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Abstract. Association rule mining is an often used method to find rela-
tionships in the data and has been extensively studied in the literature.
Unfortunately, most of these methods do not work well for numerical
attributes. State-of-the-art quantitative association rule mining algo-
rithms follow a common routine: (1) discretize the data and (2) mine for
association rules. Unfortunately, this two-step approach can be rather
inaccurate as discretization partitions the data space. This misses rules
that are present in overlapping intervals.

In this paper, we explore the data for quantitative association rules
hidden in overlapping regions of numeric data. Our method works with-
out the need for a discretization step, and thus, prevents information loss
in partitioning numeric attributes prior to the mining step. It exploits
a statistical test for selecting relevant attributes, detects relationships
of dense intervals in these attributes, and finally combines them into
quantitative association rules. We evaluate our method on synthetic and
real data to show its efficiency and quality improvement compared to
state-of-the-art methods.

1 Introduction

Ever since its introduction [1], association rule mining has been a popular method
for discovering interesting patterns in databases. However, the methods used to
find these rules were originally only intended for boolean or categorical data, that
is, rules of the form buy[toothbrush] → buy[toothpaste]. However, since
more and more of the data we gather is numerical, an interesting extension to
classical association rule mining is quantitative association rule mining [3,19,21,
25]. In their purest form, quantitative association rules (QAR) denote relations
in numeric data but can be extended to cover categorical items as well. Two
examples of such association rules including numeric data are the following:

Example 1.

Age[16, 90] ∧ US-citizen[YES] → Drivers-License[YES]
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and

Age[0, 21] ∧ US-citizen[YES] → Alcohol-Allowed[NO]

In a real-life database containing such information, such rules would have
high support and confidence [1]: (1) US citizens are allowed to get a drivers
license from the age of 16 and above, and (2) US citizens are not allowed to
drink alcohol under the age of 21. The overlap in the numeric age attribute is
a very natural and desired one. In contrast to these natural rules, discretiza-
tion of the data in traditional methods would miss one of these two rules due
to pre-selected intervals (e.g. by equal-width discretization) and their disjoint
partitioning before mining the quantitative association rules.

The first attempts to mine data for quantitative association rules fall prey to
this limitation. The first publication by Srikant et al. [21] transforms the origi-
nal (numeric) data such that it could be handled by traditional association rule
mining algorithms. This is done by a pre-processing step, in which each attribute
is partitioned into an equal number of disjoint bins. This is still the most com-
mon procedure for quantitative association rules [11,23]. However, the disjoint
partitioning remains a major unresolved challenge for all of these techniques.
Two regions that overlap each other in a certain attribute are not detectable
after discretizing the data (cf. Example 1). As shown in our example, two rules
might be naturally present in overlapping intervals. The association rule mining
algorithm should select these relevant attributes, and further, detect the most
appropriate interval for each rule individually.

Many techniques [3,7,19] try to bypass this problem and can generally be
seen as optimization strategies. These strategies attempt to find optimal rules
with respect to specific rule templates. Hence, they are limited to certain criteria,
such as limited dimensionality, specific shapes, etc. Furthermore, choosing the
optimal boundaries for this partitioning has been shown to be an NP-complete
and intractable problem [26].

In our work, we focus on overlapping quantitative association rules. We pro-
pose a method that works without the need for a discretization step, and thus,
prevents information loss in partitioning numeric attributes prior to the mining
step. It exploits a statistical test for selecting relevant attributes for association
rule mining. We select attributes that show a dependency with an interval from
a different dimension. We then detect relationships of dense intervals in these
attributes, and finally combine them into quantitative association rules.

In summary, our approach called DRule has the following contributions, (i)
it does not require a partitioning of the data as pre-processing step; and detects
overlapping rules. (ii) It does not impose any restriction on the type of rule
that can be found; and hence provides a more flexible framework for quantita-
tive association rules. (iii) It selects statistically relevant attributes and dense
regions in each of these attributes while mining association rules. (iv) It provides
an efficient computation of overlapping quantitative association rules for large
databases.
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2 Formal Problem Statement

Database. For a database DB of mixed attribute types (binary, categorical, and
numerical) we consider each object o ∈ DB to be represented by a vector

o ∈ {R ∪ {c1, . . . , ck} ∪ {false, true}}m .

We denote o(Ai) the value of object o for attribute Ai and call the set of all
attributes A. We use the notation n = |DB| as the number of objects in the
database and m = |A| the dimensionality of the database.

Quantitative Predicate. Let A = {A1, . . . , Am} be the set of all attributes in the
database. A quantitative predicate is then defined as follows:

Definition 1 (Quantitative Predicate). Given one attribute Ai ∈ A and
lower and upper bounds (l, u) ∈ dom2(Ai),

A[l, u] defines a quantitative predicate

with l ≤ u in case of numeric attribute Ai and with a constant c equal to both
bounds l = u = c in the case of categorical or binary attributes.

This general definition covers all attribute types. We distinguish between two
notations: A[l, u] for numeric attributes and A[c] for binary and categorical ones.
Further, we say that an object o ∈ DB is covered by a quantitative predicate
Ai[l, u] iff l ≤ o(Ai) ≤ u and Ai[c] iff c = o(Ai).

Set of Predicates and Quantitative Association Rules. Based on the above def-
inition, a set of predicates is simply defined as a conjunction of predicates. An
object (or transaction) is covered by a set of predicates iff it is covered by
each predicate in the set. For a predicate set X we denote its attributes by
attr(X ) ⊆ A.

Furthermore, the objects that are covered by such a set of predicates are
defined as I(X ), the function that returns all o ∈ DB that are covered by all
predicates given in X :

I(X ) = |{o ∈ DB | o is covered by X}|

We define the support and frequency of X as

supp(X ) = |I(X )| freq(X ) =
|I(X )|
|DB|

Definition 2 (Quantitative Association Rule). A quantitative association
rule (QAR) R is defined as

P → Q
with P and Q predicate sets, Q �= ∅, and P ∩ Q = ∅.
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The support of a rule R : P → Q is defined as supp(R) = supp(P ∪ Q), the
number of objects that satisfy the predicates in both P and Q. The confidence
is defined as conf(R) = supp(R)

supp(P) . A rule has to fulfill supp(R) ≥ minSupport

and conf(R) ≥ minConfidence parameters as in traditional association rule
mining [1].

Note that support and confidence are traditional measures for assessing asso-
ciation rules, but they are not sufficient for detecting interesting intervals in
numeric data. Both support and confidence can be naively optimized by select-
ing the entire domain of a numeric attribute. For a more reasonable detection
of interesting intervals, we introduce density in numeric data. We will further
introduce this in Sect. 3. We have chosen for density as a measure as it is well
understood and easy to interpret and inspiration can be drawn from existing
efficient algorithms. This also meshes well with our approach to search space
reduction introduced in the next section.

Generalized Problem Statement. Mining association rules according to Defini-
tion 2 is a general problem statement for quantitative association rule mining:
(1) it is a flexible definition in terms of choice of attributes, (2) It allows different
intervals for each individual rule, (3) and it allows overlapping intervals for the
numeric attributes. Let us discuss these three properties formally and contrast
them to the more restricted definitions found in the literature:

Property 1 (Free choice of attributes). The attribute set P ∪ Q of a rule can be
any subset of all given attributes A. We do not impose any restrictions on the
number of attributes in a rule nor the configuration in which they appear.

In contrast to this free choice, other methods are not as flexible: pre-selection
of the attributes by the user is a widely used restriction [19]. It is limited in both
LHS and RHS of the rule, which are selected by the user beforehand. Such
restriction does not allow for rule discovery outside this template of pre-selected
LHS and RHS. Other methods perform restrictions on the size of a rule. For
example, the restriction to mine 2D rules only [3,25]. Such methods are designed
for a specific goal and can not be easily generalised.

Property 2 (Individual intervals for each rule). For a numeric attribute Ai ∈
P ∪ Q of a rule, its corresponding interval can be any [l, u] ∈ dom2(Ai), i.e. we
do not have any restriction on the intervals and they can be determined for each
rule individually.

While we allow for arbitrary intervals, related algorithms already mentioned
before choose their interval bounds from a set of predetermined disjoint intervals
[15,21]. Formally, [l, u] ∈ {[l1, u1), [l2, u2), . . . , [lk, uk]} is fixed for each attribute
Ai. These interval bounds create a true partioning of the data space. That is, the
possible intervals are fixed for each attribute Ai for all rules. In contrast to such
a limited choice of intervals, we aim at an on-the-fly selection of intervals within
the rule mining process. That is, for each rule, we aim at density-based intervals
directly on the numeric data, which allows for individual and better intervals per
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rule. In addition, a third key property automatically follows from the previous
one. In addition to finding individual intervals for each rule, it also allows overlap
between these intervals as well. Techniques that rely on a pre-discretization of
numeric attributes [15,21] do not allow for such overlap.

3 DRule

A straightforward solution for the problem described in the previous section
would be exhaustive search. Such an approach would detect interesting intervals
by checking each combination of dimensions and even checking every possible
pair of interval bounds. This is obviously an intractable solution. However, due
to its exhaustive nature it provides us all the rules contained in the data.

With DRule we propose an efficient method that allows us to find the same
results as exhaustive search would, i.e. without missing any rules, while avoiding
the tremendous runtime complexity. In order to find all rules, we start from each
dimension, just like exhaustive search does. However, we quickly prune parts of
the search space to prevent uninteresting rules or regions from slowing down our
algorithm. To this end, while going through the search space, we demand that
dimensions that are considered together are not uniformly related to each other.
As such, uninteresting rules can be pruned.

In the following sections we will describe DRule in more detail. Our algorithm
achieves the detection of overlapping QARs by using an approach that can be
split into three parts, namely detecting interesting regions through search space
reduction, mining for individual intervals, and generating quantitative associa-
tion rules. In each of these three parts we ensure flexibility in both the selection of
relevant attributes and the detection of individual (possibly overlapping) inter-
vals for each rule. These three parts will be further explored in the following
sections.

3.1 Mining for Intervals

To successfully create rules, we need meaningful interval bounds. As mentioned
before, fixing these interval bounds beforehand severely limits the rules we can
find, while considering all possible intervals is infeasible. To solve this problem,
we use a method that allows us to efficiently generate interval bounds on-the-fly
for each rule.

Algorithm Overview. The general idea of DRule is to mine all possible predicate
sets in a depth-first search. For efficient mining of intervals Ai[l, u], we first detect
interesting (i.e. dense) regions. These regions are hyper-rectangles in the multi-
dimensional space and approximate the individual intervals of one rule. These
hyper-rectangles, which we shall refer to as interesting regions, describe areas in
the data that show promise for rule generation from a density-based viewpoint.
When generating interesting regions, we perform an analysis to determine which
combinations of attributes can provide us with interesting results. That is, we
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already filter out those combinations of attributes that leave us with predictable
and uninteresting results (cf. Sect. 3.2). Given one of these interesting regions
(i.e. one hyper-rectangle), DRule refines this hyper-rectangle by identifying the
dense regions in each dimension and providing a list of dense intervals. These
can be used as a quantitative predicate; however, we still need to visit the other
dimensions in order to produce meaningful rules. We proceed the search in a
depth-first manner for each of the dense regions detected using the dense region
as a dataset for the next step. After each recursive step, we generate rules for
the intervals detected so far. An overview of DRule is given in Algorithm1. Note
that Algorithm 1 is called from each dimension in a region R.

Algorithm 1. DRule (Interesting region R, dimension d)
1: Find all dense regions in R in dimension d
2: for all Dense regions r do
3: Generate Rules(r, minimum confidence)
4: for all Dimensions d′ interesting to dimension d in R do
5: if d′ has not yet been visited then
6: DRule (r, d′)
7: end if
8: end for
9: end for

Comparison to Existing Processing Schemes. There are three important sides
to the algorithm that have not been explicitly stated. One, the algorithm does
not guarantee that the hyper-rectangle forms a dense region in all dimensions.
That is, it only guarantees that each interval discovered by the algorithm is
dense. This requirement is less restrictive as it allows us to find a larger set
of possibly interesting rules. Secondly, the order in which we visit dimensions
is important. This is not considered by other algorithms (e.g. for quantitative
frequent itemsets [24]): first visiting dimension 1, followed by dimension 2 can
lead to different results compared to visiting them in reverse order. Failure to
do so can result in many missed patterns.

The previous remark is one of the key aspects in allowing us to find overlap-
ping regions and allows us to distinguish ourselves from our competitors, such as
QFIMiner [24]. Working on a per dimension basis and not taking the ordering of
dimensions into account, can result in regions not being split properly. Taking
this into account, our strategy allows us to find overlapping regions (conform
Property 3).

3.2 Search Space Reduction

In order to reduce the infinite search space for intervals in a numeric data space,
we propose to mine for interesting regions. These interesting regions should have
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high density (similar to the notion of high frequency for traditional itemset min-
ing). Please note that this step might be considered as a sort of discretization
as we have to fix intervals at some point. However, it is by far more flexible
than pre-discretization as it allows for on-the-fly generation of density-based
regions within the rule mining. Unfortunately, such a density computation in
arbitrary attribute combinations is known to be computationally very expen-
sive [18]. Thus, we will restrict to one-dimensional density computation using
DBSCAN [6,12], similar to colossal pattern mining for frequency assessment [27].
This heuristic is well-known for approximate subspace clustering [12,16,17] and
we will exploit its efficient search for finding overlapping QARs. Our extension to
this reduction scheme can handle both numeric and categorical attributes, and
reduces the search even further by assessing statistical dependence between pairs
of attributes. Our detection method is flexible in using any subset of the given
attributes (conform Property 1) and any intervals in the respective attribute
domain (conform Property 2). Overall, this allows us to reduce the potential
interval boundaries based on the data distribution observed in any attribute com-
bination. For more information about this approach and more detailed descrip-
tions of the choices, we refer to the original paper on this kind of search space
reduction [12].

One-Dimensional Clustering. Our search space reduction works as follows. Start
by clustering each dimension separately according to some clustering algorithm.
In our case we have chosen to use the well-known DBSCAN algorithm [6] for
density-based clustering. Since DRule only needs dense regions, we can substitute
DBSCAN for any algorithm that finds these kinds of regions or algorithms such
as spectral clustering.

We support categorical items by performing a frequency analysis on the cat-
egorical dimensions and treat them as clusters if they are sufficiently frequent.
We will also refer to these 1D clusters as base-clusters and they will be denoted
as C1. These base-clusters form the foundation from which we will decide what
points and dimensions are relevant.

Merge of Candidates. Since we are not interested in clusters that exist in only
one dimension, we search for approximations of interesting regions by merging
the base-clusters found in the previous step. This way, we can quickly determine
(i) which points form a cluster and (ii) in which dimensions these points form
a cluster. To find these approximations, we cannot simply merge base-clusters
and hope for the best as this would be exponential in nature. Therefore, for
our merge of cluster candidates, we employ a greedy merge of the most similar
base-clusters. Let us first provide the formal definitions of this step before we
continue.

Definition 3 (The Most Similar Cluster). Given a 1D cluster c ∈ C1, the
most similar cluster (MSC) ĉ �= c is defined by:

∀ci ∈ C1 \ {c} : sim(c, ĉ) ≥ sim(c, ci)

with similarity instantiated by sim(ci, cj) = |ci ∩ cj |.
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If the most similar cluster ĉ shares a large number of objects with the base
cluster c, this is usually indicative of the presence of a multi-dimensional cluster,
i.e. a combination of these two 1D clusters.

In order to gain a set of merge candidates (i.e. 1D clusters that can be
merged), we need a merge procedure to identify multiple similar clusters. We
consider merging the base cluster with its most similar 1D clusters if they share
many objects.

Definition 4 (k-Most-Similar Clusters). Given a 1D cluster c ∈ C1, we
call MSCk(c) ⊆ C1 the k-most-similar clusters iff it is the smallest subset of
C1 that contains at least k base-clusters, where the following condition holds:
∀ci ∈ MSCk(c),∀cj ∈ C1 \ MSCk(c) : sim(c, ci) > sim(c, cj).

In order to select which of these clusters should be merged, we compute the
best-merge candidates (BMC) as follows.

Definition 5 (Best-Merge Candidates). Given a 1D cluster c ∈ C1 and
k, μ ∈ N

+(μ ≤ k). The best-merge candidates are defined as:

BMC(c) := {x ∈ C1 | MSCk(c) ∩ MSCk(x)| ≥ μ}

Merging all best-merge candidates filters out merge candidates that do not
add a lot of value. However, due to the parameter k, this method might be
too restrictive, causing a loss of cluster information. Since we want maximal-
dimensional regions, we bypass this problem by merging best-merge candidate
sets. That is, we decide to merge two base clusters if they share at least one
base-cluster which fulfils the properties of a best-merge cluster.

Definition 6 (Best-Merge Cluster). Given a 1D cluster c ∈ C1 and minClu
∈ N

+. Then c is called a best-merge cluster if |BMC(c)| ≥ minClu.

Generation of Interesting Regions. Now that we have found which clusters can
be merged, we can start our search space reduction. We start by generating
our approximative regions. These are the regions that will ultimately be refined
into rules if possible. First, generate all best-merge clusters. This will give us
a list of base clusters that are most suited to be merged. Then, find all pairs
of best-merge clusters cA and cB where cA ∈ BMC(cb) and cB ∈ BMC(cA).
As explained above, simply merging cA and cB is not enough, we therefore add
all best-merge candidates of cA and cB to this group. This ensures that we find
maximal-dimensional approximations of the regions we are interested in. The
resulting set of base-clusters form our region. Formally, a region is then defined
as follows.

Definition 7 (Region). A region R is a set of 1D clusters (base-clusters),

R = {c | c ∈ (BMC(cA) ∪ BMC(cB))} ∪ {cA, cB},

where cA, cB ∈ R, cA ∈ BMC(cB) ∧ cB ∈ BMC(cA).
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The points of a region are found by taking the union of all points in the
base-clusters. We take the union as to not be too restrictive on the points that
are part of the region.

Intuitively, a region defines a hyper-rectangle in the original data that can be
seen as a smaller version of the original database. This hyper-rectangle approx-
imates a quantitative predicate set (cf. Definition 1). That is, given a detected
region, we can consider the intervals of this region to define a quantitative pred-
icate. Of special interest is that these regions do not have to be disjoint. That
is, we allow two regions R1 and R2 with R1 ∩ R2 �= ∅ (conform Property 3).

Selecting Relevant Attributes. Now that we have found our possibly interesting
regions, we can continue with generating our rules. Before we do this, however,
we first introduce an intermediary step that will help us filter out uninteresting
rules. That is, given a region, we will verify that each dimension of this region
is interesting w.r.t. all of its other dimensions. For example, suppose that we
have found a dense region denoting all people between a certain age. It would be
uninteresting to report to the user that approximately half of these people are
female. To avoid considering combinations of mutually uninteresting dimensions,
we propose to use an additional measure.

We extend the previous approach by introducing a pairwise independence test
between all attributes using the χ2-test for uniformity. That is, given a region
R, we decide, for each pair of dimensions of this region, whether the points in
this region are uniformly spread in the second dimension when viewed from the
first, and vice versa.

Optimizations. Recall that to find overlapping rules, we consider the order in
which we visit dimensions. However, looking at the data from every possible angle
will not always result in different rules. To stop the algorithm from performing a
lot of unnecessary computations, we can opt for a short-circuiting strategy. That
is, if we find that visiting attribute A1 from attribute A2 yields the same result
as visiting them in reverse order, we can choose to terminate our computation
as we will not be able to find new results.

Another optimization that can be done is when visiting a certain set of
attributes X yields largely the same results as visiting a set of attributes Y.
All attributes we visit starting from X will yield the same result as when visit-
ing them from Y. Therefore, we can stop our computation for one of these sets
and create a link between the results, appending the results to that set in the
end. Please note that this optimization, while reducing the output size of the
algorithm, increases the memory consumption of the algorithm as we have to
keep track of intermediary results. This also does not remove any results from
the rules we would have discovered had we not run this step. We would simply
halt the computation of one branch when the results would be same from that
point on. The end results can then be added to the branch for which computation
was halted.
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3.3 Generating QARs

The final step of the algorithm is to take these interval bounds and transform
them into rules. This step is the simplest of the three and boils down to a simple
counting strategy. That is, given a set of intervals, for each interval compute the
points of the dataset that are contained within that interval. Then, try placing
each dimension of the region on the right hand side of the rule and compute the
remaining left hand side. Intersecting the points of the intervals on the left hand
side and comparing them with the points on the right hand side allows us to
quickly compute the confidence of the rule.

Note that this step does not have to separate from the previous step as rules
can be generated at each level to provide more immediate feedback.

4 Experimental Results

We ran our experiments on a machine running Mac OSX 10.9.1 with a 2.3 GHz
Intel Core i7 and 8 GB of memory. The algorithm was written in Python, making
heavy use of NumPy which provide bindings to efficient linear algebra libraries.
We compare our method to state of the art methods such as QFIMiner [24]
and QuantMiner [19] and also to an equi-width discretization technique. The
source code for QuantMiner can be found online, the implementations for the
other algorithms were created by us. We test the algorithms on synthetic data
to provide an objective comparison, and on real data to show that our results
can be used in real world situations. The synthetic data does not contain any
categorical attributes as QuantMiner is not capable of handling them.

Synthetic Data

The synthetic data we use in this section was generated by creating dense regions
in subsets of all attributes and using overlapping intervals in the individual
attribute domains. Unless otherwise specified, we set the minimum confidence
level to 60 %. That is, only rules that are true at least 60 % of the time are
reported.

Efficiency. To test the efficiency and scalability of our algorithm, we compared
our runtime against that of our three competitors. We generated a dataset of
50000 objects and increased its dimensionality.

Note that there are several caveats with respect to this comparison. First, to
compare to QFIMiner, we have included our own routine to generate quantitative
association rules. Since QFIMiner only mines the data for quantitative frequent
itemsets (QFIs), we still need to transform this data to QARs. Second, while
QuantMiner is included in the comparison, it is very hard to directly compare
it to QFIMiner or DRule as it works in a different way. QuantMiner takes as
input a dataset and a rule template. A rule template tells the algorithm which
attributes to use in the LHS of the rule and which to use in the RHS of the
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Fig. 1. Comparison of execution time between DRule, QFIMiner, QuantMiner, and
discretization. The dataset in all instances contains 50000 transactions.

rule. QuantMiner then looks for optimal rules with respect to this template.
To generate all rules of a certain size, the user has to loop through all possible
combinations of dimensions manually. To provide a comparison, we only use
QuantMiner to mine for rules in the dimensions in which the other algorithms
found rules.

From Fig. 1 we can conclude that DRule performs well when compared to
its competitors. The only competitor consistently outperforming our method is
the method using discretization. For reasons mentioned before, this method does,
however, not provide us with satisfactory results. When comparing to QFIMiner,
we can see that our method performs equally well. However, QFIMiner misses
some of the hidden rules, which in contrast are correctly detected by our method.
Specifically, rules that can only be found when visiting dimensions in a certain
order are not found by QFIMiner. An easy example is when looking at a dataset
in the shape of a face with the mouth overlapping with both eyes in the x
dimensions. If an algorithm first splits on the x dimension and then on the y
dimension, the eyes are not separated, while this does happen when first visiting
the y dimension and then x dimension.DRule is capable of generating more rules
than QFIMiner while keeping up in terms of runtime. We can see that our method
consistently outperforms QuantMiner, but it should be noted that QuantMiner
was designed for rules using user-templates and not for an unsupervised detection
of rules with a free choice of attributes.
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It should be noted that it can easily be shown that we find all rules that
QFIMiner finds as both algorithms use a similar density-based approach to find
intervals.

Rules Output. For this experiment, we generated datasets of varying dimension-
ality and compared the amount of rules that were generated with and without
checkout for uniformity between dimensions and using the short-circuiting strat-
egy discussed in Sect. 3.

Fig. 2. The amount of rules the algorithm outputs with uniformity checks and without
and using the short-circuiting strategy. We reject uniformity if p ≤ 0.05.

In Fig. 2 we demonstrate how much our checks for uniformity reduce the
amount of work the algorithm has to perform. We can see that checking for
uniformity drastically reduces the amount of rules we output and, therefore, the
amount of computations our algorithm has to perform. Using the short-circuiting
strategy further reduces the rules that are generated. We should note, however,
that this strategy more than doubled the memory usage of the algorithm.

Overlap. An important characteristic of our algorithm is its capability of finding
overlapping regions. To test whether our algorithm is really capable of finding
them, we designed a dataset that serves as a demonstration. It consists of several
interesting regions that overlap in one or more dimensions. The order in which
the algorithms visit the attributes is of great importance for the successful com-
pletion of this test. The dataset consists of three sets of records, each of size
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10000, along with an additional 10000 items that were added to introduce noise.
These record sets are dense in all dimensions they exist in. A summary of this
data is shown in Table 1.

Table 1. Summary of the dataset generated to demonstrate overlap. The boundaries
the sets in each of the dimensions is shown. Using an approach that visits each dimen-
sion separately requires that dimension z is visited first.

Pattern ID x y z

1 [5, 8] [10, 15] [10, 15]

2 [10, 18] [8, 12] [9, 16]

3 [3, 15] [5, 15] [3, 7]

Using this dataset, we came to the following conclusions:

– Discretization does not correctly handle this dataset. That is, while dimension
z can be properly discretized, the other dimensions are cut up into chunks.
When using confidence as a measure, some of these chunks are discarded as
no confident rules can be created from them, leading to information loss.

– QFIMiner is only partially capable of correctly finding all QFIs. QFIMiner
uses an Apriori-like build-up of the dimensions that contain dense regions,
but does not take into account that the order in which these dimensions are
visited can be important. Since it first visits dimension x, then dimension
y, and only then dimension z in the last phase, it is only able to detect
two regions. QFIMiner’s density threshold also causes problems in certain
situations. That is, it requires that regions are more dense than the average
density of the dataset in the dimensions in which the regions exist. In the
case of fairly clean data or data where one region is far more dense than the
others, this can lead to regions that go unnoticed.

– DRule is capable of detecting a superset of the rules that QFIMiner finds.
That is, since it also visits the dimensions in the same order that QFIMiner
does, it finds the same rules. But since it also takes other orderings into
account, it is able to detect all three regions and provide rules for them. This
ensures that DRule provides more accurate rules compared to competing
approaches.

Noise. In Fig. 3 we show how resistant our algorithm is to noise and compare it
to the other algorithms (excluding QuantMiner, for reasons mentioned above).
Thanks to the first step in our algorithm, the detection of interesting regions,
we can quickly filter out dimensions that are not interesting to us. The only
work that has to be done on an uninteresting region, is the preliminary 1D clus-
tering, which, depending on the implementation of the algorithm, can be done
rather quickly. After this step, uninteresting regions are no longer considered.
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Fig. 3. The algorithm’s susceptibility to noise. The dataset contains 10000 items and
contains one interesting region.

For this test, we kept the size and amount of interesting regions constant, while
introducing additional noisy dimensions with a uniform distribution.

We can see that our algorithm slightly outperforms QFIMiner in terms of
efficiency for a lower amount of dimensions, while being slightly outperformed
in higher-dimensional data. We outperform QFIMiner in lower-dimensional
datasets due to the apriori-like build-up of the dimensions it considers. This
approach wastes some time on trying to combine irrelevant dimensions. Due to
our reduction step, which efficiently groups dimensions worth exploring together,
we can avoid this problem. In higher-dimensional datasets we become less effi-
cient as the amount of patterns we generate increases. Again, as mentioned in
the previous test, QFIMiner misses a lot of these patterns.

Real Data

After testing our method on synthetic data to benchmark its efficiency, noise
sensitivity, amount of rules it output, and its ability to detect overlap, we move
on to real data. We subjectively evaluate the result of our algorithm to illustrate
that our algorithm is able to find good rules in the sense that they are very inter-
pretable by the user. To perform this evaluation, we used well-known datasets
from the Bilkent University Function Approximation Repository [2], namely the
basketball and quake datasets, and also the iris dataset. In Table 2 we present
some of the rules found by DRule .
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Examining these results, we can immediately see that they are very easy to
interpret. Consider for example, the three rules found for the basketball dataset.
We can immediately conclude that shorter players pass the ball around much
more than taller players. Also notable is that the intervals of Assists per
minute actually overlap. While a seemingly small difference, it can prove useful
for maximizing your bets.

Our algorithm ran for 1.21, 0.89, and 0.57 s for each of these datasets respec-
tively while QFIMiner ran for 1.02, 0.78, and 0.56 s respectively.

Table 2. Table listing example rules found for real datasets.

Examples (confidence (%))

Iris

Sepal width[2.3, 4.2],Petal Length[1.2, 1.6] → Sepal length[4.4, 5.5] (98)
Class[Iris-versicolor] → Petal Length[3, 5.1] (100)
Petal length[4.8, 6.9] → Petal width[1.4, 2.5] (100)

Quake

Latitude[49.83, 50.05],Longitude[78.69, 79.1] → Focal depth[0, 9] (100)
Longitude[78.69, 79.1],Richter[5.9, 6.1] → Latitude[49.83, 50.01](95.1)
Focal Depth[0, 24],Longitude[78.69, 79.1] → Richter[5.9, 6.1] (71.9)

Basketball

Height[196, 198] → Assists per min[0.09, 0.14] (72)
Height[183, 185] → Assists per min[0.12, 0.29] (95.5)
Height[191, 193],Points per min[0.39, 0.49] → Assists per min[0.07, 0.23] (100)

5 Related Work

Association rule mining was first introduced by Agrawal et al. [1]. Since its
introduction, different methods have been extensively studied, as can be demon-
strated by the numerous optimizations that have been developed for the Apriori
algorithm. However, since these algorithms were developed for discrete values,
the so called supermarket basket analysis, they fall short when dealing with
numeric attributes. Over the years, many different approaches have been devel-
oped to deal with these kinds of attributes. In the following paragraphs, we will
give an overview of these approaches and classify them according to how they
relate to our approach.

Discretization/Partitioning. The first and classical method of dealing with
numeric attributes is to perform a preprocessing step, namely partitioning the
data (discretization, binning). This method groups similar items into the same
bin. When the data has been partitioned, frequent itemset mining techniques
can freely be applied [15,21].

Unfortunately, most of these methods fall short as they perform a univari-
ate discretization, i.e., every dimension is partitioned separately without taking
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correlations into account. Since quantitative association rules (QAR) generally
encompass more than one dimension, these interactions between dimensions
remain important. To solve the problem of univariate discretization we can use
a multivariate discretization, see for example Bay [4]. These methods attempt
to preserve interactions between dimensions. While they improve upon the tra-
ditional methods, they still show some shortcomings, such as the assigning each
point to a unique bin. This can result in many missed patterns.

A more promising approach to discretization is through the use of fuzzy rules.
These allow for some overlap between rules but still have the downside of having
to define boundaries beforehand [20].

Clustering-Based Approaches. Another noteworthy attempt at partitioning the
data is through the use of clustering algorithms [8]. This approach clusters the
data and uses the resulting clusters as boundaries for the bins. Traditional clus-
tering algorithms were designed to handle all attributes simultaneously, which
can become a problem as the dimensionality of the data increases. A workaround
for the increasing dimensionality of the data has been created through the devel-
opment of subspace clustering algorithms, e.g. SUBCLU [13] and the FIRES
algorithm [12]. A drawback of these techniques is, however, that they are com-
putationally expensive and that they were not designed for rule extraction.

An approach based on the SUBCLU algorithm, which is capable of finding
quantitative frequent itemsets, was introduced by Washio et al. [24]. This tech-
niques first generates a partition of the data in each dimension and then uses the
anti-monotonicity property of density to combine dimensions. Drawbacks of this
technique include: restriction to non-overlapping quantitative predicates, fixed
order of processing attributes and thus loss of some rule, and a limitation to
quantitative frequent itemsets with no extraction of QARs.

Optimization of Intervals. Other than partitioning approaches, several tech-
niques that allow for non-discretized numeric attributes also exist. These algo-
rithms typically attempt to optimize some criteria in order to interesting rules.
The first approach, developed by Fukuda et al. [7] uses techniques from image
segmentation to find a region that produces an optimized association rule. This
technique was further expanded by Brin et al. [5] to allow for an extra dimension
in the rules. A shortcoming is that these techniques are limited in the number of
dimensions a rule can contain and that expanding them to higher-dimensional
rules is non-trivial. Most recently, Tatti [22] proposes a binarization for real-
valued data by selecting sets of thresholds, treating them as random variables
and computing the average support.

A wildly different approach was first introduced by Mata et al. [14] and
further expanded upon by Salleb-Aouissi et al. [19]. They use a genetic algorithm
to find optimal rules according to a rule template. This template has to be
passed to the algorithm, so the user has to know which types of rules to look for
beforehand.

A last type of techniques operate in a framework of Formal Concept Analysis,
and find all possible non-equivalent (or so called closed) vectors of intervals
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covering a minimal number of points in the data [9,10]. Unfortunately, such
techniques are not feasible for large databases.

6 Conclusion

In the present paper, we have introduced a novel method to tackle the problem
of finding overlapping quantitative association rules. The rules we find allow for
both numeric and categoric attributes and our algorithm is thus more general
than many of its competitors. We have demonstrated the algorithm’s efficiency
and scalability and have shown its resistance to noise. To (partially) solve the
problem of increasing rule output, we have also introduced two strategies that
decrease the amount of rules the algorithm outputs. Finally, we have demon-
strated that DRule is capable of finding association rules showing overlap where
other algorithms fail to do so, or only find an incomplete set. Testing DRule on
real data leads us to conclude that it has its merit in the field of quantitative
association rule mining.

7 Future Work

In the future, we aim to explore different quality measures and different heuris-
tics, other than density, for our rules evaluation and discovery to allow for a
more efficient and a more accurate algorithm.

Other than these optimizations, we intend to investigate methods to make
our method more robust. That is, currently, as is the case with most ARM
algorithms, small changes in parameters can lead to drastic increases in runtime.
While a lot of pruning is already done by our algorithm, this can still lead to an
increase in the ordering of dimensions that have to be visited.
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