
Maintenance of Queries Under Database
Changes: A Unified Logic Based Approach

Elena V. Ravve(B)

Ort Braude College, Karmiel, Israel
elena v m@hotmail.com

Abstract. This contribution deals with one single theme, the exploita-
tion of logical reduction techniques in database theory. Two kinds of
changes may be applied to databases: structural changes, known also as
restructuring or schema evolution, and data changes. We present both
of them in the terms of syntactically defined translation schemes.

At the same time, we have application programs, computing different
queries on the database, which are oriented on some specific generation of
the database. Systematically using the technique of translation scheme,
we introduce the notion of Φ-sums and show how queries, expressible in
extensions of First Order Logic (FOL) may be handled over different
generations of the Φ-sums. Moreover, using the technique of translation
scheme, we introduce the notions of an incremental view recomputations.
We prove when queries expressible in extensions of FOL allow incremen-
tal view recomputations.

Our approach covers uniformly the cases we have encountered in the
literature and can be applied to all existing query languages.

1 Introduction

Over time, databases undergo two kinds of changes: structural changes (i.e.,
changes in the schema), known also as restructuring or schema evolution, and
data changes (i.e., insertion, deletions and modifications of tuples). Data changes
are usually referred to as updates. In the same way, one may talk about selection
queries or simply queries (non-modification queries) and updates.

Non-modification query usually must be answered lots of time. That is why, as
a rule, such queries are maintained as auxiliary relations, called in the context of
databases as materialized views. Non-materialized views are called virtual views
and, as a rule, are not updatable. We consider only materialized views in the
paper. Moreover, in this paper, we consider only relational databases.

In this paper, we are concentrated on two problems: handling queries under
restructuring of databases and under database updates.

Handling Queries Under Restructuring of Databases: Database, during
its life cycle, may be restructured several times. At the same time, we have sev-
eral application programs, oriented on some specific generation of the database.
The problem under investigation is:

c© Springer International Publishing Switzerland 2016
M. Gyssens and G. Simari (Eds.): FoIKS 2016, LNCS 9616, pp. 191–208, 2016.
DOI: 10.1007/978-3-319-30024-5 11

192 E.V. Ravve

Given: There are two different generations of the same database, g and g + 1.
There is an application, running on the gth generation: Qg.

Find: An application Qg+1, running on the (g + 1)th generation with the same
results.

Let us consider a toy example. The gth generation of the database contains
only one relation P , while the (g + 1)th generation contains two relations R and
S, such that P = (R �� S). The application, running on the gth generation Qg

is a simple modification query on P , which deletes tuples from P , according to
some condition θ, expressed in terms of P . The set of deleted tuples is defined
by �θP rather than given by enumeration.

We have problems with this kind of rules like deletion over join. In fact: in
�θ(R �� S), we deal with formula θ that can be complicated. When we use
the substitution of (R �� S) instead of P in θ, we receive a new formula in
terms of R and S that contains a mix of attributes from both relations: R and
S. In order to evaluate θ, we must first produce (R �� S) and then delete �θ

from the join, while we are mostly interested to derive (if possible) from θ some
formulae: θR

1 , . . . , θR
ı over R and θS

1 , . . . , θS
j over S, which we will apply to R and

S respectively in order to obtain the same desired result.
In logical notation, the formulae: θR

1 , . . . , θR
ı over R and θS

1 , . . . , θS
j over S

are Feferman-Vaught reduction sequences (or simply, reductions), cf. [19]. The
sequences are sets of queries such that each such a query can be evaluated on the
components: R and S. Next, from the local answers, and possibly some additional
information, we compute the answer. In this paper, we generalize the notion of
Feferman-Vaught reduction sequences to handling queries over Φ–sums.

Handling queries under database updates: Materialized views contain
some derived portion of the database information and storing as new relations.
In order to reflect the changes, made on the source relations, the views should
be modified by adding or deletions tuples without total re-computation from the
database.

Given: A materialized view and a database update.

Find: A set of view updates that uses the old content of the view and delete
from and inserts in the view some set of tuples defined on the source database.

In the case of the incremental view maintenance, we try to find some effective
way to refresh the content of the view by some updates on it. The updates should
be derived from the update on the source database, without the total view re-
computation. In many case, it permits to simplify the maintenance procedure.

Unfortunately, as a rule, the derived view contains only some small part of the
database information, and it is just impossible to obtain the desired results as a
map over only the view. Using extension of the logical machinery of syntactically
defined translations schemes, first introduced in [29] and recently used in [21] in
the context of the database theory, we give precise definition of incremental view
re-computation and prove that every query expressible in several extensions of
First Order Logic (FOL) allows the incremental view re-computation.

Maintenance of Queries Under Database Changes 193

In general, this contribution deals with exploitation of logical reduction tech-
niques in database theory. This approach unifies different aspects, related to
both schema and data evolution in databases, into a single framework. It is
assumed that the reader is familiar with database theory as presented in [1] and
has logical background as described in [15].

The used logical reduction techniques come in the form of Feferman-Vaught
reduction sequences and translation schemes, known also in model theory as
interpretations. The interpretations give rise to two induced maps, translations
and transductions. Transductions describe the induced transformation of data-
base instances and the translations describe the induced transformations of
queries. Translation schemes appear naturally in the context of databases: The
first example is the vertical decomposition of a relation scheme into two relation
schemes with overlapping attribute sets. Also the reconstruction of the original
scheme of the vertical decomposition can be looked at as translation scheme.
The same is true for horizontal decompositions and the definition of views. More
surprisingly, also updates can be cast into this framework. Finally, translation
schemes describe also the evolution of one database scheme over different gen-
erations of database designs.

The paper is structured in the following way. Section 2 presents short review
of the related works. Section 3 provides the definitions and main results, related
to syntactically defined translation schemes. Section 4 is dedicated to handling
of queries under restructuring of databases. Section 5 is dedicated to handling of
queries under database updates. Section 6 summarizes the paper.

2 Related Works

Maintaining dynamic databases, have a long history, cf. [9–11,13]. One of the
most recent paper is [21], inspired by [31]. Like [21], we are also “interested in
some arbitrary but fixed query on a finite structure, which is subject to an ongoing
sequence of local changes, and after each change the answer to the query should
remain available.”

In [21], the local changes of the database were limited to elements, which
are constantly inserted in and deleted from the database. We take the following
verbatim from the Conclusion and future work section of [21]: We think that it
is interesting to consider updates that are induced by first-order formulae. On
the one hand one can consider formulae which induce updates directly to the
structure, i.e. consider updates that change all tuples with the property defined
by the formula. On the other hand one can perform canonical updates to one
structure and consider the changes that are induced on a first-order interpreted
structure. In this paper, we propose a unified logic based approach to mainte-
nance of queries under database changes. We show how this approach works not
only for FOL but also for different extensions of it, used in the database theory.

In [26], the incremental view maintenance problem was investigated from an
algebraic perspective. The author constructed a ring of databases and used it as
the foundation of the design of a query calculus that allowed to express powerful

194 E.V. Ravve

aggregate queries. In this framework, a query language needed to be closed under
computing an additive inverse (as a generalization of the union operation on
relations to support insertions and deletions) and the join operation had to be
distributive over this addition to support normalization, factorization, and the
taking of deltas of queries.

Some propagation techniques for view updates may be found in [3]. In [24],
the complexity of testing the correctness of an arbitrary update to a database
view is analyzed, coming back to constant-complement approach of Bancilhon
and Spyratos, cf. [5]. We must mention the recent exciting works [16–18,20,23],
which use propagation techniques for view updates as well. However, no one of
them considers the question in comparable generality. In fact, we do not need
most of usually used additional assumptions. For example, we do not need the
structures to be ordered. Moreover, we allow both restructuring of the database
and insertion, deletion or set operations under the same logical framework. In
addition, we do not restrict ourselves to the use of FOL but rather different its
extensions.

3 Translation Schemes

In this section, we introduce the general framework for syntactically defined
translation schemes in terms of databases. We assume that the reader is familiar
with precise definitions of extensions of FOL, cf. [25]. The notion of abstract
translation schemes comes back to Rabin, cf. [29]. The translation schemes are
also known in model theory as interpretations, as described in particular in [25].
The definition is valid for a wide class of logics or query languages, including
Datalog or Second Order Logic (SOL) as well as FOL, MSOL, TC, n-TC,
LFP or n-LFP . However, we start from Relational Calculus in the form of
FOL. Occasionally, we use Relational Algebra expressions when they are more
convenient to readers.

We follow Codd’s notations, cf. [7]. Database systems should present the
user with tables called relations (R1, R2, . . .) and their columns are headed
by attributes (A1, A2, . . .) for a relation is called the schema for that relation
(R1[Ā], R2[B̄], . . .). The set of schema for the relations (R,S, . . .) is called a rela-
tional database schema, or just database schema. The row of a relation (t) are
called tuples. A tuple has one component (t[A1], t[A2], . . .) for each attribute of
the relation. We shall call a set of tuples for a given relation an instance (I(R1),
I(R2), . . .) of that relation.

Definition 1 (Translation Schemes Φ). Let R and S be two database
schemes. Let S = (S1, . . . , Sm) and let ρ(Si) be the arity of Si. Let Φ =
〈φ, φ1, . . . , φm〉 be FOL formulae over R. Φ is k–feasible for S over R if φ has
exactly k distinct free FOL variables and each φi has kρ(Si) distinct free first
order variables. Such a Φ = 〈φ, φ1, . . . , φm〉 is also called a k–R–S–translation
scheme or, in short, a translation scheme, if the parameters are clear in the
context.

Maintenance of Queries Under Database Changes 195

If k = 1 we speak of scalar or non–vectorized translation schemes.
If φ is a tautology, then the translation scheme is non–relativized.
Otherwise, φ defines relativization of the new database domain.

The formulae φ, φ1, . . . , φm can be thought of as queries. φ describes the
new domain, and the φi’s describe the new relations. Vectorization creates one
attribute out of a finite sequence of attributes. The use of vectorized translation
schemes in the context of databases is shown in particular in [2] and [27]. We shall
discuss concrete examples after we have introduced the induced transformation
of database instances.

A (partial) function Φ∗ from R instances to S instances can be directly
associated with a translation scheme Φ.

Definition 2 (Induced Map Φ∗). Let I(R) be a R instance and Φ be k–
feasible for S over R. The instance I(S)Φ is defined as follows:

1. The universe of I(S)Φ is the set I(S)Φ = {ā ∈ I(R)k : I(R) |= φ(ā)}.
2. The interpretation of Si in I(S)Φ is the set

I(S)Φ(Si) = {ā ∈ I(S)Φ
ρ(Si) : I(R) |= (φi(ā))}.

Note that I(S)Φ is a S instance of cardinality at most | R |k.
3. The partial function Φ∗ : I(R) → I(S) is defined by Φ∗(I(R)) = I(S)Φ. Note

that Φ∗(I(R)) is defined iff I(R) |= ∃x̄φ.

Φ∗ maps R instances into S instances, by computing the answers to the
queries φ1, . . . , φm over the domain of R specified by φ, see Fig. 1. The definition
of Φ∗ can be extended on the case of sub-sets of R instances in the regular way.

Next we want to describe the way formulae (query expressions) are trans-
formed when we transform databases by Φ∗. For this a function Φ# from L1–
formulae over S L2–formulae over R can be directly associated with a translation
scheme Φ, see Fig. 1.

Definition 3 (Induced map Φ#). Let θ be a S–formula and Φ be k–feasible
for S over R.The formula θΦ is defined inductively as follows:

1. For each Si ∈ S and θ = Si(x1, . . . , xl) let xj,h be new variables with j ≤ l
and h ≤ k and denote by x̄j = 〈xj,1, . . . , xj,k〉. We make θΦ = φi(x̄1, . . . , x̄l).

2. For the boolean connectives, the translation distributes, i.e. if θ = (θ1 ∨ θ2)
then θΦ = (θ1Φ ∨ θ2Φ) and if θ = ¬θ1 then θΦ = ¬θ1Φ, and similarly for ∧.

3. For the existential quantifier, we use relativization, i.e., if θ = ∃yθ1, let ȳ =
〈y1, . . . , yk〉 be new variables. We make θΦ = ∃ȳ(φ(ȳ) ∧ (θ1)Φ).

4. For infinitary logics: if θ =
∧

Ψ then θΦ =
∧

ΨΦ.
5. For second order variables U of arity � and ā a vector of length � of first order

variables or constants we translate V (ā) by treating V like a relation symbol
and put θΦ = ∃V (∀v̄(V (v̄) → (φ(v̄1) ∧ . . . φ(v̄�) ∧ (θ1)Φ))).

6. For LFP , if θ = n-LFPx̄, ȳ, ū, v̄θ1 then θΦ = nk-LFPx̄, ȳ, ū, v̄θ1Φ.
7. For TC: if θ = n-TCx̄, ȳ, ū, v̄θ1 then θΦ = nk-TCx̄, ȳ, ū, v̄θ1Φ.

196 E.V. Ravve

8. The function Φ# : L1 over S → L2 over R is defined by Φ#(θ) = θΦ.
9. For a set of S–formulae Σ we define

Φ#(Σ) = {θΦ : θ ∈ Σ or θ = ∀ȳ(Si ↔ Si)}

This is to avoid problems with Σ containing only quantifier free formulae,
as Φ#(Σ) need not be a set of tautologies even if Σ is. If Σ contains only
quantifier free formulae, we can reflect effect of relativization.

Observation 1. 1. Φ#(θ) ∈ FOL (SOL, TC,LFP) if θ ∈ FOL(SOL,
TC,LFP), even for vectorized Φ.

2. Φ#(θ) ∈ MSOL provided θ ∈ MSOL, but only for scalar Φ.
3. Φ#(θ) ∈ nk-TC(nk-LFP) provided θ ∈ n-TC(n-LFP) and Φ is a k–feasible.
4. Φ#(θ) ∈ TCkn(LFP kn, Lkn

∞ω) provided θ ∈ TCn(LFPn, Ln
∞ω) and Φ is a

k–feasible.

The following fundamental theorem is folklore and establishes the correctness
of the translation, cf. [15]. Figure 1 illustrates the fundamental theorem.

Theorem 1. Let Φ = 〈φ, φ1, . . . , φm〉 be a k–R–S–translation scheme, I(R)
be a R-instance and θ be a FOL–formula over S. Then I(R) |= Φ#(θ) iff
Φ∗(I(R)) |= θ.

Φ∗

R-instance −→ S-instance

Φ

R-formula ←− S-formula

Φ#

I(R) |= Φ#(θ) iff Φ∗(I(R)) |= (θ)

Fig. 1. Components of translation schemes the fundamental property

Now, we can define the composition of translation schemes:

Definition 4 (Composition of Translation Schemes). Let Ψ =
〈ψ,ψ1,. . . ,ψm1〉 be a k1–R–S–translation scheme, and let Φ = 〈φ, φ1, . . . , φm2〉
be a k2–S–T–translation scheme. Then we denote by Ψ ◦ Φ the (k1 · k2)–R–T–
translation scheme given by 〈Ψ#(φ),Ψ#(φ1), . . . ,Ψ#(φm1)〉. Ψ(Φ) is called the
composition of Φ with Ψ.

Maintenance of Queries Under Database Changes 197

One can easily check that the syntactically defined composition of translation
schemes has the following semantic property: Ψ ◦ Φ(I(R)) = Ψ(Φ(I(R))).

Now, we give a line of examples of translation schemes, relevant to the field
of database theory. Assume that in all the examples, we a given database scheme
R = (R1, R2, . . . , Rn).

Example 1 (Restriction of the Domain). Assume we want to restrict the domain
of R by allowing only elements, which satisfy some condition, defined by formula
φ(x) in the chosen language (FOL, relation calculus, etc.). The corresponding
translation scheme ΦRestriction is:

ΦRestriction = 〈φ,R1, R2, . . . , Rn〉.

Example 2 (Deletion of a Definable set of Tuples from a Relation). Assume we
want to delete from a relation, say, Ri of the R a set of tuples, which do not satisfy
some condition, defined by formula θ. The corresponding translation scheme
ΦDT is:

ΦDT = 〈x ≈ x,R1, . . . , Ri−1, Ri ∧ ¬θ,Ri+1, . . . , Rn〉.
Example 3 (Insertion of a Tuple into a Relation). Assume we want to insert
a tuple into a relation, say, Ri[A1, . . . , Aki

] of the R, where Ri contains ki

attributes. The corresponding translation scheme ΦInT is a parametrized transla-
tion scheme with ki parameters a1, . . . , aki

, which can be expressed, for example,
in FOL in the following way:

ΦInT = 〈x ≈ x,R1, R2, . . . , Ri−1, (Ri

∨
(

∧

1≤j≤ki

xj ≈ aj)), Ri+1, . . . , Rn〉.

Example 4 (Vertical Decomposition (Projections)). The vertical decomposition,
given by a translation scheme in FOL notation, is:

ΦV D = 〈x ≈ x, φ1, . . . , φn〉,

where each φi is of the form φi(x̄i) = ∃ȳiRi(x̄i, ȳi). Ri is a relation symbol from
R and x̄i is a vector of free variables. In relational algebra notation, this amounts
to φi(x̄i) = πx̄i

Ri.

Example 5 (Vertical Composition (Join)). The vertical composition, given by a
translation scheme in FOL notation, is:

ΦV C = 〈x ≈ x, φ1, . . . , φn〉,

where each ψi is of the form φi(x̄i) =
∧k

l=1 Ril
(x̄il

), Ril
is a relation symbol

from R and x̄i is a vector of free variables. Furthermore ∪j x̄ij
= x̄i and for all

x̄ij1
there is x̄ij2

such that x̄ij1
∩ x̄ij2

�= ∅. In relational algebra notation, this
amounts to φi(x̄i) =��k

l=1 Ril
. If there are no common free variables, this just

defines the Cartesian product.

198 E.V. Ravve

Example 6 (Horizontal Decomposition (Exceptions)). Assume we want to
decompose a relation, say, Ri[A1, . . . , Aki

] into two parts R1
i [A1, . . . , Aki

] and
R2

i [A1, . . . , Aki
] such that all tuples of the first part satisfy some definable con-

dition (formula) θ and all tuples of the second part do not. Such a transformation
is called horizontal decomposition of Ri along θ and in FOL notation is:

ΦHD = 〈x ≈ x,R1, R2, . . . , Ri−1, Ri ∧ θ,Ri ∧ ¬θ,Ri+1, . . . , Rn〉.

Example 7 (Horizontal Composition (Union)). Assume we want to com-
pose a new relation, say, Rn+1[A1, . . . , Akn+1] from two given relations
Ri1 [A1, . . . , Akn+1] and Ri2 [A1, . . . , Akn+1]. Such a transformation is called hor-
izontal composition of Rn+1 and in FOL notation is:

ΦHC = 〈x ≈ x,R1, R2, . . . , Rn, Ri1 ∨ Ri2〉.

The translation ΦHC is called the horizontal composition (union) of Ri1 and Ri2 .

Example 8 (Definition of a View). Assume we are given a database scheme that
contains four relations: R = (R1, R2, R3, R4). Assume that we want to define a
view of a snapshot that is derived from the database by applying the following
query, given in the format of relational algebra: φV iew = (πAR1 ∪ R2) �� (R3 −
σξR4). In this case, the corresponding translation scheme is:

ΦV iew = 〈x = x, φV iew〉.

4 Handling Queries Under Restructuring of Databases

In terms of translation schemes, the problem of handling queries under restruc-
turing of databases may be paraphrased in the following way, see Fig. 2:

Given: Two different generations of the same database, say, Rg and Rg+1.
Additionally, we have two maps: Φg and Ψg, where Φg produces Rg+1 from Rg

and Ψg is the corresponding reconstruction map. Finally, there is an application
(translation scheme) Φapp

g on the gth generation.

Find: An application (translation scheme) Φapp
g+1 on the (g + 1)th generation,

such that: Φapp∗
g+1 (Φ∗

g(R
g)) = Φapp∗

g (Rg).

Example 9. Assume that we are given database scheme Rg = (Rg) and two
restructurings, defined by the following pair of translation schemes:

1. Rg+1 = (Rg+1
1 , Rg+1

2), Ψg = (ψg) and ψg = (Rg+2
1 �� Rg+2

2).
2. Rg+2 = (Rg+2

1 , Rg+2
2 , Rg+2

3 , Rg+2
4), Ψg+1 = (ψg+1

1 , ψg+1
2) and ψg+1

1 =
(πARg+2

1 ∪ Rg+2
2), ψg+1

2 = (Rg+2
3 − σζR

g+2
4).

Assume that Qg is a simple modification query on Rg, which deletes tuples
from Rg, according to some condition θ, expressed in terms of Rg. The set of
deleted tuples is defined by �θR

g rather than given by enumeration. In such a

Maintenance of Queries Under Database Changes 199

Outputg+1 Outputg

Rg+1 Rg
Φg

Ψg

Φapp
g+1 Φapp

g

Fig. 2. Query on two different generations of database

case, we want to understand which tuples of which relations from Rg+2 must
be deleted, or moreover not only deleted, in order to produce the same output.
Using substitutions, we obtain over Rg+2:

�Ψ#
g+1(Ψ

#
g (θ))((πARg+2

1 ∪ Rg+2
2) �� (Rg+2

3 − σζR
g+2
4)).

From Example 9, we observe that the derived set of tuples, defined by
Ψ#

g+1(Ψ
#
g (θ)), seems to be already in terms of Rg+2. However, the correspond-

ing modification procedure can not be directly presented in terms of updates of
relations from Rg+2.

4.1 Handling of Queries over Disjoint Unions and Shufflings

The Disjoint Union (DJ) is the simplest example of juxtaposition, where none
of the components are linked to each other. Assume we have a set of database
schemes Rı’s and we want to define a database scheme that represents their
DJ . In this case, we add an, so called, index scheme RI , which specifies the
parameters of the composition of the database schemes. The index scheme is a
database scheme, whose instances are used in combining disjoint databases into
a single database.

Definition 5 (Disjoint Union). Let RI be a database scheme chosen as an
index scheme RI = (RI

1, . . . , R
I
jI) with domain I and Rı = (Rı

1, . . . , R
ı
jı) be

a database scheme with domain Dı. In the general case, the resulting database
scheme R=

⊔
ı∈IRı with the domain I ∪ ⋃̇

ı∈IDı will be

R = (P (ı, x), Index(x), RI
j (1 ≤ j ≤ jI), Rı

ji(ı ∈ I, 1 ≤ ji ≤ jı)) for all ı ∈ I,

– the instance of P (ı, x) in R contains a tuple (ı, x) iff x came from Rı;
– the instance of Index(x) in R contains x iff x came from I;
– RI

j (1 ≤ j ≤ jI) are from RI and
– Rı

ji(ı ∈ I, 1 ≤ ji ≤ jı) are from Rı

200 E.V. Ravve

Now, we give the classical theorem for the DJ , cf. [19,22].

Theorem 2 (Feferman-Vaught-Gurevich). Let RI be an index scheme with
domain of size k and let R=

⊔
ı∈IRı. For any FOL formula ϕ over R there are:

1. formulae of FOL ψ1,1, . . . , ψ1,j1 , . . . , ψk,1, . . . , ψk,jk

2. a formula of MSOL ψI

3. a boolean function Fϕ(b1,1, . . . , b1,j1 , . . . , bk,1, . . . , bk,jk
, bI)

with the formulae in 1-2 having the following property:

I(Rı) |= ψı,j iff bı,j = 1 , and I(RI) |= ψI iff bI = 1

and, for the boolean function of 3, we have

I(R) |= ϕ iff Fϕ(b1,1, . . . , b1,j1 , . . . , bk,1, . . . , bk,jk
, bI) = 1.

Note that we require that Fϕ and the ψı,j’s depend only on ϕ, k and
R1, . . . ,Rk but not on the instances involved.

For the case of the DJ , we assume that domains of databases in each site are
disjoint. However, as a rule, the values of certain attributes may appear at several
sites. We can assume that the domain of the index scheme is fixed and known,
however we can not (without additional assumption) fix finite number of one
place predicates. This puts the main limitation on the use of Theorem 2. More-
over, even if φ= exists for some fixed database instance, it must be independent
upon the current content of database and must be formulated ahead syntacti-
cally. In addition, it must be relatively small, as otherwise it causes explosion in
size of other formulae. Now, we apply logical machinery.

Definition 6 (Partitioned Index Structure). Let I be an index structure
over τind. I is called finitely partitioned into � parts if there are unary predicates
Iα, α < �, in the vocabulary τind of I such that their interpretation forms a
partition of the universe of I.

In addition to the DJ , one may produce a new structure by shuffling.

Definition 7 (Shuffle over Partitioned Index Structure). Let Ai, i ∈ I be
a family of structures such that for each i ∈ Iα: Ai

∼= Bα. In this case, we say
that

⊎I
α<β Aα is the shuffle of Bα along the partitioned index structure I.

We generalize Theorem 2 by introducing abstract preservation properties in
the following way:

Definition 8 (Preservation Properties with Fixed Index Set). For two
logics L1 and L2 we define Preservation Property for Disjoint Union

Input of operation: Indexed set of structures;
Preservation Property: if for each i ∈ I (index set) Ai and Bi satisfy the

same sentences of L1 then the disjoint unions
⊔

i∈I Ai and
⊔

i∈I Bi satisfy
the same sentences of L2.

Notation: DJ-PP (L1,L2)

Maintenance of Queries Under Database Changes 201

Definition 9 (Preservation Properties with Variable Index Struc-
tures). For two logics L1 and L2 we define Preservation Properties for Shuffle

Input of operation: A family of structures Bα : α < β and a (finitely) parti-
tioned index structure I with Iα a partition.

Preservation Property: Assume that for each α < β the pair of structures
Aα,Bα satisfy the same sentences of L1, and I, I satisfy the same MSOL-
sentences. Then the schuffles

⊎I
α<β Aα and

⊎I
α<β Bα satisfy the same sentences

of L2.

Notation: Shu-PP (L1,L2) (FShu-PP (L1,L2))

Now, we list which Preservation Properties hold for which logics.

Theorem 3. Let I be an index structure and L be any of FOL, FOLm,k, Lω
ω1,ω,

Lk
ω1,ω, MSOLm, MTCm, MLFPm, or FOL[Q]m,k (Lω1,ω[Q]k) with unary gen-

eralized quantifiers. Then DJ-PP (L,L) and FShu-PP (L,L) hold. Note that
this includes DJ-PP (FOLm,k, FOLm,k) and FShu-PP (FOLm,k, FOLm,k)
with the same bounds for both arguments, and similarly for the other logics.

Proof.

FOL and FOLm,k: The proofs for FOL and MSOL are classical, see in par-
ticular [6]. Extension for FOLm,k can be done directly from the proof for
FOL.

MLFP and MLFPm: The proof for MLFP was given in [4].
Lω1,ω(Q)k: The proof was given in [8].
MTCm: The proof was given in [30].

Now, we recall that analyzing Example 9, we decided that we are interested
to derive from θ of �Ψ#

g+1(Ψ
#
g (θ))((πARg+2

1 ∪ Rg+2
2) �� (Rg+2

3 − σζR
g+2
4)) some

formulae: θR
1 , . . . , θR

ı over R and θS
1 , . . . , θS

j over S, which we will apply to R and
S respectively. Now, we formulate the requirement more formally:

Definition 10 (Reduction Sequence). Let I be a finitely partitioned τind-
index structure and L be logic.

Let A =
⊎I

α<β Bα be the τ–structure which is the finite shuffle of the τα-
structures Bα over I or another combination of the components. A L1-reduction
sequence for shuffling for φ ∈ L2(τshuffle) is given by

1. a boolean function Fφ(b1,1, . . . , b1,j1 , . . . , bβ,1, . . . , bβ,jβ
, bI,1, . . . , bI,jI

)
2. set Υ of L1–formulae Υ = {ψ1,1, . . . , ψ1,j1 , . . . , ψβ,1, . . . , ψβ,jβ

}
3. MSOL–formulae ψI,1, . . . , ψI,jI

and has the property that for every A, I and Bα as above with Bα |= ψα,j iff
bα,j = 1 and BI |= ψI,j iff bI,j = 1 we have

A |= φ iff Fφ(b1,1, . . . , b1,j1 , . . . , bβ,1, . . . , bβ,jβ
, bI,1, . . . , bI,jI

) = 1.

Note that we require that Fφ and the ψα,j’s depend only on φ,β and τ1, . . . , τβ

but not on the structures involved.

202 E.V. Ravve

The following theorem partially answers the question of Example 9.

Theorem 4. Let L be any of FOL, FOLm,k, Lω
ω1,ω, Lk

ω1,ω MSOLm, MTCm,
MLFPm, or FOL[Q]m,k with unary generalized quantifiers. There is an algo-
rithm, which for given L, τind, τα, α < β, τshuffle and φ ∈ L(τshuffle) produces
a reduction sequence for φ for (τind, τshuffle)-shuffling. However, Fφ and the
ψα,j are tower exponential in the quantifier rank of φ. Furthermore, F depends
on the MSOL–theory of the index structure restricted to the same quantifier
rank as φ.

Proof. By analyzing the proof of Theorem 3.

Note that Theorem 4 is not true for all logics as shown in [30].

4.2 Handling Queries Over Φ–Sum

Combining Disjoint Unions and Shuffles with translation schemes, we can reach
a very large set of useful structures. In this section, we present our new results in
the field. We expend the classical Theorem 2 and more recent Theorems 3 and
4 to the cases, when translation schemes are involved in process of construction
of the desired structure from the Disjoint Unions and Shuffles.

Definition 11 (Φ–Sum for extensions of FOL). Let I be a finitely parti-
tioned index structure and L be any of FOL, MSOL, MTC, MLFP , or FOL
with unary generalized quantifiers. Let A =

⊔
i∈IAi or A =

⊎I
α<β Bα be a τ–

structure, where each Ai is isomorphic to some B1, . . . ,Bβ over the vocabularies
τ1, . . . , τβ, in accordance with the partition.

For a Φ be a scalar (non–vectorized) τ–σ L–translation scheme, the Φ–sum
of B1, . . . ,Bβ over I is the structure Φ∗(A), or rather any structure isomorphic
to it.

Theorem 5. Let RI be a finitely partitioned index database scheme, L be any
of FOL, MSOL, MTC, MLFP , MSOL or FOL with unary generalized quan-
tifiers. Let R be the Φ–sum of RB1 ,. . . ,RBβ

over I, as above. For every ϕ ∈ L(τ)
there are

1. a boolean function FΦ,ϕ(b1,1, . . . , b1,j1 , . . . , bβ,1, . . . , bβ,jβ
, bI,1, . . . , bI,jI

)
2. L–formulae ψ1,1,. . . ,ψ1,j1 , . . . ,ψβ,1,. . . ,ψβ,jβ

3. and MSOL–formulae ψI,1,. . . ,ψI,jI

such that for every R, RI and RBı
as above with RBı

|= ψı,j iff bı,j = 1 and
RI |= ψI,j iff bI,j = 1 we have

R |= ϕ iff FΦ,ϕ(b1,1, . . . , b1,j1 , . . . , bβ,1, . . . , bβ,jβ
, bI,1, . . . , bI,jI

) = 1.

Moreover, FΦ,ϕ and the ψı,j are computable from Φ# and ϕ , but are tower
exponential in the quantifier depth of ϕ1.
1 Note that in most real applications, Fφ and the ψα,j are single exponential in the

quantifier rank of φ.

Maintenance of Queries Under Database Changes 203

Proof. By analyzing the proof of Theorem 4 and using Theorem 1.

Finally, we receive our main result, concerning handling of queries under restruc-
turing of databases:

Theorem 6. Let I be an index, L be FOL (or rather any language for which
Theorem 5 holds), and let Rg+1 be the generalized sum of Rg+1′

1 ,. . . ,Rg+1′
� over

I, as usual. Let Φg, Ψg and Φup
g of the logic L be as above. Any query Φapp

g over
Rg gives the corresponding query Φapp

g+1 over Rg+1, where Φapp
g+1 = Φapp

g (Ψg)
and each ϕapp

g+1,i in Φapp
g+1 may be computed with the help of the corresponding

boolean function F{Φg,Ψg,Φapp
g },ϕapp

g+1,i
(b1,1,. . .,b1,j1 ,. . .,b�,1, . . .,b�,j�

,bI,1,. . .,bI,jI
)

as in Theorem 5.

5 Handling Queries Under Database Updates

Assume that we have a database scheme R and a query (translation scheme)
ΦV iew, which defines the view. Assume that R was updated by translation
scheme Φup. In terms of translation schemes, we obtain the following formulation:

Given: Translation scheme ΦV , and the database update Φup
DB .

Find: A set of view updates Φincr
V that uses the old content of the view and

delete from and inserts in the view some set of tuples defined on the source
database.

This leads to the situation on Fig. 3, where Φincr
V uses both: database and

the old view. For the case of queries defined in relational algebra and for updates
given as deletion and insertion of a (undefined) set of tuples, the question was
investigated in [28]. For the case of Datalog, the answer for the same kind of
updates is given in [12]. However, the techniques were defined for the specific
languages. Moreover, the update operations, used in both cases are data changes.
It means that sets of tuples, which we insert in relations or delete from relations
are not defined, but given by enumeration.

DBold DBnew

V old V new

Φup
DB

Φ V

Φincr
V

Fig. 3. Incremental view maintenance under update.

Recently, in [21], dynamic problem was introduced in the following way. For
a sequence w = σ1, . . . , σm ∈ �∗

can(τ) of operations (update translation schemes

204 E.V. Ravve

like Φup
DB in our formulation) and a structure U , w(U) is the result of subsequently

applying the operations to U (DBnew), and U (DBold) if w = ε.

Definition 12 ([21]). Let S be a Boolean query on τ -structures. The dynamic
problem D(S) associated with S is the set of pairs D = (U , w) where U ∈ Fin(τ)
and w ∈ �can(τ) is an update sequence with w(U) ∈ S. The query S is called
the underlying static problem of D(S).

The dynamic problems are handled by incremental evaluation systems. These
systems allow auxiliary relations over the universe of the input structure U .
Incremental Evaluation System (IES) for a dynamic problem D(S) consists of
a set of logical interpretations (translation schemes) and an additional logical
sentence ϕ. Given an initial structure D, the IES defines auxiliary relations over
the universe of U by an interpretation called the initial interpretation.

In practice, we are interested in update operations, which we call relational
updates, that means definable updates. Indeed, as a rule, a regular query that
deletes (inserts) data from (to) a database looks like: delete from relation R all
tuples, such that ...

Let us use one example from [28] for our purposes and paraphrase it the
following way:

Example 10. Given database scheme R = (R1, R2, R3, R4) and ΦV = (φ), where

φ = (πAR1 ∪ R2) �� (R3 − σζR4).

Suppose a database update causes a set of tuples �θR4 to be deleted, where θ
is a formula that defines the set of tuples to be deleted.

The update changes only one relation and its translation scheme
is: Φup

DB = (R1(x1, . . . , xn1), R2(x1, . . . , xn2), R3(x1, . . . , xn3), R4(x1, . . . , xn4)∧
¬θ(x1, . . . , xn4)), where θ, in general, contains parameters.

In terms of FOL, the query that defines the view is:
φ(x1, . . . , xn3) = ((∃x2 . . . ∃xn1R1(x1, . . . , xn1) ∨ R2(x1))∧

(R3(x1, . . . , xn3) ∧ ¬(R4(x1, . . . , xn3) ∧ ζ(x1, . . . , xn3)))).
After the update, made by Φup

DB , the query is:
Φup#

DB (φ(x1, . . . , xn3)) = ((∃x2 . . . ∃xn1R1(x1, . . . , xn1) ∨ R2(x1))∧
(R3(x1, . . . , xn3) ∧ ¬((R4(x1, . . . , xn3)
∧¬θ(x1, . . . , xn3)) ∧ ζ(x1, . . . , xn3)))).

First, we show:

((R4(x1, . . . , xn3) ∧ ¬θ) ∧ ζ) =
(R4(x1, . . . , xn3) ∧ ζ ∧ ¬ζ) ∨ (R4(x1, . . . , xn3) ∧ ζ ∧ ¬θ) =
(R4(x1, . . . , xn3) ∧ ζ) ∧ (¬θ ∨ ¬ζ) =
(R4(x1, . . . , xn3)∧ζ ∧ ¬R4(x1, . . . , xn3)) ∨ ((R4(x1, . . . , xn3)∧ζ) ∧ (¬θ ∨ ¬ζ)) =
(R4(x1, . . . , xn3) ∧ ζ) ∧ (¬R4(x1, . . . , xn3) ∨ ¬ζ ∨ ¬θ) =
(R4(x1, . . . , xn3) ∧ ζ) ∧ ¬(R4(x1, . . . , xn3) ∧ ζ ∧ θ).

Now, we use the equivalence, obtained above, for Φup#
DB (φ(x1, . . . , xn3)):

Maintenance of Queries Under Database Changes 205

Φup#
DB (φ) = ((∃x2 . . . ∃xn1R1(x1, . . . , xn1) ∨ R2(x1))∧

(R3(x1, . . . , xn3) ∧ ¬((R4(x1, . . . , xn3) ∧ ¬θ) ∧ ζ))) =
((∃x2 . . . ∃xn1R1(x1, . . . , xn1) ∨ R2(x1))∧
(R3(x1, . . . , xn3) ∧ ¬((R4(x1, . . . , xn3) ∧ ζ)∧
¬(R4(x1, . . . , xn3) ∧ ζ ∧ θ)) =
((∃x2 . . . ∃xn1R1(x1, . . . , xn1) ∨ R2(x1))∧
((R3(x1, . . . , xn3) ∧ ¬(R4(x1, . . . , xn3) ∧ ζ))∨
(R3(x1, . . . , xn3) ∧ (R4(x1, . . . , xn3) ∧ ζ ∧ θ))) =

((∃x2 . . . ∃xn1R1(x1, . . . , xn1) ∨ R2(x1)) ∧ (R3 ∧ ¬(R4 ∧ ζ)))∨
((∃x2 . . . ∃xn1R1(x1, . . . , xn1) ∨ R2(x1)) ∧ (R3 ∧ (R4 ∧ ζ ∧ θ))) =
φ(x1, . . . , xn3)∨
((∃x2 . . . ∃xn1R1(x1, . . . , xn1) ∨ R2(x1)) ∧ (R3(x1, . . . , xn3)∧
(R4(x1, . . . , xn3) ∧ ζ(x1, . . . , xn3) ∧ θ(x1, . . . , xn3)))).

The second part of Φup#
DB (φ(x1, . . . , xn3)) is exactly

((πAR1 ∪ R2) �� (R3 ∩ σζ �θ R4)),

if written in relational algebra notation.

Example 10 shows that the only tools, which we really used in order to
obtain the new propagation rules, were logical equivalences. Note additionally
that, in general, any update translation scheme Φup = (φ1, . . . , φi, . . . , φn), which
deletes (inserts) tuples, according to condition θ, from (to) relation Ri of data-
base scheme R = (R1, . . . , Ri, . . . , Rn) is in the form: φj = Rj if i �= j and
φi = (Ri ∧ ¬θ) (or φi = (Ri ∨ θ) for insertion of tuples, described by θ), without
relativization but parametrized.

Now, the following proposition generalizes the example and gives the follow-
ing answer:

Proposition 1. For any formula ξ of FOL, MSOL or SOL and for any update
translation scheme Φup of the same logic, it holds: Φup#(ξ) = ξ or there is a set
of formulae ξ′

i, 1 ≤ i ≤ n of the same logic, such that Φup#(ξ) = (. . . ((ξ ◦1 ξ′
1)◦2

ξ′
2) . . . ◦n ξ′

n), where ◦i ∈ {∧,∨}.
Proof. By induction on ξ.

To show the same fact for LFP , IFP and TC, we use:

Theorem 7. Given ψ1(x̄,X, ȳ) and ψ2(x̄,X, z̄), it holds:

LFP x̄, X, ū(ψ1(x̄, X, ȳ) ∨ ψ2(x̄, X, z̄)) = LFP x̄, X, ū(LFP x̄, X, ū(ψ1(x̄, X, ȳ)) ∨ ψ2(x̄, X, z̄));

IFP x̄, X, ū(ψ1(x̄, X, ȳ) ∨ ψ2(x̄, X, z̄)) = IFP x̄, X, ū(IFP x̄, X, ū(ψ1(x̄, X, ȳ)) ∨ ψ2(x̄, X, z̄));

TCx̄, X, ū(ψ1(x̄, X, ȳ) ∨ ψ2(x̄, X, z̄)) = TCx̄, X, ū(TCx̄, X, ū(ψ1(x̄, X, ȳ)) ∨ ψ2(x̄, X, z̄)).

The same holds for ∧ as well.

Proof. The proof follows directly from the semantics of LFP , IFP and TC.

Now, it remains to combine Proposition 1 and Theorem 7 with the following
results, proven in [14]:

206 E.V. Ravve

Theorem 8. If ϕ is an LFP -formula and ϕ′ is an IFP -formula then there
is a first-order formula ψ, such that ϕ is equivalent to ∃(∀)ū′LFPx̄,X, ūψ
and there is an existential first-order formula ψ′, such that ϕ′ is equivalent to
∃(∀)ū′IFP x̄,X, ūψ′.

Theorem 9. Suppose that we have two constant c and d and in our model c �= d.
Let ϕ be an existential pos-TC-formula. Then ϕ is equivalent to a formula of
the form: TCx̄, x̄′, c, dψ(x̄, x̄′), where ψ is a first-order quantifier-free formula.

Finally, we receive our main result, concerning handling of queries under
database updates:

Theorem 10. Every query expressible in FOL, MSOL, SOL, LFP , IFP and
existential pos-TC allows incremental view re-computation.

Proof. Use Proposition 1 with Theorems 7, 8 and 9.

As I-DATALOG ≡ IFP and on ordered databases LFP (TC) covers poly-
nomial time (logarithmic space) computations, we, in particular, have:

Corollary 1. 1. Every I-DATALOG program allows incremental
re-computation.

2. On ordered databases every program, computable in polynomial time or loga-
rithmic space, allows incremental re-computation.

6 Discussion and Conclusions

The paper introduces a unified logic based approach to maintenance of queries
under database changes and shows how known results in translations schemes
transfer can be applied to particular problems in database maintenance. This
approach unifies different aspects, related to both schema and data evolution
in databases, into a single framework. The basic underlying notion of a logical
translation scheme and its induced maps, is based on the classical syntactic
notion of interpretability from logic, made explicit by M. Rabin in [29].

Analyzing computations on different generations of databases, using our gen-
eral technique, we encountered several problems with some kinds of rules, for
example, deletion over join. Systematically using the technique of translation
scheme, we introduced the notion of Φ-sums and showed how queries, express-
ible in different extensions of FOL may be handled over different generations of
the Φ-sums.

Moreover, using the technique of translation scheme, we introduced the
notions of an incremental view re-computations. We proved that every query
expressible in FOL, MSOL, SOL, LFP , IFP and existential pos-TC allows
incremental view re-computations. The last results lead to the corollary
that every I-DATALOG program allows incremental re-computation. More-
over, it follows from our main results that on ordered databases every pro-
gram, computable in polynomial time or logarithmic space, allows incremental
re-computation.

Maintenance of Queries Under Database Changes 207

References

1. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley,
Boston (1995)

2. Benedikt, M., Koch, C.: From XQuery to relational logics. ACM Trans. Database
Syst. 34(4), 25:1–25:48 (2009)

3. Buneman, P., Khanna, S., Tan, W.-C.: On propagation of deletions and annota-
tions through views. In: Proceedings of the 21st ACM SIGMOD-SIGACT-SIGART
Symposium on Principles of Database Systems, Madison, WI, 3–6 June 2002, pp.
150–158 (2002)

4. Bosse, U.: Ehrenfeucht-Fräıssé Games for Fixed Point Logic. Ph.D. thesis. Depart-
ment of Mathematics, University of Freiburg, Germany (1995)

5. Bancilhon, F., Spyratos, N.: Update semantics of relational views. ACM Trans.
Database Syst. 6(4), 557–575 (1981)

6. Chang, C.C., Keisler, H.J.: Model Theory. Studies in Logic, 3rd edn. vol. 73. North-
Holland, Amsterdam (1990)

7. Codd, E.F.: A relational model of large shared data banks. Commun. ACM 13(2),
377–387 (1970)

8. Dawar, A., Hellat, L.: The expressive power of finitely many genaralized quantifiers.
Technical report CSR 24–93. Computer Science Department, University of Wales,
University College of Swansea, UK (1993)

9. Dong, G., Libkin, L., Wong, L.: Incremental recomputation in local languages. Inf.
Comput. 181(2), 88–98 (2003)

10. Dong, G., Su, J.: Deterministic FOIES are strictly weaker. Ann. Math. Artif. Intell.
19(1–2), 127–146 (1997)

11. Dong, G., Su, J.: Arity bounds in first-order incremental evaluation and definition
of polynomial time database queries. J. Comput. Syst. Sci. 57(3), 289–308 (1998)

12. Dong, G., Topor, R.: Incremental evaluation of Datalog queries. In: Hull, R.,
Biskup, J. (eds.) ICDT 1992. LNCS, vol. 646, pp. 282–296. Springer, Heidelberg
(1992)

13. Dong, G., Zhang, L.: Separating auxiliary arity hierarchy of first-order incremental
evaluation systems using (3k + 1)-ary input relations. Int. J. Found. Comput. Sci.
11(4), 573–578 (2000)

14. Ebbinghaus, H.D., Flum, J.: Finite Model Theory. Perspectives in Mathematical
Logic. Springer, Berlin (1995)

15. Ebbinghaus, H.D., Flum, J., Thomas, W.: Mathematical Logic. Undergraduate
Texts in Mathematics, 2nd edn. Springer, New York (1994)

16. Franconi, E., Guagliardo, P.: On the translatability of view updates. In: Freire,
J., Suciu, D. (eds.) AMW. CEUR Workshop Proceedings, vol. 866, pp. 154–167
(2012)

17. Franconi, E., Guagliardo, P.: The view update problem revisited. CoRR
abs/1211.3016 (2012)

18. Franconi, E., Guagliardo, P.: Effectively updatable conjunctive views. In: Proceed-
ings of the 7th Alberto Mendelzon International Workshop on Foundations of Data
Management, Puebla/Cholula, Mexico, 21–23 May 2013

19. Feferman, S., Vaught, R.: The first order properties of products of algebraic sys-
tems. Fundam. Math. 47, 57–103 (1959)

20. Guagliardo, P., Pichler, R., Sallinger, E.: Enhancing the updatability of projective
views. In: Proceedings of the 7th Alberto Mendelzon International Workshop on
Foundations of Data Management, Puebla/Cholula, Mexico, 21–23 May 2013

208 E.V. Ravve

21. Grädel, E., Siebertz, S.: Dynamic definability. In: Proceedings 15th International
Conference on Database Theory ICDT, Berlin, Germany, 26–29 March 2012, pp.
236–248 (2012)

22. Gurevich, Y.: Modest theory of short chains, I. J. Symbolic Logic 44, 481–490
(1979)

23. Guagliardo, P., Wieczorek, P.: Query processing in data integration. In: Kolaitis,
P.G., Lenzerini, M., Schweikardt, N. (eds.) Data Exchange, Information, and
Streams. Dagstuhl Follow-Ups, vol. 5, pp. 129–160. Schloss Dagstuhl, Leibniz-
Zentrum für Informatik (2013)

24. Hegner, S.J.: The relative complexity of updates for a class of database views. In:
Seipel, D., Turull-Torres, J.M. (eds.) FoIKS 2004. LNCS, vol. 2942, pp. 155–175.
Springer, Heidelberg (2004)

25. Immerman, N.: Descriptive Complexity. Graduate Texts in Computer Science.
Springer, New York (1999)

26. Koch, C.: Incremental query evaluation in a ring of databases. In: Proceedings of
the 29th ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database
Systems, Indianapolis, IN, 6–11 June 2010, pp. 87–98 (2010)

27. Makowsky, J.A., Ravve, E.V.: BCNF via attribute splitting. In: Düsterhöft, A.,
Klettke, M., Schewe, K.-D. (eds.) Conceptual Modelling and Its Theoretical Foun-
dations. LNCS, vol. 7260, pp. 73–84. Springer, Heidelberg (2012)

28. Quan, X., Wiederhold, G.: Incremental recomputation of active relational expres-
sions. IEEE Trans. Knowl. Data Eng. 3(3), 337–341 (1991)

29. Rabin, M.O.: A simple method for undecidability proofs and some applications.
In: Bar Hillel, Y. (ed.) Logic, Methodology and Philosophy of Science II. Studies
in Logic, pp. 58–68. North Holland, (1965)

30. Ravve, E.V., Volkovich, Z., Weber, G.-W.: A uniform approach to incremental
reasoning on strongly distributed systems. In: Proceedings of GCAI2015 (2015, to
appear)

31. Weber, V., Schwentick, T.: Dynamic complexity theory revisited. In: Proceedings
22nd Annual Symposium on Theoretical Aspects of Computer Science, Stuttgart,
Germany, 24–26 February 2005, pp. 256–268 (2005)

	Maintenance of Queries Under Database Changes: A Unified Logic Based Approach
	1 Introduction
	2 Related Works
	3 Translation Schemes
	4 Handling Queries Under Restructuring of Databases
	4.1 Handling of Queries over Disjoint Unions and Shufflings
	4.2 Handling Queries Over --Sum

	5 Handling Queries Under Database Updates
	6 Discussion and Conclusions
	References

