Chapter 5
PGD for Dynamical Problems

Simulations are like Michelin star restaurants but should be like
McDonalds: ubiquitous and standardised.
—~Craig Mcllhenny

Abstract This chapter develops the application of PGD methods initial and
boundary value problems, with an eye towards the (non-linear) solid dynamics equa-
tions.

Model order reduction of initial and boundary value problems (IBVP) is a particularly
challenging task. In this chapter we explain some interesting concepts related mostly
with solid dynamics, taken as model problem to this end.

In [41] a method was developed that takes the field of initial conditions as a
parameter to develop a very efficient dynamical integrator. However, the field of
initial conditions (displacement, velocity) is in fact a parameter of infinite dimension,
and hence hard to parameterize adequately. In this chapter we analyze how to do it in
a proper way so as to render a very fast method, amenable for real-time simulation,
even under very astringent conditions. Other approaches to the problem, such as a
space-time one, can be found at [18], for instance.

5.1 Taking Initial Conditions as Parameters

As mentioned before, in [41] a method is developed based on PGD that acts as a sort
of black box integrator in time. Given the converged displacement and velocity field
of the solid at time step ¢, u' and @', respectively, as parameters, the method returns
the displacement and velocity fields at time ¢ + At, see Fig.5.1.

Once semi-discretized in space, the displacement and velocity fields are no longer
of infinite dimension, but usual engineering finite element meshes involve tens of

© The Author(s) 2016 65
E. Cueto et al., Proper Generalized Decompositions, SpringerBriefs
in Applied Sciences and Technology, DOI 10.1007/978-3-319-29994-5_5

66 5 PGD for Dynamical Problems

Input Output

. A
’U,t, ut ut—l—At’ ut-i— t

Fig.5.1 Sketch of the proposed method for the integration of solid dynamics in the PGD framework.
Converged displacement and velocity fields at time step ¢ are taken as parameters, so as to provide,
without the need of any matrix inversion, the displacement and velocity fields at time step ¢ + At

thousands to millions of degrees of freedom. This would imply to have into account
millions of parameters, something out of reach even for PGD methods.

In order to avoid this enormous number of parameters, in [41] the use of Proper
Orthogonal Decomposition [43, 48, 49] methods so as to employ a minimal number
of parameters is proposed. In this way, initial displacement and velocity field can be
optimally parameterized with a minimal number of degrees of freedom. The price to
pay is to project the results of the integration at time + At onto the POD basis so as
to be taken as parameters (initial conditions) for a subsequent integration to obtain
ut+2At and ut+2At_

We provide details of the variational formulation in the subsequent sections.

5.2 Developing the Weak Form of the Problem

We consider the general problem of solid dynamics, in which we look for the dis-
placement field, .
u:02x10,T1xZ x J — R,

where 7 = [u,, ug' land J = [, itg] represent the considered intervals of vari-
ation of initial boundary conditions, u(and i, taken as parameters. To obtain a
parametric solution for any initial condition (within these intervals), it is therefore
necessary to define a new (triply-) weak form:

given f, g, h,ugand iy findu(t) € S; = {ulu(x,t) = g(x,t), x € I,, u €
H'(2)}, t € [0, T1, such that for all w*inV{ulu(x,t) =0, x € I,, u € H'(2)},

(w*, pii) +a(*, u) = W*, f)+ W*, h)r (5.1a)
(w*, pu(0)) = (u*, pug) (5.1b)
(™, pi(0)) = (u*, pitg), (5.1¢c)

5.2 Developing the Weak Form of the Problem 67

where:

a(u*,u):///Vsu*:C:Vsu d2duyduy,
ITJT IR
W', f) = / / / u* f d2dioduq,
IJT IR
(u*,h)FZ// / u*h dI'duyduy.
IJgJr

The next step is, by means of appropriate finite-dimensional approximations to
S, and V), S,h and V", respectively, to semi-discretize the weak form so as to obtain
the following problem:

given f, g, h,ug and ity find u" (t) = v" + g" € S" (note that g(x,t) = u(x,t)
on I',) such that for every u*" € V",

@*", pi") + a@*", v) = @*", f) + @*", W) — @*", pg") —a@*", g"),

(5.2a)
@*", pv"(0)) = @*", puo) — @*", pg"(0)), (5.2b)
@*", p"(0)) = @*", pitg) — @*", pg"(0)). (5.2¢)

This provides a sort of response surface or parametric solution (thus the name com-
putational vademecum coined in [26]) to the problem (5.1) for any initial conditions.

If we consider direct integration in time (remember that we look for an interac-
tive method, so that this prevents us from using a space-time approach) the sought
displacement field will be approximated in a PGD framework as a finite series of
separable functions,

v (x, 1w, 11p) = [Z F'(x) o G'(ug) o H"(ao)] od(1), (5.3)

i=1

where the nodal coefficients d(¢) carry out all the time-dependency of the solution
and the symbol “o” stands for the entry-wise Hadamard or Schur multiplication of
vectors.

Functions F, G and H will be expressed in terms of low (here, three-) dimensional
finite element basis functions. As usual, these are computed by means of a greedy
algorithm in which one sum is computed at a time, while one product is computed
in a fixed point, alternated directions algorithm. Thus, having an approximation to

v converged at iteration n, the (n 4+ 1)-th term is obtained as

V' (x, 1, g, o) = [Z Fi(x) o G'(ug) o H' (itg) + R(x) o S(uo) o T(ito):|od(t).
i=1

68 5 PGD for Dynamical Problems

By substituting the approximations to v" and w” into the weak form of the
problem, Eq. (5.2), we arrive at a semi-discrete problem. One of the most salient
features of this method relies in its ability of advancing in time using any time in-
tegrator existing in the literature (particularly, energy and momentum conserving
schemes.) Of course, any other parametric dependence, such as the one on the posi-
tion of the applied load, see Chap. 3, can be considered at the same time.

Still one ingredient of the implementation is missing. Instead of considering the
whole time interval]0, 7] we look for the solution within a generic time increment
10, At]:

v:2x10, A1 x I x J x [h~,ht] — R,

where At represents the necessary time to response prescribed by the particular
envisaged application. For instance, for haptic feedback applications, a physically
realistic sensation of touch needs for some 500Hz to 1kHz feedback rate. This
implies to take At on the order of 0.001 seconds. This value At could be smaller
or greater than the necessary time step amplitude needed for stability of the chosen
time integrator.

5.3 Matrix Form of the Problem

5.3.1 Time Integration of the Equations of Motion

As usual, we start from the weak form of the solid dynamic equations, Eq. (5.1), i.e.,
finding the displacement u € H' such that for all u* € H):

/ u*piid 2 +/ Vau* :C:Vuds2 = u*-tdrl. 5.4
2 2 I

Once semi-discretized in space, we can identify a term where a mass matrix appears,
My, = / u' pii"d 2,
2
and a term usually identified as the stiffness matrix
K, = / V" C:vVu'ds.
2

In the sequel we omit, if no risk of confusion exists, the superscript £, so that
all vectors represent the set of nodal unknowns for the problem. For the integration
in time of these equations we have several options. In general you can employ your

http://dx.doi.org/10.1007/978-3-319-29994-5_3

5.3 Matrix Form of the Problem 69

favorite integration scheme. Here we are considering, both for its simplicity and good

results, an energy-momentum conserving scheme developed in [15]. This scheme

has two sub-steps which compute a predictor of the displacement vector at time step

U;4(at/2) in the first one and subsequently a correction u,4 4, in the second sub-step.
The first sub-step has the following form:

Myt ni) + Kty a2y = Frgpa).
Employing classical finite difference approaches for the time derivatives,

Wi (ary2) — Uy

1.4.1+(At/2) = T/“ — Uy,
. _ Wirary — U
Uiy (rr)2) = T/“ —U;.

Applying these expressions to the first sub-step, after some simple algebra, we
obtain the final expression for the sub-step 1:

16 16 8 . .
HE} My + Km:| Ui (AL)2) = Fz+(m/2)+[p} Mm-uz+[E] My -ui+Mp-u;.
(5.5)

The second sub-step has the following form:
My pe + Kntione = Fryp

Again, by employing classical finite differences for the time derivatives,

. u; 417. 37.
Ui pr = — (Ut ar) + | — | Wit e

At | At At
. u; 4 3
Uiy pr = ~ | ar Uit (at)2) T ~r Uty At

By substituting these expressions in the second sub-step, the final formula for the
sub-step 2 that the reader can find in the code included in Sect.5.4 is:

9 19 5 . 28
|:|:m:| My + Km] Upnr = Fropn — [m] My, -u,— [E] Mm'ut+|:m:| My -ts (a2
(5.6)

70 5 PGD for Dynamical Problems

The strategy depicted in the previous section, when applied to the just explained
time integration scheme, implies the construction of a PGD time integrator
able to provide the value of u,; , for any value of u,. In that framework, u,
acts in fact as a parameter. But recall that u, represents the vector of nodal
displacements at time step z. Therefore, it can consist of several millions of
degrees of freedom, something our of reach even for PGD strategies!

In order to develop a suitable strategy, it is therefore of utmost importance
to adequately parameterize the field of initial displacements at the beginning of
the time step. In [41] this is done by employing a reduced-order basis instead of
the traditional finite element one. And to do it by means of Proper Orthogonal
Decompositions. This is explained in detail in what follows.

5.3.2 Computing a Reduced-Order Basis for the Field of
Initial Conditions

For the sake of completeness, we briefly review here the basics of the POD technique
for the computation of a reduced-order basis for the initial displacement field of the
problem. Let us first assume that we have a collection of snapshots, i.e., finite element
results for problems similar to the one at hand. By similar we mean results probably
for the same solid, but possibly under different conditions, applied loads, boundary
conditions, ... We then store these snapshots column-wise in a matrix @ (more
details can be found, for instance, in [54]). The next step is the computation of the
so-called auto-correlation matrix,

c=0 0" (5.7)

It can then be demonstrated that the best possible basis (that capturing the most of
the energy of the system with the minimal number of degrees of freedom) is formed
by the eigenvectors ¢ of the problem

cop=ad.

By storing the nodal values (we assume to have N nodes in the mesh of the model)
of the eigenvectors with the m biggest eigenvalues in a matrix

Pl (x1) P*(x1) - @™ (x1)
¢! (x2) P*(x2) -+ @™ (x2)

31 (xn) B2(xn) - " (xn)

5.3 Matrix Form of the Problem 71

we can therefore project the initial system of equations onto a reduced-order one by
simply doing the change of variable

i=nrb

u ~ Z gti¢i = BCtv
i=1

so that we will finally face a system of 3m equations for ¢, instead of the original
3N for u,. The advantage of this strategy is that usually the number of reduced basis,
rnb « N and therefore the resulting system of equations is generally much smaller.

5.3.3 Projection of the Equations onto a Reduced,
Parametric Basis

For each sub-step within the time integration scheme we compute the PGD approx-
imation to the solution u; (a;/2) and u, . such that,

Ui ne)2) (X, &0 E1v Eps Pas S)

=D NT@F, -NT@¢)F; -N'(G)F, -NTE)F; N (pa)F),, - N (5)F§
i=1

(5.8)

urpne (%, &q, ézv S+ (At)2)s Pas s)
n
=2 N @F NTGOF NTEOF, N Groan)Fy, oy N (0 Fp, - NT@F;

i=1
(5.9)

where x represents the physical space, u; is the vector of displacement degrees of

freedom at time step ¢, &, is the vector of velocity degrees of freedom at time step ¢,
ii,, is the vector of nodal accelerations at time step ¢, #,1.(a;/2) is the vector of nodal
displacements at time step 7 + (At /2), p, is the classical loading parameter, its value
varying continuously in the interval [0, 1]. It allows us to apply or not a load at a
particular time step or to apply a ramp load, for instance. Finally, s represents the
position of the load, as in Chap. 3.

We denote, as in the rest of the book, by N (-) the vector of finite element shape
functions employed to discretize the different dimensions of the problem. Note that
we are considering a solution depending on the physical space x plus a number of
parameters ¢ = [{1, &2, ..., ¢m], Which in this case coincide with the chosen POD
degrees of freedom parameterizing the fields of initial displacements and velocities.
Taking also into account that the density parameter p and the symmetric gradients
V, in Eq. (5.1) depend solely on space coordinates, we can write the mass matrix,
and the stiffness matrix of the problem in separated form as

http://dx.doi.org/10.1007/978-3-319-29994-5_3

72 5 PGD for Dynamical Problems

My, = [/ NT(x>pN(x>d9x} : [/ NT(C])N(§1)d9§1:|
J 2y J 2,

{/ NT(sz(cm)drz{m]‘[/ NT(paw(pu)drzp,l][/ NT(s)N(s)dfzs]
.th J 2 J g

Pa

Km:[/ V.;NWx)CV.;N(x)d%]-[/ N%)N(a)dﬂq]u--
Qx Q{l

U NT@m)N(cm)dsz;,n][/ NT<pa)N<pa>d:2pa][/ NT<s>N(s>d9s].
‘QCm Ql’u Qs

The influence on the solution of the number of parameters m (terms in the POD
basis of the initial conditions) chosen to parameterize the fields of initial conditions
was deeply analyzed in [41].

The PGD final solution uses the PGD solutions for each sub-step, Egs. (5.5) and
(5.6). Starting from ug, 1, and iy (in fact, their projection onto the POD basis!),
by using the first sub-step vademecum we obtain uo, /2. These values are then
introduced in second sub-step vademecum which in turn uses as input parameters
uo, iy and uo > (computed in the first sub-step). The value returned by the second
vademecum is u. We then change the time step, and apply the new input parameters
uy, u; and @ in the first vademecum to obtain #4/,. Again, by using u,, #; and
41,2 we obtain u, by using the second vademecum. This procedure is repeated for
each time step of the simulation. This loop indeed runs under very astringent real
time constraints, such as those of a realistic rendering.

As in previous examples, we assume for simplicity of the exposition, that the
load is of unity module and acts along the vertical axis: £ = e; - §(x — s), where §
represents the Dirac-delta function and e; the unit vector along the z-coordinate axis
on the top of the domain. A more general setting would need for new parameters,
i.e., the components of the load vector, for instance, but it is perfectly possible in the
same framework here explained.

Regarding the matrix structure of the problems given by Egs. (5.5) and (5.6), in
both of them the force vector applied at each time step, F, 4/, and F, | appears.
Like in the parametric problem in Chap. 3, we must consider the load in a separated
form, i.e. a separated sum of products of separated functions,

m
Frrp @80 8 8 pae) = D f4 L LS) fL (5.10)
j=1
A simple way to obtain such a decomposition is to consider as many terms j as

possibl¢ nodal load locations, and to set f 3’;, as the force modulus (here, unity). In
turn, f f)(_ = [0 1]7 for each j, f! = I (the identity matrix) and the rest of vectors

fin, fé , fé = 1, that is, the ones instruction in Matlab, a vector composed by

http://dx.doi.org/10.1007/978-3-319-29994-5_3

5.3 Matrix Form of the Problem 73

ones in every entry. We proceed analogously for the force vector f, . in the second
substep of the time integrator scheme.

In order to completely define the right-hand side vector, let us see how to compute
the others terms in Egs. (5.5) and (5.6). In these formulae, we find terms defined as
a constant value multiplying the mass matrix M, and multiplying ¢, l;'n, Zn and
u,.1. These vectorial parameters should be considered in separated form, so as to
have the following form,

Lo=1o- g gl 1 1 1, -1,
Ey=To1g, - [E0m oG] 1 1, -1,
g, =11y 1y - [Erm] 1, 0,

- i T
Cn+1/2 =1 1;,1 ’ lén ’ [Cﬁ’fﬂ Cz?ffc/z] : lpr -1y,

where vector 1, refers to the ones vector in space direction that satisfies essential
boundary conditions or, equivalently, the ones vector in which entries related to nodes
pertaining to the essential boundary have been replaced by zeros.

In the code reproduced below, these values of the RHS vector are computed for
each reduced basis nrb and at each substep, and are saved in the F R1 and F R2
vectors. So for substep 1,

FRI‘{ =1, [{,;”i" {’”‘”]T -1

n

1; -

&,

FRY =1, -1, - [.. émex] 1

£,
FRUY =1,-1; -1; -[&rin .. &) o1, -1y,

where j = 1, ..., nrb refers to the number in the set of reduced basis.
Equivalently, in substep 2,
j 1 [max T
FR2{ =1, -[¢rm . grer] -1

n

1:

&, g,

FR2 =1,-1, -[¢mn .. gmer]" 1

[
FR2 =1, -1, -1; -[¢rm ... g1

where j refers to the number of reduced basis. We use the same discretization ratio-
nale for u, and u, 1)>.

To solve both substeps so as to generate the multi-parametric solution, we employ
a greedy algorithm, using a fixed-point strategy, so as to compute the new terms in the
sum, represented by Egs. (5.8) and (5.9). If, within the enrichment loop, the solution
is not accurate enough, the already computed approximation is improved by adding
a new separated term

74 5 PGD for Dynamical Problems

N 343s%nrb 34+3%nrb

wpp =y, [] N'arj)Fl,;+ [N arjR,; (5.11)
i=1 j=1 j=1

where N is the number of terms already for the PGD solution. This Eq. (5.11) is
analogous for substep 2, with just changing u,41,> by u,4, and Fl’Varj by F2i/arJ
Finally, Eq. (5.5) is solved in the code written below using the following notation:

3+3s«nrb 34+3xnrb

H R*[[]M,,,+K,,,] Jl:[l R;

34+3%nrb 16 8
11 Rj..[n+1/2+[]M FRlH—[At]M,,,-FRlz—i—Mm-Fng,

N 343xnrb]
S]] T }
(5.12)

where H3+3*nrb R’ represents the weight function, that within the fixed-point strat-

egy takes a different form depending on the particular iteration. Thus if, for instance,
we are computing along the k-th coordinate, assuming the others directions to be
known, we have

34+3xnrb 34+3xnrb
IT &= [] &R (5.13)
Jj=1 j=1.j#k

These variables can be readily identified in the routine enrichment_substepl
by taking into account the following notation,

, 16
matrixl = | — | My,
At?

matrix2 = K,,,
V=F,.);,

16
valuel =|— (M, - FR1,,
At?

8
lue2 =|— | M, - FR1,,
value |:At] . 2

value3 =M, - FR13;,
FV = F1.

5.3 Matrix Form of the Problem 75

For Eq. (5.6), the implemented routine enrichment_substep2 computes

343%nrb 9 343%nrb
*

[5[set] 11

j=1

34+3+nrb
. 19 5 28
=[] R |Furi- 7 | M- FR21 — |~ | My - FR2 + M,, - FR2;
j=1
N 3+3%nrb)
- []M,,,+K} 1 r .
j=1

In turn, HzH*nrb R is defined in Eq. (5.13). The variables can be identified as,

~

9
matrixl = |:—:| M,,,

Ar?
matrix2 = K,
V= Fn+1»
[19
valuel = M, - FR2,,
A A2

(5
value2 = —] M, - FR2,,
At

28
valueld =|— | M,, - FR2;3,
| A2

FV = F2.

In next section the detailed code implmenting this strategy is provided.

5.4 Matlab Code

As always, the code begins by the main.m file, which is reproduced below. In
this case, a series of previous simulations are needed so as to construct the POD
basis referred to in Eq. (5.7). These simulations were carried out by us with
the help of the commercial software Abaqus, although the reader can use his
or her preferred code to do it. Once these simulations are done, and the POD
modes computed, they are stored in memory by means of the instruction WS =
load (’WorkSpaceBeam_REF.mat’, 'Vreal’) ;, see below.

The quality of the final results will obviously depend on the similarity of this POD
basis to the problem being simulated. In general, our experience indicates that with
good basis, the number of POD modes necessary for a good energy conservation
(i.e., avoidance of numerical dissipation) tends to be on the order of 6-8 modes.

76 5 PGD for Dynamical Problems

PGD Code for Dynamic Problem
D. Gonzalez, I. Alfaro, E. Cueto

o

Universidad de Zaragoza
AMB-I3A Dec 2015

9

clear all; close all; clc;

e o

% VARIABLES
global E nu coords tet

Modulus = 10000.0; % Force modulus.
cooru = linspace (-5E1,5E1,300);

Discretization for displacement field.

coorv = linspace (-5E+2,5E+2,300);% Discretization for velocity field.
coora = linspace (-1E+3,1E+3,300); Discretiz on for acceleration field.
deltat = 0.00125; coort = 0:deltat:2; % Time discretization.

TOL = 1.0E-04; % Tolerance.

num_max_iter = 15; % # of summands of the approach.

E = 2E11; nu = 0.3; Rho = 2.5E+04; % Material.

deltatA = 0.00125; % Time step for Reference problem - qus '’ result.
NodeR = NodeC = 104; % Reference nodes to compare PGD solution.

nrb = 1; % Number of directions on reduced basis.
% The PGD sol

% displacement -velocity-acceleration for each reduced POD basis

tion depends on: Space, Load, load parameter and

nv = 3 + 3*nrb; % # of parameters (or variables) for the PGD solution.
% GEOMETRY
coords = load(’'gcoordBeam.dat’); % Nodal coordinate
tet = load(’conecBeam.dat’); % Connectivity list.
Ind = l:size(coords,l); % List of nodes.
bcnode = Ind(coords (:,1l)==min(coords (:,1))); % Boundary: Fix left side.
IndBcnode = sort ([3*(bcnode-1)+1 3*(bcnode-1)+2 3*bcnodel); % D.o.f. BCs.
dof = setxor (IndBcnode,l:numel(coords))’; % D.o.f. Free nodes.
% Make use of triangulation MatLab function to obtain boundary surface.
TR = triangulation (tet, coords) ;
[tf] = freeBoundary (TR); % Dependent of 3D geometry of the boundary.
[tri, coors] = freeBoundary (TR); Independent triangulation of boundary.
IndS = l:size(coors,1l); ncoors = numel (Inds);
STIFNESS COMPUTATION
[rl,r2] = fem3D; r2 = Rho.*r2; Space: Stiffness: r2.
[z1,vu] = elemstiff (cooru); placements.
[wl,vv] = elemstiff (coorv); Velocities.
[sl,val = elemstiff (coora); Accelerations.
vu = repmat(vu,l,ncoors); % Reshape to construct source in separated form.
vv = repmat (vv,1l,ncoors);
va = repmat(va,l,ncoors);
% SOURCE

coorp = l:size(coors,1l); We consider each possible load ¢ tion
% as a different load case.
pl = elemstiff (coorp); % Mass matrix for load parameter: lst wvargout.
% Ident ving local nodes of the loaded surface on the global connectivity.
% To obtain that: coords (IndL,:)-coors = zeros (nn2,1).
[trash, trash2 ,xj] = intersect (IndS,tri(:)); % TRI Local connectivity.
IndL = tf(xj); % TF Global connectivity of the loaded s face (Top).
DOFLoaded = 3*IndL; % Consider vertical load on the top of the beam.
vx = zeros (numel (coords),h ncoors) ;
vx (DOFLoaded, :) = eye(ncoors); Space terms for the source.

Load terms for the sour

vp = eye(ncoors); vp = pl*vp;

ATION OF LOAD PARAMETER

5.4 Matlab Code 77

coorac = [1 2]; % Value to activate the load. Two possibilitie 1-No 2-Yes.
pal = elemstiff (coorac); % Mass matrix for load activation vargout .
vpa = pal*repmat ([0; -Modulus],l,ncoors); % Activation terms for the source
% L DING P.O.D. DA TO CONSTRUCT REDUCED BASIS
WS = load(’'WorkSpaceBeam_REF.mat’, 'Vreal’);

o

Vreal = WS.Vreal; % Loading Displacement field of the reference solution.

% APPLY P.O.D. TECHNIQUE TO OBTAIN

Q = Vreal (dof,:)*Vreal(dof,:)’; [A,lam] = eigs(Q,[],nrb);
% ALLOCATION OF MATRICES AND VECTORS FOR EACH TIME INTEGRATION STEP (1,2)

K1 = cell(nv,1); M1 = K1; V1l = Kl1; Fvl = Kl; FR1 = Kl; coorl = cell(nv,1);
K2 = cell(nv,1); M2 = K2; V2 = K2; Fv2 = K2; FR2 = K2; coor2 = cell(nv,1);

CES

SPACE MATR

00 00 of
H

K1{1} = rl; % > € matrix for SubStep 1.

M1{1l} = r2; % Mass matrix for SubStep

V1i{1l} = vx; % Space term for the source at the SubStep 1.
K2{1l} = rl; M2{1l} = r2; V2{1l} = vx; % SubStep 2.

% LOAD MATRICES

Kl{nv} = pl; % Stiffness matrix contribution of load for SubStep 1.
Ml{nv} = pl; % Mass matrix for SubSt 1.

Vli{nv} = vp; % Load term for the source at the SubStep 1.

coorl{nv} = coorp; % Load Discretization for bStep 1.

K2{nv} = pl; M2{nv} = pl; V2{nv} = vp; coor2{nv} = coorp; % SubStep 2.

o

MATRICES RELATED TO ACTI

TION PARAMETER

Kl{nv-1} = pal; % Stiffness contribution of act.param. for SubStep 1.
Ml{nv-1} = pal; % Mass matrix for SubStep 1.
Vli{nv-1} = vpa; % Activation parameter term for the source, SubStep 1.
coorl{nv-1} = coorac; % Activation parameter discretization for SubStep 1.
K2{nv-1} = pal; M2{nv-1} = pal; V2{nv-1} = vpa; coor2{nv-1} = coorac; =+ 52.
% REDUCED BASIS MATRICES
for i1=2:3:nv-2

% SUBSTEP 1

K1{il} = z1; M1{il} = zl; V1{il} = wvu; coorl{il} = cooru; % U

K1{il+1} = wl; M1{il+1} = wl; V1{il+1l} = vv; coorl{il+l} = coorv; % V

K1{il+2} = s1; M1{il+2} = sl1; V1{il+2} = va; coorl{il+2} = coora; % A

% SUBSTEP 2

K2{il} = zl1l; M2{il} = zl; Vv2{il} = wvu; coor2{il} = cooru; % U

K2{i1l+1} = wl; M2{il+1} = wl; Vv2{il+1l} = vv; coor2{il+l} = coorv; % V

K2{il1l+2} = z1; M2{il+2} = zl; Vv2{il+2} = wvu; coor2{il+2} = cooru; % U/2

% INICIALIZATING PGD SOLUTION

for il=1:nv
Fvl{il} = 0.0.*V1{il}(:,1);
Fv2{il} = 0.0.*V2{il}(:,1);
end

PGD vectors for SubStep 1.

9 oe

PGD vectors for SubStep 2.

% BOUNDARY CONDITIONS

78 5 PGD for Dynamical Problems

Freel = cell(nv,1); Free2 = cell(nv,1);

Freel{l} = dof; Free2{l} = dof; % Free DOF for Space.

for il=2:nv % No BCs for rest of parameters (variables).
Freel{il} = 1l:numel (coorl{il});
Free2{il} = 1l:numel (coor2{il});

end

% Un, Vn, An ... IN SEPARATED FORM FOR INTEGRATION SCHEME

Vn and An in SubStep 1

We have 3*nen terms in the source related to Un,

% and Vn, Un+1/2 and Un for SubStep 2. Follc ng the sort of the variables
% in the PGD solution for bStep 1, Ul_{n+1/2}(Var_1, Var_2,...,

% Var_{nv-1}, r_{nv}), where Var_1l=Spatial Coordinates, Var_{nv-1} =

% Activation Parameter, Var_{nv} = Loads, and Var_(2:3:nv_1) = U_n

% (Displacement in time n), Var_(3:3:nv_1) = V_n (Velocity in time n) and
% Var_(4:3:nv_1) = A_n (Acceleration in time n)

% For the PGD solution for SubStep 2, U2_{n+l1/2}(Var_1, Var_2,...,

% Var_{nv-1}, Var_{nv}), where Var_l=Spatial Coordinates, Var_{nv-1} =

% Activation Parameter, r_{nv} = Loads, and Var_(2:3:nv_1) =

% (Displacement in time n), Var_(3:3:nv_1) = V_n (Velocity in time n) and

Var_(4:3:nv_1) = U_{n+1/2} (Displacement in time n + 1/2).

% IMPORTANT: To obtain U_n and V_n variables in SubStep 1 (for instance) in
% separated form we consider that:

= 1_{space} 1 1_{velocity} 1_{acceleration} 1_{activation} 1_{load}

= 1_{space} 1_{displac.} V_n 1_{acceleration} 1_{activation} 1_{load}

FR1{1l} = zeros(size(Fvl{1l},1),nv-3); FR2{1l} = zeros(size(Fv2{1l},1),nv-3);
for il=2:nv

FR1{il} = ones(size(Fv1l{il},1),nv-3);

FR2{1il} = ones(size(Fv2{il},1),nv-3);
end

for il1l=1:3 % 3 terms per # reduced basis.

FR1{1}(dof,il1:3:end) = A; % Projection space onto Reduced basis
FR2 {1} (dof,il:3:end) = A;
end
for il=2:nv-2
FR1{il}(:,1i1-1) = coorl{il}’'; % U n, V.n, A n.
FR2{il}(:,i1-1) = coor2{il}’; % U n, V.n, U {n+1/2}.
end

% ENRICHMENT OF THE APPROXIMATION: SUBSTEP 1

num_iterl = 0; Error_iter = 1.0; iter = zeros (l); Aprt = 0;
while Error_iter>TOL && num_iterl<num_max_iter
num_iterl = num_iterl + 1; RO = cell(nv,1);
for il=1:nv
RO{il} = ones(size(Fvl1{il},1),1); % Initial guess for R, S,
end;
RO{1} (IndBcnode) = 0; % We impose initial guess for spacial coordinates

ENRICHMENT STEP

[

R,iter (num_iterl)] = enrichment_substepl (K1,M1,Vl,num_iterl, Fvl,RO,...
FR1,Freel, deltat);

for il=1:nv, Fv1{il}(:,num_iterl) = R{1il}; end % R is wvalid, add it.

% STOPPING CRITERION

Error_iter = 1.0;

for il=1:nv
Error_iter = Error_iter.*norm(Fv1{il}(:,num_iterl));

end

Aprt = max (Aprt,sqgrt (Error_iter));

if num_iterl>nrb, Error_iter = sqrt(Error_iter)/Aprt; end

fprintf (1, 'SubStep-l:_%dst_summand._in.%d.’,num_iterl, iter (num_iterl));
fprintf (1, 'iterations_with_.a_-weight_of_%f\n’, sqgrt (Error_iter));

5.4 Matlab Code 79

fprintf (1, '\n’);
% ENRICHMENT OF THE APPROXIMATION: SUBSTEP 2
num_iter2 = 0; Error_iter = 1.0; iter = zeros (l); Aprt = 0;
while Error_iter>TOL && num_iter2<num_max_iter
num_iter2 = num_iter2 + 1; RO = cell(nv,1);
for il=1:nv

RO{il} = rand(size(Fv2{il},1),1); Initial guess for R, S,

end
RO{1} (IndBcnode) = 0;

le impose init gue for spacial coordinates

ENRICHMENT STEP

[R,iter (num_iter2)] = enrichment_substep2 (K2,M2,V2,num_iter2 ,Fv2,R0, ...
FR2 ,Free2,deltat);
for il=1:nv, Fv2{il}(:,num_iter2) = R{1il}; end % R is wvalid, add it.

% STOPPING CRITERION

Error_iter = 1.0;
for il=1:nv
Error_iter = Error_iter.*norm(Fv2{il}(:,num_iter2));
end
Aprt = max (Aprt,sqgrt (Error_iter));
if num_iter2>nrb, Error_iter = sqgrt(Error_iter)/Aprt; end

fprintf (1, 'SubStep-2:_%dst_summand_in_%d.’,num_iter2, iter (num_iter2));
fprintf (1, 'iterations_.with_,a_weight_of_%f\n’, sqrt (Error_iter));

end

fprintf (1, 'PGD_Process._exited_normally\n\n"’);

save ('WorkSpacePGD_Dynamic.mat ') ;

% POST-PROC

SING

erence solution for the node No

figure; % Plotting re eR
plot (0:deltatA:deltatA*(size (Vreal,h2)-1),Vreal (3*(NodeR-1)+3,:),...
'b-','LineWidth’ ,2.5); % Reference solution for vertical displacement

% ALLOCATE MEMORY FOR SUBSTEP SOLUTION VECTORS

rameter
+ KAU_{n+

cell(nv,1); 2% lal values for each

need to compute SUBSTEP 1:

_{n+1/

N
I

|
+
S

% and A_{n+1/2} = 4*(V_{n+1/2}-V_n)/Deltat -

% and V_{n+1/2} = 4*(U_{n+1/2}-U_n)/Deltat - V_

Disp2 = zeros (nrb,numel (coort)); % ALl ate mem vy for
Vel2 = zeros (nrb,numel (coort)); % Allocate memory for
Acel2 = zeros (nrb,numel (coort)); Allocate memory for
% We need to compute SUBSTEP 2: MUA_{n+1} + KQU_{n+1}

% and A_{n+1} = V_n/Deltat - 4*V_{n+1/2}/Deltat + 3*V_
% and V_{n+l1l} = U_n/Deltat 4*U_{n+1/2}/Deltat + 3*U
Disp = zeros (nrb,numel (coort)); % Allocate memory for
Vel = zeros (nrb,numel (coort)); % Allocate memory for V
Acel = zeros (nrb,numel (coort));% Allocate memory for A
% We compute U_n,V_n,... onto reduced basis. We back
RealDisp2 = zeros (numel (coords), numel (coort));

RealDisp = zeros (numel (coords), numel (coort)) ;

% INITIAL V

LUES FOR DISPLACEMENT FIELD

Ai = pinv(A); % Pseudo-inverse P.0O.D. matrix.

% lst and 2nd displacement field for t = 0 and t = deltat from reference
% solution to start the simulation.

RealDisp (dof,1:2) = Vreal(dof,1:2).*deltat./deltath;

% We project these first two displacements onto reduced basis.
Disp(:,1:2) = Ai*RealDisp(dof,1:2).*deltat./deltath;

% We interpolate the reference solution for 1:21+1/2 steps.
Disp2(:,1) = Ai*((Vreal (dof,1l) + Vreal(dof,2))/2).*deltat./deltath;

80

Disp2(:,2) = Ai*((Vreal(dof,2) + Vreal(dof,3))/2).*deltat./deltath;

REAL - 1T

for k2=3:numel (coort)

% AP
for
end
Mv {n
if ¢
else

else

end

% 2}
% {n+1 1 Del - A_n
% and {n+1 2}-U_n)/Delt n
Disp2(:,k2) = Ai*RealDisp2 (dof,k2); % Project onto reduced bas
Vel2(:,k2) = 4*(Disp2(:,k2)-Disp(:,k2-1))/deltat - Vel(:,k2-1)
Acel2 (:,k2) = 4*(vel2(:,k2)-Vel(:,k2-1))/deltat - Acel(:,k2-1);
s APPLY SU P
for il1=2:3:nv-2

Mv{il+2} = evaluate_shpfunc(coor2{il+2},Disp2 ((il1+1)/3,k2));
end
Mv{nv} = evaluate_shpfunc (coorl{nv}, NodeC); * NodeC .
if coort(k2)<0.25

Mv{nv-1} = [0; 1]; the act. ameter
elseif coort(k2)>=0.5 the

Mv{nv-1} = [1; 0]; of the act. parameter
else % Ramp cC

Mv{nv-1}(2) = (0.5-coort(k2))/0.25;

Mv{nv-1} (1) = 1-Mv{nv-1}(2); % Value of
end
% OMPUTE PGD 2 SOLUTION
for kl=1l:num_iter2

value2 = Fv2{1l} (dof,6 kl);

for jl=2:nv, value2 = value2.*(Mv{jl}'*Fv2{jl}(:,kl)); end

RealDisp (dof,k2) = RealDisp (dof,k2) + value2;

TI

5 PGD for Dynamical Problems

IME ,O00P FOR TIME INTEGRATION

PLY SU

il=2:3:nv-2

Mv{il} = evaluate_shpfunc(coorl{il},Disp((il1+1)/3,k2-1));

Mv{il+1l} = evaluate_shpfunc(coorl{il+1},Vel ((i1+1)/3,k2-1));

Mv{il+2} = evaluate_shpfunc(coorl{il+2},Acel ((i1l+1)/3,k2-1));

v} = evaluate_shpfunc(coorl{nv},NodeC); % Load case NodeC.

oort (k2)-deltat/2<0.25

Mv{nv-1} = [0; 1]; % Value of the for act. parameter

if coort(k2)-deltat/2>=0.5 % Time vanishes

Mv{nv-1} = [1; 0]; % Va € the act. parameter
Ramp c

Mv{nv-1}(2) = (0.5-(coort(k2)-deltat/2))/0.25;

Mv{nv-1}(1l) = 1-Mv{nv-1}(2); % Value of the ape function

STEP 1 SOLUTION

kl=1l:num_iterl

valuel = Fvl1{1l}(dof, kl);

for jl=2:nv, valuel = valuel.*(Mv{jl}’'*Fv1{jl}(:,k1)); end
RealDisp2 (dof,k2) = RealDisp2 (dof,k2) + valuel;

ME SCHEME

ME SCHEME SUBSTEP 2

1}/Deltat

5.4 Matlab Code 81

3 and V_{n+1} = U_n/Deltat 4*U_{n+1/2}/Deltat 3*U_{n+1}/Delta
Disp(:,k2) = Ai*RealDisp (dof,h k2); Project onto reduced basics
Vel (:,k2) = Disp(:,k2-1)/deltat - 4*Disp2(:,k2)/deltat + ...
3*Disp (:,k2)/deltat;
Acel(:,k2) = Vel(:,k2-1)/deltat - 4*Vel2(:,k2)/deltat + ...
3*vVel (:,k2)/deltat;
end
PLOT PGD FINAL SOLUTION AND COMPARE WITH THE REFERENCE SOLUTION
hold on; plot(coort,RealDisp (3*(NodeR-1)+3,:), 'm--', 'LineWidth’ ,2.5);

save ('WorkSpacePGD_Dynamic.mat ') ;
fprintf (1, '\n#####aEnd_of_simulation_#####\n\n’);

This just presented code reads nodal coordinates and connectivity list from files
gcoordBeam.dat and conecBeam. dat, respectively. If, after the execution of
the program, one types

» trisurf(tri,coors(:,1),coors(:,2),coors(:,3));

» axis equal

in Matlab’s command line, a plot of the finite element model of the beam is
obtained, see Fig.5.2.

As in previous examples, the code calls to the subroutine elemsti £ f . m, which
is reproduced below.

Fig. 5.2 Finite element mesh for the beam dynamics problem. The beam is assumed to be encastred
aty =0

82 5 PGD for Dynamical Problems
function [pl,p2] = elemstiff (coor)
nen = numel (coor) ;
pl = zeros(nen); p2 = zeros(nen,l);
X = coor(l:nen-1)'; Y = coor (2:nen)’;
L =Y - X;
sg = [-1.0/sgrt(3.0) 1.0/sqgrt(3.0)]; wg = ones(2,1);
npg = numel (sg);
for il=1:nen-1
¢ = zeros(l,npg); c(l,:) = 0.5.*%(1.0-sg).*X(11) + 0.5.*(1.0+sg).*Y(il)
N = zeros(nen,npg);
N(il+1l,:) = (c(1,:)-X(1i1))./L(il); N(il,:) = (Y(il)-c(1,:))./L(il);
for jl=1:npg
pl = pl + N(:,3j1)*N(:,31) "*0.5.*wg(j1l).*L(il);
p2 = p2 + N(:,31).*0.5.*wg(j1).*L(il);
end
end
return
Our particular implementation of the method makes use of the energy and
momentum conserving algorithm by Bathe [15]. This algorithm makes

use of a predictor-corrector algorithm, whose first sub-step is
enrichment_substepl, reproduced here:

included in routine

while abs (error)>TOL

Raux = R;
for il=1:nv
matrixl = 16.0/deltat/deltat;
matrix2 = 1.0;
for jl=1l:nv
if jl~=i1l
matrixl = matrixl.*(R{j1} *M{jLl}*R{j1});
matrix2 = matrix2.*(R{J1} "*K{j1}*R{jl});
end
end
matrix = M{il}.*matrixl + K{il}.*matrix2;
source = 0.0;
for kl=1l:size(V{1l},2)

sourceval = 1.0;
for jl=1l:nv
if jl~=i1
sourceval =

function [R,iter] = enrichment_substepl (K,M,V,num_iter b FV,
iter = 1; TOL = 1.0E-4; error = 1.0;

nv = size(FV,1);

mxit = 11;

sourceval . * (R{j1} '*V{jl}(:

R,FR,CC,deltat)

k1))

5.4 Matlab Code 83

end
end
source = source + sourceval.*V{il}(:,k1);
end
for kl1=1:3:(nv-3)
valuel = 16/deltat/deltat;
value2 = 8/deltat;

value3 = 1.0;
for jl=1l:nv
if §l~=i1
valuel = valuel.*(R{j1}"*M{J1}*FR{j1}(:,k1l));
value2 = value2.* (R{J1}'"*M{J1}*FR{Jj1}(:,k1+1));
value3 = value3 .* (R{J1}'"*M{J1}*FR{Jj1}(:,k1+2));

end

end

source = source + valuel .* (M{il}*FR{il}(:,k1)) +
value2 . * (M{1i1}*FR{i1} (:,k1+1)) +
value3 . * (M{i1}*FR{i1} (:,kl1l+2));

for i2=1:num_iter -1

valuel = 16/deltat/deltat;
value2 = 1.0;
for jl=1l:nv
if jl~=i1
valuel = valuel.* (R{j1} '"*M{31}*FV{j1l}(:,1i2));
value2 = value2.* (R{Jjl} "*K{Jj1l}*FV{jl}(:,1i2));
end
end
source = source - (M{il}*FV{il}(:,1i2)).*valuel -
(K{i1}*FV{il}(:,1i2)).*value2;
end
R{i1}(CC{il}) = matrix(CC{il},CC{il})\source(CC{il});
end
error = 0;

for jl=1:nv

error = error + norm(Raux{jl}-R{jl});
end
error = sqgrt(error);
iter = iter + 1;
if iter==mxit, error = 0.0; end
end
return

In turn, we reproduce here the second sub-step of the time integration algorithm
proposed by Bathe [15]. Remember that you can use in this framework your favorite
time integration scheme (Newmark, HHT, ...)

function [R,iter] = enrichment_substep2(K,M,V,num_iter ,FV,R,FR,CC,deltat)
iter = 1; TOL = 1.0E-4; error = 1.0;

nv = size(FVv,1);

mxit = 11;

84

Raux

= R; ting R (S
for il=1:nv
MATRIX COMPUTATIO!
matrixl = 9.0/deltat/deltat; t ut n
matrix2 = 1.0; % Constant of
for jl=1:nv
if jl~=il
matrixl = matrixl.*(R{J1} ' *M{J1}*R{j1l});
matrix2 = matrix2.* (R{j1}’ *K{JL}*R{j1l});
end
end
matrix = M{il}.*matrixl + K{il}.*matrix2;
SOURCE COMPUTATION
source = 0.0;
for kl=1l:size(V{1l},2) oop over yumber of functions of the source
sourceval = 1.0;
for jl=1l:nv
if §le~=i1l
sourceval = sourceval.*(R{j1}'*V{jl}(:,kl));
end
end
source = source + sourceval.*V{il}(:,k1l);
end
for kl1=1:3:(nv-3)
valuel = 19/deltat/deltat; n
value2 = 5/deltat; Co ant t
value3 = 28/deltat/deltat; .
for jl=1l:nv
if jl~=i1
valuel = valuel.* (R{j1} '"*M{Jj1}*FR{j1}(:,k1l));
value2 = value2.* (R{j1}’'*M{Jj1}*FR{j1l}(:,k1l+1));
value3 = value3.*(R{Jj1} "*M{j1}*FR{Jj1}(:,kl+2));
end
end
source = source - valuel.* (M{il}*FR{il}(:,k1l)) -
value2 . * (M{1i1}*FR{1i1} (:,kl+1)) +...
value3 . * (M{il}*FR{il} (:,k1+2));
end
CONTRIBUTION TO F KN NG SOLUTION
for i2=1:num_iter-1
valuel = 9/deltat/deltat; ution
value2 = 1.0; % Cons of
for jl=1l:nv
if §l~=i1l
valuel = valuel .*(R{J1}"*M{J1}*FV{jl}(:,12));
value2 = value2.* (R{J1} "*K{J1}*FV{Jjl}(:,12));
end
end
source = source - (M{il}*FVv{il}(:,1i2)).*valuel -
(K{il}*FVv{il}(:,12)).*value2;
end
OLVE THE R{ } VARIABLE
R{il}(cC{il}) = matrix(CC{il},CC{il})\source(CC{il});

5 PGD for Dynamical Problems

5.4 Matlab Code 85

error = 0;
for jl=1:nv
error = error + norm(Raux{jl}-R{jl});
end
error = sqgrt(error);
iter = iter + 1;
if iter==mxit, error = 0.0; end
end
return

In subroutine fem3D.m we accomplish traditional FE computations regarding
stiffness matrix, etc., for linear tetrahedrons.

function [A,N] = fem3D

global E nu coords tet

dof = 3;
numNodos = size(coords,h1);
numTet = size(tet,1);
A = zeros (dof*numNodos); N = zeros (dof*numNodos) ;
D = zeros(6); cte = E*(l-nu)/(l+nu)/(1-2*nu);
D(1) = cte; D(8) = D(1); D(15) = D(1)
D(2) = cte*nu/(l-nu); D(3) = D(2); D(7) = D(2); D(9) = D(2); D(13) = D(2);
D(14) = D(2); D(22) = cte*(1l-2*nu)/2/(l-nu); D(29) = D(22); D(36) = D(22);
sg = zeros(3,4); wg = 1./24.*ones (4,1); nph = numel (wg);
a = (5.0 - sgrt(5))/20.0; b= (5.0 + 3.0*sgrt(5))/20.0;
sg(:,1) = [a; a; al; sg(:,2) = [a; a; bl;
sg(:,3) = [a; b; al; sg(:,4) = [b; a; al;
for il=1:numTet
elnodes = tet (il,:);
xcoord = coords (elnodes, :);
K = zeros(dof*4); KK = zeros (dof*4);
vl = xcoord(l,:)-xcoord(2,:); v2 = xcoord(2,:)-xcoord(3,:);
v3 = xcoord(3,:)-xcoord(4,:);

jcob = abs(det ([vl;v2;v31]));

al = det ([xcoord(2,:); xcoord(3,:); xcoord(4,:)1);

a2 = -det ([xcoord(1l,:); xcoord(3,:); xcoord(4,:)]);

a3 = det ([xcoord(1l,:); xcoord(2,:); xcoord(4,:)1);

a4 = -det ([xcoord(l,:); xcoord(2,:); xcoord(3,:)]);

bl = -det ([l xcoord(2,2:end); 1 xcoord(3,2:end); 1 xcoord(4,2:end)]);
b2 = det ([1 xcoord(l,2:end); 1 xcoord(3,2:end); 1 xcoord(4,2:end)]);
b3 = -det ([l xcoord(l,2:end); 1 xcoord(2,2:end); 1 xcoord(4,2:end)]);
b4 = det ([l xcoord(l,2:end); 1 xcoord(2,2:end); 1 xcoord(3,2:end)]);
cl = det ([l xcoord(2,1) xcoord(2,end); 1 xcoord(3,1) xcoord(3,end);...

1 xcoord(4,1) xcoord(4,end)]);
c2 = -det ([l xcoord(1l,1) xcoord(l,end); 1 xcoord(3,1) xcoord(3,end);...

86

5 PGD for Dynamical Problems

1 xcoord(4,1) xcoord(4,end)]);
c3 = det ([l xcoord(l,1) =xcoord(l,end); 1 xcoord(2,1) xcoord(2,end);...
1 xcoord(4,1) =xcoord(4,end)]);
c4d = -det ([l xcoord(l,1) =xcoord(l,end); 1 xcoord(2,1) xcoord(2,end) ;...
1 xcoord(3,1) xcoord(3,end)]);
dl = -det ([l xcoord(2,l:end-1); 1 xcoord(3,l:end-1);...
1 xcoord(4,1l:end-1)1);
d2 = det ([1 xcoord(l,l:end-1); 1 xcoord(3,l:end-1);...
1 xcoord(4,l:end-1)1);
d3 = -det ([1 xcoord(l,l:end-1); 1 xcoord(2,l:end-1);...
1 xcoord(4,l:end-1)1);
d4 = det ([l xcoord(l,l:end-1); 1 xcoord(2,l:end-1);...
1 xcoord(3,1l:end-1)1);
INTEGRATION POINTS LOOP
for jl=1:nph
chi = sg(3*(31-1)+1);
eta = sg(3*(jl-1)+2);
tau = sg(3*j1);
GEOMETR APPROA
SHPa (4) = tau;
SHPa (3) = eta; SHPa(2) = chi; SHPa(l) = 1.-chi-eta-tau;
chiG = 0.0; etaG = 0.0; tauG = 0.0;
for kl=1:4
chiG = chiG + SHPa (kl)*xcoord(kl,1);
etaG = etaG + SHPa(kl)*xcoord(kl,2);
tauG = tauG + SHPa (kl)*xcoord(kl,k3);
end
APE FUNCTION MPUTATION
SHP (1) = (al + bl*chiG + cl*etaG + dl*tauG)/jcob;
dSHPx (1) = bl/jcob; dSHPy (1) = cl/jcob; dSHPz (1) = dl/jcob;
SHP (2) = (a2 + b2*chiG + c2*etaG + d2*tauG)/jcob;
dSHPx (2) = b2/jcob; dSHPy (2) = c2/jcob; dSHPz (2) = d2/jcob;
SHP (3) = (a3 + b3*chiG + c3*etaG + d3*tauG)/jcob;
dSHPx (3) = b3/jcob; dSHPy (3) = c3/jcob; dSHPz (3) = d3/jcob;
SHP (4) = (a4 + bd*chiG + cd4*etaG + d4*tauG)/jcob;
dSHPx (4) = b4/jcob; dSHPy (4) = c4/jcob; dSHPz (4) = d4/jcob;
B MATRIX COMPUTATIODN
B = [dSHPx (1) 0 0 dSHPx(2) 0 0 dSHPx(3) 0 0 dSHPx(4) 0 0;
0 dsSHPy (1) 0 0 dSHPy (2) 0 0 dSHPy (3) 0 0 dSHPy(4) 0;...
0 0 dsSHPz (1) 0 O dsHPz (2) 0 0 dSHPz (3) 0 0 dSHPz (4);...
dSHPy (1) dSHPx (1) 0 dSHPy (2) dSHPx(2) 0 dSHPy (3) dSHPx(3)...
0 dSHPy (4) dSHPx (4) 0;...
dsSHPz (1) 0 dSHPx (1) dSHPz (2) 0 dSHPx (2) dSHPz (3) 0 dSHPx(3)...
dSHPz (4) 0 dSHPx (4);...
0 dSHPz (1) dSHPy (1) 0 dSHPz (2) dSHPy (2) 0 dSHPz (3) dSHPy (3)...
0 dsHPz (4) dSHPy (4)]1;
MA MA
M = [SHP(1) O O; O SHP(1) O0; O O SHP(1l); SHP(2) 0 O; O SHP(2) 0;...
0 0 SHP(2); SHP(3) 0 0; O SHP(3) 0; 0O O SHP(3); SHP(4) 0 0;...
0 SHP(4) 0; 0O O SHP(4)]"’;
K = K + B'*D*B*jcob*wg(jl); Elemen S fness a
KK = KK + M’'*M*jcob*wg (jl); Element Ma
end
system deg f freedom associated wi nt .
index = [3*elnodes-2;3*elnodes-1;3*elnodes];
index = reshape(index,1l,4*dof);
Assembling of the system iffne matrix.

5.4 Matlab Code 87

A(index, index) = A(index, index) + K;
N (index, index) = N(index, index) + KK;
end
return

Function evaluate_shpfunc.m computes finite element one-dimensional
shape functions.

function S = evaluate_shpfunc (coor, cx)

tam = numel (coor) ;
TOL = 1.0E-8;
S = zeros(tam,1);
idx = 0;
for il=1:numel (coor)-1
if coor (il)-TOL<=cx && coor (il+1l)>=cx
idx = i1l;
break;
end
end

if idx~=tam && idx~=0

L = coor (idx+1)-coor (idx);
S(idx+1) = (cx-coor (idx))/L;
S(idx) = (coor (idx+1l)-cx)/L;
elseif idx==0
S(1) = 1.0;
disp(’It-is_possible_that.discretization_is_-not_enough’);
else
S(tam) = 1.0;
end
return

This same code has been employed, for instance, to generate an interactive web
page that makes use very efficiently of the PGD concepts. It can be found at http://
amb.unizar.es/beamdyn.htm. It represents, see Fig. 5.4, a linear elastic beam that can
be interactively manipulated with the aid of the mouse. It places a vertical, unitary
load on the upper surface of the beam. It can be noticed how the very efficient
time integration algorithms employed for its construction make it possible to remain
vibrating for very long times with minimal numerical dissipation.

Execution of the program produces a window with the tip displacement, see
Fig.5.3. Minimal deviation with respecto to the full-order problem solution is ob-
tained. In any case, higher accuracy can be obtained by employing more POD modes,
for instance.

http://amb.unizar.es/beamdyn.htm
http://amb.unizar.es/beamdyn.htm

i“

||||||||||
I S

5.4 Matlab Code 89

Fig. 5.4 Web implementation of the algorithm here described so as construct an interactive simu-
lator. It represents a linear elastic beam. With the help of the mouse a vertical load is placed on the
upper surface of the beam. It can be downloaded from http://amb.unizar.es/beamdyn.htm

http://amb.unizar.es/beamdyn.htm

	5 PGD for Dynamical Problems
	5.1 Taking Initial Conditions as Parameters
	5.2 Developing the Weak Form of the Problem
	5.3 Matrix Form of the Problem
	5.3.1 Time Integration of the Equations of Motion
	5.3.2 Computing a Reduced-Order Basis for the Field of Initial Conditions
	5.3.3 Projection of the Equations onto a Reduced, Parametric Basis

	5.4 Matlab Code

