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Abstract. On the one hand possibility theory and possibilistic logic
offer a powerful representation setting in artificial intelligence for han-
dling uncertainty in a qualitative manner. On the other hand conditional
tables (c-tables for short) and their probabilistic extension provide a
well-known setting for representing respectively incomplete and uncer-
tain information in relational databases. Although these two settings rely
on the idea of possible worlds, they have been developed and used inde-
pendently. This paper investigates the links between possibility theory,
possibilistic logic and c-tables, before introducing possibilistic c-tables
and discussing their relation with a recent certainty-based approach to
uncertain databases and their differences with probabilistic c-tables.

1 Introduction

The representation and the handling of imperfect information, be it incomplete
or uncertain, has led for several decades to the development of important research
trends in artificial intelligence, such as nonmonotonic reasoning, belief revision,
reasoning under uncertainty, or information fusion. Different formalisms have
been introduced for representing uncertainty which depart from probability the-
ory, and which are particularly of interest when information is both incomplete
and uncertain, such as belief function theory or possibility theory. Moreover,
possibility theory [11] may have a qualitative flavor, which may be appropriate
when uncertainty is hard to assess precisely.

On its side, database research first tackled the issue of managing imper-
fect/incomplete information a long time ago, with the works of Codd [7] and
Lipski [20] in the late seventies. Researchers first focused their attention on so-
called null values (either totally unknown or not applicable), before considering
more sophisticated cases of incompleteness. The pioneering work by Imielin-
ski and Lipski [18] considers three models: Codd tables, v-tables and c-tables.
v-tables are conventional instances where variables can appear in addition to
constants from the considered domains. Codd tables are v-tables in which all
the variables are distinct. They correspond roughly to the current use of nulls in
SQL, while v-tables model “labeled” or “marked” nulls. As to c-tables, they are
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v-tables extended with conditions on variables and constitute a very powerful
model, even though they raise computational complexity issues.

The last decade witnessed a renewal of interest in the modeling and man-
agement of uncertain databases (in particular, probabilistic ones, see, e.g., [27]),
which brought the c-tables model back in the spotlights. As pointed out by
Antova et al. in [3], the three most prominent probabilistic database models
proposed recently, namely ULDBs [4,5], U-relations [3] and the model proposed
in [8] based on virtual views, are different versions of the concept of a c-table.
See also the works by Green and Tannen who proposed a probabilistic c-tables
model [17] and by Shimizu et al. [26].

Even though most of the literature about uncertain databases uses proba-
bility theory as the underlying uncertainty model, this type of modeling is not
always so easy, as recognized in the introductory chapter of [27]: “Where do the
probabilities in a probabilistic database come from? And what exactly do they
mean? The answer to these questions may differ from application to applica-
tion, but it is rarely satisfactory.” This is one of the reasons why some authors
have proposed approaches that rather rest on another model, namely possibility
theory [10,28], which is appropriate for representing epistemic uncertainty.

The idea of applying possibility theory to the modeling of uncertain databases
goes back to the early 1980’s [23–25]. At that time, the approach was to represent
ill-known attribute values by possibility distributions, and then given a query,
to compute the fuzzy set of answers that are certain (or sure) to some extent,
and the larger fuzzy set of answers that are possible to some extent. This was an
attempt at providing a graded counterpart to the modal logic-based approach
proposed by Lipski [20,21]. This possibility distribution-based representation of
the information available about attribute values was covering the cases of null
values, of classical subset restrictions on possible values, and more generally
of fuzzy subset restrictions when all possible values are not equally plausible;
it had nothing to do with the notion of c-tables. Note also that possibilistic
logic [9], which is useful for having a possibilistic reading of c-tables as shown in
the following, has been introduced later. Then the possibility distribution-based
representation of ill-known attribute values has become the standard approach
in possibility theory for handling databases with missing, imprecise, or uncertain
information until now.

Recent advances on this approach can be found in [6]. In contrast with proba-
bility theory, one expects the following advantages when using possibility theory:

– the qualitative nature of the model makes easier the elicitation of the degrees
or levels attached to candidate values, inasmuch as an ordinal scale L made
of k + 1 linguistic labels may be used to assess the certainty (and possibility)
levels attached to an attribute value or a tuple. For instance, with k = 4, one
may use:

α0 = “not at all” < α1 = “somewhat” <

α2 = “rather” < α3 = “almost” < α4 = “totally”

where α0 (resp. αk) corresponds to 0 (resp. 1) in the unit interval when
a numerical framework is used. In possibility theory [10] the necessity
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(or certainty) N(E) of an event E is defined as the impossibility of the oppo-
site event, i.e., N(E) = 1 − Π(E). Then the operation 1 − (·) that is used
when the degrees belong to the unit interval is replaced by the order reversal
operation denoted by rev(·): rev(αi) = αk−i. In the following, however, we use
the numerical scale [0, 1] in order not to make the formulas too cumbersome.

– in probability theory, the fact that the sum of the degrees from a distribution
must equal 1 makes it difficult to deal with incompletely known distributions.

More recently, the authors of the present paper developed a new idea which is
to use the notion of necessity from possibility theory to qualify the certainty
that an ill-known piece of data takes a given value [22]. In contrast with both
probabilistic databases and possibilistic ones in the sense of [6,25], — which can
be referred to as the “full possibilistic” approach —, the main advantage of the
certainty-based model lies in the fact that operations from relational algebra can
be extended in a simple way and with a data complexity which is the same as
in a classical database context (i.e., when all data are certain).

However, the model defined in [22] does not yield the same expressive power
as c-tables inasmuch as it only aims to represent the more or less certain values
(or disjunction of values) that some attributes in a tuple may take, but does not
consider conditions attached to tuples as c-tables do. Here, our main objective is
twofold (i) first to establish the link between c-tables and possibilistic representa-
tions, two settings that have remained unrelated in spite of their close concerns,
and (ii) to propose a possibilistic counterpart of the probabilistic c-tables model
defined in [17], which will make it possible to deal with more complex cases of
imprecise and uncertain information. The objective of this first paper relating
c-tables and possibility theory is to discuss the ideas underlying the two set-
tings, illustrating them on suitable examples, and identifying the key principles
for bridging them. More precisely, we intend to:

– show how regular c-tables can be interpreted, then extended, in the setting of
possibilistic logic;

– establish the link between the extended relational model presented in [22],
based on possibilistic certainty, and that of possibilistic c-tables.

The remainder of the paper is structured as follows. Section 2 is devoted to a
presentation of the c-tables model. Section 3 provides a refresher on possibility
theory. Section 4 presents the concept of a possibilistic c-table. It first shows
how regular c-tables may be interpreted in terms of possibilistic logic (in the
particular case where necessity degrees equal 0 or 1), then describes a gradual
extension, discusses the certainty-based model as a particular case, and finally
compare possibilistic c-tables and probabilistic ones as introduced in [17]. Finally,
Sect. 5 recalls the main contributions and outlines some research perspectives.

2 Refresher on c-tables

As mentioned above, conditional tables (c-tables for short) are v-tables extended
with conditions on variables. Let us recall the definition from [18].
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Table 1. Conditional table from Example 1

Student Course
(x �= math) ∧ (x �= CS)

Sally math (z = 0)
Sally CS (z �= 0)
Sally x
Alice biology (z = 0)
Alice math (x = physics) ∧ (t = 0)
Alice physics (x = physics) ∧ (t �= 0)

Let U be a fixed, finite set of attributes. Attributes are denoted by A, B, C,
and sets of attributes by X, Y , Z. Associated with every A ∈ U is an attribute
domain D(A). We denote D =

⋃
A∈U D(A). Elements of D are called constants.

For every A ∈ U , let V (A) be a countably infinite set of symbols called variables.
It is assumed that V (A) ∩ D = ∅, V (A) ∩ V (B) = ∅ if D(A) �= D(B) and
V (A) = V (B) if D(A) = D(B). Let us denote by S the set of all expressions
built up from atomic conditions of the form (x = a), (x = y), false and true,
where for some A ∈ U , a ∈ D(A), x, y ∈ V (A), by means of ¬, ∨, and ∧. In the
following, we use the notation x �= a (resp. x �= y) for ¬(x = a) (resp. ¬(x = y)).
For every condition Φ ∈ S, we say that a valuation v satisfies Φ if its assignment
of constants to variables makes the formula true.

Definition 1. By a c-tuple on a set of attributes X, we mean any mapping t
defined on X ∪ {con} such that t(X) is a V -tuple (i.e., any mapping t′ that
associates an element t′(A) ∈ D(A) ∪ V (A) with every A ∈ X) and t(con) ∈ S
is the condition associated with t(X). A conditional table (or c-table) on X is
any finite set T of c-tuples on X.

In this original definition, conditions may only be attached to individual
tuples. An extension is to consider that a condition may also be attached to the
c-table globally, see [1]. The definition then becomes:

Definition 2. A conditional table (or c-table) on X is a pair (T, ΦT ) where T
is any finite set of c-tuples on X and ΦT ∈ S is a global condition on T .

In the following, we denote by ϕt the condition associated with tuple t.

Example 1. Suppose we know that Sally is taking math or computer science (CS)
(but not both) and another course; Alice takes biology if Sally takes math, and
math or physics (but not both) if Sally takes physics. This can be represented
by the c-table depicted in Table 1.

Remark 1. Notice that it is possible to use disjunctions that are not mutually
exclusive. For instance, if Sally could take math or physics or both, the first two
lines of Table 1 would have to be replaced by the four lines:
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Sally math x = 0
Sally CS x = 0
Sally math x �= 0 ∧ y = 0
Sally CS x �= 0 ∧ y �= 0

	

Adopting the closed world assumption, a given c-table T represents a set of
instances (possible worlds) as follows:

rep(T ) = {I | there is a valuation ν satisfying ΦT such that relation I

consists exactly of those facts ν(t) for which ν satisfies ϕt}.

In the context of uncertain databases, the notion of a strong representation sys-
tem plays an important part. Let us recall its definition [1]. Consider some par-
ticular representation system (e.g., tables). Such a system involves a language for
describing representations and a mapping rep that associates a set of instances
with each representation. Suppose that we are interested in a particular query
language L (e.g., relational algebra). We would like to be capable of representing
the result of a query in the same system. More precisely, for each representation
T and query q, there should exist a computable representation q̄(T ) such that

rep(q̄(T )) = q(rep(T )). (1)

In other words, q̄(T ) represents the possible results of q, i.e., {q(I) | I ∈ rep(T )}.
In such a context, a possible answer (resp. a certain answer) to a query q is a
tuple that belongs to at least one world (resp. to all of the worlds) of q̄(T ):

t ∈ poss(q) ⇔ t ∈
⋃

I∈rep(q̄(T ))

I (2)

t ∈ cert(q) ⇔ t ∈
⋂

I∈rep(q̄(T ))

I (3)

Example 2. If we consider Table 1, the possible (resp. certain) answers to the
query “find the students who take math or computer science” are {Sally, Alice}
(resp. {Sally}). �
If some representation system τ possesses property (1) for a query language L,
then τ is said to be a strong representation system for L. It has been proven that
c-tables are a strong representation system for relational algebra [18]. For each
operation u of relational algebra, [18] defines an operation ū on c-tables. Here-
after, we recall these definitions using the easier-to-read presentation from [17].
For projection, we have

π̄�(T ) := {(t′ : ϕt′) | t ∈ T s.t. πl(t) = t′, ϕt′ =
∨

ϕt}
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Table 2. Conditional table T (left) and result of σB �=b(T ) (right)

B C
y c (y �= b)
z w
b x

B C
y c (y �= b)
z w (z �= b)

Table 3. Conditional table from Example 3

Course Room
math Fermat (u = 0)
math ledöG (u �= 0)
CS Turing (v �= 0)
CS ledöG (v = 0) ∧ (u = 0)
CS Fermat (v = 0) ∧ (u �= 0)
biology Turing (v = 0)
biology Monod (v �= 0)
physics Einstein

where 	 is a list of indexes and the disjunction is over all t in T such that
π�(t) = t′. For selection, we have

σ̄c(T ) := {(t : ϕt) ∧ c(t)) | (t, ϕt) ∈ T}
where c(t) denotes the result of evaluating the selection predicate c on the values
in t (this is in general a Boolean formula on constants and variables). See Table 2
for an example.

For cross product and union, we have

T1×̄T2 := {(t1 × t2 : ϕt1 ∧ ϕt2) | t1 ∈ T1, t2 ∈ T2}
T1∪̄ T2 := T1 ∪ T2

Difference and intersection are handled similarly.

Example 3. Here is an example involving a join between two conditional tables.
Let us assume that math courses take place either in Fermat room or in Gauss
room. The CS course takes place in Turing room if the biology course does not
use it, otherwise it takes place in Gödel room or in Fermat room. The course
either takes place in Monod room or in Turing room. Physics is in Einstein room.

We are interested in knowing in which room each student may attend a
course, which implies joining Tables 1 and 3. The result is represented in Table 4.
For instance, the first line expresses that Sally will be in Fermat room if she takes
math and math is in Fermat. �

It is quite clear that c-tables per se are quite difficult to interpret by end-
users, but they can be used as a means to answer yes/no queries. Complexity
results about different types of yes/no queries on c-tables are given in [2,15].
The authors consider five types of problems:
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Table 4. Resulting conditional table

Course Room
Sally Fermat (z = 0) ∧ (u = 0)
Sally Gödel (z = 0) ∧ (u �= 0)
Sally Turing (z �= 0) ∧ (v �= 0)
Sally Monod x = biology ∧ (v �= 0)
Sally Einstein x = physics
Alice Fermat (x = physics) ∧ (t �= 0) ∧ (u = 0)

ledöGecilA (x = physics) ∧ (t �= 0) ∧ (u �= 0)
Alice Turing (z = 0) ∧ (v = 0)
Alice Monod (z = 0) ∧ (v �= 0)
Alice Einstein (x = physics) ∧ (t �= 0)

– containment problem cont(q0, q): is the result of a given query q0 over a given
set of c-tables S0 included in the result of a given query q over a given set of
c-tables S ?

– membership problem memb(q): is a given instance I0 a possible world of the
result of a given query q over a given set of c-tables S ?

– uniqueness problem uniq(q0): is the result of a given query q0 equal to the
single given possible world {I} ?

– possibility problem poss(∗, q): do all the facts of a given set P belong to a same
possible world of the result of a given query q over a given set of c-tables S ?

– certainty problem cert(∗, q): do all the facts of a given set P belong to every
possible world of the result of a given query q over a given set of c-tables S ?

In [2,15], the authors show that for any polynomial time computable queries q0,
q, one has:

– cont(q0, q) is in Πp
2 ;

– memb(q) is in NP;
– uniq(q0) is in coNP;
– poss(∗, q) is in NP; and
– cert(∗, q) is in coNP.

3 Refresher on Possibility Theory

In possibility theory [10,28], each event E — defined as a subset of a universe Ω
— is associated with two measures, its possibility Π(E) and its necessity N(E).
Π and N are two dual measures, in the sense that

N(E) = 1 − Π(E)

(where the overbar denotes complementation). This clearly departs from the
probabilistic situation where Prob(E) = 1−Prob(E). So in the probabilistic case,
as soon as you are not certain about E (Prob(E) is small), you become rather
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certain about E (Prob(E) is large). This is not at all the situation in possibility
theory, where complete ignorance about E (E �= ∅, E �= Ω) is allowed: This is
represented by Π(E) = Π(E) = 1, and thus N(E) = N(E) = 0. In possibility
theory, being somewhat certain about E (N(E) has a high value) forces you to
have E rather impossible (1 − Π is impossibility), but it is allowed to have no
certainty neither about E nor about E. Generally speaking, possibility theory
is oriented towards the representation of epistemic states of information, while
probabilities are deeply linked to the ideas of randomness, and of betting in
case of subjective probability, which both lead to an additive model such that
Prob(E) = 1 − Prob(E).

A possibility measure Π (as well as its dual necessity measure N) is based
on a possibility distribution π, which is a mapping from a referential U to an
ordered scale, say [0, 1]. Namely,

Π(E) = sup
u∈E

π(u) and N(E) = inf
u�∈E

(1 − π(u)).

π(u) = 0 means that u is (fully) impossible, while π(u) = 1 just means u is
(fully) possible, since it is important to notice that nothing prevents to have
u �= u′ and π(u) = π(u′) = 1. Thus, E = {u} is (fully) certain only if π(u) = 1
and ∀u′ �= u, π(u′) = 0. A possibility distribution π is normalized as soon as
∃u, π(u) = 1; it expresses a form of consistency, since it is natural to have at
least one alternative fully possible as soon as the referential is exhaustive (this
is the counterpart in possibility theory of having the sum of the probabilities in
a probability distribution equal to 1).

Conversely, if we know that N(E) ≥ α, which means that we are certain
(at least) at level α that E is true, there are several possibility distributions that
can be compatible with this constraint, but it can be shown that the largest one
(the one that allocates the greatest possible possibility to each u ∈ U) is unique,
and is such that π(u) = 1 if u ∈ E and π(u) = 1 − α if u �∈ E. So, if we are
α-certain that Bob lives in Paris or Lyon, this is represented by the distribution
π(Paris) = 1 = π(Lyon), and π(u) = 1 − α for any other city u.

Representing a possibility distribution with more than two levels in terms of
constraints of the form N(E) ≥ α requires several constraints. For instance, if
it is possible that Peter lives in Brest, Paris, Lyon, or another city with respec-
tive possibility levels 1 > α > α′ > α′′ (i.e., π(Brest) = 1, π(Paris) = α,
π(Lyon) = α′, π(u) = α′′ for any other city u), then, it corresponds to the
constraints N({Brest, Paris, Lyon}) ≥ 1−α′′, N({Brest, Paris}) ≥ 1−α′ and
N({Brest}) ≥ 1 − α. More generally, any possibility distribution with a finite
number of levels 1 = α1 > · · · > αn > 0 = αn+1 can be represented by a collec-
tion of n constraints of the form N(Ei) > 1 − αi+1 with Ei = {u | π(u) ≥ αi}.

Constraints such as N(E) ≥ α where E stands for the set of models of a
proposition p can be handled inside possibilistic logic under the form of a pair
(p, α) made of the classical logic proposition p and a level α belonging to a lin-
early ordered scale [9,12]. The semantics of a possibilistic logic base K, i.e.,
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a set of such a pairs, K = {(pi αi)|i = 1, · · · , n} is expressed by means of the
possibility distribution πK defined by

∀ω ∈ Ω, πK(ω) = min
i=1,··· ,n

π{(pi αi)}(ω) with π{(pi αi)}(ω) = max([pi](ω), 1 − αi)

where Ω is the set of interpretations of the language induced by the literals of the
formulas in K, and [pi](ω) = 1 if ω � pi (i.e., ω is a model of K) and [pi](ω) = 0
otherwise. The semantic entailment is then defined by

K � (p, α) if and only if NK([p]) ≥ α ⇔ ∀ω πK(ω) ≤ max([p](ω), 1 − α)

where NK is the necessity measure defined from πK .
The syntactic inference machinery of possibilistic logic, using the resolution

rule
(¬p ∨ q, α), (p ∨ ¬r, β) � (q ∨ ¬r, min(α, β))

and refutation (it amounts to adding (¬ϕ, 1), put in clausal form, to K, and using
this rule repeatedly to show that K ∪ (¬ϕ, 1) � (⊥, a)), has been proved to be
sound and complete with respect to the semantics. Algorithms and complexity
evaluation (similar to the one of classical logic) can be found in [19]. It is worth
mentioning that the repeated use of the probabilistic resolution rule P (p ∨ q) ≥
α, P (¬p ∨ r) ≥ β � P (q ∨ r) ≥ max(0, α + β − 1) does not always provide the
tightest bounds that can be obtained by probability computation and thus does
not lead to a complete calculus. Moreover, a mixed resolution rule that involves
necessity and possibility bounds holds in possibilistic logic [9], here written in
terms of semantic constraints:

N(¬p ∨ q) ≥ α,Π(p ∨ ¬r) ≥ β � Π(q ∨ ¬r) ≥ β provided that α > 1 − β.

Lastly, it is worth mentioning that a formula such as (¬p ∨ q, α) is semanti-
cally equivalent to (q, min(α, [p])) (with [p] = 1 if p is true and [p] = 0 if p is
false), where (q,min(α, [p])) can be read q is α-certain provided that p is true.
Then it can be checked that the following resolution rule holds (q, min(α, [p])),
(p, min(β, [r])) � (q, min(α, β, [r])). The interested reader may find more details
about possibilistic logic and its various applications in [12].

4 Possibilistic c-tables

In his pioneering work [20,21] on databases with incomplete information Lipski
distinguishes between answers that are certain and answers that are only possible
for a given query in a modal logic setting. Inspired by this work, the use of pos-
sibility theory for modeling incomplete and uncertain information in databases
was first proposed in [23–25], and later revisited in [6]. In these approaches, each
attribute value in a tuple is represented by means of a possibility distribution
defined on the domain of the attribute. This possibility distribution restricts the
more or less possible values of the attribute for the considered tuple according
to the available information (as, e.g., in the previous section example of Peter
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Table 5. Conditional table from Example 4

Student Course
Sally math (z = 0)
Sally CS (z �= 0)

living in Brest, Paris, Lyon, or another city). However these works were mak-
ing no reference to c-tables. In the following, we show how any c-table can be
directly understood as a possibility distribution over a set of possible database
worlds, and thus expressed by a possibilistic logic database. We first do it in
the case where possibility is not graded, and then consider the general case of
graded possibility that enables us to accommodate uncertainty. We then relate
possibilistic c-tables to the particular case of the certainty-based approach to
uncertain databases that we recently developed, and finally compare possibilis-
tic c-tables to probabilistic c-tables.

4.1 Regular c-tables Interpreted in Terms of Possibilistic Logic

As already mentioned, the conditions associated with tuples in a c-table are
specifying possible worlds. Thus, they implicitly define possibility distributions
over mutually exclusive situations.

Example 4. If we take the first part of Example 1, namely representing the
information (take(Sally, math)∨ (take(Sally, CS), this corresponds to the pos-
sibility distribution πtake(Sally,·)(math) = 1 = πtake(Sally,·)(CS), or if we prefer
π(z = 0) = π(z �= 0) = 1. Note that the situation in Remark 1 where math
and CS are no longer mutually exclusive would require a possibility distribution
defined on the power set of {math,CS}. Still both cases can be easily cap-
tured in possibilistic logic. Indeed “Sally is taking math or computer science” is
expressed by

(take(Sally, math) ∨ take(Sally, CS), 1)
and the additional constraint “but not both” by

(¬take(Sally, math) ∨ ¬take(Sally, CS), 1).
Let us now examine the rest of Example 1. We can take for the domain

of attribute Course the set DCourse = {math, CS, biology, physics, others}
that involves all the topics mentioned in the example and leave room for others.
Then the information “Sally takes another course” (apart from “math” or “CS”)
writes in possibilistic logic

(take(Sally, physics) ∨ take(Sally, biology) ∨ take(Sally, others), 1)
while “Alice takes biology if Sally takes math and math or physics (but not
both) if Sally takes physics” writes

(take(Alice, biology), [take(Sally, math)])
(take(Alice,math) ∨ take(Alice, physics), [take(Sally, physics)])
(¬take(Alice, math) ∨ ¬take(Alice, physics), 1).



52 O. Pivert and H. Prade

We could equivalently write (take(Alice, biology) ∨ ¬take(Sally, math), 1) in
place of (take(Alice, biology), [take(Sally, math)]), and this applies as well to
possibilistic formula after. Having [take(Sally, math)] (or [take(Sally, physics)])
in the certainty level slot of the formulas puts the main focus on Alice. �

Thus, the conditional table represented in Table 5 translates easily in a pos-
sibilistic logic base. This base is semantically associated to a possibility dis-
tribution, which can be obtained by applying the general result recalled in
Sect. 3. This would enable us to explicit the possibility distribution underly-
ing Table 5. This is a {0, 1}-valued possibility distribution; however, if binary-
valued functions are used in the certainty slots (as [take(Sally, math)] in the
above example), some possibility degrees will receive a conditional value (such
as 1 − [take(Sally, math)] ∈ {0, 1}).

A query such as “find the x’s such that condition Q is true” is processed
by refutation, adding the formulas corresponding to ¬Q(x) ∨ answer(x) to the
base, using a small trick due to [16] (see [9]). Let us take a first example.

Example 5. In the previous Example 4, let us consider the query “find the stu-
dents who take math or computer science”, which translates into

{(¬take(x,math) ∨ answer(x), 1), (¬take(x,CS) ∨ answer(x), 1)}.
It can be checked that it yields (answer(Sally), 1)

and (answer(Alice) ∨ take(Alice, physics), [take(Sally, physics))]) (or equiva-
lently (answer(Alice),min([¬take(Alice, physics)], [take(Sally, physics)]))
⇔ (answer(Alice), [¬take(Alice, physics)] ∧ [take(Sally, physics)])). �

As can be seen, we may obtain two types of answers: (i) the answers x0 of
the form (answer(x0), 1), and (ii) the answers x0 of the form (answer(x0), [ϕ])
where [ϕ] is a nontautological condition which may take values 0 and 1. The first
answers are exactly those that are certain, while the second ones are exactly those
that are possible without being certain. Let us consider an example with a join.

Example 6. Let us come back to Example 3 involving a join query. The transla-
tion in possibilistic logic is straightforward:

(place(physics,Einstein), 1)
(place(math, Fermat) ∨ place(math, Gödel), 1),
(¬place(math, Fermat) ∨ ¬place(math, Gödel), 1)
(place(biology,Turing) ∨ place(biology, Monod), 1),
(¬place(biology, Turing) ∨ ¬place(biology, Monod), 1)
(¬place(CS, Turing) ∨ ¬place(biology, Turing), 1)
(¬place(biology,Turing) ∨ ¬place(math,Fermat) ∨ (place(CS,Gödel), 1)
(¬place(biology, Turing) ∨ ¬place(math, Gödel) ∨ (place(CS, Fermat), 1)
(place(CS, Turing) ∨ place(CS, Gödel) ∨ (place(CS, Fermat), 1)

Let us now consider the question “who is in Monod room?”, which translates
into (¬take(x, y) ∨ ¬place(y, Monod) ∨ answer(x), 1). Then from the possibilis-
tic logic counterparts of Tables 1 and 3, it can be checked that we can infer



Possibilistic Conditional Tables 53

Table 6. Possibilistic conditional tables from Example 7 (r left, s right)

Student Course
x = 0 (1) ⊕ x = 1 (0.6)

Sally CS x = 0
Sally math x = 1

Course Room
y = Fermat (1) ⊕ y = Turing (0.3)

math y
CS Turing

{Sally, Alice}, as the set of possible answers. Indeed we get

(answer(Sally),min([¬take(Sally, physics)], [¬take(Sally, others)],
[¬place(biology, Turing)]))

(answer(Alice),min([take(Sally,math)], [¬place(biology, Turing)]))
which is in agreement with Table 4.

As expected, the conjunctive structure of the combined certainty levels reflects
the conjunctions performed when the join of the two c-tables are computed. �

4.2 Gradual Possibilistic c-tables

Obviously, we are not obliged to use binary-valued possibility and certainty lev-
els taking values ‘0’ or ‘1’ only. We can thus express for instance that “Sally
is taking math or computer science (but not both)”, but we are somewhat cer-
tain that it is computer science. This corresponds to the possibility distribution
πtake(Sally,·)(math) = 1−α; πtake(Sally,·)(CS) = 1 if we are certain at level α that
it is computer science. Similarly, we may want to express that it is α-certain that
“Alice takes math or physics (but in any case not, both) if Sally takes physics”.
This latter information translates in the possibilistic formulas

(take(Alice,math) ∨ take(Alice, physics),min(α, [take(Sally, physics)]))
and (¬take(Alice, math) ∨ ¬take(Alice, physics), 1).

Let us now formally define the concept of a possibilistic c-table.

Definition 3. A possibilistic c-table on X is a triple (T, ΦT , P) where T is any
finite set of c-tuples on X, ΦT ∈ S is a global condition on T , and P is a set of
possibility distributions on some variables of V =

⋃
A∈X V (A).

In this definition, P corresponds to the set of “soft constraints” (possibilistic
restrictions) bearing on some variables of the c-table. First observe that the
following property trivially holds.

Property 1. In the special case where possibility degrees take their values in
{0, 1}, possibilistic c-tables reduce to regular c-tables.

Example 7. Let us consider the two following possibilistic c-tables (Table 6).
Table 7 represents the result of q = π{Student, Room}(r ��Course=Course s). The

tuple t = 〈Sally, Turing〉 is a possible (resp. certain) answer to the degree 1
(resp. 0.4). Indeed, the most possible world such that the result of q contains t
(resp. does not contain t) corresponds to the valuation {x = 0, y = Fermat}
(resp. {x = 1, y = Fermat}) whose possibility degree equals 1 (resp. 0.6). �
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Table 7. Result of the query from Example 7

Student Room
x = 0 (1) ⊕ x = 1 (0.6)

y = Fermat (1) ⊕ y = Turing (0.3)

Sally Turing x = 0 ∨ (x = 1 ∧ y = Turing)
Sally Fermat x = 1 ∧ y = Fermat

Remark 2. It is important to emphasize that as soon as candidate values may
be attached a degree of possibility, the worlds of rep(T ) become more or less
possible (they would be more or less probable if a probabilistic database model
were used). This has an impact on the notion of possible and certain answers
(cf. Eqs. 2 and 3). In the graded possibilistic c-tables model we introduce, the
degree of possibility (resp. certainty) associated with an answer t to a query q
corresponds to the maximum of the possibility degrees attached to the worlds of
rep(q̄(T )) that contain t (resp. 1 minus the maximum of the possibility degrees
attached to the worlds of rep(q̄(T )) that do not contain t). 	

When a consequence of interest is of the form (p, α), where α is a certainty
level that depends on nothing, we have an α-certain answer. Besides, if we
get only (p, [q]), and more generally (p,min(α, [q]), and if [q] is not known as
being equal to 1, the answer p can be regarded as being possible at level 1.
Indeed the possibility distribution associated with (p,min(α, [q]) is such that
π{(p,min(α,[q])}(pq) = 1;π{(p,min(α,[q])}(p¬q) = 1;π{(p,min(α,[q])}(¬p¬q) = 1 and
π{(p,min(α,[q])}(¬pq) = 1 − α, and thus Π(p) = maxω�p π{(p,min(α,[q])}(ω) = 1.
This indicates that the certainty level-based possibilistic logic cannot alone
account for intermediary possibility levels, as further discussed now. What is
computed here is only an upper bound of the possibility level, exploiting a part
of the information only.

Example 8. Consider again the situation where Sally is taking math with pos-
sibility 1 − α or computer science with possibility 1 (but not both, with
full certain-ty), which writes in possibilistic logic (take(Sally, CS), α) and
(take(Sally, CS) ∨ take(Sally,math), 1) (this latter formula acknowledges that
Sally studies either CS or math). Let us evaluate the query “find the students
who take math”, which translates into (¬take(x,math)∨answer(x), 1); we obtain

(answer(Sally), [¬take(Sally, CS)]),

but we do not retrieve πtake(Sally,·)(math) = 1 − α. This can be only done by
applying the mixed resolution pattern recalled in Sect. 3, namely here

N(¬take(x,math) ∨ answer(x)) = 1,Π(take(Sally,math)) = 1 − α

� Π(answer(Sally)) ≥ 1 − α. �
However, although it does not appear on this very simple example, the evaluation
of the possibility levels associated with the possibility distribution underlying
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the uncertain and imprecise database may lead to complicated expressions and
heavy computation, as in the probabilistic case.

Theorem 1. Possibilistic c-tables are a strong representation system for rela-
tional algebra.

Sketch of the Proof. We need to prove (cf. Formula 1) that: rep(q̄(T )) =
q(rep(T )). In the possibilistic c-tables model, an element of rep(T ) is a pair
(Wi, Π(Wi)), where Wi is a possible world of T and Π(Wi) is its associ-
ated possibility degree. Then, q(rep(T )) corresponds to the weighted set of
worlds {Π(Wi)/q(Wi) | Wi ∈ rep(T )} (remark: we keep the max of the pos-
sibility degrees in case of duplicate worlds). Let us denote by W(T ′) the pos-
sible worlds (without the associated possibility degrees) represented by the
possibilistic c-table T ′. Since regular c-tables are a strong representation sys-
tem for relational algebra (see [18]), and since the definitions of the algebraic
operators remain unchanged, we have W(rep(q̄(T ))) = W(q(rep(T ))) where
W(q(rep(T ))) = {q(Wi) | Wi ∈ rep(T )}. Now, all one needs is a sound way
to compute the possibility degree of a world generated by a possibilistic c-table
(i.e. of a valuation that satisfies the conditions in the c-table). This way is pro-
vided by the axioms of possibility theory regarding conjunction and disjunction,
and the computation is based on the possibility distributions attached to the
possibilistic c-table on the one hand, and the conditions attached to the tuples
on the other hand. 	


Let us now consider the counterparts of the yes-no queries discussed at the
end of Sect. 2 and their associated complexity. In the possibilistic c-tables frame-
work these queries are not of type yes-no anymore but are of the form “to which
extent is it possible (resp. certain) that ...”. For instance, the containment prob-
lem cont(q0, q) now corresponds to the question: to which extent is it possible
(resp. certain) that the result of a given query q0 over a given set of c-tables S0

is included in the result of a given query q over a given set of c-tables S ? Just
as the complexity of possibilistic logic is the one of classical logic multiplied by
the logarithm of the number of levels used in the scale [19], the complexity here
remains in the same class as the one for regular c-tables.

4.3 The Particular Case of the Certainty-Based Model

In [22], we defined a model that we called “certainty-based” for representing
relational databases containing uncertain attribute values, when some knowledge
is available about the more or less certain value (or disjunction of values) that
a given attribute in a tuple may take.

As the possibilistic model described in [6], the certainty-based model [22]
relies on possibility theory [28]. However, it only keeps pieces of information
that are more or less certain and leaves aside what is just possible. This cor-
responds to the most important part of information (a possibility distribution
is “summarized” by keeping its most plausible elements, associated with a cer-
tainty level). For instance, 〈037, John, (40, α)〉 denotes the existence of a person
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named John, whose age is 40 with certainty α. Then the possibility that his age
differs from 40 is upper bounded by 1 − α without further information.

The model can also deal with disjunctive uncertain values. For instance,
〈3, Peter, (Newton ∨ Quincy, 0.8)〉 represents the fact that it is 0.8-certain that
the person number 3 named Peter lives in Newton or in Quincy. Then, the
underlying possibility distributions π are of the form π(u) = max(A(u), 1 − α)
where A is an α-certain subset of the attribute domain and A(u) equals 1 if
u ∈ A, 0 otherwise.

Moreover, since some operations (e.g., the selection) may create “maybe
tuples”, each tuple t from an uncertain relation r has to be associated with
a degree N expressing the certainty that t exists in r. It will be denoted by N/t.

Example 9. Let us consider a relation r of schema (#id, Name, City) containing
tuple t1 = 〈1, John, (Quincy, 0.8)〉, and the query “find the people who live in
Quincy”. Let the domain of attribute City be {Boston, Newton, Quincy}. The
answer contains 0.8/t1 since it is 0.8 certain that t1 satisfies the requirement,
while the result of the query “find the people who live in Boston, Newton or
Quincy” contains 1/t1 since it is totally certain that t1 satisfies the condition. �
To sum up, a tuple α/〈037, John, (Quincy, β)〉 from relation r means that it
is α certain that person 037 exists in the relation, and that it is β certain that
037 lives in Quincy (independently from the fact that it is or not in relation r).

Obviously, this model is a particular case of a gradual possibilistic c-table
where the only conditions present in a relation are used to represent the more
or less certain value (or disjunction of values) that an attribute in a tuple may
take. Of course, when using a c-table to represent such a relation, there is no
need for the extra attribute N since the certainty level attached to a tuple is
computed by evaluating the condition associated with this tuple (interpreting
the conjunction as the minimum according to the axioms of possibility theory).

We have extended relational algebra in this context and shown that the model
constitutes a representation system for this set of operators. The only constraints
concern (i) the join that has to be based on an equality condition, (ii) the
Cartesian product and join operations that must take independent relations as
arguments. An important result is that the data complexity of these operations
is the same as in the classical database case. This is also the case of general
possibilistic c-tables when it comes to computing the “compact” result of a
query, i.e., its resulting possibilistic c-table, but of course not when it comes
to answering generalized yes-no queries (cf. the end of Subsect. 4.2). Since the
certainty-based model does not include intertuple dependencies, a table that
represents the result of a query in this model is easily interpretable. On the
other hand, possibilistic c-tables are more expressive but also more complex and
can only be exploited by an end-user through generalized yes-no queries.
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Table 8. Probabilistic conditional table from Example 10

Student Course
x = math (0.3) ⊕ x = phys (0.3) ⊕ x = chem (0.4)

t = 0 (0.15) ⊕ t = 1 (0.85)

Alice x
Bob x (x = physics) ⊕ (x = chem)
Theo math t = 1

4.4 Comparison with Probabilistic c-tables

We introduce probabilistic c-tables by means of the following example drawn
from [17].

Example 10. Suppose Alice takes a course that is math with probability 0.3,
or physics with probability 0.3, or chem with probability 0.4; Bob takes the
same course as Alice provided that the course is physics or chem; Theo takes
math with probability 0.85. This can be represented by the probabilistic c-table
depicted in Table 8.

We may easily imagine a possibilistic version of the example. Suppose that
Alice takes a course that is math with possibility α, or physics with possibility
α, or chem with possibility 1. Bob takes the same course as Alice provided that
the course is physics or chem. Theo takes math with possibility 1 and does
not take math with possibility β. Now Dcourse = {math, chem, physics}. The
pieces of information above can be expressed in possibilistic logic as:

(take(Alice, chem), 1 − α)
(take(Bob, chem), [take(Alice, chem)])
(take(Bob, physics), [take(Alice, physics)])
(take(Theo,math), 1 − β)

From which one can deduce, e.g., (take(Bob, chem), 1 − α). �
Note that in case we would have
x = math (0.25) ⊕ x = phys (0.35) ⊕ x = chem (0.4)
we would have to add

(take(Alice, chem) ∨ take(Alice, physics), 1 − α′) with α′ < α
to (take(Alice, chem), 1 − α).
Moreover, in case we would have
x = math (0.4) ⊕ x = phys (0.4) ⊕ x = chem (0.2)
we would have to replace (take(Alice, chem), 1 − α) by
(take(Alice, math) ∨ take(Alice, physics), 1 − α).

The above examples suggest that probabilistic c-tables and possibilistic c-
tables are quite close as a representation tool, although obeying to different infer-
ence principles. Compared to probabilistic c-tables, an argument in favor of the
possibilistic c-tables model lies in its robustness (i.e., in the fact that the order of



58 O. Pivert and H. Prade

Table 9. Relations r (top) and s (bottom) — Possibilistic c-tables

yticemandi#
x = Newton (1) ⊕ x = Quincy (0.2)
y = Quincy (1) ⊕ y = Gardner (0.6)

z = Newton (1) ⊕ z = Gardner (0.8) ⊕ z = Quincy (0.7)
u = Quincy (1) ⊕ u = Gardner (1)

37 John x
53 Mary y
72 Paul z
81 Lisa u

city flea market
v = yes (1) ⊕ v = no (0.3)
w = yes (0.1) ⊕ w = no (1)
r = yes (1) ⊕ r = no (0.4)

Newton v
Quincy w
Gardner r

the answers obtained is less sensitive to the values of the degrees in the distribu-
tions attached to the variables), which is illustrated by the toy example hereafter.

Example 11. Let us consider the possibilistic c-tables r of schema (#id, name,
city), and s of schema (city, flea market) describing respectively a set of people
whose city of residence is ill-know, and a set of city for which we are not sure if
they have a flea market or not. Let us consider the query q asking for the people
who live in a city with a flea market: πName(r �city=city (σfleamarket=yes(s)).

Let us first consider the possibilistic c-tables model (cf. Table 9). The result-
ing possibilistic c-table is represented in Table 10.

Table 10. Result of query q

name
x = Newton (1) ⊕ x = Quincy (0.2)
y = Quincy (1) ⊕ y = Gardner (0.6)

z = Newton (1) ⊕ z = Gardner (0.8) ⊕ z = Quincy (0.7)
u = Quincy (1) ⊕ u = Gardner (1)

v = yes (1) ⊕ v = no (0.3)
w = yes (0.1) ⊕ w = no (1)
r = yes (1) ⊕ r = no (0.4)

John (x = Newton ∧ v = yes) ∨ (x = Quincy ∧ w = yes)
Mary (y = Quincy ∧ w = yes) ∨ (y = Gardner ∧ r = yes)
Paul (z = Newton ∧ v = yes) ∨ (z = Gardner ∧ r = yes) ∨ (z = Quincy ∧ w = yes)
Lisa (u = Quincy ∧ w = yes) ∨ (u = Gardner ∧ r = yes)
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Table 11. Relations r (top) and s (bottom) — Probabilistic c-tables

yticemandi#
x = Newton (0.8) ⊕ x = Quincy (0.2)
y = Quincy (0.6) ⊕ y = Gardner (0.4)

z = Newton (0.5) ⊕ z = Gardner (0.3) ⊕ z = Quincy (0.2)
u = Quincy (0.5) ⊕ u = Gardner (0.5)

37 John x
53 Mary y
72 Paul z
81 Lisa u

city flea market
v = yes (0.7) ⊕ v = no (0.3)
w = yes (0.1) ⊕ w = no (0.9)
r = yes (0.6) ⊕ r = no (0.4)

Newton v
Quincy w
Gardner r

The answers obtained are thus:

John Π = max(min(1, 1), min(0.2, 0.1)) = 1,
N = max(min(1 − 0.2, 1 − 0.3), min(1 − 1, 1 − 1)) = 0.7

Mary Π = max(min(1, 0.1), min(0.6, 1)) = 0.6,
N = max(min(1 − 0.6, 1 − 1), min(1 − 1, 1 − 0.4)) = 0

Paul Π = max(min(1, 1), min(0.8, 1), min(0.7, 0.1)) = 1,
N = max(min(1 − 0.8, 1 − 0.3), min(1 − 1, 1 − 0.4), min(1 − 1, 1 − 1))

= 0.2
Lisa Π = max(min(1, 0.1), min(1, 1)) = 1,

N = max(min(1 − 1, 1 − 1), min(1 − 1, 1 − 0.4)) = 0.

John is a completely possible answer (Π = 1) since it is completely possible that
(i) he lives in Newton, and (ii) Newton has a flea market. On the other hand,
it is only 0.7 certain that he is an answer since it is 0.3 possible that Newton
does not have a flea market. Since one has N > 0 ⇒ Π = 1, one may rank
the answers in decreasing order of N first, then, for those such that N = 0, in
decreasing order of Π. We get the following ranking: John � Paul � Lisa �
Mary.

Finally, let us use a probabilistic model. In Table 11, the probability values
are roughly specified, in agreement with the uncertainty ordering specified in the
previous possibilistic tables. The result of q is the same as in the possibilistic case
(cf. Table 10) except for the global conditions in which the degrees are different.
Finally, we get the answers:

John pr = 0.8 × 0.7 + 0.2 × 0.1 = 0.58
Mary pr = 0.6 × 0.1 + 0.4 × 0.6 = 0.3
Paul pr = 0.5 × 0.7 + 0.3 × 0.6 + 0.2 × 0.1 = 0.55
Lisa pr = 0.5 × 0.1 + 0.5 × 0.6 = 0.35
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As can be seen, we again obtain the same ranking as in the possibilistic
c-tables model. However, a rather slight modification of the probability values
may lead to a modification of the ranking. For instance, if the probability distrib-
ution associated with Paul’s city were changed into {0.55/Newton, 0.35/Gardner,
0.1/Quincy}, Paul would get the degree 0.605 and would be ranked first (before
John). This contrasts with the possibilistic situation where the result remains
stable as long as the ordering of the possibilistic values is not changed. �

5 Conclusion

Possibility theory and c-tables have appeared at about the same time, at the
end of the 1970’s, in two different areas of information processing. Curiously,
they had remained unrelated until now. This paper provides a first study in
order to bridge them. Indeed, c-tables, as a convenient way of describing possi-
ble worlds, can be easily extended to a possibilistic modeling of uncertain and
imprecise information. This provides a general setting that appears quite appro-
priate for handling uncertainty in a qualitative way. The qualitative nature of
possibility theory makes simpler the elicitation of the possibility and certainty
degrees, and leads to a modeling less sensitive to modifications of the values of
the degrees than in a probabilistic framework. Moreover, the particular case of
the certainty-based approach is especially tractable. Besides, the existing relation
between answer-set programming and generalized possibilistic logic [13] and the
underlying role of possibilistic logic with respect to possibilistic c-tables suggests
to study a possibilistic version of Datalog [2,14] in the future.
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