
Chapter 3
Parametric Problems

We have a habit in writing articles published in scientific
journals to make the work as finished as possible, to cover all
the tracks, to not worry about the blind alleys or to describe how
you had the wrong idea first, and so on. So there isn’t any place
to publish, in a dignified manner, what you actually did in order
to get to do the work.

—Richard Feynmann

Abstract This chapter develops the application of PGD methods for parametric
problems, their natural field of application.

Parametric problems constitute perhaps the most relevant application of Proper
Generalized Decomposition methods. Initially aimed at solving problems defined
within a high dimensional phase space [6], PGD soon revealed an impressive ability
to solve in the same setting parametric problems by just considering parameters as
new dimensions, a sort of parametric phase space [27].

In this chapter we explore precisely these capabilities. Since they have also been
included in a number of previous references, notably in former books (see [28],
Chap. 5), we focus here on a particular instance of parametric problems: that of
moving loads.

3.1 A Particularly Challenging Problem: A Moving Load
as a Parameter

An influence line is a graphical representation of a given magnitude (a bending
moment, for instance) at a given point of a beam caused by a unit load moving
along the span of that beam. This concept has helped engineers through the years
to design beam structures in an efficient manner. One can imagine, however, an
extension of the concept of influence line to general, three-dimensional solids. This
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Fig. 3.1 An application of the influence line concept for a hyperelastic beam. You can play inter-
actively with the beam by just placing the load with your finger on a tablet. A web-based version
of this same app can be reached at http://amb.unizar.es/barra03.htm

would give rise to a sort of response surface in which particularizing the parameter
(the position of the load) provides in an immediate way the response of the solid
(its deformed configuration, in this case). This sort of influence line has potentially
many applications in science and engineering for real-time simulation in fields such
as computational surgery [55], decision taking, or even augmented learning [60], see
Fig. 3.1.

In fact, this problem has been frequently thought of as non separable, i.e., that the
number of modes needed to express the solution is so big, that no gain is obtained
by applying any kind of model order reduction technique and therefore it is better
to simply simulate it in a straightforward manner, by finite element methods or any
other numerical technique of your choice.

However, it can be easily found that this is not true. Consider the influence line
sketched in Fig. 3.2. We consider a clamped beam with a moving load and try to
compute its deformed configuration for the load acting at any point. In fact, by
applyingProperOrthogonalDecomposition techniques to the results, it can readily be
seen that the number of modes or shape functions needed to express this solution v =
v(x, s) is in fact limited, see Fig. 3.3. Here, v denotes here the vertical displacement
of the beam, x the particular point of the beam in which we want to know this
displacement and s the position of the load,

As can be noticed from Fig. 3.3 (left), the eigenvalues decrease fast after a reason-
able number of eigenmodes. Thus, even if we need to consider every possible load
position, the number of functions needed to express the parametric solution is in fact
reasonably limited.

http://amb.unizar.es/barra03.htm
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Fig. 3.2 A clamped beam with a moving load

Fig. 3.3 (Left) resulting eigenvalues for the clamped beam problem and (right) first modes of the
solution

3.2 The Problem Under the PGD Formalism

As will be noticed, under the PGD formalism, the influence line problem becomes
simple. We generalize this problem so as to find the displacement field u(x, y, z) at
any point of a three-dimensional solid Ω , for any load position s ∈ Γ̄ ⊂ ∂Ω .

Under these assumptions, the weak form of the problemwill result after multiply-
ing the strong form by an arbitrary test function u∗ and integrating over the region
occupied by the solid, Ω , and the portion of its boundary which is accessible to the
load, Γ̄ . It therefore consists in finding the displacement u ∈ H1 such that for all
u∗ ∈ H1

0: ∫
Γ̄

∫
Ω

∇s u∗ : σdΩdΓ̄ =
∫

Γ̄

∫
Γt2

u∗ · tdΓ dΓ̄ (3.1)

where Γ = Γu ∪Γt represents the essential and natural portions of the boundary, and
where Γt = Γt1 ∪ Γt2, i.e., regions of homogeneous and non-homogeneous, respec-
tively, natural boundary conditions. We assume, for simplicity of the exposition, that
the load is of unity module and acts along the vertical axis: t = ek · δ(x − s), where
δ represents the Dirac-delta function and ek the unit vector along the z-coordinate
axis.
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The Dirac-delta term needs to be approximated by a truncated series of separable
functions in the spirit of the PGD method, i.e.,

t j ≈
m∑

i=1

f i
j (x)gi

j (s) (3.2)

where m represents the order of truncation and f i
j , gi

j represent the j-th component
of vectorial functions in space and boundary position, respectively.

The PGD approach to the problem consists in finding, in a greedy way, a finite
sum of separable functions to approach the solution. Assuming that, at iteration n of
this procedure, we have converged to such an approximation, we have

un
j (x, s) =

n∑
k=1

Fk
j (x) · Gk

j (s), (3.3)

where the term u j refers to the j th component of the displacement vector, j = 1, 2, 3
and functions Fk and Gk represent the separated functions used to approximate the
unknown field, obtained in previous iterations of the PGD algorithm.

If this rank-n approximation does not give the desired accuracy, we can proceed
further and look for the (n + 1)th term, that will look like

un+1
j (x, s) = un

j (x, s) + R j (x) · Sj (s),

where R(x) and S(s) are the sought functions that improve the approximation.
By just applying standard rules of variational calculus, the test function will be

u∗
j (x, s) = R∗

j (x) · Sj (s) + R j (x) · S∗
j (s).

To determine the new functions R and S any linearization strategy could in prin-
ciple be applied. In our experience, a fixed-point algorithm in which functions R
and S are determined iteratively gives very good results, even if convergence is not
guaranteed, as is well known. We provide details of this strategy in the next section.

3.2.1 Computation of S(s) Assuming R(x) Is Known

In this case, the admissible variation of the displacement will be given by

u∗
j (x, s) = R j (x) · S∗

j (s),

or, equivalently, u∗(x, s) = R◦S∗, where the symbol “◦” denotes the so-called entry-
wise, Hadamard or Schur multiplication for vectors. Once substituted into Eq. (3.1),
gives
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∫
Γ̄

∫
Ω

∇s(R ◦ S∗) : C : ∇s

(
n∑

k=1

Fk ◦ Gk + R ◦ S

)
dΩdΓ̄ =

∫
Γ̄

∫
Γt2

(R ◦ S∗) ·
(

m∑
k=1

f k ◦ gk

)
dΓ dΓ̄ ,

(3.4)
or, simply

∫
Γ̄

∫
Ω

∇s(R ◦ S∗) : C : ∇s(R ◦ S)dΩdΓ̄

=
∫

Γ̄

∫
Γt2

(R ◦ S∗) ·
(

m∑
k=1

f k ◦ gk

)
dΓ dΓ̄ −

∫
Γ̄

∫
Ω

∇s
(
R ◦ S∗) · RndΩdΓ̄ ,

where Rn represents:
Rn = C : ∇s un.

Since the symmetric gradient operates on spatial variables only, we have:

∫
Γ̄

∫
Ω

(∇s R ◦ S∗) : C : (∇s R ◦ S)dΩdΓ̄

=
∫

Γ̄

∫
Γt2

(R ◦ S∗) ·
(

m∑
k=1

f k ◦ gk

)
dΓ dΓ̄ −

∫
Γ̄

∫
Ω

(∇s R ◦ S∗) · RndΩdΓ̄

where all the terms depending on x are known. Therefore, all integrals over Ω and
Γt2 (support of the regularization of the initially punctual load) can be computed to
obtain an equation for S(s).

3.2.2 Computation of R(x) Assuming S(s) Is Known

By proceeding in the same way, we have

u∗
j (x, s) = R∗

j (x) · Sj (s),

which, once substituted into Eq. (3.1), gives

∫
Γ̄

∫
Ω

∇s(R∗ ◦ S) : C : ∇s

(
n∑

k=1

Fk ◦ Gk + R ◦ S

)
dΩdΓ̄ =

∫
Γ̄

∫
Γt2

(R∗ ◦ S) ·
(

m∑
k=1

f k ◦ gk

)
dΓ dΓ̄ .

Conversely, all the terms depending on s (load position) can be integrated over Γ̄ ,
leading to a generalized elastic problem to compute function R(x).
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3.3 Matrix Structure of the Problem

As stated before, see Eq. (3.3), the essential ingredient of PGDmethods is to assume
the variable (here, the displacement field) to be decomposed in the form of a finite
sum of separable functions, i.e.,

u(x, s) =
n∑

i=1

Fi (x) ◦ Gi (s),

where a dependency on the physical position of the considered point, x and the
position of the applied load, s is assumed.

In the implementation introduced in Sect. 3.4 below, we enforce functions Gi to
have unity norm. By doing that, the weighting parameter αi (see Eq. (2.2) is not
computed explicitly, but assumed to multiply the Fi functions (which, therefore, do
not have unity norm).

As in the previous chapter, Fi (x) and Gi (s) are approximated by employing
(linear in this case) finite elements, so that, at iteration n, the i-th sum of the approx-
imation will be given by

uh(x, s) =
n∑

i=1

Fi (x) · Gi (s) =
n∑

i=1

[
NT (x)Fi MT (s)Gi

]
,

with N and M the vectors containing the finite element shape functions defined in
each separated space and Fi and Gi the vectors of nodal values at the FE mesh for
the functions Fi (x) and Gi (s), respectively. For simplicity and ease of reading, we
have maintained the same notation employed in Eq. (2.8). The superscript h for the
discrete, finite element approximation of a variable will no longer be employed, for
clarity, if there is no risk of confusion.

The code included below solves the problem of a two-dimensional cantilever
beam under a load placed at an arbitrary position along its upper face. Therefore, we
assume a 2D spatial approximation on x (given by simple linear triangular elements)
and 1D approximation for the s direction.

When we look for a new couple of functions in the approximation, we assume
that

un+1(x, s) = un(x, s) + R(x)S(s) =
n∑

i=1

Fi (x)Gi (s) + R(x)S(s), (3.5)

while
u∗(x, s) = R∗(x)S(s) + R(x)S∗(s).

http://dx.doi.org/10.1007/978-3-319-29994-5_2
http://dx.doi.org/10.1007/978-3-319-29994-5_2
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Very often, in parametric problems (like in this example) the derivatives appearing
in theweak formof the problem, given byEq. (3.4), are acting only spatial coordinates
and not on the parameters, despite that in the PGD framework they are considered
as actual “extra” coordinates. Therefore,

∇s u = ∇s

[
n∑

i=1

Fi (x) · Gi (s)

]
+ ∇s [R(x) · S(s)] =

n∑
i=1

[
∇s Fi (x)

]
· Gi (s) + [∇s R(x)] · S(s)

=
n∑

i=1

[
∇s NT (x)Fi

]
· MT (s)Gi +

[
∇s NT (x)R

]
· MT (s)S.

The terms defined before and depending on nodal values Fi and Gi (i.e., those
corresponding to the already computed un approximation) are known, so they should
be moved to the right-hand side of the final algebraic equation.

In a similar way,

∇s u∗ = ∇s NT (x)R · MT (s)S∗ + ∇s NT (x)R∗ · MT (s)S.

The L.H.S. of the weak form, Eq. (3.4), can be easily expressed in separated form,

∫
Γ̄

∫
Ω

∇s u∗ : C : ∇s R(x)S(s)dΩdΓ̄

=
∫

Ω

RT ∇s N(x) : C : ∇s NT (x)RdΩ ·
∫

Γ̄

S∗T M(s)MT (s)SdΓ̄

+
∫

Ω

R∗T ∇s N(x) : C : ∇s NT (x)RdΩ ·
∫

Γ̄

ST M(s)MT (s)SdΓ̄ (3.6)

Since R and S represent vectors of nodal values for functions R(x) and S(s),
respectively, they can be extracted from the integrals in Eq. (3.6), so as to give,

∫
Γ̄

∫
Ω

∇s u∗ : C : ∇s R(x)S(s)dΩdΓ̄

= RT

[∫
Ω

∇s N(x) : C : ∇s NT (x)dΩ

]
R · S∗T

[∫
Γ̄

M(s)MT (s)
]

SdΓ̄

+ R∗T
[∫

Ω

∇s N(x) : C : ∇s NT (x)dΩ

]
R · ST

[∫
Γ̄

M(s)MT (s)dΓ̄

]
S

= RT K1(x)R · S∗T M2(s)S + R∗T K1(x)R · ST M2(s)S

(3.7)
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where K1(x) represents a sort of stiffness matrix on the spatial coordinates x, while
M2(s) represents a mass matrix for the 1D discretization problem in the s vari-
able. Both of them are computed in routine elemstiff (see the call [K1,M2] =
elemstiff(coors) in the main file of the code in Sect. 3.4).

We proceed similarly for the RHS term of the weak form, Eq. (3.4), and taking
into account that the integrals involved in it do not depend on spatial coordinates,
but only on the s coordinate, we arrive at

∫
Γ̄

∫
Γt2

u∗ · tdΓ dΓ̄ =
∫

Γ̄

∫
Γt2

[
R∗(x)S(s) + R(x)S∗(s)

] ·
[

m∑
i=1

f i (x)gi (s)

]
dΓ dΓ̄

=
∫

Γt2

m∑
i=1

R∗(x) f i (x)

∫
Γ̄

S(s)gi (s)dΓ̄ +
∫

Γt2

m∑
i=1

R(x) f i (x)

∫
Γ̄

S∗(s)gi (s)dΓ̄ .

(3.8)

Denoting by F R1 the nodal values of the source term decomposition for the
spatial variables and by F R2 for the load direction, Eq. (3.8) has the form,

m∑
i=1

R∗T F R1 · ST
[∫

Γ̄
M(s)MT (s)dΓ̄

]
F R2 +

m∑
i=1

RT F R1 · S∗T
[∫

Γ̄
M(s)MT (s)dΓ̄

]
F R2.

(3.9)

As discussed in the introduction to this chapter, the problem of expressing the
moving load as a finite sum of separable functions, i.e., t(x, s) ≈ ∑m

i=1 f i (x)gi (s)
is not separable. In other words, it can only be done in the discrete setting by choosing
F R1 to be a matrix of zeros (of size [# dof of the whole problem × dof
along the loaded boundary] andwhose only non-vanishing entries are, for
each column, the position of nodes that can receive a load. These entries will be equal
to the value of the applied force.Respectively, F R2will be an identitymatrix (eye(#
dof along the loaded boundary) inMatlab terms). Each column in F R1
thus includes the corresponding degree of freedom that is loaded.Note that, therefore,

m∑
i=1

f i (x)gi (s) =
m∑

i=1

N(x)F R1i · M(s)F R2i .

To this R.H.S. vector we should add the terms related to the known solution up to
iteration n, un(x, s), Eq. (3.5),



3.3 Matrix Structure of the Problem 29

∫
Γ̄

∫
Ω

∇s u∗ : C : ∇s undΩdΓ̄

=
n∑

i=1

RT

[∫
Ω

∇s N(x) : C : ∇s NT (x)dΩ

]
Fi · S∗T

[∫
Γ̄

M(s)MT (s)
]

Gi dΓ̄ +

+
n∑

i=1

R∗T
[∫

Ω

∇s N(x) : C : ∇s NT (x)dΩ

]
Fi · ST

[∫
Γ̄

M(s)MT (s)dΓ̄

]
Gi

=
n∑

i=1

RT K1(x)Fi · S∗T M2(s)Gi +
n∑

i=1

R∗T K1(x)Fi · ST M2(s)Gi . (3.10)

In the Matlab code included in Sect. 3.4 we are employing the following notation:
V1i = F R1i and V2i = M2(s)F R2i for i = 1, . . . , m, so that Eq. (3.9) is
expressed in the form

m∑
i=1

R∗T V1 · ST V2 +
m∑

i=1

RT V1 · S∗T V2. (3.11)

After some gymnastics, the weak form, Eq. (3.4), taking into account Eqs. (3.7),
(3.10) and (3.11), will look in matrix form like

RT K1(x)R · S∗T M2(s)S + R∗T K1(x)R · ST M2(s)S =

=
m∑

i=1

R∗T V1 · ST V2 +
m∑

i=1

RT V1 · S∗T V2 −
n∑

i=1

RT K1(x)Fi · S∗T M2(s)Gi

−
n∑

i=1

R∗T K1(x)Fi · ST M2(s)Gi .

Asmentioned before, in order to determine the new functional pair R and S, any
linearization strategy could be envisaged. Remember that the fact that we look
for a product of functions makes the problem of enriching the approximation
non-linear. In the code of Sect. 3.4, a fixed-point algorithm in which functions
R and S are sought iteratively is implemented. Other strategies, like Newton-
Raphson, for instance, could work equally well.
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The final matrix form of the fixed-point alternating directions algorithm, in which
the computation of S(s) is performed, assuming that R(x) is known, will look like

RT K1(x)R · S∗T M2(s)S =
m∑

i=1

RT V1 · S∗T V2−
n∑

i=1

RT K1(x)Fi · S∗T M2(s)Gi .

(3.12)

Equivalently, when we look for R(x) assuming S(s) is known, the resulting
problem will have the following matrix form,

R∗T K1(x)R · ST M2(s)S =
m∑

i=1

R∗T V1 · ST V2−
n∑

i=1

R∗T K1(x)Fi · ST M2(s)Gi .

(3.13)

In next section the detailed Matlab code implementing this strategy is provided.

3.4 Matlab Code for the Influence Line Problem

As always, the code begins at file main.m, whose content is reproduced below. It
solves the problem of a cantilever beam under a load placed at an arbitrary location
along its top boundary. Small strains assumption is made. The code provides the
solution under plane stress or plane strain conditions.

%

% PGD Code for parametrized force

% D. Gonzalez , I. Alfaro , E. Cueto

% Universidad de Zaragoza

% AMB -I3A Dec 2015

%

clear all; close all; clc;

%

% VARIABLES

%

global coords triangles E nu behaviour % Global variables.

E = 1000; nu = 0.3; % Material (Young Modulus and Poisson Coef)

Modulus = 1; % Force Modulus.

behaviour = 1; % Plane Stress(1), Plane Strain (2).

TOL = 1.0E-03; % Tolerance.

num_max_iter = 11; % Max. # of functional pairs for the approximation.

%

% GEOMETRY

%

X0 = 0; Xf = 3; Y0 = 0; Yf = 1.0; % The beam dimensions , [0,3]x[0,1]

tamx = 0.1; tamy = 0.1; % mesh size along each direction

nenY = numel(Y0:tamy:Yf); % # of elements in vertical direction

[X,Y] = meshgrid(X0:tamx:Xf,Y0:tamy:Yf);

coords = [X(:),Y(:)];

force = X0:tamx:Xf; force = force ’; % force positions and 1D coordinates.

triangles = delaunayTriangulation(coords(:,1), coords (: ,2)); % Mesh data.

%

% ALLOCATION OF MATRICES AND VECTORS

%

F = zeros(numel(coords ),1); % Nodal values of spatial function F
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G = zeros(numel(force ),1); % Nodal values of force function G

FR1 = zeros(numel(coords),numel(force )); % Nodal values for force (spatial term)

FR2 = eye(numel(force )); % Nodal values for force (force term)

%

% COMPUTING STIFFNESS AND MASS MATRIX FOR SPACE , ONLY MASS MATRIX FOR FORCE

%

[K1,M2] = elemstiff(force);

%

% SOURCE (FORCE) TERM IN SEPARATED FORM

%

DOFforceed = 2*nenY :2* nenY:numel(coords); % force on vertical d.o.f. on top.

for i1=1: numel(DOFforceed)

FR1(DOFforceed(i1),i1) = -Modulus;

end

V1 = FR1; % Take into account that integration is done only in S direction

V2 = M2*FR2; % Mass matrix times nodal value of the source. R.H.S. of Eq .(3.9)

%

% BOUNDARY CONDITIONS

%

CC = 1:2*( nenY); % Left side of the beam fixed.

%

% ENRICHMENT OF THE APPROXIMATION , LOOKING FOR R AND S

%

num_iter = 0; iter = zeros (1); Aprt = 0; Error_iter = 1.0;

while Error_iter >TOL && num_iter <num_max_iter

num_iter = num_iter + 1;

S0 = rand(numel(force ),1); % Initial guess for S.

%

% ENRICHMENT STEP

%

[R,S,iter(num_iter )] = enrichment(K1,M2,V1,V2,S0,F,G,num_iter ,TOL ,CC);

F(:,num_iter) = R; G(:,num_iter) = S; % R and S are valid , new summand.

%

% STOPPING CRITERION

%

Error_iter = norm(F(:,num_iter )*G(:,num_iter )’);

Aprt = max(Aprt ,sqrt(Error_iter ));

Error_iter = sqrt(Error_iter)/Aprt;

fprintf(1,’%dst summand in %d iterations with a weight of %f\n’ ,...

num_iter ,iter(num_iter),Error_iter);

end

num_iter = num_iter - 1; % The last sum was negligible , we discard it.

fprintf(1,’PGD off -line Process exited normally\n\n’);

save(’WorkSpacePGD_Parametricedforce.mat’);

%

% POST -PROCESSING

%

fprintf(1,’Please select force position ’);

fprintf(1,’on the figure or pick out of the beam to exit’);

h1 = figure (1); triplot(triangles );

axis equal;

[Cx,Cy] = ginput (1); % Waiting for a mouse click on the figure.

lim = 0.2/(Xf-X0); % Establishes an exit zone on the figure.

while X0-lim <=Cx && Cx <=Xf+lim && Y0-lim <=Cy && Cy <=Yf+lim

h1 = figure (1); triplot(triangles );

axis equal;

Posforce = find(force <Cx ,1,’last’); % Look for the closest loaded node.

%

% EVALUATING THE SOLUTION CHOOSING THE SELECTED NODE IN G VECTOR

%

desp = zeros(numel(coords ),1);

for i1=1: num_iter

desp = desp + F(:,i1).*G(Posforce ,i1); % Obtain the solution

end

%

% PLOTTING THE SOLUTION

%

cdx = coords (:,1) + desp (1:2: end); % New X coordinates.

cdy = coords (:,2) + desp (2:2: end); % New Y coordinates.
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trisurf(triangles.ConnectivityList ,cdx ,cdy ,desp (2:2: end));

title(’Vertical Displacement ’); view (2); colorbar;

figure (1); axis equal; [Cx,Cy] = ginput (1); % Wait for a new force.

end

fprintf(1,’\n\n########## End of simulation ##########\n\n’);

As in Chap.2, what we call stiffness and mass matrices are computed in function
elemstiff.m:

function [K1,M2] = elemstiff(coor2)

% function [K1,M2] = elemstiff(coor2)

% For space compute stifness matrix , for load parameter compute mass matrix

% Universidad de Zaragoza - 2015

%

% SPACE MATRICES

%

[K1] = fem2D; % Standard 2D FEM code for Triangular Elements , computing

%

% LOAD MATRICES: 1D PARAMETRIC PROBLEM

%

sg = [-1.0/ sqrt (3.0) 1.0/ sqrt (3.0)]; wg = ones (2,1); % Gauss points

npg = numel(sg); nen2 = numel(coor2); M2 = zeros(nen2);

X2 = coor2 (1:nen2 -1)’; Y2 = coor2 (2: nen2)’; % Coordinates of elements

L2 = Y2 - X2; % Longitude of each element for parametriced variable

for i1=1:nen2 -1

c2 = zeros(1,npg); N2 = zeros(nen2 ,npg);

c2(1,:) = 0.5.*(1.0 -sg).*X2(i1) + 0.5.*(1.0+ sg).*Y2(i1);

N2(i1+1,:) = (c2(1,:)-X2(i1))./L2(i1);

N2(i1 ,:) = (Y2(i1)-c2(1 ,:))./L2(i1);

for j1=1:npg

M2 = M2 + N2(:,j1)*N2(:,j1) ’*0.5.*wg(j1).*L2(i1); %NůN

end

end

return

The enrichment procedure, i.e., the computation of a new functional pair R, S, is
detailed in function enrichment.m:

function [R,S,iter] = enrichment(K1,M2,V1,V2,S0,F,G,num_iter ,TOL ,CC)

% function [R,S,iter] = enrichment(K1,M2,V1,V2,S0,F,G,num_iter ,TOL ,CC)

% Computes a new sumand by fixed -point algorithm using PGD

% Universidad de Zaragoza - 2015

R = zeros(size(F,1) ,1); R0 = R; % Initial value R to compare in first loop.

h = size(V2 ,2); % Number functions of the source

ExitFlag = 1;

iter = 0;

mxit = 25; % #ă of possible iterations for the fixde point algorithm.

Free = setdiff (1: numel(F(:,1)),CC);

%

% FIXED POINT ALGORITHM

%

while ExitFlag >TOL

%

% LOOKING FOR R, KNOWNING S

%

matrixR = K1*(S0 ’*M2*S0);

sourceR = zeros(size(F,1) ,1);

for k1=1:h

sourceR = sourceR + V1(:,k1)*(S0 ’*V2(:,k1));

end

for i1=1: num_iter -1

sourceR = sourceR - K1*F(:,i1)*(S0 ’*M2*G(:,i1));

end

http://dx.doi.org/10.1007/978-3-319-29994-5_2
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%

% SOLVE R

%

R(Free) = matrixR(Free ,Free)\ sourceR(Free);

%

% LOOKING FOR S, KNOWNING R

%

matrixS = (R’*K1*R)*M2;

sourceS = zeros(size(G,1) ,1);

for k1=1:h

sourceS = sourceS + V2(:,k1)*(R’*V1(:,k1));

end

for i1=1: num_iter -1

sourceS = sourceS - R’*K1*F(:,i1)*(M2*G(:,i1));

end

%

% SOLVE S

%

S = matrixS\sourceS;

S = S./norm(S); % We normalize S. R takes care of alpha constant.

%

% COMPUTING STOP CRITERIA

%

error = max(abs(sum(R0-R)),abs(sum(S0-S))); R0 = R; S0 = S;

iter = iter + 1;

if iter >mxit !! abs(error)<TOL ,

return

end

end

return

The code makes use of a traditional, two-dimensional FEM code, whose structure
is reproduced below. In fact, it returns the stiffness matrix K typical of these FEM
programs.

function [K] = fem2D

% function [K] = fem2D

% A 2D FEM code for linear triangles. Return Stifness matrix

% Universidad de Zaragoza - 2015

global coords triangles E nu behaviour

dof = 2; % Degree of freedom per node

numNodes = size(coords ,1); numTriang = size(triangles ,1);

%

% ALLOCATE MEMORY

%

K = zeros(dof*numNodes);

%

% MATERIAL AND BEHAVIOUR

%

G = E/2/(1+ nu);

if behaviour ==2 % Plane Strain

E1 = E*(1-nu)/(1+nu)/(1 -2*nu);

E2 = E*nu/(1+nu)/(1 -2*nu);

elseif behaviour ==1 % Plane Stress

E1 = E/(1-nu^2);

E2 = E*nu/(1-nu^2);

end

D = [E1 E2 0;E2 E1 0;0 0 G]; % Behaviour matrix

% Integration points: 3 Hammer Points

sg(1) = 1.0/6.0; sg(2) = 1.0/6.0; sg(3) = 2.0/3.0;

sg(4) = 1.0/6.0; sg(5) = 1.0/6.0; sg(6) = 2.0/3.0;

wg(1) = 1.0/6.0; wg(2) = 1.0/6.0; wg(3) = 1.0/6.0;

nph = numel(wg);

%

% ELEMENT LOOP
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%

for j=1: numTriang

tri = triangles.ConnectivityList(j,:); % Connectivity of each Element

vertices = coords(tri ,:); % Coordinates of the nodes

Ind = [2*(tri -1)+1; 2*tri]; Ind = Ind (:);

%

% JACOBIAN

%

a = vertices(2,1)- vertices (1 ,1); b = vertices(3,1)- vertices (1 ,1);

c = vertices(2,2)- vertices (1 ,2); d = vertices(3,2)- vertices (1 ,2);

jcob = a*d - b*c;

a1 = vertices (2,1)* vertices (3,2) - vertices (2,2)* vertices (3,1);

a2 = vertices (3,1)* vertices (1,2) - vertices (3,2)* vertices (1,1);

a3 = vertices (1,1)* vertices (2,2) - vertices (1,2)* vertices (2,1);

b1 = vertices (2,2) - vertices (3,2); b2 = vertices (3,2) - vertices (1,2);

b3 = vertices (1,2) - vertices (2,2);

c1 = vertices (3,1) - vertices (2,1); c2 = vertices (1,1) - vertices (3,1);

c3 = vertices (2,1) - vertices (1,1);

%

% INTEGRATION POINTS LOOP

%

chiG = 0.0; etaG = 0.0;

for j1=1:nph

chi = sg(2*(j1 -1)+1); eta = sg(2*j1);

%

% GLOBAL GEOMETRICAL APPROXIMATION

%

SHPa (3) = eta; SHPa (2) = chi; SHPa (1) = 1.-chi -eta;

for k1=1:3

chiG = chiG + SHPa(k1)* vertices(k1 ,1);

etaG = etaG + SHPa(k1)* vertices(k1 ,2);

end

%

% COMPUTE SHAPE FUNCTIONS AND THEIR DERIVATIVES

%

SHP(1) = (a1+b1*chiG+c1*etaG)/jcob; dSHPx (1) = b1; dSHPy (1) = c1;

SHP(2) = (a2+b2*chiG+c2*etaG)/jcob; dSHPx (2) = b2; dSHPy (2) = c2;

SHP(3) = (a3+b3*chiG+c3*etaG)/jcob; dSHPx (3) = b3; dSHPy (3) = c3;

%

% N AND B MATRIX

%

B = [dSHPx (1) 0 dSHPx (2) 0 dSHPx (3) 0; ...

0 dSHPy (1) 0 dSHPy (2) 0 dSHPy (3); ...

dSHPy (1) dSHPx (1) dSHPy (2) dSHPx (2) dSHPy (3) dSHPx (3)];

%

% STIFNESS MATRIX

%

K(Ind ,Ind) = K(Ind ,Ind) + B’*D*B/jcob*wg(j1);

end

end

return

Once executed, the code allows the user to choose interactively with themouse the
point in which the load is applied. It is implemented in an off-line/on-line approach,
such that the modes (functional pairs) approximating the solution are first com-
puted and (eventually) stored in memory. Then, in the on-line phase, the user can
interactively play with the position of the load and see in real time the deformed
configuration of the solid.
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Fig. 3.4 Mesh for the
moving load problem
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Fig. 3.5 Once a point along
the upper side of the beam
has been chosen, the problem
depicts the deformed
configuration of the beam
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At a first instance, the mesh of the problem is shown, see Fig. 3.4. By clicking
on it, the user can choose the particular placement of the load. The program gives
immediately the deformed configuration of the beam, see Fig. 3.5.

Note that by simply typing on the Matlab command line the instruction tri
surf(triangles.ConnectivityList,coords(:,1),coords(:,2),
F(1:2:end,1)), the first spatial mode of the solution, namely F1(x) is repre-
sented, see Fig. 3.6. Equivalently, by typing plot(G(:,1)) the load modes Gi (s)
can be plotted, see Fig. 3.7. Notice the increasing frequency content of the modes in
the load variable.
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Fig. 3.6 Spatial modes Fi (x), i = 1, 2, 3 and 11. The magnitude of each mode is represented in
the vertical axis
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Fig. 3.7 Load modes Gi (s),
i = 1, 2, 3 and 11. Node
labels refer to the relative
position along the upper
boundary of the beam
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Fig. 3.8 A virtual surgery simulator based on the same algorithm explained in this chapter

This algorithm has revealed to be very powerful. In fact, it is essentially the same
employed to construct our virtual surgery simulator, see Fig. 3.8, able to provide
response feedback in the order of kHz, thus amenable to be employed in haptic
environments [56, 57].
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