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Mantas Šimkus, and Sebastian Skritek

Database and Artificial Intelligence Group, Faculty of Informatics,
TU Wien, Vienna, Austria

{ahmetaj,wfischl,kroell,pichler,simkus,skritek}@dbai.tuwien.ac.at

Abstract. Conjunctive queries are arguably the most widely used
querying mechanism in practice and the most intensively studied one
in database theory. Answering a conjunctive query (CQ) comes down to
matching all atoms of the CQ simultaneously into the database. As a con-
sequence, a CQ fails to provide any answer if the pattern described by the
query does not exactly match the data. CQs might thus be too restric-
tive as a querying mechanism for data on the web, which is considered
as inherently incomplete. The semantic web query language SPARQL
therefore contains the OPTIONAL operator as a crucial feature. It allows
the user to formulate queries which try to match parts of the query
over the data if available, but do not destroy answers of the remaining
query otherwise. In this article, we have a closer look at this optional
matching feature of SPARQL. More specifically, we will survey several
results which have recently been obtained for an interesting fragment of
SPARQL – the so-called well-designed SPARQL graph patterns.

1 Introduction

Conjunctive queries (or, equivalently, SELECT-FROM-WHERE queries in SQL)
are arguably the most widely used querying mechanism in practice and the most
intensively studied one in database theory. Answering a conjunctive query (CQ)
comes down to matching all atoms of the CQ simultaneously into the database.
As a consequence, a CQ fails to provide any answer if the pattern described by
the query does not exactly match the data. CQs might thus be too restrictive
as a querying mechanism for data on the web, which is considered as inherently
incomplete. The semantic web query language SPARQL therefore contains the
OPTIONAL operator (abbreviated as OPT henceforth) as a crucial feature. It
allows the user to formulate queries which try to match parts of the query
over the data if available, but do not destroy answers of the remaining query
otherwise. It thus corresponds to the left outer join in the relational algebra. The
following example from [24] presents a simple SPARQL query using this feature.

Example 1. Consider the following SPARQL query Q which is posed over a
database that stores information about movies1:
1 We use here the algebraic-style notation from [29] rather than the official SPARQL

syntax of [33]. In particular, we explicitly use an AND operator (rather than comma-
separated lists) to denote conjunctions.
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Q =
((

(?x, directed by, ?y)AND (?x, released, ”before 1980”)
)

OPT (?x, oscars won, ?z)
)
OPT (?y, first movie, ?z′).

This query retrieves all pairs (m, d) such that movie m is directed by d and
released before 1980. This is specified by the pattern (?x, directed by, ?y)
AND (?x, released, “before 1980”). Furthermore, whenever possible, this query
also retrieves (one or both of) the following pieces of data: the number n of
Academy Awards won by movie m and the first movie m′ directed by d. In other
words, in addition to (m, d) we also retrieve n and/or m′ if the information is
available in the database. This is specified by the triples (?x, oscars won, ?x)
and (?y, first movie, ?z′) following the respective OPT operators. �

Apart from AND and OPT used in Example 1, SPARQL also provides the oper-
ators UNION and FILTER. SPARQL 1.1 [18] introduces many further operators,
which we ignore for the time being. Projection is realized by wrapping a SPARQL
graph pattern into a SELECT statement where we may explicitly specify the vari-
ables of interest. For instance, in Example 1, we could wrap the query Q into a
statement of the form SELECT ?x, ?z WHERE {Q} to project out the information
on directors and their first movie.

As far as the expressive power of SPARQL is concerned, it was shown in [3,32]
that SPARQL is relational complete. Not surprisingly, the SPARQL query eval-
uation problem (i.e., given an RDF graph G, a SPARQL query Q, and a set μ
of variable bindings, check if μ is a solution) is PSPACE-complete (combined
complexity) [29,35]. The OPT operator was identified as one of the main sources
of complexity. Indeed, it was shown in [35] that the PSPACE-completeness of
SPARQL query evaluation holds even if we restrict SPARQL to the AND and
OPT operator. The reason for this high complexity is the unrestricted use of
variables inside and outside an OPT expression. Therefore, in [29], the class of
well-designed SPARQL graph patterns was introduced. The restriction imposed
there is that if a variable occurs on the right-hand side of an OPT expression and
anywhere else in the SPARQL graph pattern, then it must also occur on the left-
hand side of the OPT expression. It was shown that the complexity of the eval-
uation problem for the well-designed fragment drops to coNP-completeness [29].

In [29], many further interesting properties of well-designed SPARQL graph
patterns were shown. At this point, we mention only one, namely the efficient
transformation into so-called OPT normal form: a SPARQL graph pattern using
AND and OPT operators is in this normal form, if the OPT operator does not
occur in the scope of an AND operator. It was shown in [29] that this can always
be achieved efficiently by exploiting the equivalence (P1 AND (P2 OPT P3)) ≡
((P1 AND P2) OPT P3), which holds for well-designed SPARQL graph patterns.
Moreover, such graph patterns allow for a natural tree representation, formalized
by so-called well-designed pattern trees (wdPTs, for short) in [25].

Intuitively, the nodes in a wdPT correspond to CQs while the tree structure
represents the optional extensions. For instance, the wdPT corresponding to the
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{(?x, directed by, ?y), (?x, released, “before 1980”)}

{(?x, oscars won, ?z)} {(?y, first movie, ?z′)}

Fig. 1. The wdPT T representing the query Q from Example 1.

query in Example 1 is displayed in Fig. 1. As with SPARQL graph patterns, we
can add projection to wdPTs by indicating the distinguished variables to which
the result shall be projected. Well-designed pattern trees then yield a natural
extension of conjunctive queries. Indeed, a CQ corresponds to a wdPT consisting
of the root node only. It turns out that the extension of CQs to wdPTs can have
a significant effect on various computational tasks. For instance, while query
evaluation and query containment are both NP-complete for CQs, these tasks
become ΣP

2 -complete [25] or even undecidable [30], respectively, for wdPTs with
projection. Actually, it is even questionable if the definition of containment via
set inclusion is appropriate in case of optional matching. Also the semantics
definition of answering CQs in the presence of ontologies requires rethinking
for wdPTs [2].

In this article, we survey these and several further results which have recently
been obtained for well-designed SPARQL graph patterns or, equivalently, for
well-designed pattern trees. We shall thus mainly concentrate on algorithms and
complexity results obtained for the most fundamental computational problems
in this area, namely query evaluation (see Sect. 3) and basic static query analysis
tasks such as testing containment and equivalence of two queries (see Sect. 4).
Finally, we shall also recall results on the evaluation of wdPTs in the presence
of ontologies from the DL-Lite family [10] and briefly discuss some unintuitive
behavior of SPARQL entailment regimes according to the the recently released
W3C recommendation [14] (see Sect. 5).

2 RDF, SPARQL, and Pattern Trees

RDF. The data model designed for the Semantic Web is the Resource Descrip-
tion Framework (RDF) [13]. We focus here on ground RDF graphs and assume
them to be composed of URIs only. Formally, let U be an infinite set of URIs.
An RDF triple (s, p, o) is a tuple in U×U×U, whose components are referred
to as subject, predicate, and object, respectively. An RDF graph is a finite set
of RDF triples. Note that a set of triples (s, p, o) can be seen as an edge-labeled
graph, where s and o denote vertices and p denotes an edge label. The active
domain dom(G) ⊆ U of an RDF graph G is the set of URIs actually appearing
in G.

SPARQL Syntax. SPARQL [33], which was later extended to SPARQL 1.1
[18], is the standard query language for RDF data. Following the presentation
in [29], we next recall the formalization of its graph pattern matching facility,
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which forms the core of the language. Let V be an infinite set of variables with
U ∩ V = ∅. We write variables in V with a leading question mark, as in ?x.
A SPARQL triple pattern is a tuple in (U ∪ V) × (U ∪ V) × (U ∪ V). More
complex patterns studied in this article are constructed using the operators AND,
OPT, and UNION. We omit here further operators specified by [33] and [18],
including the FILTER operator. Formally, SPARQL graph patterns (or simply
graph patterns, for short) are thus recursively defined as follows. (1) a triple
pattern is a graph pattern, and (2) if P1 and P2 are graph patterns, then (P1◦P2)
is a graph pattern for ◦ ∈ {AND,OPT,UNION}. Let P be a graph pattern or
a set of graph patterns; then we write vars(P ) to denote the set of variables
occurring in P .

SPARQL Semantics. For defining the semantics of SPARQL graph patterns,
we again follow closely the definitions proposed in [29]. A mapping is a function
μ : A → U for some A ⊂ V. For a triple pattern t with vars(t) ⊆ dom(μ), we
write μ(t) to denote the triple obtained by replacing the variables in t according
to μ. Two mappings μ1 and μ2 are called compatible (written μ1 ∼ μ2) if
μ1(?x) = μ2(?x) for all ?x ∈ dom(μ1) ∩ dom(μ2). A mapping μ1 is subsumed by
μ2 (written μ1 
 μ2) if μ1 ∼ μ2 and dom(μ1) ⊆ dom(μ2). In this case, we also
say that μ2 is an extension of μ1. Subsumption is naturally extended to sets of
mappings, e.g., μ 
 M for a set M of mappings, if μ 
 μ′ for some μ′ ∈ M .

We formalize the evaluation of graph patterns over an RDF graph G as a
function �·�G that, given a graph pattern P , returns a set of mappings (i.e., the
“solutions” or “answers” of P over G). It is defined recursively as follows [29]:

1. �t�G = {μ | dom(μ) = vars(t) and μ(t) ∈ G} for a triple pattern t.
2. �P1 AND P2�G = {μ1 ∪ μ2 | μ1 ∈ �P1�G, μ2 ∈ �P2�G, and μ1 ∼ μ2}.
3. �P1 OPT P2�G = �P1 AND P2�G ∪ {μ1 ∈ �P1�G | ∀μ2 ∈ �P2�G : μ1 �∼ μ2}.
4. �P1 UNION P2�G = �P1�G ∪ �P2�G.

Note that, as in [29], we assume set semantics, while the W3C Recommendation
specifies bag-semantics [33].

Well-Designed SPARQL. In [29], the authors identify several classes of graph
patterns. One of these classes, which is at the heart of this survey, is formed by
the so-called well-designed SPARQL graph patterns. A graph pattern P built
only from AND and OPT is well-designed if there does not exist a subpattern
P ′ = (P1 OPT P2) of P and a variable ?x, such that ?x occurs in P2 and in
P outside P ′, but not in P1. A graph pattern P = P1 UNION . . .UNION Pn is
well-designed if each subpattern Pi is UNION-free and well-designed. Thus, as
in [29], when including the UNION operator, we only allow it to appear outside
the scope of other operators.

Well-Designed Pattern Trees. We have already mentioned above the
OPTnormal form [29], which forbids occurrences of the OPT operator in the
scope of an AND operator. Well-designed graph patterns in OPT normal form
allow for a natural tree representation, formalized by so-called well-designed
pattern trees (wdPTs) in [25]. A wdPT T is a pair (T,P) where T = (V,E, r)
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is a rooted, unordered, tree and P = (Pn)n∈V is a labeling of the nodes in
V , s.t. Pn is a non-empty set of triple patterns (or, equivalently, a conjunction
of triple patterns) for every n ∈ V . The well-designedness condition requires
that, for every variable ?x occurring in T , the nodes {n ∈ V |?x occurs in Pn}
must induce a connected subgraph of T . For instance, the graph pattern Q in
Example 1 is in OPT normal form. Its corresponding pattern tree T is shown in
Fig. 1.

Graph patterns in OPT normal form consist of conjunctive parts (represented
by the nodes of the pattern tree) that are located in a structure of nested OPT
operators (modeled by the tree-structure). Note that the order of child nodes in
such a tree does not matter. This is due to equivalence

(
(P1 OPT P2) OPT P3

)
≡

(
(P1 OPT P3) OPT P2

)
, which holds for well-designed graph patterns [29].

This is why wdPTs are defined as unordered trees.

Components of a Pattern Tree. Let T = ((V,E, r),P) be a wdPT. We call a
wdPT T ′ = ((V ′, E′, r′), (Pn)n∈V ′) a subtree of T if (V ′, E′, r′) is a subtree of T .
T ′ is a subtree of T containing the root if r′ = r. Throughout this article, unless
explicitly specified otherwise, we always consider subtrees containing the root,
and will thus refer to them simply as “subtrees”, omitting the phrase “containing
the root”. An extension T̂ ′ of a subtree T ′ of T is a subtree T̂ ′ of T , s.t. T ′ is in
turn a subtree of T̂ ′. A subtree or extension is proper if some node of the bigger
tree is missing in the smaller tree.

Given a wdPT T = ((V,E, r),P), we write V (T ) to denote the set V of
vertices. We sometimes refer to the set Pn of triple patterns at vertex n ∈ V as
pat(n) and we denote by pat(T ) the set

⋃
n∈V (T ) Pn of triple patterns occurring

in T . We write vars(T ) (resp. vars(n)) as an abbreviation for vars(pat(T )) (resp.
vars(pat(n)). These notions extend naturally to sets of nodes. For nodes n, n̂ ∈
V (T ), s.t. n̂ is the parent of n, let newvars(n) = vars(n) \ vars(n̂). A wdPT T is
said to be in NR normal form, if newvars(n) �= ∅ for every n ∈ V (T ) [25]. It was
shown in [25], that every wdPT can be transformed efficiently into an equivalent
wdPT in NR normal form. We therefore assume w.l.o.g. that all wdPTs dealt
with here are in NR normal form.

Semantics of Pattern Trees. Analogously to graph patterns, the result of
evaluating a wdPT T over some RDF graph G is denoted by �T �G. In [25],
the set �T �G of solutions was defined via a translation to graph patterns. How-
ever, for wdPTs in NR normal form, the set of solutions �T �G has a nice direct
characterization in terms of maximal subtrees of T :

Lemma 1 ([25]). Let T be a wdPT in NR normal form and G an RDF graph.
Then μ ∈ �T �G iff there exists a subtree T ′ of T , s.t. (1) dom(μ) = vars(T ′),
and (2) T ′ is the maximal subtree of T , s.t. μ 
 �pat(T ′)�G.

It can be easily checked that T ′ is uniquely defined by dom(μ). We refer to this
tree as Tµ. We illustrate the evaluation of graph patterns or, equivalently, of
wdPTs) by revisiting Example 1.



174 S. Ahmetaj et al.

Example 2. Consider the following RDF graph G:

G = { (“American Graffiti”, directed by, “George Lucas”),
(“American Graffiti”, released, “before 1980”),
(“Star Wars”, directed by, “George Lucas”),
(“Star Wars”, released, “before 1980”),
(“Star Wars”, oscars won, “6”)}.

The evaluation of the query Q from Example 1 (or, equivalently of the wdPT
T in Fig. 1) over G, yields the partial mappings μ1 and μ2 defined on the vari-
ables ?x, ?y, ?t, and ?z′ such that: (1) dom(μ1) = {?x, ?y} with μ1 = {?x ←
“American Graffiti”, ?y ← “George Lucas”} and (2) dom(μ2) = {?x, ?y, ?z}
with μ2 = {?x ← “Star Wars”, ?y ← “George Lucas”, ?z ← “6”}. �

Projection. Recall that projection is not considered as part of a graph pattern
[33]; instead, it is realized by the SELECT result modifier on top of a graph
pattern. For a mapping μ and a set X of variables, let μ|X denote the projection of
μ to the variables in X , that is, the mapping μ′ defined as dom(μ′) := X ∩dom(μ)
and μ′(?x) := μ(?x) for all ?x ∈ dom(μ′).

It is convenient to denote a graph pattern P or a wdPT T with projection
to X as (P,X ) and (T ,X ), respectively. The evaluation of such a graph pattern
or wdPT over an RDF graph G is then defined as �(P,X )�G = {μ|X | μ ∈ �P �G}
and �(T ,X )�G = {μ|X | μ ∈ �T �G}, respectively. We refer to the pair (T ,X )
as a wdPT with projection or simply a wdPT , for short. Moreover, we refer
to vars(T ) ∩ X as the free variables (fvars(T )) and to vars(T ) \ fvars(T ) as the
existential variables in T (evars(T )). Analogously, we write fvars(n) and evars(n),
respectively, for nodes n ∈ V (T ). Moreover, for n ∈ V (T ), let newfvars(n) =
newvars(n) ∩ fvars(n). W.l.o.g., we assume that existential variables in wdPTs
with projection are always renamed apart, i.e., evars(T1) ∩ evars(T2) = ∅ for any
two distinct wdPTs T1 and T2.

A wdPT (T ,X ) is in NR normal form if T is. For wdPTs with projection, a
similar characterization of solutions as Lemma 1 exists.

Lemma 2 ([25]). Let (T ,X ) be a wdPT with projection in NR normal form,
G an RDF graph and μ a mapping with dom(μ) ⊆ X . Then μ ∈ �(T ,X )�G iff
there exists a subtree T ′ of T , s.t. (1) dom(μ) = fvars(T ′), and (2) there exists
a mapping λ : evars(T ′) → dom(G), s.t. μ ∪ λ ∈ �T �G.

SPARQL allows the use of blank nodes in graph patterns (see [18] for details),
which we do not consider here. This is however no restriction, since every well-
designed graph pattern with blank nodes is equivalent to a well-designed graph
pattern with projection but without blank nodes.

Union. Recall that we allow the UNION operator only to be applied “top-level”,
i.e., well-designed SPARQL graph patterns involving the UNION operator are of
the form P = P1 UNION . . .UNION Pk, such that each Pi is a UNION-free well-
designed graph pattern. Analogously, we consider a set {T1, . . . , Tk} of wdPTs
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(i.e., a well-designed pattern forest (wdPF)) with the intended meaning that it
stands for the union of the wdPTs. All notions introduced for wdPTs extend
naturally to wdPFs, e.g., a subtree T ′ of a wdPF F is a subtree for some wdPT
T ∈ F . We define the set of solutions of a wdPF F without projection and of
a wdPF (F ′,X ) with projection over an RDF graph G as �F�G :=

⋃
T ∈F�T �G

and �(F ′,X )�G :=
⋃

(T ,X )∈F ′�(T ,X )�G, respectively.

3 Query Evaluation

In this section we have a closer look at the evaluation of well-designed SPARQL
graph patterns or, equivalently, of wdPTs. To this end, we first revisit the seman-
tics definition of SPARQL graph patterns or wdPTs from Sect. 2. Recall that the
semantics �·�G is inductively defined over the structure of SPARQL graph pat-
terns. In terms of wdPTs, a direct implementation of this semantics definition
corresponds to a bottom-up traversal of the tree. Clearly, it may thus happen
that one computes big intermediate results for some subtree (not containing
the root) of the wdPT, which ultimately have to be deleted since these inter-
mediate results cannot be extended to mappings up to the root of the wdPT.
For instance, suppose that in Example 2, the graph G is augmented by triples
(d1, first movie,m1), (d2, first movie,m2), etc. Then the evaluation of the
pattern {(?y, first movie, ?z′)} at the right leaf node of T yields the mappings
ν1 = {?y ← d1, ?z′ ← m1}, ν2 = {?y ← d2, ?z′ ← m2}, etc. Obviously, none of
these mappings can be extended further up to the root node.

In [28] the authors therefore proposed a top-down evaluation method for well-
designed SPARQL graph patterns, which avoids the computation of “useless”
intermediate results, i.e.: every partial mapping produced by this evaluation
method is indeed a solution or can be extended to a solution. Below we illustrate
this top-down evaluation for wdPTs [25].

Top-Down Evaluation. Lemma 1 essentially states that the solutions of a
wdPT over some graph G are exactly those mappings which map all triples in
some subtree T ′ of T into G, and which cannot be extended to some bigger sub-
tree T ′′ of T . This characterization inspires the following procedural semantics
that is obtained by evaluating the pattern tree via a top-down traversal. Given a
label Pn of node n in T and a graph G, we denote by �Pn�G the set of mappings
μ that send all triples in Pn into G, i.e., �Pn�G = {μ | μ(t) ∈ G for all t ∈ Pn}.

Definition 1. Consider an RDF graph G, a wdPT T = ((V,E, r),P) with P =
(Pn)n∈V , and a set M of mappings. For n ∈ V , we define the evaluation of Tn

(the complete subtree of T rooted at n) given M over G, denoted by ext(M,n,G)
as follows. If n is a leaf, then

ext(M,n,G) = M � �Pn�G,

and, otherwise, if n1, . . . , nk are the child nodes of n, then

ext(M,n,G) = M1 � M2 � · · · � Mk,
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where Mi = (M � �Pn�G) �� ext(M � �Pn�G, ni, G). We define the top-down
evaluation of T over G, denoted by �T �tdG , as

�T �tdG = ext({μ∅}, r,G),

where μ∅ is the mapping with the empty domain.

The above definition can be also seen in a more procedural way: Given some
wdPT with root r and some RDF graph G, first get the set M of all mappings
that map Pr into G. For each mapping μ ∈ M property (1) of Lemma 1 is
satisfied. Now in order to test property (2), it suffices to check for each such
mapping μ if it can be extended to some child n of r, i.e. to some mapping
μ′ : vars(Pr) ∪ vars(Pn) → dom(G) with μ′(Pn) ⊆ G. If this is possible, replace μ
by μ′. Note that μ′ again satisfies property (1) of Lemma 1. Hence one way to
think of this evaluation method is to maintain a set of partial solutions together
with a subtree T ′ of the input wdPT rooted at r for each of them. In order to
determine whether the mapping can be extended, it suffices to check if it can be
extended to a child node of the leaf nodes of T ′.

The following theorem states that the top-down evaluation defined above
coincides with the semantics of pattern trees recalled in Sect. 2.

Theorem 1 ([25]). Let T be a wdPT and G an RDF graph. Then �T �G = �T �tdG .

Complexity of Evaluation Without Projection. We now look at the com-
plexity of the Evaluation problem of SPARQL graph patterns or, equivalently,
of wdPTs. We thus study the following decision problem: Given a wdPT T , an
RDF graph G, and a mapping μ, check if μ is a solution. For wdPTs with-
out projection, it was shown in in [29] that this problem is coNP-complete. For
our representation of SPARQL graph patterns as wdPTs in NR normal form, a
coNP test can work as follows. Let T = ((V,E, r),P) be a wdPT. By using the
characterization of the evaluation of wdPTs provided in Lemma 1, in order to
check whether μ is a solution of T over G, the coNP-algorithm can first find a
subtree T ′ of T rooted at r s.t. dom(μ) = vars(T ′). Notice that if this subtree
exists, then it is unique (since T is in NR normal form), and thus, this step can
be done in polynomial time. Then the algorithm checks that T ′ is a maximal
subtree such that μ 
 �pat(T ′)�G. The latter test requires coNP-power since we
have to check that μ cannot be extended to any of the sets of triple patterns at
nodes in T , which are “below” the leaf nodes of T ′. However, it is sufficient to
check this for every child node of T ′ (i.e., for every child in T of a leaf node of
T ′) individually: if μ can be extended to any child node, this immediately proves
that it is not maximal. Note that this simple coNP-algorithm heavily relies on
the NR normal form; the coNP-algorithm provided in [29] is considerably more
involved.

Now consider the relationship with CQs. Clearly, if all sets of triple pat-
terns are from tractable fragments of CQ evaluation, then the problem of check-
ing whether μ is a solution of T over G also becomes tractable. This follows
immediately from the algorithm sketched above: instead of coNP-power to test
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whether μ cannot be extended to any “child” node of T ′, this is now feasible in
polynomial time. Note that tractability is required for each set Pn individually,
hence for different nodes n and n′, the sets Pn and Pn′ may belong to different
tractable fragments.

Complexity of Evaluation with Projection. For CQs without existen-
tially quantified variables, the decision problem corresponding to Evaluation
is tractable. However, it becomes NP-complete for CQs with existentially quan-
tified variables. The next result shows that a similar behavior can be observed
for well-designed SPARQL graph patterns as well. I.e., the complexity increases
by one level in the polynomial hierarchy if projection is added.

Theorem 2 ([25]). The Evaluation problem of wdPTs with projection is ΣP
2 -

complete.

The membership is shown by devising a simple “guess and check” algorithm that
tests whether the solution candidate μ satisfies Lemma 2. Given a wdPT T , a
mapping μ, a set X of free variables, and an RDF graph G, the witness that
must be guessed by the algorithm consists of

1. the subtree T ′ of T rooted at r and
2. the mapping λ on evars(T ′).

For the “check” part, it remains to test whether fvars(T ′) = dom(μ) and whether
μ∪λ ∈ �T �G. The first test can be obviously done in polynomial time, while the
second test is in coNP [29].

Tractable Evaluation. A condition that has been shown to help identifying
relevant tractable fragments of wdPTs is local tractability [25]. This refers to
restricting the CQ defined by each node in a wdPT to belong to a tractable
class. The classes of CQ patterns which admit an efficient evaluation include
classes of bounded treewidth [12], hypertreewidth, [15] (generalizing acyclic CQs
[36]), fractional hypertreewidth, [17], etc. We concentrate on the first two. From
now on, we denote by TW(k) (resp., HW(k)), for k ≥ 1, the class of CQs of
treewidth (resp., hypertreewidth) at most k. A wdPT ((V,E, r), (Pn)n∈V ) is
locally in C, if for each node n ∈ V the CQ ANS ← Pn is in C. We write �-C for
the set of all wdPTs that are locally in C. Moreover we denote by Eval(C) the
evaluation problem of wdPTs restricted to the class C.

As already mentioned before, local tractability leads to tractability of eval-
uation for projection-free wdPTs. On the other hand, this result does not hold
in the presence of projection, even when C is of bounded treewidth. Formally,
Eval(�-TW(k)) and Eval(�-HW(k)) are NP-complete for every k ≥ 1 [25].

This raises the question of which further restrictions on wdPTs are needed to
achieve tractability. In [8], a natural such restriction is introduced, called bounded
interface. Intuitively, this restricts the number of variables shared between a node
in a wdPT and its children. We say that a wdPT has c-bounded interface, for
c ≥ 1, if for each node n of the wdPT, the number of variables that appear
both in n and its children is at most c. We denote by BI(c) the set of wdPTs of
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c-bounded interface. It can be shown that local tractability and bounded inter-
face yield tractability of the Evaluation problem of wdPTs with projection:

Theorem 3 ([8]). Let C be TW(k) or HW(k) and c ≥ 1. Then Eval(�-C∩BI(c))
is in Ptime.

Notice thatCQs are a special case ofwdPTs consisting of the root node only.Hence,
TW(k) ⊆ �-TW(k) ∩ BI(c) and HW(k) ⊆ �-HW(k) ∩ BI(c) hold for each c ≥ 1.
Therefore, Theorem 3 tells us that �-TW(k) ∩ BI(c) and �-HW(k) ∩ BI(c) define
relevant extensions of TW(k) and HW(k), respectively, that preserve tractability
of evaluation.

Partial Evaluation of wdPTs. Given the nature of wdPTs, it is also inter-
esting to check whether a mapping μ is a partial solution of the wdPT T over
G [29], i.e., whether μ can be extended to some solution μ′ of T over G. This
gives rise to the partial evaluation problem Partial-Eval(C) for a class C of
wdPTs defined as follows: Given a graph G and a wdPT T ∈ C, as well as a
partial mapping μ : X → U, where X is the set of variables mentioned in T , is
there a μ′ ∈ �T �G such that μ′ extends μ?

Partial evaluation is tractable for the class of projection-free wdPTs [29]. On
the other hand, if projection is allowed, then partial evaluation is NP-complete
even under local tractability, i.e., even for the classes �-TW(k) and �-HW(k), for
each k ≥ 1 [25].

It is easy to modify the proof of Theorem 3 to show that adding bounded
interface to local tractability yields efficient partial evaluation; that is, Partial-
Eval(�-TW(k)∩BI(c)) and Partial-Eval(�-HW(k)∩BI(c)) are in Ptime. How-
ever, partial evaluation is seemingly easier than exact evaluation. Hence, the
question naturally arises if tractability of partial evaluation of wdPTs can be
ensured by a weaker condition. Indeed, we give a positive answer to this ques-
tion below. This condition will be referred to as global tractability. Intuitively,
it states that there is a bound on the treewidth (resp., hypertreewidth) of the
CQs defined by the different subtrees of a wdPT T rooted in r. Formally, let C
be TW(k) or HW(k), for k ≥ 1. A wdPT T is globally in C, if for each subtree T ′

of T rooted in r it is the case that the CQ ANS ← pat(T ′) is in C. We denote
by g-C the set of all wdPTs that are globally in C.

Theorem 4 ([8]). Partial-Eval(g-TW(k)) and Partial-Eval(g-HW(k))
are in Ptime for every k ≥ 1.

It remains to answer the question if global tractability also suffices to ensure
tractability of (exact) evaluation for wdPTs. It turns out that this is not the
case.

Proposition 1 ([8]). Eval(g-TW(k)) and Eval(g-HW(k)) are NP-complete
for all k ≥ 1.

Semantics Based on Maximal Mappings. The semantics of projection-free
wdPTs is only based on maximal mappings, i.e., mappings that are not subsumed
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by any other mapping in the answer. This is no longer the case in the presence
of projection [25]. As we will see in Sect. 5, for query answering of SPARQL
under entailment regimes, it will turn out advantageous to define a semantics
for wdPTs that is based on maximal mappings. This semantics is formalized as
follows. Assume G is an RDF Graph and T is a wdPT. The evaluation of T
over G under maximal mappings, denoted �T �mG , corresponds to the restriction
of �T �G to those mappings μ which are not extended by any other mapping
μ′ ∈ �T �G. This naturally leads to the decision problem Max-Eval(C) defined as
follows: Given an RDF graph G and a wdPT T ∈ C, as well as a partial mapping
μ : X → U, where X is the set of variables mentioned in T , is μ ∈ �T �mG?

Max-Eval(C) is clearly intractable for the class C of all wdPTs. Analogously
to Partial-Eval, local tractability is not sufficient to ensure tractability of
Max-Eval:

Proposition 2 ([8]). For every k ≥ 1 the problems Max-Eval(�-TW(k)) and
Max-Eval(�-HW(k)) are NP-hard.

To obtain tractability in this case it is however sufficient to impose global
tractability, which is exactly the same condition that yields tractability of partial
evaluation for wdPTs (as stated in Theorem 4):

Theorem 5 ([8]). Max-Eval(g-TW(k)) and Max-Eval(g-HW(k)) are in
Ptime for every k ≥ 1.

4 Static Query Analysis

Static query analysis is a fundamental task in query optimization. Two of the
most important problems in this context are query containment and query equiv-
alence, which are very well understood for a variety of query languages [1]. For
instance, since by Trakhtenbrot’s theorem both problems are undecidable for the
full relational calculus, they have been studied for several interesting fragments
of relational calculus, including CQs and several extensions thereof [11,21,34].

Since SPARQL has the same expressive power as the relational calculus and
queries from one language can be effectively transformed into equivalent queries
of the other language [3,32], containment and equivalence are undecidable for
full SPARQL. Hence, analogously to the relational calculus, both problems have
been studied for fragments of SPARQL, with well-designed graph patterns being
the core fragment.

We use the notation wd-SPARQL[S] to refer to the different classes of
SPARQL queries reviewed in this section, where S ⊆ {∪, π}. I.e., we consider
well-designed SPARQL queries which use the AND and OPT operator and which
may be extended by UNION (if ∪ ∈ S) and/or projection (if π ∈ S). We will
consider the problems Containment[S1, S2] and Equivalence[S1, S2], which
take as input queries Q1 ∈ wd-SPARQL[S1], Q2 ∈ wd-SPARQL[S2] and ask if
for all RDF graphs G it is the case that �Q1�G ⊆ �Q2�G or �Q1�G = �Q2�G,
respectively, holds.
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It was argued that in the presence of optional matching, the classical notion
of query containment via the subset relation (⊆) might be too restrictive for
certain applications. The reason for this is illustrated by the following example.

Example 3. Consider the two SPARQL queries Q1 = (?x, directed by, ?y) and
Q2 = (?y, directed by, ?y)OPT (?x, oscars won, ?z) which are simplified vari-
ants of the query Q from Example 1, and an RDF graph G = {(“Star
Wars”, directed by, “George Lucas”), (“Star Wars”, oscars won, “6”)}. Then
�Q1�G = {μ} with μ = {?x ← “Star Wars”, (?y ← “George Lucas”} and
�Q2�G = {μ′} with μ′ = μ ∪ {?z ← “6”}. Hence Q1 � Q2. This might be,
however, unintuitive or even unintended, since answers to Q2 always contain at
least the same amount of information as those to Q1. �

One way to address this concern is to resort to the subsumption relation men-
tioned in Sect. 2. This gives rise to the problem Subsumption[S1, S2] which,
given two queries Q1 ∈ wd-SPARQL[S1] and Q2 ∈ wd-SPARQL[S2], asks if
�Q1�G 
 �Q2�G holds for all RDF graphs G. Clearly, for CQs, the notions of
containment and subsumption coincide. Subsumption has already been used in
the past as a meaningful way of testing containment of queries with incom-
plete answers over semistructured data [20], and it has been convincingly argued
that it is also a suitable notion for comparing the result of SPARQL queries
containing the OPT operator [5]. It has also been considered in foundational
work on SPARQL to compare the evaluation of two patterns containing OPT
operators [5,29].

Subsumption. It turns out that in the presence of optional matching not only
the semantics of subsumption is more robust than that of containment, but also
its complexity is much more stable for the different fragments of SPARQL. In
fact, the subsumption problem is ΠP

2 -complete in all of the cases considered in
this survey.

For CQs, the containment problem Q1 ⊆ Q2 is equivalent to deciding if there
exists a homomorphism h from Q2 to Q1. Recall that the main intuition behind
this is that h allows one to “translate” solutions of Q1 to solutions of Q2.

The subsumption problem for well-designed SPARQL queries can be decided
in a similar way, and can essentially be reduced to a (possibly exponential) num-
ber of containment tests between CQs: An immediate consequence of Lemma 2
and Lemma 1 is that for every wdPF (F ,X ) and RDF graph G, every solution
μ ∈ �(F ,X )�G is witnessed by some subtree T ′ of F and some extension μ′ of
μ s.t. (a) dom(μ′) = vars(T ′), (b) dom(μ) = fvars(T ′), and (c) μ′ maps all triple
patterns in T ′ into G. Thus, subsumption between two wdPFs (F1,X ), (F2,X )
holds if and only if every such mapping μ′ for (F1,X ) can be “translated” (in
the same sense as for CQs) to a corresponding mapping on (F2,X ). This allows
for the following characterization of subsumption between wdPFs.

Lemma 3 ([30]). Let (F1,X ) and (F2,X ) be two wdPFs. Then (F1,X ) 

(F2,X ) iff for every subtree T ′

1 of F1, there exists a subtree T ′
2 of F2, s.t.
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(1) fvars(T ′
1 ) ⊆ fvars(T ′

2 ) and
(2) there exists a homomorphism h : pat(T ′

2 ) → pat(T ′
1 ) with h(?x) =?x for all

?x ∈ fvars(T ′
1 ).

Assuming this characterization is satisfied, given some μ1 ∈ �(F1,X )�G wit-
nessed by some subtree T ′

1 and mapping μ′
1, we get a corresponding mapping μ′

2

as μ′
2(·) = μ′

1(h(·)), where h is the homomorphism guaranteed to exist by the
characterization. Observe, however, that the lemma only guarantees μ′

2 
 �F2�G,
and not μ′

2 ∈ �F2�G, since μ′
2 need not be maximal. Thus the characterization

guarantees μ2 
 �(F2,X )�G as required, but not μ2 ∈ �(F2,X )�G.
This characterization can be immediately turned into a ΠP

2 -algorithm for
deciding subsumption. On the other hand, ΠP

2 -hardness was shown to already
hold for Subsumption[∅, ∅] in [25]. We thus get the following result.

Theorem 6 ([25,30]). The problem Subsumption[S1, S2] is ΠP
2 -complete for

all S1, S2 ⊆ {∪, π}.

Table 1. Complexity of the Containment and Equivalence problem, [25,30].

↓ S1 / S2 → Containment[S1, S2] Equivalence[S1, S2]

∅ {∪} {π} {∪, π} ∅ {∪} {π} {∪, π}
∅ NP-c. ΠP

2 -c. undec. undec. NP-c. – – –

{∪} NP-c. ΠP
2 -c. undec. undec. ΠP

2 -c ΠP
2 -c – –

{π} NP-c. ΠP
2 -c. undec. undec. ΠP

2 -c ΠP
2 -h undec –

{∪, π} NP-c. ΠP
2 -c. undec. undec. ΠP

2 -c undec undec undec

Containment. The complexity of the Containment problem is summarized
in Table 1. Beside ranging from NP-completeness to even undecidability, it
also displays a surprising asymmetry: For instance, Containment[{π}, ∅] is
NP-complete, while Containment[∅, {π}] is undecidable.

Recall that for subsumption (F1,X ) 
 (F2,X ), the crucial property for the
characterization in Lemma 3 to be correct is that it is irrelevant whether the
subtrees of F2 are maximal or not. However, for containment, this is no longer
the case since now it must be guaranteed that for every solution to (F1,X ), the
exact same mapping (and not an extension of it) is also a solution to (F2,X ).
While homomorphisms are too weak to directly express such a property, for the
decidable cases in Table 1, it is possible to express this in an indirect way. We
demonstrate this idea for the problem Containment[{π}, ∅]:

Lemma 4 ([30]). Let (T1,X ) and T2 be wdPTs. Then (T1,X ) ⊆ T2 iff for every
subtree T ′

1 of T1,

(1) either there exists a child node n of T ′
1 and a homomorphism h : pat(n) →

pat(T ′
1 ) with h(?x) =?x for all ?x ∈ vars(n) ∩ vars(T ′

1 )
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(2) or there exists a subtree T ′
2 of T2, s.t. (a) fvars(T ′

1 ) = vars(T ′
2 ), (b) pat(T ′

2 ) ⊆
pat(T ′

1 ), and (c) for all extensions T̂2
′
of T ′

2 there exists an extension T̂ ′
1 of

T ′
1 and a homomorphism h : pat(T̂ ′

1 ) → pat(T ′
1 ) ∪ pat(T̂ ′

2 ) with h(?x) =?x
for all ?x ∈ vars(T ′

1 ).

The intuition of this characterization is as follows: Property (1) is a technical
detail dealing with subtrees that can always be extended. This case was implicitly
covered for subsumption but must now be made explicit. Property (2a) and
(2b) are the adaptations of the properties (1) and (2) in Lemma 3: (2a) follows
immediately from the fact that extensions are not allowed. For (2b), observe that
in the present case, looking for a homomorphism as in property (2) in Lemma 3
means to look for a homomorphism that is the identity on all variables in its
domain, hence degenerating to a subset inclusion test. Finally, property (2c)
implicitly ensures that the mapping on T2 cannot be extended. Intuitively, it
expresses the following: Assume some RDF graph G, a mapping μ ∈ �(T1,X )�G
witnessed by μ1 ∈ �T1�G and T ′

1 . Assuming further the properties of the lemma
to be satisfied, we know from (2a) and (2b) that μ 
 �T2�G. Thus assume to
the contrary that μ /∈ �T2�G because of some μ′ ∈ �T2�G with μ 
 μ′. Let
T ′
2 be the subtree of T2 corresponding to μ and let μ′ be witnessed by some

subtree T̂ ′
2 . Then T̂ ′

2 must be an extension of T ′
2 . But then the subtree T̂ ′

1 of
T1 and homomorphism h according to property (2c) provide a contradiction
to μ1 ∈ �T1�G, since μ1 � μ′

1 where μ′
1(·) = μ′(h(·)), and μ′

1 ∈ �T1�G. I.e.,
the characterization guarantees the maximality on T2 implicitly by making sure
that if the mapping is not maximal on T2, then it is not on T1 either. This
characterization can be easily extended to Containment[{∪, π}, ∅].

A direct implementation of this characterization would lead to a ΠP
2 -

algorithm for deciding Containment[{∪, π}, ∅]. However, it is in fact not neces-
sary to perform the test for all subtrees of T1, but it suffices to just test a linear
number of them. This pushes the complexity down to NP. Allowing for UNION
on the right hand side requires some non-trivial extension of property (2c) for
the characterization to still work in such a setting. As a result, the complexity
rises by one level in the polynomial hierarchy.

Once projection is allowed to occur in the containing query (i.e. the query
on the right hand side), this approach no longer works, and in fact the problem
becomes undecidable. To get an idea of why this is the case, observe that an
alternative way to look at property (2c) is that we create a canonical RDF
graph over which μ – the mapping of interest – is guaranteed not to be a solution.
Without projection, such a canonical graph can always be found since we get the
following property: μ is not a solution if it can be extended to a bigger solution.
It thus basically suffices to just add one such extension to the canonical graph.
In the presence of projection, however, we get the following situation: μ is not a
solution to T2, if for every subtree T ′

2 of T2 with fvars(T ′
2 ) = dom(μ) and every

mapping μ′ on evars(T ′
2 ), there exists an extension of μ ∪ μ′ that is a solution

to T2. Thus we have to provide an extension for all possible mappings μ′ in the
canonical graph. Adding these extensions may give rise to new mappings μ′ on
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the existential variables, which in turn require new extensions to be provided in
the canonical RDF graph, and it is not clear when this can be stopped.

This behavior is reminiscent of the chase termination (cf. [9,16,26] and
related problems, and in fact the undecidability of the containment problem
was shown by reduction from the following problem: Given a set Σ of tuple-
generating dependencies, a database instance I and a Boolean CQ Q, is Q true
in every (finite) model of Σ and I (cf. [9,30])?

Equivalence. The complexity of the Equivalence problem is also depicted in
Table 1. Of course, for two SPARQL queries Q1 and Q2 it holds that Q1 ≡ Q2

iff Q1 ⊆ Q2 and Q2 ⊆ Q1. Thus an upper-bound on the complexity of the
containment problem also provides an upper-bound for the equivalence problem.
In addition, it was shown in [25] that for queries in wd-SPARQL[∅] it is also the
case that Q1 ≡ Q2 iff Q1 
 Q2 and Q2 
 Q1. However, as soon as we add union
or projection on either side, this property does no longer hold.

Of course, the Equivalence[S1, S2] problem is symmetric in S1 and S2.
Hence, only the lower triangle of the table has been filled in. The reason that
Equivalence[{∪, π}, ∅] is decidable in ΠP

2 , while Containment[∅, {∪, π}] is
undecidable is that in order to decide equivalence, it actually suffices to test
containment in one, and only subsumption in the other direction. We would like
to point out that not only is the exact complexity of Equivalence[{π}, {∪}]
still open, but it is even unknown if the problem is decidable or not.

5 Ontology-Based Query Answering

In the recently released recommendation [14], the W3C has defined various
SPARQL entailment regimes to allow users to specify implicit knowledge about
the vocabulary in an RDF graph. The theoretical underpinning of query answer-
ing under entailment regimes is provided by the big body of work on ontology-
based query answering, notably in the area of description logics (DLs) [6].
However, the semantics of query answering under SPARQL entailment regimes
is defined in a simpler and less expressive way than the certain answer semantics
usually adopted in the DL and database literature.

Example 4. Consider an RDF graph G containing a single triple (“Star Wars”,
rdf:type,movie) – stating that “Star Wars” is a movie – and an ontology O con-
taining the triple (movie, rdfs:subClassOf,∃has actor). – stating that every
movie has some actor who acts in it. Now consider the following simple graph
pattern (P, {?x}) with P = (?x, has actor, ?y), where ?x is the only output
variable. Following the SPARQL entailment regimes standard [14], this query
yields an empty result. �
By the concept inclusion (movie, rdfs:subClassOf,∃has actor), we know for
certain that there is some actor who acts in “Star Wars”. Hence, the result in
the above example is rather unintuitive. The reason for this behavior is that the
standard for SPARQL entailment regimes [14] requires that all values assigned
to any variable must come from the RDF graph. In other words, distinguished
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variables (which are ultimately output) and non-distinguished variables (which
are eventually projected out) are treated in the same way. In contrast, the certain
answer semantics retrieves all mappings on the distinguished variables that allow
to satisfy the query in every possible model of the database and the ontology
– yielding the certain answer μ = {?x ← “Star Wars”} in the above example.
The certain answer semantics has been extensively studied in the database and
DL literature for CQs [1,10]. However, in the presence of optional matching the
usual certain answer semantics (i.e., something is a certain answer if it is present
in every model) turns out to be unsatisfactory:

Example 5. Consider the graph pattern (P, {?x, ?z}) with P : ((?x, has
actor, ?y)OPT(?y, was born, ?z)) over the graph G = {(“Star Wars’’,
has actor, “Harrison Ford”)} and empty ontology O. The query yields a unique
solution μ = {?x ← “Star Wars”}. Clearly, also the extended graph G′ =
G ∪ {(“Harrison Ford”, was born, “1942”)} is a model of (G,O). But in G′,
μ is no longer a solution since μ can be extended to solution μ′ = {?x ←
“Star Wars”, ?z ← “1942”}. Hence, there exists no mapping which is a solution
in every possible model of (G,O). �

As Example 5 illustrates, a literal adoption of the certain answer semantics in
the presence of the OPT operator leads to having no solutions, even though there
is a solution that can be extended to a solution in every model. In order to tackle
this and further problems, the definition of certain answers for the class of wdPTs
has to be suitably modified [2]. This modification of the semantics also requires
an adaptation and extension of known query answering algorithms established
in the area of description logics. We mention two such modified algorithms for
query evaluation under DL-Lite [10]. It turns out that the additional expressive
power due to the certain answers comes without an increase of the complexity.

OWL 2 QL. RDF has been enhanced by the OWL 2 Web Ontology Language
[27], a World Wide Web Consortium (W3C) recommendation to enable the spec-
ification of background knowledge about the application domain, and to enrich
query answers with implicit information. The logical underpinning of OWL 2 and
its sub-languages are description logics. One such sub-language is OWL 2 QL
which is based on DL-LiteR, a member of the DL-lite family [10]. Its fundamental
building blocks are constants c, atomic concepts A and atomic roles R, which are
countably infinite and mutually disjoint subsets of a set U of URIs. From these
we can build basic roles R and R−, and basic concepts B and ∃Q, where Q is a
basic role. Using the above, DL-LiteR allows one to express the following kind of
statements: Membership assertions (c, rdf:type, B) or (c,Q, c′), concept inclu-
sions (B1, rdfs:subClassOf, B2), role inclusions (Q1, rdfs:subPropertyOf, Q2)
as well as concept and role disjointness (where c, c′ are constants and Bi, Qi are
basic concepts resp. basic roles). In the following, an ontology O is any set of
such expressions, excluding membership assertions, which we assume to be part
of the RDF graph. A knowledge base (KB) G = (G,O) consists of an RDF graph
G and an ontology O.
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Certain Answers of wdPTs. Before providing our definition of certain
answers, we need to introduce two additional notions. Let P be a well-designed
graph pattern. Following [29], we say that P ′ is a reduction of P (denoted as
P ′ � P ) if P ′ can be constructed from P by replacing in P sub-patterns of the
form (P1 OPT P2) by P1. Note that, in terms of wdPTs, a reduction corresponds
to a subtree containing the root node of the wdPT. Moreover, for a mapping μ
and some property A, we shall say that μ is 
-maximal w.r.t. A if μ satisfies A,
and there is no μ′ such that μ 
 μ′, μ′ �
 μ, and μ′ satisfies A.

Definition 2. Let G = (G,O) be a KB and Q = (P,X ) a well-designed graph
pattern. A mapping μ is a certain answer to Q over G if it is a 
-maximal
mapping with the following properties: (1) μ 
 �Q�G′ for every model G′ of G,
and (2) vars(P ′) ∩ X = dom(μ) for some P ′ � P . We denote by cert(P,X ,G)
the set of all certain answers to Q over G.

The reason for restricting the set of certain answers to 
-maximal mappings is
that queries with projection and/or UNION may have “subsumed” solutions,
i.e. solutions s.t. also some proper extension is a solution. But then – with set
semantics – we cannot recognize the reason why some subsumed solution may
be not a solution in some possible world, as illustrated in Example 6.

Example 6. Let us revisit the graph pattern (P, {?x, ?z}) of Example 5 with
P = (?x, has actor, ?y). Consider the following RDF graph G:

G = { (“Star Wars”, has actor, “Harrison Ford”),
(“Star Wars”, has actor, “Mark Hamill”),
(“Harrison Ford”, was born, “1942”)}.

and empty ontology O. As possible models of (G,O) we have all graphs con-
taining G. Hence, μ = {?x ← “Star Wars”, ?z ← “1942”} and μ′ = {?x ←
“Star Wars”} are both solutions of (P, {?x, ?z}) over G and can be extended to
solutions in every possible model.

Next consider the RDF graph:

G′ = { (“Star Wars”, has actor, “Harrison Ford”),
(“Harrison Ford”, was born, “1942”)}.

If we take as certain answers all mappings that can be extended to some solution
in every possible model, then μ′ from above is still a certain answer, which is
clearly undesired. �

A key idea to solve the problem illustrated in Example 6 is to allow only
“maximal” solutions. In addition, Property (2) in Definition 2 ensures that the
domain of such an answer adheres to the structure of nested OPT operators
in the query. However, we can show that this property need not be considered
during the computation of the certain answers, but can be enforced in a sim-
ple post-processing step. We call such answers that satisfy Definition 2 except
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Property (2) certain pre-answers, and use certp(P,X ,G) to denote the set of all
certain pre-answers. The same is true for projection, which can also be performed
in a simple post-processing step. Thus, it suffices to compute certp(P,G), which
can be done via a universal solution (referred to as canonical model in the area
of DLs) as follows.

Theorem 7 ([2]). Let G = (G,O) be a KB and P a well-designed graph pattern.
Then, certp(P,G) = MAX(�P �univ(G)↓), where MAX(M) is the set of 
-maximal
mappings in M , M↓:= {μ↓| μ ∈ M} (μ↓ is the restriction of μ to those variables
which are mapped by μ to the active domain of G), and univ(G) is a universal
solution of G.

However, computing the certain answers via a universal solution is not always
practical, since universal solutions can be infinite. As a result, query rewriting
algorithms have been developed. These algorithms take the input query and
the ontology, and rewrite them into a single query that can be evaluated over
the input database without considering the ontology. By introducing several
adaptations and extensions of the rewriting-based CQ evaluation for DL-Lite
from [10], we developed two different approaches to compute the certain answers
for well-designed SPARQL graph patterns (or, equivalently, of wdPTs) under
OWL 2 QL entailment [2].

The first one proceeds in a modular way by rewriting the pattern Pn at
each node n in a wdPT individually. It thus follows the general philosophy of
SPARQL entailment regimes [14]. One possible disadvantage of this modular
approach is that it requires to maintain additional data structures to ensure
consistency when combining the partial solutions for the patterns of differ-
ent nodes. As a consequence, the complete algorithm has to be implemented
from scratch because the standard tools cannot handle these additional data
structures.

The goal of the second approach is to make use of standard technology as
much as possible. The idea is to transform the OWL 2 QL entailment under
our new semantics into SPARQL query evaluation under RDFS entailment [14],
for which strong tools are available. Unlike the first – modular – approach, this
rewriting proceeds in a holistic way, i.e. it always operates on the whole query.

Based on these rewriting algorithms, we can show that the complexity of
query answering and of several static query analysis tasks does not increase
despite the additional power of OWL 2 QL entailment under our new semantics.

Recall from Sect. 3 the two variants Partial-Eval and Max-Eval of the
Evaluation problem of wdPTs, where we have to decide for a graph G, wdPT
(T ,X ), and mapping μ, if μ can be extended to a solution or is a maximal solu-
tion, respectively, of (T ,X ) over G. Note that we cannot directly compare the
Evaluation problem of wdPTs under OWL 2 QL entailment (with our cer-
tain answer semantics) and the Evaluation problem of wdPTs without entail-
ment regimes. This is due to the fact that our certain answer semantics (for
reasons explained above) only allows maximal solutions. Hence, Partial-Eval
and Max-Eval are the right problems to look at. The Partial-Eval prob-
lem is NP-complete [25] and the Max-Eval problem is DP-complete [2], and it
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was shown in [2] that these complexities remain unchanged under OWL 2 QL
entailment with our certain answer semantics.

As far as static query analysis is concerned, we now have to redefine the prob-
lems Subsumption, Containment, and Equivalence so as to take a given
ontology into account. For instance, for the Subsumption problem, we are now
given two wdPTs T1, T2 plus an ontology O; we have to decide if for every RDF
graph G, the relationship cert(T1,X1,G) 
 cert(T2,X2,G) holds, where G denotes
the knowledge base G = (G,O). Recall that Subsumption without entailment
regimes is ΠP

2 -complete in all settings considered here (i.e., with or without
projection; with our without the UNION operator). It can be shown that the
complexity remains the same also for the Subsumption problem under OWL2
QL entailment [2]. Note that the subsumption relation between two queries only
depends on the maximal solutions over an arbitrary graph. Hence, we did not
need to define yet another variant of Subsumption, which takes only the maxi-
mal solutions into account. In contrast, for Containment and Equivalence, a
comparison between the settings with and without ontologies only makes sense
if we check for containment (resp. equivalence) of the maximal solutions only.
In [2], the resulting problems were shown ΠP

2 -complete both for the settings
with and without OWL2 QL entailment.

6 Conclusion and Future Work

We have recalled some recent results on an interesting fragment of SPARQL, the
so-called well-designed SPARQL graph patterns or, equivalently, well-designed
pattern trees (wdPTs). Such queries can be seen as a natural extension of con-
junctive queries (CQs) by the optional matching feature. It has turned out that
this feature makes virtually all relevant computational tasks more complex:
the complexity of the Evaluation problem raises from NP-completeness to
ΣP

2 -completeness. The Containment and Equivalence problems even become
undecidable unless we forbid projection. In [29], Subsumption has been pro-
posed as an interesting variant of Containment, which is computationally
better behaved and which may be more intuitive in the presence of optional
matching. Its complexity is ΠP

2 -complete in all settings considered here. Finally,
we have seen that an additional extension of wdPTs by entailment under OWL2
QL (which corresponds to DL-LiteR) does not increase the complexity anymore.

Note that many further aspects of well-designed SPARQL graph patterns
have been studied, which were not recalled in this survey. In response to the
intractabilty of the Evaluation problem of wdPTs, works on the approximation
of CQs [7] were extended to wdPTs in [8]. The Counting problem of wdPTs
(i.e., given a wdPT T and a graph G, how many solutions does T have over
G) was studied in [31]. The Counting problem turned out to be more complex
than the Evaluation problem in the sense that the restrictions guaranteeing
tractability of Evaluation do not suffice to achieve tractability of Counting.
In [24], various aspects of the Enumeration problem of wdPTs (i.e., given a
wdPT T and a graph G, output all solutions of T over graph G) are studied.
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As has been recalled in Sect. 3, tractability of the Max-Eval problem is easier to
achieve than for the Evaluation problem. Interestingly, for the Enumeration
problem, outputting the maximal solutions may become harder than outputting
all solutions.

Recall that projection is realized in SPARQL by wrapping a SPARQL graph
pattern into a SELECT statement. Another query form provided by the SPARQL
standard [33] is to wrap a SPARQL graph pattern into a CONSTRUCT state-
ment. The result of applying a CONSTRUCT query to an RDF graph is again
an RDF graph (rather than a set of mappings). In [23], several interesting prop-
erties of CONSTRUCT queries were presented. For instance, for CONSTRUCT
queries with well-designed SPARQL graph patterns, it was shown that they
correspond to positive first order queries. An important extension provided by
SPARQL 1.1 [18] is the possibility to formulate queries which have to be evalu-
ated over different endpoints. Various aspects of this federation extension were
studied in [4] – including the extension of well-designed SPARQL to federated
SPARQL queries. Most of the computational problems mentioned here (Evalu-
ation, Containment, Equivalence, Subsumption) were studied in [22] for
another important extension of SPARQL 1.1 [18] – the so-called property paths.
This extension introduces the ability to navigate in RDF graphs. Property paths
thus resemble regular path queries. However, as is shown in [22], the interaction
with the other SPARQL operators – in particular, with the OPT operator –
requires new techniques.

Despite the great variety of results obtained for wdPTs, many questions
have remained open. First, in most of the complexity analyses carried out so
far, some cases could not be fully classified. For instance, in Table 1, the exact
complexity (even the question of decidability) of Equivalence[{π}, {∪}] is still
open. Closing these gaps is a natural task for future work. Strongly related
to such complexity analyses is the quest for tractable fragments of the various
problems studied so far. For instance, we have recalled here that the Evaluation
problem of wdPTs becomes tractable if wdPTs are restricted to the class �-
C∩BI(c) where C is TW(k) or HW(k) and c ≥ 1. The same restriction guarantees
tractability of the Enumeration problem [24], which is not the case for the
Counting problem [31]. For all these problems, further approaches have to
explored to find (further) “natural” tractable classes of wdPTs.

Finally, the language fragments studied so far should be extended in several
directions. For instance, we have recalled here some results obtained for the eval-
uation of wdPTs under OWL2 QL entailment (or, equivalently, under DL-LiteR).
This work should be extended to more expressive entailment regimes. Another
important extension is concerned with extending well-designed SPARQL itself.
We have recalled several favorable features of this fragment of SPARQL. For
instance, the complexity of the Evaluation problem drops from PSPACE-
completeness (for the AND/OPT-fragment without well-designedness restriction)
to coNP (without projection) or ΣP

2 (with projection), respectively. However,
the restriction to well-designedness may be too strong. Hence, very recently [19],
the extension of well-designed SPARQL to weakly well-designed SPARQL has
been presented, by allowing some typical uses of non-well-designedness. On the
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one hand, it is shown that the extension of well-designed SPARQL to weakly
well-designed SPARQL does not make the Evaluation problem harder. On the
other hand, the authors give evidence that the resulting fragment of SPARQL
is practically highly relevant by observing that in DBpedia query logs, almost
all queries containing the OPT operator are weakly well-designed. Of course, the
study of the various computational tasks mentioned here should be extended to
yet further (and bigger) fragments of SPARQL.
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