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Abstract. In [4] Gandhi, Khoussainov, and Liu introduced and stud-
ied a generalized model of finite automata able to work over arbitrary
structures. The model mimics the finite automata over finite structures
but has an additional ability to perform in a restricted way operations
attached to the structure under consideration. As one relevant area of
investigations for this model the authors of [4] identified studying the
new automata over uncountable structures such as the real numbers.
This research was started in [7]. However, there it turned out that many
elementary properties known from classical finite automata are lost. This
refers both to structural properties of accepted languages and to decid-
ability and computability questions. The intrinsic reason for this is that
the computational abilities of the new model turn out to be too strong.

We therefore propose a restricted version of the model which we call
periodic GKL automata. The new model still has certain computational
abilities which, however, are restricted in that computed information is
deleted again after a fixed period in time. We show that this limitation
regains a lot of classical properties including the pumping lemma and
many decidability results. Thus the new model seems to reflect more
adequately what might be considered as a finite automata over the reals
and similar structures. Though our results resemble classical properties,
for proving them other techniques are necessary. One fundamental proof
ingredient will be quantifier elimination over real closed fields.

Keywords: Unconventional models of computation · Computational
complexity

1 Introduction

In recent work Gandhi, Khoussainov, and Liu [4] introduced a generalized model
of finite automata called (S, k)-automata. It is able to work over an arbitrary
structure S, and here in particular over infinite alphabets like the real numbers.
A structure is characterized by an alphabet (also called universe) together with
a finite number of binary functions and relations over that alphabet. Intuitively
the model processes words over the underlying alphabet componentwise. Each
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single step is made of finitely many test operations relying on the fixed relations
as well as finitely many computational operations relying on the fixed functions.
For performing the latter an (S, k)-automaton can use a finite number k of
registers. It moves between finitely many states and finally accepts or rejects an
input.

The motivation to study such generalizations is manifold. In [4] the authors
discuss different previous approaches to design finite automata over infinite
alphabets and their role in program verification and database theory. One goal
is to look for a generalized framework that is able to homogenize at least some of
these approaches. As the authors remark, many classical automata models like
pushdown automata, Petri nets, visible pushdown automata can be simulated by
the new model. Another major motivation results from work on algebraic mod-
els of computation over structures like the real and complex numbers. Here, the
authors suggested their model as a finite automata variant of the Blum-Shub-
Smale BSS model [1,2]. They then ask to analyze such automata over structures
like real or algebraically closed fields.

This line of research has been started recently by the present authors in [7].
Given the tremendous impact finite automata have in classical computability
theory it looks promising to introduce and study a similar concept as restriction
of the real computational model introduced by Blum, Shub, and Smale. However,
the main lesson from [7] is that the general automata model by Gandhi et al.
turns out to be too strong when applied to computations over the real or complex
numbers. Almost all basic automata problems turn out to be undecidable in the
BSS framework for these two uncountable structures. As another consequence,
only weak structural properties can be derived for real languages accepted by
such an automaton. The intrinsic reason for this is the automata’s ability to
store intermediate results during an entire computation, something obviously
not possible in the finite automata world. We therefore suggest a restricted
version of the Ghandi-Khoussainov-Liu (for short: GKL) model. The basic idea
is to force the automaton to periodically forget after a constant number of steps
its intermediate results. This still enables the automaton to perform operations
present in the given structure, but in a limited way.

For the resulting restricted periodic version of real GKL automata we shall
prove both structural as well as several decidability results. Since the automata
can perform basic arithmetic operations over R semi-algebraic sets naturally
show up; computability and decidability results then naturally rely on quantifier
elimination algorithms for the first order theory of the reals.

Our results hopefully indicate that the restricted model is a meaningful alter-
native giving back many of the features finite automata have, but non-trivially
related to the uncountable structure under consideration. Some of the further
questions arising are discussed at the end.

In the next section we recall the automata model by Gandhi et al., equipped
with the additional restriction of periodicity. The main results are proved in
Sects. 3 and 4, which collect both decidability results for several questions about
our periodic automata and structural properties of the languages accepted by
them.
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The paper intends to be a further step towards the development of a gener-
alized model of finite automata. It might be promising to analyse our variant as
well for the many further scenarios treated in [4].

2 Periodic GKL Automata

We suppose the reader to be familiar with the basics of the Blum-Shub-Smale
model of computation and complexity over R. Very roughly, algorithms in this
model work over finite strings of real numbers. The operations either can be com-
putational, in which case addition, subtraction, and multiplication are allowed;
without much loss of generality we do not consider divisions in this paper to
avoid technical inconveniences. Or an algorithm can branch depending on the
result of a binary test operation. The latter will be inequality tests of form ‘is
x ≥ 0?’ The size of a string is the number of components it has, the cost of an
algorithm is the number of operations it performs until it halts. For more details
see [1].

The generalized finite automata introduced in [4] work over structures. Here,
a structure S consists of a universe D together with finite sets of (binary) func-
tions and relations over the universe. An automaton informally works as follows.
It reads a word from the universe, i.e., a finite string of components from D
and processes each component once. Reading a component the automaton can
set up some tests using the relations in the structure. The tests might involve a
fixed set of constants from the universe D that the automaton can use. It can as
well perform in a limited way computations on the current component. Towards
this aim, there is a fixed number k of registers that can store elements from D.
Those registers can be changed using their current value, the current input and
the functions related to S. The new aspect we include here is that such computa-
tions cannot be performed unlimited; after a fixed number of steps performed all
register values are reset to the intial assignment 0, thus forgetting intermediate
results. After having read the entire input word the automaton accepts or rejects
it depending on the state in which the computation stops. These automata can
both be deterministic and non-deterministic.

The approach in particular easily can be adapted to define generalized finite
automata over structures like R and C. We shall in the rest of the paper focus on
the real numbers, though all our results hold as well in their corresponding vari-
ant for the complex numbers. Statements about computability and decidability
refer to the real BSS model of computation.

We consider exclusively the structure SR := (R,+,−, •, pr1, pr2,≥,=) of reals
as ring with order. As in the original work [4] we include the projection oper-
ators pr1, pr2 which give back the first and the second component of a tuple,
respectively. In order to avoid technicalities for the subtraction operation we
allow both orders of the involved arguments, i.e., applying − to two values x, v
can mean x − v or v − x. Similarly, the order test can be performed both as
x ≤ v? and v ≤ x? We do not include division as an operation. This will not
significantly change our results.
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The following definition makes these ideas precise. We alternatively call the
resulting automata real periodic (SR, k, T )-automata or (a bit less clumsy) real
periodic GKL automata, where GKL refers to the initials of the authors of [4].
The definition below adapts the general automata definition in [4] and its real
number version from [7].

Definition 1. (Periodic GKL automata over R) Let k, T ∈ N be fixed.

(a) A deterministic periodic (SR, k, T )-automaton A, also called real periodic
GKL automaton, consists of the following objects:
- a finite state space Q and an initial state q0 ∈ Q,
- a set F ⊆ Q of final (accepting) states,
- a set of � registers which contain fixed given constants c1, . . . , c� ∈ R,
- a set of k registers which can store real numbers denoted by v1, . . . , vk,
- a counter containing a number t ∈ {0, 1, . . . , T − 1}; we call T the period-

icity of the automaton,
- a transition function δ : Q × R × R

k × {0, 1}k+� × {0, 1, . . . , T − 1} �→
Q × R

k × {0, 1, . . . , T − 1}.
The automaton processes elements of R

∗ :=
⊔

n≥1

R
n, i.e., words of finite

length with real components. For such an (x1, . . . , xn) ∈ R
n it works as

follows. The computation starts in q0 with initial assignment 0 ∈ R for the
values v1, . . . , vk ∈ R. The automaton has a counter which stores an integer
t ∈ {0, 1, . . . , T − 1}. At the beginning of a computation its value is 0. A
reads the input components step by step. Suppose a value x is read in state
q ∈ Q with counter value t. The next state together with an update of the
values vi and t is computed as follows:
- A performs the k + � comparisons xσ1v1?, xσ2v2?, . . . , xσkvk?, xσk+1c1?,

. . . , xσk+�c�?, where σi ∈ {≥,≤,=}. This gives a vector b ∈ {0, 1}k+�,
where a component 0 indicates that the comparison that was tested is
violated whereas 1 codes that it is valid;

- depending on state q and b the automaton moves to a state q′ ∈ Q (which
could again be q);

- if the value of the counter is t = T − 1, then the counter as well as all
register entries vi are reset to 0. Otherwise, the counter value is increased
by 1 and the values of all vi are updated applying one of the operations
in the structure: vi ← x ◦i vi. Here, ◦i ∈ {+,−, •, pr1, pr2}, 1 ≤ i ≤ k
depends on q and b only.

When the final component of an input is read A performs the tests for this
component and moves to its last state without any further computation. It
accepts the input if this final state belongs to F , otherwise A rejects.

(b) Non-deterministic (SR, k, T )-automata are defined similarly with the only
difference that δ becomes a relation in the following sense: If in state q the
tests result in b ∈ {0, 1}k+� the automaton can non-deterministically choose
for the next state and the update operations one among finitely many tuples
(q′, ◦1, . . . , ◦k) ∈ Q × {+,−, •, pr1, pr2}k. The counter, however, is changed
as in the deterministic case and if t = T − 1 the register values have to be
reset to 0 as well in the non-deterministic case.
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As usual, a non-deterministic automaton accepts an input if there is at least
one accepting computation.

(c) The language of finite strings accepted by A is denoted by L(A) ⊆ R
∗.

(d) A configuration of A is a tuple from Q × R
k × {0, . . . , T − 1} specifying the

current data during a computation.

Example 2. (a) Every classically regular language L ⊆ {0, 1}∗ when considered
as language in R

∗ can be accepted by a real periodic GKL automaton. This can
be seen easily by interpreting a corresponding finite automaton for L as GKL
automaton which does not use its registers.

(b) For every semi-algebraic set S ∈⊆ R
n, n ∈ N there is an m ∈ N and a real

periodic GKL automaton A such that S is the projection of the set L(A) ∩ R
m

onto its first n components. This was shown in [7] for the real GKL automata
model, but the proof applies as well in the periodic case; this is true because the
main point is to give a bound on the number of steps needed to evaluate the
polynomial conditions defining S. The peridocity of the new automaton then
should be larger than this bound.

Below in Sect. 4 we outline a more systematic description of acceptable
languages which resembles the structure of regular sets over finite alphabets.

3 Decidability

Let us start with the study of some typical decision problems for periodic GKL
automata. To each periodic (SR, k, T )-automaton A we attach a directed graph
GA. Additionally, the edges are labeled by certain semi-algebraic sets. Both the
graph and those sets turn out to be crucial for solving many of the fundamental
decision problems about periodic GKL automata. Before being more precise let
us describe the intuition behind those definitions. Since A has periodicity T we
are naturally led to consider the following two questions: Starting in a state q
with register values 0, which other states are reachable within precisely a number
of t steps from q, where 1 ≤ t ≤ T? And this happens when processing which
inputs from R

t? We therefore split any computation on inputs x ∈ R
n in s blocks

of length T and t remaining steps, where n = s · T + t, s ∈ N0, 0 ≤ t < T.

Definition 3. Let A be a deterministic (SR, k, T )-automaton with state set Q,
initial state q0 and final states F ⊆ Q.

(a) The directed graph GA = (V,E) attached to A is defined as follows: For each
q ∈ Q the set V contains a vertex q and vertices q(t) for 1 ≤ t < T. GA
has an edge (p, q) iff there is a computation of A that when starting in p
with register values 0 reaches q after T steps. GA has an edge (p, q(t)) for
an 1 ≤ t < T iff there is a computation of A that when starting in p with
register values 0 reaches q after t steps. No other edges are present in GA.
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(b) For edges (p, q) and (p, q(t)) of GA, respectively, define S(p, q) ⊆ R
T and

S(p, q(t)) ⊆ R
t as set of those x ∈ R

T or x ∈ R
t, respectively, for which A

moves from p to q when reading x according to the conditions under (a).

Intuitively, vertices named by p ∈ Q are used for dealing with sequences of T
computational steps of A, whereas the copies q(t), 1 ≤ t < T are used to reflect
the final t steps of a computation. Therefore, there are no directed edges of form
(q(t), p).

Theorem 4. Let A be an (SR, k, T )-automaton with attached directed graph
GA = (V,E), S(u, v) be defined as above for vertices u, v ∈ V. Then the fol-
lowing holds:

(a) All S(p, q) are semi-algebraic in R
T , all S(p, q(t)) are semi-algebraic in R

t.1

(b) The edge relation of GA is BSS-computable, i.e., for given u, v ∈ V one can
decide by a BSS algorithm whether (u, v) ∈ E.

(c) For each q ∈ Q, 0 ≤ t ≤ T − 1 the set V (q, t) of register values v ∈ R
k that

occur as valid entries during a computation of A which reaches q such that
the counter contains t is semi-algebraic (and thus BSS decidable).

Proof. We are in this paper not interested in efficiency results and thus only
argue how the questions under consideration lead to certain quantifier elimina-
tion tasks in the first order theory of the reals. Since this theory is BSS decidable,
see [8] for more on the history of respective algorithms, the claimed results then
follow.

Ad (a) Let p, q ∈ Q be fixed. The arguments below will be the same for a pair
(p, q(t)) of vertices. Suppose A uses � constants and is in state p with all register
values equal to 0. We enumerate all sequences P := (p0, p1, p2, . . . , pT ) of states
pi ∈ Q, where p0 = p and pT = q, together with sequences β := (b1, . . . , bT ), bi ∈
{0, 1}k+� of decision vectors such that in A it is possible to move from state pi

to pi+1 if the actual input component xi+1 yields the test results coded by the
components of bi.

We now construct for each such pair (P, β) a first order formula Φ(P,β)(x)
expressing for which inputs x ∈ R

T the path P is representing A’s computation
on x. Towards this aim we must record the changes of the register values as
well as check the related test results. For each 1 ≤ i ≤ T let h

(i)
1 , . . . , h

(i)
k :

R
i �→ R be polynomials such that h

(i)
j (x1, . . . , xi) is the entry in register vj if the

computation follows (P, β) on input x1, . . . , xi starting from register values 0.
The h

(i)
j clearly are polynomials of degree at most i given the way A can compute.

Next, first order formulas ϕi(x1, . . . , xi) express that if A is in state pi−1 with
register values v1 = h

(i−1)
1 (x1, . . . , xi−1), . . . , vk = h

(i−1)
k (x1, . . . , xi−1) and reads

xi, then all performed tests give a result according to bi, A moves to state pi,
and the new register values are v1 = h

(i)
1 (x1, . . . , xi), . . . , vk = h

(i)
k (x1, . . . , xi).

Once again, all above conditions can be expressed in first order logic over R

1 A semi-algebraic set in R
n is a set that can be defined as a finite union of solution

sets of polynomial equalities and inequalities.
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due to the form of the tests that can be performed. Φ(P,β)(x) now is the con-
junction of all these formulas for all 1 ≤ i ≤ T. It follows that S(p, q) = {x ∈
R

T | ⋃

(P,β)∈Γ

Φ(P,β)(x)}, where Γ contains all suitable sequences leading in T steps

from p to q respecting the constraints described above. Since there are only
finitely many suitable pairs and for each of it the set of x satisfying Φ(P,β)(x) is
semi-algebraic, the claim follows. The argument for vertices (p, q(t)) is the same.

Ad (b) Given the result in (a) for each pair (u, v) of vertices of the graph
GA it is decidable whether S(u, v) �= ∅ by (one of) the well known algorithms
for quantifier elimination over real closed fields [8]. Therefore, the edge relation
of GA is BSS computable.

Ad (c) The argument is similar to those in (a). First, any computation of n
steps that reaches state q such that the counter has value t can be decomposed
into s blocks of T steps followed by t final steps, where n = sT + t. In order
to determine the realizable register assignments we have to figure out for which
states p ∈ Q automaton A can reach q in t steps when starting with register
values 0. Among those states we are only interested in the ones reachable in sT
steps, i.e., those p for which there is a path in GA from q0 to p. The latter can
be checked by a usual search algorithm on directed graphs once GA has been
computed according to (b). Let H(q, t) be the set of states p reachable in the
above sense and such that S(p, q(t)) �= ∅. Then a v ∈ R

k is in V (q, t) iff there is
a p ∈ H(q, t) and an x ∈ S(p, q(t)) with v = (h(t)

1 (x), . . . , h(t)
k (x)), where h

(t)
j are

as defined in the proof of part (a). Clearly, this set is again semi-algebraic. �
The above theorem implies several decidability results of fundamental ques-

tions about real periodic GKL automata. Decidability here refers to the real
number BSS model. Whereas for most of the problems treated below decidability
follows relatively straightforwardly from the proof of Theorem4, the equivalence
problem is a bit harder to handle. Note that we do not currently know about
a state minimization algorithm, thus the idea behind the classical algorithm for
deciding equivalence of deterministic finite automata using minimal ones is not
applicable. Note also that given the significantly extended computability fea-
tures of the original definition of real GKL automata in [4] none of the problems
listed below is decidable in this more general model, as was shown in [7].

Theorem 5. The problems below are decidable in the real BSS model:

(a) Emptiness: Given an (SR, k, T )-automaton A, is L(A) = ∅?
(b) Reachability I: Given A as in (a) with state set Q together with a state q ∈ Q,

is there a computation starting in A’s initial state with register entries 0 that
reaches q?

(c) Reachability II: Given an automaton A, a state q, a counter value t ∈
{0, . . . , T − 1}, and a v ∈ R

k, is there a computation starting in A’s ini-
tial state with register entries 0 that reaches p such that the counter’s value
is t and the register values equal v?
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(d) Reachability III: Similar to Reachability II, but without t being specified?
(e) Equivalence: Given two real periodic GKL automata A1,A2, is L(A1) =

L(A2)?

Proof. Decidability of the questions under consideration is a relative immediate
consequence of (the proof of) Theorem 4.

Ad (a) For emptiness we compute a set H of states reachable by A from
its starting configuration in some s · T steps, where s ∈ N0. The computation
of H can be done using the arguments from the proof of parts (a) and (b) in
Theorem 4. If H ∩ F �= ∅ it follows L(A) �= ∅. Otherwise, for each p ∈ H, 1 ≤
t < T , and q ∈ Q we compute a description of the semi-algebraic set S(p, q(t))
and check whether it is empty or not using quantifier elimination. It follows that
now L(A) = ∅ iff all those S(p, q(t)) are empty.

Ad (b) Using GA and the corresponding sets S(u, v) it is easy to check
whether a state q or one of its copies q(t), 1 ≤ t < T are reachable in GA from
the starting state. This can be done, for example, by a breadth-first search.

Ad (c) Check whether q (if t = 0) or q(t) (if t > 0) are reachable in GA. In
case it is we analyze the set of attainable register values V (q, t) as in the proof
of Theorem 4.

Ad (d) As in (c), but instead of checking one fixed t the algorithm has to
be performed for all 0 ≤ t ≤ T − 1.

Ad (e) Let A1,A2 be given with state sets Q1, Q2 and parameters (ki, Ti), i ∈
{1, 2}, respectively. The key idea is to give a bound N for the dimension of an
x ∈ R

N which is accepted by exactly one of the two automata in case they are
not equivalent. Knowing such a bound we can search for x by using once more
the previous arguments together with quantifier elimination algorithms.

For both automata we consider computational blocks of length T := T1 · T2.
It then follows that for each integer r ∈ N after r · T steps both automata
have 0 as its register assignments. Suppose L(A1) �= L(A2), then there exist an
N ∈ N and an x ∈ R

N such that without loss of generality x ∈ L(A1) \ L(A2).
Decompose N = s · T + t, s ∈ N0, 0 ≤ t < T. We want to find an absolute upper
bound s0 for s such that a witness x can be proved to exist up to dimension
s0 · T + t < (s0 + 1)T if one exists at all.

In order to determine s0 define once again directed graphs GA1 , GA2 attached
to the given automata as in Definition 3. However, this time both graphs are
defined with respect to computational blocks of length T instead of taking the
respective periodicities of the two automata. In the first reasoning below we want
to decide existence of a witness x ∈ R

N for some N = s · T , i.e., if t = 0.
For 0 ≤ i ≤ s let (p(1)

i , p
(2)
i ) ∈ Q1 ×Q2 denote the pairs of states that A1,A2

attain after i · T steps of processing input x. Define s0 := |Q1| · |Q2| − 1. Then
no matter how x looks like after at most s0 · T steps a pair of states occurs
for the second time. Since the configurations of both automata at these steps
are the same, we can neglect the corresponding part of the computation. By
removing other loops along the computation path in a similar way it follows
that if a witness x exists at all (for choice t = 0) there is one of dimension
at most N := s0 · T. This reduces the question to a finite set of quantifier
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elimination problems in the spaces R
T ,R2T , . . . ,Rs0T . For each R

iT , 1 ≤ i ≤ s0

express the question whether there is an x ∈ R
iT such that x ∈ L(A1) \ L(A2)

as closed existential first order formula. This can be done using the arguments
in Theorem 4. We then decide truth of the formula by quantifier elimination.

If this decision procedure shows that there is no x of a dimension N ∈
{T, 2T, 3T, . . .} witnessing the difference of the two automata we next decide the
respective question for dimensions of the form N = sT + t with 1 ≤ t < T . As
before, we first compute the set H of all pairs (p, q) ∈ Q1×Q2 that can be reached
by A1,A2 in a sequence of some sT steps. For each fixed 1 ≤ t < T and all pairs
(p′, q′) ∈ F1 × F2 of final states we decide, whether there are edges in GA1 and
GA2 , respectively, from p to p′(t) and from q to q′(t). In order to guarantee that
both corresponding computations by A1,A2 are followed for the same input x ∈
R

t we consider the conjunction of the first order formulas expressing reachability
of p′ from p and of q′ from q and only then apply quantifier elimination. If pairs
(p, q) ∈ H, (p′, q′) ∈ F1 × F2, t ∈ {1, . . . , T − 1} are found it follows L(A1) �=
L(A2), otherwise the two automata are equivalent. �

4 Structural Results

In this section the focus is on elaborating elementary structural results for
languages acceptable by real periodic GKL automata. They extend the cor-
responding ones for discrete finite automata and include a pumping lemma, the
equivalence of non-deterministic and deterministic periodic GKL automata, and
some initial ideas about a generalization of regular expressions to our setting.
Note that in its usual form the pumping lemma does not hold for general GKL
automata over R and no variant is known to be true; similarly, non-deterministic
real GKL automata are strictly more powerful than deterministic ones, see [7]
for both issues and [4] for similar results over other structures. Thus, periodic-
ity significantly reduces the computational power of GKL automata and brings
them probably closer to what one would expect from a real version of finite
automata.

Lemma 6 (Pumping Lemma for Real Periodic GKL Automata). Let
L ⊆ R

∗ be accepted by a real periodic GKL automaton A with periodicity T, k
registers and s states. Then for all w ∈ L of algebraic size |w| ≥ sT there exist
x, y, z ∈ R

∗ such that w = xyz, |y| ≥ T, |xy| ≤ sT, and ∀i ∈ N0 xyiz ∈ L.

Proof. Periodicity of A implies that for all r ∈ N after rT steps of any com-
putation the register values are all 0. The actual configuration thus after rT
steps only depends on the current state. For inputs w of length at least sT there
occurs at least one state twice among the current states after one of the time
steps {0, T, 2T, . . . , sT}. The rest of the proof is as usual: If p is a state occuring
twice, x the prefix of w processed by A until p is reached for first time, y the part
processed until p occurs for the second time, and z the rest, then w = xyz by
definition and xyiz ∈ L for all i ∈ N0 because A’s configuration is (p, 0, 0) both
when it starts to process y and when it has finished. The remaining conditions
obviously are satisfied. �
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The lemma shows that the language {0n1n|n ∈ N} , as in the finite automata
world, is neither acceptable by a periodic real GKL automaton. It might be
interesting to sharpen the statement by not only considering loops having a
length being an integer multiple of the periodicity; this, however, would require
to control the evolvement of the register entries, something that seemed to hinder
a sharper structural result in [7].

Without requiring periodicity non-deterministic real GKL automata are more
powerful than deterministic ones [7]. This difference vanishes if we include the
periodicity requirement into the model.

Theorem 7. The classes of languages over R
∗ acceptable by non-deterministic

and by deterministic periodic real GKL automata are the same.

Proof. Let A be a periodic non-deterministic (SR, k, T )-automaton with state
set Q and final states F ⊆ Q. The construction of an equivalent deterministic
automaton A′ in principle uses the classical powerset idea; however, it is more
complicated because of the automata’s ability to compute. The new automaton
has not only to record states that can be reached non-deterministically, but also
register entries. In particular, it might be possible that A in a state has several
choices how to continue to the same successor state but with different compu-
tations performed on the registers. Therefore, instead of (unordered) subsets of
Q we are lead to consider (ordered) tuples of elements in Q as states of the new
automaton A′.

Let M ∈ N upper bound the maximal number of non-deterministic transi-
tions A can choose from for any of its states. A begins its computations in a
start state q0 with register assignment 0. For t < T steps A can achieve at most
M t−1 different configurations. After T steps, i.e., one sweep of length the peri-
odicity, there are at most |Q| different configurations since the register values
are reset. For the following sweeps of length T the same reasoning shows that
at most m := |Q| · MT−1 different configurations can occur at any stage of a
computation of A.

This motivates the definition of the state set Q′ of A′: Q′ will be used to
code the multi-set of states of Q that can occur with potentially different register
values at a certain point of a computation. Since not necessarily m different con-
figurations are realizable let q∗ �∈ Q denote a new dummy symbol and define Q′

as a subset of (Q∪{q∗})m; a state in Q′ lists with the respective cardinalities the
set of states in Q reachable non-deterministically within a given number of steps.
If less than m different configurations are reachable the lacking components are
filled with q∗.2 The starting state of A′ is (q0, q

∗, q∗, . . . , q∗) ∈ (Q∪{q∗})m, final
states in Q′ are those which contain at least one state from F as a component.
A′ uses km registers which are divided into m blocks of length k; each block is
used to code the evolvement of A’s k registers during one possible computation.

2 In order to make the coding unique we could order the components of any tuple in
Q′ according to an order of Q∪{q∗}, but we refrain from elaborating on this because
it will likely not increase understandability.
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The transition function can now be defined straightforwardly; in order not to
overload the presentation notationally we just describe its functioning informally.
If A after t steps on input x can reach a configuration (p, v1, . . . , vk, t), then A′

after t steps is in a state p′ which has p as one of its components; attached to each
component is one block of k registers - and the one attached to the component
containing the above p has (v1, . . . , vk) as its register values. Now each of the
at most M many non-deterministic transitions A can perform next is coded via
changing the corresponding components of p′ and their attached register blocks
accordingly. If A′ has less than M many choices, in p the lacking components
are set to q∗ and the corresponding register values to 0. Of course, it has to be
specified which components of a state p′ and which register blocks of A′ code
which potential computation path of A. However, it should be obvious that this
easily can be done. Finally, A has an accepting computation on x ending in a
state qf ∈ F if and only if A′ reaches at the end a state that has qf as one of
its components, i.e., A′ accepts x. �

The results especially of Theorem 4 resemble a strong similarity between the
structures of real languages acceptable by periodic GKL automata and of regular
languages. Due to space limitations we just outline this similarity and postpone
a more complete treatment to a full version.

It has been shown in Sect. 3 that computation cycles of length the periodicity
T play a crucial role in the analysis of periodic automata. If such an automaton
can move in T steps from state p to q assuming all registers have been initialized
to 0, then the (non-empty) semi-algebraic sets S(p, q) introduced in Definition 3
constitute building blocks of words being processed by the automaton; similarly
at the end of a computation with sets of form S(p, q(t)). Thus, for the develop-
ment of a theory of ‘regular expressions’ in our context such sets could serve as
elementary objects. Of course, this requires as well taking more care about what
kind of semi-algbraic sets can be allowed here.

Next, there is as well a natural way to define a Kleene-∗ operation
on those sets. Starting from the automata side, each cycle in the directed
graph GA indicates that a corresponding sequence of operations can be per-
formed by A arbitrarily many times, each time processing a word from a
corresponding semi-algebraic set; the latter has the concatenated structure
S(p1, p2)S(p2, p3) . . . S(pr, p1), where p1 → p2 → . . . → pr → p1 denotes the
underlying cycle. That way, we obtain a recursive construction of expressions
being built on base of certain semi-algebraic sets. It is then not hard to work out
a decomposition result for all real languages L accepted by a real periodic GKL
automaton. Each such L can be decomposed using the operations of concatena-
tion of fundamental semi-algebraic sets together with the ∗-operation related to
the cycle structure in GA. It is probably more demanding to work out the other
direction: Which kind of semi-algebraic ground-pieces can be allowed to obtain
in the above way exactly those languages that are accepted by real periodic
GKL automata? Nevertheless, the structural similarity to the concept of regular
languages seems striking.
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5 Further Questions

There are several ways to go. First, one could continue the line of research in
this paper and analyze further properties of real languages acceptable by periodic
GKL automata. For example, is there a way to minimize the number of states and
of registers, and what impact has the choice of the periodicity? Next, above we
completely disregarded complexity issues and only applied elimination results in
their general form. In many of our problems requiring quantifier elimination the
formulas obtained have a very specific structure because the automata process an
input component only once and it is only influencing T steps of a computation.
Therefore, one might ask which of the problems treated above are efficiently
solvable, which are NPR-complete in the BSS framework? Especially finding
new NPR-complete problems is interesting since the list of known such problems
still is relatively limited.

A third area of further research is considering other underlying structures
than the reals. One major motivation of [4] was to have a generalized automata
model for many different structures which also homogenizes existing ones. So the
question is in how far our restricted version of GKL automata also is meaningful
for further structures like those considered in [4]? Finally, it seems promising to
analyze the new automata model as well for infinite computations over countably
infinite sequences of reals. The classical theory initiated by Büchi, see [9] for a
longer introduction into the topic, established a close relation between such infi-
nite automata and logic. For working with infinite structures meta-finite model
theory was developed in [5] and applied to BSS computability theory in [3,6].
We believe it to be interesting to investigate potential links between the latter
and a kind of periodic real Büchi automata.
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