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Abstract. Default rules like “If A, then normally B” or probabilistic
rules like “If A, then B with probability x” are powerful constructs for
knowledge representation. Such rules can be formalized as condition-
als, denoted by (B|A) or (B|A)[x], and a conditional knowledge base
consists of a set of conditionals. Different semantical models have been
proposed for conditional knowledge bases, and the most important rea-
soning problems are to determine whether a knowledge base is consistent
and to determine what a knowledge base entails. We present an overview
on systems and implementations our group has been working on for solv-
ing reasoning problems in various semantics that have been developed for
conditional knowledge bases. These semantics include quantitative, semi-
quantitative, and qualitative conditional logics, based on both proposi-
tional logic and on first-order logic.

1 Introduction

When studying concepts and methods for nonmonotonic reasoning, actually
implemented and operational systems realizing the developed approaches can be
very helpful. Besides providing a proof-of-concept, such systems may also yield
the basis for practical applications. In recent years, our group at the University
of Hagen has been involved in the development of several software systems imple-
menting reasoning tasks for conditional logics. The types of conditional logics
covered by these systems comprise pure qualitative logics providing default rules
like “If A, then normally B” and also quantitative probabilistic logics with rules
like “If A, then B with probability x”, based either on an underlying propositional
language or on a first-order language. The purpose of this paper is to provide
a brief overview of some of these systems and to illustrate the reasoning tasks
they address.

In Sect. 2, after sketching syntax and models of several propositional condi-
tional logics, systems dealing with these logics are presented, both for qualitative
logics and for probabilistic logics. Along the same dimensions, Sect. 3 deals with
first-order conditionals. In Sect. 4, we conclude and point out future work.
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2 Propositional Conditional Logics

2.1 Unquantified and Quantified Conditionals

We start with a propositional language L, generated by a finite set Σ of
atoms a, b, c, . . .. The formulas of L will be denoted by uppercase Roman letters
A,B,C, . . .. For conciseness of notation, we may omit the logical and -connective,
writing AB instead of A ∧ B, and overlining formulas will indicate negation, i.e.
A means ¬A. Let Ω denote the set of possible worlds over L; Ω will be taken
here simply as the set of all propositional interpretations over L and can be
identified with the set of all complete conjunctions over Σ. For ω ∈ Ω, ω |= A
means that the propositional formula A ∈ L holds in the possible world ω.

By introducing a new binary operator |, we obtain the set

(L | L) = {(B|A) | A,B ∈ L}
of unquantified conditionals over L. A conditional (B|A) formalizes “if A then
(normally) B” and establishes a plausible, probable, possible etc. connection
between the antecedent A and the consequence B. By attaching a probability
value to an unquantified conditional, we obtain the set

(L | L)prob = {(B|A)[x] | A,B ∈ L, x ∈ [0, 1]}
of all probabilistic conditionals (or probabilistic rules) over L. A knowledge base
R is a set of conditionals from (L | L) or from (L | L)prob , respectively.

Example 1 (Qualitative conditional knowledge base). Suppose we have the
propositional atoms f - flying, b - birds, p - penguins, w - winged animals, k
- kiwis. Let the set

Rbird = {(f |b), (b|p), (f |p), (w|b), (b|k)}
consist of the following five conditionals:

r1 : (f |b) birds fly
r2 : (b|p) penguins are birds
r3 : (f |p) penguins do not fly
r4 : (w|b) birds have wings
r5 : (b|k) kiwis are birds

Example 2 (Probabilistic conditional knowledge base). We use the well-known
Léa Sombé example (see e.g. [47]) and consider the three propositional variables
s - being a student, y - being young, and u - being unmarried. Students and
unmarried people are mostly young. This commonsense knowledge an agent may
have can be expressed by the probabilistic knowledge base

Rsyu = {(y|s)[0.8], (y|u)[0.7]}
containing the two conditionals:

r1 : (y|s)[0.8] students are young with probability 0.8
r2 : (y|u)[0.7] unmarried people are young with probability 0.7
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2.2 Models of Propositional Conditional Knowledge Bases

In order to give appropriate semantics to conditionals, they are usually consid-
ered within richer structures such as epistemic states. Besides certain (logical)
knowledge, epistemic states also allow the representation of preferences, beliefs,
assumptions of an intelligent agent. Basically, an epistemic state allows one to
compare formulas or worlds with respect to plausibility, possibility, necessity,
probability, etc.

In a quantitative framework with probabilistic conditionals, obvious represen-
tations of epistemic states are provided by probability distributions P : Ω → [0, 1]
with

∑
ω∈Ω P (ω) = 1. The probability of a formula A ∈ L is given by

P (A) =
∑

ω|=A P (ω), and the probability of a conditional (B|A) ∈ (L | L)

with P (A) > 0 is defined as P (B|A) =
P (AB)
P (A)

, the corresponding conditional

probability. Thus, the satisfaction relation |=prob between probability distribu-
tions over Ω and conditionals from (L | L)prob is defined by:

P |=prob (B|A)[x] iff P (A) > 0 and P (B|A) =
P (AB)
P (A)

= x (1)

As usual, this relation is extended to a set R of conditionals by defining
P |=prob R iff P |=prob (B|A)[x] for all (B|A)[x] ∈ R; for all satisfaction relations
considered in the rest of this paper, we will tacitly assume the corresponding
extension to sets of conditionals.

Example 3. For the propositional language used in Example 2, let P ∗ be the
probability distribution given by:

ω P ∗(ω) ω P ∗(ω) ω P ∗(ω) ω P ∗(ω)
syu 0.1950 syu 0.1758 syu 0.0408 sy u 0.0519
syu 0.1528 syu 0.1378 s yu 0.1081 s y u 0.1378

It is easy to check that P ∗ |=prob Rsyu ; for instance since P ∗(ys) = 0.3708
and P ∗(s) = 0.4635, we have P ∗(y|s) = 0.3708/0.4635 = 0.8 and thus
P ∗ |=prob (y|s)[0.8].

Various types of models have been proposed to interpret qualitative con-
ditionals (B|A) adequately within a logical system (cf. e.g. [39]). One of the
most prominent approaches is the system-of-spheres model of Lewis [38] which
makes use of a notion of similarity between possible worlds. Other, more fine-
grained semantics for conditionals use numbers to compare different degrees of
“plausibility” between the verification and the falsification of a conditional. In
these qualitative frameworks, a conditional (B|A) is accepted (or verified), if
its confirmation, AB, is more plausible, possible etc. than its refutation, AB;
a suitable degree of acceptance is calculated from the degrees associated with
AB and AB. Here, two of the most popular approaches to represent epistemic
states are ordinal conditional functions, OCFs, (also called ranking functions)
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ω κ(ω) ω κ(ω) ω κ(ω) ω κ(ω)

pbfwk 2 pbfwk 5 pbfwk 0 pbfwk 1

pbfwk 2 pbfwk 4 pbfwk 0 pbfwk 0

pbfwk 3 pbfwk 5 pbfwk 1 pbfwk 1

pbfwk 3 pbfwk 4 pbfwk 1 pbfwk 0

pbfwk 1 pb fwk 3 pbfwk 1 pb fwk 1

pbfwk 1 pb fwk 2 pbfwk 1 pb fwk 0

pbfwk 2 pb fwk 3 pbfwk 2 pb fwk 1

pbfwk 2 pb fwk 2 pbfwk 2 pb fwk 0

Fig. 1. OCF κ accepting Rbird from Example 1

[49,50], and possibility distributions [11,14], assigning degrees of plausibility, or
of possibility, respectively, to formulas and possible worlds.

In the following, we will focus on OCFs [49]. An OCF κ is a function κ :
Ω → N∪{∞} with κ−1(0) �= ∅. The smaller κ(ω), the less suprising or the more
plausible the world ω. For formulas A ∈ L, κ(A) is given by:

κ(A) =

{
min{κ(ω) | ω |= A} if A is satisfiable
∞ otherwise

The satisfaction relation between OCFs and qualitative conditionals from
(L | L), denoted by |=ocf , is defined by:

κ |=ocf (B|A) iff κ(AB) < κ(AB)

Thus, a conditional (B|A) is accepted by the ordinal conditional function κ
iff its confirmation AB is less surprising than its refutation AB.

Example 4. For the propositional language used in Example 1, let κ be the OCF
given in Fig. 1. For the conditional (f |p) ∈ Rbird , we have κ(pf) = 1 < 2 = κ(pf)
and thus κ |=ocf (f |p). Similarly, it is easy to check that κ also accepts the other
conditionals in Rbird , implying κ |=ocf Rbird .

2.3 Systems for Reasoning with Propositional Conditional
Knowledge Bases

Reasoning with respect to a conditional knowledge base R means to determine
what R entails. While in classical logic, entailment is defined with respect to
all models, for probabilistic conditional knowledge bases this approach is very
restrictive since it may yield only uninformative answers. Therefore, entailment
may be defined with respect to a set of some best or preferred models.

In probabilistic conditional logic, the principle of maximum entropy (ME
principle) has been advocated [28,30,40,41]. While in general, each model of
a probabilistic conditional knowledge base R determines a particular way of
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extending and completing the probabilistic knowledge expressed in R to a full
probability distribution, the ME principle selects the distribution that accepts
R and that is as unbiased as possible. Formally, given a knowledge base R =
{(B1|A1)[x1], . . . , (Bn|An)[xn]}, ME (R) is the unique probability distribution
that satisfies all constraints specified by R and has the highest entropy H(P ) =
−∑

ω∈Ω P (ω) log P (ω) among all models P of R:

ME (R) = arg max
P |=R

H(P ) (2)

Reasoning in probabilistic conditional logic by employing the principle of
maximum entropy [28,40] requires solving the numerical optimization problem
given in Eq. (2). MEcore [19] is a software system implementing maximum
entropy reasoning. While MEcore does not employ a junction-tree modelling
as in the expert system shell SPIRIT [48], but a straightforward representa-
tion of the complete probability distribution, its focus is on flexibly support-
ing different basic knowledge and belief management functions like revising or
updating probabilistic beliefs, or hypothetical reasoning in what-if mode. In
addition, there is a component checking the consistency of a knowledge base R,
i.e., checking whether the set of models of R is non-empty. A query asking
for the probability of (B|A) in the context of R is answered with respect to
the uniquely defined maximum entropy model ME (R), i.e., (B|A)[x] is ME-
entailed from R iff ME (R)(B|A) = x. The distribution P ∗ given in Example 3
is in fact the ME distribution computed by MEcore for Rsyu , i.e., we have
P ∗ = ME (Rsyu). MEcore can be controlled by a text command interface or by
script files containing command sequences. It features an expressive command
language which allows, e.g., to manipulate knowledge bases, and to automate
sequences of updates and revisions. Besides this, a Java software interface allows
to integrate MEcore in other programs. In [3,33], the functionalities of MEcore
are illustrated in applications of ME modelling and reasoning in the medical
domain.

The methodological theory of conditionals developed by Kern-Isberner
[29,30] allows to describe the aim of knowledge discovery in a very general sense:
to reveal structures of knowledge which can be seen as structural relationships
being represented by conditionals. In this setting, knowledge discovery is under-
stood as a process which is inverse to inductive knowledge representation. By
applying this theory, an algorithm that computes sets of propositional proba-
bilistic conditionals from distributions was developed and implemented in the
system CondorCKD [22,23,34] using the functional programming language
Haskell.

For propositional qualitative conditional logic using OCFs, p-entailment [25]
is an inference relation defined with respect to all OCF models of a knowledge
base R: If A,B are formulas, then A p-entails B in the context of R iff κ |=
(B|A) for all κ such that κ |= R. System P [1] provides a kind of gold standard
for plausible, nonmonotonic inferences, and in [13] it is shown that, given a
knowledge base R, system P inference is the same as p-entailment.
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There are also inference relations which are defined with respect to specific
OCFs obtained inductively from a knowledge base R. System Z [42] is based
upon the ranking function which is the unique minimal OCF that accepts R;
this ranking function is obtained from an ordered partition (R0, ...,Rm) of R
defined by the notion of tolerance [42]. Other OCFs accepting R that have
favourable inference properties are c-representations [30,31]. A c-representation
of R is a ranking function κ constructed from integer impacts ηi ∈ N0 assigned
to each conditional (Bi|Ai) ∈ R such that κ accepts R and is given by [31]:

κ(ω) =
∑

1�i�n

ω|=AiBi

ηi (3)

Condor@AsmL [6] is a software system that implements automated reason-
ing with qualitative default rules employing c-representations. Based on a char-
acterization theorem for c-representations and c-revisions and an approach to
compute c-representations and c-revisions using the tolerance-induced partition
of R [31], inference is done with respect to the OCF thus obtained from R. Con-
dor@AsmL provides functionalities for advanced knowledge management tasks
like belief revision and update or diagnosis and hypothetical what-if-analysis
for qualitative conditionals. Condor@AsmL implements the abstract Condor
specification given in [4] and was developed in AsmL [26], allowing for a high-level
implementation that minimizes the gap between the mathematical specification
of the underlying concepts and the executable code and supports the formal
verification of the implemented system [5].

While Condor@AsmL computes a c-representation for any R that is consis-
tent, this c-representation may not be minimal. Unlike in system Z where there
is a unique minimal OCF, there may be more than one minimal c-representation.
In [7], the set of all c-representations for R is specified as the set of all solutions of
a constraint satisfaction problem CR(R), and a high-level declarative approach
using constraint logic programming (CLP) techniques for solving the constraint
satisfaction problem CR(R) is presented. In particular, the approach developed
in [7] supports the generation of all minimal solutions; these minimal solutions
are of special interest as they provide a preferred basis for model-based inference
from R. Moreover, different notions of minimality are investigated and the flex-
ibility of the approach is demonstrated by showing how alternative minimality
concepts can be taken into account by slight modifications of the CLP imple-
mentation. In [2], a skeptical inference relation taking all c-representations of R
into account is introduced, and it is demonstrated that it can be implemented
as a constraint satisfaction problem that extends CR(R).

3 First-Order Conditional Logics

As an illustration for first-order probabilistic conditionals, consider the following
example, adapted from [12], modelling the relationships among elephants in a
zoo and their keepers. Elephants usually like their keepers, except for keeper
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Fred. But elephant Clyde gets along with everyone, and therefore he also likes
Fred. The knowledge base Rek consists of the following conditionals:

ek1 : (likes(E,K) | elephant(E), keeper(K))[0.9]
ek2 : (likes(E, fred) | elephant(E), keeper(fred))[0.05]
ek3 : (likes(clyde, fred) | elephant(clyde), keeper(fred)[0.85]

Conditional ek1 models statistical knowledge about the general relationship
between elephants and their keepers (“elephants like their keeper with proba-
bility 0.9”), whereas conditional ek2 represents knowledge about the exceptional
keeper Fred and his relationship to elephants in general (“elephants like keeper
Fred only with probability 0.05”). Conditional ek3 models subjective belief about
the relationship between the elephant Clyde and keeper Fred (“elephant Clyde
likes keeper Fred with probability 0.85”). From a common-sense point of view,
the knowledge base Rek makes perfect sense: conditional ek2 is an exception of
ek1, and ek3 is an exception of ek2.

However, assigning a formal semantics to Rek is not straightforward. For
instance, for transforming the propositional approach employed in Eq. (1) to the
relational case with free variables as in Rek , the exact role of the variables has to
be specified. While there are various approaches dealing with a combination of
probabilities with a first-order language (e.g. [24,27,35,36]) here we focus on two
semantics for probabilistic relational conditionals, the aggregating semantics [36]
proposed by Kern-Isberner and the grounding semantics employed in the logic
FO-PCL [21].

While the two approaches are related in the sense that they refer to a (finite)
set of constants when interpreting the variables in the conditionals, there is also
a major difference. FO-PCL requires all groundings of a conditional to have the
same probability x given in the conditional, and in general, FO-PCL needs to
restrict the possible instantiations for the variables occurring in a conditional
by providing constraint formulas like U �= V or U �= a in order to avoid incon-
sistencies. Thus, while the aggregating semantics uses probabilistic conditionals
(B|A)[x] with relational formulas A,B, these conditionals are extended by a con-
straint formula C to 〈(B|A)[x], C〉 in FO-PCL. The models of a knowledge base
R consisting of such first-order probabilistic conditionals are again probability
distributions over the possible worlds, where a possible world is a subset of the
Herbrand base induced by the predicates and constants used for R.

The satisfaction relation |=⊗ for FO-PCL is defined by

P |=⊗ 〈(B|A)[x], C〉 iff
P (θ(AB))
P (θ(A))

= x (4)

for all θ ∈ Θadm(〈(B|A)[x], C〉)

where Θadm(〈(B|A)[x], C〉) is the set of all admissible ground substitutions θ
for the given conditional, i.e. where θ(C) evaluates to true. Thus, a probability
distribution P ⊗-satisfies a conditional 〈(B|A)[x], C〉 if it satisfies each admis-
sible individual instantiation of it. In contrast, the satisfaction relation |=� for
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aggregating semantics [36] is less strict with respect to probabilities of ground
instances, since it is capable of balancing the probabilities of ground instances
in order to ensure the probability x given by a conditional; |=� is defined by

P |=� (B|A)[x] iff

∑

θ∈Θ((B|A)[x])

P (θ(AB))

∑

θ∈Θ((B|A)[x])

P (θ(A))
= x (5)

where Θ((B|A)[x]) is the set of all ground substitutions of (B|A)[x].
The principle of maximum entropy used in the propositional setting (Equa-

tion (2)) has been extended to first-order knowledge bases for aggregating seman-
tics and for FO-PCL [21,36] by defining

ME•(R) = arg max
P |=◦R

H(P ) (6)

where • ∈ {⊗,�}. Since for FO-PCL grounding and for aggregating semantics
the set of models is convex, the optimization problem in (6) yields a unique
solution for every consistent R. Thus, analogously to the propositional case,
reasoning can be done with respect to the maximum entropy model ME•(R).

Software components for these inference tasks have been implemented in
KReator1 [20], an integrated development environment for representing, rea-
soning, and learning with relational probabilistic knowledge. In particular,
KReator provides specific plugins for an optimized computation of the ME
model under aggregating semantics (cf. [16–18]) that exploits the conditional
structure of R and its induced equivalence classes [30,37]. The KReator plugin
for FO-PCL semantics employs a simplification of the ME model computation
by transforming R into an equivalent knowledge base R′ that is parametrically
uniform [8–10,21]. Furthermore, algorithms for solving various reasoning prob-
lems for probabilistic conditional logics that also take inconsistent information
into account have been implemented in the Log4KR library2 [43–46].

In [37], ranking functions for qualitative first-order conditionals are intro-
duced, and in [32], a system Z-like approach for first-order default reasoning is
developed. Unlike propositional system Z, the first-order approach of [32] may
yield more than one minimal solution; an implementation of the approach in [32]
using Log4KR is given in [15].

4 Conclusions and Future Work

Conditionals play a major role in logic-based knowledge representation and rea-
soning. In this paper, we gave a brief survey on different versions of conditional
logics and illustrated corresponding reasoning tasks addressed by software sys-
tems that have been implemented within our research projects in recent years.
Our current work includes the further exploitation of conditional structures for
1 KReator can be found at http://kreator-ide.sourceforge.net/.
2 https://www.fernuni-hagen.de/wbs/research/log4kr/index.html.

http://kreator-ide.sourceforge.net/
https://www.fernuni-hagen.de/wbs/research/log4kr/index.html
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relational probabilistic inference under maximum entropy, and the investigation
of the precise properties of inference with c-representations using OCFs in the
propositional case and with the system Z-like approach in the relational case.
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