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Preface

This volume contains the articles that were presented at the 9th International Sympo-
sium on Foundations of Information and Knowledge Systems (FoIKS 2016) held in
Linz, Austria, during March 7–11, 2016.

The FoIKS symposia provide a biennial forum for presenting and discussing the-
oretical and applied research on information and knowledge systems. The goal is to
bring together researchers with an interest in this subject, share research experiences,
promote collaboration, and identify new issues and directions for future research.
Speakers are given sufficient time to present their ideas and results within the larger
context of their research. Furthermore, participants are asked in advance to prepare a
first response to a contribution of another author in order to initiate discussion.

Previous FoIKS symposia were held in Bordeaux (France) in 2014, Kiel (Germany)
in 2012, Sofia (Bulgaria) in 2010, Pisa (Italy) in 2008, Budapest (Hungary) in 2006,
Vienna (Austria) in 2004, Schloss Salzau near Kiel (Germany) in 2002, and Burg/
Spreewald near Berlin (Germany) in 2000. FoIKS took up the tradition of the con-
ference series Mathematical Fundamentals of Database Systems (MFDBS), which
initiated East–West collaboration in the field of database theory. Former MFDBS
conferences were held in Rostock (Germany) in 1991, Visegrád (Hungary) in 1989,
and Dresden (Germany) in 1987.

FoIKS 2016 solicited original contributions on foundational aspects of information
and knowledge systems. This included submissions that apply ideas, theories, or
methods from specific disciplines to information and knowledge systems. Examples of
such disciplines are discrete mathematics, logic and algebra, model theory, information
theory, complexity theory, algorithmics and computation, statistics, and optimization.
Suggested topics included, but were not limited to the following:

– Big data: models for data in the cloud, programming languages for big data, query
processing

– Database design: formal models, dependencies and independencies
– Dynamics of information: models of transactions, concurrency control, updates,

consistency preservation, belief revision
– Information fusion: heterogeneity, views, schema dominance, multiple source

information merging, reasoning under inconsistency
– Integrity and constraint management: verification, validation, consistent query

answering, information cleaning
– Intelligent agents: multi-agent systems, autonomous agents, foundations of software

agents, cooperative agents, formal models of interactions, logical models of
emotions

– Knowledge discovery and information retrieval: machine learning, data mining,
formal concept analysis and association rules, text mining, information extraction



– Knowledge representation, reasoning and planning: non-monotonic formalisms,
probabilistic and non-probabilistic models of uncertainty, graphical models and
independence, similarity-based reasoning, preference modeling and handling,
argumentation systems

– Logics in databases and AI: classic and non-classic logics, logic programming,
description logic, spatial and temporal logics, probability logic, fuzzy logic

– Mathematical foundations: discrete structures and algorithms, automata, abstract
machines, graphs, grammars, finite model theory, information theory, coding the-
ory, complexity theory, randomness

– Security in information and knowledge systems: identity theft, privacy, trust,
intrusion detection, access control, inference control, secure Web services, secure
Semantic Web, risk management

– Semi-structured data and XML: data modelling, data processing, data compression,
data exchange

– Social computing: collective intelligence and self-organizing knowledge, collabo-
rative filtering, computational social choice, Boolean games, coalition formation,
reputation systems

– The Semantic Web and knowledge management: languages, agents, adaptation,
intelligent algorithms, ontologies

– The WWW: models of Web databases, Web dynamics, Web services, Web trans-
actions and negotiations

The call for papers resulted in the submission of 23 articles. Each one was carefully
reviewed by at least three international experts. The 12 articles judged best by the
Program Committee were accepted for long presentation. In addition, two articles were
accepted for short presentation. This volume contains versions of these articles that
have been revised by their authors according to the comments provided in the reviews.
After the conference, authors of a few selected articles were asked to prepare extended
versions of their articles for publication in a special issue of the journal Annals of
Mathematics and Artificial Intelligence.

We wish to thank all authors who submitted papers and all conference participants
for fruitful discussions. We are grateful to our keynote speakers Christoph Beierle,
Joachim Biskup, Reinhard Pichler, Henry Prakken, and José Maria Turull-Torres; this
volume also contains articles for four of the five invited talks. We would like to thank
the Program Committee members and additional reviewers for their timely expertise in
carefully reviewing the submissions. We want to thank Maria Vanina Martinez for her
work as publicity chair. The support of the conference provided by the European
Association for Theoretical Computer Science (EATCS) and by the Software Com-
petence Center Hagenberg is greatfully acknowledged. Last but not least, special
thanks go to the local organization chair, Flavio Ferrarotti, and his dedicated team
consisting of Andreea Buga, Tania Nemeş, Loredana Tec, and Mircea Boris Vleju for
their support and for being our hosts during the wonderful days in Linz.

March 2016 Marc Gyssens
Guillermo Simari
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Keynote Speakers

Henry Prakken, Utrecht University and University of Groningen,
The Netherlands

Short biography: Henry Prakken is Lecturer in AI at the
Department of Information and Computing Sciences,
Utrecht University, and Professor in Legal Informatics
and Legal Argumentation at the Law Faculty, University of
Groningen, from which he holds master’s degrees in law
(1985) and philosophy (1988). In 1993, he obtained his
PhD (cum laude) at the Free University Amsterdam. His
main research interests include computational models of
argumentation and their application in multi-agent systems
and legal reasoning. Prakken is past president of the
International Association of AI & Law and current
president of the JURIX Foundation for Legal Knowledge-

Based Systems and of the steering committee of the COMMA Conferences on
Computational Models of Argument. He is on the editorial board of journals such as
Artificial Intelligence.

Keynote talk: Some Recent Trends in Argumentation Research

Summary: Argumentation is an important topic in symbolic AI research today,
especially in the study of nonmonotonic reasoning and the study of inter-agent
communication. Argumentation makes explicit the reasons for the conclusions that are
drawn and how conflicts between these reasons are resolved. This provides a natural
mechanism to handle inconsistent and uncertain information and to resolve conflicts of
opinion between intelligent agents. In this talk, an overview will be given of some
of the main current research issues, including the relation between abstract and
structured models of argumentation and the relation between argumentation and
probability theory.



Christoph Beierle, University of Hagen, Germany

Short biography: Christoph Beierle is professor of
computer science and head of the knowledge-based
systems group in the Faculty of Mathematics and Com-
puter Science at the University of Hagen. In 1985, he
received his PhD in computer science from the University
of Kaiserslautern. He was senior researcher at the Scientific
Center of IBM Germany, and is a recipient of an IBM
Outstanding Innovation Award. He has been working on
algebraic specifications and formal approaches for software
development and on methods for knowledge-based sys-
tems and their applications. His current research interests
include modeling and reasoning with uncertain knowledge.

Keynote talk: Systems and Implementations for Solving Reasoning Problems in
Conditional Logics

Summary: Default rules like “If A, then usually B” or probabilistic rules like “If A, then
B with probability x” are powerful constructs for knowledge representation. Such rules
can be formalized as conditionals, denoted by (B|A) of (B|A)[x], and a conditional
knowledge base consists of a set of conditionals. Different semantical models have been
proposed for conditional knowledge bases, and the most important reasoning problems
for conditional knowledge bases are to determine whether a knowledge base is
consistent and to determine what a knowledge base entails. We present an overview on
systems and implementations our group has been working on for solving reasoning
problems in various semantics that have been developed for conditional knowledge
bases. These semantics include quantitative, semi-quantitative, and qualitative condi-
tional logics, based on both propositional logic and on first-order logic.

Reinhard Pichler, Vienna University of Technology, Austria

Short biography: Reinhard Pichler holds a master’s
degree in mathematics from the University of Innsbruck
and a master’s degree in mathematical computation from
the University of London, QMW College. In 2000, he
received his PhD in computer science from the Vienna
University of Technology. From 1992 to 2005, he worked
as software developer at the Program and Systems Engi-
neering Department (PSE) of Siemens AG Austria. Since
2005, he has been Professor at the Faculty of Informatics
of the Vienna University of Technology where he leads the
Database and Artificial Intelligence Group. His main
research interests in recent years have been in database
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theory—mainly on information integration and on foundational aspects of the Semantic
Web query language SPARQL.

Keynote talk: The Challenge of Optional Matching in SPARQL

Summary: Conjunctive queries (or, equivalently, SELECT-FROM-WHERE queries in
SQL) are arguably the most widely used querying mechanism in practice and the most
intensively studied one in database theory. Answering a conjunctive query (CQ) comes
down to matching all atoms of the CQ simultaneously into the database. As a
consequence, a CQ fails to provide any answer if the pattern described by the query does
not exactly match the data. CQs might thus be too restrictive as a querying mechanism
for data on the Web, which is considered as inherently incomplete. The Semantic Web
query language SPARQL therefore contains the OPTIONAL operator as a crucial
feature. It allows the user to formulate queries that try to match parts of the query over
the data if available, but do not destroy answers of the remaining query otherwise.

In this talk, we will have a closer look at this optional matching feature of
SPARQL. More specifically, we will concentrate on an interesting fragment of
SPARQL: the so-called well-designed SPARQL graph patterns. They extend CQs by
optional matching while imposing certain restrictions on how variables are allowed to
occur in the query. We recall recent results that even in this small fragment of SPARQL
most of the fundamental computational tasks become significantly harder than for
conjunctive queries. For instance, query evaluation is now on the second level of the
Polynomial Hierarchy and basic static analysis tasks such as containment or
equivalence testing become even undecidable for well-designed SPARQL graph
patterns. Also the semantics of query answering in the presence of ontologies (referred
to as entailment regimes in SPARQL) has to be reconsidered in order to give intuitive
results. It turns out that the seemingly small extension of CQs by optional matching has
created several interesting research opportunities.

Joachim Biskup, University of Dortmund, Germany

Short biography: Joachim Biskup received his master’s
degree in mathematics from the Technical University of
Hannover and his PhD in computer science from the RWTH
in Aachen, Germany. He has been Professor of Computer
Science at the University of Dortmund, University of
Hildesheim, and University of Dortmund again. He has
performed research in areas such as recursion and complex-
ity theory, information systems with an emphasis on schema
design, query optimization and mediation, and various
aspects of security, in particular access control and inference
control.

Keynote talk: Selected Results and Related Issues of Confidentiality-Preserving
Controlled Interaction Execution

Keynote Speakers XIII



Summary: Controlled interaction execution has been developed as a security server for
a specific kind of inference control shielding an isolated, logic-oriented information
system when interacting over time with a client by means of messages, in particular for
query and transaction processing. The control aims at provably preserving confiden-
tiality in a fully formalized sense, intuitively and simplifying rephrased as follows: even
when having (assumed) a priori knowledge, recording the interaction history, being
aware of the details of the control mechanism, and unrestrictedly rationally reasoning,
the client should never be able to infer the validity of any sentence declared as a potential
secret in the security server’s confidentiality policy. To enforce this goal, for each of a
rich variety of specific situations, a dedicated censor has been designed. As far as
needed, a censor distorts a functionally expected reaction message such that suitably
weakened or even believably incorrect information is communicated to the client.

We consider selected results of recent and ongoing work and discuss several issues
for further research and development. The topics covered range from the impact of the
underlying logic, whether propositional, first-order, or non-monotonic about belief or an
abstraction from any specific one, over the kinds of interactions, whether only queries or
also views, updates, revisions, or even procedural programs, to the dynamic
representation of control states, whether by simply logging or adapting the policy.

José Maria Turull-Torres, Universidad Nacional de La
Matanza, Argentina and Massey University, New Zealand

Short biography: After 20 years of professional work in
informatics in Argentina and Mexico, a further 23 years
followed of academic work with research in the areas of
database theory, finite model theory, and complexity, in
Argentina and New Zealand. Currently, José Maria Turull-
Torres is Professor in the Department of Engineering at the
Universidad Nacional de La Matanza, Argentina, and holds
an Honorary Research Fellowship at Massey University,
New Zealand. He has been a member of the Program
Committee of many international conferences, co-chair of
FoIKS 2004, and is often invited as keynote speaker. His
main research collaboration is with the universities of
Helsinki, Joensuu, and Tampere, in Finland, the University

of Warsaw, the University of Toronto, the University of Cantabria in Spain, the Ecole
Polytechnique de Paris, and the Software Competence Center Hagenberg in Austria.

Keynote talk: Relational Complexity and Higher-Order Logics

Summary: Relational machines (RM) were introduced in 1991 as abstract machines
that compute queries to (finite) relational structures, or relational database instances
(dbis), which are generic (i.e., that preserve isomorphisms), and hence are more
appropriate than Turing machines (TM) for query computation. RMs are TMs endowed
with a relational store that holds the input dbi, as well as work relations, that can be
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queried and updated through first-order logic (FO) formulas in their finite control.
Consequently, k-ary RMs are incapable of computing the size of the input. However,
they can compute its sizek, i.e, the number of FOk types of k-tuples in the dbi.
Consequently, a new notion of complexity suitable for RMs had to be defined.
Relational complexity was also introduced in 1991 as a complexity theory where the
input dbi to a query is measured as its sizek, and complexity classes mirroring
computational complexity classes were defined. Relational complexity turned out to be a
theoretical framework in which we can characterize exactly the expressive power of the
well-known fixed-point quantifiers of a wide range of sorts. In 1997, several
equivalences between fixed-point quantifiers (added to FO) and different relational
complexity classes were proved, classifying them as either deterministic, non-
deterministic, or alternating, and either inflationary or non-inflationary. These charac-
terizations are actually very interesting and meaningful, given that it was already known
that if we restrict the input to only ordered dbis, the same equivalences with
computational complexity classes also hold.

Regarding the characterization of relational complexity classes with other logics, it
was proved that RMs have the same computation, or expressive power, as the (effective
fragment of the) well-known infinitary logic with finitely many variables. Besides,
some fragments of second- and third-order logic, defined as semantic restrictions of the
corresponding logic, have been proved to characterize several classes, and there is
ongoing work in that direction. One interesting consequence of this is that RMs are
strong enough to simulate the existence of third-order relations in their relational store.
An important application of the creation of new logics to complexity theory is the
search for lower bounds of problems with respect to those logics, aiming to separate
computational complexity classes.

In this talk, we will give a description of RMs and NRMs, define the basic notions
of relational complexity, and discuss its motivations and the tight relationship between
the main classes and different fixed-point logics and fragments of second- and third-
order logics.
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A Study of Argument Acceptability Dynamics
Through Core and Remainder Sets

Mart́ın O. Moguillansky1,2(B)

1 CONICET, Institute for Research in Computer Science and Engineering (ICIC),
Universidad Nacional Del Sur (UNS), Bah́ıa Blanca, Argentina

mom@cs.uns.edu.ar
2 AI R&D Lab (LIDIA), Department of Computer Science and Engineering (DCIC),

Universidad Nacional Del Sur (UNS), Bah́ıa Blanca, Argentina

Abstract. We analyze the acceptability dynamics of arguments through
the proposal of two different kinds of minimal sets of arguments, core
and remainder sets which are somehow responsible for the acceptabil-
ity/rejection of a given argument. We develop a study of the conse-
quences of breaking the construction of such sets towards the accep-
tance, and/or rejection, of an analyzed argument. This brings about the
proposal of novel change operations for abstract argumentation first,
and for logic-based argumentation, afterwards. The analysis upon logic-
based argumentation shows some problems regarding the applicability
of the standard semantics. In consequence, a reformulation of the notion
of admissibility arises for accommodating the standard semantics upon
logic-based argumentation. Finally, the proposed model is formalized in
the light of the theory of belief revision by characterizing the corre-
sponding operations through rationality postulates and representation
theorems.

Keywords: Argumentation · Belief revision · Argumentation dynamics

1 Introduction

Argumentation theory [13] allows to reason over conflicting pieces of knowl-
edge, i.e., arguments. This is done by replacing the usual meaning of inference
from classical logic by acceptability in argumentation: evaluation of arguments’
interaction through conflict for deciding which arguments prevail. To that end,
argumentation theory relies upon argumentation semantics and acceptance cri-
teria. Semantics can be implemented through determination of extensions, i.e.,
different kinds of conflict-free sets of arguments. For studying theoretic proper-
ties, like semantics, it is possible to abstract away from any particular represen-
tation of knowledge or structuring for building arguments. This is referred as
abstract argumentation. On the other hand, the concretization of an argumen-
tation framework (AF) to some specific logic and argument structure is called
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logic-based argumentation [2,6,15]. Investigations based upon abstract argu-
mentation usually simplify the study of some specific problem, and may bring
solid fundamentals for studying afterwards its application upon logic-based argu-
mentation. However, adapting theories, and results, from abstract to logic-based
argumentation may be not straightforward.

The classic theory of belief revision [1] studies the dynamics of knowledge,
coping with the problem of how to change beliefs standing for the conceptu-
alization of a modeled world, to reflect its evolution. Revisions, as the most
important change operations, concentrate on the incorporation of new beliefs in
a way that the resulting base ends up consistently. When considering AFs for
modeling situations which are immersed in a naturally dynamic context, it is
necessary to provide models for handling acceptability dynamics of arguments.
That is, models for studying change in argumentation (for instance, [4,5,10]) for
providing a rationalized handling of the dynamics of a set of arguments and their
implications upon the acceptability condition of arguments [19]. This led us to
investigate new approaches of belief revision, which operate over paraconsistent
semantics –like argumentation semantics– avoiding consistency restoration.

Argumentation provides a theoretic framework for modeling paraconsistent
reasoning, a subject of utmost relevance in areas of research like medicine and
law. For instance, legal reasoning can be seen as the intellectual process by
which judges draw conclusions ensuring the rationality of legal doctrines, legal
codes, binding prior decisions like jurisprudence, and the particularities of a
deciding case. This definition can be broaden to include the act of making laws.
Observe that the evolution of a normative system –for modeling promulgation of
laws– would imply the removal/incorporation of norms for ensuring some specific
purpose but keeping most conflicts from the original AF unaffected.

Upon such motivation, we study new forms to handle acceptability dynam-
ics of arguments, firstly on abstract argumentation, and afterwards upon logic-
based argumentation. By relying upon extension semantics, we define two differ-
ent sorts of sets for recognizing acceptance or rejection of arguments: core and
remainder sets, respectively. Afterwards we propose a model of change towards
the proposal of an acceptance revision operation which deals with the matter
of incorporating a new argument while ensuring its acceptance. This is done
first, from an abstract perspective, and afterwards upon logic-based argumenta-
tion. This unveils some specific problems regarding the applicability of standard
semantics to this kind of argumentation. We propose then a reformulation on
the notion of admissibility to overcome from such drawback by analyzing argu-
mentation postulates from [2]. Finally, the rationality of the proposed change
operators is provided through its axiomatic characterization and corresponding
representation theorem according to classic belief revision and argument-based
belief revision models like Argument Theory Change (ATC) [19].

2 Fundamentals for Abstract Frameworks

An abstract argumentation framework (AF) will be assumed as a pair 〈A,RA〉,
where A is a finite set of arguments, and the set RA ⊆ A × A identifies the
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finitary defeat relation between pairs of arguments a ∈ A and b ∈ A, such that
(a, b) ∈ RA implies that argument a defeats argument b, or equivalently, a is a
defeater of b. In this part of the article, arguments are deemed as abstract since
we do not specify any concrete logic, nor inner-structure, for constructing them.
Thus, arguments will be considered as indivisible elements of AFs. On the other
hand, we will assume the defeat relation RA to be obtained through a functional
construction RA : ℘(A)−→℘(A×A)1. This makes presumable the existence of
a defeating function ε : A × A−→{true, false}, such that:

for any pair of arguments a, b ∈ A, ε(a, b) = true iff (a, b) ∈ RA (1)

Definition 1 (Argumentation Framework Generator). Let A be a finite
set of arguments, an operator FA is an argumentation framework generator
from A (or just, AF generator) iff FA is an AF 〈A,RA〉.

Our intention is to simplify AFs at the greatest possible level in order to con-
centrate firstly on specific matters for dealing with the acceptability dynamics
of arguments, and afterwards, from Sect. 5, we will analyze the proposed theory
for argumentation dynamics in the light of logic-based frameworks, where argu-
ments will be constructed upon a specific logic L. Consequently, when necessary,
we will abstract away the construction of an AF FA from any set of arguments
A, by simply referring to an AF τ . In such a case, we will refer to the set of
arguments of τ by writing A(τ) and to the set of defeats of τ by writing R(τ).

Next, we introduce some well known concepts from argumentation theory
[13] that makes possible the acceptability analysis of arguments through the
usage of argumentation semantics. Given an AF FA, for any Θ ⊆ A we say that:

– Θ defeats an argument a ∈ A iff there is some b ∈ Θ such that b defeats a.
– Θ defends an argument a ∈ A iff Θ defeats every defeater of a.
– Θ is conflict-free iff RΘ = ∅.
– Θ is admissible iff it is conflict-free and defends all its members.

Given an AF FA, for any set E ⊆ A of arguments, we say that:

1. E is a stable extension if E is conflict-free and defeats any a ∈ A \ E
2. E is a complete extension if E is admissible and contains every argument

it defends
3. E is a preferred extension if E is a maximal (wrt. set incl.) admissible set
4. E is the grounded extension if E is the minimal (wrt. set incl.) complete

extension, i.e., E is the least fixed point of F(X) = {a ∈ A|X defends a}
5. E is a semi-stable extension if E is a complete extension and the set

E ∪ {a ∈ A|E defeats a} is maximal wrt. set inclusion
6. E is the ideal extension if E is the maximal (wrt. set incl.) admissible set

that is contained in every preferred extension

1 Observe that we use the notation ℘(Θ) for referring to the powerset of Θ.
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The above six notions are known as extension semantics. It is possible to
have no stable extensions, and also that there may be more than a single stable,
complete, preferred and semi-stable extensions, but only one grounded and one
ideal extension. The set Es(τ) identifies the set of s-extensions E from the AF
τ = FA, where an s-extension is an extension in τ according to some extension
semantics s, and where s adopts a value from {st, co, pr, gr, ss, id} correspond-
ing to the stable (st), complete (co), preferred (pr), grounded (gr), semi-stable
(ss), and ideal (id) semantics. For instance, the set Epr(τ) will contain all the
preferred extensions in τ . Observe that any extension E ∈ Es(τ) is an admissi-
ble set. The relation among extension semantics is shown as Est(τ) ⊆ Ess(τ) ⊆
Epr(τ) ⊆ Eco(τ), and also Egr(τ) ⊆ Eco(τ) and Eid(τ) ⊆ Eco(τ).

3 Preliminaries for Studying Dynamics of Arguments

We refer as acceptance criterion to the determination of acceptance of arguments
in either a sceptical or credulous way. Several postures may appear. For instance,
according to [15] a sceptical set is obtained by intersecting every s-extension
(see Eq. 2), and a credulous set resulting from the union of every s-extension
(Eq. 4). Since the latter posture may trigger non-conflict free sets, we suggest
a different alternative for credulous acceptance, for instance, one may choose
a single extension due to some specific preference, like selecting among those
extensions of maximal cardinality, “the best representative” one according to
some criterion upon ordering of arguments (Eq. 3). Assuming an abstract AF τ :

⋂

E∈Es(τ)

E (2)

E ∈ Es(τ) such that for any (3)
E′ ∈ Es(τ), |E| ≥ |E′| holds

⋃

E∈Es(τ)

E (4)

Definition 2 (Acceptance Function). Given an AF τ = FA and an exten-
sion semantics s ∈ {st, co, pr, gr, ss, id} determining a set Es(τ) ⊆ ℘(A) of
s-extensions, a function δ : ℘(℘(A))−→℘(A) is an acceptance function iff
δ(Es(τ)) ⊆ A determines a conflict-free set of arguments from A.

The acceptance criterion can be applied through an acceptance function as
defined above. Note that Eq. 4 does not fulfill the necessary conditions for an
acceptance function given that it may trigger non-conflict-free sets. We will
abstract away from a specific definition for an acceptance function and will only
refer to δ when necessary. We refer as (argumentation) semantics specification
S to a tuple 〈s, δ〉, where s stands for identifying some extension semantics and
δ for an acceptance function implementing some acceptance criterion.
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Definition 3 (Acceptable Set). Given an AF τ = FA and a semantics spec-
ification S = 〈s, δ〉, the set AS(τ) ⊆ A is the acceptable set of τ according to
S iff AS(τ) = δ(Es(τ)).

For instance, adopting an acceptance function implementing Eq. 2, the set
A〈pr,δ〉(τ) identifies the sceptical acceptance set for a preferred semantics.

Definition 4 (Argument Acceptance/Rejection). Given an AF τ = FA

and a semantics specification S = 〈s, δ〉, an argument a ∈ A is S-accepted in
τ iff a ∈ AS(τ). Conversely, a ∈ A is S-rejected in τ iff a 
∈ AS(τ).

Admissible and core sets of an argument as the fundamental notions for
recognizing the sources for the acceptability condition of a given argument.

Definition 5 (Admissible Sets of an Argument). Given an AF τ = FA and
an argument a ∈ A; for any Θ ⊆ A, we say that:

1. Θ is an a-admissible set in τ iff Θ is an admissible set such that a ∈ Θ.
2. Θ is a minimal a-admissible set in τ iff Θ is a-admissible and for any

Θ′ ⊂ Θ, it follows that Θ′ is not a-admissible.

Definition 6 (Core Sets). Given an AF τ = FA and an argumentation seman-
tics specification S, for any C ⊆ A, we say that C is an a-core in τ , noted as
a-coreS iff C is a minimal a-admissible set and a is S-accepted in τ .

Next we define rejecting sets of an argument a as the fundamental notion for
studying and recognizing the basics for the rejecting condition of a. Intuitively,
a rejecting set R for a should be that which ensures that a would end up S-
accepted in the AF FA\R. Before formalizing rejecting sets through Definition 8,
we propose the intermediate notions of partially admissible and defeating sets.

Definition 7 (Partially Admissible and Defeating Sets). Given an AF
τ = FA; for any Θ ⊆ A and any argument a ∈ A, we say that:

1. b defeats Θ iff b defeats some c ∈ Θ.
2. Θ is a-partially admissible iff a ∈ Θ, Θ is conflict-free, and if c ∈ Θ, with

c 
= a then there is some b ∈ A such that c defeats b and b defeats Θ \ {c}.
3. Θ is a-defeating iff there is some a-partially admissible set Θ′ such that

Θ ⊇ Υ ⊆ {b ∈ A|b defeats Θ′}.
The partially admissible set for a given argument a is an effort for con-

structing a set which would end up turning into an a-coreS after removing an
appropriate a-defeating set from the worked AF. The purpose of using a super-
inclusion for constructing defeating sets is to capture particular situations when
working with subargumentation. This will be clear in Sect. 5. Determining a cor-
rect defeating set depends on two sequential steps: firstly, it should ensure that
its removal turns a into S-accepted (see rejecting sets on Definition 8), and sec-
ondly, it should be minimal for such condition (remainder sets on Definition 9).
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Definition 8 (Rejecting Sets). Given an AF τ = FA, a semantics specifica-
tion S, and an argument a ∈ A; for any Θ ⊆ A, we say that Θ is S-a-rejecting
in τ iff Θ is a-defeating in τ and a is S-accepted in FA\Θ.

Remainder sets state “responsibility” to arguments for the non-acceptability
of an argument. Intuitively, an a-remainder is a minimal S-a-rejecting set.

Definition 9 (Remainder Sets). Given an AF τ = FA and an argumentation
semantics specification S, for any R ⊆ A, we say that R is an a-remainder
in τ , noted as a-remainderS iff R is a S-a-rejecting set and for any Θ ⊂ R, it
follows that a is S-rejected in the AF FA\Θ.

Example 10. Given the AF τ = FA, where A = {a, b, c, d, d′, e, e′, f, g, h} and RA

renders the argumentation graph depicted below on the right. Argument b is not
accepted by any semantics since there is no admissible set containing it. For
instance, Epr(τ) = {{f, e, e′, c, a}, {h, g, e, e′, c, a}}, and Egr(τ) = {{e, e′, c, a}}.

However, it is possible to propose different alterna-
tives of change to move towards an epistemic state in
which argument b turns to accepted in the resulting
AF. For instance, let us consider a semantics specifica-
tion S = 〈s, δ〉, where the acceptance function δ imple-
ments Eq. 2 and s = pr. In this case, the acceptable
set would be AS(τ) = {e, e′, c, a}. Note that {e}, {e′},
{c} are b-remainderS sets. This is so, given that {e} Graph of AF τ
is b-defeating for the b-partially admissible set {b, d}, in the same manner that
{e′} is for {b, d′}, and {c} is for {b}. Note that {e, e′, c} is b-defeating for the b-
partially admissible set {b, d, d′}, however while {e, e′, c} is a S-b-rejecting set, it
is not a b-remainderS given that it is not minimal. Afterwards, considering the b-
remainderS {e}, we can build a new AF τ1 = FA\{e} whose resulting acceptance
set would be AS(τ1) = {d, e′, b}, since Epr(τ1) = {{f, d, e′, b}, {h, g, d, e′, b}}.

Once again, considering the AF τ under the same
semantic specification, note that g is not S-accepted
despite there is an extension {h, g, e, e′, c, a} ∈ Epr(τ)
which contains g. The situation here arises from the
acceptance function δ which requires intersecting every
extension in Epr(τ). Note also that there is a g-
admissible set {g, h}. However, it is possible to propose
an alternative of change to move towards an epistemic Graph of AF τ1
state in which argument g turns to accepted in the resulting AF. To that end, we
can construct two g-partially admissible sets {g} and {g, h}. Note that, for any
of them, it appears a g-defeating set {f} which ends up being a S-g-rejecting set
and also a g-remainderS in the resulting AF τ2 = FA\{f} whose acceptance set
would be AS(τ2) = {g, h, e, e′, c, a}, since it ends up being the unique preferred
extension in Epr(τ2).
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Observe that by considering an acceptance function
δ implementing Eq. 3 under the preferred semantics, the
acceptable set would be AS(τ) = {h, g, e, e′, c, a}. Thus,
it is natural to have that the unique g-remainderS ends
up being the empty set. This is so, given that although
both ∅ and {f} are g-defeating sets, and even both of
them are also S-g-rejecting sets, {f} does not fulfill the
requirements for being a g-remainderS given that is is not Graph of AF τ2
minimal. This will be of utmost relevance for pursuing the verification of the well
known principle of minimal change.

Definition 11 (Set of Cores and Set of Remainders). Given an AF τ =
FA, a semantics specification S, and an argument a ∈ A, we say that:

1. 
S(τ, a) is the set of cores of a iff 
S(τ, a) contains every a-coreS C ⊆ A.
2. ⊥S(τ, a) is the set of remainders of a iff ⊥S(τ, a) contains every a-

remainderS R ⊆ A.

Example 12 (Continues from Example 10). Considering the acceptance function
implementing Eq. 2 over the preferred semantics, the set of cores for argument a
ends up being 
S(τ, a) = {{a, c, e, e′}}. Also, the corresponding set of remainders
for argument b is ⊥S(τ, b) = {{e}, {e′}, {c}}. On the other hand, if we consider
the b-remainderS {e} for analyzing the AF τ1 = FA\{e}, argument b turns out
being S-accepted since it is possible to identify a b-coreS . In such a case, the
resulting set of cores for b would be 
S(τ1, b) = {{b, d}}.

Proposition 13. Given an AF τ = FA, a semantics specification S, and an
argument a ∈ A; the following properties hold: (1) 
S(τ, a) = ∅ iff ⊥S(τ, a) 
= ∅,
(2) a ∈ AS(τ) iff 
S(τ, a) 
= ∅, and (3) a 
∈ AS(τ) iff ⊥S(τ, a) 
= ∅.

Proposition 13 states the interrelation between the sets of cores and remain-
ders and how they relate with an argument’s S-acceptance.

4 Argumentation Dynamics Through Retractive Methods

For a rational handling of the acceptability dynamics of arguments, a change
operation applied to an AF τ should provoke a controlled alteration of the accept-
able set AS(τ) towards achieving a specific purpose. For instance, a contraction
operation may modify the acceptable set in order to contract the acceptance
condition of a specific argument. The acceptance contraction of an argument
can be achieved through the removal of arguments from the set A(τ). How-
ever, observe that the acceptable set AS(τ) has a non-monotonic construction
from τ . This means that removing/incorporating arguments from/to the argu-
mentation framework does not imply that the resulting acceptable set would
be de/increased regarding the original one. Consequently, it is also possible to
consider the addition of new arguments to the framework, in order to ensure an
argument a to be rejected in the resulting framework. The former alternative
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could be achieved by breaking all a-coreS sets, whereas for the latter alternative,
the idea would be to incorporate new arguments towards the construction of a-
remainderS sets. On the other hand, a contraction operation may modify the
acceptable set in order to contract the rejection condition of a specific argument.
The rejection contraction of an argument a ensures that a ends up accepted. We
can achieve acceptance of an argument a either by removing arguments from A
to break the existence of a-remainderS sets, or also by incorporating arguments
to A to construct a-coreS sets. It is possible to establish an analogy between
classical belief revision, where a contraction by a formula α (resp. of, ¬α) ensures
α’s truth (resp. of, falsity) is not inferred and, belief revision in argumentation,
where an acceptance contraction (resp. of, rejection contraction) by an argument
a ensures a is not accepted (resp. of, not rejected).

Revisions and contractions are usually defined independently with the inten-
tion to interrelate them afterwards by setting up a duality. A philosophic dis-
cussion is sustained on the matter of the nature of such independence. Some
researchers assert that there is really no contraction whose existence could be
justified without a revision. In fact, they state that a contraction conforms an
intermediate state towards the full specification of the revision. Such an intuition
fits quite well our approach. For instance, if we think the argumentation stands
for a normative system, it is natural to assume that a new norm is intended
to be incorporated –through a revision– for ensuring afterwards its acceptance
–through some intermediate contraction. Another alternative is to assume a
derogative norm, whose purpose is to enter the system –through a revision– for
ensuring afterwards the rejection of an elder norm –through some intermediate
contraction for ensuring the acceptance of the derogative norm. In this paper
we focus on an acceptance revision operation obtained through the removal of
arguments from the set A, i.e., a sort of retractive acceptance revision. Such a
revision operation retracts from the AF some a-remainderS set –for ensuring the
acceptance of a new argument a– through the usage of a rejection contraction.
Thus, with a retractive acceptance revision, we assume the idea of provoking
change to the AF for altering the acceptable set with the intention to pursue
acceptability of an argument a, which can be external to the original AF.

An operator ‘�’ ensures that given an AF τ and a new argument a, the accep-
tance revision of τ by a ends up in a new AF τ � a in which a is S-accepted. We
refer to an early contribution by Levi [17] to belief revision, where he related
revisions to contractions. He suggested that a revision (‘∗’) of a base Σ by a
new information α should be achieved through two stages. Firstly, by contract-
ing (‘−’) all possibility of deriving ¬α for obtaining a new base which would be
consistent with α. Afterwards, it could be added (‘+’) the new information α
ensuring that this stage would end up consistently. This intuition was formal-
ized in an equivalence referred to as the Levi identity : Σ ∗ α = (Σ − ¬α) + α. In
argumentation, it is natural to think that the new argument a should be incor-
porated to the AF τ through an expansion operator ‘+’, and ensuring afterwards
its acceptability through a contraction operation for breaking the rejection of a,
i.e., a rejection contraction ‘�⊥’. Note that it is mandatory to invert the two
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stages of the original Levi identity2 since it is necessary for the new argument
to be recognized by the framework in order to analyze its acceptability con-
dition. This renders an equivalence between acceptance revision and rejection
contraction through the generalization of the Levi identity: τ �a = (τ +a)�⊥a.

We will analyze the construction of two sub-operations for achieving the
acceptance revision. Firstly, we need to recognize new arguments to be incor-
porated to the framework. For such matter, let us assume a domain of abstract
arguments A, such that for any abstract AF FA, it follows that A ⊆ A. Next we
formalize the concept of external argument, and afterwards we define a simple
expansion operation for incorporating an external argument to a framework.

Definition 14 (External Argument). Given an AF τ = FA, an argument a
is external to τ (or just, external) iff a ∈ A but a 
∈ A.

Definition 15 (Expansion). Given an AF τ = FA and an external argument
a ∈ A. The operator + stands for an expansion iff τ + a = FA∪{a}.

From Proposition 13, we know that an argument a is S-accepted iff there is
no a-remainderS set. Therefore, it is sufficient to break one single a-remainderS
R ∈ ⊥S(τ, a) in order to obtain a new AF in which we could construct a-coreS
sets, implying the acceptance of a. For such purpose, we define a remainder
selection, as a function by which it is possible to select the best option among
the several a-remainderS sets from ⊥S(τ, a).

Definition 16 (Remainder Selection). Given an AF τ = FA, a semantics
specification S, and an argument a ∈ A. A remainder selection is obtained
by a selection function γ : ℘(℘(A))−→℘(A) applied over the set ⊥S(τ, a) for
selecting some a-remainderS , where γ(⊥S(τ, a)) ∈ ⊥S(τ, a) is such that for every
R ∈ ⊥S(τ, a) it holds γ(⊥S(τ, a)) �γ R, where �γ is a selection criterion by
which it is possible to select the best representative a-remainderS set.

The selection criterion can be any method for ordering sets of arguments. In
the sequel, we will abstract away from any specific selection criterion. Now it is
easy to define the rejection contraction by relying upon a selection function.

Definition 17 (Rejection Contraction). Given an AF τ = FA, a semantics
specification S, and an argument a ∈ A. The operator �⊥ stands for a rejection
contraction iff τ �⊥a = FA\R, where R = γ(⊥S(τ, a)).

The acceptance revision may be formally given by relying upon an expansion
operation and a rejection contraction determined by a selection function.

Definition 18 (Acceptance Revision). Given an AF τ = FA, a semantics
specification S, and an external argument a ∈ A. The operator � stands for
an acceptance revision (or just, revision) iff τ � a = FA′ , where A′ =
A(τ + a) \ γ(⊥S(τ + a, a)). When necessary, we will write τ �γ a to identify the
remainder selection function γ by which the revision τ � a is obtained.
2 Inverting the Levi identity leads to an inconsistent intermediate state. This is not an

issue in argumentation since we only incorporate new pairs to the defeat relation.
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The axiomatization of the acceptance revision is achieved by analyzing the
different characters of revisions from classical belief revision [1,16] and from ATC
revision [19], for adapting the classical postulates to argumentation.

(success) a is S-accepted in τ � a
(consistency) AS(τ � a) is conflict-free
(inclusion) τ � a ⊆ τ + a
(vacuity) If a is S-accepted in τ + a then A(τ + a) ⊆ A(τ � a)
(core-retainment) If b ∈ A(τ)\A(τ �a) then exists an AF τ ′ such that A(τ ′) ⊆

A(τ) and a is S-accepted in τ ′ + a but S-rejected in (τ ′ + b) + a.

In classic belief revision, the success postulate states that the new informa-
tion should be satisfied by the revised knowledge base. From the argumentation
standpoint, this may be interpreted as the requirement of acceptability of the new
argument. Through consistency a classic revision operation ensures that the new
revised base ends up consistently always that the new belief to be incorporated
is so. From the argumentation standpoint, there should be no need for ensuring a
consistent (or conflict-free) set of arguments since the essence of such theory is to
deal with inconsistencies. However, this requirement makes sense when thinking
about the acceptable set of the framework for ensuring that the argumentation
semantics allows a consistent reasoning methodology. The consistency postulate
for extension semantics has been studied before in [2], among others. Inclusion
aims at guaranteeing that the only new information to be incorporated is the
object by which the base is revised. The restatement to argumentation may
be seen as the sole inclusion of the external argument. Vacuity captures the
conditions under which the revision operation has nothing to do but the sole
incorporation of the new information. Its restatement to argumentation may be
seen as the fact of a being S-accepted straightforwardly, with no need to remove
any argument. That is, the simple expansion of the external argument would
end up forming a new framework in which it is possible to construct a-coreS
sets. The vacuity postulate is usually referred as complementary to the inclusion
postulate, thus, a change operation satisfying both postulates ends up verifying
the equality τ � a = τ + a whenever the external argument is straightforwardly
S-accepted in the expanded framework. Through core-retainment the amount
of change is controlled by avoiding removals that are not related to the revision
operation, i.e., every belief that is lost serves to make room for the new one.
In argumentation dynamics we care on the changes perpetrated to the frame-
work in order to achieve acceptability for the external argument. Hence, any
argument that is removed should be necessary for such purpose. The rational
behavior of the acceptance revision operation is ensured through the following
representation theorem.

Theorem 19. Given an AF τ , a semantics specification S, and an external argu-
ment a ∈ A; τ �a is an acceptance revision iff ‘�’ satisfies success, consistency,
inclusion, vacuity, and core-retainment.
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5 Fundamentals for Logic-Based Frameworks

We will assume a logic L to which the represented knowledge will correspond. In
addition, we will assume an argument domain set referred as AL to which (logic-
based) arguments containing L formulae will conform. Arguments will be defined
upon L knowledge through a set of premises and a claim such that an argument
a ∈ AL can be expressed through a pair, namely the argument interface, 〈S, ϑ〉 ∈
AL, where S ⊆ L is referred as the support and ϑ ∈ L as the claim. The
logic L will be considered along with its corresponding inference operator |=,
constituting a complete deductive system 〈L, |=〉. Therefore, according to the
classic notion of argument, we can assume that given an argument 〈S, ϑ〉 ∈ AL,
the basic three principles are satisfied: (deduction) S |= ϑ, (minimality) there is
no subset S′ ⊂ S such that S′ |= ϑ, and (consistency) S is consistent according
to L, i.e., S 
|= ⊥. Finally, we will eventually say that an argument a supports ϑ
from S to informally specify that the argument claim is the formula ϑ ∈ L and
similarly that its support is given by the set S ⊆ L, or formally that the argument
a = 〈S, ϑ〉 ∈ AL. We will rely upon two functions cl : AL −→ L and sp : AL −→
℘(L) to identify both the claim and support set of AL-arguments. Hence, given
an argument a ∈ AL, we can refer to the claim and support set as cl(a) ∈ L
and sp(a) ⊆ L, respectively. Moreover, the function sp will be overloaded as
sp : ℘(AL) −→ ℘(L) in order to be applied over sets of arguments such that
given a set Θ ⊆ AL, sp(Θ) =

⋃
a∈Θ sp(a) will identify the base determined by

the set of supports of arguments contained in Θ.
A (logic-based) argumentation framework (AF) will be assumed as a pair

〈A,RA〉, where A ⊆ AL is a finite set of arguments, and the set RA ⊆ AL ×AL
identifies the finitary defeat relation between pairs of arguments such that:

RA = {(a, b)|a, b ∈ A, sp(a) ∪ sp(b) |= ⊥, and a � b} (5)

A pair (a, b) ∈ RA implies that a ∈ A defeats b ∈ A, or equivalently, a is a
defeater of b, meaning that the supports of both arguments a and b cannot be
simultaneously assumed in a consistent manner, and also that a is preferred over
b, according to some abstract preference relation �. We will keep the defeating
function ε abstract, assuming that it is valid iff condition (1) in p. 5 is satisfied.
Different instantiations of such a function has been widely studied in [15].

Since any logic-based argument is built from a set of formulae –standing
for its support set– it is natural to think that any subset of the support set
can be used to build another argument. This intuition describes the concepts of
sub-arguments (and super-arguments). We will identify a sub-argument relation
by writing a � b for expressing that an argument a ∈ AL is a sub-argument
of argument b ∈ AL (and also that b is a super-argument of a), implying that
sp(a) ⊆ sp(b) holds. We will also identify the set of all sub-arguments of an
argument a ∈ AL through the function subs : AL−→℘(AL) such that subs(a) =
{b ∈ AL|b � a}, for any argument a ∈ AL.

Logic-based argumentation may unveil some problems with regards to the
conflict recognition between pairs of arguments. Consider the following example
where arguments are constructed upon a propositional logic L.
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Example 20. Assuming Θ ⊆ AL such that Θ = {a, b, c} where a = 〈{p}, p〉,
b = 〈{q}, q〉, and c = 〈{¬p ∨ ¬q},¬p ∨ ¬q〉. The AF generator FΘ will construct
an AF with an empty set of defeats RΘ. Note that Θ is admissible given that it
is conflict-free and that it has no defeaters. However, sp(Θ) |= ⊥ holds.

The problem presented in Example 20 relies on the construction of logic-
based AFs from arbitrary sets of arguments. It is necessary to build all possi-
ble arguments, including sub and super arguments, in order to ensure that the
resulting AF will deliver rational responses through an argumentation seman-
tics. We say that a set of arguments is closed whenever it contains all the sub-
and super-arguments that can be constructed from its arguments. This ensures
an exhaustive construction of arguments from an initial base of arguments. We
provide such implementation through an argumentation closure operator C.

Definition 21 (Argumentation Closure). An operator C is an argumen-
tation closure iff for any Θ ⊆ AL, it holds C(Θ) = {a ∈ AL|a � b, for any b ∈
Θ} ∪ {a ∈ AL|subs(a) ⊆ Θ}. We say that Θ is closed iff it holds Θ = C(Θ).

The following proposition shows that the closure of a set Θ of arguments
triggers the complete set of arguments that can be constructed using the formulae
involved in arguments contained in Θ.

Proposition 22. Given a set of arguments Θ ⊆ AL, the underlying knowledge
base Σ = sp(Θ), and the set AΣ ⊆ AL of all the possible arguments constructed
from Σ. The set Θ is closed iff Θ = AΣ.

We refer to a structure 〈A,RA〉 as a closed AF iff it is constructed through a
closed set of arguments A ⊆ AL, i.e., A = C(A). Depending on the specification
of the language L, the argumentation closure may trigger multiple different argu-
ments with a unique support and even more, it could result infinitary, triggering
an infinite set of arguments if the closure is achieved in an uncontrolled manner.
Several alternatives may arise to keep a finite, and still closed, set of arguments.
For instance, it is possible to restrict the claim of arguments to some specific
form in order to avoid constructing several arguments with logically equivalent
claims and a same support set. A nice alternative for doing this is to restrict the
construction of arguments to their canonical form [6], in which for any argument
a, its claim has the form cl(a) =

∧
sp(a). In the sequel, and just for simplicity,

we will abstract away from such specific matters involving the construction of
arguments, by simply referring to a domain A

∗
L ⊆ AL, where A

∗
L is the domain

of arguments of a unique representation: for any pair of arguments a, b ∈ A
∗
L,

it follows that if sp(a) = sp(b) then cl(a) = cl(b), and thus it holds a = b. This
restriction ensures that any set Θ ⊆ A

∗
L of arguments ends up in a finite closed

set C
∗(Θ) = A independently of the method used for ensuring it, where C

∗(Θ)
is the closed set of A∗

L-arguments such that C
∗(Θ) = C(Θ) ∩ A

∗
L. From now on,

we will write A (or A′) for referring only to closed sets of A∗
L-arguments.

In what follows, we will write FA for referring to the AF 〈A,RA〉, where
A ⊆ A

∗
L is a closed set, i.e., C∗(A) = A. In such a case, we say that FA is a

closed AF. This will also allow us to refer to any sub-framework FΘ = 〈Θ,RΘ〉,
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where Θ ⊆ A is a not necessarily closed set of arguments. In such a case, we
will overload the sub-argument operator ‘�’ by also using it for identifying sub-
frameworks, writing FΘ � FA. Observe that, if C∗(Θ) = A′ and A′ ⊂ A, then
FA′ is a closed strict sub-framework of FA, i.e., FA′ � FA.

By relying upon closed argumentation frameworks we ensure that the accept-
able set AS(FA) will trigger rational results. A closed AF FA will be necessary
for satisfying closure under sub-arguments and exhaustiveness postulates from
to [2]. On the other hand, a set RA as defined in Eq. 5 describes a general defeat
relation which is conflict-dependent and conflict-sensitive according to [2]. This
means that any minimal inconsistent set of formulae implies the construction of
a pair of arguments which will necessarily be conflicting, and that any pair of
conflicting arguments implies a minimal source of inconsistency. This property
guarantees that the framework will satisfy the postulate referred as closure under
sub-arguments under any of the extension semantics reviewed before. This pos-
tulate is necessary to ensure a rational framework independently of the semantics
adopted given that, for any s-extension E we will ensure that if a ∈ E then for
any sub-argument b � a it holds b ∈ E. The closure under CN postulate [2]
will not be verified given that we prevent the construction of several claims for
a same argument’s body through a unique representation like canonical argu-
ments. However, it holds in a “semantic sense”: closed AFs ensure drawing all
such possible claims.

Example 23 (Continues from Example 20). By assuming A
∗
L as the domain of

canonical arguments, the argumentation closure renders the closed set of argu-
ments: A = C

∗(Θ) = {a, b, c, d, e, f}, where d = 〈{p, q}, p∧ q〉, e = 〈{p,¬p∨¬q},
p ∧ (¬p ∨ ¬q)〉, and f = 〈{q,¬p ∨ ¬q}, q ∧ (¬p ∨ ¬q)〉. For the construc-
tion of the set of defeats, we will assume that any argument in Θ is pre-
ferred over any other argument which is not in Θ, whereas when consider-
ing a pair of arguments where both are either Θ insiders or outsiders, the
preference relation will be symmetric. Thus, we obtain the following pairs of
defeats: RA = {(a, f), (b, e), (c, d), (d, e), (d, f), (e, d), (f, d)}. Observe however
that although sp(Θ) is inconsistent, Θ is still admissible.

Through the argumentation closure, we have provided a method for ensuring
that a closed AF is complete given that we have all the possible arguments that
can be constructed from the set of arguments and therefore all the sources of
conflict will be identified through the defeat relation. However, we still have a
problem: as is shown in Example 23, Θ ⊆ A keeps being admissible given that
it is conflict-free. Thus, it is necessary to reformulate the abstract notion for
admissible sets by requiring their closure.

Definition 24 (Logic-based Admissibility). Given an AF FA, for any Θ ⊆
A we say that Θ is admissible iff Θ is closed (i.e., Θ = C

∗(Θ)), conflict-free,
and defends all its members.

Once again, regarding postulates in [2], working with closed AFs and taking in
consideration the reformulated notion of admissibility in logic-based frameworks,
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guarantees the consistency postulate which ensures that every s-extension con-
tains a consistent support base, i.e., for any closed AF τ , sp(Es(τ)) 
|= ⊥ holds.

Example 25 (Continues from Example 23). Under the new definition of admissi-
bility, we have that Θ cannot be admissible since it is not closed. The following
admissible sets appear: {a}, {b}, and {c}. Note that the sets {a, b, d}, {a, c, e},
and {b, c, f}, are not admissible given that although they are closed and conflict-
free, none of them defends all its members.

Definition 24 for admissibility in logic-based frameworks makes core sets end
up closed without inconvenient. However, the case of remainder sets is different.
Having a set Θ ⊆ A, the problem is that we only can ensure that an argument a
is accepted in the sub-framework FA\Θ if we can ensure that A\Θ is a closed set
(see Example 20). This ends up conditioning Definition 9. Hence, it is necessary to
provide some constructive definition for remainder sets. This allows determining
which property should satisfy a set Θ ⊆ A for ensuring that if A is a closed
set then the operation A \ Θ also determines a closed set. In Definition 27, we
propose an expansive closure which will rely upon the identification of a set of
atomic arguments: arguments that have no strict sub-arguments inside. That is,
given an argument a ∈ A

∗
L, a is atomic iff |sp(a)| = 1.

Definition 26 (Set of Atomic Arguments). Given an AF FA and an argu-
ment a ∈ A, a function at : A∗

L−→℘(A∗
L) is an atoms function iff it renders

the set of atomic arguments at(a) ⊆ A of a such that at(a) = {b ∈ A|b � a
and there is no c ∈ A such that c � b}.

We will overload the atoms function as at : ℘(A∗
L)−→℘(A∗

L) to be applied
over sets of arguments such that at(Θ) =

⋃
a∈Θ at(a).

Definition 27 (Expansive Closure). Given an AF FA and a set Θ ⊆ A,
an operator P is an expansive closure iff P(Θ) = {a ∈ A|b � a, for every
b ∈ at(P0(Θ))}, where P0(Θ) = {a ∈ Θ| there is no b ∈ Θ such that b � a}. We
say that Θ is expanded iff it holds Θ = P(Θ).

Note that P0(Θ) contains all the arguments from Θ having no sub-arguments
in Θ, while P(Θ) contains all the arguments from A having some atomic sub-
argument of some argument in P0(Θ). The expansive closure is a sort of super-
argument closure in the sense that it contains all the arguments that should
disappear by removing Θ from A. Proposition 28 verifies that if we remove from
a closed set another set which is expanded then we obtain a new closed set.

Proposition 28. Given two sets A ⊆ A
∗
L and Θ ⊆ A

∗
L, where A is closed; if

Θ ⊆ A then A′ = A \ P(Θ) is a closed set, i.e., A′ = C
∗(A′).

Definition 29 (Logic-based Remainder Sets). Given an AF FA and a
semantics specification S, for any Θ ⊆ A, we say that Θ is an a-remainder in
FA, noted as a-remainderS iff Θ is a minimal expanded S-a-rejecting set:
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1. Θ is a S-a-rejecting set,
2. Θ = P(Θ), and
3. for any set Θ′ ⊂ Θ such that Θ′ = P(Θ′), it holds a is S-rejected in FA\Θ′ .

The following example shows how a propositional logic L for constructing
logic-based frameworks affects the notions of core and remainder sets.

Example 30. We will assume L as the propositional logic and A
∗
L as the domain

of canonical arguments. Let Θ ⊆ A
∗
L be a set of canonical arguments such

that Θ = {a, b, c, d}, where a = 〈{p ∧ q1}, p ∧ q1〉, b = 〈{p ∧ q2}, p ∧ q2〉, c =
〈{¬p},¬p〉, and d = 〈{¬q2},¬q2〉. The argumentation closure renders the closed
set of arguments A = C

∗(Θ) = {a, b, c, d, e, f, g}, where:

e = 〈{p ∧ q1, p ∧ q2}, p ∧ q1 ∧ q2〉, where subs(e) = {a, b}
f = 〈{p ∧ q1,¬q2}, p ∧ q1 ∧ ¬q2〉, where subs(f) = {a, d}
g = 〈{¬p,¬q2},¬p ∧ ¬q2〉, where subs(g) = {c, d}
Then, the AF FA is closed and through a pref-

erence relation RA = {(a, c), (b, c), (d, g), (d, b),
(e, c), (e, d), (b, f), (f, c), (a, g), (b, g), (e, f), (e, g),
(f, g)}. Assuming S = 〈co, δ〉, where δ implements
Eq. 3, observe that a b-coreS Cb = {a, b, e} is con-
structed by the closure C

∗({b, e}). Since c and d
are S-rejected, we have remainder sets for both of
them: a c-remainderS Rc = {a, e, f} and two d-
remainderS sets Rd = {a, e, f} and R′

d = {b, e}.
Observe that Υ = {a, b, e, f} is the result of expand-

FA

ing the S-d-rejecting set {e}, i.e., Υ = P({e}). However Υ is not a d-remainderS
since it is not minimal: there are two d-defeating sets {a, e} and {b, e} whose
respective expansions are P({a, e}) = Rd and P({b, e}) = R′

d. Note that,
although {e} is a d-defeating set, the superinclusion in Definition 7, item 3,
allows the consideration of some additional argument/s. Clearly, the only alter-
native for that is to incorporate some atom/s of some argument/s included in
the defeating set.

6 Argumentation Dynamics in Logic-Based Frameworks

We need to consider closed logic-based frameworks which provokes a necessary
reformulation of the expansion operation. This ensures a closed resulting frame-
work after the incorporation of an external argument a ∈ A

∗
L.

Definition 31 (Expansion). Given an AF FA and an external argument a ∈
A

∗
L. The operator + stands for an expansion iff FA + a = FC∗(A∪{a}).

Definitions for change operations proposed in Sect. 4 will perfectly apply for
logic-based frameworks if the references to expansion operations are interpreted
as logic-based expansions, according to Definition 31. Thus, a revision τ � a will
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refer to an operation (τ + a) �⊥a, where + is a logic-based expansion. Change
operations for logic-based frameworks incorporated the necessary consideration
of L-formulae. This brings about the necessity to discuss additional postulates
for the complete rationalization of closed frameworks. In classic belief revision,
the closure postulate states that if a base Σ is a closed set (referred as belief
set) then the result of the revision should also be ensured to be closed. In this
case, by closure they refer to a closure under logical consequences, obtaining, in
general, infinite closed sets. This kind of closure is different from the proposed
argumentation closure. As being explained before, the argumentation closure –
applied over singleton construction of arguments, i.e., arguments from a domain
A

∗
L– ensures a finite closed set of arguments. However, the purpose of the argu-

mentation closure also differs from the closure under logical consequences in that
C ensures the presence of all the constructible arguments (see Proposition 22)
from a common knowledge respecting a specific construction A

∗
L, but not the

construction of all the equivalent arguments. This subject makes rationality of
acceptance revision for logic-based frameworks more similar to revision of bases
than belief sets. Finally, from the argumentation standpoint, we should ensure
that the revision of a closed AF ends up in a new closed AF.

(closure) if A(τ) = C
∗(A(τ)) then A(τ � a) = C

∗(A(τ � a))

In belief revision, it is natural to assume that revisions applied to a base by
logically equivalent formulae, have necessarily identical outcomes. The choice of
which elements of the base to retain should depend on their logical relations to
the new information. Therefore, if two sentences are inconsistent with the same
subsets of the base, they should push out the same elements from the base. This is
known as uniformity. Since we are considering arguments built from L-formulae, it
is natural to analyze the existing relations between two different arguments which
coincide in their conflict-relations, supports and claims. For this matter it is nec-
essary to specify an equivalence relation for arguments in order to ensure that the
revisions τ � a and τ � b have equivalent outcomes (see [19]).

Definition 32 (Equivalence [19]). For any pair of arguments a, b ∈ A
∗
L, we

say that a and b are equivalent arguments, noted as a ≡ b iff cl(a) |= cl(b) and
cl(b) |= cl(a) and for any a′ � a there is b′ � b such that a′ ≡ b′.

(uniformity) if a ≡ b then A(τ) ∩ A(τ � a) = A(τ) ∩ A(τ � b)

Inspired by smooth incisions in Hansson’s Kernel Contractions [16], we intro-
duce an additional condition on remainder selection functions for guaranteeing
uniformity. Under the consideration of two equivalent arguments a and b, the
idea is to ensure that a remainder selection function will trigger a same remainder
R which is common to both sets of remainders ⊥S(τ + a, a) and ⊥S(τ + b, b).

Definition 33 (Smooth Remainder Selection). Given an AF τ and two
external arguments a, b ∈ A

∗
L. If a ≡ b then γ(⊥S(τ + a, a)) = γ(⊥S(τ + b, b)).
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Given an AF τ and an external argument a ∈ A
∗
L, we will refer to any oper-

ation τ �γ a as smooth acceptance revision iff τ �γ a is an acceptance revision
obtained through a smooth remainder selection ‘γ’. Now we are able to formalize
the representation theorem for smooth acceptance revisions.

Theorem 34. Given an AF τ , a semantics specification S, and an external argu-
ment a ∈ A

∗
L; τ � a is a smooth acceptance revision iff ‘ � ’ satisfies closure,

success, consistency, inclusion, vacuity, core-retainment, and uniformity.

Example 35 [Continues from Example 30] Suppose, we have
Θ′ = {a, b, c}, where a = 〈{p∧ q1}, p∧ q1〉, b = 〈{p∧ q2}, p∧
q2〉, and c = 〈{¬p},¬p〉. The argumentation closure renders
the set A′ = C

∗(Θ′) = {a, b, c, e}, such that e = 〈{p∧ q1, p∧
q2}, p∧q1∧q2〉, where subs(e) = {a, b}. Then, for the closed
AF FA′ , the attack relation is RA′ = {(a, c), (b, c), (e, c)}.
We need to revise τ = FA′ by the external argument d =

FA′

〈{¬q2},¬q2〉.

τ�d

Note τ�d=FA′′ , where A′′ =A(τ+d)\γ(⊥S(τ + d, d)),
is equivalent to τ � d = (τ + d) � ⊥d through the
generalization of the Levi identity (p. 11). Note that
τ + d = FA (see Example 30). We know there are
two d-remainderS sets Rd = {a, e, f} and R′

d =
{b, e}. Assuming a selection criterion R′

d �γ Rd,
we have γ(⊥S(τ + d, d)) = R′

d and also A′′ = A \
R′

d = {a, c, d, f, g}. Finally, the resulting revised
framework ends up as τ � d = FA′′ , where RA =
{(a, c), (d, g), (f, c), (a, g), (f, g)}.

Note that the acceptance revision can be seen as sp(A(τ + d)) \ sp(Θ′′),
where Θ′′ = P0(γ(⊥S(τ + d, d))) = P0(R′

d) = {b} (see Definition 27). Hence,
sp(A(τ � d)) = sp(A(τ + d)) \ sp(Θ′′) = sp({a, b, c, d, e, f, g}) \ sp({b}) =
{p ∧ q1, p ∧ q2,¬p,¬q2} \ {p ∧ q2} = {p ∧ q1,¬p,¬q2}, corresponding to the
set of arguments {a, c, d}, whose closure is C

∗({a, c, d}) = {a, c, d, f, g} = A′′.

The previous example shows the relation between an acceptance revision
applied directly over the set of arguments, regarding a related operation upon
the underlying knowledge base from which the logic-based AF is constructed.

Proposition 36. Given an AF τ , a semantics specification S, an external argu-
ment a ∈ A

∗
L, and a smooth acceptance revision ‘�’; assuming A∗

Σ ⊆ A
∗
L as the

set of all canonical arguments A
∗
L constructible from a knowledge base Σ ⊆ L,

it holds A(τ � a) = A∗
Σ, where Σ = sp(A(τ + a)) \ sp(P0(γ(⊥S(τ + a, a)))).

7 Conclusions

Related and Future Work. The expansion proposed here can be seen as
a normal expansion [4] since we do not restrict the directionality of the new
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attacks which appear after a new argument is incorporated to the framework.
Authors there propose some general properties for ensuring the (im)possibility
of enforcing a set of abstract arguments, which refers to the modification of
the abstract framework for achieving a specific result through some standard
semantics. Logic-based argumentation is out of the scope of the article. There
are two other differences with our work. Firstly, they pursue a kind of multiple
expansion since they consider the addition of an entire set of arguments and the
interaction through attack with the existing ones. In our work, this is possible
but only from the perspective of several subarguments which are part of a single
superargument. Secondly, they only consider expansions. In a subsequent work
[3], authors incorporate deletion of attacks. However, only minimal change is con-
sidered which renders no possibility for a complete characterization of change
through representation theorems. There, the formalization of the minimal change
principle is achieved through the introduction of numerical measures for indi-
cating how far two argumentation frameworks are. Another revision approach
in an AGM spirit is presented in [10] through revision formulæ that express how
the acceptability of some arguments should be changed. As a result, they derive
argumentation systems which satisfy the given revision formula, and are such
that the corresponding extensions are as close as possible to the extensions of
the input system. The revision presented is divided in two subsequent levels:
firstly, revising the extensions produced by the standard semantics. This is done
without considering the attack relation. Secondly, the generation of argumenta-
tion systems fulfilling the outcome delivered by the first level. Minimal change
is pursued in two different levels, firstly, by ensuring as less change as possible
regarding the arguments contained in each extension, and secondly, procuring as
less change as possible on the argumentation graph. The methods they provide
do not provoke change upon the set of arguments, but only upon the attack rela-
tions. Similar to [3], their operator is more related to a distance based-revision
which measures the differences from the actual extensions with respect to the
ones obtained for verifying the revision formula. They give a basic set of rational-
ity postulates in the very spirit of AGM, but more closed to the perspective given
in [14]. They only show that the model presented satisfies the postulates without
giving the complete representation theorem for which the way back of the proof,
i.e., from postulates to the construction, is missing. However, the very recent
work [12], which is in general a refinement of [9,10], proposes a generic solution
to the revision of argumentation frameworks by relying upon complete represen-
tation theorems. In addition, the revision from the perspective of argumentation
frameworks is also considered. Other distance based approaches in this direction
are the works by Booth et al. [7,8], were authors develop a general AGM-like
approach for modeling the dynamics of argumentation frameworks based on the
distance between conflict-free labellings for the complete semantics only. They
propose the notion of fall back beliefs for representing the rational outcome of an
AF from a constraint. A different approach, but still in an AGM spirit was pre-
sented in [5], where authors propose expansion and revision operators for Dung’s
abstract argumentation frameworks (AFs) based on a novel proposal called Dung
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logics with the particularity that equivalence in such logics coincides with strong
equivalence for the respective argumentation semantics. The approach presents
a reformulation of the AGM postulates in terms of monotonic consequence rela-
tions for AFs. They finally state that standard approaches based on measuring
distance between models are not appropriate for AFs.

In general, the aforementioned works differ from ours in the perspective of
dealing with the argumentation dynamics. This also renders different directions
to follow for achieving rationality. To our knowledge, [19] was the first work
to propose AGM postulates for rationalizing argumentation dynamics, provid-
ing also complete representation theorems for the proposed revision operations
built upon logic-based argumentation. The rationalization done here is mainly
inspired by such results, however change methods are pursued upon standard
semantics in contrast to dialectical trees as done in [19]. Similar to the notion
of remainders, in [19] and other ATC approaches like [18,20], authors recognize
from the dialectical trees some sets of arguments which are identified as “respon-
sible” for the rejection of arguments. In this paper we follow a similar intuition,
however, core and remainder sets are more general notions for identifying the
sources of acceptance/rejection of specific arguments upon standard semantics.

The problem of revising a framework by a set of arguments has been shown
in [11] to suffer from failures regarding enforcement as originally defined in [4].
This is an interesting problem to which the theory here proposed may bring
different solutions. To that end, it would be interesting to extend the acceptance
revision operator for revising a framework by an unrestricted set of arguments
rather than a single one, or a superargument including several subarguments.
Such an operation seems to fit better as an argumentation merge.

Discussion. We proposed a model of change for argumentation based on the
novel concepts of core and remainder sets. Core sets can be thought as mini-
mal sets which are necessary for ensuring the acceptability of a given argument
whereas remainder sets can be understood as minimal sets which are somehow
responsible for the rejection of a given argument. The proposed model of change
was firstly studied upon abstract argumentation and afterwards, upon logic-
based argumentation. The resulting acceptance revision operation was charac-
terized through the proposal of rationality postulates á la belief revision, and
afterwards, the through corresponding representation theorems.

Another aspect that we wanted to demonstrate is that abstract argumenta-
tion can be counterproductive when the research is not immersed in the appro-
priate context of applicability. When the model, firstly proposed for abstract
argumentation, was observed in the context of logic-based argumentation, several
new inconveniences appeared requiring special attention, showing that abstrac-
tion can also be a path to trivialization. A conclusion that we draw is that
standard semantics may not apply correctly to a logic-based argumentation sys-
tem (AS). The usage of argumentation postulates [2,15] facilitates the analysis
for understanding how rational a set of extensions can be. Such rationality can
be achieved from two standpoints. Either from the construction of the frame-
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work, by putting special attention on how to model conflicts, or on the other
hand, by tackling the problem straightforwardly from the construction of the
extensions. In this sense, we proposed a new perspective for enriching the con-
cept of admissibility for being applied over logic-based arguments through the
notion of argumentation closure. We have shown that standard semantics relying
on logic-based admissibility can make things easier for verifying argumentation
postulates (see discussion in p. 15).

Regarding argumentation dynamics, we focus minimal change from the per-
spective of the knowledge base at first, and from the set of arguments, after-
wards. We believe this is an appropriate manner to tackle such principle, since
logic-based argumentation stands for reasoning upon inconsistencies of an under-
lying knowledge base. Another way to observe minimal change –which was not
attended here– is from the perspective of the outcomes of the framework. A final
conclusion that we draw is that although dynamics of abstract arguments can
also be studied by proposing models of change affecting the set of attacks, it
is not an appropriate perspective for logic-based argumentation. These sort of
problems are really interesting, however they do not seem to fit well to such
context of application considering that attacks are finally adjudicated in terms
of logical contradictions.
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Abstract. The ability of an agent to make quick, rational decisions in
an uncertain environment is paramount for its applicability in realistic
settings. Markov Decision Processes (MDP) provide such a framework,
but can only model uncertainty that can be expressed as probabilities.
Possibilistic counterparts of MDPs allow to model imprecise beliefs, yet
they cannot accurately represent probabilistic sources of uncertainty and
they lack the efficient online solvers found in the probabilistic MDP com-
munity. In this paper we advance the state of the art in three important
ways. Firstly, we propose the first online planner for possibilistic MDP by
adapting the Monte-Carlo Tree Search (MCTS) algorithm. A key com-
ponent is the development of efficient search structures to sample possi-
bility distributions based on the DPY transformation as introduced by
Dubois, Prade, and Yager. Secondly, we introduce a hybrid MDP model
that allows us to express both possibilistic and probabilistic uncertainty,
where the hybrid model is a proper extension of both probabilistic and
possibilistic MDPs. Thirdly, we demonstrate that MCTS algorithms can
readily be applied to solve such hybrid models.

1 Introduction

A Markov Decision Process (MDP) [2] is a successful framework for dealing with
sequential decision problems under uncertainty, particularly when the uncer-
tainty is due to underlying stochastic processes. However, when dealing with
uncertainty due to a lack of knowledge it is often easier to find acceptable quali-
tative estimates. Possibilistic counterparts of MDPs [17], referred to as π-MDP,
have been introduced in recent years to tackle this problem. In some situations,
optimal strategies to compute the policy of a π-(PO)MDP have even been shown
to give better results than their probabilistic counterparts [3]. A limitation of
π-MDP, though, is that current solvers for π-MDP rely on offline algorithms
to compute the optimal policy. Conversely, state-of-the-art MDP planners are
online approximate anytime planners (e.g. [12,15]). Since such planners only
have to determine the next best “enough” action instead of coming up with a
complete optimal policy, they are considerably faster. Furthermore, these online
planners are often simpler to integrate with, for example, BDI systems [16] where
c© Springer International Publishing Switzerland 2016
M. Gyssens and G. Simari (Eds.): FoIKS 2016, LNCS 9616, pp. 24–41, 2016.
DOI: 10.1007/978-3-319-30024-5 2
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the online nature fits well with the reactive nature of such systems. MDP and
π-MDP also share a common downside: both frameworks only allow for a single
kind of representation for all sources of uncertainty, either all probabilistic, or all
possibilistic. This is often at odds with realistic settings, where the underlying
causes of uncertainty are diverse. Consider this example:

Example 1. Patrols are being used in a wildlife preserve to deter poachers. Some
areas, such as the grassland, have rich statistical data available about the effects
of patrolling near herds. These areas are easy to observe and various sensors are
installed to monitor the herd movement. In the grassland, we know that moving
a patrol to the grassland will prevent poaching in 82% of the cases if the herd is
there. Furthermore, in 11% of the situations the herd will move to the marshes
and in 7% to the mountains when we have a patrol near them on the grassland.
Otherwise, the herd stays on the grassland for the remainder of the day.

For the other areas, only the rangers’ experience is available to predict the
effectiveness of patrols, and their result on herd movements. For instance, in the
mountains we know that it is entirely possible that the herd will stay there or that
the herd moves back to the grassland. However, it is only slightly possible that
the herd moves to the marches. It is only somewhat possible to deter poaching
if we have a patrol around since tracking and finding the herd is hard in the
mountains. The terrain with its many hiding spots also makes it entirely possible
for poachers to succeed even when we have a patrol nearby.

The rewards themselves can also be quantitative or qualitative in nature.
For example, we can easily express that we prefer states in which no animals
are poached, but only in the grassland do we have exact numbers of how many
animals would be saved by patrolling. ��

Modelling examples like these is difficult in MDP or π-MDP as it involves
different types of uncertainty. In this paper we advance the state of the art in
three important ways. Firstly, we adapt the Monte-Carlo Tree Search algorithm
used in e.g. UCT [14] and PROST [12] to the π-MDP setting. To achieve this,
we present in Sect 3.1 a tractable way to sample possibility distributions. The
resulting algorithm is the first online planner for π-MDP, applicable to both
brave and cautious reasoning. Secondly, we propose a hybrid MDP framework
where state transitions can be described as either possibilistic or probabilistic
distributions. Such a hybrid MDP, which is a proper extension of both MDP
and π-MDP, allows a precise and elegant way of modelling problems such as the
ones expressed in Example 1. Thirdly, by combining the results from our first
contribution with classical MCTS we arrive at an MCTS algorithm that can be
used to solve hybrid MDP. We furthermore impose rational restrictions on how
qualitative and quantitative utilities of trajectories can be combined in order to
guide the search. The resulting machinery provides us with a way to solve hybrid
MDPs using efficient online anytime algorithms.

The remainder of the paper is organised as follows. Preliminaries are discussed
in Sect. 2. We discuss how to adapt UCT to π-MDP in Sect. 3, crucially depending
on our method to efficiently sample possibilistic distributions. The hybrid MDP
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model is presented in Sect. 4, and we also discuss an MCTS algorithm to solve
such hybrid models. Related work is discussed in Sect. 6 and we draw conclusions
in Sect. 7.

2 Preliminaries

MDP: A probabilistic MDP model is defined by a tuple 〈S,A, T ,R, γ〉. We
have that S is a finite set of states and A is a finite set of actions. The transition
function T gives the probability distributions over states (st, st+1) ∈ S2 and
an action at ∈ A, such that T (st, at, st+1) = P (st+1 |st, at), i.e. the (stochas-
tic) uncertainty of reaching the state st+1 from state st by taking at. A reward
function R associates the immediate reward value R(st, at, st+1) with transition-
ing from state st to st+1 by using action at. A discounting factor 0 ≤ γ ≤ 1 is
used to discount rewards that can only potentially be obtained in the future (or,
alternatively, a finite horizon is assumed). A trajectory τ is a sequence of states
(s1, ..., sh), where we use Th to denote all trajectories of size h. A policy (δ) is a
sequence of decision rules δ : S → A indexed by t, i.e. δ(st) = at is the action to
execute at time t. The value, or quantitative utility, of a policy is given by:

v((δ), s0) = E

(
h−1∑

t=0

γt · R(st, δt(st), st+1)

)
(1)

with h the horizon, E(·) the expected reward, and st+1 the stochastic outcome of
applying at in st. A policy applied in the initial state thus describes a trajectory
of size h. The optimal policy is the one that maximises v(·, s0), i.e. at each step
t it takes the best available action to maximise the sum of future rewards.

Finding these optimal policies is an intractable problem, so approaches have
been developed that can return “good enough” actions. One such an approach
for solving MDPs is the UCT algorithm [14], which combines Monte-Carlo Tree
Search (MCTS) with an upper confidence bound (UCB1) policy. MCTS is an
anytime algorithm in which a search tree is built by iteratively sampling the
decision space. During each iteration, the algorithm (a) selects an expandable
child node; (b) expands this node using an available action; (c) performs a roll-
out/simulation from the expanded node to a terminal node; and (d) backprop-
agates the result of the simulation up to the root node to update the statis-
tics for future searches (see Fig. 1). The MCTS algorithm closely relates to
Eq. 1. The reward of a given trajectory is accumulated during the (c) rollout
phase. The probability of the trajectory (implicitly assumed in Eq. 1 through
the expected value) is respected during the (a) node selection/(b) expansion/(c)
rollout. Finally, the total reward from traversing a node/number of times a node
has been traversed, are updated during the (d) backpropagation. This allows an
approximation of the expected reward of a node to be computed.

The UCB1 policy [1] can considerably speed up MCTS by addressing the
exploration-exploitation trade-off during the child node selection. The action
to perform in each node is the one that maximises Xj + B

√
(log n)/nj) with

Xj ∈ [0, 1] the average future reward by taking action aj , B a bias parameter, nj
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(a)

(b)

(c)

(d)

(a) select
(b) expand
(c) simulate
(d) backpropagate

(a) basic MCTS procedure

a

s2 s3

s4

0.82
0.07

0.11 0.92

a

s2 s3

s4

1
1

0.3

0.6

(b) MDP and π-MDP
transitions and rewards

Fig. 1. (left) basic MCTS procedure with the 4 distinct phases in each iteration (right)
MDP and π-MDP differences, where transitions are either probabilities or possibilities,
rewards are over transitions, and preferences are over states

the number of times aj has been selected in this node, and n =
∑k

j=1 nj , i.e. the
total number of times any of the available actions {a1, ..., ak} in this node have
been taken. Intuitively, the term on the left of the sum encourages exploitation,
while the term on the right encourages exploring less-visited paths.

π-MDP: The π-MDP model [17,18] is the possibilistic counterpart of the MDP
model where the uncertainty is modelled as a qualitative possibility distribution.
It is defined as a tuple 〈S,A, Tπ,M,L〉. Here L is a possibility scale, i.e. a finite
and totally ordered set whose greatest element is 1L and whose least element is
0L. Typically, it is taken as L = {0, 1/k, 2/k, ..., k − 1/k, 1} for some k ∈ N

+ and
it will be required to define the transition function. The possibility distribution
over S is a function π : S → L such that maxs π(s) = 1L, i.e. at least one state
is entirely possible. Whenever π(s) < π(s′) it implies that s′ is more plausible
than s. The transition function Tπ is defined over a pair of states (st, st+1) ∈ S2

and an action at ∈ A as Tπ(st, at, st+1) = π(st+1 | st, at), i.e. the possibility of
reaching st+1 conditioned on the current state st and the action at. This reflects
that the uncertainty of the effects of action at are due to a lack of information.
Furthermore, a function M : S → L models the qualitative utility, or preference,
of each state (see Fig. 1b). The qualitative utility of a policy in π-MDP is defined
in the cautious setting as:

u∗((δ), s0)= min
τ∈Th

max {1 − Π(τ |s0, (δ)),M(sh)} (2)

or, in the brave setting, as:

u∗((δ), s0)=max
τ∈Th

min {Π(τ |s0, (δ)),M(sh)} (3)
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with Π(τ |s0, (δ)) = minh−1
t=0

(
π(st+1 |st, δt(st))

)
, i.e. the possibility of the trajec-

tory τ = (s1, ..., sh). The brave setting evaluates a policy based on whether there
is at least one possible path that is good. The cautious setting, conversely, eval-
uates a policy based on how good all of the possible paths are (indeed, it selects
the worst path for its utility). The utility is based on the possibility/necessity
of the trajectory which starts from s0, and the preference of the final state sh

(assuming a finite horizon). Some algorithms have been proposed to compute
the solutions of π-MDP models for both decision criteria [3,17]. However, these
approaches compute optimal solutions and are therefore only applicable to rather
small problem spaces, contrary to the online MCTS algorithm available for MDP.

3 Adapting UCT to π-MDP

We now develop a way to apply UCT, or MCTS in general, to π-MDP. As dis-
cussed in Sect. 2, MCTS builds a search tree by iteratively sampling the decision
space. The concept of sampling plays an important role in the rollout phase, but
also in the selection and expansion phase due to the non-deterministic nature
of the underlying model. In the probabilistic setting, the law of large numbers
makes sampling straightforward. In the possibilistic setting, however, we do not
have a concept similar to the law of larger numbers. Still, the idea remains sim-
ilar. Through sampling, we want to select one of the effects of a given action in
a π-MDP model, in accordance with the possibility associated with the various
effects of that action. This idea is closely related to the idea of transforming
a possibility distribution into a probability distribution, where we can sample
directly from the latter. A compelling possibilistic-probabilistic transformation,
the DPY transformation, was first introduced by Kaufmann in French [10], and
later independently by Dubois and Prade [6] and Yager [22]. Not only has this
transformation been independently developed by other authors, both in the set-
ting of possibility theory [5,13] and Dempster-Shafer theory [20], but it also has
a large number of desirable properties (see [8]). In Sect. 3.1 we focus on how we
can use the DPY transformation to sample a possibility distribution, and how
we can do so in a tractable way. In Sect. 3.2 we look at some of the intricacies
of backpropagation and node selection in the π-MDP setting. Together, these
components will allow us to use an MCTS-style algorithm to solve π-MDP.

3.1 Possibilistic Sampling

As an initial step towards sampling a possibility distribution, we transform such
a distribution into an intermediate data structure with a tractable algorithm:

Definition 1. Let π be a possibility distribution over S. Let S0 be those states
with a strictly positive possibility, S0 = {s | π(s) > 0, s ∈ S}. Furthermore, we
rank order elements in S0 as π(s0) ≥ ... ≥ π(sk). Let Cπ then be the list of tuples
sorted in ascending order on i such that 〈i, pi〉 ∈ Cπ whenever π(si) > π(si+1)
with pi = π(si) − π(si+1) and, by default, π(sk+1) = 0.
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The structure Cπ provides a compact representation of the DPY transformation
of a possibility distribution π to a basic belief assignment m.1 Indeed, the tuple
〈i, pi〉 marks that {s0, ..., si} is the α-cut of π with α = π(si). The value pi is the
probability mass associated with this α-cut in m on the subset A = {s0, ..., si}.

Example 2. Consider the following possibility distribution π:

π(s0) = 1 π(s1) = 0.7 π(s2) = 0.7
π(s3) = 0.3 π(s4) = 0.1 π(s5) = 0

We have Cπ = (〈0 , 0.3〉 , 〈2 , 0.4〉 , 〈3 , 0.2〉 , 〈4 , 0.1〉).
An algorithm to compute Cπ from π is given in Algorithm 1.

Given a compact representation Cπ, we can readily determine the probability
distribution associated with π:

Definition 2. Let π be a possibility distribution and Cπ as in Defintion 1. For
every si ∈ S0 the probability of si is:

p (si) =
∑

〈j,pj〉∈Cπ
j≥i

pjj + 1

and p(s) = 0 for all s ∈ (S \ S0).

Of course, we only want to sample according to the associated probability dis-
tribution without explicitly computing the distribution. This can be achieved by
randomly selecting a 〈si, pi〉 ∈ Cπ according to probability masses P using the
principle of Probability Proportional to Size (PPS), followed by a random selec-
tion with a uniform probability 1(i + 1) of an element s ∈ {s0, ..., si}. This idea
is reflected in Algorithm 2.

Example 3. Consider π and Cπ from Example 2. Following Definition 2, we have
the probability distribution p such that:

p(s0) = 0.5033 . . . p(s1) = 0.2033 . . . p(s2) = 0.2033 . . .

p(s3) = 0.07 p(s4) = 0.02 p(s5) = 0

where e.g. p(s0) = 0.31 + 0.43 + 0.24 + 0.15 = 0.5033. In other words: assume
a PPS selection of 〈si, pi〉 ∈ Cπ has been made, followed by a random selection
with a uniform probability of sk ∈ {s0, ..., si}. In 50.33...% of the cases, this
procedure will return s0, i.e. k = 0.

We now prove that using the compact representation allows for tractable sam-
pling of a possibility distribution.

Proposition 1. Constructing Cπ for π a possibility distribution over S requires
an O(n log n) algorithm with n = |S|. Sampling of π based on Cπ can be done in
constant time.
1 A basic belief assignment, or bba, is a function of the form m : 2S → [0, 1] satisfying

m(∅) = 0 and
∑

A∈2S m(A) = 1.
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input : a possibility distribution π over S
result : a compact representation Cπ of the possibility distribution π

as given in Definition 1

initialise a list Cπ

sort π such that π(s0) ≥ π(s2) ≥ ... ≥ π(sn−1)
if π(sn−1) > 0 then π(sn) ← 0
for i ∈ [0, k] with k = |S0| do

if π(si) > π(si+1) then
append 〈i, π(si+1) − π(si)〉 to Cπ

end
return Cπ

Algorithm 1. tractable construction of Cπ

Proof. Algorithm 1 requires the sorting of the possibility distribution π, with
O(n log n) time complexity, followed by an iteration over all the states in S0,
with O(n) time complexity. Hence, the algorithm is an algorithm with O(n log n)
time complexity. Sampling based on Algorithm2 relies on a PPS selection and a
selection using a uniform distribution, both of which can be implemented with
O(1) time complexity [21]. ��

input : a possibility distribution π over S and its compact transformation Cπ

result : a state s ∈ S

〈i, pi〉 ← PPS selection from Cπ given probability masses P = {pj | 〈j, pj〉 ∈ Cπ}
idx ← random selection from [1, i] using uniform probability 1(i + 1)
return sidx

Algorithm 2. constant time sampling using Cπ

3.2 Backpropagation and Node Selection

With an efficient way of sampling a possibility distribution, only a few other
issues need to be resolved in order to apply a MCTS-style algorithm to π-MDP.
The first issue has to do with the information we keep track of, and which we
update during the backpropagation. Particularly, each node will need to keep
track of a tuple of the form 〈u∗, u∗〉 instead of a single quantitative reward as in
the MDP setting. Here, u∗ denotes the cautious qualitative utility of that par-
ticular node onwards, while u∗ denotes the brave qualitative utility. From Eqs. 2
and 3 we know that we also have to keep track of the possibility Π(τ | s0, (δ))
of the trajectory τ , i.e. we have to compute minh−1

t=0

(
π(st+1 |st, δt(st))

)
. This

can be achieved during the selection, expansion and rollout phase by keep-
ing track of the minimum of the possibility of the transition for each chance
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node we encounter.2 Further in accordance with Eqs. 2 and 3, once a terminal
state is encountered, or the horizon is reached, the preference M(sh) for this
state sh is determined. Based on the values Π(τ | s0, (δ)) and M(sh), we can
readily compute a tuple 〈u∗, u∗〉 with u∗ = max(1−Π(τ |s0, (δ)),M(sh)) and
u∗ = min(Π(τ |s0, (δ)),M(sh)). This information is then backpropagated where
the tuple 〈ju∗, ju

∗〉 of each node j is updated to 〈min(u∗, ju∗), max(u∗, ju
∗)〉.

The second issue is how to select the best node to expand during the selec-
tion phase. As it turns out, we can readily apply UCB1 for this, even in the
possibilistic setting. However, we do have to decide for each search whether we
are pursuing a cautious or brave search. For a brave search, we use ju

∗ instead of
Xj . For a cautious search, we instead use ju∗. When the computational budget
is reached, an action is selected for which its node is a direct child of the root
and there does not exist another such node with a higher quantitative utility
ju

∗ (resp. ju∗). An MCTS algorithm to solve π-MDP is given in Algorithm 3.3

Note that while a possibility-probability transformation is used for the pur-
pose of sampling a possibility distribution, the induced probability distribution
is not used at any other stage. Indeed, during selection/expansion/rollout it is
the possibility of the trajectory that is computed. This possibility is combined
with the preference of the terminal state to determine the brave and cautious
qualitative utility of the trajectory. Similarly, backpropagation only takes these
qualitative utilities into account when updating the node information, and it
are these qualitative utilities that guide the choice of the best node to expand
during the selection phase. This ensures that no unnecessary transformation bias
is introduced.

Proposition 2. The failure probability at the root, i.e. the probability of select-
ing a sub-optimal action, converges to 0 as the number of samples grows to
infinity for MCTS applied to π-MDP.

Proof. (sketch for u∗(·, s0)) Assume h = 1, i.e. a search tree with only one level
of alternating action and state nodes. We have that the value associated with
each action ai is given by the maximum of the qualitative utility of each outcome
of ai. This utility is in turn given by the minimum of the possibility degree of
the trajectory – which corresponds with the possibility of the outcome – and the
preference of the final state. Since the qualitative brave utility associated with an
action never decreases through repeated sampling, and since repeated sampling
will explore all branches as the number of samples grows to infinity, we know that
the qualitative utility of the returned action will never decrease after additional
samples and that it converges in the limit to the optimal action. Indeed, since
we are assuming a finite horizon and since the number of actions/states is finite,
we know that the size of the tree is bounded. For h > 1 the only difference is

2 To deal with uncertainty in MCTS, a dual-layered approach is used in the search
tree. A decision node, or state, allows us to choose which action to perform. A chance
node, or action, has a number of stochastic effects which are outside our control.

3 An implementation of the algorithm proposed in Algorithm 3 is also available online,
at https://github.com/kimbauters/sparsepi.

https://github.com/kimbauters/sparsepi
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input : a π-MDP model, Ca
π for every π describing the outcome of an action a,

and root state s0
result : the next best action a′ to execute

create root node n with state s0
while within computational budget do

Π(τ) ← 1
while n has untried actions and n′ has children do

a ← select(n′)
/* select next state by sampling Ca

π */

n′ ← sample(n, a, Ca
π)

Π(τ) ← min(Π(τ), π(n′ |n, a))
n ← n′

end
if n′ has untried actions then

a ← select an untried action
n′′ ← sample(n′, a, Ca

π) /* expand node */

end
/* rollout by sampling from Cπ as needed */

nend ← rollout(n′′)
backpropagate (nend, max(Π(τ), M(nend)))

end
return best action(n0)

Algorithm 3. MCTS algorithm for brave π-MDP

the increased size of the trajectory. However, since the possibility Π(τ | s0, (δ))
of the trajectory τ as calculated in the algorithm is the same as the one in Eq. 3,
the results readily hold as well for h > 1. ��

Initial experimental results confirm the benefit of the online planner for
π-MDP. We first consider a problem space where |S| = 210, |A| = 11, and assume
a 50 iteration budget for the online planner. Both the online planner and the
offline planner are used to solve the same problem 100 times, where the offline
planner first needs to compute its optimal policy but can then repeatedly use
that to quickly solve the problems. The online (offline) planner took on aver-
age 34.49 ms (9.48 ms) to find a solution with an average qualitative utility of
0.602 (0.792). In small scale examples like these, the offline planner benefits
from being able to apply its policy near-instantaneously once computed to navi-
gate the problem space. When increasing the state space to |S| = 212 the online
(offline) planner took on average 37.44 ms (169.96 ms) to find a solution with an
average qualitative utility of 0.632 (0.762). When |S| = 215 the online (offline)
planner took on average 37.18 ms (9961.50 ms) to find a solution with an aver-
age qualitative utility of 0.658 (0.742). Although clearly these are not conclusive
experiments, they already provide indications that the online planner better
qualifies to navigate the increasingly large search space, although this comes at
the cost of a reduced utility due to the search space not being fully explored.
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A more comprehensive experimental evaluation falls beyond the scope of this
paper, yet is planned for future work.

4 Hybrid MDPs

As shown in Example 1, real-life problems can have different types of uncertainty
that we cannot accurately express using only a single kind of representation.
Indeed, possibility theory is not good at modelling uncertainty due to underly-
ing stochastic processes, while probability theory is not well-suited for modelling
uncertainty due to a lack of information.4 Other theories of uncertainty, such
as Dempster-Shafer theory [19], are a proper extension of both possibility and
probability theory. However, due to their computational complexity, they lend
themselves poorly to the use in online anytime algorithms such as MCTS. Algo-
rithms such as MCTS rely on the repeated exploration of different trajectories,
which is made feasible by the tractability of the underlying phases (see Fig. 1a).
Therefore, we instead present a model in which uncertainty can be explicitly
expressed as either a possibility or probability.

In the hybrid MDP model the actions are partitioned into those with prob-
abilistic and a possibilistic effects, so that each action can be described using
the most appropriate representation. In particular, the transition function asso-
ciates with every action a either a possibilistic, or a probabilistic distribution.
Furthermore, we also keep track of a total reward and preference function, which
allows us to derive either a qualitative or quantitative utility as needed.

Definition 3. A hybrid MDP is defined as a tuple 〈S,A, T ,R,M, γ,L〉 such that
(i) S is a finite set of states; (ii) A is the set of actions, with A = AP ∪Aπ, where
AP is the set of actions with probabilistic effects and Aπ the set of actions with
possibilistic effects; (iii) T is the transition function, where T (st, at, st+1) is the
conditional probability (resp. possibility) of reaching the state st+1 by performing
action at at state st if at ∈ AP (resp. if at ∈ Aπ); (iv) R and M are totally
specified reward and preference functions over S; (v) γ is a discounting factor
such that 0 ≤ γ ≤ 1; and (vi) L is a possibility scale.

Example 4. Looking back at Example 1, the hybrid MDP model allows us to
describe, on the one hand, the effect of patrolling an area on herd move-
ment for the grassland area as a probabilistic transition and, on the other
hand, for the mountain area as a possibilistic transition. We have the action
patrol grassland with herd grassland as precondition and the three probabilistic
effects ¬poaching , herd mountain, and herd marsh with resp. probability 0.82,
0.11, and 0.07. We also have the action patrol mountain with herd mountain
as precondition and the four possibilistic effects herd mountain, herd grassland ,

4 A common approach in probability theory to try to overcome this problem is to use
subjective probabilities. However, in the more general POMDP/MOMDP settings
this creates difficulties in its own right as subjective probabilities from the transitions
are then combined with objective probabilities from the observation function.
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¬poaching , and herd marsh with resp. possibilities 1, 1, 0.4, and 0.2. Rewards
and preferences are fully specified for all state transitions and states, allowing
us to express e.g. that preventing a herd from being poached in the grassland is
a preferred state, and it results in a reward r (e.g. based on the number of saved
animals). In other words, assuming an original state s, an action a, and a state
s′ where animals are saved, we can have M(s′) = 1 and R(s, a, s′) = 15.

A policy in the hybrid MDP setting is defined in the same way as for MDP
and π-MDP. However, unlike in MDP or π-MDP, the value of a policy in a
hybrid MDP is not given by a single value but by a tuple consisting of both a
reward and (brave/cautious) qualitative utility. We have:

Definition 4. The utility w of a policy (δ) in a hybrid MDP model is given by:

w((δ), s0) =

{
〈v((δ), s0), u∗((δ), s0)〉 cautious setting
〈v((δ), s0), u∗((δ), s0)〉 brave setting

with v((δ), s0), and u∗((δ), s0) and u∗((δ), s0), computed over respectively the
MDP and π-MDP induced by the hybrid MDP, as explained next.

An optimal policy for a hybrid MDP is defined in Sect. 5. Notice that, since
we are using both u(·) and v(·) in the policy, the computation of a qualita-
tive/quantitative reward requires an MDP/π-MDP. We thus need an efficient
way of deriving the MDP and π-MDP that underlie a hybrid MDP. Obtaining
the MDP 〈S,A, T ∗, R, γ〉 is straightforward. Indeed, S, A, R, and γ are as spec-
ified in the hybrid MDP. For those actions a ∈ Aπ that are possibilistic, we
discussed in Sect. 3.1 how we can use the DPY transformation to transform a
possibility distribution π(·) = T (st, a, ·), with a ∈ Aπ, into a probability distrib-
ution p∗(·) = yager(T (st, a, ·)). As before, we do not need to explicitly compute
the associated probability distribution, as we can have the MCTS algorithm
indirectly rely on probabilities through the sampling process. This time around,
and contrary to Sect. 3, the probabilistic sampling of a possibility distribution
is taken into account (indirectly, as part of the sampling process) and used to
determine the probability of the trajectory.

While deriving the MDP that underlies a hybrid MDP is straightforward, it
is more complicated to derive the underlying π-MDP 〈S,A, T ∗∗,M,L〉. A simpli-
fying factor – as in the MDP case – is that S, A, M , and L are as specified in the
hybrid MDP model. Hence, the derivation of the underlying π-MDP only requires
a transformation of the probability distributions used in the hybrid MDP model
into possibility distributions. Many such transformations exist, applying to either
objective or subjective probability distributions. Since we assume in the hybrid
MDP model that subjective information is best represented using a possibility
distribution, we can conversely assume that we are dealing with an objective
probability distribution. As such, the transformation of a probability distribu-
tion into a possibility distribution should be based on preserving as much infor-
mation as possible. One such a transformation [9] is defined as follows. Given
a probability distribution p such that p(s0) ≥ p(s1) ≥ . . . ≥ p(sk) we have that



Anytime Algorithms for Solving Possibilistic MDPs and Hybrid MDPs 35

the associated possibility distribution π is defined as π(sj) =
∑

i=j,...,k P (si).
Furthermore, for equiprobable elements it is enforced that the corresponding
elements are also equipossible [9]. Computing the associated possibility distrib-
ution can be done using an O(n log n) time complexity algorithm and lookups
require O(log n). As a final step, all results are rounded up to the nearest ele-
ment in L. In conclusion, for those actions a ∈ AP that are probabilistic, we
transform the probability distribution p(·) = T (st, a, ·), with a ∈ AP , into a
possibility distribution π∗∗(·) = dubois(T (st, a, ·)) by using the transformation
outlined in this paragraph.

Example 5. Consider the probability distribution p such that

p(s0) = 0.7 p(s1) = 0.1 p(s2) = 0.1
p(s3) = 0.07 p(s4) = 0.03 p(s5) = 0

Assuming L = {0k, 1/k, ..., k/k} with k = 20 we have the resulting π:

π(s0) = 20/20 π(s1) = 6/20 π(s2) = 6/20
π(s3) = 2/20 π(s4) = 1/20 π(s5) = 0/20

where π is the possibility distribution associated with p.

We can now treat a hybrid MDP as a π-MDP in a similar way as we treated a
hybrid MDP as an MDP. The induced possibility distribution is used to deter-
mine the possibility of the trajectory, and the (qualitative) reward is obtained by
ignoring the reward values and only relying on preference values. Importantly,
it should be noted that the transformation to a possibility distribution is only
used to compute the possibility Π(τ | s0, (δ)) of the trajectory τ , and not for
sampling purposes. This is because, in general, transforming a probability dis-
tribution into a possibilistic one and back to a probability distribution does not
result in the same distribution, thus introducing an avoidable bias.

5 Solving Hybrid MDPs

We show in this section that an online anytime MCTS-style algorithm can be
used to solve hybrid MDPs. In particular, we show that the main difficulty lies in
the selection phase. Indeed, in the selection phase we need to select the next best
node to expand based on the utility of a hybrid MDP, which is a tuple composed
of a quantitative and qualitative utility. However, selection strategies – such
as UCB1 – require a single value to assess the value of a node. We thus need
methods that enforce commensurability and allow us to combine both utility
values into a single value w↓. This ties in with Definition 4, where we so far have
not defined what an optimal policy is in the hybrid MDP setting. To be able to
define an optimal policy, and to define w↓, we propose a number of rationality
postulates. These postulates are used to motivate reasonable methods to ensure
commensurability. Still, as we will see, some degree of freedom remains. This is
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to be expected given that the meaning of the qualitative utilities, and especially
their inter-relation with quantitative utilities, is domain-dependent.

To simplify the description of the postulates, we assume a straightforward
transformation of the quantitative utilities to map them onto the interval [0, 1].
The maximum reward, or quantitative utility, is given by maxv v((δ), s0) with
(δ) the optimal policy. In a similar way, we can define the worst reward. The
transformation then consists of rescaling all rewards accordingly onto [0, 1] where
a value of 1 (resp. 0) denotes the most (resp. least) preferred outcome. Notice
that while this transformation may appear to give the quantitative utilities a
qualitative interpretation, it does not allow us to directly compare quantitative
and qualitative utilities (e.g. they still have different neutral elements5).

We can now introduce the postulates that motivate the characteristics of w↓.

P1: Let w(a) = 〈1, 1〉, then a is the most preferred action, i.e.
� ∃a′ · w(a

′) > w↓(a).
When an action has the highest possible value and is qualitatively valued
higher than others, then it must be the most preferred action.

P2: Let w(a) = 〈0, 0〉, then a is the least preferred action, i.e.
� ∃a′ · w↓(a′) < w↓(a).
When an action has the lowest possible value and is qualitatively valued
lower than others, then it must be the least preferred action.

Postulates P1–P2 are the base cases with a clear consensus among both utilities.
The next two postulates identify the monotonicity w.r.t. a single value change:

P3: Let w(a) = 〈v, u〉 and w(a′) = 〈v′, u′〉 with v = v′ and u > u′, then
w↓(a) > w↓(a′).

P4: Let w(a) = 〈v, u〉 and w(a′) = 〈v′, u′〉 with u = u′ and v > v′, then
w↓(a) > w↓(a′).
When the qualitative (resp. quantitative) utilities of two actions are the
same, the action with the highest quantitative (resp. qualitative) utility
must be the preferred one.

Commensurability of the qualitative and quantitative utility is the most dif-
ficult when there is a level of disagreement, e.g. a high reward obtained in a
disliked state. Dissension between the utilities reaches its maximum when they
take on their neutral elements, or the neutral elements of the other utility. In
such cases, the exact interpretation of the dissension is dependent on whether
we are using brave/cautious reasoning for the qualitative utility:

P5: (brave reasoning, u∗) When w(a) = 〈0, 1〉, then we are ignorant (eq. have
a weak conflict) about a. When w(a) = 〈1, 0〉, then we have a (strong)
conflict about a.

5 We use the terminology of a neutral elements loosely here to indicate that a reward
of 0, and a preference of 1, are the defaults. Indeed, when rewards (resp. preferences)
are omitted these are the values MDPs (resp. π-MDPs) default to.
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P5′: (cautious reasoning, u∗) When w(a) = 〈1, 0〉, then we are ignorant (eq.
have a weak conflict) about a. When w(a) = 〈0, 1〉, then we have a
(strong) conflict about a.
Ignorance, or the situation with weak conflict, reflects that the values are
their own neutral elements and thus convey no real information. Strong
conflict suggests that the utilities disagree with each other by taking on
the strongest (opposing) values in their scale. In the cautious setting,
these notions are flipped around.

Interestingly, postulates P1–P5 tell us nothing about how to relate two actions
a, a′ for which w(a) = 〈0, 1〉 and w(a′) = 〈1, 0〉 (i.e. when there is a discord
between the utility measures), which is the degree of freedom we have. Simple
behaviour can be obtained by e.g. defining w↓(a) = un · v with w(a) = 〈v, u〉.
Here, n is a parameter indicating the strength of the qualitative utility over the
quantitative utility with values of n > 1 placing a higher importance on the
qualitative utility. An implicit effect of a formula of this form is that it equates
ignorance with conflict. Since we are using a product, we are also stressing the
weakest component. However, simple methods like these fail to satisfy a final
desirable postulate:

P6: A hybrid MDP is a proper extension of both an MDP and a π-MDP.
When the hybrid MDP only models probabilistic (resp. possibilistic)
information, the result of solving the hybrid MDP should be identical
to solving the identical MDP (resp. π-MDP).

Postulates P1–P6 suggest a lexicographic ordering, based on whether we
are dealing with brave or cautious qualitative reasoning, and on whether or not
qualitative information takes priority over quantitative information.

Definition 5 (lexicographic ordering). Let w(a)=〈v, u〉 and w(a′)=〈v′, u′〉.
For a probabilistic lexicographic ordering, we have that w(a) ≥p w(a′) iff v > v′,
or v = v′ and u ≥ u′. For a possibilistic lexicographic ordering, we instead have
w(a) ≥π w(a′) iff u > u′, or u = u′ and v ≥ v′.

Definition 6 (optimal policy). Let w↓ be a function agreeing with Defini-
tion 5, i.e. such that w↓(a) ≥ w↓(a′) iff w(a) ≥ w(a′), where the last ordering is
either ≥p or ≥π. Then the optimal policy in a hybrid MDP induced by w↓ is the
one that maximises w↓(w(·, s0)).
As previously mentioned, the best choice for w↓ is application-specific and
depends on the domain, and on the probability-to-possibility transformation
used.

Proposition 3. Let w↓ be a probabilistic or possibilistic lexicographic ordering.
We then have that w↓ satisfies postulates P1–P6.

Proof. It readily follows that postulates P1 and P2 are satisfied. Indeed, no
action will be less preferred than an action a such that w(a) = 〈0, 0〉, or
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more preferred than an action a′ such that w(a′) = 〈1, 1〉 since v, u ∈ [0, 1]
for w(·) = 〈v, u〉. Postulates P3 and P4 are satisfied directly by the choice of
the lexicographic ordering. For a probabilistic lexicographic ordering we get, by
definition, that w(a) ≥p w(a′) if v > v′ which agrees with P4. Equivalently, a
possibilistic lexicographic ordering agrees with P3. Postulates P5 and P5’ do
not impose any constraints but follow directly from the underlying theories of
uncertainty. Postulate P6 holds since an MDP (resp. π-MDP) represented as a
hybrid MDP can assign the neutral element for preference (resp. reward) to the
action. Hence, for an MDP with a probabilistic lexicographic ordering, we get for
all actions a that w(a) = 〈1, u〉. Hence w(a) > w(a′) if and only if u > u′. The
same line of reasoning applies for a π-MDP with a possibilistic lexicographic. ��

In the MCTS algorithm, w is used during node selection to merge the qual-
itative and qualitative utility of the node into a single value to be used by e.g.
UCB1. The other three phases in the MCTS algorithm, expansion, rollout, and
backpropagation, also need to be altered slightly. During expansion/rollout, both
the probability and possibility of a trajectory needs to be computed. To compute
the probability of the trajectory we can rely on sampling, which is available for
both probabilistic and possibilistic transitions given the results in Sect. 3.1. To
obtain the possibility of a trajectory, specifically when encountering a probabilis-
tic transition during the expansion/rollout phase, the associated possibility of
the trajectory is computed as discussed in the previous section. Throughout the
expansion/rollout we also need to keep track of the rewards and preferences. Both
are readily available since the reward and preference functions are total. Once
a terminal node is reached, given the possibility/probability of the trajectory as
well as the rewards/preferences, the qualitative/quantitative utility is calculated.
The backpropagation phase then simply combines the backpropagation of both
the MDP and π-MDP approaches to update both the qualitative/quantitative
utility for each node along the trajectory.

6 Related Work and Future Work

One of the first people to discuss possibilistic MDP is Sabbadin [17,18]. In those
works, the author introduces the π-MDP model in which either an optimistic
or pessimistic form of reasoning can be used. Applying the optimistic approach
might lead to unsatisfactory states, whereas the pessimistic version offers some
guarantee that this will not happen. However, as discussed later by Drougard
et al. [3], for problems where there is no risk of being blocked in an unsatisfactory
state the optimistic version is generally preferred. Furthermore, optimality of
an algorithm is easier to prove in the optimistic version. Our implementation
of π-MDP demonstrates similar behaviour, where a brave version has a high
chance of getting trapped in deadlock states, while the cautious version very
often reaches its goals notwithstanding.

Another significant contribution in [17] is that the author also introduced
the π-POMDP model, and shows that a finite translation of a π-POMDP to a
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π-MDP exists. This is unlike the probabilistic setting where no finite translation
exists between a POMDP and an MDP, and it allows algorithms used to solve a
π-MDP to be used without modifications to also solve π-POMDP. In practice,
however, the exponential size of the π-POMDP makes it infeasible to find solu-
tions in a reasonable amount of time for anything but the smallest problems.
These problems were addressed in [3], and later in [4], where the authors present
the π-MOMDP framework. In this new framework only a subset of the states
are partially observable. This significantly reduces the belief space, allowing for
optimal algorithms to be applicable in practice. One such algorithm was pre-
sented in [4] based on using a factored representation of the original problem. In
future work we intend to explore whether the online algorithm presented in the
current paper can similarly be applied to π-MOMDP and π-POMDP.

The work in [11] is one of the earliest works to discuss how sampling tech-
niques can be used to solve MDPs. The strength of such techniques lies in their
ability to find near-optimal solutions in only a fraction of the time of other
approaches. However, only after the seminal work by Kocsis and Szepesvári
[14] were sampling-based planning taken seriously in the community. The main
improvement proposed in [14] is to employ a multi-bandit approach, as described
by the UCB1 procedure [1], to offer an effective balance between exploration
and exploitation. This allows to considerably speed up the search process as the
most promising part of the tree is more quickly and more profoundly explored.
Not long after, the term Monte-Carlo Tree Search was coined to describe these
sampling-based approaches to planning.

The problem of how to transform a probability distribution into a possibility
distribution, and vice versa, has been addressed in a large body of papers (e.g.
[5,8,9,13,20,22]). Most generally, a possibility distribution is seen as a (very
large) family of probability distributions. The problem therefore boils down
to choosing, and motivating, one probability distribution. Intrinsically, such a
choice is based on extra information that is external to the possibility distribu-
tion. Transforming a probability distribution to a possibility distribution always
implies some loss of information, leading to a range of different transformations
based on different consistency principles. A concise overview of these and other
issues related with both directions of the transformation is given in [7]. How
the use of different transformations than the one used in this paper affects the
results in a hybrid MDP setting is a topic of interest for future work.

7 Conclusions

This paper introduced a novel approximate way for solving possibilistic MDP
(π-MDP) models, based on the established Monte-Carlo Tree Search (MCTS)
algorithms for solving MDPs. We found that the applicability of MCTS for solv-
ing π-MDP depends on the ability to quickly sample possibility distributions. By
introducing a new compact data structure that represents the DPY transforma-
tion of a possibility distribution into a probability distribution, we showed that
constant time sampling is indeed feasible. Furthermore, we proposed a hybrid
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MDP model in which we can encode both probabilistic, as well as possibilistic
transitions. This allows us to express different facets of uncertainty in the hybrid
MDP model. In addition, we showed how a modified version of MCTS can also be
applied to solve hybrid MDP models. A central component of this modification
is the need to relate the qualitative and quantitative utility. We showed that,
while the exact procedure to combine these utilities is application-dependent,
such procedures should adhere to a number of rationality postulates. In partic-
ular, the postulates enforce that any algorithm to solve a hybrid MDP can also
be used to solve either a π-MDP and MDP. Finally, algorithms and computa-
tional complexity results of all the main components are presented throughout
the paper to highlight the applicability of our approach.
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Abstract. On the one hand possibility theory and possibilistic logic
offer a powerful representation setting in artificial intelligence for han-
dling uncertainty in a qualitative manner. On the other hand conditional
tables (c-tables for short) and their probabilistic extension provide a
well-known setting for representing respectively incomplete and uncer-
tain information in relational databases. Although these two settings rely
on the idea of possible worlds, they have been developed and used inde-
pendently. This paper investigates the links between possibility theory,
possibilistic logic and c-tables, before introducing possibilistic c-tables
and discussing their relation with a recent certainty-based approach to
uncertain databases and their differences with probabilistic c-tables.

1 Introduction

The representation and the handling of imperfect information, be it incomplete
or uncertain, has led for several decades to the development of important research
trends in artificial intelligence, such as nonmonotonic reasoning, belief revision,
reasoning under uncertainty, or information fusion. Different formalisms have
been introduced for representing uncertainty which depart from probability the-
ory, and which are particularly of interest when information is both incomplete
and uncertain, such as belief function theory or possibility theory. Moreover,
possibility theory [11] may have a qualitative flavor, which may be appropriate
when uncertainty is hard to assess precisely.

On its side, database research first tackled the issue of managing imper-
fect/incomplete information a long time ago, with the works of Codd [7] and
Lipski [20] in the late seventies. Researchers first focused their attention on so-
called null values (either totally unknown or not applicable), before considering
more sophisticated cases of incompleteness. The pioneering work by Imielin-
ski and Lipski [18] considers three models: Codd tables, v-tables and c-tables.
v-tables are conventional instances where variables can appear in addition to
constants from the considered domains. Codd tables are v-tables in which all
the variables are distinct. They correspond roughly to the current use of nulls in
SQL, while v-tables model “labeled” or “marked” nulls. As to c-tables, they are
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v-tables extended with conditions on variables and constitute a very powerful
model, even though they raise computational complexity issues.

The last decade witnessed a renewal of interest in the modeling and man-
agement of uncertain databases (in particular, probabilistic ones, see, e.g., [27]),
which brought the c-tables model back in the spotlights. As pointed out by
Antova et al. in [3], the three most prominent probabilistic database models
proposed recently, namely ULDBs [4,5], U-relations [3] and the model proposed
in [8] based on virtual views, are different versions of the concept of a c-table.
See also the works by Green and Tannen who proposed a probabilistic c-tables
model [17] and by Shimizu et al. [26].

Even though most of the literature about uncertain databases uses proba-
bility theory as the underlying uncertainty model, this type of modeling is not
always so easy, as recognized in the introductory chapter of [27]: “Where do the
probabilities in a probabilistic database come from? And what exactly do they
mean? The answer to these questions may differ from application to applica-
tion, but it is rarely satisfactory.” This is one of the reasons why some authors
have proposed approaches that rather rest on another model, namely possibility
theory [10,28], which is appropriate for representing epistemic uncertainty.

The idea of applying possibility theory to the modeling of uncertain databases
goes back to the early 1980’s [23–25]. At that time, the approach was to represent
ill-known attribute values by possibility distributions, and then given a query,
to compute the fuzzy set of answers that are certain (or sure) to some extent,
and the larger fuzzy set of answers that are possible to some extent. This was an
attempt at providing a graded counterpart to the modal logic-based approach
proposed by Lipski [20,21]. This possibility distribution-based representation of
the information available about attribute values was covering the cases of null
values, of classical subset restrictions on possible values, and more generally
of fuzzy subset restrictions when all possible values are not equally plausible;
it had nothing to do with the notion of c-tables. Note also that possibilistic
logic [9], which is useful for having a possibilistic reading of c-tables as shown in
the following, has been introduced later. Then the possibility distribution-based
representation of ill-known attribute values has become the standard approach
in possibility theory for handling databases with missing, imprecise, or uncertain
information until now.

Recent advances on this approach can be found in [6]. In contrast with proba-
bility theory, one expects the following advantages when using possibility theory:

– the qualitative nature of the model makes easier the elicitation of the degrees
or levels attached to candidate values, inasmuch as an ordinal scale L made
of k + 1 linguistic labels may be used to assess the certainty (and possibility)
levels attached to an attribute value or a tuple. For instance, with k = 4, one
may use:

α0 = “not at all” < α1 = “somewhat” <

α2 = “rather” < α3 = “almost” < α4 = “totally”

where α0 (resp. αk) corresponds to 0 (resp. 1) in the unit interval when
a numerical framework is used. In possibility theory [10] the necessity
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(or certainty) N(E) of an event E is defined as the impossibility of the oppo-
site event, i.e., N(E) = 1 − Π(E). Then the operation 1 − (·) that is used
when the degrees belong to the unit interval is replaced by the order reversal
operation denoted by rev(·): rev(αi) = αk−i. In the following, however, we use
the numerical scale [0, 1] in order not to make the formulas too cumbersome.

– in probability theory, the fact that the sum of the degrees from a distribution
must equal 1 makes it difficult to deal with incompletely known distributions.

More recently, the authors of the present paper developed a new idea which is
to use the notion of necessity from possibility theory to qualify the certainty
that an ill-known piece of data takes a given value [22]. In contrast with both
probabilistic databases and possibilistic ones in the sense of [6,25], — which can
be referred to as the “full possibilistic” approach —, the main advantage of the
certainty-based model lies in the fact that operations from relational algebra can
be extended in a simple way and with a data complexity which is the same as
in a classical database context (i.e., when all data are certain).

However, the model defined in [22] does not yield the same expressive power
as c-tables inasmuch as it only aims to represent the more or less certain values
(or disjunction of values) that some attributes in a tuple may take, but does not
consider conditions attached to tuples as c-tables do. Here, our main objective is
twofold (i) first to establish the link between c-tables and possibilistic representa-
tions, two settings that have remained unrelated in spite of their close concerns,
and (ii) to propose a possibilistic counterpart of the probabilistic c-tables model
defined in [17], which will make it possible to deal with more complex cases of
imprecise and uncertain information. The objective of this first paper relating
c-tables and possibility theory is to discuss the ideas underlying the two set-
tings, illustrating them on suitable examples, and identifying the key principles
for bridging them. More precisely, we intend to:

– show how regular c-tables can be interpreted, then extended, in the setting of
possibilistic logic;

– establish the link between the extended relational model presented in [22],
based on possibilistic certainty, and that of possibilistic c-tables.

The remainder of the paper is structured as follows. Section 2 is devoted to a
presentation of the c-tables model. Section 3 provides a refresher on possibility
theory. Section 4 presents the concept of a possibilistic c-table. It first shows
how regular c-tables may be interpreted in terms of possibilistic logic (in the
particular case where necessity degrees equal 0 or 1), then describes a gradual
extension, discusses the certainty-based model as a particular case, and finally
compare possibilistic c-tables and probabilistic ones as introduced in [17]. Finally,
Sect. 5 recalls the main contributions and outlines some research perspectives.

2 Refresher on c-tables

As mentioned above, conditional tables (c-tables for short) are v-tables extended
with conditions on variables. Let us recall the definition from [18].
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Table 1. Conditional table from Example 1

Student Course

(x �= math) ∧ (x �= CS)

Sally math (z = 0)
Sally CS (z �= 0)
Sally x
Alice biology (z = 0)
Alice math (x = physics) ∧ (t = 0)
Alice physics (x = physics) ∧ (t �= 0)

Let U be a fixed, finite set of attributes. Attributes are denoted by A, B, C,
and sets of attributes by X, Y , Z. Associated with every A ∈ U is an attribute
domain D(A). We denote D =

⋃
A∈U D(A). Elements of D are called constants.

For every A ∈ U , let V (A) be a countably infinite set of symbols called variables.
It is assumed that V (A) ∩ D = ∅, V (A) ∩ V (B) = ∅ if D(A) �= D(B) and
V (A) = V (B) if D(A) = D(B). Let us denote by S the set of all expressions
built up from atomic conditions of the form (x = a), (x = y), false and true,
where for some A ∈ U , a ∈ D(A), x, y ∈ V (A), by means of ¬, ∨, and ∧. In the
following, we use the notation x �= a (resp. x �= y) for ¬(x = a) (resp. ¬(x = y)).
For every condition Φ ∈ S, we say that a valuation v satisfies Φ if its assignment
of constants to variables makes the formula true.

Definition 1. By a c-tuple on a set of attributes X, we mean any mapping t
defined on X ∪ {con} such that t(X) is a V -tuple (i.e., any mapping t′ that
associates an element t′(A) ∈ D(A) ∪ V (A) with every A ∈ X) and t(con) ∈ S
is the condition associated with t(X). A conditional table (or c-table) on X is
any finite set T of c-tuples on X.

In this original definition, conditions may only be attached to individual
tuples. An extension is to consider that a condition may also be attached to the
c-table globally, see [1]. The definition then becomes:

Definition 2. A conditional table (or c-table) on X is a pair (T, ΦT ) where T
is any finite set of c-tuples on X and ΦT ∈ S is a global condition on T .

In the following, we denote by ϕt the condition associated with tuple t.

Example 1. Suppose we know that Sally is taking math or computer science (CS)
(but not both) and another course; Alice takes biology if Sally takes math, and
math or physics (but not both) if Sally takes physics. This can be represented
by the c-table depicted in Table 1.

Remark 1. Notice that it is possible to use disjunctions that are not mutually
exclusive. For instance, if Sally could take math or physics or both, the first two
lines of Table 1 would have to be replaced by the four lines:
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Sally math x = 0
Sally CS x = 0
Sally math x �= 0 ∧ y = 0
Sally CS x �= 0 ∧ y �= 0

	

Adopting the closed world assumption, a given c-table T represents a set of
instances (possible worlds) as follows:

rep(T ) = {I | there is a valuation ν satisfying ΦT such that relation I

consists exactly of those facts ν(t) for which ν satisfies ϕt}.

In the context of uncertain databases, the notion of a strong representation sys-
tem plays an important part. Let us recall its definition [1]. Consider some par-
ticular representation system (e.g., tables). Such a system involves a language for
describing representations and a mapping rep that associates a set of instances
with each representation. Suppose that we are interested in a particular query
language L (e.g., relational algebra). We would like to be capable of representing
the result of a query in the same system. More precisely, for each representation
T and query q, there should exist a computable representation q̄(T ) such that

rep(q̄(T )) = q(rep(T )). (1)

In other words, q̄(T ) represents the possible results of q, i.e., {q(I) | I ∈ rep(T )}.
In such a context, a possible answer (resp. a certain answer) to a query q is a
tuple that belongs to at least one world (resp. to all of the worlds) of q̄(T ):

t ∈ poss(q) ⇔ t ∈
⋃

I∈rep(q̄(T ))

I (2)

t ∈ cert(q) ⇔ t ∈
⋂

I∈rep(q̄(T ))

I (3)

Example 2. If we consider Table 1, the possible (resp. certain) answers to the
query “find the students who take math or computer science” are {Sally, Alice}
(resp. {Sally}). �
If some representation system τ possesses property (1) for a query language L,
then τ is said to be a strong representation system for L. It has been proven that
c-tables are a strong representation system for relational algebra [18]. For each
operation u of relational algebra, [18] defines an operation ū on c-tables. Here-
after, we recall these definitions using the easier-to-read presentation from [17].
For projection, we have

π̄�(T ) := {(t′ : ϕt′) | t ∈ T s.t. πl(t) = t′, ϕt′ =
∨

ϕt}
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Table 2. Conditional table T (left) and result of σB �=b(T ) (right)

B C

y c (y �= b)
z w
b x

B C

y c (y �= b)
z w (z �= b)

Table 3. Conditional table from Example 3

Course Room

math Fermat (u = 0)
math ledöG (u �= 0)
CS Turing (v �= 0)
CS ledöG (v = 0) ∧ (u = 0)
CS Fermat (v = 0) ∧ (u �= 0)
biology Turing (v = 0)
biology Monod (v �= 0)
physics Einstein

where 	 is a list of indexes and the disjunction is over all t in T such that
π�(t) = t′. For selection, we have

σ̄c(T ) := {(t : ϕt) ∧ c(t)) | (t, ϕt) ∈ T}
where c(t) denotes the result of evaluating the selection predicate c on the values
in t (this is in general a Boolean formula on constants and variables). See Table 2
for an example.

For cross product and union, we have

T1×̄T2 := {(t1 × t2 : ϕt1 ∧ ϕt2) | t1 ∈ T1, t2 ∈ T2}
T1∪̄ T2 := T1 ∪ T2

Difference and intersection are handled similarly.

Example 3. Here is an example involving a join between two conditional tables.
Let us assume that math courses take place either in Fermat room or in Gauss
room. The CS course takes place in Turing room if the biology course does not
use it, otherwise it takes place in Gödel room or in Fermat room. The course
either takes place in Monod room or in Turing room. Physics is in Einstein room.

We are interested in knowing in which room each student may attend a
course, which implies joining Tables 1 and 3. The result is represented in Table 4.
For instance, the first line expresses that Sally will be in Fermat room if she takes
math and math is in Fermat. �

It is quite clear that c-tables per se are quite difficult to interpret by end-
users, but they can be used as a means to answer yes/no queries. Complexity
results about different types of yes/no queries on c-tables are given in [2,15].
The authors consider five types of problems:
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Table 4. Resulting conditional table

Course Room

Sally Fermat (z = 0) ∧ (u = 0)
Sally Gödel (z = 0) ∧ (u �= 0)
Sally Turing (z �= 0) ∧ (v �= 0)
Sally Monod x = biology ∧ (v �= 0)
Sally Einstein x = physics
Alice Fermat (x = physics) ∧ (t �= 0) ∧ (u = 0)

ledöGecilA (x = physics) ∧ (t �= 0) ∧ (u �= 0)
Alice Turing (z = 0) ∧ (v = 0)
Alice Monod (z = 0) ∧ (v �= 0)
Alice Einstein (x = physics) ∧ (t �= 0)

– containment problem cont(q0, q): is the result of a given query q0 over a given
set of c-tables S0 included in the result of a given query q over a given set of
c-tables S ?

– membership problem memb(q): is a given instance I0 a possible world of the
result of a given query q over a given set of c-tables S ?

– uniqueness problem uniq(q0): is the result of a given query q0 equal to the
single given possible world {I} ?

– possibility problem poss(∗, q): do all the facts of a given set P belong to a same
possible world of the result of a given query q over a given set of c-tables S ?

– certainty problem cert(∗, q): do all the facts of a given set P belong to every
possible world of the result of a given query q over a given set of c-tables S ?

In [2,15], the authors show that for any polynomial time computable queries q0,
q, one has:

– cont(q0, q) is in Πp
2 ;

– memb(q) is in NP;
– uniq(q0) is in coNP;
– poss(∗, q) is in NP; and
– cert(∗, q) is in coNP.

3 Refresher on Possibility Theory

In possibility theory [10,28], each event E — defined as a subset of a universe Ω
— is associated with two measures, its possibility Π(E) and its necessity N(E).
Π and N are two dual measures, in the sense that

N(E) = 1 − Π(E)

(where the overbar denotes complementation). This clearly departs from the
probabilistic situation where Prob(E) = 1−Prob(E). So in the probabilistic case,
as soon as you are not certain about E (Prob(E) is small), you become rather
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certain about E (Prob(E) is large). This is not at all the situation in possibility
theory, where complete ignorance about E (E �= ∅, E �= Ω) is allowed: This is
represented by Π(E) = Π(E) = 1, and thus N(E) = N(E) = 0. In possibility
theory, being somewhat certain about E (N(E) has a high value) forces you to
have E rather impossible (1 − Π is impossibility), but it is allowed to have no
certainty neither about E nor about E. Generally speaking, possibility theory
is oriented towards the representation of epistemic states of information, while
probabilities are deeply linked to the ideas of randomness, and of betting in
case of subjective probability, which both lead to an additive model such that
Prob(E) = 1 − Prob(E).

A possibility measure Π (as well as its dual necessity measure N) is based
on a possibility distribution π, which is a mapping from a referential U to an
ordered scale, say [0, 1]. Namely,

Π(E) = sup
u∈E

π(u) and N(E) = inf
u�∈E

(1 − π(u)).

π(u) = 0 means that u is (fully) impossible, while π(u) = 1 just means u is
(fully) possible, since it is important to notice that nothing prevents to have
u �= u′ and π(u) = π(u′) = 1. Thus, E = {u} is (fully) certain only if π(u) = 1
and ∀u′ �= u, π(u′) = 0. A possibility distribution π is normalized as soon as
∃u, π(u) = 1; it expresses a form of consistency, since it is natural to have at
least one alternative fully possible as soon as the referential is exhaustive (this
is the counterpart in possibility theory of having the sum of the probabilities in
a probability distribution equal to 1).

Conversely, if we know that N(E) ≥ α, which means that we are certain
(at least) at level α that E is true, there are several possibility distributions that
can be compatible with this constraint, but it can be shown that the largest one
(the one that allocates the greatest possible possibility to each u ∈ U) is unique,
and is such that π(u) = 1 if u ∈ E and π(u) = 1 − α if u �∈ E. So, if we are
α-certain that Bob lives in Paris or Lyon, this is represented by the distribution
π(Paris) = 1 = π(Lyon), and π(u) = 1 − α for any other city u.

Representing a possibility distribution with more than two levels in terms of
constraints of the form N(E) ≥ α requires several constraints. For instance, if
it is possible that Peter lives in Brest, Paris, Lyon, or another city with respec-
tive possibility levels 1 > α > α′ > α′′ (i.e., π(Brest) = 1, π(Paris) = α,
π(Lyon) = α′, π(u) = α′′ for any other city u), then, it corresponds to the
constraints N({Brest, Paris, Lyon}) ≥ 1−α′′, N({Brest, Paris}) ≥ 1−α′ and
N({Brest}) ≥ 1 − α. More generally, any possibility distribution with a finite
number of levels 1 = α1 > · · · > αn > 0 = αn+1 can be represented by a collec-
tion of n constraints of the form N(Ei) > 1 − αi+1 with Ei = {u | π(u) ≥ αi}.

Constraints such as N(E) ≥ α where E stands for the set of models of a
proposition p can be handled inside possibilistic logic under the form of a pair
(p, α) made of the classical logic proposition p and a level α belonging to a lin-
early ordered scale [9,12]. The semantics of a possibilistic logic base K, i.e.,
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a set of such a pairs, K = {(pi αi)|i = 1, · · · , n} is expressed by means of the
possibility distribution πK defined by

∀ω ∈ Ω, πK(ω) = min
i=1,··· ,n

π{(pi αi)}(ω) with π{(pi αi)}(ω) = max([pi](ω), 1 − αi)

where Ω is the set of interpretations of the language induced by the literals of the
formulas in K, and [pi](ω) = 1 if ω � pi (i.e., ω is a model of K) and [pi](ω) = 0
otherwise. The semantic entailment is then defined by

K � (p, α) if and only if NK([p]) ≥ α ⇔ ∀ω πK(ω) ≤ max([p](ω), 1 − α)

where NK is the necessity measure defined from πK .
The syntactic inference machinery of possibilistic logic, using the resolution

rule
(¬p ∨ q, α), (p ∨ ¬r, β) � (q ∨ ¬r, min(α, β))

and refutation (it amounts to adding (¬ϕ, 1), put in clausal form, to K, and using
this rule repeatedly to show that K ∪ (¬ϕ, 1) � (⊥, a)), has been proved to be
sound and complete with respect to the semantics. Algorithms and complexity
evaluation (similar to the one of classical logic) can be found in [19]. It is worth
mentioning that the repeated use of the probabilistic resolution rule P (p ∨ q) ≥
α, P (¬p ∨ r) ≥ β � P (q ∨ r) ≥ max(0, α + β − 1) does not always provide the
tightest bounds that can be obtained by probability computation and thus does
not lead to a complete calculus. Moreover, a mixed resolution rule that involves
necessity and possibility bounds holds in possibilistic logic [9], here written in
terms of semantic constraints:

N(¬p ∨ q) ≥ α,Π(p ∨ ¬r) ≥ β � Π(q ∨ ¬r) ≥ β provided that α > 1 − β.

Lastly, it is worth mentioning that a formula such as (¬p ∨ q, α) is semanti-
cally equivalent to (q, min(α, [p])) (with [p] = 1 if p is true and [p] = 0 if p is
false), where (q, min(α, [p])) can be read q is α-certain provided that p is true.
Then it can be checked that the following resolution rule holds (q, min(α, [p])),
(p, min(β, [r])) � (q, min(α, β, [r])). The interested reader may find more details
about possibilistic logic and its various applications in [12].

4 Possibilistic c-tables

In his pioneering work [20,21] on databases with incomplete information Lipski
distinguishes between answers that are certain and answers that are only possible
for a given query in a modal logic setting. Inspired by this work, the use of pos-
sibility theory for modeling incomplete and uncertain information in databases
was first proposed in [23–25], and later revisited in [6]. In these approaches, each
attribute value in a tuple is represented by means of a possibility distribution
defined on the domain of the attribute. This possibility distribution restricts the
more or less possible values of the attribute for the considered tuple according
to the available information (as, e.g., in the previous section example of Peter
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Table 5. Conditional table from Example 4

Student Course

Sally math (z = 0)
Sally CS (z �= 0)

living in Brest, Paris, Lyon, or another city). However these works were mak-
ing no reference to c-tables. In the following, we show how any c-table can be
directly understood as a possibility distribution over a set of possible database
worlds, and thus expressed by a possibilistic logic database. We first do it in
the case where possibility is not graded, and then consider the general case of
graded possibility that enables us to accommodate uncertainty. We then relate
possibilistic c-tables to the particular case of the certainty-based approach to
uncertain databases that we recently developed, and finally compare possibilis-
tic c-tables to probabilistic c-tables.

4.1 Regular c-tables Interpreted in Terms of Possibilistic Logic

As already mentioned, the conditions associated with tuples in a c-table are
specifying possible worlds. Thus, they implicitly define possibility distributions
over mutually exclusive situations.

Example 4. If we take the first part of Example 1, namely representing the
information (take(Sally, math)∨ (take(Sally, CS), this corresponds to the pos-
sibility distribution πtake(Sally,·)(math) = 1 = πtake(Sally,·)(CS), or if we prefer
π(z = 0) = π(z �= 0) = 1. Note that the situation in Remark 1 where math
and CS are no longer mutually exclusive would require a possibility distribution
defined on the power set of {math, CS}. Still both cases can be easily cap-
tured in possibilistic logic. Indeed “Sally is taking math or computer science” is
expressed by

(take(Sally, math) ∨ take(Sally, CS), 1)
and the additional constraint “but not both” by

(¬take(Sally, math) ∨ ¬take(Sally, CS), 1).
Let us now examine the rest of Example 1. We can take for the domain

of attribute Course the set DCourse = {math, CS, biology, physics, others}
that involves all the topics mentioned in the example and leave room for others.
Then the information “Sally takes another course” (apart from “math” or “CS”)
writes in possibilistic logic

(take(Sally, physics) ∨ take(Sally, biology) ∨ take(Sally, others), 1)
while “Alice takes biology if Sally takes math and math or physics (but not
both) if Sally takes physics” writes

(take(Alice, biology), [take(Sally, math)])
(take(Alice,math) ∨ take(Alice, physics), [take(Sally, physics)])
(¬take(Alice, math) ∨ ¬take(Alice, physics), 1).
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We could equivalently write (take(Alice, biology) ∨ ¬take(Sally, math), 1) in
place of (take(Alice, biology), [take(Sally, math)]), and this applies as well to
possibilistic formula after. Having [take(Sally, math)] (or [take(Sally, physics)])
in the certainty level slot of the formulas puts the main focus on Alice. �

Thus, the conditional table represented in Table 5 translates easily in a pos-
sibilistic logic base. This base is semantically associated to a possibility dis-
tribution, which can be obtained by applying the general result recalled in
Sect. 3. This would enable us to explicit the possibility distribution underly-
ing Table 5. This is a {0, 1}-valued possibility distribution; however, if binary-
valued functions are used in the certainty slots (as [take(Sally, math)] in the
above example), some possibility degrees will receive a conditional value (such
as 1 − [take(Sally, math)] ∈ {0, 1}).

A query such as “find the x’s such that condition Q is true” is processed
by refutation, adding the formulas corresponding to ¬Q(x) ∨ answer(x) to the
base, using a small trick due to [16] (see [9]). Let us take a first example.

Example 5. In the previous Example 4, let us consider the query “find the stu-
dents who take math or computer science”, which translates into

{(¬take(x,math) ∨ answer(x), 1), (¬take(x,CS) ∨ answer(x), 1)}.
It can be checked that it yields (answer(Sally), 1)

and (answer(Alice) ∨ take(Alice, physics), [take(Sally, physics))]) (or equiva-
lently (answer(Alice),min([¬take(Alice, physics)], [take(Sally, physics)]))
⇔ (answer(Alice), [¬take(Alice, physics)] ∧ [take(Sally, physics)])). �

As can be seen, we may obtain two types of answers: (i) the answers x0 of
the form (answer(x0), 1), and (ii) the answers x0 of the form (answer(x0), [ϕ])
where [ϕ] is a nontautological condition which may take values 0 and 1. The first
answers are exactly those that are certain, while the second ones are exactly those
that are possible without being certain. Let us consider an example with a join.

Example 6. Let us come back to Example 3 involving a join query. The transla-
tion in possibilistic logic is straightforward:

(place(physics,Einstein), 1)
(place(math, Fermat) ∨ place(math, Gödel), 1),
(¬place(math, Fermat) ∨ ¬place(math, Gödel), 1)
(place(biology,Turing) ∨ place(biology, Monod), 1),
(¬place(biology, Turing) ∨ ¬place(biology, Monod), 1)
(¬place(CS, Turing) ∨ ¬place(biology, Turing), 1)
(¬place(biology,Turing) ∨ ¬place(math,Fermat) ∨ (place(CS,Gödel), 1)
(¬place(biology, Turing) ∨ ¬place(math, Gödel) ∨ (place(CS, Fermat), 1)
(place(CS, Turing) ∨ place(CS, Gödel) ∨ (place(CS, Fermat), 1)

Let us now consider the question “who is in Monod room?”, which translates
into (¬take(x, y) ∨ ¬place(y, Monod) ∨ answer(x), 1). Then from the possibilis-
tic logic counterparts of Tables 1 and 3, it can be checked that we can infer
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Table 6. Possibilistic conditional tables from Example 7 (r left, s right)

Student Course

x = 0 (1) ⊕ x = 1 (0.6)

Sally CS x = 0
Sally math x = 1

Course Room

y = Fermat (1) ⊕ y = Turing (0.3)

math y
CS Turing

{Sally, Alice}, as the set of possible answers. Indeed we get

(answer(Sally),min([¬take(Sally, physics)], [¬take(Sally, others)],
[¬place(biology, Turing)]))

(answer(Alice),min([take(Sally,math)], [¬place(biology, Turing)]))
which is in agreement with Table 4.

As expected, the conjunctive structure of the combined certainty levels reflects
the conjunctions performed when the join of the two c-tables are computed. �

4.2 Gradual Possibilistic c-tables

Obviously, we are not obliged to use binary-valued possibility and certainty lev-
els taking values ‘0’ or ‘1’ only. We can thus express for instance that “Sally
is taking math or computer science (but not both)”, but we are somewhat cer-
tain that it is computer science. This corresponds to the possibility distribution
πtake(Sally,·)(math) = 1−α; πtake(Sally,·)(CS) = 1 if we are certain at level α that
it is computer science. Similarly, we may want to express that it is α-certain that
“Alice takes math or physics (but in any case not, both) if Sally takes physics”.
This latter information translates in the possibilistic formulas

(take(Alice,math) ∨ take(Alice, physics),min(α, [take(Sally, physics)]))
and (¬take(Alice, math) ∨ ¬take(Alice, physics), 1).

Let us now formally define the concept of a possibilistic c-table.

Definition 3. A possibilistic c-table on X is a triple (T, ΦT , P) where T is any
finite set of c-tuples on X, ΦT ∈ S is a global condition on T , and P is a set of
possibility distributions on some variables of V =

⋃
A∈X V (A).

In this definition, P corresponds to the set of “soft constraints” (possibilistic
restrictions) bearing on some variables of the c-table. First observe that the
following property trivially holds.

Property 1. In the special case where possibility degrees take their values in
{0, 1}, possibilistic c-tables reduce to regular c-tables.

Example 7. Let us consider the two following possibilistic c-tables (Table 6).
Table 7 represents the result of q = π{Student, Room}(r ��Course=Course s). The

tuple t = 〈Sally, Turing〉 is a possible (resp. certain) answer to the degree 1
(resp. 0.4). Indeed, the most possible world such that the result of q contains t
(resp. does not contain t) corresponds to the valuation {x = 0, y = Fermat}
(resp. {x = 1, y = Fermat}) whose possibility degree equals 1 (resp. 0.6). �
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Table 7. Result of the query from Example 7

Student Room

x = 0 (1) ⊕ x = 1 (0.6)
y = Fermat (1) ⊕ y = Turing (0.3)

Sally Turing x = 0 ∨ (x = 1 ∧ y = Turing)
Sally Fermat x = 1 ∧ y = Fermat

Remark 2. It is important to emphasize that as soon as candidate values may
be attached a degree of possibility, the worlds of rep(T ) become more or less
possible (they would be more or less probable if a probabilistic database model
were used). This has an impact on the notion of possible and certain answers
(cf. Eqs. 2 and 3). In the graded possibilistic c-tables model we introduce, the
degree of possibility (resp. certainty) associated with an answer t to a query q
corresponds to the maximum of the possibility degrees attached to the worlds of
rep(q̄(T )) that contain t (resp. 1 minus the maximum of the possibility degrees
attached to the worlds of rep(q̄(T )) that do not contain t). 	

When a consequence of interest is of the form (p, α), where α is a certainty
level that depends on nothing, we have an α-certain answer. Besides, if we
get only (p, [q]), and more generally (p,min(α, [q]), and if [q] is not known as
being equal to 1, the answer p can be regarded as being possible at level 1.
Indeed the possibility distribution associated with (p,min(α, [q]) is such that
π{(p,min(α,[q])}(pq) = 1;π{(p,min(α,[q])}(p¬q) = 1;π{(p,min(α,[q])}(¬p¬q) = 1 and
π{(p,min(α,[q])}(¬pq) = 1 − α, and thus Π(p) = maxω�p π{(p,min(α,[q])}(ω) = 1.
This indicates that the certainty level-based possibilistic logic cannot alone
account for intermediary possibility levels, as further discussed now. What is
computed here is only an upper bound of the possibility level, exploiting a part
of the information only.

Example 8. Consider again the situation where Sally is taking math with pos-
sibility 1 − α or computer science with possibility 1 (but not both, with
full certain-ty), which writes in possibilistic logic (take(Sally, CS), α) and
(take(Sally, CS) ∨ take(Sally,math), 1) (this latter formula acknowledges that
Sally studies either CS or math). Let us evaluate the query “find the students
who take math”, which translates into (¬take(x,math)∨answer(x), 1); we obtain

(answer(Sally), [¬take(Sally, CS)]),

but we do not retrieve πtake(Sally,·)(math) = 1 − α. This can be only done by
applying the mixed resolution pattern recalled in Sect. 3, namely here

N(¬take(x,math) ∨ answer(x)) = 1,Π(take(Sally,math)) = 1 − α

� Π(answer(Sally)) ≥ 1 − α. �
However, although it does not appear on this very simple example, the evaluation
of the possibility levels associated with the possibility distribution underlying
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the uncertain and imprecise database may lead to complicated expressions and
heavy computation, as in the probabilistic case.

Theorem 1. Possibilistic c-tables are a strong representation system for rela-
tional algebra.

Sketch of the Proof. We need to prove (cf. Formula 1) that: rep(q̄(T )) =
q(rep(T )). In the possibilistic c-tables model, an element of rep(T ) is a pair
(Wi, Π(Wi)), where Wi is a possible world of T and Π(Wi) is its associ-
ated possibility degree. Then, q(rep(T )) corresponds to the weighted set of
worlds {Π(Wi)/q(Wi) | Wi ∈ rep(T )} (remark: we keep the max of the pos-
sibility degrees in case of duplicate worlds). Let us denote by W(T ′) the pos-
sible worlds (without the associated possibility degrees) represented by the
possibilistic c-table T ′. Since regular c-tables are a strong representation sys-
tem for relational algebra (see [18]), and since the definitions of the algebraic
operators remain unchanged, we have W(rep(q̄(T ))) = W(q(rep(T ))) where
W(q(rep(T ))) = {q(Wi) | Wi ∈ rep(T )}. Now, all one needs is a sound way
to compute the possibility degree of a world generated by a possibilistic c-table
(i.e. of a valuation that satisfies the conditions in the c-table). This way is pro-
vided by the axioms of possibility theory regarding conjunction and disjunction,
and the computation is based on the possibility distributions attached to the
possibilistic c-table on the one hand, and the conditions attached to the tuples
on the other hand. 	


Let us now consider the counterparts of the yes-no queries discussed at the
end of Sect. 2 and their associated complexity. In the possibilistic c-tables frame-
work these queries are not of type yes-no anymore but are of the form “to which
extent is it possible (resp. certain) that ...”. For instance, the containment prob-
lem cont(q0, q) now corresponds to the question: to which extent is it possible
(resp. certain) that the result of a given query q0 over a given set of c-tables S0

is included in the result of a given query q over a given set of c-tables S ? Just
as the complexity of possibilistic logic is the one of classical logic multiplied by
the logarithm of the number of levels used in the scale [19], the complexity here
remains in the same class as the one for regular c-tables.

4.3 The Particular Case of the Certainty-Based Model

In [22], we defined a model that we called “certainty-based” for representing
relational databases containing uncertain attribute values, when some knowledge
is available about the more or less certain value (or disjunction of values) that
a given attribute in a tuple may take.

As the possibilistic model described in [6], the certainty-based model [22]
relies on possibility theory [28]. However, it only keeps pieces of information
that are more or less certain and leaves aside what is just possible. This cor-
responds to the most important part of information (a possibility distribution
is “summarized” by keeping its most plausible elements, associated with a cer-
tainty level). For instance, 〈037, John, (40, α)〉 denotes the existence of a person
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named John, whose age is 40 with certainty α. Then the possibility that his age
differs from 40 is upper bounded by 1 − α without further information.

The model can also deal with disjunctive uncertain values. For instance,
〈3, Peter, (Newton ∨ Quincy, 0.8)〉 represents the fact that it is 0.8-certain that
the person number 3 named Peter lives in Newton or in Quincy. Then, the
underlying possibility distributions π are of the form π(u) = max(A(u), 1 − α)
where A is an α-certain subset of the attribute domain and A(u) equals 1 if
u ∈ A, 0 otherwise.

Moreover, since some operations (e.g., the selection) may create “maybe
tuples”, each tuple t from an uncertain relation r has to be associated with
a degree N expressing the certainty that t exists in r. It will be denoted by N/t.

Example 9. Let us consider a relation r of schema (#id, Name, City) containing
tuple t1 = 〈1, John, (Quincy, 0.8)〉, and the query “find the people who live in
Quincy”. Let the domain of attribute City be {Boston, Newton, Quincy}. The
answer contains 0.8/t1 since it is 0.8 certain that t1 satisfies the requirement,
while the result of the query “find the people who live in Boston, Newton or
Quincy” contains 1/t1 since it is totally certain that t1 satisfies the condition. �
To sum up, a tuple α/〈037, John, (Quincy, β)〉 from relation r means that it
is α certain that person 037 exists in the relation, and that it is β certain that
037 lives in Quincy (independently from the fact that it is or not in relation r).

Obviously, this model is a particular case of a gradual possibilistic c-table
where the only conditions present in a relation are used to represent the more
or less certain value (or disjunction of values) that an attribute in a tuple may
take. Of course, when using a c-table to represent such a relation, there is no
need for the extra attribute N since the certainty level attached to a tuple is
computed by evaluating the condition associated with this tuple (interpreting
the conjunction as the minimum according to the axioms of possibility theory).

We have extended relational algebra in this context and shown that the model
constitutes a representation system for this set of operators. The only constraints
concern (i) the join that has to be based on an equality condition, (ii) the
Cartesian product and join operations that must take independent relations as
arguments. An important result is that the data complexity of these operations
is the same as in the classical database case. This is also the case of general
possibilistic c-tables when it comes to computing the “compact” result of a
query, i.e., its resulting possibilistic c-table, but of course not when it comes
to answering generalized yes-no queries (cf. the end of Subsect. 4.2). Since the
certainty-based model does not include intertuple dependencies, a table that
represents the result of a query in this model is easily interpretable. On the
other hand, possibilistic c-tables are more expressive but also more complex and
can only be exploited by an end-user through generalized yes-no queries.
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Table 8. Probabilistic conditional table from Example 10

Student Course

x = math (0.3) ⊕ x = phys (0.3) ⊕ x = chem (0.4)
t = 0 (0.15) ⊕ t = 1 (0.85)

Alice x
Bob x (x = physics) ⊕ (x = chem)
Theo math t = 1

4.4 Comparison with Probabilistic c-tables

We introduce probabilistic c-tables by means of the following example drawn
from [17].

Example 10. Suppose Alice takes a course that is math with probability 0.3,
or physics with probability 0.3, or chem with probability 0.4; Bob takes the
same course as Alice provided that the course is physics or chem; Theo takes
math with probability 0.85. This can be represented by the probabilistic c-table
depicted in Table 8.

We may easily imagine a possibilistic version of the example. Suppose that
Alice takes a course that is math with possibility α, or physics with possibility
α, or chem with possibility 1. Bob takes the same course as Alice provided that
the course is physics or chem. Theo takes math with possibility 1 and does
not take math with possibility β. Now Dcourse = {math, chem, physics}. The
pieces of information above can be expressed in possibilistic logic as:

(take(Alice, chem), 1 − α)
(take(Bob, chem), [take(Alice, chem)])
(take(Bob, physics), [take(Alice, physics)])
(take(Theo, math), 1 − β)

From which one can deduce, e.g., (take(Bob, chem), 1 − α). �
Note that in case we would have
x = math (0.25) ⊕ x = phys (0.35) ⊕ x = chem (0.4)
we would have to add

(take(Alice, chem) ∨ take(Alice, physics), 1 − α′) with α′ < α
to (take(Alice, chem), 1 − α).
Moreover, in case we would have
x = math (0.4) ⊕ x = phys (0.4) ⊕ x = chem (0.2)
we would have to replace (take(Alice, chem), 1 − α) by
(take(Alice, math) ∨ take(Alice, physics), 1 − α).

The above examples suggest that probabilistic c-tables and possibilistic c-
tables are quite close as a representation tool, although obeying to different infer-
ence principles. Compared to probabilistic c-tables, an argument in favor of the
possibilistic c-tables model lies in its robustness (i.e., in the fact that the order of
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Table 9. Relations r (top) and s (bottom) — Possibilistic c-tables

yticemandi#

x = Newton (1) ⊕ x = Quincy (0.2)
y = Quincy (1) ⊕ y = Gardner (0.6)

z = Newton (1) ⊕ z = Gardner (0.8) ⊕ z = Quincy (0.7)
u = Quincy (1) ⊕ u = Gardner (1)

37 John x
53 Mary y
72 Paul z
81 Lisa u

city flea market

v = yes (1) ⊕ v = no (0.3)
w = yes (0.1) ⊕ w = no (1)
r = yes (1) ⊕ r = no (0.4)

Newton v
Quincy w
Gardner r

the answers obtained is less sensitive to the values of the degrees in the distribu-
tions attached to the variables), which is illustrated by the toy example hereafter.

Example 11. Let us consider the possibilistic c-tables r of schema (#id, name,
city), and s of schema (city, flea market) describing respectively a set of people
whose city of residence is ill-know, and a set of city for which we are not sure if
they have a flea market or not. Let us consider the query q asking for the people
who live in a city with a flea market: πName(r �city=city (σfleamarket=yes(s)).

Let us first consider the possibilistic c-tables model (cf. Table 9). The result-
ing possibilistic c-table is represented in Table 10.

Table 10. Result of query q

name

x = Newton (1) ⊕ x = Quincy (0.2)
y = Quincy (1) ⊕ y = Gardner (0.6)

z = Newton (1) ⊕ z = Gardner (0.8) ⊕ z = Quincy (0.7)
u = Quincy (1) ⊕ u = Gardner (1)

v = yes (1) ⊕ v = no (0.3)
w = yes (0.1) ⊕ w = no (1)
r = yes (1) ⊕ r = no (0.4)

John (x = Newton ∧ v = yes) ∨ (x = Quincy ∧ w = yes)
Mary (y = Quincy ∧ w = yes) ∨ (y = Gardner ∧ r = yes)
Paul (z = Newton ∧ v = yes) ∨ (z = Gardner ∧ r = yes) ∨ (z = Quincy ∧ w = yes)
Lisa (u = Quincy ∧ w = yes) ∨ (u = Gardner ∧ r = yes)
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Table 11. Relations r (top) and s (bottom) — Probabilistic c-tables

yticemandi#

x = Newton (0.8) ⊕ x = Quincy (0.2)
y = Quincy (0.6) ⊕ y = Gardner (0.4)

z = Newton (0.5) ⊕ z = Gardner (0.3) ⊕ z = Quincy (0.2)
u = Quincy (0.5) ⊕ u = Gardner (0.5)

37 John x
53 Mary y
72 Paul z
81 Lisa u

city flea market

v = yes (0.7) ⊕ v = no (0.3)
w = yes (0.1) ⊕ w = no (0.9)
r = yes (0.6) ⊕ r = no (0.4)

Newton v
Quincy w
Gardner r

The answers obtained are thus:

John Π = max(min(1, 1), min(0.2, 0.1)) = 1,
N = max(min(1 − 0.2, 1 − 0.3), min(1 − 1, 1 − 1)) = 0.7

Mary Π = max(min(1, 0.1), min(0.6, 1)) = 0.6,
N = max(min(1 − 0.6, 1 − 1), min(1 − 1, 1 − 0.4)) = 0

Paul Π = max(min(1, 1), min(0.8, 1), min(0.7, 0.1)) = 1,
N = max(min(1 − 0.8, 1 − 0.3), min(1 − 1, 1 − 0.4), min(1 − 1, 1 − 1))

= 0.2
Lisa Π = max(min(1, 0.1), min(1, 1)) = 1,

N = max(min(1 − 1, 1 − 1), min(1 − 1, 1 − 0.4)) = 0.

John is a completely possible answer (Π = 1) since it is completely possible that
(i) he lives in Newton, and (ii) Newton has a flea market. On the other hand,
it is only 0.7 certain that he is an answer since it is 0.3 possible that Newton
does not have a flea market. Since one has N > 0 ⇒ Π = 1, one may rank
the answers in decreasing order of N first, then, for those such that N = 0, in
decreasing order of Π. We get the following ranking: John � Paul � Lisa �
Mary.

Finally, let us use a probabilistic model. In Table 11, the probability values
are roughly specified, in agreement with the uncertainty ordering specified in the
previous possibilistic tables. The result of q is the same as in the possibilistic case
(cf. Table 10) except for the global conditions in which the degrees are different.
Finally, we get the answers:

John pr = 0.8 × 0.7 + 0.2 × 0.1 = 0.58
Mary pr = 0.6 × 0.1 + 0.4 × 0.6 = 0.3
Paul pr = 0.5 × 0.7 + 0.3 × 0.6 + 0.2 × 0.1 = 0.55
Lisa pr = 0.5 × 0.1 + 0.5 × 0.6 = 0.35
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As can be seen, we again obtain the same ranking as in the possibilistic
c-tables model. However, a rather slight modification of the probability values
may lead to a modification of the ranking. For instance, if the probability distrib-
ution associated with Paul’s city were changed into {0.55/Newton, 0.35/Gardner,
0.1/Quincy}, Paul would get the degree 0.605 and would be ranked first (before
John). This contrasts with the possibilistic situation where the result remains
stable as long as the ordering of the possibilistic values is not changed. �

5 Conclusion

Possibility theory and c-tables have appeared at about the same time, at the
end of the 1970’s, in two different areas of information processing. Curiously,
they had remained unrelated until now. This paper provides a first study in
order to bridge them. Indeed, c-tables, as a convenient way of describing possi-
ble worlds, can be easily extended to a possibilistic modeling of uncertain and
imprecise information. This provides a general setting that appears quite appro-
priate for handling uncertainty in a qualitative way. The qualitative nature of
possibility theory makes simpler the elicitation of the possibility and certainty
degrees, and leads to a modeling less sensitive to modifications of the values of
the degrees than in a probabilistic framework. Moreover, the particular case of
the certainty-based approach is especially tractable. Besides, the existing relation
between answer-set programming and generalized possibilistic logic [13] and the
underlying role of possibilistic logic with respect to possibilistic c-tables suggests
to study a possibilistic version of Datalog [2,14] in the future.
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Abstract. The axiomatic system P is an important standard for plau-
sible, nonmonotonic inferences that is, however, known to be too weak
to solve benchmark problems like irrelevance, or subclass inheritance
(so-called Drowning Problem). Spohn’s ranking functions which provide
a semantic base for system P have often been used to design stronger
inference relations, like Pearl’s system Z, or c-representations. While each
c-representation shows excellent inference properties and handles partic-
ularly irrelevance and subclass inheritance properly, it is still an open
problem which c-representation is the best. In this paper, we focus on the
generic properties of c-representations and consider the skeptical infer-
ence relation (c-inference) that is obtained by taking all c-representations
of a given knowledge base into account. In particular, we show that
c-inference preserves the properties of solving irrelevance and subclass
inheritance which are met by every single c-representation. Moreover,
we characterize skeptical c-inference as a constraint satisfaction problem
so that constraint solvers can be used for its implementation.

1 Introduction

Calculating inductive inferences based on knowledge bases of conditional rules
is an important task in nonmonotonic reasoning. Here, calculi like Adams’ sys-
tem P [1], probabilistic approaches like p-entailment [7], or possibilistic inference
methods [5] have been developed, as well as the inductive methods of Pearl’s sys-
tem Z [13] or c-representations [10,11]. The latter two rely on Spohn’s ordinal
conditional functions [14,15] for calculating inferences which means that the
underlying preferential model [12] always is a total ordering of the set of possi-
ble worlds. In this paper, we define a novel inductive inference relation, called
c-inference, as a skeptical inference over the (infinitely many) c-representations
of a knowledge base. We show that this inference relation, even if set up upon a
partial ordering of the worlds, exceeds system P and handles important bench-
marks of plausible reasoning, like the Drowning Problem or irrelevance, properly.
We model c-representations correctly and completely as a constraint satisfaction
problem (CSP, cf. [2]) and, on top of this model, also characterize c-inference as
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a CSP. This makes the skeptical inference over infinitely many c-representations
not only being calculable, but also implementable.

This paper is organized as follows: After this introduction, we recall the
basics of conditionals, ordinal conditional functions (OCF), plausible infer-
ence, system P, system Z and c-representations which we need as formal back-
ground of this paper. In Sect. 3, we prove that the CSP for c-representations
of a knowledge base proposed in [2] is a correct and complete modeling of c-
representations. Section 4 defines c-inference as skeptical inference relation over
all c-representations of a knowledge base. Here, we prove that this relation not
only satisfies but exceeds system P and show that the relation handles selected
benchmarks properly. Then, we characterize c-inference as a CSP in Sect. 5. We
conclude in Sect. 6.

2 Conditionals, OCF, and Plausible Inference

Let Σ = {V1, ..., Vm} be a propositional alphabet. A literal is the positive (vi)
or negated (vi) form of a propositional variable Vi. From these we obtain the
propositional language L as the set of formulas of Σ closed under negation
¬, conjunction ∧, and disjunction ∨, as usual; for formulas A, B ∈ L, A ⇒ B
denotes the material implication and stands for ¬A∨B. For shorter formulas, we
abbreviate conjunction by juxtaposition (i.e., AB stands for A∧B), and negation
by overlining (i.e., A is equivalent to ¬A). Let Ω denote the set of possible worlds
over L; Ω will be taken here simply as the set of all propositional interpretations
over L and can be identified with the set of all complete conjunctions over Σ.
For ω ∈ Ω, ω |= A means that the propositional formula A ∈ L holds in the
possible world ω.

A conditional (B|A) with A,B ∈ L encodes the defeasible rule “if A then
normally B” and is a trivalent logical entity with the evaluation [6,10]

�(B|A)�ω =

⎧
⎨

⎩

true iff ω |= AB (verification)
false iff ω |= AB (falsification)
undefined iff ω |= A (not applicable)

A knowledge base R = {(B1|A1), ..., (Bn|An)} is a finite set of conditionals.
A conditional (B|A) is tolerated by a set of conditionals R if and only if there
is a world ω ∈ Ω such that ω |= AB and ω |= ∧n

i=1(Ai ⇒ Bi), i.e., iff ω verifies
(B|A) and does not falsify any conditional in R.

An Ordinal Conditional Function (OCF, ranking function) [14,15] is a func-
tion κ : Ω → N0 ∪ {∞} that assigns to each world ω ∈ Ω an implausibility rank
κ(ω), that is, the higher κ(ω), the more surprising ω is. OCFs have to satisfy the
normalization condition that there has to be a world that is maximally plausi-
ble, i.e., the preimage of 0 cannot be empty, formally κ−1(0) 	= ∅. The rank of
a formula A is defined to be the rank of the least surprising world that satisfies
A, formally

κ(A) = min{κ(ω) | ω |= A}. (1)
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The set of models of tautologies is the complete set of possible worlds, therefore
the normalization condition directly gives us κ(�) = 0. In accordance with
general order-theoretical conventions, we set κ(⊥) = ∞.

An OCF κ accepts a conditional (B|A) (denoted by κ |= (B|A)) iff the
verification of the conditional is less surprising than its falsification, i.e., iff
κ(AB) < κ(AB). This can also be understood as a nonmonotonic inference
relation between the premise A and the conclusion B: We say that A κ-entails
B (written A |∼ κ

B) if and only if κ accepts the conditional (B|A), formally

κ |= (B|A) iff κ(AB) < κ(AB) iff A |∼κ
B. (2)

The acceptance relation in (2) is extended as usual to a set R of conditionals
by defining κ |= R iff κ |= (B|A) for all (B|A) ∈ R. This is synonymous to
saying that R is admissible with respect to R [8].

A knowledge base R is consistent iff there exists an OCF κ such that κ |=
R. Such an OCF can be found if and only if there is an ordered partitioning
(R0, ...,Rm) of R with the property that for every 0 � i � m every conditional
(B|A) ∈ Ri is tolerated by

⋃m
j=i Rj [8,13].

Example 1 (Rbird). We illustrate the definitions and propositions in this article
with the well-known penguin example. Here, the variables in the alphabet Σ =
{P,B, F} indicate whether something is a bird (b) or not (b), can fly (f) or
not (f) and whether something is a penguin (p) or not (p) which results in
the possible worlds Ω = {pbf , pbf , pbf , pb f , pbf , pbf , pbf , pb f }. The knowledge
base Rbird = {δ1, δ2, δ3, δ4} consists of the four conditionals:

δ1 : (f |b) “If something is a bird, it usually can fly.”
δ2 : (f |p) “If something is a penguin, it usually cannot fly.”
δ3 : (f |pb) “If something is a penguin bird, it usually cannot fly.”
δ4 : (b|p) “If something is a penguin, it usually is a bird.”

This knowledge base is consistent: For R0 = {(f |b)} and R1 = Rbird \ R0

we have the ordered partitioning (R0,R1) such that every conditional in R0 is
tolerated by R0 ∪ R1 = Rbird and every conditional in R1 is tolerated by R1.
For instance, (f |b) is tolerated by Rbird since there is, for example, the world
pbf with pbf |= bf as well as pbf |= (p ⇒ f) ∧ (pb ⇒ f) ∧ (p ⇒ b).

The following p-entailment is an established inference in the area of ranking
functions.

Definition 1 (p-entailment [8]). Let R be a conditional knowledge base and
let A,B be formulas. A p-entails B in the context of R, written A |∼p

RB, if and
only if A |∼κ

B for all κ |= R.

P-entailment can be easily characterized:

Proposition 1 [8]. Let R be a conditional knowledge base and let A, B be
formulas. A p-entails B in the context of a knowledge base R, if and only if
R ∪ {(B|A)} is inconsistent.
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Example 2. We illustrate p-entailment with the running example. Here knowl-
edge base Rbird p-entails, for instance, that not-flying penguins are birds,
formally, pf |∼p

Rb: Using Proposition 1, we observe that Rbird ∪{(b|pf)} is incon-
sistent because every world ω that verifies the conditional (b|pf), i.e. ω |= pb f ,
violates (b|p), and every world ω that verifies (b|p), i.e. ω |= pb, violates (b|pf).
Therefore, the conditional (b|pf) is neither tolerated by Rbird nor does it tolerate
Rbird and hence Rbird ∪{(b|pf)} is inconsistent. Hence by Definition 1 we obtain
pf |∼p

Rb.

Nonmonotonic inference relations are usually evaluated by means of prop-
erties. In particular, the axiom system P [1] provides an important standard
for plausible, nonmonotonic inferences. With |∼ being a generic nonmonotonic
inference operator and A, B, C being formulas in L, the six properties of sys-
tem P are defined as follows:

(REF) Reflexivity for all A ∈ L it holds that A |∼ A
(LLE) Left Logical Equivalence A ≡ B and B |∼ C imply A |∼ C
(RW) Right weakening B |= C and A |∼ B imply A |∼ C
(CM) Cautious Monotony A |∼ B and A |∼ C imply AB |∼ C
(CUT) A |∼ B and AB |∼ C imply A |∼ C
(OR) A |∼ C and B |∼ C imply (A ∨ B) |∼ C

We refer to Dubois and Prade [4] for the relation between p-entailment and
system P:

Proposition 2 [4]. Let A, B be formulas and let R be a conditional knowledge
base. B follows from A in the context of R with the rules of system P if and only
if A p-entails B in the context of R.

So, given a knowledge base R, system P inference is the same as p-entailment.
Two inference relations which are defined by specific OCFs obtained induc-

tively from a knowledge base R have received some attention: system Z and
c-representations, or the induced inference relations, respectively, both show
excellent inference properties. We recall both approaches briefly.

System Z [13] is based upon the ranking function κZ , which is the unique
Pareto-minimal OCF that accepts R. The system is set up by forming an ordered
partition (R0, ...,Rm) of R, where each Ri is the (with respect to set inclusion)
maximal subset of

⋃m
j=i Rj that is tolerated by

⋃m
j=i Rj . This partitioning is

unique due to the maximality. The resulting OCF κZ is defined by assigning to
each world ω a rank of 1 plus the maximal index 1 � i � m of the partition that
contains conditionals falsified by ω or 0 if ω does not falsify any conditional in
R. Formally, for all (B|A) ∈ R and for Z(B|A) = i if and only if (B|A) ∈ Ri,
the OCF κZ is given by:

κZ(ω) =
{

0 iff ω does not falsify any conditional in R
max{Z(B|A)|(B|A) ∈ R, ω |= AB} + 1 otherwise.
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Other than system Z, the approach of c-representations does not use the
most severe falsification of a conditional, but assigns an individual impact to
each conditional and generates the world ranks as a sum of impacts of falsified
conditionals.

Definition 2 (c-representation [10,11]). Let R be a knowledge base. A c-
representation of R is a ranking function κ constructed from integer impacts ηi ∈
N0 assigned to each conditional (Bi|Ai) such that κ accepts R and is given by:

κ(ω) =
∑

1�i�n

ω|=AiBi

ηi (3)

Examples of system Z and c-representations are given in the following sections.

3 Correctness and Completeness of a CSP Modeling
of C-Representations

In [2], a modeling of c-representations as solutions of a constraint satisfaction
problem is proposed and employed for computing c-representations using con-
straint logic programming. In this section, we first recall this modeling, and then
prove its correctness and completeness.

Definition 3 (CR(R) [2]). Let R = {(B1|A1), . . . , (Bn|An)}. The constraint
satisfaction problem for c-representations of R, denoted by CR(R), is given by
the conjunction of the constraints, for all i ∈ {1, . . . , n}:

ηi � 0 (4)

ηi > min
ω|=AiBi

∑

j �=i

ω|=AjBj

ηj − min
ω|=AiBi

∑

j �=i

ω|=AjBj

ηj (5)

A solution of CR(R) is an n-tuple (η1, . . . , ηn) of natural numbers. For a
constraint satisfaction problem CSP , the set of solutions is denoted by Sol(CSP).
Thus, with Sol(CR(R)) we denote the set of all solutions of CR(R).

Example 3. The verification/falsification behaviour of the conditionals in Rbird

from Example 1 is given in Table 1. Based on these evaluations, the constraints
in CR(Rbird) according to (5) are

η1 > min{η2 + η3, 0} − min{0, 0} = 0 (6)
η2 > min{η1, η4} − min{η3, η4} (7)
η3 > η1 − η2 (8)
η4 > min{η2 + η3, η1} − min{η2, 0} = min{η2 + η3, η1} (9)
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because ηi � 0 for all 1 � i � n. The inequality (8) is equivalent to η2 +η3 > η1,
which together with (9) gives us η4 > η1, and we finally obtain

η1 > 0 η3 > η1 − η2
η2 > η1 − min{η3, η4} η4 > η1.

(10)

Possible solutions for this system that also satisfy the constraint (4) are
#»η (1) = (1, 1, 1, 2), #»η (2) = (1, 2, 0, 2) and #»η (3) = (1, 0, 3, 2).

Table 1. Verification/falsification behavior of Rbird : (+) indicates verification, (−)
falsification and an empty cell non-applicability.

pbf pbf pbf pb f pbf pbf pbf pb f

δ1 = (f |b) + − + −
δ2 = (f |p) − + − +

δ3 = (f |pb) − +

δ4 = (b|p) + + − −

Proposition 3 (Correctness of CR(R)). For R = {(B1|A1), . . . , (Bn|An)}
let #»η = (η1, . . . , ηn) ∈ Sol(CR(R)). Then the function κ defined by the equation
system given by (3) is a c-representation that accepts R.

Proof. To show that the modeling given by the constraint satisfaction problem
CR(R) is correct we have to show that every solution of the constraints given
by (4) and (5) is a c-representation of R. We will use the techniques for showing
c-representation properties given in [10] to show that κ accepts R, i.e., for all
(Bi|Ai) ∈ R

κ(AiBi) < κ(AiBi). (11)

Using the definition of ranks of formulas for each 1 � i � n, (11) gives us

min
ω|=AiBi

{κ(ω)} < min
ω|=AiBi

{κ(ω)}. (12)

We now use (3) and get:

min
ω|=AiBi

{ ∑

1�j�n

ω|=AjBj

ηi

}
< min

ω|=AiBi

{ ∑

1�j�n

ω|=AjBj

ηi

︸ ︷︷ ︸
(a)

}
(13)
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In each line i, ηi is a summand of (a) and hence this summand can be extracted
from the minimum, yielding:

min
ω|=AiBi

{ ∑

1�j�n

ω|=AjBj

ηi

}
< min

ω|=AiBi

{ ∑

1�j�n;i�=j

ω|=AjBj

ηi

}
+ ηi (14)

We rearrange the inequality in (14) and get

ηi > min
ω|=AiBi

{ ∑

1�j�n

ω|=AjBj

ηi

︸ ︷︷ ︸
(b)

}
− min

ω|=AiBi

{ ∑

1�j�n;i�=j

ω|=AjBj

ηi

}
. (15)

In the first minimum in (15), (Bi|Ai) is never falsified, so i can be removed from
the range of (b), which gives us

ηi > min
ω|=AiBi

{ ∑

1�j�n;i�=j

ω|=AjBj

ηi

}
− min

ω|=AiBi

{ ∑

1�j�n;i�=j

ω|=AjBj

ηi

}
(16)

which is (5). Therefore, every solution of CR(R) ensures that the resulting κ
defined by (3) in Definition 2 is a c-representation that accepts R. ��
Definition 4 (κ #»η ). For #»η ∈ Sol(CR(R)) and κ as in Eq. (3), κ is the OCF
induced by #»η and is denoted by κ #»η .

Example 4. Using (3) with the solutions for the CSP calculated in Example 3
gives us the OCFs shown in Table 2. All of these OCFs accept the knowledge
base Rbird ; for #»η (1) = (1, 1, 1, 2) we have, for instance,

κ #»η (1)(bf ) = min{κ #»η (1)(pbf ), κ #»η (1)(pbf )} = 0

κ #»η (1)(b) = min{κ #»η (1)(pbf ), κ #»η (1)(pbf ), κ #»η (1)(pbf ), κ #»η (1)(pbf )} = 0

κ #»η (1)(bf ) = min{κ #»η (1)(pbf ), κ #»η (1)(pbf )} = 1

and hence:

κ #»η (1)(f |b) = κ #»η (1)(bf ) − κ #»η (1)(b) = 0 < 1 = κ #»η (1)(bf ) − κ #»η (1)(b) = κ #»η (1)(f |b)

The other ranks for the verification resp. falsification of the conditionals given
these ranking functions are given in Table 3 from which we can see that each of
the three induced OCFs accepts Rbird .

Proposition 4 (Completeness of CR(R)). Let κ be a c-representation for
a knowledge base R = {(B1|A1), . . . , (Bn|An)}, i.e., κ |= R. Then there is a
vector #»η ∈ Sol(CR(R)) such that κ = κ #»η .
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Table 2. Ranking functions for the penguin example Rbird .

ω pbf pbf pbf pb f pbf pbf pbf pb f

κ #»η (1)(ω) 2 1 3 2 0 1 0 0

κ #»η (2)(ω) 2 1 4 2 0 1 0 0

κ #»η (3)(ω) 3 1 2 2 0 1 0 0

Table 3. Acceptance of conditionals in the penguin example Rbird by the OCFs in
Table 2. Note that κ(B|A) = κ(AB) − κ(A) for all A, B ∈ L.

κ #»η (1) κ #»η (2) κ #»η (3)

verif. falsif. accpt? verif. falsif. accpt? verif. falsif. accpt?

(f |b) 0 < 1 � 0 < 1 � 0 < 1 �
(f |p) 0 < 1 � 0 < 1 � 0 < 1 �
(f |pb) 0 < 1 � 0 < 1 � 0 < 2 �
(b|p) 2 < 1 � 0 < 1 � 0 < 1 �

Proof. A ranking function is a c-representation for R if and only if it is composed
by (3) and accepts R. For the proof of Proposition 3 we have shown that these
two conditions are equivalent to the impacts being chosen to satisfy (4) and (5).
Therefore for every c-representation κ for R there is a vector #»η ∈ Sol(CR(R))
such that κ = κ #»η , as proposed. ��

It has been shown that there is a c-representation for a knowledge base R
if and only if R is consistent [10,11]. The completeness and correctness results
in Propositions 3 and 4 give us that CR(R) is solvable if and only if there is a
c-representation for R. This gives us an additional criterion for the consistency
of a knowledge base which we formalize as follows.

Corollary 1 (Consistency). A knowledge base R is consistent iff the con-
straint satisfaction problem CR(R) is solvable.

Applying a constraint satisfaction solver, Corollary 1 gives us an implementable
alternative to the tolerance test algorithm in [13].

4 Skeptical Inference Based on C-Representations

Equation (2) defines an inference relation |∼ κ based on a single OCF κ. For a
given knowledge base R and two formulas A, B we will now introduce a novel
skeptical inference relation based on all c-representations.

Definition 5 (c-inference, |∼ c
R). Let R be a knowledge base and let A, B

be formulas. B is a (skeptical) c-inference from A in the context of R, denoted
by A |∼ c

RB, iff A |∼ κ
B holds for all c-representations κ for R.
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We will show that skeptical c-inference is different from p-entailment which
is equivalent to the skeptical inference relation obtained by considering all OCFs
that accept R, and that it is able to preserve high-quality inference properties
that inference based on single c-representations has.

Example 5 ( |∼cr ). Consider the three OCFs κ #»η (1) , κ #»η (2) , and κ #»η (3) from Table 2
calculated in Example 4 that are induced by the solutions #»η (1), #»η (2), and #»η (3)

of CR(Rbird) given in Example 3. In Table 4, their acceptance properties with
respect to some conditionals that are not contained in Rbird are given. From the
acceptance properties in Table 4, we conclude that b is not a c-inference of pf
in the context of Rbird , denoted by pf |�c

Rbird
b since e.g. κ #»η (3) 	|= (b|pf). We also

have pf |�c
Rbird

b since e.g. κ #»η (2) 	|= (b|pf). Thus, by c-inference we can neither
infer that flying penguins are birds nor can we infer that flying penguins are not
birds.

Table 4. Acceptance properties for different ranking functions that accept Rbird with
respect to some conditionals not contained in Rbird

κ #»η (1) κ #»η (2) κ #»η (3)

verif. falsif. accpt. verif. falsif. accpt. verif. falsif. accpt.

(b|pf) 0 < 1 � 0 < 2 � 1 > 0 �

(b|pf) 1 > 0 � 2 > 0 � 0 < 1 �
(bf |p) 0 < 1 � 0 < 1 � 0 < 1 �

On the other hand, c-inference allows the plausible conclusion that flying
birds are no penguins, i.e., we have bf |∼c

Rbird
p. For a first illustration, to see that

the conditional (p|pb) is accepted by the three OCFs given in Example 4, observe
that κ #»η (1) |= (p|bf) since κ #»η (1)(pbf) = 0 < 2 = κ #»η (1)(pbf), κ #»η (2) |= (p|bf)
since κ #»η (2)(pbf) = 0 < 2 = κ #»η (2)(pbf) and κ #»η (3) |= (p|bf) since κ #»η (3)(pbf) =
0 < 3 = κ #»η (3)(pbf). More generally, the conditional (p|bf) is accepted by all
c-representations of Rbird since we have κ #»η (pbf) = 0 and κ #»η (pbf) = η2 + η3,
for every solution #»η of the CSP because of (3) and Table 1. From the system
of inequalities (10) in Example 3 we obtain that η2 + η3 > η1 > 0. Therefore
κ #»η (pbf) < κ #»η (pbf) which implies κ #»η |= (p|bf) for all solutions #»η , by which we
obtain bf |∼c

Rbird
p using Definition 5. Another c-inference of Rbird is that non-

flying penguins are birds, i.e., we have pf |∼c
Rbird

b: According to (3) and Table 1
we have κ(pbf) = η1 and κ(pb f) = η4. Equation (10) in Example 3 gives us that
η4 > η1 and therefore we have pf |∼ κ

b by (2) for every c-representation κ of
Rbird and hence pf |∼c

Rbird
b.

Thus, overall from this example we obtain that for Rbird we have, for instance,
pf |∼c

Rbird
b but neither pf |�c

Rbird
b nor pf |�c

Rbird
b.

Comparing Definitions 1 to 5, we find that c-inference is defined in full anal-
ogy to p-entailment but with the set of OCF that accept Rbeing restricted
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to c-representations of R. An obvious question is what the exact relationship
between c-inference and p-entailment is, and which features of c-representations
still hold for c-inference. First, we show that c-inference satisfies system P but
allows for additional inferences.

Proposition 5. Let R be a knowledge base and let A, B be formulas. If B can be
inferred from A in the context of R using system P, then it can also be c-inferred
from A in the context of R.

Proof. By Definition 1, B can be p-entailed from A in the context of R if and
only if the conditional (B|A) is accepted by every OCF that accepts R. Natu-
rally, if (B|A) is accepted by all OCFs that accept R, then (B|A) is also accepted
by every subset of all OCFs that accept R. Since every c-representation accepts
R, we obtain that if B is p-entailed from A given R, then it is also c-inferred. Since
p-entailment is equivalent to system P inference (cf. Proposition 2) we conclude
that every system P inference from R can also be drawn using c-inference on R. ��

To show that c-inference allows for inferences beyond system P we consider
the following example.

Example 6 (R′
bird). We use the knowledge base

R′
bird = {δ1 : (f |b), δ4 : (b|p)}

which is a proper subset of Rbird from Example 1. For each impact vector
#»η = (η1, η4) for R′

bird , we obtain the inequalities η1 > 0 and η4 > 0 by the
verification/falsification behavior from Table 5, implying

κ #»η (pf) = min{κ #»η (pbf), κ #»η (pbf)} = min{0, η4} = 0

κ #»η (pf) = min{κ #»η (pbf), κ #»η (pb f)} = min{η1, η4} > 0

and hence κ #»η (pf) < κ #»η (pf) for the OCF induced by #»η . Thus, κ(pf) < κ(pf)
for every c-representation κ of R′

bird , giving us p |∼c
R′

bird
f . Note that this inference

is reasonable with respect to R′
bird , since R′

bird does not contain any information
that can inhibit this chaining of rules.

Table 5. Verification/falsification behaviour and abstract weights for R′
bird from Exam-

ple 6 and the OCF κ(η1,η4) induced by an impact vector (η1, η4).

p b f p b f p b f p b f p b f p b f p b f p b f

δ1 = (f |b) + − + −
δ4 = (b|p) + + − −
κ(η1,η4)(ω) 0 η1 η4 η4 0 η1 0 0
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Proposition 6. There are knowledge bases R and propositions A, B such that
B is c-entailed, but not p-entailed, from A in the context of R.

Proof. R′
bird from Example 6 is an example for such a knowledge base. Here,

we have p |∼c
R′

bird
f . From Proposition 1 we obtain that if we had p |∼ p

R′
bird

b, then

R′
bird ∪ {(f |p)} would be inconsistent. This is not the case since R′

bird ∪ {(f |p)}
is consistent (e.g. with the tolerance partitioning ({(f |b)}, {(f |p), (b|p)})), which
gives us that (f |p) is c-entailed, but not p-entailed from R′

bird . ��
From these two propositions we conclude:

Corollary 2. Every system P entailment of a knowledge base R is also a c-
inference of R; the reverse is not true in general.

We have seen that c-inference exceeds system P. In the following we examine
benchmarks for plausible inference relations, namely subclass inheritance, irrel-
evance, and rule chaining, which we illustrate using the following modification
of the running example.

Example 7 (R∗
bird). We extend the alphabet Σ = {P ,B ,F} of our running

example knowledge base Rbird from Example 1 with the variables W for having
wings (w) or not (w), A for being airborne(a) or not (a), and R for being red
(r) or not (r) to obtain the alphabet Σ∗ = {P ,B ,F ,W ,A,R}. We use the
knowledge base

R∗
bird =

{
δ1 : (f |b), δ2 : (f |p), δ4 : (b|p), δ5 : (w|b), δ6 : (a|f)

}

where the conditional δ5 = (w|b) encodes the rule that birds usually have wings
and the conditional δ6 = (a|f) encodes the rule that flying things are usually
airborne; the other three conditionals δ1, δ2, δ4 are the same as in Rbird . The
verification/falsification behavior of the worlds for the knowledge base R∗

bird is
given in Table 6. For each impact vector #»η = (η1, η2, η4, η5, η6) for R∗

bird , the
constraints defined by (4) and (5) give us the following system of inequations:

η1 > 0 (17)
η2 > min{η1, η4} (18)
η4 > min{η1, η2} (19)
η5 > 0 (20)
η6 > 0. (21)

If we assume η1 � η2 then (19) would give us η4 > η2 which would imply that
η1 < η4 by (18). But then, (18) would also require η1 < η2 in contradiction to
the assumption. Therefore, we conclude η1 	� η2 and hence η1 < η2, which gives
us the inequalities

η1 > 0 η2 > η1 η4 > η1
η5 > 0 η6 > 0.

(22)
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Table 6. Verification/falsification behavior of the worlds for the knowledge base R∗
bird

(Example 7) and ranking function κZ obtained from R∗
bird using System Z.

ω verifies falsifies κZ ω verifies falsifies κZ

p b f w a r δ1, δ4, δ5, δ6 δ2 2 p b f w a r δ1, δ5, δ6 — 0

p b f w a r δ1, δ4, δ5, δ6 δ2 2 p b f w a r δ1, δ5, δ6 — 0

p b f w a r δ1, δ4, δ5 δ2, δ6 2 p b f w a r δ1, δ5 δ6 1

p b f w a r δ1, δ4, δ5 δ2, δ6 2 p b f w a r δ1, δ5 δ6 1

p b f w a r δ1, δ4, δ6 δ2, δ5 2 p b f w a r δ1, δ6 δ5 1

p b f w a r δ1, δ4, δ6 δ2, δ5 2 p b f w a r δ1, δ6 δ5 1

p b f w a r δ1, δ4 δ2, δ5, δ6 2 p b f w a r δ1 δ5, δ6 1

p b f w a r δ1, δ4 δ2, δ5, δ6 2 p b f w a r δ1 δ5, δ6 1

p bf w a r δ2, δ4, δ5 δ1 1 p bf w a r δ5 δ1 1

p bf w a r δ2, δ4, δ5 δ1 1 p bf w a r δ5 δ1 1

p bf w a r δ2, δ4, δ5 δ1 1 p bf w a r δ5 δ1 1

p bf w a r δ2, δ4, δ5 δ1 1 p bf w a r δ5 δ1 1

p bf w a r δ2, δ4 δ1, δ5 1 p bf w a r — δ1, δ5 1

p bf w a r δ2, δ4 δ1, δ5 1 p bf w a r — δ1, δ5 1

p bf w a r δ2, δ4 δ1, δ5 1 p bf w a r — δ1, δ5 1

p bf w a r δ2, δ4 δ1, δ5 1 p bf w a r — δ1, δ5 1

p b f w a r δ6 δ2, δ4 2 p b f w a r δ6 — 0

p b f w a r δ6 δ2, δ4 2 p b f w ar δ6 — 0

p b f w a r — δ2, δ4, δ6 2 p b f w a r — δ6 1

p b f w a r — δ2, δ4, δ6 2 p b f w a r — δ6 1

p b f w a r δ6 δ2, δ4 2 p b f w a r δ6 — 0

p b f w a r δ6 δ2, δ4 2 p b f w a r δ6 — 0

p b f w a r — δ2, δ4, δ6 2 p b f w a r — δ6 1

p b f w a r — δ2, δ4, δ6 2 p b f w a r — δ6 1

p b f w a r δ2 δ4 2 p b f w a r — — 0

p b f w a r δ2 δ4 2 p b f w a r — — 0

p b f w a r δ2 δ4 2 p b f w a r — — 0

p b f w a r δ2 δ4 2 p b f w a r — — 0

p b f w a r δ2 δ4 2 p b f w a r — — 0

p b f w a r δ2 δ4 2 p b f w a r — — 0

p b f w a r δ2 δ4 2 p b f w a r — — 0

p b f w a r δ2 δ4 2 p b f w a r — — 0
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An inference relation suffers from the Drowning Problem [3,13] if it does not
allow to infer properties of a superclass for a subclass that is exceptional with
respect to another property because the respective conditional is “drowned” by
others. E.g., penguins are exceptional birds with respect to flying but not with
respect to having wings. So we would reasonably expect that penguins have
wings. However, system Z is known to suffer from the Drowning Problem, as the
following example shows.

Example 8. System Z partitions the knowledge base R∗
bird of Example 7 into

(R0 = {δ1, δ5, δ6},R1 = {δ2, δ4}) which results in the ranking function κZ given
in Table 6 (rightmost columns). Here we have κZ(pw) = 1 = κZ(pw) and there-
fore we cannot infer whether penguins have wings: Every world ω |= p falsifies
a conditional (cf. Table 6), and the minimal rank of every p satisfying world is
1. Since the conditional (w|b) is in R0 and system Z always takes this maximal
index of the partitions containing conditionals falsified by ω, this conditional
will never contribute to the rank of any such world ω; its effect is “drowned” in
the effects of the other conditionals.

The Drowning Problem distinguishes between inference relations that allow
for subclass inheritance only for non-exceptional subclasses (like System Z infer-
ence) and inference relations that allow for subclass inheritance for exceptional
subclasses (like inference with minimal c-representations, cf. [9,16]). Here we
show that this property is preserved by c-inference, the skeptical inference over
all c-representations.

Observation 1. Skeptical c-inference does not suffer from the Drowning Prob-
lem in Example 7.

Proof. From the observations for c-representations of R∗
bird in Exam-

ple 7 together with Definition 2 we obtain, for each impact vector #»η =
(η1, η2, η4, η5, η6) for R∗

bird and the correspondingly induced OCF κ #»η ,

κ #»η (pw) = min{η2, η2 + η6, η1, η2 + η4, η2 + η4 + η6, η4}
= η1

according to (22) and

κ #»η (pw) = min{η2 + η5︸ ︷︷ ︸
>η1

, η2 + η5 + η6︸ ︷︷ ︸
>η1

, η1 + η5︸ ︷︷ ︸
>η1

, η2 + η4︸ ︷︷ ︸
>η1

, η2 + η4 + η6︸ ︷︷ ︸
>η1

, η4︸︷︷︸
>η1

}.

This implies κ #»η (pw) < κ #»η (pw) for all impact vectors #»η of R∗
bird , and therefore

κ(pw) < κ(pw) for all c-representations of R∗
bird and hence p |∼c

R∗
bird

w. That is,
in difference to system Z (see Example 8), using c-inference we can infer that
penguins have wings in the context of R∗

bird , even if they are exceptional birds
with respect to flying. ��

It is straightforward to explain more generally why c-inference does not
suffer from a Drowning Problem. c-inference is the skeptical inference of all



78 C. Beierle et al.

c-representations of a knowledge base R. These OCFs are set up such that every
rank of every world takes the impact of every single conditional into account
independently, i.e., a world that falsifies a conditional is usually less plausible
than a world that, ceteris paribus, does not falsify this conditional. If we presup-
pose that all ηi are strictly positive, then we can definitely exclude the Drowning
Problem; this means that in c-representations with strictly positive impacts, no
conditional can simply “drown” in a set of others.

Another benchmark for plausible reasoning is irrelevance. It is safe to assume
that a variable is not relevant for an inference based on a knowledge base if the
variable does not appear in any conditional of the knowledge base.

Proposition 7 (c-inference and irrelevance). Variables that do not appear
in the knowledge base do not change the outcome of the inferences drawn with
c-inference.

Proof. Let Σ be a propositional alphabet and D ∈ Σ, and let R be a conditional
knowledge base where there is no conditional (Bi|Ai) ∈ R such that either d or d
appears in the conjunction AiBi. Let ω, ω′ be a pair of worlds such that ω = o∧d
and ω′ = o ∧ d. Since neither d nor d is a member of any conjunction AiBi of
the conditionals (Bi|Ai) ∈ R, the sets of conditionals falsified by ω and by ω′,
respectively, are identical. By Definition 2 this means that κ(ω) = κ(ω′). This
implies that for every two formulas A, B, which are composed from the language
of the alphabet Σ \{D}, and for every configuration ḋ of D, the conjunction AB
(respectively AB) falsifies a conditional (Bi|Ai) if and only if ABḋ (respectively
ABḋ) falsifies the conditional, and therefore κ(AB) = min{κ(ABd), κ(ABd)} =
κ(ABḋ) and also κ(AB) = min{κ(ABd), κ(ABd)} = κ(ABd) = κ(ABḋ). This
means for all c-representations κ of R, if κ(AB) < κ(AB), then also κ(ABḋ) <
κ(ABḋ). Thus, if A |∼c

RB, then also Aḋ |∼c
RB. ��

We illustrate the behavior of |∼c
R regarding variables that are not relevant using

Example 7:

Example 9 (c-inference and irrelevance). Table 6 gives us that the behavior of
all worlds ω for R∗

bird such that ω |= r is, ceteris paribus, identical to the behav-
ior of all worlds ω with ω |= r. Thus, we conclude directly that for all fixed
configurations ṗ, ḃ, ḟ , ẇ, ȧ of {P,B, F,W,A}, we have κ(ṗḃḟ ẇȧr) = κ(ṗḃḟ ẇȧr).
This means that, for instance, since in the context of R∗

bird we can infer that
birds can fly (b |∼c

R∗
bird

f), we can also infer that red birds can fly (br |∼c
R∗

bird
f).

Combining the conditionals in a knowledge base by rule chaining is a natural
element of plausible reasoning and is, e.g., the base of syllogisms. However, we
know that transitivity is not a general inference rule in nonmonotonic logics.
But we would expect that chaining rules yields plausible inferences as long as
there is no reason to believe the opposite.

Example 10 (c-inference and chaining rules). We use again the knowledge base
R∗

bird from Example 7. Given that we have (f |b) and (a|f) in the knowledge
base, and no interference between b and a, we would expect that chaining
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these rules is reasonable and that we can infer that birds are usually airborne.
With Table 6 and (22) in Example 7 we obtain that κ(ba) = min{η1, η6} > 0 =
κ(ba) and hence b |∼c

R∗
bird

a, as supposed.

Note that Example 10 illustrates that c-inference does not rely on a total, but a
partial ordering of the impacts imposed by (4) and (5) and therefore, via Defi-
nition 2, a partial ordering of the worlds for drawing inferences. In the example,
nothing can be derived about the concrete values of η1 and η6 except that they
are positive (see (22)). This is sufficient to guarantee the considered skeptical
inference.

5 Characterizing C-Inference by a CSP

For a given OCF κ, the relation κ |= (B|A) can be checked by determining κ(AB)
and κ(AB) according to (2). For checking the relation A |∼c

RB the countable
infinitely large set of all c-representations for R has to be taken into account.
In the previous section, we showed that such a c-inference can not be reduced
to the inconsistency of R ∪ {(B|A)}. In the following, we will show that the
relation |∼c

R can be characterized by a constraint satisfaction problem, implying
that |∼c

R can be computed using a constraint-based approach.

Definition 6 (CRR(B|A),¬CRR(B|A)). Let R = {(B1|A1), . . . , (Bn|An)}
and (B|A) be a conditional. The acceptance constraint for (B|A) with respect
to R, denoted by CRR(B|A), is:

min
ω|=AB

∑

1�i�n

ω|=AiBi

ηi < min
ω|=AB

∑

1�i�n

ω|=AiBi

ηi (23)

Likewise, ¬CRR(B|A) denotes the negation of (23), i.e., it denotes the con-
straint:

min
ω|=AB

∑

1�i�n

ω|=AiBi

ηi � min
ω|=AB

∑

1�i�n

ω|=AiBi

ηi (24)

Note that CRR(B|A) is a constraint on the constraint variables η1, . . . , ηn

which are used in the CSP CR(R), but it does not introduce any new variables
not already contained in CR(R); this observation also holds for the constraint
¬CRR(B|A).

The following proposition shows that the skeptical c-inference relation |∼cr

can be modeled by a CSP.

Proposition 8 (c-inference as a CSP). Let R = {(B1|A1), . . . , (Bn|An)}
be a consistent knowledge base and (B|A) be a conditional. Then the following
holds:

A |∼c
RB iff CR(R) ∪ {¬CRR(B|A)} is not solvable. (25)
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Proof. Assume that A |∼c
RB holds, i.e., κ |= (B|A) holds for all c-representations

κ for R. If CR(R)∪{¬CRR(B|A)} were solvable with a solution #»η = (η1, . . . , ηn)
then κ #»η |= R according to Proposition 3 where

κ #»η (ω) =
∑

1�i�n

ω|=AiBi

ηi (26)

due to (3). Furthermore, since #»η also solves ¬CRR(B|A), Eq. (24) holds. Apply-
ing (26) to (24) yields

min
ω|=AB

κ #»η (ω) � min
ω|=AB

κ #»η (ω) (27)

and further applying Eqs. (3) to (27) yields

κ #»η (AB) � κ #»η (AB). (28)

Using Eq. (2), this implies

κ #»η 	|= (B|A), (29)

contradicting the assumption A |∼c
RB. Thus, CR(R) ∪ {¬CRR(B|A)} is

unsolvable.
For the other direction, we use contraposition and assume that A |�c

RB holds.
Therefore, since R is consistent, there is a c-representation κ with κ |= R and
κ 	|= (B|A). According to Proposition 4, there is a solution #»η = (η1, . . . , ηn) ∈
Sol(CR(R)) such that κ = κ #»η . From κ #»η 	|= (B|A) we get:

κ #»η (AB) � κ #»η (AB) (30)

Applying Eqs. (1) to (30) yields

min{κ #»η (ω) | ω |= AB} � min{κ #»η (ω) | ω |= AB} (31)

and further applying Eqs. (3) to (31) yields

min{
∑

1�i�n

ω|=AiBi

ηi | ω |= AB} � min{
∑

1�i�n

ω|=AiBi

ηi | ω |= AB} (32)

which is equivalent to (24). Thus, CR(R)∪{¬CRR(B|A)} is solvable, completing
the proof. ��

In Sect. 4 we already discussed that c-inference and p-entailment are defined
in analogy, but using the set of all c-representations of a knowledge base Rrather
than the set of all OCFs that accept Rwhen defining inference leads to the differ-
ences shown above. While our CSP modeling of the inference closely resembles
the characterization of p-entailment given in Proposition 1, there is a major dif-
ference: While the characterization in Proposition 1 tests whether an augmented
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knowledge base is consistent, the characterization in Proposition 8 tests for the
solvability of an augmentation of the CSP specifying the c-representations of
the knowledge base. If we compare both approaches, Corollary 1 gives us that
R ∪ (B|A) is consistent iff CR(R ∪ (B|A)) is solvable, hence the not-solvability
of CR(R ∪ (B|A)) is, by Proposition 1, equivalent to the question whether the
entailment A |∼p

RB holds.
Since we have shown that c-inference A |∼c

RB is characterized by CR(R) ∪
{¬CRR(B|A)} not being solvable in Proposition 8, and c-inference to exceed
System P in Corollary 2, we conclude:

Corollary 3. Let R be a conditional knowledge base and let A, B be formulas.
If CR(R ∪ (B|A)) is not solvable, then CR(R) ∪ {¬CRR(B|A)} is not solvable;
the reverse is not true in general.

6 Conclusions and Future Work

In this paper we defined the novel inference relation c-inference as the skeptical
inference over all c-representations of a given conditional knowledge base R. We
proved that c-inference exceeds the skeptical inference of all OCFs that accept
R, the latter being equivalent to Adams’ system P. In particular, we showed
that c-inference shares important benchmark properties with inference based on
single c-representations namely subclass inheritance for exceptional subclasses
(the “Drowning Problem”) and irrelevance, and also allows for rule chaining
in a rational way. This is all the more remarkable because, even if by inferring
skeptically over all c-representations, we abandon the total ordering of the worlds
induced by single c-representations for a partial ordering.

By characterizing c-inference as a constraint satisfaction problem we
could guarantee that the novel skeptical inference over infinitely many c-
representations is not only calculable, but also implementable by using a con-
straint solver. Since there is a c-representation for a knowledge base if and only
if the knowledge base is consistent, this CSP modeling additionally allows for
an additional implementable consistency test apart from the tolerance test [13].
Implementing the calculation of c-representations using constraint solvers has
been demonstrated successfully in [2]; extending this implementation to c-
inference is part of our current work, as well as evaluating it empirically and
investigating the complexity of this approach.

Acknowledgment. This work was supported by DFG-Grant KI1413/5-1 of Prof. Dr.
Gabriele Kern-Isberner as part of the priority program “New Frameworks of Rational-
ity” (SPP 1516). Christian Eichhorn is supported by this Grant. This work benefitted
very much from discussions led during Dagstuhl Seminar 15221 “Multi-disciplinary
approaches to reasoning with imperfect information and knowledge - a synthesis and
a roadmap of challenges”.



82 C. Beierle et al.

References

1. Adams, E.W.: The Logic of Conditionals: An Application of Probability to Deduc-
tive Logic. Synthese Library. Springer, Dordrecht (1975)

2. Beierle, C., Kern-Isberner, G.: A declarative approach for computing ordinal con-
ditional functions using constraint logic programming. In: Tompits, H., Abreu, S.,
Oetsch, J., Pührer, J., Seipel, D., Umeda, M., Wolf, A. (eds.) INAP/WLP 2011.
LNCS (LNAI), vol. 7773, pp. 175–192. Springer, Heidelberg (2013)

3. Benferhat, S., Cayrol, C., Dubois, D., Lang, J., Prade, H.: Inconsistency manage-
ment and prioritized syntax-based entailment. In: Proceedings of the Thirteenth
International Joint Conference on Artificial Intelligence (IJCAI 1993), vol. 1, pp.
640–647. Morgan Kaufmann Publishers, San Francisco (1993)

4. Dubois, D., Prade, H.: Conditional objects as nonmonotonic consequence rela-
tions. In: Principles of Knowledge Representation and Reasoning: Proceedings of
the Fourth International Conference (KR 1994), pp. 170–177. Morgan Kaufmann
Publishers, San Francisco (1996)

5. Dubois, D., Prade, H.: Possibility theory and its applications: where do we stand?
In: Kacprzyk, J., Pedrycz, W. (eds.) Springer Handbook of Computational Intelli-
gence, pp. 31–60. Springer, Heidelberg (2015)

6. Finetti, B.D.: Theory of Probability, vol. 1,2. Wiley, New York (1974)
7. Goldszmidt, M., Pearl, J.: On the consistency of defeasible databases. Artif. Intell.

52(2), 121–149 (1991)
8. Goldszmidt, M., Pearl, J.: Qualitative probabilities for default reasoning, belief

revision, and causal modeling. Artif. Intell. 84(1–2), 57–112 (1996)
9. Kern-Isberner, G., Eichhorn, C.: Structural inference from conditional knowledge

bases. In: Unterhuber, M., Schurz, G. (eds.) Logic and Probability: Reasoning
in Uncertain Environments, pp. 751–769 (2014). No. 102(4) in Studia Logica.
Springer, Dordrecht (2014)

10. Kern-Isberner, G.: Conditionals in Nonmonotonic Reasoning and Belief Revision.
LNCS (LNAI), vol. 2087. Springer, Heidelberg (2001)

11. Kern-Isberner, G.: A thorough axiomatization of a principle of conditional preser-
vation in belief revision. Ann. Math. Artif. Intell. 40, 127–164 (2004)

12. Makinson, D.: General patterns in nonmonotonic reasoning. In: Gabbay, D.M.,
Hogger, C.J., Robinson, J.A. (eds.) Handbook of Logic in Artificial Intelligence
and Logic Programming, vol. 3, pp. 35–110. Oxford University Press, New York
(1994)

13. Pearl, J.: System Z: a natural ordering of defaults with tractable applications
to nonmonotonic reasoning. In: Proceedings of the 3rd Conference on Theoreti-
cal Aspects of Reasoning About Knowledge (TARK1990), pp. 121–135. Morgan
Kaufmann Publishers Inc., San Francisco (1990)

14. Spohn, W.: Ordinal conditional functions: a dynamic theory of epistemic states.
In: Harper, W.L., Skyrms, B. (eds.) Causation in Decision, Belief Change and
Statistics: Proceedings of the Irvine Conference on Probability and Causation. The
Western Ontario Series in Philosophy of Science, vol. 42, pp. 105–134. Springer,
Dordrecht (1988)

15. Spohn, W.: The Laws of Belief: Ranking Theory and Its Philosophical Applications.
Oxford University Press, Oxford (2012)

16. Thorn, P.D., Eichhorn, C., Kern-Isberner, G., Schurz, G.: Qualitative probabilistic
inference with default inheritance for exceptional subclasses. In: PROGIC 2015:
The Seventh Workshop on Combining Probability and Logic (2015)



Systems and Implementations for Solving
Reasoning Problems in Conditional Logics

Christoph Beierle(B)

Faculty of Mathematics and Computer Science,
University of Hagen, 58084 Hagen, Germany

beierle@fernuni-hagen.de

Abstract. Default rules like “If A, then normally B” or probabilistic
rules like “If A, then B with probability x” are powerful constructs for
knowledge representation. Such rules can be formalized as condition-
als, denoted by (B|A) or (B|A)[x], and a conditional knowledge base
consists of a set of conditionals. Different semantical models have been
proposed for conditional knowledge bases, and the most important rea-
soning problems are to determine whether a knowledge base is consistent
and to determine what a knowledge base entails. We present an overview
on systems and implementations our group has been working on for solv-
ing reasoning problems in various semantics that have been developed for
conditional knowledge bases. These semantics include quantitative, semi-
quantitative, and qualitative conditional logics, based on both proposi-
tional logic and on first-order logic.

1 Introduction

When studying concepts and methods for nonmonotonic reasoning, actually
implemented and operational systems realizing the developed approaches can be
very helpful. Besides providing a proof-of-concept, such systems may also yield
the basis for practical applications. In recent years, our group at the University
of Hagen has been involved in the development of several software systems imple-
menting reasoning tasks for conditional logics. The types of conditional logics
covered by these systems comprise pure qualitative logics providing default rules
like “If A, then normally B” and also quantitative probabilistic logics with rules
like “If A, then B with probability x”, based either on an underlying propositional
language or on a first-order language. The purpose of this paper is to provide
a brief overview of some of these systems and to illustrate the reasoning tasks
they address.

In Sect. 2, after sketching syntax and models of several propositional condi-
tional logics, systems dealing with these logics are presented, both for qualitative
logics and for probabilistic logics. Along the same dimensions, Sect. 3 deals with
first-order conditionals. In Sect. 4, we conclude and point out future work.

c© Springer International Publishing Switzerland 2016
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2 Propositional Conditional Logics

2.1 Unquantified and Quantified Conditionals

We start with a propositional language L, generated by a finite set Σ of
atoms a, b, c, . . .. The formulas of L will be denoted by uppercase Roman letters
A,B,C, . . .. For conciseness of notation, we may omit the logical and -connective,
writing AB instead of A ∧ B, and overlining formulas will indicate negation, i.e.
A means ¬A. Let Ω denote the set of possible worlds over L; Ω will be taken
here simply as the set of all propositional interpretations over L and can be
identified with the set of all complete conjunctions over Σ. For ω ∈ Ω, ω |= A
means that the propositional formula A ∈ L holds in the possible world ω.

By introducing a new binary operator |, we obtain the set

(L | L) = {(B|A) | A,B ∈ L}
of unquantified conditionals over L. A conditional (B|A) formalizes “if A then
(normally) B” and establishes a plausible, probable, possible etc. connection
between the antecedent A and the consequence B. By attaching a probability
value to an unquantified conditional, we obtain the set

(L | L)prob = {(B|A)[x] | A,B ∈ L, x ∈ [0, 1]}
of all probabilistic conditionals (or probabilistic rules) over L. A knowledge base
R is a set of conditionals from (L | L) or from (L | L)prob , respectively.

Example 1 (Qualitative conditional knowledge base). Suppose we have the
propositional atoms f - flying, b - birds, p - penguins, w - winged animals, k
- kiwis. Let the set

Rbird = {(f |b), (b|p), (f |p), (w|b), (b|k)}
consist of the following five conditionals:

r1 : (f |b) birds fly
r2 : (b|p) penguins are birds
r3 : (f |p) penguins do not fly
r4 : (w|b) birds have wings
r5 : (b|k) kiwis are birds

Example 2 (Probabilistic conditional knowledge base). We use the well-known
Léa Sombé example (see e.g. [47]) and consider the three propositional variables
s - being a student, y - being young, and u - being unmarried. Students and
unmarried people are mostly young. This commonsense knowledge an agent may
have can be expressed by the probabilistic knowledge base

Rsyu = {(y|s)[0.8], (y|u)[0.7]}
containing the two conditionals:

r1 : (y|s)[0.8] students are young with probability 0.8
r2 : (y|u)[0.7] unmarried people are young with probability 0.7
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2.2 Models of Propositional Conditional Knowledge Bases

In order to give appropriate semantics to conditionals, they are usually consid-
ered within richer structures such as epistemic states. Besides certain (logical)
knowledge, epistemic states also allow the representation of preferences, beliefs,
assumptions of an intelligent agent. Basically, an epistemic state allows one to
compare formulas or worlds with respect to plausibility, possibility, necessity,
probability, etc.

In a quantitative framework with probabilistic conditionals, obvious represen-
tations of epistemic states are provided by probability distributions P : Ω → [0, 1]
with

∑
ω∈Ω P (ω) = 1. The probability of a formula A ∈ L is given by

P (A) =
∑

ω|=A P (ω), and the probability of a conditional (B|A) ∈ (L | L)

with P (A) > 0 is defined as P (B|A) =
P (AB)
P (A)

, the corresponding conditional

probability. Thus, the satisfaction relation |=prob between probability distribu-
tions over Ω and conditionals from (L | L)prob is defined by:

P |=prob (B|A)[x] iff P (A) > 0 and P (B|A) =
P (AB)
P (A)

= x (1)

As usual, this relation is extended to a set R of conditionals by defining
P |=prob R iff P |=prob (B|A)[x] for all (B|A)[x] ∈ R; for all satisfaction relations
considered in the rest of this paper, we will tacitly assume the corresponding
extension to sets of conditionals.

Example 3. For the propositional language used in Example 2, let P ∗ be the
probability distribution given by:

ω P ∗(ω) ω P ∗(ω) ω P ∗(ω) ω P ∗(ω)
syu 0.1950 syu 0.1758 syu 0.0408 sy u 0.0519
syu 0.1528 syu 0.1378 s yu 0.1081 s y u 0.1378

It is easy to check that P ∗ |=prob Rsyu ; for instance since P ∗(ys) = 0.3708
and P ∗(s) = 0.4635, we have P ∗(y|s) = 0.3708/0.4635 = 0.8 and thus
P ∗ |=prob (y|s)[0.8].

Various types of models have been proposed to interpret qualitative con-
ditionals (B|A) adequately within a logical system (cf. e.g. [39]). One of the
most prominent approaches is the system-of-spheres model of Lewis [38] which
makes use of a notion of similarity between possible worlds. Other, more fine-
grained semantics for conditionals use numbers to compare different degrees of
“plausibility” between the verification and the falsification of a conditional. In
these qualitative frameworks, a conditional (B|A) is accepted (or verified), if
its confirmation, AB, is more plausible, possible etc. than its refutation, AB;
a suitable degree of acceptance is calculated from the degrees associated with
AB and AB. Here, two of the most popular approaches to represent epistemic
states are ordinal conditional functions, OCFs, (also called ranking functions)
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ω κ(ω) ω κ(ω) ω κ(ω) ω κ(ω)

pbfwk 2 pbfwk 5 pbfwk 0 pbfwk 1

pbfwk 2 pbfwk 4 pbfwk 0 pbfwk 0

pbfwk 3 pbfwk 5 pbfwk 1 pbfwk 1

pbfwk 3 pbfwk 4 pbfwk 1 pbfwk 0

pbfwk 1 pb fwk 3 pbfwk 1 pb fwk 1

pbfwk 1 pb fwk 2 pbfwk 1 pb fwk 0

pbfwk 2 pb fwk 3 pbfwk 2 pb fwk 1

pbfwk 2 pb fwk 2 pbfwk 2 pb fwk 0

Fig. 1. OCF κ accepting Rbird from Example 1

[49,50], and possibility distributions [11,14], assigning degrees of plausibility, or
of possibility, respectively, to formulas and possible worlds.

In the following, we will focus on OCFs [49]. An OCF κ is a function κ :
Ω → N∪{∞} with κ−1(0) �= ∅. The smaller κ(ω), the less suprising or the more
plausible the world ω. For formulas A ∈ L, κ(A) is given by:

κ(A) =

{
min{κ(ω) | ω |= A} if A is satisfiable
∞ otherwise

The satisfaction relation between OCFs and qualitative conditionals from
(L | L), denoted by |=ocf , is defined by:

κ |=ocf (B|A) iff κ(AB) < κ(AB)

Thus, a conditional (B|A) is accepted by the ordinal conditional function κ
iff its confirmation AB is less surprising than its refutation AB.

Example 4. For the propositional language used in Example 1, let κ be the OCF
given in Fig. 1. For the conditional (f |p) ∈ Rbird , we have κ(pf) = 1 < 2 = κ(pf)
and thus κ |=ocf (f |p). Similarly, it is easy to check that κ also accepts the other
conditionals in Rbird , implying κ |=ocf Rbird .

2.3 Systems for Reasoning with Propositional Conditional
Knowledge Bases

Reasoning with respect to a conditional knowledge base R means to determine
what R entails. While in classical logic, entailment is defined with respect to
all models, for probabilistic conditional knowledge bases this approach is very
restrictive since it may yield only uninformative answers. Therefore, entailment
may be defined with respect to a set of some best or preferred models.

In probabilistic conditional logic, the principle of maximum entropy (ME
principle) has been advocated [28,30,40,41]. While in general, each model of
a probabilistic conditional knowledge base R determines a particular way of
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extending and completing the probabilistic knowledge expressed in R to a full
probability distribution, the ME principle selects the distribution that accepts
R and that is as unbiased as possible. Formally, given a knowledge base R =
{(B1|A1)[x1], . . . , (Bn|An)[xn]}, ME (R) is the unique probability distribution
that satisfies all constraints specified by R and has the highest entropy H(P ) =
−∑

ω∈Ω P (ω) log P (ω) among all models P of R:

ME (R) = arg max
P |=R

H(P ) (2)

Reasoning in probabilistic conditional logic by employing the principle of
maximum entropy [28,40] requires solving the numerical optimization problem
given in Eq. (2). MEcore [19] is a software system implementing maximum
entropy reasoning. While MEcore does not employ a junction-tree modelling
as in the expert system shell SPIRIT [48], but a straightforward representa-
tion of the complete probability distribution, its focus is on flexibly support-
ing different basic knowledge and belief management functions like revising or
updating probabilistic beliefs, or hypothetical reasoning in what-if mode. In
addition, there is a component checking the consistency of a knowledge base R,
i.e., checking whether the set of models of R is non-empty. A query asking
for the probability of (B|A) in the context of R is answered with respect to
the uniquely defined maximum entropy model ME (R), i.e., (B|A)[x] is ME-
entailed from R iff ME (R)(B|A) = x. The distribution P ∗ given in Example 3
is in fact the ME distribution computed by MEcore for Rsyu , i.e., we have
P ∗ = ME (Rsyu). MEcore can be controlled by a text command interface or by
script files containing command sequences. It features an expressive command
language which allows, e.g., to manipulate knowledge bases, and to automate
sequences of updates and revisions. Besides this, a Java software interface allows
to integrate MEcore in other programs. In [3,33], the functionalities of MEcore
are illustrated in applications of ME modelling and reasoning in the medical
domain.

The methodological theory of conditionals developed by Kern-Isberner
[29,30] allows to describe the aim of knowledge discovery in a very general sense:
to reveal structures of knowledge which can be seen as structural relationships
being represented by conditionals. In this setting, knowledge discovery is under-
stood as a process which is inverse to inductive knowledge representation. By
applying this theory, an algorithm that computes sets of propositional proba-
bilistic conditionals from distributions was developed and implemented in the
system CondorCKD [22,23,34] using the functional programming language
Haskell.

For propositional qualitative conditional logic using OCFs, p-entailment [25]
is an inference relation defined with respect to all OCF models of a knowledge
base R: If A,B are formulas, then A p-entails B in the context of R iff κ |=
(B|A) for all κ such that κ |= R. System P [1] provides a kind of gold standard
for plausible, nonmonotonic inferences, and in [13] it is shown that, given a
knowledge base R, system P inference is the same as p-entailment.
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There are also inference relations which are defined with respect to specific
OCFs obtained inductively from a knowledge base R. System Z [42] is based
upon the ranking function which is the unique minimal OCF that accepts R;
this ranking function is obtained from an ordered partition (R0, ...,Rm) of R
defined by the notion of tolerance [42]. Other OCFs accepting R that have
favourable inference properties are c-representations [30,31]. A c-representation
of R is a ranking function κ constructed from integer impacts ηi ∈ N0 assigned
to each conditional (Bi|Ai) ∈ R such that κ accepts R and is given by [31]:

κ(ω) =
∑

1�i�n

ω|=AiBi

ηi (3)

Condor@AsmL [6] is a software system that implements automated reason-
ing with qualitative default rules employing c-representations. Based on a char-
acterization theorem for c-representations and c-revisions and an approach to
compute c-representations and c-revisions using the tolerance-induced partition
of R [31], inference is done with respect to the OCF thus obtained from R. Con-
dor@AsmL provides functionalities for advanced knowledge management tasks
like belief revision and update or diagnosis and hypothetical what-if-analysis
for qualitative conditionals. Condor@AsmL implements the abstract Condor
specification given in [4] and was developed in AsmL [26], allowing for a high-level
implementation that minimizes the gap between the mathematical specification
of the underlying concepts and the executable code and supports the formal
verification of the implemented system [5].

While Condor@AsmL computes a c-representation for any R that is consis-
tent, this c-representation may not be minimal. Unlike in system Z where there
is a unique minimal OCF, there may be more than one minimal c-representation.
In [7], the set of all c-representations for R is specified as the set of all solutions of
a constraint satisfaction problem CR(R), and a high-level declarative approach
using constraint logic programming (CLP) techniques for solving the constraint
satisfaction problem CR(R) is presented. In particular, the approach developed
in [7] supports the generation of all minimal solutions; these minimal solutions
are of special interest as they provide a preferred basis for model-based inference
from R. Moreover, different notions of minimality are investigated and the flex-
ibility of the approach is demonstrated by showing how alternative minimality
concepts can be taken into account by slight modifications of the CLP imple-
mentation. In [2], a skeptical inference relation taking all c-representations of R
into account is introduced, and it is demonstrated that it can be implemented
as a constraint satisfaction problem that extends CR(R).

3 First-Order Conditional Logics

As an illustration for first-order probabilistic conditionals, consider the following
example, adapted from [12], modelling the relationships among elephants in a
zoo and their keepers. Elephants usually like their keepers, except for keeper
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Fred. But elephant Clyde gets along with everyone, and therefore he also likes
Fred. The knowledge base Rek consists of the following conditionals:

ek1 : (likes(E,K) | elephant(E), keeper(K))[0.9]
ek2 : (likes(E, fred) | elephant(E), keeper(fred))[0.05]
ek3 : (likes(clyde, fred) | elephant(clyde), keeper(fred)[0.85]

Conditional ek1 models statistical knowledge about the general relationship
between elephants and their keepers (“elephants like their keeper with proba-
bility 0.9”), whereas conditional ek2 represents knowledge about the exceptional
keeper Fred and his relationship to elephants in general (“elephants like keeper
Fred only with probability 0.05”). Conditional ek3 models subjective belief about
the relationship between the elephant Clyde and keeper Fred (“elephant Clyde
likes keeper Fred with probability 0.85”). From a common-sense point of view,
the knowledge base Rek makes perfect sense: conditional ek2 is an exception of
ek1, and ek3 is an exception of ek2.

However, assigning a formal semantics to Rek is not straightforward. For
instance, for transforming the propositional approach employed in Eq. (1) to the
relational case with free variables as in Rek , the exact role of the variables has to
be specified. While there are various approaches dealing with a combination of
probabilities with a first-order language (e.g. [24,27,35,36]) here we focus on two
semantics for probabilistic relational conditionals, the aggregating semantics [36]
proposed by Kern-Isberner and the grounding semantics employed in the logic
FO-PCL [21].

While the two approaches are related in the sense that they refer to a (finite)
set of constants when interpreting the variables in the conditionals, there is also
a major difference. FO-PCL requires all groundings of a conditional to have the
same probability x given in the conditional, and in general, FO-PCL needs to
restrict the possible instantiations for the variables occurring in a conditional
by providing constraint formulas like U �= V or U �= a in order to avoid incon-
sistencies. Thus, while the aggregating semantics uses probabilistic conditionals
(B|A)[x] with relational formulas A,B, these conditionals are extended by a con-
straint formula C to 〈(B|A)[x], C〉 in FO-PCL. The models of a knowledge base
R consisting of such first-order probabilistic conditionals are again probability
distributions over the possible worlds, where a possible world is a subset of the
Herbrand base induced by the predicates and constants used for R.

The satisfaction relation |=⊗ for FO-PCL is defined by

P |=⊗ 〈(B|A)[x], C〉 iff
P (θ(AB))
P (θ(A))

= x (4)

for all θ ∈ Θadm(〈(B|A)[x], C〉)

where Θadm(〈(B|A)[x], C〉) is the set of all admissible ground substitutions θ
for the given conditional, i.e. where θ(C) evaluates to true. Thus, a probability
distribution P ⊗-satisfies a conditional 〈(B|A)[x], C〉 if it satisfies each admis-
sible individual instantiation of it. In contrast, the satisfaction relation |=� for
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aggregating semantics [36] is less strict with respect to probabilities of ground
instances, since it is capable of balancing the probabilities of ground instances
in order to ensure the probability x given by a conditional; |=� is defined by

P |=� (B|A)[x] iff

∑
θ∈Θ((B|A)[x])

P (θ(AB))

∑
θ∈Θ((B|A)[x])

P (θ(A))
= x (5)

where Θ((B|A)[x]) is the set of all ground substitutions of (B|A)[x].
The principle of maximum entropy used in the propositional setting (Equa-

tion (2)) has been extended to first-order knowledge bases for aggregating seman-
tics and for FO-PCL [21,36] by defining

ME•(R) = arg max
P |=◦R

H(P ) (6)

where • ∈ {⊗,�}. Since for FO-PCL grounding and for aggregating semantics
the set of models is convex, the optimization problem in (6) yields a unique
solution for every consistent R. Thus, analogously to the propositional case,
reasoning can be done with respect to the maximum entropy model ME•(R).

Software components for these inference tasks have been implemented in
KReator1 [20], an integrated development environment for representing, rea-
soning, and learning with relational probabilistic knowledge. In particular,
KReator provides specific plugins for an optimized computation of the ME
model under aggregating semantics (cf. [16–18]) that exploits the conditional
structure of R and its induced equivalence classes [30,37]. The KReator plugin
for FO-PCL semantics employs a simplification of the ME model computation
by transforming R into an equivalent knowledge base R′ that is parametrically
uniform [8–10,21]. Furthermore, algorithms for solving various reasoning prob-
lems for probabilistic conditional logics that also take inconsistent information
into account have been implemented in the Log4KR library2 [43–46].

In [37], ranking functions for qualitative first-order conditionals are intro-
duced, and in [32], a system Z-like approach for first-order default reasoning is
developed. Unlike propositional system Z, the first-order approach of [32] may
yield more than one minimal solution; an implementation of the approach in [32]
using Log4KR is given in [15].

4 Conclusions and Future Work

Conditionals play a major role in logic-based knowledge representation and rea-
soning. In this paper, we gave a brief survey on different versions of conditional
logics and illustrated corresponding reasoning tasks addressed by software sys-
tems that have been implemented within our research projects in recent years.
Our current work includes the further exploitation of conditional structures for
1 KReator can be found at http://kreator-ide.sourceforge.net/.
2 https://www.fernuni-hagen.de/wbs/research/log4kr/index.html.

http://kreator-ide.sourceforge.net/
https://www.fernuni-hagen.de/wbs/research/log4kr/index.html
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relational probabilistic inference under maximum entropy, and the investigation
of the precise properties of inference with c-representations using OCFs in the
propositional case and with the system Z-like approach in the relational case.
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in Knowledge Representation. LNCS, vol. 9060, pp. 81–95. Springer, Heidelberg
(2015)

33. Kern-Isberner, G., Beierle, C., Finthammer, M., Thimm, M.: Comparing and eval-
uating approaches to probabilistic reasoning: theory, implementation, and applica-
tions. Trans. Large-Scale Data Knowl.-Centered Syst. 6, 31–75 (2012)

34. Kern-Isberner, G., Fisseler, J.: Knowledge discovery by reversing inductive knowl-
edge representation. In: Proceedings of the Ninth International Conference on the
Principles of Knowledge Representation and Reasoning, KR-2004, pp. 34–44. AAAI
Press (2004)

35. Kern-Isberner, G., Lukasiewicz, T.: Combining probabilistic logic programming
with the power of maximum entropy. Artif. Intell. 157(1–2), 139–202 (2004). Spe-
cial Issue on Nonmonotonic Reasoning

36. Kern-Isberner, G., Thimm, M.: Novel semantical approaches to relational proba-
bilistic conditionals. In: Lin, F., Sattler, U., Truszczynski, M. (eds.) Proceedings
Twelfth International Conference on the Principles of Knowledge Representation
and Reasoning, KR 2010, pp. 382–391. AAAI Press (2010)

37. Kern-Isberner, G., Thimm, M.: A ranking semantics for first-order conditionals. In:
De Raedt, L., Bessiere, C., Dubois, D., Doherty, P., Frasconi, P., Heintz, F., Lucas,
P. (eds.) Proceedings 20th European Conference on Artificial Intelligence, ECAI-
2012, pp. 456–461. No. 242 in Frontiers in Artificial Intelligence and Applications.
IOS Press (2012)

38. Lewis, D.: Counterfactuals. Harvard University Press, Cambridge (1973)
39. Nute, D.: Topics in Conditional Logic. D. Reidel Publishing Company, Dordrecht

(1980)
40. Paris, J.: The Uncertain Reasoner’s Companion - A Mathematical Perspective.

Cambridge University Press, Cambridge (1994)
41. Paris, J., Vencovska, A.: In defence of the maximum entropy inference process. Int.

J. Approximate Reasoning 17(1), 77–103 (1997)
42. Pearl, J.: System Z: A natural ordering of defaults with tractable applications

to nonmonotonic reasoning. In: Proceeding of the 3rd Conference on Theoreti-
cal Aspects of Reasoning About Knowledge (TARK 1990), pp. 121–135. Morgan
Kaufmann Publ. Inc., San Francisco (1990)

43. Potyka, N.: Linear programs for measuring inconsistency in probabilistic logics. In:
Proceedings KR 2014, pp. 568–578. AAAI Press (2014)

44. Potyka, N.: Solving Reasoning Problems for Probabilistic Conditional Logics with
Consistent and Inconsistent Information. Ph.D. thesis, Fernuniversität Hagen, Ger-
many (2015)

45. Potyka, N., Thimm, M.: Consolidation of probabilistic knowledge bases by incon-
sistency minimization. In: Proceedings ECAI 2014, pp. 729–734. IOS Press (2014)

46. Potyka, N., Thimm, M.: Probabilistic reasoning with inconsistent beliefs using
inconsistency measures. In: Proceeding of the International Joint Conference on
Artificial Intelligence 2015 (IJCAI 2015), pp. 3156–3163 (2015)



94 C. Beierle
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Abstract. Answer Set Programming (ASP) has become an increas-
ingly popular formalism for declarative problem solving. Among the huge
body of theoretical results, investigations of different equivalence notions
between logic programs play a fundamental role for understanding modu-
larity and optimization. While strong equivalence between two programs
holds if they can be faithfully replaced by each other in any context
(facts and rules), uniform equivalence amounts to equivalent behavior of
programs under any set of facts. Both notions (as well as several variants
thereof) have been extensively studied. However, the somewhat reverse
notion of equivalence which holds if two programs are equivalent under
the addition of any set of proper rules (i.e., all rules except facts) has not
been investigated yet. In this paper, we close this gap and give a thorough
study of this notion, which we call rule equivalence (RE), and its para-
meterized version where we allow facts over a given restricted alphabet
to appear in the context. RE is thus a relationship between two programs
whose input is (partially) fixed but where additional proper rules might
still be added. Such a notion might be helpful in debugging of programs.
We give full characterization results and a complexity analysis for the
propositional case of RE. Moreover, we show that RE is decidable in the
non-ground case.

1 Motivation

In the area of Answer Set Programming [1] investigations of different equiva-
lence notions have been a major research topic within the last 15 years. This is
due to the fact that the straightforward notion of equivalence, which holds if
two programs possess the same answer sets, is too weak to guarantee faithful
replacements. In other words, replacing within a program R a subprogram P by
program P ′ equivalent to that subprogram might change the answer sets of the
thus modified program R[P/P ′]. Despite this effect being implicit to any non-
monotonic formalism, little was known how to characterize a sufficiently strong
notion of equivalence in order to guarantee such faithful replacements.

In their seminal paper on strong equivalence between logic programs,
Lifschitz et al. [12], have found a strikingly simple and elegant solution. First,
they explicitly defined the required notion: P and Q are strongly equivalent iff,
for each further so-called context program R, P ∪R and Q∪R possess the same
c© Springer International Publishing Switzerland 2016
M. Gyssens and G. Simari (Eds.): FoIKS 2016, LNCS 9616, pp. 95–111, 2016.
DOI: 10.1007/978-3-319-30024-5 6
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answer sets. Secondly, they gave a characterization in terms of a monotonic non-
classical logic: P and Q are strongly equivalent iff P and Q are equivalent in the
logic of here-and-there; this characterization was later reformulated to be applied
more directly to programs and their reducts by Turner [17] who introduced the
notion of SE-models.

The difference between strong and ordinary equivalence motivated investiga-
tions of equivalence notions in between. Uniform equivalence, originally intro-
duced by Sagiv [15] as an approximation for datalog equivalence, is such an
example. Uniform equivalence tests whether, for each set F of facts, P ∪ F and
Q∪F possess the same answer sets. This notion has been adapted to answer set
programming by Eiter and Fink [3], who also provided a characterization that
is based on a subset of SE-models (called UE-models); alternative characteriza-
tions can be found in [7]. A further direction is known as relativized equivalence
or hyperequivalence. Here the atoms allowed to occur in the context programs
are restricted to stem from a given alphabet [6,8,16,18,19].

Concerning further notions of equivalence, it was claimed that any “reason-
able” attempt to syntactically restrict the context programs (i.e., where the
restriction is defined rule-wise, for instance only allowing context programs with
Horn rules) coincides with either ordinary, strong, or uniform equivalence (see,
e.g., [14]). The reason behind this claim is the fact that strong equivalence coin-
cides with a much simpler notion of equivalence. Define the class of unary pro-
gram as consisting of facts and rules of the form a ← b only. It can be shown
that programs P and Q are strongly equivalent, if and only if, for any unary
program R, the answer sets of P ∪ R and Q ∪ R coincide.

However, there is still room for finding another equivalence notion. What if
we allow in the context programs R of an equivalence only proper rules, but
no facts? Surprisingly, this form of equivalence has not been investigated yet.
Indeed such a notion can prove useful as a test for replacement of program
modules under fixed known input and appears to be more natural than other
notions of modular equivalence from the literature [9,13,16].

As a second contribution we go towards relativized equivalence and relax
our notion by allowing potential addition of some facts (similar to relativized
uniform equivalence). It turns out that this equivalence notion boils down to
strong equivalence if both programs under consideration already contain facts,
but is a different concept otherwise.

Understanding different notions of equivalence in ASP not only provided
fundamental insights into the nature of nonmonotonic formalisms, it also gave
pointers for static program optimization (see, e.g., [2,4]). We see our contribu-
tion mainly as a missing link between established equivalence notions. As our
results suggest, rule equivalence is somewhat closer to strong equivalence than
to uniform equivalence. This becomes in particular apparent by the observation
that for programs containing at least one fact, strong and rule equivalence coin-
cide. Moreover, in the non-ground case it was proven that strong equivalence is
decidable while uniform equivalence is not [5]. We complement the picture and
prove decidability of rule equivalence in the non-ground case.
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To summarize, the main contribution of the paper is to provide a general
and uniform semantic characterization for the newly introduced notions of rule
equivalence. Our characterization will follow the tradition in ASP and is based on
SE-models. We show some basic properties of rule equivalence and also include
a complexity analysis. While our paper is focused on the ground case of ASP,
we also prove that rule equivalence remains decidable for the non-ground case.

2 Background

Throughout the paper we assume an arbitrary but fixed universe U of atoms.
A propositional disjunctive logic program (or simply, a program) is a finite set
of rules of the form

a1 ∨ · · · ∨ al ← b1, . . . , bm,not bm+1, . . . ,not bn, (1)

(l ≥ 0, n ≥ m ≥ 0), and where all ai and bj are propositional atoms from U
and not denotes default negation; for l = 1 and n = 0, we usually identify the
rule (1) with the atom a1, and call it a fact. A rule of the form (1) is called a
constraint if l = 0; proper if n ≥ 1; positive if m = n; normal if l ≤ 1; and unary
if l = 1 and m = n ≤ 1. A program is proper (resp., positive, normal, unary)
iff all its rules are proper (resp., positive, normal, unary). If all atoms occurring
in a program P are from a given alphabet A ⊆ U of atoms, we say that P is a
program over (alphabet) A.

For a rule r of the form (1), we identify its head by H(r) = {a1, . . . , al}
and its body by B+(r) = {b1, . . . , bm} and B−(r) = {bm+1, . . . , bn}. We shall
write rules of the form (1) also as H(r) ← B+(r),not B−(r). Moreover, we use
B(r) = B+(r) ∪ B−(r). Finally, for a program P and α ∈ {H, B, B+, B−}, let
α(P ) =

⋃
r∈P α(r).

The relation Y |= r between an interpretation Y and a program r is defined
as usual, i.e., Y |= r iff H(r) ∩ Y 
= ∅ whenever jointly B+(r) ⊆ Y and B−(r) ∩
Y = ∅ hold; for a program P , Y |= P holds iff for each r ∈ P , Y |= r. If
Y |= P holds, Y is called a model of P . An interpretation Y is an answer
set of a program P iff it is a minimal (w.r.t. set inclusion) model of the reduct
PY = {H(r) ← B+(r) | Y ∩ B−(r) = ∅} of P w.r.t. Y . The set of all answer
sets of a program P is denoted by AS(P ).

Next, we review some prominent notions of equivalence, which have been
studied under the answer-set semantics: Programs P,Q are

– strongly equivalent [12], iff, for any program R, AS(P ∪ R) = AS(Q ∪ R);
– P and Q are uniformly equivalent [3], iff, for any set F of facts, AS(P ∪ F ) =

AS(Q ∪ F ).

Relativizations of these notions are as follows [6,18]: For a given alphabet A ⊆ U ,
we call programs P,Q strongly equivalent relative to A, iff, for any program R over
A, it holds that AS(P ∪ R) = AS(Q ∪ R); P,Q are uniformly equivalent relative
to A, iff, for any set F ⊆ A of facts, AS(P ∪ F ) = AS(Q ∪ F ). In case of strong
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equivalence (also in the relativized case), it was shown [12,18] that the syntactic
class of counterexamples (i.e., programs R such that AS(P ∪ R) 
= AS(Q ∪ R))
can always be restricted to the class of unary programs. All equivalence notions
mentioned have been generalized to a uniform setting in [19]: Given alphabets
A,B ⊆ U , programs P,Q are called (A,B) equivalent iff, for any program R with
H(R) ⊆ A and B(R) ⊆ B, AS(P ∪ R) = AS(Q ∪ R).

Given a program P , we call a pair (X,Y ) SE-model of P (in symbols
(X,Y ) ∈ SE(P )) if X ⊆ Y , X |= PY and Y |= P . We call SE-models (X,Y )
total if X = Y , and non-total otherwise. SE-models characterize strong equiva-
lence in the following sense [17]. Two program P and Q are strongly equivalent
iff SE(P ) = SE(Q). Based on SE-models similar (however, more involved) char-
acterizations for the aforementioned equivalence notions have been introduced
[6,19]. We review here only the result for uniform equivalence [3]. Call an SE-
model (X,Y ) of P UE-model of P (in symbols (X,Y ) ∈ UE(P )) if for each
(X ′, Y ) ∈ SE(P ) with X ⊂ X ′ ⊆ Y , X ′ = Y . Then, programs P and Q are
uniformly equivalent iff UE(P ) = UE(Q).

3 Definition and Characterization

We now define the novel equivalence notion we are interested in here.

Definition 1. Given an alphabet A ⊆ U , we say that two programs P and Q
are rule-equivalent relative to A and write P ≡A Q if for any set of rules R
composed of

1. arbitrary proper rules and
2. facts S ⊆ A,

AS(P ∪ R) = AS(Q ∪ R) holds. If P ≡A Q holds for A = ∅, we occasionally say
that P and Q are proper-rule-equivalent. Whenever we leave A unspecified, we
simply talk about rule equivalence between programs.

The main idea is that we assume knowledge about facts from U \A as already
fixed (i.e., they will not be altered in the context R) while no further restriction
is imposed in the equivalence test.

By definition, strong equivalence implies rule equivalence relative to any A.
If we set A = U the notions coincide. In the other extreme case, A = ∅, no facts
will be added to the two programs under consideration. This particular notion of
rule equivalence thus can be seen as an antipode to uniform equivalence. Hence,
it is a natural question whether rule and uniform equivalence are incomparable
notions.

Example 1. Let us for the moment fix U = {a, b} and consider the following
programs:

P = {a ← b, ← not a, ← not b}
Q = {a ←, ← not b}
R = {a ← b, b ← a, ← not a, ← not b}
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Their SE-models1 are as follows:

SE(P ) = {(ab, ab), (a, ab), (∅, ab)}
SE(Q) = {(ab, ab), (a, ab)}
SE(R) = {(ab, ab), (∅, ab)}

By definition of UE-models UE(P ) = UE(Q), and thus P and Q are uniformly
equivalent. However, they are not rule-equivalent relative to A, even for A = ∅.
Consider S = {b ← a}. As is easily checked, AS(P ∪ S) = ∅ while AS(Q ∪ S) =
{{a, b}}. On the other hand, P and R are not uniformly equivalent (UE(P ) =
{(ab, ab), (a, ab)} 
= UE(R) = {(ab, ab), (∅, ab)}), while they are rule-equivalent
relative to A with A ⊆ {b}. We will see next how the latter result can be verified
due to a suitable characterization. �

Also, observe that the notion of rule equivalence is not captured by the
general (A,B) equivalence framework of [19], since our notion allows for any
atoms in heads and bodies of proper rules, but restricts the atoms in heads only
for facts, i.e., rules with empty bodies.

We now continue with the characterization for our main result.

Definition 2. An SE-model (X,Y ) of a program P is called an A-RE-model of
P if:

(a) (X = ∅ and (Y ∩ A) 
= ∅) or
(b) (∅, Y ) /∈ SE(P ) or
(c) (X ∩ A) 
= ∅ or
(d) Y = ∅.
We write (X,Y ) ∈ REA(P ) to indicate that (X,Y ) is an A-RE-model of P .

For the case A = ∅ we can give a simpler characterization.

Definition 3. An SE-model (X,Y ) of a program P is called an RE-model if
(∅, Y ) /∈ SE(P ) holds whenever Y 
= ∅. We write (X,Y ) ∈ RE(P ) to indicate
that (X,Y ) is an RE-model of P .

Lemma 1. For any program P the following relations hold:

1. RE(P ) = RE∅(P )
2. SE(P ) = REU (P ).

Proof. 1 is straightforward from Definition 2. For 2, we observe the following
implication from Definition 2: (X,Y ) ∈ REU (P ) iff (X,Y ) ∈ SE(P ) and ((a)
(X = ∅ and Y 
= ∅) or (b) (∅, Y ) /∈ SE(P ) or (c) X 
= ∅ or (d) Y = ∅) iff
(X,Y ) ∈ SE(P ).

1 Within SE-models, we denote interpretations {a1, . . . , an} by juxtaposition a1 · · · an

of their elements.
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As a final simple observation, we have the following result that generalizes the
well-known property of SE-models that (X,Y ) ∈ SE(P ) implies (Y, Y ) ∈ SE(P )
for any program P .

Lemma 2. For any A ⊆ U and program P : (X,Y ) ∈ REA(P ) implies (Y, Y ) ∈
REA(P ).

Proof. Towards a contradiction, assume (X,Y ) ∈ REA(P ) and (Y, Y ) /∈
REA(P ). From (X,Y ) ∈ REA(P ), (X,Y ) ∈ SE(P ) and thus also (Y, Y ) ∈
SE(P ). Hence, in order to have (Y, Y ) /∈ REA(P ), we need, in particular, Y 
= ∅,
(Y ∩A) = ∅, and (∅, Y ) ∈ SE(P ). We conclude that (X ∩A) = ∅, which together
with the above observation contradicts (X,Y ) ∈ REA(P ) by definition of A-RE-
models.

We now present our main result. In the spirit of the seminal results for
strong equivalence [12,17] we not only show that our characterization decides
the equivalence notion but also that the equivalence notion boils down to unary
rules.

Theorem 1. For any programs P , Q, and alphabet A ⊆ U , the following state-
ments are equivalent:

(i) P and Q are rule-equivalent relative to A.
(ii) For any set R of facts from A and proper unary rules, AS(P ∪R) = AS(Q∪

R).
(iii) REA(P ) = REA(Q).

Proof. (i) ⇒ (ii) is clear.

(ii) ⇒ (iii). W.l.o.g. suppose (X,Y ) ∈ REA(P ) \ REA(Q). First consider the
case (Y, Y ) /∈ REA(Q). Then we define R = (Y ∩ A) ∪ {a ← b | a, b ∈ Y }. We
show Y ∈ AS(P ∪R) but Y /∈ AS(Q∪R). For the former observe that Y |= P ∪R
(since (X,Y ) ∈ SE(P )). If Y = ∅ or Y ∩A 
= ∅, then Y ∈ AS(P ∪R) as no proper
subset of Y would satisfy RY . On the other hand, if Y 
= ∅ and Y ∩ A = ∅ hold,
∅ is the only proper subset of Y satisfying RY . By Lemma 2, (Y, Y ) ∈ REA(P ),
and by definition of RE-models (b) applies and we obtain (∅, Y ) /∈ SE(P ). Thus,
∅ is not model of PY ∪ R = (P ∪ R)Y . This shows Y ∈ AS(P ∪ R). To see that
Y /∈ AS(Q ∪ R), we distinguish the two possible reasons for (Y, Y ) /∈ REA(Q):
First, (Y, Y ) /∈ SE(Q). Then, Y 
|= Q. Otherwise, we have

(a) (Y 
= ∅ or Y ∩ A = ∅) and
(b) (∅, Y ) ∈ SE(Q) and
(c) (Y ∩ A) = ∅ and
(d) Y 
= ∅.

Thus, in particular (b), (c) and (d). We observe that ∅ |= QY ∪ R = (Q ∪ R)Y .
For both cases, thus Y /∈ AS(Q ∪ R).
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It remains to consider the case (Y, Y ) ∈ REA(Q). Recall that we have
(X,Y ) /∈ REA(Q) and (X,Y ) ∈ REA(P ), which implies (Y, Y ) ∈ REA(P ) and
X ⊂ Y .

Suppose X ∩ A = ∅. Since (X,Y ) ∈ REA(P ), (X,Y ) ∈ SE(P ) holds and

(a1) (X = ∅ and (Y ∩ A) 
= ∅) or
(b1) (∅, Y ) /∈ SE(P ).

Since (X,Y ) /∈ REA(Q) either (X,Y ) /∈ SE(Q) or jointly:

(a2) (X 
= ∅ or (Y ∩ A) = ∅) and
(b2) (∅, Y ) ∈ SE(Q).

Suppose (a1) holds. Then (a2) is false and thus (X,Y ) /∈ SE(Q) with X = ∅.
We can take R = {a ← b | a, b ∈ Y } and obtain Y ∈ AS(Q ∪ R) \ AS(P ∪ R).
Otherwise, we have (∅, Y ) /∈ SE(P ), and at least one of (∅, Y ) ∈ SE(Q) and
(X,Y ) /∈ SE(Q). For (∅, Y ) ∈ SE(Q), take R = {a ← b | a, b ∈ Y } as before.
Now however, Y ∈ AS(P ∪ R) \ AS(Q ∪ R). For the case (∅, Y ) /∈ SE(Q) and
(X,Y ) /∈ SE(Q), take

R = {a ← b | a, b ∈ X} ∪ {c ← d | c ∈ Y, d ∈ Y \ X}.

Now, Y ∈ AS(Q ∪ R) \ AS(P ∪ R).
It remains to consider the case X ∩ A 
= ∅. Here we take

R = (X ∩ A) ∪ {a ← b | a, b ∈ X} ∪ {c ← d | c ∈ Y, d ∈ Y \ X}

and observe that the only models of R being a subset of Y are Y and X. We
already know (X,Y ) ∈ SE(P ). From (X,Y ) /∈ REA(Q) and (X ∩A) 
= ∅, we get
(X,Y ) /∈ SE(Q). This suffices to see that Y ∈ AS(Q ∪ R) \ AS(P ∪ R).

(iii) ⇒ (i). Assume existence of R being a set of proper rules and facts F ⊆ A,
such that w.l.o.g. Y ∈ AS(P ∪ R) and Y /∈ AS(Q ∪ R). From the former we get
Y |= P (hence, (Y, Y ) ∈ SE(P )) and Y |= R.

We first show (Y, Y ) ∈ REA(P ). Towards a contradiction, suppose this is
not the case. By definition of A-RE-models, we then have (Y ∩ A) = ∅, (∅, Y ) ∈
SE(P ), Y 
= ∅. From the former we observe that R must not contain facts
(otherwise Y 
 |= R), hence ∅ is a model of RY . Together with (∅, Y ) ∈ SE(P ),
∅ |= (P ∪ R)Y . Contradiction to Y ∈ AS(P ∪ R).

Hence (Y, Y ) ∈ REA(P ), and we proceed by distinguishing two cases.

1. Y 
|= Q ∪ R. Since we already have seen Y |= R, this amounts to Y 
|= Q. It
follows that (Y, Y ) /∈ SE(Q), and consequently, (Y, Y ) /∈ REA(Q).

2. Y |= Q and some X ⊂ Y is model of (Q ∪ R)Y = QY ∪ RY ; hence (X,Y ) ∈
SE(Q); and moreover, (X,Y ) /∈ SE(P ) – otherwise Y ∈ AS(P ∪ R) cannot
hold. Since (X,Y ) /∈ SE(P ), (X,Y ) /∈ REA(P ). Also recall that (Y, Y ) ∈
REA(P ).
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In case (X,Y ) ∈ REA(Q) or (Y, Y ) /∈ REA(Q), we immediately obtain
REA(P ) 
= REA(Q), so suppose (X,Y ) /∈ REA(Q) and (Y, Y ) ∈ REA(Q).
Since (X,Y ) ∈ SE(Q) and (X,Y ) /∈ REA(Q) the following jointly hold:
(a) X 
= ∅ or (Y ∩ A) = ∅
(b) (∅, Y ) ∈ SE(Q)
(c) (X ∩ A) = ∅
Then, (Y, Y ) ∈ REA(Q) must be due to (Y ∩ A) 
= ∅, which implies (∅, Y ) ∈
REA(Q) by Definition 2 together with (b). We already have seen that X |=
RY . Together with (c) X ∩ A = ∅, we can conclude that R must not contain
facts (no facts from X are allowed due to (c), other facts violate X |= RY ).
It follows that ∅ is a model of R. We conclude (∅, Y ) /∈ SE(P ) – otherwise
Y ∈ AS(P ∪ R) cannot hold. Consequently, (∅, Y ) /∈ REA(P ). Hence, for the
case that (Y, Y ) ∈ REA(P ), (X,Y ) /∈ REA(P ), (Y, Y ) ∈ REA(Q), (X,Y ) /∈
REA(Q), we have shown that (∅, Y ) /∈ REA(P ) and (∅, Y ) ∈ REA(Q).

4 Properties of Rule Equivalence

In this section, we compare the notions of strong, uniform, and proper-rule equiv-
alence. We also provide some complexity analysis.

Let us first proceed with our example from above.

Example 2. Recall programs P , Q, R from Example 1. We already have observed
that P and Q are not proper-rule-equivalent. In fact, the RE-models according
to Definition 3 are given by RE(P ) = ∅ and RE(Q) = SE(Q) = {(ab, ab), (a, ab)}.
On the other hand, we have claimed that P and R are rule-equivalent relative to
A with A ⊆ {b}. We can now verify this by observing RE(R) = ∅. If we now set
A = {b}, we observe that REA(P ) = {(ab, ab), (∅, ab)} = REA(R). For A ⊇ {a}
however, we observe REA(P ) = SE(P ) 
= SE(R) = REA(R), since in the case of
P , condition (c) of Definition 2 applies for the SE-model (a, ab). �

Let us say that two notions of equivalence ≡ and ≡′ are incomparable if
there exist programs P , P ′, Q, Q′, such that P ≡ Q and P 
≡′ Q, and moreover
P ′ 
≡ Q′ and P ′ ≡′ Q′. Our examples thus imply the following result.

Theorem 2. Proper-rule equivalence and uniform equivalence are incomparable
notions; this holds already for normal programs.

Interestingly, if we disallow negation, uniform equivalence turns out to be a
strictly stronger notion than proper-rule equivalence.

Theorem 3. For positive programs, uniform equivalence implies proper-rule
equivalence, but proper-rule equivalence does not imply uniform equivalence.
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Proof. Recall that for positive programs, strong and uniform equivalence coin-
cide [6], thus the first direction is obvious. On the other hand, program {a ←
b; b ← a} can be seen to be proper-rule-equivalent to {a ← c; c ← a}, but these
two programs are not uniformly equivalent.

As a final result in this section, we define one simple class of programs for
which rule equivalence coincides with strong equivalence, but where uniform
equivalence remains a weaker concept.

Definition 4. Call a program P factual if it contains at least one fact, i.e., at
least one rule with empty body.

It is rather obvious that programs with at least one fact a, are able to “sim-
ulate” the presence of further facts b via proper rules b ← a. The forthcoming
result links this observation to equivalence notions.

Theorem 4. For factual programs, proper-rule equivalence implies strong equiv-
alence (and thus uniform equivalence), but uniform equivalence does not imply
proper-rule equivalence.

Proof. The first direction is due to the easy observation that factual programs do
not have SE-models of the form (∅, Y ) and thus by Definition 3, SE-models and
RE-models coincide. For the second direction consider programs {a ←; b∨ c ←}
and {a ←; b ← not c; c ← not b}. The programs are uniformly equivalent but
neither strongly nor rule-equivalent; in fact, just add R = {b ← c, c ← b}.

We observe that the above counter-example also shows that shifting atoms from
the head into the body of a rule is not a faithful manipulation w.r.t. rule equiva-
lence, while it is known that shifting is faithful w.r.t. uniform equivalence [6].

Finally, we study here the following decision problem (RE-equivalence):
Given disjunctive programs P , Q and set of propositional atoms A, are P and
Q rule-equivalent relative to A?

Theorem 5. RE-equivalence is coNP-complete. Hardness holds even for fixed
A, P being positive or normal and Q Horn.

Proof. Hardness follows from the same idea as the proof of Theorem 6.17 in
[6]. Membership can be seen via the following algorithm for the complementary
problem. Thanks to Theorem 1 we know that P and Q are not rule-equivalent
relative to A iff they possess different A-RE-models. Thus, we guess a pair (X,Y )
over the atoms from P ∪ Q and check whether it is A-RE-model of exactly
one program. Verifying whether (X,Y ) is SE-model of a program and likewise
checking conditions (a)–(d) from Definition 2 are all easy tests.
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Thus the complexity for checking rule equivalence matches the one of strong
equivalence and is easier than uniform equivalence, which is known to ΠP

2 -
complete. However, it is notable that membership in coNP also holds in the
relativized case of rule equivalence for arbitrary A, while strong equivalence rel-
ative to A yields an increase in complexity up to ΠP

2 . For an overview of the
mentioned known complexity results, we refer to [6].

5 Rule Equivalence in the Non-Ground Case

Our final result is concerned with the question whether rule equivalence remains
decidable in the non-ground case of ASP. We emphasize that the answer to
this question is not obvious. While strong equivalence is known to be decidable,
uniform equivalence is in fact undecidable [5].

We will restrict ourselves here to the case of proper-rule equivalence, i.e., rule
equivalence relative to A = ∅. Thus, with some little abuse of notation, we will
from now on refer to rule equivalence when we mean rule equivalence relative
to A = ∅. Our result is based on a transformation τ such that programs P and
Q are rule-equivalent iff τ(P ) and τ(Q) are strongly equivalent. We shall first
introduce τ for the propositional case and then adapt the idea to the non-ground
case.

5.1 Reducing Rule Equivalence to Strong Equivalence

For the sake of presentation, we first present τ as a translation from disjunctive
programs (the class we have focused on in this paper) to the more general class
of programs with nested expressions [11]. In this class, rule bodies can be an
arbitrary Boolean combination of atoms and default-negated atoms.2 Concerning
semantics, it is only the definition of the reduct that changes. Formally, given a
nested logic program P and an interpretation I, define P I as obtained from P by
replacing every occurrence of a literal not a by ⊥ if a ∈ I, and by � otherwise.
As before, an interpretation I is an answer set of a program P iff it is a minimal
model (w.r.t. set inclusion) of P I . With the modified reduct at hand, SE-models
are likewise easily generalized to nested logic programs.

We now turn to the expected behavior of the translation τ . In what follows,
we let V be the set of atoms occurring in a program P and V , V ′, V

′
be fresh

copies of V .

Definition 5. A translation τ mapping disjunctive programs to programs with
nested expressions satisfies the RE-to-SE property if the following holds for any
program P :

1. for any I ⊆ V ,
I ∪ (V \ I) ∪ V ′ ∪ V

′ |= τ(P )
2 In fact, the programs we use here form a proper subclass of programs compared

to [11], where, e.g., also double negation is allowed. However, for our purpose it is
sufficient to consider this weaker class.
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2. for any J ⊆ I ⊆ V ,

I ∪ (V \ I) ∪ J ′ ∪ (V \ J)′ |= τ(P )I∪(V \I)∪V ′∪V
′

⇐⇒
(J, I) ∈ SE(P ) and either (∅, I) /∈ SE(P ) or I = ∅

3. all models of τ(P ) and reducts of τ(P ) are implicitly given above; formally
for any X,Y such that Y |= τ(P ) and X |= τ(P )Y it holds that (i) Y is of
the form IY ∪ V ′ ∪ V

′
for some I ⊆ V with IY = I ∪ (V \ I); (ii) if X 
= Y

then X is of the form IY ∪ J ′ ∪ (V \ J)′ for some J such that (J, I) ∈ SE(P )
and either (∅, I) /∈ SE(P ) or I = ∅.
Intuitively, the idea is to embed all RE-models (J, I) of P as models of

reducts of τ(P ) using the unprimed atoms to express I and the primed ones
to express J . More formally, for each RE-model (J, I) of P we will have that
I ∪ (V \ I) ∪ J ′ ∪ (V \ J)′ |= τ(P )I∪(V \I)∪V ′∪V

′
. The reason why we need to

express RE-models in this rather cumbersome way is that we need to a express
a negative test (∅, I) /∈ SE(P ) with τ(P ); although the test is conceptually easy,
in order to express it via ASP, we have to make use of a certain saturation3

encoding to realize it.
For the forthcoming theorem, observe that the fact that P and Q contain

exactly the same set of atoms is not a severe restriction, since we can always add
a “tautological rule” a ← a for a missing atom a.

Theorem 6. Given programs P , Q both containing the same set of atoms V
and function τ satisfying the RE-to-SE property, we have that P and Q are
rule-equivalent iff τ(P ) and τ(Q) are strongly equivalent.

Proof (sketch). The proof follows from the following observations: (1) the total
SE-models (Y, Y ) of τ(P ) and τ(Q) coincide; (2) for any J, I ⊆ V we have by
definition that (J, I) ∈ RE(R) iff (XJ , YI) ∈ SE(τ(R)) with YI = I ∪ (V \ I) ∪
V ′ ∪ V

′
and XJ = I ∪ (V \ I) ∪ J ′ ∪ (V \ J)′; (3) there are no other non-total

SE-models of τ(P ) or τ(Q) than those corresponding to an RE-model.

We now actually give a translation τ satisfying the RE-to-SE property. Below
we intuitively explain the functioning of the three parts.

Definition 6. Given P over V , we define

τ(P ) = τG(P ) ∪ τM (P ) ∪ τR(P )

3 The concept of saturation refers to a programming technique, where reasons for a
candidate answer set I to be ruled out are not explicitly stated via constraints, but
in terms of rules which ensure that a certain model J ⊂ I of the program’s reduct
with respect to I exists, see, e.g., [10].
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where

τG(P ) = {v ∨ v ←; ← v, v; ← not v′; ← not v′; (2)
v′ ∨ v′ ←; v ← v′ | v ∈ V } (3)

τM (P ) = {v′ ← B+(r), B−(r),H(r); (4)
v′ ← B+(r), B−(r),H(r); (5)
v′ ← (B+(r))′, B−(r), (H(r))′; (6)
v′ ← (B+(r))′, B−(r), (H(r))′ | r ∈ P, v ∈ V } (7)

τR(P ) = {v′ ← w,
∧

r∈P,B+(r)=∅

∨

y∈B−(r)

y; (8)

v′ ← w,
∧

r∈P,B+(r)=∅

∨

y∈B−(r)

y | v, w ∈ V } (9)

τG(P ) is responsible for the guess of interpretations; (2) forces the classical
models of τ(P ) to be of the required form IY ∪ V ′ ∪ V

′
for I ⊆ V with IY =

I ∪ (V \ I). (3) restricts the proper submodels of reducts τ(P )IY ∪V ′∪V
′

to be
of the form J ∪ (V \ J) ∪ IY for J ⊆ I. τM (P ) is responsible for eliminating
models of the latter kind in case (J, I) is not SE-model of P , i.e., either I 
|= P
(rules (4)+(5)) or J 
|= P I (rules (6)+(7)). The final rules from τR(P ) now do
the following. They eliminate reduct models J ∪ (V \ J) ∪ IY in case J 
= ∅ and
(∅, I) ∈ SE(P ). To this end, in rules (8)+(9) we use atom w to make the rules
applicable only if J 
= ∅. Moreover, in order to have (∅, I) ∈ SE(P ) we need that
each rule r of P with an empty positive body, i.e., B+(r) = ∅, is removed in the
construction of P I , i.e., for each such r, B−(r) ∩ I 
= ∅ has to hold. We model
this via the disjunction in the rule bodies of rules (8)+(9).

Lemma 3. Translation τ from Definition 6 satisfies the RE-to-SE property.

In fact, it is only τR(P ) which uses non-standard rules, i.e., rules with nested
Boolean expressions. As known from [11], these rule can be transformed to stan-
dard rules without changing the SE-models, by applying standard laws of dis-
tributivity within rule bodies and a so-called splitting rule

{A ← B ∨ C} ⇒ {A ← B; A ← C}.

Applying this transformation rules to τR(P ) sufficiently often, we end up with
a standard disjunctive logic program. This can be given as follows: Let P0 =
{r1, . . . , rk} be the set of all rules of P with empty positive body and P−

0 =
{〈y1, . . . yk〉 | y1 ∈ B−(r1), . . . , yk ∈ B−(rk)} any selection of negative body
atoms of rules in P0. We then can rewrite τR(P ) as:

τ ′
R(P ) = { v′ ← w, y1, . . . , yk;

v′ ← w, y1, . . . , yk | v, w ∈ V, 〈y1, . . . yk〉 ∈ P−
0 }

Let τ ′(·) be the result of replacing in τ(·) the program τR(·) by τ ′
R(·).
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Corollary 1. For any finite programs P , Q over the same atoms V , it holds
that P and Q are rule-equivalent iff τ ′(P ) and τ ′(Q) are strongly equivalent.

We observe that τ ′(P ) is exponential in the size of the original program
P (whereas τ(P ) is efficiently constructible). Although our complexity results
suggest that better translations from disjunctive programs to disjunctive pro-
grams might exist, we leave this question of an efficient reduction for future
work. Indeed, since we are mainly interested in a reduction for the non-ground
case in order to show decidability, the only issue that counts is that we have a
computable translation.

5.2 Decidability in the Non-Ground Case

We briefly recall syntax and semantics of non-ground ASP. Here, programs are
formulated in a language containing a set Q of predicate symbols, a set V of
variables, and a countably infinite set C of constants. Each predicate symbol p
has an associated arity n(p). Rules are of the form (1), but now an atom is
an expression of form p(t1, . . .,tn), where p ∈ Q is a predicate of arity n and
ti ∈ C ∪ V, for 1 ≤ i ≤ n. An atom is ground if no variable occurs in it. A rule
r is safe if each variable occurring in H(r) ∪ B(r) also occurs in B+(r); r is
ground, if all atoms occurring in r are ground. Given a rule r and C ⊆ C, we
define G(r, C) as the set of all rules obtained from r by all possible substitutions of
elements of C for the variables in r. Moreover, we define G(P,C) =

⋃
r∈P G(r, C).

Interpretations are now sets of ground atoms, and the concept of satisfaction
(|=) is analogous to the ground case; likewise the reduct on ground programs
is defined as expected. Finally, a set I of ground atoms is an answer set of a
non-ground program P iff I is a subset-minimal set satisfying G(P,CP )I , where
CP denotes the so-called active domain of P , i.e., the set of all constant symbols
in P (if no such constant symbol exists, CP = {c} with an arbitrary constant
symbol c).

Equivalence notions for non-ground programs are defined as expected as well.
Note that for strong equivalence it is thus possible that the context programs R
extend the active domain from CP to CP∪R. This also holds for rule equivalence
where a context program R can contain any rule of the form p(c) ← q(X) where
c ∈ C is any constant not occurring in the programs that are compared to each
other. Since C is not bounded, decidability is thus not trivial.

We now define the translation for the non-ground case. We use some abbre-
viations: dom(X,n) is a shorthand for the sequence dom(X1), . . . dom(Xn), and
p(X) denotes p(X1, . . . Xn(p)). As before we use new predicate symbols p, p′,
p′. The main observation is that we have a new set of rules τ∗

D to collect all
constant symbols occurring in the program plus in the possibly added rules of
the equivalence test. The remaining parts basically just generalize the program
for the propositional case from Definition 6 to the non-ground case, using the
dom predicate to ensure safety of rules.
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Definition 7. Given a non-ground program P over predicates Q, we define

τ∗(P ) = τ∗
D(P ) ∪ τ∗

G(P ) ∪ τ∗
M (P ) ∪ τ∗

R(P )

where

τ∗
D(P ) = {dom(Xi) ← p(X1, . . . , Xn(p)) | p ∈ Q, 1 ≤ i ≤ n(p)}

τ∗
G(P ) = {p(X) ∨ p(X) ← dom(X,n(p));

← p(X), p(X);
← not p′(X), dom(X,n(p));
← not p′(X), dom(X,n(p));
p′(X) ∨ p′(X) ← dom(X,n(p));
p(X) ← p′(X) | p ∈ Q}

τ∗
M (P ) = {p′(X) ← B+(r), B−(r),H(r), dom(X,n(p));

p′(X) ← B+(r), B−(r),H(r), dom(X,n(p));
p′(X) ← (B+(r))′, B−(r), (H(r))′, dom(X,n(p));
p′(X) ← (B+(r))′, B−(r), (H(r))′, dom(X,n(p)) | r ∈ P, p ∈ Q}

τ∗
R(P ) = {p′(X) ← w(Y ), y1, . . . , yk, dom(X,n(p));

p′(X) ← w(Y ), y1, . . . , yk, dom(X,n(p)) | p, w ∈ Q, 〈y1, . . . yk〉 ∈ P−
0 }

and P−
0 = {〈y1, . . . yk〉 | y1 ∈ B−(r1), . . . , yk ∈ B−(rk)} is any selection of

negative body atoms of rules in P with empty positive body.

As before, we mention that the forthcoming theorem is not restricted by
the fact that the compared programs need to contain the same predicate and
constant symbols. Again, adding tautological rules of the form p(a) ← p(a) is
possible without changing any equivalence notion.

Theorem 7. Let P and Q be non-ground programs over the same set of pred-
icate symbols and constants. Then, P and Q are rule-equivalent iff τ∗(P ) and
τ∗(Q) are strongly equivalent.

Proof (sketch). The proof idea relies on the fact the we can reduce the non-
ground setting to the ground one which will allow us to employ Corollary 1.
However, some care is needed to restrict ourselves to finite ground programs.
Recall that we assumed an infinite set C of constant symbols (otherwise the rule
equivalence problem would be decidable by trivial means).

For the if-direction, suppose τ∗(P ) and τ∗(Q) are not strongly equiva-
lent. From the results in [5], it follows that then there is a finite C ⊆ C
such that G(τ∗(P ), C) is not strongly equivalent to G(τ∗(Q), C), and more-
over that for the witnessing SE-model (X,Y ) in the symmetric difference
SE(G(τ∗(P ), C))�SE(G(τ∗(Q), C)) we can assume w.l.o.g. that all constants
from C occur the set of ground atoms Y . Let us now denote by P ∗ the pro-
gram obtained from G(τ∗(P ) \ τ∗

D(P ), C) by removing all atoms of the form
dom(a). Analogously, define Q∗. Inspecting the usage of the dom atoms in τ∗(·)
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and using the fact that all constants of C occur in atoms of Y , one can show
that (X,Y ) remains a witnessing SE-model, i.e., (X,Y ) ∈ SE(P ∗)�SE(Q∗).
Moreover, observe that P ∗ = τ(G(P,C)) and Q∗ = τ(G(Q,C)). We thus can
now apply Corollary 1 and obtain that G(P,C) is not rule-equivalent to G(Q,C).
From this observation, the result that P is not rule-equivalent to Q follows quite
easily.

For the only-if direction, suppose P and Q are not rule-equivalent, hence there
exists a set of proper non-ground rules R such that AS(P ∪R) 
= AS(Q∪R). Let
C0 be the set of constants occurring in P (and thus in Q) and C be the set of con-
stants occurring in P∪R (and thus in Q∪R). By definition of answer sets, we have
AS(G(P ∪R,C)) 
= AS(G(Q∪R,C)). Note that G(P ∪R,C) = G(P,C)∪G(R,C)
and likewise, G(Q∪R,C) = G(Q,C)∪G(R,C). Hence, G(P,C) and G(Q,C) are
not rule-equivalent. In case C is not finite, we need some additional argument.
Since G(P,C) and G(Q,C) are ground, we can employ our characterization from
Theorem 1 and observe that there exists a pair (X,Y ) which is RE-model of
exactly one of the programs. Inspecting the definition of RE-models, one can
then show that we can safely restrict C to C ′ containing C0 plus k further con-
stants where k is the maximal number of variables in the rules of P and Q.
Thus C ′ is finite. Moreover, (X|C′ , Y |C′) is then RE-model of exactly one of
the programs G(P,C ′) and G(Q,C ′), where Z|C′ denotes the set of all ground
atoms in Z which are built from constants in C ′ only. We conclude (again by
Theorem 1) that G(P,C ′) and G(Q,C ′) are not rule-equivalent. In case C was
finite, we continue with C ′ = C and in both cases apply Corollary 1, which
yields that τ(G(P,C ′)) and τ(G(Q,C ′)) are not strongly equivalent. Hence, there
exists a pair (U,Z) that is SE-model of exactly one of the two programs. Let
D = {dom(a) | a ∈ C ′}. It can be shown that then (U ∪ D,Z ∪ D) is SE-
models of exactly one of the programs τ∗(G(P,C ′)) and τ∗(G(Q,C ′)). Moreover,
τ∗(G(P,C ′)) = G(τ∗(P,C ′)) and likewise, τ∗(G(Q,C ′)) = G(τ∗(Q,C ′)). Thus
G(τ∗(P,C ′)) is not strongly equivalent to G(τ∗(Q,C ′)). From this, it easily fol-
lows that τ∗(P ) is not strongly equivalent to τ∗(Q).

From the above result we can immediately conclude the following.

Theorem 8. Deciding rule equivalence between non-ground programs is decid-
able.

6 Conclusion

In this paper, we have studied an equivalence notion in ASP that has been
overlooked in previous work. This notion weakens strong equivalence in the sense
that programs are compared under scenarios where arbitrary proper rules are
allowed to be added but the addition of facts is restricted, or even forbidden.
Our results show that an SE-model-based characterization for this problem is
quite involved but remains on the coNP complexity level, thus showing the same
complexity as strong equivalence. This correspondence also carries over to non-
ground ASP, where we have shown decidability for (the unrelativized version of)
rule equivalence.
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Future work includes the following research questions. First, we aim for a
mix of relativized strong equivalence and rule equivalence where one alphabet
restricts the proper rules and a second alphabet restricts the facts in the poten-
tial context programs. Second, we are interested in finding better translations
from rule equivalence to strong equivalence, avoiding the exponential blow-up we
have witnessed in Sect. 5.2. Finally, we claim that decidability also holds for the
relativized variants of rule equivalence, but a formal proof is subject of ongoing
work.
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Abstract. Clustering large datasets is one of the important research
problems for many machine learning applications. The k-means is very
popular and widely used due to its ease of implementation, linear time
complexity in size of the data, and almost surely convergence to local
optima. However, working only on numerical data prohibits it from being
used for clustering categorical data. In this paper, we aim to introduce an
extension of k-means algorithm for clustering categorical data. Basically,
we propose a new dissimilarity measure based on an information theoretic
definition of similarity that considers the amount of information of two
values in the domain set. The definition of cluster centers is generalized
using kernel density estimation approach. Then, the new algorithm is
proposed by incorporating a feature weighting scheme that automatically
measures the contribution of individual attributes for the clusters. In
order to demonstrate the performance of the new algorithm, we conduct
a series of experiments on real datasets from UCI Machine Learning
Repository and compare the obtained results with several previously
developed algorithms for clustering categorical data.

Keywords: Cluster analysis · Categorical data clustering · K-means ·
Dissimilarity measures

1 Introduction

During the last decades, data mining has emerged as a rapidly growing interdis-
ciplinary field, which merges together databases, statistics, machine learning and
other related areas in order to extract useful knowledge from data [11]. Cluster
analysis or simply clustering is one of fundamental tasks in data mining that
aims at grouping a set of data objects into multiple clusters, such that objects
within a cluster are similar one another, yet dissimilar to objects in other clus-
ters. Dissimilarities and similarities between objects are assessed based on those
attribute values describing the objects and often involve distance measures.

Typically, objects can be considered as vectors in n-dimensional space, where
n is the number of features. When objects are described by numerical features,
c© Springer International Publishing Switzerland 2016
M. Gyssens and G. Simari (Eds.): FoIKS 2016, LNCS 9616, pp. 115–130, 2016.
DOI: 10.1007/978-3-319-30024-5 7
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the distance measure based on geometric concept such as Euclid distance or
Manhattan distance can be used to define similarity between objects. However,
these geometric distance measures are not applicable for categorical data which
contains values, for instance, from gender, locations, etc. Recently, clustering
data with categorical attributes have increasingly gained considerable attention
[7–10,13,14]. As for categorical data, the comparison measure is most naturally
used [13]. However, this metric does not distinguish between the different values
taken by the attribute, since we only measure the equality between pair of values,
as argued in [18].

In this paper we propose a new extension of the k-means algorithm for clus-
tering categorical data. In particular, as for measuring dissimilarity between cat-
egorical objects, we make use of the information theoretic definition of similarity
proposed in [20], which is intuitively defined based on the amount of information
contained in the statement of commonality between values in the domain set of
a categorical attribute. On the other hand, the definition of cluster centers is
generalized using the kernel-based density estimates for categorical clusters as
similarly considered in [6], instead of using the frequency estimates as originally
in [24]. We then develop a new clustering algorithm by incorporating a feature
weighting scheme that automatically measures the contribution of individual
attributes to formation of the clusters.

The rest of this paper is organized as follows. Section 2 briefly describes the
related work. Section 3 first introduces the k-means algorithm, and then presents
its existing extensions for clustering categorical data. The proposed method is
discussed in Sect. 4, and the experimental results are presented in Sect. 5. Finally,
Sect. 6 concludes the paper.

2 Related Work

Probably, the k -means clustering [21] is the most well-known approach for clus-
tering data sets with numerical attributes. It is a traditional partitioning based
approach which starts with k random centroids and the centroids are updated
iteratively by computing the average of the numerical features in each cluster.
Each observation or object is assigned to clusters based upon the nearest dis-
tance to the means of the clusters. The iteration continues until the assignment
is stable, that is, the clusters formed in the current stage are the same as those
formed in the previous stage. The k-means is very popular due to its ease of
implementation, linear time complexity in size of the data, and almost surely
convergence to local optima [25]. However, in real life many data sets are cate-
gorical, of which k-means algorithm cannot be directly applied.

In recent years several attempts have been made in order to overcome the
numerical-only limitation of k-means algorithm so as to make it applicable to clus-
tering for categorical data, such as k-modes algorithm [14] and k-representative
algorithm [24]. Particularly, in the k-modes algorithm [14], the simple matching
similarity measure is used to compute distance between categorical objects, and
“modes” are used instead of means for cluster centers. The mode of a cluster is
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a data point, in which the value of each attribute is assigned the most frequent
value of the attribute’s domain set appearing in the cluster. Furthermore, Huang
also combined the k-modes algorithm with k-means algorithm in order to deal with
mixed numerical and categorical databases. These extensions allow us to efficiently
cluster very large data sets from real world applications. It is worth, however, not-
ing that a cluster can have more than one mode and the performance of k-mode
algorithmdepends strongly on the selection ofmodes during the clustering process.
In an attempt to overcome this drawback, San et al. [24] introduced a new notion
of “cluster centers” called representatives for categorical objects. In particular, the
representative of a cluster is defined making use of the distributions of categorical
values appearing in clusters. Then, the dissimilarity between a categorical object
and the representative of a cluster is easily defined based on relative frequencies
of categorical values within the cluster and the simple matching measure between
categorical values. In such a way, the resulting algorithm called k-representative
algorithm is then formulated in a similar fashion to the k-means algorithm. In fact,
it has been shown that the k-representative algorithm is very effective in clustering
categorical data [22].

More recently, Chen and Wang [6] have proposed a new kernel density based
method for defining cluster centers in central clustering of categorical data. Then
the so-called k-centers algorithm that incorporates the new formulation of cluster
centers and the weight attributes calculation scheme has been also developed.
The experimental results have shown that the k-centers algorithm has good
performance especially for the task of recognizing biological concepts in DNA
sequences.

3 k-Means Algorithm and Its Extensions for Categorical
Data

Assume that DB is a data set consisting of N objects, each of which is char-
acterized by a set of D attributes with finite domains O1, . . . , OD, respectively.
That is, each object in DB is represented by a tuple t ∈ O1 × . . . × OD, and
the dth attribute takes |Od|(> 1) discrete values. In addition, the categories in
Od will be denoted by odl, for l = 1, . . . , |Od|, and each data object in DB will
be denoted by X, with subscript if necessary, which is represented as a tuple
X = (x1, ..., xD) ∈ O1 × ... × OD. Let C = {C1, . . . , Ck} be the set of k clusters
of DB, i.e. we have

Cj ∩ Cj′ = ∅ if j �= j′ and DB =
k⋃

j=1

Cj

Regarding the clustering problem discussed in this paper, we consider two
types of data: numeric and categorical. The domain of numerical attributes con-
sists of continuous real values. Thus, the distance measure based on geomet-
ric concept such as the Euclid distance or Manhattan distance can be used.
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A domain Od is defined as categorical if it is finite and unordered, so that only
a comparison operation is allowed in Od. It means, for any x, y ∈ Od, we have
either x = y or x �= y.

3.1 k-Means Algorithm

The k-means algorithm [21] is one of the most popular algorithm in partitional
or non-hierarchical clustering methods. Given a set DB of N numerical data
objects, a natural number k ≤ N , and a distance measure dis(·, ·), the k-means
algorithm searches for a partition of DB into k non-empty disjoint clusters that
minimizes the overall sum of the squared distances between data objects and
their cluster centers. Mathematically, the problem can be formulated in terms
of an optimization problem as follows:

Minimize

P (U,V) =
k∑

j=1

N∑

i=1

ui,jdis(Xi, Vj) (1)

subject to
k∑

j=1

ui,j = 1, 1 ≤ i ≤ N,

ui,j ∈ {0, 1}, 1 ≤ i ≤ N, 1 ≤ j ≤ k, (2)

where U = [ui,j ]N×k is a partition matrix (ui,j take value 1 if object Xi is in
cluster Cj , and 0 otherwise), V = {V1, . . . , Vk} is a set of cluster centers, and
dis(·, ·) is the squared Euclidean distance between two objects.

The problem P can be solved by iteratively solving two problems:

– Fix V = V̂ then solve the reduced problem P (U, V̂) to find Û .
– Fix U = Û then solve the reduced problem P (Û ,V).

Basically, the k-means algorithm iterates through a three-step process until
P (U,V) converges to some local minimum:

1. Select an initial V(0) = V
(0)
1 , . . . , V

(0)
k , and set t = 0.

2. Keep V(t) fixed and solve P (U,V(t)) to obtain U (t). That is, having the cluster
centers, we then assign each object to the cluster of its nearest cluster center.

3. Keep U (t) fixed and generate V(t+1) such that P (U (t),V(t+1)) is minimized.
That is, construct new cluster centers according to the current partition.

4. In the case of convergence or if a given stopping criterion is fulfilled, output
the result and stop. Otherwise, set t = t + 1 and go to step 2.

In numerical clustering problem, the Euclidean norm is often chosen as a
natural distance measure in the k-means algorithm. With this distance measure,
we calculate the partition matrix in step 2 as below, and the cluster center is
computed by the mean of cluster’s objects.

if dis(Xi, Vj) ≤ dis(Xi, Vp) then
ui,j = 1, and ui,p = 0, for 1 ≤ p ≤ k, p �= j (3)
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3.2 Extensions of k-Means for Categorical Data

k-Modes Algorithm. It was also shown in [13] that the k-means method
can be extended to categorical data by using a simple matching distance mea-
sure for categorical objects and the most frequent values to define the “clus-
ter centers” called modes. Let X1,X2 are two categorical objects in DB, with
X1 = (x11, . . . , x1D) and X2 = (X21, . . . , X2D). The dissimilarity between X1

and X2 can be computed by the total matching of the corresponding attribute
values of the two objects. Formally,

dis(X1,X2) =
D∑

d=1

δ(x1d, x2d) (4)

where

δ(x1d, x2d) =
{

0 if x1d = x2d,
1 if x1d �= x2d.

Given a cluster {X1, . . . , Xp} of categorical objects, with Xi = (xi1, . . . , xiD),
1 ≤ i ≤ p, its mode V = (o1, . . . , oD) is defined by assigning od, 1 ≤ d ≤ D,
the value most frequently appeared in {x1d, . . . , xpd}. With these modifications,
Huang [14] developed the k-modes algorithm that mimics the k-means method
to cluster categorical data. However, as mentioned previously, by definition the
mode of a cluster is not in general unique. This makes the algorithm unstable
depending on the selection of modes during the clustering process.

k-Representative Algorithm. In stead of using modes for cluster centers as
in [13], San et al. [24] proposed the notion of representatives for clusters defined
as follows.

Again, let C = {X1, . . . , Xp} be a cluster of categorical objects and

Xi = (xi1, . . . , xiD), 1 ≤ i ≤ p.

For each d = 1, . . . , D, let us denote OC
d the set forming from categorical values

x1d, . . . , xpd. Then the representative of C is defined by VC = (vC
1 , . . . , vC

D), with

vC
d = {(odl, fC(odl)) | odl ∈ OC

d }, (5)

where fC(odl) is the relative frequency of category odl within C, i.e.

fC(odl) =
#C(odl)

p
(6)

where #C(odl) is the number of objects in C having the category odl at dth

attribute. More formally, each vC
d is a distribution on OC

d defined by relative
frequencies of categorical values appearing within the cluster.
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Then, the dissimilarity between object X = (x1, . . . , xD) and representative
VC is defined based on the simple matching measure δ by

dis(X,VC) =
D∑

d=1

∑

odl∈OC
d

fC(odl) · δ(xd, odl) (7)

As such, the dissimilarity dis(X,VC) is mainly dependent on the relative
frequencies of categorical values within the cluster and simple matching between
categorical values.

k-Centers Algorithm. More generally, Chen and Wang [6] have recently pro-
posed a generalized definition for centers of categorical clusters as follows. The
center of a cluster Cj is defined as

Vj = [νj1, . . . ,νjD] (8)

in which the dth element νjd is a probability distribution on Od estimated by a
kernel density estimation method [1]. More particularly, let denote Xd a random
variable associated with observations xid, for i = 1, . . . , |Cj |, appearing in Cj at
dth attribute, and p(Xd) its probability density. Let Ojd be the set forming from
categorical values {xid}|Cj |

i=1 . Then the kernel density based estimate of p(Xd),
denoted by p̂(Xd, λj |Cj), is of the following form (see, e.g., [27]):

p̂(Xd, λj |Cj) =
∑

odl∈Ojd

fj(odl)K(Xd, odl|λj) (9)

where K(·, odl|λj) is a so-called kernel function, λj ∈ [0, 1] is a smoothing para-
meter called the bandwidth, and fj is the frequency estimator for Cj , i.e.

fj(odl) =
#j(odl)

|Cj | (10)

with #j(odl) being the number of odl appearing in Cj . Note that another equiv-
alent form of (9) was used in [6] for defining a kernel density estimate of p(Xd).

Also, Chen and Wang [6] used a variation of Aitchison and Aitken’s kernel
function [1] defined by

K(Xd, odl|λj) =

{
1 − |Od|−1

|Od| λj if Xd = odl
1

|Od|λj if Xd �= odl
(11)

to derive the estimate p̂(Xd, λj |Cj), which is then used to define νjd.
It is worth noting here that the kernel function K(Xd, odl|λj) is defined in

terms of the cardinality of the whole domain Od but not in terms of the cardi-
nality of the subdomain Ojd of the given cluster Cj .

From (9)–(11), it easily follows that νjd can be represented as

νjd =
[
Pjd(od1), . . . , Pjd(odl), . . . , Pjd(od|Od|)

]
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where

Pjd(odl) = λj
1

|Od| + (1 − λj)fj(odl) (12)

and λj ∈ [0, 1] is the bandwidth for Cj .
When λj = 0, the center degenerates to the pure frequency estimator, which

is originally used in the k-representative algorithm to define the center of a
categorical cluster.

To measure the dissimilarity between a data object and its center, each data
object Xi is represented by a set of vectors {yid}D

d=1, with

yid =
[
I(xid = od1), . . . , I(xid = odl), . . . , I(xid = od|Od|)

]

Here I(·) is an indicator function whose value is either 1 or 0, indicating whether
xid is the same as odl ∈ Od or not. The dissimilarity on the dth dimension is
then measured by

disd(Xi, Vj) = ||yid − νjd||2 (13)

We can see that, k-centers uses the different way to calculate the dissim-
ilarities between objects and cluster centers, but the idea of comparing two
categorical values is still based on the simple matching method (represented by
indicator function I(·)). The remains of the k-center mimics the idea of k-means
algorithm.

4 The Proposed Algorithm

In this section we will introduce a new extension of the k-means clustering algo-
rithm for categorical data by combining a slightly modified concept of cluster
centers based on Chen and Wang’s kernel-based estimation method and an infor-
mation theoretic based dissimilarity measure.

4.1 Representation of Cluster Centers

Similar as in k-centers algorithm [6], for each cluster Cj , let us define the center
of Cj as

Vj = [νj1, . . . ,νjD]

where νjd is a probability distribution on Od estimated by a kernel density
estimation method.

As our aim is to derive a kernel density based estimate p̂(Xd, λj |Cj) for the
dth attribute of cluster Cj , instead of directly using Chen and Wang’s kernel
function defined in terms of the cardinality of the domain Od as above, we use
a slightly modified version as follows.
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For any odl ∈ Od, if odl ∈ Ojd then we define

K(Xd, odl|λj) =

{
1 − |Ojd|−1

|Ojd| λj if Xd = odl
1

|Ojd|λj if Xd �= odl
(14)

otherwise, i.e. odl �∈ Ojd, we let K(Xd, odl|λj) = 0. Then, from (9), (10) and (14)
it easily follows that νjd can be obtained as

νjd =
[
Pjd(od1), . . . , Pjd(odl), . . . , Pjd(od|Od|)

]
(15)

where

Pjd(odl) =
{

λj
1

|Ojd| + (1 − λj)fj(odl) if odl ∈ Ojd

0 otherwise
(16)

and λj ∈ [0, 1] is the smoothing parameter for Cj .
The parameter λj is selected using the least squares cross validation (LSCV)

as done in [6], which is based on the principle of selecting a bandwidth that
minimizes the total error of the resulting estimation over all the data objects.
Specifically, the optimal λ∗

j is determined by the following equation:

λ∗
j =

1
|Cj | − 1

∑D
d=1(1 − ∑

odl∈Ojd
[fj(odl)]2)

∑D
d=1(

∑
odl∈Ojd

[fj(odl)]2 − 1
|Ojd| )

(17)

4.2 Dissimilarity Measure

Instead of using the simple matching measure as in [13,24] or the Euclidean
norm as in [6], we first introduce a dissimilarity measure for categorical values of
each attribute domain based on an information-theoretic definition of similarity
proposed by Lin [20], and then propose a new method for computing the distance
between categorical objects and cluster centers, making use of the kernel den-
sity based definition of centers and the information-theoretic based dissimilarity
measure for categorical data.

In [20], Lin developed an information-theoretic framework for similarity
within which a formal definition of similarity can be derived from a set of under-
lying assumptions. Basically, Lin’s definition of similarity is stated in information
theoretic terms, as quoted “the similarity between A and B is measured by the
ratio between the amount of information needed to state the commonality of
A and B and the information needed to fully describe what A and B are.”
Formally, the similarity between A and B is generally defined as

sim(A,B) =
log P (common(A,B))

log P (description(A,B))
(18)

where P (s) is the probability of a statement s. To show the universality of the
information-theoretic definition of similarity, Lin [20] also discussed it in different
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settings, including ordinal domain, string similarity, word similarity and semantic
similarity.

In 2008, Boriah et al. [5] applied Lin’s framework to the categorical setting
and proposed a similarity measure for categorical data as follows. Let DB be a
data set consisting of objects defined over a set of D categorical attributes with
finite domains denoted by O1, . . . , OD, respectively. For each d = 1, . . . , D, the
similarity between two categorical values odl, odl′ ∈ Od is defined by

simd(odl, odl′) =
{

2 log fd(odl) if odl = odl′

2 log(fd(odl) + fd(odl′)) otherwise (19)

where

fd(x) =
#(x)
|DB|

with #(x) being the number of objects in DB having the category x at dth

attribute. In fact, Boriah et al. [5] also proposed another similarity measure
derived from Lin’s framework and conducted an experimental evaluation of
many different similarity measures for categorical data in the context of outlier
detection.

It should be emphasized here that the similarity measure simd(·, ·) does not
satisfy the Assumption 4 assumed in Lin’s framework [20], which states that
the similarity between a pair of identical object is 1. Particularly, the range of
simd(odl, odl′) for odl = odl′ is [−2 log |DB|, 0], with the minimum being attained
when odl occurs only once and the maximum being attained when Od = {odl}.
Similarly, the range of simd(odl, odl′) for odl �= odl′ is

[
−2 log |DB|

2 , 0
]
, with the

minimum being attained when odl and odl′ each occur only once, and the maxi-
mum value is attained when odl and odl′ each occur |DB|

2 times, as pointed out
in [5].

Based on the general definition of similarity given in (18) and its application
to similarity between ordinal values briefly discussed in [20], we introduce another
similarity measure for categorical values as follows.

For any two categorical values odl, odl′ ∈ Od, their similarity, denoted by
sim∗

d(odl, odl′), is defined by

sim∗
d(odl, odl′) =

2 log fd({odl, odl′})
log fd(odl) + log fd(odl′)

(20)

where

fd({odl, odl′}) =
#({odl, odl′})

|DB|
with #({odl, odl′}) being the number of categorical objects in DB that receive
the value belonging to {odl, odl′} at the dth attribute. Clearly, we have
sim∗

d(odl, odl′) = 1 if odl and odl′ are identical, which satisfies the Assumption 4
stated as above.
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Then, the dissimilarity measure between two categorical values odl, odl′ ∈ Od

can be defined by

dis∗
d(odl, odl′) = 1 − sim∗

d(odl, odl′) = 1 − 2 log fd({odl, odl′})
log fd(odl) + log fd(odl′)

(21)

Let Xi = [xi1, xi2, . . . , xiD] ∈ DB and Vj = [νj1, . . . ,νjD] be the center
of cluster Cj . We are now able to extend the dissimilarity between categorical
values of Od to the dissimilarity on the dth attribute between Xi and Vj , i.e. the
dissimilarity between the dth component xid ∈ Od of Xi and the dth component
νjd of the center Vj , as follows. Without danger of confusion, we shall also use
dis∗

d to denote this dissimilarity and

dis∗
d(Xi, Vj) =

∑

odl∈Ojd

Pjd(odl)dis∗
d(xid, odl) (22)

4.3 Algorithm

With the modifications just made above, we are now ready to formulate the
problem of clustering categorical data in a similar way as k-means clustering.
Adapted from Huang’s W-k-means algorithm [16], we also use a weighting vector
W = [w1, w2, . . . , wD] for D attributes and β being a parameter for attribute
weight, where 0 ≤ wd ≤ 1 and

∑
d wd = 1. The principal for attribute weighting

is to assign a larger weight to an attribute that has a smaller sum of the within
cluster distances and a smaller one to an attribute that has a larger sum of the
within cluster distances. More details of this weighting scheme can be found in
[16]. Then, the weighted dissimilarity between data object Xi and cluster center
Vj , denoted by dis∗(Xi, Vj), is defined by

dis∗(Xi, Vj) =
D∑

d=1

wβ
d dis∗

d(Xi, Vj) =
D∑

d=1

wβ
d

∑

odl∈Ojd

Pjd(odl)dis∗
d(xid, odl) (23)

Based on these definitions, the clustering algorithm now aims to minimize
the following objective function:

J(U,V,W ) =
k∑

j=1

N∑

i=1

D∑

d=1

ui,jw
β
d dis∗

d(Xi, Vj) (24)

subject to ∑k
j=1 ui,j = 1, 1 ≤ i ≤ N

ui,j ∈ {0, 1}, 1 ≤ i ≤ N, 1 ≤ j ≤ k∑D
d=1 wd = 1, 0 ≤ wd ≤ 1

where U = [ui,j ]N×k is a partition matrix.
The proposed algorithm is formulated as below.
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Algorithm 1.1. The Proposed Algorithm

Select an initial V(0) = {V (0)
1 , . . . , V

(0)
k }, and set t = 0, λj = 0 for j = 0, . . . , k, set

W (0) = [1/D, . . . , 1/D].
repeat

Keep V(t) and W (t) fixed, generate U (t) to minimize the distances between objects
and cluster mode (using Eq. (23)).

Keep U (t) fixed, update V(t+1) using Eq. (16) and Eq. (17).
Generate W (t+1) using formulas from [16].
t = t + 1.

until The partition does not changed.

5 Experiments Results

In this section, we will provide experiments conducted to compare the cluster-
ing performances of k-modes, k-representatives and three modified versions of
k-representatives briefly described as below.

– In the first modified version of k-representatives (namely, Modified 1), we
replace the simple matching dissimilarity measure with the information theo-
retic-based dissimilarity measure defined by Eq. (21).

– In the second modified version of k-representatives (namely, Modified 2), we
combine the new dissimilarity measure with the concept of cluster centers
proposed by Chen and Wang [6], i.e. the Algorithm 1.1 uses Eq. (12) instead
of Eq. (16) to update the cluster centers).

– The third modified version of k-representatives (namely, Modified 3) is exactly
Algorithm 1.1, which incorporates the new dissimilarity measure with our
modified representation of cluster centers.

5.1 Datasets

For the evaluation, we used real world data sets downloaded from the UCI
Machine Learning Repository [4]. The main characteristics of the datasets are
summarized in Table 1. These datasets are chosen to test our algorithm because
of their public availability and since all attributes can be treated as categorical
ones.

5.2 Clustering Quality Evaluation

Evaluating the clustering quality is often a hard and subjective task [18]. Gen-
erally, objective functions in clustering are purposely designed so as to achieve
high intra-cluster similarity and low inter-cluster similarity. This can be viewed
as an internal criterion for the quality of a clustering. However, as observed in
the literature, good scores on an internal criterion do not necessarily translate
into good effectiveness in an application. Here, by the same way as in [19], we
use three external criteria to evaluate the results: Purity, Normalized Mutual
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Table 1. Categorical datasets

Datasets Number of instances Number of attributes Number of classes

Car 1728 6 4

Soybean (Small) 47 35 4

Soybean (Large) 683 35 19

Breast cancer 286 9 2

Nursery 12960 8 5

Mushroom 8124 22 2

Information (NMI) and Adjusted Rand Index (ARI). These methods make use
of the original class information of each object and the cluster to which the same
objects have been assigned to evaluate how well the clustering result matches
the original classes.

We denote by C = {C1, . . . , CJ} the partition of the dataset built by the
clustering algorithm, and by P = {P1, . . . , PI} the partition inferred by the
original classification. J and I are respectively the number of clusters |C| and
the number of classes |P |. We denote by N the total number of objects.

Purity Metric. Purity is a simple and transparent evaluation measure. To
compute purity, each cluster is assigned to the class which is most frequent in
the cluster, and then the accuracy of this assignment is measured by counting the
number of correctly assigned objects and dividing by the number of objects in
the dataset. High purity is easy to achieve when the number of clusters is large.
Thus, we cannot use purity to trade off the quality of the clustering against the
number of clusters.

Purity(C, P ) =
1
N

∑

j

max
i

|Cj ∩ Pi| (25)

NMI Metric. The second metric (NMI) provides an information that is inde-
pendent from the number of clusters [26]. This measure takes its maximum value
when the clustering partition matches completely the original partition. NMI is
computed as the average mutual information between any pair of clusters and
classes

NMI(C, P ) =

∑I
i=1

∑J
j=1 |Cj ∩ Pi| log N |Cj∩Pi|

|Cj ||Pi|√∑J
j=1 |Cj | log |Cj |

N

∑I
i=1 |Pi| log |Pi|

N

(26)

ARI Metric. The third metric is the adjusted Rand index [17]. Let a be the
number of object pairs belonging to the same cluster in C and to the same
class in P . This metric captures the deviation of a from its expected value
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corresponding to the hypothetical value of a obtained when C and P are two
random, independent partitions.

The expected value of a denoted by E[a] is computed as follows:

E[a] =
π(C)π(P )

N(N − 1)/2
(27)

where π(C) and π(P ) denote respectively the number of object pairs from the
same clusters in C and from the same class in P . The maximum value for a is
defined as:

max(a) =
1
2
(π(C) + π(P )) (28)

The agreement between C and P can be estimated by the adjusted rand index
as follows:

ARI(C, P ) =
a − E[a]

max(a) − E[a]
(29)

when ARI(C, P ) = 1, we have identical partitions.
In many previous studies, only purity metric has been used to analyze the

performance of clustering algorithm. However, purity is easy to achieve whens
the number of cluster is large. In particular, purity is 1 if each object data gets its
own cluster. Beside, many partitions have the same purity but they are different
from each other e.g., the number of object data in each clusters, and which
objects constitute the clusters. Therefore, we need the other two metrics to have
the overall of how our clustering results matches the original classes.

5.3 Results

The experiments were run on a Mac with a 3.66 GHz Intel QuadCore processor,
8 GB of RAM running Mac OSX 10.10. For each categorical dataset, we run 300
times per algorithm. We provide the parameter k equals to the number of classes
in each dataset. The performance of three evaluation metrics are calculated by
the average after 300 times of running. The weighting exponent β was set to 8
as experimentally recommended in [16].

As we can see from Tables 2, 3 and 4, the modified versions 2 and 3 produce
the best results in five out of six datasets. The results are remarkably good in
the soybean (small) dataset, mushroom dataset, car dataset, soybean (large)
dataset (when modified version 3 outperformed in all three metric) and breast
cancer dataset (when the purity is slightly lower than the best one but the other
two criteria are significantly higher). Comparing the performance of modified
versions 2 and 3, we can see that the proposed approach yields better results
in many cases, especially in NMI values and ARI values. In conclusion, the new
approach has been proved to enhance the performance of previously developed
k-means like algorithms for clustering categorical data.
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Table 2. Purity results of categorical dataset algorithms

Datasets K-mode K-representative Modified 1 Modified 2 Modified 3

Car 0.7 0.7 0.703 0.705 0.705

Soybean (Small) 0.873 0.961 0.967 0.981 0.986

Soybean (Large) 0.538 0.595 0.6 0.69 0.71

Breast-cancer 0.702 0.707 0.713 0.71 0.709

Nursery 0.409 0.425 0.435 0.451 0.468

Mushroom 0.518 0.83 0.864 0.87 0.87

Table 3. NMI results categorical dataset algorithms

Datasets K-mode K-representative Modified 1 Modified 2 Modified 3

Car 0.051 0.077 0.101 0.119 0.125

Soybean (Small) 0.823 0.96 0.965 0.98 0.981

Soybean (Large) 0.533 0.708 0.71 0.72 0.732

Breast-cancer 0.0015 0.036 0.039 0.051 0.057

Nursery 0.044 0.047 0.055 0.071 0.071

Mushroom 9.26E-05 0.448 0.493 0.51 0.521

Table 4. Ajusted rand index results categorical dataset algorithms

Datasets K-mode K-representative Modified 1 Modified 2 Modified 3

Car 0.028 0.024 0.043 0.049 0.052

Soybean (Small) 0.729 0.929 0.938 0.963 0.975

Soybean (Large) 0.306 0.379 0.38 0.44 0.46

Breast-cancer -0.002 0.082 0.085 0.128 0.135

Nursery 0.034 0.028 0.034 0.046 0.049

Mushroom 4.62E-06 0.5 0.554 0.589 0.586

6 Conclusions

In this paper, we have proposed a new k-means like algorithm for clustering
categorical data based on an information theoretic based dissimilarity measure
and a kernel density estimate-based concept of cluster centers for categorical
objects. Several variations of the proposed algorithm have been also discussed.
The experimental results on real datasets from UCI Machine Learning Repos-
itory have shown that the proposed algorithm outperformed the k-means like
algorithms previously developed for clustering categorical data. For the future
work, we are planning to extend the proposed approach to the problem of clus-
tering mixed numeric and categorical datasets as well as fuzzy clustering.
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Abstract. Association rule mining is an often used method to find rela-
tionships in the data and has been extensively studied in the literature.
Unfortunately, most of these methods do not work well for numerical
attributes. State-of-the-art quantitative association rule mining algo-
rithms follow a common routine: (1) discretize the data and (2) mine for
association rules. Unfortunately, this two-step approach can be rather
inaccurate as discretization partitions the data space. This misses rules
that are present in overlapping intervals.

In this paper, we explore the data for quantitative association rules
hidden in overlapping regions of numeric data. Our method works with-
out the need for a discretization step, and thus, prevents information loss
in partitioning numeric attributes prior to the mining step. It exploits
a statistical test for selecting relevant attributes, detects relationships
of dense intervals in these attributes, and finally combines them into
quantitative association rules. We evaluate our method on synthetic and
real data to show its efficiency and quality improvement compared to
state-of-the-art methods.

1 Introduction

Ever since its introduction [1], association rule mining has been a popular method
for discovering interesting patterns in databases. However, the methods used to
find these rules were originally only intended for boolean or categorical data, that
is, rules of the form buy[toothbrush] → buy[toothpaste]. However, since
more and more of the data we gather is numerical, an interesting extension to
classical association rule mining is quantitative association rule mining [3,19,21,
25]. In their purest form, quantitative association rules (QAR) denote relations
in numeric data but can be extended to cover categorical items as well. Two
examples of such association rules including numeric data are the following:

Example 1.

Age[16, 90] ∧ US-citizen[YES] → Drivers-License[YES]
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and

Age[0, 21] ∧ US-citizen[YES] → Alcohol-Allowed[NO]

In a real-life database containing such information, such rules would have
high support and confidence [1]: (1) US citizens are allowed to get a drivers
license from the age of 16 and above, and (2) US citizens are not allowed to
drink alcohol under the age of 21. The overlap in the numeric age attribute is
a very natural and desired one. In contrast to these natural rules, discretiza-
tion of the data in traditional methods would miss one of these two rules due
to pre-selected intervals (e.g. by equal-width discretization) and their disjoint
partitioning before mining the quantitative association rules.

The first attempts to mine data for quantitative association rules fall prey to
this limitation. The first publication by Srikant et al. [21] transforms the origi-
nal (numeric) data such that it could be handled by traditional association rule
mining algorithms. This is done by a pre-processing step, in which each attribute
is partitioned into an equal number of disjoint bins. This is still the most com-
mon procedure for quantitative association rules [11,23]. However, the disjoint
partitioning remains a major unresolved challenge for all of these techniques.
Two regions that overlap each other in a certain attribute are not detectable
after discretizing the data (cf. Example 1). As shown in our example, two rules
might be naturally present in overlapping intervals. The association rule mining
algorithm should select these relevant attributes, and further, detect the most
appropriate interval for each rule individually.

Many techniques [3,7,19] try to bypass this problem and can generally be
seen as optimization strategies. These strategies attempt to find optimal rules
with respect to specific rule templates. Hence, they are limited to certain criteria,
such as limited dimensionality, specific shapes, etc. Furthermore, choosing the
optimal boundaries for this partitioning has been shown to be an NP-complete
and intractable problem [26].

In our work, we focus on overlapping quantitative association rules. We pro-
pose a method that works without the need for a discretization step, and thus,
prevents information loss in partitioning numeric attributes prior to the mining
step. It exploits a statistical test for selecting relevant attributes for association
rule mining. We select attributes that show a dependency with an interval from
a different dimension. We then detect relationships of dense intervals in these
attributes, and finally combine them into quantitative association rules.

In summary, our approach called DRule has the following contributions, (i)
it does not require a partitioning of the data as pre-processing step; and detects
overlapping rules. (ii) It does not impose any restriction on the type of rule
that can be found; and hence provides a more flexible framework for quantita-
tive association rules. (iii) It selects statistically relevant attributes and dense
regions in each of these attributes while mining association rules. (iv) It provides
an efficient computation of overlapping quantitative association rules for large
databases.
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2 Formal Problem Statement

Database. For a database DB of mixed attribute types (binary, categorical, and
numerical) we consider each object o ∈ DB to be represented by a vector

o ∈ {R ∪ {c1, . . . , ck} ∪ {false, true}}m .

We denote o(Ai) the value of object o for attribute Ai and call the set of all
attributes A. We use the notation n = |DB| as the number of objects in the
database and m = |A| the dimensionality of the database.

Quantitative Predicate. Let A = {A1, . . . , Am} be the set of all attributes in the
database. A quantitative predicate is then defined as follows:

Definition 1 (Quantitative Predicate). Given one attribute Ai ∈ A and
lower and upper bounds (l, u) ∈ dom2(Ai),

A[l, u] defines a quantitative predicate

with l ≤ u in case of numeric attribute Ai and with a constant c equal to both
bounds l = u = c in the case of categorical or binary attributes.

This general definition covers all attribute types. We distinguish between two
notations: A[l, u] for numeric attributes and A[c] for binary and categorical ones.
Further, we say that an object o ∈ DB is covered by a quantitative predicate
Ai[l, u] iff l ≤ o(Ai) ≤ u and Ai[c] iff c = o(Ai).

Set of Predicates and Quantitative Association Rules. Based on the above def-
inition, a set of predicates is simply defined as a conjunction of predicates. An
object (or transaction) is covered by a set of predicates iff it is covered by
each predicate in the set. For a predicate set X we denote its attributes by
attr(X ) ⊆ A.

Furthermore, the objects that are covered by such a set of predicates are
defined as I(X ), the function that returns all o ∈ DB that are covered by all
predicates given in X :

I(X ) = |{o ∈ DB | o is covered by X}|

We define the support and frequency of X as

supp(X ) = |I(X )| freq(X ) =
|I(X )|
|DB|

Definition 2 (Quantitative Association Rule). A quantitative association
rule (QAR) R is defined as

P → Q
with P and Q predicate sets, Q �= ∅, and P ∩ Q = ∅.
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The support of a rule R : P → Q is defined as supp(R) = supp(P ∪ Q), the
number of objects that satisfy the predicates in both P and Q. The confidence
is defined as conf(R) = supp(R)

supp(P) . A rule has to fulfill supp(R) ≥ minSupport

and conf(R) ≥ minConfidence parameters as in traditional association rule
mining [1].

Note that support and confidence are traditional measures for assessing asso-
ciation rules, but they are not sufficient for detecting interesting intervals in
numeric data. Both support and confidence can be naively optimized by select-
ing the entire domain of a numeric attribute. For a more reasonable detection
of interesting intervals, we introduce density in numeric data. We will further
introduce this in Sect. 3. We have chosen for density as a measure as it is well
understood and easy to interpret and inspiration can be drawn from existing
efficient algorithms. This also meshes well with our approach to search space
reduction introduced in the next section.

Generalized Problem Statement. Mining association rules according to Defini-
tion 2 is a general problem statement for quantitative association rule mining:
(1) it is a flexible definition in terms of choice of attributes, (2) It allows different
intervals for each individual rule, (3) and it allows overlapping intervals for the
numeric attributes. Let us discuss these three properties formally and contrast
them to the more restricted definitions found in the literature:

Property 1 (Free choice of attributes). The attribute set P ∪ Q of a rule can be
any subset of all given attributes A. We do not impose any restrictions on the
number of attributes in a rule nor the configuration in which they appear.

In contrast to this free choice, other methods are not as flexible: pre-selection
of the attributes by the user is a widely used restriction [19]. It is limited in both
LHS and RHS of the rule, which are selected by the user beforehand. Such
restriction does not allow for rule discovery outside this template of pre-selected
LHS and RHS. Other methods perform restrictions on the size of a rule. For
example, the restriction to mine 2D rules only [3,25]. Such methods are designed
for a specific goal and can not be easily generalised.

Property 2 (Individual intervals for each rule). For a numeric attribute Ai ∈
P ∪ Q of a rule, its corresponding interval can be any [l, u] ∈ dom2(Ai), i.e. we
do not have any restriction on the intervals and they can be determined for each
rule individually.

While we allow for arbitrary intervals, related algorithms already mentioned
before choose their interval bounds from a set of predetermined disjoint intervals
[15,21]. Formally, [l, u] ∈ {[l1, u1), [l2, u2), . . . , [lk, uk]} is fixed for each attribute
Ai. These interval bounds create a true partioning of the data space. That is, the
possible intervals are fixed for each attribute Ai for all rules. In contrast to such
a limited choice of intervals, we aim at an on-the-fly selection of intervals within
the rule mining process. That is, for each rule, we aim at density-based intervals
directly on the numeric data, which allows for individual and better intervals per
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rule. In addition, a third key property automatically follows from the previous
one. In addition to finding individual intervals for each rule, it also allows overlap
between these intervals as well. Techniques that rely on a pre-discretization of
numeric attributes [15,21] do not allow for such overlap.

3 DRule

A straightforward solution for the problem described in the previous section
would be exhaustive search. Such an approach would detect interesting intervals
by checking each combination of dimensions and even checking every possible
pair of interval bounds. This is obviously an intractable solution. However, due
to its exhaustive nature it provides us all the rules contained in the data.

With DRule we propose an efficient method that allows us to find the same
results as exhaustive search would, i.e. without missing any rules, while avoiding
the tremendous runtime complexity. In order to find all rules, we start from each
dimension, just like exhaustive search does. However, we quickly prune parts of
the search space to prevent uninteresting rules or regions from slowing down our
algorithm. To this end, while going through the search space, we demand that
dimensions that are considered together are not uniformly related to each other.
As such, uninteresting rules can be pruned.

In the following sections we will describe DRule in more detail. Our algorithm
achieves the detection of overlapping QARs by using an approach that can be
split into three parts, namely detecting interesting regions through search space
reduction, mining for individual intervals, and generating quantitative associa-
tion rules. In each of these three parts we ensure flexibility in both the selection of
relevant attributes and the detection of individual (possibly overlapping) inter-
vals for each rule. These three parts will be further explored in the following
sections.

3.1 Mining for Intervals

To successfully create rules, we need meaningful interval bounds. As mentioned
before, fixing these interval bounds beforehand severely limits the rules we can
find, while considering all possible intervals is infeasible. To solve this problem,
we use a method that allows us to efficiently generate interval bounds on-the-fly
for each rule.

Algorithm Overview. The general idea of DRule is to mine all possible predicate
sets in a depth-first search. For efficient mining of intervals Ai[l, u], we first detect
interesting (i.e. dense) regions. These regions are hyper-rectangles in the multi-
dimensional space and approximate the individual intervals of one rule. These
hyper-rectangles, which we shall refer to as interesting regions, describe areas in
the data that show promise for rule generation from a density-based viewpoint.
When generating interesting regions, we perform an analysis to determine which
combinations of attributes can provide us with interesting results. That is, we
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already filter out those combinations of attributes that leave us with predictable
and uninteresting results (cf. Sect. 3.2). Given one of these interesting regions
(i.e. one hyper-rectangle), DRule refines this hyper-rectangle by identifying the
dense regions in each dimension and providing a list of dense intervals. These
can be used as a quantitative predicate; however, we still need to visit the other
dimensions in order to produce meaningful rules. We proceed the search in a
depth-first manner for each of the dense regions detected using the dense region
as a dataset for the next step. After each recursive step, we generate rules for
the intervals detected so far. An overview of DRule is given in Algorithm1. Note
that Algorithm 1 is called from each dimension in a region R.

Algorithm 1. DRule (Interesting region R, dimension d)
1: Find all dense regions in R in dimension d
2: for all Dense regions r do
3: Generate Rules(r, minimum confidence)
4: for all Dimensions d′ interesting to dimension d in R do
5: if d′ has not yet been visited then
6: DRule (r, d′)
7: end if
8: end for
9: end for

Comparison to Existing Processing Schemes. There are three important sides
to the algorithm that have not been explicitly stated. One, the algorithm does
not guarantee that the hyper-rectangle forms a dense region in all dimensions.
That is, it only guarantees that each interval discovered by the algorithm is
dense. This requirement is less restrictive as it allows us to find a larger set
of possibly interesting rules. Secondly, the order in which we visit dimensions
is important. This is not considered by other algorithms (e.g. for quantitative
frequent itemsets [24]): first visiting dimension 1, followed by dimension 2 can
lead to different results compared to visiting them in reverse order. Failure to
do so can result in many missed patterns.

The previous remark is one of the key aspects in allowing us to find overlap-
ping regions and allows us to distinguish ourselves from our competitors, such as
QFIMiner [24]. Working on a per dimension basis and not taking the ordering of
dimensions into account, can result in regions not being split properly. Taking
this into account, our strategy allows us to find overlapping regions (conform
Property 3).

3.2 Search Space Reduction

In order to reduce the infinite search space for intervals in a numeric data space,
we propose to mine for interesting regions. These interesting regions should have
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high density (similar to the notion of high frequency for traditional itemset min-
ing). Please note that this step might be considered as a sort of discretization
as we have to fix intervals at some point. However, it is by far more flexible
than pre-discretization as it allows for on-the-fly generation of density-based
regions within the rule mining. Unfortunately, such a density computation in
arbitrary attribute combinations is known to be computationally very expen-
sive [18]. Thus, we will restrict to one-dimensional density computation using
DBSCAN [6,12], similar to colossal pattern mining for frequency assessment [27].
This heuristic is well-known for approximate subspace clustering [12,16,17] and
we will exploit its efficient search for finding overlapping QARs. Our extension to
this reduction scheme can handle both numeric and categorical attributes, and
reduces the search even further by assessing statistical dependence between pairs
of attributes. Our detection method is flexible in using any subset of the given
attributes (conform Property 1) and any intervals in the respective attribute
domain (conform Property 2). Overall, this allows us to reduce the potential
interval boundaries based on the data distribution observed in any attribute com-
bination. For more information about this approach and more detailed descrip-
tions of the choices, we refer to the original paper on this kind of search space
reduction [12].

One-Dimensional Clustering. Our search space reduction works as follows. Start
by clustering each dimension separately according to some clustering algorithm.
In our case we have chosen to use the well-known DBSCAN algorithm [6] for
density-based clustering. Since DRule only needs dense regions, we can substitute
DBSCAN for any algorithm that finds these kinds of regions or algorithms such
as spectral clustering.

We support categorical items by performing a frequency analysis on the cat-
egorical dimensions and treat them as clusters if they are sufficiently frequent.
We will also refer to these 1D clusters as base-clusters and they will be denoted
as C1. These base-clusters form the foundation from which we will decide what
points and dimensions are relevant.

Merge of Candidates. Since we are not interested in clusters that exist in only
one dimension, we search for approximations of interesting regions by merging
the base-clusters found in the previous step. This way, we can quickly determine
(i) which points form a cluster and (ii) in which dimensions these points form
a cluster. To find these approximations, we cannot simply merge base-clusters
and hope for the best as this would be exponential in nature. Therefore, for
our merge of cluster candidates, we employ a greedy merge of the most similar
base-clusters. Let us first provide the formal definitions of this step before we
continue.

Definition 3 (The Most Similar Cluster). Given a 1D cluster c ∈ C1, the
most similar cluster (MSC) ĉ �= c is defined by:

∀ci ∈ C1 \ {c} : sim(c, ĉ) ≥ sim(c, ci)

with similarity instantiated by sim(ci, cj) = |ci ∩ cj |.
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If the most similar cluster ĉ shares a large number of objects with the base
cluster c, this is usually indicative of the presence of a multi-dimensional cluster,
i.e. a combination of these two 1D clusters.

In order to gain a set of merge candidates (i.e. 1D clusters that can be
merged), we need a merge procedure to identify multiple similar clusters. We
consider merging the base cluster with its most similar 1D clusters if they share
many objects.

Definition 4 (k-Most-Similar Clusters). Given a 1D cluster c ∈ C1, we
call MSCk(c) ⊆ C1 the k-most-similar clusters iff it is the smallest subset of
C1 that contains at least k base-clusters, where the following condition holds:
∀ci ∈ MSCk(c),∀cj ∈ C1 \ MSCk(c) : sim(c, ci) > sim(c, cj).

In order to select which of these clusters should be merged, we compute the
best-merge candidates (BMC) as follows.

Definition 5 (Best-Merge Candidates). Given a 1D cluster c ∈ C1 and
k, μ ∈ N

+(μ ≤ k). The best-merge candidates are defined as:

BMC(c) := {x ∈ C1 | MSCk(c) ∩ MSCk(x)| ≥ μ}

Merging all best-merge candidates filters out merge candidates that do not
add a lot of value. However, due to the parameter k, this method might be
too restrictive, causing a loss of cluster information. Since we want maximal-
dimensional regions, we bypass this problem by merging best-merge candidate
sets. That is, we decide to merge two base clusters if they share at least one
base-cluster which fulfils the properties of a best-merge cluster.

Definition 6 (Best-Merge Cluster). Given a 1D cluster c ∈ C1 and minClu
∈ N

+. Then c is called a best-merge cluster if |BMC(c)| ≥ minClu.

Generation of Interesting Regions. Now that we have found which clusters can
be merged, we can start our search space reduction. We start by generating
our approximative regions. These are the regions that will ultimately be refined
into rules if possible. First, generate all best-merge clusters. This will give us
a list of base clusters that are most suited to be merged. Then, find all pairs
of best-merge clusters cA and cB where cA ∈ BMC(cb) and cB ∈ BMC(cA).
As explained above, simply merging cA and cB is not enough, we therefore add
all best-merge candidates of cA and cB to this group. This ensures that we find
maximal-dimensional approximations of the regions we are interested in. The
resulting set of base-clusters form our region. Formally, a region is then defined
as follows.

Definition 7 (Region). A region R is a set of 1D clusters (base-clusters),

R = {c | c ∈ (BMC(cA) ∪ BMC(cB))} ∪ {cA, cB},

where cA, cB ∈ R, cA ∈ BMC(cB) ∧ cB ∈ BMC(cA).
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The points of a region are found by taking the union of all points in the
base-clusters. We take the union as to not be too restrictive on the points that
are part of the region.

Intuitively, a region defines a hyper-rectangle in the original data that can be
seen as a smaller version of the original database. This hyper-rectangle approx-
imates a quantitative predicate set (cf. Definition 1). That is, given a detected
region, we can consider the intervals of this region to define a quantitative pred-
icate. Of special interest is that these regions do not have to be disjoint. That
is, we allow two regions R1 and R2 with R1 ∩ R2 �= ∅ (conform Property 3).

Selecting Relevant Attributes. Now that we have found our possibly interesting
regions, we can continue with generating our rules. Before we do this, however,
we first introduce an intermediary step that will help us filter out uninteresting
rules. That is, given a region, we will verify that each dimension of this region
is interesting w.r.t. all of its other dimensions. For example, suppose that we
have found a dense region denoting all people between a certain age. It would be
uninteresting to report to the user that approximately half of these people are
female. To avoid considering combinations of mutually uninteresting dimensions,
we propose to use an additional measure.

We extend the previous approach by introducing a pairwise independence test
between all attributes using the χ2-test for uniformity. That is, given a region
R, we decide, for each pair of dimensions of this region, whether the points in
this region are uniformly spread in the second dimension when viewed from the
first, and vice versa.

Optimizations. Recall that to find overlapping rules, we consider the order in
which we visit dimensions. However, looking at the data from every possible angle
will not always result in different rules. To stop the algorithm from performing a
lot of unnecessary computations, we can opt for a short-circuiting strategy. That
is, if we find that visiting attribute A1 from attribute A2 yields the same result
as visiting them in reverse order, we can choose to terminate our computation
as we will not be able to find new results.

Another optimization that can be done is when visiting a certain set of
attributes X yields largely the same results as visiting a set of attributes Y.
All attributes we visit starting from X will yield the same result as when visit-
ing them from Y. Therefore, we can stop our computation for one of these sets
and create a link between the results, appending the results to that set in the
end. Please note that this optimization, while reducing the output size of the
algorithm, increases the memory consumption of the algorithm as we have to
keep track of intermediary results. This also does not remove any results from
the rules we would have discovered had we not run this step. We would simply
halt the computation of one branch when the results would be same from that
point on. The end results can then be added to the branch for which computation
was halted.
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3.3 Generating QARs

The final step of the algorithm is to take these interval bounds and transform
them into rules. This step is the simplest of the three and boils down to a simple
counting strategy. That is, given a set of intervals, for each interval compute the
points of the dataset that are contained within that interval. Then, try placing
each dimension of the region on the right hand side of the rule and compute the
remaining left hand side. Intersecting the points of the intervals on the left hand
side and comparing them with the points on the right hand side allows us to
quickly compute the confidence of the rule.

Note that this step does not have to separate from the previous step as rules
can be generated at each level to provide more immediate feedback.

4 Experimental Results

We ran our experiments on a machine running Mac OSX 10.9.1 with a 2.3 GHz
Intel Core i7 and 8 GB of memory. The algorithm was written in Python, making
heavy use of NumPy which provide bindings to efficient linear algebra libraries.
We compare our method to state of the art methods such as QFIMiner [24]
and QuantMiner [19] and also to an equi-width discretization technique. The
source code for QuantMiner can be found online, the implementations for the
other algorithms were created by us. We test the algorithms on synthetic data
to provide an objective comparison, and on real data to show that our results
can be used in real world situations. The synthetic data does not contain any
categorical attributes as QuantMiner is not capable of handling them.

Synthetic Data

The synthetic data we use in this section was generated by creating dense regions
in subsets of all attributes and using overlapping intervals in the individual
attribute domains. Unless otherwise specified, we set the minimum confidence
level to 60 %. That is, only rules that are true at least 60 % of the time are
reported.

Efficiency. To test the efficiency and scalability of our algorithm, we compared
our runtime against that of our three competitors. We generated a dataset of
50000 objects and increased its dimensionality.

Note that there are several caveats with respect to this comparison. First, to
compare to QFIMiner, we have included our own routine to generate quantitative
association rules. Since QFIMiner only mines the data for quantitative frequent
itemsets (QFIs), we still need to transform this data to QARs. Second, while
QuantMiner is included in the comparison, it is very hard to directly compare
it to QFIMiner or DRule as it works in a different way. QuantMiner takes as
input a dataset and a rule template. A rule template tells the algorithm which
attributes to use in the LHS of the rule and which to use in the RHS of the
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Fig. 1. Comparison of execution time between DRule, QFIMiner, QuantMiner, and
discretization. The dataset in all instances contains 50000 transactions.

rule. QuantMiner then looks for optimal rules with respect to this template.
To generate all rules of a certain size, the user has to loop through all possible
combinations of dimensions manually. To provide a comparison, we only use
QuantMiner to mine for rules in the dimensions in which the other algorithms
found rules.

From Fig. 1 we can conclude that DRule performs well when compared to
its competitors. The only competitor consistently outperforming our method is
the method using discretization. For reasons mentioned before, this method does,
however, not provide us with satisfactory results. When comparing to QFIMiner,
we can see that our method performs equally well. However, QFIMiner misses
some of the hidden rules, which in contrast are correctly detected by our method.
Specifically, rules that can only be found when visiting dimensions in a certain
order are not found by QFIMiner. An easy example is when looking at a dataset
in the shape of a face with the mouth overlapping with both eyes in the x
dimensions. If an algorithm first splits on the x dimension and then on the y
dimension, the eyes are not separated, while this does happen when first visiting
the y dimension and then x dimension.DRule is capable of generating more rules
than QFIMiner while keeping up in terms of runtime. We can see that our method
consistently outperforms QuantMiner, but it should be noted that QuantMiner
was designed for rules using user-templates and not for an unsupervised detection
of rules with a free choice of attributes.
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It should be noted that it can easily be shown that we find all rules that
QFIMiner finds as both algorithms use a similar density-based approach to find
intervals.

Rules Output. For this experiment, we generated datasets of varying dimension-
ality and compared the amount of rules that were generated with and without
checkout for uniformity between dimensions and using the short-circuiting strat-
egy discussed in Sect. 3.

Fig. 2. The amount of rules the algorithm outputs with uniformity checks and without
and using the short-circuiting strategy. We reject uniformity if p ≤ 0.05.

In Fig. 2 we demonstrate how much our checks for uniformity reduce the
amount of work the algorithm has to perform. We can see that checking for
uniformity drastically reduces the amount of rules we output and, therefore, the
amount of computations our algorithm has to perform. Using the short-circuiting
strategy further reduces the rules that are generated. We should note, however,
that this strategy more than doubled the memory usage of the algorithm.

Overlap. An important characteristic of our algorithm is its capability of finding
overlapping regions. To test whether our algorithm is really capable of finding
them, we designed a dataset that serves as a demonstration. It consists of several
interesting regions that overlap in one or more dimensions. The order in which
the algorithms visit the attributes is of great importance for the successful com-
pletion of this test. The dataset consists of three sets of records, each of size
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10000, along with an additional 10000 items that were added to introduce noise.
These record sets are dense in all dimensions they exist in. A summary of this
data is shown in Table 1.

Table 1. Summary of the dataset generated to demonstrate overlap. The boundaries
the sets in each of the dimensions is shown. Using an approach that visits each dimen-
sion separately requires that dimension z is visited first.

Pattern ID x y z

1 [5, 8] [10, 15] [10, 15]

2 [10, 18] [8, 12] [9, 16]

3 [3, 15] [5, 15] [3, 7]

Using this dataset, we came to the following conclusions:

– Discretization does not correctly handle this dataset. That is, while dimension
z can be properly discretized, the other dimensions are cut up into chunks.
When using confidence as a measure, some of these chunks are discarded as
no confident rules can be created from them, leading to information loss.

– QFIMiner is only partially capable of correctly finding all QFIs. QFIMiner
uses an Apriori-like build-up of the dimensions that contain dense regions,
but does not take into account that the order in which these dimensions are
visited can be important. Since it first visits dimension x, then dimension
y, and only then dimension z in the last phase, it is only able to detect
two regions. QFIMiner’s density threshold also causes problems in certain
situations. That is, it requires that regions are more dense than the average
density of the dataset in the dimensions in which the regions exist. In the
case of fairly clean data or data where one region is far more dense than the
others, this can lead to regions that go unnoticed.

– DRule is capable of detecting a superset of the rules that QFIMiner finds.
That is, since it also visits the dimensions in the same order that QFIMiner
does, it finds the same rules. But since it also takes other orderings into
account, it is able to detect all three regions and provide rules for them. This
ensures that DRule provides more accurate rules compared to competing
approaches.

Noise. In Fig. 3 we show how resistant our algorithm is to noise and compare it
to the other algorithms (excluding QuantMiner, for reasons mentioned above).
Thanks to the first step in our algorithm, the detection of interesting regions,
we can quickly filter out dimensions that are not interesting to us. The only
work that has to be done on an uninteresting region, is the preliminary 1D clus-
tering, which, depending on the implementation of the algorithm, can be done
rather quickly. After this step, uninteresting regions are no longer considered.



144 T. Van Brussel et al.

Fig. 3. The algorithm’s susceptibility to noise. The dataset contains 10000 items and
contains one interesting region.

For this test, we kept the size and amount of interesting regions constant, while
introducing additional noisy dimensions with a uniform distribution.

We can see that our algorithm slightly outperforms QFIMiner in terms of
efficiency for a lower amount of dimensions, while being slightly outperformed
in higher-dimensional data. We outperform QFIMiner in lower-dimensional
datasets due to the apriori-like build-up of the dimensions it considers. This
approach wastes some time on trying to combine irrelevant dimensions. Due to
our reduction step, which efficiently groups dimensions worth exploring together,
we can avoid this problem. In higher-dimensional datasets we become less effi-
cient as the amount of patterns we generate increases. Again, as mentioned in
the previous test, QFIMiner misses a lot of these patterns.

Real Data

After testing our method on synthetic data to benchmark its efficiency, noise
sensitivity, amount of rules it output, and its ability to detect overlap, we move
on to real data. We subjectively evaluate the result of our algorithm to illustrate
that our algorithm is able to find good rules in the sense that they are very inter-
pretable by the user. To perform this evaluation, we used well-known datasets
from the Bilkent University Function Approximation Repository [2], namely the
basketball and quake datasets, and also the iris dataset. In Table 2 we present
some of the rules found by DRule .
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Examining these results, we can immediately see that they are very easy to
interpret. Consider for example, the three rules found for the basketball dataset.
We can immediately conclude that shorter players pass the ball around much
more than taller players. Also notable is that the intervals of Assists per
minute actually overlap. While a seemingly small difference, it can prove useful
for maximizing your bets.

Our algorithm ran for 1.21, 0.89, and 0.57 s for each of these datasets respec-
tively while QFIMiner ran for 1.02, 0.78, and 0.56 s respectively.

Table 2. Table listing example rules found for real datasets.

Examples (confidence (%))

Iris

Sepal width[2.3, 4.2],Petal Length[1.2, 1.6] → Sepal length[4.4, 5.5] (98)
Class[Iris-versicolor] → Petal Length[3, 5.1] (100)
Petal length[4.8, 6.9] → Petal width[1.4, 2.5] (100)

Quake

Latitude[49.83, 50.05],Longitude[78.69, 79.1] → Focal depth[0, 9] (100)
Longitude[78.69, 79.1],Richter[5.9, 6.1] → Latitude[49.83, 50.01](95.1)
Focal Depth[0, 24],Longitude[78.69, 79.1] → Richter[5.9, 6.1] (71.9)

Basketball

Height[196, 198] → Assists per min[0.09, 0.14] (72)
Height[183, 185] → Assists per min[0.12, 0.29] (95.5)
Height[191, 193],Points per min[0.39, 0.49] → Assists per min[0.07, 0.23] (100)

5 Related Work

Association rule mining was first introduced by Agrawal et al. [1]. Since its
introduction, different methods have been extensively studied, as can be demon-
strated by the numerous optimizations that have been developed for the Apriori
algorithm. However, since these algorithms were developed for discrete values,
the so called supermarket basket analysis, they fall short when dealing with
numeric attributes. Over the years, many different approaches have been devel-
oped to deal with these kinds of attributes. In the following paragraphs, we will
give an overview of these approaches and classify them according to how they
relate to our approach.

Discretization/Partitioning. The first and classical method of dealing with
numeric attributes is to perform a preprocessing step, namely partitioning the
data (discretization, binning). This method groups similar items into the same
bin. When the data has been partitioned, frequent itemset mining techniques
can freely be applied [15,21].

Unfortunately, most of these methods fall short as they perform a univari-
ate discretization, i.e., every dimension is partitioned separately without taking
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correlations into account. Since quantitative association rules (QAR) generally
encompass more than one dimension, these interactions between dimensions
remain important. To solve the problem of univariate discretization we can use
a multivariate discretization, see for example Bay [4]. These methods attempt
to preserve interactions between dimensions. While they improve upon the tra-
ditional methods, they still show some shortcomings, such as the assigning each
point to a unique bin. This can result in many missed patterns.

A more promising approach to discretization is through the use of fuzzy rules.
These allow for some overlap between rules but still have the downside of having
to define boundaries beforehand [20].

Clustering-Based Approaches. Another noteworthy attempt at partitioning the
data is through the use of clustering algorithms [8]. This approach clusters the
data and uses the resulting clusters as boundaries for the bins. Traditional clus-
tering algorithms were designed to handle all attributes simultaneously, which
can become a problem as the dimensionality of the data increases. A workaround
for the increasing dimensionality of the data has been created through the devel-
opment of subspace clustering algorithms, e.g. SUBCLU [13] and the FIRES
algorithm [12]. A drawback of these techniques is, however, that they are com-
putationally expensive and that they were not designed for rule extraction.

An approach based on the SUBCLU algorithm, which is capable of finding
quantitative frequent itemsets, was introduced by Washio et al. [24]. This tech-
niques first generates a partition of the data in each dimension and then uses the
anti-monotonicity property of density to combine dimensions. Drawbacks of this
technique include: restriction to non-overlapping quantitative predicates, fixed
order of processing attributes and thus loss of some rule, and a limitation to
quantitative frequent itemsets with no extraction of QARs.

Optimization of Intervals. Other than partitioning approaches, several tech-
niques that allow for non-discretized numeric attributes also exist. These algo-
rithms typically attempt to optimize some criteria in order to interesting rules.
The first approach, developed by Fukuda et al. [7] uses techniques from image
segmentation to find a region that produces an optimized association rule. This
technique was further expanded by Brin et al. [5] to allow for an extra dimension
in the rules. A shortcoming is that these techniques are limited in the number of
dimensions a rule can contain and that expanding them to higher-dimensional
rules is non-trivial. Most recently, Tatti [22] proposes a binarization for real-
valued data by selecting sets of thresholds, treating them as random variables
and computing the average support.

A wildly different approach was first introduced by Mata et al. [14] and
further expanded upon by Salleb-Aouissi et al. [19]. They use a genetic algorithm
to find optimal rules according to a rule template. This template has to be
passed to the algorithm, so the user has to know which types of rules to look for
beforehand.

A last type of techniques operate in a framework of Formal Concept Analysis,
and find all possible non-equivalent (or so called closed) vectors of intervals
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covering a minimal number of points in the data [9,10]. Unfortunately, such
techniques are not feasible for large databases.

6 Conclusion

In the present paper, we have introduced a novel method to tackle the problem
of finding overlapping quantitative association rules. The rules we find allow for
both numeric and categoric attributes and our algorithm is thus more general
than many of its competitors. We have demonstrated the algorithm’s efficiency
and scalability and have shown its resistance to noise. To (partially) solve the
problem of increasing rule output, we have also introduced two strategies that
decrease the amount of rules the algorithm outputs. Finally, we have demon-
strated that DRule is capable of finding association rules showing overlap where
other algorithms fail to do so, or only find an incomplete set. Testing DRule on
real data leads us to conclude that it has its merit in the field of quantitative
association rule mining.

7 Future Work

In the future, we aim to explore different quality measures and different heuris-
tics, other than density, for our rules evaluation and discovery to allow for a
more efficient and a more accurate algorithm.

Other than these optimizations, we intend to investigate methods to make
our method more robust. That is, currently, as is the case with most ARM
algorithms, small changes in parameters can lead to drastic increases in runtime.
While a lot of pruning is already done by our algorithm, this can still lead to an
increase in the ordering of dimensions that have to be visited.
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12. Kriegel, H.P., Kröger, P., Renz, M., Wurst, S.H.R.: A generic framework for efficient
subspace clustering of high-dimensional data. In: IEEE ICDM, pp. 250–257 (2005)
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Gábor Rácz1, Attila Sali1(B), and Klaus-Dieter Schewe2
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Abstract. A profile describes a set of skills a person may have or a set
of skills required for a particular job. Profile matching aims to determine
how well a given profile fits to a requested profile. The research reported
in this paper starts from exact matching measure of [21]. It is extended
then by matching filters in ontology hierarchies, since profiles naturally
determine filters in the subsumption relation. Next we take into consid-
eration similarities between different skills that are not related by the
subsumption relation. Finally, a totally different approach, probabilistic
matching based on the maximum entropy model is analyzed.
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1 Introduction

A profile describes a set of properties and profile matching is concerned with
the problem to determine how well a given profile fits to a requested one. Profile
matching appears in many application areas such as matching applicants for job
requirements, matching system configurations to requirement specifications, etc.

The simplest idea of profile matching is to consider profiles as sets of unrelated
items. There are several ways to define distances of sets, such as Jaccard or
Sørensen-Dice measures [14] turned out to be useful in ecological applications.
However, many dependencies between skills or properties included in profiles
exist and need to be taken into account. In the human resources area several
taxonomies for skills, competences and education such us DISCO [7], ISCED [9]
and ISCO [10] have been set up. Based on these taxonomies a lattice structure
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of the individual properties can be assumed. Popov and Jebelean [21] exploited
this by defining an asymmetric matching measure on the basis of filters in such
lattices.

However, there are other relations between skills and properties than the
ones given by the ontolgies above. Having some skills imply that the applicant
may have some other skills with certain probabilities, or of some (not complete)
proficiency level. For example, we may reasonably assume that knowledge of
Java implies knowledge of Netbeans up to a grade of 0.7 or with probability
0.7. Our new approach incorporates such relations in the following way. The
subsumption hierarchy of the ontology of skills is considered as a directed graph
with edge weights 1. A lattice filter generated by a profile corresponds to the set
of nodes reachable from the profile’s nodes in the directed graph. Then extra
edges are added with weights representing the probability/grade of the implica-
tion between skills or properties. This may introduce directed cycles. Filters of
application profiles are replaced by nodes reachable in the extended graph from
the profile’s nodes. However, for each vertex x reached a probability/grade is
assigned, the largest probability of a path from the profile’s nodes to x. Path
probability is defined as the product of probabilities of edges of the path. At
first sight it seems that determination of the grade of a vertex involves finding a
longest path in weighted directed graph, known to be an NP-complete problem.
However, in our case the weighting is multiplicative and less than 1, so Dijkstra’s
Algorithm [5] can be applied. This process results in a set of nodes with grades
between zero and one, so it can naturally be interpreted as a fuzzy set. In fact,
we prove that it is a fuzzy filter as defined in [8,16].

Considering the grades as probabilities suggests another approach. They can
be handled from an information theoretic point of view, with probabilistic logic
programs [11] or from set theoretic point of view, with probabilistic models [25],
as well. In the present paper the maximum entropy model is used which adds the
lowest amount of additional information between single elementary probabilities
to the system. In order to apply probabilistic model the information represented
by the extended directed graph is translated into sentences over an appropriate
measurable space. The matching value of a job offer O and an application A is
the result of the probabilistic query obtained from the sentences.

Our paper is organized as follows.
Section 2 contains the description of our novel model of extending the ontol-

ogy hierarchy with cross relations in the form of weighted directed edges. Two
new ranking algorithms are given for job applications and a connection with
fuzzy theory is mentioned.

Section 3 is devoted to the comparison of the different approaches. Our find-
ings show that these are basically independent of each other apart from some
natural dependences as some of the approaches are extensions of some other
ones.

Section 4 discusses related work and how our approach fits into the broad
area of semantic matching.

Finally, Sect. 5 contains conclusions.
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2 Semantic Matching

Let S = {s1, s2, . . . , sn} be a finite set of skills. Let a job offer O =
{o1, o2, . . . , ok} be a subset of S which contains the skills that are required for
the job. Then, an application A = {a1, a2, . . . , al} is also a subset of S which
means the applicant possesses these skills. Our task is to find the most suitable
applicant for a job offer. Example 2.1 shows a job offer with four applications.

Example 2.1 (A job offer and four applications)

Offer1 = {Java,Netbeans,XML}
Application1 = {Java,PHP,Eclipse}
Application2 = {Java,Netbeans,HTML}
Application3 = {C,PHP,XML}
Application4 = {C,Netbeans,XML}

Note, that skills are not graded (e.g., basic/medium/expert knowledge in
Java) in our examples. If we need such differentiation, we have to handle the
grades as separate skills.

2.1 Perfect Matching

A simple idea to decide how much an application fits to a job offer is to compute
the number of the matching skills the ones that the applicant possesses and that
are required for the job. The result can be normalized with the number of the
required skills [21]. Formally,

match(O,A) =
|O ∩ A|

|O| . (1)

In the following example, we compute the matching values of the job offer
and the applications from Example 2.1.

Example 2.2 (Perfect matching)

match(O1, A1) = |O1∩A1|
|O1| = |{Java}|

|{Java,Netbeans,XML}| = 1
3

match(O1, A2) = |O1∩A2|
|O1| = |{Java,Netbeans}|

|O1| = 2
3

match(O1, A3) = |O1∩A3|
|O1| = |{XML}|

|O1| = 1
3

match(O1, A4) = |O1∩A4|
|O1| = |{Netbeans,XML}|

|O1| = 2
3

As it can be seen, this matching function cannot sufficiently distinguish
between the applications. It assigned A2, A4 and A1, A3 the same values, respec-
tively. However, as our goal is to find the most suitable applicants, we want to
avoid that two or more candidates get the same values. Therefore, we need extra
knowledge to be able to distinguish A2 from A4 and A1 from A3.
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2.2 Matching Using Ontology Edges

Let us suppose that the skills in S form a hierarchy. We can represent a hierarchy
several ways, for example, with Description Logic [1], with Resource Description
Framework Schema [3] or with Logic programming [17]. We use the description
logic approach here, so let the skills corresponds to concepts and we define a
specialization relation over them.

Let � be a binary specialization (subsumption) relation over S. Let si, sj ∈ S
be two skills, then si � sj if si is a specialization of sj . It means if an applicant
possesses the skill si, he also possesses the skill sj as si is a more specific skill
than sj (sj is more general than si). Let �d denote the direct specialization,
i.e., si �d sj if and only if si � sj and �sk ∈ S such that sk �= si, sk �= sj and
si � sk � sj . Note, that � is a reflexive, antisymmetric and transitive relation,
i.e., it is a partial order over S.

We can always add a top (respectively a bottom) element to the hierarchy
that represents all the skills that everybody (nobody) possesses. In addition, let
us suppose the concepts define a lattice, i.e., for each pair of skills has unique
ancestor (and descendant) that is more general (specific) then both elements of
the pair. Let this lattice be denoted by (S,�).

In Fig. 1, the blue edges form a hierarchy among computer science skills.

Fig. 1. A hierarchy of skills. The ontology edges are the blue ones (solid) and the extra
edges are the orange ones (dashed) (Color figure online).

Definition 2.1. A filter in a lattice (S,�) is a non-empty subset F ⊆ S, such
that for all s, s′ ∈ S with s � s′ whenever s ∈ F holds, then also s′ ∈ F holds.

An A ⊆ S application defines in a natural way an F filter of the (S,�) lattice:

F = {s ∈ S | ∃a ∈ A, a � s}.

This filter is an extension of the original application with the skills that are
more general than the ones in the application. It is reasonable, because if an
application possesses a skill, then he must possesses all the skills that are more
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general by the definition. Note, that a job offer can be extended in the same way
as an application. And then, we can apply, for example, the perfect matching
function on the extended sets.

The next example shows the filters defined by the job offer and of the applica-
tions from Example 2.1, and the values of the perfect matching function applying
on the extensions. As can be seen, this method was already able to distinguish
A2 from A4.

Example 2.3 (Matching based on an ontology)

FO1 = {Java,Netbeans,XML,OOP,PL, IT, IDE,ML}
FA1 = {Java,PHP,Eclipse,OOP,PL, IT,Script, IDE}
FA2 = {Java,Netbeans,HTML,OOP,PL, IT, IDE,ML}
FA3 = {C,PHP,XML,PL, IT,Script,OOP,ML}
FA4 = {C,Netbeans,XML,PL, IT, IDE,ML}

match(FO1 , FA1) = |{Java,OOP,PL,IT,IDE}|
|FO1 | = 5

8

match(FO1 , FA2) = |{Java,OOP,PL,IT,Netbeans,IDE,ML}|
|FO1 | = 7

8

match(FO1 , FA3) = |{XML,PL,IT,OOP,ML}|
|FO1 | = 5

8

match(FO1 , FA4) = |{Netbeans,XML,PL,IT,IDE,ML}|
|FO1 | = 6

8

2.3 Maximal Length Matching

In this section, we are adding extra knowledge to the hierarchy in form of extra
edges, and we are investigating how it can be used to find the most suitable
application for a job. However, these extra edges can form cycles in the hierarchy,
therefore the traditional filters are not applicable in this case. Immediate example
for a cycle could be two skills that are connected with two extra edges which
are pointing in opposite direction. For this reason, we describe a graph based
approach to extend the applications and the offer. Then, we show that this
approach corresponds to the definition of fuzzy filters [8,16].

Let G = (V,E) be a directed weighted graph where V is a finite non-empty
set of nodes and E = {EO ∪EE} ⊆ V ×V is a set of edges. Each node represents
a skill and an eo = (vi, vj) ∈ EO directed edge is added from the skill vi to vj if vi
is a specialization of vj (this type of edges are called ontology edges). Moreover,
an ee = (vi, vj) ∈ EE represents a conditional dependency between the skills vi
and vj . Namely, if a person has the skill vi then he may have the skill vj (this type
of edges are called extra edges). Let w : E → (0, 1] be a weighting function that
assigns a weight to all edges such that for all ontology edges eo ∈ EO w(eo) = 1
and for all extra edges ee ∈ EE let the weight w(ee) represents the conditional
probability between the start and the end node of the edge. The edge weight can
come, for example, from Human Resources experiments or from domain experts.

Definition 2.2. Let G = (V,EO ∪ EE) a directed weighted graph with a w :
E → (0, 1] weighting function and let (S,�) be a lattice. We say that G is built
on (S,�) if V = S and for all vi, vj ∈ V (vi, vj) ∈ EO if and only if vi �d vj.
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Let s, t ∈ V be two nodes, then denote by pE(s, t) all the directed paths
between s and t, i.e.,

pE(s, t) = {(s = v1, v2, . . . , vn = t) | vi ∈ V and (vi, vi+1) ∈ E}.

The extra edges and the directed paths are used to extend the applications
with skills that the applicant possibly possesses. Since both sets and uncertainty
occur, fuzzy sets [28] are suitable to model the extended applications. A fuzzy set
assigns a value for each element that expresses the certainty of that the element
is in the set or not.

Definition 2.3. A fuzzy set in S is a mapping f : S → [0, 1]. A fuzzy set
is called empty if f is identically zero on S. Let t be a real number such that
t ∈ [0, 1], then the set ft = {s ∈ S | f(s) ≥ t} is called a level subset of f .

Note that, as S is a finite set, we can define a fuzzy set by enumerating all
elements in S with their assigned values (called the grade of membership) if that
value is greater than zero, i.e.,

f = {(s, f(s)) | s ∈ S and f(s) > 0}.

The intersection and the union of tho fuzzy sets can be defined axiomatically
with t-norms and t-conorms [20]. For clarity we use min and max as t-norm and
t-conorm, i.e., for fuzzy sets f, g in S, we define the intersection and the union
operations as (f ∩g)(s) := min{f(s), g(s)} and (f ∪g)(s) := max{f(s), g(s)} for
all s ∈ S, respectively.

We extend the job offer and the applications to fuzzy sets in the following
way. Let O ⊆ V be a set of skills. The extension of O w.r.t. EO is defined as the
set of all the skills that are available from O via directed paths containing edges
only from EO. We assign 1.0 to each element of the extension to create a fuzzy
set, that is

extendEO
(O) = Ô = {(v, 1.0) | v ∈ V and ∃o ∈ O : |pEO

(o, v)| ≥ 1}.

Let A ⊆ V be a set of skills. The extension of A w.r.t. E is defined as the set of
all the skills that are available from A via directed paths containing ontology or
extra edges, and we assign the length of the longest path between the node and
the elements of A to each element of the extended set, namely

extendE(A) = Â = {(v, μv) | v ∈ V and ∃a ∈ A : |pE(a, v)| ≥ 1 and
μv = max

a∈A,p∈pE(a,v)
length(p)},

where length(p) =
∏n−1

i=1 w((vi, vi+1)) is the product of the weights of the edges
on the path p. The μv is the length of the longest path from A to v. If the
edge weights mean uncertainty or probability, the length of longest path means
the joint probability of the applicant possessing all the skills on the path (if we
assume some independence), which seems a rational decision.
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Note that finding the longest path between two nodes in a graph is gen-
erally a hard problem. However, in our case the length of a path is defined
as the product of the weight of the edges on the path. Therefore, because of
the strict monotonicity of the logarithm function, we can apply the following
transformations:

max
p∈pE(v,a)

n−1∏

i=1

w((vi, vi+1)) ⇐⇒ max
p∈pE(v,a)

log {
n−1∏

i=1

w((vi, vi+1))} ⇐⇒

max
p∈pE(v,a)

n−1∑

i=1

log w((vi, vi+1)) ⇐⇒ − min
p∈pE(v,a)

n−1∑

i=1

− log w((vi, vi+1)).

Moreover, the weighting function w assigns a weight from the (0, 1] interval to
each edge, thus − log w((vi, vi+1)) ∈ [0,+ inf). With these transformation, we
got a single-source shortest path problem with non-negative edge weights. That
problem can be solved with Dijkstra’s algorithm in O(|E| + |V | log |V |) time [5].

Definition 2.4. Let (S,�) be a lattice, and let f be a fuzzy set in S. f is called
a fuzzy filter if for all t ∈ [0, 1], ft is either empty or a filter of S.

Next, we show that the extensions presented above define fuzzy filters in S.

Lemma 2.1. Let (S,�) be a lattice, let G = (V,EO ∪EE) be a directed weighted
graph built on the lattice with the weighting function w and let s, s′ ∈ S be a skill
pair such that s � s′. Then, there is a p ∈ PE(s, s′) path such that length(p) = 1.

Proof. Since s � s′, an s = s1, . . . , sk = s′ sequence of skills exists such that
si �d si+1 holds for i = 1, . . . , k − 1. As G is built on the lattice, each skill is
represented by a node in the graph, and (si, si+1) ∈ EO and w((si, si+1)) = 1 for
i = 1, . . . , k−1. Let p = (s1, . . . , sk) be a path between v1 and vn. Consequently,
length(p) =

∏k−1
i=1 w((si, si+1)) = 1 
�

Theorem 2.1. Let (S,�) be a lattice, let G = (V,EO ∪ EE) be a directed
weighted graph built on the lattice with weighting function w, let A ⊆ S be a
non-empty application, and let Â be the extension of A w.r.t. E. Then, Â is a
fuzzy filter in S.

Proof. For t ∈ [0, 1], Ât = {s ∈ S|Â(s) ≥ t}. Ât is a filter in S if for all s, s′ ∈ S

with s � s′ whenever s ∈ Ât holds, then also s′ ∈ Ât holds. It means if Â(s) ≥ t,
then Â(s′) ≥ t.

Let s be in Ât and let pa,s = (a = si1 , si2 , . . . , sik = s) be one of the maximal
length path between A and s. We have to show that if an s′ ∈ S is a generalization
of s, i.e., s � s′, then a pa,s′ path exists such that length(pa,s′) ≥ length(pa,s).

Lemma 2.1 states that a ps,s′ = (s = sj1 , sj2 , . . . , sjl = s′) path exists such
that length(ps,s′) = 1. If pa,s and ps,s′ are disjoint, so they do not have any
node in common except s, then we can concatenate them to pa,s′ = (a =
si1 , . . . , sik , sj1 , . . . , sjl = s′) and its length is length(pa,s′) = length(pa,s) ∗ 1 ≥
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length(pa,s). Otherwise recursively, let t = minx∈[1,k]{six |∃y ∈ [1, l] : six = sjy}
be the first common node. Then, consider the pa,t = (a = si1 ,

′ ldots, six = t) and
the pt,s′ = (t = sjy , sjy+1 , . . . , sjl = s′) paths. Where length(pa,t) ≥ length(pa,s)
as w(e) ≤ 1 for all e ∈ E and length(pt,s′) = 1 as it contains ontology edges
only. If these paths are disjoint except t then we can concatenate them, other-
wise repeat this step. Since the number of nodes that are contained in the paths
are limited and every step reduces that number, the iteration will stop in finite
step. 
�

Let Ô be an extended job offer w.r.t. EO and let Â be an extended application
w.r.t. E, both are fuzzy sets. We can define a matching value between Ô and Â
in a similar way as we did in Eq. 1.

match(Ô, Â) =
||Ô ∩ Â||

||Ô|| , (2)

where ||.|| denotes the sum of the grades of membership of the elements in a fuzzy
set, formally ||Â|| =

∑
(a,µa)∈A μa. Note that, besides the sigma cardinality used

here, many other options are available on the cardinality of a fuzzy set [27].
Algorithm 1 shows how can we find the most suitable applicant for a job

using the extensions defined above. The algorithm works as follows:

Algorithm 1. MaximalLengthMatching
Input: a graph G = (V, E = {EO ∪ EE}), a job offer O ⊆ V , and a set of applications

A = {A0, A2, . . . , An}.
Output: the most suitable application Am for the job
1: Oe ← extendEO (O)
2: Am ← A[0], max ← extendE(A[0])
3: for i = 1 → n do
4: Ae ← extendE(A[i])
5: if match(Oe, Ae) > match(Oe, max) then
6: Am ← A[i], max ← Ae

7: end if
8: end for
9: return Am

First, we extend the job offer O with the skills that are available from O via
ontology edges (line 1). It is a reasonable extension because the ontology edges
represent specialization relation between to skills. And if an applicant possesses
a more general skill than the required one, then he could specialize faster than
an applicant that does not possess even that general skill. As everyone possesses
the skill at the top of the hierarchy, that does not distinguish one applicant from
another.

Next, we also extend each application (line 2, 4). In this step, however, we
take into consideration the extra edges as well. This is because, if the skill vi is
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a specialization (or conditionally depends, respectively) of another skill vj , and
a person possesses the skill vi, then he also possesses (may possess) the skill vj .
The matching value of the extended job offer and the extended application is
then computed using Eq. 2 (line 5). The most suitable application is stored in
the variable Am (line 6).

The next example shows the extension of the Offer1 and the Application1

from Example 2.1, and their matching value.

Example 2.4 (Maximal length matching).

Ô1 = {(Java, 1.0), (Netbeans, 1.0), (XML, 1.0), (OOP, 1.0),
(PL, 1.0), (IT, 1.0), (IDE, 1.0), (ML, 1.0)}

Â1 = {(Java, 1.0), (PHP, 1.0), (Eclipse, 1.0), (OOP, 1.0), (PL, 1.0),
(IT, 1.0), (Script, 1.0), (IDE, 1.0), (Netbeans, 0.7),
(Javascript, 0.9), (HTML, 1.0), (ML, 1.0), (XML, 0.7)}

Ô1 ∩ Â1 = {(Java, 1.0), (OOP, 1.0), (PL, 1.0), (IT, 1.0),
(IDE, 1.0), (Netbeans, 0.7), (XML, 0.7), (ML, 1.0)}

m(Ô1, Â1) =
||Ô1 ∩ Â1||

||Ô1||
=

7.4
8

As one can see, OOP, PL, IT, IDE and ML appeared in the offer as they are
available from the originally specified skills (Java, Netbeans, XML) via ontology
edges (the solid ones) as Fig. 1 shows. In addition, the extendEO

method assigned
1.0 to each skills in the offer and transformed Ô1 to fuzzy set. The application
was also extended but the extendE method used the extra edges (the dashed
ones) as well during the extension. The intersection of the two extended sets
consists of those elements that appeared in both sets and the assigned values
are computed with the min function as t-norm. Finally, the ratio of the sum
cardinalities is calculated.

2.4 Probabilistic Matching

The ontology and the extra edges can be handled from an information theoretic
point of view, with probabilistic logic programs [11] or from set theoretic point
of view, with probabilistic models [25] as well. In this paper, we use the latter,
the set theoretical approach and we apply the maximum entropy model to give a
probabilistic matching method. The following definitions were presented in [25].

2.4.1 Preliminaries
Let Θ be a finite set. Let R := {a1, . . . , al} be a set of subsets of the power set
P(Θ) of Θ, namely ai ∈ P(Θ), i = 1, . . . , l. The elements of R are called events.
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Definition 2.5. Let X be some set. Let A be a subset of P(X). Then, A is a
σ-algebra over X, denoted by A(X), if

– X ∈ A;
– if Y ∈ A, then (X \ Y ) ∈ A; and

– if Y1, Y2, . . . is a countable collection of sets in A, then their union
∞⋃

n=1
Yn is

in A as well.

The set of full conjunction over R is given by

Ω :=

{
l⋂

i=1

ei | ei ∈ {ai,¬ai}
}

,

where ai ∈ P(Θ), i = 1, . . . , l, and ¬ai = Θ \ ai. It is well known that the 2l

elements of Ω are mutually disjoint and span the set R (any ai can be expressed
by a disjunction of elements of Ω). Therefore the smallest (σ-) algebra A(R) that
contains R is identical to A(Ω). For that reason we restrict the set of elementary
events (set of possible worlds) to Ω instead of the underlying Θ.

Definition 2.6. Over a set R := {a1, . . . , al}, a measurable space (Ω,A) is
defined by

– Ω :=
{

l⋂
i=1

ei | ei ∈ {ai,¬ai}
}

; and

– A = A(Ω) = P(Ω).

Definition 2.7. Let (Ω,A) be a measurable space over R with Ω = {ω1, . . . , ωn}.
A discrete probability measure P or a probability model (P-model) is an assign-
ment of non-negative numerical values to the elements of Ω, which sum up to
unity. Formally,

pi := P (ωi) ≥ 0, i = 1, . . . , n and
∑

ai = 1.

The n-tuple p = (p1, . . . , pn) is called a probability vector (P-vector). WΩ (respec-
tively, VΩ) denotes the set of all possible P-models (P-vectors) for (Ω,A).

Definition 2.8. For given (Ω,A), P ∈ WΩ a, b ∈ A, P (a) > 0 and [l, u] ⊆ [0, 1]
the term1

〈P (b|a) = δ, δ ∈ [l, u]〉 or P (b|a)[l, u]

is called a sentence in (Ω,A), where P (b|a) = P (a ∩ b)/P (a) denotes the condi-
tional probability of the event b given a. The sentence given above is called true
in P ∈ WΩ, if and only if P (b|a) ∈ [l, u]. Otherwise it is called false.

1 P (a) = P (a|Ω).
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A sentence P (b|a)[l, u] defines two inequalities, namely

– P (b|a) ≤ u (be less than the upper bound); and
– P (b|a) ≥ l (be greater than the lower bound).

These inequalities can be further transformed in the following way:

P (b|a) ≤ u ⇔ P (a ∩ b) ≤ u · P (a) ⇔ P (a ∩ b) ≤ u · (P (a ∩ b) + P (a ∩ ¬b))
P (b|a) ≥ l ⇔ P (a ∩ b) ≥ l · P (a) ⇔ P (a ∩ b) ≥ l · (P (a ∩ b) + P (a ∩ ¬b))

Rearranging the inequalities and using the elementary probabilities pi, i =
1, . . . , n yields

P (b|a) ≤ u ⇔ (1 − u) ·
∑

i:wi∈a∩b

pi + u ·
∑

j:wj∈a∩¬b

pj ≥ 0

P (b|a) ≥ l ⇔ (1 − l) ·
∑

i:wi∈a∩b

pi − l ·
∑

j:wj∈a∩¬b

pj ≥ 0

Note, that, if u = 1 (respectively, l = 0), then the first (second) inequality is
always satisfied as pi ≥ 0.

Definition 2.9. Let DB := {c1, . . . , cm} be a set of m sentences in (Ω,A). WDB

is defined as the set of all P-models P ∈ WΩ in which c1, . . . , cm are true. We
call c1, . . . , cm constraints on WΩ, and WDB denotes the set of all elements of
WΩ that are consistent with the constraints in DB.

If WDB is empty, the information in DB is inconsistent. If WDB contains
more than one element, the information in DB is incomplete for determining a
single P-model.

In the next section, we discuss how the maximum entropy model copes with
incomplete information.

2.4.2 Maximum Entropy Model
If WDB contains more than one element, the information in DB is incomplete
for determining a single P-model. Therefore, we must add further constraints to
the system to get a unique model.

It was shown in [25] that the maximum entropy model adds the lowest amount
of additional information between single elementary probabilities to the system.
Moreover, the maximum entropy model also satisfies the principle of indifference
and the principle of independence. The principle of indifference states that if we
have no reason to expect one event rather than another, all the possible events
should be assigned the same probability. The principle of independence states the
if the independence of two events a and b in a P-model ω is given, any knowledge
about the event a does not change the probability of b (and vice verse) in ω,
formally P (b|a) = P (b).

To get the consistent P-model to a DB that has the maximum entropy, we
have to solve the following linear optimization problem:
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Definition 2.10. Let DB := {c1, . . . , cm} be a set of m sentences in (Ω,A)
with Ω = {ω1, . . . , ωn}. Let WDB (respectively VDB) be the set of all P-models
P ∈ WΩ (P-vectors p ∈ VΩ) in which c1, . . . , cm are true. The maximum entropy
problem is

max
v=(p1,...,pn)∈[0,1]n

−
n∑

i=1

pi log pi

subject to

n∑

i=1

pi = 1

(1 − u) ·
∑

i:wi∈a∩b

pi + u ·
∑

j:wj∈a∩¬b

pj ≥ 0 (for all c = P (b|a)[l, u] ∈ DB, l > 0)

(1 − l) ·
∑

i:wi∈a∩b

pi − l ·
∑

j:wj∈a∩¬b

pj ≥ 0 (for all c = P (b|a)[l, u] ∈ DB,u < 0)

pi ≥ 0(i = 1, . . . , n)

Denote by me[DB ] the P-model that solves the maximum entropy problem
if such model exists.

Definition 2.11. Let DB be a set of sentences and let c = 〈P (b|a)[l, u]〉 be a
sentence. We say that c is a maximum entropy consequence of DB, denoted by
DB ‖∼me c, if and only if either

– DB is inconsistent, or
– me[DB ](b|a) ∈ [l, u].

Definition 2.12. A probabilistic query is an expression QPDB(b|a) where a and
b are two events, i.e., a, b ∈ A, and DB is a set of sentences. The query means,
what is the probability of b given a with respect to DB.

Definition 2.13. Let DB be a set of sentences and let QP (b|a) be a probabilistic
query. Then, the answer δ to the query is

δ := me[DB ](b|a) =
me[DB ](a ∩ b)

me[DB ](a)

if DB ‖∼me P (a)(0, 1]. Otherwise, δ := −1 means that the set DB∪{P (a)(0, 1]}
is inconsistent.

The next section shows how an ontology can be transformed into a set of
sentences, and how the semantic matching problem can be expressed with prob-
abilistic queries.
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2.4.3 Probabilistic Matching
Let G = (V, {EO ∪ EE}) be a directed weighted graph as it was defined in
Sect. 2.3. We construct a DB from G in the following way:

– We assign a new set (event) av to each node v of G which contains the appli-
cants who possess the skill v.

– Next, for each ontology edge (vi, vj) ∈ EO we add a new sentence sij to the DB
in the form of P (avj

|avi
)[1, 1]. The sentence means if an applicant possesses

the skill vi (is an element of avi
), then the applicant possesses vj (is an element

of avj
) as well.

– Then, for every extra edge (vi, vj) ∈ EE , we also add a new statement in the
form of P (avj

|avi
) = [l, u]. The weight of an edge can be handled in two different

ways. In the first approach, let the lower bound of the interval l be equal to the
weight of the edge w(vi, vj) and let the upper bound of the interval u be equal
to 1. In the second approach, let l = u = w(vi, vj). The latter is the stricter
approach as it adds constraints to the upper bounds as well.

An application A = {v1, . . . , vn} is translated into the event a = av1∩· · ·∩avn
.

The conjunction means that the applicant possesses all the skills v1, . . . , vn at
the same time. A job offer O = {v1, . . . , vn} is translated into o = av1 ∩ ... ∩ avn

.
It represents the skills that required for the job. The matching value of an job
offer O and an application A is the result of the probabilistic query QP(o|a):

match(O,A) = QPDB(o|a). (3)

The formula gives the probability of that the applicant possesses the skills that
required for the job (supposed that the constructed DB is consistent).

Example 2.5 shows a part of the transformed ontology from Fig. 1 and the
matching value of the Offer1 and Application1.

Example 2.5 (Probabilistic matching).

DB = {
# ontology edges extra edges (l = w, u = 1.0)

(it(R)|ide(R))[1, 1], (eclipse(R)|java(R))[0.6, 1.0],
(ide(R)|eclipse(R))[1, 1], (nb(R)|java(R))[0.7, 1.0],

...
...

(ml(R)|xml(R))[1, 1], (xml(R)|html(R))[0.7, 1.0] }
QO1,A1 = QP (java(a) ∧ nb(a) ∧ xml(a)|java(a) ∧ php(a) ∧ eclipse(a)). δ = 0.51

The next algorithm shows how the probabilistic model and the probabilistic
matching can be used to find the most suitable applicant for a job. It works
similarly to the MaximalLengthMatching algorithm, but it construct a DB from
G first (line 1). Then, instead of extending the offer and the applications, it
translates them to probabilistic sentences (line 2, 3, 5) as described above. Next,
the algorithm computes the matching values by solving the corresponding proba-
bilistic queries (line 7), and it stores the most suitable application in Am (line 8).
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Algorithm 2. ProbabilisticMatching
Input: a graph G = (V, E = {EO ∪ EE}), a job offer O ⊆ V , and a set of applications

A = {A1, A2, ..., An}.
Output: the most suitable application Am for the job
1: DB ← constructDBFrom(G)
2: O′ ← translate(O)
3: Am ← A[0], max ← translate(A[0])
4: for i = 1 → n do
5: A′ ← translate(A[i])
6: QO′,A′ = ∃(φO′(a′)|φA′)[X, Y ]
7: if solve(QO′,A′ , P ) > solve(QO′,max, P ) then
8: Am ← A[i], max ← A′

9: end if
10: end for
11: return Am

3 Comparison

We compared the presented methods on the job offer and applications from
Example 2.1. The skills, their hierarchy, and the conditional dependencies are
shown in Fig. 1. The matching values of the applications to the job can be seen
in the value columns and the order of the applications based on the different
methods can be seen in the order columns in Table 1, where PM, UO, ML, PrM
denote the Perfect Matching, the Matching using ontology edges, the Maximal
Length Matching and the Probabilistic Matching, respectively. The probabilistic
matching values were computed with SPIRIT [23] and PIT [24].

We investigated the matching values of the different algorithms from multiple
aspects see [30–32]. We examined whether there is some kind of regularity among
the values of the algorithms. We compared how the methods sort the applicants,
and how the methods distinguish the applicants from each other. We tried to
abstract from the concrete examples and to describe general observation about
the algorithms.

Table 1. Comparison of the different matching values on the offer {Java,Netbeans,
XML} and the applications from Example 2.1

Application PM UO ML PrMEO
PrMl=w,u=1 PrMl=u=w

value order value order value order value order value order value order

A1 0.33 3,4 0.63 3,4 0.93 2 0.20 4 0.51 2 0.51 3

A2 0.66 1,2 0.88 1 0.96 1 0.50 1 0.70 1 0.70 1

A3 0.33 3,4 0.63 3,4 0.68 4 0.22 3 0.32 4 0.14 4

A4 0.66 1,2 0.75 2 0.75 3 0.43 2 0.49 3 0.54 2
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3.1 Perfect Matching vs. Matching Using Ontology Edges

As we saw, the Perfect Matching method assigns the same values to too many
applicants as it defines too strictly the matching between an offer and an appli-
cation. In Sect. 2.2 we introduced a specialization relation among the skills which
forms a hierarchy from the skills. We can use that additional knowledge to find
the most suitable applicant for a job. We extended the job offer and the applica-
tions using the edges of the ontology, and then we applied the perfect matching
on the extended sets. This method was called the matching using ontology edges.
If only the applications were extended, the matching values on the extended sets
would always be greater or equal than on the original sets. Formally, let O an
job offer and let A an application, then

PM(O,A) ≤ UOapps(O,A), (4)

where UOapps means that only the applications are extended. It is because the
application appears only in the numerator in Eq. 1. However, if the job offer is
also extended, the inequality above generally does not hold as the offer appears in
the denominator as well. For this reason, the two methods can give different order
between the applicants. Note, that the extension of the job offer is reasonable
when the skills in the job offer are more specific as in the applications. In this
case, we would not get different result from the result of the perfect matching if
only the applications were extended.

3.2 Matching Using Ontology Edges vs. Maximal Length Matching

The maximal length matching is a generalization of the matching that uses the
ontology edges to extend the applications and the job offer. It also extends
the original sets, however, it takes into account the so called extra edges as
well. The extra edges could form cycles in the hierarchy graph but it does not
affect the computation. Note, that the following connection immediately follows
from the definitions:

UO(O,A) ≤ ML(O,A). (5)

Furthermore, if no extra edge is given, then UO = ML. However, the order of the
applicants can be changed using the two methods as it can be seen in Table 1.
For example, A1 has the lowest matching value in UO, but in ML it has the
second greatest value because of the (Java,Netbeans) and (PHP,HTML,XML)
paths.

3.3 Probabilistic Matchings

The PrM method uses a totally different strategy to compute the matching value.
We tried three different versions; the results are shown in Table 1. In of PrMEO

,
only the ontology edges were translated into probabilistic sentences while in the
other two cases the extra edges were also translated; in PrMl=w,u=1, the lower
bound of a sentence was equal to the weight of the edge that the constraint was
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generated from and the upper bound of the sentence was 1; and in PrMl=u=w,
both the lower and the upper bound of a sentence were also equal to the weight
of the edge.

Generally, the matching values of the three versions are not comparable
because of the selection of the underlying probabilistic model. Each algorithm
selects a probabilistic model that satisfies the set of sentences generated from
the edges, and that has the maximum entropy value among such models. How-
ever, the sets of the sentences of the three versions are different from each other.
I.e., PrMl=w,u=1 added extra constraints to PrMEO

that were generated from
the extra edges, and PrMl=u=w added further constraints that came from the
limitation of the upper bounds as well. As expected, the entropy of the maxi-
mum entropy model of the first version was the greatest (81.68), the entropy of
the second model was the next (16.48), and the entropy of third model was the
lowest (16.37).

The different probabilistic models give different matching values and it is not
guaranteed that the models preserve the order of the applicants. For example,
the applicant A1 is the forth best in PrMEO

, is the second in PrMl=w,u=1 and
is the third in PrMl=u=w in Table 1.

However, adding extra constraints results in that the algorithms assign the
same value to fewer applicants, therefore they distinguish them from each other.
It is because while we have no reason to expect one event rather than another,
all the possible events should be assigned the same probability as the principle
of indifference states.

3.4 Matching Using Ontology Edges vs Probabilistic Matching

When the skills form a hierarchy and no extra edges are given, then the matching
using ontology edges and the probabilistic matching PrMEO

can be used.
Unfortunately, there is no connection between the orders of the applicants

that the two methods give as Table 1 shows. Although the table suggests that the
values of ML are always greater than the values of PrMEO

, but it is generally
not true. In that example, all the required skills in the offer and the skills in
the applications were selected from the bottom of the hierarchy, therefore the
extensions covered large parts of the ontology and the intersections contained
many elements. Table 2 shows how the same applications match to another offer
which is Offer2 = {IDE,OOP,XML}. This offer contains skills from the inner
nodes of the ontology as well. It can be seen in Table 2 that all the probabilistic
matching methods gave higher values for A3 and A4 than the ML method.

3.5 Maximal Length Matching vs. Probabilistic Matching

When the skills form a hierarchy and there are extra edges given as well, then
the maximal length matching and the probabilistic matchings PrMl=w,u=1 and
PrMl=u=w can be used. As we saw the maximal length matching is a general-
ization of the matching using ontology edges which uses the extra edges too.
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Table 2. Comparison of the different matching values on the offer {IDE,OOP,XML}
and the applications from Example 2.1

Application PM UO ML PrMEO
PrMl=w,u=1 PrMl=u=w

value order value order value order value order value order value order

A1 0 3,4 0.67 4 0.95 1,2 0.40 4 0.70 3,4 0.70 3,4

A2 0 3,4 0.83 1,2,3 0.95 1,2 0.50 3 0.70 3,4 0.70 3,4

A3 0.33 1,2 0.83 1,2,3 0.87 3 0.89 1 0.92 1 0.85 2

A4 0.33 1,2 0.83 1,2,3 0.83 4 0.87 2 0.86 2 0.88 1

The PrMl=w,u=1 and PrMl=u=w methods also use the extra edges in the trans-
formations, and PrMl=u=w generates additional constraints to the linear opti-
mization problem of PrMl=w,u=1 that comes from the limitation of the upper
bounds.

As it can be seen in Table 1 and in Table 2, these methods can give totally
different orders, and the matching values are incomparable. However, our exper-
iments suggests that the probabilistic matching algorithms can distinguish more
applicants from each other than the ML method.

4 Related Work

Semantic matchmaking has become a widely investigated topic recently, due
to broad applicability in todays competitive business environment. Its origins
go back to Vague query answering, proposed by Motro [19] that was an initial
effort to overcome limitations of relational databases, using weights attributed
to several search variables. More recent approaches along these lines aim at
extending SQL with “preference” clauses (Kießling [12]).

Our main focus in the present paper is facilitating the management of avail-
able human resources’ competencies. Fully or partially automated techniques
were developed (see Colucci et al. [4], Bizer et al. [2], Malinowski et al. [18]).

Several matchmaking approaches exist in the literature that could be applied
for matching job applications for job offers. Text based information retrieval
techniques such as database querying and similarity between weighted vectors
of terms were used by Veit et al. [26]. Ontology based skill profile matching was
considered in many papers. Lau and Sure [13] propose an ontology based skill
management system for eliciting employee skills and searching for experts within
an insurance company. Liu and Dew [15] gives a system that integrates the accu-
racy of concept search with the flexibility of keyword search to match expertise
within academia. Colucci et al. [4] proposes a semantic based approach to the
problem of skills finding in an ontology based framework. They use description
logic inferences to handle background knowledge and deal with incomplete infor-
mation. They use profile descriptions sharing a common ontology, our approach
is based on this, as well. A fundamental difference between the aforementioned
works and our paper is that they facilitate search for matching profiles, while
we focus on ranking already given applications.
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Di Noia et al. [6] places matchmaking on a consistent theoretical foundation
using description logic. They define matchmaking as “an information retrieval
task whereby queries (also known as demands) and resources (also known as
supplies) are expressed using semi-structured data in the form of advertise-
ments, and task results are ordered (ranked) lists of those resources best fulfilling
the query.” They also introduce match types and rank individual profiles using
penalty function. However, they do not apply the filter approach used in our
paper.

Fuzzy techniques are introduced in Ragone et al. [22] where they consider
a peer-to-peer e-marketplace of used cars. Also a form of logic programming is
applied using fuzzy extension of Datalog. Papers [6,22] contain extensive lists of
further references concerning practical algorithms, related areas of multiobjective
decision making, logic programming, description logic, query reformulation and
top-k query answering.

The manuscript [29] uses exact match in ontologies extended with Euclidean-
like distance or similarity measure. They apply different levels of given skills,
furthermore the job offer may contain “nice-to-have requirements.” In our paper
we do not apply different grade levels of skills, instead, we consider them separate
skills, so we “blow up” the ontology.

Finally, the use of filters in the ontology hierarchy lattice was initiated by
Popov et al. [21].

5 Conclusion

In this paper we described the problem of the semantic matching by examples
from the field of human resources management, namely matching job offers with
applications. However, the presented methods can be used for other fields as
well. We investigated the problem from different aspects with different models.

First, we represented the offers and the applications with set of skills, and
we introduced the perfect matching. It is a naive approach that computes the
matching value of a job offer and an application based on the intersection of two
sets. However, it could not be able to sufficiently distinguish the applicants from
each other because of its simplicity.

Next, we defined a specialization relation on the skills and built an ontology
over them which was represented with directed graph. Then, we presented a
method that can use this additional knowledge to find the best applicant for
a job. It extends the set of skills of both the job offer and the applications
with the more general skills that are available from the original sets on the
edges of the ontology. And on the extended sets the perfect matching is already
applicable. Beside the ontology edges, we introduced extra edges as well that
express conditional dependencies between skills. And then, we generalized the
extension of the sets of skills of the applications to use the extra edges too.

In Sect. 2.4, we presented the probabilistic models and we showed how the
ontology edges and extra edges can be translated into probabilistic sentences, and
how the problem of the semantic matching can be translated into probabilistic
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queries. Two different approaches were discussed as the edges can be handled.
We used the maximum entropy model to answer the probabilistic queries as it
adds the lowest amount of additional information to the system when the given
information is incomplete.

Finally, we compared the presented methods from various aspects. We inves-
tigated whether there is any connection of the matching values that give the
methods. Furthermore, we examined how the methods sort the applicants and
how they can distinguish the applicants form each other. We showed that the
PM(O,A) ≤ UOapps(O,A) and the UO(O,A) ≤ ML(O,A) connections hold
between the matching values of the perfect matching PM the matching using
ontology edges UO and the maximal length matching for arbitrary job offer O
and application A. However, our results revealed that the algorithms can give
totally different order among the same applicants matching to the same job offer.
Therefore, it highly depends on the field which algorithm gives the most suitable
order.

References

1. Baader, F., Nutt, W.: Basic description logic. In: Description Logic Handbook,
pp. 43–95 (2003)

2. Bizer, C., Heese, R., Mochol, M., Oldakowski, R., Tolksdorf, R., Eckstein, R.: The
impact of semantic web technologies on job recruitment processes. In: Proceedings
of the 7th International Conference Wirtschaftsinformatik (2005)

3. Brickley, D., Ramanathan, V.G.: RDF Schema 1.1: W3C Recommendation 25,
February 2014

4. Colucci, S., Di Noia, T., Di Sciascio, E., Donini, F., Mongiello, M.: Concept abduc-
tion and contraction in description logics. In: Proceedings of the 16th International
Workshop on Description Logics (DL 2003). CEUR Workshop Proceedings, vol. 81
(2003)

5. Dijkstra, E.W.: A note on two problems in connexion with graphs. Numer. Math.
1(1), 269–271 (1959)

6. Di Noia, T., Di Sciascio, E., Donini, F.M.: Semantic matchmaking as non-
monotonic reasoning: a description logic approach. J. Artif. Intell. Res. 29, 269–307
(2007)

7. European Dictionary of Skills and Competences. http://www.disco-tools.eu
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Abstract. Conjunctive queries are arguably the most widely used
querying mechanism in practice and the most intensively studied one
in database theory. Answering a conjunctive query (CQ) comes down to
matching all atoms of the CQ simultaneously into the database. As a con-
sequence, a CQ fails to provide any answer if the pattern described by the
query does not exactly match the data. CQs might thus be too restric-
tive as a querying mechanism for data on the web, which is considered
as inherently incomplete. The semantic web query language SPARQL
therefore contains the OPTIONAL operator as a crucial feature. It allows
the user to formulate queries which try to match parts of the query
over the data if available, but do not destroy answers of the remaining
query otherwise. In this article, we have a closer look at this optional
matching feature of SPARQL. More specifically, we will survey several
results which have recently been obtained for an interesting fragment of
SPARQL – the so-called well-designed SPARQL graph patterns.

1 Introduction

Conjunctive queries (or, equivalently, SELECT-FROM-WHERE queries in SQL)
are arguably the most widely used querying mechanism in practice and the most
intensively studied one in database theory. Answering a conjunctive query (CQ)
comes down to matching all atoms of the CQ simultaneously into the database.
As a consequence, a CQ fails to provide any answer if the pattern described by
the query does not exactly match the data. CQs might thus be too restrictive
as a querying mechanism for data on the web, which is considered as inherently
incomplete. The semantic web query language SPARQL therefore contains the
OPTIONAL operator (abbreviated as OPT henceforth) as a crucial feature. It
allows the user to formulate queries which try to match parts of the query
over the data if available, but do not destroy answers of the remaining query
otherwise. It thus corresponds to the left outer join in the relational algebra. The
following example from [24] presents a simple SPARQL query using this feature.

Example 1. Consider the following SPARQL query Q which is posed over a
database that stores information about movies1:
1 We use here the algebraic-style notation from [29] rather than the official SPARQL

syntax of [33]. In particular, we explicitly use an AND operator (rather than comma-
separated lists) to denote conjunctions.

c© Springer International Publishing Switzerland 2016
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Q =
((

(?x, directed by, ?y)AND (?x, released, ”before 1980”)
)

OPT (?x, oscars won, ?z)
)
OPT (?y, first movie, ?z′).

This query retrieves all pairs (m, d) such that movie m is directed by d and
released before 1980. This is specified by the pattern (?x, directed by, ?y)
AND (?x, released, “before 1980”). Furthermore, whenever possible, this query
also retrieves (one or both of) the following pieces of data: the number n of
Academy Awards won by movie m and the first movie m′ directed by d. In other
words, in addition to (m, d) we also retrieve n and/or m′ if the information is
available in the database. This is specified by the triples (?x, oscars won, ?x)
and (?y, first movie, ?z′) following the respective OPT operators. �
Apart from AND and OPT used in Example 1, SPARQL also provides the oper-
ators UNION and FILTER. SPARQL 1.1 [18] introduces many further operators,
which we ignore for the time being. Projection is realized by wrapping a SPARQL
graph pattern into a SELECT statement where we may explicitly specify the vari-
ables of interest. For instance, in Example 1, we could wrap the query Q into a
statement of the form SELECT ?x, ?z WHERE {Q} to project out the information
on directors and their first movie.

As far as the expressive power of SPARQL is concerned, it was shown in [3,32]
that SPARQL is relational complete. Not surprisingly, the SPARQL query eval-
uation problem (i.e., given an RDF graph G, a SPARQL query Q, and a set μ
of variable bindings, check if μ is a solution) is PSPACE-complete (combined
complexity) [29,35]. The OPT operator was identified as one of the main sources
of complexity. Indeed, it was shown in [35] that the PSPACE-completeness of
SPARQL query evaluation holds even if we restrict SPARQL to the AND and
OPT operator. The reason for this high complexity is the unrestricted use of
variables inside and outside an OPT expression. Therefore, in [29], the class of
well-designed SPARQL graph patterns was introduced. The restriction imposed
there is that if a variable occurs on the right-hand side of an OPT expression and
anywhere else in the SPARQL graph pattern, then it must also occur on the left-
hand side of the OPT expression. It was shown that the complexity of the eval-
uation problem for the well-designed fragment drops to coNP-completeness [29].

In [29], many further interesting properties of well-designed SPARQL graph
patterns were shown. At this point, we mention only one, namely the efficient
transformation into so-called OPT normal form: a SPARQL graph pattern using
AND and OPT operators is in this normal form, if the OPT operator does not
occur in the scope of an AND operator. It was shown in [29] that this can always
be achieved efficiently by exploiting the equivalence (P1 AND (P2 OPT P3)) ≡
((P1 AND P2) OPT P3), which holds for well-designed SPARQL graph patterns.
Moreover, such graph patterns allow for a natural tree representation, formalized
by so-called well-designed pattern trees (wdPTs, for short) in [25].

Intuitively, the nodes in a wdPT correspond to CQs while the tree structure
represents the optional extensions. For instance, the wdPT corresponding to the
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{(?x, directed by, ?y), (?x, released, “before 1980”)}

{(?x, oscars won, ?z)} {(?y, first movie, ?z′)}

Fig. 1. The wdPT T representing the query Q from Example 1.

query in Example 1 is displayed in Fig. 1. As with SPARQL graph patterns, we
can add projection to wdPTs by indicating the distinguished variables to which
the result shall be projected. Well-designed pattern trees then yield a natural
extension of conjunctive queries. Indeed, a CQ corresponds to a wdPT consisting
of the root node only. It turns out that the extension of CQs to wdPTs can have
a significant effect on various computational tasks. For instance, while query
evaluation and query containment are both NP-complete for CQs, these tasks
become ΣP

2 -complete [25] or even undecidable [30], respectively, for wdPTs with
projection. Actually, it is even questionable if the definition of containment via
set inclusion is appropriate in case of optional matching. Also the semantics
definition of answering CQs in the presence of ontologies requires rethinking
for wdPTs [2].

In this article, we survey these and several further results which have recently
been obtained for well-designed SPARQL graph patterns or, equivalently, for
well-designed pattern trees. We shall thus mainly concentrate on algorithms and
complexity results obtained for the most fundamental computational problems
in this area, namely query evaluation (see Sect. 3) and basic static query analysis
tasks such as testing containment and equivalence of two queries (see Sect. 4).
Finally, we shall also recall results on the evaluation of wdPTs in the presence
of ontologies from the DL-Lite family [10] and briefly discuss some unintuitive
behavior of SPARQL entailment regimes according to the the recently released
W3C recommendation [14] (see Sect. 5).

2 RDF, SPARQL, and Pattern Trees

RDF. The data model designed for the Semantic Web is the Resource Descrip-
tion Framework (RDF) [13]. We focus here on ground RDF graphs and assume
them to be composed of URIs only. Formally, let U be an infinite set of URIs.
An RDF triple (s, p, o) is a tuple in U×U×U, whose components are referred
to as subject, predicate, and object, respectively. An RDF graph is a finite set
of RDF triples. Note that a set of triples (s, p, o) can be seen as an edge-labeled
graph, where s and o denote vertices and p denotes an edge label. The active
domain dom(G) ⊆ U of an RDF graph G is the set of URIs actually appearing
in G.

SPARQL Syntax. SPARQL [33], which was later extended to SPARQL 1.1
[18], is the standard query language for RDF data. Following the presentation
in [29], we next recall the formalization of its graph pattern matching facility,
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which forms the core of the language. Let V be an infinite set of variables with
U ∩ V = ∅. We write variables in V with a leading question mark, as in ?x.
A SPARQL triple pattern is a tuple in (U ∪ V) × (U ∪ V) × (U ∪ V). More
complex patterns studied in this article are constructed using the operators AND,
OPT, and UNION. We omit here further operators specified by [33] and [18],
including the FILTER operator. Formally, SPARQL graph patterns (or simply
graph patterns, for short) are thus recursively defined as follows. (1) a triple
pattern is a graph pattern, and (2) if P1 and P2 are graph patterns, then (P1◦P2)
is a graph pattern for ◦ ∈ {AND,OPT,UNION}. Let P be a graph pattern or
a set of graph patterns; then we write vars(P ) to denote the set of variables
occurring in P .

SPARQL Semantics. For defining the semantics of SPARQL graph patterns,
we again follow closely the definitions proposed in [29]. A mapping is a function
μ : A → U for some A ⊂ V. For a triple pattern t with vars(t) ⊆ dom(μ), we
write μ(t) to denote the triple obtained by replacing the variables in t according
to μ. Two mappings μ1 and μ2 are called compatible (written μ1 ∼ μ2) if
μ1(?x) = μ2(?x) for all ?x ∈ dom(μ1) ∩ dom(μ2). A mapping μ1 is subsumed by
μ2 (written μ1 
 μ2) if μ1 ∼ μ2 and dom(μ1) ⊆ dom(μ2). In this case, we also
say that μ2 is an extension of μ1. Subsumption is naturally extended to sets of
mappings, e.g., μ 
 M for a set M of mappings, if μ 
 μ′ for some μ′ ∈ M .

We formalize the evaluation of graph patterns over an RDF graph G as a
function �·�G that, given a graph pattern P , returns a set of mappings (i.e., the
“solutions” or “answers” of P over G). It is defined recursively as follows [29]:

1. �t�G = {μ | dom(μ) = vars(t) and μ(t) ∈ G} for a triple pattern t.
2. �P1 AND P2�G = {μ1 ∪ μ2 | μ1 ∈ �P1�G, μ2 ∈ �P2�G, and μ1 ∼ μ2}.
3. �P1 OPT P2�G = �P1 AND P2�G ∪ {μ1 ∈ �P1�G | ∀μ2 ∈ �P2�G : μ1 �∼ μ2}.
4. �P1 UNION P2�G = �P1�G ∪ �P2�G.

Note that, as in [29], we assume set semantics, while the W3C Recommendation
specifies bag-semantics [33].

Well-Designed SPARQL. In [29], the authors identify several classes of graph
patterns. One of these classes, which is at the heart of this survey, is formed by
the so-called well-designed SPARQL graph patterns. A graph pattern P built
only from AND and OPT is well-designed if there does not exist a subpattern
P ′ = (P1 OPT P2) of P and a variable ?x, such that ?x occurs in P2 and in
P outside P ′, but not in P1. A graph pattern P = P1 UNION . . .UNION Pn is
well-designed if each subpattern Pi is UNION-free and well-designed. Thus, as
in [29], when including the UNION operator, we only allow it to appear outside
the scope of other operators.

Well-Designed Pattern Trees. We have already mentioned above the
OPTnormal form [29], which forbids occurrences of the OPT operator in the
scope of an AND operator. Well-designed graph patterns in OPT normal form
allow for a natural tree representation, formalized by so-called well-designed
pattern trees (wdPTs) in [25]. A wdPT T is a pair (T,P) where T = (V,E, r)
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is a rooted, unordered, tree and P = (Pn)n∈V is a labeling of the nodes in
V , s.t. Pn is a non-empty set of triple patterns (or, equivalently, a conjunction
of triple patterns) for every n ∈ V . The well-designedness condition requires
that, for every variable ?x occurring in T , the nodes {n ∈ V |?x occurs in Pn}
must induce a connected subgraph of T . For instance, the graph pattern Q in
Example 1 is in OPT normal form. Its corresponding pattern tree T is shown in
Fig. 1.

Graph patterns in OPT normal form consist of conjunctive parts (represented
by the nodes of the pattern tree) that are located in a structure of nested OPT
operators (modeled by the tree-structure). Note that the order of child nodes in
such a tree does not matter. This is due to equivalence

(
(P1 OPT P2) OPT P3

)

≡ (
(P1 OPT P3) OPT P2

)
, which holds for well-designed graph patterns [29].

This is why wdPTs are defined as unordered trees.

Components of a Pattern Tree. Let T = ((V,E, r),P) be a wdPT. We call a
wdPT T ′ = ((V ′, E′, r′), (Pn)n∈V ′) a subtree of T if (V ′, E′, r′) is a subtree of T .
T ′ is a subtree of T containing the root if r′ = r. Throughout this article, unless
explicitly specified otherwise, we always consider subtrees containing the root,
and will thus refer to them simply as “subtrees”, omitting the phrase “containing
the root”. An extension T̂ ′ of a subtree T ′ of T is a subtree T̂ ′ of T , s.t. T ′ is in
turn a subtree of T̂ ′. A subtree or extension is proper if some node of the bigger
tree is missing in the smaller tree.

Given a wdPT T = ((V,E, r),P), we write V (T ) to denote the set V of
vertices. We sometimes refer to the set Pn of triple patterns at vertex n ∈ V as
pat(n) and we denote by pat(T ) the set

⋃
n∈V (T ) Pn of triple patterns occurring

in T . We write vars(T ) (resp. vars(n)) as an abbreviation for vars(pat(T )) (resp.
vars(pat(n)). These notions extend naturally to sets of nodes. For nodes n, n̂ ∈
V (T ), s.t. n̂ is the parent of n, let newvars(n) = vars(n) \ vars(n̂). A wdPT T is
said to be in NR normal form, if newvars(n) �= ∅ for every n ∈ V (T ) [25]. It was
shown in [25], that every wdPT can be transformed efficiently into an equivalent
wdPT in NR normal form. We therefore assume w.l.o.g. that all wdPTs dealt
with here are in NR normal form.

Semantics of Pattern Trees. Analogously to graph patterns, the result of
evaluating a wdPT T over some RDF graph G is denoted by �T �G. In [25],
the set �T �G of solutions was defined via a translation to graph patterns. How-
ever, for wdPTs in NR normal form, the set of solutions �T �G has a nice direct
characterization in terms of maximal subtrees of T :

Lemma 1 ([25]). Let T be a wdPT in NR normal form and G an RDF graph.
Then μ ∈ �T �G iff there exists a subtree T ′ of T , s.t. (1) dom(μ) = vars(T ′),
and (2) T ′ is the maximal subtree of T , s.t. μ 
 �pat(T ′)�G.

It can be easily checked that T ′ is uniquely defined by dom(μ). We refer to this
tree as Tµ. We illustrate the evaluation of graph patterns or, equivalently, of
wdPTs) by revisiting Example 1.
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Example 2. Consider the following RDF graph G:

G = { (“American Graffiti”, directed by, “George Lucas”),
(“American Graffiti”, released, “before 1980”),
(“Star Wars”, directed by, “George Lucas”),
(“Star Wars”, released, “before 1980”),
(“Star Wars”, oscars won, “6”)}.

The evaluation of the query Q from Example 1 (or, equivalently of the wdPT
T in Fig. 1) over G, yields the partial mappings μ1 and μ2 defined on the vari-
ables ?x, ?y, ?t, and ?z′ such that: (1) dom(μ1) = {?x, ?y} with μ1 = {?x ←
“American Graffiti”, ?y ← “George Lucas”} and (2) dom(μ2) = {?x, ?y, ?z}
with μ2 = {?x ← “Star Wars”, ?y ← “George Lucas”, ?z ← “6”}. �

Projection. Recall that projection is not considered as part of a graph pattern
[33]; instead, it is realized by the SELECT result modifier on top of a graph
pattern. For a mapping μ and a set X of variables, let μ|X denote the projection of
μ to the variables in X , that is, the mapping μ′ defined as dom(μ′) := X ∩dom(μ)
and μ′(?x) := μ(?x) for all ?x ∈ dom(μ′).

It is convenient to denote a graph pattern P or a wdPT T with projection
to X as (P,X ) and (T ,X ), respectively. The evaluation of such a graph pattern
or wdPT over an RDF graph G is then defined as �(P,X )�G = {μ|X | μ ∈ �P �G}
and �(T ,X )�G = {μ|X | μ ∈ �T �G}, respectively. We refer to the pair (T ,X )
as a wdPT with projection or simply a wdPT , for short. Moreover, we refer
to vars(T ) ∩ X as the free variables (fvars(T )) and to vars(T ) \ fvars(T ) as the
existential variables in T (evars(T )). Analogously, we write fvars(n) and evars(n),
respectively, for nodes n ∈ V (T ). Moreover, for n ∈ V (T ), let newfvars(n) =
newvars(n) ∩ fvars(n). W.l.o.g., we assume that existential variables in wdPTs
with projection are always renamed apart, i.e., evars(T1) ∩ evars(T2) = ∅ for any
two distinct wdPTs T1 and T2.

A wdPT (T ,X ) is in NR normal form if T is. For wdPTs with projection, a
similar characterization of solutions as Lemma 1 exists.

Lemma 2 ([25]). Let (T ,X ) be a wdPT with projection in NR normal form,
G an RDF graph and μ a mapping with dom(μ) ⊆ X . Then μ ∈ �(T ,X )�G iff
there exists a subtree T ′ of T , s.t. (1) dom(μ) = fvars(T ′), and (2) there exists
a mapping λ : evars(T ′) → dom(G), s.t. μ ∪ λ ∈ �T �G.

SPARQL allows the use of blank nodes in graph patterns (see [18] for details),
which we do not consider here. This is however no restriction, since every well-
designed graph pattern with blank nodes is equivalent to a well-designed graph
pattern with projection but without blank nodes.

Union. Recall that we allow the UNION operator only to be applied “top-level”,
i.e., well-designed SPARQL graph patterns involving the UNION operator are of
the form P = P1 UNION . . .UNION Pk, such that each Pi is a UNION-free well-
designed graph pattern. Analogously, we consider a set {T1, . . . , Tk} of wdPTs
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(i.e., a well-designed pattern forest (wdPF)) with the intended meaning that it
stands for the union of the wdPTs. All notions introduced for wdPTs extend
naturally to wdPFs, e.g., a subtree T ′ of a wdPF F is a subtree for some wdPT
T ∈ F . We define the set of solutions of a wdPF F without projection and of
a wdPF (F ′,X ) with projection over an RDF graph G as �F�G :=

⋃
T ∈F�T �G

and �(F ′,X )�G :=
⋃

(T ,X )∈F ′�(T ,X )�G, respectively.

3 Query Evaluation

In this section we have a closer look at the evaluation of well-designed SPARQL
graph patterns or, equivalently, of wdPTs. To this end, we first revisit the seman-
tics definition of SPARQL graph patterns or wdPTs from Sect. 2. Recall that the
semantics �·�G is inductively defined over the structure of SPARQL graph pat-
terns. In terms of wdPTs, a direct implementation of this semantics definition
corresponds to a bottom-up traversal of the tree. Clearly, it may thus happen
that one computes big intermediate results for some subtree (not containing
the root) of the wdPT, which ultimately have to be deleted since these inter-
mediate results cannot be extended to mappings up to the root of the wdPT.
For instance, suppose that in Example 2, the graph G is augmented by triples
(d1, first movie, m1), (d2, first movie, m2), etc. Then the evaluation of the
pattern {(?y, first movie, ?z′)} at the right leaf node of T yields the mappings
ν1 = {?y ← d1, ?z′ ← m1}, ν2 = {?y ← d2, ?z′ ← m2}, etc. Obviously, none of
these mappings can be extended further up to the root node.

In [28] the authors therefore proposed a top-down evaluation method for well-
designed SPARQL graph patterns, which avoids the computation of “useless”
intermediate results, i.e.: every partial mapping produced by this evaluation
method is indeed a solution or can be extended to a solution. Below we illustrate
this top-down evaluation for wdPTs [25].

Top-Down Evaluation. Lemma 1 essentially states that the solutions of a
wdPT over some graph G are exactly those mappings which map all triples in
some subtree T ′ of T into G, and which cannot be extended to some bigger sub-
tree T ′′ of T . This characterization inspires the following procedural semantics
that is obtained by evaluating the pattern tree via a top-down traversal. Given a
label Pn of node n in T and a graph G, we denote by �Pn�G the set of mappings
μ that send all triples in Pn into G, i.e., �Pn�G = {μ | μ(t) ∈ G for all t ∈ Pn}.

Definition 1. Consider an RDF graph G, a wdPT T = ((V,E, r),P) with P =
(Pn)n∈V , and a set M of mappings. For n ∈ V , we define the evaluation of Tn

(the complete subtree of T rooted at n) given M over G, denoted by ext(M,n,G)
as follows. If n is a leaf, then

ext(M,n,G) = M � �Pn�G,

and, otherwise, if n1, . . . , nk are the child nodes of n, then

ext(M,n,G) = M1 � M2 � · · · � Mk,
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where Mi = (M � �Pn�G) �� ext(M � �Pn�G, ni, G). We define the top-down
evaluation of T over G, denoted by �T �tdG , as

�T �tdG = ext({μ∅}, r,G),

where μ∅ is the mapping with the empty domain.

The above definition can be also seen in a more procedural way: Given some
wdPT with root r and some RDF graph G, first get the set M of all mappings
that map Pr into G. For each mapping μ ∈ M property (1) of Lemma 1 is
satisfied. Now in order to test property (2), it suffices to check for each such
mapping μ if it can be extended to some child n of r, i.e. to some mapping
μ′ : vars(Pr) ∪ vars(Pn) → dom(G) with μ′(Pn) ⊆ G. If this is possible, replace μ
by μ′. Note that μ′ again satisfies property (1) of Lemma 1. Hence one way to
think of this evaluation method is to maintain a set of partial solutions together
with a subtree T ′ of the input wdPT rooted at r for each of them. In order to
determine whether the mapping can be extended, it suffices to check if it can be
extended to a child node of the leaf nodes of T ′.

The following theorem states that the top-down evaluation defined above
coincides with the semantics of pattern trees recalled in Sect. 2.

Theorem 1 ([25]). Let T be a wdPT and G an RDF graph. Then �T �G = �T �tdG .

Complexity of Evaluation Without Projection. We now look at the com-
plexity of the Evaluation problem of SPARQL graph patterns or, equivalently,
of wdPTs. We thus study the following decision problem: Given a wdPT T , an
RDF graph G, and a mapping μ, check if μ is a solution. For wdPTs with-
out projection, it was shown in in [29] that this problem is coNP-complete. For
our representation of SPARQL graph patterns as wdPTs in NR normal form, a
coNP test can work as follows. Let T = ((V,E, r),P) be a wdPT. By using the
characterization of the evaluation of wdPTs provided in Lemma 1, in order to
check whether μ is a solution of T over G, the coNP-algorithm can first find a
subtree T ′ of T rooted at r s.t. dom(μ) = vars(T ′). Notice that if this subtree
exists, then it is unique (since T is in NR normal form), and thus, this step can
be done in polynomial time. Then the algorithm checks that T ′ is a maximal
subtree such that μ 
 �pat(T ′)�G. The latter test requires coNP-power since we
have to check that μ cannot be extended to any of the sets of triple patterns at
nodes in T , which are “below” the leaf nodes of T ′. However, it is sufficient to
check this for every child node of T ′ (i.e., for every child in T of a leaf node of
T ′) individually: if μ can be extended to any child node, this immediately proves
that it is not maximal. Note that this simple coNP-algorithm heavily relies on
the NR normal form; the coNP-algorithm provided in [29] is considerably more
involved.

Now consider the relationship with CQs. Clearly, if all sets of triple pat-
terns are from tractable fragments of CQ evaluation, then the problem of check-
ing whether μ is a solution of T over G also becomes tractable. This follows
immediately from the algorithm sketched above: instead of coNP-power to test
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whether μ cannot be extended to any “child” node of T ′, this is now feasible in
polynomial time. Note that tractability is required for each set Pn individually,
hence for different nodes n and n′, the sets Pn and Pn′ may belong to different
tractable fragments.

Complexity of Evaluation with Projection. For CQs without existen-
tially quantified variables, the decision problem corresponding to Evaluation
is tractable. However, it becomes NP-complete for CQs with existentially quan-
tified variables. The next result shows that a similar behavior can be observed
for well-designed SPARQL graph patterns as well. I.e., the complexity increases
by one level in the polynomial hierarchy if projection is added.

Theorem 2 ([25]). The Evaluation problem of wdPTs with projection is ΣP
2 -

complete.

The membership is shown by devising a simple “guess and check” algorithm that
tests whether the solution candidate μ satisfies Lemma 2. Given a wdPT T , a
mapping μ, a set X of free variables, and an RDF graph G, the witness that
must be guessed by the algorithm consists of

1. the subtree T ′ of T rooted at r and
2. the mapping λ on evars(T ′).

For the “check” part, it remains to test whether fvars(T ′) = dom(μ) and whether
μ∪λ ∈ �T �G. The first test can be obviously done in polynomial time, while the
second test is in coNP [29].

Tractable Evaluation. A condition that has been shown to help identifying
relevant tractable fragments of wdPTs is local tractability [25]. This refers to
restricting the CQ defined by each node in a wdPT to belong to a tractable
class. The classes of CQ patterns which admit an efficient evaluation include
classes of bounded treewidth [12], hypertreewidth, [15] (generalizing acyclic CQs
[36]), fractional hypertreewidth, [17], etc. We concentrate on the first two. From
now on, we denote by TW(k) (resp., HW(k)), for k ≥ 1, the class of CQs of
treewidth (resp., hypertreewidth) at most k. A wdPT ((V,E, r), (Pn)n∈V ) is
locally in C, if for each node n ∈ V the CQ ANS ← Pn is in C. We write �-C for
the set of all wdPTs that are locally in C. Moreover we denote by Eval(C) the
evaluation problem of wdPTs restricted to the class C.

As already mentioned before, local tractability leads to tractability of eval-
uation for projection-free wdPTs. On the other hand, this result does not hold
in the presence of projection, even when C is of bounded treewidth. Formally,
Eval(�-TW(k)) and Eval(�-HW(k)) are NP-complete for every k ≥ 1 [25].

This raises the question of which further restrictions on wdPTs are needed to
achieve tractability. In [8], a natural such restriction is introduced, called bounded
interface. Intuitively, this restricts the number of variables shared between a node
in a wdPT and its children. We say that a wdPT has c-bounded interface, for
c ≥ 1, if for each node n of the wdPT, the number of variables that appear
both in n and its children is at most c. We denote by BI(c) the set of wdPTs of
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c-bounded interface. It can be shown that local tractability and bounded inter-
face yield tractability of the Evaluation problem of wdPTs with projection:

Theorem 3 ([8]). Let C be TW(k) or HW(k) and c ≥ 1. Then Eval(�-C∩BI(c))
is in Ptime.

Notice thatCQs are a special case ofwdPTs consisting of the root node only.Hence,
TW(k) ⊆ �-TW(k) ∩ BI(c) and HW(k) ⊆ �-HW(k) ∩ BI(c) hold for each c ≥ 1.
Therefore, Theorem 3 tells us that �-TW(k) ∩ BI(c) and �-HW(k) ∩ BI(c) define
relevant extensions of TW(k) and HW(k), respectively, that preserve tractability
of evaluation.

Partial Evaluation of wdPTs. Given the nature of wdPTs, it is also inter-
esting to check whether a mapping μ is a partial solution of the wdPT T over
G [29], i.e., whether μ can be extended to some solution μ′ of T over G. This
gives rise to the partial evaluation problem Partial-Eval(C) for a class C of
wdPTs defined as follows: Given a graph G and a wdPT T ∈ C, as well as a
partial mapping μ : X → U, where X is the set of variables mentioned in T , is
there a μ′ ∈ �T �G such that μ′ extends μ?

Partial evaluation is tractable for the class of projection-free wdPTs [29]. On
the other hand, if projection is allowed, then partial evaluation is NP-complete
even under local tractability, i.e., even for the classes �-TW(k) and �-HW(k), for
each k ≥ 1 [25].

It is easy to modify the proof of Theorem 3 to show that adding bounded
interface to local tractability yields efficient partial evaluation; that is, Partial-
Eval(�-TW(k)∩BI(c)) and Partial-Eval(�-HW(k)∩BI(c)) are in Ptime. How-
ever, partial evaluation is seemingly easier than exact evaluation. Hence, the
question naturally arises if tractability of partial evaluation of wdPTs can be
ensured by a weaker condition. Indeed, we give a positive answer to this ques-
tion below. This condition will be referred to as global tractability. Intuitively,
it states that there is a bound on the treewidth (resp., hypertreewidth) of the
CQs defined by the different subtrees of a wdPT T rooted in r. Formally, let C
be TW(k) or HW(k), for k ≥ 1. A wdPT T is globally in C, if for each subtree T ′

of T rooted in r it is the case that the CQ ANS ← pat(T ′) is in C. We denote
by g-C the set of all wdPTs that are globally in C.

Theorem 4 ([8]). Partial-Eval(g-TW(k)) and Partial-Eval(g-HW(k))
are in Ptime for every k ≥ 1.

It remains to answer the question if global tractability also suffices to ensure
tractability of (exact) evaluation for wdPTs. It turns out that this is not the
case.

Proposition 1 ([8]). Eval(g-TW(k)) and Eval(g-HW(k)) are NP-complete
for all k ≥ 1.

Semantics Based on Maximal Mappings. The semantics of projection-free
wdPTs is only based on maximal mappings, i.e., mappings that are not subsumed
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by any other mapping in the answer. This is no longer the case in the presence
of projection [25]. As we will see in Sect. 5, for query answering of SPARQL
under entailment regimes, it will turn out advantageous to define a semantics
for wdPTs that is based on maximal mappings. This semantics is formalized as
follows. Assume G is an RDF Graph and T is a wdPT. The evaluation of T
over G under maximal mappings, denoted �T �mG , corresponds to the restriction
of �T �G to those mappings μ which are not extended by any other mapping
μ′ ∈ �T �G. This naturally leads to the decision problem Max-Eval(C) defined as
follows: Given an RDF graph G and a wdPT T ∈ C, as well as a partial mapping
μ : X → U, where X is the set of variables mentioned in T , is μ ∈ �T �mG?

Max-Eval(C) is clearly intractable for the class C of all wdPTs. Analogously
to Partial-Eval, local tractability is not sufficient to ensure tractability of
Max-Eval:

Proposition 2 ([8]). For every k ≥ 1 the problems Max-Eval(�-TW(k)) and
Max-Eval(�-HW(k)) are NP-hard.

To obtain tractability in this case it is however sufficient to impose global
tractability, which is exactly the same condition that yields tractability of partial
evaluation for wdPTs (as stated in Theorem 4):

Theorem 5 ([8]). Max-Eval(g-TW(k)) and Max-Eval(g-HW(k)) are in
Ptime for every k ≥ 1.

4 Static Query Analysis

Static query analysis is a fundamental task in query optimization. Two of the
most important problems in this context are query containment and query equiv-
alence, which are very well understood for a variety of query languages [1]. For
instance, since by Trakhtenbrot’s theorem both problems are undecidable for the
full relational calculus, they have been studied for several interesting fragments
of relational calculus, including CQs and several extensions thereof [11,21,34].

Since SPARQL has the same expressive power as the relational calculus and
queries from one language can be effectively transformed into equivalent queries
of the other language [3,32], containment and equivalence are undecidable for
full SPARQL. Hence, analogously to the relational calculus, both problems have
been studied for fragments of SPARQL, with well-designed graph patterns being
the core fragment.

We use the notation wd-SPARQL[S] to refer to the different classes of
SPARQL queries reviewed in this section, where S ⊆ {∪, π}. I.e., we consider
well-designed SPARQL queries which use the AND and OPT operator and which
may be extended by UNION (if ∪ ∈ S) and/or projection (if π ∈ S). We will
consider the problems Containment[S1, S2] and Equivalence[S1, S2], which
take as input queries Q1 ∈ wd-SPARQL[S1], Q2 ∈ wd-SPARQL[S2] and ask if
for all RDF graphs G it is the case that �Q1�G ⊆ �Q2�G or �Q1�G = �Q2�G,
respectively, holds.
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It was argued that in the presence of optional matching, the classical notion
of query containment via the subset relation (⊆) might be too restrictive for
certain applications. The reason for this is illustrated by the following example.

Example 3. Consider the two SPARQL queries Q1 = (?x, directed by, ?y) and
Q2 = (?y, directed by, ?y)OPT (?x, oscars won, ?z) which are simplified vari-
ants of the query Q from Example 1, and an RDF graph G = {(“Star
Wars”, directed by, “George Lucas”), (“Star Wars”, oscars won, “6”)}. Then
�Q1�G = {μ} with μ = {?x ← “Star Wars”, (?y ← “George Lucas”} and
�Q2�G = {μ′} with μ′ = μ ∪ {?z ← “6”}. Hence Q1 � Q2. This might be,
however, unintuitive or even unintended, since answers to Q2 always contain at
least the same amount of information as those to Q1. �

One way to address this concern is to resort to the subsumption relation men-
tioned in Sect. 2. This gives rise to the problem Subsumption[S1, S2] which,
given two queries Q1 ∈ wd-SPARQL[S1] and Q2 ∈ wd-SPARQL[S2], asks if
�Q1�G 
 �Q2�G holds for all RDF graphs G. Clearly, for CQs, the notions of
containment and subsumption coincide. Subsumption has already been used in
the past as a meaningful way of testing containment of queries with incom-
plete answers over semistructured data [20], and it has been convincingly argued
that it is also a suitable notion for comparing the result of SPARQL queries
containing the OPT operator [5]. It has also been considered in foundational
work on SPARQL to compare the evaluation of two patterns containing OPT
operators [5,29].

Subsumption. It turns out that in the presence of optional matching not only
the semantics of subsumption is more robust than that of containment, but also
its complexity is much more stable for the different fragments of SPARQL. In
fact, the subsumption problem is ΠP

2 -complete in all of the cases considered in
this survey.

For CQs, the containment problem Q1 ⊆ Q2 is equivalent to deciding if there
exists a homomorphism h from Q2 to Q1. Recall that the main intuition behind
this is that h allows one to “translate” solutions of Q1 to solutions of Q2.

The subsumption problem for well-designed SPARQL queries can be decided
in a similar way, and can essentially be reduced to a (possibly exponential) num-
ber of containment tests between CQs: An immediate consequence of Lemma 2
and Lemma 1 is that for every wdPF (F ,X ) and RDF graph G, every solution
μ ∈ �(F ,X )�G is witnessed by some subtree T ′ of F and some extension μ′ of
μ s.t. (a) dom(μ′) = vars(T ′), (b) dom(μ) = fvars(T ′), and (c) μ′ maps all triple
patterns in T ′ into G. Thus, subsumption between two wdPFs (F1,X ), (F2,X )
holds if and only if every such mapping μ′ for (F1,X ) can be “translated” (in
the same sense as for CQs) to a corresponding mapping on (F2,X ). This allows
for the following characterization of subsumption between wdPFs.

Lemma 3 ([30]). Let (F1,X ) and (F2,X ) be two wdPFs. Then (F1,X ) 

(F2,X ) iff for every subtree T ′

1 of F1, there exists a subtree T ′
2 of F2, s.t.
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(1) fvars(T ′
1 ) ⊆ fvars(T ′

2 ) and
(2) there exists a homomorphism h : pat(T ′

2 ) → pat(T ′
1 ) with h(?x) =?x for all

?x ∈ fvars(T ′
1 ).

Assuming this characterization is satisfied, given some μ1 ∈ �(F1,X )�G wit-
nessed by some subtree T ′

1 and mapping μ′
1, we get a corresponding mapping μ′

2

as μ′
2(·) = μ′

1(h(·)), where h is the homomorphism guaranteed to exist by the
characterization. Observe, however, that the lemma only guarantees μ′

2 
 �F2�G,
and not μ′

2 ∈ �F2�G, since μ′
2 need not be maximal. Thus the characterization

guarantees μ2 
 �(F2,X )�G as required, but not μ2 ∈ �(F2,X )�G.
This characterization can be immediately turned into a ΠP

2 -algorithm for
deciding subsumption. On the other hand, ΠP

2 -hardness was shown to already
hold for Subsumption[∅, ∅] in [25]. We thus get the following result.

Theorem 6 ([25,30]). The problem Subsumption[S1, S2] is ΠP
2 -complete for

all S1, S2 ⊆ {∪, π}.

Table 1. Complexity of the Containment and Equivalence problem, [25,30].

↓ S1 / S2 → Containment[S1, S2] Equivalence[S1, S2]

∅ {∪} {π} {∪, π} ∅ {∪} {π} {∪, π}
∅ NP-c. ΠP

2 -c. undec. undec. NP-c. – – –

{∪} NP-c. ΠP
2 -c. undec. undec. ΠP

2 -c ΠP
2 -c – –

{π} NP-c. ΠP
2 -c. undec. undec. ΠP

2 -c ΠP
2 -h undec –

{∪, π} NP-c. ΠP
2 -c. undec. undec. ΠP

2 -c undec undec undec

Containment. The complexity of the Containment problem is summarized
in Table 1. Beside ranging from NP-completeness to even undecidability, it
also displays a surprising asymmetry: For instance, Containment[{π}, ∅] is
NP-complete, while Containment[∅, {π}] is undecidable.

Recall that for subsumption (F1,X ) 
 (F2,X ), the crucial property for the
characterization in Lemma 3 to be correct is that it is irrelevant whether the
subtrees of F2 are maximal or not. However, for containment, this is no longer
the case since now it must be guaranteed that for every solution to (F1,X ), the
exact same mapping (and not an extension of it) is also a solution to (F2,X ).
While homomorphisms are too weak to directly express such a property, for the
decidable cases in Table 1, it is possible to express this in an indirect way. We
demonstrate this idea for the problem Containment[{π}, ∅]:

Lemma 4 ([30]). Let (T1,X ) and T2 be wdPTs. Then (T1,X ) ⊆ T2 iff for every
subtree T ′

1 of T1,

(1) either there exists a child node n of T ′
1 and a homomorphism h : pat(n) →

pat(T ′
1 ) with h(?x) =?x for all ?x ∈ vars(n) ∩ vars(T ′

1 )



182 S. Ahmetaj et al.

(2) or there exists a subtree T ′
2 of T2, s.t. (a) fvars(T ′

1 ) = vars(T ′
2 ), (b) pat(T ′

2 ) ⊆
pat(T ′

1 ), and (c) for all extensions T̂2
′
of T ′

2 there exists an extension T̂ ′
1 of

T ′
1 and a homomorphism h : pat(T̂ ′

1 ) → pat(T ′
1 ) ∪ pat(T̂ ′

2 ) with h(?x) =?x
for all ?x ∈ vars(T ′

1 ).

The intuition of this characterization is as follows: Property (1) is a technical
detail dealing with subtrees that can always be extended. This case was implicitly
covered for subsumption but must now be made explicit. Property (2a) and
(2b) are the adaptations of the properties (1) and (2) in Lemma 3: (2a) follows
immediately from the fact that extensions are not allowed. For (2b), observe that
in the present case, looking for a homomorphism as in property (2) in Lemma 3
means to look for a homomorphism that is the identity on all variables in its
domain, hence degenerating to a subset inclusion test. Finally, property (2c)
implicitly ensures that the mapping on T2 cannot be extended. Intuitively, it
expresses the following: Assume some RDF graph G, a mapping μ ∈ �(T1,X )�G
witnessed by μ1 ∈ �T1�G and T ′

1 . Assuming further the properties of the lemma
to be satisfied, we know from (2a) and (2b) that μ 
 �T2�G. Thus assume to
the contrary that μ /∈ �T2�G because of some μ′ ∈ �T2�G with μ 
 μ′. Let
T ′
2 be the subtree of T2 corresponding to μ and let μ′ be witnessed by some

subtree T̂ ′
2 . Then T̂ ′

2 must be an extension of T ′
2 . But then the subtree T̂ ′

1 of
T1 and homomorphism h according to property (2c) provide a contradiction
to μ1 ∈ �T1�G, since μ1 � μ′

1 where μ′
1(·) = μ′(h(·)), and μ′

1 ∈ �T1�G. I.e.,
the characterization guarantees the maximality on T2 implicitly by making sure
that if the mapping is not maximal on T2, then it is not on T1 either. This
characterization can be easily extended to Containment[{∪, π}, ∅].

A direct implementation of this characterization would lead to a ΠP
2 -

algorithm for deciding Containment[{∪, π}, ∅]. However, it is in fact not neces-
sary to perform the test for all subtrees of T1, but it suffices to just test a linear
number of them. This pushes the complexity down to NP. Allowing for UNION
on the right hand side requires some non-trivial extension of property (2c) for
the characterization to still work in such a setting. As a result, the complexity
rises by one level in the polynomial hierarchy.

Once projection is allowed to occur in the containing query (i.e. the query
on the right hand side), this approach no longer works, and in fact the problem
becomes undecidable. To get an idea of why this is the case, observe that an
alternative way to look at property (2c) is that we create a canonical RDF
graph over which μ – the mapping of interest – is guaranteed not to be a solution.
Without projection, such a canonical graph can always be found since we get the
following property: μ is not a solution if it can be extended to a bigger solution.
It thus basically suffices to just add one such extension to the canonical graph.
In the presence of projection, however, we get the following situation: μ is not a
solution to T2, if for every subtree T ′

2 of T2 with fvars(T ′
2 ) = dom(μ) and every

mapping μ′ on evars(T ′
2 ), there exists an extension of μ ∪ μ′ that is a solution

to T2. Thus we have to provide an extension for all possible mappings μ′ in the
canonical graph. Adding these extensions may give rise to new mappings μ′ on
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the existential variables, which in turn require new extensions to be provided in
the canonical RDF graph, and it is not clear when this can be stopped.

This behavior is reminiscent of the chase termination (cf. [9,16,26] and
related problems, and in fact the undecidability of the containment problem
was shown by reduction from the following problem: Given a set Σ of tuple-
generating dependencies, a database instance I and a Boolean CQ Q, is Q true
in every (finite) model of Σ and I (cf. [9,30])?

Equivalence. The complexity of the Equivalence problem is also depicted in
Table 1. Of course, for two SPARQL queries Q1 and Q2 it holds that Q1 ≡ Q2

iff Q1 ⊆ Q2 and Q2 ⊆ Q1. Thus an upper-bound on the complexity of the
containment problem also provides an upper-bound for the equivalence problem.
In addition, it was shown in [25] that for queries in wd-SPARQL[∅] it is also the
case that Q1 ≡ Q2 iff Q1 
 Q2 and Q2 
 Q1. However, as soon as we add union
or projection on either side, this property does no longer hold.

Of course, the Equivalence[S1, S2] problem is symmetric in S1 and S2.
Hence, only the lower triangle of the table has been filled in. The reason that
Equivalence[{∪, π}, ∅] is decidable in ΠP

2 , while Containment[∅, {∪, π}] is
undecidable is that in order to decide equivalence, it actually suffices to test
containment in one, and only subsumption in the other direction. We would like
to point out that not only is the exact complexity of Equivalence[{π}, {∪}]
still open, but it is even unknown if the problem is decidable or not.

5 Ontology-Based Query Answering

In the recently released recommendation [14], the W3C has defined various
SPARQL entailment regimes to allow users to specify implicit knowledge about
the vocabulary in an RDF graph. The theoretical underpinning of query answer-
ing under entailment regimes is provided by the big body of work on ontology-
based query answering, notably in the area of description logics (DLs) [6].
However, the semantics of query answering under SPARQL entailment regimes
is defined in a simpler and less expressive way than the certain answer semantics
usually adopted in the DL and database literature.

Example 4. Consider an RDF graph G containing a single triple (“Star Wars”,
rdf:type,movie) – stating that “Star Wars” is a movie – and an ontology O con-
taining the triple (movie, rdfs:subClassOf,∃has actor). – stating that every
movie has some actor who acts in it. Now consider the following simple graph
pattern (P, {?x}) with P = (?x, has actor, ?y), where ?x is the only output
variable. Following the SPARQL entailment regimes standard [14], this query
yields an empty result. �
By the concept inclusion (movie, rdfs:subClassOf,∃has actor), we know for
certain that there is some actor who acts in “Star Wars”. Hence, the result in
the above example is rather unintuitive. The reason for this behavior is that the
standard for SPARQL entailment regimes [14] requires that all values assigned
to any variable must come from the RDF graph. In other words, distinguished
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variables (which are ultimately output) and non-distinguished variables (which
are eventually projected out) are treated in the same way. In contrast, the certain
answer semantics retrieves all mappings on the distinguished variables that allow
to satisfy the query in every possible model of the database and the ontology
– yielding the certain answer μ = {?x ← “Star Wars”} in the above example.
The certain answer semantics has been extensively studied in the database and
DL literature for CQs [1,10]. However, in the presence of optional matching the
usual certain answer semantics (i.e., something is a certain answer if it is present
in every model) turns out to be unsatisfactory:

Example 5. Consider the graph pattern (P, {?x, ?z}) with P : ((?x, has
actor, ?y)OPT(?y, was born, ?z)) over the graph G = {(“Star Wars’’,
has actor, “Harrison Ford”)} and empty ontology O. The query yields a unique
solution μ = {?x ← “Star Wars”}. Clearly, also the extended graph G′ =
G ∪ {(“Harrison Ford”, was born, “1942”)} is a model of (G,O). But in G′,
μ is no longer a solution since μ can be extended to solution μ′ = {?x ←
“Star Wars”, ?z ← “1942”}. Hence, there exists no mapping which is a solution
in every possible model of (G,O). �

As Example 5 illustrates, a literal adoption of the certain answer semantics in
the presence of the OPT operator leads to having no solutions, even though there
is a solution that can be extended to a solution in every model. In order to tackle
this and further problems, the definition of certain answers for the class of wdPTs
has to be suitably modified [2]. This modification of the semantics also requires
an adaptation and extension of known query answering algorithms established
in the area of description logics. We mention two such modified algorithms for
query evaluation under DL-Lite [10]. It turns out that the additional expressive
power due to the certain answers comes without an increase of the complexity.

OWL 2 QL. RDF has been enhanced by the OWL 2 Web Ontology Language
[27], a World Wide Web Consortium (W3C) recommendation to enable the spec-
ification of background knowledge about the application domain, and to enrich
query answers with implicit information. The logical underpinning of OWL 2 and
its sub-languages are description logics. One such sub-language is OWL 2 QL
which is based on DL-LiteR, a member of the DL-lite family [10]. Its fundamental
building blocks are constants c, atomic concepts A and atomic roles R, which are
countably infinite and mutually disjoint subsets of a set U of URIs. From these
we can build basic roles R and R−, and basic concepts B and ∃Q, where Q is a
basic role. Using the above, DL-LiteR allows one to express the following kind of
statements: Membership assertions (c, rdf:type, B) or (c,Q, c′), concept inclu-
sions (B1, rdfs:subClassOf, B2), role inclusions (Q1, rdfs:subPropertyOf, Q2)
as well as concept and role disjointness (where c, c′ are constants and Bi, Qi are
basic concepts resp. basic roles). In the following, an ontology O is any set of
such expressions, excluding membership assertions, which we assume to be part
of the RDF graph. A knowledge base (KB) G = (G,O) consists of an RDF graph
G and an ontology O.
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Certain Answers of wdPTs. Before providing our definition of certain
answers, we need to introduce two additional notions. Let P be a well-designed
graph pattern. Following [29], we say that P ′ is a reduction of P (denoted as
P ′ � P ) if P ′ can be constructed from P by replacing in P sub-patterns of the
form (P1 OPT P2) by P1. Note that, in terms of wdPTs, a reduction corresponds
to a subtree containing the root node of the wdPT. Moreover, for a mapping μ
and some property A, we shall say that μ is 
-maximal w.r.t. A if μ satisfies A,
and there is no μ′ such that μ 
 μ′, μ′ �
 μ, and μ′ satisfies A.

Definition 2. Let G = (G,O) be a KB and Q = (P,X ) a well-designed graph
pattern. A mapping μ is a certain answer to Q over G if it is a 
-maximal
mapping with the following properties: (1) μ 
 �Q�G′ for every model G′ of G,
and (2) vars(P ′) ∩ X = dom(μ) for some P ′ � P . We denote by cert(P,X ,G)
the set of all certain answers to Q over G.

The reason for restricting the set of certain answers to 
-maximal mappings is
that queries with projection and/or UNION may have “subsumed” solutions,
i.e. solutions s.t. also some proper extension is a solution. But then – with set
semantics – we cannot recognize the reason why some subsumed solution may
be not a solution in some possible world, as illustrated in Example 6.

Example 6. Let us revisit the graph pattern (P, {?x, ?z}) of Example 5 with
P = (?x, has actor, ?y). Consider the following RDF graph G:

G = { (“Star Wars”, has actor, “Harrison Ford”),
(“Star Wars”, has actor, “Mark Hamill”),
(“Harrison Ford”, was born, “1942”)}.

and empty ontology O. As possible models of (G,O) we have all graphs con-
taining G. Hence, μ = {?x ← “Star Wars”, ?z ← “1942”} and μ′ = {?x ←
“Star Wars”} are both solutions of (P, {?x, ?z}) over G and can be extended to
solutions in every possible model.

Next consider the RDF graph:

G′ = { (“Star Wars”, has actor, “Harrison Ford”),
(“Harrison Ford”, was born, “1942”)}.

If we take as certain answers all mappings that can be extended to some solution
in every possible model, then μ′ from above is still a certain answer, which is
clearly undesired. �

A key idea to solve the problem illustrated in Example 6 is to allow only
“maximal” solutions. In addition, Property (2) in Definition 2 ensures that the
domain of such an answer adheres to the structure of nested OPT operators
in the query. However, we can show that this property need not be considered
during the computation of the certain answers, but can be enforced in a sim-
ple post-processing step. We call such answers that satisfy Definition 2 except
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Property (2) certain pre-answers, and use certp(P,X ,G) to denote the set of all
certain pre-answers. The same is true for projection, which can also be performed
in a simple post-processing step. Thus, it suffices to compute certp(P,G), which
can be done via a universal solution (referred to as canonical model in the area
of DLs) as follows.

Theorem 7 ([2]). Let G = (G,O) be a KB and P a well-designed graph pattern.
Then, certp(P,G) = MAX(�P �univ(G)↓), where MAX(M) is the set of 
-maximal
mappings in M , M↓:= {μ↓| μ ∈ M} (μ↓ is the restriction of μ to those variables
which are mapped by μ to the active domain of G), and univ(G) is a universal
solution of G.

However, computing the certain answers via a universal solution is not always
practical, since universal solutions can be infinite. As a result, query rewriting
algorithms have been developed. These algorithms take the input query and
the ontology, and rewrite them into a single query that can be evaluated over
the input database without considering the ontology. By introducing several
adaptations and extensions of the rewriting-based CQ evaluation for DL-Lite
from [10], we developed two different approaches to compute the certain answers
for well-designed SPARQL graph patterns (or, equivalently, of wdPTs) under
OWL 2 QL entailment [2].

The first one proceeds in a modular way by rewriting the pattern Pn at
each node n in a wdPT individually. It thus follows the general philosophy of
SPARQL entailment regimes [14]. One possible disadvantage of this modular
approach is that it requires to maintain additional data structures to ensure
consistency when combining the partial solutions for the patterns of differ-
ent nodes. As a consequence, the complete algorithm has to be implemented
from scratch because the standard tools cannot handle these additional data
structures.

The goal of the second approach is to make use of standard technology as
much as possible. The idea is to transform the OWL 2 QL entailment under
our new semantics into SPARQL query evaluation under RDFS entailment [14],
for which strong tools are available. Unlike the first – modular – approach, this
rewriting proceeds in a holistic way, i.e. it always operates on the whole query.

Based on these rewriting algorithms, we can show that the complexity of
query answering and of several static query analysis tasks does not increase
despite the additional power of OWL 2 QL entailment under our new semantics.

Recall from Sect. 3 the two variants Partial-Eval and Max-Eval of the
Evaluation problem of wdPTs, where we have to decide for a graph G, wdPT
(T ,X ), and mapping μ, if μ can be extended to a solution or is a maximal solu-
tion, respectively, of (T ,X ) over G. Note that we cannot directly compare the
Evaluation problem of wdPTs under OWL 2 QL entailment (with our cer-
tain answer semantics) and the Evaluation problem of wdPTs without entail-
ment regimes. This is due to the fact that our certain answer semantics (for
reasons explained above) only allows maximal solutions. Hence, Partial-Eval
and Max-Eval are the right problems to look at. The Partial-Eval prob-
lem is NP-complete [25] and the Max-Eval problem is DP-complete [2], and it
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was shown in [2] that these complexities remain unchanged under OWL 2 QL
entailment with our certain answer semantics.

As far as static query analysis is concerned, we now have to redefine the prob-
lems Subsumption, Containment, and Equivalence so as to take a given
ontology into account. For instance, for the Subsumption problem, we are now
given two wdPTs T1, T2 plus an ontology O; we have to decide if for every RDF
graph G, the relationship cert(T1,X1,G) 
 cert(T2,X2,G) holds, where G denotes
the knowledge base G = (G,O). Recall that Subsumption without entailment
regimes is ΠP

2 -complete in all settings considered here (i.e., with or without
projection; with our without the UNION operator). It can be shown that the
complexity remains the same also for the Subsumption problem under OWL2
QL entailment [2]. Note that the subsumption relation between two queries only
depends on the maximal solutions over an arbitrary graph. Hence, we did not
need to define yet another variant of Subsumption, which takes only the maxi-
mal solutions into account. In contrast, for Containment and Equivalence, a
comparison between the settings with and without ontologies only makes sense
if we check for containment (resp. equivalence) of the maximal solutions only.
In [2], the resulting problems were shown ΠP

2 -complete both for the settings
with and without OWL2 QL entailment.

6 Conclusion and Future Work

We have recalled some recent results on an interesting fragment of SPARQL, the
so-called well-designed SPARQL graph patterns or, equivalently, well-designed
pattern trees (wdPTs). Such queries can be seen as a natural extension of con-
junctive queries (CQs) by the optional matching feature. It has turned out that
this feature makes virtually all relevant computational tasks more complex:
the complexity of the Evaluation problem raises from NP-completeness to
ΣP

2 -completeness. The Containment and Equivalence problems even become
undecidable unless we forbid projection. In [29], Subsumption has been pro-
posed as an interesting variant of Containment, which is computationally
better behaved and which may be more intuitive in the presence of optional
matching. Its complexity is ΠP

2 -complete in all settings considered here. Finally,
we have seen that an additional extension of wdPTs by entailment under OWL2
QL (which corresponds to DL-LiteR) does not increase the complexity anymore.

Note that many further aspects of well-designed SPARQL graph patterns
have been studied, which were not recalled in this survey. In response to the
intractabilty of the Evaluation problem of wdPTs, works on the approximation
of CQs [7] were extended to wdPTs in [8]. The Counting problem of wdPTs
(i.e., given a wdPT T and a graph G, how many solutions does T have over
G) was studied in [31]. The Counting problem turned out to be more complex
than the Evaluation problem in the sense that the restrictions guaranteeing
tractability of Evaluation do not suffice to achieve tractability of Counting.
In [24], various aspects of the Enumeration problem of wdPTs (i.e., given a
wdPT T and a graph G, output all solutions of T over graph G) are studied.
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As has been recalled in Sect. 3, tractability of the Max-Eval problem is easier to
achieve than for the Evaluation problem. Interestingly, for the Enumeration
problem, outputting the maximal solutions may become harder than outputting
all solutions.

Recall that projection is realized in SPARQL by wrapping a SPARQL graph
pattern into a SELECT statement. Another query form provided by the SPARQL
standard [33] is to wrap a SPARQL graph pattern into a CONSTRUCT state-
ment. The result of applying a CONSTRUCT query to an RDF graph is again
an RDF graph (rather than a set of mappings). In [23], several interesting prop-
erties of CONSTRUCT queries were presented. For instance, for CONSTRUCT
queries with well-designed SPARQL graph patterns, it was shown that they
correspond to positive first order queries. An important extension provided by
SPARQL 1.1 [18] is the possibility to formulate queries which have to be evalu-
ated over different endpoints. Various aspects of this federation extension were
studied in [4] – including the extension of well-designed SPARQL to federated
SPARQL queries. Most of the computational problems mentioned here (Evalu-
ation, Containment, Equivalence, Subsumption) were studied in [22] for
another important extension of SPARQL 1.1 [18] – the so-called property paths.
This extension introduces the ability to navigate in RDF graphs. Property paths
thus resemble regular path queries. However, as is shown in [22], the interaction
with the other SPARQL operators – in particular, with the OPT operator –
requires new techniques.

Despite the great variety of results obtained for wdPTs, many questions
have remained open. First, in most of the complexity analyses carried out so
far, some cases could not be fully classified. For instance, in Table 1, the exact
complexity (even the question of decidability) of Equivalence[{π}, {∪}] is still
open. Closing these gaps is a natural task for future work. Strongly related
to such complexity analyses is the quest for tractable fragments of the various
problems studied so far. For instance, we have recalled here that the Evaluation
problem of wdPTs becomes tractable if wdPTs are restricted to the class �-
C∩BI(c) where C is TW(k) or HW(k) and c ≥ 1. The same restriction guarantees
tractability of the Enumeration problem [24], which is not the case for the
Counting problem [31]. For all these problems, further approaches have to
explored to find (further) “natural” tractable classes of wdPTs.

Finally, the language fragments studied so far should be extended in several
directions. For instance, we have recalled here some results obtained for the eval-
uation of wdPTs under OWL2 QL entailment (or, equivalently, under DL-LiteR).
This work should be extended to more expressive entailment regimes. Another
important extension is concerned with extending well-designed SPARQL itself.
We have recalled several favorable features of this fragment of SPARQL. For
instance, the complexity of the Evaluation problem drops from PSPACE-
completeness (for the AND/OPT-fragment without well-designedness restriction)
to coNP (without projection) or ΣP

2 (with projection), respectively. However,
the restriction to well-designedness may be too strong. Hence, very recently [19],
the extension of well-designed SPARQL to weakly well-designed SPARQL has
been presented, by allowing some typical uses of non-well-designedness. On the
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one hand, it is shown that the extension of well-designed SPARQL to weakly
well-designed SPARQL does not make the Evaluation problem harder. On the
other hand, the authors give evidence that the resulting fragment of SPARQL
is practically highly relevant by observing that in DBpedia query logs, almost
all queries containing the OPT operator are weakly well-designed. Of course, the
study of the various computational tasks mentioned here should be extended to
yet further (and bigger) fragments of SPARQL.
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Abstract. This contribution deals with one single theme, the exploita-
tion of logical reduction techniques in database theory. Two kinds of
changes may be applied to databases: structural changes, known also as
restructuring or schema evolution, and data changes. We present both
of them in the terms of syntactically defined translation schemes.

At the same time, we have application programs, computing different
queries on the database, which are oriented on some specific generation of
the database. Systematically using the technique of translation scheme,
we introduce the notion of Φ-sums and show how queries, expressible in
extensions of First Order Logic (FOL) may be handled over different
generations of the Φ-sums. Moreover, using the technique of translation
scheme, we introduce the notions of an incremental view recomputations.
We prove when queries expressible in extensions of FOL allow incremen-
tal view recomputations.

Our approach covers uniformly the cases we have encountered in the
literature and can be applied to all existing query languages.

1 Introduction

Over time, databases undergo two kinds of changes: structural changes (i.e.,
changes in the schema), known also as restructuring or schema evolution, and
data changes (i.e., insertion, deletions and modifications of tuples). Data changes
are usually referred to as updates. In the same way, one may talk about selection
queries or simply queries (non-modification queries) and updates.

Non-modification query usually must be answered lots of time. That is why, as
a rule, such queries are maintained as auxiliary relations, called in the context of
databases as materialized views. Non-materialized views are called virtual views
and, as a rule, are not updatable. We consider only materialized views in the
paper. Moreover, in this paper, we consider only relational databases.

In this paper, we are concentrated on two problems: handling queries under
restructuring of databases and under database updates.

Handling Queries Under Restructuring of Databases: Database, during
its life cycle, may be restructured several times. At the same time, we have sev-
eral application programs, oriented on some specific generation of the database.
The problem under investigation is:

c© Springer International Publishing Switzerland 2016
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Given: There are two different generations of the same database, g and g + 1.
There is an application, running on the gth generation: Qg.

Find: An application Qg+1, running on the (g + 1)th generation with the same
results.

Let us consider a toy example. The gth generation of the database contains
only one relation P , while the (g + 1)th generation contains two relations R and
S, such that P = (R �� S). The application, running on the gth generation Qg

is a simple modification query on P , which deletes tuples from P , according to
some condition θ, expressed in terms of P . The set of deleted tuples is defined
by �θP rather than given by enumeration.

We have problems with this kind of rules like deletion over join. In fact: in
�θ(R �� S), we deal with formula θ that can be complicated. When we use
the substitution of (R �� S) instead of P in θ, we receive a new formula in
terms of R and S that contains a mix of attributes from both relations: R and
S. In order to evaluate θ, we must first produce (R �� S) and then delete �θ

from the join, while we are mostly interested to derive (if possible) from θ some
formulae: θR

1 , . . . , θR
ı over R and θS

1 , . . . , θS
j over S, which we will apply to R and

S respectively in order to obtain the same desired result.
In logical notation, the formulae: θR

1 , . . . , θR
ı over R and θS

1 , . . . , θS
j over S

are Feferman-Vaught reduction sequences (or simply, reductions), cf. [19]. The
sequences are sets of queries such that each such a query can be evaluated on the
components: R and S. Next, from the local answers, and possibly some additional
information, we compute the answer. In this paper, we generalize the notion of
Feferman-Vaught reduction sequences to handling queries over Φ–sums.

Handling queries under database updates: Materialized views contain
some derived portion of the database information and storing as new relations.
In order to reflect the changes, made on the source relations, the views should
be modified by adding or deletions tuples without total re-computation from the
database.

Given: A materialized view and a database update.

Find: A set of view updates that uses the old content of the view and delete
from and inserts in the view some set of tuples defined on the source database.

In the case of the incremental view maintenance, we try to find some effective
way to refresh the content of the view by some updates on it. The updates should
be derived from the update on the source database, without the total view re-
computation. In many case, it permits to simplify the maintenance procedure.

Unfortunately, as a rule, the derived view contains only some small part of the
database information, and it is just impossible to obtain the desired results as a
map over only the view. Using extension of the logical machinery of syntactically
defined translations schemes, first introduced in [29] and recently used in [21] in
the context of the database theory, we give precise definition of incremental view
re-computation and prove that every query expressible in several extensions of
First Order Logic (FOL) allows the incremental view re-computation.
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In general, this contribution deals with exploitation of logical reduction tech-
niques in database theory. This approach unifies different aspects, related to
both schema and data evolution in databases, into a single framework. It is
assumed that the reader is familiar with database theory as presented in [1] and
has logical background as described in [15].

The used logical reduction techniques come in the form of Feferman-Vaught
reduction sequences and translation schemes, known also in model theory as
interpretations. The interpretations give rise to two induced maps, translations
and transductions. Transductions describe the induced transformation of data-
base instances and the translations describe the induced transformations of
queries. Translation schemes appear naturally in the context of databases: The
first example is the vertical decomposition of a relation scheme into two relation
schemes with overlapping attribute sets. Also the reconstruction of the original
scheme of the vertical decomposition can be looked at as translation scheme.
The same is true for horizontal decompositions and the definition of views. More
surprisingly, also updates can be cast into this framework. Finally, translation
schemes describe also the evolution of one database scheme over different gen-
erations of database designs.

The paper is structured in the following way. Section 2 presents short review
of the related works. Section 3 provides the definitions and main results, related
to syntactically defined translation schemes. Section 4 is dedicated to handling
of queries under restructuring of databases. Section 5 is dedicated to handling of
queries under database updates. Section 6 summarizes the paper.

2 Related Works

Maintaining dynamic databases, have a long history, cf. [9–11,13]. One of the
most recent paper is [21], inspired by [31]. Like [21], we are also “interested in
some arbitrary but fixed query on a finite structure, which is subject to an ongoing
sequence of local changes, and after each change the answer to the query should
remain available.”

In [21], the local changes of the database were limited to elements, which
are constantly inserted in and deleted from the database. We take the following
verbatim from the Conclusion and future work section of [21]: We think that it
is interesting to consider updates that are induced by first-order formulae. On
the one hand one can consider formulae which induce updates directly to the
structure, i.e. consider updates that change all tuples with the property defined
by the formula. On the other hand one can perform canonical updates to one
structure and consider the changes that are induced on a first-order interpreted
structure. In this paper, we propose a unified logic based approach to mainte-
nance of queries under database changes. We show how this approach works not
only for FOL but also for different extensions of it, used in the database theory.

In [26], the incremental view maintenance problem was investigated from an
algebraic perspective. The author constructed a ring of databases and used it as
the foundation of the design of a query calculus that allowed to express powerful
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aggregate queries. In this framework, a query language needed to be closed under
computing an additive inverse (as a generalization of the union operation on
relations to support insertions and deletions) and the join operation had to be
distributive over this addition to support normalization, factorization, and the
taking of deltas of queries.

Some propagation techniques for view updates may be found in [3]. In [24],
the complexity of testing the correctness of an arbitrary update to a database
view is analyzed, coming back to constant-complement approach of Bancilhon
and Spyratos, cf. [5]. We must mention the recent exciting works [16–18,20,23],
which use propagation techniques for view updates as well. However, no one of
them considers the question in comparable generality. In fact, we do not need
most of usually used additional assumptions. For example, we do not need the
structures to be ordered. Moreover, we allow both restructuring of the database
and insertion, deletion or set operations under the same logical framework. In
addition, we do not restrict ourselves to the use of FOL but rather different its
extensions.

3 Translation Schemes

In this section, we introduce the general framework for syntactically defined
translation schemes in terms of databases. We assume that the reader is familiar
with precise definitions of extensions of FOL, cf. [25]. The notion of abstract
translation schemes comes back to Rabin, cf. [29]. The translation schemes are
also known in model theory as interpretations, as described in particular in [25].
The definition is valid for a wide class of logics or query languages, including
Datalog or Second Order Logic (SOL) as well as FOL, MSOL, TC, n-TC,
LFP or n-LFP . However, we start from Relational Calculus in the form of
FOL. Occasionally, we use Relational Algebra expressions when they are more
convenient to readers.

We follow Codd’s notations, cf. [7]. Database systems should present the
user with tables called relations (R1, R2, . . .) and their columns are headed
by attributes (A1, A2, . . .) for a relation is called the schema for that relation
(R1[Ā], R2[B̄], . . .). The set of schema for the relations (R,S, . . .) is called a rela-
tional database schema, or just database schema. The row of a relation (t) are
called tuples. A tuple has one component (t[A1], t[A2], . . . ) for each attribute of
the relation. We shall call a set of tuples for a given relation an instance (I(R1),
I(R2), . . . ) of that relation.

Definition 1 (Translation Schemes Φ). Let R and S be two database
schemes. Let S = (S1, . . . , Sm) and let ρ(Si) be the arity of Si. Let Φ =
〈φ, φ1, . . . , φm〉 be FOL formulae over R. Φ is k–feasible for S over R if φ has
exactly k distinct free FOL variables and each φi has kρ(Si) distinct free first
order variables. Such a Φ = 〈φ, φ1, . . . , φm〉 is also called a k–R–S–translation
scheme or, in short, a translation scheme, if the parameters are clear in the
context.
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If k = 1 we speak of scalar or non–vectorized translation schemes.
If φ is a tautology, then the translation scheme is non–relativized.
Otherwise, φ defines relativization of the new database domain.

The formulae φ, φ1, . . . , φm can be thought of as queries. φ describes the
new domain, and the φi’s describe the new relations. Vectorization creates one
attribute out of a finite sequence of attributes. The use of vectorized translation
schemes in the context of databases is shown in particular in [2] and [27]. We shall
discuss concrete examples after we have introduced the induced transformation
of database instances.

A (partial) function Φ∗ from R instances to S instances can be directly
associated with a translation scheme Φ.

Definition 2 (Induced Map Φ∗). Let I(R) be a R instance and Φ be k–
feasible for S over R. The instance I(S)Φ is defined as follows:

1. The universe of I(S)Φ is the set I(S)Φ = {ā ∈ I(R)k : I(R) |= φ(ā)}.
2. The interpretation of Si in I(S)Φ is the set

I(S)Φ(Si) = {ā ∈ I(S)Φ
ρ(Si) : I(R) |= (φi(ā))}.

Note that I(S)Φ is a S instance of cardinality at most | R |k.
3. The partial function Φ∗ : I(R) → I(S) is defined by Φ∗(I(R)) = I(S)Φ. Note

that Φ∗(I(R)) is defined iff I(R) |= ∃x̄φ.

Φ∗ maps R instances into S instances, by computing the answers to the
queries φ1, . . . , φm over the domain of R specified by φ, see Fig. 1. The definition
of Φ∗ can be extended on the case of sub-sets of R instances in the regular way.

Next we want to describe the way formulae (query expressions) are trans-
formed when we transform databases by Φ∗. For this a function Φ# from L1–
formulae over S L2–formulae over R can be directly associated with a translation
scheme Φ, see Fig. 1.

Definition 3 (Induced map Φ#). Let θ be a S–formula and Φ be k–feasible
for S over R.The formula θΦ is defined inductively as follows:

1. For each Si ∈ S and θ = Si(x1, . . . , xl) let xj,h be new variables with j ≤ l
and h ≤ k and denote by x̄j = 〈xj,1, . . . , xj,k〉. We make θΦ = φi(x̄1, . . . , x̄l).

2. For the boolean connectives, the translation distributes, i.e. if θ = (θ1 ∨ θ2)
then θΦ = (θ1Φ ∨ θ2Φ) and if θ = ¬θ1 then θΦ = ¬θ1Φ, and similarly for ∧.

3. For the existential quantifier, we use relativization, i.e., if θ = ∃yθ1, let ȳ =
〈y1, . . . , yk〉 be new variables. We make θΦ = ∃ȳ(φ(ȳ) ∧ (θ1)Φ).

4. For infinitary logics: if θ =
∧

Ψ then θΦ =
∧

ΨΦ.
5. For second order variables U of arity � and ā a vector of length � of first order

variables or constants we translate V (ā) by treating V like a relation symbol
and put θΦ = ∃V (∀v̄(V (v̄) → (φ(v̄1) ∧ . . . φ(v̄�) ∧ (θ1)Φ))).

6. For LFP , if θ = n-LFPx̄, ȳ, ū, v̄θ1 then θΦ = nk-LFPx̄, ȳ, ū, v̄θ1Φ.
7. For TC: if θ = n-TCx̄, ȳ, ū, v̄θ1 then θΦ = nk-TCx̄, ȳ, ū, v̄θ1Φ.
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8. The function Φ# : L1 over S → L2 over R is defined by Φ#(θ) = θΦ.
9. For a set of S–formulae Σ we define

Φ#(Σ) = {θΦ : θ ∈ Σ or θ = ∀ȳ(Si ↔ Si)}

This is to avoid problems with Σ containing only quantifier free formulae,
as Φ#(Σ) need not be a set of tautologies even if Σ is. If Σ contains only
quantifier free formulae, we can reflect effect of relativization.

Observation 1. 1. Φ#(θ) ∈ FOL (SOL, TC, LFP ) if θ ∈ FOL(SOL,
TC,LFP ), even for vectorized Φ.

2. Φ#(θ) ∈ MSOL provided θ ∈ MSOL, but only for scalar Φ.
3. Φ#(θ) ∈ nk-TC(nk-LFP ) provided θ ∈ n-TC(n-LFP ) and Φ is a k–feasible.
4. Φ#(θ) ∈ TCkn(LFP kn, Lkn

∞ω) provided θ ∈ TCn(LFPn, Ln
∞ω) and Φ is a

k–feasible.

The following fundamental theorem is folklore and establishes the correctness
of the translation, cf. [15]. Figure 1 illustrates the fundamental theorem.

Theorem 1. Let Φ = 〈φ, φ1, . . . , φm〉 be a k–R–S–translation scheme, I(R)
be a R-instance and θ be a FOL–formula over S. Then I(R) |= Φ#(θ) iff
Φ∗(I(R)) |= θ.

Φ∗

R-instance −→ S-instance

Φ

R-formula ←− S-formula

Φ#

I(R) |= Φ#(θ) iff Φ∗(I(R)) |= (θ)

Fig. 1. Components of translation schemes the fundamental property

Now, we can define the composition of translation schemes:

Definition 4 (Composition of Translation Schemes). Let Ψ =
〈ψ,ψ1,. . . ,ψm1〉 be a k1–R–S–translation scheme, and let Φ = 〈φ, φ1, . . . , φm2〉
be a k2–S–T–translation scheme. Then we denote by Ψ ◦ Φ the (k1 · k2)–R–T–
translation scheme given by 〈Ψ#(φ),Ψ#(φ1), . . . ,Ψ#(φm1)〉. Ψ(Φ) is called the
composition of Φ with Ψ.
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One can easily check that the syntactically defined composition of translation
schemes has the following semantic property: Ψ ◦ Φ(I(R)) = Ψ(Φ(I(R))).

Now, we give a line of examples of translation schemes, relevant to the field
of database theory. Assume that in all the examples, we a given database scheme
R = (R1, R2, . . . , Rn).

Example 1 (Restriction of the Domain). Assume we want to restrict the domain
of R by allowing only elements, which satisfy some condition, defined by formula
φ(x) in the chosen language (FOL, relation calculus, etc.). The corresponding
translation scheme ΦRestriction is:

ΦRestriction = 〈φ,R1, R2, . . . , Rn〉.

Example 2 (Deletion of a Definable set of Tuples from a Relation). Assume we
want to delete from a relation, say, Ri of the R a set of tuples, which do not satisfy
some condition, defined by formula θ. The corresponding translation scheme
ΦDT is:

ΦDT = 〈x ≈ x,R1, . . . , Ri−1, Ri ∧ ¬θ,Ri+1, . . . , Rn〉.
Example 3 (Insertion of a Tuple into a Relation). Assume we want to insert
a tuple into a relation, say, Ri[A1, . . . , Aki

] of the R, where Ri contains ki

attributes. The corresponding translation scheme ΦInT is a parametrized transla-
tion scheme with ki parameters a1, . . . , aki

, which can be expressed, for example,
in FOL in the following way:

ΦInT = 〈x ≈ x,R1, R2, . . . , Ri−1, (Ri

∨
(

∧

1≤j≤ki

xj ≈ aj)), Ri+1, . . . , Rn〉.

Example 4 (Vertical Decomposition (Projections)). The vertical decomposition,
given by a translation scheme in FOL notation, is:

ΦV D = 〈x ≈ x, φ1, . . . , φn〉,

where each φi is of the form φi(x̄i) = ∃ȳiRi(x̄i, ȳi). Ri is a relation symbol from
R and x̄i is a vector of free variables. In relational algebra notation, this amounts
to φi(x̄i) = πx̄i

Ri.

Example 5 (Vertical Composition (Join)). The vertical composition, given by a
translation scheme in FOL notation, is:

ΦV C = 〈x ≈ x, φ1, . . . , φn〉,

where each ψi is of the form φi(x̄i) =
∧k

l=1 Ril
(x̄il

), Ril
is a relation symbol

from R and x̄i is a vector of free variables. Furthermore ∪j x̄ij
= x̄i and for all

x̄ij1
there is x̄ij2

such that x̄ij1
∩ x̄ij2

�= ∅. In relational algebra notation, this
amounts to φi(x̄i) =��k

l=1 Ril
. If there are no common free variables, this just

defines the Cartesian product.



198 E.V. Ravve

Example 6 (Horizontal Decomposition (Exceptions)). Assume we want to
decompose a relation, say, Ri[A1, . . . , Aki

] into two parts R1
i [A1, . . . , Aki

] and
R2

i [A1, . . . , Aki
] such that all tuples of the first part satisfy some definable con-

dition (formula) θ and all tuples of the second part do not. Such a transformation
is called horizontal decomposition of Ri along θ and in FOL notation is:

ΦHD = 〈x ≈ x,R1, R2, . . . , Ri−1, Ri ∧ θ,Ri ∧ ¬θ,Ri+1, . . . , Rn〉.

Example 7 (Horizontal Composition (Union)). Assume we want to com-
pose a new relation, say, Rn+1[A1, . . . , Akn+1 ] from two given relations
Ri1 [A1, . . . , Akn+1 ] and Ri2 [A1, . . . , Akn+1 ]. Such a transformation is called hor-
izontal composition of Rn+1 and in FOL notation is:

ΦHC = 〈x ≈ x,R1, R2, . . . , Rn, Ri1 ∨ Ri2〉.

The translation ΦHC is called the horizontal composition (union) of Ri1 and Ri2 .

Example 8 (Definition of a View). Assume we are given a database scheme that
contains four relations: R = (R1, R2, R3, R4). Assume that we want to define a
view of a snapshot that is derived from the database by applying the following
query, given in the format of relational algebra: φV iew = (πAR1 ∪ R2) �� (R3 −
σξR4). In this case, the corresponding translation scheme is:

ΦV iew = 〈x = x, φV iew〉.

4 Handling Queries Under Restructuring of Databases

In terms of translation schemes, the problem of handling queries under restruc-
turing of databases may be paraphrased in the following way, see Fig. 2:

Given: Two different generations of the same database, say, Rg and Rg+1.
Additionally, we have two maps: Φg and Ψg, where Φg produces Rg+1 from Rg

and Ψg is the corresponding reconstruction map. Finally, there is an application
(translation scheme) Φapp

g on the gth generation.

Find: An application (translation scheme) Φapp
g+1 on the (g + 1)th generation,

such that: Φapp∗
g+1 (Φ∗

g(R
g)) = Φapp∗

g (Rg).

Example 9. Assume that we are given database scheme Rg = (Rg) and two
restructurings, defined by the following pair of translation schemes:

1. Rg+1 = (Rg+1
1 , Rg+1

2 ), Ψg = (ψg) and ψg = (Rg+2
1 �� Rg+2

2 ).
2. Rg+2 = (Rg+2

1 , Rg+2
2 , Rg+2

3 , Rg+2
4 ), Ψg+1 = (ψg+1

1 , ψg+1
2 ) and ψg+1

1 =
(πARg+2

1 ∪ Rg+2
2 ), ψg+1

2 = (Rg+2
3 − σζR

g+2
4 ).

Assume that Qg is a simple modification query on Rg, which deletes tuples
from Rg, according to some condition θ, expressed in terms of Rg. The set of
deleted tuples is defined by �θR

g rather than given by enumeration. In such a
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Outputg+1 Outputg

Rg+1 Rg
Φg

Ψg

Φapp
g+1 Φapp

g

Fig. 2. Query on two different generations of database

case, we want to understand which tuples of which relations from Rg+2 must
be deleted, or moreover not only deleted, in order to produce the same output.
Using substitutions, we obtain over Rg+2:

�Ψ#
g+1(Ψ

#
g (θ))((πARg+2

1 ∪ Rg+2
2 ) �� (Rg+2

3 − σζR
g+2
4 )).

From Example 9, we observe that the derived set of tuples, defined by
Ψ#

g+1(Ψ
#
g (θ)), seems to be already in terms of Rg+2. However, the correspond-

ing modification procedure can not be directly presented in terms of updates of
relations from Rg+2.

4.1 Handling of Queries over Disjoint Unions and Shufflings

The Disjoint Union (DJ) is the simplest example of juxtaposition, where none
of the components are linked to each other. Assume we have a set of database
schemes Rı’s and we want to define a database scheme that represents their
DJ . In this case, we add an, so called, index scheme RI , which specifies the
parameters of the composition of the database schemes. The index scheme is a
database scheme, whose instances are used in combining disjoint databases into
a single database.

Definition 5 (Disjoint Union). Let RI be a database scheme chosen as an
index scheme RI = (RI

1, . . . , R
I
jI ) with domain I and Rı = (Rı

1, . . . , R
ı
jı) be

a database scheme with domain Dı. In the general case, the resulting database
scheme R=

⊔
ı∈IRı with the domain I ∪ ⋃̇

ı∈IDı will be

R = (P (ı, x), Index(x), RI
j (1 ≤ j ≤ jI), Rı

ji(ı ∈ I, 1 ≤ ji ≤ jı)) for all ı ∈ I,

– the instance of P (ı, x) in R contains a tuple (ı, x) iff x came from Rı;
– the instance of Index(x) in R contains x iff x came from I;
– RI

j (1 ≤ j ≤ jI) are from RI and
– Rı

ji(ı ∈ I, 1 ≤ ji ≤ jı) are from Rı
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Now, we give the classical theorem for the DJ , cf. [19,22].

Theorem 2 (Feferman-Vaught-Gurevich). Let RI be an index scheme with
domain of size k and let R=

⊔
ı∈IRı. For any FOL formula ϕ over R there are:

1. formulae of FOL ψ1,1, . . . , ψ1,j1 , . . . , ψk,1, . . . , ψk,jk

2. a formula of MSOL ψI

3. a boolean function Fϕ(b1,1, . . . , b1,j1 , . . . , bk,1, . . . , bk,jk
, bI)

with the formulae in 1-2 having the following property:

I(Rı) |= ψı,j iff bı,j = 1 , and I(RI) |= ψI iff bI = 1

and, for the boolean function of 3, we have

I(R) |= ϕ iff Fϕ(b1,1, . . . , b1,j1 , . . . , bk,1, . . . , bk,jk
, bI) = 1.

Note that we require that Fϕ and the ψı,j’s depend only on ϕ, k and
R1, . . . ,Rk but not on the instances involved.

For the case of the DJ , we assume that domains of databases in each site are
disjoint. However, as a rule, the values of certain attributes may appear at several
sites. We can assume that the domain of the index scheme is fixed and known,
however we can not (without additional assumption) fix finite number of one
place predicates. This puts the main limitation on the use of Theorem 2. More-
over, even if φ= exists for some fixed database instance, it must be independent
upon the current content of database and must be formulated ahead syntacti-
cally. In addition, it must be relatively small, as otherwise it causes explosion in
size of other formulae. Now, we apply logical machinery.

Definition 6 (Partitioned Index Structure). Let I be an index structure
over τind. I is called finitely partitioned into � parts if there are unary predicates
Iα, α < �, in the vocabulary τind of I such that their interpretation forms a
partition of the universe of I.

In addition to the DJ , one may produce a new structure by shuffling.

Definition 7 (Shuffle over Partitioned Index Structure). Let Ai, i ∈ I be
a family of structures such that for each i ∈ Iα: Ai

∼= Bα. In this case, we say
that

⊎I
α<β Aα is the shuffle of Bα along the partitioned index structure I.

We generalize Theorem 2 by introducing abstract preservation properties in
the following way:

Definition 8 (Preservation Properties with Fixed Index Set). For two
logics L1 and L2 we define Preservation Property for Disjoint Union

Input of operation: Indexed set of structures;
Preservation Property: if for each i ∈ I (index set) Ai and Bi satisfy the

same sentences of L1 then the disjoint unions
⊔

i∈I Ai and
⊔

i∈I Bi satisfy
the same sentences of L2.

Notation: DJ-PP (L1,L2)
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Definition 9 (Preservation Properties with Variable Index Struc-
tures). For two logics L1 and L2 we define Preservation Properties for Shuffle

Input of operation: A family of structures Bα : α < β and a (finitely) parti-
tioned index structure I with Iα a partition.

Preservation Property: Assume that for each α < β the pair of structures
Aα,Bα satisfy the same sentences of L1, and I, I satisfy the same MSOL-
sentences. Then the schuffles

⊎I
α<β Aα and

⊎I
α<β Bα satisfy the same sentences

of L2.

Notation: Shu-PP (L1,L2) (FShu-PP (L1,L2))

Now, we list which Preservation Properties hold for which logics.

Theorem 3. Let I be an index structure and L be any of FOL, FOLm,k, Lω
ω1,ω,

Lk
ω1,ω, MSOLm, MTCm, MLFPm, or FOL[Q]m,k (Lω1,ω[Q]k) with unary gen-

eralized quantifiers. Then DJ-PP (L,L) and FShu-PP (L,L) hold. Note that
this includes DJ-PP (FOLm,k, FOLm,k) and FShu-PP (FOLm,k, FOLm,k)
with the same bounds for both arguments, and similarly for the other logics.

Proof.

FOL and FOLm,k: The proofs for FOL and MSOL are classical, see in par-
ticular [6]. Extension for FOLm,k can be done directly from the proof for
FOL.

MLFP and MLFPm: The proof for MLFP was given in [4].
Lω1,ω(Q)k: The proof was given in [8].
MTCm: The proof was given in [30].

Now, we recall that analyzing Example 9, we decided that we are interested
to derive from θ of �Ψ#

g+1(Ψ
#
g (θ))((πARg+2

1 ∪ Rg+2
2 ) �� (Rg+2

3 − σζR
g+2
4 )) some

formulae: θR
1 , . . . , θR

ı over R and θS
1 , . . . , θS

j over S, which we will apply to R and
S respectively. Now, we formulate the requirement more formally:

Definition 10 (Reduction Sequence). Let I be a finitely partitioned τind-
index structure and L be logic.

Let A =
⊎I

α<β Bα be the τ–structure which is the finite shuffle of the τα-
structures Bα over I or another combination of the components. A L1-reduction
sequence for shuffling for φ ∈ L2(τshuffle) is given by

1. a boolean function Fφ(b1,1, . . . , b1,j1 , . . . , bβ,1, . . . , bβ,jβ
, bI,1, . . . , bI,jI

)
2. set Υ of L1–formulae Υ = {ψ1,1, . . . , ψ1,j1 , . . . , ψβ,1, . . . , ψβ,jβ

}
3. MSOL–formulae ψI,1, . . . , ψI,jI

and has the property that for every A, I and Bα as above with Bα |= ψα,j iff
bα,j = 1 and BI |= ψI,j iff bI,j = 1 we have

A |= φ iff Fφ(b1,1, . . . , b1,j1 , . . . , bβ,1, . . . , bβ,jβ
, bI,1, . . . , bI,jI

) = 1.

Note that we require that Fφ and the ψα,j’s depend only on φ,β and τ1, . . . , τβ

but not on the structures involved.
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The following theorem partially answers the question of Example 9.

Theorem 4. Let L be any of FOL, FOLm,k, Lω
ω1,ω, Lk

ω1,ω MSOLm, MTCm,
MLFPm, or FOL[Q]m,k with unary generalized quantifiers. There is an algo-
rithm, which for given L, τind, τα, α < β, τshuffle and φ ∈ L(τshuffle) produces
a reduction sequence for φ for (τind, τshuffle)-shuffling. However, Fφ and the
ψα,j are tower exponential in the quantifier rank of φ. Furthermore, F depends
on the MSOL–theory of the index structure restricted to the same quantifier
rank as φ.

Proof. By analyzing the proof of Theorem 3.

Note that Theorem 4 is not true for all logics as shown in [30].

4.2 Handling Queries Over Φ–Sum

Combining Disjoint Unions and Shuffles with translation schemes, we can reach
a very large set of useful structures. In this section, we present our new results in
the field. We expend the classical Theorem 2 and more recent Theorems 3 and
4 to the cases, when translation schemes are involved in process of construction
of the desired structure from the Disjoint Unions and Shuffles.

Definition 11 (Φ–Sum for extensions of FOL). Let I be a finitely parti-
tioned index structure and L be any of FOL, MSOL, MTC, MLFP , or FOL
with unary generalized quantifiers. Let A =

⊔
i∈IAi or A =

⊎I
α<β Bα be a τ–

structure, where each Ai is isomorphic to some B1, . . . ,Bβ over the vocabularies
τ1, . . . , τβ, in accordance with the partition.

For a Φ be a scalar (non–vectorized) τ–σ L–translation scheme, the Φ–sum
of B1, . . . ,Bβ over I is the structure Φ∗(A), or rather any structure isomorphic
to it.

Theorem 5. Let RI be a finitely partitioned index database scheme, L be any
of FOL, MSOL, MTC, MLFP , MSOL or FOL with unary generalized quan-
tifiers. Let R be the Φ–sum of RB1 ,. . . ,RBβ

over I, as above. For every ϕ ∈ L(τ)
there are

1. a boolean function FΦ,ϕ(b1,1, . . . , b1,j1 , . . . , bβ,1, . . . , bβ,jβ
, bI,1, . . . , bI,jI

)
2. L–formulae ψ1,1,. . . ,ψ1,j1 , . . . ,ψβ,1,. . . ,ψβ,jβ

3. and MSOL–formulae ψI,1,. . . ,ψI,jI

such that for every R, RI and RBı
as above with RBı

|= ψı,j iff bı,j = 1 and
RI |= ψI,j iff bI,j = 1 we have

R |= ϕ iff FΦ,ϕ(b1,1, . . . , b1,j1 , . . . , bβ,1, . . . , bβ,jβ
, bI,1, . . . , bI,jI

) = 1.

Moreover, FΦ,ϕ and the ψı,j are computable from Φ# and ϕ , but are tower
exponential in the quantifier depth of ϕ1.
1 Note that in most real applications, Fφ and the ψα,j are single exponential in the

quantifier rank of φ.
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Proof. By analyzing the proof of Theorem 4 and using Theorem 1.

Finally, we receive our main result, concerning handling of queries under restruc-
turing of databases:

Theorem 6. Let I be an index, L be FOL (or rather any language for which
Theorem 5 holds), and let Rg+1 be the generalized sum of Rg+1′

1 ,. . . ,Rg+1′
� over

I, as usual. Let Φg, Ψg and Φup
g of the logic L be as above. Any query Φapp

g over
Rg gives the corresponding query Φapp

g+1 over Rg+1, where Φapp
g+1 = Φapp

g (Ψg)
and each ϕapp

g+1,i in Φapp
g+1 may be computed with the help of the corresponding

boolean function F{Φg,Ψg,Φapp
g },ϕapp

g+1,i
(b1,1,. . .,b1,j1 ,. . .,b�,1, . . .,b�,j�

,bI,1,. . .,bI,jI
)

as in Theorem 5.

5 Handling Queries Under Database Updates

Assume that we have a database scheme R and a query (translation scheme)
ΦV iew, which defines the view. Assume that R was updated by translation
scheme Φup. In terms of translation schemes, we obtain the following formulation:

Given: Translation scheme ΦV , and the database update Φup
DB .

Find: A set of view updates Φincr
V that uses the old content of the view and

delete from and inserts in the view some set of tuples defined on the source
database.

This leads to the situation on Fig. 3, where Φincr
V uses both: database and

the old view. For the case of queries defined in relational algebra and for updates
given as deletion and insertion of a (undefined) set of tuples, the question was
investigated in [28]. For the case of Datalog, the answer for the same kind of
updates is given in [12]. However, the techniques were defined for the specific
languages. Moreover, the update operations, used in both cases are data changes.
It means that sets of tuples, which we insert in relations or delete from relations
are not defined, but given by enumeration.

DBold DBnew

V old V new

Φup
DB

Φ V

Φincr
V

Fig. 3. Incremental view maintenance under update.

Recently, in [21], dynamic problem was introduced in the following way. For
a sequence w = σ1, . . . , σm ∈ �∗

can(τ) of operations (update translation schemes
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like Φup
DB in our formulation) and a structure U , w(U) is the result of subsequently

applying the operations to U (DBnew), and U (DBold) if w = ε.

Definition 12 ([21]). Let S be a Boolean query on τ -structures. The dynamic
problem D(S) associated with S is the set of pairs D = (U , w) where U ∈ Fin(τ)
and w ∈ �can(τ) is an update sequence with w(U) ∈ S. The query S is called
the underlying static problem of D(S).

The dynamic problems are handled by incremental evaluation systems. These
systems allow auxiliary relations over the universe of the input structure U .
Incremental Evaluation System (IES) for a dynamic problem D(S) consists of
a set of logical interpretations (translation schemes) and an additional logical
sentence ϕ. Given an initial structure D, the IES defines auxiliary relations over
the universe of U by an interpretation called the initial interpretation.

In practice, we are interested in update operations, which we call relational
updates, that means definable updates. Indeed, as a rule, a regular query that
deletes (inserts) data from (to) a database looks like: delete from relation R all
tuples, such that ...

Let us use one example from [28] for our purposes and paraphrase it the
following way:

Example 10. Given database scheme R = (R1, R2, R3, R4) and ΦV = (φ), where

φ = (πAR1 ∪ R2) �� (R3 − σζR4).

Suppose a database update causes a set of tuples �θR4 to be deleted, where θ
is a formula that defines the set of tuples to be deleted.

The update changes only one relation and its translation scheme
is: Φup

DB = (R1(x1, . . . , xn1), R2(x1, . . . , xn2), R3(x1, . . . , xn3), R4(x1, . . . , xn4)∧
¬θ(x1, . . . , xn4)), where θ, in general, contains parameters.

In terms of FOL, the query that defines the view is:
φ(x1, . . . , xn3) = ((∃x2 . . . ∃xn1R1(x1, . . . , xn1) ∨ R2(x1))∧

(R3(x1, . . . , xn3) ∧ ¬(R4(x1, . . . , xn3) ∧ ζ(x1, . . . , xn3)))).
After the update, made by Φup

DB , the query is:
Φup#

DB (φ(x1, . . . , xn3)) = ((∃x2 . . . ∃xn1R1(x1, . . . , xn1) ∨ R2(x1))∧
(R3(x1, . . . , xn3) ∧ ¬((R4(x1, . . . , xn3)
∧¬θ(x1, . . . , xn3)) ∧ ζ(x1, . . . , xn3)))).

First, we show:

((R4(x1, . . . , xn3) ∧ ¬θ) ∧ ζ) =
(R4(x1, . . . , xn3) ∧ ζ ∧ ¬ζ) ∨ (R4(x1, . . . , xn3) ∧ ζ ∧ ¬θ) =
(R4(x1, . . . , xn3) ∧ ζ) ∧ (¬θ ∨ ¬ζ) =
(R4(x1, . . . , xn3)∧ζ ∧ ¬R4(x1, . . . , xn3)) ∨ ((R4(x1, . . . , xn3)∧ζ) ∧ (¬θ ∨ ¬ζ)) =
(R4(x1, . . . , xn3) ∧ ζ) ∧ (¬R4(x1, . . . , xn3) ∨ ¬ζ ∨ ¬θ) =
(R4(x1, . . . , xn3) ∧ ζ) ∧ ¬(R4(x1, . . . , xn3) ∧ ζ ∧ θ).

Now, we use the equivalence, obtained above, for Φup#
DB (φ(x1, . . . , xn3)):
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Φup#
DB (φ) = ((∃x2 . . . ∃xn1R1(x1, . . . , xn1) ∨ R2(x1))∧

(R3(x1, . . . , xn3) ∧ ¬((R4(x1, . . . , xn3) ∧ ¬θ) ∧ ζ))) =
((∃x2 . . . ∃xn1R1(x1, . . . , xn1) ∨ R2(x1))∧
(R3(x1, . . . , xn3) ∧ ¬((R4(x1, . . . , xn3) ∧ ζ)∧
¬(R4(x1, . . . , xn3) ∧ ζ ∧ θ)) =
((∃x2 . . . ∃xn1R1(x1, . . . , xn1) ∨ R2(x1))∧
((R3(x1, . . . , xn3) ∧ ¬(R4(x1, . . . , xn3) ∧ ζ))∨
(R3(x1, . . . , xn3) ∧ (R4(x1, . . . , xn3) ∧ ζ ∧ θ))) =

((∃x2 . . . ∃xn1R1(x1, . . . , xn1) ∨ R2(x1)) ∧ (R3 ∧ ¬(R4 ∧ ζ)))∨
((∃x2 . . . ∃xn1R1(x1, . . . , xn1) ∨ R2(x1)) ∧ (R3 ∧ (R4 ∧ ζ ∧ θ))) =
φ(x1, . . . , xn3)∨
((∃x2 . . . ∃xn1R1(x1, . . . , xn1) ∨ R2(x1)) ∧ (R3(x1, . . . , xn3)∧
(R4(x1, . . . , xn3) ∧ ζ(x1, . . . , xn3) ∧ θ(x1, . . . , xn3)))).

The second part of Φup#
DB (φ(x1, . . . , xn3)) is exactly

((πAR1 ∪ R2) �� (R3 ∩ σζ �θ R4)),

if written in relational algebra notation.

Example 10 shows that the only tools, which we really used in order to
obtain the new propagation rules, were logical equivalences. Note additionally
that, in general, any update translation scheme Φup = (φ1, . . . , φi, . . . , φn), which
deletes (inserts) tuples, according to condition θ, from (to) relation Ri of data-
base scheme R = (R1, . . . , Ri, . . . , Rn) is in the form: φj = Rj if i �= j and
φi = (Ri ∧ ¬θ) (or φi = (Ri ∨ θ) for insertion of tuples, described by θ), without
relativization but parametrized.

Now, the following proposition generalizes the example and gives the follow-
ing answer:

Proposition 1. For any formula ξ of FOL, MSOL or SOL and for any update
translation scheme Φup of the same logic, it holds: Φup#(ξ) = ξ or there is a set
of formulae ξ′

i, 1 ≤ i ≤ n of the same logic, such that Φup#(ξ) = (. . . ((ξ ◦1 ξ′
1)◦2

ξ′
2) . . . ◦n ξ′

n), where ◦i ∈ {∧,∨}.
Proof. By induction on ξ.

To show the same fact for LFP , IFP and TC, we use:

Theorem 7. Given ψ1(x̄,X, ȳ) and ψ2(x̄, X, z̄), it holds:

LFP x̄, X, ū(ψ1(x̄, X, ȳ) ∨ ψ2(x̄, X, z̄)) = LFP x̄, X, ū(LFP x̄, X, ū(ψ1(x̄, X, ȳ)) ∨ ψ2(x̄, X, z̄));

IFP x̄, X, ū(ψ1(x̄, X, ȳ) ∨ ψ2(x̄, X, z̄)) = IFP x̄, X, ū(IFP x̄, X, ū(ψ1(x̄, X, ȳ)) ∨ ψ2(x̄, X, z̄));

TCx̄, X, ū(ψ1(x̄, X, ȳ) ∨ ψ2(x̄, X, z̄)) = TCx̄, X, ū(TCx̄, X, ū(ψ1(x̄, X, ȳ)) ∨ ψ2(x̄, X, z̄)).

The same holds for ∧ as well.

Proof. The proof follows directly from the semantics of LFP , IFP and TC.

Now, it remains to combine Proposition 1 and Theorem 7 with the following
results, proven in [14]:
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Theorem 8. If ϕ is an LFP -formula and ϕ′ is an IFP -formula then there
is a first-order formula ψ, such that ϕ is equivalent to ∃(∀)ū′LFPx̄,X, ūψ
and there is an existential first-order formula ψ′, such that ϕ′ is equivalent to
∃(∀)ū′IFP x̄,X, ūψ′.

Theorem 9. Suppose that we have two constant c and d and in our model c �= d.
Let ϕ be an existential pos-TC-formula. Then ϕ is equivalent to a formula of
the form: TCx̄, x̄′, c, dψ(x̄, x̄′), where ψ is a first-order quantifier-free formula.

Finally, we receive our main result, concerning handling of queries under
database updates:

Theorem 10. Every query expressible in FOL, MSOL, SOL, LFP , IFP and
existential pos-TC allows incremental view re-computation.

Proof. Use Proposition 1 with Theorems 7, 8 and 9.

As I-DATALOG ≡ IFP and on ordered databases LFP (TC) covers poly-
nomial time (logarithmic space) computations, we, in particular, have:

Corollary 1. 1. Every I-DATALOG program allows incremental
re-computation.

2. On ordered databases every program, computable in polynomial time or loga-
rithmic space, allows incremental re-computation.

6 Discussion and Conclusions

The paper introduces a unified logic based approach to maintenance of queries
under database changes and shows how known results in translations schemes
transfer can be applied to particular problems in database maintenance. This
approach unifies different aspects, related to both schema and data evolution
in databases, into a single framework. The basic underlying notion of a logical
translation scheme and its induced maps, is based on the classical syntactic
notion of interpretability from logic, made explicit by M. Rabin in [29].

Analyzing computations on different generations of databases, using our gen-
eral technique, we encountered several problems with some kinds of rules, for
example, deletion over join. Systematically using the technique of translation
scheme, we introduced the notion of Φ-sums and showed how queries, express-
ible in different extensions of FOL may be handled over different generations of
the Φ-sums.

Moreover, using the technique of translation scheme, we introduced the
notions of an incremental view re-computations. We proved that every query
expressible in FOL, MSOL, SOL, LFP , IFP and existential pos-TC allows
incremental view re-computations. The last results lead to the corollary
that every I-DATALOG program allows incremental re-computation. More-
over, it follows from our main results that on ordered databases every pro-
gram, computable in polynomial time or logarithmic space, allows incremental
re-computation.
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Abstract. Controlled Interaction Execution has been developed as a
security server for inference control shielding an isolated, logic-oriented
information system when interacting over the time with a client by means
of messages, in particular for query and transaction processing. The con-
trol aims at preserving confidentiality in a formalized sense, intuitively
and simplifying rephrased as follows: Even when having (assumed) a
priori knowledge, recording the interaction history, being aware of the
details of the control mechanism, and unrestrictedly rationally reason-
ing, the client should never be able to infer the validity of any sentence
declared as a potential secret in the security server’s confidentiality pol-
icy. To enforce this goal, for each of a rich variety of specific situations a
dedicated censor has been designed. As far as needed, a censor distorts
a functionally expected reaction message such that suitably weakened or
even believably incorrect information is communicated to the client. In
this article, we consider selected results of recent and ongoing work and
discuss several issues for further research and development. The topics
covered range from the impact of the underlying logic, whether proposi-
tional or first-order or for non-monotonic beliefs or an abstraction from
any specific one, to the kind of the interactions, whether only queries or
also view publishing or updates or revisions or even procedural programs.

Keywords: A priori knowledge · Belief · Censor · Client state ·
Completeness · Confidentiality · Constraint satisfaction · Distortion ·
Evaluated secrecy · First-order logic · Guarded commands · Inference
control · Information system · Information flow control · Interaction his-
tory · Knowledge · Lying · Model theory · Monitoring · Non-monotonic
reasoning · Policy · Possibilistic secrecy · Proof theory · Program exe-
cution · Query answering · Rational reasoning · Refusal · Relational
database · Security automaton · Security invariant · Theorem proving ·
Update processing · View publishing · Weakening

1 Introduction

As surveyed in [11,12,17,34], Controlled Interaction Execution, CIE, has been
developed as a security server for inference control [9,54] shielding an isolated
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information system when interacting over the time with a client by means
of messages. Controlled interactions might comprise query answering, update
processing complemented with refreshment notifications, revision processing,
more generally transaction processing, even more generally execution of a proce-
dural program with guarded commands, and view publishing, in each case based
on logic-based formal semantics [1,63], like for relational databases.

Following the spirit of many other works on secrecy [28,61], a CIE-control
aims at provably preserving confidentiality in a fully formalized sense, intu-
itively and simplifying rephrased as follows: Even when having (assumed) a
priori knowledge, recording the interaction history, being aware of the details of
the control mechanism, and unrestrictedly rationally reasoning, the client should
never be able to infer the validity of any sentence declared as a potential secret in
the server’s confidentiality policy. In other words, the client should always believe
in the possibility that such a sentence is not valid in the underlying information
system, or at least not plausible. If interactions may modify the instance of the
information system, this requirement refers to either the current instance only
or to previous instances as well. Moreover, the notion of validity might depend
on the kind of the underlying information system, e.g., whether seen as pro-
viding a formal and either complete or incomplete representation of an outside
“real world”, or whether treated as formally reflecting somebody’s internal belief
under non-monotonic reasoning.

To enforce this goal, for each of a rich variety of specific situations a dedicated
censor has been designed. Basically, on a client’s request or triggered by a spon-
taneous activity of the information system, such a censor first inspects the func-
tionally expected interaction behavior, whether it would preserve confidentiality
in the strong sense sketched above. If it does, the expected reaction message is
sent to the client. Otherwise, the censor determines a distorted reaction message
that first of all preserves confidentiality and additionally should be as informative
as possible for the sake of the conflicting goal of availability. Distortions will lead
the system to communicate suitably weakened or even believably incorrect data
to the client, depending on the basic enforcement strategy of the chosen censor.
In particular, the choice has to consider whether reaction messages containing
lies are seen as socially acceptable for the concrete application.

In principle, at any point of time, the decision taken and the distortions made
by the censor not only have to consider the past of the interactions but also have
to ensure the option to continue with interactions in the future. Accordingly, the
effectiveness of each censor is based on maintaining a suitably formed security
invariant. In a sense, the control instantiated by a censor is proceeding like a
security automaton [7,51,74], which monitors an unlimited stream of messages
built from a client’s requests and the corresponding reactions.

Typically, checking the pertinent invariant for a tentative reaction message
requires to solve one or several entailment problems in the formal logics on which
the underlying information system is based or by which the client’s reasoning
is assumed to be captured, respectively. Hence, from an algorithmic point of
view, in general the censor has to be supported by applicable theorem provers.
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For special cases, however, we would prefer to exploit more dedicated procedures
to enhance the runtime efficiency.

In this article, we consider a selection of the results of recent and ongoing
work about CIE and discuss several issues for further research and development:

– In Sect. 2, within a simple framework based on finite classical propositional
logic, we introduce into the main concepts of CIE for controlling sequences
of queries and in particular present the basic approaches to construct censors
employing refusals as the strongest form of weakening, lying, and a combina-
tion of refusal and lying, respectively.

– In Sect. 3 we abstract from using a specific logic, in particular to compare the
basic approaches and to determine their inherent complexity.

– In Sect. 4 we examine the problems arising from essentially increasing the
expressiveness of the underlying logic, more specifically of using first-order
logic as a foundation of relational databases, in particular enabling to deal
with open queries with the need to control completeness sentences.

– In Sect. 5 we describe a static alternative to dynamic query processing, namely
to publish a controlled view, basically expanding on two fundamental strate-
gies, an intensionally working one based on sufficiently exhaustive querying
and an extensionally working one based on removing violations of constraints
stemming from a priori knowledge and the confidentiality policy.

– In Sect. 6 we examine the impact of a more advanced information system, in
particular handling incompleteness and belief rather than complete knowledge
and the client’s corresponding possibilities of inferences.

– In Sect. 7 we extend the interactions to also process updates or revisions, and
even to execute a procedural program, finally leading to combine CIE with
language based information flow control with declassification.

When considering formal theorems presented in previous work, we will often
neglect technical details and omit precise suppositions in order to focus on the
main assertion in hopefully intuitive terms. Accordingly, we will refer to such a
rephrasement as a “Result”, and the reader is kindly advised to find the missing
technicalities in the original publications. Moreover, we do not repeat technically
elaborated examples. Furthermore, we will summarize an outlook to future work
as an “Issue”, also mostly in simplifying terms and leaving open the exact status.

As a guideline for reading the remainder, the overall conclusion will be the
following. A computing agent’s reasoning about its own knowledge or belief has
been a successfully explored research topic, the results of which are first of all
used for the information system agent in our context. This research has also been
extended to the considerations of one agent, in our context the client, about the
internal knowledge or belief of another agent, in our context the information
system, based on observable communication data. Now, the goal of inference
control adds a further challenge: How can the latter agent, the information sys-
tem, minimally distort communication data in order to confine the achievements
in reasoning by the former agent, the client, according to a declarative confiden-
tiality policy to be enforced by the information system’s security server?
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2 A Simple Propositional Framework

We start our considerations with a simple logic-oriented information system: A
query is expressed as a sentence of the language Lpl of classical propositional
logic over a finite set of propositional atoms, and an instance of the information
system is just a (semantic) model represented by a complete truth assignment
to the atoms. The information system stores a fixed instance db and then would
grant the right to submit queries to the client without, however, permitting any
direct access to the instance. Moreover, initially the client is assumed to only
know a priori that a set prior of sentences is satisfied by (valid under) db.

Further on, at each point in time i, the client submits a query request with a
discretionarily specified sentence ϕi, and – without any control – the information
system would then return either ϕi or ¬ϕi, depending on the truth evaluation
eval(db, ϕi) of the i-th query sentence regarding the fixed instance, i.e., whether
or not db |= ϕi. Accordingly, after the i-th interaction, the client would be able to
infer that db satisfies the elements of the current “syntactic” view synView i :=
prior ∪ {eval(db, ϕ1), . . . , eval(db, ϕi)}, together with all sentences entailed by
that set. For any other sentence ψ, from the point of view of the client, it would
appear to be possible that ψ is not satisfied.

Thus, the closure of that set under entailment, in this context treated as
the current “semantic” view denoted by semView i, would constitute the client’s
current knowledge about the stored instance. Clearly, without control, the client
could obtain complete knowledge about the instance, just by submitting a suit-
able sequence of queries. Accordingly, the (owner of the) information system
would potentially share all information about the instance with the (human
user of the) client.

Though sharing information would be the main goal of permitting the client
to submit any sequence of queries, and thus in effect to learn their actual truth
evaluations, the information system’s owner might nevertheless want to enforce
some exceptions for certain sentences seen as being too sensitive and in this
context referred to as potential secrets. For such a sentence, independently of the
actual truth value, from the point of view of the client it should always appear
to be possible that the sentence is not satisfied. This goal could be achieved in
two steps. In a first declarative step, the owner defines a confidentiality policy
psec containing all sentences to be treated as a potential secret.

In a second enforcing step, the original information system is shielded by
a security server for inference control by a censor, which gets the policy as an
input parameter. The control then intercepts each query request and, only as
far as needed, the censor distorts the correct truth evaluation eval(db, ϕi) of the
query sentence into a controlled answer sentence ansi, in order to confine the
information content of the reaction message returned to the client appropriately,
as required by the policy. Consequently, the syntactic material available to the
client becomes synView i := prior ∪ {ans1, . . . , ansi}.

Now it is important to observe that the distortions might have broken the
straightforward relationship between a syntactic view, literally extracted from
the messages of the interactions, and the corresponding semantic view:
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– Purely functionally, without control and according to common usage of formal
logic, the semantic view is obtained by applying the closure of the syntactic
view under entailment.

– With inference control, however, facing potential distortions, the semantic
view can only be determined by considering the details of the censor.

More specifically, in the case of inference control, the client has to investigate
questions of the following kind. Why did the censor require to return the “verba-
tim” answer ansi to the query about the truth evaluation of ϕi? Which possible
instances of the information system do lead to that verbatim answer? Which of
the two possible truth evaluations of ϕi do cause that verbatim answer? Thus, in
most general mathematical terms (see, e.g., Sect. 4 of [9] for further exposition),
the semantic view has to be determined by inverting the function that describes
the censor on the function values observed as verbatim answers. If the inverted
function happens to map a verbatim answer to a singleton pre-image containing
exactly one element, and the client can actually compute this element, then this
element contributes full knowledge to the semantic view of the client; the dis-
tortions might have changed the syntactic form of the correct answer, but the
“real” information content has been preserved. Otherwise, if the pre-image has
at least two elements, the distortions have not only changed the syntactic form
of correct answers but also introduced uncertainty about them.

Having the distinction between a syntactic view and the corresponding
semantic view in mind, one can construct a concrete censor following three
guidelines:

1. Let the censor express any answer, whether correct or distorted, as a sentence
of the underlying language Lpl (or as a convenient abbreviation of such a sen-
tence) such that the answer looks like “being informative” and the syntactic
view synView i remains a consistent subset of Lpl.

2. Let the censor maintain a suitable security invariant, also to be ensured as a
precondition for synView0 := prior , which in particular expresses that none
of the potential secrets in the policy psec is ever entailed by the syntactic
view synView i:

for all ψ ∈ psec : synView i �|= ψ . (1)

Since for propositional logic the semantic notion of entailment, |=, is equiv-
alent to a syntactic notion of derivability (formal provability), �, given a
tentative answer the censor can computationally check whether the invariant
would be maintained.

3. For each query, in general also dependent on the history and thus on the
current view, let the censor computationally check this derivation problem
expressed in the logic – and possibly further or more general ones –, to deter-
mine the need of a distortion regarding the semantic view (for which the
inverted censor function is involved). Then, as indicated by the outcomes
of the checks, let the censor form the answer sentence such that, from the
client’s point of view, it remains indistinguishable what the correct answer
would have been, i.e., the inversion of the answer would show a pre-image
containing both possibilities.
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Obviously, the third guideline is the most difficult one to handle, since it is
directed to capture the crucial relationship between the syntactic view (what has
been shown to the client) and the semantic view (what was the cause of what
has been shown). The basic approaches to the wanted construction successfully
handle this difficulty by proceeding as sketched in the following.

A censor following the basic refusal approach [8,10,13,14,17,36,76] first
checks whether the correct answer could already be inferred from the current
view; if this is not the case, then – in particular to ensure indistinguishability
by instance-independence – the censor inspects both the query sentence ϕi and
its negation ¬ϕi: if returning any of them would lead to a direct violation of
the confidentiality policy, then the answer sentence is formed by weakening the
correct answer into a tautology expressing “tertium non datur” for the query
sentence (which w.l.o.g. can be abbreviated by a keyword like mum, interpreted
as a refusal notification):

ansi :=
if synView i−1 |= eval(db, ϕi)
then eval(db, ϕi) %the correct answer
elseif (exists ψ)[ψ ∈ psec and

(synView i−1 ∪ {ϕi} |= ψ or synView i−1 ∪ {¬ϕi} |= ψ)]
then (eval(db, ϕi) ∨ ¬eval(db, ϕi))% a tautology, or mum
else eval(db, ϕi) % the correct answer

(2)

A censor following the basic lying approach [8,13,14,17,36,39] only inspects
the correct truth evaluation eval(db, ϕi) of the query sentence ϕi but – in par-
ticular to ensure consistent answers – regarding a stronger violation condition,
namely whether the disjunction of all policy elements would be entailed:

ansi :=
if synView i−1 ∪ {eval(db, ϕi)} |= ∨

ψ∈psecψ

then ¬eval(db, ϕi) % a lie
else eval(db, ϕi) % the correct answer

(3)

A censor following the basic combined approach [14,15,36] first inspects the
correct truth evaluation eval(db, ϕi) of the query sentence ϕi; if it would lead
to a direct violation then – in particular to ensure consistent answers – the
censor additionally inspects the negation of the correct truth evaluation: if that
negation would also lead to a violation, then the answer sentence is formed by
weakening the correct answer into a tautology (or mum); otherwise the negation
is returned as a lie:

ansi :=
if (exists ψ)[ψ ∈ psec and synView i−1 ∪ {eval(db, ϕi)} |= ψ]
then if (exists ψ)[ψ ∈ psec and synView i−1 ∪ {¬eval(db, ϕi)} |= ψ]

then (eval(db, ϕi) ∨ ¬eval(db, ϕi)) % a tautology, or mum
else ¬eval(db, ϕi) % a lie

else eval(db, ϕi) % the correct answer

(4)
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Result 1 (Effectiveness of Basic Censors for Query Sequences). For the
propositional framework (and any similar ones) used for controlling sequences
of queries, each of the basic censors for refusal, lying, or the combination of
refusal and lying, respectively, preserves confidentiality, i.e.,

for each actual instance, for each confidentiality policy, for each potential
secret in that policy, for each assumed a priori knowledge, and for each
sequence of query sentences, there exists an alternative instance that sat-
isfies the a priori knowledge as well, generates the same controlled answer
sentences, but does not satisfy the potential secret.

The proofs are based on a structurally quite simple argument outlined as fol-
lows. We consider any potential secret ψ ∈ psec. First, at each point in time i, the
applicable security invariant ensures the existence of an “alternative instance”
that satisfies the current syntactic view but not ψ. Second, a more or less sophis-
ticated induction up to i shows that the actual instance and the alternative
instance generate the same controlled answers, and thus are indistinguishable
from the client’s point of view. Hence, the “alternative instance” is a witness for
the possibility that the potential secret ψ is not valid.

Similarly, as already observed above, a client could gain some kind of best
achievable knowledge about the actual instance by submitting an exhaustive
sequence of queries consisting of all possible queries (up to equivalences). Clearly,
the security server can use the same approach for controlled view publishing : on
request or discretionarily, the censor just generates the final (syntactic) view as
the limit of the intermediate views and then sends it to the client. So we have
the following corollary to the preceding result.

Result 2 (Effectiveness of Basic Censors for Published Views). For the
propositional framework (and any similar ones) used for controlled view publish-
ing, for each of the basic censors for refusal, lying, or the combination of refusal
and lying, respectively, the limit of the controlled answers of any exhaustive query
sequence preserves confidentiality.

The simple framework suggests several dimensions of elaborating more
sophisticated and more comprehensive approaches. In fact, many works on CIE
have been motivated this way. In the remainder, we will review and discuss some
of these dimensions, as announced in the introduction. Besides considering any
of these dimensions in isolation, it would be worthwhile to explore which instan-
tiations of the dimensions are compatible, or could be smoothly composed by
suitable constructions.

Issue 1 (Compositionality). Identify composition guidelines for suitably
combining features of different dimensions, and establish the corresponding for-
mal assurances regarding preservation of confidentiality.

To actually design and implement a control mechanism as sketched so far,
we could employ an architecture as roughly visualized by Fig. 1, which is built
from at least the following components:
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          requests from clients                                         reactions (answers, notifications, ... ) to client

theorem
prover

          authentication  and  access control

client
simulator

censor
collection

maintenance database for client-specific security states 

                                     server for underlying information system

- kind of censors
- authorizations
- a priori knowledge                  - view representation
- confidentiality policy              - interaction history
static declarations:                   dynamic  state:

censor selection and application

Fig. 1. Rough architecture of Controlled Interaction Execution

– a functional server for the underlying information system for storing the
instance and (correct) interaction processing;

– a theorem prover for solving entailment problems for the logics involved;
– a collection of censors, each of which has been verified to meet the confiden-

tiality requirement;
– a maintenance database which stores for each authorized client a client state,

in particular comprising statically declared parameters including
1. the wanted client-specific confidentiality policy,
2. the assumed a priori knowledge,
3. the authorizations for interactions, and
4. the kind of censors that could be applied,

as well as dynamic information about
5. the interaction history including the actually applied censors and
6. a view representation of the client’s views according to previously

returned messages (in the simplest case just synView);
– a client simulator that determines that representation (in the simplest case

just by adding the answer sentences to a log file, which has been initialized
with the a priori knowledge).

Issue 2 (Comprehensive System Architecture). Refine the roughly
sketched architecture to an extendible software package which– given suitable
parameters for each of the dimensions – can uniformly be configured and then
employed as a comprehensive implementation of CIE, and of related and com-
patible security techniques as well.

3 An Abstract Framework

In any logic-oriented framework, whether a simple propositional one as sketched
in Sect. 2 or a suitably extended one, two aspects are combined:
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– an underlying classical (or even non-classical) logic comprising an intuitively
expressive syntax and a formal notion of either entailment based on models
or, if applicable even equivalently, of computational derivability, and

– a censor function together with its inverted function, where we deal with
reasoning about employing that or a somehow related logic.

Since in general the latter aspect appears to be not directly expressible in the
respective logic, one could attempt to bridge the gap between the two aspects
by dealing with both of them in a purely functional manner.

Such a unifying treatment could be useful for several purposes, in particular
for identifying features that are common to several logics and for separating the
computational complexity stemming from the underlying logic and the compu-
tational complexity of inference control as essentially encoded in the inverted
censor function. These and further considerations have motivated the abstract
framework presented in [17]. This framework is inspired by the model-theoretic
approach to semantics of formal logics, but without dealing with any concrete
syntax.

More specifically, an information system is thought to be given by the set I of
its possible abstract instances (or data sources), which are functionally treated
like (semantic) models in a logic. An abstract query ϕ is then identified with its
meaning, namely with a subset of I, such that the evaluation eval(db, ϕ) for an
instance db just checks whether or not db ∈ ϕ (which corresponds to db |= ϕ in
a logic framework) and then returns either ϕ ⊆ I or (I \ ϕ) ⊆ I. Accordingly, if
an (abstract) user wants to learn about the conjunction of two queries ϕ1 and
ϕ2 and submits them accordingly, he would get ϕ1 ∩ ϕ2 and, similarly, ϕ1 ∪ ϕ2

for the disjunction. Thus, refusing an answer to a query ϕ by weakening the
correct answer to a tautology corresponds to returning ϕ ∪ (I \ ϕ) = I, i.e., by
saying that the actual instance might be any one, which a client is assumed to
know anyhow. Furthermore lying on ϕ by negation corresponds to returning the
complement I \ϕ of the correct answer. Hence, as by the model theory of a logic,
the intuitive meanings of phrases like “conjunction”, “disjunction”, “negation”
or “tautology” are reflected by set-theoretic operations on sets of instances, i.e.,
by some algebra over the powerset of I (or a suitable subset of that powerset).
Finally, an abstract potential secret is just given by an abstract query.

Result 3 (Effectiveness of Basic Censors in the Abstract Framework).
For the abstract framework used for controlling sequences of queries or controlled
view publishing, respectively, the application of each of the basic censors for
refusal, lying, or the combination of refusal and lying, respectively, preserves
confidentiality.

Result 4 (Refusal as Normal Form). For the abstract framework used for
controlled view publishing, the achievements of any effective censor can equiv-
alently be described in terms of the basic refusal approach.

Result 5 (Limits of Refusals are not Refinable). For the abstract frame-
work used for controlled view publishing, the limit (under intersection) of the
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controlled answers under the basic refusal approach of any exhaustive query
sequence cannot be refined, and in this sense it is optimal.

Notably, for the basic lying approach a corresponding result does not hold,
essentially due to the need of protecting disjunctions of potential secrets.

Result 6 (Inherent Computational Complexity of Optimal Censor-
ing). For the abstract framework used for controlled view publishing (and thus,
in a sense, for any sufficiently expressive framework), under suitable assump-
tions about the finiteness of the situation and the encoding of censors and their
inversions, the following problem is coNP-complete: given a confidentiality pol-
icy and a censor, decide whether for each instance of the information system
the censor generates a published view that is both confidentiality preserving and
optimal w.r.t. the policy.

Issue 3 (Notions of Optimality and Related Approximations). Define
and investigate meaningful notions of optimality, capturing suitable intuitions
of “best availability”, together with convincing notions of approximation to over-
come the inherently high computational complexity.

So far, in the simple propositional framework as well as in its extensions and in
the abstract framework, the works on CIE have considered a possibilistic notion
of confidentiality, which only requires the existence of at least one witness of the
required property regarding an alternative instance that is both indistinguishable
and “harmless”. However, one might be interested in a more refined notion which
treats degrees of confidentiality based on an evaluation of all ı̀ndistinguishable
instances regarding being either “harmful” or “harmless” [60,61,69]. For exam-
ple, such an evaluation might count the cardinalities of the two classes and then
relate the cardinalities according to a declared threshold or, if an a priori proba-
bility distribution over the set of all instances is known, determine and relate the
respective probabilities.

Issue 4 (Generalized Abstract Framework). Generalize the abstract
framework so far dealing with possibilistic confidentiality towards kinds of eval-
uated confidentiality, in particular probabilistic confidentiality.

4 A Relational Framework

On the one hand, classical propositional logic over a finite set of propositional
atoms, as considered in Sect. 2, enjoys many nice computational properties,
including computationally solvable decision problems with theorem provers like
SAT(atisfiability)-solvers and C(onstraint)S(atisfaction)P(roblem)-solvers which
are usually highly efficient [42,62,67,83] (despite the intractable worst-case com-
plexity). But on the other hand, that logic lacks expressiveness to capture
many features needed for more advanced applications. In contrast, classical first-
order logic is often expressive enough for such needs but suffers from essen-
tial restrictions regarding general decidability and from potentially unafford-
able computational efficiency of decidable fragments [43] or practical theorem
proving [71,79,80].
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Serving as a foundation of relational databases [1], first-order logic provides
formal means to interpret a stored relational instance as a (semantic) model
satisfying the integrity constraints declared in the schema and to deal with open
queries, intuitively of the kind “give me all x, y, . . . such that the property . . .
holds”. In this context, an open query is expressed by a formula containing free
occurrences of one or more variables and expected to return those sentences
that result from substituting the free occurrences with constants and then, as a
(closed) sentence, are evaluated to true regarding the stored relational instance.

However, a closer look reveals that we have to take care about several sub-
tle details. Classical model theory for first-order logic deals with universes (sets
over which interpretations are formed and variables are ranging) and with inter-
pretations of relation symbols of any cardinality [68,75]. Accordingly, a formula
with free variables might return infinitely many “true” sentences by substitu-
tion, even worse, without any further specification by typing, from any universe.
But a database relation is a stored finite object, and an open query should
always return a finite object, too. The latter property is guaranteed if the query
formula is domain-independent and in particular safe (see, e.g., [1]), i.e., intu-
itively, whenever a negation occurs in the query formula – in principle evaluated
by taking a set-theoretic complement w.r.t. to some previously determined and
possibly infinite set – or a variable occurs – in principle ranging over a possibly
infinite set – then the possibility of dealing with an infinite set does not actually
occur, since the pertinent sets can be bounded to a finite subset.

Tentatively, all these problems could be avoided by employing only models
with a finite universe and thus finite interpretations [52,64]. But then at least the
following problems occur: applications often suggest not to define a cardinality
bound on the type of an attribute in a relation scheme, and inference control
often wants to avoid combinatorial inferences based on a fixed and known finite
cardinality of some set, like applying the pigeon hole principle, in particular
when the application does not justify such a bound.

Seeing neither the classical model-theoretic semantics nor the finite-model
semantics as appropriate for general inference control of advanced applications,
all works of CIE dealing with relational databases [16,18–20,22,23,25–27,35,38]
are based on so-called DB-semantics: interpretations are restricted to Herbrand-
like ones over a fixed infinite universe of constant symbols, which are constraint
by unique names axioms, with only finitely many positively evaluated ground
facts. This feature has some unusual consequences, e.g., for each safe open query
formula ϕ(x), the sentence (∃x)[¬ϕ(x)] is a tautology. But a comprehensive
exploration of the exact relationship between classical semantics, finite-model
semantics and DB-semantics appears to be not available, but see, e.g., [1,3,16,
63,81].

Issue 5 (Logical Foundation of the Relational Model). Reconsider the
theory of relational databases in terms of first-order logic with DB-semantics,
postulating infinite domains of constants used as unique names but considering
only finite relational instances.
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Employing DB-semantics and restricting a priori knowledge including
integrity constraints, confidentiality policies, (closed) query sentences and (open)
query formulas such that all DB-entailment problems to be considered by a
censor will be in a suitable decidable fragment of first-order logic, the basic
approaches to construct a censor for sequences of queries, originally designed for
closed queries only, can be extended to include also open queries [16,18]. More
specifically, the extension is based on the decidability of the universal validity
problem of the Bernays-Schoenfinkel class of sentences in prenex normal form
having an ∀∗∃∗ prefix, which not only holds for classical semantics and finite-
model semantics, but also for DB-semantics.

The extensions of the basic approaches are then based on the following fea-
tures, the first and the second of which are supported by DB-semantics:

– An open query can be evaluated by systematically enumerating all substitu-
tions of the free occurrences of variables in the query formula by constants
taking from the fixed universe, and handling the resulting sentences as closed
queries to be controlled.

– Such an in principle infinite enumeration can be terminated after a finite
number of rounds by suitably inspecting pertinent completeness sentences
that basically state that in all further rounds the considered closed queries
will be answered negatively, basically capturing a closed world assumption for
the answers generated before. As far as needed, and at least after termination,
the controlled truth evaluation of such a completeness sentence is explicitly
added to the current view, and thus any implicit knowledge provided by the
closed-world assumption is under effective inference control.

– The pertinent completeness sentences are expressible in first-order logic such
that their usage in the entailment problems inspected by the censor remains
in the decidable fragment.

– Besides others, statically fixing the enumeration sequence in advance ensures
the kind of indistinguishability required by the formal notion of preservation
of confidentiality, even if that enumeration is known to the client.

Result 7 (Effectiveness of Basic Approaches for Query Sequences). For
the relational framework under DB-semantics of first-order logic used for con-
trolling sequences of queries including open ones, each of the basic approaches
of refusal, lying, or the combination of refusal and lying, respectively, can be
extended to open queries. In each case, the extended censor controls sufficiently
many closed sentences obtained by a substitution in a fixed sequence and inspects
suitably formed completeness sentences in a controlled way, such that each con-
trolled answer processing terminates and preserves confidentiality.

Issue 6 (Entailment Problems with Completeness Sentences). Explore
efficient computational approaches to decide entailment problems of first-order
logic under DB-semantics when relational completeness sentences are involved.
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5 Static View Publishing

Research on confidentiality-preserving view publishing [57,58] spans a broad
range of frameworks, including pioneering work on distortions of statisti-
cal databases [50,82], value generalization and row-suppressing for achieving
k-anonymity and l-diversity of tables [46,66], and database fragmentation and
encryption for cloud computing [2,45,48,59]. View publishing has also been stud-
ied for CIE for several frameworks and approaches to censor construction, guided
by three different strategies as discussed below:

1. for the abstract framework using any of the basic approaches, by taking the
limit of controlled answers to an exhaustive sequence of all queries [17];

2. somehow implicitly, for the relational framework with DB-semantics following
any of the basic approaches, by controlling those open queries that would
return a whole relation, based on a fixed exhaustive sequence of all closed
and elementary queries each of which is about just one tuple [16];

3. for a specific description logics framework [4] using a variant of the basic
approaches, by iteratively enumerating all possible atoms of the logic [40,41];

4. for both the propositional and the relational framework with DB-semantics
following the lying approach, by iteratively modifying a given instance while
also aiming at a minimum number of distortions [19,37,38];

5. for an XML-approach following a weakening approach by iteratively suppress-
ing harmful parts [24];

6. for the relational framework with DB-semantics following a weakening app-
roach that refines the refusal approach by globally determined value general-
ization [26]; and

7. for the relational framework with DB-semantics following a weakening app-
roach by globally determined fragmentation and encryption [25,27].

The first kind of a strategy [16,17,40,41], items 1–3 above, treats a view in
an intensional way, seeing a view as being fully characterized by its relevant
properties. In this context, the relevant properties are the controlled answers to
an exhaustive sequence of queries evaluated regarding the actual instance. In
the abstract framework [17], see Sect. 3, due to the lack of any internal struc-
ture of instances, exhaustiveness requires to include all queries. In the relational
framework [16], see Sect. 4, where an instance is built from tuples, exhaustiveness
can be accomplished by including all elementary queries about just one tuple.
Similarly, in the description logics framework [40,41] all atoms are employed.
In more procedural terms, the view to be published is iteratively approximated
“from above”, starting with full ignorance (or with the assumed a priori knowl-
edge) and then stepwise adding information to narrow it down towards the final
limit. And in computational terms, the iteration should terminate in finite time
to come up with a final view.

The second kind of a strategy [19,24,37,38], items 4–5 above, works in an
extensional way, starting with the extension of the actual instance and treating
both the elements of the a priori knowledge and the potential secrets in the con-
fidentiality policy as constraints, employed for iteratively modifying the original
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instance: as long as any of the given or dynamically derived constraints is still
violated, a violating constraint is selected and the currently considered instance
is minimally modified to comply with the selected constraint. So, the view to be
published is approximated “from below”, starting with the actual instance and
then stepwise distorting it. Again, the crucial point is termination: a modifica-
tion to satisfy one constraint might cause to newly violate another one. Clearly, if
the framework is expressive enough, the constraint satisfaction problem becomes
undecidable, and thus we have to suitably restrict the expressiveness.

A third kind of strategy [25–27], items 6–7 above, also works in an exten-
sional way, but in a sense more globally than iteratively. Regarding [26], with-
out giving details here, in a first instance-independent step only considering the
potential secrets, some kind of constraints on “admissible” weakenings are gen-
erated, which then, at least conceptually, are “globally solved” in a minimal
way (where the actually used solver might work sequentially). Only in a second
step, the actual relational instance is weakened by converting each harmful tuple
(in logic terms, each ground fact) into an admissible disjunction. This two step
procedure ensures that undistorted parts of the view remain isolated from weak-
ened parts, and thus any harmful inferences are blocked. A related guarantee by
isolation is employed in [25,27]. Again, computability and efficiency is a problem,
demanding for suitable restrictions.

In all strategies, while giving precedence to preserve confidentiality, availabil-
ity is considered as an important secondary goal. Accordingly, the “difference”
between the actual instance and the view to be published should be at least
“minimal” in the sense that discarding any single distortion would lead to a
violation of confidentiality. More ambitiously, however, we might even aim at
finding a view that has a minimum number of distortions among the set of all
confidentiality-preserving views.

So far, adding such an overall numerical optimization problem to the problem
of preserving confidentiality has only been thoroughly treated for the relational
framework following the lying approach with the extensionally working strat-
egy [19,37,38]. Though this attempt has required to combine the satisfaction
problem for sentences in an expressive fragment of first-order logic with a numer-
ical optimization problem, it has been proved to be conceptually successful [38].
But this attempt appears to be not practically feasible in general, and thus often
requires to relax the optimization requirement by allowing an approximation or
to suitably restrict the constraints [19].

Result 8 (Intensional Iterative View Generation by Exhaustive
Querying). Subject to appropriate operations of information manipulation and
to termination, an intensionally working and iteratively proceeding generation
strategy returns a view that preserves confidentiality.

Result 9 (Extensional Iterative View Generation by Eliminating
Violations). Subject to appropriate restrictions on expressiveness and to termi-
nation, an extensionally working and iteratively proceeding generation strategy
returns a view that preserves confidentiality.
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Result 10 (Extensional View Generation by Global Distortions). Sub-
ject to appropriate restrictions on expressiveness, in dedicated cases an exten-
sionally working generation strategy that globally determines distortions returns
a view that preserves confidentiality.

Issue 7 (Comparison of Generalized View Generation Strategies).
Generalize and elaborate both the extensionally working and the intensionally
working view generation strategy, respectively, and systematically compare their
achievements, in particular regarding the availability of information provided by
the confidentiality-preserving views.

6 Advanced Reasoning

In both the propositional framework of Sect. 2 and the relational framework of
Sect. 4, the underlying logic-oriented information system is supposed to com-
pletely describe some outside “real world” by storing a representation of a
(semantic) model which assigns a truth value to all atomic sentences and thus,
by induction, to all sentences. In many applications, however, the (owner of the)
information system might have only incomplete knowledge about the outside
world or even only some fragmentary internal belief. In the rich literature about
knowledge and belief engineering, many approaches to deal with such situations
have been proposed and studied in detail, see, e.g., [4,6,44,53,56,63].

For inference control by means of CIE, incompleteness has first been treated
for an extended propositional framework [36]: now, an instance db of the infor-
mation system is a consistent set of propositional sentences of the language Lpl

of classical propositional logic over a finite set of propositional atoms. While,
syntactically, a query ϕ is still a sentence of Lpl, semantically its evaluation is
now based on the notion of entailment, also denoted by |=, rather than directly
on truth evaluation with respect to a (semantic) model, tentatively given by

eval(db, ϕ) :=

⎧
⎪⎨

⎪⎩

true if db |= ϕ,

false if db |= ¬ϕ,

undefined otherwise.
(5)

whereas as before the definite results of the first two cases are directly expressible
in Lpl, the result of the third case is not. So, extending propositional logic,
a knowledge operator K for a modal logic [53] is introduced to enable us to
speak about “the information system knows that . . . ” and, correspondingly,
“the information system does not know that . . . ”:

eval(db, ϕ) :=

⎧
⎪⎨

⎪⎩

Kϕ if db |= ϕ,

K¬ϕ if db |= ¬ϕ,

¬Kϕ ∧ ¬K¬ϕ otherwise.
(6)

By this approach, constructing a censor, we can now distinguish whether the
information system itself does not know the answer to a query or whether the
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censor merely demands to refuse an informative answer. More generally, we now
have four possible controlled answers, which provides additional flexibility for
distorting answers. This flexibility is exploited by defining so-called distortion
tables which determine for each combination of a client state in need of a distor-
tion and the correct answer a controlled (possibly distorted) “harmless” answer,
based on a finite list of representations of the relevant client states.

Result 11 (Effectiveness of Adapted Basic Censors for Query
Sequences to Incomplete Information Systems). For the extended propo-
sitional framework with incomplete instances used for controlling sequences of
queries based on modal logic and employing a distortion table, all adaptions of
each of the basic censors for refusal, lying, or the combination of refusal and
lying, respectively, preserve confidentiality.

Whereas propositional modal logic evolves from classical propositional logic
in a quite natural way, extending classical first-order logic by modalities requires
highly sophisticated considerations [55]. So far our attempts to transform and
extend the propositional case treated in [36] to the general first-order case, which
among others have also been inspired by [63,70], have not been successful.

Issue 8 (First-Order Modal Logic for Censor Construction). Elaborate
the modal logic approach to construct censors for incomplete instances of an
information system based on first-order logic.

However, restricting the first-order case to a finite situation, we could suc-
cessfully treat a comprehensive propositionalization [35].

Result 12 (Propositionalized First-Order Modal Logic for Censor
Construction). The modal logic approach to construct confidentiality-
preserving censors for incomplete instances of an information system can be
extended to a first-order logic framework that can be finitely propositionalized.

An alternative way to deal with inference control for incomplete information
systems [40,41] has been based on description logics, which provides efficiently
tractable fragments of first-order logic.

Result 13 (Censor Construction for Incomplete Information Systems
Based on Description Logics). For a description logics framework of an
incomplete information system used for controlled view publishing following a
variant of the basic approaches, the limit of the controlled answers of any exhaus-
tive sequence of atoms preserves confidentiality.

Though not elaborated in the context of CIE, a further interesting and very
flexible approach to censor constructions for sequences of queries evaluated w.r.t.
an incomplete information system has been proposed for a Boolean description
logics framework [78].

Incompleteness of an instance complicates query answering and view pub-
lishing by the information system, and thus also increases the client’s challenge
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to infer confidential information from visible reaction data. Though the client
does not know the incomplete instance stored by the information system, the
client is still fully aware about the system’s reasoning procedure to generate an
answer or a view, respectively.

However, the situation is changing, and becoming even more challenging, if
the information system represents an internal belief, which is not only based
on (classical) sentences but also on conditionals (also known as default rules
or probabilistic rules). In order to form a consistent belief, such a system
employs non-monotonic reasoning parameterized with an instantiation of some
plausibility structure such as preference orderings, ordinal conditional func-
tions, possibility or plausibility spaces [56]. The client then faces the addi-
tional problem of being uncertain about the concrete instantiation actually used
by the system, and thus also the censor has to appropriately deal with that
uncertainty.

Exemplarily for potentially many similar situations, CIE has been concep-
tually extended for a propositional information system that is based on ordinal
conditional functions [6,77] – or, more generally, an abstract class of suitable
consequence relations – and handles query requests regarding its current belief
as well as revision requests [30,33]. In this work, such an abstract class is shown
to be obtainable by an “allowed” axiomatization, and the censor construction is
directed to preserve confidentiality regarding a client that knows the pertinent
class and masters its uncertainty about which instantiation is taken by “accept-
ing” a sentence if and only if the sentence is plausible under all instantiations.
But other kinds of treating that kind of uncertainty could also be meaningful,
for instance credulous reasoning.

Result 14 (Effectiveness of a Refusal Censor for Sequences of Belief
Queries and Belief Revisions). For a non-monotonic propositional frame-
work for belief based on a class of consequence relations having an “allowed”
axiomatization used for controlling mixed sequences of queries and revisions, a
computational adaption of the basic censor for refusal preserves confidentiality
assuming a skeptically reasoning client.

Issue 9 (General Censor Constructions for Non-monotonic Frame-
works). For further examples of a non-monotonic framework, explore the
options to construct a confidentiality-preserving censor, and concisely generalize
such constructions.

A crucially important aspect of any censor construction for an information
system based on advanced reasoning is an (at least) two-step reflection of the
system’s reasoning under mutual uncertainty. As further discussed in [34], such
a reflection is needed for the client simulator in the rough architecture of CIE
shown in Fig. 1.

Issue 10 (A Censor’s Simulation of the Client’s Inference of the
System’s Parameterized Belief). Given an information system based on
advanced parameterized belief reasoning, identify the following: (i) what a client
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can infer about the system’s belief from the reactions and (ii) what a censor can
computationally determine about what the client can infer, for both cases of
whether the reactions are controlled or not, respectively.

7 Advanced Interactions

Early work about CIE has focused on inference control of query answering and
view publishing regarding a fixed instance stored by the underlying informa-
tion system. In general, however, an instance will be modified over the time.
Then answers to queries become time-dependent, and a simple syntactic view
obtained by the client by directly logging the data received might become incon-
sistent. Moreover, not only the information system can autonomously modify
the instance, but the client itself might request a modification. For example, in
a multiagent system, after having observed that the outside “real world” has
changed, a client agent might inform the information system agent about the
observation and request a corresponding update of the system’s belief. Or a
client agent has learnt further aspects about the unchanged “real world” and
then suggests a corresponding revision of the system’s belief.

In general, processing an update or revision request follows a sometimes quite
involved protocol, in particular in order to maintain invariants declared in the
schema of the information system in the form of sentences expressing integrity
constraints, which are seen as being “unmodifiable” or, in other terms, “unques-
tionable”. If a requested modification would violate a constraint, the request is
either totally rejected or at least somehow “corrected”. In any case, the informa-
tion system would externally react by sending a corresponding notification to the
client. Moreover, some complicated updates or revisions can only be handled as
transactions such that only the finally resulting instance is guaranteed to satisfy
the constraints, but the auxiliary versions generated during processing are not.

Now, receiving a notification about success, correction or failure of a mod-
ification request implies getting answers to implicit queries regarding the con-
straints. Thus inference control of interactions that modify the instance has to
suitably distort such notifications in order to enforce the required confidential-
ity. Unfortunately, early research on multilevel databases with mandatory access
control has already shown that maintaining integrity on the one hand and enforc-
ing confidentiality on the other hand might be conflicting goals [47,49,65,73].
A proposed resolution has been the concept of polyinstantiation, i.e., introducing
some kind of cover stories or lies for specific clients.

If inference control considers that a client infers knowledge in a history-aware
way, as CIE is doing, a further difficulty arises. Observing time-dependent data
about different versions of the stored instance, the client might get new options
of inferences by reasoning about the causes that led to semantically different
reactions on syntactically the same or related requests. Moreover, later reactions
might reveal that confidential information has been valid earlier. Thus, if wanted
according to the application, continuous confidentiality preservation might be
required, i.e., to not only confine knowledge about the current instance but also
about previous ones.
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The problems sketched above have first been studied for the propositional
framework presented in Sect. 2, suitably extended to include single updates as
well as transactional ones under some simplifying restrictions [21,29].

Result 15 (Effectiveness of Adapted Basic Censors for Sequences
of Queries and Updates). For the propositional framework with complete
instances used for controlling mixed sequences of queries and suitably restricted
single or transactional updates, adaptions of the basic censors for refusal or
lying, respectively, preserve confidentiality.

As mentioned before in Result 14, a similar achievement has been obtained
for a propositional framework with belief revision [32].

Issue 11 (General Censor Constructions for Classical, Incomplete and
Non-monotonic Frameworks with Modification of Instances). For fur-
ther examples of a classical, incomplete or non-monotonic framework with
updates and, as far as applicable, revisions, explore the options to construct a
confidentiality-preserving censor, and concisely generalize these constructions.

A protocol for processing a modification can be seen as a procedural applica-
tion program or a stored procedure that, depending on the client’s request,

– generates and submits queries regarding the current instance,
– potentially level-wise branches according to the corresponding answers used

as conditions in guarded commands, and
– in each branch

• actually modifies the instance in a possibly “corrected” way,
• prepares a corresponding notification and
• finally sends it to the client.

Clearly, such procedural programs are of interest not only for specific processing
of modifications but for reacting on any kind of messages received from a client.
So, we would like to elaborate a generic approach to apply inference control
for the execution of any such procedural program, in particular for preparing
controlled notifications. Accordingly, still under some restrictions, in recent and
ongoing work [31,32] we have designed and verified a combination

– of CIE-like inference control by means of abstract representations of the infor-
mation content of program variables keeping answers to queries regarding the
stored instance and of suitably generated distortion tables

– with security techniques for language-based information flow control, in par-
ticular capturing implicit flows by guarded commands, by means of security
typing and of declassification [5,72].

Result 16 (Controlled Mediation of Client Requests Processed by
Procedural Programs). Assuming an integrated fixed belief instance obtained
from one or more underlying information systems (and thus so far not allowing
modifications of that belief and, suitably propagated, of the underlying instances),
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and restricting to guarded commands of the if-then-else form (and thus so far not
allowing arbitrary repetitions) and to sensitive program variables with manage-
ably small domain extensions, the designed combination of CIE-like inference
control following a weakening approach with language-based information flow
control preserves confidentiality.

Issue 12 (Generalized Controlled Mediation of Client Requests
Processed by Procedural Programs). Extend and generalize the designed
combination of CIE-like inference control with language-based information flow
control for procedural programs as expressive as possible.
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Abstract. Integrity constraints in databases have been studied exten-
sively since the 1980s, and they are considered essential to guarantee
database integrity. In recent years, several authors have studied how the
same notion can be adapted to reasoning frameworks, in such a way that
they achieve the purpose of guaranteeing a system’s consistency, but are
kept separate from the reasoning mechanisms.

In this paper we focus on multi-context systems, a general-purpose
framework for combining heterogeneous reasoning systems, enhancing
them with a notion of integrity constraints that generalizes the corre-
sponding concept in the database world.

1 Introduction

Integrity constraints in databases have now been around for decades, and are
universally acknowledged as one of the essential tools to ensure database consis-
tency [2]. The associated problem of finding out how to repair an inconsistent
database – i.e., change it so that it again satisfies the integrity constraints – was
soon recognized as an important and difficult one [1], which would unlikely be
solvable in a completely automatic way [18].

Since the turn of the century, much focus in research has moved from clas-
sical databases to more powerful reasoning systems, where information is not
all explicitly described, but may be inferred by logical means. In this setting,
an important topic of study is how to combine the reasoning capabilities of dif-
ferent systems, preferrably preserving the properties that make them useful in
practice – e.g. consistency, decidability of reasoning, efficient computation. One
of the most general frameworks to combine reasoning systems abstractly is that
of heterogeneous nonmonotonic multi-context systems [5]. Besides being studied
from a theoretical perspective, these have been implemented, and many spe-
cialized versions have been introduced to deal with particular aspects deemed
relevant in practice [7,15,23,31]. In this work, we will work with relational multi-
context systems [20], a first-order generalization of the original, propositional-
based systems, which we will refer to simply as multi-context systems, or MCSs.

As a very simple kind of reasoning system, databases can naturally be viewed
as particular cases of MCSs. In this paper we propose to define integrity con-
straints in MCSs in a way that naturally generalizes the usual definitions for
c© Springer International Publishing Switzerland 2016
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relational databases. Some authors have previously discussed modelling integrity
constraints in MCSs, but their approach differs substantially from the typical
database perspective, as integrity constraints are embedded into the system,
thereby becoming part of the reasoning mechanism – unlike the situation in
databases, where they form an independent layer that simply signals whether
the database is in a consistent state. We argue that integrity constraints for
MCSs should also follow this principle, and show how our approach is also in
line with investigations on how to add integrity constraints to other reasoning
frameworks, namely description logic knowledge bases [19,26]. Due to the richer
structure of MCSs, we can define two distinct notions of consistency with respect
to integrity constraints, which coincide for the case of databases.

We also address the problem of repairing an MCS that does not satisfy its
integrity constraints by moving to managed multi-context systems (mMCSs) [7],
which offer additional structure that helps defining the notion of repair.

Contributions. Our main contribution is a uniform notion of integrity constraint
over several formalisms. We define integrity constraints over an MCS, together
with notions of weak and strong satisfaction of these. We show that the problem
of deciding whether an MCS satisfies a set of integrity constraints is polynomial-
time reducible to the problem of deciding whether an MCS is logically consistent
(i.e., it has a model). We show how our definition captures the traditional notion
of integrity constraints over relational databases, and how it naturally generalizes
this concept to distributed databases and deductive databases. We also compare
our definition with existing proposals for integrity constraints over ontology lan-
guages. Finally, we define repairs, and show how our definition again generalizes
the traditional concept in databases.

Outline. In Sect. 2 we introduce the framework of multi-context systems.
In Sect. 3 we define integrity constraints over MCSs, together with the notions of
weak and strong satisfaction. We show how we can encode an MCS with integrity
constraints as a different MCS, and obtain decidability and complexity results
for satisfaction of integrity constraints by reducing to the problem of logical con-
sistency. In Sect. 4 we justify our definition of integrity constraint, by showing
that it generalizes the usual concept in relational databases, as well as other
authors’ proposals for ontology languages [26] and peer-to-peer systems [9]. We
also show that it induces a natural concept of integrity constraint for distrib-
uted databases, as well as providing a similar notion for deductive databases
that is more expressive than the usual one; and provide complexity results for
these concrete cases. In Sect. 5 we recall the notion of a database repair, and
show how repairs can be naturally defined in a simple extension of MCSs. We
conclude with an overview of our results and future directions in Sect. 6.

1.1 Related Work

The topic of integrity constraints has been extensively studied in the literature.
In this section, we discuss the work that we feel to be more directly relevant to
the tasks we carry out in this paper.
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Integrity constraints and updates – ways of repairing inconsistent databases –
were identified as a seminal problem in database theory almost thirty years
ago [1]. The case for viewing integrity constraints as a layer on top of the data-
base, rather than as a component of it, has been made since the 1980s. The
idea is that the data inconsistencies captured by integrity constraints need to
be resolved, but they should not interfere with the ability to continue using the
database. In this line, much work has been done e.g. in query answering from
inconsistent databases [3,30], by ensuring that the only answers generated are
those that hold in minimally repaired versions of the database.

The first authors to consider deductive databases [4,22] also discussed this
issue. They identify three ways to look at deductive databases: by viewing the
whole system as a first-order theory; by viewing it as an extensional database
together with integrity constraints; and a mixed view, where some rules are
considered part of the logic theory represented by the database, and others
as integrity constraints identifying preferred models. In [4], it is argued that
this third approach is the correct one, as it cleanly separates rules that are
meant to be used in logic inferencing from those that only specify consistency
requirements.

More recently, authors have considered adding integrity constraints to open-
world systems such as ontologies. Although integrity constraints can be written
in the syntax of terminological axioms, the authors of [26] discuss why they
should still be kept separate from the logical theory. Therefore, they separate
the axioms in the T-Box (the deductive part of an ontology) into two groups: rea-
soning rules, which are used to infer new information, and integrity constraints,
which only verify the consistency of the knowledge state without changing it.

The setting of multiple ontologies was considered in [19], which considers
the problem of combining information from different knowledge sources while
guaranteeing the overall consistency, and preserving this consistency when one
of the individual ontologies is changed. This is achieved by external integrity
constraints, written in a Datalog-like syntax, which can refer to knowledge in
different ontologies in order to express relationships between them. Again, the
purpose of these rules is uniquely to identify incompatibilities in the data, and
not to infer new information.

By contrast, the authors who have discussed multi-context systems have not
felt the need to take a similar approach. Integrity constraints appear routinely
in examples in e.g. [6,7,17,28], but always encoded within the system, so that
their violation leads to logical inconsistency of the global knowledge base. Their
work focuses rather on the aspect of identifying the sources of inconsistencies –
integrity constraints being only one example, not given any special analysis –
and ways in which it can be repaired.

Although we believe this last work to be of the utmost importance, and show
how satisfaction of integrity constraints can be reduced to consistency checking
(which in turn implies that computing repairs can be reduced to restoring con-
sistency), we strive for the clean separation between integrity constraints and
reasoning that is present in other formalisms, and believe our proposal to be an
important complement to the analysis of inconsistency in MCSs.
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2 Background

We begin this section with a summary of the notion of relational multi-context
system [20]. Intuitively, these are a collection of logic knowledge bases – the con-
texts – connected by Datalog-style bridge rules. The formal definition proceeds
in several layers. The first notion is that of relational logic, an abstract notion
of a logic with a first-order sublanguage.

Definition 1. Formally, a relational logic L is a tuple 〈KBL,BSL,ACCL, ΣL〉,
where KBL is the set of well-formed knowledge bases of L (sets of well-formed
formulas), BSL is a set of possible belief sets (models), ACCL : KBL → 2BSL is a
function assigning to each knowledge base a set of acceptable sets of beliefs (i.e.,
its models), and ΣL is a signature consisting of sets PKB

L and PBS
L of predicate

names (with associated arity) and a universe UL of object constants, such that
UL ∩ (PKB

L ∪ PBS
L ) = ∅.

If p ∈ PKB
L has arity k and c1, . . . , ck ∈ UL, then p(c1, . . . , ck) must be an element

of some knowledge base, and if p ∈ PBS
L , then p(c1, . . . , ck) must be an element of

some belief set. Therefore, we can view ΣL as a first-order signature generating a
sublanguage of L. The elements in this sublanguage are called relational ground
elements, while the remaining elements of knowledge bases or belief sets are
called ordinary.

Example 1. We can see first-order logic over a first-order signature ΣFOL as a
logic FOL = 〈KBFOL,BSFOL,ACCFOL, ΣFOL〉, where KBFOL is the set of sets of
well-formed formulas over ΣFOL, BSFOL is the set of first-order interpretations
over ΣFOL, and ACCFOL maps each set of formulas to the set of its models. This
logic only contains relational elements.

Definition 2. Let I be a finite set of indices, {Li}i∈I be a set of relational logics,
and V be a set of (first-order) variables distinct from predicate and constant
names in any Li. A relational element of Li has the form p(t1, . . . , tk), where
p ∈ PKB

Li
∪ PBS

Li
has arity k and each tj is a term from V ∪ ULi

, for 1 ≤ j ≤ k.
A relational k-bridge rule over {Li}i∈I and V is a rule of the form

(k : s) ← (c1 : p1), . . . , (cq : pq), not (cq+1 : pq+1), . . . , not (cm : pm) (1)

such that k, ci ∈ I, s is an ordinary or a relational knowledge base element of
Lk and p1, . . . , pm are ordinary or relational beliefs of Lci .

The notation (c : p) indicates that p is evaluated in context c. These rules
intuitively generalize logic programming rules, and as usual in that context we
impose a safety condition: all variables occurring in pq+1, . . . , pm must also occur
at least once in p1, . . . , pq.

Definition 3. A relational multi-context system is a collection M = {Ci}i∈I of
contexts Ci = 〈Li, kbi, bri,Di〉, where Li is a relational logic, kbi is a knowledge
base, bri is a set of relational i-bridge rules, and Di is a set of import domains
Di,j, with j ∈ I, such that Di,j ⊆ Uj.
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Import domains define which constants are exported from one context to another:
as the underlying logic languages can be different, these sets are essential to allow
one context to reason about individuals introduced in another. We will assume
that Di,j is the finite domain consisting of the object constants appearing in kbj

or in the head of a relational bridge rule in brj , unless otherwise stated.

Example 2. Let C1 and C2 be contexts over the first-order logic FOL with R and
Rt binary predicates in ΣFOL, and let kb1 = kb2 = ∅. We can use the following
bridge rules in br2 to define Rt in C2 as the transitive closure of R in C1.

(2 : Rt(x, y)) ← (1 : R(x, y)) (2 : Rt(x, y)) ← (1 : R(x, z)), (2 : Rt(z, y))

We will use the MCS M = 〈C1, C2〉 to exemplify the concepts we introduce.

The semantics of relational MCSs is defined in terms of ground instances of
bridge rules: the instances obtained from each rule r ∈ bri by uniform substi-
tution of each variable X in r by a constant in

⋂
Di,j , with j ranging over the

indices of the contexts to which queries containing X are made in r.

Definition 4. A belief state for M is a collection S = {Si}i∈I where Si ∈ BSi

for each i ∈ I – i.e., a tuple of models, one for each context. The ground bridge
rule Eq. (1) is applicable in a belief state S if pi ∈ Sci for 1 ≤ i ≤ q and pi �∈ Sci

for q < i ≤ m. The set of the heads of all applicable ground instances of bridge
rules of context Ci w.r.t. S is denoted by appi(S). An equilibrium is a belief
state S such that Si ∈ ACCi(kbi ∪ appi(S)).

Particular types of equilibria (minimal, grounded, well-founded) [5] can be
defined for relational MCSs, but we will not discuss them here.

Example 3. In the setting of the previous example, all equilibria of M will have
to include the transitive closure of R in S1 in the interpretation of Rt in S2.
For example, if we take S = 〈S1, S2〉 with S1 = {R(a, b),R(b, c)} and S2 =
{Rt(a, b),Rt(b, c),Rt(a, c)}, then S is an equilibrium. However, S′ = 〈S1, S

′
2〉

with S′
2 = {Rt(a, b),Rt(b, c)} is not an equilibrium, as it does not satisfy the

second bridge rule.

Checking whether an MCS has an equilibrium is known as the consistency prob-
lem in the literature. We will refer to this property as logical consistency (to dis-
tinguish from consistency w.r.t. integrity constraints, defined in the next section)
throughout this paper. This problem has been studied extensively [6,16,17,35];
its decidability depends on decidability of reasoning in the underlying contexts.
The complexity of checking logical consistency of an MCS M depends on the
context complexity of M – the highest complexity of deciding consistency in one
of the contexts in M (cf. [17] for a formal definition and known results).

3 Integrity Constraints on Multi-context Systems

In their full generality, integrity constraints in databases can be arbitrary first-
order formulas, and reasoning with them is therefore undecidable. For this rea-
son, it is common practice to restrict their syntax in order to regain decidability;
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our definition follows the standard approach of writing integrity constraints in
denial clausal form.

Definition 5. Let M = 〈C1, . . . , Cn〉 be an MCS. An integrity constraint over
an MCS M (in denial form) is a formula

← (i1 : P1), . . . , (im : Pm), not (im+1 : Pm+1), . . . , not (i� : P�) (2)

where M = 〈C1, . . . , Cn〉, ik ∈ {1, . . . , n}, each Pk is a relational element of Cik ,
and the variables in Pm+1, . . . , P� all occur in P1, . . . , Pm.

Syntactically, integrity constraints are similar to “headless bridge rules”.
However, we will treat them differently: while bridge rules influence the seman-
tics of MCSs, being part of the notion of equilibrium, integrity constraints are
meant to be checked at the level of equilibria.

Example 4. Continuing the example from the previous section, we can write
an integrity constraint over M stating that the relation R (in context C1) is
transitive.

← (2 : Rt(x, y)), not (1 : R(x, y)) (3)

The restriction on variables again amounts to the usual Logic Programming
requirement that bridge rules be safe. To capture general tuple-generating depen-
dencies we could relax this constraint slightly, and allow Pm+1, . . . , P� to intro-
duce new variables, with the restriction that they can be used only once in the
whole rule. This generalization poses no significant changes to the theory, but
makes the presentation heavier, and we will therefore assume safety.

Definition 6. Let M = 〈C1, . . . , Cn〉 be an MCS and S = 〈S1, . . . , Sn〉 be a
belief state for M . Then S satisfies the integrity constraint Eq. (2) if, for every
instantiation θ of the variables in P1, . . . , Pm, either Pkθ �∈ Sk for some 1 ≤ k ≤
m or Pkθ ∈ Sk for some m < k ≤ �.

In other words: equilibria must satisfy all bridge rules (if their body holds,
then so must their heads), but they may or may not satisfy all integrity con-
straints. In this sense, integrity constraints express preferences among equilibria.

Example 5. The equilibrium S from Example 3 does not satisfy the integrity
constraint (3), thus M does not strongly satisfy this formula. However, M weakly
satisfies (3), as seen by the equilibrium S′′ = 〈S′

1, S
′
2〉 where S′

2 is as above and
S′
1 = {R(a, b),R(b, c),R(a, c)}.

Definition 7. Let M be an MCS and η be a set of integrity constraints.

1. M strongly satisfies η, M |=s η, if: (i) M is logically consistent and (ii) every
equilibrium of M satisfies all integrity constraints in η.

2. M weakly satisfies η, M |=w η, if there is an equilibrium of M that satisfies
all integrity constraints in η.
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We say that M is (strongly/weakly) consistent w.r.t. a set of integrity constraints
η if M (strongly/weakly) satisfies η. These two notions express different inter-
pretations of integrity constraints. Strong satisfaction views them as necessary
requirements, imposing that all models of the MCS to satisfy them. Examples of
these are the usual integrity constraints over databases, which express semantic
connections between relations that must always hold. Weak satisfaction views
integrity constraints as expressing preferences: the MCS may have several equi-
libria, and we see those that do satisfy the integrity constraints as “better”.

The distinction is also related to the use of brave (credulous) or cautious
(skeptical) reasoning. If M strongly satisfies a set of integrity constraints η, then
any inferences we draw from M using brave reasoning are guaranteed to hold
in some equilibrium that also satisfies η. If, however, M only weakly satisfies η,
then this no longer holds, and we can only use cautious reasoning if we want to
be certain that any inferences are still compatible with η.

Both strong and weak satisfaction require M to be logically consistent, so
M |=s η implies M |=w η. This implies that deciding whether M |=s η and
M |=w η are both at least as hard as deciding whether M has an equilibrium –
thus undecidable in the general case.1 When logical consistency of M is decidable
and its set of equilibria is enumerable, weak satisfaction is semi-decidable (if
there is an equilibrium that satisfies η, we eventually encounter it), while strong
satisfaction is co-semi-decidable (if there is an equilibrium that does not satisfy
η, we eventually encounter it). The converse also holds.

Theorem 1. Weak satisfaction of integrity constraints is reducible to logical
consistency.

Proof. To decide whether M |=w η, construct M ′ by extending M with a context
C0 where KB0 = ℘({∗}), kb0 = ∅, ACC0(∅) = {∅}, ACC0({∗}) = ∅, and the bridge
rules obtained by adding (0 : ∗) to the head of the rules in η. Then M ′ has an
equilibrium iff M |=w η: any equilibrium of M not satisfying η corresponds to
a belief state of M ′ where app0(S) = {∗}, which is never an equilibrium of M ′;
but equilibria of M satisfying η give rise to equilibria of M ′ taking S0 = ∅. ��
Theorem 2. Strong satisfaction of integrity constraints is reducible to logical
inconsistency.

Proof. Construct M ′ as before, but now defining ACC0(∅) = ∅, ACC0({∗}) =
{{∗}}. If M is inconsistent, then M �|=s η. If M is consistent, then any equilibrium
of M satisfying η corresponds to a belief state of M ′ where app0(S) = ∅, which
can never be an equilibrium of M ′; in turn, equilibria of M not satisfying η give
rise to equilibria of M ′ taking S0 = {∗}. So if M is consistent, then M |=s η iff
M ′ is inconsistent. ��

Combining the two above results with the well-known complexity results for
consistency checking (Table 1 in [17]), we directly obtain the following results.
1 If consistency of one of M ’s contexts is undecidable, then clearly the question of

whether M has an equilibrium is also undecidable.
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Table 1. Complexity of integrity checking of an MCS in terms of its context complexity.

CC(M) P NP Σp
i PSPACE EXPTIME

M |=w η NP NP Σp
i PSPACE EXPTIME

M |=s η Δp
2 Δp

2 Δp
i+1 PSPACE EXPTIME

Corollary 1. The complexity of deciding whether M |=w η or M |=s η, depend-
ing on the context complexity of M , CC(M), is given in Table 1.

These results suggest an alternative way of modelling integrity constraints
in MCSs: adding them as bridge rules whose head is a special atom interpreted
as inconsistency. This approach was taken in e.g. [16]. However, we believe that
integrity constraints should be kept separate from the data, and having them as
a separate layer achieves this purpose. In this way, we do not restrict the models
of MCSs, and we avoid issues of logical inconsistency. Furthermore, violation of
integrity constraints typically is indicative of some error in the model or in the
data, which should result in an alert and not in additional inferences.

These considerations are similar to those made in Sect. 2.7 of [26] and in [19],
in the (more restricted) context of integrity constraints over description logic
knowledge bases. Likewise, the approach taken for integrity constraints in data-
bases is that inconsistencies should be brought to the users’ attention, but not
affect the semantics of the database [1,18]. In particular, it may be meaningful
to work with reasoning systems not satisfying integrity constraints (see [30] for
databases and [28] for description logic knowledge bases). Our approach is also
in line with [7], where it is argued that in MCSs it is important to “distinguish
data from additional operations on it”.

4 Applications of ICs for MCSs

In this section we look at particular cases of MCSs with integrity constraints.
We begin by showing that our notion generalizes the usual one for standard
databases. Then we look into other types of databases and show how we obtain
interesting notions for these systems.

4.1 Relational Databases

Integrity constraints in relational databases can be written as first-order formulas
in denial clausal form [21] – which are essentially equivalent in form to bridge
rules with no head.

Definition 8. Let DB be a database. The context generated by DB, Ctx(DB),
is defined as follows.

– The underlying logic is first-order logic.
– Belief sets are sets of ground literals.
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– The knowledge base is DB.
– For all kb, the only belief set compatible with kb is ACC(kb) = kb� = kb∪{¬a |

a �∈ kb}.
– The set of bridge rules is empty.

We can see any database DB as a single-context MCS consisting of exactly the
context Ctx(DB); we will also denote this MCS by Ctx(DB), as this poses no
ambiguity. The only equilibrium for Ctx(DB) is DB� itself, corresponding to the
usual closed-world semantics of relational databases. Previous work (cf. [7,17])
implicitly treats databases in this way, although Ctx is not formally defined.

Let DB be a database and r be an integrity constraint over DB in denial
clausal form. We can rewrite r as an integrity constraint over Ctx(DB): if r is
∀(A1 ∧ . . . ∧ Ak ∧ ¬B1 ∧ . . . ∧ ¬Bm → ⊥), then br(r) is

← (1 : A1), . . . , (1 : Ak), not (1 : B1), . . . , not (1 : Bm) .

Note that general tuple-generating dependencies require allowing singleton vari-
ables in the Bis, as discussed earlier. The following result is straightforward to
prove. If we assume first-order logic with equality, we can also write equality-
generating constraints, thus obtaining the expressivity used in databases.

Theorem 3. Let DB be a database and η be a set of ICs over DB. Then DB
satisfies all ICs in η iff Ctx(DB) |=s br(η) iff Ctx(DB) |=w br(η), where br is
extended to sets in the standard way.

In this setting, weak and strong satisfaction of integrity constraints coincide,
as every database has exactly one equilibrium. Furthermore, deciding whether
Ctx(DB) |= br(η) can be done in time O(|DB|×|η|), where |DB| is the number of
elements in DB and |η| is the total number of literals in all integrity constraints
in η. This means that the data complexity [34] of this problem is linear, as we
can query the database using the open bridge rules in η, rather than considering
the set of all ground instances of those rules.

Theorem 3 could be obtained by adding integrity constraints as bridge rules
with a special inconsistency atom, as discussed earlier, and done in [16]). This
would significantly blur the picture, though, as in principle nothing would pre-
vent us from writing integrity constraints referencing the inconsistency atom in
their body, potentially leading to circular reasoning. Our approach guarantees
that there is no such internalization of inconsistencies into the database.

Our results show that the notion of integrity constraint we propose directly
generalizes the traditional notion of integrity constraints over databases [1].

4.2 Distributed DBs

Distributed databases are databases that store their information at different
sites in a network, typically including information that is duplicated at different
nodes [33] in order to promote resilience of the whole system.
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A distributed database consisting of individual databases DB1, . . . , DBn can
be modeled as an MCS with n contexts Ctx(DB1), . . . ,Ctx(DBn). The internal
consistency of the database, in the sense that tables that occur in different DBis
must have the same rows, can be specified as integrity constraints over this MCS
as follows. For each relation p, let γ(p) be the number of columns of p and δ(p)
be the set of indices of the databases containing p. Then

{← (i : p(x1, . . . , xγ(p))), not (j : p(x1, . . . , xγ(p))) | i, j ∈ δ(p), p is a relation}
logically specifies the integrity of the system. Different strategies for fixing incon-
sistencies in distributed databases (e.g. majority vote or siding with the most
recently updated node) correspond to different preferences for choosing repairs
in the sense of the next section.

Again, such integrity constraints can be written as bridge rules in the form

(j : p(x1, . . . , xγ(p))) ← (i : p(x1, . . . , xγ(p))) .

but these significantly change the semantics of the database: instead of describing
preferred equilibria, they impose a flow of information between nodes.

Example 6. Consider a country with a central person register (CPR), mapping
a unique identifying number to the name and current address of each citizen
using a relation person, e.g. person(1111111118, old lady , gjern). Furthermore,
each electoral district keeps a local voter register using a relation voter, e.g.
voter(1111111118), and a list of addresses local to the given electoral district
using a relation address, e.g. address(gjern). Then the integrity constraints

← Skborg : voter(Id), not (CPR : person(Id)) (4)
← Skborg : voter(Id),CPR : person(Id ,Add), not (Skborg : address(Add)) (5)

ensure that all voters registered in the Silkeborg electoral district are registered
in the central person register, and that they are registered with an address that
is local to the Silkeborg electoral district. Here, we are implicitly assuming that
the database is closed under projection, and overload the person relation for the
sake of simplicity. In addition, the following set of integrity constaints models
the fact that each person registered in the Silkeborg electoral district is not
registered in any other electoral districts from the set ED .

{← Skborg : voter(Id), Ci : voter(Id) | Ci ∈ ED \ {Skborg}}
This assumption of closure under projection is meaningful from a practical

point of view, and has been implemented e.g. in [12]. Alternatively, we could
define the projections as bridge rules of the MCSs, in line with the idea of
encoding views of deductive databases presented in the next section.

This section’s treatment of distributed databases is equivalent to considering
their disjoint union as a database. Consequently, there is no need to use MCSs
for distributed databases, but this mapping shows that our notion of integrity
constraints abstracts the practice in this field. Furthermore, results in previous
work [11] indicate that the processing of integrity constraints can be efficiently
parallelized in this disjoint scenario, given suitable assumptions.
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4.3 Deductive DBs

We now address the case of deductive databases. These consist of two different
components: the (extensional) fact database, containing only concrete instances
of relations, and the (intensional) rule database, containing Datalog-style rules
defining new relations. Every relation must be either intensional or extensional,
unlike in e.g. full-fledged logic programming.

One standard way to see the intensional component(s) of deductive databases
is as views of the original database. The instances of the new relations defined
by rules are generated automatically from the data in the database, and these
relations can thus be seen as content-free, having a purely presentational nature.
For simplicity of presentation, we consider the case where there is one single view.

Definition 9. Let ΣE and ΣI be two disjoint first-order signatures. A deductive
database over ΣE and ΣI is a pair 〈DB,R〉, where DB is a relational database
over ΣE and R is a set of rules of the form p ← q1, . . . , qn, where p is an atom
of ΣI and q1, . . . , qn are atoms over ΣE ∪ ΣI .

More precisely, this definition corresponds to the definite deductive databases
in [22]; we do not consider the case of indefinite databases in this work. We can
view deductive databases as MCSs.

Definition 10. Let 〈DB,R〉 be a deductive database over ΣE and ΣI . The MCS
induced by 〈DB,R〉 is M = 〈CE , CI〉, where CE = Ctx(DB) defined as above
and CI = Ctx(R) is a similar context where:

– The knowledge base is ∅.
– For each rule p ← q1, . . . , qn in R there is a bridge rule (I : p) ← (i1 :

q1), . . . , (in : qn) in Ctx(R), where ik = E if qk is an atom over ΣE and ik = I
otherwise.

Integrity constraints over such MCSs correspond precisely to the definition of
integrity constraints over deductive databases from [4]. By combining this with
the adequate notion of repair, we capture the typical constraints of deductive
databases – that consistency can only be regained by changing extensional pred-
icates – in line with the traditional view-update problem. More modern works [8]
restrict the syntax of integrity constraints, allowing them to use only extensional
relations; in the induced MCS, this translates to the additional requirement that
only relational elements from CE appear in the body of integrity constraints.

Example 7. Consider a deductive database for class diagrams, where information
about direct subclasses is stored in the extensional database using a relation isa,
e.g. isa(list , collection) and isa(array , list). Intensionally, we model the transitive
closure of the subclass relation using a view created by the two rules sub(A,B) ←
isa(A,B) and sub(A,C) ← isa(A,B), sub(B,C), thus allowing us to find out that
in our example sub(array , collection). The integrity constraint

← sub(A,A)
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can then be used to state the acyclicity of the subclass relation. Integrity con-
straints restricted to the extensional database could not express this, as there
would be no way to define a fixpoint. The only (incomplete) solution would be
to add n integrity constraints disallowing cycles of length up to n. This example
illustrates our gain of expressive power compared to the approach in [8].

We can also consider databases with several, different views, each view gen-
erating a different context. Integrity constraints over the resulting MCS can then
specify relationships between relations in different views.

Yet again, the complexity of verifying whether an MCS induced by a deduc-
tive database satisfies its integrity constraints is lower than the general case.
In particular, consistency checking is reducible to query answering (all integrity
constraints are satisfied iff there are no answers to the queries expressed in their
bodies). If we do not allow negation in the definition of the intensional relations,
then there is only one model of the database as before, and consistency checking
w.r.t. a fixed set of integrity constraints is PTIME-complete [29]. In the gen-
eral case, weak and strong consistency correspond, respectively, to brave and
cautious reasoning for Datalog programs under answer set semantics, which are
known to be co-NP-complete and NP-complete, respectively.

4.4 Peer-to-Peer Systems

Peer-to-peer (P2P) networks are distributed systems where each node (the peer)
has an identical status in the hierarchy, i.e., there is no centralized control.
Queries can be posed to each peer, and peers communicate amongst themselves
in order to produce the desired answer. For a general overview see e.g. [27].

A particularly interesting application are P2P systems, which integrate fea-
tures of both distributed and deductive databases. We follow [9], which also
addresses the issue of integrity constraints. In this framework, P2P systems con-
sist of several nodes (the peers), each of them a deductive database of its own,
connected via mapping rules that port relations from one peer to another.

Definition 11. A peer-to-peer system P is a set of peers P = {Pi}n
i=1. Each

peer is a tuple 〈Σi,DBi, Ri,Mi, ICi〉, where:

– Σi is the disjoint union of three signatures Σi
E, Σi

I and Σi
M ;

– 〈DBi, Ri〉 is a deductive database over signatures Σi
E and Σi

I , where the rules
in Ri may also use relations from Σi

M ;
– Mi is a set of mapping rules of the form p ←j q1, . . . , qm with j �= i, where p

is an atom over a signature Σi
M and each qk is an atom over Σj;

– ICi is a set of integrity constraints over Σi.

Intuitively, relations can be defined either extensionally (those in ΣE), intension-
ally (those in ΣI) or as mappings from another peer (those in ΣM ), and these
definitions may not be mixed. Observe that, with these definitions, negations
may only occur in the bodies of the integrity constraints.
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We can view a P2P system as a MCS with integrity constraints. To simplify
the construction, we adapt the definition from the case of deductive databases
slightly, so that there is a one-to-one correspondence between peers and contexts.

Definition 12. Let P = {Pi}n
i=1 be a P2P system. The MCS induced by P is

defined as follows.

– There are n contexts, where Ci is constructed as Ctx(DBi) together with the
following set of bridge rules:
• (i : p) ← (i : q1), . . . , (i : qm) for each rule p ← q1, . . . , qm ∈ Ri;
• (i : p) ← (j : q1), . . . , (j : qm) for each rule p ←j q1, . . . , qm ∈ Mi.

– Each integrity constraint ← q1, . . . , qm in ICi is translated to the integrity
constraint ← (i : q1), . . . , (i : qm), where we take (i : ¬q) to mean not (i : q).

The definition of the bridge rules from Ri is identical to what one would obtain
by constructing the context Ctx(Ri) described in the previous section.

This interpretation does not preserve the semantics for P2P systems given
in [9,10]. Therein, mapping rules can only be applied if they do not generate
violations of the integrity constraints. This is directly related to the real-life
implementation of these systems, where this option represents a “cheap” strategy
to ensure local enforcement of integrity constraints; as discussed in [35], the
underlying philosophy of P2P systems and MCSs is significantly different.

We now show that, while the semantics differ, there is a correspondence
between P2P systems and their representation as an MCS, and the “ideal” mod-
els of both coincide. When no such models exist, the MCS formulation can be
helpful in identifying the problematic mapping rules.

The semantics of P2P systems implicitly sees them as logic programs.

Definition 13. Let P = {Pi}n
i=1 be a P2P system and I be a Herbrand inter-

pretation over
⋃

Σi. The program PI is obtained from P by (i) grounding all
rules and (ii) removing the mapping rules whose head is not in I.

Let MM(P ) denote the minimal model of a logic program. A weak model
for P is an interpretation I such that I = MM(PI).

Since integrity constraints are rules with empty head, this definition implicitly
requires weak models to satisfy them. Interpretations over a P2P system and
equilibria over the induced MCS are trivially in bijection, as the latter simply
assign each atom to the right context, and we implicitly identify them hereafter.
We can relate the “perfect” models in both systems.

Theorem 4. Let P be a P2P system, I an interpretation for P, and M the
induced MCS. Then I = MM(P) = MM(PI) iff I is an equilibrium for M
satisfying all the integrity constraints.

Proof. Since P corresponds to a positive program, the only equilibrium of M is
MM(P) (see [14]). Furthermore, for any I, MM(PI) includes the facts in all
extensional databases and satisfies all rules in Ri and all integrity constraints.
Thus, it also corresponds to a belief state satisfying their counterparts in M .
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Suppose that MM(P) = MM(PI). Since mapping rules are the only ones
that can add information about relations in Σi

M to I, the second equality implies
that no mapping rules are removed in PI . Therefore I = MM(P) satisfies
all bridge rules of M obtained from the mapping rules in P, whence I is an
equilibrium of M satisfying all integrity constraints.

Conversely, if I is an equilibrium of M and r is a mapping rule, then either
I does not satisfy the body of r or I contains its head. Since no other rules can
infer instances of relations in Σi

M , this implies that MM(P) = MM(PI), and
being an equilibrium implies that I = MM(P). ��

The MCS representation has an interesting connection with the notion of
weak model in general, though: if there are integrity constraints in M that
are not satisfied by MM(P), then repairing M by removing mapping rules
is equivalent to finding a weak model for P. This is again reminescent of the
view-update problem.

The MCS representation allows us to write seemingly more powerful integrity
constraints over a P2P system, as we can use literals from different contexts in
the same rule. However, this does not give us more expressive power: for example,
the integrity constraint ← (1 : a), (2 : b) can be written as ← (1 : a), (1 : b2)
adding the mapping rule (1 : b2) ← (2 : b), where b2 is a fresh relation in peer 1.

4.5 Description Logic Knowledge Bases

We now discuss the connection between our work and results on adding integrity
constraints to description logic knowledge bases, namely OWL ontologies.

Description logics differ from databases in their rejection of the closed-world
assumption, thereby contradicting the semantics of negation-by-failure. For this
reason, encoding ontologies as a context in an MCS is a bit different than the
previous examples. We follow the approach from [13], refering the reader to the
discussion therein of why the embeddding from e.g. [5] is not satisfactory.

Definition 14. A description logic L is represented as the relational logic LL =
〈KBL,BSL,ACCL, ΣL〉 defined as follows:

– KBL contains all well-formed knowledge bases (including a T-Box and an A-
Box) of L;

– BSL is the set of all possible A-Boxes in the language of L;
– ACCL(kb) is the singleton set containing the set of kb’s known consequences

(positive and negative);
– ΣL is the signature underlying L.

Regarding the choice of acceptable belief sets (the elements of BSL), the possible
A-Boxes correspond to (partial) models of L, seen as a first-order theory: they
contain concepts and roles applied to particular known individuals, or negations
thereof. However, they need not be categorical: they may contain neither C(a)
nor ¬C(a) for particular C and a. This reflects the typical open-world semantics
of ontologies. In particular, the only element of ACCL(kb) may not be a model
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of kb in the classical sense of first-order logic. This is in contrast with [5], where
ACCL(kb) contains all models of kb; as discussed in [13], this is essential to model
e.g. default reasoning correctly.

Definition 15. An ontology O based on description logic L induces a context
with underlying logic LL, knowledge base O, and an empty set of bridge rules.

Like in the database scenario, ontologies viewed as MCSs always have one
equilibrium, as long as they are logically consistent. Therefore, the notions of
weak and strong satisfaction of integrity constraints again coincide, and we get
the same notion of consistency w.r.t. a set of integrity constraints as that defined
in [26]; however, our syntax is more restricted, as we do not allow general for-
mulas as integrity constraints. Observe that, as in that work, our integrity con-
straints only apply to named individuals (explicitly mentioned in the ontology’s
A-Box), which is a desirable consequence that yet again can only be gained from
keeping integrity constraints separate from the knowledge base.

Example 8. We illustrate the construction in this section with a classical exam-
ple. We assume that we have an ontology O including a concept person and a
role hasCPR, which associates individuals with their CPR number. (So we are
essentially resetting Example 6 to use an ontology, rather than a distributed
database.) We can add the integrity constraint

← (O : person(x)), not (O : hasCPR(x, y))

requiring each person to have a CPR number. Due to the semantics of ontologies,
this actually requires each person’s CPR number to be explicitly present in the
ontology: the presence of an axiom such as person � (∃person.hasCPR) does not
yield any instance hasCPR(x, y) in the set of the ontology’s known consequences.
This also justifies our definition of ACCL: if we take the model-based approach
of [5], then this integrity constraint no longer demands the actual presence of
such a fact in the A-Box.

This integrity constraint is an example of one that does not satisfy the safety
condition (the variable y occurs only in a negated literal), but as discussed in
Sect. 3 our theory is easily extended to cover this case, as y only occurs once in
the formula.

Our scenario is also expressive enough to model the distributed ontology
scenario of [19], which defines integrity constraints as logic programming-style
rules with empty head whose body can include atoms from different ontologies:
we can simply consider the MCS obtained from viewing each ontology as a
separate context, and the integrity constraints as ranging over the joint system.

5 Repairs and Managed Multi-context Systems

The definitions in the previous section allow us to distinguish between acceptable
and non-acceptable equilibria w.r.t. a set of integrity constraints, but they do
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not help with the analog of the problem of database repair [1] – namely, given an
inconsistent equilibrium for a given MCS, how do we change it into a consistent
one. In order to address this issue, we turn our attention to managed multi-
context systems (mMCS) [7].

Definition 16. A managed multi-context system is a collection of managed
contexts {Ci}i∈J , with each Ci = 〈Li, kbi, bri,Di, OPi,mngi〉 as follows.

– Li is a relational logic, kbi is a knowledge base, and Di is a set of import
domains, as in standard MCSs.

– OPi is a set of operation names.
– bri is a set of managed bridge rules, with the form of Eq. (1), but where s is

of the form o(p) with o ∈ OPi and p ∈ ⋃
KBi.

– mngi : ℘(OPi × ⋃
KBi) × KBi → KBi is a management function.

The intuition is as follows: the heads of bridge rules can now contain arbitrary
actions (identified by the labels in OPi), and the management function specifies
the semantics of these labels – see [7] for a more detailed discussion. Our defini-
tion is simplified from those authors’, as they allow the management function to
change the semantics of the contexts and return several possible effects for each
action. This simplification results in a less flexible concept of mMCS, which is
however more useful for the purposes of defining repairs.

Example 9. The management function can perform several manipulations of
the knowledge base in one update action. For example, considering the set-
ting of Example 6, we could include an operation replace ∈ OPCPR such that
mng({〈replace, person(Id ,Name,Add)〉}, kb) inserts the tuple (Id ,Name,Add)
into the person table and removes any other tuple (Id ,Name ′,Add ′) from that
table.

Every MCS (in the sense of the previous section) can be seen as an mMCS
by taking every context to have exactly one operation add with the natural
semantics of adding its argument (the head of the rule) to the belief set associated
with the context in question. We will therefore discuss integrity constraints over
mMCS in the remainder of this section. The motivation of generalizing database
tradition also suggests that we include another operation remove that removes
an element from the specified context.

Definition 17. Let M = {Ci}i∈I be an mMCS. An update action for M is of
the form (i : o(p)), with i ∈ J , o ∈ OPi and p ∈ ⋃

KBi.
Given a set of update actions U and an mMCS M , the result of applying

U to M , denoted U(M), is computed by replacing each kbi (in context Ci) by
mngi(Ui, kbi), where Ui is the set of update actions of the form (i : o(p)).

Updates differ from applying (managed) bridge rules, as they actually change
one or more knowledge bases in M ’s contexts before any evaluation of bridge
rules takes place. This is similar to database updates, which change the database
before and independent of the query processing. Based on this notion of update,
we can define (weak) repairs as follows.
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Definition 18. Let M be an mMCS, η be a set of ICs over M , and assume that
M is inconsistent w.r.t. η. A set of update actions U is a weak repair for M
and η if U(M) is consistent w.r.t. η. If there is no subset U ′ of U that is also a
weak repair for M and η, then U is a repair.

Example 10. Again in the setting of Example 6, suppose that the CPR database
contains the record person(1111111118, old lady , odense) and the Silkeborg elec-
toral database contains the records voter(1111111118) and address(gjern), but
not the record address(odense) as Odense is not in Silkeborg. The induced mMCS
is inconsistent w.r.t. the integrity constraint Eq. (5), and a possible repair is
{(CPR : add(person(1111111118, old lady , gjern)))}. The semantics of the man-
agement function guarantee that only the new record will persist in the mMCS.

As is the case in databases, it can happen that a set of integrity constraints is
inconsistent, in the sense that no MCS can satisfy it. However, this inconsistency
can also arise from incompatibility between integrity constraints and bridge
rules – consider the very simple case where there is a bridge rule (B : b) ← (A : a)
and an integrity constraint ← (A : a), not (B : b). Since our notion of update
does not allow one to change bridge rules, this inconsistency is unsurmountable.

In general, this interaction between integrity constraints and bridge rules
makes the problem of finding repairs for inconsistent MCSs more complex than
in the database world. However, Theorems 1 and 2 show that the problem of
finding a repair for an MCS that is inconsistent w.r.t. a set of integrity constraints
can be reduced to finding a set of update actions that will make a logically
inconsistent MCS have equilibria. The results on diagnosing and repairing logical
inconsistency in multi-context systems [16,17] can therefore be used to tackle
this problem. By considering deductive databases as MCSs, we also see the
problem of repairing an inconsistent MCS as a generalization of the view-update
problem [24,25,32].

Another issue is how to choose between different repairs: as in the database
case, some repairs are preferable to others. Consider the following toy example.

Example 11. Let M be the MCS induced by a deductive database with one
extensional relation p and one intensional relation q, both 0-ary, connected by
the rule q ← p, and consider the integrity constraint (I : q).

Assume the usual operations add and remove. There are two repairs for M ,
namely {(E : add(p))} and {(I : add(q))}, but only the former is valid from the
perspective of deductive databases.

The usual consensus in databases is that, in general, deciding which repair to
apply is a task that needs human intervention [18]. However, several formalisms
also include criteria to help automate such preferences. In our setting, a simple
way to restrict the set of possible repairs would be to restrict the update actions
to use only a subset of the OPis – in the case of deductive databases, we could
simply restrict them to the operations over CE . An alternative that offers more
fine-tuning capabilities would be to go in the direction of active integrity con-
straints [21], which require the user to be explicit about which update actions
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can be used to repair the integrity constraints that are not satisfied. We plan to
pursue the study of such formalisms to discuss repairs of MCSs with integrity
constraints in future work. We also intend to study generalizations of repairs to
include the possibility of changing bridge rules.

6 Conclusions and Future Work

In this paper, we proposed a notion of integrity constraint for multi-context sys-
tems, a general framework for combining reasoning systems. We showed that
our notion generalizes the well-studied concept of integrity constraint over data-
bases, and studied its relation to similar notions in other formalisms. Satisfaction
of integrity constraints comes in two variants, weak and strong, related to the
usual concepts of brave and cautious reasoning.

By showing how to encode integrity constraints within the syntax of MCSs,
we obtained decidability and complexity results for the problem of whether a
particular MCS weakly or strongly satisfies a set of integrity constraints, and of
repairing it in the negative case. We argued however that by keeping integrity
constraints as an added layer on top of an MCS we are able to separate intrin-
sic logical inconsistency from inconsistencies that may arise e.g. from improper
changes to an individual context, which we want to detect and fix, rather than
propagate to other contexts. Our examples show that we indeed capture the
usual behaviour of integrity constraints in several existing formalisms.

We also defined a notion of repair, consistent with the tradition in data-
bases, and identified new research problems related to which repairs should be
preferred that arise in the MCS scenario. We intend to pursue this study further
by developing a theory of active integrity constraints, in the style of [21].
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32. Teniente, E., Olivé, A.: Updating knowledge bases while maintaining their consis-
tency. VLDB J. 4(2), 193–241 (1995)

33. Ullman, J.: Principles of Database and Knowledge-Base Systems, Volume I. Com-
puter Science Press, Cambridge (1988)

34. Vardi, M.: The complexity of relational query languages (extended abstract). In:
Lewis, H., Simons, B., Burkhard, W., Landweber, L. (eds.) STOC 1982, pp. 137–
146. ACM (1982)

35. Weinzierl, A.: Advancing multi-context systems by inconsistency management.
In: Bragaglia, S., Damásio, C., Montali, M., Preece, A., Petrie, C., Proctor, M.,
Straccia, U. (eds.) RuleML2011@BRF Challenge, CEUR Workshop Proceedings,
vol. 799, CEUR-WS.org (2011)



A Knowledge Based Framework for Link
Prediction in Social Networks

Pooya Moradian Zadeh(B) and Ziad Kobti

School of Computer Science, University of Windsor, Windsor, ON, Canada
{moradiap,kobti}@uwindsor.ca

Abstract. Social networks have a dynamic nature so their structures
change over time. In this paper, we propose a new evolutionary method
to predict the state of a network in the near future by extracting knowl-
edge from its current structure. This method is based on the fact that
social networks consist of communities. Observing current state of a given
network, the method calculates the probability of a relationship between
each pair of individuals who are not directly connected to each other
and estimate the chance of being connected in the next time slot. We
have tested and compared the method on one synthetic and one large
real dataset with 117 185 083 edges. Results show that our method can
predict the next state of a network with a high rate of accuracy.

Keywords: Social networks · Link prediction · Cultural algorithm ·
Evolutionary algorithm · Knowledge · Community detection

1 Introduction

People use social networks to interact with others. Regardless of the content,
these interactions can reveal valuable information about real societies and indi-
viduals. This information can be useful to identify the structure and topology
of these networks, which makes it possible to track their evolutions and pre-
dict the next state. Naturally, these networks are extremely dynamic and their
rate of evolution is very high. Consequently, their structure changes frequently.
Since these networks reflect real life events, having knowledge about their next
state can be applied to various domains such as recommendation systems, deci-
sion making, marketing and risk analysis [1–4,6,9]. In the field of social network
analysis, this problem is known as Link Prediction, which can be defined as
estimating the likelihood of a connection between two disconnected entities in a
network in the near future [2,4,6].

The main idea behind this problem is, the future state of a network is not
random and has a dependency on the current state. Therefore, the target is to
find the level of dependency and the main factors affecting it.

Social networks, as a subset of complex networks have some particular char-
acteristics such as power-law distribution and high value of cluster coefficiency.
Having a high level of cluster co-efficiency in the network indicates the tendency
c© Springer International Publishing Switzerland 2016
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of users to join communities is high. Accordingly, in this paper we propose a
knowledge-based evolutionary framework based on these properties to estimate
the state of a network in the near future just by having one snapshot of the
network.

Our proposed model is defined based on the similarity approach with two
main assumptions. The first is that an individual in a network tends to join
a community. The second is that, according to the homophily phenomenon in
social network, each individual joins a community through their friends. Hence
the similarity measurement here is defined as having a common community. For
example, if a person in a network has 6 friends and 5 of them are members of a
community with 30 people. The probability of a friendship between this person
and members of the community in the near future is higher than other cases and
it can be estimated approximately.

To estimate this likelihood, a knowledge-based structure which is called belief
space has been adapted from the evolutionary cultural algorithm which has been
proposed for the community detection problem in [13]. Cultural algorithms are
a specific type of evolutionary algorithm that use knowledge to enhance the
search process to find near optimal solutions for a problem [10,13]. As shown
in Fig. 1, a cultural algorithm consists of Population and Belief spaces. In fact,
the population space is a list of probable solutions for the community detection
problem and the belief space is a knowledge-based structure which guides the
population generation process in each iteration and it is evolved by extracting
information from the population space [10,13].

Fig. 1. A cultural algorithm process

In this paper, by focusing on the belief space as a great source of knowledge,
we propose an algorithm to determine the level of dependency between each
pair of users and estimate their tendency to communicate with each other. The
main structure of our proposed algorithm is a directed weighted graph which
is generated from the belief space data and demonstrates levels of relationships
between all neighbor nodes. For predictions, a mathematical formula is proposed
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to estimate the likelihood of having relationship between each unconnected pair.
This formula has been defined based on two main concepts, number of paths
between each unconnected pair and length of these paths. Generally having
more paths and shorter lengths implies higher chance of connection in the next
timeslot. Finally, our algorithm calculates the probability of a relation between
pairs of nodes which are not connected together directly and ranks them.

In this research, we present a novel concept of observing the quality of links
between pairs of nodes. We also introduce a method to extract information from
structure of the network as a similarity index.

The rest of the paper is organized as follows: In the next section, the problem
definition and related works will be reviewed. In Sect. 3, we present our model
and, after that, the evaluation of the model will be discussed. Conclusions are
presented in the last section.

2 Problem Definition and Related Works

If a network maps to a graph, G(V,E), where V is a fixed number of nodes and E
represents links between each pair of nodes, an edge is defined as e = (u, v) ∈ E,
where u, v ∈ V , at a particular timeslot (t). Predicting a state of the graph at
time t + 1 by having a snapshot of it at time t, is defined as the Link Prediction
Problem in social networks. In other words, given a network Gt at time t, the
output of a link prediction algorithm will be a list of edges which are not in Gt

and have high probability of appearing in Gt+1 [2,4,6]. See also Fig. 2.

Fig. 2. Predicting the state of a network at time t+ 1, given a snapshot of it at time t

To solve this problem many studies have been carried out. A similarity-based
approach is one of them [4,6]. In fact, having a high number of common features
among pair of users increases their chance for making a link in the near future.
Therefore, these types of algorithms calculate the level of similarity between
each pair of nodes x and node y and assign a score to them. After ranking them,
they select the pairs which have higher scores as they have more likelihood to
be linked in the near future.

One of the most famous approaches in this field is an unsupervised method
which is based on the similarity of the nodes’ structure [3,4,6]. To calculate the
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similarity, many indexes have been proposed, such as the Jaccard similarity co-
efficient, Katz, Common Neighbors, Leicht-Holme-Newman, etc. These indexes
are mainly based on the number of common neighbors [4,6].

The Common Neighbors index is defined as C(x, y) = |Γ (x) ∩ Γ (y)|, where
Γ (x) and Γ (y) are the lists of neighbors of nodes x and y, respectively. This
index counts the number of shared neighbors of nodes x and y.

The Jaccard similarity co-efficient is an important index in this field which
is defined as J(x, y) = |Γ (x) ∩ Γ (y)|/|Γ (x) ∪ Γ (y)|. It measures the number of
shared neighbors between two nodes over number of their all unique neighbors.

Leicht-Holme-Newman is also an index which measures the similarity by
calculating the number of common neighbors between nodes x and y relative to
the product of their degrees: L(x, y) = |Γ (x) ∩ Γ (y)|/d(x)d(y), where d(x) and
d(y) are the degrees of nodes x and y, respectively.

The Resource Allocation Index is another index which performs well on real
networks. Consider the situation where node x sends some resources to node y
through its mutual neighbors. The similarity between x and y is then defined as
the amount of resources received by node y: RA(x, y) =

∑
z∈Γ (x)∩Γ (y) 1/|Γ (z)|.

However, these indexes are not suitable for all types of networks, their per-
formance is varied based on the structures of different networks [4,6].

In addition, maximum likelihood and probabilistic models approaches which
are supervised methods are also used to solve the link prediction problem. How-
ever, by increasing the size of the network (|network| > 104), these models
become impractical because of their time complexity [4,6].

Evolutionary and swarm-based approaches are also used to solve the prob-
lem that have been proposed in recent years [1,2,9,11]. In [1], the authors have
used the Covariance Matrix Adaption Evolutionary Strategy (CMA-ES) to opti-
mize the prediction accuracy. They suggested a linear model for combining com-
mon neighbor’s similarity indexes and nodes specific information by assigning a
weight to each index. In their model, prior information about the network is not
required.

In [2], the authors proposed an algorithm based on ant colony optimization
to solve the problem. Random walk strategy has been implemented in their
algorithm to select paths. In this algorithm, the probability is assigned to an edge
to help an artificial ant select a better edge. In each iteration, the quality of the
paths are evaluated to update the probabilities for the next iterations. Finally,
the path with higher quality is selected as a link which has more likelihood to
appear.

On the other hand, since the future actually is not predictable, to test the
accuracy of the algorithm, a network must be randomly divided into two subsets,
the training set, ET , and the probe set, EP . Here, ET can be considered as the
observed known interactions and EP as the set of links that must be predicted
for testing. In the prediction process, information from ET must not be used.
As a result of this division, ET ∪ EP = E (the set of the network’s edges) and
ET ∩ EP = ∅.
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To evaluate the performance of these algorithms, two main methods are com-
monly used, the Area Under the Receiver Operating Characteristic Curve (AUC)
and Precision [4,6].

For the former, AUC = (n′+0.5n′′)/n, where n is the number of independent
comparisons and n′ denotes the number of times a randomly chosen missing link
(a link in EP ) had a higher score than a randomly chosen nonexistent link (a
link in U − E, where U denotes the universal set containing all possible links, of
which there are |V |(|V | − 1)/2, with |V | the number of nodes in the network).
Furthermore, n′′ denotes the number of times that their score is the same [4,6].

For the latter, if the ranked non-observed links are given, Precision is defined
as the number of relevant items selected divided by the total number of items
selected. In the case that the top-L links from the predicted links are chosen,
and Lr denotes the number of these links which are in EP , then Precision can
be defined as Lr/L [4,6].

3 Proposed Evolutionary Model

As we mentioned before, community is the core of our model. Thus, in our
model we adapt outputs of the evolutionary cultural algorithm which has been
proposed to detect communities on social networks in [13]. While the output of
this algorithm is the list of communities, the focus of this research is on the belief
space. This belief space can be visualized as a probability matrix which estimates
the quality of relationships between each pair of nodes in the network which are
directly connected together. Using this belief space which is updated by the
extracted information from populations in each iteration, the cultural algorithm
limits the search space and enhances the individual evolutions. In our model, we
propose using this knowledge repository as a source of information. As shown
in Fig. 3, the belief space will map to a directed weighted graph. The weights
indicate the level of dependency between each connected pair of nodes. After
that, we propose a method to estimate the likelihood of relationships between
two unlinked nodes of the graph. Ranking them will be the last process of this
model.

Fig. 3. Components of the proposed model
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3.1 Making the Weighted Graph

First we briefly describe the mentioned cultural algorithm [13]. In this algorithm,
an individual is represented as a probable solution based on a particular locus-
based adjacency method [8] stored in an array structure. The length of this array
is equal to number of nodes in the graph. Each cell of this array is addressed
from 1 to n (length of the array) which determines a node in the graph with
the same number. E.g., cell #10 corresponds to node #10. For each cell #i, the
algorithm will choose an address of a node from the list of neighbors of node #i.

For example, as shown in Fig. 4, if a network has 7 nodes, one sample indi-
vidual can be defined as an array of nodes, shown in Fig. 5, and illustrated in
Fig. 6, which shows two communities in this graph (nodes #1, 5, 6, and 7 in one
community and nodes #2, 3, and 4 in another).

As mentioned before and presented in Fig. 1, in each iteration, specific
number of individuals are generated by the algorithm (to make a population)

Fig. 4. A sample network

Fig. 5. A random individual

Fig. 6. Illustration of the individual in Fig. 5 which clearly shows two separate com-
munities (1,5,6,7) and (2,3,4)
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according to the rules which are set in the belief space. The quality of these indi-
viduals is evaluated based on a fitness function. As a result, these individuals
can be compared with each other. After sorting them, a group of them that have
better fitness values are selected to enter the belief space and if they meet some
conditions they can update the belief space.

To update the belief space, each cell of these individuals adds its value to the
n by n belief space matrix, where n is the number of nodes, and the algorithm
will calculate the relative frequency of it and store it in the matrix as shown in
Fig. 7. With this method, the belief space can be considered as an alternative
adjacency matrix for the graph, because it is a weighted sub-graph of the main
network that shows the level of dependency between nodes according to the
community index.

Fig. 7. The structure of the belief space

The belief space plays a key role by setting some rules for generating new
generations of individuals. This space collects and saves normative knowledge
of the best group of individuals. The assumption is that best individuals are
close to an optimal solution, thus the final solution can be generated by com-
bining components of them. In fact, the belief space defines a new state space
for the network by storing best individuals. In the subsequent iterations, new
generations of individuals are produced mostly based on this state space.

Our main assumption here is, if the number of iterations approaches infinity,
the belief space matrix can accurately represent some information about the
level of dependency between the connected nodes. Consequently, these relative
frequencies can be used as the probability of a relation in the next timeslot
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Fig. 8. Belief space formed by 5 selected individuals

based on the community function. By processing a snap shot of an undirected
and unweighted network, a weighted directed graph is made which reveals hidden
information about the quality of relations in the network.

Figure 8 shows an example for updating the belief space. Five individuals
have been selected to update the belief space of the same network shown in
Fig. 4. If the matrix had been empty before, then it is populated by the relative
frequency of nodes and their neighbors. For example, node #5 was linked to
node #1, 20 % of times (once out of 5 times). If we illustrate this belief space,
as shown in Fig. 9, a directed weighted graph will be the result.

3.2 Computing the Probabilities

To compute the probabilities of relations of a pair of disconnected nodes in this
weighted graph, two criteria have been considered to propose a formula. The first
is the number of paths between each pairs of disconnected nodes. The second

Fig. 9. Illustration of the belief space in Fig. 8
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is the length of these paths. To reduce the complexity, we assume the length of
the paths is always 1, which means that the probability is computed for those
pairs of disconnected nodes that have only one node between themselves. Let
G(V,E,W ) denote the input weighted graph, where V is a set of nodes and E a
set of edges between each pair of nodes (hence, each edge e is of the form (i, j),
with i, j ∈ V . Furthermore W is a set of weights of edges, with 0 ≤ W (i, j) ≤ 1
for all edges (i, j). For each pair of disconnected nodes (i, k), where i, k ∈ V and
(i, k) /∈ E, if there is a node j with j ∈ V and (i, j), (j, k) ∈ E, the estimated
weight between i and k is computed as follows:

∀j ∈ V →(i, j), (j, k) ∈ E, (i, k) 	∈ E,

W ′(i, j, k) = max(W (i, j),W (j, i)) × max(W (j, k),W (k, j)). (1)

If there were a link between two nodes i and k in the absence of node j, then
W ′(i, j, k) can be interpreted as the estimated weight of that link.

For each similar path this weight must be computed accordingly, and, finally,
the probability of a relation between nodes i and k is computed as follows:

P (i, k) = 1 − 1
2(n +

∑n
1 W ′(i, j, k))

, (2)

where n is the number of paths between i and k.
For example, in Fig. 9, a direct link does not exist between node#1 and #7

but there are 2 paths of length 1 between them. Therefore, n = 2, and the
nodes #5 and #6 represent j. We have W ′(1, 5, 7) = 0.8 × 0.6 = 0.48 and
W ′(1, 6, 7) = 0.2 × 0.6 = 0.12, and P (1, 7) = 1 − (1/(2 × (2 + 0.6)) = 0.6153.

3.3 Ranking the Probabilities

After calculating all the probabilities, the predicted pairs must be ranked based
on their probabilities. Finally, the top-L of them will be selected as the final
predicted edges. This process is shown in the following algorithm:

Algorithm CA-LP (G,A,B,L)

Input:
G: an undirected and unweighted graph, G(V,E)
A: adjacency matrix of G
B: Belief Space matrix
L: desired number of top predicted links

Output:
O: n*n matrix of L probabilities where

O(i,j)=P(i,j), ( i,j are members of V)
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Main:
1: Map Belief space to a weighted directed Graph
2: Compute
P(i,k) by extracting weights from B according to

(1) and (2), for all pairs where A(i,k)=0 and A(i,j), A(j,k)=1
3: Store probabilities in a array
4: Sort the array
5: Choose the top-L and store in O where O(i,k)=P(i,k)

4 Evaluation

To evaluate the performance of the proposed algorithm, we have used one syn-
thetic network and one real large social network dataset. For the synthetic net-
work, 10 graphs were generated randomly based on Newman’s method in [7].
Each of these graphs has 128 nodes with degree 16, therefore the graph has
1024 edges. It consists of 4 same-sized communities where each community has
32 members. Each of these members have Zin links to other members who are
inside its own community and Zout links to members from other communities
(Zin + Zout = 16). The range of Zout in these 10 graphs were set from 3 to 5.

As shown in Table 1, we selected 90 % of the graph as ET and the rest as
EP to evaluate the performance. The belief space which was imported to the
algorithm was obtained from the result of running the community detection
algorithm proposed in [13]. We tested the effectiveness of the algorithm accord-
ing to both AUC and Precision methods. The results are illustrated in Table 2
and Fig. 10. Tests were implemented 100 times independently on the top-100
instances. We also compared the results of AUC with three other similarity met-
rics, Common Neighbors (CN), Jaccard (JC) and Leicht-Holme-Newman (LH).

The results clearly show that the proposed algorithm has better performance
in comparison with other metrics on synthetic networks. Another interesting
observation is that, by increasing the complexity of the network (Zout > 4) the
performance of the algorithm reduced significantly. We believe the cause to be
the increasing rate of errors in the community detection algorithm when Zout

becomes larger.
In addition to Precision, we also compared the top-102 predicted links cal-

culated by the algorithm with the probe set, EP (|predicted links in EP |/|EP |).
As a result, in average 78.28 % of the predicted links were among the probe set,
which means that the algorithm could predict the correct links by an accuracy
of more than 75 %.

Table 1. Description of the synthetic network

#Nodes #Edges ET EP U

128 1024 922 102 8128
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Table 2. Comparision between different methods

Zout AUC Precision

CA-LP CN JC LH CA-LP

3 0.901 0.756 0.696 0.899 0.57

3 0.934 0.780 0.754 0.796 0.59

3 0.930 0.893 0.890 0.943 0.63

4 0.963 0.772 0.771 0.957 0.56

4 0.993 0.723 0.623 0.803 0.78

4 0.979 0.801 0.692 0.967 0.70

4 0.955 0.882 0.802 0.940 0.73

5 0.912 0.902 0.800 0.912 0.67

5 0.856 0.834 0.870 0.884 0.65

5 0.895 0.722 0.704 0.809 0.65

We also tested the performance of our proposed algorithm on a big real
dataset, Orkut, with 117 185 083 edges [12]. The dataset obtained from the Stan-
ford Large Network Dataset repository [5] is a benchmark dataset used by most
researchers in social network analysis. Another reason for selecting this dataset
is that it is a network with ground-truth communities which make us possible
to validate our results. Information about this dataset is represented in Table 3.
The procedure for running the experiment is similar to the procedure described
before in experimental setup for synthetic networks. The network was divided

Fig. 10. Comparision of the algorithms based on AUC
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Table 3. Orkut dataset specification

#Nodes #Edges Cluster coefficiency ET EP U

3072441 117185083 0.1666 105466575 11718508 4719945313020

Fig. 11. The results from the orkut dataset

into two sets, the training set (90 %) and the probe set (10 %). After 10 itera-
tions of independent experiments, the AUC and the precision were calculated.
As shown in Fig. 11, the algorithm could estimate the correct links with over
68 % success based on the precision method. Regarding the size of the network,
we believe that it is an acceptable rate for prediction.

5 Conclusion and Future Work

In this paper, we proposed a knowledge-based model to predict the state of a
network in the near future. The key part of this model is the belief space which
is a probability matrix that shows the level of dependency between linked nodes.
Assuming it as an adjacency matrix, a weighted directed graph can be made.
Consequently, the probability of relation between two disconnected nodes will
be computed based on this graph.

Estimating the quality of links between a pair of nodes in the network is
the first contribution of the algorithm. The second one is defining the concept of
community as a similarity index. Finally, the third one is using the cultural algo-
rithm as a knowledge-based evolutionary algorithm to predict the near future.

We evaluated the performance of our algorithm on one synthetic and one large
real dataset and compared it with three other metrics. Regarding the results, the
algorithm can predict the state of a network with a high accuracy. According to
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this issue that the objective of evolutionary algorithms is to find near optimal
solutions, we believe that by increasing the number of iterations, the quality of
prediction will improve. Meanwhile, since the size of the belief space is fixed to
the number of nodes, the complexity of the algorithm will not change based on
the number of iterations or the number of edges.

In the future, we would like to observe the performance of the algorithm in dif-
ferent type of social networks and extend our work to multiple networks. In addi-
tion, currently we have tested the algorithm using the common standard procedure
of dividing the training and probe set in the ratio of 90 % and 10 %, in the future we
would like to test the performance on different ratios to find the optimal training
size.

Acknowledgments. This work is partially supported by a Cross-Border Institute
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Abstract. We define a variant of team semantics called multiteam
semantics based on multisets and study the properties of various logics in
this framework. In particular, we define natural probabilistic versions of
inclusion and independence atoms and certain approximation operators
motivated by approximate dependence atoms of Väänänen.

1 Introduction

Dependence logic was introduced by Väänänen in 2007 [36]. It extends first-
order logic with dependence atomic formulas (dependence atoms) =(x , y) with
the intuitive meaning that the value of the variable y is functionally determined
by the values of the variables x . The notion of dependence has real meaning
only in plurals. Thus, in contrast to the usual Tarskian semantics, in dependence
logic the satisfaction of formulas is defined not via single assignments but via
sets of assignments. Such sets are called teams and the semantics is called team
semantics. In this article we take a further step of replacing structures and
teams by their multiset analogues. Multiteams have been considered in some
earlier works [20,21,38] but so far no systematic study of the subject in the team
semantics context has appeared. In the temporal logic setting (in the context of
computation tree logic) multiteam semantics have been introduced and studied
recently [28]. In this article we define the so-called lax and strict multiteam
semantics and study properties of various logics under these semantics. Moreover
we show how the shift from sets to multisets naturally gives rise to probabilistic
and approximate versions of dependence logic.

The idea of team semantics goes back to Hodges [19] whose aim was to define
compositional semantics for independence-friendly logic [18]. The introduction
of dependence logic and its many variants has evinced that team semantics is
a very interesting and versatile semantical framework. In fact, team semantics
c© Springer International Publishing Switzerland 2016
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has natural propositional, modal, and temporal variants. The study of modal
dependence logic was initiated by Väänänen [37] in 2008. Shortly after, extended
modal dependence logic was introduced by Ebbing et al. [7] and modal indepen-
dence logic by Kontinen et al. [27]. In purely propositional context the study was
initiated by Yang and Väänänen [42] and further studied, e.g., by Hannula et al.
[17]. One of the most important developments in the area of team semantics was
the introduction of independence logic [13] in which dependence atoms of depen-
dence logic are replaced by independence atoms y ⊥x z . The intuitive meaning
of the independence atom y ⊥x z is that, when the value of x is fixed, knowing
the value of z does not tell us anything new about the value of y . Soon after the
introduction of independence logic, Galliani [9] showed that independence atoms
can be further analysed, and alternatively expressed, in terms of inclusion and
exclusion atoms. The inclusion atom x ⊆ y expresses that each value taken by
x in a team X appears also as a value of y in X. The meaning of the exclusion
atom x |y is that x and y have no common values in X.

Independence, inclusion, and exclusion atoms have very interesting properties
in the team semantics setting. For example, inclusion atoms give rise to a variant
of dependence logic that corresponds to the complexity class PTIME over finite
ordered structures [10]. In fact, the complexity theoretic aspects of these atoms
in propositional, modal, and first-order setting have been studied extensively
during the past few years (see the survey of Durand et al. [6] and the references
therein).

A team X over variables x1, . . . , xn can be viewed as a database table with
x1, . . . , xn as its attributes. Under this interpretation, dependence, inclusion,
exclusion, and independence atoms correspond exactly to functional, inclusion,
exclusion, and embedded multivalued dependencies, respectively. These depen-
dencies have been studied extensively in database theory. The close connection
between team semantics and database theory has already led to fruitful interac-
tions between these areas [15,16,26]. It is worth noting that multiset semantics
(also known as bag semantics) is widely used in databases [1,24,29]. On the
other hand, independence atoms, embedded multivalued dependencies, and the
notion of conditional independence Y ⊥ Z |X in statistics have very interesting
connections, see, e.g., [14,40]. In this article we establish that, in the multiteam
semantics setting, independence atoms can be naturally interpreted exactly as
statistical conditional independence. Probabilistic versions of dependence logic
have been previously studied by Galliani and Mann [8,11].

In practice dependencies such as functional dependence do not hold
absolutely but with a small margin of error. In order to logically model such
scenarios, Väänänen introduced approximate dependence atoms [38]. The corre-
sponding approximate functional dependencies have been studied in the context
of data mining [22]. In this article we define a general approximation operator
which, in particular, can be used to express approximate dependence atoms.
In the last sections of the article, we study the computational aspects of logics
extended by the approximation operator.
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Previous work on multisets in team semantics. The idea of generalising team
semantics by the use of multisets has been discussed in several articles. Hyttinen
et al. [20] study multiteams, and their generalisations called quantum teams,
which they use to give semantics to a propositional logic called quantum team
logic that can be used for the logical analysis of phenomena in quantum physics.
Moreover Hyttinen et al. [21] define a notion of a measure team and measure
team logic. The latter is a logic for making inferences about probabilities of first-
order formulas in measure teams. Furthermore Krebs et al. introduced team
semantics with multisets for the temporal logic CTL [28]. Finally the fact that
under multiteam semantics approximate dependence atoms have the locality
property (compare to Proposition 11) is discussed by Väänänen [38].

Organisation. This article is organised as follows. Section 2 briefly discusses the
basic concepts and definitions. The generalisation of team semantics to multi-
sets is presented in Sect. 3. Section 4 defines the approximation operators, and in
Sect. 5 the complexity theoretic aspects of logics with the approximation opera-
tors are studied.

2 Preliminaries

We assume familiarity with standard notions in computational complexity theory
and logic. We will make use of the complexity classes NP and PTIME. For an
introduction into this topic we refer to the good textbook of Papadimitriou [34].

2.1 Team Semantics

Vocabularies τ are finite sets of relation symbols with prescribed arities. For
each R ∈ τ , let ar(R) ∈ Z+ denote the arity of R. A τ -structure is a tuple
A =

(
A, (RA

i )Ri∈τ

)
, where A is a set and each RA

i is an ar(Ri)-ary relation on A

(i.e., RA
i ⊆ Aar(Ri)). We use A, B, etc. to denote τ -structures and A, B, etc. to

denote the corresponding domains. In this article we restrict attention to finite
structures.

Let D be a finite set of first-order variables and A be a nonempty set.
A function s : D → A is called an assignment. The set D is the domain of
s, and the set A the codomain of s. For a variable x and a ∈ A, the assignment
s(a/x) : D ∪ {x} → A is obtained from s as follows:

s(a/x)(y) :=

{
a if y = x,

s(y) otherwise.

A team is a finite set of assignments with a common domain and codomain.
Let X be a team, A a finite set, and F : X → P(A) \ {∅} a function. We denote
by X[A/x] the modified team {s(a/x) | s ∈ X, a ∈ A}, and by X[F/x] the team
{s(a/x) | s ∈ X, a ∈ F (s)}. Let A be a τ -structure and X a team with codomain
A, then we say that X is a team of A.
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Let τ be a set of relation symbols. The syntax of first-order logic FO(τ) is
given by the following grammar, where R ∈ τ , x is a tuple of variables, and x
and y are variables. Note that in the definition the scope of negation is restricted
to atomic formulae.

ϕ ::= x = y | x �= y | R(x ) | ¬R(x ) | (ϕ ∧ ϕ) | (ϕ ∨ ϕ) | ∃xϕ | ∀xϕ.

Let x ,y be tuples of variables and ϕ a formula. We write Var(ϕ) for the set of
variables that occur in ϕ, and Var(x ) for the set of variables listed in x . We
also write xy for the concatenation of x and y , x ∩ y for any tuple listing the
variables that occur both in x and y , and x \y for any tuple listing the variables
that occur in x but not in y . For an assignment s, we write s(x ) to denote the
sequence

(
s(x1), . . . , s(xn)

)
.

Next we define the lax and strict team semantics of first-order logic. It is
worth noting that the disjunction has a non-classical interpretation. The classi-
cal (or intuitionistic) disjunction is usually denoted by � in the team semantics
framework. However, as exemplified by Proposition 1, the non-classical disjunc-
tion of team semantics naturally corresponds to the classical disjunction of ordi-
nary first-order logic.

Definition 1 (Lax Team Semantics). Let A be a τ -structure and X a team
of A. The satisfaction relation |=X for first-order logic is defined as follows:

A |=X x = y ⇔ ∀s ∈ X : s(x) = s(y)
A |=X x �= y ⇔ ∀s ∈ X : s(x) �= s(y)
A |=X R(x) ⇔ ∀s ∈ X : s(x) ∈ RA

A |=X ¬R(x) ⇔ ∀s ∈ X : s(x) �∈ RA

A |=X (ψ ∧ θ) ⇔ A |=X ψ and A |=X θ
A |=X (ψ ∨ θ) ⇔ A |=Y ψ and A |=Z θ for some Y,Z ⊆ X s.t. Y ∪ Z = X
A |=X ∀xψ ⇔ A |=X[A/x] ψ
A |=X ∃xψ ⇔ A |=X[F/x] ψ holds for some F : X → P(A) \ {∅}.

The so-called strict team semantics is obtained from the previous definition by
adding the following two requirements.

(i) Disjunction: Y ∩ Z = ∅.
(ii) Existential quantification: F (s) is singleton for all s ∈ X.

Proposition 1 [36]. Let A be a τ -structure, X a team of A, and ϕ a formula
of FO(τ). Then

A |=X ϕ ⇔ ∀s ∈ X : A |=s ϕ,

where |=s denotes the ordinary satisfaction relation of first-order logic defined
via models and assignments as usual, and |=X denotes the satisfaction relation
of either lax or strict team semantics.
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For a model A and a sentence ϕ (i.e., a formula with no free variables), the
satisfaction relation |= is defined as:

A |= ϕ if A |={∅} ϕ,

where {∅} denotes the singleton team of empty assignment.
Team semantics enables extending first-order logic with various dependency

notions. The following dependency atoms were introduced in team semantics
setting in [9,13,36].

Definition 2 (Dependency atoms). Let A be a model and X a team of A. If
x,y are variable sequences, then =(x,y) is a dependence atom with the satisfac-
tion relation:

A |=X =(x,y) if for all s, s′ ∈ X s.t. s(x) = s′(x), it holds that s(y) = s′(y).

If x,y are variable sequences of the same length, then x ⊆ y is an inclusion
atom with the satisfaction relation:

A |=X x ⊆ y if for all s ∈ X there exists s′ ∈ X such that s(x) = s′(y).

If x,y, z are variable sequences, then y ⊥x z is a conditional independence atom
with the satisfaction relation:

A |=X y ⊥x z if for all s, s′ ∈ X such that s(x) = s′(x) there exists s′′ ∈ X

such that s′′(x) = s(x), s′′(y) = s(y), and s′′(z) = s′(z).

Note that in the previous definition it is allowed that some or all of the vectors
of variables have length 0. For example, A |=X =(x ) holds iff ∀s ∈ X : s(x ) = c
holds for some fixed tuple c, and A |=X y ⊥x z holds always if either of the
vectors y or z is of length 0.

We write FO for first-order logic, and given a set of atoms C, we write FO(C)
(omitting the set parentheses of C) for the logic obtained by adding the atoms
of C to FO. For instance, FO(=(·)) denotes then dependence logic.

Often in literature dependence atoms are defined such that y is a single
variable, i.e., the widely used form is =(x , y). The definition above yields the
strongest form of functional dependence. Moreover the atom =(x ,y) can be
equivalently rewritten as a conjunction of dependence atoms of type =(x , y).

3 Multiteam Semantics

In this section we generalise team semantics with the concept of multisets. Mul-
tisets and multiteam semantics can be used, e.g., in applications to database
theory to model reasoning with databases with duplicates. In practice, for mul-
titude of reasons, the existence of duplicates in databases is very common. Again
as previously noted, we restrict attention to finite sets and finite multisets. In
the following definition, occurrences of “zero multiplicities” are allowed for nota-
tional convenience.
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Definition 3 (Multiset). A multiset is a pair (A,m) where A is a set and m :
A → N is a (multiplicity) function. The function m determines the multiplicities
of the elements in the multiset (A,m). A multiset (X,m) is a multiteam if the
underlining set X is a team. The domain (or the codomain) of the multiteam
(X,m) is the domain (codomain) of the team X.

For each multiset (A,m), we define the canonical set representative [(A,m)]cset
of (A,m) as follows:

[(A,m)]cset := {(a, i) | a ∈ A, 0 < i ≤ m(a)}.

We say that (A,m) is finite whenever [(A,m)]cset is finite. We say that a
multiset (A,m) is a submultiset of a multiset (B,n), (A,m) ⊆ (B,n), if and
only if [(A,m)]cset ⊆ [(B,n)]cset. Furthermore, we define that (A,m) = (B,n) if
and only if both (A,m) ⊆ (B,n) and (B,n) ⊆ (A,m) hold.

The disjoint union (A,m)�(B,n) of (A,m) and (B,n) is the multiset (C, k),
where C := A ∪ B and k : C → N is the function defined as follows:

k(s) :=

⎧
⎪⎨

⎪⎩

m(s) + n(s) if s ∈ A and s ∈ B,

m(s) if s ∈ A and s �∈ B,

n(s) if s �∈ A and s ∈ B.

We write |(A,m)| to denote the size of the multiset (A,m), i.e., |(A,m)| :=∑
a∈A m(a). The set of non-empty submultisets of a multiset (A,m) is the set

P+
(
(A,m)

)
:= {(C, l) | (C, l) ⊆ (A,m) s.t. l(c) ≥ 1 for each c ∈ C} \ {(∅, ∅)}.

Let (X,m) be a multiteam, (A,n) a finite multiset, and F : [(X,m)]cset →
P+

(
(A,n)

)
a function. We denote by (X,m)[(A,n)/x] the modified multiteam

defined as ⊎

s∈X

⊎

a∈A

{(
s(a/x),m(s) · n(a)

)}.

By X[F/x] we denote the multiteam defined as
⊎

s∈X

⊎

1≤i≤m(s)

{(
s(b/x), l(b)

) | (B, l) = F
(
(s, i)

)
, b ∈ B}.

A τ -multistructure is a tuple A =
(
(A,m), (RA

i )Ri∈τ

)
where (A,m) is a

multiset and, for each Ri ∈ τ , RA
i is an ar(Ri)-ary relation over the set {a ∈ A |

m(a) ≥ 1}. A multiteam (X,m) over A is a multiteam with codomain A.
Next we define multiteam semantics for first-order logic.

Definition 4 (Multiteam Semantics). Let A be a τ -multistructure, (A,n) the
domain of A, and (X,m) a multiteam over A. The satisfaction relation |=(X,m)

is defined as follows:
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A |=(X,m) x = y ⇔ ∀s ∈ X : if m(s) ≥ 1 then s(x) = s(y)
A |=(X,m) x �= y ⇔ ∀s ∈ X : if m(s) ≥ 1 then s(x) �= s(y)
A |=(X,m) R(x) ⇔ ∀s ∈ X : if m(s) ≥ 1 then s(x) ∈ RA

A |=(X,m) ¬R(x) ⇔ ∀s ∈ X : if m(s) ≥ 1 then s(x) �∈ RA

A |=(X,m) (ψ ∧ θ) ⇔ A |=(X,m) ψ and A |=(X,m) θ
A |=(X,m) (ψ ∨ θ) ⇔ A |=(Y,k) ψ and A |=(Z,l) θ for some multisets

(Y,k), (Z,l) ⊆ (X,m)s.t.(X,m) ⊆ (Y,k) � (Z,l).
A |=(X,m) ∀xψ ⇔ A |=(X,m)[(A,n)/x] ψ
A |=(X,m) ∃xψ ⇔ A |=(X,m)[F/x] ψ holds for some function

F : [(X,m)]cset → P+
(
(A,n)

)
.

The so-called strict multiteam semantics is obtained from the previous definition
by adding the following two requirements.

(i) Disjunction: (Y, n) � (Z, k) = (X,m).
(ii) Existential quantification: for all s ∈ X and 0 < i ≤ m(s), F

(
(s, i)

)
= (B,n)

for some singleton B = {b} and n(b) = 1.

This alternative semantics is discussed in Sect. 3.3. Otherwise in the paper we
restrict attention to the multiteam semantics given in Definition 4, sometimes
referred to as lax multiteam semantics. The following proposition shows that
multiteam semantics and team semantics for first-order logic coincide when the
multisets in multistructures are essentially sets. The proof of the proposition is
self evident.

Proposition 2 Let A be a multistructure with domain (A,n), and (X,m) a
multiteam over A such that n(a) = m(s) = 1 for all a ∈ A and s ∈ X. Define
B := (A, (RA)R∈τ ). Then for every ϕ ∈ FO it holds that

A |=(X,m) ϕ if and only if B |=X ϕ.

Next we generalise inclusion and conditional independence atoms to mul-
titeams by introducing their probabilistic versions. For a multiteam (X,m) of
codomain A, a tuple of variables x from Dom(X), and a ∈ A|x |, we denote
by (X,m)x=a the multiteam (X,n) where n agrees with m on all assignments
s ∈ X with s(x ) = a , and otherwise n maps s to 0.

Definition 5. Let A be a multistructure with domain (A,n), and (X,m) a mul-
titeam over A. If x,y are variable sequences of the same length, then x ≤ y is a
probabilistic inclusion atom with the following semantics:

A |=(X,m) x ≤ y if |(X,m)x=s(x)| ≤ |(X,m)y=s(x)| for all s : Var(x) → A.

If x,y, z are variable sequences, then y ⊥⊥x z is a probabilistic conditional inde-
pendence atom with the satisfaction relation defined as

A |=(X,m) y ⊥⊥x z (1)

if for all s : Var(xyz) → A it holds that

|(X,m)xy=s(xy)| · |(X,m)xz=s(xz)| = |(X,m)xyz=s(xyz)| · |(X,m)x=s(x)|.
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We call atoms of the form x ⊥⊥∅ y probabilistic marginal independence atoms,
written as the shorthand x ⊥⊥ y . Note that we obtain the following satisfaction
relation for x ⊥⊥ y :

A |=(X,m) x ⊥⊥ y if for all s : Var(xy) → A, (2)
|(X,m)x=s(x)| · |(X,m)y=s(y)|

|(X,m)| = |(X,m)xy=s(xy)|.

The study of database dependencies is very interesting also in the practical
point of view as many interesting properties of datasets can be revealed. Further
the investigation of conditional independence can yield methods to be used to
decompose datasets for speeding up different processing tasks on the data.

Multiteams (X,m) induce a natural probability distribution p over the assign-
ments of X. Namely, we define p : X → [0, 1] such that

p(s) =
m(s)∑

s∈X m(s)
.

The probability that a tuple of (random) variables x takes value a , written
Pr(x = a), is then ∑

s∈X,
s(x)=a

p(s).

It is now easy to see that A |=(X,m) y ⊥⊥x z iff for all abc,

Pr(y = b, z = c|x = a) = Pr(y = b|x = a) Pr(z = c|x = a),

that is, the probability of y = b is independent of the probability of z = c,
given x = a . Analogously, a probabilistic inclusion atom x ≤ y indicates that
Pr(x = a) ≤ Pr(y = a) for all values a , and a probabilistic independence atom
of the form x ⊥⊥ x that Pr(x = a) = 1 for some value a . Note that such atoms
have been studied in the literature under the name of constancy atoms [9].

One can also study the usual dependency notions of database theory in the
multiteam semantics setting.

Definition 6. Let A be a multistructure, (X,m) a multiteam over A, and ϕ of
the form =(x,y), x ⊆ y, or y ⊥x z. Then the satisfaction relation |=(X,m) is
defined as follows:

A |=(X,m) ϕ iff A |=X+ ϕ,

where X+ is the team {s ∈ X | m(s) ≥ 1}.
First we notice that the known translation of dependence atoms to independence
atoms (see Grädel and Väänänen [13]) works also in the probabilistic case.

Proposition 3. Let A be a multistructure, (X,m) a multiteam over A, and x,y
tuples of variables. Then A |=(X,m) y ⊥⊥x y iff A |=(X,m) =(x,y).



Approximation and Dependence via Multiteam Semantics 279

Proof. From the truth definition we obtain that

A |=(X,m) y ⊥⊥x y ⇔ for all s : Var(xy) → A with (X,m)xy=s(xy) �= ∅, (3)
|(X,m)xy=s(xy)| = |(X,m)x=s(x)|.

The result then follows since A |=(X,m) =(x ,y) iff the right-hand side of Eq. (3)
holds. ��
Note that the restriction of Proposition 3 to marginal independence states that

A |=(X,m) x ⊥⊥ x ⇔ A |=(X,m) =(x ).

It is left open whether one can define inclusion or conditional independence
atoms in FO(⊥⊥c,≤). However, over constant multiplicity functions conditional
independence atoms ϕ coincide with their probabilistic counterparts whenever
Var(ϕ) = Dom(X). In the following, we denote by xA the team of all assignments
Var(x ) → A.

Lemma 1. Let A be a multistructure and (X,m) a multiteam over A. Then

(i) A |=(X,m) y ⊥⊥x z ⇔ A |=(X,m)

(
y \ x ⊥⊥x z \ x

)
,

(ii) A |=(X,m) y ⊥⊥x z ⇔ A |=(X,m)

(
y \ z ⊥⊥x z \ y

) ∧ (
y ∩ z ⊥⊥x y ∩ z

)
.

Proof. Case (i). The truth definition in Eq. (1) is symmetric, and hence it suf-
fices to show that A |=(X,m) yx ⊥⊥x z ⇔ A |=(X,m) y ⊥⊥x z whenever x is listed
in x . This follows since xyxzA = xyzA, and the Eq. (1) remains the same after
removing x.

Case (ii). Let us first show that A |=(X,m) y ⊥⊥x z implies A |=(X,m)(
y ∩ z ⊥⊥x y ∩ z

)
. For this, it remains to show that A |=(X,m) yu ⊥⊥x z implies

A |=(X,m) y ⊥⊥x z , for u not listed in xyz . This follows since for all s ∈ xyzA,

|(X,m)xz=s(xz )| · |(X,m)xy=s(xy)|
= |(X,m)xz=s(xz )| · Σa∈A|(X,m)xyu=s(xy)a|
= Σa∈A(|(X,m)xz=s(xz )| · |(X,m)xyu=s(xy)a|)
= Σa∈A(|(X,m)x=s(x)| · |(X,m)xyzu=s(xyz )a|)
= |(X,m)x=s(x)| · Σa∈A|(X,m)xyzu=s(xyz )a|
= |(X,m)x=s(x)| · |(X,m)xyz=s(xyz )|,

where in the third equation we apply the assumption that A |=(X,m) ya ⊥⊥x z .
For the claim it now suffices to show that A |=(X,m) y ⊥⊥x z ⇔ A |=(X,m)(

y \ z ⊥⊥x z \ y
)

whenever A |=(X,m)

(
y ∩ z ⊥⊥x y ∩ z

)
. This follows directly

from the truth definition since by Eq. (3) for all s ∈ xvA with (X,m)xv=s(xv) �= ∅:

|(X,m)xv=s(xv)| = |(X,m)x=s(x)|,

for v := x ∩ y . ��
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If x ,y , z are pairwise disjoint, then y ⊥⊥x z corresponds to the generalised
embedded multivalued dependency x �→ y | z that is defined over extended
relational data models (i.e., relational data models equipped with a multiplicity
function) using semantics that coincide with that of Definition 5 [39,40]. It was
shown by Wong [39] that the generalised multivalued dependency x �→ y
holds in an extended relational data model if and only if the underlying relational
model satisfies the multivalued dependency x � y . This is stated in the following
theorem reformulated into the framework of this article.

Theorem 1 [39]. Let A be a multistructure, X a team over A, and y ⊥⊥x z a
probabilistic conditional independence atom such that Var(y ⊥⊥x z) = Dom(X)
and x,y, z are pairwise disjoint. Let 1 denote the constant function that maps
all assignments of X to 1. Then A |=(X,1) y ⊥⊥x z iff A |=(X,1) y ⊥x z.

Using Lemma 1, the restriction that x ,y , z are disjoint can be now removed.

Proposition 4. Let A be a multistructure, X a team over A, and y ⊥⊥x z a
probabilistic conditional independence atom such that Var(y ⊥⊥x z) = Dom(X).
Then A |=(X,1) y ⊥⊥x z iff A |=(X,1) y ⊥x z.

Proof. First note that by Proposition 3 and Lemma 1, y ⊥⊥x z is equivalent in
multiteam semantics to

(
y \ xz ⊥⊥x z \ xy

)∧=(x ,y∩z ). Moreover, it is known
that in team semantics y ⊥x z is equivalent to y \ xz ⊥x z \ xy ∧ =(x ,y ∩ z )
[13]. Hence, the claim follows by Theorem 1. ��
Note that y ⊥⊥x z implies y ⊥x z also over arbitrary multiplicity functions since
non-emptiness of (X,m)xy=s(xy) and (X,m)xz=s(xz ) implies non-emptiness of
(X,m)xyz=s(xyz ) by the truth definition in Eq. (1). The converse however does
not hold; the multiteam (Y,m) depicted in Fig. 1 satisfies x ⊥ y but violates
x ⊥⊥ y.

A Diversion: Implication Problems. Results similar in spirit to Proposi-
tion 4 have been studied in connection to implication problems which is a central
notion in causal reasoning and database dependency theory. The finite implica-
tion problem of independence atoms y ⊥x z is defined as follows. Given a finite
collection Σ ∪{ϕ} of independence atoms, determine whether for all finite A,X:

A |=X Σ ⇒ A |=X ϕ.

If the above holds, we write Σ |= ϕ. The implication problem of other types
of dependencies is defined analogously. Furthermore, the problem for the atoms
y ⊥⊥x z can be defined similarly by replacing teams by multiteams. The impli-
cation problems of embedded multivalued dependencies (i.e., the atoms y ⊥x z )
and y ⊥⊥x z have been extensively studied, e.g., for both atoms the problem
is not finitely axiomatisable and for the former the problem is known to be
undecidable. On the other hand, there are interesting restricted cases where
the implication problems are finitely axiomatisable and equivalent, i.e., for all
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inputs Σ ∪ {ϕ}, Σ |= ϕ iff Σp |= ϕp, where Σp and φp are defined by replacing
y ⊥x z by y ⊥⊥x z . This holds, for example, for marginal independence atoms
and for the so-called saturated atoms ϕ of the form y ⊥⊥x z (or equivalently
for ϕ = y ⊥x z ) which, as in Theorem 1, satisfy Var(y ⊥⊥x z ) = Dom(X) (see
the survey by Wong et al. [40]). Relationships between fragments of conditional
independence statements and embedded multivalued dependencies have recently
been studied, e.g., in [30–33]. It is also worth noting that the passage from set to
multisets has interesting consequences also for the study of implication problems
of database dependencies. For example, while key constraints can be expressed
by functional dependencies under team semantics, this is no longer true under
multiteam semantics [23].

Conditional independence is an important notion for expressing structural
aspects of probability distributions. Context specific independence is a variant
of y ⊥⊥x z expressing independence in a context where the values of some vari-
ables of x are restricted to range over a subset of all possible values [2,35]. The
next simple example shows how disjunction can be used to express context spe-
cific independence statements in FO(⊥⊥c). The example shows that combining
y ⊥⊥x z with the logical connectives and quantifiers available in FO(⊥⊥c) provide
us with powerful means to define interesting generalisations of conditional inde-
pendence. The definability of context specific independence using disjunction
has been pointed out in [3].

Example 1. Let A = {0, 1} and X be a multiteam of A with domain Dom(X) =
{x0, x1, . . . , xn}. Now in X the variable x0 is said to be contextually independent
of x2 given x1 = 0, denoted by

x0 ⊥ x2 | x1 = 0, (4)

if for all s : {x0, x1, x2} → A such that s(x1) = 0 it holds that

|(X,m)x0x1=s(x0x1)|·|(X,m)x1x2=s(x1x2)|
= |(X,m)x0x1x2=s(x0x1x2)| · |(X,m)x1=s(x1)|.

It is now straightforward to check that Eq. (4) can be equivalently expressed
by the FO(⊥⊥c)-formula (x1 �= c)∨ (

x1 = c∧ (x0 ⊥⊥x1 x2)
)
, where c is a constant

symbol interpreted as 0.

3.1 Probabilistic Notions in Multiteam Semantics

In this section we investigate some properties of the probabilistic logics we have
defined so far.

The set of free variables of a formula ϕ ∈ FO(C), denoted by Fr(ϕ), is defined
in the obvious manner as in first-order logic. In particular, we define

Fr(x ⊆ y) := Fr(x ≤ y) := Fr
(
=(x ,y)

)
:= {x ,y}

Fr
(
y ⊥⊥x z

)
:= Fr

(
y⊥x z

)
:= {x ,y , z}.
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For V ⊆ Dom(X), we define (X,m) � V := (X � V, n) where

n(s) :=
∑

s′∈X,
s′�V =s

m(s′).

The following locality principle holds by easy structural induction.

Proposition 5 (Locality). Let A be a multistructure, (X,m) a multiteam, and
V a set of variables such that Fr(ϕ) ⊆ V ⊆ Dom(X). Then for all ϕ ∈ FO(≤,⊥
⊥c,=(·),⊆,⊥c) it holds that A |=(X,m) ϕ iff A |=(X,m)�V ϕ.

The notion of flatness is generalised to the multiteam setting as follows.

Definition 7 (Weak Flatness). We say that a formula ϕ is weakly flat if for
all multistructures A and for all multiteams (X,m) it holds that

A |=(X,m) ϕ ⇔ A |=(X,n) ϕ,

where n agrees with m on all s with m(s) = 0, and otherwise maps all s to 1.
The multiteam (X,n) is then called the weak flattening of (X,m). A logic is
called weakly flat if every formula of this logic is weakly flat.

Dependence, conditional independence, and inclusion atoms are insensitive
to multiplicities, and using structural induction one can prove the following
proposition.

Proposition 6. FO(=(·),⊆,⊥c) is weakly flat.

On the other hand, probabilistic dependencies do not satisfy weak flatness as
shown in the next example.

Example 2. For instance (Y,m), illustrated in Fig. 1, does not satisfy x ⊥⊥ y but
its weak flattening (Y, n) does.

Analogously, the probabilistic inclusion atom is not weakly flat, and therefore
neither of these atoms can be expressed in FO(=(·),⊆,⊥c).

(Y, m) =

x y m(si)

s0 0 0 2
s1 0 1 1
s2 1 0 1
s3 1 1 1

(Y, n) =

x y n(si)

s0 0 0 1
s1 0 1 1
s2 1 0 1
s3 1 1 1

Fig. 1. Assignments for multiteams in Example 2.

A formula ϕ is called union closed (in the multiteam setting) if for all mul-
tistructures A and all multiteams (X,m), (Y, n): if A |=(X,m) ϕ and A |=(Y,n) ϕ,
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then A |=(Z,h) ϕ, where (Z, h) = (X,m) � (Y, n). A logic is called union closed if
all its formulae are union closed. It is easy to show by induction on the structure
of formulae that probabilistic inclusion logic satisfies union closure.

Proposition 7. FO(≤,⊆) is union closed.

3.2 Probabilistic Notions in Team Semantics

In this section we examine probabilistic independence and inclusion logic in the
(set) team semantics setting. Note that all the models considered in this section
are usual first-order structures.

Satisfaction of probabilistic atoms in team semantics setting is defined by
adding a constant multiplicity function.

Definition 8. Let A be a model, X a team over A, and ϕ be a probabilistic atom
of the form y ⊥⊥x z or x ≤ y. Then the satisfaction relation |=X is defined as
follows:

A |=X ϕ iff A |=(X,1) ϕ,

where 1 is the constant function that maps all assignments of X to 1.

The next theorem shows that, since probabilistic inclusion and independence
atoms are expressible (in the team semantics setting) in FO(⊥c) relative to teams
of fixed domain, their addition does not increase the expressive power of FO(⊥c).

Theorem 2. Let ϕ ∈ FO(≤,⊥⊥c,=(·),⊆,⊥c) be a sentence. Then there exists a
sentence ϕ′ ∈ FO(⊥c) such that for all models A it holds that A |= ϕ iff A |= ϕ′.

Proof. First note that inclusion and dependence atoms can be expressed in
FO(⊥c) [9,13]. Also it is easy to see that one can construct existential second-
order logic sentences that capture probabilistic inclusion and conditional inde-
pendence atoms over teams of fixed domain. Namely, for all ϕ of the form y ⊥⊥x z
or x ≤ y and all V ⊇ Fr(ϕ), there exists an ESO sentence ϕ∗(R), where R
is a k-ary relation symbol for k = |Var(ϕ)|, such that for all A and X with
Dom(X) = V ,

A |=X ϕ ⇔ (A,Rel(X)) |= ϕ∗(R),

where Rel(X) = {(s(x1), . . . , s(xk)) | s ∈ X}. All ESO-definable properties
of teams translate into FO(⊥c) [9], and hence the formula ϕ′ can be
constructed from ϕ by replacing each probabilistic atom with a correct FO(⊥c)-
translation. ��
Note that probabilistic inclusion atoms are not closed under (set) unions in
team semantics, and hence they cannot be expressed in FO(⊆) as shown in the
following example.

Example 3. Let A be a first-order structure with domain {0, 1, 2}, and s :=
{(x, 0), (y, 1), (z, 0)}, s′ := {(x, 1), (y, 0), (z, 1)}, and s′′ := {(x, 0), (y, 1), (z, 2)}
be assignments. Define X := {s, s′} and Y := {s′, s′′}. Now A |=X x ≤ y,
A |=Y x ≤ y, but A �|=X∪Y x ≤ y.
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3.3 Strict Multiteam Semantics

We briefly consider properties of related logics under strict multiteam semantics.

Proposition 8. Over strict multiteam semantics FO(=(·)) is weakly flat.

The logics FO(⊥c) and FO(⊆) are not weakly flat under strict multiteam seman-
tics as shown in the next example.

Example 4. For instance (X,m), illustrated in Fig. 2, satisfies (x ⊆ z) ∨ (y ⊆ z)
in strict semantics but its weak flattening (X,n) does not.

(X, m)

x y z m(si)

s1 0 0 1 2
s2 1 2 0 1
s3 2 1 0 1

(X, n)

x y z n(si)

s1 0 0 1 1
s2 1 2 0 1
s3 2 1 0 1

Fig. 2. Assignments for teams in Example 4.

Similarly, one can show that FO(≤,⊆) is not union closed under strict mul-
titeam semantics. Moreover one can show that Propositions 2 and 5 hold also
under strict multiteam semantics.

4 Approximate Operators

Now we will turn to define an existential and a universal approximate operator
which allows one to state truth of formulas not with respect to the full team
but with respect to a ratio of the team. The main motivator for this approach
is the important application in database theory to be able to model the truth of
properties in databases that may contain some faulty data. Moreover, in practice,
duplicates occur frequently in databases for a multitude of reasons. Thus the
study of database dependencies, such as inclusion dependencies and foreign key
constraints, in combination with approximate operators is an important topic
as it explains inherent properties of a given dataset. In this section we consider
multiteam semantics.

Definition 9. Let A be a multistructure, and (X,m) a multiteam over A, and
p ∈ [0, 1] a rational number.

A |=(X,m) 〈p〉ϕ ⇔ ∃(Y, n) ⊆ (X,m), |(Y, n)| ≥ p · |(X,m)| : A |=(Y,n) ϕ,

A |=(X,m) [p]ϕ ⇔ ∀(Y, n) ⊆ (X,m), |(Y, n)| ≥ p · |(X,m)| : A |=(Y,n) ϕ
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The previous definition generalises the notion of approximate dependence
atoms =p(·), introduced by Väänänen [38], in the following sense: =1−p(x , y) is
equivalent to the formula 〈p〉=(x , y).

In the following we observe that distributivity does not hold in general with
respect to 〈p〉.

(X, 1)

x y z 1(si)

s1 0 0 1 1
s2 0 1 0 1
s3 0 1 2 1

(Y, 1)

x y z 1(si)

s1 0 0 1 1
s3 0 1 2 1

(Z, ·)
x y m(si) n(si) k(si) �(si)

s1 0 1 1 0 1 0
s2 1 0 1 1 1 0
s3 0 0 1 1 0 1

Fig. 3. Assignments for multiteams in Examples 5 and 6.

Proposition 9. It is not true that 〈p〉(ϕ ∨ ψ) ≡ 〈p〉ϕ ∨ 〈p〉ψ.

Proof. Let A be the multistructure over the empty vocabulary with domain
({0, 1, 2}, 1), where 1 is the constant 1 multiplicity function. Then A |=(X,1)

〈 23 〉(x = y ∨ x = z) but A �|=(X,1) 〈 23 〉(x = y) ∨ 〈23 〉(x = z), where (X, 1) is the
multiteam depicted in the Fig. 3. ��
The next simple observation states the distributivity of [p] with respect to con-
junction ∧, as well as the merger of two 〈p〉-operators and two [q]-operators,
respectively.

Observation 1. The following equivalences hold:

1. [p](ϕ ∧ ψ) ≡ [p]ϕ ∧ [p]ψ,
2. 〈p〉(〈q〉ϕ) = 〈p · q〉ϕ,
3. [p]([q]ϕ) = [p · q]ϕ.

The next two examples show that both downward closure and union closure
are violated by the approximate operator.

Example 5. Let A be the multistructure over the empty vocabulary with domain
({0, 1, 2}, 1), where 1 is the constant 1 multiplicity function. Then A |=(X,1)

〈 13 〉(x = y) but A �|=(Y,1) 〈 13 〉(x = y), where (Y, 1) ⊆ (X, 1) are the multiteams
depicted in the Fig. 3.

Example 6. Let A be the multistructure over the empty vocabulary with domain
({0, 1}, 1), where 1 is the constant 1 multiplicity function. The multiteams
(Z,m), (Z, n), (Z, k), (Z, �) are depicted in the Fig. 3. Now A |=(Z,k) [23 ](x ≤ y)
and A |=(Z,�) [23 ](x ≤ y). However A �|=(Z,n) x ≤ y and thus A �|=(Z,m) [23 ](x ≤ y)
even though (Z, k) � (Z, l) = (Z,m).
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Proposition 10. Let L be a logic and ϕ ∈ L a formula. Then 〈p〉 preserves
union closure (whereas [p] does not), i.e., 〈p〉ϕ is union closed whenever ϕ is.

Proof. Let A be a multistructure and X,Y be multiteams of A. Assume that
A |=X 〈p〉ϕ and A |=Y 〈p〉ϕ. Then there are multiteams X ′ ⊆ X and Y ′ ⊆ Y
such that |X ′| ≥ p|X|, |Y ′| ≥ p|Y |, and both A |=X′ ϕ and A |=Y ′ ϕ. Hence
|X ′ � Y ′| = |X ′| + |Y ′| ≥ p|X| + p|Y | = p(|X| + |Y |) = p|X � Y | and thus
A |=X	Y 〈p〉ϕ. ��

Yet locality holds for this logic as witnessed by the following proposition.
The proof is by induction.

Proposition 11 (Locality). Let A be a multistructure, (X,m) a multiteam,
and V be a set of variables such that Fr(ϕ) ⊆ V ⊆ Dom(X). Then for all
ϕ ∈ FO(〈p〉, [p],≤,⊥⊥c,=(·),⊆,⊥c), it holds that A |=(X,m) ϕ iff A |=(X,m)�V ϕ.

5 On the Complexity of Approximate Dependence Logic

In the following we study computational complexity of model checking in depen-
dence logic enriched with the operator 〈p〉. The results hold under both team
and multiteam semantics. To simplify notation, we work with team semantics in
this section. Analogously to [5], our results can be seen as a first step towards a
systematic classification of the syntactic fragments of approximate dependence
logic for which data complexity of model-checking is tractable/intractable.

We first define the model checking problem in the context of team semantics.
We consider only Boolean queries, that is we define the model checking problem
for a logic L as follows: given a model A, a team X of A, and a formula ϕ of
L, decide whether A |=X ϕ holds. There are three parameters to this problem:
the model A, the team X, and the formula ϕ. Depending on which of these
parameters are fixed, a different variant of the model checking problem arises.
Here we consider two of these variants: the variant with a fixed formula (this is
called data complexity), and a variant in which nothing is fixed (this is called
combined complexity).

The following two theorems reveal that already very simple formulas of
approximate dependence logic witness the NP-completeness of the data com-
plexity of the logic.

Theorem 3 Model checking for 〈p〉(=(x, y) ∧ =(u, v)) is NP-complete.

Proof We sketch the proof here, a full proof can be found in the arXiv version of
this article. For the lower bound we give a polynomial many-one reduction from
3SAT inspired by a similar proof of Jarmo Kontinen [25]. Start with a formula
ϕ =

∧m
i=1

∨3
j=1 �i,j where �i,j is the jth literal in the ith clause, i.e., either a

variable x (said of parity 0) or its negation ¬x (of parity 1). In the following we
will construct a tuple (X,ψ) from ϕ such that ϕ ∈ 3SAT if and only if A |=X ψ.
First we define the team X to be the set

X = {(i, j, x, p) | in ith clause the jth literal is the variable x with parity p}.
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Technically the team can be seen as an encoding of the given formula. For
instance the formula ϕ = (x1∨¬x2∨x3)∧(¬x1∨¬x2∨¬x3) would yield the team
X = {(1, 1, x1, 0), (1, 2, x2, 1), (1, 3, x3, 0), (2, 1, x1, 1), (2, 2, x2, 1), (2, 3, x3, 1)}.

The formula ψ is defined as

〈1
3
〉(=(clause, literal) ∧ =(variable,parity)

)
.

Then intuitively speaking ψ states that one has to decide for each clause a
satisfying literal and do this consistently, i.e., the corresponding assignment has
to be consistent. At first one selects exactly one third of the elements in X such
that for each clause a literal is chosen (i.e., clause will determine the value of
literal). Then the parity of each variable is consistently chosen (i.e., variable will
determine the value of parity). It is straightforward to show that A |=X ψ iff ϕ
is satisfiable.

For the NP upper bound, first observe that we can simply guess a sub-
set X ′ of X such that |X ′| ≥ 1

3 |X|. Then we just have to check whether
A |=X′ =(clause, literal) ∧ =(variable,parity) holds. This can be clearly done
in polynomial time. ��

The next theorem shows that NP-hard properties can be defined using very
simple formulas even if the operator 〈p〉 is restricted to appear only in front
of dependence atoms. It is worth noting that the data complexity of formulas
addressed in Theorem 4 without the operator 〈p〉 is in NL by the results of [25].

Theorem 4. Model checking for =(x, y)∨(〈p〉=(x, y)∧=(u, v)) is NP-complete.

Proof. The upper bound is due to the same argument as in the proof of Theo-
rem 3: use nondeterminism to tame the 〈p〉 operator. The rest is just standard
technique as for D, see the book of Väänänen [36].

Now we turn to the lower bound, again we will just sketch the proof. Here
we will reduce from 3SAT through Max-2SAT, a well-known NP-hard optimisa-
tion problem whose decision variant is NP-complete. The problem asks given
a 2CNF-formula ϕ and a number k ∈ N, if at least k of the clauses of ϕ can
be simultaneously satisfied [12]. Garey et al. describe a reduction f from 3SAT
to the decision variant of Max-2SAT such that ϕ ∈ 3SAT iff at least 7

10 of the
clauses of f(ϕ) can be satisfied.

We will exploit this known reduction in the following way. The team X is
constructed in the same way as in the proof of Theorem 3. The formula then is

=(clause, literal) ∨ (=(clause, literal) ∧ 〈 7
10

〉=(variable,parity)). ��

Currently the 〈p〉 operator is defined with respect to some value of p ∈ [0, 1].
We saw that it depicts the behaviour of a ratio. Yet we want to shortly discuss
a different approach for this setting. Instead we define 〈p〉 for values of p ∈ N

hence p is now a natural number with the following meaning. A team X satisfies
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a formula 〈p〉ϕ if there exists a team Y ⊆ X of size ≥ p such that Y |= ϕ—
similarly for [p] the meaning would be that every team Y ⊆ X of size ≥ p
satisfies ϕ.

Sticking to this approach would allow one to state a similar result as for
Theorems 3 and 4 but now for combined complexity as follows. Here one would
just explicitly state the number of rows to be removed from the team, i.e.,
setting p to m in the constructed formula in the proof of Theorem 3. Regarding
Theorem 4 in this setting the formula f(ϕ) increases the number of clauses by
factor 10 and therefore requires to set p to 7

10 · 10 · m = 7 · m where m is the
number of clauses of the given 3CNF formula ϕ.

6 Conclusion

To the best of the authors knowledge this article is the first serious approach
in defining team semantics with respect to multisets for first-order dependence
logic. We also initiate the study of probabilistic analogues of independence and
inclusion logic. Additionally the paper provides a first step into the study of
a general approximation operator in the team semantics framework. We show
several foundational properties of these newly defined formalisms and present
some first computational complexity results for approximate dependence logic
(ADL). For ADL we show that the introduction of approximate operators enables
us to encode NP-hard properties into the model checking problem (data com-
plexity) of this logic even with only two dependence atoms, a single approximate
operator, and a single conjunction. This shows how strong and elegant this kind
of approximate notion really is. It is an interesting open question to study the
computational properties of the analogously defined approximate inclusion logic.

Heretofore a broad field around intuitionistic logic [4] has developed. Intu-
itionistic logic can be seen as classical propositional logic without the law of
excluded middle. One of the main concepts here is the intuitionistic implication
→. In the setting of team semantics it is defined as follows. Let A be a structure
and X be a team. Then A |=X ϕ → ψ is true if and only if for all subsets
X ′ ⊆ X it holds that A |=X′ ϕ implies A |=X′ ψ. The intuitionistic implica-
tion has been studied in the context of dependence logic, see e.g., the work of
Yang [41]. An approximate variant of this operator in our setting will yield a
nice resemblance to the [p] operator. The slight and quite natural adjustment
of intuitionistic implication to our setting is then: A |=X ϕ →p ψ if and only
if for all subsets X ′ ⊆ X with |X ′| ≥ p · |X| (and p ∈ [0, 1] ∩ Q) it holds that
A |=X′ ϕ implies that A |=X′ ψ. The operator [p] can now be expressed with
the help of the intuitionistic approximate implication. One can easily verify that
[p]ϕ is equivalent to � →p ϕ.

In this article we have considered approximation in the context of multi-
team semantics when restricted to the finite. However our definitions can be
generalised in a straightforward manner to deal with arbitrary cardinalities.
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Abstract. The logic PJ is a probabilistic logic defined by adding (non-
iterated) probability operators to the basic justification logic J. In this
paper we establish upper and lower bounds for the complexity of the
derivability problem in the logic PJ. The main result of the paper is
that the complexity of the derivability problem in PJ remains the same
as the complexity of the derivability problem in the underlying logic J,
which is Πp

2 -complete. This implies hat the probability operators do not
increase the complexity of the logic, although they arguably enrich the
expressiveness of the language.

Keywords: Justification logic · Probabilistic logic · Complexity · Deriv-
ability · Satisfiability

1 Introduction

Traditional modal epistemic logic uses formulas of the form �α to express that an
agent believes α. The language of justification logic [5] ‘unfolds’ the �-modality
into a family of so-called justification terms, which are used to represent evidence
for the agent’s belief. Hence, instead of �α, justification logic includes formulas
of the form t : α meaning

the agent believes α for reason t.

Artemov [2,3] developed the first justification logic, the Logic of Proofs, to pro-
vide intuitionistic logic with a classical provability semantics. There, justification
terms represent formal proofs in Peano Arithmetic. However, terms may also rep-
resent informal justifications. For instance, our belief in α may be justified by
direct observation of α or by learning that a friend heard about α. This general
reading of justification led to a big variety of epistemic justification logics for
many different applications [6,7,19]. In [15,16] we extended justification logic
with probability operators in order to accommodate the idea that

different kinds of evidence for α lead to different degrees of belief in α.

For example it could be the case that the agent learns α from some unreliable
source (e.g. from some friend of his) or that the agent reads about α in some
c© Springer International Publishing Switzerland 2016
M. Gyssens and G. Simari (Eds.): FoIKS 2016, LNCS 9616, pp. 292–310, 2016.
DOI: 10.1007/978-3-319-30024-5 16
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reliable newspaper. In both cases the agent has a justification for α: in the first
case he has the statement of his friend and in the second case the text of the
newspaper. However, it is natural that the agent does not want to put the same
credence in both sources of information. This differentiation in credulity cannot
be expressed in classical justification logic. So, the main contribution of justifi-
cation logics with probability operators (probabilistic justification logics [15,16])
is the ability to compare different sources of information. Uncertain reasoning in
justification logic has also been studied in [11,12,21]. See [15,16] for an extended
comparison between our approach and the ones from [11,12,21].

Probabilistic logics are logics than can be used to model uncertain reason-
ing. Although the idea of probabilistic logic was first proposed by Leibnitz, the
modern development of this topic started only in the 1970s and 1980s in the
papers of Keisler [13] and Nilsson [22]. Following Nilsson’s research, Fagin et al.
[10] introduced a logic with arithmetical operations built into the syntax so that
Boolean combinations of linear inequalities of probabilities of formulas can be
expressed. The probabilistic logic of [10] can be considered as a probabilistic
logic with classical base. The derivability problem in this logic is proved to be
coNP -complete, the same as that of classical propositional logic. Following the
lines of [10], Ognjanović et al. [23] defined the logic LPP2, which is also a prob-
abilistic logic with classical base. The logic LPP2 makes use of an infinitary rule
which makes the proof of strong completeness possible (as opposed to the finitary
system of [10] which is only simply complete). The LPP2-derivability problem is
again coNP -complete.

Following the lines of [23] the logic PJ was defined in [15]. PJ is a probabilistic
logic defined over the basic justification logic J.1 The language of PJ contains
formulas of the form P≥sα meaning

the probability of truthfulness of the justification formula α is at least s.

So, in the logic PJ, statements like “evidence t serves as a justification for α
with probability at least 30 %” can be expressed. PJ does not allow iterations
of the probability operator. In [16] we study an extension of PJ, the logic PPJ,2

where iterations of the probability operator as well as justification operators over
probability operators are allowed.

The results of [1,8,17,20] showed that, under some reasonable assumptions,
the derivability problem for the justification logic J is Πp

2 -complete, i.e. it is
complete in the second level of the polynomial hierarchy. In this paper we show
that under the same assumptions the derivability problem for the probabilistic
justification logic PJ remains in the class Πp

2 -complete. We achieve this, by
showing that the satisfiability problem for the logic PJ, which is dual to the
derivability problem, belongs to the class Σp

2 -complete. The methods we use are
adaptations from [10] and [17]. As it is the case in [23] and [10] we also make
use of some well known results from the theory of linear programming. The
main result of the paper is that the probability operators do not increase the
1 J stands for justification, whereas PJ stands for probabilistic justification.
2 The two P’s stand for iterations of the probability operator.
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complexity of the logic, although they arguably enrich the expressiveness of the
logical framework.

The rest of the paper is organized as follows. In Sect. 2 we briefly recall the
justification logic J and the probabilistic justification logic PJ. In Sect. 3 we
establish a small model theorem for PJ. In Sect. 4 we present an algorithm that
decides the satisfiability problem for the logic PJ and evaluate its complexity.
We close the paper in Sect. 5 with some final observations.

An earlier version of the present paper is available in arXiv [14].

2 The Logics J and PJ

In this section we briefly recall the basic justification logic J [5] and the proba-
bilistic justification logic PJ [15].

Justification terms are built according to the following grammar:

t ::= c | x | (t · t) | (t + t) | !t

where c is a constant and x is a variable. Tm denotes the set of all terms. For
any term t and any non-negative integer n we define:

!0t := t and !n+1t := ! (!nt)

Terms are used to provide justifications for formulas. Constants are used as
justifications for axioms, whereas variables are used as justifications for arbitrary
formulas. The operator · can be used by the agents to apply modus ponens (see
axiom (J) in Fig. 1), the operator + is used for concatenation of proofs (see
axiom (+) in Fig. 1) and the operator ! is used for stating positive introspection
(see rule (AN!) in Fig. 2). That is, if the agent has a justification c for α then he
has a justification !c for the fact that c is a justification for α and so on.

Let Prop denote a countable set of atomic propositions. Formulas of the lan-
guage LJ (justification formulas) are built according to the following grammar:

α ::= p | ¬α | α ∧ α | t : α

where t ∈ Tm and p ∈ Prop. Any formula of the form t : α for t ∈ Tm and
α ∈ LJ will be called a justification assertion. We will use the letter p possibly
primed or with subscripts to represent an element of Prop and lower-case Greek
letters like α, β, γ, . . . for LJ-formulas. In Fig. 1 we present the axioms schemes
of the logic J.

In order to build justifications for arbitrary formulas in the logic J we need
to start by some justifications for the axioms. That is why we need the notion
of a constant specification. A constant specification is any set CS that satisfies
the following condition:

CS ⊆ {(c, α) | c is a constant and α is an instance
of some axiom scheme of the logic J}
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A constant specification CS will be called:

(P) finitely many axiom schemes for classical

propositional logic in the language of LJ

(J) � u : (α → β) → (v : α → u · v : β)

(+) � u : α ∨ v : α
) → u + v : α

Fig. 1. Axioms Schemes of J

Axiomatically Appropriate: if for every instance of a J-axiom, α, there exists
some constant c such that (c, α) ∈ CS, i.e. every instance of a J-axiom scheme
is justified by at least one constant.

Schematic: if for every constant c the set
{
α

∣∣ (c, α) ∈ CS
}

consists of all instances of several (possibly zero) axiom schemes, i.e. if every
constant specifies certain axiom schemes and only them.

Decidable: if the set CS is decidable. In this paper when we refer to a decidable
CS, we will always imply that CS is decidable in polynomial time.

Finite: if CS is a finite set.
Almost Schematic: if CS = CS1∪CS2 where CS1∩CS2 = ∅, CS1 is a schematic

constant specification and CS2 is a finite constant specification.
Total: if for every constant c and every instance α of a J-axiom scheme, (c, α) ∈

CS.

Let CS be any constant specification. The deductive system JCS is presented
in Fig. 2.

axioms schemes of J

+

(AN!) � !n+1c : !nc : · · · : !c : c : α, where (c, α) ∈ CS and n ∈ N

(MP) if T � α and T � α → β then T � β

Fig. 2. System JCS

As usual T �L α means that the formula α is provable from the set of formulas
T using the rules and axioms of the logic L. When L is clear from the context it
will be omitted.

Now we present the semantics for the logic J. The models for a JCS are the so
called JCS-evaluations (see Definition 1). We use T to represent the truth value
“true” and F to represent the truth value “false”. Let P(W ) denote the powerset
of the set W .
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Definition 1 (JCS-Evaluation). Let CS be any constant specification. A JCS-
evaluation is a function ∗ such that ∗ : Prop → {T,F} and ∗ : Tm → P(LJ) and
for u, v ∈ Tm, for a constant c and α, β ∈ LJ we have:

(1)
(
α → β ∈ u∗ and α ∈ v∗) =⇒ β ∈ (u · v)∗

(2) u∗ ∪ v∗ ⊆ (u + v)∗

(3) if (c, α) ∈ CS then for all n ∈ N we have3:

!n−1c : !n−2c : · · · :!c : c : α ∈ (!nc)∗

We will usually write t∗ and p∗ instead of ∗(t) and ∗(p) respectively.

Now we will define the binary relation �.

Definition 2 (Truth under a JCS-Evaluation). We define what it means for
an LJ-formula to hold under a JCS-evaluation ∗ inductively as follows:

∗ � p ⇐⇒ p∗ = T

∗ � ¬α ⇐⇒ ∗ 
� α

∗ � α ∧ β ⇐⇒ (∗ � α and ∗ � β
)

∗ � t : α ⇐⇒ α ∈ t∗

We have the following theorem.

Theorem 1 (Completeness of J[4,19]). Let CS be any constant specification.
Let α ∈ LJ. Then we have:

�JCS α ⇐⇒ �CS α.

where �CS α means that α holds under any JCS-evaluation.

Let S be the set of all rational numbers from the interval [0, 1]. The formulas
of the language LP (the so called probabilistic formulas) are built according to
the following grammar:

A ::= P≥sα | ¬A | A ∧ A

where s ∈ S, and α ∈ LJ. We use capital Latin letters like A,B,C, . . . for
LP-formulas. We employ the standard abbreviations for classical connectives.
Additionally, we set:

P<sα ≡ ¬P≥sα P≤sα ≡ P≥1−s¬α

P>sα ≡ ¬P≤sα P=sα ≡ P≥sα ∧ P≤sα

The axioms schemes of PJ are presented in Fig. 3. For any constant specifica-
tion CS the deductive system PJCS is presented in Fig. 4. Definitions 3–5 describe
the semantics for the logic PJ.
3 We agree to the convention that the formula !n−1c : !n−2c : · · · : !c : c : α represents
the formula α for n = 0.
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(P) finitely many axiom schemes for classical

propositional logic in the language of LP

(PI) � P≥0α

(WE) � P≤rα → P<sα, where s > r

(LE) � P<sα → P≤sα

(DIS) � P≥rα ∧ P≥sβ ∧ P≥1¬(α ∧ β) → P≥min(1,r+s)(α ∨ β)

(UN) � P≤rα ∧ P<sβ → P<r+s(α ∨ β), where r + s ≤ 1

Fig. 3. Axioms Schemes of PJ

axiom schemes of PJ

+

(MP) if T � A and T � A → B then T � B

(CE) if �JCS α then �PJCS P≥1α

(ST) if T � A → P≥s− 1
k
α for every integer k ≥ 1

s
and s > 0

then T � A → P≥sα

Fig. 4. System PJCS

Definition 3 (Algebra Over a Set). Let W be a non-empty set and let H be
a non-empty subset of P(W ). H will be called an algebra over W iff the following
hold:

– W ∈ H
– U, V ∈ H =⇒ U ∪ V ∈ H
– U ∈ H =⇒ W \ U ∈ H

Definition 4 (Finitely Additive Measure). Let H be an algebra over W
and μ : H → [0, 1]. We call μ a finitely additive measure iff the following hold:

(1) μ(W ) = 1
(2) for all U, V ∈ H:

U ∩ V = ∅ =⇒ μ(U ∪ V ) = μ(U) + μ(V )

Definition 5 (PJCS-Model). Let CS be any constant specification. A PJCS -
model, or simply a model, is a structure M = 〈W,H, μ, ∗〉 where:

– W is a non-empty set of objects called worlds.
– H is an algebra over W .
– μ : H → [0, 1] is a finitely additive measure.
– ∗ is a function from W to the set of all JCS-evaluations, i.e. ∗(w) is a JCS-

evaluation for each world w ∈ W . We will usually write ∗w instead of ∗(w).
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Definition 6 (Measurable Model). Let M = 〈W,H, μ, ∗〉 be a model and
α ∈ LJ. We define the following set:

[α]M = {w ∈ W |∗w � α}

We will omit the subscript M , i.e. we will simply write [α], if M is clear from the
context. A PJCS-model M = 〈W,H, μ, ∗〉 is measurable iff [α]M ∈ H for every
α ∈ LJ. The class of measurable PJCS-models will be denoted by PJCS,Meas.

Definition 7 (Truth in a PJCS,Meas-model). Let CS be any constant specifi-
cation. Let M = 〈W,H, μ, ∗〉 be a PJCS,Meas-model. We define what it means for
an LP-formula to hold in M inductively as follows4:

M |= P≥sα ⇐⇒ μ([α]M ) ≥ s

M |= ¬A ⇐⇒ M 
|= A

M |= A ∧ B ⇐⇒ (
M |= A and M |= B

)

In the sequel we may refer to PJCS,Meas-models simply as models if there is
no danger for confusion. We have the following theorem.

Theorem 2 (Strong Completeness for PJ[15]). Any PJCS is sound and
strongly complete with respect to PJCS,Meas-models, i.e. for any T ⊆ LP and
any A ∈ LP:

T �PJCS A ⇐⇒ T |=PJCS A

Let CS be any constant specification. A formula A ∈ LP is satisfied in M ∈
PJCS,Meas iff M |= A. A will be called PJCS,Meas-satisfiable or simply satisfiable if
there is a PJCS,Meas-model that satisfies A. We define the PJCS,Meas-satisfiability
problem to be the decision problem defined as follows:

“For a given A ∈ LP and a given CS is A PJCS,Meas-satisfiable?”

A formula α ∈ LJ is satisfied in a JCS-evaluation ∗ iff ∗ � α. α will be called
JCS-satisfiable or simply satisfiable if there is some JCS-evaluation ∗ that satisfies
α. We define the JCS-satisfiability problem to be the decision problem defined as
follows:

“For a given α ∈ LJ and a given CS is α JCS-satisfiable?”

3 Small Model Property

The goal of this section is to prove a small model property for the logic PJ. The
small model property will be the most important tool for establishing the upper
bound for the complexity of PJ.
4 Observe that the satisfiability relation of a JCS-evaluation is represented with �
whereas the satisfiability relation of a model is represented with |=.
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Definition 8 (Subformulas). The set subf(·) is defined recursively as follows:
For LJ -formulas:

– subf(p) := {p}
– subf(t : α) := {t : α} ∪ subf(α)
– subf(¬α) := {¬α} ∪ subf(α)
– subf(α ∧ β) := {α ∧ β} ∪ subf(α) ∪ subf(β)

For LP -formulas:

– subf(P≥sα) := {P≥sα} ∪ subf(α)
– subf(¬A) := {¬A} ∪ subf(A)
– subf(A ∧ B) := {A ∧ B} ∪ subf(A) ∪ subf(B)

Observe that for A ∈ LP we have that subf(A) ⊆ LP ∪ LJ.

Definition 9 (Atoms). Let A be an LP- or an LJ-formula. Let X be the set
that contains all the atomic propositions and the justification assertions from the
set subf(A). An atom of A is any formula of the following form:

∧

B∈X

±B (1)

where ±B denotes either B or ¬B. We will use the lowercase Latin letter a for
atoms, possibly with subscripts.

Let A be an LP- or an LJ-formula. Assume that A is either of the form
∧

i Bi

or of the form
∨

i Bi. Then C ∈ A means that for some i, Bi = C.

Definition 10 (Sizes). The size function | · | is defined as follows:
For LP -formulas: (recursively)

– |P≥sα| := 2
– |¬A| := 1 + |A|
– |A ∧ B| := |A| + 1 + |B|
For Sets
Let W be a set. |W | is the cardinal number of W .
For Non-negative Integers
Let r be an non-negative integer. We define the size of r to be equal to the length
of r written in binary, i.e.:

|r| :=

{
1 , r = 0
�log2(r) + 1� , r ≥ 1

where �·� is the function that returns the greatest integer that is less than or
equal to its argument.
For Non-negative Rational Numbers
Let r = s1

s2
, where s1 and s2 are relatively prime non-negative integers with

s2 
= 0, be a non-negative rational number. We define:

|r| := |s1| + |s2|.
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Let A ∈ LP we define:

||A|| := max
{|s| ∣∣ P≥sα ∈ subf(A)

}

Lemma 1 was originally proved in [23] for the logic LPP2. The proof for the
logic PJ is given in [15].

Lemma 1. For any constant specification CS, we have:

�JCS α ↔ β ⇐⇒�PJCS P≥sα ↔ P≥sβ

A proof for Theorem 3 can be found in [9, p.145].

Theorem 3. Let S be a system of r linear equalities. Assume that the vector5

x is a solution of S such that all of x’s entries are non-negative. Then there is
a vector x∗ such that:

(1) x∗ is a solution of S.
(2) all the entries of x∗ are non-negative.
(3) at most r entries of x∗ are positive.

Theorem 4 establishes some properties for the solutions of a linear system.

Theorem 4. Let S be a linear system of n variables and of r linear equalities
and/or inequalities with integer coefficients each of size at most l. Assume that
the vector x = x1, . . . , xn is a solution of S such that for all i ∈ {1, . . . , n},
xi ≥ 0. Then there is a vector x∗ = x∗

1, . . . , x
∗
n with the following properties:

(1) x∗ is a solution of S.
(2) for all i ∈ {1, . . . , n}, x∗

i ≥ 0.
(3) at most r entries of x∗ are positive.
(4) for all i ∈ {1, . . . , n}, if x∗

i > 0 then xi > 0.
(5) for all i, x∗

i is a non-negative rational number with size bounded by

2 · (
r · l + r · log2(r) + 1

)
.

Proof. In S we replace the variables that correspond to the entries of x that are
equal to zero (if any) with zeros. This way we obtain a new linear system S0,
with r linear equalities and/or inequalities and m ≤ n variables. x is a solution6

of S0. It also holds that any solution of S0 is a solution7 of S.
5 We will always use bold font for vectors.
6 In the proof of Theorem4 all vectors have n entries. The entries of the vectors are
assumed to be in one to one correspondence with the variables that appear in the
original system S.

Let y be a solution of a linear system T . If y has more entries than the variables of
T we imply that entries of y that correspond to variables that appear in T compose
a solution of T .

7 Assume that system T has less variables than system T ′. When we say that any
solution of T is a solution of T ′ we imply that the missing variables are set to 0.
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Assume that the system S0 contains an inequality of the form

b1 · y1 + . . . + bmym ♦ c (2)

for ♦ ∈ {<,≤,≥, >} where y1, . . . , ym are variables of S and b1, . . . , bm, c are
constants that appear in S. x is a solution of Eq. (2). We replace the inequality
Eq. (2) in S0 with the following equality:

b1 · y1 + . . . + bmym = b1 · x1 + . . . + bl · xm

We repeat this procedure for every inequality of S0. This way we obtain a system
of linear equalities which we call S1. It is easy to see that x is a solution of S1

and that any solution of S1 is also a solution of S0 and thus of S.
Now we will transform S1 to another linear system by applying the following

algorithm.

Algorithm
We set i = 1, ei = r, vi = m, xi = x and we execute the following steps:
(i) If ei = vi then go to step (ii). Otherwise go to step (iii).
(ii) If the determinant of Si is non-zero then stop. Otherwise go to step (v).
(iii) If ei < vi then go to step (iv), else go to step (v).
(iv) We know that the vector xi is a non-negative solution for the system Si.

From Theorem 3 we obtain a solution xi+1 for the system Si which has at
most ei entries positive. In Si we replace the variables that correspond to
zero entries of the solution xi+1 with zeros. We obtain a new system which
we call Si+1 with ei+1 equalities and vi+1 variables. xi+1 is a solution of
Si+1 and any solution of Si+1 is a solution of Si. We set i := i + 1 and we
go to step (i).

(v) From any set of equalities that are linearly dependent we keep only one
equation. We obtain a new system which we call Si+1 with ei+1 equalities
and vi+1 := vi variables. We set i := i + 1 and xi+1 := xi. We go to step
(i).

Let I be the final value of i after the execution of the algorithm. Since the only
way for our algorithm to terminate is through step (ii) it holds that system SI

is an eI × eI system of linear equalities with non-zero determinant (for eI ≤ r).
System SI is obtained from system S1 by replacing some variables that corre-
spond to zero entries of the solution with zeros. So any solution of SI is also a
solution of system S1 and thus a solution of S. From the algorithm we have that
xI is a solution of SI . Since SI has a non-zero determinant Cramer’s rule can
be applied. Hence the vector xI is the unique solution of system SI . Let xI

i be
an entry of xI . xI

i will be equal to the following rational number
∣∣∣∣∣∣∣

a11 . . . a1eI

...
. . .

...
aeI1 . . . aeIeI

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

b11 . . . b1eI

...
. . .

...
beI1 . . . beIeI

∣∣∣∣∣∣∣
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where all the aij and bij are integers that appear in the original system S. By
properties of the determinant we know that the numerator and the denominator
of the above rational number will each be at most equal to r! · (2l − 1)r. So we
have that:

|xI
i | ≤ 2 · (

log2(r! · (2l − 1)r) + 1
)

=⇒
|xI

i | ≤ 2 · (
log2(r

r · 2l·r) + 1
)

=⇒
|xI

i | ≤ 2 · (
r · log2(r) + l · r + 1

)

As we already mentioned the final vector xI is a solution of the original linear
system S. We also have that all the entries of xI are non-negative, at most
r of its entries are positive and the size of each entry of xI is bounded by
2 · (r · log2 r + r · l + 1). Furthermore, since the variables that correspond to zero
entries of the original vector x were replaced by zeros, we have that for every i,
if the i-th entry of xI is positive then the i-th entry of x is positive too. So xI

is the requested vector x∗.

The following theorem is an adaptation of the small model theorem from [10].
Similar techniques have also been used in [23] to obtain decidability for the
logic LPP2.

Theorem 5 (Small Model Property). Let CS be any constant specification
and let A ∈ LP. If A is PJCS,Meas-satisfiable then it is satisfiable in a PJCS,Meas-
model M = 〈W,H, μ, ∗〉 such that:

(1) |W | ≤ |A|
(2) H = P(W )
(3) For every w ∈ W , μ({w}) is a rational number with size at most

2 · (|A| · ||A|| + |A| · log2(|A|) + 1
)

(4) For every V ∈ H

μ(V ) =
∑

w∈V

μ({w})

(5) For every atom of A, a, there exists at most one w ∈ W such that ∗w � a.

Proof. Let CS be any constant specification and let A ∈ LP. Let a1, . . . , an be
all the atoms of A. By propositional reasoning (in the logic PJCS) we can prove
that:

PJCS � A ↔
K∨

i=1

li∧

j=1

P♦ijsij
(βij)

where all the P♦ijsij
(βij) appear in A and ♦ij ∈ {≥, <}.

By using propositional reasoning again (but this time in the logic JCS) we
can prove that each βij is equivalent to a disjunction of some atoms of A. So,
by using Lemma 1 we have that:

PJCS � A ↔
K∨

i=1

li∧

j=1

P♦ijsij
(αij)
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where each αij is a disjunction of some atoms of A. By Theorem 2 we have that
for any M ∈ PJCS,Meas:

M |= A ⇐⇒ M |=
K∨

i=1

li∧

j=1

P♦ijsij
(αij) (3)

Assume that A is satisfiable. By Eq. (3) there must exist some i such that

li∧

j=1

P♦ijsij
(αij)

is satisfiable. Let M ′ = 〈W ′,H ′, μ′, ∗′〉 be a model such that:

M ′ |=
li∧

j=1

P♦ijsij
(αij) (4)

For every k ∈ {1, . . . , n} we define:

xk = μ′([ak]M ′) (5)

In every world of M ′ some atom of A must hold. Thus, we have:

W ′ =
n⋃

k=1

[ak]M ′

And since μ′(W ′) = 1 we get:

μ′
( n⋃

k=1

[ak]M ′
)

= 1 (6)

The ak’s are atoms of the same formula, so we have:

k 
= k′ =⇒ [ak]M ′ ∩ [ak′ ]M ′ = ∅ (7)

By Eqs. (6) and (7) and the fact that μ′ is a finitely additive measure we get:

n∑

k=1

μ′([ak]M ′) = 1

and by Eq. (5):
n∑

k=1

xk = 1 (8)

Let j ∈ {1, . . . , li}. From Eq. (4) we get:

M ′ |= P♦ijsij

(
αij

)
.
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This implies that μ′([αij ]M ′) ♦ij sij , i.e.

μ′
([

∨

ak∈αij

ak

]

M ′

)
♦ij sij

which implies that

μ′
(

⋃

ak∈αij

[ak]M ′

)
♦ij sij

By Eq. (7) and the additivity of μ′ we have that:
∑

ak∈αij

μ′([ak]M ′) ♦ij sij

and by Eq. (5): ∑

ak∈αij

xk ♦ij sij .

So we have that

for every j ∈ {1, . . . , li},
∑

ak∈αij

xk ♦ij sij (9)

Let S be the following linear system:

n∑

k=1

zk = 1

∑

ak∈αi1

zk ♦i1 si1

...
∑

ak∈αili

zk ♦ili sili

where the variables of the system are z1, . . . , zn. We have the following:

(i) By Eqs. (8) and (9) the vector x = x1, . . . , xn is a solution of S.
(ii) From Eq. (5) every xk is non-negative.
(iii) Every sij is a rational number with size at most ||A||.
(iv) System S has at most |A| equalities and inequalities.

From (i)–(iv) and Theorem4 we have that there exists a vector y = y1, . . . , yn

such that:

(I) y is a solution of S.
(II) every yi is a non-negative rational number with size at most

2 · (|A| · ||A|| + |A| · log2(|A|) + 1
)
.
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(III) at most |A| entries of y are positive.
(IV) for all i, if yi > 0 then xi > 0.

Assume that y1, . . . , yN are the positive entries of y where

N ≤ |A| (10)

We define the quadruple M = 〈W,H, μ, ∗〉 as follows:

(a) W = {w1, . . . , wN}, for some w1, . . . , wN .
(b) H = P(W ).
(c) for all V ∈ H:

μ(V ) =
∑

wk∈V

yk.

(d) Let i ∈ {1, . . . , N}. We define ∗wi
to be some JCS-evaluation that satisfies the

atom ai. Since yi is positive, by (IV), xi is positive too, i.e. μ′([ai]M ′) > 0,
which means that [ai]M ′ 
= ∅, i.e. that the atom ai is JCS-satisfiable.

It holds:

μ(W ) =
∑

wk∈W

yk

=
n∑

k=1

yk

(I)
= 1

Let U, V ∈ H such that U ∩ V = ∅. It holds:

μ(U ∪ V ) =
∑

wk∈U∪V

yk

=
∑

wk∈U

yk +
∑

wk∈V

yk

= μ(U) + μ(V )

Thus μ is a finitely additive measure. By Definitions 5 and 6 we have that M ∈
PJCS,Meas.

We will now prove the following statement:

(∀1 ≤ k ≤ n)
[
wk ∈ [αij ]M ⇐⇒ ak ∈ αij

]
(11)

Let k ∈ {1, . . . , n}. We prove the two directions of Eq. (11) separately.
(=⇒:) Assume that wk ∈ [αij ]. This means that ∗wk

� αij . Assume that
ak /∈ αij . Then, since αij is a disjunction of atoms of A, there must exist some
ak′ ∈ αij , with k 
= k′, such that ∗wk

� ak′ . However, by definition we have
that ∗wk

� ak. But this is a contradiction, since ak and ak′ are different atoms
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of the same formula, which means that they cannot be satisfied by the same
JCS-evaluation. Hence, ak ∈ αij .

(⇐=:) Assume that ak ∈ αij . We know that ∗wk
� ak, which implies that

∗wk
� αij , i.e. wk ∈ [αij ]M .

Hence, Eq. (11) holds. Now, we will prove the following statement:
(∀1 ≤ j ≤ li

)[
M |= P♦ijsij

αij
]

(12)

Let j ∈ {1, . . . , li}. It holds

M |= P♦ijsij
(αij) ⇐⇒

μ([αij ]M ) ♦ij sij ⇐⇒
∑

wk∈[αij ]M

yk♦ij sij
(11)⇐⇒

∑

ak∈αij

yk ♦ij sij

The last statement holds because of (I). Thus, Eq. (12) holds.
By Eq. (12) we have that M |= ∧li

j=1 P♦ijsij
(αij), which implies that

M |=
K∨

i=1

li∧

j=1

P♦ijsij
(αij),

which, by Eq. (3), implies that M |= A.
Let wk ∈ W . It holds:

μ({wk}) =
∑

wi∈{wk}
yi = yk (13)

Now we will show that conditions (1)–(5) in the theorem’s statement hold.

– Condition (1) holds because of (a) and Eq. (10).
– Condition (2) holds because of (b).
– Condition (3) holds because of Eq. (13) and (II).
– For every V ∈ H, because of Eq. (13), we have:

μ(V ) =
∑

wk∈V

yk =
∑

wk∈V

μ({wk}) (14)

Hence condition (4) holds.
– By (d) every world of M satisfies a unique atom of α. Thus condition (5)

holds.

So M is the model in question.
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4 Complexity

Lemmas 2 and 3 can be proved by straightforward induction on the complexity
of the formula. Lemma 2 tells us that if two JCS-evaluations agree on some atom
of a justification formula then they agree on the formula itself.

Lemma 2. Let CS be any constant specification. Let α ∈ LJ and let a be an
atom of α. Let ∗1, ∗2 be two JCS-evaluations and assume that

∗1 � a ⇐⇒ ∗2 � a.

Then we have:
∗1 � α ⇐⇒ ∗2 � α.

Lemma 3. Let α ∈ LJ and let a be an atom of α. Let ∗ be a JCS-evaluation and
assume that ∗ � a. The decision problem

does ∗ satisfy α?

belongs to the complexity class P .

Kuznets [17] presented an algorithm for the JCS-satisfiability problem for a
total constant specification CS. Kuznets’ algorithm is divided in two parts: the
saturation algorithm and the completion algorithm. Let α ∈ LJ be the formula
that is tested for satisfiability.

– The saturation algorithm produces a set of requirements that should be satis-
fied by any JCS-evaluation that satisfies α. The saturation algorithm operates
in NP -time8.

– The completion algorithm determines whether a JCS-evaluation that satisfies
α exists or not. The completion algorithm operates in coNP -time.

If the saturation and the completion algorithm are taken together, then we obtain
a Σp

2 -algorithm for the JCS-satisfiability problem (for a total CS). The completion
algorithm (adjusted to our notation) is stated in Theorem6.

Theorem 6. Let CS be a total constant specification. Let a be an atom of some
LJ-formula. The decision problem

is aJCS-satisfiable?

belongs to the complexity class coNP .

Now we are ready to prove the upper bound for the complexity of the
PJCS,Meas-satisfiability problem.

Theorem 7. Let CS be a total constant specification. The PJCS,Meas-satisfiability
problem belongs to the complexity class Σp

2 .
8 A reader unfamiliar with notions of computational complexity theory may consult
a textbook on the field, like [24].
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Proof. First we will describe an algorithm that decides the problem in question
and we will explain its correctness. Then we will evaluate the complexity of the
algorithm.

Algorithm
Let A ∈ LP. It suffices to guess a small model M = 〈W,H, μ, ∗〉 that satisfies A
and also satisfies the conditions (1)–(5) that appear in the statement of Theo-
rem 5. We guess M as follows: we guess n atoms of A, call them a1, . . . , an, and
we also choose n worlds, w1, . . . , wn, for n ≤ |A|. Using Theorem 6 we verify that
for each i ∈ {1, . . . , n} there exists a JCS-evaluation ∗i such that ∗i � ai. We
define W = {w1, . . . , wn}. For every i ∈ {1, . . . , n} we set ∗wi

= ∗i. Since we are
only interested in the satisfiability of justification formulas that appear in A, by
Lemma 2, the choice of the ∗wi

is not important (as long as ∗wi
satisfies ai).

We assign to every μ({wi}) a rational number with size at most:

2 · (|A| · ||A|| + |A| · log2(|A|) + 1
)
.

We set H = P(W ). For every V ∈ H we set:

μ(V ) =
∑

wi∈V

μ({wi}).

It is then straightforward to see that the conditions (1)–(5) that appear in the
statement of Theorem 5 hold.

Now we have to verify that our guess is correct, i.e. that M |= A. Assume
that P≥sα appears in A. In order to see whether P≥sα holds we need to calculate
the measure of the set [α]M in the model M . The set [α]M will contain every
wi ∈ W such that ∗wi

� α. Since ∗wi
satisfies an atom of A it also satisfies an

atom of α. So, by Lemma 3, we can check whether ∗wi
satisfies α in polynomial

time. If
∑

wi∈[α]M
μ({wi}) ≥ s then we replace P≥sα in A with the truth value

T, otherwise with the truth value F. We repeat the above procedure for every
formula of the form P≥sα that appears in A. At the end we have a formula that
is constructed only from the connectives ¬, ∧ and the truth constants T and F.
Using a truth table we can verify in polynomial time that the formula is true.
This, of course implies that M |= A.

Complexity Evaluation
All the objects that are guessed in our algorithm have size that is polynomial
on A. Also the verification phase of our algorithm can be made in polynomial
time. Furthermore the application of Theorem6 is possible with an NP -oracle
(an NP -oracle can obviously decide coNP problems too). Thus our algorithm is
an NPNP algorithm and since Σp

2 = NPNP the claim of the Theorem follows.

5 Final Remarks and Conclusion

As a continuation of [15] and [16] we showed that results for justification logic
and probabilistic logic can be nicely combined. Recall that the probabilistic jus-
tification logic PJ is obtained by adding probability operators to the justification
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logic J. In [17] it was proved that under some assumptions on the constant spec-
ification the complexity of the satisfiability problem for the logic J belongs to
the class Σp

2 . By Theorem 7 we have that, under the same assumptions on the
constant specification, the complexity of the satisfiability problem for the logic
PJ remains in the same complexity class. Hence, the probabilistic operators do
not increase the complexity of the satisfiability problem, although they increase
the expressiveness of the language.

As it is pointed out in [18], Theorem 6 holds for a decidable almost schematic
constant specification. Theorem 7 uses Theorem 6 as an oracle. So, obviously
Theorem 7 holds for a decidable almost schematic constant specification too.

The upper complexity bound we established is tight. By a result from [20]
which was later strengthened in [8] and [1] we have that for a decidable, schematic
and axiomatically appropriate constant specification CS the JCS-satisfiability
problem is Σp

2 -hard. For any α ∈ LJ it is not difficult to prove that:

α is JCS-satisfiable ⇐⇒ P≥1α is PJCS,Meas-satisfiable (15)

Hence, the JCS-satisfiability problem can be reduced to the PJCS,Meas-satisfiability
problem, which implies that the PJCS,Meas-satisfiability problem is Σp

2 -hard too.
Thus the JCS-satisfiabilty problem as well as the PJCS,Meas-satisfiability problem
are Σp

2 -complete.
Observe that by Theorem 2 and our previous remarks we have that, for a

decidable schematic and axiomatically appropriate constant specification, the
derivability problem for the logic PJCS is Πp

2 -complete.
In [16] the probabilistic justification logic PPJ is defined. PPJ is a natural

extension of PJ that supports iterations of the probability operator as well as jus-
tifications over probabilities. An interesting open problem related to the present
work is to determine complexity bounds for PPJ.
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15. Kokkinis, I., Maksimović, P., Ognjanović, Z., Studer, T.: First steps towards prob-

abilistic justification logic. Logic J. IGPL 23(4), 662–687 (2015)
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Abstract. Relational machines (RM) were introduced as abstract
machines that compute queries to relational database instances (dbi’s),
that are generic (i.e., that preserve isomorphisms). As RM’s cannot
discern between tuples that are equivalent in first order logic with k
variables, Relational Complexity was introduced as a complexity theory
where the input dbi to a query is measured as its sizek, i.e., as the number
of classes in the equivalence relation of equality of FOk types of k-tuples
in the dbi. We describe the basic notions of Relational Complexity, and
survey known characterizations of some of its main classes through dif-
ferent fixed point logics and through fragments of second and third order
logics.

1 Introduction

Relational machines (RM) were introduced in [3] (there called loosely coupled
generic machines) as abstract machines that compute queries to (finite) rela-
tional structures, or relational database instances (dbi’s) as functions from such
structures to relations, that are generic (i.e., that preserve isomorphisms), and
hence are more appropriate than Turing machines (TM) for query computation.
RM’s are TM’s endowed with a relational store that holds the input structure,
as well as work relations, and that can be accessed through first order logic
(FO) queries (sentences) and updates (formulas with free variables). As the set
of those FO formulas for a given machine is fixed, an RM can only distinguish
between tuples (i.e., sequences of elements in the domain of the dbi) when the
differences between them can be expressed with FO formulas with k variables,
where k is the maximum number of variables in any formula in the finite con-
trol of the given RM. Note that the same is true for FO queries (i.e., relational
calculus), or equivalently relational algebra queries.

On the other hand, it has been proved that RM’s have the same computa-
tion, or expressive power, as the (effective fragment of the) well known infinitary
logic with finitely many variables Lω

∞ω [1], in the context of Finite Model The-
ory, i.e., with sentences interpreted by finite relational structures or database
instances—dbi’s. This logic extends FO with conjunctions and disjunctions of
sets of formulas of arbitrary (infinite) cardinality, while restricting the number of
variables in each (infinitary) formula to be finite. This is a very important logic
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in Descriptive Complexity theory, in which among other properties, equivalence
is characterized by pebble (Ehrenfeucht-Fräıssé) games, and on ordered dbi’s
it can express all computable queries (see [20], among others). Hence, a nice
characterization of the discerning power of RM’s is also given by those games.

Consequently, k-ary RM’s are incapable of computing the size of the input
structure though, however, they can compute its sizek. A k-ary RM, for a positive
integer k, is an RM in which the FO formulas in its finite control have at most
k different variables, and the sizek of a structure (or dbi) is the number of
equivalence classes in the relation ≡k of equality of FOk types in the set of
k-tuples of the structure, for 1 ≤ k.

Then, it was a natural consequence to define a new notion of complexity
suitable for RM’s. Relational Complexity was introduced in the original work
in 1991 as a complexity theory where the (finite relational) input structure A
to a query is measured as its sizek, for some k ≥ 1, instead of the size of its
encoding, as in Computational Complexity. Roughly, two k-tuples in A have
the same FOk types if they both satisfy in A exactly the same FO formulas
with up to k variables, r of them being free, for all 0 ≤ r ≤ k. That is, if
the two tuples have the same properties in the structure A, considering only
the properties that can be expressed in FOk. In that way, relational complexity
classes mirroring computational complexity classes like P, NP, PSPACE, and
EXPTIME, etc., were defined in [2,3], and denoted as Pr, NPr, PSPACEr, and
EXPTIMEr, respectively.

Beyond the study of RM’s as a model of computation for queries to relational
databases, Relational Complexity turned out to be a theoretical framework in
which we can characterize exactly the expressive power of the well known fixed
point quantifiers (FP) of a wide range of types. Those quantifiers have been
typically added to first order logic, thus forming the so called fixed point logics,
where the different types of fixed point quantifiers add to FO different kinds of
iterations of first-order operators [2,20].

In [2], Abiteboul, Vardi, and Vianu introduced new fixed point quan-
tifiers, and organized a wide range of them as either deterministic (det),
non-deterministic (ndet), or alternating (alt), and either inflationary (inf) or
non-inflationary (ninf), according to the type of iteration implied by the seman-
tics of each such quantifier. In the same article, they proved the following equiv-
alences: det-inf-FP = Pr, ndet-inf-FP = NPr, alt-inf-FP = det-ninf-FP =
ndet-ninf-FP = PSPACEr, and alt-ninf-FP = EXPTIMEr.

Those characterizations of relational complexity classes are actually very
interesting and meaningful, given that it was already known that if we restrict the
input to only ordered structures, the following equivalences with computational
complexity classes hold: det-inf-FP = P , ndet-inf-FP = NP, det-ninf-FP =
ndet-ninf-FP = alt-inf-FP = PSPACE, and alt-ninf-FP = EXPTIME [2,20].

Regarding the characterization of relational complexity classes with other
logics, Dawar introduced in [6] the logic SOω as a semantic restriction of second
order logic (SO) where the valuating relations for the quantified second order
variables are “unions” of complete FOk types for r-tuples for some constants
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k ≥ r ≥ 1, that depend on the quantifiers1. That is, the relations are closed
under the relation ≡k of equality of FOk types in the set of r-tuples of the
structure.

In [6], it was also proved that the existential fragment of SOω, Σ1,ω
1 , charac-

terizes exactly the non-deterministic fixed point logic (FO + NFP), and, hence,
by the equivalences mentioned above, it turned out that Σ1,ω

1 captures NPr,
analogously to the well-known relationship Σ1

1 = NP [10]. Continuing the anal-
ogy, the characterization of the relational polynomial time hierarchy PHr with
full SOω was stated without proof in [6], and later proved by us jointly with
Ferrarotti in [13].

In [5], aiming to characterize higher relational complexity classes, and as a
natural continuation of the study of the logic SOω, in a joint work with Arroyuelo,
we defined a variation of third order logic (TO) denoted as TOω, under finite
interpretations. We defined it as a semantic restriction of TO where the (second
order) relations which form the tuples in the third order relations that valuate
the quantified third order variables are closed under the relation ≡k as above. In
[5], we also introduced a variation of the non deterministic relational machine,
which we denoted 3-NRM (for third order NRM), where we allow TO relations
in the relational store of the machine. We defined the class NEXPTIME3,r as
the class of 3-NRM’s that work in time exponential in the sizek (see above) of
the input dbi. We then proved that the existential fragment of TOω, denoted
Σ2,ω

1 , captures NEXPTIME3,r.
Finally, in [22], we proved a stronger result: we showed that the existential

fragment of TOω also captures the relational complexity class NEXPTIMEr.
As it turned out that NEXPTIMEr = NEXPTIME3,r, an interesting conse-

quence of our result is that RM’s in their original formulation are strong enough
as to simulate the existence of TO relations in their relational store and, hence,
to also simulate the existence of TOω formulas in their finite control (without
TOω or SOω quantifiers, as in 3-NRM’s in [5], see below). That is, for every
3-NRM that works in time NEXPTIME3,r, i.e., relational third order exponen-
tial time, in the sizek of their input, there is an NRM that computes the same
query, and that works in time NEXPTIMEr, i.e., relational exponential time in
the sizek of their input. Nevertheless, we think that we still need 3-NRM’s and
NEXPTIME3,r to work with oracle NRM’s with third order relations.

Beyond the natural theoretical relevance in creating and studying new logics
as computation models, and thus getting information on new aspects of the
problems that can be expressed in them, an important application of the creation
of new logics to Complexity Theory is the search for lower bounds of problems
w.r.t. those logics, aiming to separate computational complexity classes.

This article is organized as follows. In Sect. 2, we give the basic definitions
for the setting of Finite Model Theory, and for Second Order Logic. In Sect. 3,
we describe various fixed point quantifiers and their expressibility on ordered
structures. In Sect. 4, we describe relational machines, the infinitary logic Lω

∞ω,
and the notion of type of a tuple; we also introduce relational complexity and give

1 In the sense of [12] these relations are redundant relations.
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the relationship between some of the main classes and the different fixed point
logics. In Sect. 5, we describe the logic SOω and its expressibility w.r.t. relational
complexity. In Sect. 6, we describe the logic TOω, define third order NRM’s, and
give the expressive power of Σ2,ω

1 w.r.t. relational complexity. Finally, in Sect. 7,
we mention a few examples of known lower bounds for problems w.r.t. some of
those logics.

2 Preliminaries

Basic Definitions

We assume a basic knowledge of Logic and Finite Model Theory (refer to [20]).
By a logic, we mean, informally, the usual notion in FMT. We only consider
vocabularies of the form σ = 〈R1, . . . , Rs〉 (i.e., purely relational), where the
arities of the relation symbols are r1, . . . , rs ≥ 1, respectively. We can also have
constant symbols in σ, and in some definitions we will consider them, but to
make the presentation simpler, in the main results and definitions we will avoid
them here. We assume that the vocabularies always contain a symbol for equality
(=). We consider only finite σ structures, or relational database instances (dbi’s)
denoted as A = 〈A,RA

1 , . . . , RA
s 〉, where A is the domain, also denoted dom(A),

and RA
1 , . . . , RA

s are (second order) relations in Ar1 , . . . , Ars , respectively. We
denote as Str[σ] the class of finite σ structures. By a set (or class) of structures
we mean a set of structures closed under isomorphisms. We will use lower case
Roman letters like x and y for individual (i.e., FO) variables, upper case Roman
letters like X and Y for second order relation variables, and calligraphic upper
case letters like X and Y for third order relation variables. By ϕ(x1, . . . , xr)
we denote a formula of a logic whose free variables are exactly {x1, . . . , xr}.
Technically, to avoid the consideration of the free variables in a formula as a set,
we always assume that the set of variables in a logic is totally ordered. Then,
whenever we write ϕ(x1, . . . , xr) we assume that the sequence 〈x1, . . . , xr〉 follows
that order. Note that, however, in the formula we may use the variables in any
arbitrary order.

Queries or Global Relations

Let σ be a vocabulary. Two σ structures A and B are isomorphic, written A ∼= B,
if there is an isomorphism from A to B, i.e., a bijection h : A → B that preserves
relations and constants in σ, that is, (i) for r-ary R ∈ σ, and a1, . . . , ar ∈
A, (a1, . . . , ar) ∈ RA if and only if (h(a1), . . . , h(ar)) ∈ RB, and (ii) for every
constant c ∈ σ, h(cA) = cB. Let r ≥ 1, and let R be a relation symbol of
arity r. A query or global relation of arity r and vocabulary σ is a function
q : Str[σ] → Str[〈R〉] such that: (i) q preserves isomorphisms, i.e., for every pair
of σ structures A and B, and for every isomorphism h : dom(A) −→ dom(B),
q(B) = h(q(A)), (ii) for every σ structure A, dom(q(A)) ⊆ dom(A) (that is, all
the elements which form the output to the query q when evaluated on a given
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structure A must belong to the domain of that structure). A Boolean query is
a function q : Str[σ] → {TRUE,FALSE} that preserves isomorphisms, i.e., for
every pair of σ structures A and B, if they are isomorphic, then q(A) = q(B). A
computable (or recursive) query is a query that is recursive in some encoding of
A. If ϕ(x1, . . . , xr) is a σ formula as above, of some logic L, A is a σ structure, and
a1, . . . , ar are elements of the domain of A, with A |= ϕ(x1, . . . , xr)[a1, . . . , ar]
we denote that ϕ is TRUE, when interpreted by A, under a valuation v where for
1 ≤ i ≤ r it is v(xi) = ai. Now we consider the set of all such valuations as follows:
ϕA = {(a1, . . . , ar) : a1, . . . ar ∈ dom(A) ∧ A |= ϕ(x1, . . . , xr)[a1, . . . , ar]} That
is, ϕA is the relation defined by ϕ in the structure A, and its arity is given by the
number of free variables in ϕ. Formally, a σ formula ϕ(x1, . . . , xr), expresses a σ
query q if, for every σ structure A, q(A) = ϕA. Similarly, a sentence ϕ expresses
a Boolean query q if, for every σ structure A, q(A) = TRUE if and only if
A |= ϕ. In both cases, we say that q is definable, or expressible, in L (by ϕ).
A logic L captures a complexity class C if and only if every class of relational
structures definable in L is in C and vice versa. We denote as L1 ⊆ L2 the fact
that every query expressible in L1 is also expressible in L2; correspondingly, we
also use the relations ⊂, ⊇, ⊃, and = with the obvious meaning.

Second Order Logic

Second order logic (SO) is an extension of first order logic (FO) which allows
to quantify over relations. In addition to the symbols of FO, its alphabet con-
tains, for each n ≥ 1, countably many n-ary relation variables. As usual, we
will use upper case letters to denote SO relation variables. We define the set
of SO formulas of vocabulary σ to be the set generated by the rules for FO
formulas extended by: (i) if X is a relation variable of arity n and t1, . . . , tn
are terms, i.e., individual variables or constants, then X(t1, . . . , tn) is a formula;
(ii) if ϕ is a formula and X is a relation variable, then ∃X(ϕ) and ∀X(ϕ) are
formulas. The free occurrence of a relation variable in an SO formula is defined
in the obvious way and the notion of satisfaction is extended canonically. The
informal semantics of ∃X(ϕ) and ∀X(ϕ) over a relational structure A, where X
is a relation variable of arity r, is “there is at least one relation R ⊆ Ar such
that ϕ is true when X is interpreted by R”, and “for every relation R ⊆ Ar,
ϕ is true when X is interpreted by R”, respectively. Given a (finite) σ struc-
ture A, a formula ϕ ≡ ϕ(x1, . . . , xn,X1, . . . , Xk) with free individual variables
x1, . . . , xn and free relation variables X1, . . . , Xk, elements a1, . . . , an ∈ A, and
relations R1, . . . , Rk, over A of arities corresponding to X1, . . . , Xk, respectively,
we say that A |= ϕ[a1, . . . , an, R1, . . . , Rk] if the elements a1, . . . , an together
with R1, . . . , Rk satisfy ϕ in A. It is well known that every SO formula is log-
ically equivalent to one in prenex normal form in which each SO quantifier
precedes all FO quantifiers. Let m ≥ 1, then such a formula is called Σ1

m, if the
string of SO quantifiers consists of m consecutive blocks, where in each block
all quantifiers are of the same type (i.e., all universal or all existential), adja-
cent blocks contain quantifiers of different type, and the first block is existential.
Π1

m is defined in the same way, except that the first block consists of universal
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quantifiers. The following well known results give the expressive power of SO
and the fragments defined above:

Theorem 1 [10]. (i) Σ1
1 captures NP; (ii) Π1

1 captures co-NP.

Theorem 2 [21]. Let m ≥ 1. (i) Σ1
m captures ΣP

m; (ii) Π1
m captures ΠP

m;
(iii) SO captures PH.

3 Fixed Point Quantifiers

We will mainly follow the definitions and notation as in [2,20]. Let
ϕ(x1, . . . , xk,X) be a σ formula, where X is a k-ary relation symbol.
Together with a dbi A ∈ Str[σ], ϕ gives rise to an operation: Fϕ :
P(dom(A)k) → P(dom(A)k) defined by Fϕ(R) = {(a1, . . . , ak) : A |=
ϕ(x1, . . . , xk,X)[a1, . . . , ak, R]}, where R is a k-ary relation in dom(A). Let S be
a k-ary relation in dom(A). Then S is a fixed point of the operator Fϕ if Fϕ(S) =
S. We denote the sequence φ, Fϕ(φ), Fϕ(Fϕ(φ)), . . . by Fϕ

0 , Fϕ
1 , Fϕ

2 , . . . and
Fϕ

n+1 = Fϕ(Fϕ
n ). If there is an n0 such that Fϕ

n0
= Fϕ

n0+1, we denote Fϕ
n0

by Fϕ
∞.

Note that, for all n ≥ n0, Fϕ
n = Fϕ

∞. However, such n0 might not exist, i.e., the
sequence Fϕ

0 , Fϕ
1 , Fϕ

2 , . . . might have no fixed point. We define next three impor-
tant properties of the operator Fϕ: (i) Fϕ is inductive if Fϕ

0 ⊆ Fϕ
1 ⊆ Fϕ

2 ⊆ . . . ;
(ii) Fϕ is inflationary if for all R ⊆ dom(A)k : R ⊆ Fϕ(R); (iii) Fϕ is monotone
if for all R,S ⊆ dom(A)k: R ⊆ S ⇒ Fϕ(R) ⊆ Fϕ(S). If Fϕ is inflationary or
monotone, then Fϕ is inductive. If Fϕ is inductive, then Fϕ

∞ =
⋃n0

i=0 Fϕ
i , is the

fixed point of the sequence Fϕ
0 , Fϕ

1 , Fϕ
2 , . . . . If Fϕ is monotone, then the operator

Fϕ
∞ has a least fixed point, which is defined as

⋂{Y : Fϕ(Y ) = Y }. Furthermore,
the least fixed point of the operator Fϕ is Fϕ

∞ =
⋃n0

i=0 Fϕ
i , as above. That is,

Fϕ
∞ is a fixed point of Fϕ, and it is included in all fixed points of Fϕ. Fϕ

∞ is the
fixed point of the sequence φ, Fϕ(φ), Fϕ(Fϕ(φ)), . . . , and it is included in all the
fixed points of the operator Fϕ. Though it is undecidable whether, for a given
ϕ ∈ FO, Fϕ is monotone (see [20]), it has been proved that if ϕ is positive on X,
then Fϕ is monotone (see [20]). Then, we define the least fixed point (LFP) of
Fϕ restricting ϕ to be positive on X. That is, the least fixed point of Fϕ, where
ϕ is positive on X, is Fϕ

∞, as defined above. Least (deterministic) fixed point logic
(LFP) is the closure of FO under the operation of taking deterministic least fixed
points (i.e., where the deterministic fixed point is applied to formulas that are
positive on the relation variable binded by the quantifier). We denote this logic
as (FO + LFP).

We define the non-inflationary (deterministic) fixed point of Fϕ as Fϕ
∞ =⋃n0

i=0 Fϕ
i , as above, if the fixed point of the sequence Fϕ

0 , Fϕ
1 , Fϕ

2 , . . . exists. If
it does not exist, then we define Fϕ

∞ = φ. Non-inflationary (deterministic) fixed
point logic (det-ninf-FP) is the closure of FO under the operation of taking deter-
ministic non-inflationary fixed points (i.e., where the deterministic fixed point is
applied to arbitrary formulas). We denote this logic as (FO + det-ninf-FP).

In particular, ϕ is inflationary in X if it is of the form X(x̄) ∨ ψ, where ψ is
an arbitrary formula (we will call formulas of such form inflationary formulas).
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Hence it is also inductive, and the dbi I being finite, the sequence has always
a fixed point, which is Fϕ

∞ =
⋃n0

i=0 Fϕ
i , as above. Inflationary (deterministic)

fixed point logic (det-inf-FP) is the closure of FO under the operation of taking
deterministic inflationary fixed points (i.e., where the deterministic fixed point
is applied to inflationary formulas). We denote this logic as (FO + det-inf-FP).
Note that det-ninf-FP fixpoint logic is an extension of det-inf-FP. In [17], it was
proved that on finite structures it is IFP = LFP. For that reason, we will not
consider LFP in this context.

Note that the three fixed point quantifiers defined above are obtained by
deterministically iterating FO operators. In [2], new fixed point quantifiers were
introduced, namely, the non-deterministic and the alternating fixed point quan-
tifiers, including also their inflationary and non inflationary versions. Then, con-
sidering both the new fixed point quantifiers, as well as those described above,
they parameterized all of them as either deterministic (det), non-deterministic
(ndet), or alternating (alt), according to the power of their iteration construct,
and either inflationary (inf) or non-inflationary (ninf), according to the power
of their FO operators.

Non-deterministic Fixed Point

Given k ≥ 1 and two FO formulas ϕ0(x1, . . . , xk,X) and ϕ1(x1, . . . , xk,X) of a
same vocabulary σ, we define a sequence of stages F

(ϕ0,ϕ1)
b indexed by binary

strings b ∈ {0, 1}∗, as follows: (i) F
(ϕ0,ϕ1)
λ = ∅ for the empty string λ; (ii)

F
(ϕ0,ϕ1)
b·0 = F

(ϕ0,ϕ1)
b ∪ Fϕ0(F (ϕ0,ϕ1)

b ); (iii) F
(ϕ0,ϕ1)
b·1 = F

(ϕ0,ϕ1)
b ∪ Fϕ1(F (ϕ0,ϕ1)

b ).
The non-deterministic fixed point of the sequence is

⋃
b∈{0,1}∗ F

(ϕ0,ϕ1)
b . The

non-deterministic inflationary fixed point logic (ndet-inf-FP) is the closure of
FO under the operation of taking non-deterministic inflationary fixed points
(i.e., where both, ϕ0 and ϕ1, are inflationary formulas). The non-deterministic
non-inflationary fixed point logic(ndet-ninf-FP) is the closure of FO under the
operation of taking non-deterministic non-inflationary fixed points (i.e., where
both, ϕ0 and ϕ1, are arbitrary formulas). If no non-deterministic fixed point
exists, then we define the non-deterministic fixed point to be the empty set.
In the two cases there is the restriction that negation cannot be applied to the
fixed point operator. We denote these two logics as (FO + ndet-inf-FP) and
(FO + ndet-ninf-FP), respectively.

Alternating Fixed Point

Let k ≥ 1 and let ϕ0(x1, . . . , xk,X) and ϕ1(x1, . . . , xk,X) be two FO formulas of
a same vocabulary σ. This pair of operators generates convergent trees of stages
that are obtained by successively applying, until convergence is reached, either
one of ϕ0 and ϕ1, or both of ϕ0 and ϕ1. Formally, a convergent tree is a labeled
binary tree such that (i) the root is labeled by the empty relation; (ii) if a node
x with label Sx is at an odd level of the tree, then x has one child x′, labeled by
Fϕ0(Sx) or Fϕ1(Sx); (iii) if a node x with label Sx is at an even level of the tree,
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then x has two children x1 and x2 labeled by Fϕ0(Sx) and Fϕ1(Sx), respectively;
(iv) if x is a leaf with label Sx, then Fϕ0(Sx) = Fϕ1(Sx) = Sx. We take the
intersection of the labels of the leaves of a convergent stage tree to be a local
alternating fixed point of the pair ϕ0, ϕ1. Note that the pair ϕ0, ϕ1 can have more
than one local alternating fixed point or none. We define the alternating fixed
point of the pair ϕ0, ϕ1 as the union of all local alternating fixed points of the pair
ϕ0, ϕ1. If no local alternating fixed point exists, then we define the alternating
fixed point to be the empty set. The number of stages of an alternating fixed
point is taken to be the maximum over all convergent trees. The alternating
inflationary fixed point logic (alt-inf-FP) is the closure of FO under the operation
of taking alternating inflationary fixed points (i.e., where both, ϕ0 and ϕ1, are
inflationary formulas). The alternating non-inflationary fixed point logic (alt-
ninf-FP) is the closure of FO under the operation of taking alternating non-
inflationary fixed points (i.e., where both, ϕ0 and ϕ1, are arbitrary formulas). We
denote these two logics as (FO+alt-inf-FP) and (FO+alt-ninf-FP), respectively.

Expressibility of the Fixed Point Logics

In the context of Descriptive Complexity Theory, the following characterizations
with computational complexity classes have been proved, when we restrict the
input structures (or dbi’s) to those with a total order relation in its signature
(relational schema) [2,20]. We denote, as usual, the restriction to ordered struc-
tures by adding ≤ to the identification of the logic.

(i) P = (FO + ≤ + det-inf-FP);
(ii) NP = (FO + ≤ + ndet-inf-FP);
(iii) PSPACE = (FO + ≤ + det-ninf-FP)

= (FO + ≤ + ndet-ninf-FP)
= (FO + ≤ + alt-inf-FP);

(iv) EXPTIME = (FO + ≤ + alt-ninf-FP).

4 Relational Machines and the Infinitary Logic Lω
∞ω

A deterministic relational machine is a Turing machine augmented with a
finite set of fixed arity relations forming a relational store (rs). Designated
relations contain initially the input structure, and one specific relation holds
the output at the end of the computation. A relational machine uses a finite
set of first-order formulas to interact with the rs. An RM is an eleven-tuple
〈Q,Σ, δ, q0, b, F, τ, σ, T,Ω, Φ〉, where: Q is the finite set of states; Σ is the tape
alphabet; b ∈ Σ is the blank symbol; q0 ∈ Q is the initial state; F ⊆ Q is the set
of accepting final states; τ is the vocabulary of the rs; σ ⊂ τ is the vocabulary
of the input structure; T ∈ τ − σ is the output relation; Ω is a finite set of
first-order sentences of vocabulary τ ; Φ is a finite set of first-order formulas of
vocabulary τ ; δ : Q×Σ×Ω → Σ×Q×{R,L}×Φ×τ is a partial function called
the transition function. Note that, as equality is always included in σ, we can
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access the domain of the input structure with the formula x = x. Transitions are
based on the current state; the contents of the current tape cell; and the answer
to a Boolean first-order query evaluated on the τ -structure held in the rs. If the
transition function is undefined, the computation stops. The arity of an RM M ,
denoted as arity(M), is max({|var(ϕ)| : ϕ ∈ Ω ∪ Φ}). We will always assume
that the arity of M is greater than or equal to the arities of all the relation
symbols in its rs. A relational language is a class of structures of a relational
vocabulary that is closed under isomorphisms. The relational language accepted
by M , denoted L(M) is the set of input structures accepted by M .

A non-deterministic relational machine is an eleven-tuple, 〈Q,Σ,
δ, q0, b, F, σ, τ, T,Ω, Φ〉, where each component is as in the deterministic case,
with the exception that the transition function is defined by δ : Q × Σ × Ω →
P(Σ × Q × {R,L} × Φ × τ), where, for any set A, P(A) denotes the powerset
of A.

A relational oracle machine is a relational machine with a distinguished set
of relations in its rs, called oracle relations, and three distinguished states q?,
the query state, and qYES, qNO, the answer states. Similarly to the case of ora-
cle Turing machines, the computation of an oracle relational machine requires
that a relational oracle language be fixed previously to the computation. Let
C be a relational language. The computation of a relational oracle machine M
with oracle C and distinguished set of oracle relation symbols σo, proceeds like
in an ordinary relational machine, except for transitions from the query state.
From the query state M transfers into the state qYES if the relational structure
of vocabulary σo formed by the domain of the input structure and the distin-
guished set of oracle relations currently held in the rs, belongs to C; otherwise,
M transfers into the state qNO.

The Infinitary Logic Lω
∞ω

Let s ≥ 1 and m ≥ 0. We denote by FOs;m the fragment of FO containing only
formulas whose free and bound variables are among {v1, . . . , vs}, and of quantifier
rank ≤ m. We further denote by FOs the fragment of FO given by

⋃
m≥0 FOs;m.

The infinitary logic Ls
∞ω extends FO by allowing arbitrary (infinite) disjunctions

and conjunctions, while restricting the free and bound variables in the formulas
to be among {v1, . . . , vs}. We define Lω

∞ω =
⋃

s≥1 Ls
∞ω. As non-recursive queries

can be expressed in these logics, we will denote with Ls
∞ω|rec and Lω

∞ω|rec the
fragments of Ls

∞ω and Lω
∞ω, respectively, that express only recursive queries. The

semantics is a direct extension of the semantics of FO, with
∨

Ψ and
∧

Ψ being
interpreted as the disjunction and conjunction, respectively, over all formulas
in Ψ . If all formulas in Ψ are sentences, then A |= ∨

Ψ if and only if for some
ψ ∈ Ψ , A |= ψ. and similarly for

∧
Ψ . Note that the q.r. of a formula in these

logics can be infinite. In our setting, we only consider Lω
∞ω formulas over finite

signatures.

Proposition 1 [20]. Let σ be a relational vocabulary such that it contains a
binary relation symbol ≤, that is interpreted as a total order in any given σ
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structure, and such that the arity of the relation symbol of maximum arity in
σ is k, for k ≥ 2. Then, over finite σ structures, (i) every Boolean query is
expressible in Lk

∞ω; (ii) every k-ary query is expressible in Lk
∞ω.

Proposition 2 [1,4]. (i) RM = Lω
∞ω|rec, i.e., the relational machines can com-

pute exactly the same queries that can be expressed in the effective fragment of
the logic Lω

∞ω; (ii) relational machines are complete on ordered input structures;
(iii) relational machines collapse to FO on vocabularies with only unary relation
symbols (and equality).

Note that since Lω
∞ω has the so called 0-1 Law (i.e., all Boolean queries

expressible in the logic are either asymptotically true, or asymptotically false, see
[20] among other sources), the equivalence (i) means that the relational machines
also have the 0-1 Law. This implies, for instance, that a query as simple as the
parity query cannot be computed by an RM, while on the other hand from the
perspective of Computational Complexity it is a regular language, and hence is
in DSPACE(O(1)).

Types, or Properties of Tuples

For any l-tuple ā = (a1, . . . , al) of elements in A, with 1 ≤ l ≤ k, we define
the FOk type of ā, denoted tpFO

k

A (ā), to be the set of FOk formulas ϕ ∈ FOk

with free variables among x1, . . . , xl, such that A |= ϕ[a1, . . . , al]. If τ is an FOk

type, tuple ā realizes τ in A if and only if τ = tpFO
k

A (ā). Let A and B be σ
structures and let ā and b̄ be two l-tuples on A and B respectively, we write
(A, ā) ≡k (B, b̄), to denote that tpFO

k

A (ā) = tpFO
k

B (b̄). If A = B, we also write
ā ≡k b̄. We denote as sizek(A) the number of equivalence classes in ≡k in A.

Characterization of Equality of FOk Types

Equality of FOk-types can be characterized by pebble games and by k-Back and
Forth Systems of partial isomorphisms. We will first give a brief explanation
of the games, together with the basic notions that we need to define them,
and then the characterization theorem. Let σ be a vocabulary, and A, B σ
structures. Let f be a partial function with do(f) ⊆ A and rg(f) ⊆ B, where
do(f) and rg(f) denote the domain and the range of f , respectively. Then f is
said to be a partial isomorphism (or p.i.) from A to B if (i) f is injective; (ii)
for every constant symbol c in σ: cA ∈ do(f) and f(cA) = cB; (iii) for every
relation symbol R of arity r in σ, and for all a1, . . . , ar ∈ do(f): (a1, . . . , ar) ∈
RA ⇔ (f(a1), . . . , f(ar)) ∈ RB. We denote by Part(A,B) the set of all partial
isomorphisms f : A → B, and by Partk(A,B) the set of all partial isomorphisms
f : A → B with |f | ≤ k. That is, a partial isomorphism is an isomorphism
between two sub-structures. Let A, B be two structures of a relational signature
τ . Let A, B be their respective domains, and let ∗ not belong to neither domain.
For ā ∈ (A ∪ {∗})s with ā = (a1, . . . , as), let supp(ā) = {i : ai ∈ A} be the
support of ā, and if a ∈ A, let āa

i denote (a1, . . . , ai−1, a, ai+1, . . . , as). For
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ā ∈ (A∪{∗})s and b̄ ∈ (B ∪{∗})s we say that ā �→ b̄ is an s-partial isomorphism
from A to B, if supp(ā) = supp(b̄) and ā′ �→ b̄′ is a partial isomorphism from
A to B, where ā′ and b̄′ are the subsequences of ā and b̄ with indices in the
support. Now we define the s-pebble game with m rounds P s

m(A, ā,B, b̄). There
are s pairs of pebbles (αi, βi), with 1 ≤ i ≤ s. Initially, αi is placed on ai if
ai ∈ A, and off the board if ai = ∗, and similarly for βi with bi and B. Each
play consists of m rounds. In each round the Spoiler selects a structure, A or
B, and a pebble for this structure (being off the board or already placed on
an element). If he selects A and αi, he places αi on some element of A, and
then the Duplicator places βi on some element of B. If the Spoiler selects B and
βi, he places βi on some element of B, and the Duplicator places αi on some
element of A. Note that there may be several pebbles on the same element. The
Duplicator wins the game if for each j ≤ m we have that ē �→ f̄ is an s-partial
isomorphism, where ē = (e1, . . . , es) are the elements marked by α1, . . . , αs after
the j-th round (ei = ∗ in case αi is off the board) and where f̄ = (f1, . . . , fs) are
the corresponding elements given by β1, . . . , βs. For j = 0 this means that ā �→ b̄
is an s-partial isomorphism. The Spoiler wins the game if the Duplicator does
not win the game. The s-pebble game with infinitely many rounds P s

∞(A, ā,B, b̄)
is defined similarly. From now on, when writing A |= ϕ[ā] for ā ∈ (A ∪ {∗})s we
tacitly assume that the free variables of ϕ have indices in supp(ā). We give now
the characterization theorem (see [9], among other sources).

Theorem 3 (e.g., [9]). Let k ≥ 1. Let A and B be two σ structures, and
ā ∈ (A ∪ {∗})k and b̄ ∈ (B ∪ {∗})k with supp(ā) = supp(b̄). The following
are equivalent:

(i) The Duplicator wins P k
∞(A, ā,B, b̄).

(ii) ā satisfies in A the same FOk formulas as b̄ in B: tpFO
k

A (ā) = tpFO
k

B (b̄).
(iii) ā satisfies in A the same Lk

∞ω formulas as b̄ in B: tp
Lk

∞ω

A (ā) = tp
Lk

∞ω

B (b̄).

Examples of FOk Types

1. Let T be an out tree, where all leaves are at the same depth, and all internal
nodes have output degrees ≥ 2. Let a, b be two nodes of the same depth in T ,
with output degrees 2 and 3, respectively. Then, we have the following:
(a) tpFO

2

T (a) = tpFO
2

T (b): Consider the pebble game P 2
∞(T , a, T , b). Note that,

never minding which copy of T the Spoiler chooses, and where he places
the two pebbles, the Duplicator can answer by playing in the other copy
of T , placing the corresponding two pebbles in such a way that the sub-
graphs induced in the two copies of T by the pebbled nodes are isomor-
phic, does winning the game.

(b) tpFO
3

T (a) = tpFO
3

T (b): Consider the pebble game P 3
∞(T , a, T , b). If the

Spoiler chooses the second copy of T , and puts pebbles β1, β2 and β3 in
the three children of b, the Duplicator wins the game by playing in the
first copy of T , putting pebbles α1, α2 and α3 in 3 arbitrary nodes with
no edges among them. For instance, putting the 3 pebbles in the three
children of b in the first copy of T .
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(c) tpFO
4

T (a) �= tpFO
4

T (b): Consider the pebble game P 4
∞(T , a, T , b). Initially,

in the first copy of T , pebble α1 is placed on a, and pebbles α2 , α3 and
α4 are off the board. Correspondingly, in the second copy of T , pebble
β1 is placed on b, and pebbles β2, β3 and β4 are off the board. After the
first three rounds the Spoiler wins the game by choosing the second copy
of T , and placing pebbles β2, β3 and β4 on the three children of b.

2. For each n ≥ 1 there is an FO3 formula ϕn(x, y) that in digraphs expresses
that there is a path of length at most n, with possible repetitions of nodes,
from x to y [20]: Let ϕ1(x, y) ≡ E(x, y), and let ϕn+1(x, y) ≡ ∃z(E(x, z) ∧
∃x((x = z) ∧ ϕn(x, y))). Let T be tree as defined above. For each n ≥ 1
there is an FO2 formula ψn(x) that in T expresses that there is a path of
length n from x to a leaf: Let ψ1(x) ≡ ∃y(E(x, y) ∧ ¬∃x(E(y, x))), and let
ψn+1(x) ≡ ∃y(E(x, y) ∧ ∃x((x = y) ∧ ψn(x))). Now, let c, d be two nodes of
different depth in T . Then, even if their output degrees in T are equal, we
have that
(a) tpFO

2

T (c) �= tpFO
2

T (d): Consider the pebble game P 2
∞(T , c, T , d). Suppose

that node c is at a shorter distance to a leaf than d is. Then, the Spoiler
wins the game by choosing the second copy of T , and walking with the
pebbles β1 and β2 along the path from d to a leaf. Note that the Duplicator
will have to stop walking with pebbles α1 and α2 in the first copy of T
before the Spoiler does, since the path from c to a leaf is shorter.

Equality and Ordering of FOk Types in det-inf-FP

We can always build an (FO + det-inf-FP) formula that expresses that two l-
tuples of a given structure have the same FOk types, for any 1 ≤ l ≤ k.

Proposition 3 [8]. Let σ be a relational vocabulary. For every k ≥ 1 and every
1 ≤ l ≤ k, there is a det-inf-FP formula η(x̄, ȳ) with 2l free variables such that,
for every structure A in Str[σ] and for all ā, b̄ ∈ Al, A |= η(x̄, ȳ)[ā, b̄] if and only
if tpFO

k

A (ā) = tpFO
k

A (b̄).

Suppose we have a set X partitioned into subsets X1, . . . , Xm. Now consider
a binary relation ≺ on X given by x ≺ y ⇔ x ∈ Xi, y ∈ Xj , and i < j. Rela-
tions obtained in such way are called strict preorders. With each strict preorder
≺ we associate an equivalence relation whose equivalence classes are precisely
X1, . . . , Xm. It can be defined by the formula ¬(x ≺ y)∧¬(y ≺ x). Similarly, we
can also define the relation �, getting a preorder that is not strict. The corre-
sponding equivalence relation to � is defined by the formula (x � y) ∧ (y � x).
Note that a preorder induces a total order in the set of subsets X1, . . . , Xm, and
similarly, a strict preorder induces a strict total order in that set. We can also
build an (FO + det-inf-FP) formula that expresses that defines a strict preorder
≺k,l, whose equivalence relation is the relation ≡k,l of equality of FOk types for
l-tuples in a given structures, for any 1 ≤ l ≤ k.

Theorem 4 [8]. Let σ be a relational vocabulary. For every k ≥ l ≥ 1 there is a
det-inf-FP formula χ(x̄, ȳ) with |x̄| = |ȳ| = l, such that on every structure A in
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Str[σ], the formula χ defines a strict preorder ≺k, whose equivalence relation is
the equality of FOk types for l-tuples, denoted by ≡k.

Relational Machines and FOk Types

Let k ≥ 1, let σ be a relational vocabulary, and let A be a σ structure. We say
that a relation R of arity r ≤ k is closed under ≡k if and only if, for every pair
of r-tuples ā and b̄ over A, if ā ∈ RA and ā ≡k b̄, then b̄ ∈ RA. Note that all the
relations that form a σ structure are closed under ≡k, since k is ≥ than all the
arities in σ (see Fact 9 in [13]).

Proposition 4 [2]. Let 1 ≤ r ≤ k. For every pair of r-tuples ā and b̄ over a
relational structure A, ā ≡k b̄ if and only if no k-ary relational machine can
distinguish between ā and b̄ over A. That is, for every k-ary RM M , and for
every s-ary relation symbol R ∈ τ , with 1 ≤ s ≤ k, in every configuration
(q, w,A) in the computation of M on A: A |= R(xi1 , . . . , xis

)[ā] if and only if
A |= R(xi1 , . . . , xis

)[b̄], with 1 ≤ i1, . . . , is ≤ r.

Since k-ary relational machines cannot distinguish between tuples which are
≡k-equivalent, they cannot compute the size of their input structures. However,
they can compute the number of ≡k-classes.

Proposition 5 [2]. For each k ≥ 1 and relational vocabulary σ, there is a deter-
ministic relational machine Mσ of arity 2k that outputs on its Turing machine
tape, for an input structure A of vocabulary σ, a string of length sizek(A) in
time polynomial in sizek(A).

Lemma 1 [2]. For every relational vocabulary σ and every k ≥ 1, there is a
deterministic relational machine M�k of arity k′ ≥ 2k, such that on any input
structure A of vocabulary σ, M�k computes the preorder �k of T.11.20, working
in time bounded by a polynomial in sizek′(A).

Relational Complexity

Let M be a relational machine. If M is deterministic, then the computation time
of M on an input structure A is the number of transitions that M makes before
accepting or rejecting A, and the computation space is the number of tape cells
scanned. Note that the rs is not considered for the computation space. If M is
non-deterministic, then we only consider accepting computations. In that case,
the computation time of M on an input structure A is the number of transi-
tions in the shortest accepting computation of M on A, and the computation
space is the minimum number of tape cells that are scanned in any accept-
ing computation of M on A. If M rejects A, then both the computation time
of M on A, and the computation space of M on A, are 1. Let L(M) be the
relational language accepted by a relational machine M of arity k. Let t and
s be functions on the natural numbers such that t(n) ≥ n + 1 and s(n) ≥ 1.
L(M) ∈ DTIMEr(t(n)) if M is deterministic and its computation time on any
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input structure A is bounded above by t(sizek(A)); L(M) ∈ NTIMEr(t(n)) if
M is non-deterministic and its computation time on any input structure A is
bounded above by t(sizek(A)); L(M) ∈ DSPACEr(s(n)) if M is determinis-
tic and its computation space on any input structure A is bounded above by
s(sizek(A)); L(M) ∈ NSPACEr(s(n)) if M is non-deterministic and its com-
putation space on any input structure A is bounded above by s(sizek(A)). We
define the following classes: (i) Pr of the relational languages decidable by rela-
tional machines working in polynomial time in the k-size of their input struc-
tures: Pr =

⋃
c∈N

DTIMEr(nc); (ii) NPr of the relational languages decidable by
non-deterministic relational machines working in polynomial time in the k-size
of their input structures: NPr =

⋃
c∈N

NTIMEr(nc); (iii) PSPACEr of the rela-
tional languages decidable by relational machines working in polynomial space in
the k-size of their input structures: PSPACEr =

⋃
c∈N

DSPACEr(nc). The time
complexity of oracle relational machines is defined precisely in the same way as
with ordinary relational machines. Each query step counts as one ordinary step.
Thus if C is any deterministic or non-deterministic relational time complexity
class and A is a relational language, we can define CA to be the class of all
relational languages accepted by relational machines of the same time bound as
in C, only that the machines have now an oracle A. The levels of the relational
polynomial time hierarchy are defined as follows: ΔPr

0 = ΣPr
0 = ΠPr

0 = Pr,

and, for m > 0, ΔPr
m+1 = P

ΣPr
m

r , ΣPr
m+1 = NPΣPr

m
r , ΠPr

m+1 = coNPΣPr
m

r . Then,
PHr =

⋃
m∈N

ΣPr
m .

Relational Complexity Classes and Fixed Point Quantifiers

In [2], the following characterizations of relational complexity classes with fixed
point logics were proved (on arbitrary finite structures):

Proposition 6 [2].

(i) Pr = (FO + det − inf − FP);
(ii) NPr = (FO + ndet − inf − FP);
(iii) PSPACEr = (FO + det − ninf − FP)

= (FO + ndet − ninf − FP)
= (FO + alt − inf − FP);

(iv) EXPTIMEr = (FO + alt − ninf − FP).

Comparing the expressive power among these fixed point logics, and with
Lω

∞ω, we have the following picture:

Proposition 7 [2,6,19].

(FO + LFP) = (FO + det − inf − FP)
⊆ (FO + ndet − inf − FP)
⊆ (FO + det − ninf − FP) = (FO + ndet − ninf − FP) = (FO + alt − inf − FP)
⊆ (FO + alt − ninf − FP)
⊂ Lω

∞ω.



Relational Complexity and Higher Order Logics 325

Note that the different fixed point quantifiers, added to FO, character-
ize exactly the corresponding computational complexity classes, when the
input structures are required to be ordered (see above). That is, for C ∈
{P,NP,PSPACE,EXPTIME}, Cr ∈ {Pr,NPr,PSPACEr,EXPTIMEr}, α ∈
{det,ndet, alt}, and β ∈ {inf,ninf}, the following holds: C = (FO +≤ + α-β-FP)
if and only if Cr = (FO + α-β-FP).

5 The Restricted Second Order Logic SOω

We denote by Σ1,ω
m [σ] the class of formulas of the form ∃k11Y r11,k11

11 . . .

∃k1l1 Y
r1l1 ,k1l1
1l1

∀k21Y r21,k21
21 . . . ∀k2l2 Y

r2l2 ,k2l2
2l2

. . . Qkt1Y rt1,kt1
t1 . . . Qktlt Y

rtlt ,ktlt

tlt
(φ),

where the quantifiers Qkt1 , . . . , Qktlt are ∀kt1 , . . . ,∀ktlt , if t is even, or
∃kt1 , . . . ,∃ktlt , if t is odd, φ is an FO formula in the vocabulary σ ∪
{Y r11,k11

11 , . . . , Y
rtlt ,ktlt

tlt
}, with r11 ≤ k11, . . . , rtlt ≤ ktlt , respectively. We use

upper case Roman letters Xr,k
i for SOω variables, where r ≥ 1 is their arity, and

k ≥ r (see below). In this article we will often drop the superindex k, when it is
clear from the context. We define SOω =

⋃
m≥1 Σ1,ω

m . The second order quanti-
fier ∃k has the following semantics: let A be a σ structure; then A |= ∃kY r,kϕ
if there is an r-ary (second order) relation Rr,k on A that is closed under the
relation ≡k in A, such that (A, R) |= ϕ. Note that a valuation in this setting
also assigns to each SOω variable Xr,k a (second order) relation on A of arity r
that is closed under ≡k in A.

Remark 1. SOω is defined in this way because it seems that equivalence between
arbitrary formulas with SOω quantifiers, and prenex formulas does not hold
in this logic (as opposite to SO). Let ψ ≡ ∃x∀kR(ϕ(x,R)), the usual trans-
lation strategy in SO to a prenex formula yields the following formula ψ̂ ≡
∃k′

X ∀kR(∀x(X(x) ⇒ ϕ(x,R))). However, in SOω the two formulas are not
equivalent, since for a given structure we might not get a valuation which assigns
to X sets with only elements of a single FO type. That is, it might be the case
that every set assigned to X has elements of more than one FO type.

As to expressibility of the logics, clearly, SOω ⊆ SO, and for every m ≥ 1,
Σ1,ω

m ⊆ Σ1
m and Π1,ω

m ⊆ Π1
m. Equality is obtained if the input structures are

(totally) ordered:

Theorem 5 [6]. On ordered structures, for every m ≥ 1, Σ1,ω
m = Σ1

m and
Π1,ω

m = Π1
m.

The following result establishes the relationship between SOω and the infini-
tary logic Lω

∞ω. Note that as Lω
∞ω has the 0-1 Law (see above) this means that

SOω also has the 0-1 Law.

Corollary 1 [6]. SOω ⊂ Lω
∞ω.
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Example 1. The following Σ1,ω
1 formula expresses connectivity on undirected

graphs: ∃3R2
[
“E ⊆ R”∧∀x(R(x, x))∧“R �� E ⊆ R”∧∀xy

(
R(x, y) ⇒ [E(x, y)∨

x = y ∨ ∃z(R(x, z) ∧ E(z, y))]
) ∧ ∀xy(R(x, y))

]
, where “E ⊆ R” is short for

∀xy(R(x, y) ⇒ E(x, y)) and”R �� E ⊆ R” is short for ∀xyz((R(x, z)∧E(z, y)) ⇒
R(x, y)). Note that, with the intended semantics, R is always closed under ≡3,
since whenever two tuples (x1, y1), (x2, y2) are ≡3, and (x1, y1) ∈ R, then for
every 1 ≤ i ≤ |V | there is a path of length i between x1 and y1 if and only if
there is a path of length i between x2 and y2, since for all i that property is
expressible in FO3 (see Examples of FOk Types above). Hence also (x2, y2) ∈ R.

SOω and Relational Complexity

The following characterizations of relational complexity classes with SOω or its
fragments have been proved.

Theorem 6 [6]. SOω ⊆ (FO + det − ninf − FP).

Theorem 7 [6]. Σ1,ω
1 = (FO + ndet − inf − FP).

Corollary 2 [6]. Σ1,ω
1 captures NPr.

In [13], a direct proof of the relationship Σ1,ω
1 = NPr was given, continuing

with the characterization of the relational polynomial time hierarchy:

Theorem 8 [13]. (i) For m ≥ 1: ΣPr
m = Σ1,ω

m ; (ii) PHr = SOω.

6 The Restricted Third Order Logic TOw

The logic TOω was introduced in [5] as a fragment of Third Order Logic (TO).
A third order relation type is a w-tuple τ = (r1, . . . , rw) where w, r1, . . . , rw ≥ 1.
In addition to the symbols of SOω, the alphabet of TOω contains, for every
k ≥ 1, a third-order quantifier ∃k, and, for every relation type τ such that
r1, . . . , rw ≤ k, a countably infinite set of third order variables, denoted as
X τ,k

1 ,X τ,k
2 , . . ., and called TOω variables. In this article, we will often drop either

one or the two superindices, when they are clear from the context. Let σ be a
relational vocabulary. A TOω atomic formula of vocabulary σ, on the TOω

variable X τ,k, is a formula of the form X τ,k(V1, . . . , Vw), where V1, . . . , Vw are
either second order variables of the form Xri,k

i , or relation symbols in σ, and
whose arities are respectively r1, . . . , rw ≤ k. Note that all the relations that
form a σ structure are closed under ≡k, since k is ≥ than all the arities in σ
(see above, and Fact 9 in [13]). Let m ≥ 1. We denote by Σ2,ω

m [σ] the class
of formulas of the form ∃k3,11X τ11,k3,11

11 . . . ∃k3,1s1 X τ1s1 ,k3,1s1
1s1

∀k3,21X τ21,k3,21
21 . . .

∀k3,2s2 X τ2s2 ,k3,2s2
2s2

. . . Qk3,m1X τm1,k3,m1
m1 . . . Qk3,msm X τmsm ,k3,msm

msm (ψ), where, for
i, j ≥ 1, τij = (rij,1, . . . , rij,wij

), and rij,1, . . . , rij,wij
≤ k3,ij , Q is either ∃k or ∀k,

for some k, depending on whether m is odd or even, respectively, and ψ is an SOω
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formula with the addition of TOω atomic formulas. As usual, ∀kX τ,k(ψ) abbre-
viates ¬∃kX τ,k(¬ψ). We define TOω =

⋃
m≥1 Σ2,ω

m . A TOω relation Rτ,k of type
τ and closed under ≡k on a σ structure A is a set of w tuples (Rr1,k

1 , . . . , Rrw,k
w )

of (second order) relations on A with respective arities r1, . . . , rw ≤ k, closed
under ≡k. The third order quantifier ∃k has the following semantics: let A be a
σ structure; then A |= ∃kX τ,kϕ if there is a TOω relation Rτ,k of type τ on I
closed under the relation ≡k in A, such that (A,R) |= ϕ. Here (A,R) is the third
order (σ ∪{X τ,k}) structure expanding A, in which X is interpreted as R. Note
that a valuation in this setting also assigns to each TOω variable X τ,k a third
order relation Rτ,k on A of type τ , closed under ≡k in A. We do not allow free
second or third order variables in the logics SOω and TOω. Note that allowing
elements (from the domain of the structure) in a third order relation type would
change the semantics of TOω, since we could use a third order relation of such
type to simulate a second order relation not closed under ≡k.

An Example in Σ2,ω
1

We give next a sketch of an example of a non-trivial query in Σ2,ω
1 . Consider

the query the graph G is undirected, connected, with |V | ≥ 2, and its diameter
is even. We quantify two third order relations, X (2,2) and �(2,2,2,2), that form
a totally ordered set of pairs of (second order) relations, where, for 0 ≤ i ≤ m,
in the first component of the i-th pair (R1, R2), we have all the pairs of nodes
(x, y) such that the minimum distance between them is i. Note that all these
relations are closed under ≡3 since with 3 variables we can say in FO that there
is a path of length d between two nodes, for every d ≥ 0 (see [20]). Then, if
two pairs of nodes are ≡3, either they are both in the relation or none of them
are, which is correct since the set of distances of all the paths between the two
pairs of nodes is the same. We use the second relation in each pair (S2 and
R2) as Boolean flags, where ∅ means off and V × V means on. Then, along the
sequence of pairs of relations, we switch the flags on and off, starting in on.
Note that if the position of the last pair of relations in the sequence is i (i.e.,
m), it means that the diameter of G is i, and, if the flag is on, then the diameter
is even: ϕ ≡ ∃3X (2,2) �(2,2,2,2) ∀3R2

1R
2
2S

2
1S2

2 [([“� is a total order in X”]) ∧
([“the succesor of (S1, S2) is (R1, R2)”] ⇒ [“R2 is the complement of S2” ∧ “the
pairs in R1 are formed by extending the pairs in S1 with the edges in E”]) ∧
([“(S1, S2) ≺ (R1, R2)”] ⇒ [“no pair in R1 is in S1, i.e., the distances at every
stage are minimal”]) ∧ ([“(R1, R2) is the first pair in �”] ⇒ [“the flag is on”∧
“R1 is ‘=’”]) ∧ ([“(R1, R2) is the last pair in �”] ⇒ [“the flag is on” ∧ “the pairs
in R1 cannot be extended with edges in E, i.e., there are no minimum distances
bigger than the ones in R1”])] ∧ [“G is connected”] ∧ [“G is undirected”] ∧
[“|V | ≥ 2”]. Finally, note that the Σ1,w

1 formula for “G is connected” is given
in Example 1. Recall that usually in FMT undirected graphs are represented as
symmetric directed graphs.

Remark 2. Note that this query does not actually need the expressive power of
Σ2,w

1 . It is not difficult to describe a (deterministic) RM working in relational
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polynomial time (Pr) that computes this query. Then, by the characterization of
NPr (which includes Pr) with the logic Σ1,w

1 (Corollary 2), we know there is also
a Σ1,w

1 formula expressing the same query, though most likely more complicated
than the above Σ2,w

1 formula.

3-NRM’s

The third order non-deterministic relational machine (3-NRM) was introduced
in [5] as a variation of the non-deterministic relational machine NRM, where
third order relations are allowed in the relational store. The relational complex-
ity class NEXPTIME3,r was also introduced there, to represent the 3-NRM’s
that work in non-deterministic relational time. A third order non-deterministic
relational machine, denoted as 3-NRM, of arity k, for k ≥ 1, is an 11-tuple
〈Q,Σ, δ, q0, b, F, σ, τ, T,Ω, Φ〉 where: Q is the finite set of internal states; q0 ∈ Q
is the initial state; Σ is the finite tape alphabet; b ∈ Σ is the symbol denoting
blank; F ⊆ Q is the set of accepting states; τ is the finite vocabulary of the rs
(its relational store), with finitely many TOω relation symbols Rτi,k

′
i of any arbi-

trary type τi = (ri1, . . . , riw), with 1 ≤ ri1, . . . , riw ≤ k′ = k, and finitely many
SOω relation symbols Rri,k

′′
i of arities ri ≤ k′′ = k; T ∈ τ is the output relation;

σ is the vocabulary of the input structure; Ω is a finite set of TOω formulas
with up to k FO variables, with no SOω or TOω quantifiers, and with no free
variables of any order (i.e., all the SOω and TOω relation symbols are in τ); Φ is
a finite set of TOω formulas with up to k FO variables that are not sentences,
with no SOω or TOω quantifiers, and where the free variables are either all FO
variables, or all SOω variables; δ : Q × Σ × Ω → P(Σ × Q × {R,L} × Φ × τ) is
the transition function. In any pair in δ, if ϕ, S occur in the 5-tuple of its second
component, for Φ and τ , then either S is a TOω relation symbol Rτi,k

′
i in rs and

ϕ has |τi| SOω free variables Xr1,k′′
1 , . . . , X

r|τi|,k
′′

|τi| with arities according to τi,

and 1 ≤ r1, . . . , r|τi| ≤ k′′ = k′ = k, or S is an SOω relation symbol Rri,k
′′

i in rs
and ϕ has 1 ≤ ri ≤ k′′ = k FO free variables. At any stage of the computation
of a 3-NRM on an input σ structure A, there is one relation in its rs of the
corresponding relation type (or arity) in A for each relation symbol in τ , so that
in each transition there is a (finite) τ -structure A in the rs, which we can query
and/or update through the formulas in Ω and Φ, respectively, and a finite Σ
string in its tape, which we can access as in Turing machines. The concept of
computation is analogous to that in the Turing machine. We define the complex-
ity class NEXPTIME3,r as the class of the relational languages or Boolean queries
(i.e., sets of finite structures of a given relational vocabulary, closed under iso-
morphisms) that are decidable by 3-NRM machines of some arity k′, that work
in non-deterministic exponential time in the number of equivalence classes in ≡k′

of the input structure. In symbols: NEXPTIME3,r =
⋃

c∈N NTIME3,r(2c·(sizek))
(as usual, this notation does not mean that the arity of the 3-NRM must be k).
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Σ2,ω
1 Captures NEXPTIME3,r

The following results were proved in [5]:

Theorem 9 [5]. NEXPTIME3,r ⊆ Σ2,ω
1 . That is, given a 3-NRM M in

NTIME3,r(2c·(sizek)), for some positive integer c and with input vocabulary σ,
that computes a Boolean query q, we can build a formula ϕM ∈ Σ2,ω

1 such that,
for every σ-structure I, M accepts I if and only if I |= ϕM .

Theorem 10 [5]. Σ2,ω
1 ⊆ NEXPTIME3,r. That is, every class of relational

structures definable in Σ2,ω
1 is in NTIME3,r(2c·(sizek)).

Σ2,ω
1 also Captures NEXPTIMEr

Then, in [22], we proved the following results. The next corollary is a consequence
of the first theorem above by the following two immediate facts: (i) an NRM is
a special case of a 3-NRM, with no third order relations in its rs, and (ii) an
NRM M is in NEXPTIMEr if and only if M , as a 3-NRM, is in NEXPTIME3,r.

Corollary 3 [22]. NEXPTIMEr ⊆ Σ2,ω
1 . That is, given an NRM M that works

in NTIMEr(2c·(sizek)), for some positive integer c, and with input vocabulary σ
that computes a Boolean query q we can build a formula ϕM ∈ Σ2,ω

1 such that,
for every σ-structure I, M accepts I if and only if I |= ϕM .

The general idea for the proof of the theorem below, is similar to that of
the last theorem above. The most important difference is that as we cannot hold
third order relations in the rs of the NRM Mϕ, we use the bit strings b3Rr3,i , b2

R̄r3,i

and b1
X τi,k3,i

i

(that represent at different levels a third order relation X τi,k3,i

i , and

which we use in [5] to guess the relations) instead (see the proofs in [5,22]). Then,
to evaluate the FO formula φ (in the vocabulary σ ∪ {Y

r2,11
11 , . . . , Y

r2,tlt

tlt
}, and

with atomic TOω formulas), we cannot do it in just one step as in [5]. Instead,
we use the syntax tree of φ, and evaluate one node of it at a time in the finite
control of Mϕ, in a bottom up direction.

Theorem 11 [22]. Σ2,ω
1 ⊆ EXPTIMEr. That is, every class of relational struc-

tures definable in Σ2,ω
1 is in

⋃
c∈N NTIMEr(2c·(sizek)).

RM’s Can Simulate the Existence of TO Relations in Their rs

From the results above, we have the following:

Corollary 4 [22]. Let M3 be a 3-NRM that works in NTIME3,r(2c·(sizek)), for
some positive integer c, that computes a Boolean query q. Then, there is a NRM
M2 that works in NTIMEr(2d·(sizek)), for some positive integer d, that also com-
putes q.
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This is very interesting, since in the general case it is much easier to define an
NRM using TO relations in its rs, and TO formulas to access it, than restricting
the machine to SO relations in its rs, and SO formulas. Then, to prove that a
given query is computable by an NRM it suffices to show that it can be computed
by a 3-NRM. Note however, that we think that we still need 3-NRM’s as well
as the third order relational complexity class NEXPTIME3,r, if we need to work
with oracle NRM’s with third order relations, since as the oracle cannot access
the tape of the base machine (see [13]), there seems to be no way to pass the bit
strings that represent TO relations from the base machine to the oracle. Recall
that it has been proved that RM’s have the same computation, or expressive
power, as the (effective fragment of the) well known infinitary logic with finitely
many variables Lω

∞ω (see above). On the other hand, analogously to the well
known result that states that the computation power of deterministic and non-
deterministic Turing machines is the same, it is straightforward to see that any
NRM Mn can be simulated by a (deterministic) RM Md working in relational
time exponentially higher, just by checking in Md all possible transitions instead
of guessing one in each non-deterministic step of the transition relation of Mn.
Then, the following is immediate:

Corollary 5 [22]. Σ2,ω
1 ⊆ Lω

∞ω|rec.

7 Some Inexpressibility Results

An important application of the creation of new logics to Complexity Theory is
the search for lower bounds of problems w.r.t. those logics, aiming to separate
computational complexity classes. We will next give a few examples of problems
for which lower bounds w.r.t. the logics Lω

∞ω, Σ1,ω
1 , Σ1,F

1 , SOω, SOF (see below),
and some fragments of them have been proved.

The Fragment SOF of SO

In [15], the logic SOF was introduced and defined as a semantic restriction of
SO where, for r ≥ 1, the valuating r-ary relations for the quantified SO variables
of arity r are closed under the relation ≡F of equality of FO types in the set of
r-tuples of the structure. It was shown there that SOω ⊂ SOF ⊂ SO (see below),
and that its existential fragment Σ1,F

1 is not included in Lω
∞ω, as opposite to

Σ1,ω
1 which is (see above). Then, we have the following result:

Corollary 6. Σ1,F
1 � Σ2,ω

1 .

A structure is rigid if its only automorphism is the identity function. In a
finite rigid structure each element realizes a different FO type and thus, for k ≥ 1,
every k-tuple also realizes a different FO type for k-tuples. A rigid structure is
FOk rigid if every element is definable in FO with up to k different variables.
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A class C of rigid structures is FOk rigid if every structure in C is FOk rigid. Then
the following is immediate, since in rigid structures, for k ≥ 1, the relation ≡F

is the identity relation in the set of k-tuples of the structure, and hence the
SOF quantifiers ∃F and ∀F have the same semantics as the SO quantifiers ∃ and
∀, respectively. Compare this result with Theorem 5 on ordered structures for
SOω: note that the class of rigid structures strictly includes the class of ordered
structures.

Corollary 7. On classes of rigid structures, for every m ≥ 1, Σ1,F
m = Σ1

m and
Π1,F

m = Π1
m.

– As an example, let us consider the class of odd-multipedes from [18]. Recall
that all the structures in the class are rigid, but there is no k such that all of
them are FOk rigid. Then the following is immediate:

Fact 12. Let O be the class of odd-multipedes. Then, on O, SOF = SO, but
SOω ⊂ SO.

– In [7], rigidity was proved to be not expressible in Lω
∞ω, and hence, by the

results above, not expressible in SOω either. As it is easily expressible in Σ1,F
1

[15], rigidity is a query which separates SOF from SOω, then Σ1,F
1 �⊆ SOω,

and SOω ⊂ SOF .
– In [6], the following NP-complete problems were proved to be expressible

in Σ1,ω
1 : non-deterministic finite automata inequivalence, restricted to finite

languages, or to unary alphabets. Considering the results above, those two
NP-complete problems are also in Σ1,F

1 .
– In [6], the NP-complete problem 3-colorability was proved to be not expressible

in Lω
∞ω, and, hence, by the results above, not expressible in Σ1,ω

1 either.
– In [11], it was proved that the problem 3-colorability on the class of bunch

graphs is still NP-complete, and that it is not expressible in Lω
∞ω, and hence,

by the results above, is not expressible in SOω either, but it is expressible in
Σ1,F

1 . Hence, the following also holds: Σ1,ω
1 ⊂ Σ1,F

1 .
– The following NP-complete problems have been proved to be not expressible

in Lω
∞ω, and hence, by the results above, not expressible in Σ1,ω

1 either (see in
[6] the references: Lovasz and Gacs [21], Immerman [15], and Dahlhaus [7]):
Satisfability, Hamiltonicity and Clique.

– Let C be a class of structures of an unary signature with equality. Then SOF

on C is equivalent to FO [16]. Hence, among all the queries not expressible
in FO on such vocabularies, parity is not expressible in SOF either. Then,
SOF ⊂ SO.

– The query 2-colorability is expressible in monadic existential SO, but is not
expressible in monadic SOF [14].

– The property of having exactly one FO type for elements is expressible in
monadic SOF , but is not expressible in monadic existential SO [14].
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Abstract. We develop a logic which enables reasoning about single
steps of non-deterministic parallel Abstract State Machines (ASMs). Our
logic builds upon the unifying logic introduced by Nanchen and Stärk
for reasoning about hierarchical (parallel) ASMs. Our main contribution
to this regard is the handling of non-determinism (both bounded and
unbounded) within the logical formalism. Moreover, we do this without
sacrificing the completeness of the logic for statements about single steps
of non-deterministic parallel ASMs, such as invariants of rules, consis-
tency conditions for rules, or step-by-step equivalence of rules.

1 Introduction

Gurevich’s Abstract State Machines (ASMs) provide not only a formal theory
of algorithms, but also are the basis for a general software engineering method
based in the specification of higher-level ground models and step-by-step refine-
ment. Chapter 9 in the book [5] gives a summary of many application projects
that have developed complex systems solutions on the grounds of ASMs. A major
advantage of the ASM method and a key for its success resides in the fact that
it provides, not only a simple and precise framework to communicate and doc-
ument design ideas, but also an accurate and checkable overall understanding
of complex systems. In this context, formal verification of dynamic properties
for given ASMs is a fundamentally important task, in particular in the case of
modelling safety critical systems, where there is a need to ensure the integrity
and reliability of the system. Clearly, a logical calculi appropriate for the for-
malisation and reasoning about dynamic properties of ASMs is an essential and
valuable tool for this endeavour.

Numerous logics have been developed to deal with specific features of ASM
verification such as correctness and deadlock-freeness (see Sect. 9.4.3 in the book
[5]) for detailed references), but a complete logic for ASMs was only developed
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in [13] by Nanchen and Stärk. The logic formalizes properties of a single step
of an ASM, which permits to define Hilbert-style proof theory and to show its
completeness. In this work the treatment of non-determinism was deliberately
left out. Same as parallelism, which is on the other hand captured by the logic for
ASMs of Nanchen and Stärk, non-determinism is also a prevalent concept in the
design and implementation of software systems, and consequently a constitutive
part of the ASM method for systems development [5]. Indeed, nondeterminism
arises in the specification of many well known algorithms and software applica-
tions. Examples range from graph algorithms, such as minimum spanning tree
and shortest path, to search techniques whose objective is to arrive at some
admissible goal state (as in the n-queens and combinatorial-assignment prob-
lems [7]), and learning strategies such as converging on some classifier that labels
all data instances correctly [14]. Non-deterministic behavior is also common in
cutting edge fields of software systems. Distributed systems frequently need to
address non-deterministic behaviour such as changing role (if possible) as strate-
gic response to observed problems concerning load, input, throughput, etc. Also,
many cyber-physical systems and hybrid systems such as railway transporta-
tion control systems [2] and systems used in high-confidence medical healthcare
devices exhibit highly non-deterministic behaviour.

Notice that although we could say that there is a kind of latent parallelism in
non-determinism, they represent completely different behaviours and thus both
are needed to faithfully model the behaviour of complex systems, more so in the
case of the ASM method where the ability to model systems at every level of
abstraction is one of its main defining features. For instance, while a nondeter-
ministic action can evaluate to multiple behaviors, only if at least one of these
behaviors does not conflict with concurrent tasks, then there is an admissible
execution of the action in parallel with these tasks.

The ASM method allows for two different, but complementary, approaches
to non-determinism. The first approach assumes that choices are made by the
environment via monitored functions that can be viewed as external oracles.
In this case, non-deterministic ASMs are just interactive ASMs. The second
approach assumes the ASMs themselves rather than the environment, to have the
power of making non-deterministic choices. In this case the one-step transition
function of the ASMs is no longer a function but a binary relation. This is also
the approach followed by non-deterministic Turing machines. However, in the
case of non-deterministic Turing machines the choice is always bounded by the
transition relation. For ASMs the non-determinism can also be unbounded, i.e.,
we can choose among an infinite number of possibilities. Clearly, unbounded non-
determinism should also be allowed if we want our ASMs to be able to faithfully
model algorithms at any level of abstraction.

In this work we develop a logic which enables reasoning about single steps
of non-deterministic parallel ASMs, i.e., ASMs which include the well known
choose and forall rules [5]. This builds upon the complete logic introduced
in the work of Nanchen and Stärk [13] for reasoning about single steps of
hierarchical ASMs. Hierarchical ASMs capture the class of synchronous and
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deterministic parallel algorithms in the precise sense of the ASM thesis of Blass
and Gurevich [3,4] (see also [6]). Our main contribution to this regard is the
handling of non-determinism (both bounded and unbounded) within the logical
formalism. More importantly, this is done without sacrificing the completeness
of the logic. As highlighted by Nanchen and Stärk [13], non-deterministic tran-
sitions manifest themselves as a difficult task in the logical formalisation for
ASMs.

The paper is organized as follows. The next section introduces the required
background from ASMs. Section 3 formalises the model of non-deterministic par-
allel ASM used through this work. In Sect. 4 we introduce the syntax and seman-
tics of the proposed logic for non-deterministic parallel ASMs. Section 5 presents
a detailed discussion regarding consistency and update sets, and the formal-
isation of a proof system. In Sect. 6 we use the proof system to derive some
interesting properties of our logic, including known properties of the ASM logic
in [13]. In Sect. 7 we present our main result, namely that the proposed logic is
complete for statements about single steps of non-deterministic parallel ASMs,
such as invariants of rules, consistency conditions for rules, or step-by-step equiv-
alence of rules. We conclude our work in Sect. 8.

2 Preliminaries

The concept of Abstract State Machines (ASMs) is well known [5]. In its simplest
form an ASM is a finite set of so-called transition rules of the form if Condition
then Updates endif which transforms abstract states. The condition or guard
under which a rule is applied is an arbitrary first-order logic sentence. Updates
is a finite set of assignments of the form f(t1, . . . , tn) := t0 which are executed in
parallel. The execution of f(t1, . . . , tn) := t0 in a given state proceeds as follows:
first all parameters t0, t1, . . . tn are evaluated to their values, say a0, a1, . . . , an,
then the value of f(a1, . . . , an) is updated to a0, which represents the value of
f(a1, . . . , an) in the next state. Such pairs of a function name f , which is fixed by
the signature, and optional argument (a1, . . . , an) of dynamic parameters values
ai, are called locations. They represent the abstract ASM concept of memory
units which abstracts from particular memory addressing. Location value pairs
(�, a), where � is a location and a a value, are called updates and represent the
basic units of state change.

The notion of ASM state is the classical notion of first-order structure in
mathematical logic. For the evaluation of first-order terms and formulae in an
ASM state, the standard interpretation of function symbols by the corresponding
functions in that state is used. As usually in this setting and w.l.o.g., we treat
predicates as characteristic functions and constants as 0-ary functions.

The notion of the ASM run is an instance of the classical notion of the compu-
tation of transition systems. An ASM computation step in a given state consists
in executing simultaneously all updates of all transition rules whose guard is
true in the state, if these updates are consistent, in which case the result of their
execution yields a next state. In the case of inconsistency, the computation does
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not yield a next state. A set of updates is consistent if it contains no pairs (�, a),
(�, b) of updates to a same location � with a �= b.

Simultaneous execution, as obtained in one step through the execution of a set
of updates, provides a useful instrument for high-level design to locally describe
a global state change. This synchronous parallelism is further enhanced by the
transition rule forall x with ϕ do r enddo which expresses the simultaneous
execution of a rule r for each x satisfying a given condition ϕ.

Similarly, non-determinism as a convenient way of abstracting from details
of scheduling of rule executions can be expressed by the rule choose x with ϕ
do r enddo, which means that r should be executed with an arbitrary x chosen
among those satisfying the property ϕ.

The following example borrowed from [5] clearly illustrates the power of the
choose and forall rules.

Example 1. The following ASM generates all and only the pairs vw ∈ A∗ of
different words v, w of same length (i.e., v �= w and |v| = |w|).

choose n, i with i < n do

choose a, b with a ∈ A ∧ b ∈ A ∧ a �= b do

v(i) := a
w(i) := b
forall j with j < n ∧ j �= i do

choose a, b with a ∈ A ∧ b ∈ A do

v(j) := a
w(j) := b

enddo

enddo

enddo

enddo

When all possible choices are realized, the set of reachable states of this ASM is
the set of all “vw” states with v �= w and |v| = |w|.

3 Non-deterministic Parallel ASMs

It is key for the completeness of our logic to make sure that the ASMs do not
produce infinite update sets. For that we formally define ASM states as simple
metafinite structures [8] instead of classical first-order structures, and restrict the
variables in the forall rules to range over the finite part of such metafinite states.
Nevertheless, the class of algorithms that are captured by these ASM machines
coincides with the class of parallel algorithms that satisfy the postulates of the
parallel ASM thesis of Blass and Gurevich [3,4] (see [6] for details).

A metafinite structure S consists of: a finite first-order structure S1 –the
primary part of S; a possibly infinite first-order structure S2 –the secondary
part of S; and a finite set of functions which map elements of S1 to elements
of S2 –the bridge functions. A signature Υ of metafinite structures comprises
a sub-signature Υ1 for the primary part, a sub-signature Υ2 for the secondary
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part and a finite set Fb of bridge function names. The base set of a state S is a
nonempty set of values B = B1 ∪ B2, where B1 is the finite domain of S1, and
B2 is the possibly infinite domain of S2. Function symbols f in Υ1 and Υ2 are
interpreted as functions fS over B1 and B2, respectively. The interpretation of
a n-ary function symbol f ∈ Fb defines a function fS from Bn

1 to B2. As usual,
we distinguish between updatable dynamic functions and static functions.

Let Υ = Υ1 ∪ Υ2 ∪ Fb be a signature of metafinite states. Fix a countable
set X = X1 ∪ X2 of first-order variables. Variables in X1, denoted with standard
lowercase letters x, y, z, . . ., range over the primary part of a meta-finite state
(i.e., the finite set B1), whereas variables in X2, denoted with typewriter-style
lowercase letters x, y, z, . . ., range over B2. The set of first-order terms TΥ,X
of vocabulary Υ is defined in a similar way than in meta-finite model theory
[8]. That is, TΥ,X is constituted by the set Tp of point terms and the set Ta

of algorithmic terms. The set of point terms Tp is the closure of the set X1 of
variables under the application of function symbols in Υ1. The set of algorithmic
terms Ta is defined inductively: Every variable in X2 is an algorithmic term in
Ta; If t1, . . . , tn are point terms in Tp and f is an n-ary bridge function symbol in
Fb, then f(t1, . . . , tn) is an algorithmic term in Ta; if t1, . . . , tn are algorithmic
terms in Ta and f is an n-ary function symbol in Υ2, then f(t1, . . . , tn) is an
algorithmic term in Ta; nothing else is an algorithmic term in Tb.

Let S be a meta finite state of signature Υ . A valuation or variable assignment
ζ is a function that assigns to every variable in X1 a value in the base set B1 of
the primary part of S and to every variable in X2 a value in the base set B2 of
the secondary part of S. The value valS,ζ(t) of a term t ∈ TΥ,X in the state S
under the valuation ζ is defined as usual in first-order logic. The first-order logic
of metafinite structures (states) is defined as the first-order logic with equality
which is built up from equations between terms in TΥ,X by using the standard
connectives and first-order quantifiers. Its semantics is defined in the standard
way. The truth value of a first-order formula of meta finite structures ϕ in S
under the valuation ζ is denoted as [[ϕ]]S,ζ .

In our definition of ASM rule, we use the fact that function arguments can
be read as tuples. Thus, if f is an n-ary function and t1, . . . , tn are arguments
for f , we write f(t) where t is a term which evaluates to the tuple (t1, . . . , tn),
instead of f(t1, . . . , tn). This is not strictly necessary, but it greatly simplifies
the presentation of the technical details in this paper. Let t and s denote terms
in Tp, let t and s denote terms in Ta and let ϕ denote a first-order formula of
metafinite structures of vocabulary Υ . The set of ASM rules over Υ is inductively
defined as follows:

– update rule 1: f(t) := s (where f ∈ Υ1);
– update rule 2: f(t) := s (where f ∈ Υ2);
– update rule 3: f(t) := s (where f ∈ Fb);
– conditional rule: if ϕ then r endif
– forall rule: forall x with ϕ do r enddo
– bounded choice rule: choose x with ϕ do r enddo
– unbounded choice rule: choose x with ϕ do r enddo
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– parallel rule: par r1 r2 endpar (execute the rules r1 and r2 in parallel);
– sequence rule: seq r1 r2 endseq (first execute rule r1 and then rule r2).

If r is an ASM rule of signature Υ and S is a state of Υ , then we associate to
them a set Δ(r, S, ζ) of update sets which depends on the variable assignment ζ.
Let ζ[x �→ a] denote the variable assignment which coincides with ζ except that
it assigns the value a to x. We formally define in Fig. 1 the sets of update sets
yielded by the ASM rules. Items 1–3 in Fig. 1 correspond to the update rules 1–3,
respectively. Each update rules yields a set which contains a single update set,
which in turns contains a single update to a function of S. Depending on whether
the function name f belongs to Υ1, Υ2 or Fb, the produced update corresponds
to a function in the primary or secondary part of S or to a bridge function,
respectively. The choice rules introduce non-determinism. The bounded choice
rule yields a finite set of update sets, since x range over the (finite) primary
part of S (see item 6 in Fig. 1). The unbounded choice rule yields a possibly
infinite set of update sets (see item 7 in Fig. 1). In this latter case, x range over
the (possible infinite) secondary part of S and it might happen that there are
infinite valuations for x that satisfy the condition ϕ, each resulting in a different
update set. All other rules only rearrange updates into different update sets.
Update sets are explained in more detail in Sect. 5.2.

Remark 1. For every state S, ASM rule r and variable assignment ζ, we have
that every Δ ∈ Δ(r, S, ζ) is a finite set of updates. This is a straightforward
consequence of the fact that the variable x in the definition of the forall rule
ranges over the (finite) primary part of S, and it is also the case in the ASM thesis
for parallel algorithms of Blass and Gurevich [3,4] where it is implicitly assumed
that the forall rule in the parallel ASMs range over finite hereditary multisets.
See our work in [6] for a detailed explanation. Regarding the set Δ(r, S, ζ) of
update sets, we note that it might be infinite since the unbounded choice rule
can potentially produce infinitely many update sets. In fact, this is the case if
we consider the first unbounded choice rule in Example 1.

Formally, a non-deterministic parallel ASM M over a signature Υ of metafi-
nite states consists of: (a) a set S of metafinite states over Υ , (b) non-empty
subsets SI ⊆ S of initial states and SF ⊆ S of final states, and (c) a closed ASM
rule r over Υ , i.e., a rule r in which all free variables in the first-order formulae
of the rule are bounded by forall or choose constructs.

Every non-deterministic parallel ASM M defines a corresponding successor
relation δ over S which is determined by the main rule r of M . A pair of states
(S1, S2) belongs to δ iff there is a consistent update set Δ ∈ Δ(r, S) (the valuation
ζ is omitted from Δ(r, S, ζ) since r is closed) such that S2 is the unique state
resulting from updating S1 with Δ. A run of an ASM M is a finite sequence
S0, . . . , Sn of states with S0 ∈ SI , Sn ∈ SF , Si /∈ SF for 0 < i < n, and
(Si, Si+1) ∈ δ for all i = 0, . . . , n − 1.

The following example, adapted from [10], illustrates a parallel ASMs with
bounded non-determinism.
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Fig. 1. Sets of Update Sets of Non-deterministic Parallel ASMs

Example 2. We consider metafinite states with: (a) a primary part formed by a
connected weighted graph G = (V,E), (b) a secondary part formed by the set of
natural numbers N, and (c) a bridge function weight from the set of edges in E to
N. Apart from the static (Boolean) function symbols V and E, the vocabulary of
the primary part of the states also includes dynamic function symbols label and
T , and static function symbols first and second , the last two for extracting the
first and second element of an ordered pair, respectively. Since G is an undirected
graph, we have that (x, y) ∈ E iff (y, x) ∈ E.

The non-deterministic parallel ASM in this example, which we denote as M ,
formally expresses Kruskal’s algorithm [12] for computing the minimum spanning
tree in a connected, weighted graph. Recall that a spanning tree T of a graph G
is a tree such that every pair of nodes in G are connected via edges in T . We say
that T is minimum if the sum of the weights of all its edges is the least among
all spanning trees of G. We assume that in every initial state of M , label(x) = x
for every x ∈ V and that T ((x, y)) = false for every (x, y) ∈ E.
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The condition in the first choose rule is simply ensuring that the chosen
edge x is eligible, i.e., that the nodes first(x) and second(x) that make up the
endpoints of the edge x have different labels, and that x has minimal weight
among the set of eligible edges. The following two update rules simply add the
edge x to the tree T . The second choose rule reflects the fact that from the point
of view of the correctness of the algorithm, it does not matter which endpoint y
of the edge x we choose at this stage. Finally, the forall rule simply relabels (as
expected) every node with the same label than the endpoint y of x (including
the node y itself) with the label of the opposite endpoint of x.

choose x with E(x) ∧ label(first(x)) �= label(second(x))∧
∀y (E(y) ∧ label(first(y)) �= label(second(y)) → weight(y) ≥ weight(x)) do

T (x) := true
T ((second(x),first(x))) := true
choose y with y = first(x) ∨ y = second(x) do

forall z with label(z) = label(y) do

if label(y) = label(first(x)) then label(z) := label(second(x)) endif

if label(y) = label(second(x)) then label(z) := label(first(x)) endif

enddo

enddo

enddo

4 A Logic for Non-deterministic Parallel ASMs

The logic for non-deterministic parallel ASMs (denoted L) is a dynamic first-
order logic extended with membership predicates over finite sets, an update set
predicate and a multi-modal operator. L is defined over many sorted first-order
structures which have:

– a finite individual sort with variables x1, x2, . . . which range over a finite
domain D1,

– an individual sort with variables x1, x2, . . ., which range over a (possibly infi-
nite) domain D2, and

– a predicate sort with variables x1
1, x

1
2, . . . , which range over the domain P1

formed by all finite subsets (relations) on Fdyn × (D1 ∪ D2) × (D1 ∪ D2).
– a predicate sort with variables x2

1, x
2
2, . . . , which range over the domain P2

formed by all finite subsets (relations) on Fdyn × (D1 ∪D2)× (D1 ∪D2)×D1.

A signature Σ of the logic L comprises a finite set F1 of names for functions on
D1, a finite set F2 of names for functions on D2, and a finite set Fb of names for
functions which take arguments from D1 and return values on D2.

We define terms of L by induction. Variables x1, x2, . . . and x1, x2, . . . are
terms of the first and second individual sort, respectively. Variables x1

1, x
1
2, . . .

and x2
1, x

2
2, . . . are terms of the first and second predicate sort, respectively. If f

is an n-ary function name in F1 and t1, . . . , tn are terms of the first individual
sort, then f(t1, . . . , tn) is a term of the first individual sort. If f is an n-ary
function name in F2 and t1, . . . , tn are terms of the second individual sort, then
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f(t1, . . . , tn) is a term of the second individual sort. If f is an n-ary function
name in Fb and t1, . . . , tn are terms of the first individual sort, then f(t1, . . . , tn)
is a term of the second individual sort.

The formulae of L are those generated by the following grammar:

ϕ,ψ ::= s = t | sa = ta | ¬ϕ | ϕ ∧ ψ | ∀x(ϕ) | ∀x(ϕ) | ∀x1(ϕ) | ∀x2(ϕ) |
∈1(x1, f, t0, s0) |∈2(x2, f, t0, s0, s) | upd(r, x1) | [x1]ϕ

where s and t denote terms of the first individual sort, sa and ta denote terms
of the second individual sort, f is a dynamic function symbol, r is an ASM rule
and, t0 and s0 denote terms of either the first or the second individual sort.

The interpretation of terms and the semantics of the first-order formulae is
defined in the standard way. This includes equality which is used under a fixed
interpretation and only between terms of a same individual sort.

The update set predicate upd(r, x1) states that the finite update set repre-
sented by x1 is generated by the rule r. Let S be a state of some signature Σ of
the logic L. Let ζ be a variable assignment over S which maps each variable of
the first and second individual sort to a value in D1 and D2, respectively, and
maps each variable of the first and second predicate sort to a value in P1 and P2,
respectively. The truth value of upd(r, x1) is defined by [[upd(r, x1)]]S,ζ = true
iff valS,ζ(x1) ∈ Δ(r, S, ζ).

The set membership predicate ∈1(x1, f, t0, s0) indicates that (f, t0, s0) is an
update in the update set represented by x1 while the auxiliary set member-
ship predicate ∈2(x2, f, t0, s0, s) is used to keep track of which parallel branch
produced each update in x2. Their truth values are formally defined as follows:

[[∈1 (x1, f, t0, s0)]]S,ζ = true iff (f, valS,ζ(t0), valS,ζ(s0)) ∈ valS,ζ(x1) [[∈2

(x2, f, t0, s0, s)]]S,ζ = true iff(f, valS,ζ(t0), valS,ζ(s0), valS,ζ(s)) ∈ valS,ζ(x2)
Finally, we use [x1]ϕ to express the evaluation of ϕ over the successor state

obtained by applying the updates in x1 to the current state. Its truth value is
defined by: [[[x1]ϕ]]S,ζ = true iff Δ = ζ(x1) is inconsistent or [[ϕ]]S+Δ,ζ = true
for ζ(x1) = Δ ∈ Δ(r, S, ζ). That is, when Δ = ζ(x1) is inconsistent, successor
states for the current state S do not exist and thus S + Δ is undefined. In this
case, [x1]ϕ is interpreted as true. With the use of the modal operator [ ] for an
update set Δ = ζ(x1) (i.e., [x1]), L is empowered to be a multi-modal logic.

We say that a formula ϕ of L is static if all the function symbols which
appear in ϕ are static and say that it is pure if it is generated by the following
grammar: ϕ,ψ ::= s = t | sa = ta | ¬ϕ | ϕ ∧ ψ | ∀x(ϕ) | ∀x(ϕ).

Since metafinite states are just a special kind of two sorted first-order struc-
tures in which one of the sorts is finite, we can identify every metafinite state S
of L with a corresponding many sorted first-order structure S′ of the class used
in definition of L. This can be done by taking the domains D1 and D2 of the
individual sorts of S′ to be the base sets B1 and B2 of S, respectively, the sets
F1, F2 and Fb of function names of the signature Σ of S′ to be the sets Υ1, Υ2

and Fb of the signature Υ of S, respectively, and the interpretation in S′ of the
function names in Σ to coincide with the interpretation in S of the correspond-
ing function symbols in Υ . Following this transformation we have that for every
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state S, every corresponding pair of many sorted first-order structure S′ and S′′

are isomorphic by an isomorphism which is the identity among elements of the
individual sorts. Thus, we can talk of the many sorted structure S corresponding
to a state S and, when it is clear from the context, we can even talk of the state
S meaning the many sorted structure S.

In what follows, we use the somehow clearer and more usual syntax of second-
order logic to denote the set membership predicates and the quantification over
the predicate sorts. Thus we use upper case letters X,Y, . . . and X ,Y, . . . to
denote variables x1

1, x
1
2, . . . and x2

1, x
2
2, . . . of the first and second predicate sorts,

respectively, and we write ∀X(ϕ), ∀X (ϕ), [X]ϕ, X(f, t0, s0), X (f, t0, s0, s) and
upd(r,X) instead of ∀x1 (ϕ), ∀x2 (ϕ), [x1]ϕ, ∈1 (x1, f, t0, s0), ∈1 (x1, f, t0, s0, s)
and upd(r, x1), respectively. Furthermore, in our formulae we use disjunction
∨, implication →, double implication ↔ and existential quantification ∃. All of
them are defined as abbreviations in the usual way.

Example 3. L can express properties of the ASM in Example 2 such as:

– If r yields in the current state S an update set Δ with an update (T, x, true),
then in the successor state S + Δ the vertices of x have a same label.

∀X(upd(r,X) → ∀x(X(T, x, true) → [X](label(first(x)) =
label(second(x)))))

– Each update set yielded by r updates T in no more than one location.

∀X(upd(r,X) → ¬(∃xy(X(T, x, true) ∧ X(T, y, true) ∧ x �= y)))

– If an edge x meets in a state S the criteria of the first choose rule in r, then
there is an update set Δ ∈ Δ(r, S) such that T (x) = true holds in S + Δ.

∀x(E(x) ∧ label(first(x)) �= label(second(x))∧
∀y(E(y) ∧ label(first(y)) �= label(second(y)) → weight(y) ≥ weight(x))
→ ∃X(upd(r,X) ∧ [X](T (x) = true)))

5 A Proof System

In this section we develop a proof system for the logic L for non-deterministic
parallel ASMs.

Definition 1. We say that a state S is a model of a formula ϕ (denoted as
S |= ϕ) iff [[ϕ]]S,ζ = true holds for every variable assignment ζ. If Ψ is a set
of formulae, we say that S models Ψ (denoted as S |= Ψ) iff S |= ϕ for each
ϕ ∈ Ψ. A formula ϕ is said to be a logical consequence of a set Ψ of formulae
(denoted as Ψ |= ϕ) if for every state S, if S |= Ψ, then S |= ϕ. A formula
ϕ is said to be valid (denoted as |= ϕ) if [[ϕ]]S,ζ = true in every state S for
every variable assignment ζ. A formula ϕ is said to be derivable from a set Ψ
of formulae (denoted as Ψ �R ϕ) if there is a deduction from formulae in Ψ to
ϕ by using a set R of axioms and inference rules.
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We will define such a set R of axioms and rules in Subsect. 5.3. Then we
simply write � instead of �R. We also define equivalence between two ASM
rules. Two equivalent rules r1 and r2 are either both defined or both undefined.

Definition 2. Let r1 and r2 be two ASM rules. Then r1 and r2 are equivalent
(denoted as r1 ≡ r2) if for every state S it holds that S |= ∀X(upd(r1,X) ↔
upd(r2,X)).

5.1 Consistency

In [13] Nanchen and Stärk use a predicate Con(r) as an abbreviation for the
statement that the rule r is consistent. As every rule r in their work is determin-
istic, there is no ambiguity with the reference to the update set associated with r,
i.e., each deterministic rule r generates exactly one (possibly empty) update set.
Thus a deterministic rule r is consistent iff the update set generated by r is
consistent. However, in our logic L, the presence of non-determinism makes the
situation less straightforward.

Let r be an ASM rule and Δ be an update set. Then the consistency of an
update set Δ, denoted by the formula conUSet(X) (where X represents Δ), can
be expressed as:

conUSet(X) ≡
∧

f∈Fdyn

∀xyz((X(f, x, y) ∧ X(f, x, z)) → y = z) (1)

Then con(r,X) is an abbreviation of the following formula which expresses that
an update set Δ (represented by the variable X) generated by the rule r is
consistent.

con(r,X) ≡ upd(r,X) ∧ conUSet(X) (2)

As the rule r may be non-deterministic, it is possible that r yields several
update sets. Thus, we develop the consistency of ASM rules in two versions:

– A rule r is weakly consistent (denoted as wcon(r)) if at least one update set
generated by r is consistent. This can be expressed as follows:

wcon(r) ≡ ∃X(con(r,X)) (3)

– A rule r is strongly consistent (denoted as scon(r)) if every update set gen-
erated by r is consistent. This can be expressed as follows:

scon(r) ≡ ∀X(upd(r,X) ⇒ con(r,X)) (4)

In the case that a rule r is deterministic, the weak notion of consistency
coincides with the strong notion of consistency, i.e., wcon(r) ↔ scon(r).
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Fig. 2. Axioms for Predicate upd(r,X)

5.2 Update Sets

We present the axioms for the predicate upd(r,X) in Fig. 2. To simplify the
presentation, we give the formulae only for the case in which all the function
symbols in Fdyn correspond to functions on the primary part (finite individual
sort) of the state. To deal with dynamic function symbols corresponding to
function of the secondary part and to bridge functions, we only need to slightly
change the formulae by replacing some of the first-order variables in X1 by first-
order variables in X2. For instance, if f is a bridge function symbol, we should
write ∀xy(X(f, x, y) → x = t∧y = s) instead of ∀xy(X(f, x, y) → x = t∧y = s).

In the following we explain Axioms U1-U7 in turn. We assume a state S of
some signature Υ and base set B = B1 ∪ B2, where B1 is the base set of the
finite primary part of S. We also assume a variable assignment ζ.

As in our case an ASM rule may be non-deterministic, a straightforward
extension from the formalisation of the forall and par rules used in the logic for
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ASMs in [13] would not work for Axioms U3 and U4. The axioms correspond
to the definition of update sets in Fig. 1.

– Axiom U1 says that X is an update yielded by the assignment rule f(t) := s
iff it contains exactly one update which is (f, t, s).

– Axiom U2 asserts that, if the formula ϕ evaluates to true, then X is an
update set yielded by the conditional rule if ϕ then r endif iff X is an
update set yielded by the rule r. Otherwise, the conditional rule yields only
an empty update set.

– Axiom U3 states that X is an update set yielded by the rule forall x with
ϕ do r enddo iff X coincides with Δa1 ∪ · · · ∪ Δan

, where {a1, . . . , an} =
{ai ∈ B1 | valS,ζ[x�→ai](ϕ) = true} and Δai

(for 1 ≤ i ≤ n) is an update set
yielded by the rule r under the variable assignment ζ[x �→ ai]. Note that the
update sets Δa1 , . . . , Δan

are encoded into X .
– Axiom U4 states that X is an update set yielded by the parallel rule par

r1 r2 endpar iff it corresponds to the union of an update set yielded by r1
and an update set yielded by r2.

– Axioms U5 asserts that X is an update set yielded by the rule choose x
with ϕ do r enddo iff it is an update set yielded by the rule r under a
variable assignment ζ[x �→ a] which satisfies ϕ.

– Axiom U6 is similar to Axiom U5, but for the case of the choose x with ϕ
do r enddo rule.

– Axiom U7 asserts that X is an update set yielded by a sequence rule seq
r1 r2 endseq iff it corresponds to either an inconsistent update set yielded
by rule r1, or to an update set formed by the updates in an update set Y2

yielded by rule r2 in a successor state S + Y1, where Y1 encodes a consistent
set of updates produced by rule r1, plus the updates in Y1 that correspond
to locations other than the locations updated by Y2.

The following lemma is an easy consequence of the axioms in Fig. 2.

Lemma 1. Every formula in the logic L can be replaced by an equivalent formula
not containing any subformulae of the form upd(r,X).

Remark 2. The inclusion of the parameter X in the predicate upd(r,X) is impor-
tant because a rule r in a non-deterministic parallel ASM rule may be associated
with multiple update sets, and thus we need a way to specify which update set
yielded by rule r is meant.

5.3 Axioms and Inference Rules

Now we can present a set of axioms and inference rules which constitute a proof
system for the logic L. To avoid unnecessary repetitions of almost identical
axioms and rules, we describe them only considering variables of the first indi-
vidual sort, but the exact same axioms and inference rules are implicitly assumed
for the case of variables of the second individual sort as well as for variables of
the predicate sorts. In the definition of the set of axioms and rules, we sometimes
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use ϕ[t/x] to denote the substitution of a term t for a variable x in a formula ϕ.
That is, ϕ[t/x] is the result of replacing all free instances of x by t in ϕ provided
that no free variable of t becomes bound after substitution.

Formally, the set R of axioms and inference rules is formed by:

– The axioms U1-U7 in Fig. 2 which assert the properties of upd(r,X).
– Axiom M1 and Rules M2-M3 from the axiom system K of modal logic,

which is the weakest normal modal logic system [11]. Axiom M1 is called
Distribution Axiom of K, Rule M2 is called Necessitation Rule of K and
Rule M3 is the inference rule called Modus Ponens in the classical logic.
By using these axiom and rules together, we are able to derive all modal
properties that are valid in Kripke frames.

M1 [X](ϕ → ψ) → ([X]ϕ → [X]ψ)
M2 ϕ � [X]ϕ M3 ϕ,ϕ → ψ � ψ

– Axiom M4 asserts that, if an update set Δ is not consistent, then there is
no successor state obtained after applying Δ over the current state and thus
[X]ϕ (for X interpreted by Δ) is interpreted as true for any formula ϕ. As
applying a consistent update set Δ over the current state is deterministic,
Axiom M5 describes the deterministic accessibility relation in terms of [X].

M4 ¬conUSet(X) → [X]ϕ quadM5 ¬[X]ϕ → [X]¬ϕ

– Axiom M6 is called Barcan Axiom. It originates from the fact that all states
in a run of a non-deterministic parallel ASM have the same base set, and thus
the quantifiers in all states always range over the same set of elements.

M6 ∀x([X]ϕ) → [X]∀x(ϕ)
– Axioms M7 and M8 assert that the interpretation of static or pure formulae

is the same in all states of non-deterministic parallel ASMs, since they are
not affected by the execution of any ASM rule r.

M7 con(r,X) ∧ ϕ → [X]ϕ for static or pure ϕ
M8 con(r,X) ∧ [X]ϕ → ϕ for static or pure ϕ

– Axiom A1 asserts that, if a consistent update set Δ (represented by X) does
not contain any update to the location (f, x), then the content of (f, x) in
a successor state obtained after applying Δ is the same as its content in
the current state. Axiom A2 asserts that, if a consistent update set Δ does
contain an update which changes the content of the location (f, x) to y, then
the content of (f, x) in the successor state obtained after applying Δ is y.

A1 conUSet(X) ∧ ∀z(¬X(f, x, z)) ∧ f(x) = y → [X]f(x) = y
A2 conUSet(X) ∧ X(f, x, y) → [X]f(x) = y

– The following are axiom schemes from classical logic.
P1 ϕ → (ψ → ϕ)
P2 (ϕ → (ψ → χ)) → ((ϕ → ψ) → (ϕ → χ))
P3 (¬ϕ → ¬ψ) → (ψ → ϕ)

– The following four inference rules describe when the universal and existential
quantifiers can be added to or deleted from a statement. Rules UI, EG, UG
and EI are usually known as Universal Instantiation, Existential Generalisa-
tion, Universal Generalisation and Existential Instantiation, respectively.
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UI ∀x(ϕ) � ϕ[t/x] if ϕ is pure or t is static.
EG ϕ[t/x] � ∃x(ϕ) if ϕ is pure or t is static.
UG ϕ[ta/x] � ∀x(ϕ) if ϕ[ta/x] holds for every element a in the domain

of x and corresponding term ta representing a, and further ϕ is pure
or every ta is static.

EI ∃x(ϕ) � ϕ[t/x] if t represents a valuation for x which satisfies ϕ, and
further ϕ is pure or t is static.

– The following are the equality axioms from first-order logic with equality.
Axiom EQ1 asserts the reflexivity property while Axiom EQ2 asserts the
substitutions for functions.

EQ1 t = t for static term t
EQ2 t1 = tn+1 ∧ · · ·∧ tn = t2n → f(t1, . . . , tn) = f(tn+1, . . . , t2n) for any

function f and static terms ti (i = 1, . . . , 2n).
– The following axiom is taken from dynamic logic, asserting that executing a
seq rule equals to executing rules sequentially.

DY1 ∃X(upd(seq r1 r2 endseq,X) ∧ [X]ϕ) ↔
∃X1(upd(r1,X1)∧ [X1]∃X2(upd(r2,X2)∧ [X2]ϕ))

– Axiom E is the extensionality axiom.
E r1 ≡ r2 → ∃X1X2((upd(r1,X1) ∧ [X1]ϕ) ↔ (upd(r2,X2) ∧ [X2]ϕ))

The following soundness theorem for the proof system is relatively straight-
forward, since the non-standard axioms and rules are just a formalisation of the
definitions of the semantics of rules, update sets and update multisets.

Theorem 1. Let ϕ be a formula from L and let Φ be a set of formulae also from
L (all of them of the same vocabulary as ϕ). If Φ � ϕ, then Φ |= ϕ.

6 Derivation

In this section we present some properties of the logic for non-deterministic
parallel ASMs which are implied by the axioms and rules from the previous
section. This includes properties known for the logic for ASMs [13]. In particular,
the logic for ASMs uses the modal expressions [r]ϕ and 〈r〉ϕ with the following
semantics:

– [[[r]ϕ]]S,ζ = true iff [[ϕ]]S+Δ,ζ = true for all consistent Δ ∈ Δ(r, S, ζ).
– [[〈r〉ϕ]]S,ζ = true iff [[ϕ]]S+Δ,ζ = true for at least one consistent Δ ∈ Δ(r, S, ζ).

Instead of introducing modal operators [ ] and 〈 〉 for a non-deterministic
parallel ASM rule r, we use the modal expression [X]ϕ for an update set yielded
by a possibly non-deterministic rule. The modal expressions [r]ϕ and 〈r〉ϕ in the
logic for ASMs can be treated as the shortcuts for the following formulae in our
logic:

[r]ϕ ≡ ∀X(upd(r,X) → [X]ϕ). (5)

〈r〉ϕ ≡ ∃X(upd(r,X) ∧ [X]ϕ). (6)
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Lemma 2. The following axioms and rules used in the logic for ASMs are
derivable in L, where the rule r in Axioms (c) and (d) is assumed to be
defined and deterministic: (a) ([r](ϕ → ψ) → [r]ϕ) → [r]ψ; (b) ϕ → [r]ϕ;
(c) ¬wcon(r) → [r]ϕ; (d) [r]ϕ ↔ ¬[r]¬ϕ.

Proof. We prove each property in the following.

– (a): By Eq. 5, we have that [r](ϕ → ψ) ∧ [r]ϕ ≡ ∀X(upd(r,X) → [X](ϕ →
ψ))∧∀X(upd(r,X) → [X]ϕ). By the axioms from classical logic, this is in turn
equivalent to ∀X(upd(r,X) → ([X](ϕ → ψ) ∧ [X]ϕ)). Then by Axiom M1
and axioms from the classical logic, we get ∀X(upd(r,X) → ([X](ϕ → ψ) ∧
[X]ϕ)) → ∀X(upd(r,X) → [X]ψ). Therefore, ([r](ϕ → ψ) → [r]ϕ) → [r]ψ is
derivable.

– (b): By Rule M2, we have that ϕ → [Xi]ϕ. Since X is free in ϕ → [X]ϕ, this
holds for every possible valuation of X. Thus using Rule UG (applied to the
variable X of the first predicate sort) and the axioms from classical logic, we
can clearly derive ϕ → ∀X(upd(r,X) → [X]ϕ).

– (c): By Eq. 3, we have ¬wcon(r) ↔ ¬∃X(con(r,X). In turn, by Eq. 2, we get
¬wcon(r) ↔ ¬∃X(upd(r,X) ∧ conUSet(X)). Since a rule r in the logic for
ASMs is deterministic, we get ¬wcon(r) ↔ ¬conUSet(X). By Axiom M4, we
get ¬wcon(r) → [r]ϕ.

– (d): By Eq. 5, we have ¬[r]¬ϕ ≡ ∃X(upd(r,X) ∧ ¬[X]¬ϕ). By applying
Axiom M5 to ¬[X]¬ϕ, we get ¬[r]¬ϕ ≡ ∃X(upd(r,X) ∧ [X]ϕ). When the
rule r is deterministic, the interpretation of ∀X(upd(r,X) → [X]ϕ) coincides
with he interpretation of ∃X(upd(r,X)∧ [X]ϕ) and therefore [r]ϕ ↔ ¬[r]¬ϕ.

Note that the formula Con(R) in Axiom 5 in [13] (i.e., in ¬Con(R) → [R]ϕ)
corresponds to the weak version of consistency (i.e., wcon(r)) in the theory of L.

Lemma 3. The following properties are derivable in L: (e) con(r,X) ∧
[X]f(x) = y → X(f, x, y)∨(∀z(¬X(f, x, z))∧f(x) = y); (f) con(r,X)∧ [X]ϕ →
¬[X]¬ϕ; (g) [X]∃x(ϕ) → ∃x([X]ϕ); (h) [X]ϕ1 ∧ [X]ϕ2 → [X](ϕ1 ∧ ϕ2).

Proof. (e) is derivable by applying Axioms A1 and A2. (f) is a straightforward
result of Axiom M5. (g) can be derived by applying Axioms M5 and M6.
Regarding (h), it is derivable by using Axioms M1-M3.

Lemma 4. For terms and variables of the appropriate types, the following prop-
erties in [9] are derivable in L.

– x = t → (y = s ↔ [f(t) := s]f(x) = y)
– x �= t → (y = f(x) ↔ [f(t) := s]f(x) = y)

Following the approach of defining the predicate joinable in [13], we define the
predicate joinable over two non-deterministic parallel ASMs rules. As we consider
non-deterministic parallel ASMs rules, the predicate joinable(r1, r2) means that
there exists a pair of update sets without conflicting updates, which are yielded
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by rules r1 and r2, respectively. Then, based on the use of predicate joinable,
the properties in Lemma 5 are all derivable.

joinable(r1, r2) ≡∃X1X2(upd(r1,X1) ∧ upd(r2,X2)∧
∧

f∈Fdyn

∀xyz(X1(f, x, y) ∧ X2(f, x, z) → y = z)) (7)

Lemma 5. The following properties for weak consistency are derivable in L.

(i) wcon(f(t) := s) (j) wcon(f(t) := s) (k) wcon(f(t) := s)
(j) wcon(ifϕ then r endif) ↔ ¬ϕ ∨ (ϕ ∧ wcon(r))
(l) wcon(forallxwithϕdo r enddo) ↔

∀x(ϕ → wcon(r) ∧ ∀y(ϕ[y/x] → joinable(r, r[y/x])))
(m) wcon(par r1 r2 endpar) ↔ wcon(r1) ∧ wcon(r2) ∧ joinable(r1, r2)
(n) wcon(choosexwithϕdo r enddo) ↔ ∃x(ϕ ∧ wcon(r))
(o) wcon(choose xwithϕdo r enddo) ↔ ∃x(ϕ ∧ wcon(r))
(p) wcon(seq r1 r2 endseq) ↔ ∃X(con(r1,X) ∧ [X]wcon(r2))

We omit the proof of the previous lemma as well as the proof of the remaining
lemmas in this section, since they are lengthy but relatively easy exercises.

Lemma 6. The following properties for the formula [r]ϕ are derivable in L.

(q) [if, ϕ, then, r, endif]ψ ↔ (ϕ ∧ [r]ψ) ∨ (¬ϕ ∧ ψ)
(r) [choosexwithϕdo r enddo]ψ ↔ ∀x(ϕ → [r]ψ)
(s) [choose xwithϕdo r enddo]ψ ↔ ∀x(ϕ → [r]ψ)

Lemma 7 states that a parallel composition is commutative and associative
while a sequential composition is associative.

Lemma 7. The following properties are derivable in L.

(t) par r1 r2 endpar ≡ par r2 r1 endpar
(u) par (par r1 r2 endpar) r3 endpar ≡ par r1 (par r2 r3 endpar) endpar
(v) seq (seq r1 r2 endseq) r3 endseq ≡ seq r1 (seq r2 r3 endseq) endseq

Lemma 8. The extensionality axiom for transition rules in the logic for ASMs
is derivable in L: r1 ≡ r2 → ([r1]ϕ ↔ [r2]ϕ).

7 Completeness

We can prove the completeness of L by using a similar strategy to that used
in [13]. That is, we can show that L is a definitional extension of a complete
logic. However, the logic for hierarchical ASMs in [13] is a definitional extension
of first-order logic. In the case of the logic L, the proof is more complicated since
we have to deal with set membership predicates and corresponding predicate
sorts. The key idea is to show instead that L is a definitional extension of first-
order logic extended with two membership predicates with respect to finite sets,
which in turns constitutes itself a complete logic.
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In the remaining of this section, we will use L∈ to denote the logic obtained
by restricting the formulae of L to those produced by the following grammar:

ϕ,ψ ::= s = t | sa = ta | ¬ϕ | ϕ ∧ ψ | ∀x(ϕ) | ∀x(ϕ) | ∀x1(ϕ) | ∀x2(ϕ) |
∈1(x1, f, t0, s0) |∈2(x2, f, t0, s0, s).

Let us define the theory of L∈ as the theory obtained by taking the union
of a sound and complete axiomatisation of first-order logic and the sound and
complete axiomatisation of the properties of finite sets introduced in [1]. Clearly,
such theory of L∈ is a conservative extension of the first-order theory, in the sense
that if Φ is a set of pure first-order formulae and ϕ is a pure first-order formula
(not containing subformulae of the form ∈n(xn, t1, . . . , tn)) and Φ � ϕ holds in
the theory of L∈, then there already exists a derivation using the axiomatisation
for first-order logic. Indeed, due to the soundness of the axioms and rules in
the theory of L∈, we obtain Φ |= ϕ, which is a pure statement about models for
first-order logic. Thus the known completeness for first-order logic gives Φ � ϕ in
an axiomatisation for first-order logic, hence the claimed conservativism of the
extension. Since then the theory of L∈ proves no new theorems about first-order
logic, all the new theorems belong to the theory of properties of finite sets and
thus can be derived by using the axiomatisation in [1] (which also form part of
the axiomatisation of L∈), we get the following key result.

Theorem 2. Let ϕ be a formula and Φ be a set of formulae in the language of
L∈ (all of the same vocabulary). If Φ |= ϕ, then Φ � ϕ.

Finally, we need to show that all the formulae in L which are not formulae of
L∈ can be translated into formulae of L∈ based on derivable equivalences in the
theory of L. First, we reduce the general atomic formulae in L to atomic formulae
of the form x = y, x = y, f(x) = y, f(x) = y, f(x) = y, ∈1 (x1, f, x, y), ∈1

(x1, f, x, y), ∈1(x1, f, x, y), ∈2(x2, f, x, y, z), ∈2(x2, f, x, y, z) and ∈2(x2, f, x, y, z).
Let t, s and s′ denote point terms and let ta and sa denote algorithmic terms.
This can be done by using the following equivalences.

s = t ↔ ∃x(s = x ∧ x = t)
sa = ta ↔ ∃x(sa = x ∧ x = ta)

f(s) = y ↔ ∃x(s = x ∧ f(x) = y)
f(s) = y ↔ ∃x(s = x ∧ f(x) = y)

f(sa) = y ↔ ∃x(sa = x ∧ f(x) = y)

∈1(x1, f, t, s) ↔ ∃xy(t = x ∧ s = y∧ ∈1(x1, f, x, y))

∈1(x1, f, t, sa) ↔ ∃xy(t = x ∧ sa = y∧ ∈1(x1, f, x, y))

∈1(x1, f, ta, sa) ↔ ∃xy(ta = x ∧ sa = y∧ ∈1(x1, f, x, y))

∈2(x2, f, t, s, s′) ↔ ∃xyz(t = x ∧ s = y ∧ s′ = z∧ ∈2(x2, f, x, y, z))

∈2(x2, f, t, sa, s′) ↔ ∃xyz(t = x ∧ sa = y ∧ s′ = z∧ ∈2(x2, f, x, y, z))

∈2(x2, f, ta, sa, s′) ↔ ∃xyz(ta = x ∧ sa = y ∧ s′ = z∧ ∈2(x2, f, x, y, z))
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The translation of modal formulae into L∈ distributes over negation, Boolean
connectives and quantifiers. We eliminate atomic formulae of the form upd(r, x1)
using Axioms U1-U7, and the modal operator in formulae of the form [x1]ϕ,
where ϕ is already translated to L∈, using the following derivable equivalences.
[x1]x = y ↔ (conUSet(x1) → x = y); [x1]x = y ↔ (conUSet(x1) → x = y);
[x1]f(x) = y ↔ (conUSet(x1) →∈1(x1, f, x, y)∨(∀z(¬∈1(x1, f, x, z))∧f(x) = y))
[x1]f(x) = y ↔ (conUSet(x1) →∈1(x1, f, x, y)∨(∀z(¬∈1(x1, f, x, z))∧f(x) = y))
[x1]f(x) = y ↔ (conUSet(x1) →∈1(x1, f, x, y)∨(∀z(¬∈1(x1, f, x, z))∧f(x) = y));
[x1]∈1(x1, f, x, y) ↔ (conUSet(x1) →∈1(x1, f, x, y));
[x1]∈1(x1, f, x, y) ↔ (conUSet(x1) →∈1(x1, f, x, y));
[x1]∈1(x1, f, x, y) ↔ (conUSet(x1) →∈1(x1, f, x, y));
[x1]∈2(x2, f, x, y, z) ↔ (conUSet(x1) →∈2(x2, f, x, y, z));
[x1]∈2(x2, f, x, y, z) ↔ (conUSet(x1) →∈2(x2, f, x, y, z));
[x1]∈2(x2, f, x, y, z) ↔ (conUSet(x1) →∈2(x2, f, x, y, z));
[x1]¬ϕ ↔ (conUSet(x1) → ¬[x1]ϕ); [x1](ϕ ∧ ψ) ↔ ([x1]ϕ ∧ [x1]ψ);
[x1]∀x(ϕ) ↔ ∀x([x1]ϕ); [x1]∀x(ϕ) ↔ ∀x([x1]ϕ);
[x1]∀y1(ϕ) ↔ ∀y1([x1]ϕ); [x1]∀x2(ϕ) ↔ ∀x2([x1]ϕ).

Our main technical result then follows from Theorem 2 and the fact that the
described translation from formulae ϕ of L to formulae ϕ′ of L∈ satisfies the
properties required for L to be a definitional extension of L∈, i.e., (a) ϕ ↔ ϕ′ is
derivable in L and (b) ϕ′ is derivable in L∈ whenever ϕ is derivable L.

Theorem 3. Let ϕ be a formula and Φ a set of formulae in the language of L
(all of the same vocabulary). If Φ |= ϕ, then Φ � ϕ.

8 Conclusion

Non-deterministic transitions manifest themselves as a difficult task in the logical
formalisation for ASMs. Indeed, Nanchen and Stärk analysed potential problems
to several approaches they tried by taking non-determinism into consideration
and concluded [13]:

Unfortunately, the formalisation of consistency cannot be applied directly
to non-deterministic ASMs. The formula Con(r) (as defined in Sect. 8.1.2
of [5]) expresses the property that the union of all possible update sets of
(an ASM rule) r in a given state is consistent. This is clearly not what
is meant by consistency. Therefore, in a logic for ASMs with choose one
had to add Con(r) as an atomic formula to the logic.

However, we observe that this conclusion is not necessarily true, as finite
update sets can be made explicit in the formulae of a logic to capture non-
deterministic transitions. In doing so, the formalisation of consistency defined in
[13] can still be applied to such an explicitly specified update set Δ yielded by a
rule r in the form of the formula con(r,Δ) as discussed in Subsect. 5.1. We thus
solve this problem by the addition of the modal operator [Δ] for an update set
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generated by a non-deterministic parallel ASM rule. The approach works well,
because in the parallel ASMs the number of possible parallel branches, although
unbounded, is still finite. Therefore the update sets produced by these machines
are restricted to be finite as well. This is implicitly assumed in the parallel ASM
thesis of Blass and Gurevich [3,4] and it is made explicit in the new parallel
ASM thesis that we propose in [6].

The proof systems that we develop in this work for the proposed logic for
non-deterministic parallel ASMs, extends the proof system developed in [13] in
two different ways. First, an ASM rule may be associated with a set of different
update sets. Applying different update sets may lead to a set of different succes-
sor states to the current state. As the logic for non-deterministic parallel ASMs
includes formulae denoting explicit update sets and variables that are bounded
to update sets, our proof system allows us to reason about the interpretation of
a formula over all successor states or over some successor state after applying an
ASM rule over the current state. Secondly, in addition to capturing the consis-
tency of an update set yielded by an ASM rule, our proof system also develops
two notions of consistency (weak and strong consistency) w.r.t. a given rule.
When the rule is deterministic, these two notions coincide.

We plan as future work to embed our one-step logic into a complex dynamic
logic and demonstrate how desirable properties of ASM runs can be formalised
in such a logic. Of course, there is no chance of obtaining a complete proof theory
for full ASM runs, but there is clearly many potential practical benefits from
the perspective of the ASM method for systems development [5].
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