
Between a Rock and a Hard Place – Uniform
Parsing for Hyperedge Replacement DAG

Grammars

Henrik Björklund, Frank Drewes, and Petter Ericson(B)

Department of Computing Science, Ume̊a University, Ume̊a, Sweden
{henrikb,drewes,pettter}@cs.umu.se

Abstract. Motivated by applications in natural language processing,
we study the uniform membership problem for hyperedge-replacement
grammars that generate directed acyclic graphs. Our major result is a
low-degree polynomial-time algorithm that solves the uniform member-
ship problem for a restricted type of such grammars. We motivate the
necessity of the restrictions by two different NP-completeness results.

Keywords: Graph grammar · Hyperedge replacement · Abstract mean-
ing representation · DAG grammar · Uniform membership problem ·
Parsing

1 Introduction

Hyperedge-replacement grammars (HRGs [5,7]) are one of the most successful
formal models for the generation of graph languages, because their properties
resemble those of context-free grammars to a great extent. Unfortunately, poly-
nomial parsing is an exception from this rule: graph languages generated by
HRGs may be NP-complete. Thus, not only is the uniform membership problem
intractable (unless P �= NP), but the non-uniform one is as well [1,8].

Recently, Chiang et al. [4] advocated the use of hyperedge-replacement for
describing meaning representations in natural language processing (NLP), and in
particular the abstract meaning representations (AMRs) proposed by Banarescu
et al. [2], and described a general recognition algorithm together with a detailed
complexity analysis. Unsurprisingly, the running time of the algorithm is expo-
nential even in the non-uniform case, one of the exponents being the maximum
degree of nodes in the input graph. Unfortunately, this is one of the parameters
one would ideally not wish to limit, since AMRs may have unbounded node
degree. However, AMRs are directed acyclic graphs (DAGs), a fact that is not
exploited in [4]. Another recent approach to HRG parsing is [6], where predictive
top-down parsing in the style of SLL(1) parsers is proposed. This is a uniform
approach yielding parsers of quadratic running time in the size of the input
graph, but the generation of the parser from the grammar is not guaranteed to
run in polynomial time. (For a list of earlier attempts to HRG parsing, see [6].)
c© Springer International Publishing Switzerland 2016
A.-H. Dediu et al. (Eds.): LATA 2016, LNCS 9618, pp. 521–532, 2016.
DOI: 10.1007/978-3-319-30000-9 40

522 H. Björklund et al.

In this paper, we study the complexity of the membership problem for DAG-
generating HRGs. Since NLP applications usually involve a machine learning
component in which the rules of a grammar are inferred from a corpus, and
hence the resulting HRG cannot be assumed to be given beforehand, we are
mainly interested in efficient algorithms for the uniform membership problem.
We propose restricted DAG-generating HRGs and show, in Sect. 4, that their
uniform membership problem is solvable in time O(n2 + nm), where m and n
are the sizes of the grammar and the input graph, resp. In linguistic applications,
where grammars are usually much larger than the structures to be parsed, this
is essentially equivalent to O(nm). To our knowledge, this is the first uniform
polynomial-time parsing algorithm for a non-trivial subclass of HRGs. Naturally,
the restrictions are rather strong, but we shall briefly argue in Sect. 5 that they
are reasonable in the context of AMRs. We furthermore motivate the restrictions
with two NP-completeness results for DAG-generating HRGs, in Sect. 6.

To save space, most proofs have been omitted. They are available in [3].

2 Preliminaries

The set of non-negative integers is denoted by N. For n ∈ N, [n] denotes
{1, . . . , n}. Given a set S, let S� be the set of non-repeating lists of elements of
S. If sw ∈ S� with s ∈ S, we shall also denote sw by (s, w). If � is a (partial)
ordering of S, we say that s1 · · · sk ∈ S� respects � if si � sj implies i ≤ j.

Hypergraphs and DAGs. A ranked alphabet is a pair (Σ, rank) consisting of
a finite set Σ of symbols and a ranking function rank : Σ → N which assigns a
rank rank(a) to every symbol a ∈ Σ. We usually identify (Σ, rank) with Σ and
keep ‘rank’ implicit.

Let Σ be a ranked alphabet. A (directed hyperedge-labeled) hypergraph over
Σ is a tuple G = (V,E, src, tar, lab) consisting of

– finite sets V and E ⊆ V × V � of nodes and hyperedges, respectively
– source and target mappings src : E → V and tar : E → V � assigning to each

hyperedge e its source src(e) and its sequence tar(e) of targets, and
– a labeling lab: E → Σ such that rank(lab(e)) = |tar(e)| for every e ∈ E.

Below, we call hyperedges edges and hypergraphs graphs, for simplicity. Note
that edges have only one source but several targets, similarly to the usual notion
of term (hyper)graphs. The DAGs we shall consider below are, however, more
general than term graphs in that nodes can have out-degree larger than one.

Continuing the formal definitions, a path in G is a (possibly empty) sequence
e1, e2, . . . , ek of edges such that for each i ∈ [k − 1] the source of ei+1 is a target
of ei. The length of a path is the number of edges it contains. A nonempty path
is a cycle if the source of the first edge is a target of the last edge. If G does not
contain any cycle then it is acyclic and is called a DAG . The height of a DAG
G is the maximum length of any path in G. A node v is a descendant of a node
u if u = v or there is a nonempty path e1, . . . , ek in G such that u = src(e1) and
v occurs in tar(ek). An edge e′ is a descendant edge of an edge e if there is a
path e1, . . . , ek in G such that e1 = e and ek = e′.

Between a Rock and a Hard Place – Uniform Parsing 523

The in-degree of a node u ∈ V is the number of edges e such that u is a target
of e. The out-degree of u is the number of edges e such that u is the source of e.
A node with in-degree 0 is a root and a node with out-degree 0 is a leaf.

For a node u of a DAG G = (V,E, src, tar, lab), the sub-DAG rooted at u is the
DAG G↓u induced by the descendants of u. Thus G↓u = (U,E′, src′, tar′, lab′)
where U is the set of all descendants of u, E′ = {e ∈ E | src(e) ∈ U}, and src′,
tar′, and lab′ are the restrictions of src, tar and lab to E′. A leaf v of G↓u is
reentrant if there exists an edge e ∈ E \ E′ such that v occurs in tar(e).

DAG Grammars. A marked graph is a tuple G = (V,E, src, tar, lab,X) where
(V,E, src, tar, lab) is a graph and X ∈ V � is nonempty. The sequence X is
called the marking of G, and the nodes in X are referred to as external nodes.
If X = (v, w) for some v ∈ V and w ∈ V � then we denote them by root(G) and
ext(G), resp. This is motivated by the form or our rules, which is defined next.

Definition 1 (DAG grammar). A DAG grammar is a system H = (Σ,N, S,
P) where Σ and N are disjoint ranked alphabets of terminals and nonterminals,
respectively, S is the starting nonterminal with rank(S) = 0, and P is a set of
productions. Each production is of the form A → F where A ∈ N and F is
a marked DAG over Σ ∪ N with |ext(F)| = rank(A) such that root(F) is the
unique root of F and ext(F) contains only leaves of F .

Naturally, a terminal (nonterminal) edge is an edge labeled by a terminal
(nonterminal, resp.). We may sometimes just call them terminals and nontermi-
nals if there is no danger of confusion. By convention, we use capital letters to
denote nonterminals, and lowercase letters for terminal symbols.

A derivation step of H is described as follows. Let G be a graph with an edge
e such that lab(e) = A and let A → F in P be a rule. Applying the rule involves
replacing e with an unmarked copy of F in such a way that src(e) is identified
with root(F) and for each i ∈ [|tar(e)|], the ith node in tar(e) is identified
with the ith node in ext(F). Notice that |tar(e)| = |ext(F)| by definition. If
the resulting graph is G′, we write G ⇒H G′. We write G ⇒∗

H G′ if G′ can be
derived from G in zero or more derivation steps. The language L(H) of H are
all graphs G over the terminal alphabet T such that S• ⇒∗

H G where S• is the
graph consisting of a single node and a single edge labeled by S.

The graphs produced by DAG grammars are connected, single-rooted, and
as the name implies, acyclic. This can be proved in a straightforward manner
by induction on the length of the derivation. In the following, we consider only
graphs of height at least 1, as the (single) graph of height 0 requires simple but
cumbersome special cases.

Ordering the Leaves of a DAG. Let G = (V,E, src, tar, lab) be a DAG and
let u and u′ be leaves of G. We say that an edge e with tar(e) = w is a common
ancestor edge of u and u′ if there are t and t′ in w such that u is a descendant of
t and u′ is a descendant of t′. If, in addition, there is no edge with its source in w
that is a common ancestor edge of u and u′, we say that e is a closest common
ancestor edge of u and u′.

Note that in a DAG, a pair of nodes can have more than one closest common
ancestor edge.

524 H. Björklund et al.

Definition 2. Let G = (V,E, src, tar, lab) be a DAG. Then �G is the partial
order on the leaves of G defined by u �G u′ if, for every closest common ancestor
edge e of u and u′, tar(e) can be written as wtw′ such that t is an ancestor of u
and all ancestors of u′ in tar(e) are in w′.

3 Restricted DAG Grammars

DAG grammars are a special case of hyperedge-replacement grammars. We now
define further restrictions that will allow polynomial time uniform parsing. Every
rule A → F of a restricted DAG grammar is required to satisfy the following
conditions (in addition to the conditions formulated in Definition 1):

1. If a node v of F has in-degree larger than one, then v is a leaf
2. If F consists of exactly two edges e1 and e2, both labeled by A, such that

src(e1) = src(e2) and tar(e1) = tar(e2) we call A → F a clone rule. Clone
rules are the only rules in which a node can have out-degree larger than 1
and the only rules in which a nonterminal can have the root as its source.

3. For every nonterminal e in F , all nodes in tar(e) are leaves.
4. If a leaf of F has in-degree exactly one, then it is an external node or its

unique incoming edge is terminal.
5. The leaves of F are totally ordered by �F and ext(F) respects �F .

We now demonstrate some properties of restricted DAG grammars.

Lemma 3. Let H = (Σ,N, S, P) be a restricted DAG grammar, G a DAG such
that S• ⇒∗

H G, and U the set of nodes of in-degree larger than 1 in G. Then U
contains only leaves of G and tar(e) ∈ U� for every nonterminal e of G.

Note that the lemma implies that leaves with in-degree exactly one are only
connected to terminal edges. The lemma is proven by induction on the length
of derivations, starting with the observation that S• has the properties claimed.
To simplify the presentation of our algorithm, we introduce a normal form.

Definition 4. A restricted DAG grammar H = (Σ,N, S, P) is on normal form
if every rule A → F in P has one of the following three forms.

(a) The rule is a clone rule.
(b) F has a single edge e, which is terminal.
(c) F has height 2, the unique edge e with src(e) = root(F) is terminal, and all

other edges are nonterminal.

See Fig. 1 for examples of right-hand sides of the three types. In particular,
right-hand sides F of the third type consist of nodes v, v1, . . . , vm, u1, . . . , un, a
terminal edge e and nonterminal edges e1, . . . , ek such that

– v = root(F) = src(e) and v1 · · · vm is a subsequence of tar(e),
– src(ei) ∈ {v1, . . . , vm} for all i ∈ [k],
– ext(F) and tar(ei), for i ∈ [k], are subsequences of u1 · · · un.

Between a Rock and a Hard Place – Uniform Parsing 525

A A a

a

B C

Fig. 1. Examples right-hand sides F of normal form rules of types (a), (b), and (c)
for a nonterminal of rank 3. In illustrations such as these, boxes represent hyperedges
e, where src(e) is indicated by a line and the nodes in tar(e) by arrows. Filled nodes
represent the marking of F . Both tar(e) and ext(F) are drawn from left to right unless
otherwise indicated by numbers

The proof of the following lemma follows the standard technique of dividing
rules with large right-hand sides into several rules with smaller right-hand sides
as in the proof of the Chomsky normal form of context-free grammars. The total
size of the grammar does not change (except for a small constant factor).

Lemma 5. Every restricted DAG grammar H can be transformed in linear time
into a restricted DAG grammar H ′ on normal form such that L(H) = L(H ′).

One can now show that restrictions 1–5 imply that, in a DAG G generated
by a restricted DAG grammar, the orders �G↓v

are consistent for all nodes v,
that is, we have the following lemma the proof of which can be found in [3] (like
the other proofs left out in this short version).

Lemma 6. Let H be a restricted DAG grammar and G = (V,E, src, tar, lab) a
DAG generated by H. Then there is a total order � on the leaves of G such that
�G ⊆ � and for every v ∈ V and every pair u, u′ of reentrant nodes of G↓v we
have u � u′ ⇔ u �G↓v

u′.

If a DAG G has been derived by a restricted DAG grammar in normal form,
it is uniquely determined which subgraphs of G have been produced by a nonter-
minal, and which leaves were connected to it at that point. In particular, given
a non-leaf node v in G, consider the subgraph G↓v. Consider the earliest point
in the derivation where there was a nonterminal e having v as its source. We
say that e generated G↓v. From the structure of G and G↓v, we know that all
reentrant nodes of G↓v are leaves and, by restriction 4, that e must have had
exactly these reentrant leaves of G↓v as targets. By Lemma 6 and restriction 5,
the order of these leaves in tar(e) coincides with the total order �G↓v

.
In other words, during the generation of G by a restricted DAG grammar,

G↓v must be generated from a nonterminal e such that src(e) = v and tar(e) is
uniquely determined by the condition that it consists of exactly the reentrant
nodes of G↓v and respects �G↓v

. Therefore, we will from now on view G↓v as a
marked DAG, where the marking is (v, tar(e)).

526 H. Björklund et al.

4 A Polynomial Time Algorithm

We present the parsing algorithm in pseudocode, after which we explain vari-
ous subfunctions used therein. Intuitively, we work bottom-up on the graph in
a manner resembling bottom-up finite-state tree automata, apart from where a
node has out-degree greater than one. We assume that a total order � on the
leaves of the input DAG G, as ensured by Lemma 6, is computed in a preprocess-
ing step before the algorithm is executed. At the same time, the sequence wv of
external nodes of each sub-DAG G↓v is computed. (Recall from the paragraph
above that these are the reentrant leaves of G↓v, ordered according to �G↓v

.)
For a DAG G of size n, this can be done in time O(n2) by a bottom-up process.
To explain how, let us denote the set of all leaves of G↓v by Uv for every node
v of G. We proceed as follows. For a leaf v, let �v = {(v, v)} and wv = v. For
every edge e with tar(e) = u1 . . . uk such that ui has already been processed for
all i ∈ [k], first check if �0 =

⋃
i∈[k] �ui

is a partial order. If so, define �e to be
the unique extension of �0 given as follows. Consider two nodes u, u′ ∈ Usrc(e)

that are not ordered by �0. If i, j are the smallest indices such that u ∈ Uui

and u′ ∈ Uuj
, then u �e u′ if i < j. Note that �e is uniquely determined and

total. Moreover, let we be the unique sequence in U�
src(e) which respects �0 and

contains exactly the nodes in Usrc(e) which are targets of edges of which e is not
an ancestor edge. Similarly, if v is a node and all edges e1, . . . , ek having v as
their source have already been processed, check if

⋃
i∈[k] �ei

is a partial order.
If so, define �e to be any total extension of this order. Moreover, check that
we1 = · · · = wek

, and let wv be exactly this sequence. The preprocessing may
fail for some graphs, but as these may not be part of L(G) for any restricted
DAG grammar G, we simply reject.

After this preprocessing, Algorithm 1 can be run. As the sequences wu of
external nodes for each sub-DAG G↓u were computed in the preprocessing step,
we consider this information to be readily available in the pseudocode. This,
together with the assumption that the DAG grammar H is in normal form
allows for much simplification of the algorithm.

Walking through the algorithm step by step, we first extract the root node
(line 2) and determine which kind of (sub-)graph we are dealing with (line 4):
one with multiple outgoing edges from the root must have been produced by
a cloning rule to be valid, meaning we can parse each constituent subgraph
(line 5) recursively (line 6) and take the intersection of the resulting nontermi-
nal edges (line 7). Each nonterminal that could have produced all the parsed
subgraphs and has a cloning rule is entered into returns (line 8). The procedure
subgraphs below is used to partition the sub-DAG G↓v into one sub-DAG per
edge having v as its source, by taking each such edge and all its descendant
edges (and all their source and target nodes) as the subgraph. Note that the
order among these subgraphs is undefined, though they are all guaranteed by
the preprocessing to have the same sequence of external nodes wv.

If, on the other hand, we have a single outgoing edge from the root node
(line 9), we iterate through the subgraphs below the (unique) edge below the

Between a Rock and a Hard Place – Uniform Parsing 527

Algorithm 1. Parsing of restricted graph grammars
1: function parses to(restricted DAG grammar H in normal form, DAG G)
2: v ← root(G)
3: returns ← ∅
4: if out degree(v) > 1 then
5: for Gi ← subgraphs below(v) do
6: Xi ← parses to(Gi)
7: X ← ⋂i Xi

8: returns ← {A ∈ X | has clone rule(A)}
9: else

10: e ← edge below(v)
11: children ← ()
12: for v′ ← targets(e) do
13: if leaf(v′) then
14: append(children, external node(v′))
15: else
16: append(children, parses to(G↓v′))
17: returns ← {A | (A → F) ∈ P and match(F, e, children)}
18: return returns

root node (line 12). Nodes are marked either with a set of nonterminals (that
the subgraph below the nodes can parse to) (line 16), or, if the node is a leaf,
with a Boolean indicating whether or not the node is reentrant in the currently
processed subgraph G (line 14).

The match function used in line 17 deserves a closer description, as much of
the complexity calculations depend on this function taking no more than time
linear in the size of the right-hand side. Let src(e) = v and tar(e) = v1 · · · vk.
Each vi has an entry in emphchildren. If vi is a leaf it is a Boolean, otherwise a
set of nonterminal labels. From G and children, we create a DAG G′ as follows.
Let T be the union of {v, v1, . . . , vk} and the set of leaves � of G such that �
is reentrant to G (as indicated by children) or there is an i ∈ [k] with � being
external in G↓vi

. Let T = {v, v1, . . . , vk, t1, . . . , tp}. Then G′ has the set of nodes
U = {u, u1, . . . , uk, s1, . . . , sp}. Let h be the bijective mapping with h(v) = u
and h(vi) = ui for every i ∈ [k] and h(ti) = (si) for every i ∈ [p]. We extend h
to sequences in the obvious way. The root of G is u and there is a single edge d
connected to it such that lab(d) = lab(e), src(d) = u and tar(d) = u1 · · · uk. For
every i ∈ [k] such that vi is not a leaf, G′ has an edge di with src(di) = ui and
tar(di) = h(wi), where wi is the subsequence of leaves of G↓vi

that belong to T ,
ordered by �. The edge is labeled by the set of nonterminals children[i].

Once match has built G′ it tests whether there is a way of selecting exactly one
label for each nonterminal edge in G′ such that the resulting graph is isomorphic
to rhs. This can be done in linear time since the leaves of both G′ and rhs are
totally ordered and, furthermore, the ordering on v1 · · · vk and u1 · · · uk makes
the matching unambiguous.

Let us now discuss the running time of Algorithm 1. Entering the if branch
of parses to, we simply recurse into each subgraph and continue parsing.

528 H. Björklund et al.

The actual computation in the if-clause is minor: an intersection of the l sets of
nonterminals found. Each time we reach the else clause in parses to, we con-
sume one terminal edge of the input graph. We recurse once for each terminal
edge below this (no backtracking), so the parsing itself enters the else-clause
n times, where n is the number of terminal edges in the input graph. For each
rule r = A → F , we build and compare at most |F | nodes or edges in the match
function. Thus, it takes O(nm) operations to execute Algorithm 1 in order to
parse a graph with n terminal hyperedges according to a restricted DAG gram-
mar H in normal form of size m. If H is not in normal form, Lemma 5 can be
used to normalize it in linear time. Since the process does not affect the size of
H by more than a (small) linear factor, the time bound is not affected. Finally,
a very generous estimation of the running time of the preprocessing stage yields
a bound of O(n2), because n edges (and at most as many nodes) have to be
processed, each one taking no more than n steps. Altogether, we have shown the
following theorem, the main result of this paper.

Theorem 7. The uniform membership problem for restricted DAG grammars
is solvable in time O(n2 + mn), where n is the size of the input graph and m is
the size of the grammar.

5 Representing and Generating AMRs

An Abstract Meaning Representation (AMR) is an ordinary directed edge-labeled
acyclic graph expressing the meaning of a sentence. An example expressing
“Anna’s cat is missing her” is shown in Fig. 2. The root corresponds to the
concept “missing”, which takes two arguments, the misser and the missed.

In this representation every node has a special “instance edge” that deter-
mines the concept represented by its source node (miss, cat, anna). The most
important concepts are connected to (specific meanings of) verbs, which have a
number of mandatory arguments arg0, arg1 depending on the concept in ques-
tion. While the representation shown is not directly compatible with the restric-
tions introduced in Sect. 3 a simple translation helps. Every concept with its k
mandatory arguments is turned into a hyperedge of rank k +1, the target nodes
of which represent the instance (a leaf) and the roots of the arguments. The
resulting hypergraph is shown in Fig. 2 on the right. Note that all shared nodes
on the left (corresponding to cross-references) are turned into reentrant leaves.
This is important because in a DAG generated by a restricted DAG grammar
only leaves can have an in-degree greater than 1.

It might seem that we only need graphs with nodes of out-degree at most 1,
and thus no cloning rules for their generation. However, a concept such as miss
can typically also have optional so-called modifiers, such as in “Anna’s cat is
missing her heavily today”, not illustrated in the figure. Such modifiers can typ-
ically occur in any number. We can add them to the structure by increasing the
rank of miss by 1, thus providing the edge with another target v. The out-degree
of this node v would be the number of modifiers of miss. Using the notation

Between a Rock and a Hard Place – Uniform Parsing 529

=⇒

arg1
miss’

arg0

anna’

poss

cat’

miss’

anna’

cat’

arg1
inst
arg0

inst

poss
inst

Fig. 2. Example translation of AMR

of Sect. 4, each sub-DAG G↓e given by one of the outgoing edges e of v would
represent one (perhaps complex) modifier. To generate these sub-DAGs G↓e a
restricted DAG grammar would use a nonterminal edge that has v as its source
and which can be cloned. The latter makes it possible to generate any number
of modifiers all of which can refer to the same shared concepts.

6 NP-Hardness Results

In order to motivate the rather harsh restrictions we impose on our grammars,
we present NP-hardness results for two different classes of grammars that are
obtained by easing the restrictions in different ways.

Theorem 8. The uniform membership problem for DAG grammars that con-
form to restrictions 1–4 is NP-complete.

Proof. The problem is in NP since the restrictions guarantee that derivations are
of linear length in the size of the input graph. It remains to prove NP-hardness.

Let us consider an instance ϕ of the satisfiability problem SAT, i.e., a set
{C1, . . . , Cm} of clauses Ci, each being a set of literals xj or ¬xj , where j ∈ [n] for
some m,n ∈ N. Recall that the question asked is whether there is an assignment
of truth values to the variables xj such that each clause contains a true literal. We
have to show how to construct a DAG grammar H conforming to conditions 1–4
and an input graph G such that G ∈ L(H) if and only if ϕ is satisfiable.

We first give a construction that violates conditions 4 and 5. It uses nonter-
minals S,K,Ki,Kij with i ∈ [m], j ∈ [n]. The terminal labels are c, all j ∈ [m],
and an “invisible” label. The labels K,Ki,Kij , c are of rank 2n, S is of rank 0
and the remaining ones are of rank 1. Figure 3 depicts the rules of the grammar.
Note that the rules are on normal form.

The first row of rules generates 2n leaves which, intuitively, represent x1,¬x1,
. . . , xn,¬xn and are targets of a K-labeled nonterminal. The nonterminal is

530 H. Björklund et al.

S → K

. . .

K → K K

. . .

K →
i

Ki

. . .

(1 ≤ i ≤ m)

Ki → Kij

. . .

if xj ∈ Ki Ki → Kij

. . .
2j−1 2j

. . .

if ¬xj ∈ Ki

Kij → Kij

. . .

Kij

. . .
2�−1 2�

. . .

for � ∈ [n] \ {j} c

. . .

Fig. 3. Reduction of SAT to the uniform membership problem

cloned any number of times (with the intention to clone it m times, once for
each clause). Afterwards it “guesses” which clause Ci (i ∈ N) it should check.
The second row of rules lets every Ki “guess” which literal makes Ci true. If the
literal is negative, it interchanges the corresponding targets, otherwise it keeps
their order. The third row of rules, for all pairs (x�,¬x�) that are not used to
satisfy Ci, interchanges the corresponding targets or keeps their order. Finally,
it replaces the nonterminal edge by a terminal one.

Now, consider the input DAG G in Fig. 4 (left). Suppose that G is indeed
generated by H. Since the jth outgoing tentacles of all c-labeled edges point
to the same node (representing either xj or ¬xj), a consistent assignment is
obtained that satisfies ϕ. Conversely, a consistent assignment obviously gives rise
to a corresponding derivation of G, thus showing that the reduction is correct.

Finally, let us note that changing the initial rule to the one shown in the left
part of Fig. 4 (using a new terminal � of rank 2) makes H satisfy condition 4
as well. This change being made, the input graph is changed by including two
copies of the original input, both sharing their leaves, and adding a new root
with an outgoing �-hyperedge targeting the roots of the two copies.
�

If we also disregard restriction 2, the non-uniform membership problem also
becomes NP-complete, even if we only consider graphs of height 1.

Theorem 9. There is a DAG grammar H that conforms to restrictions 1, 3,
and 4, such that all graphs in L(H) have height 1 and L(H) is NP-complete.

Between a Rock and a Hard Place – Uniform Parsing 531

Fig. 4. Input graph in the proof of Theorem 8 (left) and modified starting rule (right)

The proof is by reduction from the membership problem for context-free gram-
mars with disconnecting (CFGDs), using a result from [8]. A CFGD is an
ordinary context-free grammar in Chomsky normal form, with additional rules
A → �, where � is a special symbol that cuts the string into two. Thus, an
element in the generated language is a finite multiset of strings rather than a
single string. As shown in [8], CFGDs can generate NP-complete languages. We
represent a multiset {s1, . . . , sk} of strings si as a graph consisting of k DAGs
of height 1 sharing their roots. If si = a1 · · · am then the DAG representing it
consists of the root v, leaves u0, . . . , um, and ai-hyperedges ei with src(ei) = r
and tar(ei) = ui−1ui. Moreover, there are two “unlabeled” terminal edges from
v to u0 and un, resp. Now, every CFGD can be turned into an equivalent DAG
grammar using the schemata in Fig. 5.
�

S → S0 A → B C A → a A →

Fig. 5. Rules of a DAG grammar equivalent to a CFGD with initial nonterminal S0,
from left to right: initial rule, A → BC, A → a, A → 	.

7 Future Work

A number of interesting questions remain open. Is it the case that lifting any one
of our five restrictions, while keeping the others, leads to NP-hardness? It seems
that the algorithm we propose leads to a fixed-parameter tractable algorithm,
with the size of right-hand sides in the grammar as the parameter, when we
lift restriction 5 (enforcing that the marking respects �F). Is this actually the

532 H. Björklund et al.

case and are there other interesting parameterizations that give tractability for
some less restricted classes of grammars? Another open question is whether
the algorithm for checking the structure of the input graph and computing the
ordering on the leaves can be optimized to run in linear or O(n log n) time.

From a practical point of view, one should study in detail how well suited
restricted DAG grammars are for describing linguistic structures such as AMRs.
Which phenomena can be modeled in an appropriate manner and which cannot?
Are there important aspects in AMRs that can be modeled by general DAG-
generating HRGs but not by restricted DAG grammars? If so, can the restrictions
be weakened appropriately without sacrificing polynomial parsability?

Acknowledgements. We gratefully acknowledge the support from the Swedish
Research Council grant 621-2011-6080 and the EU FP7 MICO project. We are fur-
thermore grateful to the anonymous referees for various helpful comments.

References

1. Aalbersberg, I.J., Ehrenfeucht, A., Rozenberg, G.: On the membership problem for
regular DNLC grammars. Discrete Appl. Math. 13, 79–85 (1986)

2. Banarescu, L., Bonial, C., Cai, S., Georgescu, M., Griffitt, K., Hermjakob, U.,
Knight, K., Koehn, P., Palmer, M., Schneider, N.: Abstract meaning representa-
tion for sembanking. In: Proceedings of 7th Linguistic Annotation Workshop, ACL
2013 (2013)

3. Björklund, H., Drewes, F., Ericson, P.: Between a rock and a hard place - Parsing
for hyperedge replacement DAG grammars. Technical report UMINF 15.13, Ume̊a
University (2015). http://www8.cs.umu.se/research/uminf/index.cgi

4. Chiang, D., Andreas, J., Bauer, D., Hermann, K.M., Jones, B., Knight, K.: Pars-
ing graphs with hyperedge replacement grammars. In: Proceedings of 51st Annual
Meeting of the Association for Computational Linguistics (ACL 2013), vol. 1: Long
Papers, pp. 924–932 (2013)

5. Drewes, F., Habel, A., Kreowski, H.J.: Hyperedge replacement graph grammars.
In: Rozenberg, G. (ed.) Handbook of Graph Grammars and Computing by Graph
Transformation, vol. 1: Foundations, chap. 2, pp. 95–162. World Scientific (1997)

6. Drewes, F., Hoffmann, B., Minas, M.: Predictive top-down parsing for hyperedge
replacement grammars. In: Parisi-Presicce, F., Westfechtel, B. (eds.) ICGT 2015.
LNCS, vol. 9151, pp. 19–34. Springer, Heidelberg (2015)

7. Habel, A.: Hyperedge Replacement: Grammars and Languages. LNCS, vol. 643.
Springer, Heidelberg (1992)

8. Lange, K.J., Welzl, E.: String grammars with disconnecting or a basic root of the
difficulty in graph grammar parsing. Discrete Appl. Math. 16, 17–30 (1987)

http://www8.cs.umu.se/research/uminf/index.cgi

	Between a Rock and a Hard Place -- Uniform Parsing for Hyperedge Replacement DAG Grammars
	1 Introduction
	2 Preliminaries
	3 Restricted DAG Grammars
	4 A Polynomial Time Algorithm
	5 Representing and Generating AMRs
	6 NP-Hardness Results
	7 Future Work
	References

