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Abstract. Clustering large datasets is one of the important research
problems for many machine learning applications. The k-means is very
popular and widely used due to its ease of implementation, linear time
complexity in size of the data, and almost surely convergence to local
optima. However, working only on numerical data prohibits it from being
used for clustering categorical data. In this paper, we aim to introduce an
extension of k-means algorithm for clustering categorical data. Basically,
we propose a new dissimilarity measure based on an information theoretic
definition of similarity that considers the amount of information of two
values in the domain set. The definition of cluster centers is generalized
using kernel density estimation approach. Then, the new algorithm is
proposed by incorporating a feature weighting scheme that automatically
measures the contribution of individual attributes for the clusters. In
order to demonstrate the performance of the new algorithm, we conduct
a series of experiments on real datasets from UCI Machine Learning
Repository and compare the obtained results with several previously
developed algorithms for clustering categorical data.

Keywords: Cluster analysis · Categorical data clustering · K-means ·
Dissimilarity measures

1 Introduction

During the last decades, data mining has emerged as a rapidly growing interdis-
ciplinary field, which merges together databases, statistics, machine learning and
other related areas in order to extract useful knowledge from data [11]. Cluster
analysis or simply clustering is one of fundamental tasks in data mining that
aims at grouping a set of data objects into multiple clusters, such that objects
within a cluster are similar one another, yet dissimilar to objects in other clus-
ters. Dissimilarities and similarities between objects are assessed based on those
attribute values describing the objects and often involve distance measures.

Typically, objects can be considered as vectors in n-dimensional space, where
n is the number of features. When objects are described by numerical features,
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the distance measure based on geometric concept such as Euclid distance or
Manhattan distance can be used to define similarity between objects. However,
these geometric distance measures are not applicable for categorical data which
contains values, for instance, from gender, locations, etc. Recently, clustering
data with categorical attributes have increasingly gained considerable attention
[7–10,13,14]. As for categorical data, the comparison measure is most naturally
used [13]. However, this metric does not distinguish between the different values
taken by the attribute, since we only measure the equality between pair of values,
as argued in [18].

In this paper we propose a new extension of the k-means algorithm for clus-
tering categorical data. In particular, as for measuring dissimilarity between cat-
egorical objects, we make use of the information theoretic definition of similarity
proposed in [20], which is intuitively defined based on the amount of information
contained in the statement of commonality between values in the domain set of
a categorical attribute. On the other hand, the definition of cluster centers is
generalized using the kernel-based density estimates for categorical clusters as
similarly considered in [6], instead of using the frequency estimates as originally
in [24]. We then develop a new clustering algorithm by incorporating a feature
weighting scheme that automatically measures the contribution of individual
attributes to formation of the clusters.

The rest of this paper is organized as follows. Section 2 briefly describes the
related work. Section 3 first introduces the k-means algorithm, and then presents
its existing extensions for clustering categorical data. The proposed method is
discussed in Sect. 4, and the experimental results are presented in Sect. 5. Finally,
Sect. 6 concludes the paper.

2 Related Work

Probably, the k -means clustering [21] is the most well-known approach for clus-
tering data sets with numerical attributes. It is a traditional partitioning based
approach which starts with k random centroids and the centroids are updated
iteratively by computing the average of the numerical features in each cluster.
Each observation or object is assigned to clusters based upon the nearest dis-
tance to the means of the clusters. The iteration continues until the assignment
is stable, that is, the clusters formed in the current stage are the same as those
formed in the previous stage. The k-means is very popular due to its ease of
implementation, linear time complexity in size of the data, and almost surely
convergence to local optima [25]. However, in real life many data sets are cate-
gorical, of which k-means algorithm cannot be directly applied.

In recent years several attempts have been made in order to overcome the
numerical-only limitation of k-means algorithm so as to make it applicable to clus-
tering for categorical data, such as k-modes algorithm [14] and k-representative
algorithm [24]. Particularly, in the k-modes algorithm [14], the simple matching
similarity measure is used to compute distance between categorical objects, and
“modes” are used instead of means for cluster centers. The mode of a cluster is
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a data point, in which the value of each attribute is assigned the most frequent
value of the attribute’s domain set appearing in the cluster. Furthermore, Huang
also combined the k-modes algorithm with k-means algorithm in order to deal with
mixed numerical and categorical databases. These extensions allow us to efficiently
cluster very large data sets from real world applications. It is worth, however, not-
ing that a cluster can have more than one mode and the performance of k-mode
algorithmdepends strongly on the selection ofmodes during the clustering process.
In an attempt to overcome this drawback, San et al. [24] introduced a new notion
of “cluster centers” called representatives for categorical objects. In particular, the
representative of a cluster is defined making use of the distributions of categorical
values appearing in clusters. Then, the dissimilarity between a categorical object
and the representative of a cluster is easily defined based on relative frequencies
of categorical values within the cluster and the simple matching measure between
categorical values. In such a way, the resulting algorithm called k-representative
algorithm is then formulated in a similar fashion to the k-means algorithm. In fact,
it has been shown that the k-representative algorithm is very effective in clustering
categorical data [22].

More recently, Chen and Wang [6] have proposed a new kernel density based
method for defining cluster centers in central clustering of categorical data. Then
the so-called k-centers algorithm that incorporates the new formulation of cluster
centers and the weight attributes calculation scheme has been also developed.
The experimental results have shown that the k-centers algorithm has good
performance especially for the task of recognizing biological concepts in DNA
sequences.

3 k-Means Algorithm and Its Extensions for Categorical
Data

Assume that DB is a data set consisting of N objects, each of which is char-
acterized by a set of D attributes with finite domains O1, . . . , OD, respectively.
That is, each object in DB is represented by a tuple t ∈ O1 × . . . × OD, and
the dth attribute takes |Od|(> 1) discrete values. In addition, the categories in
Od will be denoted by odl, for l = 1, . . . , |Od|, and each data object in DB will
be denoted by X, with subscript if necessary, which is represented as a tuple
X = (x1, ..., xD) ∈ O1 × ... × OD. Let C = {C1, . . . , Ck} be the set of k clusters
of DB, i.e. we have

Cj ∩ Cj′ = ∅ if j �= j′ and DB =
k⋃

j=1

Cj

Regarding the clustering problem discussed in this paper, we consider two
types of data: numeric and categorical. The domain of numerical attributes con-
sists of continuous real values. Thus, the distance measure based on geomet-
ric concept such as the Euclid distance or Manhattan distance can be used.
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A domain Od is defined as categorical if it is finite and unordered, so that only
a comparison operation is allowed in Od. It means, for any x, y ∈ Od, we have
either x = y or x �= y.

3.1 k-Means Algorithm

The k-means algorithm [21] is one of the most popular algorithm in partitional
or non-hierarchical clustering methods. Given a set DB of N numerical data
objects, a natural number k ≤ N , and a distance measure dis(·, ·), the k-means
algorithm searches for a partition of DB into k non-empty disjoint clusters that
minimizes the overall sum of the squared distances between data objects and
their cluster centers. Mathematically, the problem can be formulated in terms
of an optimization problem as follows:

Minimize

P (U,V) =
k∑

j=1

N∑

i=1

ui,jdis(Xi, Vj) (1)

subject to
k∑

j=1

ui,j = 1, 1 ≤ i ≤ N,

ui,j ∈ {0, 1}, 1 ≤ i ≤ N, 1 ≤ j ≤ k, (2)

where U = [ui,j ]N×k is a partition matrix (ui,j take value 1 if object Xi is in
cluster Cj , and 0 otherwise), V = {V1, . . . , Vk} is a set of cluster centers, and
dis(·, ·) is the squared Euclidean distance between two objects.

The problem P can be solved by iteratively solving two problems:

– Fix V = V̂ then solve the reduced problem P (U, V̂) to find Û .
– Fix U = Û then solve the reduced problem P (Û ,V).

Basically, the k-means algorithm iterates through a three-step process until
P (U,V) converges to some local minimum:

1. Select an initial V(0) = V
(0)
1 , . . . , V

(0)
k , and set t = 0.

2. Keep V(t) fixed and solve P (U,V(t)) to obtain U (t). That is, having the cluster
centers, we then assign each object to the cluster of its nearest cluster center.

3. Keep U (t) fixed and generate V(t+1) such that P (U (t),V(t+1)) is minimized.
That is, construct new cluster centers according to the current partition.

4. In the case of convergence or if a given stopping criterion is fulfilled, output
the result and stop. Otherwise, set t = t + 1 and go to step 2.

In numerical clustering problem, the Euclidean norm is often chosen as a
natural distance measure in the k-means algorithm. With this distance measure,
we calculate the partition matrix in step 2 as below, and the cluster center is
computed by the mean of cluster’s objects.

if dis(Xi, Vj) ≤ dis(Xi, Vp) then
ui,j = 1, and ui,p = 0, for 1 ≤ p ≤ k, p �= j (3)
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3.2 Extensions of k-Means for Categorical Data

k-Modes Algorithm. It was also shown in [13] that the k-means method
can be extended to categorical data by using a simple matching distance mea-
sure for categorical objects and the most frequent values to define the “clus-
ter centers” called modes. Let X1,X2 are two categorical objects in DB, with
X1 = (x11, . . . , x1D) and X2 = (X21, . . . , X2D). The dissimilarity between X1

and X2 can be computed by the total matching of the corresponding attribute
values of the two objects. Formally,

dis(X1,X2) =
D∑

d=1

δ(x1d, x2d) (4)

where

δ(x1d, x2d) =
{

0 if x1d = x2d,
1 if x1d �= x2d.

Given a cluster {X1, . . . , Xp} of categorical objects, with Xi = (xi1, . . . , xiD),
1 ≤ i ≤ p, its mode V = (o1, . . . , oD) is defined by assigning od, 1 ≤ d ≤ D,
the value most frequently appeared in {x1d, . . . , xpd}. With these modifications,
Huang [14] developed the k-modes algorithm that mimics the k-means method
to cluster categorical data. However, as mentioned previously, by definition the
mode of a cluster is not in general unique. This makes the algorithm unstable
depending on the selection of modes during the clustering process.

k-Representative Algorithm. In stead of using modes for cluster centers as
in [13], San et al. [24] proposed the notion of representatives for clusters defined
as follows.

Again, let C = {X1, . . . , Xp} be a cluster of categorical objects and

Xi = (xi1, . . . , xiD), 1 ≤ i ≤ p.

For each d = 1, . . . , D, let us denote OC
d the set forming from categorical values

x1d, . . . , xpd. Then the representative of C is defined by VC = (vC
1 , . . . , vC

D), with

vC
d = {(odl, fC(odl)) | odl ∈ OC

d }, (5)

where fC(odl) is the relative frequency of category odl within C, i.e.

fC(odl) =
#C(odl)

p
(6)

where #C(odl) is the number of objects in C having the category odl at dth

attribute. More formally, each vC
d is a distribution on OC

d defined by relative
frequencies of categorical values appearing within the cluster.
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Then, the dissimilarity between object X = (x1, . . . , xD) and representative
VC is defined based on the simple matching measure δ by

dis(X,VC) =
D∑

d=1

∑

odl∈OC
d

fC(odl) · δ(xd, odl) (7)

As such, the dissimilarity dis(X,VC) is mainly dependent on the relative
frequencies of categorical values within the cluster and simple matching between
categorical values.

k-Centers Algorithm. More generally, Chen and Wang [6] have recently pro-
posed a generalized definition for centers of categorical clusters as follows. The
center of a cluster Cj is defined as

Vj = [νj1, . . . ,νjD] (8)

in which the dth element νjd is a probability distribution on Od estimated by a
kernel density estimation method [1]. More particularly, let denote Xd a random
variable associated with observations xid, for i = 1, . . . , |Cj |, appearing in Cj at
dth attribute, and p(Xd) its probability density. Let Ojd be the set forming from
categorical values {xid}|Cj |

i=1 . Then the kernel density based estimate of p(Xd),
denoted by p̂(Xd, λj |Cj), is of the following form (see, e.g., [27]):

p̂(Xd, λj |Cj) =
∑

odl∈Ojd

fj(odl)K(Xd, odl|λj) (9)

where K(·, odl|λj) is a so-called kernel function, λj ∈ [0, 1] is a smoothing para-
meter called the bandwidth, and fj is the frequency estimator for Cj , i.e.

fj(odl) =
#j(odl)

|Cj | (10)

with #j(odl) being the number of odl appearing in Cj . Note that another equiv-
alent form of (9) was used in [6] for defining a kernel density estimate of p(Xd).

Also, Chen and Wang [6] used a variation of Aitchison and Aitken’s kernel
function [1] defined by

K(Xd, odl|λj) =

{
1 − |Od|−1

|Od| λj if Xd = odl
1

|Od|λj if Xd �= odl
(11)

to derive the estimate p̂(Xd, λj |Cj), which is then used to define νjd.
It is worth noting here that the kernel function K(Xd, odl|λj) is defined in

terms of the cardinality of the whole domain Od but not in terms of the cardi-
nality of the subdomain Ojd of the given cluster Cj .

From (9)–(11), it easily follows that νjd can be represented as

νjd =
[
Pjd(od1), . . . , Pjd(odl), . . . , Pjd(od|Od|)

]
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where

Pjd(odl) = λj
1

|Od| + (1 − λj)fj(odl) (12)

and λj ∈ [0, 1] is the bandwidth for Cj .
When λj = 0, the center degenerates to the pure frequency estimator, which

is originally used in the k-representative algorithm to define the center of a
categorical cluster.

To measure the dissimilarity between a data object and its center, each data
object Xi is represented by a set of vectors {yid}D

d=1, with

yid =
[
I(xid = od1), . . . , I(xid = odl), . . . , I(xid = od|Od|)

]

Here I(·) is an indicator function whose value is either 1 or 0, indicating whether
xid is the same as odl ∈ Od or not. The dissimilarity on the dth dimension is
then measured by

disd(Xi, Vj) = ||yid − νjd||2 (13)

We can see that, k-centers uses the different way to calculate the dissim-
ilarities between objects and cluster centers, but the idea of comparing two
categorical values is still based on the simple matching method (represented by
indicator function I(·)). The remains of the k-center mimics the idea of k-means
algorithm.

4 The Proposed Algorithm

In this section we will introduce a new extension of the k-means clustering algo-
rithm for categorical data by combining a slightly modified concept of cluster
centers based on Chen and Wang’s kernel-based estimation method and an infor-
mation theoretic based dissimilarity measure.

4.1 Representation of Cluster Centers

Similar as in k-centers algorithm [6], for each cluster Cj , let us define the center
of Cj as

Vj = [νj1, . . . ,νjD]

where νjd is a probability distribution on Od estimated by a kernel density
estimation method.

As our aim is to derive a kernel density based estimate p̂(Xd, λj |Cj) for the
dth attribute of cluster Cj , instead of directly using Chen and Wang’s kernel
function defined in terms of the cardinality of the domain Od as above, we use
a slightly modified version as follows.
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For any odl ∈ Od, if odl ∈ Ojd then we define

K(Xd, odl|λj) =

{
1 − |Ojd|−1

|Ojd| λj if Xd = odl
1

|Ojd|λj if Xd �= odl
(14)

otherwise, i.e. odl �∈ Ojd, we let K(Xd, odl|λj) = 0. Then, from (9), (10) and (14)
it easily follows that νjd can be obtained as

νjd =
[
Pjd(od1), . . . , Pjd(odl), . . . , Pjd(od|Od|)

]
(15)

where

Pjd(odl) =
{

λj
1

|Ojd| + (1 − λj)fj(odl) if odl ∈ Ojd

0 otherwise
(16)

and λj ∈ [0, 1] is the smoothing parameter for Cj .
The parameter λj is selected using the least squares cross validation (LSCV)

as done in [6], which is based on the principle of selecting a bandwidth that
minimizes the total error of the resulting estimation over all the data objects.
Specifically, the optimal λ∗

j is determined by the following equation:

λ∗
j =

1
|Cj | − 1

∑D
d=1(1 − ∑

odl∈Ojd
[fj(odl)]2)

∑D
d=1(

∑
odl∈Ojd

[fj(odl)]2 − 1
|Ojd| )

(17)

4.2 Dissimilarity Measure

Instead of using the simple matching measure as in [13,24] or the Euclidean
norm as in [6], we first introduce a dissimilarity measure for categorical values of
each attribute domain based on an information-theoretic definition of similarity
proposed by Lin [20], and then propose a new method for computing the distance
between categorical objects and cluster centers, making use of the kernel den-
sity based definition of centers and the information-theoretic based dissimilarity
measure for categorical data.

In [20], Lin developed an information-theoretic framework for similarity
within which a formal definition of similarity can be derived from a set of under-
lying assumptions. Basically, Lin’s definition of similarity is stated in information
theoretic terms, as quoted “the similarity between A and B is measured by the
ratio between the amount of information needed to state the commonality of
A and B and the information needed to fully describe what A and B are.”
Formally, the similarity between A and B is generally defined as

sim(A,B) =
log P (common(A,B))

log P (description(A,B))
(18)

where P (s) is the probability of a statement s. To show the universality of the
information-theoretic definition of similarity, Lin [20] also discussed it in different
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settings, including ordinal domain, string similarity, word similarity and semantic
similarity.

In 2008, Boriah et al. [5] applied Lin’s framework to the categorical setting
and proposed a similarity measure for categorical data as follows. Let DB be a
data set consisting of objects defined over a set of D categorical attributes with
finite domains denoted by O1, . . . , OD, respectively. For each d = 1, . . . , D, the
similarity between two categorical values odl, odl′ ∈ Od is defined by

simd(odl, odl′) =
{

2 log fd(odl) if odl = odl′

2 log(fd(odl) + fd(odl′)) otherwise (19)

where

fd(x) =
#(x)
|DB|

with #(x) being the number of objects in DB having the category x at dth

attribute. In fact, Boriah et al. [5] also proposed another similarity measure
derived from Lin’s framework and conducted an experimental evaluation of
many different similarity measures for categorical data in the context of outlier
detection.

It should be emphasized here that the similarity measure simd(·, ·) does not
satisfy the Assumption 4 assumed in Lin’s framework [20], which states that
the similarity between a pair of identical object is 1. Particularly, the range of
simd(odl, odl′) for odl = odl′ is [−2 log |DB|, 0], with the minimum being attained
when odl occurs only once and the maximum being attained when Od = {odl}.
Similarly, the range of simd(odl, odl′) for odl �= odl′ is

[
−2 log |DB|

2 , 0
]
, with the

minimum being attained when odl and odl′ each occur only once, and the maxi-
mum value is attained when odl and odl′ each occur |DB|

2 times, as pointed out
in [5].

Based on the general definition of similarity given in (18) and its application
to similarity between ordinal values briefly discussed in [20], we introduce another
similarity measure for categorical values as follows.

For any two categorical values odl, odl′ ∈ Od, their similarity, denoted by
sim∗

d(odl, odl′), is defined by

sim∗
d(odl, odl′) =

2 log fd({odl, odl′})
log fd(odl) + log fd(odl′)

(20)

where

fd({odl, odl′}) =
#({odl, odl′})

|DB|
with #({odl, odl′}) being the number of categorical objects in DB that receive
the value belonging to {odl, odl′} at the dth attribute. Clearly, we have
sim∗

d(odl, odl′) = 1 if odl and odl′ are identical, which satisfies the Assumption 4
stated as above.
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Then, the dissimilarity measure between two categorical values odl, odl′ ∈ Od

can be defined by

dis∗
d(odl, odl′) = 1 − sim∗

d(odl, odl′) = 1 − 2 log fd({odl, odl′})
log fd(odl) + log fd(odl′)

(21)

Let Xi = [xi1, xi2, . . . , xiD] ∈ DB and Vj = [νj1, . . . ,νjD] be the center
of cluster Cj . We are now able to extend the dissimilarity between categorical
values of Od to the dissimilarity on the dth attribute between Xi and Vj , i.e. the
dissimilarity between the dth component xid ∈ Od of Xi and the dth component
νjd of the center Vj , as follows. Without danger of confusion, we shall also use
dis∗

d to denote this dissimilarity and

dis∗
d(Xi, Vj) =

∑

odl∈Ojd

Pjd(odl)dis∗
d(xid, odl) (22)

4.3 Algorithm

With the modifications just made above, we are now ready to formulate the
problem of clustering categorical data in a similar way as k-means clustering.
Adapted from Huang’s W-k-means algorithm [16], we also use a weighting vector
W = [w1, w2, . . . , wD] for D attributes and β being a parameter for attribute
weight, where 0 ≤ wd ≤ 1 and

∑
d wd = 1. The principal for attribute weighting

is to assign a larger weight to an attribute that has a smaller sum of the within
cluster distances and a smaller one to an attribute that has a larger sum of the
within cluster distances. More details of this weighting scheme can be found in
[16]. Then, the weighted dissimilarity between data object Xi and cluster center
Vj , denoted by dis∗(Xi, Vj), is defined by

dis∗(Xi, Vj) =
D∑

d=1

wβ
d dis∗

d(Xi, Vj) =
D∑

d=1

wβ
d

∑

odl∈Ojd

Pjd(odl)dis∗
d(xid, odl) (23)

Based on these definitions, the clustering algorithm now aims to minimize
the following objective function:

J(U,V,W ) =
k∑

j=1

N∑

i=1

D∑

d=1

ui,jw
β
d dis∗

d(Xi, Vj) (24)

subject to ∑k
j=1 ui,j = 1, 1 ≤ i ≤ N

ui,j ∈ {0, 1}, 1 ≤ i ≤ N, 1 ≤ j ≤ k∑D
d=1 wd = 1, 0 ≤ wd ≤ 1

where U = [ui,j ]N×k is a partition matrix.
The proposed algorithm is formulated as below.



A k-Means-Like Algorithm for Clustering Categorical Data 125

Algorithm 1.1. The Proposed Algorithm

Select an initial V(0) = {V (0)
1 , . . . , V

(0)
k }, and set t = 0, λj = 0 for j = 0, . . . , k, set

W (0) = [1/D, . . . , 1/D].
repeat

Keep V(t) and W (t) fixed, generate U (t) to minimize the distances between objects
and cluster mode (using Eq. (23)).

Keep U (t) fixed, update V(t+1) using Eq. (16) and Eq. (17).
Generate W (t+1) using formulas from [16].
t = t + 1.

until The partition does not changed.

5 Experiments Results

In this section, we will provide experiments conducted to compare the cluster-
ing performances of k-modes, k-representatives and three modified versions of
k-representatives briefly described as below.

– In the first modified version of k-representatives (namely, Modified 1), we
replace the simple matching dissimilarity measure with the information theo-
retic-based dissimilarity measure defined by Eq. (21).

– In the second modified version of k-representatives (namely, Modified 2), we
combine the new dissimilarity measure with the concept of cluster centers
proposed by Chen and Wang [6], i.e. the Algorithm 1.1 uses Eq. (12) instead
of Eq. (16) to update the cluster centers).

– The third modified version of k-representatives (namely, Modified 3) is exactly
Algorithm 1.1, which incorporates the new dissimilarity measure with our
modified representation of cluster centers.

5.1 Datasets

For the evaluation, we used real world data sets downloaded from the UCI
Machine Learning Repository [4]. The main characteristics of the datasets are
summarized in Table 1. These datasets are chosen to test our algorithm because
of their public availability and since all attributes can be treated as categorical
ones.

5.2 Clustering Quality Evaluation

Evaluating the clustering quality is often a hard and subjective task [18]. Gen-
erally, objective functions in clustering are purposely designed so as to achieve
high intra-cluster similarity and low inter-cluster similarity. This can be viewed
as an internal criterion for the quality of a clustering. However, as observed in
the literature, good scores on an internal criterion do not necessarily translate
into good effectiveness in an application. Here, by the same way as in [19], we
use three external criteria to evaluate the results: Purity, Normalized Mutual
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Table 1. Categorical datasets

Datasets Number of instances Number of attributes Number of classes

Car 1728 6 4

Soybean (Small) 47 35 4

Soybean (Large) 683 35 19

Breast cancer 286 9 2

Nursery 12960 8 5

Mushroom 8124 22 2

Information (NMI) and Adjusted Rand Index (ARI). These methods make use
of the original class information of each object and the cluster to which the same
objects have been assigned to evaluate how well the clustering result matches
the original classes.

We denote by C = {C1, . . . , CJ} the partition of the dataset built by the
clustering algorithm, and by P = {P1, . . . , PI} the partition inferred by the
original classification. J and I are respectively the number of clusters |C| and
the number of classes |P |. We denote by N the total number of objects.

Purity Metric. Purity is a simple and transparent evaluation measure. To
compute purity, each cluster is assigned to the class which is most frequent in
the cluster, and then the accuracy of this assignment is measured by counting the
number of correctly assigned objects and dividing by the number of objects in
the dataset. High purity is easy to achieve when the number of clusters is large.
Thus, we cannot use purity to trade off the quality of the clustering against the
number of clusters.

Purity(C,P ) =
1
N

∑

j

max
i

|Cj ∩ Pi| (25)

NMI Metric. The second metric (NMI) provides an information that is inde-
pendent from the number of clusters [26]. This measure takes its maximum value
when the clustering partition matches completely the original partition. NMI is
computed as the average mutual information between any pair of clusters and
classes

NMI(C,P ) =

∑I
i=1

∑J
j=1 |Cj ∩ Pi| log N |Cj∩Pi|

|Cj ||Pi|√∑J
j=1 |Cj | log |Cj |

N

∑I
i=1 |Pi| log |Pi|

N

(26)

ARI Metric. The third metric is the adjusted Rand index [17]. Let a be the
number of object pairs belonging to the same cluster in C and to the same
class in P . This metric captures the deviation of a from its expected value
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corresponding to the hypothetical value of a obtained when C and P are two
random, independent partitions.

The expected value of a denoted by E[a] is computed as follows:

E[a] =
π(C)π(P )

N(N − 1)/2
(27)

where π(C) and π(P ) denote respectively the number of object pairs from the
same clusters in C and from the same class in P . The maximum value for a is
defined as:

max(a) =
1
2
(π(C) + π(P )) (28)

The agreement between C and P can be estimated by the adjusted rand index
as follows:

ARI(C,P ) =
a − E[a]

max(a) − E[a]
(29)

when ARI(C,P ) = 1, we have identical partitions.
In many previous studies, only purity metric has been used to analyze the

performance of clustering algorithm. However, purity is easy to achieve whens
the number of cluster is large. In particular, purity is 1 if each object data gets its
own cluster. Beside, many partitions have the same purity but they are different
from each other e.g., the number of object data in each clusters, and which
objects constitute the clusters. Therefore, we need the other two metrics to have
the overall of how our clustering results matches the original classes.

5.3 Results

The experiments were run on a Mac with a 3.66 GHz Intel QuadCore processor,
8 GB of RAM running Mac OSX 10.10. For each categorical dataset, we run 300
times per algorithm. We provide the parameter k equals to the number of classes
in each dataset. The performance of three evaluation metrics are calculated by
the average after 300 times of running. The weighting exponent β was set to 8
as experimentally recommended in [16].

As we can see from Tables 2, 3 and 4, the modified versions 2 and 3 produce
the best results in five out of six datasets. The results are remarkably good in
the soybean (small) dataset, mushroom dataset, car dataset, soybean (large)
dataset (when modified version 3 outperformed in all three metric) and breast
cancer dataset (when the purity is slightly lower than the best one but the other
two criteria are significantly higher). Comparing the performance of modified
versions 2 and 3, we can see that the proposed approach yields better results
in many cases, especially in NMI values and ARI values. In conclusion, the new
approach has been proved to enhance the performance of previously developed
k-means like algorithms for clustering categorical data.
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Table 2. Purity results of categorical dataset algorithms

Datasets K-mode K-representative Modified 1 Modified 2 Modified 3

Car 0.7 0.7 0.703 0.705 0.705

Soybean (Small) 0.873 0.961 0.967 0.981 0.986

Soybean (Large) 0.538 0.595 0.6 0.69 0.71

Breast-cancer 0.702 0.707 0.713 0.71 0.709

Nursery 0.409 0.425 0.435 0.451 0.468

Mushroom 0.518 0.83 0.864 0.87 0.87

Table 3. NMI results categorical dataset algorithms

Datasets K-mode K-representative Modified 1 Modified 2 Modified 3

Car 0.051 0.077 0.101 0.119 0.125

Soybean (Small) 0.823 0.96 0.965 0.98 0.981

Soybean (Large) 0.533 0.708 0.71 0.72 0.732

Breast-cancer 0.0015 0.036 0.039 0.051 0.057

Nursery 0.044 0.047 0.055 0.071 0.071

Mushroom 9.26E-05 0.448 0.493 0.51 0.521

Table 4. Ajusted rand index results categorical dataset algorithms

Datasets K-mode K-representative Modified 1 Modified 2 Modified 3

Car 0.028 0.024 0.043 0.049 0.052

Soybean (Small) 0.729 0.929 0.938 0.963 0.975

Soybean (Large) 0.306 0.379 0.38 0.44 0.46

Breast-cancer -0.002 0.082 0.085 0.128 0.135

Nursery 0.034 0.028 0.034 0.046 0.049

Mushroom 4.62E-06 0.5 0.554 0.589 0.586

6 Conclusions

In this paper, we have proposed a new k-means like algorithm for clustering
categorical data based on an information theoretic based dissimilarity measure
and a kernel density estimate-based concept of cluster centers for categorical
objects. Several variations of the proposed algorithm have been also discussed.
The experimental results on real datasets from UCI Machine Learning Repos-
itory have shown that the proposed algorithm outperformed the k-means like
algorithms previously developed for clustering categorical data. For the future
work, we are planning to extend the proposed approach to the problem of clus-
tering mixed numeric and categorical datasets as well as fuzzy clustering.
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