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Abstract. We analyze the acceptability dynamics of arguments through
the proposal of two different kinds of minimal sets of arguments, core
and remainder sets which are somehow responsible for the acceptabil-
ity/rejection of a given argument. We develop a study of the conse-
quences of breaking the construction of such sets towards the accep-
tance, and/or rejection, of an analyzed argument. This brings about the
proposal of novel change operations for abstract argumentation first,
and for logic-based argumentation, afterwards. The analysis upon logic-
based argumentation shows some problems regarding the applicability
of the standard semantics. In consequence, a reformulation of the notion
of admissibility arises for accommodating the standard semantics upon
logic-based argumentation. Finally, the proposed model is formalized in
the light of the theory of belief revision by characterizing the corre-
sponding operations through rationality postulates and representation
theorems.
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1 Introduction

Argumentation theory [13] allows to reason over conflicting pieces of knowl-
edge, i.e., arguments. This is done by replacing the usual meaning of inference
from classical logic by acceptability in argumentation: evaluation of arguments’
interaction through conflict for deciding which arguments prevail. To that end,
argumentation theory relies upon argumentation semantics and acceptance cri-
teria. Semantics can be implemented through determination of extensions, i.e.,
different kinds of conflict-free sets of arguments. For studying theoretic proper-
ties, like semantics, it is possible to abstract away from any particular represen-
tation of knowledge or structuring for building arguments. This is referred as
abstract argumentation. On the other hand, the concretization of an argumen-
tation framework (AF) to some specific logic and argument structure is called
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logic-based argumentation [2,6,15]. Investigations based upon abstract argu-
mentation usually simplify the study of some specific problem, and may bring
solid fundamentals for studying afterwards its application upon logic-based argu-
mentation. However, adapting theories, and results, from abstract to logic-based
argumentation may be not straightforward.

The classic theory of belief revision [1] studies the dynamics of knowledge,
coping with the problem of how to change beliefs standing for the conceptu-
alization of a modeled world, to reflect its evolution. Revisions, as the most
important change operations, concentrate on the incorporation of new beliefs in
a way that the resulting base ends up consistently. When considering AFs for
modeling situations which are immersed in a naturally dynamic context, it is
necessary to provide models for handling acceptability dynamics of arguments.
That is, models for studying change in argumentation (for instance, [4,5,10]) for
providing a rationalized handling of the dynamics of a set of arguments and their
implications upon the acceptability condition of arguments [19]. This led us to
investigate new approaches of belief revision, which operate over paraconsistent
semantics –like argumentation semantics– avoiding consistency restoration.

Argumentation provides a theoretic framework for modeling paraconsistent
reasoning, a subject of utmost relevance in areas of research like medicine and
law. For instance, legal reasoning can be seen as the intellectual process by
which judges draw conclusions ensuring the rationality of legal doctrines, legal
codes, binding prior decisions like jurisprudence, and the particularities of a
deciding case. This definition can be broaden to include the act of making laws.
Observe that the evolution of a normative system –for modeling promulgation of
laws– would imply the removal/incorporation of norms for ensuring some specific
purpose but keeping most conflicts from the original AF unaffected.

Upon such motivation, we study new forms to handle acceptability dynam-
ics of arguments, firstly on abstract argumentation, and afterwards upon logic-
based argumentation. By relying upon extension semantics, we define two differ-
ent sorts of sets for recognizing acceptance or rejection of arguments: core and
remainder sets, respectively. Afterwards we propose a model of change towards
the proposal of an acceptance revision operation which deals with the matter
of incorporating a new argument while ensuring its acceptance. This is done
first, from an abstract perspective, and afterwards upon logic-based argumenta-
tion. This unveils some specific problems regarding the applicability of standard
semantics to this kind of argumentation. We propose then a reformulation on
the notion of admissibility to overcome from such drawback by analyzing argu-
mentation postulates from [2]. Finally, the rationality of the proposed change
operators is provided through its axiomatic characterization and corresponding
representation theorem according to classic belief revision and argument-based
belief revision models like Argument Theory Change (ATC) [19].

2 Fundamentals for Abstract Frameworks

An abstract argumentation framework (AF) will be assumed as a pair 〈A,RA〉,
where A is a finite set of arguments, and the set RA ⊆ A × A identifies the
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finitary defeat relation between pairs of arguments a ∈ A and b ∈ A, such that
(a, b) ∈ RA implies that argument a defeats argument b, or equivalently, a is a
defeater of b. In this part of the article, arguments are deemed as abstract since
we do not specify any concrete logic, nor inner-structure, for constructing them.
Thus, arguments will be considered as indivisible elements of AFs. On the other
hand, we will assume the defeat relation RA to be obtained through a functional
construction RA : ℘(A)−→℘(A×A)1. This makes presumable the existence of
a defeating function ε : A × A−→{true, false}, such that:

for any pair of arguments a, b ∈ A, ε(a, b) = true iff (a, b) ∈ RA (1)

Definition 1 (Argumentation Framework Generator). Let A be a finite
set of arguments, an operator FA is an argumentation framework generator
from A (or just, AF generator) iff FA is an AF 〈A,RA〉.

Our intention is to simplify AFs at the greatest possible level in order to con-
centrate firstly on specific matters for dealing with the acceptability dynamics
of arguments, and afterwards, from Sect. 5, we will analyze the proposed theory
for argumentation dynamics in the light of logic-based frameworks, where argu-
ments will be constructed upon a specific logic L. Consequently, when necessary,
we will abstract away the construction of an AF FA from any set of arguments
A, by simply referring to an AF τ . In such a case, we will refer to the set of
arguments of τ by writing A(τ) and to the set of defeats of τ by writing R(τ).

Next, we introduce some well known concepts from argumentation theory
[13] that makes possible the acceptability analysis of arguments through the
usage of argumentation semantics. Given an AF FA, for any Θ ⊆ A we say that:

– Θ defeats an argument a ∈ A iff there is some b ∈ Θ such that b defeats a.
– Θ defends an argument a ∈ A iff Θ defeats every defeater of a.
– Θ is conflict-free iff RΘ = ∅.
– Θ is admissible iff it is conflict-free and defends all its members.

Given an AF FA, for any set E ⊆ A of arguments, we say that:

1. E is a stable extension if E is conflict-free and defeats any a ∈ A \ E
2. E is a complete extension if E is admissible and contains every argument

it defends
3. E is a preferred extension if E is a maximal (wrt. set incl.) admissible set
4. E is the grounded extension if E is the minimal (wrt. set incl.) complete

extension, i.e., E is the least fixed point of F(X) = {a ∈ A|X defends a}
5. E is a semi-stable extension if E is a complete extension and the set

E ∪ {a ∈ A|E defeats a} is maximal wrt. set inclusion
6. E is the ideal extension if E is the maximal (wrt. set incl.) admissible set

that is contained in every preferred extension

1 Observe that we use the notation ℘(Θ) for referring to the powerset of Θ.
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The above six notions are known as extension semantics. It is possible to
have no stable extensions, and also that there may be more than a single stable,
complete, preferred and semi-stable extensions, but only one grounded and one
ideal extension. The set Es(τ) identifies the set of s-extensions E from the AF
τ = FA, where an s-extension is an extension in τ according to some extension
semantics s, and where s adopts a value from {st, co, pr, gr, ss, id} correspond-
ing to the stable (st), complete (co), preferred (pr), grounded (gr), semi-stable
(ss), and ideal (id) semantics. For instance, the set Epr(τ) will contain all the
preferred extensions in τ . Observe that any extension E ∈ Es(τ) is an admissi-
ble set. The relation among extension semantics is shown as Est(τ) ⊆ Ess(τ) ⊆
Epr(τ) ⊆ Eco(τ), and also Egr(τ) ⊆ Eco(τ) and Eid(τ) ⊆ Eco(τ).

3 Preliminaries for Studying Dynamics of Arguments

We refer as acceptance criterion to the determination of acceptance of arguments
in either a sceptical or credulous way. Several postures may appear. For instance,
according to [15] a sceptical set is obtained by intersecting every s-extension
(see Eq. 2), and a credulous set resulting from the union of every s-extension
(Eq. 4). Since the latter posture may trigger non-conflict free sets, we suggest
a different alternative for credulous acceptance, for instance, one may choose
a single extension due to some specific preference, like selecting among those
extensions of maximal cardinality, “the best representative” one according to
some criterion upon ordering of arguments (Eq. 3). Assuming an abstract AF τ :

⋂

E∈Es(τ)

E (2)

E ∈ Es(τ) such that for any (3)
E′ ∈ Es(τ), |E| ≥ |E′| holds

⋃

E∈Es(τ)

E (4)

Definition 2 (Acceptance Function). Given an AF τ = FA and an exten-
sion semantics s ∈ {st, co, pr, gr, ss, id} determining a set Es(τ) ⊆ ℘(A) of
s-extensions, a function δ : ℘(℘(A))−→℘(A) is an acceptance function iff
δ(Es(τ)) ⊆ A determines a conflict-free set of arguments from A.

The acceptance criterion can be applied through an acceptance function as
defined above. Note that Eq. 4 does not fulfill the necessary conditions for an
acceptance function given that it may trigger non-conflict-free sets. We will
abstract away from a specific definition for an acceptance function and will only
refer to δ when necessary. We refer as (argumentation) semantics specification
S to a tuple 〈s, δ〉, where s stands for identifying some extension semantics and
δ for an acceptance function implementing some acceptance criterion.
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Definition 3 (Acceptable Set). Given an AF τ = FA and a semantics spec-
ification S = 〈s, δ〉, the set AS(τ) ⊆ A is the acceptable set of τ according to
S iff AS(τ) = δ(Es(τ)).

For instance, adopting an acceptance function implementing Eq. 2, the set
A〈pr,δ〉(τ) identifies the sceptical acceptance set for a preferred semantics.

Definition 4 (Argument Acceptance/Rejection). Given an AF τ = FA

and a semantics specification S = 〈s, δ〉, an argument a ∈ A is S-accepted in
τ iff a ∈ AS(τ). Conversely, a ∈ A is S-rejected in τ iff a 
∈ AS(τ).

Admissible and core sets of an argument as the fundamental notions for
recognizing the sources for the acceptability condition of a given argument.

Definition 5 (Admissible Sets of an Argument). Given an AF τ = FA and
an argument a ∈ A; for any Θ ⊆ A, we say that:

1. Θ is an a-admissible set in τ iff Θ is an admissible set such that a ∈ Θ.
2. Θ is a minimal a-admissible set in τ iff Θ is a-admissible and for any

Θ′ ⊂ Θ, it follows that Θ′ is not a-admissible.

Definition 6 (Core Sets). Given an AF τ = FA and an argumentation seman-
tics specification S, for any C ⊆ A, we say that C is an a-core in τ , noted as
a-coreS iff C is a minimal a-admissible set and a is S-accepted in τ .

Next we define rejecting sets of an argument a as the fundamental notion for
studying and recognizing the basics for the rejecting condition of a. Intuitively,
a rejecting set R for a should be that which ensures that a would end up S-
accepted in the AF FA\R. Before formalizing rejecting sets through Definition 8,
we propose the intermediate notions of partially admissible and defeating sets.

Definition 7 (Partially Admissible and Defeating Sets). Given an AF
τ = FA; for any Θ ⊆ A and any argument a ∈ A, we say that:

1. b defeats Θ iff b defeats some c ∈ Θ.
2. Θ is a-partially admissible iff a ∈ Θ, Θ is conflict-free, and if c ∈ Θ, with

c 
= a then there is some b ∈ A such that c defeats b and b defeats Θ \ {c}.
3. Θ is a-defeating iff there is some a-partially admissible set Θ′ such that

Θ ⊇ Υ ⊆ {b ∈ A|b defeats Θ′}.
The partially admissible set for a given argument a is an effort for con-

structing a set which would end up turning into an a-coreS after removing an
appropriate a-defeating set from the worked AF. The purpose of using a super-
inclusion for constructing defeating sets is to capture particular situations when
working with subargumentation. This will be clear in Sect. 5. Determining a cor-
rect defeating set depends on two sequential steps: firstly, it should ensure that
its removal turns a into S-accepted (see rejecting sets on Definition 8), and sec-
ondly, it should be minimal for such condition (remainder sets on Definition 9).
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Definition 8 (Rejecting Sets). Given an AF τ = FA, a semantics specifica-
tion S, and an argument a ∈ A; for any Θ ⊆ A, we say that Θ is S-a-rejecting
in τ iff Θ is a-defeating in τ and a is S-accepted in FA\Θ.

Remainder sets state “responsibility” to arguments for the non-acceptability
of an argument. Intuitively, an a-remainder is a minimal S-a-rejecting set.

Definition 9 (Remainder Sets). Given an AF τ = FA and an argumentation
semantics specification S, for any R ⊆ A, we say that R is an a-remainder
in τ , noted as a-remainderS iff R is a S-a-rejecting set and for any Θ ⊂ R, it
follows that a is S-rejected in the AF FA\Θ.

Example 10. Given the AF τ = FA, where A = {a, b, c, d, d′, e, e′, f, g, h} and RA

renders the argumentation graph depicted below on the right. Argument b is not
accepted by any semantics since there is no admissible set containing it. For
instance, Epr(τ) = {{f, e, e′, c, a}, {h, g, e, e′, c, a}}, and Egr(τ) = {{e, e′, c, a}}.

However, it is possible to propose different alterna-
tives of change to move towards an epistemic state in
which argument b turns to accepted in the resulting
AF. For instance, let us consider a semantics specifica-
tion S = 〈s, δ〉, where the acceptance function δ imple-
ments Eq. 2 and s = pr. In this case, the acceptable
set would be AS(τ) = {e, e′, c, a}. Note that {e}, {e′},
{c} are b-remainderS sets. This is so, given that {e} Graph of AF τ
is b-defeating for the b-partially admissible set {b, d}, in the same manner that
{e′} is for {b, d′}, and {c} is for {b}. Note that {e, e′, c} is b-defeating for the b-
partially admissible set {b, d, d′}, however while {e, e′, c} is a S-b-rejecting set, it
is not a b-remainderS given that it is not minimal. Afterwards, considering the b-
remainderS {e}, we can build a new AF τ1 = FA\{e} whose resulting acceptance
set would be AS(τ1) = {d, e′, b}, since Epr(τ1) = {{f, d, e′, b}, {h, g, d, e′, b}}.

Once again, considering the AF τ under the same
semantic specification, note that g is not S-accepted
despite there is an extension {h, g, e, e′, c, a} ∈ Epr(τ)
which contains g. The situation here arises from the
acceptance function δ which requires intersecting every
extension in Epr(τ). Note also that there is a g-
admissible set {g, h}. However, it is possible to propose
an alternative of change to move towards an epistemic Graph of AF τ1
state in which argument g turns to accepted in the resulting AF. To that end, we
can construct two g-partially admissible sets {g} and {g, h}. Note that, for any
of them, it appears a g-defeating set {f} which ends up being a S-g-rejecting set
and also a g-remainderS in the resulting AF τ2 = FA\{f} whose acceptance set
would be AS(τ2) = {g, h, e, e′, c, a}, since it ends up being the unique preferred
extension in Epr(τ2).
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Observe that by considering an acceptance function
δ implementing Eq. 3 under the preferred semantics, the
acceptable set would be AS(τ) = {h, g, e, e′, c, a}. Thus,
it is natural to have that the unique g-remainderS ends
up being the empty set. This is so, given that although
both ∅ and {f} are g-defeating sets, and even both of
them are also S-g-rejecting sets, {f} does not fulfill the
requirements for being a g-remainderS given that is is not Graph of AF τ2
minimal. This will be of utmost relevance for pursuing the verification of the well
known principle of minimal change.

Definition 11 (Set of Cores and Set of Remainders). Given an AF τ =
FA, a semantics specification S, and an argument a ∈ A, we say that:

1. 
S(τ, a) is the set of cores of a iff 
S(τ, a) contains every a-coreS C ⊆ A.
2. ⊥S(τ, a) is the set of remainders of a iff ⊥S(τ, a) contains every a-

remainderS R ⊆ A.

Example 12 (Continues from Example 10). Considering the acceptance function
implementing Eq. 2 over the preferred semantics, the set of cores for argument a
ends up being 
S(τ, a) = {{a, c, e, e′}}. Also, the corresponding set of remainders
for argument b is ⊥S(τ, b) = {{e}, {e′}, {c}}. On the other hand, if we consider
the b-remainderS {e} for analyzing the AF τ1 = FA\{e}, argument b turns out
being S-accepted since it is possible to identify a b-coreS . In such a case, the
resulting set of cores for b would be 
S(τ1, b) = {{b, d}}.

Proposition 13. Given an AF τ = FA, a semantics specification S, and an
argument a ∈ A; the following properties hold: (1) 
S(τ, a) = ∅ iff ⊥S(τ, a) 
= ∅,
(2) a ∈ AS(τ) iff 
S(τ, a) 
= ∅, and (3) a 
∈ AS(τ) iff ⊥S(τ, a) 
= ∅.

Proposition 13 states the interrelation between the sets of cores and remain-
ders and how they relate with an argument’s S-acceptance.

4 Argumentation Dynamics Through Retractive Methods

For a rational handling of the acceptability dynamics of arguments, a change
operation applied to an AF τ should provoke a controlled alteration of the accept-
able set AS(τ) towards achieving a specific purpose. For instance, a contraction
operation may modify the acceptable set in order to contract the acceptance
condition of a specific argument. The acceptance contraction of an argument
can be achieved through the removal of arguments from the set A(τ). How-
ever, observe that the acceptable set AS(τ) has a non-monotonic construction
from τ . This means that removing/incorporating arguments from/to the argu-
mentation framework does not imply that the resulting acceptable set would
be de/increased regarding the original one. Consequently, it is also possible to
consider the addition of new arguments to the framework, in order to ensure an
argument a to be rejected in the resulting framework. The former alternative
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could be achieved by breaking all a-coreS sets, whereas for the latter alternative,
the idea would be to incorporate new arguments towards the construction of a-
remainderS sets. On the other hand, a contraction operation may modify the
acceptable set in order to contract the rejection condition of a specific argument.
The rejection contraction of an argument a ensures that a ends up accepted. We
can achieve acceptance of an argument a either by removing arguments from A
to break the existence of a-remainderS sets, or also by incorporating arguments
to A to construct a-coreS sets. It is possible to establish an analogy between
classical belief revision, where a contraction by a formula α (resp. of, ¬α) ensures
α’s truth (resp. of, falsity) is not inferred and, belief revision in argumentation,
where an acceptance contraction (resp. of, rejection contraction) by an argument
a ensures a is not accepted (resp. of, not rejected).

Revisions and contractions are usually defined independently with the inten-
tion to interrelate them afterwards by setting up a duality. A philosophic dis-
cussion is sustained on the matter of the nature of such independence. Some
researchers assert that there is really no contraction whose existence could be
justified without a revision. In fact, they state that a contraction conforms an
intermediate state towards the full specification of the revision. Such an intuition
fits quite well our approach. For instance, if we think the argumentation stands
for a normative system, it is natural to assume that a new norm is intended
to be incorporated –through a revision– for ensuring afterwards its acceptance
–through some intermediate contraction. Another alternative is to assume a
derogative norm, whose purpose is to enter the system –through a revision– for
ensuring afterwards the rejection of an elder norm –through some intermediate
contraction for ensuring the acceptance of the derogative norm. In this paper
we focus on an acceptance revision operation obtained through the removal of
arguments from the set A, i.e., a sort of retractive acceptance revision. Such a
revision operation retracts from the AF some a-remainderS set –for ensuring the
acceptance of a new argument a– through the usage of a rejection contraction.
Thus, with a retractive acceptance revision, we assume the idea of provoking
change to the AF for altering the acceptable set with the intention to pursue
acceptability of an argument a, which can be external to the original AF.

An operator ‘�’ ensures that given an AF τ and a new argument a, the accep-
tance revision of τ by a ends up in a new AF τ � a in which a is S-accepted. We
refer to an early contribution by Levi [17] to belief revision, where he related
revisions to contractions. He suggested that a revision (‘∗’) of a base Σ by a
new information α should be achieved through two stages. Firstly, by contract-
ing (‘−’) all possibility of deriving ¬α for obtaining a new base which would be
consistent with α. Afterwards, it could be added (‘+’) the new information α
ensuring that this stage would end up consistently. This intuition was formal-
ized in an equivalence referred to as the Levi identity : Σ ∗ α = (Σ − ¬α) + α. In
argumentation, it is natural to think that the new argument a should be incor-
porated to the AF τ through an expansion operator ‘+’, and ensuring afterwards
its acceptability through a contraction operation for breaking the rejection of a,
i.e., a rejection contraction ‘�⊥’. Note that it is mandatory to invert the two
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stages of the original Levi identity2 since it is necessary for the new argument
to be recognized by the framework in order to analyze its acceptability con-
dition. This renders an equivalence between acceptance revision and rejection
contraction through the generalization of the Levi identity: τ �a = (τ +a)�⊥a.

We will analyze the construction of two sub-operations for achieving the
acceptance revision. Firstly, we need to recognize new arguments to be incor-
porated to the framework. For such matter, let us assume a domain of abstract
arguments A, such that for any abstract AF FA, it follows that A ⊆ A. Next we
formalize the concept of external argument, and afterwards we define a simple
expansion operation for incorporating an external argument to a framework.

Definition 14 (External Argument). Given an AF τ = FA, an argument a
is external to τ (or just, external) iff a ∈ A but a 
∈ A.

Definition 15 (Expansion). Given an AF τ = FA and an external argument
a ∈ A. The operator + stands for an expansion iff τ + a = FA∪{a}.

From Proposition 13, we know that an argument a is S-accepted iff there is
no a-remainderS set. Therefore, it is sufficient to break one single a-remainderS
R ∈ ⊥S(τ, a) in order to obtain a new AF in which we could construct a-coreS
sets, implying the acceptance of a. For such purpose, we define a remainder
selection, as a function by which it is possible to select the best option among
the several a-remainderS sets from ⊥S(τ, a).

Definition 16 (Remainder Selection). Given an AF τ = FA, a semantics
specification S, and an argument a ∈ A. A remainder selection is obtained
by a selection function γ : ℘(℘(A))−→℘(A) applied over the set ⊥S(τ, a) for
selecting some a-remainderS , where γ(⊥S(τ, a)) ∈ ⊥S(τ, a) is such that for every
R ∈ ⊥S(τ, a) it holds γ(⊥S(τ, a)) �γ R, where �γ is a selection criterion by
which it is possible to select the best representative a-remainderS set.

The selection criterion can be any method for ordering sets of arguments. In
the sequel, we will abstract away from any specific selection criterion. Now it is
easy to define the rejection contraction by relying upon a selection function.

Definition 17 (Rejection Contraction). Given an AF τ = FA, a semantics
specification S, and an argument a ∈ A. The operator �⊥ stands for a rejection
contraction iff τ �⊥a = FA\R, where R = γ(⊥S(τ, a)).

The acceptance revision may be formally given by relying upon an expansion
operation and a rejection contraction determined by a selection function.

Definition 18 (Acceptance Revision). Given an AF τ = FA, a semantics
specification S, and an external argument a ∈ A. The operator � stands for
an acceptance revision (or just, revision) iff τ � a = FA′ , where A′ =
A(τ + a) \ γ(⊥S(τ + a, a)). When necessary, we will write τ �γ a to identify the
remainder selection function γ by which the revision τ � a is obtained.
2 Inverting the Levi identity leads to an inconsistent intermediate state. This is not an

issue in argumentation since we only incorporate new pairs to the defeat relation.
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The axiomatization of the acceptance revision is achieved by analyzing the
different characters of revisions from classical belief revision [1,16] and from ATC
revision [19], for adapting the classical postulates to argumentation.

(success) a is S-accepted in τ � a
(consistency) AS(τ � a) is conflict-free
(inclusion) τ � a ⊆ τ + a
(vacuity) If a is S-accepted in τ + a then A(τ + a) ⊆ A(τ � a)
(core-retainment) If b ∈ A(τ)\A(τ �a) then exists an AF τ ′ such that A(τ ′) ⊆

A(τ) and a is S-accepted in τ ′ + a but S-rejected in (τ ′ + b) + a.

In classic belief revision, the success postulate states that the new informa-
tion should be satisfied by the revised knowledge base. From the argumentation
standpoint, this may be interpreted as the requirement of acceptability of the new
argument. Through consistency a classic revision operation ensures that the new
revised base ends up consistently always that the new belief to be incorporated
is so. From the argumentation standpoint, there should be no need for ensuring a
consistent (or conflict-free) set of arguments since the essence of such theory is to
deal with inconsistencies. However, this requirement makes sense when thinking
about the acceptable set of the framework for ensuring that the argumentation
semantics allows a consistent reasoning methodology. The consistency postulate
for extension semantics has been studied before in [2], among others. Inclusion
aims at guaranteeing that the only new information to be incorporated is the
object by which the base is revised. The restatement to argumentation may
be seen as the sole inclusion of the external argument. Vacuity captures the
conditions under which the revision operation has nothing to do but the sole
incorporation of the new information. Its restatement to argumentation may be
seen as the fact of a being S-accepted straightforwardly, with no need to remove
any argument. That is, the simple expansion of the external argument would
end up forming a new framework in which it is possible to construct a-coreS
sets. The vacuity postulate is usually referred as complementary to the inclusion
postulate, thus, a change operation satisfying both postulates ends up verifying
the equality τ � a = τ + a whenever the external argument is straightforwardly
S-accepted in the expanded framework. Through core-retainment the amount
of change is controlled by avoiding removals that are not related to the revision
operation, i.e., every belief that is lost serves to make room for the new one.
In argumentation dynamics we care on the changes perpetrated to the frame-
work in order to achieve acceptability for the external argument. Hence, any
argument that is removed should be necessary for such purpose. The rational
behavior of the acceptance revision operation is ensured through the following
representation theorem.

Theorem 19. Given an AF τ , a semantics specification S, and an external argu-
ment a ∈ A; τ �a is an acceptance revision iff ‘�’ satisfies success, consistency,
inclusion, vacuity, and core-retainment.
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5 Fundamentals for Logic-Based Frameworks

We will assume a logic L to which the represented knowledge will correspond. In
addition, we will assume an argument domain set referred as AL to which (logic-
based) arguments containing L formulae will conform. Arguments will be defined
upon L knowledge through a set of premises and a claim such that an argument
a ∈ AL can be expressed through a pair, namely the argument interface, 〈S, ϑ〉 ∈
AL, where S ⊆ L is referred as the support and ϑ ∈ L as the claim. The
logic L will be considered along with its corresponding inference operator |=,
constituting a complete deductive system 〈L, |=〉. Therefore, according to the
classic notion of argument, we can assume that given an argument 〈S, ϑ〉 ∈ AL,
the basic three principles are satisfied: (deduction) S |= ϑ, (minimality) there is
no subset S′ ⊂ S such that S′ |= ϑ, and (consistency) S is consistent according
to L, i.e., S 
|= ⊥. Finally, we will eventually say that an argument a supports ϑ
from S to informally specify that the argument claim is the formula ϑ ∈ L and
similarly that its support is given by the set S ⊆ L, or formally that the argument
a = 〈S, ϑ〉 ∈ AL. We will rely upon two functions cl : AL −→ L and sp : AL −→
℘(L) to identify both the claim and support set of AL-arguments. Hence, given
an argument a ∈ AL, we can refer to the claim and support set as cl(a) ∈ L
and sp(a) ⊆ L, respectively. Moreover, the function sp will be overloaded as
sp : ℘(AL) −→ ℘(L) in order to be applied over sets of arguments such that
given a set Θ ⊆ AL, sp(Θ) =

⋃
a∈Θ sp(a) will identify the base determined by

the set of supports of arguments contained in Θ.
A (logic-based) argumentation framework (AF) will be assumed as a pair

〈A,RA〉, where A ⊆ AL is a finite set of arguments, and the set RA ⊆ AL ×AL
identifies the finitary defeat relation between pairs of arguments such that:

RA = {(a, b)|a, b ∈ A, sp(a) ∪ sp(b) |= ⊥, and a � b} (5)

A pair (a, b) ∈ RA implies that a ∈ A defeats b ∈ A, or equivalently, a is a
defeater of b, meaning that the supports of both arguments a and b cannot be
simultaneously assumed in a consistent manner, and also that a is preferred over
b, according to some abstract preference relation �. We will keep the defeating
function ε abstract, assuming that it is valid iff condition (1) in p. 5 is satisfied.
Different instantiations of such a function has been widely studied in [15].

Since any logic-based argument is built from a set of formulae –standing
for its support set– it is natural to think that any subset of the support set
can be used to build another argument. This intuition describes the concepts of
sub-arguments (and super-arguments). We will identify a sub-argument relation
by writing a � b for expressing that an argument a ∈ AL is a sub-argument
of argument b ∈ AL (and also that b is a super-argument of a), implying that
sp(a) ⊆ sp(b) holds. We will also identify the set of all sub-arguments of an
argument a ∈ AL through the function subs : AL−→℘(AL) such that subs(a) =
{b ∈ AL|b � a}, for any argument a ∈ AL.

Logic-based argumentation may unveil some problems with regards to the
conflict recognition between pairs of arguments. Consider the following example
where arguments are constructed upon a propositional logic L.
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Example 20. Assuming Θ ⊆ AL such that Θ = {a, b, c} where a = 〈{p}, p〉,
b = 〈{q}, q〉, and c = 〈{¬p ∨ ¬q},¬p ∨ ¬q〉. The AF generator FΘ will construct
an AF with an empty set of defeats RΘ. Note that Θ is admissible given that it
is conflict-free and that it has no defeaters. However, sp(Θ) |= ⊥ holds.

The problem presented in Example 20 relies on the construction of logic-
based AFs from arbitrary sets of arguments. It is necessary to build all possi-
ble arguments, including sub and super arguments, in order to ensure that the
resulting AF will deliver rational responses through an argumentation seman-
tics. We say that a set of arguments is closed whenever it contains all the sub-
and super-arguments that can be constructed from its arguments. This ensures
an exhaustive construction of arguments from an initial base of arguments. We
provide such implementation through an argumentation closure operator C.

Definition 21 (Argumentation Closure). An operator C is an argumen-
tation closure iff for any Θ ⊆ AL, it holds C(Θ) = {a ∈ AL|a � b, for any b ∈
Θ} ∪ {a ∈ AL|subs(a) ⊆ Θ}. We say that Θ is closed iff it holds Θ = C(Θ).

The following proposition shows that the closure of a set Θ of arguments
triggers the complete set of arguments that can be constructed using the formulae
involved in arguments contained in Θ.

Proposition 22. Given a set of arguments Θ ⊆ AL, the underlying knowledge
base Σ = sp(Θ), and the set AΣ ⊆ AL of all the possible arguments constructed
from Σ. The set Θ is closed iff Θ = AΣ.

We refer to a structure 〈A,RA〉 as a closed AF iff it is constructed through a
closed set of arguments A ⊆ AL, i.e., A = C(A). Depending on the specification
of the language L, the argumentation closure may trigger multiple different argu-
ments with a unique support and even more, it could result infinitary, triggering
an infinite set of arguments if the closure is achieved in an uncontrolled manner.
Several alternatives may arise to keep a finite, and still closed, set of arguments.
For instance, it is possible to restrict the claim of arguments to some specific
form in order to avoid constructing several arguments with logically equivalent
claims and a same support set. A nice alternative for doing this is to restrict the
construction of arguments to their canonical form [6], in which for any argument
a, its claim has the form cl(a) =

∧
sp(a). In the sequel, and just for simplicity,

we will abstract away from such specific matters involving the construction of
arguments, by simply referring to a domain A

∗
L ⊆ AL, where A

∗
L is the domain

of arguments of a unique representation: for any pair of arguments a, b ∈ A
∗
L,

it follows that if sp(a) = sp(b) then cl(a) = cl(b), and thus it holds a = b. This
restriction ensures that any set Θ ⊆ A

∗
L of arguments ends up in a finite closed

set C
∗(Θ) = A independently of the method used for ensuring it, where C

∗(Θ)
is the closed set of A∗

L-arguments such that C
∗(Θ) = C(Θ) ∩ A

∗
L. From now on,

we will write A (or A′) for referring only to closed sets of A∗
L-arguments.

In what follows, we will write FA for referring to the AF 〈A,RA〉, where
A ⊆ A

∗
L is a closed set, i.e., C∗(A) = A. In such a case, we say that FA is a

closed AF. This will also allow us to refer to any sub-framework FΘ = 〈Θ,RΘ〉,
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where Θ ⊆ A is a not necessarily closed set of arguments. In such a case, we
will overload the sub-argument operator ‘�’ by also using it for identifying sub-
frameworks, writing FΘ � FA. Observe that, if C∗(Θ) = A′ and A′ ⊂ A, then
FA′ is a closed strict sub-framework of FA, i.e., FA′ � FA.

By relying upon closed argumentation frameworks we ensure that the accept-
able set AS(FA) will trigger rational results. A closed AF FA will be necessary
for satisfying closure under sub-arguments and exhaustiveness postulates from
to [2]. On the other hand, a set RA as defined in Eq. 5 describes a general defeat
relation which is conflict-dependent and conflict-sensitive according to [2]. This
means that any minimal inconsistent set of formulae implies the construction of
a pair of arguments which will necessarily be conflicting, and that any pair of
conflicting arguments implies a minimal source of inconsistency. This property
guarantees that the framework will satisfy the postulate referred as closure under
sub-arguments under any of the extension semantics reviewed before. This pos-
tulate is necessary to ensure a rational framework independently of the semantics
adopted given that, for any s-extension E we will ensure that if a ∈ E then for
any sub-argument b � a it holds b ∈ E. The closure under CN postulate [2]
will not be verified given that we prevent the construction of several claims for
a same argument’s body through a unique representation like canonical argu-
ments. However, it holds in a “semantic sense”: closed AFs ensure drawing all
such possible claims.

Example 23 (Continues from Example 20). By assuming A
∗
L as the domain of

canonical arguments, the argumentation closure renders the closed set of argu-
ments: A = C

∗(Θ) = {a, b, c, d, e, f}, where d = 〈{p, q}, p∧ q〉, e = 〈{p,¬p∨¬q},
p ∧ (¬p ∨ ¬q)〉, and f = 〈{q,¬p ∨ ¬q}, q ∧ (¬p ∨ ¬q)〉. For the construc-
tion of the set of defeats, we will assume that any argument in Θ is pre-
ferred over any other argument which is not in Θ, whereas when consider-
ing a pair of arguments where both are either Θ insiders or outsiders, the
preference relation will be symmetric. Thus, we obtain the following pairs of
defeats: RA = {(a, f), (b, e), (c, d), (d, e), (d, f), (e, d), (f, d)}. Observe however
that although sp(Θ) is inconsistent, Θ is still admissible.

Through the argumentation closure, we have provided a method for ensuring
that a closed AF is complete given that we have all the possible arguments that
can be constructed from the set of arguments and therefore all the sources of
conflict will be identified through the defeat relation. However, we still have a
problem: as is shown in Example 23, Θ ⊆ A keeps being admissible given that
it is conflict-free. Thus, it is necessary to reformulate the abstract notion for
admissible sets by requiring their closure.

Definition 24 (Logic-based Admissibility). Given an AF FA, for any Θ ⊆
A we say that Θ is admissible iff Θ is closed (i.e., Θ = C

∗(Θ)), conflict-free,
and defends all its members.

Once again, regarding postulates in [2], working with closed AFs and taking in
consideration the reformulated notion of admissibility in logic-based frameworks,
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guarantees the consistency postulate which ensures that every s-extension con-
tains a consistent support base, i.e., for any closed AF τ , sp(Es(τ)) 
|= ⊥ holds.

Example 25 (Continues from Example 23). Under the new definition of admissi-
bility, we have that Θ cannot be admissible since it is not closed. The following
admissible sets appear: {a}, {b}, and {c}. Note that the sets {a, b, d}, {a, c, e},
and {b, c, f}, are not admissible given that although they are closed and conflict-
free, none of them defends all its members.

Definition 24 for admissibility in logic-based frameworks makes core sets end
up closed without inconvenient. However, the case of remainder sets is different.
Having a set Θ ⊆ A, the problem is that we only can ensure that an argument a
is accepted in the sub-framework FA\Θ if we can ensure that A\Θ is a closed set
(see Example 20). This ends up conditioning Definition 9. Hence, it is necessary to
provide some constructive definition for remainder sets. This allows determining
which property should satisfy a set Θ ⊆ A for ensuring that if A is a closed
set then the operation A \ Θ also determines a closed set. In Definition 27, we
propose an expansive closure which will rely upon the identification of a set of
atomic arguments: arguments that have no strict sub-arguments inside. That is,
given an argument a ∈ A

∗
L, a is atomic iff |sp(a)| = 1.

Definition 26 (Set of Atomic Arguments). Given an AF FA and an argu-
ment a ∈ A, a function at : A∗

L−→℘(A∗
L) is an atoms function iff it renders

the set of atomic arguments at(a) ⊆ A of a such that at(a) = {b ∈ A|b � a
and there is no c ∈ A such that c � b}.

We will overload the atoms function as at : ℘(A∗
L)−→℘(A∗

L) to be applied
over sets of arguments such that at(Θ) =

⋃
a∈Θ at(a).

Definition 27 (Expansive Closure). Given an AF FA and a set Θ ⊆ A,
an operator P is an expansive closure iff P(Θ) = {a ∈ A|b � a, for every
b ∈ at(P0(Θ))}, where P0(Θ) = {a ∈ Θ| there is no b ∈ Θ such that b � a}. We
say that Θ is expanded iff it holds Θ = P(Θ).

Note that P0(Θ) contains all the arguments from Θ having no sub-arguments
in Θ, while P(Θ) contains all the arguments from A having some atomic sub-
argument of some argument in P0(Θ). The expansive closure is a sort of super-
argument closure in the sense that it contains all the arguments that should
disappear by removing Θ from A. Proposition 28 verifies that if we remove from
a closed set another set which is expanded then we obtain a new closed set.

Proposition 28. Given two sets A ⊆ A
∗
L and Θ ⊆ A

∗
L, where A is closed; if

Θ ⊆ A then A′ = A \ P(Θ) is a closed set, i.e., A′ = C
∗(A′).

Definition 29 (Logic-based Remainder Sets). Given an AF FA and a
semantics specification S, for any Θ ⊆ A, we say that Θ is an a-remainder in
FA, noted as a-remainderS iff Θ is a minimal expanded S-a-rejecting set:
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1. Θ is a S-a-rejecting set,
2. Θ = P(Θ), and
3. for any set Θ′ ⊂ Θ such that Θ′ = P(Θ′), it holds a is S-rejected in FA\Θ′ .

The following example shows how a propositional logic L for constructing
logic-based frameworks affects the notions of core and remainder sets.

Example 30. We will assume L as the propositional logic and A
∗
L as the domain

of canonical arguments. Let Θ ⊆ A
∗
L be a set of canonical arguments such

that Θ = {a, b, c, d}, where a = 〈{p ∧ q1}, p ∧ q1〉, b = 〈{p ∧ q2}, p ∧ q2〉, c =
〈{¬p},¬p〉, and d = 〈{¬q2},¬q2〉. The argumentation closure renders the closed
set of arguments A = C

∗(Θ) = {a, b, c, d, e, f, g}, where:

e = 〈{p ∧ q1, p ∧ q2}, p ∧ q1 ∧ q2〉, where subs(e) = {a, b}
f = 〈{p ∧ q1,¬q2}, p ∧ q1 ∧ ¬q2〉, where subs(f) = {a, d}
g = 〈{¬p,¬q2},¬p ∧ ¬q2〉, where subs(g) = {c, d}
Then, the AF FA is closed and through a pref-

erence relation RA = {(a, c), (b, c), (d, g), (d, b),
(e, c), (e, d), (b, f), (f, c), (a, g), (b, g), (e, f), (e, g),
(f, g)}. Assuming S = 〈co, δ〉, where δ implements
Eq. 3, observe that a b-coreS Cb = {a, b, e} is con-
structed by the closure C

∗({b, e}). Since c and d
are S-rejected, we have remainder sets for both of
them: a c-remainderS Rc = {a, e, f} and two d-
remainderS sets Rd = {a, e, f} and R′

d = {b, e}.
Observe that Υ = {a, b, e, f} is the result of expand-

FA

ing the S-d-rejecting set {e}, i.e., Υ = P({e}). However Υ is not a d-remainderS
since it is not minimal: there are two d-defeating sets {a, e} and {b, e} whose
respective expansions are P({a, e}) = Rd and P({b, e}) = R′

d. Note that,
although {e} is a d-defeating set, the superinclusion in Definition 7, item 3,
allows the consideration of some additional argument/s. Clearly, the only alter-
native for that is to incorporate some atom/s of some argument/s included in
the defeating set.

6 Argumentation Dynamics in Logic-Based Frameworks

We need to consider closed logic-based frameworks which provokes a necessary
reformulation of the expansion operation. This ensures a closed resulting frame-
work after the incorporation of an external argument a ∈ A

∗
L.

Definition 31 (Expansion). Given an AF FA and an external argument a ∈
A

∗
L. The operator + stands for an expansion iff FA + a = FC∗(A∪{a}).

Definitions for change operations proposed in Sect. 4 will perfectly apply for
logic-based frameworks if the references to expansion operations are interpreted
as logic-based expansions, according to Definition 31. Thus, a revision τ � a will



18 M.O. Moguillansky

refer to an operation (τ + a) �⊥a, where + is a logic-based expansion. Change
operations for logic-based frameworks incorporated the necessary consideration
of L-formulae. This brings about the necessity to discuss additional postulates
for the complete rationalization of closed frameworks. In classic belief revision,
the closure postulate states that if a base Σ is a closed set (referred as belief
set) then the result of the revision should also be ensured to be closed. In this
case, by closure they refer to a closure under logical consequences, obtaining, in
general, infinite closed sets. This kind of closure is different from the proposed
argumentation closure. As being explained before, the argumentation closure –
applied over singleton construction of arguments, i.e., arguments from a domain
A

∗
L– ensures a finite closed set of arguments. However, the purpose of the argu-

mentation closure also differs from the closure under logical consequences in that
C ensures the presence of all the constructible arguments (see Proposition 22)
from a common knowledge respecting a specific construction A

∗
L, but not the

construction of all the equivalent arguments. This subject makes rationality of
acceptance revision for logic-based frameworks more similar to revision of bases
than belief sets. Finally, from the argumentation standpoint, we should ensure
that the revision of a closed AF ends up in a new closed AF.

(closure) if A(τ) = C
∗(A(τ)) then A(τ � a) = C

∗(A(τ � a))

In belief revision, it is natural to assume that revisions applied to a base by
logically equivalent formulae, have necessarily identical outcomes. The choice of
which elements of the base to retain should depend on their logical relations to
the new information. Therefore, if two sentences are inconsistent with the same
subsets of the base, they should push out the same elements from the base. This is
known as uniformity. Since we are considering arguments built from L-formulae, it
is natural to analyze the existing relations between two different arguments which
coincide in their conflict-relations, supports and claims. For this matter it is nec-
essary to specify an equivalence relation for arguments in order to ensure that the
revisions τ � a and τ � b have equivalent outcomes (see [19]).

Definition 32 (Equivalence [19]). For any pair of arguments a, b ∈ A
∗
L, we

say that a and b are equivalent arguments, noted as a ≡ b iff cl(a) |= cl(b) and
cl(b) |= cl(a) and for any a′ � a there is b′ � b such that a′ ≡ b′.

(uniformity) if a ≡ b then A(τ) ∩ A(τ � a) = A(τ) ∩ A(τ � b)

Inspired by smooth incisions in Hansson’s Kernel Contractions [16], we intro-
duce an additional condition on remainder selection functions for guaranteeing
uniformity. Under the consideration of two equivalent arguments a and b, the
idea is to ensure that a remainder selection function will trigger a same remainder
R which is common to both sets of remainders ⊥S(τ + a, a) and ⊥S(τ + b, b).

Definition 33 (Smooth Remainder Selection). Given an AF τ and two
external arguments a, b ∈ A

∗
L. If a ≡ b then γ(⊥S(τ + a, a)) = γ(⊥S(τ + b, b)).
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Given an AF τ and an external argument a ∈ A
∗
L, we will refer to any oper-

ation τ �γ a as smooth acceptance revision iff τ �γ a is an acceptance revision
obtained through a smooth remainder selection ‘γ’. Now we are able to formalize
the representation theorem for smooth acceptance revisions.

Theorem 34. Given an AF τ , a semantics specification S, and an external argu-
ment a ∈ A

∗
L; τ � a is a smooth acceptance revision iff ‘ � ’ satisfies closure,

success, consistency, inclusion, vacuity, core-retainment, and uniformity.

Example 35 [Continues from Example 30] Suppose, we have
Θ′ = {a, b, c}, where a = 〈{p∧ q1}, p∧ q1〉, b = 〈{p∧ q2}, p∧
q2〉, and c = 〈{¬p},¬p〉. The argumentation closure renders
the set A′ = C

∗(Θ′) = {a, b, c, e}, such that e = 〈{p∧ q1, p∧
q2}, p∧q1∧q2〉, where subs(e) = {a, b}. Then, for the closed
AF FA′ , the attack relation is RA′ = {(a, c), (b, c), (e, c)}.
We need to revise τ = FA′ by the external argument d =

FA′

〈{¬q2},¬q2〉.

τ�d

Note τ�d=FA′′ , where A′′ =A(τ+d)\γ(⊥S(τ + d, d)),
is equivalent to τ � d = (τ + d) � ⊥d through the
generalization of the Levi identity (p. 11). Note that
τ + d = FA (see Example 30). We know there are
two d-remainderS sets Rd = {a, e, f} and R′

d =
{b, e}. Assuming a selection criterion R′

d �γ Rd,
we have γ(⊥S(τ + d, d)) = R′

d and also A′′ = A \
R′

d = {a, c, d, f, g}. Finally, the resulting revised
framework ends up as τ � d = FA′′ , where RA =
{(a, c), (d, g), (f, c), (a, g), (f, g)}.

Note that the acceptance revision can be seen as sp(A(τ + d)) \ sp(Θ′′),
where Θ′′ = P0(γ(⊥S(τ + d, d))) = P0(R′

d) = {b} (see Definition 27). Hence,
sp(A(τ � d)) = sp(A(τ + d)) \ sp(Θ′′) = sp({a, b, c, d, e, f, g}) \ sp({b}) =
{p ∧ q1, p ∧ q2,¬p,¬q2} \ {p ∧ q2} = {p ∧ q1,¬p,¬q2}, corresponding to the
set of arguments {a, c, d}, whose closure is C

∗({a, c, d}) = {a, c, d, f, g} = A′′.

The previous example shows the relation between an acceptance revision
applied directly over the set of arguments, regarding a related operation upon
the underlying knowledge base from which the logic-based AF is constructed.

Proposition 36. Given an AF τ , a semantics specification S, an external argu-
ment a ∈ A

∗
L, and a smooth acceptance revision ‘�’; assuming A∗

Σ ⊆ A
∗
L as the

set of all canonical arguments A
∗
L constructible from a knowledge base Σ ⊆ L,

it holds A(τ � a) = A∗
Σ, where Σ = sp(A(τ + a)) \ sp(P0(γ(⊥S(τ + a, a)))).

7 Conclusions

Related and Future Work. The expansion proposed here can be seen as
a normal expansion [4] since we do not restrict the directionality of the new
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attacks which appear after a new argument is incorporated to the framework.
Authors there propose some general properties for ensuring the (im)possibility
of enforcing a set of abstract arguments, which refers to the modification of
the abstract framework for achieving a specific result through some standard
semantics. Logic-based argumentation is out of the scope of the article. There
are two other differences with our work. Firstly, they pursue a kind of multiple
expansion since they consider the addition of an entire set of arguments and the
interaction through attack with the existing ones. In our work, this is possible
but only from the perspective of several subarguments which are part of a single
superargument. Secondly, they only consider expansions. In a subsequent work
[3], authors incorporate deletion of attacks. However, only minimal change is con-
sidered which renders no possibility for a complete characterization of change
through representation theorems. There, the formalization of the minimal change
principle is achieved through the introduction of numerical measures for indi-
cating how far two argumentation frameworks are. Another revision approach
in an AGM spirit is presented in [10] through revision formulæ that express how
the acceptability of some arguments should be changed. As a result, they derive
argumentation systems which satisfy the given revision formula, and are such
that the corresponding extensions are as close as possible to the extensions of
the input system. The revision presented is divided in two subsequent levels:
firstly, revising the extensions produced by the standard semantics. This is done
without considering the attack relation. Secondly, the generation of argumenta-
tion systems fulfilling the outcome delivered by the first level. Minimal change
is pursued in two different levels, firstly, by ensuring as less change as possible
regarding the arguments contained in each extension, and secondly, procuring as
less change as possible on the argumentation graph. The methods they provide
do not provoke change upon the set of arguments, but only upon the attack rela-
tions. Similar to [3], their operator is more related to a distance based-revision
which measures the differences from the actual extensions with respect to the
ones obtained for verifying the revision formula. They give a basic set of rational-
ity postulates in the very spirit of AGM, but more closed to the perspective given
in [14]. They only show that the model presented satisfies the postulates without
giving the complete representation theorem for which the way back of the proof,
i.e., from postulates to the construction, is missing. However, the very recent
work [12], which is in general a refinement of [9,10], proposes a generic solution
to the revision of argumentation frameworks by relying upon complete represen-
tation theorems. In addition, the revision from the perspective of argumentation
frameworks is also considered. Other distance based approaches in this direction
are the works by Booth et al. [7,8], were authors develop a general AGM-like
approach for modeling the dynamics of argumentation frameworks based on the
distance between conflict-free labellings for the complete semantics only. They
propose the notion of fall back beliefs for representing the rational outcome of an
AF from a constraint. A different approach, but still in an AGM spirit was pre-
sented in [5], where authors propose expansion and revision operators for Dung’s
abstract argumentation frameworks (AFs) based on a novel proposal called Dung
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logics with the particularity that equivalence in such logics coincides with strong
equivalence for the respective argumentation semantics. The approach presents
a reformulation of the AGM postulates in terms of monotonic consequence rela-
tions for AFs. They finally state that standard approaches based on measuring
distance between models are not appropriate for AFs.

In general, the aforementioned works differ from ours in the perspective of
dealing with the argumentation dynamics. This also renders different directions
to follow for achieving rationality. To our knowledge, [19] was the first work
to propose AGM postulates for rationalizing argumentation dynamics, provid-
ing also complete representation theorems for the proposed revision operations
built upon logic-based argumentation. The rationalization done here is mainly
inspired by such results, however change methods are pursued upon standard
semantics in contrast to dialectical trees as done in [19]. Similar to the notion
of remainders, in [19] and other ATC approaches like [18,20], authors recognize
from the dialectical trees some sets of arguments which are identified as “respon-
sible” for the rejection of arguments. In this paper we follow a similar intuition,
however, core and remainder sets are more general notions for identifying the
sources of acceptance/rejection of specific arguments upon standard semantics.

The problem of revising a framework by a set of arguments has been shown
in [11] to suffer from failures regarding enforcement as originally defined in [4].
This is an interesting problem to which the theory here proposed may bring
different solutions. To that end, it would be interesting to extend the acceptance
revision operator for revising a framework by an unrestricted set of arguments
rather than a single one, or a superargument including several subarguments.
Such an operation seems to fit better as an argumentation merge.

Discussion. We proposed a model of change for argumentation based on the
novel concepts of core and remainder sets. Core sets can be thought as mini-
mal sets which are necessary for ensuring the acceptability of a given argument
whereas remainder sets can be understood as minimal sets which are somehow
responsible for the rejection of a given argument. The proposed model of change
was firstly studied upon abstract argumentation and afterwards, upon logic-
based argumentation. The resulting acceptance revision operation was charac-
terized through the proposal of rationality postulates á la belief revision, and
afterwards, the through corresponding representation theorems.

Another aspect that we wanted to demonstrate is that abstract argumenta-
tion can be counterproductive when the research is not immersed in the appro-
priate context of applicability. When the model, firstly proposed for abstract
argumentation, was observed in the context of logic-based argumentation, several
new inconveniences appeared requiring special attention, showing that abstrac-
tion can also be a path to trivialization. A conclusion that we draw is that
standard semantics may not apply correctly to a logic-based argumentation sys-
tem (AS). The usage of argumentation postulates [2,15] facilitates the analysis
for understanding how rational a set of extensions can be. Such rationality can
be achieved from two standpoints. Either from the construction of the frame-



22 M.O. Moguillansky

work, by putting special attention on how to model conflicts, or on the other
hand, by tackling the problem straightforwardly from the construction of the
extensions. In this sense, we proposed a new perspective for enriching the con-
cept of admissibility for being applied over logic-based arguments through the
notion of argumentation closure. We have shown that standard semantics relying
on logic-based admissibility can make things easier for verifying argumentation
postulates (see discussion in p. 15).

Regarding argumentation dynamics, we focus minimal change from the per-
spective of the knowledge base at first, and from the set of arguments, after-
wards. We believe this is an appropriate manner to tackle such principle, since
logic-based argumentation stands for reasoning upon inconsistencies of an under-
lying knowledge base. Another way to observe minimal change –which was not
attended here– is from the perspective of the outcomes of the framework. A final
conclusion that we draw is that although dynamics of abstract arguments can
also be studied by proposing models of change affecting the set of attacks, it
is not an appropriate perspective for logic-based argumentation. These sort of
problems are really interesting, however they do not seem to fit well to such
context of application considering that attacks are finally adjudicated in terms
of logical contradictions.
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