function f (see Theorems 5.7 and 5.8). By Fatou’s lemma we have
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171 = [ 1717 au <t 17, ap <

So f € L,(X, <, u). Invoking again Fatou’s lemma we see that

£ = FII5 :/lﬁrﬂpdu < n]gglf/vffnkv'du <eP

whenever n > no. It means that f, converges to f in L,(X,.o7, 1t).
Case 2. When p = oo. Let {f,, }nen be a Cauchy sequence in L..(X, 7, u). For each
n € N define

A= {x | fie@)] > [ fell}
and for each n,m € N, let
By = {1 fu(x) = fn ()] > [ fo = fonlloo }-

Note that each Ay and each B,, ,, have measure zero. Let

E= (UAk> Ul UJBum |
k=1 nm
then ((E) = 0. Note that each f;,(x) is a real function and also

[fu(x) = fin (] < 1o = finlleos Vx € X\ E.

The latter tells us that {f, },en is a uniform Cauchy sequence in X \ E. Now, let us
define
lim f,(x) ifx € X \E,
f(_x) — { n—oo ]
0 ifxeE.

Then f is measurable since f = lim,_,e fyXE<, 1.€., fu — f uniformly in E°. Finally,
we show that

lim || f,, — fl« = 0.
n—soo

Indeed, since € > 0, there n; € N such that |f,(x) — f(x)| < €/4 Vx € X \ E when
> n;. Thus,
{x:)fulx)=f(x)| > €/2} CE for n>n.

Since p(E) = 0 we conclude that
Ifu—flle <g/2<e if n>ny,

i.e., limy e || fu — fll« = 0, in particular || f, — f|l~ < € and f,,, — f € Lo.(X, o7, ).
now, as fp, € L.(X, 47, 1) and L.(X, <7, 1) is a vector space, then f = f,, — (fu, —
f) € La(X, o, ). O
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We now characterize the sequence of u almost everywhere convergent functions
that converge in norm.

Theorem 3.30. Let { f, } 1 be a sequence of functions in L,(X, .o/ , ) with1 < p <
oo, Which converge [1-a.e. to a function f € L,(X, </, ). Then

tim [y~ fl,=0 i Tim |£ill, = £l

Proof. Since @(t) =t? is convex in [0,°0) when 1 < p < e we obtain

P (lal+lel\" 1
< < —(lal? P
< () < S+

a—>b
2

which implies
la—b|? <2771 (|a|” + |b|"). (3.17)

Taking f, — f a.e., then | f,, — f|” — 0 p-a.e. and by (3.17) we get
0 <27 (Iful” + A1) = 1fu = fIP,
then

tim (27 (14, +1£17) = Uy = £17] = 2711

n—yoeo

By Fatou’s lemma we have that
2 [1spau= [timint (2 (o 411 - 17, - 11 aw
X X

<timint [ (27 (4074 1717) < 1= £17] o

X

y / |17 dpt+ limin { — / o= f1Pdu o
X X

ie.
2 [1rvau <2 [1g7 -timsup [ 1f, - sran.
X X X
therefore
1imsup/\f,, — fIPdu <0.
X
Since

OS/Ifn*fl"dliSlimSUP/Ifn*f\pduSO,
X X
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then
tim |, — ]}, =0

it 1im |l = 11,
Now, if lim || f,, — f]| = 0, then we have the inequality
n—oo
fallp = 1Al | < M1fa = 11l
and the result follows. O

It should be pointed out, that for p = e, the Theorem 3.30 is false. In fact, let
{fu}nen C Loo([0,1]) be defined by f,, = x(1/s,1] and note that f, — 1 p-a.e.in [0,1].
Moreover,

||an°Q = inf M[.L ({xe [O, 1] . ‘x(l/,hl](x)‘ >M}) =0,;=1
and |1 = 1 then [ ;- = 1. b

1o =1l = sup w6 —1| = 1.
x€(0,1]

3.3 Approximations

Let (X,<7,1) be a measure space. A simple function s vanishes outside a set of
finite measure means that

u{xeX :s(x) #0}) <eo.
Now, suppose that s =X, oy, where o #0for 1 <k <nand E; € &.If s
vanishes outside a set of finite measure, then (Ey) < o for 1 < k < n, whence

Isllf = > lowl”w(Ex).
k=1

Sos € L,(X,q,u) if and only if s vanishes outside a set of finite measure.

Lemma 3.31. For 1 < p < o, the set of simple </ -measurable functions which van-
ish outside a set of finite measure is dense in L,(X, o/, 1t).

Proof. Let 1 < p <eoand f € L,(X, 2/, 1t), we show that given € > 0 there exists
an ./ -measurable s simple function which vanishes outside a set of finite measure
such that || f —s||,, < €. To do this we consider two cases:
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Case 1 f > 0. We know that there exists a sequence {s, },cn of simple nonnega-
tive and .«7-measurable function such that s, — f pointwise at X, since 0 <s, < f
for all n and f € L,(X,/,u) implies that s, € L,(X, <, 1) and this means that
every s, vanishes outside a set of finite measure. Now, note that

lim|s,— f]P=0 in X

n—oo

and
s = fI7 < (Isul +1£D)P < Q2IFD" =27(£1,

since f € L,(X, o/, 1), then 27|f|? € L,;(X, <7, 11). By the dominated convergence
theorem we have that

lim/|sn—f|pdu =0,
n—soo
X

i.e.
tim |5, — 1 =0,

then, since € > 0 exists ng € N such that
l[sn — £l < €”,
now, we choose s = s,,, then

ls—=fll, <e

Case 2 Let f be «7-measurable, then f = f+ — f~ where f and f~ are nonnegative
o/ -measurable functions. Using the Case 1 exist nonnegative simple functions s;
and s, which are .&/-measurable and which vanish outside a set of finite measure
and such that

If"=sillp<&/2 and | f” sl <e&/2.

Let s = s, — 57, note that s is a simple <7 -measurable function which vanishes outside
a set of finite measure. Finally, by the Minkowski inequality we have

1f =sllp =107 =)= (F =s2)llp <N =sullp +1f 520l <6,

which entails the denseness. a
For the case of L.. we need to suppose a stronger condition on the dense set.
Lemma 3.32. The set of simple functions is dense in Lo.(X, </, [L).

Proof. Lete >0and f € L..(X, 9, 1), then |f| < ||f]l~ U-a.e. in X, so there exists
E € o with u(E) = 0 such that | f(x)| < || f||- for all x € X \ E. Define

=\ ) flx) ifxeX\E,
f(x){ 0 ifxcE.

Then, |f(x)| < |[|f|l for all x € X, then there exists a sequence {f, },er of simple
functions such that #, — f uniformly in X so there exists ny € N such that
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It (x) — f(x)] < €/2,

for all x € X, then
|ty (x) = f(x)| < &/2
for all x € X \ E. This means that with s =t,, we get ||s — f|| < &/2 < e. O

Let (X,d) be a metric space and E C X. Define, as usual, the distance of an
element x to the set E as

d(x,E) =inf{d(x,e) e € E}.

It is almost immediate that

(a) d(x,E)=0ifand only if x € E.
(b) d(-,E) : X — R* is continuous on X.

The following lemma is a well-known result in the theory of metric spaces.
Lemma 3.33 (Urysohn lemma). Ler (X,d) be a metric space. Let F be a closed
set in X and V an open set in X such that F C V. Then there exists a function

g:X — [0,1] such that g is continuous in X, g(x) = 1 for all x € F and g(x) = 0 for
allxe X\ V.

Proof. For x € X, define

d(x,X\V)
d(x,F)+d(x,X\V)’

g(x) =

By (b) it is clear that g is continuous in X.

If x € F, then g(x) = 1. If x € X\ V, then d(x,X \ V) = 0, and g(x) = 0 for all
x € X\ V.Now, since d(x,X \ V) > 0and d(X,F) > 0 we can see that 0 < g(x) <1,
which completes the proof. a

The next theorem is reminiscent of Luzin’s theorem.

Theorem 3.34. Let f € L,(R,.Z,m) with 1 < p < eo. For all € > 0, there is a con-
tinuous function g € L,(R,.Z,m) such that ||f —gl|, < €.

Proof. We proceed by cases.

Case 1 Let f = yg, then E € £ and m(E) < o, so we can find a closed set F and
open set V such that F C E C V and m(V \ F) < (£)”. Consider now g as defined
in the Uryshon lemma, then g is continuous in R, g=1in F and g=01in X \ V.
Moreover,

{x:g(x)# f(x)} CV\F,
indeed, if xo ¢ V\ F, thenxo € (V\F) and xo € VCUF, then if x € V¢, then f(x) =
g(xo) =0, which means that xy ¢ {x: g(x) # f(x)}, so we have shown that

{x:g(x) # f(x)} CV\F.
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Then
/If—gl”dmé / f — gl dm.
R

V\F

/|f—g|”dm§2‘”/dm
R

V\F
= 2Pm(V \ F)

But |f —g| <2, then

epr

P
<2

i.e.
If—gll,<e,
and thus showing the Case 1.
Case 2 Let F be a simple ./ -measurable function, which vanishes outside a set
of finiteness measure, is

n

f:ZOckxEk, where o #0 for 1<k<n
k=1

and m(Ek) <o, Er €.

Using the Case 1, for all k € N exists a continuous function g; such that

- < —.
e 8l < e

Note that g = 7, o4& is a continuous function on R therefore by Minkowski
inequality

n
le—£llp =1 oulgr—xz)
k=1
p
n
<3 loulllge — xellp
k=1
n
£
<Y o
21| k‘n|ak|

[
S

proving the Case 2.
Case 3 Let f be an arbitrary function. By Lemma 3.31 exists a simple function s
which vanishes outside a set of finite measure such that

1 =sll, <&/2,
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by the Case 2 there is a continuous function g such that

Is—gll, < e/2.
Then

1 = &lly < I1f =sllp+lls —gll, <,

which completes the proof. a

Theorem 3.34 is not true for p = 0. To see this, consider the following example.
Let0 <& <1/2and f = x4 Witha <b, a,b € R. Suppose there is a continuous
function g such that || f — g[| < €, hence we obtain that |y, ;) (x) —g(x)| < € u-a.e.
Now, for each 0 > 0 we can find xy € (¢,a+ 0) and x| € (a — §,a) such that

| X(a) (x0) — g(x0)| < &/2
and
X (1) —g(x1)| < €/2,
i.e.
[1—g(xo)| <€/2 and |g(x1)| <e/2. (3.18)

As g is continuous in a, then
glat) = gla) = g(a—). (3.19)
By the definitions of g(a+) and g(a—) there exists 0 > 0 such that

lg(x) —gla+)| <€/2 if a<x<a+$

lg(x) —gla—)|<€/2 if a—d<x<a. (320)
For this 6 > 0, by (3.18) we have
1—¢g/2<g(x) <1+eg/2
and
—e/2<g(x) <g/2. (3.21)
By (3.20)
|g(x0) — glat)| <€/2
and
|g(x1) —gla—)| < €/2.
By (3.21)
gla+) > g(xo) —€/2
>1—-¢/2—¢/2
=1-—¢

>1/2
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and

gla—) < glx)+e/2
<g/2+¢€/2
=€
<1/2,

this means that g(a+) # g(a—), which contradicts (3.19), therefore such g does not
exist.

Definition 3.35. A step function is a function of the form

Y o,
k=1
where oy, # 0, 1 < k < n and each [} is a bounded interval. @

Remark 3.36. Note that each step function vanishes outside a set of finite measure.
Thus, every step function is a member of L,(R,.Z,m). Moreover, the set of all step
functions forms a vector subspace of L,(R, .27, m).

Theorem 3.37. Let 1 < p < oo. Then the set of all step functions is dense in
L,(R,Z,m).

Proof. Let f € L,(R,.Z,m) and € > 0.

Case 1If f= yp, then E € Z, as f € L,(R,.Z,m), we have m(E) < oo, we
can conclude that there is a finite union of disjoint open intervals, say / such that
m(EAI) < €P,is I =y I, choose ¢ = ¥;_, x; = xs then

/If—¢|”dm=/|xfs—xi|”dm
R R

=/|XEA1|pdm
R

=m(EAI)
<e,

thus
1f=oll, <e.

which shows the case 1.

Case 2 f = Y}_, o4 g, where oy # 0 for all k and m(Ey) < eo. Using the case 1
there is a step function ¢ such that

S
— Ol < —.
||XEk QD ||P n|0€k|
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Note that )
0= oy

k=1

is a step function
n n
If =@l =1 X oulxm — @)y < X loullxe — oull, <&,
k=1 k=1

thus demonstrating case 2.

Case 3 Let f an arbitrary function, by virtue of Lemma 3.32 there exists a simple
function s which vanishes outside a set of finite measure such that || f —s||, < £/2,
for case 2 we can find a step function ¢ such that ||s — ¢||, < €/2. Gathering every-
thing we get that || f — ¢||, < €. O

Another interesting property of the Lebesgue space is that it is a separable space,
i.e., it has an enumerable dense set.

Theorem 3.38. The space L,(R,.Z,m) is separable for 1 < p < oo,
Proof. Let us define
= {Zbkx_]k :nGN,bk EQ},
k=1

where J; is a finite interval with rational endpoints 1 <k <n.Let& >0 and f €
L,(R,Z,m), then there exists a step function (Theorem 3.37)

n
z ar X,
k=1

such that

N aw — f]| <e/2.

k=1 »

Now, let § > 0. For all 1 < k < n, choose b; € Q such that |by —a;| < 6/2 and
Ji an interval with rational endpoints to Iy C Ji with m(J; \ I) < 6/n. Using the
Minkowski inequality, we have

- Z bk%Jk
k=1 »

Z (ax —br) 1, + Z by (%Ik - Xlk)
k=1

p

> b (0 — 20)

IN

2 ay — b)) xn,

p

n n
< 2 ‘ak—bk| HXII(HP—’_ Z |bk‘ H%lk _xJka
k=1 k=1

p



70 3 Lebesgue Spaces

Il
M=

\ak — bk| (m(Ik)) 1/ + i |bk| (m(]k \Ik)) e
k=1

—

0
)"+ (3 + )8

N
& wlo T
T

since |by| < |ax — by | + |ax| < g -+ max; <<, |ax|. Note that & — 0 if & — 0, so we
can choose 6 such that & < €/2. Again invoking the Minkowski inequality we get

Hf = b < |- Zaa| +|| X e~ X b
k=1 k=1 k=1 k=1
P P ’
<gf2+¢/2
=e.

Finally, note that S is a countable set since

QxQxQ=|JOxQx{q}
q€Q

is countable. Thus we have shown that the set of all step functions is dense in
L,(R,.Z,m) with 1 < p < eo, O

3.4 Duality

Let g be a fixed function in L,(X,.7, i), we will show that F' given by
F(f) = [ feau
X

defines a linear functional in L,(X,</, u). In effect, let oo and B be real numbers
and f and & elements of X, then

Fof +Bh) = / (of +Bhgdu

X

:a/fgdu+ﬁ/hgdu
X X

=aF(f)+BF(h).
On the other hand
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|Mm:/mws/Vwmgmwm
X

X

from this it follows that

IR < gl

171l
meaning

IF1 < 1Igllg:

and this shows that F' is bounded. Moreover, for 1 < p < oo, let us define

f=18""|sen(g),
then
fg=g|" "'sgn(g)g = lg|”.

Furthermore,
1f1= lgl*"|sgn(g)l,
from which |f| = |g|?, then |f]? = |g|P?~") and | f|? = |g|. We now have

Fm:/mw:ﬂwwzmm
X X

then .
/‘g|qdu: lglle = [lgll7la) = lells"
X llgllq
where
el | Tela = sl
X
therefore

nw/wwzwﬁ
X

from which we get

111§ =11715l18lg:
which entails
E(f) =fllpllgllg:
o) -
0> e,

then there is f = |g|?~!sgn(g) for which
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[F()]
> llglly,
£l
therefore, || f|| > |/gl|,- Consequently the norm attains the supremum and
1F1 = llglly-
Now consider the case p=1and p =oco. Let g € L (X, o/, 1) and f = sign(g), then
/]l = 1 and
/fgdu :/gsgn(g)du :/Igldu = lleli;
b'e X X
then
F(f) = I71llgl
thus )
F
= llglh,
£l
therefore
IF(| = llgll1-

The another inequality is obtained using the Holder inequality, and we get

1E1 = llgll-

Now, if g € L.. given € >0, let E = {x € X : g(x) >||g||., — €} and let f = yz. Then

X/ fedu = E/ gdu

> (l¢l..—e) [ a

X
= (lgll.. — &) 71l
thus
F(f)
2 ||g||oo —€).
i1, = Ul =)
By the arbitrariness of € > 0 we have
F(f)
> lgll.,
171,

from which it follows that ||F|| > || f|l...

On the other hand, |g| < ||gl||. t-a.e. Then |fg| <|f]|/gl|~, therefore

(3.22)
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|fgldu < IF1dp | llglles
[raons{]

X

but

/mws/uw»

X X
therefore

FI< | [1fldu | gl
X

SO

T < il
1
from here we obtain
1]l < llglle (3.23)
in view of (3.22) and (3.23) is
1]l = llgll-

Thus, we have proved the following theorem.

Theorem 3.39. Each function g € L,(X, o/, 1) defines a linear functional F bounded
inL,(X,4, L) given by

F(f) = | fedu

and [|[F|| = ligll4-
We now investigate a reverse Holder type inequality.

Lemma 3.40. Let g be an integrable function in [0, 1] and suppose that there exists
a constant M such that

1
/MMSMWM
0

for every bounded measurable function f. Then g € L,([0,1],.Z,m) and ||g||; <M,
where q is the conjugate exponent.

Proof. First suppose that 1 < p < e and define the sequence of measurable and
bounded functions by

_ ) sl if[g(x)] <n,
g"(")—{ 0 if|g(x)] > n.
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and define
fa= gl sgn(gn).
Since
fal? = gnl?@™",
then

£l = [lgnllZ

and further, |f,|? = |g,|?, moreover,
fagn = 8nlgal?" " sgn(g,) = |gal”

but f,g, = fug, then

1
lglls = / fugdu < M|, = M]ga]7",
0

here
llgulld < Mllga]|47,
therefore
v
lgnllg " <M
but
ar—q _4lp=1) _p _,
p p p
then
18nllg <M
and
1
/Ignl"du <M?
0
since

lim |g, |* = [g|*
n—soo

almost everywhere [0, 1], then by Fatou’s lemma

1 1
/Igl"du < lgn/lgnl"du <MY,
0 0

this means that g € L,[0, 1] and also
8llg <M.

For the case p = 1, let € > 0 and consider the set

3 Lebesgue Spaces
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E={x:|g(x)| =M +e}
and function f = sgn(g) e, then

11l = p(E),

where

Mu(E) =M1 = | [ Fedu| = 0+ o),
0

from this it follows that 0 < e (E) < 0 therefore p(E) = 0 consequently || f]|; =0
and || gl < M. O

The previous lemma can be extended to any finite measure space in the following
sense.

Lemma 3.41. Let (X, o/, 1) be a finite measure space. Let g € Ly (X, </, l) be such
that for any M > 0 and for every simple function s it holds that

[ seau| <l

X

1 <p<eoo Then g€ Ly(X,o7, 1) and ||g|, < M, where q is the conjugate expo-
nent p.

Proof. Case p=1.LetA={x: g(x) >M} and B= {x: g(x) < —M}. Note that A
and B are in .«7. If we choose s = x4, then by hypothesis we have

/xAgdu <M xall1,
X

namely
/gdu sMu(A)=/Mdu,
A A
where
[te=mau<o
A

as g > M, we conclude that p1(A) = 0.
Similarly, choose s = — 3, then we can show that

u(B)=0.
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and U (AUB) =0, which means that |g(x)| < M p-a.e., then ||g||. < M, and thus the
lemma is proved for the case p = 1.

Case 1 < p < oo, Since |g|? > 0 we can find {s, },en a sequence of nonnegative

simple functions such that s,, — |g|? pointwise.

Let us define ¢, = s,]/ P(sgn(g)), n € N, note that each t, is a simple function and

1/p

ltall, = / o Pdu
X

= /Sn d,LL

X

1/p

Since

gty =s,/"g sgn(g)
=s1/"|g]
> Srll/.”srll/q

= Sn,

then
0< / s < / gtadit < MlJt
X X

from which we get

/s,,d/.L <M4,
X

and by the monotone convergence theorem we conclude that
[ letrau < wr,
X

where g € L,(X,.«7, 1) and ||g||; < M. O

The Riesz representation theorem is an important theorem in functional analysis
since it characterizes the dual of Lebesgue spaces in a very easy way. We will give
different proofs of this key result. We start with the simple case of X = [0, 1].

Theorem 3.42 (Riesz Representation Theorem). Let F' be a bounded linear func-
tional on L,[0,1], 1 < p < oo, then there exists a function g € L,[0,1] such that
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1
Fm:/kw
0

forany f € L,[0,1] and also
IF]l = ligllg-

Proof. Let xs be the characteristic function of the interval [0,s]. Let us define the
function ¢ : [0,1] — R such that ¢(s) = F(y,). We will show that ¢ is absolutely
continuous. Let {s¢,5}{_, be any collection of disjoint subintervals of [0,1] such
that

n
D si—sil <8,
k=1

then if
o = sign (9(5) — 9 (50)))
we have
16650~ 0501 = ¥ (650~ 0(50) sem (05~ 9(50))
k=1 k=1
= X ()~ Fls)) o
= iF(O‘k(Xsk X))
k=1
=F <i ak(%@ _Xsk)> ’
k=1
then .
Do) —o(se)| = F(f),
k=1
where

On the other hand consider

1
12 = / 1P du
0

1

/

P

> o (x5 — %)

k=1

du
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M:

V4
low (x5, — m)l) du

~
Il
-

M=

1

P
| Zsk Xsk ) d“

I
LS~ oY~ _ o\_

/I
;
(

Z Xlse Sk])
k=1

/ (JCUA e sk] d#
0

since [s,5x] are disjoint, continuing
i I
P
/ (XUzzl[sk,m) du = / XU 5 A1
0 0
n
( U [sk ) 37(])
k=1

=u
= D 1([se5¢))
k=1
= 3 [fi— sl
k=1
<6
implying that
1£115 < 6.
Now .
D10 — o) =F(f) < F[Ifl, <|IF|8"7,
k=1
if
8[’
A
then

n
2 Sk‘<8

if ||f]|5 < &, which shows that ¢ is absolutely continuous in [0, 1]. Since all abso-
lutely continuous function is integrable, then there exists g € [0, 1] such that
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5

o(s) = / ¢(1)du,

0

hence
1

F(ys) = / g(1) xs(r)du.
0

On the other hand, since any step function y of [0, 1] can be written as
V=Y s
k=1
then we have in particular

1

F (%) :/gxsk du
0

1
ckF (Xs) = ck / 8xs. du
0

1

F(Ck?{sk) = /8Cszk du
0

1
n

Z F(CkXSk) = 2 /ngXsk du

k=1 k=1

0
F <2 Ck%u) =
k=1

F(y) =

8 z Ck Xsi du

k=1

gydu.

S _ o~ _

Now, consider a measurable and bounded function f in [0, 1], then by a known the-
orem in measure theory, there exists a sequence {y, },en of step functions such that
v — f a.e., with the result that the sequence {|y — f|”},en is uniformly bounded
and tends to zero in almost all [0, 1], then by the dominated convergence theorem

Tim [y, — /[, =0
and since f is bounded, then

[F(f) = F(w)l = [F(f = vl < IFIF = wallp,
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which entails
lim F(y,) = F(f).

n—yeo

On the other hand, there is M > 0 such that
vl <M
since { W, }nen is convergent, whence
—8M < gy, < gM

then
lgyn| < gM < M|g|,

therefore
1 1
tim [ gvau = [ recu
0 0
1
tim #(y) = [ fedu
0

Hﬁ:/mw
0

for each measurable and bounded function f since

[EOT<IFNIA

ie.
1
/ Fedu| < 1F 1A,
0

then by Lemma 3.40 g € L,;[0,1] and
gllg < 1F1]-

Now we only have to show that

1
sz/mw
0

for each f € L,[0,1]. Let f be an arbitrary function in L,[0, 1]. By virtue of Theo-
rem 3.37 for each € > 0 there exists a step function ¢ such that
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1f = wll, <e.

Since y is bounded, then we have

then

:wu—w»+/w~fmw
0

<IFNIS = wllo+ llgllallf =il
< (IF11+ liglly) &,

and now by the arbitrariness of € we get

1
Hﬁ=/mw.
0

Equality ||F|| = ||g||, follows from Theorem 3.39. O

Theorem 3.42 can be extended to a o-finite measure space using a standard ap-
proach from passing to finite to o-finite measure spaces.

Theorem 3.43 (Riesz Representation Theorem). Let (X, <7, [t) be a 0-finite space
and T a linear functional in L,(X,o/,11)(1 < p < o). Then there exists a unique
g € Ly(X, 4, 1) such that

T(f)= / fedu (3.24)
X
forall feL,(X, 1) and
71l = llgll- (3.25)

where q is the conjugate exponent of p.
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Proof. We first show the uniqueness of g. Suppose that there exists g; and g, in
L,(X, 2/, 1) such that satisfy (3.24) namely

/glleZ/gzle

E E

forall E € o with i(E) < ee. Since U is o-finite, we can find a sequence of disjoints
sets {X, }nen in &7 such that p(X,) < e for all n and

LetA:={xeX:g(x)>g(x)}and B:={xc X :g/(x) <gx)}.

Then
/gldIJZ /gzdll,
X,nA X.nA
SO
/ (g1 —&2)du =0,
X,NA

but g; > g2 in X,, N A, which means that (X, NA) = 0 for all n € N, then

oo

1(A) =Y pu(AnXx,) =0.

n=1

Similarly p(B) = 0 therefore g; = g, [-a.e. and this proves the uniqueness.
We now prove the existence of g by cases.

Case 1. ((X) < oo then for each E € & define V(E) = T ()g). Note that p(X) <

oo implies U(E) < oo, SO
%E € LP(X7JZ{7:H)
We now show that v is a signed measure on 7. Clearly yp is the zero function
L,(X,4,u), then
v(0) =T (%0)

Note that 7T is a real function, then v also is a real function. In the same way, choose
{E, }en a sequence of sets in o7 disjoint. Now, let us define

oo n
E=|JE, and A,=|JE,
n=1

i=1

then
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note that {A, },.cn is an increasing sequence, by induction it is easy to show that

XA, = Z XEw
k=1

by linearity of T, it must be

namely

T(xa,) = 3, v(E).

k=1

To show that y4, — xr in L,(X,o7, 1) we consider

i, — 212 = / 20— el du
X

= / XE\a, AU

— W(E\A,)
— W(E) — u(A,).

Since {A, }qen is an increasing sequence of sets such that E = |J;._, A,, then

namely lim,, .. [ (E) — u(A,)] = 0 s0 lim, .. [| x4, — x&|) = 0, which shows that
tim 24, — ¢l = 0.

Under the continuity of 7' in L, (X, <7, i), it follows that

im 7 (xa,) =T (xe),

n—soo
then
V(E) =T (xe)
= lim 7(%,)
= lim V(Ek)

and the latter tells us that v is a signed measure. Now we want to prove that v < 1.
Suppose that E' € & with u(E) = 0, then
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[7
el = / 2edu
X
u

=
=0.

(E)] 1/17

This shows that y is the zero functionin L, (X, e, u) and T (yg) =0,ie., v(E) =0
therefore v < . Using the Radon-Nikodym theorem for measures (signed) finite,
there is a measurable function g such that

V(E)=/gdu

for all E € /. Then

andg € L (X, o/, 10).

Let us verify that g satisfies the hypotheses of Lemma 3.41. Let s € L,(X, </, 1)
a simple o/ -measurable function with canonical representation

n
5= Xk,

k=1

(o)

v (Ex)

ock/gdu

Ey

d

then

I
M=
8]

~
Il
-

|
M=

T
[\

I
e —
o
o]
o
IS

n

2 ak%&) d.u

o~
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= /sgdu

X

therefore

for every simple function s € L, (X, <7, i1), hence it follows that

/sgd/.i ()]
b'e

If M =||T|| then 0 < M < o which shows that g satisfies the conditions of
Lemma 3.41, therefore we can conclude that g € L,(X, </, i) and

lglly <M =T]|. (3.26)

=X/fgdﬂ

We will prove that

forall feL,(X,o, ).

Let f € L,(X,<7,u) and for arbitrary € > 0, there is a simple function s € L,

(X, 4, 1) such that
€

1f =sllp < 5o
" llgllg TN+ 1

by Lemma 3.31. Then

- / fedu| = |T(F) = T(s) +T(s) - / Fedu

<IT(f—s)+ /sgdu—/fgdu
X

X

SIT(f=s)+ [ |s—fllgldu
/

AT =sllp+lls = Flpllglg
= (1Tl +llgllg) I1f = sl

(71 + llslly) €
171+ llglly +1
< E.
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Since € is arbitrary, we conclude that 7'(f) = [ fgdu forall f € L,(X, </, 1).
X

Finally by the Holder inequality (Theorem 3.20) we have |T(f)| < ||gl|4||f]|, where
171 < liglly- (3.27)

Now from (3.26) and (3.27) we have || T|| = ||g||4, thus showing the case 1.

Case 2. ((X) = e. Under the o-finiteness of p exists {X,},en such that X =
Un_1 X, with X, C X1 and p(X,,) < o for all n. We apply the case 1 to the measure
space (X, < NX,, U,) where l, = U] nx, -

Let T, = T, (u,), for case 1 for all n € N there exists g, € L,(t,) such that

T,(h) = / hgadi, (3.28)

X,

forall h € L,(X, </, 1) which vanishes outside X,,, and

1gnllg = Il < (ITI- (3.29)
Define
gn(x) if x € X,
8nlx) =
0 ifx¢X,.
then we can write (3.28) as
T(h)= /hgT,d/J (3.30)
X

forall h € L,(X, </, 1) which vanishes outside X,,.

Now, since g, restricted to X, have the same properties as g, under the uniqueness
we have g, = g,+1 in X,,. Now we define

g(x) = gu(x) if x € X,..

Since

|82 ()] < [Znr1 (%)
for all x € X and

lim g,,(x) = g(x),

n—soo

then by the monotone convergence theorem

[ tetrau = tim [ gl an
X X
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<7,
which implies that g € L,(X, .o/, 1) and
lgllg < IT1- (3.31)

Let f € L,(X,</,u) and f, = fxx, and note that f, vanishes outside X, and f, — f
(pointwise) in X. Clearly

=1 <111,
SO
o= 1P <If1P

and by the dominated convergence theorem we have
lim/|fn — f|Pdu =0.
n—soo
X

By the continuity of T it follows that T'(f,) — T(f) when n — co. Moreover, note
that | f,g| <|fgl, fg € Li(X, </, u) and lim,_,.. f,g = fg. Now, invoking the domi-
nated convergence theorem to obtain

/ fedu = lim / fugdu
X X
—tim [ fedu
X

=1lim [ (fxx,) (exx,) du

n—yeo
X

= lim / Jn8ndu
n—oo
X

=lmT(f,)

n—yeo

=7(/).

Thus, we have demonstrated (3.24) and once again invoking the Holder inequality
we get

T < A1 l1ellas

from which || T|| <|g||4, and by (3.31) we get ||T'|| = ||g||4, which ends the proof.
O
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3.5 Reflexivity

In this section we will show that the Lebesgue spaces are reflexive whenever 1 <
p < oo. We recall the following result, which is a consequence of the Hahn-Banach
norm-version theorem.

Theorem 3.44. Let (X, |- ||) be a normed space, Y a subspace of X and xo € X such
that
0 =inf|lxo—y|| >0
yeYy

i.e., the distance from xo to Y is strictly positive. Then, there exists a bounded and
linear functional f in X such that f(y) =0forally €Y, f(xo) =1 and ||f]| =1/6.

Suppose that X is a normed spaces. For each x € X let ¢ (x) be a linear functional
in X* defined by

for each f € X*. Since

[0 (O < A,
the functional ¢ (x) is bounded, indeed ||¢ (x)|| < ||x||. Then ¢ (x) € X**.

Theorem 3.45 Let (X, || - ||) be a normed space. Then for each x € X
[lx[l = sup{|f(x)| : fEXT5|Ifl =1}

Proof. Letus fixx € X. If f € X* with || f|| = 1, then

@ < ANl < [l]]-
On the other hand, if x # 0, then

6 =dist(x,{0}) = inf ||x—y| = x| >0,
ye{0}

by the Theorem 3.44 there exists g € X* such that

1
gx)=1 and [g] = T

Let f = ||x||g, and note that
11 = Il = ol = = 1
= ||X g = || X|| — =
[l x|

and
F(x) = [xllg(x) = [|x[],
therefore

[lx]| < sup{|f(x)| = fe X IFl =1} <|lx],
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which gives

([l = sup{|f (x)| : f € X", [[fll =1}

O
Remark 3.46. By the previous result it is not hard to show that
1@ ()| = [l
which states that ¢ is an isometric isomorphism from X to ¢ (X). To the functional
¢ we will call it the natural immersion from X into X**. %)

We denote by X** := (X*)* the dual space of X*, which is called the bidual space
of X.
Definition 3.47. A normed space (X, || - ||) is called reflexive if

¢(X)=X",

where ¢ is the canonical isomorphism. In this case X is isometrically isomorphic
to X**. @

We now show that Lebesgue spaces are reflexive, whenever 1 < p < eo. Some-
times the following reasoning is given for justifying the reflexivity of the L, spaces:

((Lp)*)* = (Lq)* =L,

where the equalities follow from the Riesz representation theorem. In fact we need
to show the following:
¢ (Lp) = ((Lp)")",

which means that we have an isometric isomorphism between L, and its bidual
space ((L,)*)* by the natural immersion ¢.

Theorem 3.48. The space L, (1) with 1 < p < oo is reflexive.
Proof. If 1 < p < oo and % + é =1, let us consider

*

viLy(u) — (Ly(w))",

defined by
v(g) = 9(Fy)
for g € L, (1) where F,(f) :){gfdu.

Observe that y is a linear and bounded functional, the boundedness is ob-
tained by

(gl =lo(F) < Il Fll = llollgllq,

where the last inequality is a consequence of Theorem 3.43. Again by Theorem 3.43
there exists some f € L,(u) such that y(g) = [ gfdu forall g € L,(1).
X



90 3 Lebesgue Spaces

On the other hand, for w € (L,(u))*™ we have
w(E) =) = [ fedu=v(e) = o(F)
X

for all g € L,(u). Theorem 3.43 guarantees that w = ¢. It means that the natural
immersion

¢ Ly(p) = (Lp(u))™

is onto. This shows that L, (1) is reflexive. O

3.6 Weak Convergence

Consider the function x — cos(nx) for n = 1,2,.... Note that

2n
/cos2 (nx)dx =,
0

foralln € N.

Thus the sequence {cosnx},en of functions in L,([0,2n],.%,m) does not con-
verge to zero in the L,([0,2n],.Z,m) sense. However, such a sequence converges to
zero in the following sense. Let g = x|, 5 where [a,b] C [0,27]. A direct calculation
shows that

2n

/}qa‘b] cos(nx)dx = l[sin(nb) —sin(na)] — 0
’ n

0

when n — co. Now consider {(a;,b;) ", a finite collection of disjoint subintervals
of [0,2m] and simple function ¢ of the form

m
ajx[a/vb/]'
j=1

(p:

Observe that
2n

lim [ ¢(x)cos(nx)dx=0.
n—soo
0

The above considerations motivate the following definition.

Definition 3.49. Let (X,<7,i) be a measure space and 1 < p < « and
qg = p/(p—1) with the convention ¢ = 4+ if p = 1. A sequence of functions
{fitnenin Ly(X, o7, 11), 1 < p < ecis said to converge weakly to f € L,(X, o/, 1) if
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tim [ fugdn = [ red
X X
forall g € L,(X,o7, ). We denote this convergences as f, — f. @

By the Riesz representation theorem f, — f, f,, f € X =L, if F(f,) = F(f) for
allFeX* =1L,

The next theorem characterizes weak convergence in Lebesgue spaces.

Theorem 3.50. Let (X,.o7, |1) be a finite measure space and 1 < p < oo. Let { f;, }nen
be a sequence of functions in L,(X, </, L) such that f,, — f u-a.e. Then

lim ¢(f,) = @(f)

n—oo

forall ¢ € L(X, o, 1) if and only if {|| fu | }nen is bounded.

Proof. (=). Suppose that lim, .. p(f,) = @(f) forall ¢ € L;,(X,./, u). Define y, :
L, — Rby [gf,du and note that||y, || =|| /|- By hypothesis sup,cy [W,(g)] < oo
X

By the uniform boundedness principle we get that sup,,. ||y, || < C, from which we
get sup, ey |lfull, <C.

(«<). Now, if || f,||, < M, then by Fatou’s lemma we have
[ 1= [ tmint| 7, o
n—soo
b'e X
< liminf / P du
n—soo
X

<M.

On the other hand, by the Riesz representation Theorem 3.42 for all ¢ € L (X, .o, )
there exists g € L, (X, <7, 1) such that

ol = [ hed

X

forall he L,(X,a/,u). Since g € L,(X, o7, ), therefore |g|? € L (X, o/, u), then
there exists 6 > O that for all E € &/ such that y(E) < 6 implies

’ RN
/Igl du<<4M ,
E

since [ (X) < oo we can use Egorov’s theorem to guarantee that there exists ny € N
and A € o/ such that 1(A) < 6 and
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€
1fu(6) = fO)] < 57—
2(llgll + 1)
for all x € A¢ and all n > ny.

Finally, by Holder’s inequality we have

lo(fu) —@(f)] = /(fn—f)gdu

X

_ /(fn —f)gdu+/(fn — f)gdu

A Ac
1/q
<=l | [leau |+ [ 1= rlela
A Ac
€ ellgll
<IM—+ ——21
aM - 2([lgl+1)
=€
if n > ngy, which ends the proof. O

Corollary 3.51 Let {f,}nen be a sequence of functions in L, 1 < p < co which
converges |-a.e. to a function f € L, and moreover, suppose that exists a constant
M such that ||f,||, <M, for all n € N. Then for all g € L, we have

tim [ fugdn = [ feau.

Remark 3.52. The Corollary 3.51 is not true for p = 1. Let X = [0, 1] and n € N.
Consider f,(x) = nyjo,1/,)(x) and take g(x) = 1. Since f, — f = 0 we have

1 1/n
/f,,gdxz/ndx:l
0 0

1
O/fgdsz.

Nevertheless, the Corollary 3.51 is true for p = eo. Let {f,},.y be a sequence of
functions in L., such that|| f;,||., < M forall n € N and f, — f p-almost everywhere.
Then we get | f,| < M almost everywhere. Let g € Ly, then | f,g| < M|g| € L,. From
the Lebesgue dominated convergence theorem we obtain

but
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tim [ figau = [ feau.

@

The next result is a type of Lebesgue dominated convergence theorem tailored
for the p-th integrable functions.

Theorem 3.53. Let 1 < p <eoand 1/p+1/q = 1. Suppose that { f,}nen C L,(R)
with M = sup,, || .||, < e=. Then, there exists f € L,(R,.Z,m) such that || f||, <M
and a subsequence { f,, }ren C {fu}nen such that

1im/fnkgdm: /fgdm,
n—soo

R R
with g € Ly(R,.Z,m).

Proof. Let us first suppose that g belongs to the family {g, },en C Ly(IR). We want

to show that there exists
lim / fu.gdm.
k—»o0
R

Let us define

Ck,n :/fkgndm
R

By Holder’s inequality we have that

|Cut| = /fkgldm
R

< | fellpllgrlly,

and, since f; € L,(IR) and the hypothesis, we get
|Cea| <Mgilly- (3.32)

Since {Cy 1 }ren is a sequence of real numbers and is also bounded by (3.32), we can
invoke Bolzano-Weierstrass Theorem and obtain a subsequence {Cy, 1} C {Ci1}
such that there exists

lim Ckl,l

ky—roo
We can repeat the argument with {Cy, 1} to obtain a new subsequence {Cy, ,} with
h = 1,2 such that there exists

lim Ck2,h~
k24)°°
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We can now proceed inductively and using Cantor’s diagonal argument and we ob-
tain a subsequence {Cy,, 5} such that limy,, .. Cy,, » exists.

m

On the other hand, we can choose from {g,},cn a dense family in L,(R), let us
denote it by ¢ and define

T(g)=lim [ f,gdm
m—yoeo
R
for all g € 4. Note that

T (Olgm Jrﬁgnz) =ol (g”l) +T (g”z)

for all g,,, g», € ¢. Again, by Holder’s inequality we obtain

()] < [fellpllgllg
<Mgllq;

and we showed that 7 is a linear bounded functional, i.e., T is continuous. We now
want to extend 7' to all L,(IR). For all g € L,(IR) there exists a sequence {g, }nen in
% such that

tim g — g, = 0
and
Tim [galy = gl

Observe that
T (8:) —T(8)| <Mllgn—grlly — 0

when n — oo, this means that {T(g,) }.en is a Cauchy sequence in R, therefore it
converges in R, let us say that the limit is 7'(g), i.e.,

T(g) = lim T(gn)a

n—yeo

which is well defined in L,(IR). Moreover, note that

|T(g)| <limsup|T(g) — T(gn)| +limsup|T (g,)|
n—so0 n—yo0

<limsup|T(g,)|

n—oo

S MlimsupHgan

n—yoo

:MHqu

for all g € L,(R). By the Riesz representation theorem, there exists f € L,(R) such
that

171 = 11£1lp,
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~ [ ream,
R
tim [ fi.gdm = [ feam,
R R

which ends the proof. O

but ||T|| <M, then || f]|, <M and
therefore

The next theorem is quite important since it permits to calculate an integral in a
general space via a one-dimensional integral. Formula (3.33) is sometimes denoted
as Cavalieri’s principle or even by the fancy designation of layer cake representa-
tion.

Theorem 3.54. Let (X, o/, 1) be a O-finite measure space and f an <7 -measurable
function. Let @ : [0,00) — [0,00) be a C' class function such that ¢(0) = 0. Then,

/ o(f)du = / o' (Mu({xe X : ()] > A})dA. (3.33)
X 0

Proof. Tf u({x € X : |f(x)| > A}) = oo there is nothing to prove.
Therefore, let us suppose that u({x € X : |f(x)| > A}) < eo. We want to show
that {x € X : |f(x)| > A} is measurable over [0,c). Let us consider the set

E={(x,A)€Xx[0,0):0<A < |f(x)]}.

We now show that the E set is measurable in X x [0,e0). Since |f| > 0, therefore,
there exists a sequence {s, },en of simple functions such that s, 1 f. We can write

Sn =D dj g,
j=1
with A} € &/ and j = 1,2,...,n € N. Therefore
n={(x,A) €X x[0,00): 0 < A <s5,(x)}
U 0 an

is measurable in X x [0,e0). Observe now that

lim g, (x) = e (%),

n—yoo

since yg, is a measurable function in X X [0,0) because E, is measurable in X x
[0,0), therefore ¥ is measurable since it is the limit of a sequence of measurable
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functions. As a consequence
E={(x,A) €X x[0,00): 0 <A <|f(x)|}
is measurable, therefore
E*={xeX:|f(x)|>A}

is measurable in [0, ).
On the other hand, since ¢ is C 1 therefore

(X, A) — ¢'(A) g2 (x)

is measurable, moreover, since ¢(0) = 0 we get
t
)= / ¢'(A)dA
0

\
¢'(A)dAdu

We now obtain

[ otshau

X

.
Ot — T T —=

O\x T~

X, ) (A)@(A)dAdu

/%{xex sy () @' (A)dudA

3 Lebesgue Spaces

/(p H({xeX 1 ()] > A})dA
0

ending the proof.

In the particular case @(¢) = t” we get the following result.

Corollary 3.55 Ler (X, , L) be a o-finite measure space and f where 0 < p < es.

Therefore,

/ fPdu = p / AP p({fr e X 1 |£(x)] > A})dA
X

0

(3.34)

The following theorem gives us information regarding the size, at the origin and
at the infinite, of the distribution function Df(r) := u({x € X : |f(x)| > t}), see

Chapter 4 for a comprehensive study of the distribution function.
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Theorem 3.56. Let f € L,(X, o7, 1) with 1 < p < eo. We have
lime?pa((x € X £ /()] > 1)) = limePpa({x € X £ ()] > 1}) =0,
-~ o

Proof. Let f € L,(X,4/,1u), 1 < p < oo, and now using the Markov inequality
(Lemma 3.28) with g(¢) = ¢, we obtain

1
Bl e X: 17| > ) < 3 [ 17ran <o
X
then by (3.34) we have
limPu({xeX :|f(x)| >t})=0.
t—0
On the other hand, let us define
Ifl, if [f] >
fi= (3.35)
0, if |f]<t,

with f € L,(X,.27, 1), then |f| < oo p1-a.e. To see that, note

(1)) = oo} = (ot [£0)] > ).

Therefore |
i 1700] > ) < o [ 17w,
X
from which
Tim g1 ({x: ()] > n}) =0,
and we get

H({x € X ()] = o)) < lim p({x € X [ f()] > n}) =0,

resulting in | f| < o pt-a.e. Going back to (3.35), observe that lim,_,.. f; =0 u-a.e.
implies that we have lim,_,.., f/ = 0 g-a.e., and now by the dominated convergence
theorem we get
lim [ f’du=0.
t—roo
X

Then

lim / \f|pd/.L:1im/f,pd[,L:0,
[—ro0 t—so0
{xlfx)>1} X



98 3 Lebesgue Spaces

and finally
fimeu((xeX: /@] > <fim [ 77an=0,
{xlf (x>}
The proof is complete. a

Now we can define a Borel measure in (0, ) given by
v((a,b]) = Dy(b) = Dy(a)

for all a,b > 0, where D, stands for the distribution function Dy : [0,00) — [0, o),
givenby Dy(A) = p({x € X : | f(x)| > A}). For further properties of the distribution
function see Proposition 4.3.

In this sense we can consider the Lebesgue-Stieltjes integral

oo oo

/(pde:/qodv,

0 0

where ¢ is a nonnegative and Borel measure function in (0, o).
The following results show us that the integral over X of the function | f| can be
expressed as a Lebesgue-Stieltjes integral.

Theorem 3.57. If D (A) < oo for all A > 0 and ¢ is a nonnegative Borel measurable
Sunction in (0,c0). Then

[ oelridu=- / 9(2)dD;(2).
X 0

Proof. Let v be a Borel measure in (0, ) given by
v((a,b]) = Dy(b) —Dy(a) (3.36)

for all a,b > 0. We affirm that

Dy(a) =Dy(b) = p({x: a <|f(x)| < b}).
Indeed, since b > a, then

{xeX:|fx)|>b} C{xeX:|f(x)]>a}.
By the fact that Df(a) < o we have

p({xeX:[f(x)| > a}) <o,

then

{xeX:a<|fx)|<b}={xeX:|f(x)|>a}n{xeX:|f(x)] <b}
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={xeX:|f(x)|>aln{xeX |f(x)| > b}
={xeX:|fx)|>a}\{xeX:|f(x)|>b}.

Therefore

u({xeX:a<|f(x)]<b})
=u({xeX:[f(¥)]>a}) —u({xeX:[f(x)]>b})
= Dy(a) =Dy (b).

By (3.36) we can write

V(@) = Dy (@)~ Dy (b)
=—u({xeX:a<|f(x)| <b})
— 1 (@,b]).

Using the unique extension theorem for measure, we obtain
V(E) = —u(f17(E))
for all Borel set E C [0,00).

Now, let us consider

(a) @ = xr and observe that

1, if |[f(x)| €E;
polf|(x)=xeol|fl(x) =

0, if |[f(x)|¢E,

1, if xe|f|7Y(E);

0, if x¢|f|"'(E),

= X () (%)

Thus
/fpolfldu:/x\f\—m(x)du
X X

— u(|f17(E))
E)

v(
/XEdV
0
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(b) If ¢ = 37, axx,. then

/(P°|f|dﬂ =Y ac | x50 (x)du
k=1
X

(c) If ¢ is any nonnegative Borel measurable function, then there exists a sequence
{$n}nen of simple functions such that s, 1 @, therefore s, o |f| T @ o|f|, and
using (b)

oo

/sno|f\d,u:f/snde7

X 0

now by the monotone convergence theorem we have

lim/sno|f\du = lim/snde,
n—roo n—yoo '
X X

/<po|f\du=—/¢de-
X 0

The proof is complete. O
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3.7 Continuity of the Translation

Let Q C R" be a measurable set. For f € L,(£2) and h € R”, define the translation
of f as

Tof(x) = fix+h) ifx+heQ
0 ifx+heR\ Q.

Sometimes the translation operator is introduced in a slightly different way, namely
T,f (x) = T_,f (x), where T, is the other definition of the translation operator.

The following result shows that the translation operation is continuous in the
topology generated by the L,(£2) norm for p € [1,+co).

Theorem 3.58 Ler Q C R" be a measurable set and f € L,(Q) for 1 < p < eo. For
any € > 0 there exists 6 = 8(€) such that

sup | Tnf — fll, < e.
|h|<8

Proof. First suppose that €2 is a bounded subset of R” , i.e., it is contained in a ball
Br(0) centered at the origin and radius R, for any R > 0 sufficiently large. Without
loss of generality we can assume that Q = Bg(0) and define f = 0 in R" \ Q. For
E C Q and A € R define

E—-A={xeR":x+A€E}.

By the absolute continuity of the integral, for € > 0 there exists § > 0 such that for
all E C Q measurable with m(E) < 8 then

epP
/|f|pdm< Tk
E

Since the Lebesgue measure is translation invariant, we have that
m((E—l)ﬁQ) < 6.

Therefore

4
/|Thf—f|"dm§2p’1 /|f|"dm+ / fram| <
E E

(E—h)NQ

Since f is measurable, by Lusin’s theorem, f is quasi-continuous. Therefore, we set
a positive number

oo )
C24+m(Q)’
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then there exists a closed set 25 C Q such that m(\ Q5) < o and f is uniformly
continuous on . In particular, there exists 6 > 0 such that

er
2m(Qs)’

|Thf (x) = f(x)] <

whenever |h| < 8, and x,x + & belong to Q.
For any A, we have

1
/ ‘Thf_ﬂpdm < §£p~
QoM(Qo—h)
For any € R” such that |n| < o, we get

m(Q\(Q—-n)) =m((Q+n)\ Q)
<m(Q\ Q) +m((2+1)\Q)
<o+om(Q).

We now obtain
m(Q\ [Q6 N (26 —M)]) Sm(Q\Q6) +m(2\ (25— 1)) <o (2+m(Q)) = 3.

We now consider the case when 2 is an unbounded subset of R”. Then since
€ > 0 exists R > 0 sufficiently large such that for all |A| < 1

1
|Thf — f|Pdm < 2P / |f|pdm§2—p£p.
on{|x[>2r} an{x>r}

For such R, there is & = &y (&) such that

1
sup | Tnf — fllp.engx<2ry < &
k| <8

Therefore

‘Slu%)HThf*fllp,:z <|Tf = fllp.angix<zry + 2l flp.angx>r <&
hl<

The proof is complete. ad

It should be mentioned that Theorem 3.58 is false when p = eo.
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3.8 Weighted Lebesgue Spaces

A weight is a nonnegative locally integrable function on R” that takes values in
(0,00) almost everywhere. Therefore, weights are allowed to be zero or infinite only
on a set of Lebesgue measure zero. Hence, if w is a weight and 1/w is locally
integrable, then 1/w is also a weight.
Given a weight w and a measurable set E, we use the notation w(E) = [w(x)dx
E

to denote the w-measure of the set E. Since weights are locally integrable functions,
w(E) < o for all sets E contained in some finite ball.

From now on in this section we will restrict to work on Q =R, .

Definition 3.59. The weighted L, spaces are denoted by L,(w), for 1 < p < oo it
consists of all measurable functions f such that

- 1/p
11 0y = Il = /vwwmwm <o,
0
ie.
1/p

Low) = £ 1l = /v&wwwm <o
0

We also denote
(Lp(w))d ={f€L,(w): fisdecreasing} .

@

Some authors define the weighted Lebesgue spaces with the weight as a multiplier,
ie, feL,(w)ewfel,.

The next result gives another characterization of the norm of weighted Lebesgue
spaces based on the so-called Minkowski functional. This type of norm will be fully
exploited in Chapter 7.

Theorem 3.60 Let f € L,(w) where 1 < p < oo. Then

=3

P
(£, =infq A >0 / ’fgiC) wx)dx <1 ;. (3.37)
0
Proof. On the one hand, let us take A = || f|1, ., then
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oo

inf A>0:/‘§j€)

p
wx)dx <1 <l - (3.38)

0

On the other hand, if [|f(x)/A[Pw(x)dx <1, then [|f(x)[’w(x)dx < A? and thus
0 0

o

([ 1f(x)[Pw(x)dx)!/P < A. Therefore
0

° P
||f||L,,(w) <inf<A>0: / ’f;x) wx)dx <1 5. (3.39)
0
Combining (3.38) and (3.39) we have (3.37). O

We define the duality on the weighted Lebesgue space L,(w) with 1 < p < e by
the inner product

oo

(f.g) = / FO)g@dx,  f € Lyw).

0

Theorem 3.61 Let % +% =1and g € L,(w'™%). Then

sup ‘<fag>| = ||g||L‘1(w'*‘i)
11z, =1

and (Lp(w))* = L7 (w'9).

Proof. By Holder’s inequality we have

(f.8)] = / )| (w(x))7 |g(x) | (w(x)) 7
0

1

q

< 0/ ) w(x)dx 0/ ) w() Fd

Since ¢/p = ¢ —1 and if
fe |g|*" " (sgng)w'
= =
I8l e

then Hf”Lp(w) =1and <f7g> = Hg

La(wi-0)- Hence

8llzagwi-0y < sup [{f, &) < [8llzagw-)
A1z, 0n=1
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and the result follows. a

We now obtain a Cavalieri’s type principle for the weighted Lebesgue decreasing
functions.

Theorem 3.62 If f (Lp(w))d then for any measurable weight function w we have

DA

o 0 )
[f()|Pw(x)dx=p AP~ w(x)dx [ dA, 0<p <eo,
/ [*\/

where D¢(A) =m ({x: |f(x)] > ),})

Proof. First of all, notice that since f € (L,,(w))d, then

{r€(0,00): f(r) > A} = (0,Df(1)).

Let us denote Ef(A) = {t € (0,0) : f(t) > A}, then Dy(A) = m (E;(A)). Now, by
Fubini’s theorem, we obtain

—p [ 2| [ owar | a2
0 0
:p/l”_' / w(x)dx | dA
0 Er(4)
—p/l”_l / w(x)dx | dA
0 (0.D5(1)
Dy(2)

which ends the proof. O
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The weighted Lebesgue spaces enjoy the same embedding type result than the
Lebesgue spaces.

Theorem 3.63 Let 1 < p < g < oo. Then Ly,(E,w) — L,(E,w) for any finite mea-
surable set E C (0,00).

Proof. Let f € L?(w) and E C (0,0) a measurable set. Let r = ¢/p and s = r/(r —
1), then 1/r+1/s = 1. Observe that

oo oo

/ | ()7 w(x)dx = / L () [9w (x)dx < oo.

0 0

By the Holder inequality we have

oo =

/ F00) P () w(x)d = / LGP () () 7 (w()) Vol

0 0

which shows the embedding. a

The Hardy inequality is valid in the framework of weighted Lebesgue spaces in the
following form.

Theorem 3.64 Ler f € L,(w) with 1 < p < eo. Ifw is a nondecreasing weight, then

1/p

» /p
/ % / f()de| w(x)dx gp%l / fEPwxde | . (3.40)
0 0 0

Proof. Making a convenient change of variable twice and using the Minkowski in-
tegral inequality we have

» 1/p

oo

» 1/p . |
/ : / Fide| wdx | = / : / Fxurdu | w(x)dx
0 0

0 0
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» 1/p
= O/O/f(xu)du w(x)dx
- 1/p
g/l /(f(xu))pw(x)dx du
0 \o
1/p

= j j (f(v))pw<:)(iv du.

Since 0 < u < 1, then 1/u > 1 and so w(v/u) < w(v) since w is nonincreasing,
therefore we have

1/p 1/p

oo

/1 / o (2) 7] s / [uoprwma|

0

. - 1/p
= /u Vpdy /(f(v))pw(v)dv
0 0
- 1/p
% /(f(v))pw(v)dv
0
Finally, gathering all of these inequalities we obtain (3.40). a
Theorem 3.65 Let f € L,(w) with 1 < p < eo. If w is a nondecreasing weight such
that
- . P e - 1/p
1 P

[ 15 [roa| wewar| <2 [ireopwar

0 0 0
holds, then

rp/w(x)deB/w(x)dx,
xP
r 0

whenr>0where B=C—1,C=p/(p—1).

Proof. LetC = (p/(p—1)), then
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] i/xf(z)dt w(x)deC]O[f(x)]pW(x)dx-

Now, let us take f = yjo 1 for r > 0, then

p

oo

/ )lco/l[o,r](f)df W(X)dx<CZ [%[o,r](x)]pw(x)dx

0

and this finishes the proof. O

3.9 Uniform Convexity

Definition 3.66. A Banach space (R,V,+,-,||-||) is said to the uniformly convex if
for all € > 0 there exists a number 6 > 0 such that for all x,y € V the conditions

Il =1yl =1, [x=yl>e
imply

x+y
2

H <i-s.
The number

xX+y
2|t = 1o = =512 e}

o(e) = inf{l —
is called the modulus of convexity. Note that if & < &, then 6(g) < 6(&) and
6(0)=0sincex=yife =0. @

The immediate example of an uniformly convex space is the Hilbert space since its
norm satisfies the parallelogram law,

2

2
x+y||” 1 2 2 X—y
> || = S U+ = ==
in this sense, if ||x|| = ||y|| = 1 and ||x—y|| > &, then
2 2
alutl| PR
2 - 4

from which we obtain
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2
1—J1-E<1-
4

5(8)21—\/1—%2.

In order to prove the main result in this section, namely that the L, spaces are
uniformly convex whenever 1 < p < oo, we need some auxiliary lemmas dealing
with inequalities.

x+y
2

which entails

Lemma 3.67. If p > 2 then
(la+b]"+ |a—bv’)‘/" < (|a+b|2+ |a—b\2>1/2 (3.41)
foralla,b e R.
Proof. Let us consider the function
F0) = (1P (142) 712

forallt € [—1,1]. It is clear that f is differentiable in [—1, 1] and calculating the first
derivative of f we obtain

PO = 040 ),

which entails that f/(1) = 0and f’(0) = 0. We also observe that f'(¢t) < 0ifr € (0,1)
and f'(t) > 0if t € (—1,0), which means that the function f attains its maximum at
t =0.Letr #0, then

f(1) < £(0),

i.e., f(¢) < L since f(0) = 1, from which we get

(1+2)VP(142)712 <1,

therefore
(1+P)VP < (14212,
Choosing
|la —b|
t= s
|a+ b
we get (3.41). O

We will also need the following inequality.
Lemma 3.68. If p > 2 for all a,b € R. Then

ja+0|" +|a—bl" <277 (|a]” + []").
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Proof. In virtue of Lemma 3.67 and the parallelogram law we can write

(la+bl"+la—bJ")'"" < (Ja+b]* +|a—b[*)'?
= [2(|al*+p*)]'/?
<V2(|af* +[b]*)'. (3.42)

By the Holder inequality for

we get

lal? + 16/ (141)F

P + b2 < (
<2 (jal? +|b]P)?7,

from which we obtain

V2(aP +16)'* < V22 (] +[bp)

=2 (Jal? -+ [b|")'”.

By (3.42) it follows that

(la-+ 0] +la—bl")"/7 <27 (af +[bI") "/,
which ends the proof. a
Lemma 3.69. Leta >0, b >0, and s > 2, then

a’+b° < (a2+b2)s/2

and

Proof. Consider the functions

and
wg:(ﬁ+Q”2

fort > 0 and s > 2. Observe that
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and ot
V=3 (F+1)" @) =s+ 1)

for all + > 0. For ¢ > 0, note that 1> < 2+ 1 from which
(t2)s72 < (t2 + 1)&*2

t2s—4 < (12+ ])s—2

1‘2(‘?71) < t2(t2+ 1)&*2

=2
2

£ <t (4 1)

52
2 .

st < st 1)

This tell us that ¢'(r) < y’(¢) for all # > 0, moreover since ¢'(0) =0 = y’'(0). We

have
o'(1) < y'(),
for all # > 0. Thus, for every x > 0,

()~ (0) = / ¢(1)di < / Y (1) dr = w(x) - w(0),
0 0

but 0(0) = 1 = y(0). Therefore
xs+1 S (x2_|_1)s/2.

In particular, for x = a/b with a > 0 and b > 0, we obtain
a\’ a s/2
= 1>[(=)*+1

(5) +1=[ 7]

s/2
S S 5 a2+b2
a+b'<b ( b

a+ b v
=b (bs)s/2

_ (612 +b2)s/2

Finally a® 4+ b* < (a2 + bz)s/z. Note that this last inequality is valid for b = 0, thus
s/2
a+b< (a2 +b2)

foralla>0,b>0ands > 2.
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On the other hand, the function p(¢) = #* is convex on [0, ) for s > 2, then
Pt =s(s—1)2>0

for all # > 0 without lost of generality we might suppose that a < b since a,b > 0,
we also have
p(ta+(1—=1)b) <tp(a)+ (1—1)p(b),

for 0 < < 1. By the definition of p and for r = 1/2 it follows that

foralla>0,b>0ands > 2. O
We now show the uniform convexity of Lebesgue spaces.
Theorem 3.70. If 1 < p < oo, the space Ly, is uniformly convex.

Proof. Let us distinguish two cases:

First case p > 2. In virtue of Lemma 3.68 we have that
ja+bl"+|a—bl" <277 (Jal” +[b]").
fora,b € R.If f and g are L, functions, then
f+8l”+1f —gl” <277 (I f1P +glP),
and integrating, we get
1f +8ll5+1f = glls < 277 (A5 + llgD).-
Now, if £, = llgll, = 1 and £ —gll, > . then
If+glly <27 (AL +Ngllh) — L —sllp
which implies that

If +ellp <2712 —€”

:2/7_817,

therefore »
|55, <1 5):
2 » 2
from which 1y
P P
Frel (o (e)) <o (E)
2 o 2 - 2
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5) =15
2) = 2

and from this we have

9

p

therefore

Second case 1 < p < 2.From Lemma 3.69 and if 1 /p+1/g=1theng=p/(p—

1) > 2 and we have
q q q
g
< (14,181,
(180, +1sl,) (1l 1]

q
f g)
21| +1[2
2 2|,

p

(
ol
(
[

q _
+Hf g
2 p

8
z .

f+e
2

/
2

p p

IA IA
S
+
NS
=
N—————
7

IN

2 +

p p

0|~
=

NSRvS)
=
N —
e

|

<2

<2 | (1 + el )]l‘
<2 (17 +elE) ™
2 g+ el
=27t (IIfH”+IIg||”) "

3 ( |fH”+||g||p)

<||f||”+|g||”>
‘ <||f||”+||g”> m
L 2

from which the result follows. O

Il
A

Therefore we conclude that

Hf+g

q _
+Hf g
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Remark 3.71. The uniform convexity is a geometric property of the norm, an equiv-
alent norm is not necessarily uniformly convex. On the other hand, the reflexivity is
a topological property, i.e., a reflexive space continues to be reflexive for its equiv-
alent norms. The Theorem of Milman-Pettis (see, e.g., Brezis [3]) give us an un-
usual tool, it states that a geometric property imply a topologies property. In other
words, all uniformly convex Banach space is reflexive. Before talking about the re-
ciprocal, let us analyze the following example. Consider in R? the Euclidean norm
1, y)|l2 = (|x|>+[y|?)"/? and the taxicab norm || (x,y)||; = |x|+ |y|. it is not difficult
to show that

S < el < VaI

in other words, the norms ||(x,y)||; and ||(x, )|, are equivalent, moreover R? with
the Euclidean norm is uniformly convex space, but with the norm /; it is not,
nonetheless R? is reflexive with respect to both norms. The following result, proved
by Day [14], affirms that the reciprocal of the Milman-Pettis theorem is not valid.

Theorem 3.72 (M.M. Day). There exist Banach spaces which are separable, reflex-
ive, and strictly convex, but are not isomorphic to any uniformly convex space.

@

3.10 Isometries

Definition 3.73. The linear operator T : L, (1) — L, (1) is said to be an isometry if

1Tl = 1£1lp,
forall f € L,(u). %)
Lemma 3.74. Let & and v be real numbers. Then if 2 < p < o
S+ VIP+[E —vIP <2(|8]7+[v["),

and
|E+ VI[P +[E =[P >2(|]7 +|v[").

for p < 2. If p # 2, the inequality occurs if & or v is zero.

Proof. If p =2, we have the equality for all £ and v. If 2 < p < oo, then 1 < p/2,
then with the conjugate exponent p/2 and p/(p —2) we apply the Holder inequality
to > + [32 (see Lemma 2.3), therefore

p=2
»

o +BE< (P + B (1+1)F
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from which we obtain L
O£p+ﬂp ZZTp(a2+ﬂ2)li (3.43)

If 0 < p < 2, we replace p by 4/p in (3.43), we get
or +Br >2 (o +B2)s.
If we replace o by a? and B by B2, the last inequality is transformed into

o2+ B> 2% (af + )7

or
of + B <27 (a2 + B2)%. (3.44)
Since
& 1
< ——-<
TV T
and
< V2 <
&tV T
for 2 < p, results
|E ‘2(17*2)
P
and
[v|?(r—2)
VS

which is equivalent to

p—2
0"

(@)
and 5
.
oo 2
&+
Therefore .
gl
T(E24vD)E T E24v?
and

vir
GRS

Summing these last inequalities we obtain

EIP+vIP < (E2+VD)E  if2<p, (3.45)
In a similar fashion, we get

EIP+|v]P > (E24+VD)E ifp<2. (3.46)
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Note that the equality in (3.45) and (3.46) happens if and only if £ =0 and v = 0.
Finally if p > 2, we replace o and 8 in (3.43) by |€ + v| and | — v|. Therefore

4
2

E+vIP+IE—vP =27 (g + v +1E—vP)
= 2% (2[IE[+ VP!
=2(E7+v?)"
> (€7 +|vIP).

Therefore we obtain the first inequality. The second inequality is obtained in a sim-
ilar way using € =0 and v =0. O

As a consequence of the previous lemma we obtain the following integral version.

Lemma 3.75. Let 1 < p < oo, p # 2 and suppose that f,g € L,(1t). Then
£ +gllp + 11 =&l = 2(1A 15+ llgllp)
ifandonly if f-g =0 u-a.e.

Proof. If f-g =0 u-a.e., then u(supp f Nsuppg) = 0. Then

1f+gln = / FglPdu + / ftglPdu + / f +glPdn

supp(g) suppg X\ (supp fsuppag) (3.47)

= 715+ llelly

In a similar way we obtain
1 =&lly = 11715+ llgll; (3.48)

Summing (3.47) and (3.48) we get

I1F +&ll7 + 1F = glly = 20115 + [lgll7)-

(=) Now, if || f +gll5 + [lf = gllp = 2 /11 + [1g]15). then

[ireraus [1r-grau-2| [1rvaus [lgran | <o
X X X X

i.e.

[+t 17 -5l 201717+ g")] au =o.
X

Now by Lemma 3.74 we get

\f+8l” +1f =gl =2(11" +1gl") = 0
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or
If+el”+|f —el” —2(|f" +1gl”) <0.

In both cases, by a known result in the Lebesgue integration theory we arrive at

[f+el"+1f =gl =2(f1"+gl") =0
p-a.e. This clearly implies that for almost all x € X, f(x) = 0 when g(x) # 0 and
g(x) =0 when f(x) # 0, or in alternative u (supp(f) Nsupp(g)) = 0. O

The next result gives a characterization of linear operators that are also isometries
between L, (m) spaces.

Theorem 3.76 (Lamperti). Let the linear operator T : L,(m) — L,(m) be an isom-
etry in L,(m) where 1 < p < oo, p # 2. Then there exists a Lebesgue measurable
function ¢ : R — R and a unique Lebesgue measurable function h defined m-a.e.
such that

T(f)(x) =h(x)f(9(x)).

The function ¢ is defined m-a.e. on supp(h) and for each Lebesgue measurable set
E with m(E) < e, we get

m(E) = / Ih(t)|7dr.
o 1(E)

Proof. For each Lebesgue measurable set A C R such that m(A) < e, let us define
¢(A) by
¢(A) = supp(T (24))-

If ANB =0, then by Lemma 3.75
la+ x5 + ll2a — 28115 = 2l 2all; + [12515)-
Since 7 is an isometry in L,(m) and by Lemma 3.75 it follows that
T(xa)-T(xs) =0
m-a.e. in en R. Moreover yaug = Ya + Xz and T (xaus) = T(xa) + T (xs), then
o(AUB)=0¢(A)Up(B), if ANB=0.
Since for all set A and B we have that
@A) =@(A\(ANB))U@(ANB),

and
P(AUB) = @(A\(ANB))U@(B).

It is clear that for Lebesgue measurable sets A and B such that m(A) < e and m(B) <
oo we get
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P(AUB)U@(ANB) = ¢(A)N@(B).

On the other hand, let {X;} ;e be an increasing sequence of subsets of R such that
m(X;) <eofor j=1,2,...and R = J7_, X;. Moreover let E = J7_; ¢(X;). Then ¢
sends measurable subsets in R in measurable subsets of E and o(R\A) = E\ ¢(A).

Also, if {A;}jen is a sequence of Lebesgue measurable subsets of R with
m(Aj) <oo, j=1,2,...and if A = U‘;’:lAj then x4 = limk_,wzl;:IXAj, from the
continuity and boundedness of 7', we obtain that

k
T(2s) = lim D T(x,)-
=

Nonetheless, the sequence {supp T (xa,)} jen is a disjoint class, therefore

oo

ol U =O<p(Af)-

J=1

This shows that ¢ is a o-homomorphism, now invoking the Theorem A.20, we
can find a Lebesgue measurable function ¢ : E — R such that

P(4) =97'(4)

for any Borel set A. Then, since the set ¢(A) is unique m-a.e., then the function ¢ is
unique m-a.e. Given a Lebesgue measurable set C with m(C) < oo, let us define

he =T (xx),

therefore ]
1T (xe)llp = llhcll, = (m(C))>,

then, for each measurable set A, we get
Xc = Xcra + Xcnac,
and from where we obtain
he =T (Xcra) + T (Xcrac)-
Nonetheless, above we proved that

(supp(T (xarc)) N (supp T (Xcruc))) = 0.
Then

T (xcra) = hcXocra) = hexera(9(0))-
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For the sequence {X;},cn considered above, let us define a Lebesgue measurable
function % given by
h = lim hy,.
Joee

Then, given any measurable subset A of R with m(A) < oo, it follows from the bound-
edness and continuity of T

T(xa) = im T (xx,0) = hxa(6())-
Then for each simple and measurable function f we have

T(f)=hf(¢())

Let f € L,(m), then invoking Lemma 3.31 there exists a sequence {s, },civ of simple
functions such that
”f*SnHP -0,

when n — co. Now
T () =hSu(@ (Do = 1T (F =Su)llp = llf = Sullp-
Then by Lemma 3.28 with g(&) = &” we get that
m({x € R:|T(f)(x) = hSu(¢(x))| > €}) <& P[[T(f) —hSu(@ ()}
=& |f = Sall}-

Then, for € > 0, we have that m({x € R : |T(f)(x) — hS,(¢(x))| > €}) — 0 when
n — oo, and from this it follows that there exists a subsequence {S,, }jev such that
for almost all x € R

T(f)(x) = lim h(x)S,,, (¢ (x))

=h(x)f(9(x))-

Finally, for each Lebesgue measurable set A with m(A) < oo, we have

m(A) = / (4 () dm = / T (30) ()P

R

- / ()1 24 (9(x)

_ / () |Pdm.
o=1(A)

The function ¢ is unique m-a.e., in fact let 2° be another function such that 7'(f) =
hPf(¢(-)) given that f is arbitrary, we get equality m-a.e., i.e., h = h°. O
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3.11 Lebesgue Spaces with 0 < p < 1

We now study the Lebesgue space whenever the exponent is strictly less than one.
Since many of the properties of the L, spaces with p > 1 rely heavily on the con-
vexity property of the function x — x”, it is expected that many of those properties
will not be valid when the exponent p is between 0 < p < 1.

Theorem 3.77 Let
1
L, =1 f:[0,1] = R such that f is £-measurable and /\f(t)\” dr < oo
0

Then,

(a) d(f,g) f|f (t)|P dt is a metric in L,

(b) dis translatzon invariant.

(c) (Lp)" ={0}.
Proof. (a) Since |f—g|? >0forall f,g € L, then
i
/‘f—g‘pdt Zoa
0

therefore d(f,g) >0
Ifd(f,g) =0, then

1
[ir-gpra-
0

therefore |f — g|” = 0 a.e., which implies that |f — g| = 0 a.e., from which

f=gae.
On the other hand, if f = g for f,g € L, then f — g =0 from which |f —g|? =

which entails
1
/ |f —gldr =
0

ie,d(f,g)=0.
For f and g in L, note that

1 1
g):/If—gl”dt=/|g—f|pdt=d(g,f)
0 0

ie.d(f,g)=d(gf).
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Finally, if a and b are real positive, thena+b>banda+b > a,since0 < p <1,
then p — 1 < 0, therefore

(a+b)"~" <p!
and

(a+b)P ' <a!
from which

bla+b)P~' <b’
and

ala+b)P~! <a?,

and summing

ala+b)" ' +bla+b)"" <aP +b”

a+b)la+b)" <a"+
(a+b)(a+b)’" <a’+b"
(a+D)P <aP+b”?

Now, using this last inequality, we can show the triangle inequality. Let f, g and
hin L,, then

[f—glP =If—h+h—gl” <|f—h|"+|h—g|’

for 0 < p < 1, therefore

1
d(f.g)= | |f—gldt
/

1

1

§/|f—h|”dl+/|h—g|pdt

0 0
=d(f,h)+d(h,g),

in other words, d(f,g) < d(f,h)+d(h,g).
(b) Now we can show that d is translation invariant. In fact

1
d(f+h,g+h):/|f—|—h—(g+h)\”dt
0
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(c) Let us suppose that (L,)* # {0}. Let us take a non-null linear continuous func-
tional 7' € (L”[0,1])*. There exists a function f € L,[0, 1] such that T'(f) = 1.
‘We now take the function

o: [0,]] —R
x> T(fX0.)

which is a continuous real-valued function with ¢(0) =0 and ¢(1). By the inter-
mediate value property, there exists a point 0 < xo < 1 such that ¢(xy) = 1/2.
We now define the functions y1 = f¥o.x,) and Y2 = f¥[x,.1]- We observe that
since T(y;) = 1/2 it implies, taking into account that 7' (y; + y») = T(y) +
T(yn), that T (y,) = 1/2. On the other hand, since

/\wl<x>|P+|w<x>|de:/|f<x>|de
0 0

we have that at least one of the norms Hl//j| » j = 1,2 should be less or equal to

| £1l, /2. From this we have that one of the norms (j = 1 or j = 2) satisfy
12517 <27 I£115.- (3.49)

From the above construction, we obtain a function f; € L?, which is defined as
fi = 2y; where y; satisfy (3.49), such that:

(i) T(fi)=1,and

G A5 <2775,

By repeating the above argument, we construct a sequence of functions (f;,)
belonging to L, [0, 1] such that

(@ T(f,)=1,and

®) [Ifally <27~ V]£117.

But the conditions (a) and (b) will imply a contradiction, since f, — 0in L,[0, 1]
but T(f,) = 1.

neN

With the metric given in Theorem 3.77(a), the L, space is a complete space.

Theorem 3.78. The space L, (1) with 0 < p < 1 is a complete space.

Proof. Let { f,}nen be a Cauchy sequence in L, (pt) with 0 < p < 1, then
o fo) =t [ 15:0) ~ Sl =0,
”‘l*}OQX

from here it follows that for each natural number & there exists a small natural num-
ber ny such that
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1
/|fn |Pdu<— for m > ny, n > ny,

in particular, we can take n = ny;; and m = ny, such that

1
/|fm,+1(x) ~ ()P < 5 fork=123,... (3.50)
X

Let us define

1
E, = {xEX et = fu ()] > 2k/p}’

p
[ saorau= [ (55 o= g
Ey

Ex

then,

therefore for (3.50) we have that

Let us consider now

oo o

UEk:U{XGX5|fnk+1—fnk(x)l>zkl/,,}. (3.51)

k=N k=n

If x does not belong to this set, it is clear that

1
‘anJrl —an()C)| < Wv

1
[ fa2 = fnt1 (0] < 517,

in such a way that the series
2 w1 () = i ()] (3.52)
k=1

converges, but the measure of (3.51) is

Zreo<Z(3) ()

which tends to zero when N tends to infinity. This shows that the set of all x for
which (3.52) does not converge has zero measure, it means, the series (3.52) con-
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verges almost everywhere, therefore the series

i o1 (8) — ()

also converges, since an absolutely convergent series is convergent. Writing

k—1

Fiex) = o, () + X (fuy 1 () = fu, (x)

j=1
it follows that B
hmfm fnl + 2 fn,+l fn,( ))

J

—

the limit exists, we denote this limit by f(x), we see that limy_,. f,,, = f(x) almost
everywhere.

We need to prove that {f, },cn converges to f. To do that, we observe that by
Fatou’s lemma

/ 200 = £ = [ timint 7, (6) £, (0P

X
< liminf / fur () = o, (01 dp
Jreo
X
<e?/2.

Finally

[t selrau < [ 15,00~ huboraus [ 15,60~ 76 pau

X X X
< egP
therefore, f, — f € L,(u) and f = (f — fu) + fu € L,(1). O

We already know from the observation given after Definition 3.17 that the func-
tional given by f +—> {/ ['|fPdm do not define a norm. The question remains: Is the

space L, ([0, 1],.Z,m) normalizable? The following results give a negative answer.

Theorem 3.79. Let {f,},cy be a sequence in L,([0,1],.£,m). Then there is not a
norm || - || in L,(m) such that if f, — 0 in L,(m) implies that || f,|| — 0 when n — o,

for any sequence { f,},cn C Lp(m).

Proof. Let us suppose that the norm || - || exists. We state that there exists a positive
constant C < oo such that || f|| < C||f]|, for all f € L,(m). Since the application
f = || fll is continuous, we can find a 6 > 0 such that if || f]|, < 6, then ||f|| <1,

therefore, for all f € L,(m) we have that “"‘stl{ € B(0,0) with 0 < |o| < 1, where
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B(0,8) is the ball of center 0 and radius 6. Hence

adf |
171l
which implies that
1
< —|I£1l,. 3.53
1A= -5 171l (3.53)

If oo — 1, then (3.53) is true for C = % Let us choose
C=inf{k:|f|| <K|f|l,, forall f€Ly(m)}

(Note that we do not exclude the possibility that C = 0). By the intermediate value
theorem, there exists ¢ € (0, 1) such that

c 1 1
[isram= [i1ram=3 [ ispan
0 c 0

Now, for g = fxjo.) and h = fc1, we have that f = g+ h and ||g||, = [|h]|, =
-1
27

fllp, by the triangle inequality

C
IFIF < Nigll+ 1Al < CCllglly + 1Allp) = 557= -

Since p € (0,1), then

C
21 =6
from which C = 0, therefore || f|| = 0 for all f € L,(m) which contradicts the fact
that || - || is a norm. O

Another way to see that L,(m) cannot be normalizable is to notice that if this was
the case, the Hahn-Banach theorem would be true in L,(m), but (Lp(m))* = {0},
which is a contradiction.

The following result shows that, although the space is not normalizable, we can
nevertheless obtain a quasi-triangle inequality in the framework of L, spaces with
O<p<l.

Theorem 3.80. Let (X,.o7, 1) be a measure space and p a real number such that
0 < p < 1. Let f and g functions in L,(X), such that g # 0, then

1 +lly <277 (LF Nl + llgll)- (3.54)

Proof. Let) <t <eoand0< p < 1,then p—1 <0 andis clear that 1 +¢ > ¢ and
141t > 1, by which
(141t <!
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and
(14+0)P 1 <1. (3.55)

From (3.55) we obtain that
t(1+0)P~! <P, (3.56)

adding (3.55) and (3.56) we obtain that
(14+27) < 1+¢". (3.57)

Let us define t = “ng', substituting in (3.57) it results that

(1f1+1gD)? < |F1” +gl”,
but |f+g| <|f|+]|g| and 0 < p < 1, then

If+el” < IfI”+gl” (3.58)

1
Now, since the function f(¢) =7 is convex in [0,ec], therefore in virtue of (3.58)
we obtain

If+elly _ [1f+glrdu _ [IfPdu+ flgiran

2 2 - 2
therefore
1 1
I +all, _ (S1F+elrau" _ [ [IrPdu+ flglran)’
2,17 2 - 2
1_
<20 |1 £1l+ llgll ]
and this shows (3.54). O

As already mentioned before, Holder’s inequality is closely related to convexity.
We now show that an inversion in the inequality sign in the Holder inequality holds
in the case of L, spaces with 0 < p < 1, since we do not have convexity in x — x”.

Theorem 3.81. Let p and g be real numbers with 0 < p < 1 and —oo < g < 0 such

that
1 1

— 4 - =

P 9
Let f and g be positive functions such that fP and g? are integrable and, moreover,
suppose that fg is integrable, therefore

1.

17 lelly < / Fedu.
X

Proof. Let us define r = 1/p and s = —g/p, from which r and s are conjugate
exponents since



3.11 Lebesgue Spaces with 0 < p <1 127

Moreover, observe that s > 1 and write
fr=frg’eg " =(fe)eg ",
in order to prove that (fg)” € L,(X) and g ¥ € Ly(X). In fact

/ [(fg)") du = / [(fg)") /Py = / fedu <o,

X
which shows that (fg)” € L,(X). On the other hand,

/ (g77)du = / (g7") Pdu = / gldp < oo,

X X X
then g7 € Ly(X), therefore in virtue of the Holder inequality we obtain that

1/r 1/s

/ fPdu < / [(f8)"]"du / (&77)du
X X X
P -r/q
—| [irerrau| | [y oran
X X
p -p/q
= | [reau| | [erau| .
X X
from which
1/p ~1/q
/Ifl"du < /fgdu /Igl"du ,
X X X
hence ”pr”qu < ffgd/.t. O
X

A similar phenomenon to Holder’s inequality occurs with the Minkowski in-
equality in the case of L, with 0 < p < 1, namely, the sign of the inequality is
reversed.

Corollary 3.82 Let 0 < p < 1, f and g be positive functions in L,(X), then f+g €
L,(X) and
1F+8llp = 171+ lgllp-
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Proof. In virtue of Theorem 3.80 we have that f + g € L,(X). On the other hand
(f+8) =f(f+8) " +g(f+8) ", (3.59)

hence

1/q

[r+er], - X/ [+l g

1/q

= /|f+g|”du
X

= |If +ell

] /
< 27l + gl

which shows that (f +g)?~" € L,(X). Again by (3.59) and using the Theorem 3.81,
it follows

1/p 1/p7] 1/q
I 1/p 1/p] 1/q
= /f”du + /gpdu /f+g rap |,
X X X

from which

X X

=%
/(f+g)”du > f”du + (/ g’du ,
X

therefore

X X

1/p 1/p 1/p
/ (frordu| > / frau |+ ( / gau|
X

obtaining ||f+gll, = [If1l, + ll&ll»- O



3.12 Problems 129

3.12 Problems

3.83. Let us define the weighted Lebesgue space Zp(w) as the set of all measurable
functions such that wf € L,. Find the dual space of L, (w).

3.84. Prove that L,(w) equipped with the norm defined by (3.37) is a Banach space.
3.85. Let f € L,(R") and 7 be a fixed constant in R”. Show that || (- _t)HL,,(]R") =
1112, @e)-

3.86. If f € L..(X, o7, 1) and p(X) < oo, show that lim,_,e || f||, = || f |-

3.87. Show that the result of item (1) is false if @ (X) = +-oe.

3.88. Show that the following functions are essentially bounded and find its essential
norm.

3.89. In all the cases of Problem 3.88 show that lim,_,.. || f||, = || f |-

3.90. Let f(x) = —log(1 —x). Show that f ¢ L.. ([0,1),.%,m) but f € L, ([0,1],.£,m)
with 1 < p <oo.

3.91. Let f € L.(X, 47, 1) be such that || f||. > 0. If 0 < p(X) < oo, show that

. Oyt1
lim — = o
tim L — | 7|

where

a,,:/|f\”dy, n=1,273,...

X

3.92. Let/=[0,1], f € Li(I,-Z,m) and S = {x € r : f(x) € Z}. Prove that

n—oo

lim / |cosmf(x)|" dm = m(S).
T

3.93. Let f € L,(X, 7, u) with p1(X) = 1 and p > 0. Prove that

tg 7, = exp | [ (F)du

X
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3.94. Let (X,.o7, ) ameasure space and f € L,(X,.o7,11),1 < p < eo. Suppose that
{E,}nen is a sequence of measurable sets such that y1(E,) = 1, n € N. Prove that

1imn”%‘/|f|du:o.
n—soo

E,

3.95. Let (X, 47, u) be a measure space such that u(X) < o and f a positive &7-

measurable function. If lim,_,.. [ /" dit < eo, show that
X

tim [ frau = ({re X0 =1)).
b
3.96. Let f € L,,,(X, o7, 1) for some 0 < py < e=. Prove that

tim [ 1P du = ({re X 100 £0))

3.97. Letu,v € Ly(X,o/,uu) and w € L,(X, o/, it). Prove that

1/4 1/4
/ wwdpt| < / uf*dy / vftdu / w2
X X X

X

1/2

oo

3.98. Let p>1and f € L, ([1,4e0),.Z,m). Define g(x) = [ f(¢)e " dr. Prove
1

(@) g € Ly ([1,4e0),.Z,m).

®) [lglh < (l —%)l/quH,, where %—4—% =1.

3.99. For 1 < p < eoand 0 < p(X) < oo let us define

/p

|
M= 2 X/ £17 du

Prove that:

(a) If p; < p, then N, (f) < sz(f).

() Ny(f +2) <N (f)+Ny(g).

© 15 5[ |[feldp <N, (f)N,(g) with § + 1 =1.

(@) lim o Np (f) = [ ]]-o-
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3.100. Let (X,o7, ) be a measure space, f and g be positive <7-measurable func-
tionsin X. Let 0 <t <r<m<oo If [ fg'dll <ecand [ fg"™du < o, show that
X X

r—t

/ fedu| < / Fedu / fedu| . (3.60)
X X X

Inequality (3.60) is known as Roger’s inequality.

3.101.If [ fdu <eoand [ fg™du < e for M > 1. Prove that
X X

m

m —1
X/ reau | < | [ rau X/ fe"du

X

3.102. Use the inequality given in (1.23) to give an alternative proof of the result:
Let p,q, and r be real numbers such that i + i —|—% =1 Let feL,(X,o 1),
g€ L,(X, o ,u)and h € L, (X, o/, 1u). Then

[ 1rehlan <11l
X

3.103. Prove Corollary 3.22.

3.104. Let I = [0,m] and f € L, ([0.xt],.Z,m). Is it possible to have

O | =—

/(f(x)—sinx)zdxgél and /(f(x)—cosx)zdxg

1 1
simultaneously?

3.105. Let & be an increasing function in (0,+e<). If 0 < @ < 1 and 8 > 0 show that

o

oo oo

/tﬁ’lh(t)dt < (xﬁl’“/t“’l[h(t)]“dt.

0 0

3.106. Let f be a nonnegative and decreasing function in (0, <) for p > 1. Prove

that
. N p
/f”dxp < /fdx .
0 0
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3.107. Let f € L, (X, </, ). Prove that
p({xeX:|f(x)>A}) < 2e*lz/zl/cosh (gf) du.
X

3.108. Let0O< ax < 1,b>1and M > 1. Show that

(@) |a™™—b"| < m|b—a|* max{a %" b= *"}.

®) x=y)P <|x* —yPltox,yeRT and 1 < p < oo.

(c) |logb —logal < L|b—a|* max{a~*,b~*}.

(@ |Ibl? —[al?| < plb— almax{[p[P", lalP~1}(1 < p < ).

3.109. Let [ = [0, 1]. Prove that f € L,(I,.Z,m) if and only if f € L,(I,.Z,m) such
that there exists an increasing g function, such that for all closed interval [a,b] C

[0,1] we have
2

/ Fdx] < ((b) —g(a)) [b—al-

3.110. Let 1 < p < o. Prove that

P
dm <1

11, =i {4 >0: |1
A
X

coincides with the standard L, norm.
3111 Let E = {p € (0,0) : || f||, < o= }. Show that E is an interval.

3.112. Let {f, },en be a sequence of real functions belonging to L3 ((O, 1), % ,m)

such that f,, — 0 in measure as n — e and [ | JFa(x) |4/ ¥ dx < 1. Prove that
0,1

0,1)

lim / | fu(x)] dx=0.

n—yoo
(Ovl)

3.113. Let (X, <7, 1) be a measure space with u(X) =1.If f € L,(X, </, u) for
0 < p < oo, prove that

1/p

exp | [1oglflau | < | [ 1717au
X

X
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3.114. Let (X,.o7, ) be a measure space and { f, }.en be a sequence of measurable
functions such that f, € L,(X, o/, u) foralln e N.If 3>, || fu||, < o=, prove that

Dl < 2 M allp
n=1 n=1

P
3.115. Prove thatiif || f+gll, = [|f]l, + I8

fo_ 8
A1l gl

3.116. Let f, = fin L,, 1 < p < o and let {g,},cv be a sequence of measurable
functions such that |g,| <M, for all N and g, — g pt-a.e. Prove that g, f, — gf in L.

p» then

3.117. Use the Corollary 1.10 to deduce the Holder inequality.
3.118. Use Problem 29 to derive the Minkowski inequality.

3.119. Let (X,<7, 1) be a measure space such that y(X) = 1. Find all functions ¢
in (0, 4-oo) such that
o (timlrl, ) = [ oo
p—0
X

3.120. Let p,q,r e R suchthat%—l—é = % Iffel,X,o ,u)and g€ L,(X, o7, 1),
show that fg € L,.(X, o/, 1) and

£l < 11pllelly-

3121. If 0 < p < g and pu(X) = 1, show that

1/p
/ ran| < / 1 du
X X

3.122. Use Corollary 1.10 to prove Theorem 3.20 ( Holder’s inequality).

1/q

3.123. The function f : [a,b] — R is said to have p-bounded variation if

— fla-1)[”

X [P1

< oo,

|f xk
Vol7. Lo, = sup 3. LR

with 1 < p < o, where the supremum is taken over all partitions IT of the interval
[a,b]. The set of all functions with p-variation is denoted by BV,([a,b]). If f €
V,([a,b]) show that ' € L,([a,b],-£,m) and also that

V,(f:la,b]) = Hf,”p'
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3.124. Let A = {&, &), ..., &y} be a finite partition of the interval [a,b] and let f €
L, ([a,b],f , m) where p > 1. The function T, defined by

&
f(r)de

k—1

Taf(&) = ﬁ
¢

is called the A-approximation of f in average. Prove that

1Tafllp < 1 f1lp-

3.125. Let f € L, ([a,b],.Z,m). Show that || Ty f — f||, — O when the length A of
the largest subinterval of A tends to zero.

3.126. Prove that Tx f - f when A — 0.

3.127. Let f € L, ([a,b],£,m), 1 < p < co. Show that given € > 0 there exists a
measurable function fj, such that |fy,| <M and || f — fu||, < €.

3.128. Let u be a positive measure and assume that f,g € L,(X, o/, ). Demon-
strate:

(a) If 0 < p < 1, then

/ (1717 — |g]?) du < / felPdu
X

X
O If1<p<ooand|f|, <M, |gl|, <M, then

/ 1717 — Igl?] dut < 2pMP | gl
X

3.129. If 0 < p < g < r < oo, show that

Ly(X, o, u) "L (X, o, 1) C Ly(X, o, )

1-A

7

where é = % + , A > 0. Prove also that

1l < G I
3.130. If 0 < p < g < r < oo, prove that
Lq(X7JZ{7,LL) CLP(XabQ{nu)—"_Lr(X?'Q{Mu)

ie., every f € Ly(X, ./, 1) is the sum of a function in L, (X,.o7, ) and a function
inL,(X,o,10).

3131.Let 1 < p<ooandgeL,(X,4, 1) be such that |f,| < g u-a.e. for all N. If
fu— f p-ae. show that f, — fin L,(X, o/, ).
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3.132. Let (X, o7, 1t) be a positive measure space. Let f be an o7 -measurable func-
tion. Show that

e
11l < Timinf[L£]],-

3.133. Let 1 < p < g < ~o. Suppose that for g € L,(X, </, ) we have

X/ fedu =0

forall f € L,(X,</,u). Prove that g =0 p-a.e. in X.
3.134. Let (X, o/, 1t) be a measure space and f € L (X, <7, it). Let us define

Ly = [ fhau

X

for h € L.(X, </, ). Show that Ly is a linear and bounded operator in L..(X, <7, 1t)
and moreover

1Lsll = 1A 11

3.135. Let (X, <7, i) be a o-finite measure space. Given g € L..(X, <7, 1) and € > 0,
show that there exists f € L (X, </, ) such that || f||; = 1 and

gl > / Fedu > [lg]lo—e.
X

3.136. Let (X,.o7, 1) be a measure space with y(X) =1 and 1 < p < 0. Suppose
that

(a) Sis a closed subspace of L, (X, <7, ),
(b) S C L(X, o, ).

Prove that S has finite dimension.

3.137. Let X = CJ0, 1] be the Banach space of continuous functions in [0, 1] endowed
with the supremum norm. Let S be a subspace of X which is closed as a subspace of
L,([0,1],.Z,m). Show that

(a) S is a closed subspace of X.
(b) There exists a constant M such that

£l < M| f]l2

forall f€S.
(c) For all y € [0, 1] there exists k, € L, ([0, 1],.Z,m) such that

1
) = / k() (x) d
0
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forall f€S.

3.138. Prove that f € L,([0,0),.Z,m), p > 1, if and only if

S m ({v > 1}) X m({if1>n}) <

n=1

3.139. Let [|x|, = (S ul?) /" and 2 = {x € R" : |[x], < o} for 1 < p < oo.. Let
us define By (0,1) = {x: [[x||, < 1} which stands for the unit ball of ¢} (observe that
R" = £7). Let us denote

va(p) = vol(Bp) = vol{x € £} - [|x[|, < 1}.

Calculate v, (p).
Hint: Calculate the following integral

I, = / eI} gy

R»

3.140. Let (X,o7, 1) be a measure space and f an .«/-measurable functions. Prove
that

o

/sm|f )| du(x) /cos?tu {xGX x)|>?L})d?L.

X 0

3.141. For g € L,(X, 7, 1), let @ be a linear function in L,(X, </, i) defined by
@ (f) = [ fgdu. Without using the Riesz representation theorem, show that ||®@|| =
18llq-

3.142. Let (X, o7, 1) be a finite measure spaces. Demonstrate that the dual space of
Ly(X, 1) is Lo (X, o, J1).

3.143. Let (X, o7, 1) be a measure spaces and f : X — R a measurable function. If
u({xeX |f(x)] >7L}> < e * forall A >0, then show that f € L,(X, </, ) for
all 1 < p < oo,

3.144. Consider in R? the Euclidean norm || (x,y)]||> = (|x|> 4 [y|?)"/? and the taxicab
norm ||(x,y)||1 = |x|+ |y|- Prove that these norms are equivalent

%Il(x,y)lll <Gyl < V201 eyl

3.145. Show that for any o > 0, k= 1,2,...,n, we have

lim liek(ak)up] :ﬁ(ak)gk

byt k=1
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where 6; > 0and >}_, 6; = 1.
Hint: Check Lemma 3.21.

3.13 Notes and Bibliographic References

In 1910 Riesz [57] published the foundational paper on L, ([a,b]) (1 < p < eo) where
he showed many important properties of the Lebesgue spaces.

For bibliographic references to Holder and Minkowski inequality see §2.6. The
alternative proof of Theorem 3.20 (Ho6lder’s inequality) given in p. 54 was taken
from Maligranda [49].

Uniform convexity results from §3.9 were first obtained by Clarkson [8].

A more advanced study of Lebesgue spaces with exponent 0 < p < 1 is given by
Day [13], see also Kothe [40].



Chapter 4

Distribution Function and Nonincreasing
Rearrangement

A mathematician is a person who can find analogies between
theorems, a better mathematician is one who can see analogies
between proofs and the best mathematician can notice analogies
between theories.

STEFAN BANACH

Abstract In this chapter we study the distribution function which is a tool that pro-
vides information about the size of a function but not about its pointwise behav-
ior or locality; for example, a function f and its translation are the same in terms
of their distributions. Based on the distribution function we study the nonincreas-
ing rearrangement and establish its basic properties. We obtain sub-additive and
sub-multiplicative type inequalities for the decreasing rearrangement. The maximal
function associated with the decreasing rearrangement is introduced and some im-
portant relations are obtained, e.g., Hardy’s inequality. In the last section of this
chapter we deal with the rearrangement of the Fourier transform.

4.1 Distribution Function

Suppose that (X, o/, 1) is a measure space and let §F(X,.27) denote the set of all
o7 -measurable functions on X.

Definition 4.1. The distribution function D of a function f in (X, <) is given by

D(A) :=u (X(|f] > 1)) 4.1)

where

X(f1>2) ={xeX:[f(x)]> 2}

for A > 0. In case we need to emphasize the underlying measure, we can write
DY (). %)

Observe that the distribution function Dy depends only on the absolute value of
the function f and its global behavior. Moreover, notice that Dy may even assume
the value +-oco.
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It should be pointed out that the notation for the distribution function (4.1) is not
standardized, other used notations include f., iy, dy, 7Lf, among others.

Definition 4.2. Let (X, <7, ) and (Y,.# ,v) be two measure spaces. Two functions
fed(X, o) and g € F(Y,.#) are said to be equimeasurable if they have the same
distribution function, that is, if

ch (A)=Dg(A) 4.2)
forall A > 0. ©

In what follows, we gather some useful properties of the distribution function.

Theorem 4.3. Let f and g be two functions in §(X, o). Then for all A, Ay, 2, >0
we have:

(a) Dy is decreasing and continuous from the right;

(b) |g| < |f| u-a.e. implies that Dg(A) < D¢(A);

(c) Deg(A) =Dy <A1> forall c € C\ {0};

c]
(d) Dyig(M +22) < Dy(A1) + Dy (Aa);
(¢) Dyg(MA2) < Dy(Ar) 4 Dyg(A2);
(f) If | f| < liminf|f,| p-a.e., then Dy(A) <liminfDy, (1 );

) If 11l T1f

, then ILIE,Dﬁ*()‘) = Df(/l)

Proof. (a) Let 0 < A; < A, be arbitrary. Then

{xex:f(x)>/12}g {xeX:|f(x)|>7Ll}.

Hence by the monotonicity of the measure we have that Ds(A,) < D¢(4;), that
is, Dy is decreasing. To prove that Dy is continuous from the right, let Ag > 0
and define

B = {rex: 170l > 2,

then by the monotone convergence theorem, we have
i Dy (o + £) = fim e (5o 1))

u (DE_f(m;))

n=1
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—u(Es)

= Dy(Lo)

since Ef(A1) CEp(A2) CEf(A3) C...when Ay > A, > A3 > ..., and this estab-
lishes the right-continuity.

(b) Let f and g be two functions in §F(X,.«) such that |g| < |f] u-a.e. then

{xeX: lg(x)] >A} - {xeX: |f ()] >A},
by the monotonicity of the measure we have that
p(exlewl>a)) <u(tex:1r> 1)
and thus D, (1) < D;(1).

(c) Let f € F(X,) and c € C\ {0}. Then

{xGX:cf(x)|>7L}{xEX:|c||f(x) >/1}{x€X:f(x) >|’ll}

and thus u<{x eX:lef(x)] > 7L}> =Uu ({xeX: lf(x)| > /'L/\c|}) which is

simply
A
Dcf(A) =Dy <> :

el

(d) Let f,g € F(X,o) and A1, A, > 0, then

{xeX F00) +g(0)] >xl+xz} c {xeX £+ o) >xl+xz}
C {xEX:|f(x)| >Al}u{xex:|g(x)| >/12}.
Then
u(rex 170 o0 > i+ A} ) < (e X170 > 1))
su(rex:lgw] > 4}

which is Df+g(ﬂ,1 +A) < Df(ll) -‘ng(ﬂ,z).
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(e) Let f, g € §(X, o) and A1, A, > 0, then
{rex 1wl > i p = {rex @il > e
- {xGX HF()] >/11}u{xeX: lg(x)] >7L2},
and thus Dy, (A1A2) < Dy(A1) + Dy (As).

() Fix A >0andlet E={xe X :|f(x)] > A} and E, = {x € X : | fn(x)| > A}
wheren=1,2,.... Clearly, E C U, _| Ny>nm E,, therefore

(ﬂ E > < inf u(E,) <sup inf u(E,) =liminf u(E,)

n>m m n>m n—oo
n>m

foreachm =1,2,.... And thus, an appeal to the monotone convergence theorem
and the fact that N>, E, C Nyt 1 E, We get

E)<u <U ﬂm) = lim p (ﬂE ) < liminf 1 (E,),
m=1n>m n>m

which gives Dy(A) <liminf, ,..Dy,(1).

(@) If|f,] 1| /] then Ej, (A) C Ef, () C Ef,(A) C ... Hence

=JE,(2)

and thus

n—oo

Dy(A) = w(Ef(R)) = (OEM) = lim 1 (E;,(4)) = lim Dy, (1),

4.2 Decreasing Rearrangement
With the notion of distribution function we are ready to introduce the decreasing
rearrangement and its important properties (Fig. 4.1).

Definition 4.4. Let f € §(X, 7). The decreasing rearrangement of f is the function
¥ 1[0,00) — [0, 0] defined by
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() :inf{x >0:Dp(A) < ;},

taking the usual convention that inf(0) = . %)

Fig. 4.1 The graph of a function f and its decreasing rearrangement f™.

Notice that

£(0) = inf{x >0:Dy(2) = o} .

since
11l inf{a zo:u<{xex ()] > a}> o}.

Also observe that if Dy is strictly decreasing, then
1 (ps)) = inf{/l >0:D(A) < Df(t)} 1,

which shows that f™ is the left inverse function of the distribution function Dy.

In general we have the following result

I (Df(/l)) <A (4.3)
To see this fix A > 0 and suppose = D¢(A) < co. Then Definition 4.4 gives
F(DsA)) = £(0) =inf{A > 0:D,(A) <1 =Dy(A)} < A,

which establishes (4.3).

On the other hand, we also have

( ) <1 (4.4)
(

In order to prove (4.4) let us assume A = f*(¢) < oo, by Definition 4.4 there exists a
sequence {A, },cw such that 4, | A and D¢(4,) <1, thus the right continuity of D
gives

Ds(1(1)) = Ds(A) = lim Dy () <1,

n—soo Y
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which establish (4.4).

The next theorem establishes some basic properties of the decreasing rearrange-
ment.

Theorem 4.5. The decreasing rearrangement has the following properties:

(a) f* is decreasing;
(b) f*(t) > A ifand only if Dy (A) > t;
(c) f and f* are equimeasurables, that is Dy(A) = Ds-(A) for all & > 0;

(d)If f € F(X, ), then f*(t) = Dp,(t) for all t > O (this result tell us that [ is
right-continuous);

(e) (eef)"(t) = || f*(1); & € R;
DIl TS

. then f; 1 f*;
(8) If |f] < liminf| £, , then f* < limin £;;
() For0 < p <= (If17) (0) =L ()

(D) If1f]1 <

gl, then f*(t) < g*(t);

G) I €, then (1) (1) = Ko (e (0):

(k) IfE € <, then <fXE)*(t) < SO XpouE)) (1);

(1) If f belong 10 §(X, /), A >0 and F = xg, ) we get F*(t) = X, ) (1)-
Proof (a) Let0 <t < u, then

{7L>O:Df(l)<t}c{A>O:Df(l)<u}7

then
inf{?L >0:Ds(A) < u} < inf{/l >0:Ds(A) < t},
and thus f*(u) < f*(¢).
() Ifs< f*(t) = inf{a >0:Ds(a) < t} then s ¢ {Oc >0:Ds(a) < t} which

gives Dy(s) > r. Conversely, if for some r < Dy(s) we have f*(r) <'s, then
D¢(s) <Dy (f* (t)) <t which is a contradiction.
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(c) By (b) we have

{iz0:00>2} = faz 000> = (00,m)
then

Dr () =112 0: 70> 1) =m (0.0, ) =D, (h)
forall A > 0.

(d) Again by (b) we have

{)L >0:Ds(A) > t} = <0,f*(t))7

then

@)= m({l >0:Df(A) > z}) =Dp,(1).
Theorem 4.3 (a) shows us that f* is right-continuous.

(e) Let f € (X, <) and o € R, then

(af) @)

Il
=3
=
—N
>
%
]
>
Q
=
=
IA

:inf{)L >0:D; (ﬂ‘“') gz}
<

= inf{oc|y> 0:Ds(y) <t

~lalint{y=0:D,(7) <1
= lalf*(1),
where y = %“‘
(f) We already know by Proposition 4.3 (g) that if |f,| 1 |f]. then '}grolo Dy (L) =
Dy(A). Let F,(t) = Dy, (t), then

£ =m({a ~0:D;(2) > r}) — Dy (1),

since Dy, (t) < Dy,,, (t) we have F,(t) < F,(¢) and thus
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Ep(t) CER(t) C... and Ep(t)=|JER(1)
n=1

therefore lim Dy, (1) = Dp(t). That is lim, .. £, (¢) = f*(¢).
n—yoo
(2) Let (1) = iI;f | fim(#)] and observe that

Fn(t) < Fn+1(t)

for all n € N and all r € X. Taking A(¢) = liminf|f,(¢)| = sup F,,(¢), we get that
R—poo n>1

F} 1T h* as n — oo by the fact that F,, T & and item (f).

By hypothesis we have |f| < A, hence

[H(t) < h¥(1) = sup (1)

n>1

Since F, < |f;,| for m > n, it follows that F* < inf,,>, f(¢). Putting these facts
together we have

S (1) <h*(¢t) =supF,(t) <supinf f,(r) = liminf f, (¢).

n>1 n>1Mm>n

(h) Let 0 < p < o, then
Dyeh) = (e X: 7P > 1)) = treX:170] > A7) ) =Dy,
and
(1) (0) =inf{x ~0:Dyp(h) < t}

:inf{x >0:D(AYP) gt}

= inf{u” >0:Dys(u) < t}

= (inf{u >0:Dys(u) < t})p
=0,

where u = A /7.

(i) Let f,g € F(X, o) such that | f(x)| < |g(x)| forall x € X. Then Ds(A) < D,(A)
for all A > 0, which yields
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{QL>O:Dg(?L)<t}C {7L>O:Df(),)<t}7

therefore

inf{), >0:Df(A) < t} ginf{k >0:D,(A) gt}7
and thus f*(¢) < g*(¢).
Let E € &, if f = xg then
Eif0<A<1
{xeX:xE(x)>A}= .

0ifA>1.

Hence

U(E)ifO<A <1

D0 =u({re X et > 1)) R
i > 1.

and thus

Lift < u(E)
[t = inf{/x >0:Ds(A) < ;} =
0ifr > u(E),

which prove that
JH@) = X0.uE) (1)-
Since (fxE) (x) < f(x) for all x € X, we have

DfXE(A’) < Df()t)’
then

{/l >0:Dyy, (4) >t} C {/l >0:D¢(A) >t}.

Hence
DDflE (I) < DDf (t)’

which is equivalent to
(r2e) 0 <70 @5

forall¢ > 0.
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() LetF = XE:(2)> then
F*(t)=y t).
2 (0.;1(15,(/1)))( )

Thus
F*(t) = Xg,. ) (1),
which ends the proof. a

Observe that property (c) of Theorem 4.5 does not hold if we remove the strict
inequalities, that is

u(rex 171z 41) =m (=010 > 21)

does not hold in the general case. This can be seen by taking

X

flo) ==

for all x € [0,0). Then f*(¢) = 1 which means that

u({xeX:xil >1}> —07éoo—m({t>o:1>1}).

From Theorem 4.5 (c) we know that f and f* are equimeasurables functions
and this is a very important property of the decreasing rearrangement, since it per-
mits to replace the function f by its decreasing rearrangement whenever we are
working with something that only requires global information of the function, cf.
Theorem 4.13. We now show that the decreasing rearrangement is the unique right-
continuous decreasing function equimeasurable with f.

Theorem 4.6. There exists only one right-continuous decreasing function f* equimea-
surable with f.

Proof. Let f{ and f; be two different right-continuous functions equimeasurable
with f. Then there exists a fy such that f; (fo) # f5 (f9), we may assume without loss
of generality that 7 (f9) > f5 (f9). Choose € > 0 such that

fito) > £5(10) + &

And then by the right continuity of f; there exists an interval [fy,,] such that

fi(6)> fi()+e

for all 7 € [fo,#;]. On the one hand, observe that if s € (0,1 ], then f}(

n) < £1(s) and
thus f(s) > f{ (1) > f5(t1) + €, which means that s € {r > 0: £ (t) > f5(1y

f () + e}
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that is
0,n]C{t=>0:17(0)> f5(t1)+€.}

On the other hand, clearly
{rz0:50> fiw)ve} c 0l
Then
n((020: 50> f0)+e) <n<m(1205 00> 0 e ).

which is a contradiction to the equimeasurability with f. Hence f7(¢) = f5(¢). O

Next, we take a look at some examples of distribution function and decreasing
rearrangement.

Example 4.7. Let f(x) =1 — ¢ for 0 < x < e, Then

o if 0<A<1;
Dy(3) =m(fx€ (0.2 7)1 > 2}) =
0ifA>1.
Since
@) inf{?L >0:Ds(A) < t},
we have f*(t) =1 forall r>0. %)

This example shows that a considerable amount of information may be lost in
passing to the decreasing rearrangement. Such information, however, is irrelevant
regarding rearrangement-invariant norms, such as L,-norms, cf. Theorem 4.13.
Thus, the L,-norm of f and f* are both infinite whenever 1 < p < oo, and the L..-
norm are both equal to 1.

Example 4.8 (Decreasing rearrangement of a simple function). Let s be a simple
function of the following form

s(x) = z o0, (),

where a; > 0p > ... >, >0, Aj = {x:5(x) = o} and y;, is the characteristic
function of the set A;. Then if A > a; clearly Dy(A) =0.If op <A < oy, then
Dy(A) = p(A1UA;) = pu(Ay).

In general, for A > 0 we have
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n
DS(A’) = Z Bjx[a/—l-,aj) (A‘)
j=1

where ‘
J

Bj = u(A).
i=1
This shows that the distribution function of simple function is a simple function
itself. Now

(1) = inf{/l >0:Dy(A) < t}

:inf{/’L >0: Y Biioy 1a)(A) < t}
j=1

™-

an[B/—I ,Bj)(t)
1

J

which is also a simple function. %)

Example 4.9. Let X = [0,00); o/ = {all Lebesgue measurable subsets of X} and
W = m, where m denotes the Lebesgue measure on X.
Define f : [0,00) — [0,00) as
1—(x—1)2if0<x<2,
fx) =
0 ifx>2.

After some routine calculations we get
(e R 17> 2)) =m( e 0,21 - 017> 2))

—m<{x6[0,2]:1—\/1—7t <x<1+\/1—/1})
=2V/1-A for Ae0,1].

Therefore

2V1—-Aif0<A <1,

0 ifA>1.

Dy(A) =

Next, the decreasing rearrangement becomes
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f2
1-Ziro<r<a,
g VSIS

YOS
0ifr>2.
Finally, observe that
oo 2 1 2 )
/f(x)dx/(l(xl)z)dx/%/lkdl/<1[4> dt:%.
0 0 0 0

The operation f +— f* is neither subadditive, in the sense that the inequality

(f+8)" () <f () +g(r)

is not true in general, nor submultiplicative, that is

(f&) (1) < f(t)g" (1)
does not hold for any 7. The next example shows this.

Example 4.10. Let A and B be measurable sets such that ANB # @ and 0 < u(A) <
W1(B). Put f(x) = xa(x) and g(x) = xp(x). The decreasing rearrangements are

F5() = Xou) ()

and
g (t) = Xoum) (),

which means that
2if0<r < u(A),
(f+8) ()= lifu(A) <t <u(B),
0ifr > u(B).
Moreover, since (f +g)(x) = xa(x) + xs(x) it follows that
2if0<t< u(AnB),
F)+g ) = Tifp(ANB) <1 < pAUB),

0ift > u(AUB).

Hence, for any ¢ such that y (A ﬂB) <t < u(AUB), we have
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(f+8) () =1>0=f"(t)+g (1)
Similar calculations show that f — f* is not submultiplicative. @

Despite the previous comments and examples, we have a subadditive and sub-
multiplicative type inequality regarding the decreasing rearrangement of a function,
as shown in the next theorem.

Theorem 4.11. Let (X, o7, 1) be a measure space and f and g be two functions in
$(X, ). Then the inequalities

(f+8) (t+u) < f (1) +g (u) (4.6)
and
(fe) (t+u) < fr(1)g" (u) 4.7)
hold for all t,u > 0. In particular

(f+8)" (1) < f(1/2)+g°(t/2)

and
(f8) (1) < f*(t/2)g™(t/2)
forallt > 0.

Proof. If a and b are two numbers satisfying a = f*(fy) and b = g*(u), then
Drta)=u({reX: 171> a} )
— (e x: 170> 7))

=Dy(f"(10)) < t0.

Similar argument shows that D¢(b) < u, and thus

{1+ el > asof < sl afu o el >},

which entails
Dyio(a+b) < Dy(a)+ Dy (b) <ty+u.

This shows that (f+g)*(to +u) <a+b = f*(to) + g*(u) for any such numbers
a and b.

The proof of the second inequality is similar.

By Theorem 4.3 (e) we have

Dyg(ab) < Dy(a)+Dy(b) <to+u.
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Again, using the definition of the decreasing rearrangement, we get
(f8)"(to+u) < ab= f*(t0)g" (u),

which is our desired inequality. The rest of the theorem now follows by taking
fo=u=t/2. |

We now show that the integral of a decreasing rearrangement function satisfies
an integration by parts type formula, namely:

Theorem 4.12. We have the following equality

Proof. Let us start with

(/ A)dA = /m({s >/1}) ar.

Next, we use Fubini’s theorem and the fact that f* is a decreasing function, thus

ot o
/Df*(t)(“dlz //X{s:f*(s)»l}(S)dm(s)d/l
(@) F@) 0

t

X(r+(0).0) (L) /X(o,f*(s))(l)dm(s) dr
0

(4.8)

< +
=S~
)

Il
Tt — . T T T3

X+ (1)) (A) X(0,5+(s)) (A) dA ds

X(r-(0).+(5)) (A) dA ds

St~ T

)= 1) as,

which entails (4.8). a

The next theorem is quite important. It shows, in particular, that the integral of a
function and the decreasing rearrangement have the same value.
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Theorem 4.13. Let (X,.o/, 1) be a G-finite measure space and @ be a differentiable
and increasing function with ¢(0) = 0. Then

/@(Ifl)du=j¢(f*(t))dt.

Proof. By Theorem 3.54 and Theorem 4.5(c) we have

[otman= [ oG ({rex:1rw)>1})ar
X 0

=)

/ ({te >7L})

0
- / o'(1) / Rogay(2)de | da.
0 0

Next, applying the Fubini theorem

/‘P/(M /l(o,f*(;))(l)dt d/l:/
0 0 0

. / ¢'(A)dA dr
0
— [ ot @nar
0
which ends the proof. a

Remark 4.14. We now get some particular cases of Theorem 4.13, namely:

If p(t) =17 for 1 < p < oo, then

[1s17au = / (r
R 0

The above shows that we can calculate the L? norm of a function via its decreasing
=1L R m). %

The following inequality is due to Hardy and Littlewood.
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Theorem 4.15. Let (X,.o7 , |1) be a o-finite measure space and f, g be two functions
in§(X, ). Then

/ Feldu < / £ (1) dr. 4.9)
X 0

Proof. Assume first that f = y4 and g = xp where A and B are sets in o/. We
suppose without loss of generality that i (A) and p(B) are finite. Then it follows
from Theorem 4.5 (j) that

/Ifgldu=/xAdeu
X X

=u(ANB)
min{/(A),u(B)}
< / dt

=
=

|
N
o
=
)
—
~
~—
o
1SN

= o
=

Il
o
*
—
~
~—
o
5N

St~—3 “T—s °

£
—
~
—
o
*
—
~
—
o
=

In general let f and g be two functions belonging to §(X, o). Then

|71 ls|

X/Ifgldu/ [ da O/dﬁ du

X 0

:/ /%me)da /%w)dﬁ du.
X 0 0
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It follows from Fubini’s Theorem and Theorem 4.5 (1) that

/|fg|du:///XE/((X)XEg(ﬁ)d[ldadﬂ
X 00 X

g]] /mef (2z,) (0 p dardp
0 0 0

oo

/w/w /XE/'*(O‘)(I)XEg*(ﬁ)(l)dI dodf

0 0

(] XEp o ] Xeqp)(1)dB | dr
0

and thus we obtain (4.9). O

Corollary 4.16 Let (X, <7, 1) be a measure space and f € F(X, /). Then

/mw</f

forall E € of.

Proof. By applying Theorem 4.15, we have

Jistan=[iizean< [0 () 0a= [ £ @moue 0.
E X 0 0

which ends the proof. a

At this point, we will use some facts about atoms, see Section A.6 for more details
in atoms. In fact whenever invoking the necessity of nonatomic measure space we
want to exploit the “continuous of values fact,” i.e., if i is a nonatomic measure and
A is a measurable set with (1(A) > 0, then for any real number b satisfying
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K(A) > b >0,

there exists a measurable subset B of A such that y(B) = b.

Theorem 4.17. Let (X, o/ ,m) be a nonatomic measure space. Then

- / fldm m(E / £

Proof. Given the real number ¢ > 0, we have

E/ |f] dm

oo

/ EﬂEf dk

0

- m(ENE;A))dA+ / m(ENE;A))dA.
{A:Dg(A)<t} {A:Ds(A)>t}

Since (X,.7, ) is a nonatomic measure space, if m(E f(l)) < t, then there exists

aset E € o/ suchthat E C Ef(A) and m(E) =t.
Hence

sup /|f\dm:m(E):t - ]m(Ef(l))d?L—i-/td)L
E 0

/Df*(l)kortf*(t)
()
t £ (s)

/ dAds+t£7(t)
0

I

fron

which ends the proof. ad

Remark 4.18. Observe that, if f and g are two < -measurable functions then as in
the proof of Theorem 4.17, we have for each set E € o/ with m(E) =1t
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E/|f+gdm§E/|fdm+E/lgdm
< [t [gea (4.10)
0 0

since (X, .o ,m) is nonatomic, it follows from Theorem 4.17 that

t t t

Jrer@es [re [¢oes (“.11)

0 0 0

Theorem 4.19 (Hardy). Let f and g be nonnegative measurable function on (0, o)
and suppose

t t
/f(s) ds < /g(s) ds (4.12)
0 0
forallt > 0. Let k be any nonnegative decreasing function on (0,0). Then
/f(s)k(s) ds < /g(s)k(s) ds. (4.13)
0 0

Proof. Let k be a simple function given by

n
Z a;xo, t,
where the coefficients a; are positive and 0 <t <1, <... <t,.

Using (4.12), we obtain

oo tj tj

/ f<s>k<s>ds=§a,- [ rsre 2 / /

0

which establishes (4.13). Next, let k be any nonnegative measurable function then
there exists a sequence of increasing measurable simple functions {@,},.y such
that lim,,_,.. ¢, = k. Since ¢, are increasing, for all » € N we have ¢, < k and thus
o.f < fk. By the monotone convergence theorem we obtain

oo oo

/f(s)k(s) ds=lm [ f(s)@,(s)ds

n—yoo
0 0
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But ¢, is a simple function, then

for all n» € N. Hence

Finally, we have

o
&
o
[y
IN
—

O

Corollary 4.20 Let (X, %7, 1L) be a nonatomic measure space and let f, g and h be
three functions in §(X, /). Then

L / £ (g (1" (1) dr
X

Proof. By Remark 4.14 and Theorem 4.15 we have

/ (fe)" (1) dr = / feldu < / £ (1) dr
0 0

X

Next, we invoke Theorem 4.19 with /() = f*(¢) to obtain

[isenlau < [ rog o

Corollary 4.21 Ler (X, .o/, 1) be a nonatomic measure space and let fi, fo,..., f,
be functions in §(X, o). Then

/Hlfk|du§/1‘[f,:‘(t)dt
4 k=1 0 k=1

forneN.

Proof. This follows from Corollary 4.20 and the principle of induction. O
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We will take a closer look on the question if there is a function % in F(X, )
which is equimeasurable with g such that

/fh|dH:]f*(t)g*(t)dt.
X 0

The answer is in general no and it depends if the measure space is nonatomic or
completely atomic where all atoms are of equal measure and if the measure space is
finite. To make the terminology less cumbersome, we first make a definition.

Definition 4.22. A measure space or a measure is said to be resonant if it is c—finite
and either nonatomic or a countable union of atoms of equal measure. %)

The next theorem shed light in the posed question.

Theorem 4.23. Let (X, .o/, 1) be a resonant measure space. Then
sup [ I72ldu = [ £ (), (414
X 0

where the supremum is taken over all o/ —measurable functions g equimeasurable
with g, that is, Dz(A) = Dg(A), 2 > 0.
Moreover, if W(X) < e, then there is an o/ —measurable function g such that

/umw:/ﬁmfmw @.15)
X 0

Proof. We can clearly assume that both f and g are positive. Let p(X) < oo, If pt is
completely atomic where all atoms are of equal measure, then g can be constructed
by permuting the atoms. More specific, this permutation is the composition of the
permutation that takes f to f* and the permutation that takes g to g*. That is, g'is g,
but where all atoms are permutation so that the atom where g has its largest value is
the same as the atom where f has its largest value, the atom where g has its second
largest value is the same as the atom where f has its second largest value and so on.
Clearly, g and g are equimeasurable which means that we have proved (4.15) for the
case when U is completely atomic where all atoms are of equal measure.

Now, let u be nonatomic. Since g is positive we can find a sequence of simple
positive functions {g, },en such that g, 1 g. Then, for any arbitrary fixed integer
n > 1, we can represent g, as

k
gn(x) = Zi 8;xp; (x)

where Dy C D, C...Dyand 6; >0, j=1,2,...,k since ;1(X) < o we can apply
Problem 4.44 with ¢(r) = for each p(D;) and get a sequence of sets Ey,E», ..., E;
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such that u(E;) = u(D;), j=1,2,...,kand

w(Dj)
[irau= [ rawa. (4.16)
E; 0
Define the simple function g, : X — [0, ) by

k
gn(x) = ; Oj e, (x)-

Since the measure of E; and D; is equal for all j = 1,2,...,k the decreasing
rearrangement of g, and g, are equal, that is

k
&) =8u(t) = 8iXouE,) (1)
=1

J

Hence, we get a sequence of positive simple functions {g, },en such that g, and

gn are equimeasurable with n = 1,2,.... Using Proposition 4.3 (f) it also follows
that
g: lim §n7
n—roo

is equimeasurable with g. Moreover, by (4.16)

‘ . w(Dj)
[raau=35 [rau=-35 [ rou
X =1 E =t

Tk
/ Zlf*(t)@%[o,u(m))(f)df
0o 7

[rwgoa.

Thus, we have proved (4.15) for g,, n = 1,2,... and by Theorem 4.3 (f), The-
orem 4.5 (d), the monotone convergence theorem and the fact that g and g are
equimeasurable, the general case follows.

Now, let 1(X) = e, 1 be nonatomic or completely atomic where all atoms are
of equal measure and o > 0 be a real number such that

a</f*(t)g*(t)dt.

0
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Since f and g are assumed to be positive it will suffice to show that there exists a
positive function g equimeasurable with g such that

o< /fgdy.
X

Because 1 is a 0 —finite measure we can find a sequence of pairwise disjoint sets
X1,Xz, ..., such that u(X,) <eo,n=1,2,...,and X = | X,.

n=1
We can therefore find two sequences of positive functions {f, },en and {g, }uen

such that f, 1 f, g, T g and both f, and g, have support in X,,, n = 1,2,.... Since
[rwgwa— [rogoa.
0 0

by Theorem 4.3 (f), Theorem 4.5 (d) and the monotone convergence theorem it
follows that there exists an integer N > 1 such that

=

0< [ g

0

Then (Xy, <7, ) is a finite measure space which is either nonatomic or com-
pletely atomic with all atoms of equal measure. We can therefore apply the first part
of the proof and find a positive function /2 on Xy equimeasurable with gyx, such
that

./fﬁd“::/kf%myﬁ)@xm)ﬂﬁda
Xy 0

Since fy < fyx, and gy < gxx, by the construction of {f,} and {g,} it follows
that

o< /fi;(l)giz(f)dt < /(f%xN)*(l)(gXXN)*(t)dl
0

0
:/ﬂw:/ﬁw,
Xy X

where
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Thus, if we take

8(x) = h(x)xxy (x) + () xx\x, (%), x€X,

then g is equimeasurable with g and 2 < g.
Hence
a< [ fhan< [ rzau,
X X

which complete the proof. a
We now introduce the notion of maximal function of f*.

Definition 4.24. Let f € §(X,</). By ™ we denote the maximal function of f*
defined by

fWﬂzf/f@N& @17

fort > 0. @

Some elementary attributes of the maximal function are listed below.
Theorem 4.25. We have the following properties:

(a) [* < ™
(b) f** is decreasing;

Proof. Property (a) follows directly from the fact that /* is decreasing, thus

t

1/ 1
fr@) =~ [ f(s)ds= f7 (1)< [ ds=f7(2).
IJ IJ

(b) Since f* is decreasing so f*(v) < f* (LV) if 0 <t <, hence

R

\W®=l/fwwﬁ;jﬁCOmci/ﬁMw=FW)
0 0 0

and so f** is decreasing.

(c) Follows directly from (4.11). O

Theorem 4.26. Let (X,./ 1) be a totally 6 —finite measure space and let us take
feLi(X,o ). Then
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oo

(a) / (\f| —X)eru = / (f*(t) —)L>+dtf0ralll > 0, where (x)" = max{x,0};
X 0

d +
(0) D;(A) =~ [ (Ifl=%) du:
X

1
(c) f(1) /{I;g{l+t/(fl)+du},t>0.

X

Proof. To show item (a), we note that
J(r1-2) au= [ (ir1-2)au
X {If>2}
= [ nau—a(wi> )

{If1>2}

= /Nxm,f)(/l)lfldu —Au ({f| > “’)-

Then
o [ (r1-2) aw = (11> 23), (@.13)
Moreover X
] (ro-2)a= [ roa —M<{f*(t) > x}),
0 {r=>1}
and thus -
i [ (ro-2) a=-n(tro=2) @19)
0
(@ >2) =u(tr1>2),
then

/(f|—)L)+du_/w(f*(t)—/l)+dt. (4.20)
0

X
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(b) By (4.18) we have

(c) Observe that

thus by part (a) we have

=

/f*(s)dsgAH/(f*(s)—x)+ds:m+/(Ifl—l)+dﬂ~
0

0 X

Then

from this we get

Kk . 1 +
o<t daeg [(171-2) dup. (421)

X

On the other hand, assume that ((E) =t for some E € <. In particular, let us
take £ = {x:|f(x)| > A}. Since

/&mwsfﬁmme

if g = xg, then

!mwsJﬁmm

thus
[rlau=rue) < [ 1 6)as-rue)

0
t

/(Iflf/l)du < /f*(s)dsfkt

E 0
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pig [(1-2) auzg [roe
0

X
inf A+1/(|f\—x)+d < F(1) 4.22)
A>0 t o= ' ’
X
By (4.21) and (4.22) the result holds. O

As a corollary we obtain.
Corollary 4.27 Let f, g € Li(X, 7, 1t). Then forallt >0

7 =1 < [ 171 -lellau < 17 gleu
X X
Proof. Let us define
1 +
af(/m):m;/(upz) du.
X

Then

thus

From this, we have

tlinfoyr(A) —infoy(A)| < suploy(A) — 0 ()] < /||f| —lgl|du,
X

yielding
() — g7 ()] S/HfI—Iglldué/\f—g!du-

X X
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Corollary 4.28 If {f,}nen and f are integrable on X and

i 15 o -0

n—oo

Then
lim /5 (1) = (1),

at every point of continuity of f*(t).
Proof. By Corollary 4.27 we have

[ (0) =1 |</|fn )| dp =0,

as n — oo. From this we also have
t t

lijlgo f,f(s)ds:/f*(s)ds.

0 0

On the other hand, using the monotonicity of f,;, for any xo € X and any r > 0,
we set

Xo+r
o BAOLEYAS /f
Xo
Passing to the limit as n — oo, we derive
Xo+r
» [ @ <timint ) < timsup £ () / £

Next

Xo+r Xo
fim [0 d < limint £ 1) < limsup f; ) < lim [ 0)

Xo Xo—F

which entails

fxo) <Timinf £ (xo) < limsup £, (xo) < f*(x0)-

n—oo

Finally
lim £ (x0) = f*(x0).

n—roo
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We end this section with a result that will be used in Theorem 6.23 in discussing
duality in Lorentz spaces. The result shows under what conditions a function in
[0,0) coincides with the decreasing rearrangement of a measurable function.

Theorem 4.29. Let (X,.7, 1) be nonatomic measure space. Let @ be a right con-
tinuous and decreasing function on [0,e0). Then there exists a measurable function
fonX with f*(t) = @(t) for allt > 0.

Proof. Let us consider the following function

n
Z Cik XE,
k=1

where Ey € o, u(E;) > 0 and E;NEy =0if j # k. We can choose ¢ > ¢ > ¢3 >
co.>CpyCny1 =0. Letdy = W(E)) +...+ U(Ey), 1 <k <nand define dy = 0. Then,
the distribution function D (A ) has the form

diif e KA <, 1 <k<n
Dy(A) =
0 ifc, <A.

It follows that

cif d1 <t <d, 1<k<n

fr)=
0if d, <t

Next, let us write
crif  droy <t <dy

o) =
0if d,<t.

Note that ¢ is a right-continuous function and if 7y < ¢, then @(¢) < @(fo) which
means that ¢ is a decreasing function, then

fH(6) = o).

for all # > 0. For general continuous functions we use approximation. |

4.3 Rearrangement of the Fourier Transform

In this section we will take the definition of the n-dimensional Fourier transform of

fas
F )= Flx) = / e f(r)dr.

R~
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We use the common notation f whenever possible.

We begin with an estimate of the rearrangement of a function that arise as the
Fourier transform of a characteristic function

Lemma 4.30. Let f(x) = sinc(x) (where sinc(x) = sin(x) /x is the so-called cardinal
sine function), then

@) > @Br+)" "

Proof. We estimate the distribution function D¢(A4) of f as follows. For A > 0,

Dr(3) =m({r:[222] > 1))
:m<{x: |sinx| > Ax})
x>0 |sinx] > /Ix})

(!
2 ({x & ((n—1)mnx) [ sina| > lx}).

For x € ((n - 1)7r,n7r> the condition |sinx| > Ax is weaker than the condition

|sinx| > nzA, thus we have

m({x € ((n— 1)n,nn) ‘| sinx| > mm}>

({x € (07 n) s sinx > mr?t})

({x c (o 7'5/2) sinx > nnx})

>
=
=
v
\]
ok

3
Il
—_

I
b“/}g

3
Il
—_

||
Mz

3
Il
—_

using the symmetry of sinx. Since the condition sinx > nmA is never satisfied for
nmA > 1, we may restrict the sum to those n for which ntA < 1. To this end, we let
. . . 1 1
N be the integer satisfying —r —1 <N < 7.
Also, sinx > % for 0 < x < m/2 that is,

{xe (O,n/Z) z > n)L} {xe (0 n/z) :sinx > nnl},

we have

[v]z

Dy(2) = 4

({x € (o n/Z) - sinx > nmm})

n=1
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({x € (o 77:/2) =S mm}>
nim? w
ml === =
2’2
3 nAm?
~\2" 2
=27N —An*(N+1)N
N(N+1
_on (N _ M(H) _

1

=

v
~
an

4

M= M=

n

Il
N

3
|
_

2

The definition of N completes the estimate of D¢(1).

1 aA 1 1 1

Now, for r > 0, we get

£7(t) =inf{A : Dp(A) <1} > inf{A : % <t} = (37r+t>1.

-1
Corollary 4.31 Ifz > 0and f = x(0,1/z), then (f)*(t) > <37tz+t/2) .
Proof. The (one-dimensional) Fourier transform of f is

1/z .
N ) eftx/z -1
f(x) = /eimt dr = . )

—ix
0
if F(x) = %1% a5 in Lemma 4.30 we have

x)| =

’ 1 efix/Zz eix/2z _ e*ix/ZZ

z x/2z 2i
sin(x/2z) 1
S0/ ey

2‘ x/2z ‘ z‘ (x/22)

since we are taking the rearrangement with respect to Lebesgue measure, it respect
dilation. That is, if g,(x) = g(ax), then g(¢) = g*(|a|t). These properties together
with Theorem 4.5 (e) and Lemma 4.30 show that

1 B 1
3n+t/2z  3mz+t/2

(P = 2F(1/2) 2 -
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Lemma 4.32. Suppose that f : R — C is a compactly supported L;-function and k
is a positive integer. For any € > 0 there exists a compactly supported L-function g
such that g*(t) = f*(t/k) fort > 0 and

() (t/k)—e <@ (1) < (/) (t/k)+€ for 1>0. (4.23)
Proof. We show that for 7" and N sufficiently large,
k ..
1))=Y ™ ft+jT)
j=1

will do. It is clear that such a g is compactly supported and in L;. Choose T so large
that the supports of f(t+ jT), j=a,...,k are disjoint. Then no matter what N is for
all A > 0 we have

(031501 > 21) = i( e+ T > 23) = k(403 10 > 23

using the translation invariance of Lebesgue measure. We use this to express the
rearrangement of g in terms of the rearrangement of f.

g0 =int{ain((s:lg0)>2) ) <1}

—int {3 (5217001 > 23 ) <0/t
— (/R

Now, we turn to the Fourier transform of g and the choice of N. By the Riemann
Lebesgue lemma (cf. Appendix C, p. 445) we have

lim ‘f |

[x[—ee

so, we may choose N so large that

~

|f(x)] < %, whenever |x| > N/2.

Since

zx JN) ]T X _]T),

HM»

we see that if x € ( JN—N/2,jN+N/ 2) for some j then only the jth term of the
sum can contribute more than € /k, thus

|f(x—jN)| —€ < |gx)| < |f(x—jN)| +¢ (4.24)
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and if x ¢ ( JN—N/2,jN+N/ 2) for any j then none of the terms in the sum can

contribute more than € /k so | §(x)‘ <e.

Thus, for A > 0 we have

ACR-TEPS

2m<{x € (jN—N/2,jN+N/2) J8()| > /1})

1

~.

IN

21m<{xe(ﬂv N/2, ]N+N/2) - ]N)|>)L—e}>

~.

k
k
k

Zm({x e (—N/z,zv/z) )] > A — s}>

<ton( {21701 > 2 e} ).

This implies that if (§)*(z) > € then

Of course, if (g)*(¢/k)

IN

€, then we also have
(2) 0= (F) wh+e
thus, we have established the second inequality in (4.24).

To prove the first inequality in (4.24) we observe that for all A > 0 (4.32) implies
that

%
M=

(211> 2)) = Bom(twe (IV-N/2N+N12) o)) > 1) )

<.
I
-

(Y
M=

m({ (JN NJ2, JN+N/2) 1 — JN)\>7L+8})

~.
Il
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k o~
= Sn((xe (~N2N2) 1 > e} )
J=1

<ton( (a1 > A+ e}

where the last equality uses the fact that

o~

|f(x)| <€ for |x|>N/2.

Now
@ 0=t {2:m( e lg)] > 4}) <
zint {2 (s )] > 2-4e) ) <o)
:inf{/l—f—e:m({x: 17 (x)| >A+£}) St/k}—e
>int {4 m( (o2 1] > 4)) <0/t e
= (7) /-,
as required. This completes the proof. 0

Corollary 4.33 Given z >0, r > 0, and € > 0 there exists a compactly supported
Ly-function g : R — C such that

0,1
Z

-1
g= x[ ] and (g)*(t)+€> (37r(r+ z+ 2yr> .
Proof. Let k be the positive integer that satisfies k — 1 < r <k and set f = X(o L)
Choose g by Lemma 4.32 so that
&) = 1 (W/K) = Ao 1y (1 /K) = 2o,y (1)

and

§*(t)2 J?*(’/k)—eZ 37tkz+L 71—82 37r(r+1)z+L 71—3.
2k 2r

Here we have used Corollary 4.31 to estimate (f) . O

We recall that the convolution of f and g, denoted by f * g, is given by
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(fxg)(x /fxy

For a thorough study of the convolution, see Section 11.1.

Theorem 4.34. Let f and g be two functions in §(R",.Z) where sup,cp. f(x) <M
and f vanishes outside a measurable set E with m(E) = s. Let h = f x g. Then, for

1>0
h* (1) < Msg™ (s)

and
R (1) < Msg™(t).

Proof. For o > 0, define

8(x) if |g(x)| < o

alx) =
’ asgn(g(x)) if |g(x)] > o.

Define g by the equation
8%(x) = g(x) — ga(x)-
Then, define functions /; and &, by
h=fxg=fxga+f*g%=h +h.

From elementary estimates involving the convolution we obtain
sup (1)) = sup(+¢7()} < (sup(r(0)} )1 < [ Dy(2)0h
xeR? x€E X€E
04

Since g%(x) = 0 whenever |g(x)| < o. Also

Sw%@ﬂjgﬁmdméwmgy&@OSMm

xeR?

and

Il < 17Tl < M5 [ Dy(2)a
o

Now set & = g*(s) in (4.25) and (4.25) and obtain

t

szé/mw®gwm

0



4.3 Rearrangement of the Fourier Transform 175

< |[Pille + (12

ngg*(s)+M/Dg(/'L)d/'L
g (s)

M sg*(s)+/0g(x)cm
g (s)
= Msg™"(s).

The last equality follows from Theorem 4.34 and thus, the first inequality of the
lemma is established.

To prove the second inequality, set o = g*(r) and use (4.25) and (4.25) to obtain
t t t

i) = [roars [rma+ [1mo)s

0 0 0

oo

<)o+ / () dy
0

=t | + 1721y

oo

<tMsg"(t) +Ms / Dy(A)dA

g (1)

— Ms tg*(t)—l—/Dg(),)d),

g (1)

= Mstg" (1),
and our conclusion follows by dividing by . a
Theorem 4.35. If h, f, and g are in S(R",,Z) such that h = f x g, then for any

t>0

B0 < LF (g™ (1) + / £ ()" () du.

Proof. Fix t > 0. Select a doubly infinite sequence {y, },en Whose indices ranges
from —oo to +oo such that

yO:f*(t)u Yn = Yn+1, limyn:°°7 lim yn:O-
n—soo N—s—oo
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Let

Where
0 if [f(2)] <y

fa(2) = § F(@) =yuasgnf(2) if oy <[f(2)] <

Yn—Ynasgnf(z) if y, <|f(2)|-

Clearly, the series converges absolutely and therefore,
h=fxrg= ( Y fn) *g

(FJ") et (m)

=h; +h,.
with
R (1) < hy" (1) + by ().

To value 73" (t) we use the second inequality of Theorem 4.34 with E, = {z:
[f(2)] > yn_1} and & =y, —y,_; to obtain

h () < i@ 3D )g (1)

oo

= g**(t) ZDf(ynfl)(Yn 7ynfl)~

n=1

The series on the right is an infinite Riemann sum for the integral

Dy(y)dy,

—

fx

—

t

and provides an arbitrarily close approximation with an appropriate choice of the
sequence {y, }nen. Therefore,

B (1) < g (1) / Dy(y (4.25)
Pt

By the first inequality of Theorem 4.34.



4.3 Rearrangement of the Fourier Transform 177

oo

B0 < T 00 =001 0n1)g” (D100

The sum on the right is an infinite Riemann sum tending (with proper choice

of y,) to the integral
I

[ s (D)) av.
0

We shall evaluate the integral by making the substitution y = f*(«) and then
integrating by parts. In order to justify the change of variable in the integral, consider
a Riemann sum

i Dy(yn-1)g™" (Df(yn71)> (Yn — Yn—1)

n=1

that provides a close approximation to

~,

“(1)
Dy(y)g™ (Df (y)) dy.

o —

By adding more points to the Riemann sum if necessary, we may assume that
the left-hand end point of each interval on which Dy is constant is included among
the y,. Then, the Riemann sum is not changed if each y, that is contained in the
interior of an interval on which Dy is constant is deleted. It is now an easy matter to
verify that for each of the remaining y, there is precisely one element, u, such that

yn = f*(uy) and that D, (f*(u,,)) = u,,. Thus, we have

nilDf(y"_l )™ (Df()’n—l )) (Vn = Yn-1)s

which, by adding more points if necessary, provides a close approximate to

- / ug™ (u)d f* (1),

Therefore, we have
< [ 00 (0,0) e
0

=- / ug™ (u)d f* (1)



178 4 Distribution Function and Nonincreasing Rearrangement

o

+ [ e

=3

= —ug™ (u)f"(u)

<1g" W 0+ [ £ g (0)du (4.26)

To justify the integration by parts, let A be an arbitrary large number and choose
unsuchthatt =uy <wup <...<uy 1 =A.

Observe that
AT (M) (A) —tg™ (1) (1)
= un+1g**(un+1) f*(un+1) _f*(un) + Zf* (un) |:g**(un+l)un+l _g**(un)un
n=1 L i n=1
=D 18 (Upi1) | [ (pg1) — £ (1) JFZf*(”n) /g*(s)ds
n=1 L - n=1
< z un+18**<un+1> f*<un+1> _f*(un) + Zf* (un)g*(un)[unJrl - u”]'
n=1 L E n=1
This shows that
A A

Ag A (W) =105 0 < [ug”War @+ [ 1w e

t t

To establish the opposite inequality, write
A (M) (A) =g (1) f* (1)
= 3 ) [ ) = )| 3 ) s s
n=1

Un41

") | )= 70| + 35 7 ) | [ 610

n=1

M=

n
Up

m

2 ilung**(l/ln) |:f*(un+1) _f*(un):| + Zf*(un+1)g*(un+l)[un+1 —un]

n=1

Now let A — oo to obtain the desired equality. Thus, from (4.25), (4.26), and
Theorem 4.34
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oo

K0 (1) < 8(0) +/m ®+/}Mfwm

Theorem 4.36. Under the hypotheses of Theorem 4.35, we have

Proof. We may as well assume the integral on the right is finite and then conclude

lim uf™ (u)g™ (u) = 0. (4.27)

U—roo

By Theorem 4.35 and the fact that f* < f**, we have

() <t (g™ ( /f

<tf(t)g™ (1) + / £ (u)g* () du (4.28)

Note that since f* and g* are nonincreasing

%f ~ du u/f

=—*/f st (w)

W=y [roes
0

[f7 () — £ (u)]
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and
d sk _ d * %
0= 4o | [ & 6| =g,

for almost all (in fact, all but countably many) u. Since f** and g** are absolutely
continuous, we perform integration by parts and employ (4.27) and (4.28) to obtain

=

hWﬂ«ﬁWW%H{WWMﬁWﬂ

t

+ -5 w]e wa

4.4 Problems

4.37. Try to understand geometrically the meaning of the maximal function f**
given by (4.17).

4.38. Let ([0700],.,2” ,m) be the usual Lebesgue measure space and let f be defined
as

0, x=0,
log<ﬁ>, 0<x<l,
f(x) =< oo, 1<x<2,
log<ﬁ), 2<x<3,
0, x> 3.
Show that
(@) Df(A) = 1+2e7*.
(b)
oo 0<r <,

@)= log(%), 1<t<3,
0, t>3.
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Remark: From the above example, we get that even if f is infinite over some non-
degenerate interval the distribution and the decreasing rearrangement functions are
still well defined.

4.39. Let us take f: [0,00) — R as

Find f*(¢).

4.40. On R, let 8°(f)(x) = f(ex), € > 0, be the dilation operator. Show that
(a) Dgs(f)(l*) = 8_”Df()~).

®) (8°(N)" (1) = f*("1).

4.41. Suppose that u denotes the Lebesgue measure on the ¢-algebra % of Borel
subset of R and for each a > 0 put f,(x) = e “* and g,(x) = e~ forx € R.

(a) Calculate Dy, and f; fora > 0.
(b) Calculate D, and g}, for a > 0.

4.42.1f f € L,(R",97,m), 1 < p < oo, prove that

1/ 1/p

o

Jurara| < Lo [lrwre
]Rn

0

Remark: Try to use a different approach from the techniques used in the proof of
Theorems 3.64 and 10.5.

4.43. Prove or disprove the following statements. Let (X, 7, 1) be a measure space:

1. fxe and fx(u(k)) are equimeasurable for any </ -measurable set E.
2. Let ¢ be an absolutely continuous function on [0, +e<) with ¢(0) =0.If E is an
of -measurable function, then

/ o(fDdu= [ o(r ().

E

o\b}rg

4.44. Let (X,.o7, 1) be a finite nonatomic measure space, suppose that f belongs to
F(X,9f) and let t be any number satisfying 0 <7 < u(X). Prove that there is a
measurable set E; with (E;) = ¢ such that

!ﬂw!ﬁwm
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Moreover, the sets E; can be constructed so as to increase with ¢:
0<s<t<u(X), thenE; C E,.

Hint: See [1] Lemma 2.5 on p. 46.

4.5 Notes and Bibliographic References

Section 4.3 is largely based on the paper Sinnamon [70].

The decreasing rearrangement of functions was introduced in Hardy and Little-
wood [28]. It appeared in book form in Hardy, Littlewood, and Pélya [30]. Exposi-
tion on the topic has also been given by Grothendieck [24], Lorentz [43], Day [15],
Chong and Rice [7], Ryff [63], among others. For the history of the rearrangement,
we refer to the book by Bennett and Sharpley [1] and the references cited there.

The introduction of the function f** is due to Calderdn [4].



Chapter 5
Weak Lebesgue Spaces

Mathematics is the most beautiful and most powerful creation of
the human spirit.
STEFAN BANACH

Abstract In this chapter we study the so-called weak Lebesgue spaces which are one
of the first generalizations of the Lebesgue spaces and a prototype of the so-called
Lorentz spaces which will be studied in a subsequent chapter. In the framework
of weak Lebesgue spaces we will study, among other topics, embedding results,
convergence in measure, interpolation results, and the question of normability of
the space. We also show a Fatou type lemma for weak Lebesgue spaces as well
as the completeness of the quasi-norm. The Lyapunov inequality and the Holder
inequality are shown to hold.

5.1 Weak Lebesgue Spaces

We start with a simple observation that will be used when defining the weak
Lebesgue space.

Lemma 5.1. Let (X,.o7, 1) be a measure space and f be an </ -measurable function
that satisfies

C p
p(rex: el >an < (5) G50
for some C > 0. Then
Cc\P 1/p
inf{C >0:Dp(A) < <) } = (supl”DAk)) =supA (Df(k))l/p7
A A>0 A>0

where Dy is the distribution function given by (4.1).

© Springer International Publishing Switzerland 2016 183
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Ahﬁ{C>O:Dﬂa%§(§>p},

1/p
B= (supoc”Df(oc)> .

a>0

Proof. Let us define

and

Since f satisfies (5.1) then

for some C > 0, then

{C>0:Df(oc)§ (§>p V(x>0}7é®.

On the other hand o? D¢(ax) < BP, thus {a”D/(ct) : o > 0} is bounded above by
B? and so B € R.
Therefore

p
A:inf{C>O:Df(oc)§ (g) a>0} <B. (5.2)

Now, let € > 0, then there exists C such that
AL<C<A+e,

and thus o "
+é&

Dy(A) < 7T
from which we get

supAPDs(A) < (A +€)P.

A>0
By the arbitrariness of € > 0, we obtain B < A which, together with (5.2), we obtain
B=A. O

We now introduce the weak Lebesgue space.

Definition 5.2. Let 0 < p < oo. The weak Lebesgue space, denoted by weak-L,, or
by L) (X, 97, 1t), is defined as the set of all u-measurable functions f such that

ey = N poo) = I1F | Lpesy | 1= ilipofl (Dr(A)"" < oo,
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Two functions will be considered equal if they are equal pi-a.e., as in the case of L,
spaces. (%)

The weak Lebesgue spaces are larger than the Lebesgue spaces, which is just a
restatement of the Chebyshev inequality, namely:

Theorem 5.3 For any 0 < p <o and any f € L, we have
L,, C L(P;‘x’)' (5.3)

and hence
Hf|L(p.°°)H <|If 1Ly - (5.4)

Proof. If f € L, then

Mu(tex:[fwi>an < [ iras [Inra=|r L)
{lf1>2} X

therefore

p({reXx:|f(x)|>21}) < (”Cf””)p (5.5)

Hence f € L, ), which means that (5.3).
Next, from (5.5) we have

1/p
(sup{l”DAl)}) < Hf ‘ LPH
A>0

from which (5.4) follows. O

The inclusion (5.3) is strict. We give a counter-example for a particular measure
space. Let f(x) = x~!/7 on (0,0) with the Lebesgue measure. Note

m {xe (0,0) : |x|+/l’ >7L} :m({xe (0,00) : x| < ;p}) =217P.

Thus f € L;..)(0,0), but

/1N, [dr
[ () =[5
0 0
which is a divergent integral, thus f ¢ L,(0,eo).

We now show that the functional f — sup; ., AD(A)"/” satisfies a quasi-triangle
inequality and is also a homogeneous functional.
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Theorem 5.4 Let f,g € L(, ). Then

(a) ||cf | L(p,w)H = |C|Hf | L(p,oc)Hforany constant c, /
1/p

) (£ +8 1 Lpmll <2 (1 1 Lipm I + 18 1 LipI”)

Proof. (a) For ¢ >0 we have

({xeX lef (x |>A}) ({xeX:|f(x)|>i}>,

A
in other words, D (1) =Dy () .
‘ "\
‘We then have

1/p
lef | Lipen <supmcf
1/p
sup?Lpr
A>0
1/p
<supc”w”Df >
cw>0

1/p
=c (sup wpr(w)> )
cw>0

llef [ Lipeo |l = cllf | Lpes)ll-

which means

(b) Note that

{rex:imremi=af e {rex: >3 udrex:lgw> 3}

Hence

p({reX:[f(x)+gx)]>2})

=" <{XEX: @I ﬁ}) +H ({xeX: 81> g})
APDy4g(A) < ATD; @) LD, (g )

then
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and
APDjig(A) <27 [Supl”Df(l) +supATDg(A) |,
A>0 A>0
therefore
1/p
17 +8 1 Lipmll <2(IF 1 Lol + 18 1 Lipmll”)
which ends the proof. a

5.2 Convergence in Measure

Next, we discuss some convergence notions.
We now discuss some convergence issues. We will see that the convergence in
measure is a more general property than convergence in either L, or L, .), namely:

Theorem 5.5 Let 0 < p <o and f,, f bein L) ..

(a) If fu, farein L, and f,, — f in Ly, then f, — f in L} ).
(b) If f = fin Ly then f, 5 f.

Proof. (a) Fix 0 < p < eo. Theorem 5.3 gives that for all € > 0 we have:
1
B (X3 10— S| > e)) < o [ 1= s
X

e’ ({xeX : |fulx) = f(x)| > e}) < | fu=FI LI
iugl"Dfrf(M <\ fa=F L7,

and thus
1fo = F 1 Lipeo)l| S NI fu = F 1 Lpll-

This shows that convergence in L, implies convergence in weak Lebesgue
spaces. The case p = oo is tautological.
(b) Give € > 0 find an ng € N such that for n > ny, we have

1/p
1
1 = F [ L[| = (iupl”Df;—f(l)> <er'l,
>0

then taking A = €, we conclude that
e’u ({x € X 1 |fulx) — f(x)| > €}) < er™,

for n > ny, hence it ({x € X : | f,(x) — f(x)| > €}) < & forn > ny. O
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We now show a sequence which convergences in measure to the zero function,
but do not convergence in the L, .., sense.

Example 5.6. Fix 0 < p < . On [0, 1] define the functions

fk,’j:kl/PX(_;.V-) k>1, 1<j<k.

Consider the sequence {fi 1, f2,1, 2.2, /3,1, /32, /335 }-
Observe that

m({x€[0,1]: fi;(x) > 0}) = %,

thus
lll_r};m ({x€[0,1]: fi;(x) > 0}) =0,

that is fk,j -50.

Likewise, observe that

1/p
[ fii | Lipesy | = (jupol”m ({xe 01 : fi;(x) > M))

1
> | su k=1 /p—l
= kzll) X ,

which implies that f} ; does not converge to 0 in L, ..). @

From the previous result and the so-called Riesz Theorem it turns out that every
convergent sequence in L, ., has a subsequence that converges pi-a.e. to the same
limit. Due to the importance of Riesz Theorem we will prove it below.

Theorem 5.7 (Riesz). Let f,, and f be complex-valued measurable functions on a

measure space (X, | |L) and suppose f, LN f. Then some subsequence of f, con-
verges to f l-a.e.

Proof. For all k = 1,2, ... choose inductively n; such that
u({rex: | —rml>274) <2, (56)
and such that n; < n, < ... < ng < .... Define the sets
Ay = {xEX () = F(x)| > 2_"}.

Equation (5.6) implies that

u <U Ak> < duAy< yri=2 (5.7)
k=m k=m

k=m
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for all m = 1,2,3,... It follows from (5.7) that

u (UAk> <1< (5.8)

k=1

Using (5.7) and (5.8), we conclude that the sequence of the measure of the sets
{UZn Ak}, o converges as m — oo to

p (ﬁ U Ak> 0. (5.9)

m=1k=m

To finish the proof, observe that the null set in (5.9) contains the set of all x € X for
which f,, (x) does not converge to f(x). O

In many situations we are given a sequence of functions and we would like to
extract a convergent subsequence. One way to achieve this is via the next theorem
which is a useful variant of theorem 5.7, relying on the notion of Cauchy sequence
in measure.

Theorem 5.8. Let (X, .o/, L) be a measure space and let { f, }nen be a complex val-
ued sequence on X, that is Cauchy in measure. Then some subsequence of f, con-
verges [l-a.e.

Proof. The proof is very similar to that of Theorem 5.7. For all k = 1,2, ... choose
an increasing sequence ny, inductively such that

u ({x €X 1o () = fou, (¥)] > 2*"}) <27k, (5.10)

Define
te={r e X 10— o (] > 24,

As shown in the proof of Theorem 5.7, from the condition (5.10) we get

u(ﬂ UAk> =0, (5.11)

m=1k=m

forx¢ |J Ay andi> j> jo > m (and j, large enough) we have

k=m

[ (%) = S, ()| < Z on () — fons (0)] < 327 < 2177 < 21,
I=j

This implies that the sequence {f,. (x)}ien is Cauchy for every x in the set

(Uf:mAk)C and therefore converges for all such x. We define a function
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lim f, (x) whenx ¢ N U A,
oo

m=1k=m
f)= o
0 whenxe (N U Ag,
m=1k=m
which implies that f,, — f p-almost everywhere. O

The next result shows that, under some measure finiteness condition on the func-
tion f, if the function f belongs to the weak Lebesgue space L, ..) it will also belong
to the Lebesgue space L, for g < p.

Theorem 5.9 If f € L. and p ({x € X : f(x) # 0}) <o, then f € L, forall g < p.
On the other hand, if f € L(p )N L then f € L, for all g > p.

Proof. If p < oo, we write

[irtan =g [ 2 1py2)0n
X 0
1 )

=q [ A7'Df(A)dA +q [ A7 Dy(R)dA.
o/ 1/
We have that p ({x € X :[f(x)| > A}) < C, since pu ({x€X :[f(x)] >A}) <
1 ({xeX: f(x)#0}), from which we get

gCA4—P
q—p

1 oo
/|f(x)|qdu < qc/%lcm +qc/aw4dx e M
X 0 1

in other words, f € L,.

Let f € L(p,0) N Leo. Then

[1relau=gq [ 210,302
X 0
M oo

:q/aqflpf(x)dx+q/;Lq*IDf(;L)dx,

0 M

where M = esssup | f(x)|. Note that

p({xeXx:|f(x)|>A})=0 for A>M,
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since f € Ly ) N Lo, therefore

[0 £l L
q/m 'D/(A)dA =0 and Df(x)<w.

M

From the above considerations, we have

/ () du = g / 271D, (A)dA
X 0

M
<allf Lo | [ 2000
0

_4llf | Liper)|[" M7
q-p ’
which is finite, therefore f € L,. O

5.3 Interpolation

It is a useful fact that if a function is in L,(X,u)NLy(X,u), then it also lies in
L,(X,u) for all p < r < gq. We now show that a similar result holds for the case of
weak Lebesgue spaces, namely:

Theorem 5.10 Let f € Ly, ) NL(p, o) With po < p < py. Then f € L.
Proof. Let us write

S=xun<n gm0 = hH+ f

Observe that f| < f and f, < f. In particular fi € L, ) and f> € L,
write that f; is bounded and

p{xeX:fx)#0}) =pu({reX:[f(x)]>1}) <C<es.

Therefore by Theorem 5.9, we have f; € L, and f, € L,. Since L), is a linear
vector space, we conclude that f € L,. a

1) Also,

The previous result can be improved in the sense that we can explicitly obtain a
bound for the L, norm of a function using the weak Lebesgue norms.

Theorem 5.11 Ler 0 < p < g <eoand let f in L, )N Lge). Then f is in L, for all
p<r<gqand

1

~—

r r l/r g
| 1L]] < - 11 Lipe)|| 779 [ £ | Ligom

p
-

~hsi—
|

|

(5.12)

with the suitable interpolation when g = oo.
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Proof. Let us take first g < co. We know that

p q
Df(l)Smin{Hfu)fi’m)H ,Hf'i(j”)H } (5.13)
and set 1
q q-p
£ 1 Lip|
By (5.13), (5.14), we have
71l =r [ Da)0n
0
= p q
. /,,lmm<|\f|i<§,w>|| 71 )dl
0

B oo
= [ Lol dh e r [ A0 L0 519
0 B

r .
= r_pr|L<p.w>HpB "t
r—p

= (525 ) (1120l (151 240 7)

Observe that the integrals converge, since r —p > 0 and r —g < 0.
The case g = oo is easier. Since D¢(A) =0 for A > || f||... we need to use only the
inequality

r

If 1 2q)|[*B"

p
)

Di(A) < A7||f | Lipes)|

for L < ||f||.. in estimating the first integral in (5.15). We obtain

r

Irizr <
P

1 T2 P12,

Which is nothing other than (5.12) when g = . This completes the proof. O

Note that (5.12) holds with constant 1 if L, .., and L(4 .. are replaced by L, and
L, respectively. It is often convenient to work with functions that are only locally
in some L, space. This leads to the following definition.

Definition 5.12. For 0 < p < oo, the space L (R",.#,m) or simply L’ (R") is the

loc loc
set of all Lebesgue-measurable functions f on R” that satisfy

/ |f(x)[Pdx < oo, (5.16)
K
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for any compact subset K of R". Functions that satisfy (5.16) with p = 1 are called
locally integrable functions on R”. %)

The union of all L, (IR") spaces for 1 < p < o is contained in L}, _(R").

loc
More generally, for 0 < p < g < o= we have the following:

L,(R") CL! (R") CLI (R").

loc loc

Functions in L,(R") for 0 < p < 1 may not be locally integrable. For example,
take f(x) = |x[~* 7" ¥{xx<1y Whichis in L,(R") when p < n/(n+ ), and observe
that f is not integrable over any open set in R” containing the origin.

In what follows we will need the following useful result.

Theorem 5.13 Let {a;} jcn be a sequence of positives reals.

0
(a) Zaj §Za?f0rany0§9§l.[f2a?<oo.
j=1 =1 j=1
0
(b) Za?ﬁ Zaj forany1§9<°o.IfZaj<oo.
j=1 j=1 j=1

N N
(c) Zaj SNO’IZa? when 1 < 0 < oo,
j=1 j=1
0
N N

(d) ZQQ <N'"® ZQj when 0 <6 < 1.
j=1 j=1

Proof. (a) We proceed by induction. Note that if 0 < 8 < 1, then 6 — 1 < 0, also
ay+a, > ay and a; +a, > a, from this we have (a; +a,)%' < a?" and (a; +
a1 < ag_l therefore

al(al—i—ag)e*lga? and ag(a1—|—a2)971§a§.

Hence
ay(ay +a2)9_1 +az(a +a)? < a? —l—ag,
next, pulling out the common factor on the left-hand side of the above inequal-
ity, we have
(a1+a) a1 +a) <af +al,

(a1 +ay)? <a? +4l.
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Now, suppose that

holds. Since

n
zdj +ant1 2 ant,
j=1

and
n n
zaj+an+l > Zﬂlj,
=1 =
we have
6-1
< 0
Satanm|  <a
Jj=1
and
6-1
n n
2 aj+ < X
j=1 j=1
Hence
0-1
n n
6
Y aj+an Y aj+an | <aj,
Jj=1 Jj=1
)
c 0
z aj+apy | <a,,
Jj=1
)
< Ay
Since ¥ a? < oo, we have
)
6
aj; < z a;.
Jj=1 Jj=1

5 Weak Lebesgue Spaces

0—-1
6
n
1t Zaj
J=1
6
n
1+ 2“1
J=1
n n+1
[°] [°]

J

1+Za

j=1

e

=2.a
=

(b) Since 2‘;’: 1a;j <o, then lim a; = 0, which implies that there exists ng € N such
J=ree

that
1

0<a;<1 if j>ny, since

we obtain
0 .
a; <aj forall j > ny,

<6 <o,
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and from this we have

i a? < oo,
=1

1
Consider the sequence {a? } jen, since 1 < 6, then 0 < 0 < 1 and by item (a)

and thus

then

1-6 0 0

This ends the proof. a

We now obtain some bound for the norm of the sum of functions in weak
Lebesgue spaces.

Theorem 5.14 Let fy, ..., fy belong to L, ). Then

N N
(@ || 2 fi | Lipeo)|| SN 2N fi [ Lipeoll for 1< p<ee,
j=1 j=1
N 5 N
) |2 fi | Lpe)|| SN? DN fi | Lipy | Sfor 0<p<1.
j=1 j=

J=1
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Proof. First of all, note that for ¢ > 0and N > 1

Al +o I = A+ A+t ] >a>

zl8

Thus
{xeX:|f1+fz+...+fN|>oc}
c{xeX:|f1|>]av}u{xeX:|f2|>g}u...u{xeX:fN|>Z}.

Then

N
pxex:|fitptotfl>al)<Su <{x€X3fj| >;‘,}>v
=

o (3)

N P
| %81 L | = suporDs (@)
j=1

a>0

Al a
< » supa’Dy, ()
; o>0 /i N

N
= 2 sup o’ Dy, ()

j=1 a>0

N
DIN | LipeolI”
j=1

that is

™=

D);f/.(OC) <

2[R

J

Hence

N
NP Fi | Lipes 17,
=

thus

1
P

N N
| X8 12| <N | 1551 e 17
j=1 j=1

By Theorem 5.13 (a) since 0 < % < 1 we have

N N
H 26l L(peo)H SN 25 [ Lol
j=1 =1
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(b) As in item (a) we have

N » N )
Hzgfj |L(p,°°>H <NP Zlej | Lipes |
= =

Since 0 < p < 1, then 1 < % next by Theorem 5.13 (c) we have

1
P

N N
H Zlff |L<p.w>H <N leff | Lipey||”
i= i=

NV S (1512

= N7 ZIHfj | Lipes |
p=

which ends the proof. a

Theorem 5.15 Given a measurable function f on (X,[) and A > 0, define f) :=
T2y and 2= f— fr = fxqp<ay-
(a) Then

~ ) Dy(ct) when oo > A,
Dy, (@) = {Df(k) when ot < A.

and
Dy(0) = 0 when o0 > A,
P Dp(o) = Dy(A) when o0 < A.

(b) If f € Ly(X, 1), then

£ 1L, 1" :p/aHDf(a)daMPDf(x),

Hf/l |LPHF =P

[ irau=p

A<|fl<8

o’ 'Ds(a)do—APDs(A),

OCpilDf(OC)dOC — 5pr(O() +)~pr(/'1,)

B, Ot— . ¥

(c) If f is in L) then fYisin L(X, 1) for any ¢ > p and f is in L,(X, 1) for
any q < p. Thus L, ..y € Ly, +Ly, when 0 < pp < p < p; <o
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Proof. (a) Note

Dy, (0) = (b L@l () > o) =g (b 1] > e} 0 b |1 > 2))
ifor> A, then {x:|f(x)| > o} C{x:|f| > A}, thus

Dy (o) =p ({x:|f(x)| > a} 0 {x: |f] > A})
= ({x:[f(x)| > a})
=Dy(a).

If a <A, then {x:|f(x)| >A} C{x:]|f] > o}, thus
Dy, (o) =p ({x: [f()] > e} nfx: [f] > A}) =p ({x: |f(x)| > 1}) =Dy(2),

which entails

Dy(or) when o > A,
Dy, (@) = {Df(A) when a < A. G-17

Next, consider
D) = ({x: 1@y () > @}
= ({x: £ > @} n{x: IF1 < 23).

if o > A then {x:[f| >oa}N{x:|f(x)| <A}=0,thus Dp(a) =0.
If ¢« < A, then

Dfl

w(fx: 1f @) > adnfx: ] < 1Y)
w(fxs 1@l > a0 | £) > 3°)
w (o [F @) > e\ [£(0)] > 23)
u(
=D

x: ()] >a}) —p ({x: |f(x)]>2})
(@) =Ds(4),

and hence
0, when o > A,

Dyi(a) = {Df(a)—pf(m, when a < A. -18)

(b) If f € L,(X, 1), then

oo

£ Ll = p [ oD (o)

oo

0

A
:p/ocp’lDfl(a)doc—kp/oc”*lDfl(a)doc,

0 A
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By (5.17) we have

=3

A
I 1L,]1” = p / " 1Dy(A)dot+ p / 1D, (0t) dor
0 A

=A"Ds(R) —i—p/a”‘lDf(oc)doc.
by

We also have

oo

1A | L))" :p/aﬂ—luﬂ<a>da

oo

0
A
:p/(x”"Dﬂ(a)da—i—p/a”‘lsz((x)doc,
0 A

by (5.18) we obtain

I/ 1Lyl =p | @ (Dy(@) = Ds(R)) dex

=p [ o’ 'Dy(a)da—AD(A).

St~ T

Next,

JRE"

A<|fI<é

= [ irau= [ israu
[f1>A [£]>6

:/|f|"%{|f\>x}du—/|f|"X{\f|>5}d#
X X

= [l au= [ 15slran
X X

=p/oc”*IDf(a)dochl”Df(/'L)—p/oc”*IDf(a)da—&’Df(S)
2 5
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p(/ap 'Dy(0)dor — /ap 'Dp()da | +APDy(A) — 87D y(8)
A 8

4]
p/OCp 1Df *SPDf(OZ)+lpr(A).
A
(c) We know that
£ 1 Lipen||”
Dy(a) < B —

thenif g > p

I/ 1 Lg||"=q | o 'Ds(cx)dor— 29Dy (1)

- o\»

< q/aqlMda—MDf(?L)

oP
0
177L -
=q||f | Lpe || —ADs(2)
7L _
<qllf 1 Lo |"~—
q—pr

which is finite, therefore f* € L, if ¢ > p.

Now, if ¢ < p, then

I 1,14 = q/afHDf(a)dajLMDf(x)
A

oo

<alf 1 Lo l” [ ot dare 2002
A
—qL|’f|L [P +ADs(R)
P—q (Pee S

which is finite, thus f} € L, if g < p.
Finally, since f € L, . and
f=r+1

where f* € L, if p < py and f) € L, if po < p. Then L, ) C L,, +L,, when
0<po<p<p Leo. O
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Theorem 5.16 Let (X, ) be a measure space and let E be a subset of X with
U(E) < oo. Then

(a) for 0 < g < pwe have

14
E/ Flrdn < L w @) 1L for S Lo

(b) if W(X) <eoand 0 < g < p, we have
LP(le'L) - L(p.w)<X’”) - Lq(leJ)'
Proof. Let f € L, .., then

/\fl‘fdu

E

oo

_q/mflﬂ({er )] > A})dA

0

'c\—

11 -
<q / AT U(E)dA +q / A97'Dy(2)dA
0 H(E) P [ 1L
H(E) P [fILpeo | -
<4 / AT W(E)dA + / a1 I 1L M o1
0 HE) P £ |

= (B 1 Lpoll) 0 E) Lo (E IS 1 L)1 Lo

o) ||

= W(E)" | f | Lipo I + —L—pu(E)' 5
HE) 7 If | Lipeo p_qﬂ()

p 1-4
=—uE) r[If | Lp=ll?
P (E) "7 If [ Lipeo

i.e.

/\flqdu <P uE) I L
E
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(b) If [1(X) < oo, then
/UVduﬁpp O F | L |
X

Hence L, C L(p,w) CL,. O

Corollary 5.17 Ler (X, 1) be a measurable space and let E be a subset of X with
W(E) < oo. Then

< @r(ED'|f 1Ll

Jries
and thus L(, <y € L, .

Proof. Since 0 < £ < p we can apply Theorem 5.16 to obtain

p b2 /2
[israu <L) vl
P—3
E
=2u(E 1/2Hf|L Hp/2
from which we get
118 | < @) 7 |1f 1 Lo [

which entails that L(p‘,m) cL, /2- O

5.4 Normability

Let (X,./, 1) be a measure space and let 0 < p < 0. Pick 0 < r < p and define

n

1 Lol = sup u(E ﬂﬂw ,

0<p(E)<eo

where the supremum is taken over all measurable subsets E of X of finite measure.

Theorem 5.18 Let f be in L, o). Then

1

p r
1 12| < ST Lpm I < (1”) 1 12|
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Proof. By Theorem 5.16 with g = r we have

el = ’
LA T Lip,eoy Il sup  p(E)" |f| du
0<p(E)<eo
< sup u(E)” H"1’< P U(E) l_; H)
0<pi(E)<eo p—r
1
_l41 p " 1_1
= sup Uu(E) f+”< ) W(E)" ”||f|L(p7°°)||
0<pi(E)<eo p—r

1
b\
=== IFILepa ]l
p r

On the other hand, by definition

1

r

W(E) /|f| ap | <11 Ll

for all E € o7 such that u(E) < e. Now, let us consider A = {x : |f(x)| > a} for
f € L. Observe that t1(A) < co. Then

P

~ =

11 L ll” = [ w2y #5 | [ 1o
A

A

=Dy(a) "o -Dy()”

=o’Dy(a).
That is

o’ Dy(0t) < ||If | Lipesy I,
and thus
sup o’ Dy(er) < [If | Lyl

This ends the proof. a

The next result is a Fatou type lemma adapted to the framework of weak
Lebesgue spaces.
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Lemma 5.19 (Fatou’s type lemma). For all measurable function g, on X we have

)

< C,liminf
P n—yoo

liminf g, | L) 8n | Lpes)

for some constant C,, that depends only on p € (0,e0).

Proof. By Fatou’s lemma, we have

liminf g, || (..

< [timinf|g,| | Ll

<liminf g,,> du
n—soo

1
p

I
(=]
N
}\ %]
=5
AN
8
=
Iy
N~—
|
¥
m—

< sup ,u(E)_H% /liminf|gn|’du
0<p(E)<e 4 nree

< sup (®) | timint [ g, d
E

<liminf sup ,u(E)f%Jr% /|gn|’du
E

N7 O<p(E) <eo

< liminf(pp) llgn | Lipes)|

n—seo —-r
1
p L.
= (5% tmintlen | 20
This ends the proof. O

The following result is an improvement of Lemma 5.19.

Lemma 5.20. For all measurable functions g, on X we have
[[timinf|g,| | Ly || < Timinf{[g | Lipe) |-

Proof. Since
Diimintlg,|(A) < liminfDy, (2),
then

.. (0 CP
{C >0: h,I,Il)lol}ng" (}L) < M} - {C >0: Dligglf\gn\(z’) < M} .
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From the above considerations, we have

. . cr
H h}g{}}ﬂg”l | L([,w)H = mf{C >0: Dliﬂnligf\g”\(a‘) < )J’}
. . cr
< 1nf{C >0: hgglonggn(k) < M’}

. , cr
= liminf <1nf{C >0:D,,(A) < M})
= [l

which finishes the proof. O

= liminf||g, | Ly,

Theorem 5.21 Ler0 < p < 1,0 < s < oo, and (X, <7, L) be a measurable space

(a) Let f be a measurable function on X. Then

f
{If1<s}

rell”

(b) Let f;, 1 < j < m, be measurable functions on X. Then

m
|| max |f;] | Ly Hp < 21 1 |L(p~,°°)Hp'
=

1<j<m

(c)
A+t fon | Ly || < mi Z 157 | Lipen I

The latter estimate is refereed to as the p—normability of L ..y for p < 1.

Proof. By Theorem 5.15 (b) with p = 1, we have

fldu = / 10712 du
X

~ 11

X
s

= /Df(O!) do —SDf(S)

{If1<s}
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s

do
<If1teall” [ 55

0

I

(b) Let max | fi(x)] = fi(x) for some 1 < k < m. Then
<Jj<

Doy (@) =t (s |10 > )
=u({x: fi(x) >A}) =Dg(ax) forsome 1<k<m

< inJ(O‘)

We now obtain .
Oc"’DmaX‘ 7l Z sup oc”Df

and thus

1<j<m

I 1 < 315

(c) Observe that
max |fil < Al +1f2l + o+ Ul

from which

1<;<

{x max |fj( )>a}c{x:|f1|+...+fm|>a},

and then

{x: Vil Horct  fon] >a}

= ({x: [fil+ | fn] > a}ﬂ{x: ]gljzgnvj(x)ga}) U{x [max. | fi(x)] >oc}.

‘We now have
Dyivigale) = ({e: Ui 4o ful > 0}
_,u({x: LA+ | fonl >a})

<u <{x1 il et il > 0k 0 max [£5(2)] < a}>
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fr: max |fx >|>a})

1<j<m

N

x€ frs max |f(0)] < 0} il ot Uful > @ })

1<j<m

—

(|fl |+...+ |me d,quDmaxw(OC)

QRI~

|
=¥~ [ 1Al Do)

{rmax |fj| <o}

noq
< 2 a / l?%xmvj\ d[J +Dmax|f,-\<a)‘

{rmax|fj|<e}

By item (a) we have

m

1
5o [ mmlniu b

et
I {vmax |f;|<a}

P
m 1« p ||1<< |fJ|| ||
Dt e I (R
p
mo o=p p m Hl<< |f]‘|L H
<]._211_p\ s L o[+ 3 ===

Finally by item (b) we obtain
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2 m m
<223 S L

P i1 i=
=2 LSy L
l—pj:1 ’ ’

This ends the proof.

O

We now show a log-convex type inequality for the weak Lebesgue spaces, the

so-called Lyapunov’s inequality.

Theorem 5.22 (Lyapunov’s inequality) Let (X, 1) be a measurable space. Sup-
pose that 0 < py < p < p; < o and % = 1=¢ +%f0r some 0 € [0,1]. If f €

po

Lipo,) NV Lipy =) then f € Ly, and

0 I’

Hf|L<p7w>H < 1 Lo |1 Epy

Proof. Observe that

a’Dy(a) = oP1-0+0) [Df(a)r<ll’>
-arova oo (7 F)
— P19 [Df(a)} p( o )ape {Df(a)} pl

e o

Thus

o Dy(a) < {||f|L<po,w>||p°r(1p°e) [|f|L<p1.w>||m}i’ev

from which

1-6

sup Dy (@) < {||f|L<poﬁw>||p°r(p°) 1712 lI”]

and this entails

£V L[| < 1 1 L[| 21 1 Lo ||

which ends the proof.

3
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We now arrive at the Holder inequality in weak Lebesgue spaces.

Theorem 5.23 (Holder’s inequality). Let f; be in L, ) where 0 < p; < o and
1<j<k Let

1 1 1

—=—4 ...+ —.

P D1 Pk

Then

k
155 | Ligy I
J=1

ko1
i el Lol < 277 TT )
j=1

Proof. Let us consider Hfj | L(p/._ym) H =1,1<j<k,andlet xq,...,x, be a positive
real numbers such that

1 1
—.—=a,
X1 Xk
then
1 1
Drpl@)=Dp sl i
<D ! +D ! +...+4D ! (5.19)
= X 12 X Ji ) :
Since »,
U= 11 o =50 (1) (L)
T i \% T\
then ”,
1 ‘/D ! <1
x ) T\x ) T
thus

1 .
Dy, () < for 1<j<k.

Xj
Hence, we can write (5.19) as follows
1 1 P1 P2 Pk
Dp p |l —i— ) <X +x° 4. +xt
X1 Xk

Next, let us define
Fxp,...,x) =x" +x5 + . 4x0-

In what follows, we will use the Lagrange multipliers in order to obtain the min-
imum value of F subject to the constrain
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That is
Flen,xa, . x) = x4+ x82 4+ 4 a
1
g(x1,x0,. .. X)) = X1 X0 .. X — P
Then, next
VF = AVg.
And thus
plxp‘ ()Qx; .. .xk)
pzxgrl =A(x1x3... %)
i—1
pjxf" :l(xl)@...xk),
thus
pixlt = A(x1xn .. x)
pzxgz = l(xlxz .. .xk)
pjx?’ =A(xp. .. xp).
Observe that |
X1 X2 ... X = a (520)
On the other hand, note that
pixt :p]x for 2<j<k. (5.21)

Now replacing (5.21) into (5.20) we have

1 1 1
P 73 F|
() (5 (5)
P2 P3 Dk
1 1 1
n b3 LR e e R |
X <pl> 2 (pl) 3 (pl) kxf P3 Pk =, (522)
P2 pP3 Pk o

(5)" -
P1

then we can write (5.22) as follows
i P P P
(Pl) P x;—}+’p—;+’p—;+...+% _1
.. H =—.
Pk o

(2)" ()" (2)

but
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And, thus
gt
pim T () 1
kL X1 - a
I’/
I1 p;
j=1
Then
k 1
Pj
] I1p;
Lop =1
» o
pixr = o
hence
1 k € p
P1 Pj
X = p
1 plap 11:[1 J
Therefore the x; ...x; such that
P
X' = M p;
pro? | =1’
(5.23)
p P _p
x]] — 7xll
Dj

are the unique critical real point.

For this critical real point, using (5.23) we have

xf'+x22+...+x£k:x’l"—&—&x’l"—&—...—i—ﬂx’l"
P2 Pk

e 11”

. Hp';’ L
ar 7|

On the other hand, observe that one can make the function

I Pk
Fxp,..oox0) =x{" + ... 4+x%,

subject to the constrain

X1X2 .. . X = —,

R
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as big as one wish. Indeed if x; = % Xy = % and x; = 1 for 3 < j <k. Then

Fxp,...,x) =x +x57 . 4

M P1 1 P1
=|— — 1+...+1
(%) +(5) 1+
M P1 1 P1
(@) () w2mm

as M — oo, therefore the critical part (5.23) is a minimum. Then

thus, we have

, (5.24)

1
1\ 7 k JL k
il 2ol < (3) (Hp}’) TT05 1 2,
j=1 j=1

since 1Ly | = 1.

/i

In general, if ||fj | L(P/,w)H #1,1< j<kchoose g; = W
TIL(p ;=)

and use (5.24).
O

We now show that the weak Lebesgue space is complete using the quasi-norm.

Theorem 5.24. The weak Lebesgue space with the quasi-norm ||- | L(, .|| is com-
plete for all 0 < p < oo.

Proof. Let {f,}nen be a Cauchy sequence in (L(p.), || | L(p)||). Then for every
€ > 0 there exists an ny € N such that

1
|fo = S ‘L(pﬁx’)” <ert!
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if m,n > ny, that is,

1/p
1
(Suplprufm()L)> = ”fn — fn | L(p.,oo)” <erth,

A>0

Taking A = € we have

e’ ({xreX | fu(x) — fulx)| > €}) <&,

for m,n > ny. Hence

u({xeX:[fulx)— fulx)| > €}) <e,

for m,n > ng. This means that {f, },cn is a Cauchy sequence in the measure y. We
therefore apply Theorem 5.8 and conclude that there exists an ./ -measurable func-
tion f such that some subsequence of { f;, } ey converges to f p-a.e. Let { fy, tren be
such subsequence of { f,, }nen Of {f, }nen then f,, — f p-a.e. as k — oo. If we apply
twice the Lemma 5.20 we obtain

[ 1 Loy || = [ Yiminf | £ | | Lipor) |
< limianfnk |L(p7°°)||’

which is finite, thus f € L, ...
We also have

1f = fo | Lpeoy | = [[Timinf | £ = ful | L |
<timinf|[f, = fu | L)
< 8%+17
if ng,n > ny, which proves that L, .., is complete for 0 < p < oo. 5

5.5 Problems

5.25. Let (R,.Z,m) be the Lebesgue measure space. If A € . with m(A) < e and
f = xa, show that

7115

T

5.26. Let ([0,a],.%,m) be the Lebesgue measure space. Define g(x) = x and show
that

n
Lo lell

n
n2|8][y.c0)
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5.27. Let ([0,a],.Z,m) be the Lebesgue measure space. Define g(x) = x" and show
that

gl
lim gnz”z
" |81l 2 o)

5.28. Let ([0,1],.Z,m) be the Lebesgue measure space. Define g(x) = e* and show

that »
Il

llgl

5.29. Let ([1,e0],.#,m) be the Lebesgue measure space. Define g(x) = % and show

that

p
lim ||ngp =e.
"H""Hg”(p,m)

5.30. Let ([—a,a],-Z,m) be the Lebesgue measure space. Define g(x) = a*> — x* and
show that

P

T

lim El2_ _ [7E
M TV 2

5.6 Notes and Bibliographic References

This chapter is based upon Castillo, Vallejo Narvaez, and Ramos Fernandez [5].



Chapter 6
Lorentz Spaces

Abstract The spaces considered in the previous chapters are one-parameter depen-
dent. We now study the so-called Lorentz spaces which are a scale of function spaces
which depend now on two parameters. Our first task therefore will be to define the
Lorentz spaces and derive some of their properties, like completeness, separability,
normability, duality among other topics, e.g., Holder’s type inequality, Lorentz se-
quence spaces, and the spaces Lexp and Llog L, which were introduced by Zygmund
and Titchmarsh.

6.1 Lorentz Spaces

We start to recall that, by Remark 4.14, we can calculate the Lebesgue norm of a
function using the notion of nonincreasing rearrangement in the following way

r . r 1, pdr
Jirwraw = [ rera= [ (tro)' S
Rr 0 0
Using the right-hand side representation we can try to replace the power p by g to

obtain some kind of generalization. It turns out that this indeed will produce a new
scale of function spaces which have the Lebesgue spaces as a special case.

Definition 6.1. Let (X, <7, 1) be a measure space. For any f € §(X, <) and any
two extended real numbers p and g in the set [1,eo] put

© Springer International Publishing Switzerland 2016 215
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- 1/q
Lo\t

[(rrrw)E] a<e
Hf | L(p,q)H = Hf”(p,,,) = 0 (6.1)

supt!/P f¥(t), q = co.

t>0

The functionals || - [|(,,) are thus extended nonnegative valued functions on
F(X,47) and the Lorentz space will be defined in terms of these functions just as
the Lebesgue spaces were defined in terms of the functional || - || .. @

In view of Remark 4.14 (ii), it is obvious that

Ao = 1oy (6.2)

for any function f € F(X, o) and any p € [1,0) and this equality also holds for
p = co. An easy calculation, using the fact that

2a(t) = Xpouay (@),

will show that

p 1/q 1/p
() (u(A)) 1< pg<e
q
oo, p:oc,q<oo
24l ) = U
<H(A)) ; 1<p<oo,g=oo
1, pP=q=rc°,

for any set A € 7 for which 0 < f(A) < eo.

‘We are now in conditions to introduce the Lorentz spaces

Definition 6.2. For any measure space (X, </, 1) and any two extended real num-
bers p and ¢ in the interval [0, ] the set

Lo (X, o, pt) = {f eFX, ) : | fllpg < w},

is called the pre-Lorentz spaces associated with (X, o7, 1L). @

The space L, ;) (X, %7, u) with 1 < g < e and p = o will not be of any interest.
In fact, if f is a function in F(X, <) with the property that || f||(.4) < oo for some
g € [1,0), then

Jrors = [irorg=ror [ §
0

0 0
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since f*(t) > f*(s) whenever 0 <t < s and therefore f*(s) = 0 for all s > 0. Thus
f =0 p-ae. by (6.2). For this reason we have L, (X,/,u) = {0} for every
0<g<eoo.

Theorem 6.3 Ler (X,.o/, 1) be a measure space and let p, q and r be three extended
real numbers satisfying 0 < p <ooand 0 < q <r < oo. Then

1 1

(@ |l < (Z) Nl for any £ € F(X, 7).
(b) L([,m (X, o ,u) C L(PJ‘) (X, o, 10).

Proof. 1t is clearly sufficient to prove (i). Indeed for r = oo, we have

oo

1= [ (27 0)' S

for any s > 0 thus

1

1l = supt2 £(1) < (‘1) 1l 63)
>0 p

On the other hand, if 1 < g < r < oo, then

=)

||f||€p,r) _ / (t1/pf*([)>r—q (tl/pf*(t))q$

0

=)

- )
<Ils [ (rrw)' S

0

r

r-q
a\ e
<(2) " ur et

r—q

a\ "
=\ f )
(£) 7 191

by definition of || - ||, ) and (6.3), and this completes the proof of Theorem 6.3. O

A natural interrogation is to ask if the functional || - ||, 4 defined in (6.1) is a
norm on L, ;) (X,27, ). The following result gives us some light on this regard.

Theorem 6.4. If (X, 1) is a measure space and if p € [1,00]. Then

(@) f + 8l <27 (||f||<p,q> T ||g||<,,,q>) for any two functions f, g € F(X, /).
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(b) Ly (X, 97, 1) is a vector space.

(c) If f is a function in F(X, <), then ||| (4 = 0 if and only if f =0 p-a.e.

Proof. (a) Assume that f and g are two functions in §(X, /). The particular case
of theorem1.2.3 implies that

1+ 8l (pe) = Sugtl/p(erg)*(t)
1>

< suptl/p {f*(t/Z) +g*(l/2)}

t>0
< 21/"(||f||<p,m> n |g||<p.,m>)

and, if g < oo, that

1/q

("rrrer@)' S

||f+g||(p,q) = P

St~

1/q
dr

e(ramreum)] g

IN
O\g

By Minkowski’s inequality we have

1/q

[ ‘ldt r v qdr
1f+8llpg) / 1/pf t/2 — + / 1/P t/2 =
0 0

1/q

oo

r q dr ¢ dr
:21/[7 / I/Pf t + / (tl/l’g*(t)> 7
0

0

:21/"<|f||<p,q>+ g||<p,q>).

(b) Item (a) implies that if f and g belong to L, ;) (X, <7, 1), then so does f +g.
Since it is easy to see that ||cf]|(,q = ||| fl(pq for any ¢ € R and any
f €38(X, ) this shows that L, ;) (X, <7, 1) is a vector space.

(c) Suppose that || f||(,4) = O, then
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JHECOR

hence f*(s) = 0 for all s > 0, from this and Remark 4.14 (ii) we have [ |f|du =
b'e

J f*(s)ds = 0 which implies f =0 u-a.e.
0
O

Part (a) of this theorem leaves unanswered the question of whether || - ||, is a
norm on Ly, ,(X,.o7, u). It turns out that || - |[(, 4 is a norm on Ly, ;) (X,.o7, ) if
1 < g < p < oo (see corollary 6.8). Next we will see that, in general || - [|,,4) is not a
norm but equivalent to one if 1 < p < g < oo,

Theorem 6.5. Let (X, .o/ , 1) be a nonatomic measure space. Then
I lpg * Lipg) (X, o 1) = RT

is not a norm for:

(@) 1< p<g<eoe

(b)0<p<1,0< g<on,

(c)0<p<1<g<oo,

Proof. (a) We start with the case when 1 < p < g < oo. Take
f(x) = (1+€) x0.a+m (*) + Xlathat2n (%),

and
g(x) = X0, (x) + (14 &) Xfatha+2n (%),
where a, h, € > 0. It is easy to see that f*(f) = g*(t) = f(x) and since

(f+8)(t) = (242€) x0a (1) + (24 &) Xfa,ar2m (1),

it follows that we can evaluate the norm of f, g and f + g by

p
11y = Nl =2 |1+ €091 + 2R (a1
and
I+l = 2| @420+ -4 (a4 20— a7} |

respectively. Now, let us assume that the triangle inequality holds, that is
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If+ellpg < NNl pg) + N8l (p.g)-

Then the inequality
(2+2€)%a?P 4 (24€)? ((a +2h)4/P — aq/p)
<2 ((1 +&)!(a+h)"? + (a+2h)4P — (a+h)q/1’),

holds and it can be written as

(a+ 207 — (- nyr < U o . ;/él)f 2 (<a -yl —aq/”> .

Taking € — 0, we obtain that
(a+2h)"P +a?? <2(a+h)VP. (6.4)

If we define a function f as

X

f(x):/t%“dt,

0

then we can rewrite inequality (6.4) as
fla+2h)+ f(a) <2f(a+h),

which implies, together with the fact that f is continuous, that it is a concave
function. By the concavity of f the derivative f'(x) = x7 'must be a decreasing
function, that is, it must be that ¢ < p. This contradicts ¢ > p, and we concluded
that the triangle inequality does not hold. For g = oo, take measurable sets A C

B C X such that y
p
a= —‘U(B) > 1,
K(A)
and p(B\A) < u(A). If we let

f6) = aga(x) + xpax),

and
g(x) = xa(x) +axma(x),
then
() = axgo ey (t) + Xua) ue) ()
and

8" (1) = ayjoum\a) () + Xum\a)um) (1)
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(b)

©

Thus

11y = (a(0)) " (0i8)) ") = ()"
el =max (o) () ") = (i) "

and since f(x) +g(x) = (a+ 1)z, we have || f +g||(p.«) = (a+1)x5.
Then

1/p
1+ gl = @+ 1) (u(B))

> 2<,u(B)) "

= [[fll(p) + 1l (poe) s

which shows that the triangle inequality does not hold. Hence the proof of the
first case is complete.
Let 0 < p,g < o and A, B be two measurable sets such that ANB # 0.

Then
p 1/q 1/p
124+ x8ll(p.q) = (q) (u(A)+u(B)> 7

i+l = () (o] + fues]”)

The triangle inequality gives

(u(A)m(B))l/p < @]+ [um) ",

and it fails forany 0 < g < = if 0 < p < 1.
If g = o, we get the same norms.
Let 0 < p <eoand 0 < g < 1. Define

and

2if0<x<27?

fx) =

0 otherwise,

and
4if0<x <272
g(x) =
0 otherwise.

Then
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1/q
p
1l = gl e = (q) ,

6if0<x< 272

and since

f(x)+g(x) =
2if272P < x < 2P,

the decreasing rearrangement of f+ g is equal to f + g, i.e., (f+g) = f+g.

Thus
p 1/q sy | 1/q
|‘f+gH(p,q) = <q> (2 42 q) .

Assume that the triangle inequality holds. Then
2272 4 1m0 < 04,
which can be written as
4<21(2% -2) < 2(2* -2) = 4.

Hence, we have a contradiction and the assumption that the triangle inequality
holds is wrong. This proves the third case. a

The following result gives us a characterization of L, ;) (X, .27, i) in terms of the
distribution function.

Theorem 6.6. Let (X,7, 1) be a O-finite measure space. For 0 < p < oo and 0 <
q < oo we have the identity

- 1/rragn
£l = | [ 2 (2s00) |G
0

Proof. Case g = . For this case let us define

1/q

1/p
C= sup{),pr(k)} ,

A>0
then
ol

Dy(A) < W

Choosing # = ; we have A = AI—C/F, and thus it is clear that

@) :inf{l >0:Df(A) < t} < ;1%'

Hence t'/7 f*(t) < C, for all t > 0, then
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supt'/?f* (1) < C. (6.5)

t>0
On the other hand, given A > 0 choose & satisfying 0 < € < A, Theorem 4.5(b)
yields f*(Ds(A) —€) > A which implies that

ggﬁfWOZ(Dﬂl)f@%f%Dﬂl)*@

> (Dy(A) )7 A

We first let € — 0 and take the supremum over all A > 0 to obtain

==

supt” f*(1) > supA (Ds(1))
>0 A>0

—sup {A"D;(A)}7 .
A>0

(6.6)

Combining (6.5) and (6.6) we obtain
| 1/p
1l =sup ) =sup { 27D, }
t>0 A>0

Case 0 < g < oo. In this case we use Theorem 4.5(b) and the Fubini theorem,
indeed

oo

I = [ (#rr0)'

0

0/ (f*(t)) tr Ve

()
/ql‘rldl tr ' dt
0

Il
St~

/qlqilx{/l>0:f*(r)>l}(A)dl tr " dt

0

I
St~

=)

:/ /qlqilt%ilxhzo;l)f(l)w}(l)dl dA
0

:/q,lq*1 /t%*lx (t)dr | dA
0 o)
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Finally

17 =" | |
0

The following result together with Theorem 6.12 (Hardy) will help us to prove
the triangle inequality for || - ||, ¢)-

a

Theorem 6.7. Suppose that (X, o/, 1) is a nonatomic 6—finite measure space, that
p and q are two numbers satisfying 1 < g < p < co. In addition, let q' be the conju-
gate exponent to q and let T be the set of nonnegative-value nonincreasing function
on [0,00). If h is any function in L, 4 (X, </, It), then

oo

11
I2ll(p.q) = sup /h*(t)tﬁ tk(t)dt :k€Fo and k|, =1
0

Proof. By Holder inequality we have

1/q

oo - /a
/h* dr < / l/ph* ))qit | /(k(t))q/dt ,
0 0

0

then

sup /h )k ke and K, =1 < [hlpg.  67)
0
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q—1
Now, letk(t) =c¢ {t SR (t)} , clearly k is a nonnegative valued non-decreasing
function on [0, ) and

~ /¢
l//
J (ko) o | =l
0
aking ¢ = 5, we obtain K], =1

—1

On the other hand, since k(1) = ¢ {t%ﬁh* (t)} " we have

~1
t%‘%h*(t)k(z):c[tﬁ‘lh*(t)}q ,
then m
e N L1
[ @Sk = bl ),
0
therefore
Il / Gk ke and K], =1 6.8)
0
Finally by (6.6) and (6.7) the result follows. ad

Corollary 6.8 Let (X, .o/, 1) be a 6 —finite measure space. Suppose 1 < g < p < oo
with ¢’ = ~15 and that f and g are two functions in Ly, 4 (X 2/, ). Then
q :

1+l < 1l ip.g) + gl (pap- (6.9)

Proof. The hypothesis ¢ < p implies that T decreasing, hence t%ﬁk(t) is
decreasing. We may apply Theorem 4.19 and Holder’s inequality to obtain

Jal
0

tr 0 (g) (1)k(r) dr

v\'—
u\—

t

S (f+g) (k) de < [ I (f) (0)k(r) de +

0\8
Eo\g

F; q dt
< / (@) | Ikl
0

1/q

I / l/p* — ||k||Lq'<0-m>
0
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= A llpg) + gl p.ap-

Since |[k||r,,,,.., = 1, this together with Theorem 6.6 establishes (6.9). O
The following result is a Holder’s type inequality.

Theorem 6.9. Let (X, ./, L) be a measure space, let p and q be two extended
real numbers in [1,00] and let p' and ¢ be their conjugate exponents. If f €
Lo (X, o, u) and g € Ly (X, 9, 1), then

Hfg”l < ”f”(p,q)”g”(p’,q’)‘

Proof. By Theorem 4.15 and Holder’s inequality we have

/Ifg\du S]f*(r)g (t)dr
e

oo

jery) (jfee
0

0

g*<r>) ar

1/q'

IN

= 1l o 181l (.01

6.2 Normability

One can associate the so-called Lorentz spaces with the pre-Lorentz spaces. In order
to do that let us define a relation ~ on L, (X, <7, ) as follows:

f~g ifandonlyif f=g u-—ae.

It is not hard to prove that ~ is an equivalence relation. Let us write
1={ecsa) r=¢ u-ac}
for each function f € §F(X, <) and

L(pA,q)(XaJZ{a.u) = {[ﬁ :fEL(p,q)(XabQ{a.u)}'
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It was stated in Theorem 6.4 (c) and Corollary 6.8 that || - [[(,,) is norm on
| DY (X, 47, ) provided that 1 < g < p < o but, in general it is not a norm for the
remaining case. The reason for this is that the nonincreasing rearrangement opera-
tor is not sub-additive in the sense that, in general, the inequality (f+g)* < f*+g*
does not hold for any two measurable functions f and g. This means that one should
not expect to be able to define a norm in terms of the nonincreasing rearrangement
operator since the triangle inequality is not likely to be satisfied. The aim of the
present section is to define an operator that is related to the nonincreasing rear-
rangement operator and that is sub-additive and which for p > 1, defines a norm on
Lipq (X, o7, 1u) equivalent to || - ||, 4)-

One can use the maximal function (see Definition 4.24) of f in place of f* to
define another two parameter family of functions on F(X,.o7).

Definition 6.10. For 1 < p < e and 1 < g < o, the Lorentz spaces L, q) (X, </, i)
is defined as

L(,,,q)(X,JZ{,‘u) = {fES(X,JZ{) : ||f||pq <°°}

where || - || 4 is defined by

1/q
9dt
(tl/”f**(l)> t> y 1< p<oo, 1 <g<eo

N
S—3

£ Log|| = I£1L,, = (6.10)

supt!/P f*4(¢), 1< p<oo,g=cs.
>0

@

Remark 6.11. If (X,</,11) is a nonatomic measure space, it follows from Re-
mark 4.18 that

t

t t
[reorwas [rowt [oa 6.11)
0 0 0
where t = U(E) for E € o/. Now, using Definition 4.24 and (6.11) we have

t

(r+e 0= [+ ()as

0
1 / 1 /

<— | ff(s)ds+— [ g'(s)ds
t()/ IO/

=70 +87 ),

that is
(f+8)™ (1) < (1) +g" (1) (6.12)
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for any two function f,g € §(X, ).

The sub-additivity of the maximal operator (6.12) means that if the set

{restcan: <=}

is a vector space, then || - || ,4 is @ norm on this spaces.

Now this spaces turns out to be identical to L, ;) (X,<7, 1) provided that p > 1
(see Theorem 6.6) and these spaces are therefore normed space. On the other hand,
justas f** tends to be a more complicated function than f*, the quantity || f|| ,, tends
to be more difficult to work with than || f|(, ). For example, if A is a set in <7 for
which 0 < (A) < eo, then

1/p >\ 1/
[u(A)} (q<,‘,’,1>) ,1<g<on, 1<p<e
oo, p:]’q<oo
[l2all,y = q = p=coq<eo (6.13)
1/p
(N(A)) ; 1<p<oo,g=oco
1, p=q=-ce.

For fixed p and ¢ in [1,e] there are several inequalities relating the functions
|- ll(p.q) and [|.][ o4 and the key to deducing them is the following integral inequality
due to Hardy.

The following integral inequality comes in different shapes; we will use the one
given below since it is the key to deduce inequalities related to the functionals || -

l|(p.q) and ||| pq for fixed p and g in [1,e0].

Theorem 6.12 (G. H. Hardy). If f is a nonnegative “valued-measurable function
on [0,00) and if g and r are two numbers satisfying 1 < g < oo and 0 < r < oo, then

(a) i ] )
/ /f(s)ds e < <z)q/<sf(s)>qsrlds.
0 \o 0
N q

0/ /f(s)ds z”dt<<‘r’)

Proof. (a) If g =1, then by Fubini’s theorem we have

O/ 0/ fls)ds [t 1dr = 0/ / t~ 7 f(s)dtds

(b)

<sf(s)>qs”1 ds.

St~
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/ s lds

0

- (q) / (s(s))5™" " ds.

Now, suppose that ¢ > 1 and let p be the con]ugate exponent of ¢g. Then by
Holder’s inequality with respect to the measure s¢ !ds we have

; q
[rses| = /f “igi
0 . q ; q/p

flroesira) [ faa

0 0

N .
(Zté)q P/ {f(s)rsq*’sfflds
0
q alp | / g ,
= (r) ﬁ/{f(s)} s 7sa 1 ds.
0

By integrating both sides from zero to infinity and using Fubini’s theorem we
have

\M—*

q

IN

Hence
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0/ O/f(s)ds T 1dt<( ) 0/ 51,

(b) If g = 1 one more time by Fubini’s theorem we have

oo

] /f(s)ds qt“dt:] St”lf(s)dtds
0

t

=

/ sf(s))s™'ds

0

o

Next, let g > 1 and p be its COI’l_] ugate exponent. Then from Holder’s inequality
with respect to the measure s~ ¢ "ds we have

] f(s)ds / Fls)si i ds

\\»—‘

IN
\
~
—

%)
.,

)

M\

+

[
[
[oN
)

—

a
[

_ (Z)Zt; /[sf( )} i lds

By integrating both sides from zero to infinity and using Fubini’s theorem we
obtain

o

] [ 5651 qr”dr < (j’)m
0

t



6.2 Normability 231

Hence

Z /f(s)ds 1" 1dt<< ):/m 1.

We now prove that the norm ||-|| ,, is equivalent with the Lebesgue norm |- ,,
i.e., the diagonal case of Lorentz spaces coincides with the Lebesgue space.

O

Theorem 6.13 If 1 < p < eoand % + é =1, then

p
1Al < 1Lfllpp < ﬁllflhr

Proof. Since f* < f** by Remark 4.14 (ii) we have

||f|”=j[ o) 6149
/oo 1/ﬂf
0
< VP e (1) "4
O/{l l‘} t
= ||prp- (6.15)

On the other hand, the second inequality follows immediately from the definition of
f** and the Hardy’s inequality with r = p — 1, that is,

1/p 1/p

/~1/f al <or 0/°°<f<sw

171l <~ E 151 (6.16)

By (6.16) and (6.15) we obtain

thus
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11y < 1l <~ 1171
p= pp = p—1 P

therefore the two norms are equivalent. O

We also have that the norms |-, ., and [|-|,, are equivalent.

Theorem 6.14 If (X,.o7, 1) is a measure space and if p and q are two extended real
numbers satisfying 1 < p < oo and 1 < g < oo, then

p
17l < 161y < 517

SJorany f € §(X,o), where ﬁ is to be interpreted as 1 if p = oo.

Proof. Since f* < f**, then

o

11, = [ (77°0)"F

0

o

Jruy

0

= 17154

Next, if g < o and p = oo, then, as was pointed out following Definition 6.2,
either f = 0 a.e. or else || f]|(,4) = . and the second inequality is obvious in either
case. If both g and p are finite, by Hardy’s inequality Theorem (6.12) we have

oo

i1, = [ (P 0)"e

0

I
O\Z
~
NS
L
—
~
*
Py
N
o
[y
~|&

I
0\8
~
*
—
A
S~—
(=N
&
~
<k
4
L
&

q
p q
<(525) Wity

And, finally, if g = oo, then

tl/ﬂf**(t):t%*‘/f*(s)ds
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t
= /sl/”f*(s)sfl/”ds

0
t
Stiilnfn(p,q)/sil/pds
0

p
= Ll

for all # > 0 regardless of whether p is finite or infinite. O

The significance of this theorem is, of course, that for 1 < p < ecand 1 < g < oo
the space L, ) (X, <7, i) could equally well be defined to consist of those functions
f € §(X, o) for which || f]|(,4 < e or for which ||f||,, < . Note that for such
p and g, the Theorem 6.4(c) and (6.12) imply that the function || - || ,; determines a
norm on L, . (X, <7, 10).

The following two lemmas give embedding information regarding Lorentz spaces,
namely they provide some comparison between the spaces L, (X,</,u) and
L(p.r) (X7 ,Q{,,Ll)

Lemma 6.15. Let f € L, ;). Then
1/q
ok q 1/ 1l pg

Proof. Note that

=

from which (6.17) follows. O

1/4
Corollary 6.16 Let f € Ly g). Ther | lipe) < Ifllp < (£) " 1/l

We now show an embedding result in the framework of Lorentz spaces, namely

L(p.q) = L(p,») Whenever g <r.
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Lemma 6.17 (Calderén). If 1 < p < ooand 1 < g <r < o, then

1_1

il < (j,) 1l

Proof. Using Lemma 6.15 we have

Wl = [ (@) ¢

(r0) (rem) e
o) [(2) W] i,
( ()) (p) t/p

);_l (151) 115
)‘]’l (1£110)

IN

Il
St~ ST T3

TR T IR

which ends the proof.

6.3 Completeness

6 Lorentz Spaces

We are now ready to prove completeness which follows, as in the ordinary L, case,

from the Riesz theorem.

Theorem 6.18 (Completeness). The normed space (L ) (X, <, l1), || || pq) is com-

plete (Banach space) for all 0 < p < eo and 0 < g < oo,

Proof. Let { fu}nen be an arbitrary Cauchy sequence in L, ;) (X, <7, it). Then

Hfm_anpq —0 as n,m —» oo,

and by Corollary 6.16 we have

q 1/q
”fm *fn”(p,w) < <P> Hfm*anPq —0

as n,m — oo,
Thus
Suptl/p(fm _fn)*(t) = ||fm _an(p,oo) —0

t>0
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as n,m — o,

By Theorem 6.6 (case g = o) we have
1/p "
sup{ 1D, (W)} =supr (£, 1) (1) >0
A>0 >0
as m,n — oo, then
1/p 1/p
sup{ (e X: 10— 10 > 10) | =swp{ 4D @)} 0
A>0 A>0

as m,n — oo, this implies that

i(re X0 - 4] > 4}) 0

as m,n — oo for any A > 0.

We showed that {f, },cn is a Cauchy sequence in the measure . We can there-
fore apply F. Riesz’s theorem and conclude that there exists an .2/ -measurable func-
tion f such that f,, converges to f in the measure (. This implies again by a theorem
of F. Riesz that there is a subsequence {f,, }xen of {fy }nen Which converges to f
U-a.e.on X.

Let € > 0 be arbitrary. Since {f; },cn is Cauchy there exists an ny € N such that

an*fm)”ﬁq <& (”>n0)

and f,, — fu, converge to f — f,, 1-a.e. on X.
It follows now by Theorem 4.5 (g) that
(F = fu)"(6) < Bminf(fy, — £u)* (0
for all # > 0. Using the Fatou Lemma we have

(f = fao) ™ (&) < liminf(f,, — f))™ (1)
for all # > 0. One more time by Fatou’s Lemma we have

1/q

o

14
1=t = | | <t1/”(ffno)**(t)) a
0

t
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- 1/q
/( l/f’l1m1nf (foe = Sy (2 ))qit
0
- 1/q
< liminf /(‘/" (fue = fm))**())qc?
0

= li,?lglf”f”*' — fuollpg <€

whenever ny > ng. Since f = (f — fu,) + fu, € L(p.g)(X,.%7, pt) and this proves that
L(pq) (X, o, 1) is complete for all 0 < p < eoand 0 < g < eo. O

6.4 Separability

To show that L, ,(X,.27, i) is separable we need to show that the set of all simple
functions is dense in L, ,(X,7, ). This desirable property means that any func-
tion in L, ,(X,/, 1) can be approximated by a simple function in the norm of
L(P-,‘J) (X,d,,ll)

Theorem 6.19. The set of all simple functions S is dense in L, 4 (X< ,1u) for 0 <
p<ooand( < g < oo

Proof. Letg <eoand f € L(, 4 (X, </, 1) be arbitrary. We can without loss of gener-
ality assume that f is positive, and then there exists a sequence of simple integrable
functions such that 0 <s, < f for all n € N and s,, — f as n — oo. Hence, by Theo-
rem 4.11 we have

(f =s2)"(t) < f7(t/2) +5,(2/2)
<2f7(t/2),

since s7(1/2) < f*(¢/2) for all n € N, and thus, if we apply Lebesgue’s dominated
convergence theorem, and Theorem 6.14 we have

L tim 1 =) = 0.

i — <

Jl_r)?c ”f Sl pg =

Slnce f was arbitrary this shows that S = Lipq (X, 1) that is, S is dense in
pa) (X, ). O

The separability of L, ;) (X,<7, 1) will now follow by showing that the set S from
the previous theorem is countable and this is the case if and only if the measure is
separable. Before we give the proof of this fact, we state the following definition.
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Definition 6.20. A measure U is separable if there exists a countable family ) of
sets from o7 of finite measure such that for any € > 0 and any set A € .2/ of finite
measure we can find a set B € §) with u(AAB) < €. %)

Theorem 6.21 (Separability). The Lorentz L, . (X, </, 1) space is separable for
0 < p<eoand0 < g < ooifand only if the measure U is separable.

Proof. Assume first that u is a separable measure and let A be any measurable set
with finite measure and € > 0 be arbitrary. Then there exists a countable family
of subsets of X of finite measure and a set B € §) such that

u (AAB) —pu {(A\B) U (B\A)} <e.

It follows that

164 = Xpllpa = /w(tl/p(%A_XB)**(tO -
0

Il
N
=
S |y
| o
—
~_—
=
S
N
=
/N
S
>
oo
~—
S~~~
=
~

= 1/q
<|—F—= gl/r.
(q(p—1)>

Hence, for any characteristic function of any 27-measurable set A of finite mea-
sure we can always find another characteristic function of a set B € §) such that the
norm of the difference between the two functions is as small as we wish.

Let s be a simple function of the following form
m
5=, 045X, ;
j=1
where o¢; > 0 > ... > oy, > 0 and

Aj:{XEXZS()C):OCj}

forall j=1,2,...,m.
We can then define a new simple function
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where B; € ) is chosen such that

e 1/q
AAB) < | —— gl/r
‘U( J J) <q(p_1)>

forall j =1,2,...,m. It follows that

m
Is = s1lpg = H > CiX 4,08,
=1

Pq

5 1/q
<m pi gl/p.
g(p—1)

That is, for any simple function s defined on .o/ -measurable sets A, A,, ..., Ay,
we can always find another simple functions s, defined on sets By,B;,...,By,
where B; € ; j = 1,2,...,m. Since the set of all simple functions is dense in
L(¢) (X, 1) it follows that the set

S=qs=Y o)y B €N o eRm=123,..
=1
is dense in L, ;) (X, <7, 1u).

Moreover, since the countable set

m

So = S= Y, 0y BiEN 0EQm=123,...
j=1

is dense in S, it follows that Sg is dense in Lyq)(X, o/, 1u). Hence L, 4 (X, o/, 1) is
separable.

Now, assume that i is not separable. Then there exists an € > 0 and uncountable
family of sets ) such that for A, B in $

u <AAB> > E.

H={f=X,:A€9}

is uncountable and for f,g € H we have

Thus the set
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||f*ngq = ”XA 7%3”1’51

=1 X assllpa

- <q(;i1)> " (y (AAB)) h

2 1/q
> p el/r,
~\4qlp—-1)

where A # B. Hence, we have an uncountable set H C L, ;) (X, </, 1) such that for

two functions f,g € H, || f — gl| o is not as small as we wish, that is L, ;) (X,.27, i)
is not separable. O

6.5 Duality

We will now take a closer look on the space of all bounded linear functionals on
L(p.q (X, 1) which we will denote by

{L(p,q) (Xa A, ,LL)] .

In the next theorem we collect the duality of Lorentz spaces depending on the
different parameters.

Theorem 6.22. Suppose that (X, </ ,|L) is a nonatomic O-finite measure space.
Then:

(a) (LQ,A’q)(X,Jz{,,u))* ={0}when0<p<1,0<g<eco,

(b) (Lmq)(X,sz,,u) =L.(X,o,u)when p=1,0<g<1,
Lo (X, o, 10) * ={0}whenp=1,1<g <o
Lo (X, 1)) # {0} when p =1, g ===

) =Ly o) (X, , 1) when 1 < p <eo, 0<g<1,
Lo (X, o, 10) ) =Ly )X,/ ,11) when 1 < p <o, 1 <g< oo
Lipqg(X, <, 1) ) # {0} when 1 < p < oo, g =00,

L(pﬁq)(XaJZ{a.u) # {0} when p = q = oo,

A N U W - U g
*

(
(
(e) (Lmq) (X, 1)
(
(
(



240 6 Lorentz Spaces

Proof. Since X is o-finite, we have that X = |J X, where X, is an increasing se-
n=1

quence of sets with u (X,l) <ooforallne N.Given T € (L(M) (X, o, u)) where

0 < p<oeoand 0 < g < . Let us define 6(E) :T(XE) forall E € &7/
Next, we like to show that:

(i) o defines a signed measure on X, and
(i)
14 1/p
oE) < (2) (u@) Tl when <
and y
p
o(E) < IT)| (u(B)) " for g=ce.
(i) Note that
o(0) =T (1) =T(0)=0

Since T is a linear functional. On the other hand, let {E, },en € &7 such that
E,NE, =0if n # m. Then

(ii) Observe that

o(B)| = |7 (2| < el I (6.18)
for g < oo, and
- 1/q
Lo\ dr
el = | [ (7z0) S
0
- 1/q
= /(tl/l’x t )th
(O,u(E>> t
0
u(E) /a
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)

for g < oo,
If g = oo, then

t>0

1/p
|26y = supt' " 7 (1) = suprl/Px( O [u (E)} :
>0 O,u(E))

thus
1/p
o(E)| < || (u(E)) ,
for g = eo.

Once we proved (i) and (ii) we easily see that ¢ is absolutely continuous with
respect to the measure . By Radon-Nikodym theorem, there exists a complex-

valued measurable function g (which satisfies [ |g|du < e for all n) such that
X

O(E) =T (xz) = / lgle du, (6.20)
X

Linearity implies that (6.20) holds for any simple function on X. The continuity
of T and the density of the simple functions on L, ;) (X,27, 1) (When g < o) give

T(f)= [ lefldu, (6.21)
/

for every f € L, (X, <, 1t). We now examine each case (a), (e), (f) separately, for
the remaining cases see Grafakos [22] and the reference therein.

(a) We first consider the case 0 < p < 1. Let f =3, a, g, be a simple function
on X (take f to be countably simple when g = o). If X is nonatomic, we can split
eachE, as E, = U_’;’Zl E;,, where E;, are disjoint sets and y(E;,) = %

Let f; =3, a, XEj» then

1 llp) = /M(t””(;anmn)*(’))qcy
0

1/q
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=N X (5) " (w(Em) ””

([ (o) o)

1/q

o

dt

t
0

=N fill (-

Thus || £l pg) = N~7 | £l () Now, if T € (L(M) (X, o, u)) ,it follows that

I7(1)]

—_



6.5 Duality 243

IA
M=
=
=

~.
Il
—_

Tl p.0)

~
Il

IN
M=

N
=TI 2 £l o)
j=1

Tl p.g)-

Let N — oo and use that p < 1 to obtain that 7 = 0.

1—L
:N I’|

(e) We now take up case p > 1 and 0 < g < 1. By Theorem 4.15 and Theorem 6.3
we see that if g € L,y .. (X, o7, ), then

oo

[seau) < [1rwirg 0]
X

0

< llpyl1gll o)

1

1g
q q

S _ f X g /,0) 3
(p) 1Al 8l

from which we have

11
q q
7] < (p) ¢l 622)

Conversely, suppose that T’ € (L(p,q) (X, 4, /,L)) when 1l < p<ecand0<g<1.
Let g satisfy (6.21). Taking f = g|g| ™' x{|¢/>2} then

/fgduz /gglgl‘ldu
X {lg/>2}

= / lgl*(g] " du
!

- / gl du,
{lg|l>A}

and

lu({lg|>l}> < | [ secu| < 1T 6.23)
X
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Since
If1 = 13llgl ™ Xiei=2) = Xi1gl>2)»
hence
ro=Ifre=x
(O-A({\gbl}))
thus
- 1/q
_ 1p o qdt
Wl = | [ (771 0)'
0
- 1/q
q
(07u({\g|>l})) !

— o

u {Ig\>/1}>

= / trdr

0

- (‘q’)/ (1 (01> x}))w.

Now, back to (6.22) we have

i1 1/p
q q
wu(tlel> 1) < (£)" i (m(ts>21) )
1/p q 51/71
A > A <= T
u(tg=2)| < (4)" i
1/p' g 5—1
A(ng) s() Iz
p
-1
supt 7 g*(1) < (q) 7]
>0 )4
g\
el < (2)" 0 (624)
p
Finally by (6.22) and (6.24) we have
lellore ~ 7

(6) Using Theorem 4.15 and Holder’s inequality, we obtain
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£ = X/ fedu

/ O g ()

t
0
<Iflpa el .q-

Hence T is bounded and if we take the supremum on both sides over all functions
f with norm 1 we have
1T < ligllp.q)- (6.25)

Thus, for every g in L,y , we can find a linear bounded functional on the space
L(pﬁq) (Xa%vﬂ)

Conversely, let T be in [L(p-,q) (X, o, [J)} . Note that T is given by integration

against a locally integrable function g. It remains to prove that g € L,y (X, ).
Using Theorem 4.26 for all f in L, (X, </, 1) we have

=

[ 0g 0a=sw| [ rzau| <17
X

0

where the supremum is taken over all «7-measurable functions g equimeasurables
with g. Next, by Theorem 4.29 there exists a measurable function on X such that

/
q

q—1
where h(s) = s7 ! (g* (s)) . Then by Theorem 6.12 (b) with r = p

A1, = / (7 w)' Y
- - q
:/ /h(s)g trtdr
S
0 \¢/2

oo

q
:2‘1/”/ /h(s)% ur ' du
0

u
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2rg\? [,
() oy
P
0
_ (21/"q>q/u7, H@fq(g*(u))q(q/fl)du
P
0
21/17 q 7 '
(54 [ )
P
0
(21/1;q>q] P 4 du
- (g w)"
P
0
= (27 e
o p 8ll(p a1y

thus

2V/rg ,
< (22 ) 160V

On the other hand, we have

j Fg 0= / / e 0) e

0 0 ¢/2
oo oo t
> [ () [ a [ o) |
0 12 0 1/2
= q,p/p/(1—2‘?5) O/th)/,l(g*(t)) w
= (127 ) el

Combining (6.26) and (6.27) we obtain

1/q
/

q-p
lgllp.qy < YA
p(1-2"7)

Finally by (6.25) and (6.28) we have the required conclusion.

I]]-

Theorem 6.23 (Duality). Let 1 < p<ocand1 <g<eoorp=q=1.
of all bounded linear functionals on L, q ) (X, o7, 10), denoted by
is isomorphic to Ly 4\(X, %/, 1) where 1 >+ ? =1and} T ? =

6 Lorentz Spaces

(6.26)

6.27)

(6.28)

O

Then the space
pa) (X, 1)
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Proof. If p = g then we have that L, ,) (X, .2/, uu) = L,(X, o/, i) which is isomor-
phicto Ly(X, .o, u) forall 1 < p < eo.
Thus, we need to only consider the case when 1 < p < e, 1 < g < oo and p # q. To

prove that [L(p,q) (X, u)} is isomorphic to L, ) (X,.27, ) we must show that

for each element in L,y (X, </, i) there exists a unique corresponding element in
*

[L(M) (X, o, [J)] and vice versa.

We start with the case when 1 < p,qg < oo, p#¢q. Let g € Ly y(X, o/, 1) be
arbitrary and define the functional T as

=!mw,

forall f € L, 4 (X, 27, u). By Theorem 4.15 and Holder’s inequality we get that

)| =
Tf\]!mw]
< [ 1relau

/ d
g/wvwwwwm{

0
- - /¢
< /(rl/l’f**(t)yg / l/p = ( th
t l
0 0
= 1/ 1lpqll8llg-

Hence, T is bounded and if we take the supremum on both sides over all functions
f with norm 1 we have that

171 < llgllpg-

If 1 < p <coand g =1 we can use that

r , o/ d
/fl/”f**(f)fl/"g**(f)l < /fl/"f**(t) (Supsl/pg**(5)> a4

t s>0 t
0 0
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to obtain that
171 < llgll pree-

Hence, for all functions in L, ,)(X,</,u) we can find a linear bounded func-

tional on L, (X, </, i), that is an element in {L(p,q) (X,47,u)| .In Theorem 6.22
we showed that

o(E) =T (xx)

is absolutely continuous with respect to (t and by Radon-Nikodym theorem there
exists a unique function g € Ly (X,.7, ) = Ly 1)(X, </, i) such that

o(E) :T(xE) :/ngdu-

X

By the linearity of the integral and density of simple functions it follows that

1) = [ sfau

X

forall f € L, (X, o, 1).

Once again, by Theorem 4.29 there exists a measurable function f on X such that

fﬂnzjmw“,

N
t/2

/ q’71
where h(s) = 57 (g* (s))
Then by Theorem and Theorem 6.12 with » = p we have

q
p
1£11%, < <p_1||f|(p.,q))
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21/pq>q r a_q q
< ( /uF_ (h(u)) du
- —1
P 0
Zl/pq>q] a_jy9 g q(q-1)
= ur g*(u)) du
= (
21/Pq>q] 4 q
= uv g*(u)) du
= (
= (21/pq>q/w(upl’g*(u))q dl
—1
P 0
q
= (229) jap,
T \p-1 8llip.q)

thus .
2l/rg ,
|vmqs<p_l Igl?)5,.

On the other hand, using the definition of the norm of 7 and Theorem 4.23 we
have

Zﬁomwnm

T(f)
IT]| = sup Tl _ —
f€Lpq) Hf”pq SE€Lq) ||f||pq

thus

o

/f*(t)g*(t)dt < AT pg-
0

Now, observe that
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/ i - ’ q’
) [ ew)
0
14 1-4 :
=L (1-2"7) gl

p ( 14)(1 )
2 1—2 P — g ol
q/_p/ p” HP’J

[
[

L],

Finally we have

/

q
gl )
p rPq / /
( Po(1=2"7) <)

Ifllpg  d—p

41’—%’
Cllglly," <71l
Cligllyg <171,

q., / ,
c— (L)1l _r_ (1—21*77).
p) 2Y/rq\q —p'

This shows that ||g||,y, < e and thus g € L,y ,)(X, </, 1t). Also we have that

where

Cligllpy < ITIl < llgllyq

*

hence L(p"

2 and L,y 4 are isomorphic for 1 < g < p < . ad

6.6 L+ L., Space

We now introduce a space based upon the concept of sum space.

Definition 6.24. Let (X, o7, 1) be a o-finite measure space. The space L; + L.. con-
sists of all functions f € §F(X, <) that are representable as a sum f = g+ h of
functions g € Ly and h € L... For each f € L; + L., let

Ifle,or = inf {lell, +lall }- (6.29)

where the infimum is taken over all representations f = g+ h, where g € L; and
h € L. @

The next result provides an analogous description of the norm in L; + L.

Theorem 6.25. Let (X,<7, L) be a G-finite measure space and suppose f belongs
to §(X, ). Then
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t

int {lgll, il } = [ 7005 =170, (630)

0

forallt > 0.

Proof. Fort > 0 denote
o= inf {lgll, +I1l._}.
Next, we like to show that

/ﬁ®m§m. 6.31)
0

We may assume that f belongs to L; 4 L... Since, otherwise the infimum ¢ is infinite
and there is nothing to prove. In this case f may be expressed as a sum f =g+ h
with g € L; and h € L... The sub-additivity of f** (see (6.12)) gives

/[f*(s)dSZ/t(ngh)*(S)dSS/lg*(s)dS-F/th*(S)d&
0 0 0 0

Since A*(s) < h*(0) for s > 0, we have

t o
[rows [ w+/m ®—/kWHﬂWL%MMHML~
0 0

Taking the infimum over all possible representations f = g 4 h, we obtain

/ﬁ@méw. (6.32)
0

For the reverse inequality of (6.32) it sufﬁces to construct functions g € L; and

h € L., such that f = g+ h and assume that ff* ) ds.co.

Let E = {xe X :|f(x)| > f*(r)} and u(E) = to. Since D(f*(t)) <1, then 1y =
W(E)=D¢(f*(t)) <t,thus 1 <t, then by the Hardy-Littlewood inequality we have

va:Jﬂmw

g/f@mewm
0
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< [ fi(s)ds <o,
/

thus f is integrable over E. Now, let us define

g(x) =max {|f(x)| — f"(r),0} sgn f(x)

and
h(x) = max {|f(x)], /(1) } sgn f (x).

The L; norm of g can be calculated as

mmzfmw:/mw+/mw.
X E EB

Note that the second integral is null on £ € and so

mmzfmw
E

— [l [ au

= [Vldim=ns @)
< [ Iftldu <

thus g belongs to L;. Next, observe that

u({xex: > r0)})

6 Lorentz Spaces

=pu ({er s A(x)] >f*(t)}) +u ({erC s h(x)] >f*(t)})

—u ({xe E:f (1) > f*(t)}) U ({x cES: |f(x)] > f*(t)})
0

since the sets in the penultimate equality are the empty set, therefore
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|2l :inf{M >0:p ({xex sh(x)] > M}) :o} = (1),

hence h belongs to L...
On the other hand, observe that

8(x) +h(x)
= max {|/(x)| = f"(1),0} sgn f(x) +min {|f(x)|, *(s) } sgn f (x)
{ f @)= @)+ 17 @) if [f()] > ()

0+ 1/ () if 1F ) < (1)
@),
Since
lell, = [ leld = [ 1rlan =t 0) < [ ) —10s0)
/ ! /
and thus

fo
Imm+mwm§/ﬁ@MH4MM—mﬁ®

0
< [ fr(s)ds+(t—10)f (1)
/

=!ﬁmw+zf@m

S!ﬁ®®+!ﬁ®®

—j.f*(s)ds
0

which entails
t

o < /f*(s) ds. (6.33)
0
Combining (6.31) and (6.33) we have
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t

[rwas= it {lel, +elnl.}

0

and
t

o0 = [ £ 6)ds = int {lall,, +lh.}.

0

Note that we can calculate the L; + L.. norm of a function via:

= inf Jlely, 1A} =151

and
1

/fwm:whﬂ,
0

We now introduce the notion of maximal function f — M f, which will be studied
in more detail in Chapter 9.

Definition 6.26. Let f € L, ;,.(R"). The Hardy-Littlewood maximal function is de-

fined as |
Mr = s — [ 1)l (634
0<r<ee m(B(x, r))
B(x,r)
where B(x,r) = {y ER":ly—x| < r} is an open ball in R”. @

With the notion of maximal function at hand, we now prove that the maximal
function given in (4.17) and the new one given in (6.34) are related in the following

sense.

Theorem 6.27. There exists a constant ¢ depending only on n, such that
(Mf) (f) Sef™ (1)

for every locally integrable function f on R”.

Proof. Fix t > 0. For the left-hand side inequality we may suppose f™(t) < oo,
otherwise there is nothing to prove. In this case by Theorem 6.25, given € > O there
are functions g; € L and h; € L., such that f = g; + h, and

gzl +2llbrll. <tf™() +e, (6.35)

then by Theorem 7.29 and Theorem 3.38, for any s > 0
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% S S
(M) (5) < (Mg)" ( 5 ) + ()" ( 5
C C
< Zllgill, +lAl = = (e, +slill. ) -

O

Theorem 6.28 (Hardy-Littlewood inequality). Let 1 < p < oo and suppose that
feL,(R"). Then Mf € L,(R") and

1M1, < cllfIl,
where c is a constant depending only on p and n

We wish to point out that using the rearrangement (6.30) a proof of Theorem 6.28
can be obtained directly and without using any covering technique.

Proof (Proof of Theorem 6.28). If f € L..(R"), by Theorem
IMfl, = sup(Mf)"(t) < csup f(t) < fll,._-
t>0 t>0
Now, if f € L,(R") with 1 < p < e then one more time by Theorem 6.27 we have
1
P

sl = | [y @y | <el 15[ ree)| a
0 0 0

P

Lo Jewra | =L,
0

<
p

6.7 Lexp and LlogL Spaces

We now introduce another function spaces.

Definition 6.29. The Zygmund space Lexp consists of all f € F(X,«”) for which
there is a constant o = o¢(f) such that

/ exp (0| f(x)]) dp(x) < oo (6.36)

E

for all E € «/. The Zygmund space LlogL consists of all f € F(X, /) for which
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[ rltog" £l duto) < (637)
X
where log™ x = max {logx,0}. %

The quantities introduced in (6.36) and (6.37) are evidently far from satisfying
the properties of norm.

The expression introduced in the next theorem, defined in terms of the decreasing
rearrangement, will prove more manageable.

Theorem 6.30. Let f € §(X, o) and A € o such that 0 < U(E) < co. Then

u(E)
@ [ 170hog" 17)lau) <= ifandonty it [ (010 () ar <
E 0

(b) /exp (a]f(x)]) di(x) < oo for some constant o = o(f) if and only if there is
E

a constant ¢ = ¢(f) such that

fft)<c (1 +log <”(tE)>>

for0<r<u(E).

Proof. To this end, we first apply Theorem 4.13 to obtain

/ (0 log* ()| du = / F(0)log” £ ()b,
0

E

H(E)
thus [ f*(r)log" f*(t)dt < e=. On the other hand, note that
0

H(E)

ro<ro=; [ross; [ o= [inau- I,
0 0 E

since log™ x is an increasing function and log% is a decreasing function. On the one
hand, if
H(E)

/ f(t)log (H(f)) dt < oo,

0
then
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(E) u(E) Il

() log* f*(t)dr < / (1) log™ %dt
0

=

o —

min{| 1, .1 (E)}
_ . 171l
= / f(t)log — dr,

0

since log™ @ =log <|ftL‘ ) if 0 <z <||fl,, and O otherwise.
Next,

min{]| (|, 1 (E)} £z,
/ f (1) log (”f[||1‘1> dr < / f(#)log (”ftl“> dr
0 0
u(E) HfHL]
= / + / f(t)log <|ft”Ll> dr
0 u(E)
u(E) W £z, T
1
< /f* g<tL‘>dt—|—|f||Ll / t10g< tL]>dt
0

W(E)
(E)

(t)lo
i f*(t)log<||f||m> o Ml (lognle)z
t 2 uE) )

0

Thus [ |f(x)[log* |f(x)|du < es. On the other hand, if [ |f(x)[log™ |f(x)|dp < oo
E E

we consider the following set

A= IG[O,M(E)]:f*(t)><“(tE))Z and B = [0.p(E)\A.

either of which may be empty. Next, we can write
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[rom(x2)a- [+ [} rom(22).
0 A B
< 7)f*(t)log(f*(t))2dt+ (u(E))? F:)/(E)té log (“(IE)> dr

(E)
hence f f(0)log ( ) dt < oo. Turning now to the equivalence in (b) we suppose

first that f*(r) < C (1 +log (“@)) for some constant C > 0 with 0 < ¢ < u(E).
Then

(E) W(E)

exp (ot f* (1)) dr < / exp [aC <1+10g (LL(ZE)))] dr
0

= [u(E)]“ [ Cdr.
/

=

o —

W(E)
from which [ exp (o.f*(t)) dr < e for any constant o < 1/C.
0

Conversely, suppose that

W(E)
M= / exp dt < oo,
0

Clearly M > u(E). Since f* is decreasing we have

r)j/ds<§/f*<s>ds
0 0

Then by Jensen’s inequality we have

t

exp (o () <exp | 1 [ar@)as | <1 [ep(ar(s)s
0

t
0
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which entails

)< élog (1\;1) < é <1+10g (%)) (1+1og (u(::"))) )

The proof is now complete. ad

An integration by parts shows that

(E)

W(E)
f*(t)log('u(tE)>dt: /f**(t)dt. (6.38)
0

The latter quantity involving the sub-additive function f — f** satisfies the tri-
angle inequality and so may be used to directly define a norm in LlogL.
On the other hand the expression

=

o —

@) §C<1+log (u(f))) 0<t<u(E) (6.39)

for the space Lexp involve f* rather than the sub-additive f**. This present no prob-
lem, however

=y [rea
0

< g/ (1 +log (“(SE)>> ds (6.40)
0
<2C <l +log <”(tE)>> .

Hence (6.39) (with constant C) implies (6.40) (with constant 2C) and so (6.39)
and (6.40) are equivalent. We use the relation (6.40) to define a norm on Lexp as
follows.

Definition 6.31. Let f € F(X, 7). Set

W(E) (E) W(E)
e = [ rooe (M )ar= [ o an
0 0
and ( )
ok t
1oy £l g = 5D ! 642)

0<r<u(E) (1 +10g ((E))> .
t



260 6 Lorentz Spaces

It follows from Theorem 6.30 and the observation made above that LlogL
and Lexp consist of all function f € §(X,.<?) for which the representative quan-
tities (6.41) and (6.42) are finite. Since f — f** is sub-additive, it is easy to
prove directly that this qualities define norms under which LlogL and Lexp are
rearrangement-invariant Banach spaces. The following result gives a Holder type
inequality.

Theorem 6.32. Let (X, o7, 1) be a O-finite measure space and f € LlogL and g €
Lexp. Then

/|fg‘dﬂ S 2||fHLlogL||g||Lexp
E

forany E € .

Proof. LetE € o/ and f € LlogL, g € Lexp. Then from Theorem 4.13 and the fact
that f* < f** we have

/ feldy = / el du < / £08" (o) (1) df = / (008" (1) dr
E X 0

(E)

] u(E) (1)
" f()(H—log 4 )l-l—log)dt

w(E)

y E
£ 1+1 g“”)dr 18] exp

| /\

IN
S

<2 / £ | lgl e
0

and the assertion of the theorem holds. O

6.8 Lorentz Sequence Spaces

In this section we will investigate the Lorentz sequence spaces.
For X = N with A = 2", the power set of X and y = counting measure, the dis-
tribution function of any complex-valued function a = {a(n)},>; can be written as

Dy(A) =pu({neNtla(n)|>2}) (4 =0).
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The decreasing rearrangement a* of a is given as
a’(t)=inf{A >0:D,(1) <t} (r>0).

We can interpret the decreasing rearrangement of a with D,(A) < e, A > 0 as a
sequence {a*(n)} if we define forn— 1<t <n

a*(n)=a*(t) =inf{A >0:D,(A) <n—1} (6.43)

Then the sequence a* = {a*(n)} is obtained by permuting {|a(n)|},cs Where S =
{n :a(n) # 0}, in the decreasing order with a*(n) = 0 for n > u(S) if u(S) <

Definition 6.33. The Lorentz sequence space £, 4, 1 < p<oo, 1 <g< oo, isthe set
of all complex sequences a = {a(n) ) < oo where

1/q
q
s (27_1 (w17 () i) ; I<p<el<g<ee
leltp.g) =

suanInI/pa*(n)7 1 <p<ooqg=oo.
where a* is given in (6.43). @
The Lorentz sequence space £, ), 1 < p <oo, 1 < p < oo, g = oo, is a linear space
and || - [|f, ;) is a quasi-norm. Moreover Lipg) 1 < p<oo, 1 < g < oo, is complete
with respect to the quasi-norm || - || (a)

The Lorentz sequence space £, ) and L, ) when X =N, o7 =2 and p({n}) =
1 are equivalent for 0 < p < oo, 0 < g < oo. In fact, if we let a*(n) = f*(¢) for
n—1<t <n, wehave

o= | [ (7r@)"
0

1/q

1/q

n=1

= i [a*(n)}q/t‘m’_ldt

n

and since
n

1 q/p
(2> n?/P=1 < /t"/”_ldt < opt/r-!
n—1
we obtain

n

1\9P = oo o
<2) Z(a qnq/p ! z /,q/p—l dr<2 Z(a* (n))qnq/p—l7
n=1 n=1

n=1
n—
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from which we get

e 1 . 1/q
(3) " (Sowonrs) < <2 ( St

n=1 n=1
thus

1 1/p |
() Naltpg < Wllo < 2lalty g

Observe that the space £(, ;) is not empty when p = 0. For example, all sequences
which only have a finite number of nonzero elements are in E( i) forall 0 < g < oo,
This show that there is a fundamental difference between L. 4) and £(., 4.

The following result will be of great utility in our study, and we include a short
proof for the benefit of the reader.

Theorem 6.34. If a = {a(n) },en and b = {b(n)},en are complex sequences, b €
Lipg) With 1 < p <o, 1 < g <ooand |a(n)| < |b |f0ralln €N, thenac {,,
and |‘a||zp,q) S ||b||qu)

Proof. 1If fa(n)| < ’b(n)| for all n € N, then

{nen:lam|>2}c {nen:|pm]| >},

by the monotonicity of the measure, we have D,(1) < Dj(A) for all A > 0. Thus,
for any m € N, we obtain

{A>0:D,(A) <m—1} C{A>0:Du(A) <m—1}
and hence a*(m) < b*(m). From this last fact, the result follows easily. O

The aim of this section is to present basic results about Lorentz sequence spaces.
The Lorentz sequence space £, ;) is a normed linear space if and only if 1 < g <
p < . Moreover, £, ,) is normable when 1 < p < g < oo, that is there exists a norm
equivalent to || -[[¢, . For the remaining cases {(,4) cannot be equipped with an
equivalent norm.

The normable case for p < g comes up in the following way

- 1/q
(Z (a**(n))qnq/p1> , g <o

n=1

sup{n'/‘”a**(n)}7 g=oo

n>1

llallt,,
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where a** = {a**(n)}, is called the maximal sequence of a* = {a*(n)} and it is
defined as

We now prove that the functionals ||-||* and ||-||* are equivalent.

Theorem 6.35. Let a = {a(n) },>1 be a complex sequence, 1 < p < q < oo then

q
s * p s
el < ol < (525 ) el

Proof. The inequality
||alep,q) S ||aH)(kP q)

is an easy consequence of the fact that
a*(n) <a™(n)

for all n € N. Hence, we just need to show that

q
X p s
”aH(p.q) < <p_ 1) Ha||(17~,‘1)'

In fact, let » = g — 4. Using the fact that the function g(¢) = #"/9~! is decreasing we
apply the Holder inequality to obtain

-
(v
(

)t S ek

IN
HM:
HM:

q/q
ko
1

q/q

talde

IN
M;
o —_

Il
-

Moreover since f(t) =1~ '~ is decreasing and J f(t)dt < o we have
k

k
k
> s < / Fle)de

k—
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from which we get

and

<(2)" Sl (:zlwwq_,k,)
- (4)" S (z )

= (3)%];@*(/«))%‘/”

- (%) Sww

That is \
* 4 s
||aH(P7‘1) S (p_ 1) Ha”(pq)

(]
Note that if {a; }i=12...5 € {(pq), then
N s N *
Sa| <Y a (6.44)
k=1 (p.a) k=1 (p.a)
p &
< (_1) > llaxllfy g (6.45)
p k=1

That is, || - H‘Ep‘q) is a quasi-norm. On the other hand, if (6.44) holds, then || - H‘EP g i
equivalent to a norm, this norm is called decomposition norm and it is defined as

N N
||aHl7‘1 = lnf{z HakHng) ca= Zak} .
k=1 k=1
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The functional || - | ,, is an equivalent normto || - pr o) When 1 < p,q < e Moreover

1-llpg = [I-11t5q) if 1 < g < p.

The following result is due to Hardy and Littlewood.

Theorem 6.36. If a = {a(k) }xeny and b = {b(k) }ren are complex sequences, then

oo

ih@w@ﬂéZf@WW» (6.46)
k=1

k=1

Proof. Tt will be enough to show (6.46) for nonnegative sequences. For n € N
fixed, we set E = {1,2,---,n}. Let us consider c¢(1),c(2),---,c(m) the different
elements of the set {a(k): k € E}. Then it is clear that m < n = p(E). Thus, for
j€{1,2,--- ,m} we can define the sets

F;= {keE:a(k) :C(j)}

Note that the sets F; are pairwise disjoint and U7., F; = E. Observe that
> alk) =3 c(Hu(F). (6.47)

Furthermore, for any k € E there exists an unique j; € {1,2,--- ,m} such thatk € F;,
and therefore

- ilcum (®)
then ,
2 c\J 7([1 w(F )

j=1
Therefore from (6.47), we have

m

2 alk) =3 c(Hn(F)

keE =1

m . U(E)

<D cli) Y xpuery k)
=1 k=1
U(E) m

= 2, 2 cli)xn iy (k)
=1 j=1
W(E)
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That is N
> ak) < Y a*(k), (6.48)

On the other hand, employing inequality (6.48) we obtain

b(k)

2 a(k)b(k) =

keN

L=
2

w

M* M
7

k€

~.
1
z

I
Ms

<.
I
-
~
m
]

IN
Ms

Zb*

()X e (R)B" (k)

<.
Il
R

IN
M
Ms

~
Il
KR

<
Il

I
DM
IS
*
—
>~
N
Ny
*

(k).

T
[N

Hence -
S a(k)b(k) < 3 a*(k)b* (k)
which ends the proof. a

We now show a Hoélder type inequality for Lorentz sequence spaces.

Theorem 6.37. Let a = {a(k)} € {(,,) and b= {b(k)} € {(,, where 1 +1 =
then

Ex

a(k)b(k)| < llalli, 151, - (6.49)

~
Il

Proof. By virtue of Theorem 6.36 and by Holder’s inequality we have

2. |a(k)b(k)

keN

n
M

a*(k)b* (k)

~
Il

Il
M s

a*(k)k

»
I
L
£
\
~1
Sy
*
—
=~
=
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IN
N
Nk

from which (6.49) follows. O

6.9 Problems

6.38. Let 1 denote the Lebesgue measure on the o-algebra % of Borel set of [0, 1]
and put f(x) = x and g(x) = 1 —x for x € [0,1]. Express [ f||, ) and|gl|,, for
p €[0,1], g € [1,0) in terms of the gamma function.

Hint. First express these numbers in terms of the Beta function.

6.39. Suppose that u denotes the Lebesgue measure on the o-algebra % of Borel
subset of R and for each a > 0 put f,(x) = e " and g,(x) = e~ forx € R.

(a) Calculate || fu|| ;) fora>0and p,q € [1,].
(b) Calculate [|ga| ) fora>0and p,q € [1,].

6.40. On R", let 6(f)(x) = f(ex), € > 0, be the dilation operator. Show that
H‘ss(f)H(p,q) = gin/prH(pvq)-

6.41. Show that
supt' P £ () < ||l
>0

6.42. Let (X, .o/, 1) be a measure space, let p and g be two extended real numbers
in [I,0], and let p’ and ¢’ their conjugate exponents. If f € L, ,(X,</,u) and
g € Ly (X, o7, 1), prove that

=3

/ £ @) dr < (1]l ngllg -

0

6.43. Let f and g be nonnegative y-measurable functions on R*. Prove that
1 [ ok %
fedu <o [ o 0g” 0
R 0

the constant 1/2 is optimal.
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6.44. Let 1 < py < e and assume that f € L(p,co)(R™) for every 1 < p < py < es.
Prove that

tim 7l = 11

6.45. Let 1 < py < e and assume that ¢ € L, ;)(R") for every 1 < py < p < oo.
Prove that

lim — ||<P||p1 = [l
6.46. Let f € L,(X, </, ). Prove that

1M

Lp.e) < CHfHI’

where C is a positive constant and M stands for the Hardy-Littlewood maximal
operator (9.2).

6.47. Let f € L (X, </, ). Prove that

1o f | <Clflh

(s2-)
where C is a positive constant and /* stands for the Riesz potential operator (11.9).

6.48. We say that i € Q), a>0,if

log® L(

()]
————————dx < oo,
/10g°‘(e+ [h(x)])
Q
Show that & € 1 =571(0,1/e)] if and only if &+ B > 1, where

1

h(x) = ——= eR.
(X) x|10gx‘ﬁ? ﬁ

6.10 Notes and Bibliographic References

The Lorentz spaces were introduced in Lorentz [44, 45]. It seems that the first ex-
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The space L; + L., was studied in Gould [21] and Luxemburg and Zaanen [47].

The spaces Lexp and LlogL were introduced independently by Zygmund [85]
and Titchmarsh [78, 79].



Chapter 7
Nonstandard Lebesgue Spaces

Give more spaces to functions.
ALOIS KUFNER

Abstract In recent years, it had become apparent that the plethora of existing func-
tion spaces were not sufficient to model a wide variety of applications, e.g., in the
modeling of electrorheological fluids, thermorheological fluids, in the study of im-
age processing, in differential equations with nonstandard growth, among others.
Thus, naturally, new fine scales of function spaces have been introduced, namely
variable exponent spaces and grand spaces. In this chapter we study variable expo-
nent Lebesgue spaces and grand Lebesgue spaces. In variable exponent Lebesgue
spaces we study the problem of normability, denseness, completeness, embedding,
among others. We give a brisk introduction to grand Lebesgue spaces via Banach
function space theory, dealing with the problem of normability, embeddings, dense-
ness, reflexivity, and the validity of a Hardy inequality in the aforementioned spaces.

/\ In previous chapters we tried to give detailed proofs of the results, but in this
chapter we will be much more concise, approaching the reader to a style more close
to a research paper than to a textbook exposition.

7.1 Variable Exponent Lebesgue Spaces

Our goal in this section is to define the so-called variable exponent Lebesgue spaces
L,((£2), introduce an appropriate norm and study some fundamental properties of
the space, for simplicity we will work only on a measurable subset €2 of R” with
the Lebesgue measure.

By () we denote the family of all measurable functions p :  — [1,ce]. For
p € Z(Q) we define the following sets

0(p)i= @ = {(reQ: plx) = 1},
Q.(p) == Q= {x € Q: p(x) =},
Q,(p) =2, ={x€Q:1<p(x) <eo}.

© Springer International Publishing Switzerland 2016 269
R.E. Castillo, H. Rafeiro, An Introductory Course in Lebesgue Spaces, CMS Books
in Mathematics, DOI 10.1007/978-3-319-30034-4_7
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Definition 7.1. By L, (£2) we denote the variable exponent Lebesgue space as the
set of all measurable functions f : £ — R such that

Poi () = / ()P de < oo D
Q.

and
esssup | f(x)| < eo,

X€Q.,
where the measurable function p : Q — (0,e] is called variable exponent. The
functional p,.y is known as a modular. @

For the variable exponent p we define the following numbers

p-(2) = p-=essinfp(x), p+(Q2) = ps = esssupp(x) (7.2)

5

if m(Q,) >0, and p_ = p, =1if m(Q,) =0. For p € Z(Q) we define the dual
exponent or the conjugate exponent has

oo, x €L,
Px)= p(’:f;ll,xeﬂ*,
1, xeQ.,
which implies the pointwise inequality
1 1
—+ =1.
p(x)  p'x)

If a measurable function p : R" — [1,0) satisfies

1< P—y P+ <o, (73)
then the conjugate function
/ p(¥)
pP(x) =
® p(x)—1

is well defined and moreover it satisfies (7.3).

Working with the definition of p_, p, and the conjugate exponent, we have the
following relations

L (P(), =(p-)s
!/
2 (P()_=(ps).
A natural question is whether the space L,(.)(£2) is, in general, linear. The answer
is affirmative whenever p; < co.

Lemma 7.2. The space Ly, (£2) is linear if and only if p, < eo.
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Proof. NECESSITY. Suppose that p, = . We will show that there exists a function
fo € Ly()(L2) such that 2fy & L,y(2). Let A, = {x € Q\Q.. : m— 1 < p(x) <m}.
Since p = oo, there exists a sequence my — o,k € N such that m(A,, ) > 0. We now
construct a step function fy; i.e., fo(x) = ¢, for x € A,,, where ¢, is given by the

relation
/cfn(") dx=m2,

An
this defines c¢,, univocally if m(A,,) # 0. We then have
0) =, AVdx=Y m? <o
m=1

m=1

m

which entails that fo € L, (£2). On the other hand,

3 (2f0) >Z (2¢, )P dx

k=1

A,

=1 / PO dx
my
1

A,

2
7

v
M

k

which means that 2 fo ¢ L, (£2).

SUFFICIENCY. Let p, < oo. We have

pp(y(ef) < max{[c[’, 1}p,0)(f)

and
Py (f +8) <27 [pp(y (f) + Pp ()]
for all function f and g in L, (£2). O

The next result tells us that the definition of the variable Lebesgue space is not
void, in the sense that it always contains the set of step functions, whenever p < oo.

Lemma 7.3. Let p, < oo. Then the set of step functions belongs to the space
L, (Q).
p(-)

Proof. Let f(x) = Y| cixa, (x) be a step function where £ are pairwise disjoint.
We then have

N N
n=3 / P de < 3 max{1, lecl” (<) <
k=1 k=1
(o)

which shows the validity of the lemma. a
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7.1.1 Luxemburg-Nakano Type Norm

From Lemma 7.2 we already know that the space is linear if and only if p, < oo.
We now want to introduce a norm in the variable exponent Lebesgue space, but
after a moment’s reflection it is clear that the norm cannot be introduced in a similar
manner as in the case of constant p. We will use the so-called Luxemburg norm, also
known as Luxemburg-Nakano norm. Before proceeding in doing that, we will prove
some auxiliary lemmas that will be used in the problem of introducing a norm in the
aforementioned space.

Lemma 7.4. Let f € L,.)(£2), 0 < p(x) < oo. The function

F(A):= Pp() <£‘) , A>0, (7.4)

take finite values for all A > 1. Moreover; this function is continuous, decreasing,
and limy_,..F(A) = 0. If p; < oo, the same is true for all A > 0.

Proof. By definition we have that F(1) < oo. It is clear that the function (7.4) is
decreasing, which immediately entails that F(1) < o for all A > 1. The continuity
follows from

: _ -1 P 3 —p) _ 5P
Jim [F(3)~Fa)| < Jim [ 7091277~ 477 ax
Q.

< / lim | £(x)|7®(A 70 — 4,7 dx
A—Ao
o\Q.

(7.5)

where we used the Lebesgue dominated convergence theorem since A 7% < 1
for A > 1. Using again the Lebesgue dominated convergence theorem we obtain
lim;HwF(l) =0.

When p, < oo, for A < 1 we have that F(1) < F(1)A ™7+ < . The continuity
follow, once again, from (7.5) since AP < cAy 77 for A near Ao. a

We now introduce a norm in the space L, (£2).
Theorem 7.5. Let 0 < p(x) < oo. For any f € Ly (£2) the functional

p(x)
dx <1 (7.6)

11l == infd 2 >0 / ‘fﬁ)

Q\Q.

takes finite values and

f
) <1, 0. 7.7
Pp() <f||(p)> = HfH(P) # (7.7)
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If the exponent satisfies py < oo or || f||(,) > 1, then

f
Pp() <||f|([7)> =1, |fllp) #0. (7.8)
Moreover, if 1 < p(x) < pi < oo, x € Q\Q.., we have that
12,0 @) = 11f1lp) +eSS£SzuP|f(X)| (7.9)
xelle,

is a norm in the space Ly ().

Proof. By Lemma 7.4 we have that || f||,) is finite whenever f € L, (£2) and (7.7)-
(7.8) are consequences of the definition given in (7.6) and Lemma 7.4. To show
that (7.9) is a norm, it suffices to show the triangle inequality for || f]|(,), which
follows from the inequality

[Ay1+(1=2A)y2l” <Ay |7+ (1=2) 2|, (7.10)
for0 <A <1landp > 1, sincet + t” is a convex function. O

We now obtain upper and lower bounds for the modular p,,. via the functional

Corollary 7.6. The functional (7.6) and the modular p,.) are related by the follow-
ing estimates

P+ P
(@u) S,,p(,)@g('%) Az fly. @1

P D+
(Hflm> <pni () = ( ”’;'L'“’)) <A Sl (1)

where the extreme cases p_ = 0 or p. = oo are admitted.

Proof. Let us rewrite (7.11) and (7.12) as

Z,I)*Spp(,) Lf <AP,0< A<, (7.13)
I1£1(p)

and

AP < ppy A ) <araz (7.14)
171

We now have that(7.13) and (7.14) are a consequence of (7.8) if p; < eoor p; = oo
with |||,y > 1. If py =0 and || f||(,) < 1, the right-hand side of the inequality
in (7.13) is a consequence of (7.7), and the left-hand side of (7.14) holds since
18l =2 = 1for g(x) = Af(x)/ [ fllp)- O
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Corollary 7.7. Let p be a measurable function, 0 < p_ < p(x) < py < oo, x €
Q\Q.., we have the following estimates

1A% < oo () < IS Iflly < 1, (7.15)

\%

LA < oo () < IS £l = 1. (7.16)

Corollary 7.7 states that in questions related to convergence, p,(,(-) and ||-[|,) are
equivalent. This observation is quite useful due to the fact that the norm is given by
a supremum and calculating explicitly the norm can be impossible, except in trivial
cases.

With these estimates at hand, we can get an upper and lower bound for the norm
of an indicator function of a set.

Corollary 7.8. Let E be a measurable set in Q\Qw.. If 0 < p_ < py < oo we have
the estimate
m(E)'P < |2l < m(E)P,

when m(E) < 1. In the case m(E) > 1, the signs of the inequality are reversed. As a
particular case, we have that || %, ||,y = 1 is equivalent to m(E) = 1.

Example 7.9. An example that illustrates (7.7) instead of (7.8) is the following. Let

Q=[0.1], p(x)= % L Qo= {0}, () =42,

1

We have that | f|(,) = I/, @) = 1, since F(1) = [|f(x)["™ dx < 1, but F(A) =
0

o forall A < 1. @

Remark 7.10. The space L,.)(£2) is ideal; i.e., it is a complete space and the in-

equality |f(x)| < |g(x)[, g € L,(.)(£2) implies that || f||, @) < llgllL, @) (the com-
pleteness will be showed in § 7.1.4).

Let 1 < p(x) < eobe such that p, < . The semi-norm || f||(,) can be represented
in the form

Il = [ Pwsar, o0 €Ly (@) @.17)
Q.
px)-1 fx

where @(x) = ‘ ”%i) If(x;\ ,x ¢ Q. and || @[,y < 1. In reality (7.17) is sim-

ply (7.8), the inequality || ®||(,;) <1 is immediate.

The next lemma, albeit simple, is also a useful tool dealing with the estimation of
norms in variable exponent Lebesgue spaces. It states that if the modular of a dilated
function is bounded then the function is bounded in norm, with certain upper bound.
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Lemma 7.11. Let 0 < p_ < p; <o [f

Pp() (f> <b, a>0,b>0, (7.18)

a
then || f||(p) < ab” withv =1/p_ifb>1andv=1/p, ifb<1.

Proof. By (7.18) we have the inequality p,)(f/(ab")) < 1, and now by the defini-
tion (7.6) we get that || f||,) < ab". O

The next result generalizes the property
— £
||fpr - ”f”YP
for the variable setting.

Lemma 7.12. Let 0 < y(x) < p(x) < pi < oo, x € Q\ Q... Then

IAIG) < 17Ny < IANGys 1Ay > 1, (7.19)
ATy < 17Ny < WANG)s Iy < 1, (7.20)

where fY = |f(x)|"™. If p and 7y are continuous functions, there exists a point xo €
Q\Q., such that

ey = AT (7.21)
Proof. Let A = ||f||(p)» t = [l/7]|(2)- Since (%) = L(p), by (7.8) we have
p(x)
1) | 7 pl)
[
u A
Q\Q. Q\Q.
Therefore .
)‘P(X) _ ‘u%
pl) P 4y =
/ PN T ot & = O (7.22)
Q.

Suppose that A > 1. We now show the right-hand side inequality in (7.19), i.e.,

@ < A" . Suppose that 4 > A", then u% > A%I7 . This means that the numera-
tor in (7.22) is non-positive in almost every point, which is impossible. A similar
supposition: pt < A%~ gives a nonnegative numerator, which is also impossible. The
case A <1 is similar.

Now, if p and 7y are continuous functions, then from (7.22) we get that the nu-
merator of the fraction must be zero in some point, which implies (7.21). O

We now obtain that under some circumstances it is possible to realize the value
[I£1l, in the following sense.
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Corollary 7.13. Let 0 < p_ < p(x) < py < oo, x € Q\Q... If p is a continuous
Sunction in Q\Q.., there exists a point xo € Q\ Q.. (which depends on f) such that

1
plxg)

1l / P dey (7.23)
Q\Q.
Proof. Taking y(x) = p(x) in the equality (7.21) we get (7.23). O

Definition 7.14. We define the sum space L,(Q2) +L,(£2) as
Ly(Q)+L,(Q):={f=g+h:geL,(Q),heL,(2)},
which is a Banach space with the norm
112, 2)+,(2) :figf_h{ 180z, @) Tl @)}
The intersection space L,(2) NL, (L) is defined as

1Az, @)z 0) = max{ 1 £, @) ol £l 0}

which is a Banach space. %)

We now show that the variable exponent Lebesgue space is embedded between
the sum and intersection spaces of the spaces L, and L,, .

Lemma 7.15. Let 1 <p_ < p(x) < p; <o, x€ Q, m(Q..) =0. Then
L,,<<>(Q) CL, (Q) +L,, (Q). (7.24)
Moreover,

10y ) < max{{[fll, s 1f1lp, }-

The result follows from the sphttmg f(x) = filx) + fa(x) where fi(x) = f(x) if
|f(x)] <1and fi(x) =0 otherwise.
The Lemma 7.15 admits the following natural generalization.

Lemma 7.16. Ler 1 < py(x) < p(x) < pa(x) < oo and m(Q.(p2)) =0. Then
Lp()(82) © Lp,((82) + Ly, (£2).

In the previous lemmas, splitting the function in an appropriate way we were able
to obtain embedding results. We now want to obtain embedding results where the
splitting is applied to the underlying set €2.

Lemma 7.17. Let Q = Q, UL, and let p be a function in Q, p(x) > 1 with p, < oo.
Then

max{|[f|

L@ Il 0t S 1 fllo@) S M lleg@) + @) (7:25)
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for all functions f € L, (£).

Proof. Let us take m(Q ) = 0 for simplicity. Without loss of generality, let a =
171l Lo (@1)> b7|\f||L ,) With a > b. We have

[lesical o= 1

Therefore || f||1,, @) > max{a,b}.
To show the rlght -hand side inequality, we write

f) _ e pfx) b @[
a+b a—+b a a+b b

where J,(x) are the characteristic functions of the sets €2;,i = 1,2. Using (7.10)

we get
Q/

which shows the right-hand side inequality in (7.25).

For the case m(Q..) > 0, the arguments are similar if we take into account the
fact that the lemma was already proved for the case 2\ Q.. = QU Q5 where Q =
Q\Q.,i=1,2. O

p(x)

dr <1,

S
a-+b

7.1.2 Another Version of the Luxemburg-Nakano Norm

The Luxemburg-Nakano type norm can be introduced directly with respect to all the

set €2 in the following form
fgbx)’ <1 } , (7.26)

which is well defined for f € L,.(2) and any variable exponent p with
0 < p(x) <eo. Itis anormif 1 < p(x) < oo, which can be shown in the same way as
Theorem 7.5. In an analogous way to (7.8) it is possible to show that

Wl
ST =1 7.27
/ 'IIfII I 720

if py <eoor pi = oo, but £} > 1.

1A, = inf{), >0:py() <£) +esssup

XEQ.,

Theorem 7.18. The norms (7.9) and (7.27) are equivalent, i.e.
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1
5||f\L

@ <A1y <A@ (7.28)

»()

where f € L,y (£2), 1 < p(x) < oo, py < oo

Proof. The right-hand side inequality in (7.28) is equivalent to
inf{A >0:F(A)+c/A <1} < A+e,

where F (1) is defined by (7.4) and

c=[flleoy 2=l

From the above, it is sufficient to show that F(g +c¢) + 15, <
words: F(Ag+c¢) < Ao+c Since F(Ag+c¢) = pp() (m) , by (7.11) we obtain

Al _ o
that F(3 +¢) < pr B = 7%

The left-hand side in (7.28) is a consequence of the inequalities

inf{?L>O:F(?L)+)CL<1}>inf{)L>O:F(/l)<l}:7to,

and

inf{7L>O:F(/l)+)CL§1}Zinf{l>0:;§1}

since the left-hand side inequality is not less that A"“ O

7.1.3 Holder Inequality

We now proceed to get Holder’s inequality and after that we will get the Minkowski
inequality using F. Riesz construction via Holder’s inequality.

Theorem 7.19 (Holder’s inequality). Let f € L,.(2), ¢ € Ly(£2) and 1 <
p(x) < oo. Then

/ AP0l < K1 1 119 (7.29

withk:i+(p,l) = sup (>+sup ()

Proof. Letus note that, under the conditions of the theorem, the functionals || f|,, ()
and ||@||,»() are not necessarily norms and the classes L. and L., are not neces-
sarily linear, but they always exist by Theorem 7.5.

To show (7.29), we use the Young inequality

ab < — 4 — (7.30)
p
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witha >0,b>0, 1+ =1 and 1 < p < eo. The inequality (7.30) is valid for p = 1
in the form ab < % if b <1 and for p = o in the form ab < % if a < 1. Therefore,

| p'(x)

~ p(x)

1
(x)

f(x)
171

o(x)
el

+

)

fxex)
Hf“p(')”@”p’(')

where x € Q\Q..(p)UQ..(p'), meanwhile for x € Q..(p) and x € Q..(p") we have to

omit the first and second terms respectively in the right-hand side, since ‘ﬁ‘ <1
p(:

for x € Q..(p) and ‘%‘ <1 for x € Q..(p'). Integrating over Q2 and estimating
p and p', we arrive at (7.29). |

In the constant exponent case p(x) = p, the Holder inequality has a generalization

of the form
1 1 1
vl < Nullpllvllg, —+-=—,

which is an immediate consequence of the Holder inequality and the relation
ulllp = Iluall - (7.31)

In the variable exponent Lebesgue space the relation (7.31) is no more valid in
general, cf. Lemma 7.12 and (7.81). Nonetheless, the inequality is valid.

Lemma 7.20. Let ﬁ + ﬁx) = @, p(x) > 1, gx) > 1, r(x) > 1 and let R =

SUPc\@.(r) I'(X) < eo. Then

||MVHL,(.)(Q) < CHM”LP(‘)(Q)||V||Lq(.)(9) (7.32)
for all functions u € L,y and v € Ly with ¢ = ¢1+¢2, ¢1 =SUP,eq\0_(r) % and
€2 = SUPyc\Q..(r) % .

Proof. To show (7.32) we use the inequality
(AB)" < “ar 4+ Lpa
p q
withA > 0,B>0,p > 0,9 > 0 and % —i—é =1, see Problem 1.48.
Integrating the inequality
) < Ty T )

u(x)v(x < u(x + v(x

Ju(x)v(x)| p(x)l()l q(x)l()l
we get

u(x)v(x)" dx < ¢ / |u(x)|PW) dx + ¢, v(x)|["@dx  (7.33)
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since Q..(r) = Qu.(p) N Q2u(g). From (7.33) and (7.7) it follows

upr) |
/ dx
el V1l @)
O\ Q..(r)
p(x) q(x)
<c / ) dx+c; / ) dx < ¢+
[ell ) IVl
Q\Q.(p) Q\Q.(q)
From Lemma 7.11 we now get [[uv||(,) < (c1 +c2)lull()[[v]l(g), since ¢ +c2 > 1.

O

The inequality (7.32) is also valid in the form

Pry (wv) < ellullp, @) VliL, @)

if flullz, @) <1and ||v[|z, @) < 1, which follows from the Holder inequality (7.29)
and the estlmate (7.20).

7.1.4 Convergence and Completeness

Theorem 7.21. Let 1 < p(x) < py < oo. The space Ly(.)(£2) is complete.

Proof. The space L,)(£2) is the sum of L,.)(£2.) + L..(£2..) where each space is
understood as the space of functions which are 0 outside the sets €2, and £2.., respec-
tively. Therefore, we only need to show the completeness of the space L, (£2,).

Let { fi} be a Cauchy sequence in L,.)(£2,) such that for any positive number s
exists Ny (N; < N, < ...) such that

Hme -

Ly(Q )<2é s=1,2,3,....

Then

Z ||st+|

Let Q, = {x e, x| < r} ,r > 0. By Holder’s inequality (7.29) we obtain

Z/|fo+|(x) |dX<CrZ||fNY+] ‘
s:lQ'

Loy (€, < oo,

Ly (€.) < o (7.34)

where ¢, = (p% + (p,l%) 1%, Iz, (2.) < oo By (7.34), {fn,(x)} is a Cauchy se-
quence in L;(£,). Therefore, there exists the limit f(x) = lim;_,.. fy, (x) for almost
all x € ,, which entails that the same happens for almost all x € €2, since r > 0 is
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arbitrary. Now we only need to show that
im | fi = £l ) = 0.

Since {f} is a Cauchy sequence, we have that || fx — fu,||L ) < € whenever k

and s are sufficiently large. Now by (7.15) we get

/|fk Vdx < el <.

Invoking Fatou’s Lemma we obtain

/|fk x)|P dx<11m1nf/|fk Fv, ()P dx

< sup / ) — fu, (0)] dx

<E
which ends the proof. O
Lemma 7.22. Let 0 < p_ < p(x) < p; < oo, x € Q\ Q... The convergence
[ 1) = 7)1 v +esssupl ) — £ < &
xeL2,
Q\Q.

is equivalent to the norm convergence

”f_fm”(p) +esssup|f(x) _fm(x)‘ <E.

XELQ,

Proof. Follows from Corollary 7.7. ad

7.1.5 Embeddings and Dense Sets

Theorem 7.23. Let 0 < r(x) < p(x) < oo and let m(2\Qw.(r)) < oo. If Q..(r) C
Q..(p) and
R:= sup  r(x),
XEQ(p)\ Q2 (1)

then Ly, (L2) C L.y (2) and

Pr() () < Pp(y (F) +m(Qu(P)\ Qe (NI IE o o2y + M2\ QL (1)) (7.35)
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for any f € Ly (L2). (In the case Q..(p) = Q..(r), the second term in the right-
hand side should be omitted and R can be infinite). If, moreover, 1 < r(x) < p(x)
and Q..(p) = Q..(r), the inequality for norms is also valid:

£l < eollfllp) (7.36)
where
e+ (1—c))m(Q2\2(p)) inf ) C)
co = —ci)m ~(P)), c1 = 0= —=,
oo 1 ' el p@) P gl PR)

1 - 1 .
:%ljfc()Zlandv:Elfcog].

Proof. The estimate (7.35) is derived from the equality p,(\(f) = [+ [+ [ with
Q Q)
Q= {xe Q\Qu(p) : |f(¥)| 2 1}, 2 = {x € Qu(p)\Qu:(r) : [f ()| 2 1}, 23 =
{xe Q\Q..(r): |[f(x)] < 1}
The classical technique to show the inequality (7.36) for norms is based on the

Holder inequality with the exponents p;(x) = £ ((;‘)) and py(x) = (X)(X> 77 Which is

no more appropriate for the variable setting since we can have p(x) = r(x) in some
arbitrary set. Using the inequality (AB)" < 7A” + ZB? and taking A = [ f(x)| /| /| (»)
and B =1, we get, via (7.7), that

r(x)
/ SO < .
17T
0\Q..

Therefore, by Lemma 7.11 we get (7.36). O
We now show the denseness of the bounded functions with compact support.

Lemma 7.24. Let m(Q..(p)) =0, 1 < p(x) < pi < oo. The set of bounded functions
with compact support is dense in L, (£).

Proof. For f € L,.)(L2) we define fy , as

0, otherwise.

Sum(x) = {f(x)’ when | f(x)| <N and |x| < m;

By Lemma 7.22, we have

/u mm|Ww</@\w+/m|w+o

O

when m — oo, N — oo, with @, = {x € Q : [x| >m}, Qy={x € Q: f(x) >N} and
g(x) = |f(0)PW € Li(€). O
Theorem 7.25. Let p € Z2(2) N L. (). Then the set C(£) N L,.(L2) is dense in
Ly (82). Moreover, if Q is open, then the set of all functions infinitely differentiable
with compact support C7(L2) is dense in L, (£2).
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Proof. Let f € Lp()(£2) and € > 0. From Lemma 7.24 there exists a bounded func-
tion g € L, (£2) such that

If—g

By Luzin’s Theorem, there exists a function # € C(£2) and an open set U such that

m(U)<min{1,(2H§HW>”*}7

g(x) = h(x) for all x € 2\ U and sup |h(x)| = supg\y |g(x)| < [|g]|«. Then,

Po() <g;h> < max{l, (2|i”°°>p+}m(U) <1

g —hllL,, @) < € which together with (7.37) implies that

Ly(Q) <E. (7.37)

ie.,
If=hllL, @) <26 (7.38)

On the other hand, let us assume that Q is open. Since p € L..(£2), we have that
CZ () C Ly (L) and p,(.y (2) < oo, in this way there is an open and bounded set

h
G C Q such that p,,(,) (@) < 1. In other words,

||h7hXG||L,,(_)(.Q) <e. (7.39)
By the Weierstrass approximation theorem, let m be a polynomial which satis-
fies the condition sup |2(x) —m(x)| < emin{1,|G|"'}. Therefore p,(, (W%%) <
min{1,|G|"'}|G| < 1, from which

172 —mxsllL, @) < & (7.40)

Finally, similar considerations to the ones that were used to get (7.39) permit to
conclude that for a sufficient small number a, the compact set K, = {x € G :
dist(x,dG) > a} satisfies that |lmy, —my, ||., (@) < €. Taking ¢ € C7(G) such
that 0 < @(x) <1 forx € G and @(x) = 1 for x € K, we obtain

||mXG - m(p| Ly)(82) < meG - m%Ku Lyy(Q) < g,

from which, together with (7.38) and (7.40), we conclude that

Hfim(p| L,,(,)(Q) S de.
Clearly mo € C°(Q2), which concludes the proof. O

By L7 (R") we denote the class of all bounded functions in R” with compact
support. From Theorem 7.25 we get the result.
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Lemma 7.26. Let p : R" — [0,0) be a measurable function such that 1 < p_ <
py <oo. Then LY (R") is dense in Ly,.\(R") and in Ly (R").

We now show that the set of step functions is dense in the framework of variable
exponent spaces with finite exponent.

Theorem 7.27. Let p : R" — [0,0) be a measurable function such that 1 < p_ <
p+ <. The set S of step functions is dense in L,.)(£2).

Proof. Tt follows from Lemma 7.3 and from Theorem 7.25 together with the fact that
continuous functions in compact sets are uniformly approximated by step functions.
O

Theorem 7.28. Under the conditions of Lemma 7.24 the space Ly(.)(£2) is separa-
ble.

Proof. By Theorem 7.25 it is sufficient to show that any continuous function f with
compact support F C £ can be approximated by functions in some enumerable set.
We know that such functions can be approximated uniformly by polynomials 7, (x)
with rational coefficients. Taking f;,(x) = r,,(x) for x € F and f,,(x) =0 forx ¢ F,
we see that the functions f,,(x) approximate uniformly the function f(x), which
ends the proof. a

7.1.6 Duality

We now characterize the dual space of variable exponent Lebesgue spaces, which
is similar to the classical Lebesgue space, viz. the dual space of L, is L, where
p’ is the conjugate exponent. For simplicity, we will work with m(Q) < . For
m(Q) = o see Cruz-Uribe and Fiorenza [9].

Theorem 7.29. Let 1 < p_ < p(x) < py < oo and m(§2) < e. Then

Proof. The inclusion L, () C [Lp(,)(.Q)] is an immediate consequence of
the Holder inequality (7.29). We now show the opposite inclusion [Lp(.>(!2)} -

Lyy(Q). Let @ e [Lp(.)(.Q)] *, then we define the set function u as u(E) = @(y,)

for all measurable sets E such that £ C €. Since x, , = X, + X — X.» W€ have that
U is an additive function. In fact it is o-additive. To show that, let

where E; C £2 are pairwise disjoint set, and let
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Then

( =C-m(E\F,)""+.

Since m(E) < e, m(E\Fi) tends to O when k — oo, therefore y, — x, in norm.
From the continuity of @ we have that @(y, ) — @(y, ), which is equivalent to

SC‘

Xe — XFk Xe — XFk

Ly)(Q) P+

and from this we get that u is o-additive. The function p is a measure in €2 and,
moreover, is absolutely continuous: if £ C Q and m(E) = 0, therefore u(E) =
®(x,) = 0. since [(f)| < [DII/],,, )

By the Radon-Nikodym Theorem, there exists g € L, (£2) such that

O(x,) = u(E) = / 2 () dx.
Q
By the linearity of @, for a step function f =3 aix, , E; C €2, we get
o (f) = / £(x)g(x) .
Q

Using a density argument, similar to the constant case, we get the result. O

Corollary 7.30. Let 1 < p_ < p(x) < py < o and m(Q) < . Then the space
Ly (L2) is reflexive.

7.1.7 Associate Norm

We now introduce a norm inspired by the Riesz representation theorem for linear
functionals in L,,. Let

£,0(Q) = fes(@.2): /f(x)(p(x)dx oo N ELy,(Q) Y (741)
Q

with 1 < p(x) < . This space coincides with the space L,.)(£2) under certain nat-
ural conditions in the variable exponent p and it is in fact the associate space of
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Lp/(.>(!2) (see Definition (7.43) for the notion of associate space in the context of
Banach Function Spaces).
The inclusion

Ly)(2) € £,()(2), 1 < p(x) Seo (7.42)

is an immediate consequence of the Holder inequality (7.29). Observe that the space
defined in (7.41) is always linear. From Lemma 7.2, we have that this space cannot
coincide with the space L,(.)(£2) if p; = oo

Let us introduce the following notation

1 . N1 . /
- = essinf p(x), . = essinf X).
P xX€EQ\Q (p)p< ) (p) XGQ\QI(P/)p ( )
We have
1
P- P
Q](p) :Qw(p/)7 Ql(p/) :QW(p)a (p/)+ ) (p/)l -

-1 -

The space introduced in (7.41) can be equipped with the next natural norms

IFl5 = sup / F)p()dx], (7.43)

8,0, (0)<l1
and

(7.44)

Iy = sop_| [ o ar

)<l
lolyo=t]2

where we take J,(.)(¢@) as

xX€Q.,

S0 = | [ loelmar | tesssuplo(o)
\ Q..

and we assume that (p'); < e (i.e., pL > 1) in (7.43), while p(x) can be taken
arbitrary (1 < p(x) < o) in the case (7.44). Sometimes the norm (7.44) is called

Orlicz type norm.
Note that by (7.11) we have

171

in the case 1 < p(x) < p; < oo and m(Q..) =0.

L@ < I

Lemma 7.31. Let f € £,)(2), (p')L. > 1. Then || f||;, < oo and
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/If(X)fp(X)ldx <l llely < Ifl5le

Q

Ly, (@) (7.45)
forall @ € Ly (y(82), where || @[, is the norm (7.26). Moreover, the functional (7.43)
is a norm in £,(£2).

Proof. Suppose that || f||7, = co. Then there exists a function fy(x) € £,()(€2) and a
sequence @ € L, ((£2) such that §,(.)(¢) < 1 and

/hwwumxzzwsz;m
Q

(fo > 0,¢, > 0). Therefore, j,, = Y., Z‘Qk(pk(x) is an increasing sequence. Direct
calculations show that &,((j.) < 1 and

m

[h0inar =32 [ fwe@ar = m 146
Q k= Q
The sequence j,(x) converges monotonically to the function

j() = 32 %),

k=1
Moreover,
/ )P dx = lim im(@) [P dx < 1,
m—yoo
Q\Q(p') Q\Q..(p')

by the Lebesgue monotone convergence theorem and, since
sup j(x) = EZ_Q" < oo
X€Q(p') k=1

we get that j € L, (.)(L2). By the Lebesgue monotone convergence theorem and
by (7.46) we obtain that | fy(x) j(x)dx = eo which is a contradiction due to the fact
Q

that fy(x) € Sp()(Q).
Therefore, || f||}, < oo and by the definition (7.43) we get

/ £ de| < A|F;
Q

where A > 0 and ,(.)(¢/A) < 1. Taking infimum with respect to A, we get the left-
hand side of (7.45) due to the definition (7.26). The right-hand side of the inequality
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follows from (7.28). We only need to verify the norm axioms. The homogeneity and
the triangle inequality are evident. Taking || f||>, = 0, then [ f(x)@(x)dx = 0 for all
Q

@ € L,y(,)(£2) which entails that all function ¢(x) € .7 by the Lemma 7.3. Therefore

fix)=o. O
We now show that the norms (7.43) and (7.44) are equivalent.

Lemma 7.32. Let 1 < p(x) < oo, p! > 1, and p, < . The norms (7.43) and (7.44)

are equivalent in functions f € £,)(£2) :

—(p /)1 sk * $ok
2SO pl < < (7.47)
The norms coincide in the cases:

(1) m(£:(p)) =0,
(2) p(x) = const for x € Q\(Q.ULQ).

Proof. To obtain the right-hand side inequality, we show that

{(p:5pr(.)((p)§1}g{ el @ <1} (7.48)

for ¢ € L,y(,)(£2). Let 5,(.) (@) < 1. We have that p,.)(¢) < 1 whenever [|¢]|(,) <
1/(p")

1 by (7.15)-(7.16). Then, by (7.15) we have that ]}y < (pyy(@)) <1

which implies the inequality

/

1/(p)+
oz, @) < [Pp/(.)(q))} + esssup [@(x)| = 8y () (@) <1
xX€Qu(p')

whence (7.47) is proved.
Furthermore, let ¢ = 21=(P)+/(p)- < 1. We will show that

{o:110ll,,@ <1} {o: 8,0 (o) <1},

/
/

1/(p')+ 1 / .
fore [lcg||() < 1 and we get (ppm-)(w)) < IIC¢|IEQ§*/ ")+ by (7.15). This
entails that

/ 1

P (@) < lleall) "™ + Jleollo o)

Since A* +B < 2'"*(A+B)*, 0<A <1, A>0, 0<B<1, we get that
Op(y(c@) < 1and (7.48) is proved as the left-hand side inequality of (7.47).

To finish, if m(€2,(p)) = 0 or p(x) = const for x € Q\ (..U Q2), then we have
ol @ =0or (p')L/(p')+ = 1, respectively, and we obtain (7.48) with ¢ = 1,
which 1mphes the coincidence of norms. a

The Luxemburg-Nakano norm is equivalent to the norm given in (7.43) in the
following way.
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Theorem 7.33. Let p' > 1. The spaces Lyy(2) and £,,(Q) coincide modulo
norm convergence:

. 1 1
o < U< (5ot o ) Wl (49)

1
3 ILf
where 1/3 can be replaced by 1 if m(Q;) = m(Q..) =0.
Proof. From the inclusion in (7.42) it suffices to show
£,0)(Q) C Ly, (Q). (7.50)

Let f € £,.,)(£2) and let us take first the case || f||}, < 1. Take @ (x) = |f ()P0 if
x € Q\(2, UQ..) and @y(x) = 0 otherwise. We now show that

@0 €Ly (2) and  pyy(po) < 1. (7.51)

Suppose that p,y()(@o) > 1. Then

o) (f) > / lQo(x)[" W dx > 1. (7.52)
Q\Q(p')

Let
fN_,k(x) = {f(x)’ when | f(x)] <N and |x| <k;

0, otherwise.

Then @y x(x) = | fvx[P®~! € Ly()(2). From (7.52) we derive the existence of an
Ny — o and ky — oo such that

/ | oo |7 dx > 1. (7.53)

Q\Q.(p)

In consequence, from (7.45) we obtain

* -1
1< oty (o) < ool IF5C

Henceforth, in virtue of (7.15)—(7.16)

Ly (2)-

1< | ftl ;;max{ 1o )] ™ [Py vt | } (7.54)

Then,
J—— 1— 70— .
min{ [pp(-)(fNu,ko)} e [pp(-)(fNo~ko)i| " } < ool

which, from inequality (7.53) we conclude that 1 < | fi, k|- This means that
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sup | [ 19" ) x| > 1
Py <1

where
Nk @(x), when [f(x)| <N and |x| <k;
¢ (x) = ;
0, otherwise.

Nevertheless, since Pp/(.)((PN’K) < pp (@), this contradicts the supposition that
|£1I < 1, from which we get (7.50).

As a result
[ reras

Q\(2i(p)uQ-(p))

and to get the embedding (7.50) it is only necessary to show that [ |f(x)|dx < oo
21(p)
and moreover that sup,.q_(, | f(x)| < e, which follows from the inequality

/\f )]dr < cllole, @ i= 1,2,

(see (7.45)), where Q) = Q(p), 2, = Q..(p) and f € Ly, ¢ € L. (3 =1) in the
first case and f € L., € L; (¢ = ) in the second one.

We now take ||f|5, > 1. Then f(x)/[|f|l;, € Ly (£2) as was previously proved.
Therefore, f € L,(.)(£2) by the linearity of the space L,.)(£2) under the condition
p+ < oo. The embedding (7.50) is then proved.

It is only necessary to show the inequality(7.49) for the norms. The right-hand
side inequality is a consequence of the Holder inequality (7.29) and from the def-
inition of the norm (7.44). To show the left-hand side of the inequality we write
(&) = fi(x) + f2(x) + f3(x) with f>(x) = f(x),x € €, and f5(x) =0,x € 2\, and
fx) = f(x),x € Q., and f3(x) = 0,x € Q\ Q... Let us show that

Hf1||L1,(.)(Q) < ||f||;(9\(Q1UQW)) . (755)
We have that f .
pl’() <£> = x / ‘fl (x)|(pl (x)dx, A > 07 (756)
\Q.
-1
with @ (x ‘ A(x) . Choosing A = || f1| (), due to (7.45) and (7.55) we obtain

Al
1=
HfH [ In@lee < T, 1o @)

Q\Q
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Since Py (@) < Py (—) =1, we also conclude that [|¢; ][, @) <1 due

to (7.15)~(7.16) and we obtain the coincidence [[@2][z,, (@) H(px” (»)- There-

fore (7.56) implies (7.54). Since || |1, @) = | £}, (q,) and HstILp(.)(m =117 )
we obtain the left-hand side inequality.

Corollary 7.34. Let f € L,.)(L2), ¢ € Ly()(£2), 1 < p(x) < co. Regarding the norms
(7.43)—(7.44) the Holder inequality is valid with constant 1:

/ £@)9001dx < 115119l @ 2> 1. .57
and
/ )00 < ] 759
The inequality
/\f(x)q)(x)ldXS [ra b (7.59)
Q
is valid in the case
Pl > 1, py < oo, m(Q.(p)) =m(2(p)) =0. (7.60)

In reality, the inequality (7.57) was already given in (7.45); meanwhile the in-
equality (7.58) follows directly from the definition (7.44). The inequality (7.59) is
a consequence of (7.57) since |||, (@) < |||/, under the condition (7.60) by
Theorem 7.33.

7.1.8 More on the Space L ,.\(£2) in the Case p = o

The definition given in (7.41) is one of the possible ways to define the space L, (£2)
in order to be linear in the case p, = oo. It is also possible to define the spaces from
the beginning as the convex hull of the space L,.)(£2) or as

L, (Q):= ¢ feF(Q2,Z):3IA > 0such that

[l

Q\Q.

x)
dx+ || fllroqn) <o p. (7.61)

This space is always linear for 0 < p(x) < eo. The homogeneity is obvious, mean-
while the additivity is evident in the set {x € Q : p(x) < 1} due to the inequality
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(a+b)? <a?+b?, p <1, meanwhile in the set {x € Q : p(x) > 1} itis verified by
the convexity (7.10) of the function ¢ — t”, p > 1.

Therefore, in the case p, = oo we can use the three different versions of the
definition, i.e., span(L), L), or £,). We can see that

span (L,,(_)) =L, C L) (7.62)

The norm in the space £,.) is given by (7.44) whereas the norm is given by (7.6) in
the spaces span(L,(.) = L.
7.1.9 Minkowski Integral Inequality

We now extend the Minkowski integral inequality, given in Theorem 3.25 for the
classical Lebesgue spaces, into the variable framework.

Theorem 7.35. Let 1 < p(x) < p; <o and p' > 1. Then we have the Minkowski
integral inequality in the variable exponent Lebesgue space

/ femd| < / LFCIE dy: (7.63)
Q Q
4

Proof. Let J be the expression in the left-hand side. We get

J< / /|<P (x,y)[dx | dy.
H(PHL 20) (:z)<l

Using the definition of norm given in (7.44), we obtain the desired inequality. O

Corollary 7.36. Let 1 < p(x) < p; < ooand p' > 1. Then

/ Fend| <e / 1G5y, (7.64)
Q Q

and

L@ (7.65)

/f(-,y)dy <cz/\|f

@ Ly
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where ¢; =1 if m(2,) =0and ¢; =2~ L)+ /(0% in the other case. The constant

¢z = key if m(Q.) =m(21) =0 and ¢y = 3kcy in the other case, where k = p% +
1

w)--

Proof. The inequality (7.64) with the constant ¢; = 2~ 1+(P)+/ " is a consequence

of (7.63) due to (7.47). In the same way (7.65) follows from (7.63) by virtue of (7.49)

and (7.47). To prove that ¢; = 0 in (7.64) in the case m(€Q;) = 0, note that

*

/f o < /||<p|
6 )<l

p

L@l FCyllay.

To finish the proof it is only necessary to see that the conditions 6,.)(¢) < 1 and
19z, (@) <1 are equivalent in the case m(£2;) = 0, as a result of (7.15)~(7.16).
O

7.1.10 Some Differences Between Spaces with Variable Exponent
and Constant Exponent

Let us start with a property of the variable exponent Lebesgue spaces which is con-
trary to our intuition from the classical Lebesgue spaces. In this case, let us take the
space L, (£2) givenin (7.61). Let Q = [1,), p(x) = x and f(x) = a where a > 0.

We have that f € L,(£2) since taking some A > a the integral [ |f(x)/A[*dx s finite
1
but f ¢ L,(£2) for any constant p.

We now show two more differences between the constant and the variable frame-
work, namely in regards to the invariance under translation and the Young convolu-
tion.

7.1.10.1 Invariance Under Translations

An important result in the classical theory of Lebesgue spaces has to do with the
boundedness of the translation operator , i.e., if f € L, (R") then we have that 7, f €
L,(R"), where 7, f(x) := f(x — h). This result stems from the fact that the classical
Lebesgue space is isotropic with respect to the exponent, since the power p is the
same in any direction. On the other hand, the variable exponent Lebesgue space is, in
general, anisotropic regarding the exponent. This anisotropy of the space generates
problems for the translation operator. Let us give a simple example, taking f(x) =
|x|~3. This function f € L,y ((—1,1)) taking the following exponent



294 7 Nonstandard Lebesgue Spaces

)2, xelx|<e
plx) = {57 rel>e (7.66)

but 75f ¢ Ly ((71, 1)) when § > g, since we translated the singularity from 0
to O but the exponent was not shifted. (75 is understood as the zero extension
whenever necessary). One could argue that the problem in this example is the non-
smoothness nature of the exponent. From (7.66) we can construct a smooth function
(for example, via Urysohn construction) and we will end up with the same problem.
Our example is not an isolated incident, since Diening proved that this phenomenon
is persistent, i.e., if p; > p_, then there exists a & € R\ {0} such that the translation
operator T, is not continuous, cf. Diening, Harjulehto, Hésto, and Ruzicka [17].

7.1.10.2 Young Convolution Inequality in Variable Exponent Lebesgue Spaces

Let
Kf(x) = (kx* f)(x) =/k(x—y)f(y)dy=/k(y)f(x—y)dy (7.67)
RVI RVI

where * is called convolution, cf. § 11.1 for more details. The Young’s inequality for
convolutions states that

f

)

1 1 1
k n < k n ny g - - — 1 - -
l *f”L,.(R )= | HLq(]R Y I L, (rm) D + g ,

which can be proved, among other means, using the following decomposition
Fr— k)| = [Fx— )| k) | (x—y) %, for s = 1 — p/r, the Holder inequality
and the integral Minkowski inequality. Since the convolution depends on the trans-
lation operator, which is not continuous, the natural question is: does the Young in-
equality for convolutions holds in general in the case of variable Lebesgue spaces?
The answer is no, in general, although there are some particular cases where it is
possible to have some version of the inequality. Let us start with a counter-example.

Example 7.37. The Young inequality in the form

(1 Fll L, @y L, oy [l ey »

is not valid for an arbitrary kernel k € L; (R") and an arbitrary variable exponent p.
For simplicity let us consider n = 1. Let

_ p1, ifx <0
p(x)_{pz, ifx>0"

where 1 < p; < py < 0. Let us define the kernel k in the following way
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) =200 if ] <3
k(x)_{ 0, ifjx>3"

where 0 < a < 1/p; —1/p», therefore k € L; (R). Let us take f as

0, ifx¢(-2,0)"

which implies that f € L, (R) if 0 < v < 1/p;. But the function kx f ¢ L, (R) if
v > o+ 1/p,. This is a consequence of

Fl) = {|x+1| v, ifxe (— 20)

min{x+3,0}
©nw= [ ey-2 e
max{x—3,—2}
and taking 1 < x < 3/2 we have

-1

(ko f) (x /Ix y=2["y+1]""dy
x—3

—X

2
= /s_v(x— 14+5)% 'ds
0

2-x

x—1

:(xfl)a*V/z_f*V(Hg)“”dg
0

“Genre

where ¢ = f EV(1+ &) 1dE. Therefore k* f cannot be p,-integrable in [1,3/2],

since (Vv — OC)Pz > 1. @
Let us now show a very particular version of Young’s inequality for convolutions.

Theorem 7.38. Let p and q be variable exponents such that % + ﬁ =1+ 1 where
r=const > 1. Ifk € L, (R")N Ly, (R") then the convolution operator (7. 67)

k- Lp()(Rn) — Lr(Rn)

is bounded.

) < 1. Then
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k(x y) 1- M(y)dy

k=) [0 | =

o

(x| < /Al KO f(y) |

R

where the constant A > 0 and the function u(y), 0 < u(y) < 1, will be chosen later.
Using the generalized Holder inequality (7.80) with the exponents

rp(y) , W)
:r’ :7’ = =
p)=r p) p—— p3(y)=p'(y) o) —1
we obtain
1
er)] <[4 et ay
Rn
)( k(x — 1—p(y)
<[iror==| ‘ (Ay)‘ (7.68)
™ pIy)
By the estimate (7.20) we get
1—20) essmf[l ”(r”
[l <l <1 (7.69)
2

since || f||z, @) < 1 and the fact that p <r.
To estimate the third factor in (7.68) it is natural to choose pt(y) in such a way

that [1—u()] p'(y) = q(v). ie.

We now want to use the inequality (7.20) in the third factor. We are now interested

k(x—y) 1
2] e o

To get (7.70) we choose
A= [kllg 1Kl
In this way (7.70) is valid by Lemma 7.15. We can now apply (7.20) and obtain

1=p(y)

‘W—” <1, (7.71)

A

)

From the inequalities (7.69) and (7.71) we get, via (7.68), the estimate
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==

sl <ear | [ ax 17Okt ay

R” R

—at” | [1rmPay [k an
Rn

Rll
where v=1—q,/rifA<landv=1—gq_/rif A > 1. Therefore

e o)
) [irore.

R

49—
ko £, < cA” (nkan K

To finish the proof, we only need to take into account that the integral is bounded
by 1 due to (7.15). O

7.2 Grand Lebesgue Spaces

In this section we will introduce the so-called grand Lebesgue spaces, a function
space that was introduced in the 1990s to deal with the problem of the integrability
of the Jacobian under minimal hypothesis. The best way to study this space is in the
framework of Banach Function Spaces, since this gives clearer proofs and follows
the historical development of the theory. As an additional benefit, it will be clear
that many function spaces fall under the umbrella of Banach function spaces.

7.2.1 Banach Function Spaces

In the following, we give the definitions and list some results regarding Banach
Function Spaces, see Bennett and Sharpley [1] and Pick, Kufner, John, and Fucik
[56] for the proofs.

In the sequel, €2 denotes an open subset 2 in R”. Let M be the set of all mea-
surable functions whose values lie in [—eo, o] and are finite a.e. in €. Also, let M
be the class of functions in M, whose values lie in (0,c0).

Definition 7.39. A mapping p : M; — [0,0] is called a Banach function norm if
for all f, g, f, in MJ , n €N, for all constants ¢ > 0 and all measurable subsets
E C , the following properties hold:

(P7) p(f) =0if and only if f =0a.e. in Q;

(P7) p(af) =ap(f);
PT) p(f+g) <p(f)+p(g);
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(P7) 0 < g < fae.inQ implies that p(g) < p(f) (lattice property);

(P7) 0 < f, 1 fae. in Q implies that p(f,) T p(f) (Fatou’s property);
(P7) m(E) < +eo implies that p(y, ) < +ee;
(P7) m(E) < +eo implies that [ fdx < Cgp(f) (for some constant Cg, 0 < Cg < oo,

E
depending on E and p but independent of f). )

It is noteworthy to mention that the lattice property is a consequence of the Fatou
property, see Problem 7.73.

Based upon the notion of Banach function norm, we introduce the Banach func-
tion space X,,.

Definition 7.40. If p is a Banach function norm, the Banach space
X(p)=Xp =X = {f € My: p(If]) < +o0} (1.72)

is called a Banach Function Space. For each f € X define

I1£1lx = p (11D (7.73)

@
There is also a notion of rearrangement invariant Banach function space, namely:

Definition 7.41. Let p be a Banach function norm. We say that the norm is rear-
rangement invariant if

p(f)=p(g)
for all equimeasurable functions f and g. In this case the Banach function space
X(p) is said to be a rearrangement invariant Banach function space. @

A very important property of the Lebesgue space is its dual characterization, for
example, in L,[(0, 1)] we have

1

Lo = Sup /ﬂmamw
”g”Lp,([O.]]) 0

/]

where p and p’ are conjugate exponents. This characterization gives us immediately
one of the key inequalities in the theory of Lebesgue spaces, namely the Holder in-
equality which gives an upper bound for the integral of the product of two functions
based upon their norms. The following notion is introduced to capture this “duality”
in the framework of Banach function spaces.

Definition 7.42. If p is a Banach function norm, its associative function norm p’
defined on M{ is given by

ple)=sups [ fearifems, p(n<1yp. (7.74)
Q
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%)

As in the case of Banach function space, we can introduce the associate Banach
function space based upon the concept of Banach associative function norm.

Definition 7.43. Let p be a function norm and let X = X (p) be the Banach function
space determined by p. Let p’ be the Banach associate function norm of p. The
Banach function space X’ = X'(p’) determined by p’ is called the associate space
of X. %)

In particular from the definition of || f||x it follows that the norm of a function g
in the associate space X' is given by

gl = sup / Fedv: feM™, ||flx <1
Q

We now give some results without proof, see Bennett and Sharpley [1] and Pick,
Kufner, John, and Fucik [56] for the proofs.

Theorem 7.44. Every Banach function space X coincides with its second associate
space X"

This proposition tells us, in particular, that the notion of associate space is differ-
ent from the notion of dual space, but under certain conditions both notions coincide,
cf. Proposition 7.51.

Theorem 7.45. If X and Y are Banach function spaces and X — Y, thenY' — X'

Definition 7.46. A function f in a Banach function space X is said to have abso-
lutely continuous norm on X if

Tim |, lx =0

for every sequence {E, };-_, satisfying E, | 0. @

Definition 7.47. The subspace of functions in X with absolutely continuous norm is
denoted by X,,. If X = X,,, then the space X itself is said to have absolutely continuous
norm. @

Definition 7.48. Let X be a Banach function space. The closure in X of the set of
bounded functions is denoted by X,. ©

Theorem 7.49. Let X be a Banach function space. Then X, C X, C X.
Corollary 7.50. If X, = X, then X, = X.

Theorem 7.51. The dual space X* of a Banach function space X is canonically
isometric to the associate space X' if and only if X has absolutely continuous norm.
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Theorem 7.52. A Banach function space is reflexive if and only if both X and its
associate space X' have absolutely continuous norm.

These last two theorems are very important, since they give necessary and suf-
ficient condition to check when the associate space and the dual space are equal.
Characterizing the dual space can be quite difficult, whereas the notion of associate
space is more manageable in some sense.

7.2.2 Grand Lebesgue Spaces

In this section we give a brisk introduction to the so-called grand Lebesgue spaces,
also known as Iwaniec-Sbordonne spaces. For simplicity we work only in the Eu-
clidean space.

Let Q2 be a bounded set on R”. Let M, be the set of all measurable functions
whose value lies in [—eo, 0] and are finite a.e. in Q.

Definition 7.53. The grand Lebesgue space L,)(£2) is defined as the set of measur-
able functions on €2 for which

1
P—€

€ —€
=, s | s [l as|
Q

<e<p—1

is finite, i.e.

L) (@) = {1 €5(2,.2): fll,) <=},
where 1 < p < +eo. We stress that m(Q) < . @
The following theorem justifies the nomenclature of grand Lebesgue space.

Theorem 7.54. For p > 1, we have

Ly(€2) & Ly)(€2).

Proof. Let us take t = ﬁ and s = £ for 0 < &€ < p — 1. Direct calculations show
that

1
+:<1_8>+£:1,
t N P P

or, in other words, that 7 and s are conjugate exponents. Taking f € L,(£2) and by
Holder’s inequality, we have

1
p—€

m<89>9 e < ()| firas] ()
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1
< pre| —— Pdx
Q

which is finite, hence f € L,)(£2), since

e
€
sup 7/fp’£dx < oo,
O<e<p—1 m(Q)Q ‘ |

We now want to show that the inclusion is strict. We give an example with a
particular © which can be used to construct further examples. Let Q = (0,1) and
f(x) =x""7for p> 1. Now, let us show that f € L,(0,1)\ L,(0,1). Indeed,

1

1
dx 1
Pdyx=lim [ — = liml
[l ar=tim [ = fimlogs |
0 €

consequently f ¢ L,(0,1). On the other hand

1
erts / X HE) g
0

1
p—¢ 1 p—¢€

Il
—
>'<|
?:E
=

I

(¢}

I
N
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From this we have
1
1 p—€
1
sup £/x7("’78)dx < p < oo

O<e<p—1

Hence f € L, (0,1)\ L,(0,1). O

One of the most important property of the grand Lebesgue spaces is the so-called
nesting property, namely for p > 1 and 0 < € < p — 1 we have (see Problem 7.72)
that

Ly(Q) G Ly (Q2) G L, (). (7.75)

The nesting property (7.75) is one of the reasons for the usefulness of grand
Lebesgue spaces, since it permits to enlarge the L, scale of function with the prop-
erty L.(Q2) & Ly(Q2) & L,(2) & Li(Q) for 1 < g < p < oo whenever Q has finite
measure.

We know that weak Lebesgue spaces contain Lebesgue spaces, therefore from
the nesting property it is natural to ask what is the relation between weak Lebesgue
spaces and grand Lebesgue spaces.

Theorem 7.55. Let 1 < p < oo. We have the inclusion
L(p) () C Ly (£2).

Proof. Let f € L, ..), then

oo

€ p—¢€ _ 8([)—8) p—e—1
m(Q)b/|f| dx = 7’”(9) 0/2, Dy(A)dA (7.76)
_ 8(17_8) r p—e—1 i p—e—1
= @) /A Df(l)dk—i—/l Dy(A)dA

a

We have that A?D (1) < Hf||f(m) ,then Dy(A) <A™? Hf||iw°J , therefore from (7.76)
we get

Liper)

€ bt e(p—e) [m(Q)aP~
m(Q)!m b= =@ { p

=eal 4+

€ i »
L, am

a‘e(p—g)
e m(Q)

117

pe)
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Leta = ||f|,.,, replacing a in (7.77) we have

S

pP—€
<ellfI2 % + e

( )

— (e+ L) IE?

1
p—¢

)
su P~ dx <C
| [ <Clfl,.

and thus

1

where C = supy_., (8 + m(Q)) " hence Lipe) C L. =
We now show that the grand Lebesgue space is a Banach space under natural
restrictions.

Theorem 7.56. Let 1 < p < . The grand Lebesgue space L) (£) is a Banach
space.

Proof. Let { f,}nen be a Cauchy sequence in L) (L), i.e.
#

. £ -
llITl sup ;;;(Ziﬁi J/P|jin — j;‘p Edx =0.
Q

wﬁw0<£<p 1

Hence for an arbitrary i > 0 there exists ny € N such that

1

p—¢

€ [y n
e
Q

for an arbitrary €, 0 < € < p — 1, when m > ng, n > ng. Consequently {f;, },en is a
Cauchy sequence in L,,_.(£2) for an arbitrary €, 0 < € < p— 1, and let f be its limit
inL, .(Q).

Let n > ny. According to the definition of the supremum there exists an &, (de-
pending generally speaking on n), 0 < &(n) < p— 1, such that

1
p—¢

€
—fully= su — — fulP "t dx
|Lf j‘H]) 0 p |£2zzpf1 j~|

<e<p—1

1
p—€p(n)

&(n) —eo(n) n
ni(g)) J/u‘j?__ j;|p ol dx + Eg
Q

IN
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Furthermore, there exists n; € N such that m > n,

1
p—ep(n)

€(n) _ e n
Q
therefore
&(n) _
— < _ £ |p—&(n)
Q
p*flo(")
&(n) p—eo(n) n
m = dx A
+(mm%/f 7 2
Q
n. . n, n_
< 3 + 3 + 3= n
whenever n > n; and m > n;. O

One of the drawbacks of grand Lebesgue spaces is the fact that the set of Cf
functions is not a dense set. Fortunately we have a characterization of the closure of
Cy functions in the grand Lebesgue norm given in a somewhat manageable way.

Theorem 7.57 The set Cy(£2) is not dense in Ly (L2). Its closure CT’)°|L (@ consists
P
of functions f € L,)(£2) such that
1ime/|f\f'*fdx:0. (7.78)
£—0
Q

Proof. Let f € Cy @) then there is a sequence of functions f, € Cf’ such that

‘ Ly (
If = ful,y =0

as n — oo,
Let us take 6 > 0. Choose ng such that

B
1= Fuoll,y <5 and fi €G5

Now observe that for f,,,, by Holder’s inequality, we have

1
€ _ e 1
/\fno|” fde | <er /|fno|”dx —0

w2} i)

ase — 0.



7.2 Grand Lebesgue Spaces 305
Hence there is an &, > 0 such that when € < &j, we have the bound

p—¢

€ 9
— P8 dx —.
e | 2
Q
Finally
e e
€ &€
P—Eqx < — £ P=€qx
o 1 <\ iy J 1=t
Q Q
€ _
o7 [ e
Q
o
<||f = full , +
5,8
2 2
when € < &. This ends the proof. O

We now use the Proposition 7.52 which gives information regarding reflexivity
of the space based upon the absolute continuity of the norm.

Theorem 7.58. The spaces L,)(£2) is not reflexive.

Proof. The non-reflexivity follows from the fact that there exists a function @ for
which the norm [|@||,,) is not absolute continuous. Indeed taking the function @ as

1

D(x)=xr, x€(0,1),

we obtain

1
a pE

lim sup S/x_%edx # 0,

a—0 £>0

and this ends the proof. a

From Fiorenza and Karadzhov [18], we give the following characterization of the
grand Lebesgue spaces (in the case u(£2) = 1, for simplicity):

11,0 = sup (1 togn) / Ferds|
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where f* is a decreasing rearrangement of f defined as

f (@)= sup inff

m(E)=t E

with ¢ € (0,1).

We can introduce a generalization of the grand Lebesgue spaces, namely the
spaces L,) ¢(£2), 6 > 0, defined by

1
p—¢

e? /
= su P&y . (7.79
o=, 0| iy [V )

For 6 = 0 we have ||f||).0 = [ f||, and for 8 = 1 such spaces reduce obviously
to the spaces L, (Q).

Many results of grand Lebesgue spaces are also valid for generalized grand
Lebesgue spaces, we will just mention the following:

Theorem 7.59. The subspace Cy (£2) is not dense in f € Ly) o(£2). Its closure con-
sists of functions f € L) ¢(L2) such that

[}
limer _e=0.
tim e | £l

7.2.3 Hardy’s Inequality

We recall the classical Hardy inequality for Lebesgue spaces (see (3.40) for the
weighted version in the Lebesgue spaces)

1 x P ’ 1 ’
1
[15 ] roe| a| <25 [remar]
0 0 0

Here we discuss the Hardy inequality in grand Lebesgue spaces to show some
common techniques used in the aforementioned spaces.

Theorem 7.60. Let 1 < p < oo. There exists a constant C(p) > 1 such that

1 X
e L I TP
0 Ly (0.1])

for nonnegative measurable functions f on [0, 1].
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Proof. Let 0 < 0 < p— 1, then we have

1 X
p / f(y)dy
0
1
N pP—E€ p—€
1
—max{ sup ( [roa] e
0<e<o X
0
]f
JECE
sup - [ fly dx
O<e<p—1 (xo

£ 1 ]
<max<{ su - d dx ,
N 0<SEG m(.Q)Q/ X s f(y) Y

L I 1
sup €re O roQre / — / dx
o<e<p-1 X

1 £ 1 r
<(p—1)o 7 su / 7/ d dx
(p—1) ,Sup ’"(Q)Q o) f(y)dy

Now take 0 < € < 0, so that p — & > 1. Applying the Hardy inequality with the

exponent p replaced by p — € and multiplying both sides by £7—, we get

=/ i/xf(y)dy v
0

Q

1
p—€

p—E€ € _

< P=€dx

S p—e—1 m(Q)/f
Q
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If we take the sup over 0 < € < ¢ on both sides, the previous inequality becomes

L
P—¢€

X p=e
€ 1/
sup | —— - d dx
0<€§pc m(ﬂ)g/ o) f(y)dy

p—E€
p—0O € / -
<—— su fPfdx
p—o—1 0<sgc m(Q)
Q
And therefore
L
I/X p—0O € _
~ [ f)dy]| <(p—1)o e sup /f” fdx
X 0) ( ) P—0—1ocecp1 m(€2)
0 Q
p)
Letting
. _1 p—oO
= f -1 = —————— > 1
c(p) 0<(}'2p71(p Jo p—o—1 s
we get the desired inequality. a

7.3 Problems

7.61. Show that, under the conditions of Definition 7.1, the function g(x) := | f(x)[?™)
is indeed a measurable function.

7.62. Show directly from (7.6) that |||, = [et[| f]] ) -

7.63. Prove Lemma 7.16.

7.64. Show the validity of the generalized Holder inequality

/|f1 () -+ fm ) dx < el fillpry - fmll ey (7.80)
Q

where p'(x) > 1,...,p"(x) > 1 and 3, 1/p*(x) =1, for x € 2, where ¢ =
S 1/p5, pE = mingeq pF(x).
Hint: Use pointwise the generalized Young inequality from Problem 1.47.

7.65. Demonstrate that

A1z, ) = |||f|rHLp(_)(.Q) (7.81)

where r is constant and r > 1/p_.
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7.66. Show that

/|f x)|dx < 7pp (f)+max{5(p),(p_),, 5(p+)’(p+)/}pp’(~)(g)

where f € L,1(2),8 € Ly)(2),0<6<1,p_>1land p, <o
Hint: Use the Peter-Paul inequality (1.25) and the monotonicity of the function
p+> 0P /pwhenp > 1.

7.67. If, instead of (7.6), we introduce the semi-norm |f |<,,) as

2 /@]
P | %

de<1y. (7.82)
p(x)

|f‘(‘,,) =inf¢ A >0: /

o\Q.

Show that the Holder inequality (7.29) is valid but now with constant k = 1.

7.68. Show the completeness of the space L,.)(£2) based in the Riesz-Fischer theo-
rem, namely:

Riesz-Fischer Theorem: Ler V be a vector space and q a semi-norm in V. The
following are equivalent:

1. (V,q) is complete.
2. for all sequence {vj}jeN such that ¥ ;cyq(v;) < oo the series ¥, ;cy v converges
inV.
7.69. Show that the relations in (7.62) are indeed true.
7.70. Prove that:

1. If f € L,(R") then we have that 7, f € L,(R"), where 7, f(x) := f(x—h), for all
h>0;
2.If fe LP(RH) then limh_>()||f— Thf”L,,(R") =0.

7.71. Show that L, (£2) is a rearrangement invariant Banach function space.

7.72. Prove that L,y C L, for 0 < & < p— 1. This result, together with proposi-
tion 7.54, tells us that

Ly G Ly GLye.
7.73. Show that property (P4) is a consequence of (P5) in Definition 7.39.
7.74. Show that the norms given in the Definition (7.14) are in fact norms.

7.75. Prove that || f][ ) o = [| f]|, where |||, ¢ is defined in (7.79)

7.76. Show that, for all measurable functions p: Q — R with m — 1 < p(x) < m,
there exists a ¢,, € R such that
/cfn(x) dx=m"2.

Q
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7.4 Notes and Bibliographic References

The content of the section related to variable exponent Lebesgue spaces is largely
based on Samko [66, 65], Sharapudinov [67] and Rafeiro and Rojas [64].

The first reference to variable exponent Lebesgue spaces already appears in the
1930s in Orlicz [55].

The influential paper on variable exponent Lebesgue spaces is Kovacik and
Rékosnik [41] where many properties of the variable exponent Lebesgue spaces are
studied. We mention some papers preceding Kovacik and Rakosnik [41] in which
variable exponent Lebesgue spaces were studied Sharapudinov [67, 68, 69]. For
a more detailed historic exposition on variable exponent Lebesgue spaces see the
book Diening, Harjulehto, Histo, and Ruzicka [17] and Cruz-Uribe and Fiorenza
[9].

Grand Lebesgue spaces were introduced by Iwaniec and Sbordone [35] when
dealing with the problem of the integrability properties of the Jacobian. The gen-
eralization of grand Lebesgue spaces mentioned in the chapter appeared in Greco,
Iwaniec, and Sbordone [23].
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Chapter 8
Interpolation of Operators

It is extremely difficult to imagine the program of singular
integrals without the Marcinkiewicz Interpolation Theorem.
ROBERT FEFFERMAN

Abstract In this chapter we overview the technique of interpolation of operators,
which is widely used in harmonic analysis in connection with Lebesgue spaces. The
underlying idea is to obtain boundedness of an operator based on the available infor-
mation in the endpoints. In the first section we will deal with the Riesz-Thorin inter-
polation theorem, also known as the complex method, and give some applications,
viz. Hausdorff-Young inequality and Young’s inequality for convolution. In the sec-
ond section we prove the Marcinkiewicz interpolation theorem in Lebesgue spaces
and also mention the theorem in its natural environment, namely in the framework
of Lorentz spaces. We end the chapter with the Young’s convolution inequality in
Lorentz spaces.

We start with some concepts which will play a significant role in the subsequent
sections.

Definition 8.1. We say that 7 : X — Y is a linear operator if T (of 4+ Bg) =
oT (f)+ BT (g). Moreover, a linear operator is bounded if

T
wup 1711
20 Ik
is finite and denote that value by ||T'||y__,y :=||T||, which is called the norm of the
linear operator. %)

It will also be necessary to deal with operators T defined on several spaces si-
multaneously. We will define it for L, spaces, although it can be defined, mutatis
mutandis, for abstract function spaces.

Definition 8.2. We define L, +L,, to be the space of all functions f, such that
f=fi+/fo,with fj € Ly and f, € Ly,. @
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Suppose that p; < p,. Then we observe that

LP - LP] +LP27

forall p € [pi, pa].
In fact, let f € L, and let 'y be a fixed positive constant. Define

i, r®] >y
/i (x)_{o, )] <.

and f5(x) = £ (x) — f (x). Then
/mm%wz/muwmestww/vmvm

since p; — p < 0. Similarly,

[ a= (@ @ "< [rw)

so fi €L, and f> € L,,, with f = fi + f>.

We will also rely on the following theorem from complex analysis in the proof
of the Riesz-Thorin interpolation theorem.

Theorem 8.3 (Hadamard Three Lines Theorem). Assume that f is an analytic
Sunction on int(S) and bounded and continuous on S, where S stands for the strip
S={z€C:0<Re(z) <1}. Then

6

1-0
sup|f(9+it)| < (sup|f(it)|> (sup|f(1+it)|> ,
teR teR

teR
Sor every 6 €0,1].

Before showing Hadamard’s three lines theorem we will prove a weaker version
of the Phragmén-Lindeldf theorem from which we will derive the aforementioned
Hadamard’s theorem.

Theorem 8.4 (Phragmén-Lindelof theorem). Let f be an analytic function in the
stripS={z € C: oo < Rz < B}, continuous and bounded in the closed strip S. Sup-
pose moreover that |f(o+1iy)| <M and |f(B +1iy)| < M. Then for all x € (c,3)
we have |f(x+1iy)| <M.

Proof. We will first show a particular case, from which we will bootstrap the general
result.

PARTICULAR CASE: Let us suppose moreover that f(x+iy) — 0 uniformly in
0 < x <1 when |y| — -. By the assumption, it is possible to find a rectangle Ry,
such that |f(x)| < M whenever x € dRy. By the maximum principle we get that
| f(x)] <M in the interior or Ry.
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GENERAL CASE: Let us define the following auxiliary analytic function

Jm(2) := f(z)exp (i) ,

from which it follows that

2 2
()] = £ Q)] exp ( - ) (8.1)

if z=x+1y. The equality (8.1) shows that f,, satisfies the conditions in the particular
case, since f is bounded in S. Taking M; = M exp(max{a?, 3%} /m) we have

|fm(a+iy)|§Ml7 |fm(ﬁ+i)))|SMl

from which it follows that | f,,(x +iy)| < M; for all x € (¢, ). This last inequality

can be written as
2
z
|f (z)exp <m>

where y = max { &, 8% }. Passing to the limit in (8.2) we obtain the result. O

< M-exp <:1> (8.2)

We now prove Hadamard’s three lines theorem using the Pragmén-Lindel6f theorem
via an appropriate auxiliary function ®.

Proof (Hadamard’s Three Lines Theorem). Let us define the analytic function

ACY
M

(z)

where | f(iy)| < My and |f(1+1iy)| < M. Direct calculations show that

_ fW)] If+iy) _
M() Ml B

|©(iy)]

<1 and |®(l1+iy)|= 1,

from which, using Phragmén-Lindelof theorem, we obtain that ®(z) < 1 whenever
z € S. This means that

ro+i)l

dO+1iy)|=—"7———"""—
00+ = 1o T <

which implies that [ £(0 +iy)| < M3 ®M?. O
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8.1 Complex Method

Let us start with the following result already stated in Problem 3.129.

Theorem 8.5. Let f € L,(X)NLy(X). Then f € L.(X) forall p < r < q and we have
the bound

A1, <UAIRIA0, e (8.3)

1_6_,1-96
whenrprr 7

This theorem can be seen as a proto interpolation theorem, since we infer that f
belongs to the L, space due to the fact that it belongs to the endpoint spaces.

The next theorem generalizes Theorem 8.5, loosely stating that if an operator
is, at the same time, (L,, — L,,) and (L,, — L,,) bounded, then it is (L, — L)
bounded, where p and g are intermediate points. In Riesz-Thorin Interpolation The-
orem the L functions are complex-valued functions. The correct formulation is:

Theorem 8.6 (Riesz-Thorin Interpolation Theorem). Let (X,u) and (Y,v) be
two O-finite measure spaces. Let T be a linear operator defined on all simple func-
tions in X with range in the set of measurable functions in Y. Let py, p1,q0,91 €
[1,e0] . Assume that for all simple functions f

HTf Ly, (Y,dv) <Ao ||f‘

Lyy (X, du) > ||Tf Ly, (Y,dv) <A ”f”Lm (X,du)

for some py # p and qy # q1. For a fixed 6 (0 < 0 < 1) we define

1 1-6.6 1 _1-6 6
———— =, —=—— (8.4)
p Po pP1 q q0 q1

Then if f is a simple function in X we have

ITf

Ly(rdv) < Ao HfHLp(X,dy)a (8.5)

with
Ag <AY0AY. (8.6)

By density, the estimate (8.5) can be extended to all function in LP (X,dp).

Remark 8.7. The geometric interpretation of (8.4) is that the points (1 /p,1/ q) be-
long to the line segment connecting (l /Ppo,1/ qo) and (1 /p1,1/ ql). The schematic
of this fact is called the Riesz square, as in Figure 8.1.

The inequality (8.6) means that Ag is logarithmically convex, i.e., logAy is con-
vex.

In the case of real-valued functions, the constant appearing in (8.6) should be
changed, namely Ay < 2A(1)’9A‘1’, see, e.g., Bennett and Sharpley [1]. %)
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%-axisA

Fig. 8.1 Riesz square.

Proof (Riesz-Thorin Theorem 8.6). Let us take f has

= aeyu, (x) (8.7)

k=1

where A; are finite measure pairwise disjoint sets, 04 real numbers and a; strictly
positive real numbers. By Riesz representation theorem, to estimate || 7' | it suffices
to estimate

sup /(Tf)gdv : g simple function such that ||, <1

Y

For definiteness we take a specific g in the form

x) =Y by (x), (8.8)

s=1

where By, are finite measure pairwise disjoint sets, B real numbers, and by strictly
positive real numbers. We now introduce two auxiliary functions, namely

/

F _ za 1)0 Zm lakxAka G Zb ‘1()

k=1

’L
7
9

lﬁkx“

and finally we introduce

M@z/ﬂ@ﬁﬂv

Y
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We embedded the integral [(7 f)g into some analytic function ® and now we want

Y
to use Hadarmard’s three lines theorem to get a uniform bound for ®. To see that @
satisfies the conditions in Hadamard’s three lines Theorem, we use linearity of the
operator T and get

l—2) 2 4z 2 (l—z)#ﬂ# -
D(z) = z al(c Z)po Zplbs oo elakelﬁx/T(xAk)dvv

By

from which it is possible to see that all the conditions are satisfied in the strip S.
Since

q

i’ 7
%Gl =gl

[yl = 1f s EY], =71 Gyl = lg(x)

we obtain

P

£ i
|@(iy)| < Mollfl[p",  [@(1+iy)| < Millf][p" -

Since @ satisfies all the conditions of the three lines theorem, we get that ®(0) <
Mé’eMle , which shows the result for simple functions. By a density argument we
obtain the result. O

Now we give two applications of the Riesz-Thorin interpolation theorem.

Theorem 8.8 (Hausdorff-Young inequality). Let | <p <2and 1/p+1/p' =1.
Then the Fourier transform satisfies

1Al < [I£1L,-

Proof. The proof can be given by a Riesz square,

é-axisA

1

1/o >

0

-
—
|—
!

)
>
.
w

since || ]l < I£l,; and II£ll2 = |If]l2 (Parseval identity). O
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Another application of the complex interpolation theorem is the so-called Young’s
inequality for convolution.

Theorem 8.9 (Young’s inequality for convolution). If f € L, (R") and g € L, (R"),
lgp,q,rgooand%: Ilf)—i—é—l,then

£l <1171, llglly-

Proof. Since a direct application of the interpolation theorem is not possible, we
need to adapt our argument. Let us fix f € L,(R"), p € [1,°°] and then will apply
the Riesz-Thorin interpolation theorem to the mapping g — f * g. From Holder’s
inequality we have

|fxg ] <IIfIl, 18l

and thus g — f* g maps L, (R") to L. (R"). From the Young inequality (see The-
orem 3.26) we have that if g € Ly, then || fxg||, < [|f]|, llgll, , thus g — f*g also
maps L; to L,. From the interpolation theorem we have that g — f*gis (L, — L,)
bounded where

1 1-6 6 1 1-6 6
=42 and -=— 4
q 1 p/ r p oo
Removing the parameter 6 we arrive at 1 = %—&— é —1. 0

8.2 Real Method
We introduce some concepts that will play a fundamental role in the main theorem
in this section.

Definition 8.10. An operator T is called sublinear if

@ |T(f+8)(x)] <|Tf(x)]+[Tg(x)l,
®) [T(AF) ()| < |A[ITf(x)

for all measurable functions f and g and all scalars A. @

[l

We now give the notion of weak and strong type inequalities for sublinear oper-
ators.

Definition 8.11. A sublinear operator T defined in L; (R") is said to be of weak type
(p,q) with 1 < p < oo and 1 < g < oo, if exists a constant C, such that for each
f € Li(R") and each A > 0 we have
q
)

m({x: ITf(x)] >,1}) < (glfl

and it is said of strong rype (p,q) if

T fllz, < CIIf]

L,-
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We now justify the above nomenclature.

Theorem 8.12 Let T be an operator of strong type (p,q). Then T is of weak type
(p.a)-

Proof. By the Markov inequality, with g(1) = 17 we get

n( {x:17501 > 1} ) = {x: s> 20} ) < £ [ rseam,

R

C q
t< (11, ) - 0

The following inequality, due to Kolmogorov, generalizes the simple fact

la(AIIL, ) <m(E) 7 f

thereforem({x: T f(x)] > l}) < %HTf

LI( E)> (8.9)
where id is the identity operator and E is some finite measure set.

Theorem 8.13 (Kolmogorov’s inequality). Let E be a subset of R" with finite mea-
sure. If T is of weak type (p,q) and 0 < r < g, then

-z
[irswran<c, o] i, (8.10)
E

Proof. Foreach A € R and Cavalieri’s principle (3.34) we can write

oo

/|Tf(x)\’dm - r/xr—1m<{xe E:|Tf(x)]> /1}) A

~1/q
<m(E)> 11z,
—r / /vlm({er T f(x)] > )L}) A
0

+r / l’1m<{er:|Tf(x)|>7L}>d/l
~1/q
(lﬂ(@) £z,
~1/q
(m(E)> £z,

<r / A" m(E)dA
0
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yae
s [ (G ) o

—~1/q
(m(E)> 1711z,
1=
o (m<E>)
qg—r

— (E) [mus)] A1, + eI,

(i) o)

from which we get (8.10).

r
L,-

The reciprocal of Theorem 8.13 is also true, namely:

321

Theorem 8.14. Suppose that for any measurable subset E of R" with finite measure

we have the inequality

,
Ly>

Jirsran <.y (mie) T

with 0 < r < q. Then there exists C > 0 such that

o fxeirrwr=2}) < (S

Proof. LetE = {x: |T f(x)] > QL} for A € RT, then

-
0 an < G (s 11001 > 2))] W,
{x|Tfx)]>A}

On the other hand, it is clear that

l’m({x:|Tf(x)|>),}>: / A" dm
LelTr(n[>A}

{elTf(X)>2}

< [ irswra

then
wn( {17700 2} ) < G (32175001 > 2 }) | i,

from which it follows the desired result.
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In the following result we get a kind of improved weak type (1,1) inequality in
the form (8.11).

Theorem 8.15. Let T be a sublinear operator defined in Ly (R") + L..(R"), such that
T is of weak type (1,1) and moreover it satisfies | T f||.. <Al f||L., where A is a
positive constant. Then for f € L1 (R") + L.(R") and A > 0, we have that

m({x:Tf(x)|>?L})§§ / m({x:|f(x)|>t})dt. @.11)

2 oo

Proof. Let f € L;(R") and given A > 0 we can write f(x) = f; (x) + f*(x), where
Fr®) = FO Rt pi<aay®) and A (x) = F0) X r))5a/a) (-
From the sublinearity of 7', we see that
{x: ITf(x)] > /1} c {x: T frp(x)] > ;L/z} U {x: ITf*2(x)] > l/z}

then
(IS E (RTVAREIERYE)
e o 172> 2121 )

A
On the other hand, note that || f3 > ||z < % then by hypothesis we have

1T faplle. <A/2,

therefore
(s a0 > 22} -

Gathering all estimates, we have

(o 701> 23) < (G 772001 270 )

(@ )
/ 2() dm

IN
P\Q P\Q 5

{xlfx)>41}



8.2 Real Method 323
C
= Z / m( fx)|> t}) dr,
24),00

which ends the proof. O

We recall that a measurable function f is in the Zygmund class Llog L(X), also
denoted as Zygmund space, if

/ 1£00) log™ |£(x)] dx < oo,

where log*t = logt fort > 1 and 0 otherwise.

Theorem 8.16. Let T be a sublinear operator defined in Ly (R") + L..(R"), such that
T is of weak type (1,1) and moreover it satisfies | T f||.. <Al f||L., where A is a
positive constant. For B C R" such that m(B) < e, we have

/ T dm<C | m(B) + / () log* ()| dm
J

B

where log* t = max(logt,0) and C is a constant independent of f.

Proof. By Theorem 3.54 with p = 1 we get

/|Tf )dm =24 <x€B ITf(x )|>2A7L})d/l

[
/-

( x€B:|Tf(x)] >2A,1}) A

+1/m({x€B: ITF(x)| >2A)L}> dA

<c m(B)+/ % |f(x)|dm | dA
1 {xeB:|f(x)|>1}
\f(l()\d)L
<clm@)+ [ (1wl [ 5 an
1
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—c|m@)+ / 1£00) log™ |£(x)]dm |

Rr

where the first inequality is due to Theorem 8.15. a

We now study the so-called real method of interpolation, which is also known as
Marcinkiewicz interpolation theorem. This theorem has the same working principle
as the Riesz-Thorin interpolation theorem (showing boundedness using only infor-
mation in the end points), but it requires less from the end points, it asks only that
the operator is of weak type instead of strong type as in the case of Riesz-Thorin
Theorem.

Theorem 8.17 (Marcinkiewicz’s interpolation theorem). Ler 1 < pg < p; < oo,
Suppose that T is a sublinear operator defined in Ly, (R") + L, (R"), which is, si-
multaneously, of weak type (po, po) and of weak type (p1,p1). Then T is of strong

type (p,p) with po < p < pi.
Proof. Let f € L,(R"). For each A > 0 we can write

f(x) = fr(x)+ A (x),
where
Ja(x) = ) Xl poo1<ay (%)
and

) = £ X120 ()-

Let us consider only the case p; < o. Now, we want to show that f* € Ly, (R") and
fa € L, (R"), for that let us consider

Po
/|fl(x)|ﬂ0dm=/1ﬂo ’fff‘) dm
R {xlf()[>2)
P
< AP0 / % dm
{x:|f(x)[>A}
<an s [)ran
Rn
<APTPIAIIZ

then f* € L, (R"). With a similar argument we can prove that f; € L,, (R"). Using
the sublinearity of 7 it follows that

{x: ITf(x)] > A} c {x: T a(3)] >?L/2}U{x: T2 ()] >)L/2}.
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On the other hand, due to Corollary 3.55 and the weak type estimate for the operator
T, we obtain

ITAIL = / T )7 don

er

T f(x |>x}) A

m {x
<p/;LP1 ({ T |>/1/2})
n(

{ T F22(x)| > )L/z})

<P//1p IMO (/fz/z )| dm | dA

P1
+p/7w*1% /|f*/2(x)|mdm dA

0 Rr

p/lp_p"_'C”" / |[f(x)|Podm | dA

0 {elf(x)|<A/2}
- Cl’l
+p/)~p_]ﬁ / \”‘dm dl
0 {x|f(x)|>A/2}

By the Fubini theorem we get

21/l
||Tf||lljp§pcpo/ |po / AP~ qx | dm
0

Rn

oo

4 per / FP / Arrlda | dm
R" 2f ()l

IP=Po pCPo
Calli ik /|f )P £ ()P
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2P=P1 pCP1
o LI
pi—p

RH
ie. 2P=PoCPO  DP=PICP
—Po 0 —P1 1
7ol <o " ) [1rcoran
P—DPo pr—p
Rll
Then
IT £, < C(po,p, )| f]IL,
where
op—pocro  pp—mcpi\ /P
C(FOyPyPl): <p + ) )
P—Po pPr—p
which ends the proof. a

The version of Marcinkiewicz theorem given in Theorem 8.17 is given only in the
main diagonal of the Riesz square. The proof for the most general version is more
involved and with a little extra effort it is possible to obtain the same theorem in
the framework of Lorentz spaces, which is the natural environment for this theorem,
since we ask that the operator is of weak type (p,q). Since the proof of this result is
long and technical, we state it without proof, see Stein and Weiss [74] for a proof.

Definition 8.18. We will say T is of restricted weak type (r, p) if

ITfl,

holds for every f € L, ;)N D, where 1 < p < oo and its domain D contains all the
truncations of its members as well as all finite linear combinations of characteristic
functions of sets of finite measure. In the case r = oo, we define restricted weak type
(o0, p) by the weak type estimate (oo, p) given by

L <Clifl

(8.12)

Ly -

I7fl, , <CIFl_ - (8.13)
(@)

We are now in a position to state the Marcinkiewicz interpolation theorem in Lorentz
spaces.

Theorem 8.19 (Marcinkiewicz Interpolation in Lorentz spaces). Suppose that T
is a subadditive operator of restricted weak types (rj,p;), j=0,1, with ro < r; and
po # p1- Then there exists a constant C = Cyg such that

I7Al,,, <ClflL,, .
for all f belonging to the domain of T and to L,, where 1 < g < oo,

1 1-6 6 1 1-6 6
= +=, —= +—, 0<O6<1.
p Po P1 r o r
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We now obtain the Young inequality in weak Lebesgue spaces via Marcinkiewicz
interpolation theorem.

Theorem 8.20 (Young Inequality in Weak Lebesgue Spaces). Let 1 < r < e and

1 < p,q < oo be such that
1 1 1
I
q 1 p
Then there is a constant C = C such that, for every f € L, (R") and g € L, ., (R"),
we have

1F#glly,  <Clgl, 11, -

Proof. Let A be a real positive number to be chosen later and consider the decom-
position g = g; + g*, where g; = 8X{gl<a} and g = 8X{gl>2}- We remember (see
Theorem 5.15) the following relations between its distribution functions:

D, (a) = 0, if > A;
ST D (@) = Dg (X)), ifa <A,

and
D,(a), ifa>2;
D,(A), ifa<Ai.

‘We also know that

D8 <D (5) 401 (5

hence, it is enough to evaluate the distributions of f*g; and f*g* separately. Since
g, 1s the small part of g, we have g, € Ly, if s > p. In fact,

/|g;L (x)|‘vdx:s/as’ngl (@) dar
R~ 0

A

:s/aH (D, (@)~ D, ()} dar

5 (8.14)

A A
gs/as’l”’HgH;mda—s/as’ng (A)dar

0

0

_ S s—p P 3
A el = D (A),

if 5 < oo. In a similar fashion, g* € L, with v < p. In fact,
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R/‘gl )| dr = VO/a“Dgl (o) dat

A o

= v/ocHDg (A)da+v/oc”*1Dg(oc)doc
0 A
- (8.15)
<ADy () +v [ @7 gl de
A

_ % _
<A gl + A" Il
p—V

p _
=——A""llglly
p—v

S1nce - ,, + =, we have 1 < p < r. Using Hélder inequality and (8.14) we

have
1/r
) , (8.16)

Frgn @) < 171 lgall, < 141, (

if ¥ < oo. For the case ' = « we have

|frgr @] <A1, (8.17)

Take now A in such a way that the right-hand side of (8.16) (or of (8.17) if ¥/ = o)
equals C/2. This is equivalent to

1/(r’7p)
A= (c* 27 171, S5 el ) ,

e
2|71y

C
Df*gA <2> - 0

By the Young inequality and (8.15) we have

if ¥/ < oo, Or

if ¥/ = . In any case we have

LA g . (8.18)
p—1
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Using Chebyshev inequality and (8.18), for the chosen value of A, we have

R A N
<oc ( ) LA g7
p—1

. (1-pr/(7—)
P r—p _
Y () ( , ) C A1 gl .

p—1 r

which is the desired result. O

We have a variant of the previous theorem, namely:

Theorem 8.21 (Young inequality in weak Lebesgue spaces). Let 1 < p,q,r < e

be such that
1 1 1
I+-=-4-.
q r p

Then there is a constant C such that, for every f € L, (R") and g € L, .., (R"), we
have

1 +8lle, <Clglls, 17

i) L~

8.3 Problems

8.22. Demonstrate the inequality given in (8.9).
8.23. Prove the Theorem 8.21.

8.24. Prove the following Theorem:

Theorem 8.25 (Hardy-Littlewood-Sobolev Inequality). Let o be a real number
with0 < o <nandlet 1 < p,q < oo be such that

1 1 o
1+—-=—+4+—.
q p n

Then there is a constant C such that for every f € L, (R") we have

(FEAE

<C|Ifll,-
= /11,

Hint: Use Marcinkiewicz Interpolation Theorem in Lorentz spaces.
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8.4 Notes and Bibliographic References

A version of the Riesz-Thorin theorem first appeared in Riesz [59]. The idea of the
standard proof, as given in this chapter, appeared in Thorin [77] and was subse-
quently simplified in Tamarkin and Zygmund [76].

The Marcinkiewicz interpolation theorem was stated in Marcinkiewicz [50], but
the complete proof appeared only in Zygmund [86]. The theorem was extended to
the framework of Lorentz spaces by Hunt [33].



Chapter 9
Maximal Operator

Although Hardy and Littlewood invented the idea, it is only fair
to give Zygmund and his students such as Calderon and Stein
much credit for realizing its pervasive role in analysis.

ROBERT FEFFERMAN (referring to the maximal function)

Abstract In this chapter we study one of the most important operators in harmonic
analysis, the maximal operator. In order to study this operator we need to have cov-
ering lemmas of Vitali type. After the covering lemmas we will study in some detail
the maximal operator in Lebesgue spaces and show the Lebesgue differentiation
theorem as well as a Theorem of Cotlar. We introduce and study the class of locally
log-Holder continuous functions in order to show the boundedness of the maximal
operator in the space of variable exponent Lebesgue spaces whenever the exponent
is in the aforementioned class. We end with a very short study of Muckenhoupt
weights.

9.1 Locally Integrable Functions

Definition 9.1. A function f : R" — C is said to be locally integrable if

/ [fldp < oo

K
for all compact sets K C R". The space of all locally integrable function is denoted
by L1710C (Rn) (%)

Note that L; (R") C L joc(R"). In fact, if f € L;(R") and K C R” is a compact set,
then yx|f| < |f|, from which we obtain

/xklfldu S/Ifl du < oo,
R~ R

i.e., f € Ly 1oc(R"). On the other hand, any constant function f(x) = ¢ € R is locally
integrable, but f ¢ L;(R").

© Springer International Publishing Switzerland 2016 331
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9.2 Vitali Covering Lemmas

In this section we study Vitali Covering Lemma (which is in the same spirit as
the Borel-Lebesgue Covering Lemma or Lindelof Covering Theorem), where from
a collection of balls or cubes we can take a sub-collection of disjoint sets having
some relation with the original collection. We start with a finite version, namely:

Lemma 9.2 (Finite Version of Vitali Covering Lemma). Suppose that A is a fi-
nite collection of open balls in R", i.e., = {B1,B,...,By}. Then, there exists a

disjoint sub-collection B;,B;,,...,B;, of % such that

m (LNJBp> §3"zk:m(Bj/.).

Proof. The argument given is constructive (based upon a greedy algorithm) and
relies on the following simple observation: Suppose B and B’ are a pair of balls
that intersect, with the radius of B’ being not greater than the radius of B. Then B’
is engulfed by the ball 3B that is concentric with B but with 3 times its radius, as
depicted in Fig. 9.1.

Bz.(r) |

B(R

3R

Fig. 9.1 Engulfing ball

As a first step, we pick a ball B;, in % with maximal (i.e., largest) radius, and
then delete from & the ball B;, as well as any balls that intersect B;,. Thus all the
balls that are deleted are contained in the ball 3B, concentric with B;,, but with 3
times its radius.

The remaining balls form a new collection %', for which we repeat the proce-
dure. We pick B}, and any ball that intersects B;,. Continuing this way, we find, after
at most N steps, a collection of disjoint balls B ,Bj,,...,Bj,.
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Finally, to prove that this disjoint collection of balls satisfies the inequality in
the Lemma, we use the observation made at the beginning of the proof. Let 3B,
denote the ball concentric with Bj,, but with 3 times its radius. Since any ball B in
% must intersect a ball B;, and have equal or smaller radius than Bj,, we must have
UBQB].’_#@B C ?)le.7 thus

m<€_LNJlBg>§m LleEji Szk: (Eji):3”zm(Bj’.).

O

The previous lemma can be generalized in several ways, for example we can take
an arbitrary collection of balls, cubes, or even some arbitrary sets having some type
of eccentricity. We use m, for the Lebesgue exterior measure.

Lemma 9.3 (Vitali Covering Lemma). Let E C R”, whose Lebesgue exterior mea-
sure satisfies 0 < m,(E) < oo. Suppose that E is covered by a collection of cubes
{Q}. Then there is a finite number of disjoint cubes Q1,...,Qy in {Q} and a con-

stant y =y (n) > 0 such that Y., m(Q;) > ym,(E).

Proof. We are going to index the cubes of the collection writing Q = Q (¢) , where ¢
is the length of the side of Q. Let K; = {Q} and define

i =sup{;0=0(t) €Ky }.

If #} = +oo, then K; contains a sequence of cubes Q with m(Q) — +oo. In this
case, given 3 > 0, we simply choose a cube Q € K; with m(Q) > Bm,(E). If t} < oo,
the idea is to choose a “relatively” big cube: choose Q| = Oy, € K; such that#; > %tl*.
Then, divide K; = K, UK}, where K, consists of the cubes in K; which are disjoint
from Q, and K} of those which intercept Q1. Denote by Q7 the concentric cube
with Q; whose length of its side is 5¢. In this case, m(Q}) = 5"m(Q,) and, since
21 > t7, every cube in K} is contained in Q3.

Starting with j = 2, continue the selection procedure for j = 2,3, ... defining

t*»:sup{t;Q(t) €K;},

and choosing the cube Q; = Q; (tj) € K; witht; > t* Now, write K; KJH UKJH,
where K| consists of the cubes of K; which are dlS]OlIlt from Q;. If K11 is empty,
the process stops. We have that 77 > 77, and furthermore, for every j, the cubes
O1,...,0Q; are mutually disjoint and dlS]Omt from every cube in K;. Moreover, every
cube in K7, is contained in the cube Q% concentric with Q; and whose side is 5¢;.
Notice that m(Q%) = 5"m(Q;).

Consider the sequence f7 > 3 > .... If some Ky is empty (this is, #7 = 0 for
j > N+1) then, since

Ki=K,UK; =+ =Ky 1 UKy, U---UK;
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and E is covered by cubes in K, it follows that E is covered by cubes in K}, ; U
--UKj. Then, E C U _1 05, so that

N

m(Qj) =5" 3, m(Q,))-

1 j=1

'MZ

m.(E) <

J

- l‘l

In this case, the Lemma is proven with § =5

On the other hand, if no 77 is zero, then there is 6 > 0 such that 7} > 0 forevery j,
or 7 — 0. In the first case, tj > 38 for every j and, hence, 3} lm(Q,) — +oo when
N —> oo, Given any 3 > 0, the lemma follows, in this case, choosmg N big enough.

Finally, if tj* — 0, itis easy to see that K; C U jQ_‘;, for otherwise, there would exist
a cube Q = Q(¢) which would not intercept any Q;. Since that cube would belong
to K, t would satisfy ¢ < tj* for every j and, hence, r = 0, which is a contradiction.
Since E is covered by cubes in K|, it follows that

E) <3 m(Q}) =5" Y m(Q)).
J J

Then, given B with 0 < f < 57", there is some N such that ZIJLI m(Q;) >
Bm.(E), which finishes the proof. O

Notice that the previous lemma does not assume that £ is a measurable set. In the
case where E is a measurable set, the proof of the previous lemma may be simplified.
In fact, if E is measurable, we can suppose it is closed and bounded. We can also
suppose that the cubes from the collection are open and, hence, it follows from the
Heine-Borel Theorem that E can be covered by a finite number of cubes. Now we
can follow the same argument used for balls.

We finally give the following version, the proof of which can be found in Jones
[39].

Theorem 9.4. Let E € R" be a bounded set. Let 9 be the collection of open balls
centered in the points of E such that each point of E is the center of some ball in 5.
Then there exists a sequence By, B,, ... of balls in 2 such that

(a) The balls By,B;,. .. are disjoint;
(b) EC | 3Bq.

o>1

The set E is not covered by disjoint balls, nonetheless it is covered by concentric
balls with radius 3 times bigger than the original balls.
9.3 Hardy-Littlewood Maximal Operator

Before introducing the maximal operator, we give the integral average operator
which is related to the maximal operator.
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Definition 9.5 (Integral Average Operator). For f € L'(R") and r > 0 we define
de integral average operator A,(f) : R" — R, as

A ) =m / )] ©.1)

@

Using the integral average operator we can introduce the maximal operator in the
following way.

Definition 9.6. Given a function f € L joc(R"), we define the Hardy-Littlewood
maximal function for x € R" as

r>0 r>0 M

M) = Maf (3) = sup £5) = swp s [ 17Ol ©02)
B(x,r)

@

The adopted definition of maximal function is based in centered balls in x, but it is
possible to define other Hardy-Littlewood maximal functions, for example Mg

Mof(3):= sup s / FGe—)|dy,

where Q, := [—r,r]". The other possible definition is
Maf ()= sup o / 70)

where the supremum is given over all balls B C R" containing the point x. It is
important to notice that all the above definitions are equivalent in the following
sense:

Mf(x) =< Mof(x) < Myf(x),

see Problem 9.29.
For f € L, 10c(R"), the g-th maximal operator is defined as
1/q
1
M, f(x) :=sup 7/fy 9dy . (9.3)
q () 05x m(Q)Q | ()'

From the Definition 9.6 the following properties of the operator M are almost
immediate
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(@ 0<Mf(x) <
(b) M(f+g)(x) <Mf(x)+Mg(x);
(©) M(Af)(x) = |A|Mf(x).

We now show that the maximal function is measurable, namely:

Theorem 9.7 The function M f is lower semi-continuous and therefore measurable.

Proof. To show that M f is lower semi-continuous, we should verify that for each
A > 0, the set {x eR": Mf(x) > QL} is open, and for that we show that the

set {x eR": Mf(x) < l} is closed. Let us fix A > 0 and suppose that x €

{x ER":Mf(x) <A }, then there exists a sequence {x; }xen in the set {x eR":

Mf(x) < QL} such that x; — x in R” when k — oo. We first observe that, since x; — x,
we will get limy_,.. B(x¢,r)AB(x,r) = @ for all r > 0, where AAB is the symmetric
difference, i.e., AAB := A\BUB\A. Let Ay = B(xt,r)AB(x,7) and f; = fa,, then
we have that |fi| < |f] and limy_,. fi = O almost everywhere. By the dominated
convergence theorem, we have

lim/|fk|dy =0. 9.4)
k—yoo
Rn
But
B(x,r) C B(xy,r)AB(x,r) UB(xt, 7)
and
m <B(xk, r)) =m (B()c7 r)) ,
therefore

/ |f()[dy <
xr
B(x,r)

1
m<B(XJ))B<xk/ lfWldy+ ———= Bxk, /|f )| dy.

JF)AB(x,r) B(xg,r)

Then, by (9.4) we have that
Mf(x) <A

therefore x € {x eER":Mf(x) < ),} and this finishes the proof.

O

It is easy to show that taking the function f(¢) = |¢|* with o > 0 we get M f(x) =
oo for all x € R". Our next objective is to calculate M f when f € L,(R"). For f €
L..(R") we see that

Mf(x) <[ fll-
for each x € R", i.e., Mf € L.(R").
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If M was (L; — L;)-bounded, we could apply the Riesz-Thorin Theorem 8.6
to get the (Lp — L,,)-boundedness of M, unfortunately this is not true, since for
f € Li(R") we have

1
Mi)> L |f(v)ldy
m(B(X72|x|)>B(x2\X\)
. const / ()] dy,
B(0,a)

therefore for very large |x|, Mf(x) > C|x|™"| fl,, which implies that M f cannot
belong to L; (R").

Let us now see that if M f € L, (R") then f = 0. Let a > 0 be arbitrary and |x| > a,
it results that

1
Mf(x>2m((x2|x|)>3 Zx |f(v)|dy

/I )| dy
02|x|

B(0

COI’lSt
/ |£(v)]dy,

ES

since |x|™" is not integrable for |x| > a, which yields that [ |f(y)|dy = 0. From
B(0,a)

the arbitrariness of a, we conclude that f = 0. Let us give a particular example for

the one-dimensional case.

Example 9.8. Take
1

xlogzxx(o,uz) (),

fx) =

and let us use r = x. Note that f € L;(R) and

2x
M) > 1/| 0)ldy

2x
/ ylog?y
0

2x10gx

\%
><\H

and since ZxTolgx is not integrable in the neighborhood of x = 0, we obtain that M f ¢
Li(R). @
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We now show that the range of the maximal function of L; functions is in weak
Lebesgue space.

Theorem 9.9. If f € L;(R"), then

m({re R M) > A)) < 5 / £O)ldm,

Rll
ie, Mf € L(l,oc) (Rn)

Proof. Foreach A € Rt, we define A; = {x tMf(x) > l}. We obtain that for each
X € Ay, there exists 0 < r < oo (which depends on x) such that

1
m(B(x, r))B(X/J) |£()|dm > 4.

Note that we can write this last expression as

m(B(x,r))<% / I£()] dm. 9.5)
B(x,r)

Suppose that A; # 0, on the contrary the result is trivial. Note that to use Theo-
rem 9.4 we should have that A; must be bounded, but a priori this is not clear.
Nonetheless, we can consider the set Ay N B(0,k) (fixed k) instead of the set A, .
Now, let Z be a collection of open balls B with center in Ay N B(0,k) such that they
satisfy (9.5). Observe that under this situation the hypothesis of Theorem 9.4 are
satisfied, therefore, if Ay NB(0,k) # 0, there exists a sequence of balls By, B,, ... of
2 such that

(1) The balls By, B,,... are disjoint;
(2) Ay NB(0,k) C U 3By.

o>1

Since m(3Ba) =3"m (Ba), therefore by the inequality (9.5) we have

m(AxNB(0,k)) < Y, m(3By)

o>1

= 3"'m(By)

a>1

T / FG)|dm

o>1
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U / )| dm

Ua>1

<3 / ()| dm
]Rn

and now letting k — oo, we get

3”
man) < 5 [ 170)]am
R”

i.e.

n 3”

m({re B M) > 1)) < I/|f(y)|dm.
Rﬂ

and from this we get Mf € L(; .., (R"). O

Using the previous theorem, we show the so-called Lebesgue differentiation theo-
rem, which is a generalization of the fundamental theorem of calculus.

Theorem 9.10 (Lebesgue Differentiation Theorem). Let f € L (R"), then

1
lim———— [ [£()]dm = f(x). 9.6)
o),

m-almost everywhere.

Proof. Let f € Li(R"), then by Luzin’s theorem, there exists a continuous function
g such that g € L; (R") and for an arbitrary fixed € > 0 we have

/ () — g dm < e.

Rn

We have, for appropriate small r > 0, that

m(B(lx)) / lg(y)|dm —g(x)| < (Ml)) / lg(y) — g(x)|dm < e,
") ) Bl m(B(x.r) ),

i.e.

. 1 o
131'”(”0% 180 dm = g().
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On the other hand, observe that

lim sup |f()[dm— f(x)| =
r—=0 (B (x, r B(er)
lil;nj(;lp xr !f y)dm+
1
g(y)dm—g(x) | +(g(x) — f(x))
m(B(xJ))B(Z)

Now, let us consider the following sets

If ()| dm— f(x)] >

Ej) = ¢ x:limsup
r—0 (B X, r
xr

Fo={x:M(f-g)x)>1}
Hy, = {x:|f(x) —g(x)[ > A4}

Note that
E), C FA/Z UHA/Z
and
Sm(t) < [l - rtlan <e
therefore

2¢
m (H A /2> < T .
Moreover, by Theorem 9.9 we get

2ce
F/l/z <*/|f x)| dm m< ==
giving

m(E,l) gm(Fm) +m(H,1/2) <2(1+¢)

> m
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which tends to O whenever € — 0. Therefore

m(El) —0,

and we proved that

. 1
hllsglp - (B(x,r)%( / If)|dm—f(x)| =0

X,r)

m-almost everywhere. Since

0 < liminf |f(v)|dm — f(x)
r=0 m(B(x,r))BOC/J)

r—0

1
< limsup|—— / FO) dm— £(x)| =0
m (B(x, r)) B(ar)
m-almost everywhere, therefore

lim

im m(B(l)) [ 1rGlan— s =0

(‘x‘rr)
m-almost everywhere, proving (9.6). O

It is noteworthy to mention that we can use other types of sets instead of balls in
Theorem 9.10, the requirement is that those sets should have some type of eccen-
tricity to guarantee a relation of type (9.6), see Stein [71, p. 10].

Theorem 9.11. Let f € L,(R"), 1 < p < eo, then Mf € L,(R"). Moreover, there
exists a constant C = C(p,n) such that

IMfllz, < C(pm)llflp-
Proof. For p = oo, we observe that M f € L..(R") and

IMfle. < (| flle-

Suppose that 1 < p < oo, then for each A € R” let us define

_ ) f) if[f(x)[=2/2
fl(x)_{ 0 if [f(x)] <A/2
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therefore for all x € R”
FO < Ifax)[+4/2,

from which we get
Mf(x) <Mfp(x)+A/2,

hence

{x:Mf(x) >/1} c {x:MfA(x) >7L/2}.

From this last relation we obtain

m({x:Mf(x) >x}) <m({x:Mf;L(x) >/1/2}>,

By Theorem 9.9 we get

m({remre>2}) <27 / ) dm

2.3"
=5 rldm ©7)

{xlf(x)=A/2}

Now using Corollary 3.54 and (9.7), we obtain

/|Mf(x)|”dm:p/wl”1m<{x:Mf(x)>7L}> da
fan
<2.3"p j AP2 / |f(x)|dm | dA

" oz
2/(x)]
—23"p/|f x)| / AP2dA | dm
R" 0
_2r'a 3"
/\fx 1A dm

which ends the proof. a
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For a more elegant proof of Theorem 9.11 see Problem 9.42.

Theorem 9.12 (Cotlar Theorem). Suppose that S and T are sublinear operators
and that the operator T is majorized by S in the following sense: if A(x,r) is the

annulus A(x,r) = {y eER":r<|x—y| < Zr},for eachx € R" and f € L|(R") there

exists an 7 = r(x) with 0 < 7 < oo, such that T f (x) < infyca(cz) |Sf(V)|. Then if S is
of weak type (p, p) for some p > 0, T is also of weak type (p, p).

Proof. Let 0 < g < p, then

Tf(x)|?< inf
TAOF < inf

S,

therefore

m(A(x’f))m(B(x,M))Bb/ﬁ) 1SS (v)[*dm. ©8)

Then by (9.8) we obtain that |7 f(x)|? < CM(|Sf\q(x)>, with C independent of x

and f.
Note that in virtue of Theorem 9.9, the operator M is of weak type (1, 1) and by

Theorem 9.11 we get that M <|S f \") € L.(R") and moreover

18 (1719) . < CUIS Il

To finish, by Theorem 8.15 we obtain

m({x:M(|Sf|‘1(x))>M}>§)€I / m({x:|Sf(x)>t'/‘1})dt

[CA9,e0)
¢ P 4=rlq
<o [ e
[C24,00)
— A f1,

therefore

m({x: T f(x)] >/1}> <c<”f;|L|L”>p.
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9.4 Maximal Operator in Nonstandard Lebesgue Spaces

In order to get the boundedness of the maximal operator in variable exponent
Lebesgue spaces it is necessary to impose some condition on the exponent. For
simplicity, we will only deal with the case of bounded subsets in R".

Lemma 9.13. Let Q C R” be an open set and let p : Q — [1,00) be an uniformly
continuous function. Then the following conditions are equivalent:

(a) There exists a constant Cy such that for all x,y € Q, |x—y| < 1/2, we have

() = p(y)] < —=2

<— 9.9)
—log|x—y]|

(b) There exists a constant Cy such that for all open ball B C R" withm(2NB) >0,
we get
m(B)P-B)=r+B) < ¢

Proof. Let us suppose that (b) is valid. Let x,y € © such that |x—y| < 1/2 and let
B C R" be an open ball such that x,y € B and diamB < 2|x — y| < 1. Since Q is
open, then we have that m(£ N B) > 0, therefore

m(B)P-B)=r+B) <

Since m(B) < diam(B)" < (2]|x—y|)", we have
((2|x7y|)n)_|l7(x)—l7()’>‘ < m(B)p*(B>’p‘(B> <a,.

and
— |7 1P@=pO < cV/1alpx) =P < oM/ ropi—p-
|x—y] <2 C,/2 )

and taking the logarithm, we get
log (cj/”zﬁvp—)
px)—pY)| £ ——————
P =P €

which shows (a).

Let us assume (a) valid. Let B C R” be an open ball with m(Q NB) > 0, which
implies 1 < p_(Q) < p_(B) < p+(B) < p+(Q) < oo If diam(B) > 1/2 we get

m(B)" B ®) — (in(B(0,1)) (diam(B) /2)")”’“”’”*(3)

S (m(B(O, 1))4—n)17—(9)—l'+(9) ,

which permits us to restrict to the case of diam(B) < 1/2. Let us choose xp,X. €
BN & such that 0 < 1/2(p;(B) — p—(B)) < p(xo) — p(x..). Since we have that
diam(B) < 1/2 implies that |xp — x| < 1/2, and by hypothesis in p
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Co

()| < ————,
|p(.X()) p('x )| — *10g|)€0*xoo‘

which implies that
exp(Cp) > |xp — xoo| PO POl > (i) — |2 (P-(B)=P4(B)

Since 2"m(B) > |xp — x.|"m(B(0,1)), we obtain

B) "
> o — |- BpB) s [ o (M(B)
exp(2Cy) > |xo — Xeo| Z |2 (m(B(Q 1))

which entails

(zm(B))P—(B)*IM(B) < exp(2nC0)m(B(0, 1))[7,(3)7[4(3)

< exp (2nCo) max { 1,m(B(0, 1))p7<9)—p+<9)} ,
which shows that (a) implies (b). 0

Definition 9.14. When an exponent p : 2 — [1, ) satisfies the condition (9.9), we
say that the exponent p is log-Holder continuous and we write that p € LH(Q). ©

Corollary 9.15. Let Q C R" be an open and bounded set and let p : Q — [1,00)
be an uniformly Holder continuous function with power o > 0, i.e.

[p(x) = p(y)| < H|x—y|*
forall |x—y| < 1/2. Then p € LH(Q).

‘We now obtain a pointwise inequality which is very useful in the framework of
variable exponent spaces.

Theorem 9.16. Ler Q C R" be an open set and p € LH(Q). Then there exists a
constant C = C(p) such that for all functions f € L") (Q) with £l @) < 1 we
have

AP <) (A (170 0+1)
forall r > 0.

Proof. We will prove the theorem by cases: when r > 1/2 and when 0 < r < 1/2.
Let r > 1/2. Then

p(x)
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p(x)

IN

o | o
X)N.

e A C

where the first inequality is a consequence of

f= f%(\f\sl} +fx(m>1}' (9.10)

Let now 0 < r < 1/2. We have

p(x)
1
AP = |~ [ e
m(B,(x))
B, (x)NQ
p(x)
7= Br )
(di) 1 /
< F() P~ dy
m(B(x))
B, (x)NQ
p(x)
p—(Br(x))
(d2)
< 0)dy 41
B, (x)NQ
p(x) P+ (Br(x))

< m(B,(x)) 7

1 1 B0
%wzﬁmw(2mouv+2mwxm0
where the inequality (d;) is a consequence of the Jensen integral inequality and for
(d>) we used (9.10). Since p,)(f) < 1 and 0 < r < 1, we have the inequality

1 1 1 1
3 [ Oy Sm(B,) < Sy (H)+ 520 < 1,
B, (x)NQ

which implies

px) P (Br

AW < (B, () 725 (o)1) + S8, )

P—(Br(x))—p4 (Br(x)) — (Br(x))

m(B,(x)) ~ w 2mm ! (AP0 +1)
< c(p) (AUFOIP)@ +1)

where the last inequality is a consequence of Lemma 9.13. a

A consequence of Theorem 9.16 is the next Corollary.
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Corollary 9.17. Let Q C R" be an open set and p € LH(Q). Then there exists a
constant C = C(p) such that for all functions f € L) (Q) with || f o) <1, we
get

s <) (M (1rOP0) )+ 1).

The Corollary 9.17 is the key to get boundedness for the maximal operator in the
variable exponent Lebesgue space when 2 is a bounded set.

Theorem 9.18. Ler Q be an open and bounded set and p : 2 — [1,e0) measurable.

(a) If f € LPV) () with 1 < p(x) < py < oo in Q, then Mf is finite almost every-
where in R";

(b) Let pc LH(Q) and 1 < p_ < p(x) <
C(Q,p) > 0 such that for all f € LP*

p+ < ooin L. Then there exists a constant
)(Q) we get
[Mf]

Proof. Let us prove by cases:

(a) Since L") (Q) < L'(Q) due to the fact that £ is a bound set, the result follows
from the Proposition 9.11 with p = 1.

(b) Taking g(x) := p(x)/p—, we have that 1 < g(x) < p(x) < py < . Since
LPO(Q) — L1Y)(Q) because Q is bounded, we have that there exists a con-
stant C, > 0 such that || f|| .0 (Q) < C.|| |00 (2) for all f € LPU)(Q). Now,
let f € L") () such that [/l (@) < 1/Ce, which implies that || f|| 0 q) < 1.
Let us show that p,()(Mf) is bounded independently of f. Since the exponent
q € LH(Q) we can use Corollary 9.17 and we obtain

o) < CE, )| fllpoa) -

puts (M) = M) ‘i (@)

<[lew (mascron 1)
v Tl m))p

Using the Proposition 9.11 with constant exponent p_ > 1 we obtain

p—
- (Q))

p-
- (Q))

< € (|mase)

pac05) <o (o100, 411

(P (Cp-)lppy (£ +I1]

The previous estimate shows that p,(.) (M f) is bounded for all functions f with
1Al (@) < 1/Ce, therefore the norm [[Mf]| (g, is also bounded for these
functions. Since M(Af) = |A|M(f) and || A f|| = |A]||f]| we obtain
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|74 A
Cell fllroe

We now introduce the notion of Hardy-Littlewood fractional maximal operator.

M)

Lr() (Q)

vo@) ~ Cellf1

LI’(')(Q)
SCellf

L) (Q) -
O

Definition 9.19. Given a function f € L} (R"), we define the Hardy-Littlewood
fractional maximal operator for any x € R" as

1
Maf ) = sup e [ 170y ©.11)
XEB m(B) n
B
where the supremum is taken over all balls that contain the point x. @

The Hardy-Littlewood fractional maximal operator is a generalization of the
maximal operators, since when o = 0, we have that .#, = M, where M is the
Hardy-Littlewood maximal operator (9.2). The classical result regarding the frac-
tional maximal operator says that .#, is (L7 — L?)-bounded, when 1 < p < n/a
and 1/g = 1/p — 2. We now show that the same boundedness type result holds
for the variable exponent Lebesgue space without resorting to the classical case,
and in that way we also prove the classical result. We need the following pointwise
estimate.

Lemma 9.20. Let 0 < o < n and p be an exponent function such that 1 < p_ <
p(x) < py < n/oand the function q is defined pointwise by 1/q(x) = 1/p(x) — <.
Then for all functions f we have the following pointwise inequality

-3
Ma(f)(x) < [M <f(~)|58“"“> (x)] / SOy | 912
Q
Proof. Let B be any ball containing the point x. Since
pl) | apl) _,
qlx) ~ n
we have
1 apl)
g | o= i [N 0 0

|
IR
=R




9.4 Maximal Operator in Nonstandard Lebesgue Spaces 349

< [M<f(-) 51) (X)] - /If(y)l”<y’dy :

which shows the Lemma. O

=

Using the pointwise inequality (9.12) and the boundedness of the maximal operator
we obtain the boundedness of the Hardy-Littlewood fractional maximal function.

Theorem 9.21. Let 1 < p(x) < n/o and define q(x) by the pointwise equality
1/q(x) =1/p(x) — . Then .4y 1 LPO(Q) — L10)(Q) is bounded.

Proof. Let f € L") () be such that p,((f) = 1. Then by the inequality (9.12) we

have
-
pl) _n
o o < [ (ZES a)]
Lq(-)(g)
PO _n =3
b (1)
LU-F)0)(Q)
o Mk i
LU=7)al) Q) Lq(-)(Q)
<1.

The general result now follows from the homogeneity of the fractional maximal
operator. O

We now want to investigate the proof of boundedness of Hardy-Littlewood max-
imal function in grand Lebesgue spaces. For simplicity we will deal only with the
interval (0,1). We will use an important relation between rearrangements and max-
imal operator

Mf(x)= sup |I/f

(0,1)DI>x

given by a well-known theorem through the notion of decreasing rearrangement f*

of f.
/ Fi(s)ds, 1€ 0,1].

Let
The following theorem is given in Bennett and Sharpley [1, Theorem 3.8].

Theorem 9.22. There are absolute constants ¢ and ¢’ such that for all f € L'(0,1),

c(Mf)" (1) < (1) < ' (Mf)" (1), (9.13)
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€ (0,1).
Theorem 9.23. Let | < p < oo. There exists a constant C(p) > 1 such that
1M £y < CP)IIlp)

forall f€L'(0,1).

Proof. Since
£y = 1171l

from (9.13) and Theorem 9.23 applied to f* we get

M1y = I(Mf)" Ny < CIF Ny = CIS Ny

from which the assertion follows. O

9.5 Muckenhoupt Weights

We now try to characterize all weights w(x) such that the strong type (p, p) inequal-
ity
/ [Mf(x)]" w(x)dx < C, / /() [Pw(x) dx 9.14)
Rll Rn

is valid for all f € L?(w).
Suppose that (9.14) is valid for some weight w and all f € L?(w) for some 1 <
p < . Applying (9.14) to the function f )y supported in a ball B and we use that

M(fxs)(x (—/|f )| dy

for all x € B, to obtain

wi) | 1700 | < [ M0 0] Wi

B

<Cp [ If()Pw(x)dx
B/
where w(B) is given by ['w(x)du(x) and f, f(x)dx = f x) dx. It follows then
B "5

that

][ Fo)ldy | <22 / ) Pw(x) de ©.15)
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for all balls B and all functions f. At this point it is tempting to choose a function
such that the two integrands are equal. We do so by setting f = w~4/? where 1/p +
1/q =1, which gives fPw = w'~? = w49/, Under the assumption that infz w(B) >0
for all balls B, it would follow from (9.15) that

w(x)] /P S wx)]~Y?
Z[H)] dx sW(B)B/[()] ax
and thus -
wi) | fe | <q
Therefore
p—1
sup ][ w(x) dx ][[w(x)]*%—l <cr, (9.16)

where the supremum is taken over all balls B.
If infz w(B) = 0 for some ball B, we take f = (w -+ €)~%/? to obtain

p—1
sup ][w(x) dx ][[w(x) + 8]_1’%' <c?, 9.17)
B
B B

from which we deduce (9.16) via the Lebesgue monotone convergence theorem by
letting € — 0.

We have now obtained that every weight w that satisfies (9.14) must also satisfy
the rather strange-looking condition (9.16) which we refer to in the sequel as the A,
condition, sometimes also called Muckenhoupt condition.

Definition 9.24. Let 1 < p < co. A weight w is said to be of class A, if
p—1

sup fw(x)dx ][[w(x)]_ﬂl‘dx < oo, (9.18)

B balls in R”
B

The expression in (9.18) is called the A, Muckenhoupt characteristics constant of w
and will be denoted by [w]4, . @

For the case of p = 1 we define the notion of A; weight.
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Definition 9.25. A weight belongs to the A class if Mw(x) < Cw(x) a.e. for some
constant C. )

We now state, for a proof cf. Garcia-Cuerva and Rubio de Francia [20], one
pivotal results in the theory of weighted Lebesgue spaces, namely if the weight
belongs to the Muckenhoupt class, then the maximal operator is bounded in the
weighted Lebesgue space.

Theorem 9.26 Let f € L’ (w), 1 < p <ecandw € A, then Mf € L (w). Moreover

(9.19)

HMfHLP(w) < [W]A,,

Now, let us recall the definition of weighted Hardy-Littlewood maximal function
on R" over balls

Mo(f)(x) = sup—— / FO) W)

xéB W

where w is any weight and w(B f w(y

In the following theorem our proof avoids the Calderén-Zygmund decomposi-
tion. In place of it we use the Vitali covering Theorem 9.4 and the fact that w, as a
measure, satisfies the doubling condition, i.e.,

w(AB) < A"P[w]a,w(B)
see Problem 9.41.
Theorem 9.27. For 1 < p < e, then the weak (p, p) inequality

w(fre B i) > ) < /|f JPw(x)

R)l
holds if w € A,

Proof. We have

Flroler| < [rrwtods| [ty ora
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Next, the right-hand side term in the above inequality is

i e 20 f ey )
7L/) P wx)de | fla,
And thus p
vamx <, MEZVVmem Cum

Fix A > 0, from (9.20) and the definition of M,, we get

{xeR":M(f)(x) >A} C {xER” M, (f7)(x) > A” }

Wla,

Thus

Wla,

w({xER" L M(f)(x) >7L}) <w {xeR” M (f7)(x) > “}

Let Ay NB(0,k), k fix where

Ak:{xeR”:MW(f”)(x)> M}.

[w]a

We assume A, # 0, of course, since the result is trivial otherwise. For each x € A,
there exists an r > 0, depending on x

;ég/v&wwna. ©.21)

After we obtain an estimate for the measure of Ay N B(0,k), we can let k — oo.
Now, let £ be the collection of open balls B with center in A, N B(0, k) and satisfy-
ing (9.21). Then the hypothesis of the Vitali covering Theorem 9.4 is satisfied. Now,
if Ay NB(0,k) # 0, then there exist balls By, By, ... in # such that

(1) By,B,,... are disjoint,
2) Ay ﬂB(O,k) C Ur213Br.
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All we have to do is to assemble this information. Here is the method: first we use
the fact that w(3Br) < 3"P[w]|a,w(B,). From the inequalities (9.21) and (9.14), the
disjointness of the selected balls, we obtain

w(A, NB(0,k)) < Y w(3B

r>1

< 3"wla, > w(By)
rzl

3
Z () [Pw(x)
r>1

3
L / P
Ur>1B,

302
< )E] e
R»

Finally, let kK — oo, to obtain

3wl
wian < e [paoar

Rﬂ
that is, we obtain the weak (p, p) inequality. O

We now collect some almost immediate properties of the A, weights following
directly from the definition. For more properties see Problems 9.39-9.41.

Theorem 9.28. Let 1 < p < oo. We have

(a) w € A, ifand only if w'™" € A, and [wl_”,}p, = [w]g/_l.
(b) If g < p, then A; C A, and [w], < [w],.
(c)IfweA,and 0 < o < 1, then w* € A, and [w*], < [w]g‘
(d) If wi,wy €A, and 0 < o < 1, then wiw~* € A, and
[wiwy™%]p < il [wa],

(e) Ifwi,wy € Ay z‘henwlw2 €A, and

[wiwy 7], < fwi]i [wal !
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9.6 Problems

9.29. Prove that the various definitions of maximal function are equivalent in the
sense:

Mf(x) = Mof(x) < Mgf(x).
where =< A = B means that there exists C > 0 such that C"!B < A < CB.

9.30. Prove that |
flx)= T ¢ Li(R"),

but f restricted to any closed ball with center in O and radius r > 0 is locally integral,
ie.

1
f('x) :XE(O,I ( )| ‘n 1 €L, 1OC(R )

9.31. Given f(x) = 15' =7 forx € R, prove that f ¢ L..(m) but f € WeakL,.

9.32. Let (X,.o7, i) be a finite measure space. Prove that the dual space of L; (i) is
Le.(1).

9.33. If f > 0 is a nondecreasing function in (0,e) and 0 < p < g < e, & € R. Show
that
1/q 1/p

[y | <c| [esor s
0

0

where C = C(p,q, o).

b
9.34. Let f be a decreasing function in [a,b] (a # 0) such that 0 < [ f(x)dx < oo
0

a
and 0 < [ f(x)dx < eo. Prove that
0

which is equivalent to

b a
ao/f(x)dxgbo/f(x)dx
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9.35. Let B(x,r) C R” be an open ball with center in x and radius r. Let us define
the Lebesgue set of f as

r=0m er

L= ¢ x:lim———— /|f x)|[dy=0

Demonstrate that if f € L (R",.£,m) then
|f(x)] < Mf(x) forallx € Ly

where M f(x) is the Hardy-Littlewood maximal function.

9.36. Let f € L;(R",.£,m) and

[ ran| <miz)

where E is a Lebesgue measurable set. Prove that | f| < 1 almost everywhere.

9.37. Let f : R — [0, ) be defined as

_ Xolzx ifxe (0,1/e)
FD=10"" itxe 0.1/e).

Prove that
a) [ f(t)dt=—1/logx parax € (0,1/e).
(0,x

b) !Mf(x)dx:

9.38. Show that the following conditions are equivalent:

(a) p € LH(Q);
(b) 1/p € LH(Q);
(c) p' € LH(Q).

9.39. If w € A, prove that w(B,,) < cw(B,) (doubling condition).

9.40. Let w € A, for some 1 < p < 0. Prove that:

L. [6*(w)], = [w], where 8*(w)(x) = w(Ax1, - , Ax).
2. [1%(w)], = [w]p where 75(w)(z) = w(x—z), z € R".
3. [Aw], = [w], forall A > 0.
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w], > 1 for all w € A,. Equality holds if and only if w is a constant.

4.

5.Fora < p < q < e, then [w], < [w],.
6. lim,, 4 [w], = [w]; if w € A;.
7.

(@@mmm)

gy [ )

W], = sup sup

€ ret oy ({Qﬁ{\f\zo} }) =0

9.41. The measure w(x) dx is doubling, precisely, for all A > 1 and all cubes Q show
that

w(AQ) < A" [w],w(Q).

9.42. Show, using Marcinkiewicz theorem, that the maximal operator M is a bounded
operator in L, spaces, for 1 < p < oo (see Theorem 9.11 for other proof).

9.43. Show that, for radial weights w(x) = w(|x|), the A, condition is reduced to the
following inequality

p—1

/P”“W(P)dp /P"”W(p)’ﬂj dp <Cr'.
0 0

9.44. Let w(x) = |x|* be a radial weight. Show that

@wed, l<p<eif-n<a<n(p-—1).
byweAif—n<oa<0.

9.45. Show that the geometric maximal operator

1
MoJ (x) := supexp | gy

is obtained by

1

lim M, = li
0t of (%) g0t S,lilo) m(B(x,r))

JAGR

B(x,r)

Hint: Recall that (x* — 1)/ — log(x).
o
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9.7 Notes and Bibliographic References

The one-dimensional maximal operator was introduced in Hardy and Littlewood
[28] and the multi-dimensional version was given in Wiener [84].

The first occurrence of Vitali covering type theorems was in Vitali [80]. The
result of Theorem 9.11 can be stated without the dependence on the dimension, see
Stein [72]. The boundedness of the maximal operator in variable exponent Lebesgue
spaces was solved for bounded sets by Diening [16], see also Diening, Harjulehto,
Histo, and Ruzicka [17] and Cruz-Uribe and Fiorenza [9]. Muckenhoupt weights
were studied in Muckenhoupt [53], for more on the topic of A, weights see Garcia-
Cuerva and Rubio de Francia [20].



Chapter 10
Integral Operators

A large part of mathematics which becomes useful developed
with absolutely no desire to be useful, and in a situation where
nobody could possibly know in what area it would become
useful; and there were no general indications that it ever would
be so.

JOHN VON NEUMANN

Abstract Integral operator theory is a vast field on itself. In this chapter we briefly
touch some questions that are related to Lebesgue spaces. We prove the Hilbert in-
equality, we show the Minkowski integral inequality, and with that tool we show
a boundedness result of an integral operators having a homogeneous kernel of de-
gree —1. We introduce the Hardy operator and study its adjoint operator. One of
the sections of the chapter is dedicated to the L, space now focusing on the fact
that this is the only Hilbert space in the L, scale. We present a proof of the Radon-
Nikodym theorem, due to J. von Neumann, which does not use the Hahn decompo-
sition theorem.

10.1 Some Inequalities

In the following we obtain the so-called Minkowski integral inequality using a dif-
ferent approach from the one used in Theorem 3.25.

Theorem 10.1 (Minkowski integral inequality). Ler (X, .o/, ) and (Y, 2f,V) be
O-finite measure spaces. Suppose that f is a measurable <f) X @/ function and
f(,y) € Ly(u) forally € Y. Then for 1 < p < e we have that

P 1/p 1/p
[1[rana au| < [| [lreora]| o
X |Y Y X
© Springer International Publishing Switzerland 2016 359
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Proof. For p = 1, notice that since

/f(w)dv S/If(x,y)\dv

we get

/ Y/f(x,y)dv d,ugx/y/|f(x,y)|dvd,u,

X

and now using Fubini’s theorem we obtain

/ Y/f(x,y)dv dugy/x/|f(xv}’)|d,lldv.

X

Now, for p = oo, we get

/f(xvy)dv S/If(w)ldv

Y

Y
s/\lf(-wuwdv,
Y

again by Fubini’s theorem we arrive at

[1[rwnavlaus [ | [ircoll-av | an
< [ [1seoloau | av.

Y X

We now take 1 < p < oo. By Fubini’s theorem and Theorem 3.20 (Holder’s inequal-
ity) we obtain

p

[ reyav) au
p—1
= [ || [ remav] [ senav| e
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p—1

< [ [1rtav| [ seyav 7 du

p—1
/ el [ renav]  au|av
X Y

1/p q(p—1) 14

[rwnav] e | |av
Y

|
~—

\f x,y)|P dp

IN
%\é
—

1/p p 4]

=Y/ |f(x,y)|P du X/ Y/f(w)dv du dv,

therefore
1-1/q » 1/p
//fxy)dv du //fxydv du
X |y X |y
1/p
< [| [iresran| v
Yy \Xx
which ends the proof. O

We now study the boundedness of integral operators in Lebesgue spaces with a
homogeneous kernel, which permits to separate variables simplifying the calcula-
tions. In this regard we have the following result.

Theorem 10.2. Let K be a measurable function in (0,0) x (0,00) such that the ker-
nel K is homogeneous of degree —1, i.e., K(Ax,Ay) = A~ 'K(x,y) for all A > 0, and
the kernel K satisfies the following integral bound

/ |K(x,1)[x"/Pdx =C < oo.

0

For f € L,(11) we define

oo

0)= [ Kley)s)ax

0
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Then
ITfll, <Clifllp-
Proof. Let
. 1/p ol P 1/p
o= | [lrroras| = | [ keprea a
0 0 |0
Writing x = zy, then dx = ydz, now by Minkowski’s integral inequality
| oo P 1/p | o r P
/ / K(zy,y)f(zy)ydz| dy | = / / Y 'K(z,1) f(zy)ydz| dy
0 |0 0 |0
» 1/p
= //K(zyl)f(zy)dz dy
0 |0
1/p

oo

< / K(z1) / Felrdy | d

Now, if x = zy, then z~'dx = dy, and we get

1/p

Kz, )| [ If@)Pdy | dz= [ K& D) | | |fx)Pz " ax | dz
[ren(] [renl/

- / Kz 1) 7dz | ]
0

from which it follows that ||T f]|, < C||f]| -

O

We now show the integral analogue of the Hilbert inequality given in Theo-

rem 2.19.

Theorem 10.3 (Hilbert inequality). Ler f € L,(m) and g € L,(m) with 1/p +

1/q=1. Then

//f(xyzrg;ﬂdyd)C S%Hfllp\lgllw (10.1)
00 sm(;)
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Proof. Note that
//f(y)g( dydr S//\f(y)g(X)l(bcdy
X+ x+y
00 0 0
Let y = xz, then dy = xdz, and now by Fubini’s theorem we have
/ / O] g g — / / s g g,
x+y 1—|—z
0 0
[ [l
1+z
00
=
:/ /\f x)|dxdz.
1+z
0 0
If u = xz, then du = zdx, moreover x = £, and by Holder’s inequality we get
/ L / ()| drd
Jr
0 0
& j;ﬂ)() Rk
I+z §
0 0
- - Ur s 1/q
L /’f(u)\pdu /g W'ovan| a
I1+z Z
0 0 0
- - p s 1/4
1 P / g1
< | — u)|” du w)|9z7 " dw dz
<[] [ sl 50|
0 0 0
o
4
= [ £ alllel,
0
1 1
=B —,1——][fllyllgl
(1-5) Wbl
where B(1/q,1—1/g) is the Beta function and the result now follows from (C.7).
O

We now introduce an operator which is widely used, the so-called Hardy operator.
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Definition 10.4 (Hardy operator). Let f be a positive and measurable function in
(0,00). The Hardy operator is defined as

Hf(x) = %/f(y)dy- 10.2)
0

The Hardy operator is an average operator. @

The principal result in Lebesgue spaces regarding this operator is that it is L,
bounded, namely:

Theorem 10.5 (Hardy’s inequality). Let f € L,(0,0) be positive and 1 < p < eo.
Then

p
51 < L1l (103)
Proof. Observe that if y = zx, then dy = xdz, therefore

Hf(x)Zi/xf(Y)dyZi/f(XZ)xdzz/f(XZ)dz.
0

0 0

Now using the integral Minkowski inequality, we obtain

» 1/p | » 1/p
1
[15[Jroa] a| =| [|[red]| o
0 0 0 \o
. 1/p
S/ /(f(ZX))pd.x dz
0 \o
. - 1/p
= [ [uwra]
0 0
P
therefore (10.3) is true. a

To see a somewhat surprising proof of the boundedness of the Hardy operator
result using convolution and Theorem 11.9, see details in p. 390.

Remark 10.6. The assertion of the Hardy inequality does not hold for p = 1. This
can be observed by taking f = y/o,1), since then
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[rwax=1,

0

oo t oo 1 oo

1 dr
/ /f(s)dsdtZ/;/dsdt:/Tzoo.
0o 0 10 1

For p = 1 the Hardy inequality is not true even when (0, =) is replaced with a finite
interval. For instance, there is no positive constant C that would render the inequality

/li/tf(s)dsdt<C/lf(x)dx
o 0 0

true for all positive functions on (0, 1). To see this, take for example

but

~ | —

f(t):t ! t€(0,1).

(log 7)*’
I
Then, again, [ f(x)dx < e but, with appropriate C
0
1

[+ [romame [ s

0 0

@
We now remember the notion of adjoint operator.

Definition 10.7. Let 7 : X — Y be a linear and bounded operator. We say that the
operator T* : Y* — X* is the adjoint operator of T if it satisfies the duality identity,
it means that for all x € X, y € Y* where X and Y are Banach spaces, we have

(Tx,y) = (x,T"y)

where (E,A) :=A(§) withA € E*and € € E. %)
We can now obtain the adjoint operator of the Hardy operator.

Theorem 10.8. The adjoint operator of the Hardy operator (10.2), H : L — L?,
at least formally, is given by

for f>0.
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Proof. Using the Definition 10.7, the Riesz representation theorem and the Fubini
theorem we get

(tf,9) = [ Hf@Wgx)dx

0

X

L[ 100 | sas

0

|-

/ om0 FO)dy | g d
0

/
/
/m ] Ay (X) S () dy @ &
0

O/f y/ fdy

=(f,H"g),

which ends the proof. a

We now mention the concept of compact operator and obtain a result in this
regard.

Definition 10.9 (Compact operator). Suppose that X and Y are Banach spaces and
B is the unit ball in X. A linear operator 7' : X — Y is compact if the closure of the
set T(B) is compactin Y. @

This definition is equivalent to say that 7" is compact if and only if the bounded se-
quence {x,} in X contains a subsequence {x,, } such that {7 (x,, )} converges point-
wisein Y.

We say that a set S C C(X) (where C(X) is the space of continuous functions
in the topological space X) is equicontinuous at x € X if for each € > 0 there is a
neighborhood U of x such that | f(y) — f(x)| < € forall f € E and all y € U. If this
condition is satisfied for all elements of S we say that E is equicontinuous.

A metric space X is said to be a compact metric space if it has the Borel-Lebesgue
property, i.e., if every open cover of X has a finite subcover.

Theorem 10.10 (Arzela-Ascoli Theorem). Suppose that (X,d) is a compact met-
ric spaces. Then a subset F C C(X) is compact if and only if F is closed, bounded,
and equicontinuous.
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Now we show compactness of an integral operator.

Theorem 10.11. Let (X,d) be a compact metric space and L a Borel measure in X.
Let K : X x X — R be a continuous function such that

/ K ()| du(x) < Cace.y € X
X

and
/\K(x,y)\du(y) <CaexecX.
X

Then, for 1 < p < eo, the integral operator T : L,() — L,(11) given by

Tf(x) = / K(x,y) () du(y)

X

is compact.

Proof. Suppose that 1 < p < . Taking ¢ as the conjugate exponent of p, and using
Holder’s inequality in the product

Ko f0)] = (Ko (1K) 2L 0)])

we obtain
1/q 1/p

[ Kenolamm < | [Keplwm| | [KEorao)

X
1/p

<cila / K (o)1) P du(y)

for almost all x € X. By Tonelli’s theorem we get
P

/ / Ky lF ) du() | dutx) < cr/e / / K ey £ O)IP dpt () ds (x)

X X

< ol / FO)PduG),
X

i.e.
ITAlp <ClIAp»
therefore 7 f is bounded.
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Now, let us fix a yp € X and let € > 0. By the uniform continuity of K in X x X
there exists 6 > 0 such that if d(y,yo) < & then |K(x,y) — K(x,y)| < € for each
x € X. Then, if d(y,yo) < 8 and f € L,(u) satisfies ||f]|, < 1, then Hélder’s in-
equality implies

ITF(x) — Tf(x0)| = / K (e,y) — K (x.30)L£() dit ()

<e / FO)ldu()

< e[| £1l,
efu(x)]"e.
Therefore, we proved that {7f : || f||, < 1} is a subspace of C(X) which is || - || ,-

bounded and equicontinuous, and now by Arzela-Ascoli theorem we conclude that
T is a compact operator. O

IN

10.2 The Space L,

We postponed the introduction of the L, space which has special nature, e.g., the
space coincides with its dual. Moreover, in the Lebesgue scale it is the only Hilbert
space, and by this reason is widely used in application, for example, in quantum
mechanics the state of a particle is given by a wave-function which belongs to the
L,-space.

Definition 10.12 (Inner product). Let (X,+,-) be a vector space. A functional
(,) : X xX — T, where F = R or F = C, such that satisfies:

@) (f+8,h) = (f,h)+(g,h) forall f,g,h € X,
(b) {cf,g) =c(f,g) forall f,g € X and any scalar c,

(©) (f.g) = (g f) forall f,g€X,
(d) 0 < (f,f) < +ooforall f €X,
() (f,f) =0if and only if f =0,

it is called inner product or scalar product. %)

All inner product generates a norm defined by

Il = V{F )

Moreover, we have the Cauchy-Schwarz inequality

[(f.81 < If1gll-
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Definition 10.13 (Hilbert space). A vector space with an inner product is called
an Hilbert space if it is complete with respect to the norm generated by the inner
product. @

The following theorem characterizes the vector spaces induced by an inner product.

Theorem 10.14. A norm || - || in a vector space is induced by an inner product if and
only if it satisfies the following identity (the so-called law of parallelogram)

ILF+ 8l +1f = gl* = 2(1F 17 + l181I*) (10.4)

for any vectors f and g.

From Theorem 3.29 we get that (Ly(1),]| - ||2) is a complete space. Let us now
consider in L, () the inner product

(f.8)= [ fedu,
/

f,8 € Lo(u). Observe that the inner product generates the norm || - || and moreover
|| || satisfies the parallelogram law, therefore:

Theorem 10.15. The space(Ly(1), || - ||2) is an Hilbert space.

Let X be a space with an inner product. If A is a nonempty subset of X, then the
orthogonal complement A+ of A is the set of all vectors which are orthogonal to any
vector of A, i.e.

At ={xeX:x LyforallycA},

where x | y means that (x,y) = 0.
From the linearity and continuity of the inner product (see Problem 10.62) it is
clear that A" is a closed subspace of X such that A = (A)* and ANAL = {0}.

We recall that a vector space X is a direct sum of two subspaces X; and X,
denoted by X = X ® X, if for all x € X there is a unique representation x = x; + x»,
where X; € X and x; € X;.

Theorem 10.16. If M is a closed subspace of an Hilbert space H, then H =M ®M*.

Remark 10.17. Since all inner product is continuous, it follows that any vector y in
the space X with an inner product defines a linear functional f, : X — C via the
formula

S(x) = (xy), (10.5)

as we will see in the next theorem. If X is an Hilbert space, then all continuous and
linear functions will be of the form (10.5).
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Theorem 10.18 (F. Riesz Theorem). If H is an Hilbert space and f : H — C is a
continuous and linear function, then there exists a unique vector'y € H such that

fx) = (xy)
Sor all x € H. Moreover || f|| = ||y]|-

Proof. Let F : H— C be a continuous and linear functional in H different from the
null functional x — 0, since otherwise we can take y = 0. Let M be its kernel, i.e.

M=ker(f)=f'(0)={xcH| f(x) =0},

since f is a continuous and linear functional, we have that M is a closed subspace
of H. By Theorem 10.16 we have H =M &M L from which there exists an element
& € M+ with ||&|| = 1. Since (f(x)& — f(&)x) € M for all x € H we obtain that

(€, /()& —f(&)x)=0

for all x € H, from which it follows that

f) = (f(8)&:x).

The uniqueness follows from noticing that if (x,y) = (x,y;) for each x € H, then
taking in particular x =y — y; entails that (y —y;,y —y;) = 0, from which we get that
y=1y;. Finally, in virtue of the Cauchy-Schwarz inequality | f (x)| = | (x, )| < ||x||||]]
we have that || f]| < ||y||- On the other hand, if y # 0, then x = ﬁ satisfies ||x]| =1

and || f]| > |£(0)l = /Iyl )] = Iyl Therefore [|f]] = Ily[. O

Remark 10.19. Since H and H* are the same in an isometric way, it can be difficult
to distinguish if ¢ € H is to be taken as an element or the generator of the linear
continuous functional. To get around this inconvenience, the physicists following
Dirac use the so-called bra-ket notation. If @ € H*, then there exists a ¢ € H such
that

D(f) = (@,.f) = (9lf),

where the last notation is the bracket Dirac notation. In this case the functional @ is
written as (@[, what is called the bra and the vector f will be called ket and denoted
by |f). Therefore

o(f) = (ollf) = (olf).
%)

If H is a Hilbert spaces, then the Theorem of F. Riesz shows that a function
y— fy where f,(x) = (x,y) can be defined from H into H*. By the properties

(a) fy"‘fz = fy-&-z
(b) afy = fay
© (1A= [y
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it is easy to see that f; is a linear “conjugate” application which is an isometry from
H into H*. Due to this isometry, we can show that all Hilbert spaces are reflexive.

Corollary 10.20 All Hilbert spaces are reflexive.

Proof. Let H be an Hilbert space and F : H* — C be a linear functional. Let us
define ¢ : H — C by the formula ¢ (y) = F(f;), now note that:

@ o(y+2) =F(firz) =F (i + L) =F(L)+F(f1) =0() +¢(2)

(b) ¢(ay) =F(fay) =F(afy) =0F(fy) =aF(fy) = ad(y)

© [00) =IF(H) = [FUI<IFNIAT = 1EHIy

By (a), (b), and (c) we have that ¢ € H*. Therefore by the Theorem of F. Riesz, there

exists a unique x € X such that (y,x) = ¢(y) = F(f,) for all y € H. This implies that,
for £ € H™ we have

() =) = ) =F(f)

for each y € H, from this we have that £ = F', and this tell us that the natural immer-
sion is onto in H***, therefore H is a reflexive space. O

10.2.1 Radon-Nikodym Theorem

In this section we present an alternative proof of the classical Radon-Nikodym the-
orem which is independent from the Hahn decomposition. The presented proof, due
to J. von Neumann, is based on another existence theorem, the Theorem of F. Riesz.

Lemma 10.21. Ler v, A be finite measures on (X, /) such that VA < AA for all
A € of. Then there exists f >0, f € Ly(A) such that

vA:A/fd)L

forall A € <.
Proof. Let us take F : L,(A) — R such that g — [ gdv. By the Riesz represen-
b'e

tation theorem, there exists f € L,(A) such that F(g) = [ fgdA for all g € L,(A).
b'e

Taking g = ya we get VA = F(ya) = [ fdA. 0
A

‘We now prove a version of the Radon-Nikodym theorem for finite measures.

Theorem 10.22 (Radon-Nikodym theorem). Let 11, v be finite measures on (X, </)
such that v < . Then there exists a [L-almost everywhere unique positive ¢ func-
tion, € Ly (1), such that
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V(E):/q)du, (10.6)
E

forall E € o .

Proof. Let us define A = u+ v. By Lemma 10.21 there exists f € L,(4) such that

vE:/fdQL.
E

The function f satisfy the following inequality 0 < f < 1 A-almost everywhere,
due to

ongz/fdxg;LEz/ldx.
E

E
LetA={x€X: f(x)=1}. We have

vA:/fdk:lA,
A

from which we get that A = 0 and thus obtaining that vA = AA = 0 since v < L.
Now, for all sets E € &/ we have

[asau= [0 1)av

X X

from which we obtain, via a limiting argument, that

X/gfdu:X/g(l—va,

for all g > 0 measurable functions. Taking g = lﬁ—Af and remembering that 0 < f < 1
A-almost everywhere, we get

X/lffXAdMZX/XAdV

from which we take the function ¢ = ﬁ which satisfies the equality (10.6).

The uniqueness of ¢ follows from the fact that [ f = 0 implies that f = 0 almost
X

everywhere. a

We now give a version of the Radon-Nikodym theorem for o-finite measure
spaces.
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Theorem 10.23 (Radon-Nikodym theorem). Let (X, o7, 1) be a G-finite measure
space and let v be a measure defined in </ which is absolutely continuous with
respect to U, i.e., V < W. Then there exists a nonnegative measurable function ¢
such that for each E € o/ we have

V(E) :/<pd/,t. (10.7)

E

The following example shows us that the hypothesis that the measure (t must be
o-finite in the Radon-Nikodym theorem cannot be dropped.

Example 10.24. Let X = [0, 1] and &7 be the class of all measurable subset of [0, 1].
Let v be the Lebesgue measure and u the counting measure in 7. Then v is finite
and absolutely continuous with respect to t, but there is no function f such that

v(E) = [ fau

E

forall E € /.

If u(E) =0, then E = 0 since y is the counting measure, then v(E) = v(0) =0,
v the Lebesgue measure, therefore v < .

Since v([0,1]) = 1 then V is finite. On the other hand X = [0, 1] is not numerable
and p({x}) =1Vx € [0, 1] which tells us that {1 is not a o-finite measure.

Supposing now that there exists f : [0, 1] — [0,eo) defined by F = f(x)x{} such
that v(E) = [ fdu forall E € o/. Let x € [0, 1], then

E

0=v({x}) = / fu = / 0020 At = F () = £(x)
{x} X

forall x € [0,1]. But v([0,1]) = [ fdu = 0 which is a contradiction. @
[0.1]

10.3 Problems
10.25. Prove that (f,g) = [ fgdu with f,g € L,(u) is an inner product.
X

10.26. Let f,g € L,(u), show that

(ol < I l2l1gll2-

This inequality is known as the Cauchy-Schwarz inequality or Cauchy-Bunyakovsky
inequality.
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10.27. Prove that the equality in the Cauchy-Schwarz inequality, i.e.

I(f = [1f2llgll2-

if and only if f and g are linearly dependents.

10.28. Show that || - ||» : L(¢t) — R or C defined by

2

1]l = / P du
X

is a norm over L, ().

10.29. Demonstrate that the norm || - ||, satisfies the parallelogram law (10.4).

10.30. If f € Ly(u), prove that| f{|2 = supy g, —; |(f,8)]-
10.31. Demonstrate that the following norms are not induced by an inner product:

(@) ||lx|| = max; <<, {|xx|} in R"
(b) [|f1l = sup,cia ) |f (x)| in Cla, b]

»

© Il = (}{Ifl”@) in L, (1) where p #2.

10.32. Let f,, 8, € Lo(u) withn € N. If

n—roo

lim [ (f, —f)*du = lim /(gn—g)zdu:().
X X

Prove that
tim [ figuu = [ feau.
b'e X
10.33. Let I = [0, 7] and f € L, ([0, 7], ,m). Is it possible to have simultaneously

/(f(x) —sinx)zdx <4

and
1

/(f(x) —cosx)zdx < §?
T
10.34. Let / = [0,1] and f be a Lebesgue measurable function. Show that f €
Ly(I,.Z,m) if and only if f € L,(I,.£,m) such that exists an increasing function
g such that for all closed interval [a,b] C [0, 1] we have
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2
b
/ F)dx| < (s(6) —g(a)) [b—al.

1
10.35. Let f € L, ([0,1],.Z,m) be such that || f|| =1 and [ fdm > o > 0. Also,
0
for B eR,let Eg = {x € [0,1]: f(x) > B}.If0 < B < o, prove that
m(Eg) > (B —a)*.
This inequality is known in the literature as the Peley-Zygmund inequality.

10.36. Let us consider the measure space (X, .o/, t) with u(X) =1 and let f,g €
Ly(u).If [ fdu =0, show that
X

2 2

X/fgdu < /gzdu— /gdu X/fzdu.

X X

10.37. Let f € L (1) NLy(u). Demonstrate that

(a) feLy(u)foreach1 <p<2.
(b) limps i+ || £[|, = [ £]]1-

10.38. If [ x*|f(x)|*dx <eoand [ |f’(x)[*dx < e, prove that if x > 0, then

/2

oo

12 1
AP <4 / 2|f ()P / @) de

X

10.39. Let f be a function defined in R such that f(x) and xf(x) belong to L(R).
Prove that

_ 2 . 12, 1/2
/ e | <8 / £GP / P I ()P dx

10.40. We remember that the Gamma function is defined as
INo) = /to‘"e"dt o € (0,00).
0

From Example 3.23 we already know that this function is log-convex.
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(a) If o, B € (0,00) show that

1
F(O{)F(ﬁ) o o—1 o—1 e
Torh _/z (1—1)*'dt :== B(a, B),

where B is the so-called Beta function or Euler integral of the first kind.
(b) Let f be continuous in [0,e) for & € (0,°0) and x > 0, let us define

1

1 6) = g5 [ (=) )
0

Prove that I, (I f)(x) = Iip f(x).
(c) Let us define Jo f(x) = x~ %I, f (x). Prove that for 1 < p < e we have

r(1-1/p)

el < g 57215 M

10.41. Let 1 < p < oo, r > 0, and & be a nonnegative measurable function in (0, o).

Demonstrate that
P

(@) Z xr Of h(y)dy dxs(g)”fxp—f—' [h(x)]" dx

(b) Z X ljf h(y)dy] dr < (%)”Ofx"”—l [h(x)]” dx

10.42. Let k be a nonnegative measurable function in (0, ) such that
/k(x)x‘" dx = ¢(s),
0

for0<s<1,ifl < p<ooand !+ é = 1, moreover if f, g are nonnegative measur-
able functions in (0, ). Prove that

/ / k(xy)f(x)g(y)dxdy
0 0
1/p 1/q

<o) | [ [l ar| | [ leto] ax
0 0
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10.43. Let F(x) = [ L dy; 0 < x < 0. If 1 < p < o show that
0

El, <

. [£1lp-
sin

(p)
10.44. Show that

X+

| /f(x axdy| < 7| £ gl
0 0

for f,g € L, ((0,00),.Z,m).
10.45. Let K : [0,1] x [0, 1] — R be defined by

K(s.0) 0 if0<r<s<l1
S =
’ 1 ifo<s<t<]1

andV : L,[0,1] — L,[0,1] (1 < p <eo) be the operator defined by

1 t

Vx(t) = /K(s,t)x(s) ds= /x(s) ds

0 0

for x € L,[0,1]. This operator is known as the Volterra operator. Show that the
adjoint operator of the Volterra operator is given by

1

Vy(s) = / y(o)dr.

N

10.46. Let k be a nonnegative measurable function in (0, ) such that

/k()c)xyf1 dx = ¢(s)
0

for 0 < s < 1. Let f be a nonnegative measurable function in (0, ). Let us define

x) = / k() F () dy

0

Prove that

||Tf||z<<P< )Ilfllz

What can be said about 7' f and @(s) if k(x) = e™*?



378 10 Integral Operators

10.47. Let (X, o/, u) be a measure space and f € L,(X,o7, ). If

u({xeX:|F(x)|>l})§% / m

{xex:|F(x)|>A}

Show that P
IF]l, < ﬁ“f“p

10.48. Let f € L,((0,00),.Z,m). For each t > 0, let us define
/mm (1 ) )é

2
p
1511y < Iillf\lp-

prove that

10.49. Let T : L,(u) — L,(u) be a continuous operator where 1 < p < eo and 0 <
r < p. Demonstrate that

@ 1F £ € Ly(t), then [£P T fI" € Li (1) and
Jusrirsra < i 1)
(b) If for some f € L,(u) with || f||, < 1 we have that
sy =yl

then

T/I=1TIf1-
10.50. If f € L; ((0,00),.%,m), show that

(@ i
[ Hoer 0 <e [ra
0

0
(b)ForO0<p<1

log f(t)dt

(x)x? dx

o\g
('DK‘_
o
|
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(c) Let f be a nonnegative measurable function in (0,5), 0 < b < oo such that 0 <
b
J1f(x)]? dx < eo. Show that
0

(cl) forp>1,

(c2) forp > 1,

b b P
1 1 p—1 N
[ |2 rwa| evs 2 [l (3)7 | treopas
0 0

10.51. Let 1 < g < e and p such that % + é = 1. Define

T(f)(x) = / ko) £(0) dr

R

Prove that for all f € L,(R), the operator 7 is linear and bounded from L,(R) into

L,(R) and moreover
1/q
i< ([ [eopa)

10.52. Let 1 < p <ooand Tf(x) =x /7 [ f(r)ds with L + 1 = 1. Show that T is a
0
linear and bounded operator from L,(0, <) into Cy((0,°)).

10.53. Let s < r— 1 and r > 1. Let f be defined in (0, ) such that

=

[ rerwac< .

0

X

Let F(x) = [ f(t)dr. Prove that
0
- 1/r - 1/r
/‘F(x) r
x
0

0/ ) de

r
x*dx <

r—s—1
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10.54. Let s < r—1 and r > 1. Let f be a differentiable function a.e. in (0,) such
that

JECIE e
0
and moreover f satisfies the following properties:
(@ f(0)=0.
(b) f(eo) =limo f(2) = 0.
Demonstrate that

1/r 1/r

/ e | < / S d
0

0

r

r—s—1

10.55. Let A > 0, if the differential equation

AL ()7 +0) 0] =0

has solution y such that

(@) y(0) = y(e2) =0.
(b) y(x) > 0.
(©) ¥y (x) > 0.

0 < x < oo, Prove that

1/q 1/p

=)

/ u@lgl)de | <aVe / 1 ()P dx
0

0
for all function u(x) such that
u(x) € ACJ[0, )
u(0) = limu(r) = 0.

[—oo
10.56. Suppose that f and g are nonnegative measurable functions in (0,c) and

(a) }Of(t)t_'/zdt < oo,
0

) [ [g()] dr < oe.
0
Prove that

f(r)drdx < eo.

O\X
oQ
-
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10.57. Let (X,<7, ) be a measure space and u,v are <7-measurable nonnegative
functions such that

tu ({xGX tu(x) zt}) < / vdu.
{u(x)=}
If u,v € L,(X, </, 1) show that

14
Jull, < ﬁHVHp-

X

10.58. Let f > 0 and f(x) = [ f(r)dr. Prove that
0

1/p

/ Foax| <2 / [£()" dx

1/p

for 1 < p < co.

(C(X) denotes the space of all continu-

10.59. Let 7 : C(X) — R with /,t( ) < oo
= [ fdu. Show that T is a linear operator and
X

ous functions in X) such that T'(f
find ||T|.

10.60. Let ¢ be a Lebesgue measurable function defined in (0, 1) such that1¢(z) €
L, ((0, 1),2, %) Prove that

p
(1+ |logt|)~ /(p < o1 RG] L(%)-
zlz)

10.61. Let g be a positive measurable function in (0,<). Let ¢ be a convex function
in (0, ). Show that

el X

[o|s [ewa| < ]w@(x))dx
0

0 0

10.62. Prove that: Let X be an Hilbert space. If x,,y,,x,y € X, X, — x and y, — YV,
then (Xn,yu) — (x,).

10.63. Prove Theorem 10.23.
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10.4 Notes and Bibliographic References

The Minkowski integral inequality already appears in Hardy, Littlewood, and Pélya
[30] and Theorem 10.2 is due to Hardy, Littlewood, and Pdlya [29]. The Hardy
operator and Hardy’s inequality (10.11) are from Hardy [26]. The proof of Radon-
Nikodym based upon the Riesz representation of functionals on Hilbert spaces is
due to von Neumann [81].



Chapter 11
Convolution and Potentials

Abstract In this chapter we study the convolution which is a very powerful tool and
some operators defined using the convolution. We first start with a detailed study
about the translation operator and after that we introduce the convolution operator
and give some immediate properties of the operator. As an immediate application
we show that the convolution with the Gauss-Weierstrass kernel is an approximate
identity operator. We also study the Young inequality for the convolution operator.
The definition of a support of a convolution is given based upon the definition of the
support of a (class of) function which differs from the classical definition of support
of a function. Approximate identity operators are studied in a general framework via
Dirac sequences and Friedrich mollifiers. We end the chapter with a succinct study
of the Riesz potential.

11.1 Convolution
Definition 11.1. Let £ C R and let us define 0(E) C R* as

o(E) = {(x,y) € R? :x—yeE}.
©

Theorem 11.2 Let T : R? — R defined by T (x,y) = x+y. Then T is continuous at
the origin.

Proof. 1In the first place, we want to show that T(V x V) =V 4V for V C R, where
V+V = {x+y xeV,ye V}. In fact, let z € T(V x V) which is equivalent to the

existence of (x,y) € V x V such that z = T (x,y) and this is equivalent to z =x+y
withxeVandyeV.ThenT(V xXV)=V+V.

© Springer International Publishing Switzerland 2016 383
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In the second place, we want to show that 7 is continuous at 0. To do this, let U
be a neighborhood of 0 in R and V a neighborhood of 0 in R?, but

T(VxV)=V+VCU,

showing in this way the continuity of T at 0. O
Remark 11.3. An alternative proof of Proposition 11.2 is to observe that R?, as a

normed space, can be equipped with the norm

(e, 9) IRz = [|x|& + [[¥lI-s
therefore, for T'(x,y) = x+y, we have
I7(e9) =T (0, 30) ]2 = e =0 +y —yolls.
< lx—xollr + Iy — yollr

= ||(x —x0,y — o) ||r2
=V(x—x0)2+(y—y)2 <5 =e.

The last result tells us that the continuity of 7' in (xg,yo) is uniform.

Theorem 11.4 Let h: R? — R be defined by h(x,y) =x —y. Then

(a) his continuous at Q.

(b) h"'"(E) =o(E) forall E € R.

(c) IfE is open in R, then o (E) is open in R?.
(d) IfE is closed in R, then 6 (E) is closed in R,

(e) o (nf]l E) = U o(E)

o o(75) -G

Proof. Ttem (a) is an immediate consequence of Proposition 11.1.
(b) Let

EcRand (x,y) €h (E) < h(x,y) €E
Sx—yel
< (x,y) € o(E).

Therefore h~ ' (E) = o(E).

(c) and (d) are obtained from (b).

) (x,y) eo(UE,,) Sx—ye UE, & x—y€E, for some n & (x,y) €
1 1

n=

(@

o(E,) < (x,y) € U o(E,). In this way we proved that

n=1
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"(U E) =Uo(&)
n=1 n=1
(f) Exercise. a

Lemma 11.5. If E C R is a Lebesgue measurable set, then 6(E) is a measurable
set in the product space.

Proof. Let us suppose that E is a bounded set, then m(E) < oo, and the Lemma is
true.

If E is a G or Fy set. In fact, by known results in measure theory, we can find a
set K which is F; and a set H which is G such that

KCECH and m(K)=m(E)=m(H). (11.1)

Then m(H\K) = 0. It is clear that 0(K) C 6(E) C (H). Note that for all A C R we
have that

o) (X,y) = xa(x—y).

Therefore, for each x € R we get

/ Xo(k)(x,y)dy = / Xk (x—y)dy
R R

~ [y
R
= /xk(y) dy
R
=m(K) (11.2)

Let C € R be an arbitrary bounded set in R, using the Tonelli theorem we get

/Xc(l()dm@m://XG(K)dydx:/m(K)dx:m(K)m(C)'
C R C

CxR

Similarly, we can show that

/ Xom) dm@m = m(H)m(C). (11.3)
CxR
Therefore
/ Xo(H) — Xok)dm@m = 0. (11.4)

CxR
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Since 6(K) C o(H), then

Xo(H) — Xo(K) = Xo(H)Ao(K) = Xo(H)—o(K)>

then

/ Xo(H)-o(k)dm X m = / Xo(H)—o(x) dM@m
CxR CxR
i.e.

/ Xo(H)—o(k) dm@m = m®m<[o(H) —o(K)|NC x R).
CxR
By (11.4) we get that

m®m([0'(H) —o(K)]NnC x R) =0.
In particular
m®m<[G(H) —o(K)]N[—n,n] x R) =0,

for all n € N, but

=

U <[G(H) —o(K)]N[-n,n] x R) =0(H)—-o(K),

n=1

from which we conclude that
m®m<G(H) - O'(K)> =0.
On the other hand, we know that
o(E)—o(K)Co(H)—o(K)

since m ® m is a complete measure we have that (E) — o(K) is a measurable set,
moreover o (K) is a set Fy, therefore

is a measurable set, and this finishes the proof of Lemma 11.5. O

Corollary 11.6 Let f be a measurable function. Let us define F : R> — R by
F(x,y) = f(x—y). Then F is measurable in R?.
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Proof. Let h: R? — R be defined by h(x,y) = x — y. Note that
F(x,y) = f(h(x,y)) = foh(x,y).
Let a € R, then
{@wy eR:Flry) <o} =F ! (~,q)
= (foh) ! (=, )
= (7 (=)
Since f is measurable, then f~!(—oo, &) is also measurable.
Let F(x,y) = f(x—y) and G(x,y) = g(y).
In virtue of Corollary 11.6, the function F' is measurable in R2, Now, observe
that
{6y €R:Glxy) <o} =Rxg ! (~,),

then G is measurable in R?. Then ¢ is measurable in R?.
On the other hand, by Tonelli’s Theorem, we get

[ 1ownianxm= [ | [irec=yles| letlay
_]R

RxR R

- / / ()l dr| lg)]dy
R _]R
= 171 / 180)ldy
R

= A lillgll < e,

if E = f~!(—oo, ), then E is measurable, then

{(x7y) ER?: F(x,y) < (x} =hY(E),

in other words, {(x7y) ER?:F(x,y) < oc} = o(E). By Lemma 11.5 the set 6(E)
is measurable, therefore F' is measurable. O

‘We now introduce the convolution of two functions in R.

Theorem 11.7. Let f, g € L; (R,f,m). For each x € R let us define
Clx) = (F+8)(x / Flx3e

Then C € Li(m) and moreover ||C||1 < ||f]11lgl-
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Proof. First we should prove that if @(x,y) = f(x—y)g(y), then ¢ is measurable in
R2. This follows from the fact that the product of measurable functions is again a
measurable function and Corollary 11.6. Therefore ¢ € L;(R?). By Tonelli’s theo-
rem, we get

Jiewiac< [ ] [ire=letlas| ax
R R [R

:/ /\f(x—y)|dx ¢(y)Idy

R

:/ /\f(x)\dx g(v)|dy
R R

= [/l llglls-

Therefore, we get ||Cll1 < ||f|l1lgll1- a

The notion of convolution can be introduced in more abstract frameworks, we
will give only in the framework of n-dimensional Euclidean spaces.

Definition 11.8. Let f : R” — R and g : R* — R. The convolution of f and g,
denoted by f * g, is given formally by

(f*g)(x) = / Flxr—)s()dy.

R
%)

We will show some results regarding the convolution in the one-dimensional
case, but many of the proofs can be adapted to the multidimensional case.

We start with the following properties, which are almost immediate from the
definition of convolution.

Theorem 11.9. Let f, g € L1 (m) and o, B € C, then we have

(a) f+g =g f (Commutativity)
(b) (f+xg)+xh= f=(g=*h) (Associativity)
(c) f*(og+Bh) = a(fxg)+ B(f*h) (Distributivity)

We now guarantee that the convolution belongs to the Lebesgue space under
some hypothesis on the belongness of some Lebesgue spaces of the functions f
and g.

Theorem 11.10. Ler g € Li(m) and f € Ly(m) with 1 < p < eo. Then ||f*g|, <
el 1711,
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Proof. If p=ec and f € L., then

I(f*g)(X)IS/If(x—y)Ilg(y)ldy
R

<1l / 0] dy
R

= [lgllt /1=,
from which
[(f x8) ()l < &It [|f oo

Let 1 < p <eand 1 < g < oo the conjugate exponent of p, i.e., %Jr% = 1. Now,
note that by the Holder inequality, Tonelli’s Theorem, and the translation invariance
of the Lebesgue measure, we have

p

=l = [ | [1ra-91(e07) " te) oy ax
_R

R
1/p1? plq
< / / =)l dy / g)ldy|  dx
R R R

- / / Fa—y)Plg)dy | g7/ dx

R R

=16l [ { [1re=nlewlay | as
R

R

= g7’ / Fx—y)Pdx / 1)l dy
R R

= [lgllE I £112 gl

241
=gl IA15-

1,1
‘I+l’

From which it follows that || f* g, < ||g]|{

Fllp < llell 11 O

Theorem 11.10 plays an important role in the theory of semi-groups. For exam-
ple, let us define in L, (m) the following operator
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x72
Mﬁ@:%;/ﬂwm(—4ﬂ>w
R

With f € L,(m), then we can write

x2
MN@#GHWLWMeG@:w%_>

By the Theorem 11.10 we have

1T = G Fllp < NG 1A

but

1 |X‘2 1 /72 \/ﬁ
Gli=— | exp| —— |dx=— [ eV dy="F~=1.
H t”l \/ER/ P( 4I> \/ER y \/ﬁ

Finally ||T;(f)]] < 1, and taking T(0) = I the identity operator, it can be shown
that T,T;(f) = T,+5(f). This semigroup is called the Gauss-Weierstrass semigroup.

The following application of the Theorem 11.10 is remarkable, since trans-
forms an operator that is not defined via convolution and in this way we can apply
Theorem 11.10.

Let H be the Hardy operator given in the Definition 10.4, i.e.
1 X
Hf(x)= < FO)dy for 0<x<eo.
0
Let us do the following change of variables x = ¢* and y = €’. Observe that
Hf(e')=¢e"* /f(e’)e’ dr.
On the other hand, note that
1= [eorac= [ I@peds =@,
0 —oo

Now, the equation

Hf(e')=¢e""* /f(e[)e’ dr
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give us
e/PHf(e") :e_s/"/e’/”f(e’)e’/"dt
o
:/e’/”f(e’)e_%dt
:/e’/pf(e’)g(s—t)dt,
where

_JeViifo<y <o
g(y)_{ 0 if—e<y<O.

As we can see, we transformed (via change of variables) the Hardy operator into
an operator defined via convolution, and now we can apply the Theorem 11.10 and
obtain

I fll, = e PHF )] < lglhlle”? £ = llglh 1171l

Since

. P
gl :/\g(y)ldy:/\g(y)ldy:/e ’/qdy:q:ﬁ,
—oo 0 0

we finally obtain
p
IH Sy < ﬁ”f“zr

If we fix g € L;(m) and define

T(f)=fx*g

then we can interpret the Theorem 11.10 in the following way. For 1 < p < oo the
operator T : L,(m) — L,(m) is a linear bounded operator.

We now obtain the so-called Young inequality for the convolution operator in
the one-dimensional case for simplicity, but the result is valid also in R” as already
proved in Theorem 8.9 via interpolation theory.

Theorem 11.11 (Young’s Inequality for Convolution). Let p, g and r be real num-
bers such that p > 1, ¢ > 1 and % + é —1= % > 0. Let f € L,(m) and g € Ly(m).
Then fxg € L.(m) and

£ gl < [1f1lpllgllg-



392 11 Convolution and Potentials

Proof. Let a, b and ¢ be real numbers such that % =
Note that

1,1 1 _ 1,41 —
a+b,qfa+candafr.

1 1 1 1 1 1 1 1 1 1 1
-+-+-=(-4+-|+|-F-)——-—==4+-—=-=1
a b ¢ a b a c a p q r

Now, we can write

|fx=y)gW)l = f(x=y)llgW)]
= (IF =P e ) (IF )P lgl)is ).
By Corollary 3.22 (generalized Holder’s inequality), we obtain
1/a
[ira=ssmlar< | [ [irte-plleoie] a
R

R
1/c

1/b
11 (11
/|f(x—y)\pb<” ) dy /\g(y)l‘”q ddy |,
R R
1 1 1 1

btl—f fadf—le,therefore
a b qg a c

/\fx y)g(y)|dy <

1/a 1/b
/ FG—3)Ple(y) 7 dy / FGe—y)Pdy / )7 dy
R R R

1/r
/|fx y)e)ldy < /Ifx NI dy | I gllde.

|f(x—)g()|dy,
= [1n

1/c
i.e.

Let us define

then

[h(x)]" < /If(x—y)\”lg(y)\qdy 115 el

R
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therefore
1/r
141 1.1
[imeoras| < el
R
Note that o .
T S A
Pz +-)=p(G+-)
and o .
T W S S
a(-+-)=alZ+-)
Then
1/r
/'h(x)rdx <[l £1lpllglq:

R

from this last inequality it is easy to see that f x g € L,(m), therefore

1 +gllr < [171,llgllg>

which ends the proof. O

11.2 Support of a Convolution

The classical definition of support of a function is well known, for example for
f : R" — R the support is given by

supp(f) = {x ER": f(x) £ 0} (11.5)

which is always a closed set. From the definition (11.5) we have that if x ¢ supp(f),
then there exists an open neighborhood of the point x where the function f is zero.
This notion is not robust enough when we deal with equivalent classes of functions,
since taking different representations of the same class can give different results,
e.g., let f(x) = xo(x) and g(x) = 0, which belong to the same equivalence class
with the Lebesgue measure. Using the definition of support from (11.5) we get

supp(f) = {x e R: f(x) #0} =R

but

supp(g) = {x€R:g(x) #0} =0
which is clearly different.

Since the notion of support is not robust enough for functions defined almost
everywhere, we introduce the following notion of support in a negative way.
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Definition 11.12. Let x € R". We say that x ¢ supp(f) if and only if there exists an
open V such that x € V and f = 0 in almost every point of V. @

In this new notion of support, let us see what happens with the previous counter-
example.

Example 11.13. Let f(x) = xo(x) and g(x) = 0. Using the classical definition of
support (11.5) we already know that supp(f) # supp(g) even so f = g m-almost
everywhere. Let us see what happens with the new definition of support given in
Definition 11.12. Let V = (|[x]| — 1, |[x]| + 1) be an open set. Since f(x) = 0 almost
everywhere in R in particular in V, then

x¢supp(f) ={xeR: f(x) #0}
if x ¢ R, therefore supp(f) = 0, which now is equal to the support of g. @

If f is a continuous function in R” it is not difficult to show that this new defini-
tion coincides with the notion given in (11.5).

On the other hand, for f = g a.e. in R” with the new definition we have that
supp(f) = supp(g). In this sense, we can talk about the support of a measurable
function.

Theorem 11.14 If f and g have compact support, then f x g has compact support.
Moreover

supp(f *g) < supp(f) +supp(g)-
Proof. Note that

(o) = [ 10ge-na= [ fo)g-na
R supp(f)
since if t ¢ supp(f), then f(r) =0

Analogously if x—1 € supp(g), then z € x — supp(g), which means that g(x—¢) =
01if t ¢ x — supp(g). From this we get that

W= [ sost-nar
supp(f)N(x—supp(g))
If (f*g)(x) # 0, then supp(f) N (x — supp(g)) # O therefore there exists y €
supp(f) N (x — supp(g)). Since y € x — supp(g), we have that y = x —w with

w € supp(g). Since x = y+w with y € supp(f), w € supp(g).
We have proved that

{(f*g)(x) #0} < supp(f) + supp(g),

but the sum of two compact sets is compact, therefore supp(f * g) C supp(f) +
supp(g)- 0
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The next result shows that, in some sense, the convolution function preserves the
best properties from the convoluted functions.

Theorem 11.15. If f € L (R",.£,m) and k is uniformly continuous and bounded in
R”, then f xk is bounded and uniformly bounded.

Proof. Letus see that f xk is uniformly continuous. If f =0, then f*k = 0. Suppose
that f # 0. Given € > 0, since k is uniformly continuous we can find a § > 0 such

that if |x —y| < 8, then |k(x) —k(y)| < ﬁ We now have

k() — f k()| = / Fk(x—1)dr — / FOk(y—1)de
]Rn ]Rn

< [0l =0 k=) e

[

R»

<

€
Il

1
€

since |(x —1) — (y —1)| = |[x—y| < &, which shows that f xk is the uniformly con-
tinuous. Now using Theorem 11.10 we have || f * g|| < ||g]|1]/k]|- O

11.3 Convolution with Smooth Functions

We recall some standard notation regarding the space of differentiable functions.
For each m € N we denote by C™ the class of functions having continuous partial
derivatives up to order m. By C* we mean the set of all infinite differentiable func-
tions. By Cj' we denote the subset of C™ where the functions have compact support
and in a similar fashion we define Cj.
If o = (ay, 00,...,0) is a multi-index, where o; € NU{0}, we denote the partial
derivative as

dlolf
D*f)(X) = =—g—=a—a
(DEf)) Ox\19xS? -+ Ay’
where || =0y + 0 + -+ - + O

We now study the behavior of the convolution when we convolve L, functions
with smooth functions. The convolution inherits the best properties of each parent
function.

Theorem 11.16. Let 1 < p <eo, f € L,(R", £ ,m) and k € CjJ'. Then f*k € Cj' and
moreover

DE(f k) (x) = (f *D%)(x)

whenever |ot| = o + 0+ -+ 04 < m.



396 11 Convolution and Potentials

Proof. Let us show first that if k is continuous with compact support then f *k is
continuous. We have

|(f k) (x4 )= (f % k) ()|

:/f k(x+h—r1)dt — /f

R~

- /f(t)[k(x+h—t)—k(x—t)]dt

R

=/f K(u+h) — k()] du

N

IN

/If(x—u)l”du /\ku+h ()" d

We affirm that

hm /|k (u+h)—k(u)|?du| =0.

Since k is continuous and have compact support, then it is uniformly continuous in
R”", hence, for given € > 0 there exists a § > 0 such that for all u € R", if |h| < 6,
then

|k(u+h) —k(u)| < €.

We can suppose moreover that § < 1. Therefore, if |h| < §, we have

/\k(u+h)—k(u)|"du:/\k(u+h)—k(u)|qdu
R~ 1

< /sqdu

=¢&im(I)

where I = {x € R" : d(x,supp(k)) < 1} (which is compact and therefore have finite
measure).

Letk € Cff (m > 1), fix i with 1 <i < m and let ¢; be the usual unit vector from
the canonical base, then
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(f*k)(x+h-e;) = (f*k)(x /f { _’Jrh'e")_k(x_t)}dt

h h
R®

~ [ 10 |G| a
J

by the mean value theorem, for some 4* = { - ¢; depending on x and ¢, where { is
between 0 and 4.
Therefore, when |h| — 0, ak . (x—1+h") converges to gk (x—1) uniformly in 7.

Since ak has compact support we deduce from the theorem on the uniform con-
vergence that the last integral converges to

/ 0[]

Consequently, a%( f*xk)(x) exists and is equal to ( K g—f) (x) which is continuous
by previous arguments. This shows the theorem for the case m = 1, the proof for
any m is obtained by induction. If follows that fxk € C*if f € L, (1 < p < e0) and
k € Cy. By the Theorem 11.15 f * k has compact support. a

11.3.1 Approximate ldentity Operators

One of the main applications of the convolution operator is the construction of the
so-called approximate identity operators.

Definition 11.17. A sequence {¢} of real-valued continuous functions in R" is
called a Dirac sequence if satisfies:

DIR1 ¢ > 0 for all k;

DIR2 For each k we have [ ¢ (x)dx = 1;
Rll

DIR3 Given €,0 > 0 there exists a ky such that

(pk(x)dx <E€
[x|>8
for all k > ko.
@

In other words, all the functions ¢ have constant mass, the mass is concentrated
around the origin and the functions are positive (Fig. 11.1).
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The usefulness of the Dirac sequences steams from the following result.

Theorem 11.18. Let f be a measurable and bounded function in R", K be a compact
set on which f is continuous and { @y} be a Dirac sequence. Then @y * f converges
to f uniformly in the set K, i.e.

ok f=f

Fig. 11.1 Example of a Dirac sequence

Proof. Letx € K. Then
(@) () — F(x)] = / () flxr—y) dy / FEP() dy
R” Rn

< / Q)| Fx—y) — ()] dy
J

< /+/ oc(y) [ f(x—y) = f(x)|dy
NECENEN

=hs+bhs,

where the first equality follows from DIR2. Given € > 0, let us choose § > 0 such
that |y| < 8, therefore for all x € K we have |f(x—y) — f(x)| < €. Due to the choice
of § > 0 we have that /; 5 < €. To bound the integral /, 5, we observe that DIR3
guarantee that [, 5 < 2|/ f]|.. € for k sufficiently large. O
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We can construct Dirac sequences via Friedrich mollifiers.

Definition 11.19 (Friedrich Mollifier). Let ¢ : R* — R be a function with the
following conditions:

(@ ¢ € GG (R");
(b) @(x) =0 when |x| > 1; and
© [o(x)dy=1.

]Rn

We define the Friedrich mollifier ¢, has

Pe(x):=¢€""¢ (z)

forall € > 0 and x € R". @

Using Friedrichs mollifiers we can construct approximate identity operators with
“smooth” properties, which can be obtained by convolving f with an appropriate
Friedrichs mollifier. We have the following.

Theorem 11.20. Let @; be a Friedrichs mollifier, 1 < p < e and f € LP(R"). There-
fore:

(a) @z xu € C(R");

(b) ||_(P8 wullp, <lull;
(c) limg_0||@¢ * u — u|

=0,

The proof of the theorem is not difficult. The idea of the proof of the item (c) is
similar to the one given in Theorem 11.18 with the respective changes.

Remark 11.21. The function

((Ps*f)(X)=81,,/<P<x;u>f(u)du=iR[q)(Df(x—u)du

R

is sometimes denoted, especially in the Russian literature, the Sobolev €-average.

The problem to extend the Theorem 11.20 for the variable exponent Lebesgue
spaces is the fact that the proof relies on the continuity of the translation operator

Jocsu—ul, < [l o0l
Q

which is not valid in general, cf. § 7.1.10.1. Fortunately it is possible to show a
similar result for variable Lebesgue spaces using the boundedness of the maximal
operator. We need some auxiliary lemmas, see Stein [71] for more details.
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Lemma 11.22. Ler y : R" — R be a radial function (i.e., ¢(x) = @(|x|)), positive
and decreasing such that w € L'(R"). Then w(r) = o(r ") when r — 0 and r — .

Proof. The result follows from the following estimate

Wlow = [ voazve) [ a—cyor

r/2<hl<r r/2<ll<r

Lemma 11.23. Let f € L}, (R"). Then we have the following estimate

/ Fx)dx < V,"MF(0)

B(0,r)

where M is the maximal function (9.2) and V,, is the volume of the unit ball in R"
7.l:n/Z

given by V, = Fu/25T)
Proof. The proof is direct, since
/f e = m(BO0.0)| i [ ) < m(BO.)MFO)

B(0,r)
a

Lemma 11.24. Let ¢ be a positive, decreasing and radial function in R, and inte-
grable. Then

il;gl(fpe*f)(x)l <@l Mf(x)-

Proof. We will first prove that (¢  £)(0) <||@||,: M f(0) and will show the general
case based on this particular case. Let M f(0) < oo and let us define the following

functions
= [ fm)d0()
Sn— 1

_ / F(0)dx
B(0,r)

where S"~! is the unit sphere in R” and B(0, r) denotes the ball centered at the origin
and radius r in R”. By a change of variables in spherical coordinates we have

= /?L(t)t"*ldt.
0

and
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Now, we have

(0 £)(0) = / F))dx

z/l(r)(p( ) dr
0
N
—tim [ o(r)d(a(")

Using Lemmas 11.22 and 11.23, the previous estimate and (11.24) we obtain

(0 £)(0) = / A d(~0(r)

<@l Mf(0).

since V,, = @,_;/n, which proves the result for x =0 and € = 1. Let x € R”
be arbitrary, then taking 7, has the translation operator: 7, 0 f(x) = f(x —h) and

Fx) = F(=), we get (9o £)(x) = (%* (Txof)) (0) <1l (20 f)(0) =
Il M ).

After some preparation we arrive at the following important theorem.

Theorem 11.25. Ler Q C R" be a bounded open set, and p € LH(Q). Let
¢ :R" — R be an integrable function and let @z be a Friedrichs mollifier. More-
over, let us suppose that the least decreasing radial majoran of @ is integrable, i.e.

Y(x) = supjys 1y @ (y)] then f Y (x)dx =A < eo. We then have

(@) sup,y |(f % ) (x)| < AMF(x) for all function f € /") (2);

(b) limg_,o4 (f * (ps)( ) = f(x) almost everywhere in Q for all f € L’")(Q);

(¢c) For all f € LPV)(Q) we have f* @¢ — f in LPV)(Q) whenever € — 0+;
)

(d) For all f € L (Q) we have the following estimate (uniform with respect to
£>0)

1 * @ell o) S 1M

vo@) SIf

LP(‘)(Q)
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Proof. Since Q is a bounded set, we have that L’)(Q) < L'(Q), which implies
the pointwise estimates (a) and (b) via Theorem 11.20 and Lemma 11.24. To prove
(c), for fixed x € €2, we have

|(F % @e) (x) = F) 1P < (1(F % e) () +1f () )P
S (AMF () + | ()]

which implies that |(f * @) (x) — f(x)|P®) € L'(€). Using (b) with the Dominated

Convergence Theorem, we obtain

lim pyy (f e — f) = lim / (F 5 9e) (x) — F)|P

£—0+ e—0+

/ lim |(f % e)(x) — £()[" dx

e—0+
Q
=0,
from which we get the convergence in norm due to the fact || f * Q¢ — f1| ;0 0) = 0
whenever € — 0. To show (d) we take into consideration the Theorem 11. 20(a) and
the fact that the Lebesgue space is ideal (cf. Remark 7.10). O

11.4 Riesz Potentials

The inequalities that involve the Riesz potential provide us with an important tool
which permits to estimate functions in terms of the norm of its derivative. We will
use the Fourier transform. Let f € L (R"), let us define f by

fl&) = / e 2™ f(x)dx, & eR" (11.6)
]Rn

The function fis called the Fourier transform of the function f, sometimes we
will denote it by .Z (f) see Appendix D for general properties of the Fourier trans-
form. Let us consider the Laplacian of f, i.e.

n a2f

Z * Ox2’

Now, let us take the Fourier transform of the minus Laplacian

(121txk) f =47? z xkf 4n2|x|2f(x).

“\
\N
-

—Af 2

tl S

k=1
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Now, we want to substitute the exponent 2 in |x|? by an arbitrary exponent 3 and
in this way to define, at least formally, the fractional Laplacian by

—

(~A)2 f (x) = (2nlx])P F(x). (11.7)
Looking to equation (11.7) we see that, formally, it can be obtained as the
Fourier transform of kq * f Where kq(x) = 7~ (|E]~%(21)~%) since kq * f(E) =
k;(é)f(é) We now try to compute the function k, by some operational way,
in the sense that we will not care about rigor following instead formal rules. In
Lemma 11.27 we will return to orthodoxy and a rigorous prove will be given regard-
ing the nature of k. We first notice that the Fourier transform of a radial function is
again a radial function (see Appendix D). Using a scalar argument we get

F(| 7)) =t|*"F(|-17*)(&)
from which it follows

F(-FE) = e (117 (57 ) = 8l con o
We operated in a purely formal way without taking care of the fact that we were
working with an improper integral. To try to compute the constant C(n, o) we will
use the fact that the function exp(—m|x|?) is invariant under the Fourier transform
and we will also use the multiplication formula (D.8) disregarding the fact that the
functions |-|~* and |- |"~* do not belong to L! (R"). From the multiplication formula
we have

/ exp(— ) x| @ dx = / exp(—xP)C(n, 0)lx|* " dx
R’l

Rn

equality that can be transformed, via polar coordinates, to

/ —mr) " dr = C(n, a)/ xp(—mr?)r®~dr, (11.8)
0 0

from which we get, after some routine calculations,

Gathering all the previous facts we get , at least formally, that

e _2mT(9)
n@)’ (o) = W;a)z

2

ke (x) =
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We will now define the so-called Riesz potential operator as

Iy = ko f(x) /|x = —dy, (11.9)

]R”

where ¥, () = ( gi) is the normalizing factor given in such a way that I;}‘(é) =

E17F (&),

In the next Lemma we will verify, in a rigorous way, that the Fourier transform
of ky(x) is indeed the function |x|~%, but first an auxiliary result.

2

Lemma 11.26. Let f(x) = exp(—n8|x|?) with § > 0. Then f(&) = 82 f(£/5).

Proof. We have

7&) = / exp(~2miE - x) exp(~ 8 |x[?) dx
J

= exp (nfﬁ) /exp(fn5(y+i§/8)-(x+i<§/5))dx

Rn

2
= exp (_n|§|> /exp(—n5x-x)dx

Rn

2
E )

where the last equality is due to the Euler-Poisson formula. a

Lemma 11.27. Let 0 < o < n and . stands for the Schwartz class (see Defini-
tion D.6), then:

|(X*}’l

(a) The Fourier transform of |x is the function

(2m)~“m(a) X%,

in the following sense

[ et e /zn “ (@)~ o(x) dv

R

forall p € &.
(b) The identity - R
Lo f(x) = |x[~*f(x),
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is obtained in the following sense

/Ia(f)(X)§(X)dX=/f(X)IXI’“g(X)dxa

R R®

for f,.g e 7.

Proof. (a) By Lemma 11.26 and the multiplication formula we have

/ exp(—8[x)p(x) dr = 52 / exp(—nx/8)p(x) dx
J

R»

for all ¢ € .. We now multiply the previous equality by 57!

with respect to 6 we obtain

and integrating

/ /exp(—n5|x|2)5%*ld5 @ (x)dx

R~ R
. 2
:/ /exp <”g|x|> 557148 | p(x)dx. (11.10)

R” R

Taking into account that

/ exp(—nd|x|?)8"* 7148 = (rlx?) T (nz‘”) )

R

we obtain from (11.10) the equality

n"z“r<”;“>/|x|“¢(x)dx:n?r <(;>/x°‘q)(x)dx.
e

Rr

(b) Using (a) we obtain

()

Rn

%(looﬂzf(xy)lylo‘”dy : /‘f’(y)|y|“”dyﬂ{/|y|aq3(y)dy’

where ®(y) = f(x—y), from which we get that @(y) = ¢ f(y). The previous
equality can be written as

1 _ o—ngqy 2mix-y 7 —o
o / Flr=ybiedy= [ F)l|

R
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Multiplying both sides by g(x) and integrating over R” we obtain

/ ac= [ | [emileay | g

Rn Rn

which entails the result via Fubini’s theorem. O
Lemma 11.28. If f € .7, then

(@) Io(Ig f) = Io+p(f) where ot > 0,8 >0 and o+ B < n.
(b) A(lof) =1,(Af) = —1y—2(f) withn >3,n > o0 > 2.

Proof. (a) Applying the Fourier transform we obtain

I P)(E) = (rIE) (s /)(E)
— (2nle) - 2nlE)PFE)
— (2nle]) @ P )
= a+ﬁf(<§)

Therefore, taking the inverse Fourier transform, we get Io,(Ig f) = Io15(f)-

(b)
Aaf)(E) =3 RS (E)
=Y 4P EU,f (&)
k=1
—(2m|&|)2(2m|E]) (&)
= —(h-af)(&). (1L11)
On the other hand

Io(AT)(E) = (2m|E]) “AF(E)
—(2nl&]) " (2m|E)2F(E)
—(2nlE])> e F ()

= —(Io—21)(E). (11.12)
From (11.11) and (11.12), we obtain the result. a

11.5 Potentials in Lebesgue Spaces

In Section 11.4, we consider the Riesz potential from a formal point of view. In
particular we operated with smooth functions which behave quite well in the infinity.
Since the Riesz operator is an integrable operator, it is natural to study its action in
the Lebesgue spaces. By this reason, we formulate the following problem:
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Given a real o with 0 < a < n for what pairs of (p,q) is the operator I
L,(R") — L,(R") bounded?

In other words, when the following inequality
e (Hllg < ClIf Il (11.13)

holds?

To answer the question regarding the boundedness of the operator I, we consider
the dilation operator &, defined by

6.(f)x)=f(Ax), A >0.

On the one hand, we have

16l = / | (Ax) P dx (11.14)

er
=177 fllp-
On the other hand,

8-1la(82.1))(x) =1 (5/1f)( AT )

/|A Iy — y|nocy

Rn

=AU f(x),

from which it follows

)u_a”[a(f)Hq = |\5/1*1(1a(57t(f)))||q =

Gathering the above considerations and supposing (11.13) we obtain

fll,

e (82.5)lg- (11.15)

e fll, < CATa

which, being valid for all A > 0, implies that

1 1 «o
—=——— (11.16)
q p n

We will see that relation (11.16) fails for the limiting cases p = 1 and g = .

From (11.16) we get that g = for x # 0,

we have

1
Lo @y (x) ~ e
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for k sufficiently large, from which we get

0 1

n—o

o~
[

|Ia(Pk(x)

and this entails a contradiction if we suppose (11.13) to be true for p = 1. See Prob-
lem 11.46 for more details.

We will show directly with a counterexample that this case is also not pos-
sible. Let

—o 1 _%(l+£)~ 1
xi (1og 1) if x| <}

fx) =
0 if [x] > 1.
where ¢ is a positive number sufficiently small. Now f € Lz (R") since
) 1\ e
JireEa= [ (oey)
R k<

:C/L
/ r(log%)(Hg)
< oo,

Nonetheless, I, (f) is essentially not bounded near the origin. This is

L0 =— [ |y|n(10g1):<1+s>dy

() x|
ES;
/ dr
= C(O‘)/ (1te)
o T <1og 1)

ifo(l+¢)<n.

Now, if we take a subset 2 C R” (& < n), such that 0 < m(Q) < o=, we obtain
the following result.

Lemma 11.29. Let 2 C R" be a measurable set with 0 < m(Q) < and 0 < o < n.
Then there exists a constant C > 0, such that

1o (x2) |l < Clixall-
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Proof. We can suppose that x = 0, and find an R > 0, for which m(B(0,R)) = m(€2).
Let us denote B = B(0, R); therefore, if y € Q \ B, then |y| > Ras oo —n < 0:

/ [y|*"dy < R*"m(Q2\ B)
\B
=R*"m(B\ Q)

/IyI“‘"dyS/IyI“‘”dy- (11.17)

Q\B B\Q

/IyI“’”dy:/IyI“’”dy+ / ly[* " dy,
Q

Q\B QnB

On the other hand

and by (11.17), we have that

[y [ pieras [ era
Q

B\Q QnNB
from which
[birrars [hiera
Q B
Since

Finally we obtain

/ 7| dy < m(B(0, 1))~ */"m(B(0,R)) /"
Q
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ie.
o (x@)ll < Cllxallz -

‘We remember the concept of a lower semi-continuous function, namely f is said
to be a lower semi-continuous function at x if

liminf £(x,) > f(x).

Xp—X
Theorem 11.30 The I, f is semi-continuous when f > 0.

Proof. If x, — x, then |x, —y|*7" f(y) = |x —y|* " f(y). By the Fatou Lemma we
obtain

/liminf|xn —y|* " f(y)dy < liminf/ [x, —¥[*7" f(y)dy

R» R?

which implies that I, f (x) < liminf I, f(x,). O

We now obtain a type of Cavalieri’s principle for the Riesz potential I, of a
measure [ which is sometimes called a-potentials.

Lemma 11.31. Let 1L be a Radon measure in R" and o« < n. Then

Proof. Using Corollary 3.55, we can write

/u =y > A}) dA

Ix y\” ’

1

making the following change of variable (%) "% = 1, results that

/w,u B | x, (i)la dA = (n—a)/mr‘”‘”‘lu(B(x,r)) dr.
0 0
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]R/|xdl.l)f|n _— 0/ )) dr.

Theorem 11.32. Let 1 < p < eo. Let Q be a finite measure set and let f € L,(L),
then

Finally

a

eS|z, 2) < CllfllL, @) (11.18)

where C = m(B(0,1))!=%/"m(Q)%.
Proof. By Lemma 11.29 with f =1, we get

/ lx—y[* " dy < Cm(Q)%/".
Then, if p > 1, using Holder’s inequality we get

1/p 1/q

/ FO) e —y|= " dy < / £GPl =yl " dy / by “ " dy
Q Q Q
1/p

Scl—l/l) /v|f‘(y)|l7|x_yl(JC—ndy7
Q

from which we get
[taseirax<ert [ 7oy | a
Q o \a

:Cl’—l/‘f(y)lpdy/|x_y|a—ndx

Q Q
<c [lrmpra
Q

Therefore
Hlaf”l‘p(SZ) = CHf”Lp(sz)

Now, we will estimate the norm of the Riesz potential in a more general way.
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Theorem 11.33. [f0 < oe < n, B > 0and 6 > 0, then for x € R"

/ WON_ 4y < cosmmp),
|x_y|n o
B(x,8)

where Co, = 2m(B(0,1)).

T a

Proof. For x € R" and § > 0 we use the Lemma 11.31, then we obtain

/ PO,
o=yl

B(x,8)

d

—o-o [ [ vole | 2

0 (x,r)NB(x,8)

) d [ d
< (n—00) | m((0.1)) [ MrLOrSs m(B(0.1) [ MFS S
0 )
= = m(B(0,1))M/(x)8",
which ends the proof. a

We now obtain a very important inequality, the so-called Hedberg inequality.

Theorem 11.34 (Hedberg inequality). Ler 0 < oo < n and f € L,(R"). Then for
1 < p < 2 we have the following pointwise inequality
[of ()] < CIIflly (Mf () (11.19)

Proof. Forx € R" and § > 0 we have

|Iaf(x)|§/|x|f(yy|l)1|ady+ / Mdy
B(x,) n

x — y[r—e
R™\B(x,8)

by Theorem 11.33, we obtain

/mdy:m_a)] / £ O)ldy d—ﬂ
5 0

(x,r)NB(x,6)

14
dr

< (n—a) | m(B(0, 1))/Mf(x)"’m

0
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r 5 dr
+m(B(0,1)) | Mf(x) praroy
s
< gm(B(OJ))Mf(x)SO‘. (11.20)
Now, for & > 0 the Holder inequality implies that
1
q
fl -
L o <151, fe—yl@ M dy
R"\B(x,6) \R“\B@cﬁ)
- ;
=171, | mi(0.1)) [ ar
8
m B 07 1 _n
< 1,67 (a121)
Finally, from (11.20) and (11.21), we get
/Xl_f(yyﬁ'[xdy gc(é“Mf(x)+||f||,,5“*%). (11.22)
RV!
i _r
If we choose & = (Aﬁ}fc‘(lf)) ", then (11.22) transforms into
ap ap
o f (X)] < C(Mf(x)) | fIl" -
O
We now obtain mapping properties of the Riesz operator.
Theorem 11.35. Let 0 < o0 < n.
(a) If 1 <p < andq= =, thenly: L, — Ly is bounded, i.e., |[lo.f|lq < C| f]-

(b)If g = 75, then Iy : Ly — L

n—o’
[RAIR
¢ (14

n
) n—o

n
17u o

) is bounded, i.e., m({x : Io.f(x) > A}) <
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Proof. We have:

(a) Observe that the Hedberg inequality together with Theorem 9.11 implies that

1

1
q

[ itaslras | <cll | [t e

R~

q

R~

1

P

—clf1 / M ()P d

Ru
<C|fllp-

(b) For the case p = 1, the Hedberg inequality transforms into

[l f (0] < CIFIT (MF(x))'F (11.23)
Observe that by Theorem 9.9 and (11.23) we have that
m{{x:Iuf(x) >A}) <m| S x:Mf(x) > z
cllFlly
iy
therefore o
m({x: I f(x) > A}) <e ('J;J“> o
O

11.6 Problems

11.36. Calculate (f * f)(x) in each case

a) f:R—Rgivenby f =y 1,1
b) f:R? — R given by f = ¥p(0,1)-

11.37. Suppose that f € L, ((R",,m)) and g € L, ((R",£,m)) with 5 + 7 = 1.
Prove that for each € > 0 there exists R > 0 such that

(fxg)x)<e Y |x| > R.
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11.38. Let

keZ"

(L) (R") = {f € Lioeeo  Iflloa = X 1fllzien < °°}

le(L1)(R") = {f € Lioe,t |Ifll= = sup [l fllz. 0 < °°}
E n

where Oy = Qo+ k and Qg = [—1, 3]". If f € £, (L..)(R") and g € L..(L;)(R") show
that fx g € L.(R",.Z,m) and
1f*&lles <21 Nl 1 1111 co-

11.39. Let ¢ : R — R be a function defined by

~ Jexp(h) iflx <1,
o) = {0 if x| > 1.

a) Prove that ¢ belongs to the class C* with supp o = [—1, 1],
b) For each € > 0 and a € R, show that the function f(x) = ¢ (%) belongs to
the class C* with suppf = [a—€,a+€].

11.40. Let [a,b] C R and € > 0 be such that a + & < b — € where @ is defined as in
b
the Problem 11.36. Let us define /: R — R by h(x) = [ ¢ (%) dt for all x € R.

Prove that

a) supph C [a—€,a+é€],
b) h(x) = ¢ (constant function) for all x € [a+ €,b — €],

b
¢) h belongs to the class C* and A" (x) = i ;;l (0} (”T") dt for all x € R, and

d) The function f = h/c of C class satisfies 0 < f(x) < 1 forallx e R, f(x) =1
and for all x € [a+¢&,b—¢g] and [ |)(ap) — f|dm < 4e.
R

11.41. Let f : R — R be an integral function with respect to the Lebesgue measure.
Given € > 0, show that there exists a function g belonging to the class C* such that

J1f—gldm <e.
R
11.42. Let us consider the vector space of functions

E= f:R%R|f€C°°and/fdm:0
R

Prove that for each 1 < p < oo, the vector space E is dense in L,(R). Is E dense in
Li(R)?
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11.43. The Poisson integral and the Gauss-Weierstrass integral are given, respec-
tively, by:

(@) Po(x fP% @(x—y)dyt >0,
(b) Wi(x ny,¢@*W®a

where

Cit n+1
Pyt)=——" —(n+1)/21
0= ey TE

and
—n/2 |‘x|2
W(x7t) = (41‘Ct) exp _Tt .

Let o € L,(R",Z,m) with 1 < p < n/c. Show that

=3

Lo (x) = 55- lr /"‘ 'Po(x)

0

_ 1 o/2—1 X
~ a7 O/t Wi (x)dr.

11.44. Prove that the following sequences are indeed Dirac sequences:

1. The Landau function
L -2 i <1
Or(x) = & ( ) ) o
0, if x| > 1;
1
where ¢, = [ (1 —x?)dx.
~1
2. The Gauss kernel ,
(Pk(x) el (4n)7n/26—\x/k\ /4
forx € R" and k > 0.

11.45. Show that, under the hypothesis of Lemma 11.24, we have

[raomn == [owax (11.24)
0 R

where w,_; = is the surface area of the unit sphere S"~ L
(n/2)
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11.46. Prove that the relation ||I,.f

fekrL (Rn)
Hint: Use a Dirac sequence ¢ and show that, passing to the limit, we get

Lojray ®) < C||fIl1, g cannot be true for all

1 1

_— < C < oo
(o) x| -

L) (n-a) (R™)

which gives a contradiction.

11.7 Notes and Bibliographic References

The Riesz potential was studied for the first time by Frostman [19] but many prop-
erties were obtained by Riesz [60], see also the monograph of Landkof [42].
The Hedberg inequality (11.19) appeared in Hedberg [31].



Appendix A
Measure and Integration Theory Toolbox

What I don’t like about measure theory is that you have to say
“almost everywhere” almost everywhere.
KURT FRIEDRICHS

In this appendix we collect all the necessary information regarding measure and
integration theory'.

A.1 Measure Spaces

Definition A.1. A collection <7 of subsets of a given set X is called a ¢-algebra if

(a) X € &
(b)ifA € o/, then X \A € &
(c)ifA, € o7, then Uy A, € o.

The pair (X, o) is called a measurable space. @

Not every collection of sets is a ¢-algebra. However, if ¥ is an arbitrary family of
subsets of X, then there exists the smallest -algebra 6(%) which contains ¥. Such
a o-algebra is simply the intersection of all o-algebras (in X) which contain ¥.
It surely exists, since there is at least one such a ¢-algebra (the o-algebra J3(X)
of all subsets of X) and the intersection of any collection of o-algebras is again a
o-algebra. The collection ¢(%) is called the o-algebra generated by .

Definition A.2. Let P be a topological space. The o-algebra 2B (P) generated by the
family of all open subsets of P is called the Borel G-algebra of P; its elements are
called Borel sets. @

Definition A.3. Let .o/ be a collection of subsets of a set X. A nonnegative set func-
tion u : & — [0,00] is called a measure if

(a) < is a o-algebra;
(b) u(0) =0;

! We follow very closely Lukes and Maly [46].
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(c) for each sequence {A,} of pairwise disjoint sets from <7,

The triplet (X,.<7, 1) is termed a measure space. @

We say that a measure is:

(a) finite if uX < oo,

(b) o-finite if there exist sets M,, € o/ such that UM, < +coand X = U, M,;
(c) aprobability measure if uX = 1;

(d) complete if whenever B € <7 is anull set and A C B, then also A € 7.

By (R,.%#,m) we denote the Lebesgue measure space, with the Lebesgue o-
algebra and the Lebesgue measure m. The Lebesgue measure is the natural extension
of the notion of length of intervals since it is the only translation invariant measure
on 2A(R) such that u (0,1])) = 1. For a more detailed construction of the Lebesgue
measure, the reader should consult the references given at the end of Appendix A.

A.2 Measurable Functions

If ¥ C </, then we say that a function f: X — R is o -measurable, some-
times denoted only by measurable when the underlying o-algebra is understood,
if {xeZX: f(x)>a} € o for each o € R. We denote by F(X,.«/) the set of all
measurable functions. The following theorem encapsulates the main properties of
measurable functions.

Theorem A4. Let f,g, f, be of -measurable functions (with possibly different do-
mains in &), A € R and @ be a continuous function on an open set G C R. Then the
following functions are </ -measurable where defined (and their definition domain

ind):

(@) Af,f+ g max(f,g),min(f,g),|f],fg,f/8
(b) sup f,inf f,,,limsup f,,, liminf f,, and lim f,,;

(c) pof.
We will need one more result regarding measurable functions, namely:

Theorem A.5. Let f(x) be measurable in R". Then (x,y) — f(x—y) is measurable
inR" x R" = R?",



A.3 Integration and Convergence Theorems 421

A.3 Integration and Convergence Theorems

. L . n
If 5 is a nonnegative simple function expressed as s = ¥/, B;xs,, Where B; are
pairwise disjoint sets and f3; are nonnegative coefficients, define

/SdMZ/ D Bixs, | du =Y BjuB;.
X x \/7! =1

Next, if f > 0is a u-measurable function, define

/fdu 1= sup /sduzogsgﬁssimple
X

X

For an arbitrary .«/-measurable function f, we define its integral as a difference
of two positive functions, namely f* = max{f,0} and f~ = min{—f,0}. Namely,

X/fdu :=X/f+du—x/f—du

provided that at least one of the integrals is finite.
By L*(X,u) = L*(u) we denote the family of all y-measurable functions defined
u-almost everywhere on X for which the Lebesgue integral is defined.

Lemma A.6 (Fatou’s Lemma). Let { f,,} be a sequence of [.-measurable functions
and g € L'. If f, < g almost everywhere for all n € N, then

/liminff,, du < liminf/fn du.
n—oo n—yo0
b'¢

X

Theorem A.7 (Beppo-Levi’s Theorem also known as Lebesgue Monotone Con-
vergence Theorem). Ler {f,} be a sequence of |-measurable functions, f, T f
almost everywhere and let [ fidp > —oo. Then [ fdp =lim,_,.. [ f,du.

X X X

Theorem A.8 (Lebesgue Dominated Convergence Theorem). Let {f,,} be a se-
quence of [-measurable functions, f, — f almost everywhere. If there exists a
function h € L' such that |f,| < h almost everywhere for all n, then f € L' and

[ fdu =1lim [ f,du.
X X

A function f defined on a measurable set A has the property € on the set A if
given € > 0 there exists a closed set F C A such that

(a) H(A\F) <&
(b) f is continuous relative to F.



422 A Measure and Integration Theory Toolbox

Theorem A.9 (Luzin’s Theorem). Let f be defined and finite on a measurable
set A. Then f is measurable if and only if f has the property € on A.

Loosely speaking, the Luzin theorem states that a measurable function is almost a
continuous function.

A.4 Absolutely Continuous Norms

We say that a measure v on .7 is absolutely continuous with respect to i, and write
v < U, if vE =0 for every E € o/ with uE = 0.

Theorem A.10 (Radon-Nikodym Theorem). Let UL, v e finite measures on (X, <),
V < U. Then there exists a nonnegative function h € L' (1) such that

vA:/hdu

A
forall A € 9. This function h is unique up to lL-almost everywhere equality.

A proof of Radon-Nikodym Theorem is given in Theorem 10.23 using an ap-
proach based on the Riesz representation theorem, whereas the classical approach
is using the Hahn decomposition theorem.

A.5 Product Spaces

If o7 and 2 are o-algebras, the product 6-algebra o/ @2 is defined as the smallest
o-algebra which contains all sets of the form A X B where A € o/ and B € .

Let (X, <7, 1) and (Y,%, v) be o-finite measure spaces. A measure T on &/ @ %
is called a product measure of 1 and v (denoted by u ® v) if

t(A x B) = u(A)v(B)

whenever A € &/ and B € 2.
With the previous definitions at hand, we state the important Fubini’s theorem
and some of its variants.

Theorem A.11 (Fubini’s Theorem). Let (X, .o/, 1), (Y,,v) be o-finite measure
spaces, and h € L*(L ® v). Then

/hdu@v:/ /h(x,y)dv) dy:/ /h(x,y)du dv.

XxY X Y Y X
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Theorem A.12 (Tonelli’s Theorem). Let (X, <7, 1), (Y,2, V) be o-finite complete
measure space. Let f > 0 be a of ® A-measurable function. Then:

[ rawev=[| [ronave) |aue = [ | [ e |avo.

XxY X Y X

A.6 Atoms

Definition A.13. Given a measurable space (X, <) and a measure u on that space,
aset A € o is called an atom if (A) > 0 and for any measurable subset B of A
with p(A) > u(B), one has u(B) = 0. A measure which has no atoms is called
nonatomic or atomless. @

Example A.14. Let us consider two examples:

(a) Consider the set X = {1,2,3,4,5,6,7,8,9,10} and let the c-algebra be the
power set of X. Define the measure y of a set to be its cardinality, that is,
the number of elements in the set. Then each of the singletons {k} for k =
1,2,...,9,10 is an atom.

(b) Consider the Lebesgue measure on the real line. This measure has no atoms.

Remark A.15. The following important properties of nonatomic measures are used:

(a) A nonatomic measure with at least one positive value has an infinite number
of distinct values, as starting with a set A with ft(A) > 0 one can construct a
decreasing sequence of measurable sets

A=A DA, DA3D...

such that
H(A) =pu(Ar) > u(Az) > p(As) > ...>0.

This may not be true for measure having atoms, see the first example above.

(b) It turns out that nonatomic measures actually have a continuum of values. It
can be proved that if 1 is a nonatomic measure and A is a measurable set with
W(A) > 0, then for any real number b satisfying

K(A) >b>0,

there exists a measurable subset B of A such that i (B) = b.

A.7 Convergence in Measure

The following notion is of importance in probability theory.
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Definition A.16. Let f, f, be measurable functions on the measurable space (X, ).

The sequence {f, },en is said to converge in measure to f, denoted by f;, Ly f, if for
all € > 0 there exists an ng € N such that

p({xeX:|filx)—f(x)| >€}) <e forall n>ny. (A.1)
@

Remark A.17. The preceding definition is equivalent to the following statement.
For all € > 0,

lim p ({x € X : |fu(x) = f(x)| > €}) = 0. (A2)

Definition A.18. We say that a sequence of measurable functions {f, },en on the
measure space (X, <, ) is Cauchy in measure if for every € > 0 there exists an
no € N such that for n, m > ny we have

i (e X 0~ ful)] > €)) <e.

A.8 o-Homomorphism

Let (X, /) be a measurable space. If f is a real . -measurable function in X. There-
fore the set function ¢ defined by

P(A)=f"1(A)={xeX: f(x) €A}
is a function defined in the o-algebra . from R into the o-algebra .27 such that
O(AUB)=¢(A)U@(B) ifANB=0 (A3)

and
¢(A\B) = ¢(A)\@(B) A,Be 2. (A4)

Definition A.19. A function ¢ which satisfies (A.3) and (A.4) is said to be a homo-
morphism from .Z into <. The homomorphism is said to be a 6-homomorphism if
¢(R) = X and for all sequence {A;} ey of disjoint sets in .Z” we have that

o (U;‘O:1> =U7_19(4)).
@

Theorem A.20 (Sikorki). Ler (X, /) be a measurable space and ¢ a ¢-homom-
orphism defined in the c-algebra of Borel in <f . Therefore there exists an <f -meas-
urable function f such that p(A) = f~1(A) for any Borel sets in A.
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Proof. For each real number r, let A, = @([—oo,r]), note that A. = X and A,, C A,,
if rt Z r.
Now, for each x € X let us define
fx)=inf{reR|xe€A,}.
We get that f : X — R and foreacht € R
{xeX|fx) <t} =U,<A, =U{As| s <t,s € Q}.

It is clear that f is an ./ -measurable function, since all Borel set can be expressed as
a countable union and intersection of closed and open subintervals of R. Therefore

A, :f71 ([7007"}) .

Finally, since ¢ is a 0-homomorphism it is easy to see that p(A) = f~1(A). O

A.9 References

Classical references regarding measure theory and integration are, among others,
Rudin [62], Wheeden and Zygmund [83]. For a detailed introduction to measure
theory in the framework of the Euclidean space, see Jones [39].



Appendix B
A Glimpse on Functional Analysis

Mathematics is as old as Man.
STEFAN BANACH

In this appendix we gather some definitions and results from functional analysis that
are used throughout the book.

Definition B.1. A normed space X is a vector space over the field of real or complex
numbers (denoted by IF) endowed with a function .4 : X — [0,e0), which satisfies
the following properties:

(N1) A (x) = 0if and only if x = 0 (positive definite);

(N2) A (ax) = |ot| A (x) for all x € X and o € F (homogeneity);

(N3) A (x+y) < A (x)+ A (y) forall x,y € X (triangle inequality).

The function .4 (also denoted as functional) is designated by norm when it satisfies

the properties (N1)-(N3). In that case, we use the notations ||-|y, ||-||, and ||- | X|| for
the functional .4". %)

Sometimes the functional .4 does not satisfy all properties. For example, when
we have (N1) and (N2) but (N3) is replaced by

N (x4y) SC(A (x)+4(y))

for all x,y € X, the functional ./" is said to be a quasi-norm.

Let ||||; : X — [0,00) and ||-||, : X — [0,00) be two norms in X such that there
exists C > 0 and
CHlxelly < [lell, < €l

for all x € X, then we say that the norms are equivalent.

Using the concept of norm we can introduce the notion of norm convergence
and Cauchy sequences. A sequence {x,},.y is said to converge in norm or simply
converge to x € X, and denoted by lim,, .. x,, = x or s-lim,,_,c. X,, = x, if

Tim x, —x]ly = 0.
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A sequence {x,},.y is a Cauchy sequence if for all € > 0, there exists N(&) such
that, for n,m > N(&) we have ||x, — x|y < €.

We now arrive at a fundamental concept in the theory of normed spaces.
Definition B.2. A normed space (X,||-||) is said to be a complete space or a Banach
space if very Cauchy sequence in X converges in X. %)

Let X be a normed space. A function F : X — R is called a linear functional if it
satisfies

F(af+Bg)=oaF(f)+BF(g)

and F is called bounded if there is a real number M > 0 such that

IFAOI < MlIf]

for all f in X. The smallest constant M for which the above inequality is true is
called the norm of F. That is,

F(f)
Fll = .
1= s T

Let X and Y be vector spaces. A linear functional 7 : X — Y is an isomorphism, if
T is 1-1 and onto. Moreover, if X and Y are normed spaces such that || 7' (x)|| = ||x||
for each x € X, then we say that T is an isometric isomorphism and X and Y are
isometrically isomorphic.

We now introduce the definition of a Schauder basis, namely:

Definition B.3. A sequence {x,},. in a normed space X is said to be a Schauder
basis, if for all x € X there exists a unique sequence of scalars {a,},.y such that
X =Y, 0u,x,, where the convergence of the series is understood with respect to the
norm. %)

In finite dimension vector spaces X it is a known fact that if {e;,...,e,} is a basis
of X, then the dual space X', called the algebraic dual of X defined by
X'={F:X - R:F is linear}

has dimension n and the set { f1,.. ., f, }, where f;(ex) = & is a basis of X'. A similar
result can be demonstrated in infinite dimension using Schauder basis.

This fact is the starting point to define the concept of dual space in arbitrary
normed spaces.

Definition B.4. Let (X, +,-, || - ||) be a normed space. We call the dual space of X to
X*={F :X — R:F is linear and bounded}.

The dual space is sometimes denoted as continuous dual space to emphasize the
fact that the linear functionals are also continuous. %)
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An observation is that whenever dim(X) < oo, the continuous dual concept coin-
cides with the algebraic dual. For our purposes, we will only work with the contin-
uous dual space throughout the book the expression “dual space” means continuous
dual space.

Definition B.5. A normed linear space X is said to be reflexive if X may be identi-
fied with its second dual or the bidual X** = (X*)* by the canonical isomorphism
given by

¢ X > X

x=9(x)
such that ¢(x) : X* — R is given by the equality ¢ (x)(x*) = x*(x). In other words,
X is reflexive if ¢ (X) = X**. @

Be warned that there are non-reflexive normed spaces X which are isomet-
rically isomorphic to X**, see James [36] for the classical example with
James spaces.



Appendix C
Eulerian Integrals

The Gamma function . .. is simple enough for juniors in college
to meet, but deep enough to have called forth contributions from
the finest mathematicians.

PHILIP J. DAVIS

In this appendix we give a terse introduction to the special functions known as Eu-
lerian integrals in the case of real variables. It should be pointed out that the most
profound applications of these special functions are in the framework of the com-
plex plane, which is outside the scope of the applications given in this book. In our
short exposition we avoid, as much as possible, direct calculations, giving instead
the ideas of the procedures, which the reader is welcomed to fill out with more
details.

C.1 Beta Function

The special function B(a,b)

1
B(a,b) = /x"’l(l —x)P7dx, (C.1)
0

is known as Eulerian integral of the first kind and also as Beta function (it seems
that the former designation was coined by Legendre and the latter by Binet). An
examination shows that the Beta function is well defined for a,b > 0.

The Beta function can be given in several equivalent ways, for example

4o

a—1
B(a,b):/(ljiwdx (CZ)
0

which follows by a simple change of variables x = s/(1+s). Due to the fundamental
trigonometric identity, we can further obtain
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/2
B(a,b) =2 / cos? 1 9 cos? 1 9dv. (C.3)
0

The Beta function enjoys some interesting properties, for example:

Symmetry: B(a,b) = B(b,a), which follows by a simple change of variables
x=1-—s;

Reduction formulas: Integration by parts allows us to obtain a reduction formula,

namely
b—1

a+b—1

and in the case b = n € N, we further obtain

B(a,b) = B(a,b—1) (C.4)

n—1 n—2 1
a+n—la+n—2 a+1

B(a,n) = B(a,1).

Together with the fact that

1

1

B(a, 1) = /x”71M= E
0

we get the equality

_ (n—1)!
B(a’n)ia(a—l—l)(a—&—Z)...(a—i—n—l)' ©3)
In the case a = m € N we further obtain
_ (n=1)l(m—1)!

Special values of B(a,b): In the particular case b=1—a with 0 < a < 1, we get

+o0
xafl
B(a,1—a)=
(@1-a)= [ {a
0
and it is possible to show that
T
B(a,1—a)= C.7
(a,1-a) sin(am) €7

when 0 < a < 1. We will show (C.7) using complex integration theory. We start by
recalling the well-known residue theorem.



C.1 Beta Function 433

Theorem C.1 (Residue theorem). Let f be an analytic function inside and over
a simple closed curve Yy except in the points zy,...,z, which are in the interior.
Therefore

ygf(Z)dz = 2mi Z Res(f,z=2z).
k=1
Y

Lemma C.2. Let p > 1, then

X r T
dx = .
/ I+x sin(m/p)
0

Proof. We consider the integral of complex variable given by (C.8) where C is the

region given in the next figure.
1

z P
dz (OR]
?gl—kz €8
D ‘(
R
' A B

EY J H h(— G <

\

The segments AB and GH are parallel between each other and with the real axis. Let

_1
7

fla)= 1+z

It is not difficult to deduce that f has a simple pole in z = —1 inside the region C. If
z=—1, then

z=cos(m) +isin(m) = e™.

Therefore

1
zr . _1 _m
=limz r»=¢e »r.
1—|—Z z——1

Res(f,z=—1) :Zlirgl(z+ 1)f(z) zzg@l(z+ 1)
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Now invoking the residue theorem we get

= 2mie” V.

cl+z

On the other hand, using the path integrals we get

ep—/f dz+/f dz+/f dz+/f

BDEFG HJA
(Re®) % 4
— dx Re®1do
_/1—|—x +/1~6—R9‘le
r 0

r L1 0 L
(xe’™) > /(Reel)”. 6i
————dx ————iRe"'df.
+/ 1 + xe?m + 1+ Re® ¢
R 2n

The last one we get making the change of variables z = xe®™ in the third integral;

moreover we should bear in mind that the argument of z increases 2r going through
the BDEFG circle.

Now, if r — 0 and R — o= we can observe that the second and third integrals in
the previous inequality cancel each other.
Indeed

2n p 1 2 oi 1
Re®)" 5 . Re®) v .
lim / (ReT) " petidg | — / im RE) 7 e ceigg
R—be 1+ Reft R—e 1+ Refi
0 0
2n P
R 1
= / lim — " _4g
s R~>°°( e91) (1+R691)

2m

:/lim L __de
/ R—o0 (Reel),j

To calculate the other limit, we proceed in a similar way, first making the change of
1
variables u = r» where u — 0. Therefore
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Finally, we get

P04
2mie » =

27'61

1 + xezfEl

x re v
1+xezm

X 7

1+x

1 /°° 1 2mi
0

=)

xr ﬂ/ xr dx
1+x x(cos(2m) +isin(2m))
0

Z
]

1

2mi X r
=(1—e 7 dx.
(1—e )/1+x
0

Therefore
o 1 mi
X » 2mie” » 2mi 1 e n
/ ] dx = ; =—|(1-—]= ; = ’
14x l—e 7 er er <e7’ —e 75) sin (5>
0 T2 p

which finishes the proof.

Taking a = 1/2 in (C.7) we obtain

11
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C.2 Gamma Function

The Eulerian integral of the second kind, also known as Gamma function, is given
commonly has the improper integral
+oo
I'(a) = / x4 e dx, (C.10)
0
which has sense only for a > 0. From (C.10) it is immediate that the Gamma func-
tion has no zeros. It is possible to prove that the Gamma function is continuous, and

moreover, it is infinite differentiable.
Euler gave the following integral definition for the Gamma function

! a—1
I(a) = / <log i) dx (C.11)
0

which is obtained by a simple change of variable x = log(1/s) in (C.10). For-
mula (C.11) is useful to obtain another representation for the Gamma function, the
so-called Euler-Gauss formula

1-2:3-...-(n—1)

I'la)= 1l . C.12
(@) = im e D@+2) . (@tn=1) (€12)
To obtain (C.12) from (C.11) we note that
1_ . _J/n
log— = lim n({1—x (C.13)
X n—r+oo

and now replacing (C.13) into (C.11) and formally interchanging the limit with the
integral we get

1

I'(a) = lim n® /x"’l(l —x)*'dx= lim n“B(a,n)

n—r+-oo

and now taking (C.5) we obtain the Euler-Gauss formula (C.12). The permissibility
of interchanging the limit with the integral is given by the fact that the sequence of
functions n(1 —x'/") is monotonically increasing.

We now list some of the most important properties of the Gamma function.

Reduction formula: Taking integration by parts in (C.10) we immediately obtain
the following recursion formula

INa+1)=a-T(a)
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which, when iterated, gives
Ta+n)=(a+n—1)(a+n—-2)...(a+1)al'(a), (C.14)

and since I'(1) = 1 we get

I'(n+1)=n!
which simply states the fact that the Gamma function is an extension of the factorial
function.

Extension to negative values: From (C.10) we know that I'(a) is meaningful only
for a > 0. To extend the function to the negative half-axis, we use the reduction
formula (C.14). Taking the so-called Pochhammer symbol

(X)p=x(x+1)...(x+n—1), neN,
we can write the reduction formula (C.14) simply as

I'(a+n)
(@)n .

Formula (C.15) is used to define the Gamma function for negative values, except for
negative integers!

I(a) = (C.15)

Link between the Gamma and Beta function: There is a relation between the
Eulerian integrals, namely

[(a)T'(b)

B(a,b) = ——=

(@b) = Fath)

whenever a,b > 0, which was already obtained for natural numbers a and b in (C.6).

To obtain (C.16) we notice that, by a change of variables x = (1 +1¢)y, t > 0, we
obtain

(C.16)

400
I'(s) / i—1 . —(1+1)y
= e d
(1+12) Y Y
0
and taking s = a+b, a,b > 0, we have
a+b) [
at at+b—1_—(1+t)y
—_— = Ydy. C.17

0

Now, integrating with respect to ¢ between 0 and e both sides of (C.17), due
to (C.2), we obtain

oo oo
I'(a+b)B(a,b) = /tqfl/ya“’*le*(”’)ydydt
0 0

and now it is only necessary to use Fubini’s theorem, obtaining (C.16).
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Complement formula: Taking (C.7), (C.16), and the fact that I'(1) = 1 we obtain
the so-called complement formula for the Gamma function

n

I(a)[(1—a) = (C.18)

sin(ma)
whenever 0 < a < 1. It is also possible to use the Euler-Gauss (C.12) to obtain
(C.18).

Graph of the Gamma function: From the fact that the Gamma function is contin-
uous and the reduction formula (C.14) we get

r 1
lim T(a) = fim @D _ o
a—0+ a—0+ a
On the other hand,
lim I'(a) = 4o

a—r+oo

since I'(a) > n! whenever a > n+ 1.
We now want to calculate some values of the Gamma function, e.g., F(%) In
other words, we need to calculate

| "
I(=)=2/e*dx
(2> eV dx
0
+oo

The integral [ e *dx is the so-called Euler-Poisson integral. We can calculate the

0
Euler-Poisson integral using series expansion, but we rely on the following obser-
vation

2

oo Foo oo f-o0
/e”‘zdx — /e*xzdx / ~dy // @8N dxdy.  (C.19)
00 f-00
The improper integral f f e (Y >dxdy can be calculated as lim,,_, .. a, where
2n n
ay = / / = dxdy = // Prdrdd =n(l—e ™) (C.20)

x2+y2<n?
where we passed to polar coordinates. Therefore lim,_, . a, = © and the Euler-

o0
Poisson integral [ e dr= ? We thus obtained that
0
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To obtain the value of 1"(%) we use the reduction formula (C.14) and get

((@)er(d) 1)

Now, from the complement formula (C.18) we obtain the value of ['(—1) = —2y/.
In this manner we can obtain further half-integer values of the Gamma function
(Fig. C.1). The graph of the Gamma function is
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Fig. C.1 Graph of the Gamma function

C.3 Some Applications

In this section we want to obtain the volume of an n-dimensional ball and the surface
area of an (n — 1)-dimensional sphere. These problems are intimately related to the
Beta and Gamma functions.
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Volume of an n-Dimensional Ball

An n-dimensional ball centered at the origin with radius R is given by the condition
B"(R) := {(xhxz,...,xn) ER:x}+x5+... +x2 < Rz} .

By V,,(R) we denote the volume of the B"(R). To calculate V,(R) we can use multi-
dimensional integration, namely

V,(R) = // dxdx; . .. dx,. (C.21)

K +ad+. A2 <R?

From (C.21) we can obtain a rough estimate, namely V,,(R) = C,R", where C, is the
sought constant. Instead of direct calculating (C.21), which is possible with some
extra work, we will use another approach.

We take the function

24,2 2 2
f()C1 , X2, . ,xn) = e*(x1+x2+...+x2) — e*R
and now we integrate
o0 o0 oo
// / X1+X2+ X dx dx2 d)C —I’lCn/rnileirzdr
o 0 (C.22)

1 n
=nC,=T(=].
nC, > (2>

Using the properties of the exponential function we have

o0 400

// / x1+x2+ X dx dx2 d)C / dexl/ xzdx2 / ’dxn

—o00 —o0

o0

= /e"zdx

—oo

(C.23)
Taking (C.19) and (C.20), (C.22) and (C.23) we get that

nn/Z

ania
r(1+%)
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therefore the formula for the volume of an n-dimensional ball of radius R is given by

V(R LA C.24
n()—m . (C.24)

Surface Area of An n-Dimensional Ball

We note that, by Cavalieri’s principle, we can obtain V, (R) by
R
Vu(R) = /S,,_l(r)dr (C.25)
0

where S, (R) denotes the area surface of the n-dimensional ball B"(R), i.e.
Sp_1= {(xl,xz,...7xn) ER":x}+x5+...x :Rz}.
From (C.25), Barrow’s formula and (C.24) we obtain

$01(R) = lB) 20y
n—1 - dR - F(%)

(C.26)

using the reduction formula (C.14).



Appendix D
Fourier Transform

The profound study of nature is the most fertile source of
mathematical discoveries.
JOSEPH FOURIER

In this appendix we give the working bare minimum regarding the theory of Fourier
transform. We will stress mainly operational rules and will avoid a rigorous study
of the Fourier transform. The Fourier transform is a powerful tool which is widely
exploited in probability theory, partial differential equations, theory of signal, just
to name a few. For a more detailed account, the reader should consult Bracewell [2].

The Fourier transform is a tool to express a function as a “continuous” super-
position of complex exponentials {ezm)"v}veR generalizing the Fourier series of a
periodic function.

Definition D.1. For f € L, (R") we define the Fourier transform

f@w=ﬂM@w=/ﬂnamﬂm D.1)

Rll
for all £ € R", where x - £ denotes the inner product in R”, viz. x-& = ¥}_, x.&. @

Warning: There is no universal agreement regarding the definition of the Fourier
transform, therefore it is always necessary to check the definition being used, spe-
cially when using Fourier transform tables. Alternative definitions are

7)== [ ™ 76 = [emiman FE)= [e i rma
R»

R» Rn?

among others.

We now introduce the so-called multi-index notation, which is very useful to get
very compact formulas resembling the one-dimensional versions. The use of this
notation should be used with great care by the novice.
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Definition D.2. For x = (xi,...,x,) € R” and a multi-index ot = (ovy,...,0,) € N§,
where Ny stands for NU {0}, we define

xa ::x‘lxl---xg” and |OC| =0+t 0. (DZ)

Moreover, for a multi-index o, we define
D*:=D{"...-D%, (D.3)
where D; stands for the j-th partial derivative. ©

Caution: Some authors, mainly in Fourier theory, use the normalized notation
D;f(x) = 19;f(x) to obtain cleaner formulas, but we will refrain from doing so.

The following properties of the Fourier transform follow almost immediately
from the definition.

Bounded linear mapping: The operator .% : L; (R") — L..(R") is a linear opera-
tor which satisfies || f]| <||f]|;-

Uniformly continuous: The function fis uniformly continuous on R”.
Norm of the Fourier transform: If £ > 0, then || f]|.. =||f I, = £(0).

Fourier transform of the derivative: If f € L;(R") and D f € L;(R") then

— ~

(Dif)(G) = 2miGe f (&) (D-4)

Product of the Fourier transform by a monomial: If f € L;(R") and x.f(x) €
Ly (R") then

~

Dif () = (—2minf) (£). (D.5)

Fourier transform of a translated function: If f € L;(R") and 7,f(x) = f(x+y)
denotes the translation of f , then

(B.)(E) = ™ F(£). D.6)

Fourier transform of a dilated function: If f € L, (R") and &, f(x) = f(ex) de-
notes the dilation of f, then
S A Y g —n 7
GnE =7 (5)=e (3:07) @) ®.7)
The property (D.4) is widely used in differential equations, since it permits in

some cases to convert some linear partial differential equations into algebraic equa-
tions, see Example D.8 at the end of section.
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~

Riemann-Lebesgue lemma: If f € L;(R") then f(x) — 0 when |x| — +oo.

Multiplication formula: If f,g € L; (R") then
[ Fwstax= [ g D.8)
R R

Definition D.3. We define the convolution of two function f € L;(R") and g €
LP(R™), with 1 < p < +oo, by

U»@ur=/fu—wmw@7
]Rn

for almost all x € R”. @

By Fubini’s theorem, we know that (f * g)(x) exists almost everywhere and it
belongs to L? (R").

The next property is widely used in harmonic analysis, see, e.g., § 11.

Fourier transform of convolution: If f, g € L; (R"), then f*g € L;(R") and

Fra(&)=F(&)-2(©). (D.9)

A very useful property of the Fourier transform is the fact that it has an inverse.

Definition D.4. Let f € L;(R"). We define the inverse Fourier transform by

ﬂn:ﬁ*mm:/?mW@%, (D.10)

R®

for all x € R". @

Note that f is not standard notation, it is customary to use f. An immediate
relation is f(x) = f(—x).

Fourier inversion formula: If f € L,(R") and f € L (R"), then

—_— —
=~

fx) = () x) = (f)x) (D.11)

for almost every x.

The proof of the Fourier inversion formula (D.11) is not straightforward and it
should be noted that Fubini’s theorem is not applicable.

If f € Ly (R") it does not follow that f € L; (R"), as the next example illustrates.
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Example D.5. Taking x|_ 1) : R — R, we have

eZni§ _ 672ni§
2mié

X (&) = = 2 sinc(2né),

which is not integrable in R. %)

A noticeable fact from the previous example is that even if a function has compact
support, the support of its Fourier transform can be all R. This fact is related to the
so-called Heisenberg uncertainty principle, see Stein and Shakarchi [73] for more
details.

It is then reasonable to ask for the natural set for which the Fourier inversion
formula holds, or in other words, which is invariant under Fourier transforms. We
are lead to the Schwartz class.

Definition D.6. The Schwartz class of functions, denoted by . (R"), is defined as
the set of C* functions such that the function and all its derivatives are rapidly
decreasing, i.e., f € S (R") if

(.0, f) 1= sup (143"} ID“F(x)] < 4o,
x€R"

for all £ € Ny and all the multi-index o € Nj. ©

An immediate observation is that .7 (R") 2 Cg (R"), since ¢ (x) =e "’ € ./ (R")
but does not belong to Ci (R").

With the notion of Schwartz class we now have the so-called

Fourier inversion theorem: The Fourier transform is a one-to-one mapping of
< (R") on .7(R"). Moreover, if f € #(R"), then f € . (R") and

D@ =) = fx). (D.12)

The previous theorem can be seen in the following diagram

7 (RY) 7 . (R
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As a corollary of the inversion formula (D.12) we get

Plancherel identity: Let f € .7 (R"), then ||@||, = ||@|]..
We end with the most general case regarding the relation between the derivative
and the Fourier transform.

Theorem D.7. Let f € .7 (R"). Then

DeF(&) = (~2m) (e f) (&)
and R -
EN1F(8) = (—2mi)*(Def) (&),
where o € Njj is a multi-index and & € R”".

We now end with an example of how the Fourier transform can be used to solve
partial differential equations with constant coefficients.

Example D.8. Let p(x) be some polynomial. We want to solve the following partial
differential equation

P
p<8)<p=f (D.13)
X

where f is the given function and ¢ is the sought one. Applying the Fourier trans-
form in the expression (D.13), we obtain p(—i&)@(&) = f(&) where p is the poly-
nomial p multiplied by the constant from the Fourier transform of the derivative.
This entail

Since the product of Fourier transforms is simply the Fourier transform of a convo-

lution, we finally get
o(x) = <§‘1 (ﬁ(11)) *f> (x).

Therefore if we can calculate .# ' (1/5(—i-)) (x) we obtain the solution, at least in
a formal way, since it is necessary to justify all the operations. ©




Appendix E
Greek Alphabet

alpha
beta
gamma
delta
epsilon
zeta
eta
theta
iota
kappa
lambda
mu
nu
X1
omicron
pi
rho
sigma
tau
upsilon
phi
X1
psi
omega

<

Q

<
EE€EXRETCTCANDTVT I OMTE 2R « 3 vim e ™R

DEXGSG=SNMUIYIOQIZT>X~"QOXI N —m >
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