
123

S P R I N G E R B R I E F S I N
A P P L I E D S C I E N C E S A N D T E C H N O LO G Y

Elías Cueto
David González
Icíar Alfaro

Proper Generalized
Decompositions
An Introduction
to Computer
Implementation
with Matlab

SpringerBriefs in Applied Sciences
and Technology

More information about this series at http://www.springer.com/series/8884

http://www.springer.com/series/8884

Elías Cueto • David González
Icíar Alfaro

Proper Generalized
Decompositions
An Introduction to Computer
Implementation with Matlab

123

Elías Cueto
Aragon Institute of Engineering Research
University of Zaragoza
Zaragoza
Spain

David González
Aragon Institute of Engineering Research
University of Zaragoza
Zaragoza
Spain

Icíar Alfaro
Aragon Institute of Engineering Research
University of Zaragoza
Zaragoza
Spain

Additional material to this book can be downloaded from http://extras.springer.com.

ISSN 2191-530X ISSN 2191-5318 (electronic)
SpringerBriefs in Applied Sciences and Technology
ISBN 978-3-319-29993-8 ISBN 978-3-319-29994-5 (eBook)
DOI 10.1007/978-3-319-29994-5

Library of Congress Control Number: 2016933200

© The Author(s) 2016
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or
dissimilar methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt
from the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained
herein or for any errors or omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG Switzerland

http://extras.springer.com

To our families, for being so patient with us

Preface

This book is intended to make life easier to those interested in model order
reduction techniques, and particularly in proper generalized decomposition
(PGD) methods. We are aware that it looks often difficult to obtain a good PGD
program and that there is a sort of steep learning curve. To overcome these diffi-
culties, this book is thought to ease as much as possible the coding phase of PGD.

Many other books devoted to model order reduction in general, and PGD in
particular, exist nowadays. But we strongly believe that this one covers aspects not
fully considered in previous works on the topic.

Maybe the greatest advantage of PGD over other model reduction techniques, if
any, relies in its ability of coping with parametric problems defined in
high-dimensional phase spaces. This book begins with the most classical Poisson
problem and soon moves to parametric problems in a wider sense. Among all the
possible parametric problems, we have chosen some that can be considered not
classical. Covered problems are not classical in the sense that we extend the
concept of parameter far beyond the classical meaning of the word. Thus, we show
that boundary conditions, and in particular loads, can be considered as parameters.
In Chap. 3, we will show how the position of a load can be efficiently considered as
a parameter under the PGD rationale, leading in fact to a very simple interactive
program in which the user can play with a cantilever beam and see in real time its
deformed configuration. Although the problem of obtaining a response surface for a
moving load has traditionally been seen as inseparable or, in other words, nonre-
ducible, we show that it can be effectively reduced under the PGD prism. In an
offline phase of the methods functions or modes approximating the solution are
computed, so as to allow in an online phase to obtain a response in real time.

In Chap. 4, we extend the previous development to the case of nonlinear
problems, taking hyperelasticity as a model problem. Nonlinear problems continue
to be a headache for model order reduction techniques, since they provoke the loss
of the most part of the gains of model order reduction and every time the tangent
stiffness matrix of the problem needs to be reassembled. In this chapter we show

vii

http://dx.doi.org/10.1007/978-3-319-29994-5_3
http://dx.doi.org/10.1007/978-3-319-29994-5_4

how a very simple explicit linearization leads to a neat program, able to provide
three-dimensional results under real-time constraints.

In Chap. 5 we turn the concept of parameter up a notch. Indeed, we show how
initial and boundary-value problems can be effectively reduced under the PGD
framework by considering the fields of initial conditions as parameters. But initial
conditions are indeed magnitudes of infinite dimension, and therefore there is a
need for subsequent reduction. After finite element discretization, a proper
orthogonal decomposition is applied over some snapshots of problems similar to the
one at hand. Then, with a minimal number of parameters, initial conditions can be
considered effectively as new parameters of the model.

By taking solid dynamics as a model problem, we show that PGD gives a very
practical response for initial and boundary-value problems. These approaches have
rendered impressive gains in terms of computational cost, allowing for real-time
applications infields such as virtual surgery, among others.

We are confident that the reader will find his or her problem of interest repre-
sented by any of the chosen examples and that the accompanying Matlab codes will
make his or her life easier.

Zaragoza Elías Cueto
December 2015 David González

Icíar Alfaro

viii Preface

http://dx.doi.org/10.1007/978-3-319-29994-5_5

Acknowledgments

We would like to thank Prof. Francisco (Paco) Chinesta for all these years of fruitful
work and friendship. It has been a pleasure to work together. It is with him that we
have met the joy of science. We also would like to thank our students, who worked
hard towards the achievement of their doctoral degree. Our most sincere
acknowledgment goes to Siamak Niroomandi, Carlos Quesada, and Diego Canales.
Last but not least, it has been an honor and a pleasure to work with our colleagues
and friends at Polytechnic University of Catalonia in Barcelona, Profs. Antonio
Huerta and Pedro Díez, with whom we worked in two different projects related to
PGD under the financial support of the Spanish Ministry of Economy and
Competitiveness.

ix

Contents

1 Introduction . 1

2 To Begin With: PGD for Poisson Problems 7
2.1 Introduction . 7
2.2 The Poisson Problem . 8
2.3 Matrix Structure of the Problem . 12
2.4 Matlab Code for the Poisson Problem . 15

3 Parametric Problems . 21
3.1 A Particularly Challenging Problem: A Moving Load

as a Parameter . 21
3.2 The Problem Under the PGD Formalism 23

3.2.1 Computation of SðsÞ Assuming RðxÞ Is Known 24
3.2.2 Computation of RðxÞ Assuming SðsÞ Is Known 25

3.3 Matrix Structure of the Problem . 26
3.4 Matlab Code for the Influence Line Problem 30

4 PGD for Non-linear Problems . 39
4.1 Hyperelasticity . 40
4.2 Matrix Structure of the Problem . 43

4.2.1 Matrix Form of the Term T2 . 44
4.2.2 Matrix Form of the Term T4 . 46
4.2.3 Matrix Form of the Term T6 . 47
4.2.4 Matrix Form for the Term T8 . 48
4.2.5 Matrix Form of the Term T9 . 49
4.2.6 Matrix Form of the Term T10. 51
4.2.7 Final Comments . 52

4.3 Matlab Code . 52

5 PGD for Dynamical Problems . 65
5.1 Taking Initial Conditions as Parameters 65
5.2 Developing the Weak Form of the Problem 66

xi

http://dx.doi.org/10.1007/978-3-319-29994-5_1
http://dx.doi.org/10.1007/978-3-319-29994-5_1
http://dx.doi.org/10.1007/978-3-319-29994-5_2
http://dx.doi.org/10.1007/978-3-319-29994-5_2
http://dx.doi.org/10.1007/978-3-319-29994-5_2#Sec1
http://dx.doi.org/10.1007/978-3-319-29994-5_2#Sec1
http://dx.doi.org/10.1007/978-3-319-29994-5_2#Sec2
http://dx.doi.org/10.1007/978-3-319-29994-5_2#Sec2
http://dx.doi.org/10.1007/978-3-319-29994-5_2#Sec3
http://dx.doi.org/10.1007/978-3-319-29994-5_2#Sec3
http://dx.doi.org/10.1007/978-3-319-29994-5_2#Sec4
http://dx.doi.org/10.1007/978-3-319-29994-5_2#Sec4
http://dx.doi.org/10.1007/978-3-319-29994-5_3
http://dx.doi.org/10.1007/978-3-319-29994-5_3
http://dx.doi.org/10.1007/978-3-319-29994-5_3#Sec1
http://dx.doi.org/10.1007/978-3-319-29994-5_3#Sec1
http://dx.doi.org/10.1007/978-3-319-29994-5_3#Sec1
http://dx.doi.org/10.1007/978-3-319-29994-5_3#Sec2
http://dx.doi.org/10.1007/978-3-319-29994-5_3#Sec2
http://dx.doi.org/10.1007/978-3-319-29994-5_3#Sec3
http://dx.doi.org/10.1007/978-3-319-29994-5_3#Sec3
http://dx.doi.org/10.1007/978-3-319-29994-5_3#Sec3
http://dx.doi.org/10.1007/978-3-319-29994-5_3#Sec3
http://dx.doi.org/10.1007/978-3-319-29994-5_3#Sec4
http://dx.doi.org/10.1007/978-3-319-29994-5_3#Sec4
http://dx.doi.org/10.1007/978-3-319-29994-5_3#Sec4
http://dx.doi.org/10.1007/978-3-319-29994-5_3#Sec4
http://dx.doi.org/10.1007/978-3-319-29994-5_3#Sec5
http://dx.doi.org/10.1007/978-3-319-29994-5_3#Sec5
http://dx.doi.org/10.1007/978-3-319-29994-5_3#Sec6
http://dx.doi.org/10.1007/978-3-319-29994-5_3#Sec6
http://dx.doi.org/10.1007/978-3-319-29994-5_4
http://dx.doi.org/10.1007/978-3-319-29994-5_4
http://dx.doi.org/10.1007/978-3-319-29994-5_4#Sec1
http://dx.doi.org/10.1007/978-3-319-29994-5_4#Sec1
http://dx.doi.org/10.1007/978-3-319-29994-5_4#Sec2
http://dx.doi.org/10.1007/978-3-319-29994-5_4#Sec2
http://dx.doi.org/10.1007/978-3-319-29994-5_4#Sec3
http://dx.doi.org/10.1007/978-3-319-29994-5_4#Sec3
http://dx.doi.org/10.1007/978-3-319-29994-5_4#Sec4
http://dx.doi.org/10.1007/978-3-319-29994-5_4#Sec4
http://dx.doi.org/10.1007/978-3-319-29994-5_4#Sec5
http://dx.doi.org/10.1007/978-3-319-29994-5_4#Sec5
http://dx.doi.org/10.1007/978-3-319-29994-5_4#Sec6
http://dx.doi.org/10.1007/978-3-319-29994-5_4#Sec6
http://dx.doi.org/10.1007/978-3-319-29994-5_4#Sec7
http://dx.doi.org/10.1007/978-3-319-29994-5_4#Sec7
http://dx.doi.org/10.1007/978-3-319-29994-5_4#Sec8
http://dx.doi.org/10.1007/978-3-319-29994-5_4#Sec8
http://dx.doi.org/10.1007/978-3-319-29994-5_4#Sec9
http://dx.doi.org/10.1007/978-3-319-29994-5_4#Sec9
http://dx.doi.org/10.1007/978-3-319-29994-5_4#Sec10
http://dx.doi.org/10.1007/978-3-319-29994-5_4#Sec10
http://dx.doi.org/10.1007/978-3-319-29994-5_5
http://dx.doi.org/10.1007/978-3-319-29994-5_5
http://dx.doi.org/10.1007/978-3-319-29994-5_5#Sec1
http://dx.doi.org/10.1007/978-3-319-29994-5_5#Sec1
http://dx.doi.org/10.1007/978-3-319-29994-5_5#Sec2
http://dx.doi.org/10.1007/978-3-319-29994-5_5#Sec2

5.3 Matrix Form of the Problem . 68
5.3.1 Time Integration of the Equations of Motion 68
5.3.2 Computing a Reduced-Order Basis for the Field

of Initial Conditions. 70
5.3.3 Projection of the Equations onto a Reduced,

Parametric Basis . 71
5.4 Matlab Code . 75

References . 91

Index . 95

xii Contents

http://dx.doi.org/10.1007/978-3-319-29994-5_5#Sec3
http://dx.doi.org/10.1007/978-3-319-29994-5_5#Sec3
http://dx.doi.org/10.1007/978-3-319-29994-5_5#Sec4
http://dx.doi.org/10.1007/978-3-319-29994-5_5#Sec4
http://dx.doi.org/10.1007/978-3-319-29994-5_5#Sec5
http://dx.doi.org/10.1007/978-3-319-29994-5_5#Sec5
http://dx.doi.org/10.1007/978-3-319-29994-5_5#Sec5
http://dx.doi.org/10.1007/978-3-319-29994-5_5#Sec6
http://dx.doi.org/10.1007/978-3-319-29994-5_5#Sec6
http://dx.doi.org/10.1007/978-3-319-29994-5_5#Sec6
http://dx.doi.org/10.1007/978-3-319-29994-5_5#Sec7
http://dx.doi.org/10.1007/978-3-319-29994-5_5#Sec7

Chapter 1
Introduction

Young men should prove theorems, old men should write books.
—G.H. Hardy

Abstract This introductory chapter covers briefly the main idea of the book, how
to code Proper Generalized Decomposition techniques with Matlab.

Proper Generalized Decomposition (PGD) has revolutionized many fields of applied
sciences and engineering, and particularly the way we see parametric problems in a
high dimensional setting. It has revealed how to obtain reduced-ordermodels without
the need for complex and costly computational experiments, typical of a posteriori
model order reduction techniques such as the much better know Proper Orthogo-
nal Decompositions (POD). These techniques, developed and re-discovered in many
branches of science under different names such as Principal Component Analy-
sis (PCA) [34], but also Karhunen-Loève transform [43, 48] in signal processing,
also the Hotelling transform, Eckart-Young theorem, singular value decomposition
(SVD), eigenvalue decomposition (EVD) in linear algebra, factor analysis, empiri-
cal orthogonal functions (EOF), empirical eigenfunction decomposition, empirical
component analysis [49], quasiharmonic modes, and empirical modal analysis in
structural dynamics. All these methods need for some snapshots, empirical realiza-
tions of the problem at hand under different values of the considered parameters.
From these snapshots, the eigenmodes that contain most of the energy of their auto-
correlation matrix are retained and employed as the best possible basis (given these
realizations or snapshots) for subsequent simulations under different values of the
parameters.

This approach (often referred to as projection-based methods, since the discrete
equations are projectedonto a reduced-order subspace inwhich the number of degrees
of freedom of the problem is minimal) has, noteworthy, several disadvantages. In
non-linear problems, for instance, the application of Newton algorithms for the
linearization implies an update of the tangent stiffness matrix of the full problem, and

© The Author(s) 2016
E. Cueto et al., Proper Generalized Decompositions, SpringerBriefs
in Applied Sciences and Technology, DOI 10.1007/978-3-319-29994-5_1

1

2 1 Introduction

hence the loss of most of the time savings obtained through POD. Although several
alternatives exist, such as the use of empirical interpolation methods, for instance,
[14, 21, 53], or the use of perturbation techniques in conjunction with POD, [58], no
definitive answer has been given to themodel order reduction of non-linear problems.

The origin of Proper Generalized Decompositions, can be traced back to the so-
called radial loading within the LATINmethod [44] as a space-time separated repre-
sentation in non-incremental structural mechanics solvers. Independently, Chinesta
and coworkers in their seminal papers [6, 7] developed a method for the solution
of non-Newtonian fluid models defined in high-dimensional phase spaces that were
soon identified as a generalization of the work by P. Ladeveze. PGD is constructed
indeed upon a very old idea, the method of separation of variables or Fourier method
for partial differential equations. But the main novelty lies in the ability of PGD
for the construction of sums of separated functions a priori, i.e., without any prior
knowledge on the solution nor the need for costly computer experiments or snap-
shots. Indeed, a PGD approximation to the solution of a given PDE, say u, depending
in principle of space, time and a number m of parameters, assumes a form

u(x, t, p1, p2, . . . , pm) ≈ un =
n∑

i=1

Fi
x (x) · Fi

t (t) · Fi
1(p1) · Fi

2(p2) · . . . · Fi
m(pm),

(1.1)

where the functions F j
i are in principle unknown and pi represent the parameters

affecting the solution.
Briefly speaking, to determine these functions F j

i a non-linear problem must be
solved (independently of the character of the initial problem), since we look for
one or more products of functions. Surprisingly or not, very simple techniques have
demonstrated to provide very good results. Thus, for instance, in many references of
the PGDbibliography (see [24, 29] for recents reviews on the field) greedy algorithms
are employed such that one sum is computed at a time, and within each greedy step,
naive linearization strategies such as fixed point iterations usually provide very good
results.

The choice of an appropriate truncation level n deserves some comments. In
fact, Eq. (1.1) would need, in the most general case, an infinite number of terms.
To properly determine the number of terms n needed to obtain a certain level of
accuracy, several possibilities exist. The most rigorous ones include the computation
of error estimators, possibly based on engineering quantities of interest, see [3, 4, 19,
46, 52]. It is also worthy of mention that the PGD method, as stablished in Eq. (1.1)
has proven convergence for elliptic problems [47].

This very simple approach has allowed to solve parametric problems in phase
spaces of one hundred dimensions but, notably, it has provided new insights in the
way we look at physical phenomena governed by partial differential equations. Thus,
for instance, treating as parameters things that a priori are not parameters (such as
loads, boundary conditions, initial conditions, …) allows for a very efficient solution

1 Introduction 3

of different problems in engineering and applied sciences, that sometimes reaches
real-time constraints by employing an off-line/on-line strategy.

Just to show some examples, PGD has allowed to construct efficient surgery sim-
ulators with haptic response, see Fig. 1.1, or to enable not-so-simple simulations
on handheld, deployed devices such as smartphones or tablets, Fig. 1.2, to embed
complex simulations on a simple web page (by employing simple java applets),
see Fig. 1.3. The developed technique could even have important implications in
augmented learning environments, opening the possibility to include real-time sim-
ulations on e-books, Fig. 1.4 [60].

X
Y

Z

Uz

0.0045
0.004
0.0035
0.003
0.0025
0.002
0.0015
0.001
0.0005
0
-0.0005
-0.001

Fig. 1.1 An example of surgery simulator developed with the aid of PGD methods [57]

Fig. 1.2 Interactive simulation of an industrial furnace running on an iPhone [35]. The simulation
could eventually be continuously fed by data streaming from sensors. It is what is known as dynamic,
data-driven applications systems (DDDAS)

4 1 Introduction

Fig. 1.3 Interactive palpation of a liver running a small java applet on a web page

Fig. 1.4 PGD techniques open the possibility to embed real-time, interactive simulations on
e-books, thus opening unprecedented possibilities for augmented learning environments [60]

1 Introduction 5

In recent times, PGD has been applied to a wide variety of problems, showing
its impressive ability to give appropriate responses in very different fields. Thus, for
instance, one can mention the solution of Helmholtz equations [13, 51], geophysical
problems [63],magnetostatics [42], real-timemonitoring [2], Boltzmann andFokker-
Planck equations [22], gene regulatory networks [5, 30], contact problems [37, 40],
the construction of response surfaces, virtual charts or computational vademecums
[26, 61], multiscale problems [9, 23, 25, 32, 45], shape optimization [10], dynamic,
data driven application systems (DDDAS) [36, 39], or virtual surgery [3, 33, 56, 59],
to cite but a few of the more than 300 references available in the World of Science
as of December, 2015. In addition, PGD is a quite intrusive method that can not, in
general, be applied with the help of commercial finite element codes. Nevertheless,
it has been efficiently coupled to existing techniques in a number of references, see,
for instance, [8, 11].

However, from the programmer point of view, PGD has a clear barrier to entry.
Even for experienced finite element programmers, PGD could appear as something
complex, obscure, with many tricks to know in advance and difficult to understand.
It is not the purpose of this brief to cover all the theory related to PGD, something
already done in previous monographs, see [27, 28], for instance. Instead, this book
is devoted to an easy and friendly introduction to PGD programming with one of the
most popular languages for applied scientists and engineers, Matlab.

Chapter 2
To Begin With: PGD for Poisson Problems

It is one of the first duties of a professor, for example, in any
subject, to exaggerate a litlle both the importance of his subject
and his own importance in it

—G.H. Hardy, 1940

Abstract In this chapter we cover the detailed implementation of PGDmethods for
the simplest problem, the Poisson equation. Detailed code is provided and its results
compared with data available in the bibliography.

2.1 Introduction

To begin with, let us consider one of the simplest problems, the Poisson equation.
This problem was first analyzed in the original publication by Ammar et al. [6], still
when the term PGD had not been coined.

Even if it is of little practical interest (very rarely we are interested in separating
the space coordinates, unless very special cases such as plate and shell geometries
[16] for instance), let us briefly recall the PGDmethod applied to a Poisson problem,
still in two dimensions, for the ease of representation. In it, coordinates x and y have
been separated with an eye towards the full comprehension of themethod. In general,
for non-separable (non parallelepipedic) domains, to separate the physical space is
not possible nor even desirable. If you are, nevertheless forced to do it, maybe you
could be interested in reading the reference [38].

© The Author(s) 2016
E. Cueto et al., Proper Generalized Decompositions, SpringerBriefs
in Applied Sciences and Technology, DOI 10.1007/978-3-319-29994-5_2

7

8 2 To Begin With: PGD for Poisson Problems

2.2 The Poisson Problem

The D-dimensional Poisson equation writes

�u = − f (x1, x2, . . . , xD), (2.1)

where u is a scalar function of (x1, x2, . . . , xD). Although for representation purposes
we will restrict ourselves to the two-dimensional case, we consider here Eq. (2.1),
defined in the domain (x1, x2, . . . , xD) ∈ Ω = (−L ,+L)D with vanishing essential
boundary conditions. The general treatment of non-vanishing boundary conditions
under the PGD framework needs for an special (although straightforward) treatment,
deeply discussed from a practical point of view in [38].We refer the interested reader
to that reference.

Under the basic PGD assumption given by Eq. (1.1), we express the unknown
solution field as a sum of separable functions, i.e.,

u(x1, x2, . . . , xD) =
∞∑

j=1

α j

D∏

k=1

F j
k (xk),

where F j
k is the j th basis function, with unit norm, which only depends on the kth

coordinate.
This a priori infinite sum is then truncated (usually with the help of some error

indicator, see [4, 19, 46, 52]) at a number (n) of approximation functions, i.e.:

u(x1, x2, . . . , xD) ≈
n∑

j=1

α j

D∏

k=1

F j
k (xk). (2.2)

Note that originally, in [6], the separate functions F j
k (which we later refer to

as modes very often) were of unity norm. This is the origin of the α j weight
that accompanies each term j of the sum. While it is not strictly necessary
to employ such unitary functions, the relative decay of the α j weights with
j gives a very intuitive notion on the convergence of the series.

Note also that, in Eq. (2.2) only one-dimensional functions F j
k have been con-

sidered. The method is of course much more general than that, and a combination
of functions defined in arbitrary dimensional spaces can be employed. Also the (in
principle 1D) mesh employed for each function need not be uniform. h-refinements
can be made along each dimension as needed.

The modes F j
k at a given iteration of the method, j , and the α j value need now

to be computed. In the original paper [6] an algorithmwas proposed that proceeded by

http://dx.doi.org/10.1007/978-3-319-29994-5_1

2.2 The Poisson Problem 9

Step 1: Projection of the solution in a discrete basis

If we assume functions F j
k (∀ j ∈ [1, . . . , n]; ∀k ∈ [1, . . . , D]) already known,

coefficients α j can be computed by introducing the approximation of u into the
Galerkin variational formulation associated with Eq. (2.1):

∫

Ω

∇u∗ · ∇udΩ =
∫

Ω

u∗ f dΩ. (2.3)

PGD methods assume a separated representation of both u and u∗:

u(x1, x2, . . . , xD) =
n∑

j=1

α j

D∏

k=1

F j
k (xk), (2.4)

and

u∗(x1, x2, . . . , xD) =
n∑

j=1

α∗
j

D∏

k=1

F j
k (xk).

By introducing both in the weak form of the problem, Eq. (2.3), we arrive at

∫

Ω

∇
⎛

⎝
n∑

j=1

α∗
j

D∏

k=1

F j
k (xk)

⎞

⎠ · ∇
⎛

⎝
n∑

j=1

α j

D∏

k=1

F j
k (xk)

⎞

⎠ dΩ

=
∫

Ω

⎛

⎝
n∑

j=1

α∗
j

D∏

k=1

F j
k (xk)

⎞

⎠ f dΩ (2.5)

We assume also that the source term f (x1, · · · , xD) admits a separated represen-
tation

f (x1, · · · , xD) ≈
m∑

h=1

D∏

k=1

f h
k (xk),

for a sufficiently low number of terms m. If it is not the case, a simple singular value
decomposition would in general suffice, maybe in high dimensions (HOSVD) [38].
PGD could equally be employed to this end, by applying it on the identity operator,
see [28].

Equation (2.5) involves integrals of products involving D different functions,
each one defined in a different coordinate. Let

∏D
k=1 gk(xk) be one of these functions

to be integrated. One of the key ingredients of PGD is that the integral over Ω

can be performed by integrating each function along its definition interval and then
multiplying the D computed integrals according to:

10 2 To Begin With: PGD for Poisson Problems

∫

Ω

D∏

k=1

gk(xk) dΩ =
D∏

k=1

∫ L

−L
gk(xk)dxk .

This constitutes an essential feature of PGD that makes it possible to solve problems
defined in high dimensional spaces.

Since u∗ represents an admissible variation of the solution u, the weights α∗
j are

arbitrary, too (very much like nodal coefficients of admissible variations in FEM).
Thus, Eq. (2.5) allows to compute the n approximation coefficients α j , solving the
resulting linear system of size n × n. This problem is linear and moreover rarely
exceeds the order of some tens of degrees of freedom. Thus, even if the resulting
coefficient matrix is densely populated, the time required for its solution is negligible
with respect to the one required for performing the approximation basis enrichment
(step 3).

Step 2: Checking convergence

From the solution of u at iteration n given by Eq. (2.4) the residual Re related to
Eq. (2.1) can be computed:

Re =
√∫

Ω
(�u + f (x1, . . . , xD))2

u
. (2.6)

By fixing a tolerance Re < ε, the iteration process can be stopped, thus providing
the solution u(x1, . . . , xD).

As per the weak form of the problem, the integral in Eq. (2.6) can be written as
the product of one-dimensional integrals by performing a separated representation
of the square of the residual.

Step 3: Enrichment of the approximation basis

If the stopping criterion has not yet be accomplished, the PGD approximation can
be enriched by adding a new functional product

∏D
k=1 F (n+1)

k (xk). To this end, the
non-linear Galerkin variational formulation related to Eq. (2.1) is then solved:

∫

Ω

∇u∗ · ∇udΩ =
∫

Ω

u∗ f dΩ,

using the approximation of u given by:

u(x1, x2, . . . , xD) =
n∑

j=1

α j

D∏

k=1

F j
k (xk) +

D∏

k=1

Rk(xk).

2.2 The Poisson Problem 11

Identically, the test function has the form

u∗(x1, x2, . . . , xD) = R∗
1(x1)·R2(x2)·. . .·RD(xD)+. . .+R1(x1)·R2(x2)·. . .·R∗

D(xD),

by simply applying the rules of variational calculus.
This leads finally to a non-linear variational problem (note that we seek a product

of functions expressed in a one dimensional finite element basis), whose solution
allows to compute the D sought functions Rk(xk). Functions F (n+1)

k (xk) need finally
to be normalized.

To solve this problem we introduce a discretization of those functions Rk(xk).
Each one of these functions is approximated using a 1D finite element description. If
we assume than pk nodes are used to construct the interpolation of function Rk(xk)

in the interval [−L , L], then the size of the resulting discrete non-linear problem
is

∑k=D
k=1 pk . The price to pay for avoiding a whole mesh in the multidimensional

domain is the solution of a non-linear problem. However, even in high dimensions the
size of the non-linear problems remains moderate and no particular difficulties have
been found in its solution up to hundreds dimensions. Concerning the computation
time, evenwhen the non-linear solver converges quickly, this step consumes themain
part of the global computing time.

Different non-linear solvers have been analyzed: Newton or one based on an alter-
nating directions scheme. In this work the last strategy was retained. Thus, in the
enrichment step, function Rs+1

1 (x1) is updated by assuming known all the others func-
tions (given at the previous iteration of the non-linear solver Rs

2(x2), · · · , Rs
D(xD)).

Then, functions Rs+1
1 (x1), Rs

3(x3), · · · , Rs
D(xD) are assumed known for updating

function Rs+1
2 (x2), and so on until updating the last function Rs+1

D (xD). Now the
convergence is checked by calculating

∑i=D
i=1 Rs+1

i (xi) − Rs
i (xi)

2. If this norm is
small enough we can define the functions F (n+1)

k (xk) by normalizing the functions
R1, R2, . . . , RD and come back to step 1. On the contrary, if this norm is not small
enough, a new iteration of the non-linear solver should be performed by updating
functions Rs+2

i (xi), i = 1, · · · , D and then checking again the convergence. Despite
its simplicity, our experience proves that this strategy is in fact very robust.

We must recall that the technique that we proposed in the papers just referred,
is not a universal strategy able to solve any kind of multidimensional partial differ-
ential equation (PDE). Thus, the efficient application of the technique that we just
described requires the separability of all the fields involved in the model. Obviously,
this separability is not always possible because some functions need a tremendous
number of sums. On the other hand, even when the field is separable (one could
perform this separation by invoking for example the SVD or the multidimensional
SVD) the finite sums decomposition of general multidimensional functions is not
realistic because the amount of memory needed for storing the discrete form of such
functions before applying the multidimensional SVD.

12 2 To Begin With: PGD for Poisson Problems

In many physical models (see for example [6, 25]) a fully separation (consisting
of a sum of products of one-dimensional functions) could not be envisaged from a
practical point of view. Thus, a better approximation lies in writing

u(x1, · · · , xd) ≈
i=N∑

i=1

Fi
1(x1) × · · · × Fi

D(xd)

where the different functions taking part in the finite sums decomposition are defined
in spaces of moderate dimensions, that is xi ∈ Ωi ⊂ R

qi , where usually qi = 1, 2
or 3.

2.3 Matrix Structure of the Problem

The approximation to u given by Eq. (2.4) can indeed be further simplified by
assuming

u(x1, x2, . . . , xD) =
n∑

j=1

D∏

k=1

F j
k (xk), (2.7)

i.e., there is no need to assume unit-normed functions and a weighting parameter α j

in the approximations of u. This was the initial approach followed in [6, 7], but we
soon realized that it is equally possible to compute directly functions Fk without the
need to enforce its unity norm, nor the projection stage of the algorithm presented
before.

Consider, for simplicity, a two-dimensional code, although its extension to an
arbitrary number of dimensions is strightforward. In it, functions Fi (we are going
to rename them now by their two-dimensional counterparts Fi (x) and Gi (y)) are
approximated by employing (linear in this case) finite elements, so that, at iteration n,
the i-th sum of the approximation will be given by

ui (x, y) = [
NT Fi MT Gi

]
, (2.8)

with N and M the vectors containing the values of finite element shape functions
at integration points and Fi and Gi the vectors of nodal values at the FE mesh for
the functions Fi (x) and Gi (y), respectively. In the code included below we assume
identical approximation along x and y directions so that only a matrix N = M will
be necessary.

The same is necessary for the computation of the gradient terms arising in
Eq. (2.3),

[
∂u

∂x

∂u

∂y

]T

=
[

d NT F1MT G1 d NT F2MT G2 . . . d NT Fn MT Gn

NT F1d MT G1 NT F2d MT G2 . . . NT Fnd MT Gn

]
,

2.3 Matrix Structure of the Problem 13

where d N and d M represent the vector containing the value of shape function’s
derivatives at Gauss points. A similar expression can be envisaged both for u∗ and
∇u∗, while in this case the nodal values of functions F∗

i and G∗
i are arbitrary, as it is

well known from standard finite element theories.
When we look for a new term in the approximation, we assume that

u(x, y) =
n∑

i=1

Fi (x)Gi (y) + R(x)S(y), (2.9)

while
u∗(x, y) = R∗(x)S(y) + R(x)S∗(y).

The new, enhanced, expression of the gradients will be

[
∂u

∂x

∂u

∂y

]T

=
∑

i

[
d NT Fi MT Gi

NT Fi d MT Gi

]
+

[
MT Sd NT 0

0 NT Rd MT

] [
R
S

]

=
∑

i

Di + E
[

R
S

]
,

and, similarly,

u∗(x, y) = [
RT ST

] [
ST M N
RT N M

]
.

The same must be done for
[
∂u∗

∂x

∂u∗

∂y

]
= [

R∗T S∗T
] [

ST Md N ST d M N
RT d N M RT Nd M

]
= [

R∗T S∗T
]

FT ,

and for the source term, by assuming that

f (x, y) ≈
∑

h

ah(x)bh(y).

Once all this matrices have been substituted into the weak form of the problem,
Eq. (2.3) ,we arrive at

∫

Ω

[
R∗T S∗T

] ∑

i

FT Di dΩ +
∫

Ω

[
R∗T S∗T

]
FT E

[
RT

ST

]
dΩ

=
∑

h

∫

Ω

[
R∗T S∗T

] [
ST Mbh(y)Nah(x)

RT Nah(x)Mbh(y)

]
dΩ.

(2.10)

14 2 To Begin With: PGD for Poisson Problems

These integrals in Ω can in fact be separated (since every term is) into a sequence
of integrals along x and y coordinates. The resulting terms for matrices FT Di and
FT E will involve a repeated evaluation of four terms, namely,

∫ x=+L

x=−L
d Nd NT dx and

∫ y=+L

y=−L
d Md MT dy (2.11)

and ∫ x=+L

x=−L
N NT dx and

∫ y=+L

y=−L
M MT dy, (2.12)

which are referred to as p1 and p2, respectively, in routine elemstiff (see the
call [Km{i1},Mm{i1}] = elemstiff(coor{i1}) in the main file of the
code). The code below in fact assumes that N = M, since equal partitions are made
along x and y directions. For instance, the term 11 of the integration of matrix FT E
has the form,

∫

Ω

(FT E)11dΩ =
(∫ x=+L

x=−L
d Nd NT dx

)
ST

(∫ y=+L

y=−L
M MT dy

)
S. (2.13)

Similarly, the right-hand-side term in Eq. (2.10) has the form,

m∑

h=1

⎡

⎣
ST

(∫ y=+L
y=−L Mbh(y)dy

) (∫ x=+L
x=−L Nah(x)dx

)

RT
(∫ x=+L

x=−L Nah(x)dx
) (∫ y=+L

y=−L Mbh(y)dy
)

⎤

⎦ . (2.14)

The problem, finally, renders Eq. (2.3) in a matrix form that can be simplified,
after invoking the arbitrariness of R∗T and S∗T , to

V 1(R, S) + K (R, S)

[
R
S

]
= V 2(R, S),

which is more easily recognized if we write it in the form

K (R, S)

[
R
S

]
= V 2(R, S) − V 1(R, S) = V (R, S). (2.15)

It is important to note that the problem in Eq. (2.15) is non-linear, since we look
for functions R and S, but both appear multiplied to each other in Eq. (2.9). You
can choose your favorite linearization procedure (Newton methods, for instance). In
our experience, fixed-point, alternated directions algorithms render excellent results
and, despite their general lack of convergence, this is rarely found in practice.

2.4 Matlab Code for the Poisson Problem 15

2.4 Matlab Code for the Poisson Problem

The code main file is called main.m, of course! Its content is reproduced below.

%

% PGD Code for Poisson problems

% D. Gonzalez , I. Alfaro , E. Cueto

% Universidad de Zaragoza

% AMB -I3A Dec 2015

%

clear all; close all; clc;

%

% VARIABLES

%

ndim = 2; nn = 40.* ones(ndim ,1); % # of Dimensions , # of Elements

num_max_iter = 15; % Max. # of summands for the approach

TOL = 1.0E-4; npg = 2; % Tolerance , Gauss Points

coor = cell(ndim ,1); % Coordinates in each direction

L0 = -1.*ones(ndim ,1);

L1 = ones(ndim ,1); % Geometry (min ,max coordinates)

for i1=1:ndim ,

coor{i1} = linspace(L0(i1),L1(i1),nn(i1));

end

%

% ALLOCATION OF IMPORTANT MATRICES

%

Km = cell(ndim ,1); % "Stiffness" matrix \int dN dN dx, Eq. (2.10)

Fv = cell(ndim ,1); % R and S sought enrichment functions

Mm = cell(ndim ,1); % "Mass" matrix \int N N dx, Eq. (2.11)

V = cell(ndim ,1); % Source term in separated form

%

% COMPUTING STIFFNESS AND MASS MATRICES ALONG EACH DIRECTION

%

for i1=1:ndim ,

[Km{i1},Mm{i1}] = elemstiff(coor{i1});

end

%

% SOURCE TERM IN SEPARATED FORM

%

% Let us begin by a separable expression. Evaluation of Eq. (2.13)

Ch{1,1} = @(x) cos(2*pi*x); Ch{2,1} = @(y) sin(2*pi*y);

% Try this new source term by yourself by simply uncommenting next 2 lines!

% Ch{1,1} = @(x) x.*x; Ch{1,2} = @(x) -1.0+0.0*x;

% Ch{2,1} = @(y) 1.0+0.0*y; Ch{2,2} = @(y) y.*y;

for j1=1: ndim

for k1=1: size(Ch ,2)

V{j1}(:,k1) = Ch{j1,k1}(coor{j1});

end

% Although in this case we have a closed -form expression for the source

% term , in general we know its nodal values.

V{j1} = Mm{j1}*V{j1};

end

%

% BOUNDARY CONDITIONS

%

CC = cell(ndim ,1);

for i1=1:ndim ,

IndBcnode{i1} = [1 numel(coor{i1})];

end

for i1=1:ndim ,

CC{i1} = setxor(IndBcnode{i1},[1: numel(coor{i1})])’;

end

%

% ENRICHMENT OF THE APPROXIMATION , LOOKING FOR R AND S

%

16 2 To Begin With: PGD for Poisson Problems

num_iter = 0; iter = zeros (1); Aprt = 0; Error_iter = 1.0;

while Error_iter >TOL && num_iter <num_max_iter

num_iter = num_iter + 1; R0 = cell(ndim ,1);

for i1=1: ndim

% Initial guess for R and S.

% It works equally well by choosing something random.

R0{i1} = ones(numel(coor{i1}),1);

% We impose that initial guess for functions R and S verify

% homogeneous essential boundary conditions.

R0{i1}(IndBcnode{i1}) = 0;

end

%

% ENRICHMENT STEP

%

[R,iter(num_iter)] = enrichment(Km,Mm,V,num_iter ,Fv,R0,CC,TOL);

for i1=1:ndim , Fv{i1}(:, num_iter) = R{i1}; end % R (S) is valid , add it

%

% STOPPING CRITERION

%

Error_iter = 1.0;

% One possible criterion is to stop when the norm of the new sum is

% negligible wrt the pair of functions with the maximum norm

for i1=1:ndim , Error_iter = Error_iter .*norm(Fv{i1}(:, num_iter)); end

Aprt = max(Aprt ,sqrt(Error_iter));

Error_iter = sqrt(Error_iter)/Aprt;

fprintf(1,’%dst summand in %d iterations with a weight of %f\n’ ,...

num_iter ,iter(num_iter),sqrt(Error_iter));

end

num_iter = num_iter - 1;% the last sum was negligible , we discard it.

fprintf(1,’PGD Process exited normally\n\n’);

save(’WorkSpacePGD_Basic.mat’);

%

% POST -PROCESSING

%

for i1=1: ndim

figure;

plot(coor{i1},Fv{i1}(:,1: num_iter));

end

figure;

if ndim ==2

surf(coor{1},coor{2},Fv{2}*Fv{1}’);

end

The source code reproduce before includes a call to a function calledelemstiff
that, obviously, provideswith the stiffnessmatrix for each 1D element in the problem.
It is reproduced below:

function [p1,p2] = elemstiff(coor)

% function [p1,p2] = elemstiff(coor)

% For the coordinates coor , obtains p1 (Stiffness) and p2(Mass) matrices

% Universidad de Zaragoza - 2015

nen = numel(coor); p1 = zeros(nen); p2 = zeros(nen); % p3 = zeros(nen ,1);

X = coor (1:nen -1)’; % Left coordinate of the elements

Y = coor (2:nen)’; % Right coordinate of the elements

L = Y - X; % Length of the elements

sg = [-0.57735027 , 0.57735027]; wg = [1, 1]; % Gauss and weight points

npg = numel(sg);

for i1=1:nen -1

c = zeros(1,npg);

N = zeros(nen ,npg);

dN = zeros(nen ,npg);

c(1,:) = 0.5.*(1.0 - sg).*X(i1) + 0.5.*(1.0+ sg).*Y(i1);

N(i1+1,:) = (c(1,:)-X(i1))./L(i1);

N(i1 ,:) = (Y(i1)-c(1 ,:))./L(i1);

2.4 Matlab Code for the Poisson Problem 17

dN(i1+1,:) = ones(1,npg)./L(i1);

dN(i1 ,:) = -dN(i1+1,:);

for j1=1:npg

p1 = p1 + dN(:,j1)*dN(:,j1) ’*0.5.*wg(j1).*L(i1); % dNůdN

p2 = p2 + N(:,j1)*N(:,j1) ’.*0.5.*wg(j1).*L(i1); % NůN

end

end

return

Once the sequence of 1D problems has lead us to a new term in the PGD approx-
imation, we check if it is enough for the prescribed accuracy. If not, we add a new
couple of functions in the enrichment function:

function [R,iter] = enrichment(K,M,V,num_iter ,FV,R,CC,TOL)

% function [R,iter] = enrichment(K,M,V,num_iter ,FV,R,CC,TOL)

% Compute a new sumand by fixed -point algorithm using PGD

% Universidad de Zaragoza , 2015

iter = 1;

mxit = 25; % # of possible iterations for the fixed point algorithm

error = 1.0e8; % Initialization

ndim = size(FV ,1); % Number of Variables

%

% FIXED POINT ALGORITHM

%

while abs(error)>TOL

Raux = R; % Remember: R is a cell containing both R and S

for i1=1: ndim % Alternating between R and S

matrix = zeros(numel(R{i1})); % K matrix in Eq. (2.14)

source = zeros(size(R{i1},1),1);% V2-V1 in Eq. (2.14)

%

% COMPUTING K MATRIX Eq (2.14)

%

for i2=1: ndim % Products in sum = ndim (2 in this case)

FTE = 1.0; % Computing F^T E in Eq. (2.8)

% Remember: K = \int dN dN dx and M = \int N N dx

for i3=1: ndim

if i3==i2

if i3==i1

FTE = FTE.*K{i3};

else

FTE = FTE.*(R{i3}’*K{i3}*R{i3});

end

else

if i3==i1

FTE = FTE.*M{i3};

else

FTE = FTE.*(R{i3}’*M{i3}*R{i3});

end

end

end

matrix = matrix + FTE;

end

%

% COMPUTING V2 in Eq. (2.14)

%

for j1=1: size(V{i1},2) % Number functions of the source

V2 = 1.0;

for i2=1: ndim

if i2==i1

V2 = V2.*V{i2}(:,j1);

else

V2 = V2.*(R{i2}’*V{i2}(:,j1));

end

end

source = source + V2;

18 2 To Begin With: PGD for Poisson Problems

end

%

% COMPUTING V1 in Eq. (2.14)

%

for j1=1: num_iter -1

for i2=1: ndim % Terms in sum

FTD = 1.0; % COMPUTING F^T D in Eq. (2.9)

for i3=1: ndim

if i3==i2

if i3==i1

FTD = FTD.*(K{i3}*FV{i3}(:,j1));

else

FTD = FTD.*(R{i3}’*K{i3}*FV{i3}(:,j1));

end

else

if i3==i1

FTD = FTD.*(M{i3}*FV{i3}(:,j1));

else

FTD = FTD.*(R{i3}’*M{i3}*FV{i3}(:,j1));

end

end

end

source = source - FTD; % Note that source = V2-V1

end

end

%

% SOLVE Eq. (2.14) FOR EACH DIRECTION

%

R{i1}(CC{i1}) = matrix(CC{i1},CC{i1})\ source(CC{i1});

% We normalize S. R takes care of the alpha constant in Eq. (2.2)

if i1~=1, R{i1} = R{i1}./ norm(R{i1}); end

end

% If two successive Rs are too similar , we stop

error = 0;

for j1=1: ndim

error = error + norm(Raux{j1}-R{j1});

end

error = sqrt(error);

iter = iter + 1;

if iter == mxit % If we reach the max # of iterations , we exit

return;

end

end

return

After executing this code in your own Matlab client, it provides you with the
following figures. In Fig. 2.1 the obtained solution for the Poisson problem is show.
Since the source term cos(2πx) sin(2πy) is separable, the code provides the solution
with one only term in the PGD sum. Of course, this is not always the case (indeed, it
is almost never the case!). The two functions obtained whose multiplication gives the
bi-dimensional solution are plotted in Fig. 2.2. Actually, both resemble very much to
(the finite element approximation of) the cos and sin functions, respectively.

2.4 Matlab Code for the Poisson Problem 19

1
0.5

0
-0.5

-1-1
-0.5

0
0.5

-0.02

-0.01

0

0.01

0.02

1

Fig. 2.1 Solution to the poisson problem, as given by the PGD code

-1 -0.5 0 0.5 1
-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

-1 -0.5 0 0.5 1
-0.06

-0.04

-0.02

0

0.02

0.04

0.06

Fig. 2.2 Solution to the poisson problem. Single modes encountered in the x-direction (top) and
y-direction (bottom)

Chapter 3
Parametric Problems

We have a habit in writing articles published in scientific
journals to make the work as finished as possible, to cover all
the tracks, to not worry about the blind alleys or to describe how
you had the wrong idea first, and so on. So there isn’t any place
to publish, in a dignified manner, what you actually did in order
to get to do the work.

—Richard Feynmann

Abstract This chapter develops the application of PGD methods for parametric
problems, their natural field of application.

Parametric problems constitute perhaps the most relevant application of Proper
Generalized Decomposition methods. Initially aimed at solving problems defined
within a high dimensional phase space [6], PGD soon revealed an impressive ability
to solve in the same setting parametric problems by just considering parameters as
new dimensions, a sort of parametric phase space [27].

In this chapter we explore precisely these capabilities. Since they have also been
included in a number of previous references, notably in former books (see [28],
Chap. 5), we focus here on a particular instance of parametric problems: that of
moving loads.

3.1 A Particularly Challenging Problem: A Moving Load
as a Parameter

An influence line is a graphical representation of a given magnitude (a bending
moment, for instance) at a given point of a beam caused by a unit load moving
along the span of that beam. This concept has helped engineers through the years
to design beam structures in an efficient manner. One can imagine, however, an
extension of the concept of influence line to general, three-dimensional solids. This

© The Author(s) 2016
E. Cueto et al., Proper Generalized Decompositions, SpringerBriefs
in Applied Sciences and Technology, DOI 10.1007/978-3-319-29994-5_3

21

22 3 Parametric Problems

Fig. 3.1 An application of the influence line concept for a hyperelastic beam. You can play inter-
actively with the beam by just placing the load with your finger on a tablet. A web-based version
of this same app can be reached at http://amb.unizar.es/barra03.htm

would give rise to a sort of response surface in which particularizing the parameter
(the position of the load) provides in an immediate way the response of the solid
(its deformed configuration, in this case). This sort of influence line has potentially
many applications in science and engineering for real-time simulation in fields such
as computational surgery [55], decision taking, or even augmented learning [60], see
Fig. 3.1.

In fact, this problem has been frequently thought of as non separable, i.e., that the
number of modes needed to express the solution is so big, that no gain is obtained
by applying any kind of model order reduction technique and therefore it is better
to simply simulate it in a straightforward manner, by finite element methods or any
other numerical technique of your choice.

However, it can be easily found that this is not true. Consider the influence line
sketched in Fig. 3.2. We consider a clamped beam with a moving load and try to
compute its deformed configuration for the load acting at any point. In fact, by
applyingProperOrthogonalDecomposition techniques to the results, it can readily be
seen that the number of modes or shape functions needed to express this solution v =
v(x, s) is in fact limited, see Fig. 3.3. Here, v denotes here the vertical displacement
of the beam, x the particular point of the beam in which we want to know this
displacement and s the position of the load,

As can be noticed from Fig. 3.3 (left), the eigenvalues decrease fast after a reason-
able number of eigenmodes. Thus, even if we need to consider every possible load
position, the number of functions needed to express the parametric solution is in fact
reasonably limited.

http://amb.unizar.es/barra03.htm

3.2 The Problem Under the PGD Formalism 23

Fig. 3.2 A clamped beam with a moving load

Fig. 3.3 (Left) resulting eigenvalues for the clamped beam problem and (right) first modes of the
solution

3.2 The Problem Under the PGD Formalism

As will be noticed, under the PGD formalism, the influence line problem becomes
simple. We generalize this problem so as to find the displacement field u(x, y, z) at
any point of a three-dimensional solid Ω , for any load position s ∈ Γ̄ ⊂ ∂Ω .

Under these assumptions, the weak form of the problemwill result after multiply-
ing the strong form by an arbitrary test function u∗ and integrating over the region
occupied by the solid, Ω , and the portion of its boundary which is accessible to the
load, Γ̄ . It therefore consists in finding the displacement u ∈ H1 such that for all
u∗ ∈ H1

0: ∫

Γ̄

∫

Ω

∇s u∗ : σdΩdΓ̄ =
∫

Γ̄

∫

Γt2

u∗ · tdΓ dΓ̄ (3.1)

where Γ = Γu ∪Γt represents the essential and natural portions of the boundary, and
where Γt = Γt1 ∪ Γt2, i.e., regions of homogeneous and non-homogeneous, respec-
tively, natural boundary conditions. We assume, for simplicity of the exposition, that
the load is of unity module and acts along the vertical axis: t = ek · δ(x − s), where
δ represents the Dirac-delta function and ek the unit vector along the z-coordinate
axis.

24 3 Parametric Problems

The Dirac-delta term needs to be approximated by a truncated series of separable
functions in the spirit of the PGD method, i.e.,

t j ≈
m∑

i=1

f i
j (x)gi

j (s) (3.2)

where m represents the order of truncation and f i
j , gi

j represent the j-th component
of vectorial functions in space and boundary position, respectively.

The PGD approach to the problem consists in finding, in a greedy way, a finite
sum of separable functions to approach the solution. Assuming that, at iteration n of
this procedure, we have converged to such an approximation, we have

un
j (x, s) =

n∑

k=1

Fk
j (x) · Gk

j (s), (3.3)

where the term u j refers to the j th component of the displacement vector, j = 1, 2, 3
and functions Fk and Gk represent the separated functions used to approximate the
unknown field, obtained in previous iterations of the PGD algorithm.

If this rank-n approximation does not give the desired accuracy, we can proceed
further and look for the (n + 1)th term, that will look like

un+1
j (x, s) = un

j (x, s) + R j (x) · Sj (s),

where R(x) and S(s) are the sought functions that improve the approximation.
By just applying standard rules of variational calculus, the test function will be

u∗
j (x, s) = R∗

j (x) · Sj (s) + R j (x) · S∗
j (s).

To determine the new functions R and S any linearization strategy could in prin-
ciple be applied. In our experience, a fixed-point algorithm in which functions R
and S are determined iteratively gives very good results, even if convergence is not
guaranteed, as is well known. We provide details of this strategy in the next section.

3.2.1 Computation of S(s) Assuming R(x) Is Known

In this case, the admissible variation of the displacement will be given by

u∗
j (x, s) = R j (x) · S∗

j (s),

or, equivalently, u∗(x, s) = R◦S∗, where the symbol “◦” denotes the so-called entry-
wise, Hadamard or Schur multiplication for vectors. Once substituted into Eq. (3.1),
gives

3.2 The Problem Under the PGD Formalism 25

∫

Γ̄

∫

Ω

∇s(R ◦ S∗) : C : ∇s

(
n∑

k=1

Fk ◦ Gk + R ◦ S

)
dΩdΓ̄ =

∫

Γ̄

∫

Γt2

(R ◦ S∗) ·
(

m∑

k=1

f k ◦ gk

)
dΓ dΓ̄ ,

(3.4)
or, simply

∫

Γ̄

∫

Ω

∇s(R ◦ S∗) : C : ∇s(R ◦ S)dΩdΓ̄

=
∫

Γ̄

∫

Γt2

(R ◦ S∗) ·
(

m∑

k=1

f k ◦ gk

)
dΓ dΓ̄ −

∫

Γ̄

∫

Ω

∇s
(
R ◦ S∗) · RndΩdΓ̄ ,

where Rn represents:
Rn = C : ∇s un.

Since the symmetric gradient operates on spatial variables only, we have:

∫

Γ̄

∫

Ω

(∇s R ◦ S∗) : C : (∇s R ◦ S)dΩdΓ̄

=
∫

Γ̄

∫

Γt2

(R ◦ S∗) ·
(

m∑

k=1

f k ◦ gk

)
dΓ dΓ̄ −

∫

Γ̄

∫

Ω

(∇s R ◦ S∗) · RndΩdΓ̄

where all the terms depending on x are known. Therefore, all integrals over Ω and
Γt2 (support of the regularization of the initially punctual load) can be computed to
obtain an equation for S(s).

3.2.2 Computation of R(x) Assuming S(s) Is Known

By proceeding in the same way, we have

u∗
j (x, s) = R∗

j (x) · Sj (s),

which, once substituted into Eq. (3.1), gives

∫

Γ̄

∫

Ω

∇s(R∗ ◦ S) : C : ∇s

(
n∑

k=1

Fk ◦ Gk + R ◦ S

)
dΩdΓ̄ =

∫

Γ̄

∫

Γt2

(R∗ ◦ S) ·
(

m∑

k=1

f k ◦ gk

)
dΓ dΓ̄ .

Conversely, all the terms depending on s (load position) can be integrated over Γ̄ ,
leading to a generalized elastic problem to compute function R(x).

26 3 Parametric Problems

3.3 Matrix Structure of the Problem

As stated before, see Eq. (3.3), the essential ingredient of PGDmethods is to assume
the variable (here, the displacement field) to be decomposed in the form of a finite
sum of separable functions, i.e.,

u(x, s) =
n∑

i=1

Fi (x) ◦ Gi (s),

where a dependency on the physical position of the considered point, x and the
position of the applied load, s is assumed.

In the implementation introduced in Sect. 3.4 below, we enforce functions Gi to
have unity norm. By doing that, the weighting parameter αi (see Eq. (2.2) is not
computed explicitly, but assumed to multiply the Fi functions (which, therefore, do
not have unity norm).

As in the previous chapter, Fi (x) and Gi (s) are approximated by employing
(linear in this case) finite elements, so that, at iteration n, the i-th sum of the approx-
imation will be given by

uh(x, s) =
n∑

i=1

Fi (x) · Gi (s) =
n∑

i=1

[
NT (x)Fi MT (s)Gi

]
,

with N and M the vectors containing the finite element shape functions defined in
each separated space and Fi and Gi the vectors of nodal values at the FE mesh for
the functions Fi (x) and Gi (s), respectively. For simplicity and ease of reading, we
have maintained the same notation employed in Eq. (2.8). The superscript h for the
discrete, finite element approximation of a variable will no longer be employed, for
clarity, if there is no risk of confusion.

The code included below solves the problem of a two-dimensional cantilever
beam under a load placed at an arbitrary position along its upper face. Therefore, we
assume a 2D spatial approximation on x (given by simple linear triangular elements)
and 1D approximation for the s direction.

When we look for a new couple of functions in the approximation, we assume
that

un+1(x, s) = un(x, s) + R(x)S(s) =
n∑

i=1

Fi (x)Gi (s) + R(x)S(s), (3.5)

while
u∗(x, s) = R∗(x)S(s) + R(x)S∗(s).

http://dx.doi.org/10.1007/978-3-319-29994-5_2
http://dx.doi.org/10.1007/978-3-319-29994-5_2

3.3 Matrix Structure of the Problem 27

Very often, in parametric problems (like in this example) the derivatives appearing
in theweak formof the problem, given byEq. (3.4), are acting only spatial coordinates
and not on the parameters, despite that in the PGD framework they are considered
as actual “extra” coordinates. Therefore,

∇s u = ∇s

[
n∑

i=1

Fi (x) · Gi (s)

]
+ ∇s [R(x) · S(s)] =

n∑

i=1

[
∇s Fi (x)

]
· Gi (s) + [∇s R(x)] · S(s)

=
n∑

i=1

[
∇s NT (x)Fi

]
· MT (s)Gi +

[
∇s NT (x)R

]
· MT (s)S.

The terms defined before and depending on nodal values Fi and Gi (i.e., those
corresponding to the already computed un approximation) are known, so they should
be moved to the right-hand side of the final algebraic equation.

In a similar way,

∇s u∗ = ∇s NT (x)R · MT (s)S∗ + ∇s NT (x)R∗ · MT (s)S.

The L.H.S. of the weak form, Eq. (3.4), can be easily expressed in separated form,

∫

Γ̄

∫

Ω

∇s u∗ : C : ∇s R(x)S(s)dΩdΓ̄

=
∫

Ω

RT ∇s N(x) : C : ∇s NT (x)RdΩ ·
∫

Γ̄

S∗T M(s)MT (s)SdΓ̄

+
∫

Ω

R∗T ∇s N(x) : C : ∇s NT (x)RdΩ ·
∫

Γ̄

ST M(s)MT (s)SdΓ̄ (3.6)

Since R and S represent vectors of nodal values for functions R(x) and S(s),
respectively, they can be extracted from the integrals in Eq. (3.6), so as to give,

∫

Γ̄

∫

Ω

∇s u∗ : C : ∇s R(x)S(s)dΩdΓ̄

= RT

[∫

Ω

∇s N(x) : C : ∇s NT (x)dΩ

]
R · S∗T

[∫

Γ̄

M(s)MT (s)
]

SdΓ̄

+ R∗T
[∫

Ω

∇s N(x) : C : ∇s NT (x)dΩ

]
R · ST

[∫

Γ̄

M(s)MT (s)dΓ̄

]
S

= RT K1(x)R · S∗T M2(s)S + R∗T K1(x)R · ST M2(s)S

(3.7)

28 3 Parametric Problems

where K1(x) represents a sort of stiffness matrix on the spatial coordinates x, while
M2(s) represents a mass matrix for the 1D discretization problem in the s vari-
able. Both of them are computed in routine elemstiff (see the call [K1,M2] =
elemstiff(coors) in the main file of the code in Sect. 3.4).

We proceed similarly for the RHS term of the weak form, Eq. (3.4), and taking
into account that the integrals involved in it do not depend on spatial coordinates,
but only on the s coordinate, we arrive at

∫

Γ̄

∫

Γt2

u∗ · tdΓ dΓ̄ =
∫

Γ̄

∫

Γt2

[
R∗(x)S(s) + R(x)S∗(s)

] ·
[

m∑

i=1

f i (x)gi (s)

]
dΓ dΓ̄

=
∫

Γt2

m∑

i=1

R∗(x) f i (x)

∫

Γ̄

S(s)gi (s)dΓ̄ +
∫

Γt2

m∑

i=1

R(x) f i (x)

∫

Γ̄

S∗(s)gi (s)dΓ̄ .

(3.8)

Denoting by F R1 the nodal values of the source term decomposition for the
spatial variables and by F R2 for the load direction, Eq. (3.8) has the form,

m∑

i=1

R∗T F R1 · ST
[∫

Γ̄
M(s)MT (s)dΓ̄

]
F R2 +

m∑

i=1

RT F R1 · S∗T
[∫

Γ̄
M(s)MT (s)dΓ̄

]
F R2.

(3.9)

As discussed in the introduction to this chapter, the problem of expressing the
moving load as a finite sum of separable functions, i.e., t(x, s) ≈ ∑m

i=1 f i (x)gi (s)
is not separable. In other words, it can only be done in the discrete setting by choosing
F R1 to be a matrix of zeros (of size [# dof of the whole problem × dof
along the loaded boundary] andwhose only non-vanishing entries are, for
each column, the position of nodes that can receive a load. These entries will be equal
to the value of the applied force.Respectively, F R2will be an identitymatrix (eye(#
dof along the loaded boundary) inMatlab terms). Each column in F R1
thus includes the corresponding degree of freedom that is loaded.Note that, therefore,

m∑

i=1

f i (x)gi (s) =
m∑

i=1

N(x)F R1i · M(s)F R2i .

To this R.H.S. vector we should add the terms related to the known solution up to
iteration n, un(x, s), Eq. (3.5),

3.3 Matrix Structure of the Problem 29

∫

Γ̄

∫

Ω

∇s u∗ : C : ∇s undΩdΓ̄

=
n∑

i=1

RT

[∫

Ω

∇s N(x) : C : ∇s NT (x)dΩ

]
Fi · S∗T

[∫

Γ̄

M(s)MT (s)
]

Gi dΓ̄ +

+
n∑

i=1

R∗T
[∫

Ω

∇s N(x) : C : ∇s NT (x)dΩ

]
Fi · ST

[∫

Γ̄

M(s)MT (s)dΓ̄

]
Gi

=
n∑

i=1

RT K1(x)Fi · S∗T M2(s)Gi +
n∑

i=1

R∗T K1(x)Fi · ST M2(s)Gi . (3.10)

In the Matlab code included in Sect. 3.4 we are employing the following notation:
V1i = F R1i and V2i = M2(s)F R2i for i = 1, . . . , m, so that Eq. (3.9) is
expressed in the form

m∑

i=1

R∗T V1 · ST V2 +
m∑

i=1

RT V1 · S∗T V2. (3.11)

After some gymnastics, the weak form, Eq. (3.4), taking into account Eqs. (3.7),
(3.10) and (3.11), will look in matrix form like

RT K1(x)R · S∗T M2(s)S + R∗T K1(x)R · ST M2(s)S =

=
m∑

i=1

R∗T V1 · ST V2 +
m∑

i=1

RT V1 · S∗T V2 −
n∑

i=1

RT K1(x)Fi · S∗T M2(s)Gi

−
n∑

i=1

R∗T K1(x)Fi · ST M2(s)Gi .

Asmentioned before, in order to determine the new functional pair R and S, any
linearization strategy could be envisaged. Remember that the fact that we look
for a product of functions makes the problem of enriching the approximation
non-linear. In the code of Sect. 3.4, a fixed-point algorithm in which functions
R and S are sought iteratively is implemented. Other strategies, like Newton-
Raphson, for instance, could work equally well.

30 3 Parametric Problems

The final matrix form of the fixed-point alternating directions algorithm, in which
the computation of S(s) is performed, assuming that R(x) is known, will look like

RT K1(x)R · S∗T M2(s)S =
m∑

i=1

RT V1 · S∗T V2−
n∑

i=1

RT K1(x)Fi · S∗T M2(s)Gi .

(3.12)

Equivalently, when we look for R(x) assuming S(s) is known, the resulting
problem will have the following matrix form,

R∗T K1(x)R · ST M2(s)S =
m∑

i=1

R∗T V1 · ST V2−
n∑

i=1

R∗T K1(x)Fi · ST M2(s)Gi .

(3.13)

In next section the detailed Matlab code implementing this strategy is provided.

3.4 Matlab Code for the Influence Line Problem

As always, the code begins at file main.m, whose content is reproduced below. It
solves the problem of a cantilever beam under a load placed at an arbitrary location
along its top boundary. Small strains assumption is made. The code provides the
solution under plane stress or plane strain conditions.

%

% PGD Code for parametrized force

% D. Gonzalez , I. Alfaro , E. Cueto

% Universidad de Zaragoza

% AMB -I3A Dec 2015

%

clear all; close all; clc;

%

% VARIABLES

%

global coords triangles E nu behaviour % Global variables.

E = 1000; nu = 0.3; % Material (Young Modulus and Poisson Coef)

Modulus = 1; % Force Modulus.

behaviour = 1; % Plane Stress(1), Plane Strain (2).

TOL = 1.0E-03; % Tolerance.

num_max_iter = 11; % Max. # of functional pairs for the approximation.

%

% GEOMETRY

%

X0 = 0; Xf = 3; Y0 = 0; Yf = 1.0; % The beam dimensions , [0,3]x[0,1]

tamx = 0.1; tamy = 0.1; % mesh size along each direction

nenY = numel(Y0:tamy:Yf); % # of elements in vertical direction

[X,Y] = meshgrid(X0:tamx:Xf,Y0:tamy:Yf);

coords = [X(:),Y(:)];

force = X0:tamx:Xf; force = force ’; % force positions and 1D coordinates.

triangles = delaunayTriangulation(coords(:,1), coords (: ,2)); % Mesh data.

%

% ALLOCATION OF MATRICES AND VECTORS

%

F = zeros(numel(coords),1); % Nodal values of spatial function F

3.4 Matlab Code for the Influence Line Problem 31

G = zeros(numel(force),1); % Nodal values of force function G

FR1 = zeros(numel(coords),numel(force)); % Nodal values for force (spatial term)

FR2 = eye(numel(force)); % Nodal values for force (force term)

%

% COMPUTING STIFFNESS AND MASS MATRIX FOR SPACE , ONLY MASS MATRIX FOR FORCE

%

[K1,M2] = elemstiff(force);

%

% SOURCE (FORCE) TERM IN SEPARATED FORM

%

DOFforceed = 2*nenY :2* nenY:numel(coords); % force on vertical d.o.f. on top.

for i1=1: numel(DOFforceed)

FR1(DOFforceed(i1),i1) = -Modulus;

end

V1 = FR1; % Take into account that integration is done only in S direction

V2 = M2*FR2; % Mass matrix times nodal value of the source. R.H.S. of Eq .(3.9)

%

% BOUNDARY CONDITIONS

%

CC = 1:2*(nenY); % Left side of the beam fixed.

%

% ENRICHMENT OF THE APPROXIMATION , LOOKING FOR R AND S

%

num_iter = 0; iter = zeros (1); Aprt = 0; Error_iter = 1.0;

while Error_iter >TOL && num_iter <num_max_iter

num_iter = num_iter + 1;

S0 = rand(numel(force),1); % Initial guess for S.

%

% ENRICHMENT STEP

%

[R,S,iter(num_iter)] = enrichment(K1,M2,V1,V2,S0,F,G,num_iter ,TOL ,CC);

F(:,num_iter) = R; G(:,num_iter) = S; % R and S are valid , new summand.

%

% STOPPING CRITERION

%

Error_iter = norm(F(:,num_iter)*G(:,num_iter)’);

Aprt = max(Aprt ,sqrt(Error_iter));

Error_iter = sqrt(Error_iter)/Aprt;

fprintf(1,’%dst summand in %d iterations with a weight of %f\n’ ,...

num_iter ,iter(num_iter),Error_iter);

end

num_iter = num_iter - 1; % The last sum was negligible , we discard it.

fprintf(1,’PGD off -line Process exited normally\n\n’);

save(’WorkSpacePGD_Parametricedforce.mat’);

%

% POST -PROCESSING

%

fprintf(1,’Please select force position ’);

fprintf(1,’on the figure or pick out of the beam to exit’);

h1 = figure (1); triplot(triangles);

axis equal;

[Cx,Cy] = ginput (1); % Waiting for a mouse click on the figure.

lim = 0.2/(Xf-X0); % Establishes an exit zone on the figure.

while X0-lim <=Cx && Cx <=Xf+lim && Y0-lim <=Cy && Cy <=Yf+lim

h1 = figure (1); triplot(triangles);

axis equal;

Posforce = find(force <Cx ,1,’last’); % Look for the closest loaded node.

%

% EVALUATING THE SOLUTION CHOOSING THE SELECTED NODE IN G VECTOR

%

desp = zeros(numel(coords),1);

for i1=1: num_iter

desp = desp + F(:,i1).*G(Posforce ,i1); % Obtain the solution

end

%

% PLOTTING THE SOLUTION

%

cdx = coords (:,1) + desp (1:2: end); % New X coordinates.

cdy = coords (:,2) + desp (2:2: end); % New Y coordinates.

32 3 Parametric Problems

trisurf(triangles.ConnectivityList ,cdx ,cdy ,desp (2:2: end));

title(’Vertical Displacement ’); view (2); colorbar;

figure (1); axis equal; [Cx,Cy] = ginput (1); % Wait for a new force.

end

fprintf(1,’\n\n########## End of simulation ##########\n\n’);

As in Chap.2, what we call stiffness and mass matrices are computed in function
elemstiff.m:

function [K1,M2] = elemstiff(coor2)

% function [K1,M2] = elemstiff(coor2)

% For space compute stifness matrix , for load parameter compute mass matrix

% Universidad de Zaragoza - 2015

%

% SPACE MATRICES

%

[K1] = fem2D; % Standard 2D FEM code for Triangular Elements , computing

%

% LOAD MATRICES: 1D PARAMETRIC PROBLEM

%

sg = [-1.0/ sqrt (3.0) 1.0/ sqrt (3.0)]; wg = ones (2,1); % Gauss points

npg = numel(sg); nen2 = numel(coor2); M2 = zeros(nen2);

X2 = coor2 (1:nen2 -1)’; Y2 = coor2 (2: nen2)’; % Coordinates of elements

L2 = Y2 - X2; % Longitude of each element for parametriced variable

for i1=1:nen2 -1

c2 = zeros(1,npg); N2 = zeros(nen2 ,npg);

c2(1,:) = 0.5.*(1.0 -sg).*X2(i1) + 0.5.*(1.0+ sg).*Y2(i1);

N2(i1+1,:) = (c2(1,:)-X2(i1))./L2(i1);

N2(i1 ,:) = (Y2(i1)-c2(1 ,:))./L2(i1);

for j1=1:npg

M2 = M2 + N2(:,j1)*N2(:,j1) ’*0.5.*wg(j1).*L2(i1); %NůN

end

end

return

The enrichment procedure, i.e., the computation of a new functional pair R, S, is
detailed in function enrichment.m:

function [R,S,iter] = enrichment(K1,M2,V1,V2,S0,F,G,num_iter ,TOL ,CC)

% function [R,S,iter] = enrichment(K1,M2,V1,V2,S0,F,G,num_iter ,TOL ,CC)

% Computes a new sumand by fixed -point algorithm using PGD

% Universidad de Zaragoza - 2015

R = zeros(size(F,1) ,1); R0 = R; % Initial value R to compare in first loop.

h = size(V2 ,2); % Number functions of the source

ExitFlag = 1;

iter = 0;

mxit = 25; % #ă of possible iterations for the fixde point algorithm.

Free = setdiff (1: numel(F(:,1)),CC);

%

% FIXED POINT ALGORITHM

%

while ExitFlag >TOL

%

% LOOKING FOR R, KNOWNING S

%

matrixR = K1*(S0 ’*M2*S0);

sourceR = zeros(size(F,1) ,1);

for k1=1:h

sourceR = sourceR + V1(:,k1)*(S0 ’*V2(:,k1));

end

for i1=1: num_iter -1

sourceR = sourceR - K1*F(:,i1)*(S0 ’*M2*G(:,i1));

end

http://dx.doi.org/10.1007/978-3-319-29994-5_2

3.4 Matlab Code for the Influence Line Problem 33

%

% SOLVE R

%

R(Free) = matrixR(Free ,Free)\ sourceR(Free);

%

% LOOKING FOR S, KNOWNING R

%

matrixS = (R’*K1*R)*M2;

sourceS = zeros(size(G,1) ,1);

for k1=1:h

sourceS = sourceS + V2(:,k1)*(R’*V1(:,k1));

end

for i1=1: num_iter -1

sourceS = sourceS - R’*K1*F(:,i1)*(M2*G(:,i1));

end

%

% SOLVE S

%

S = matrixS\sourceS;

S = S./norm(S); % We normalize S. R takes care of alpha constant.

%

% COMPUTING STOP CRITERIA

%

error = max(abs(sum(R0-R)),abs(sum(S0-S))); R0 = R; S0 = S;

iter = iter + 1;

if iter >mxit !! abs(error)<TOL ,

return

end

end

return

The code makes use of a traditional, two-dimensional FEM code, whose structure
is reproduced below. In fact, it returns the stiffness matrix K typical of these FEM
programs.

function [K] = fem2D

% function [K] = fem2D

% A 2D FEM code for linear triangles. Return Stifness matrix

% Universidad de Zaragoza - 2015

global coords triangles E nu behaviour

dof = 2; % Degree of freedom per node

numNodes = size(coords ,1); numTriang = size(triangles ,1);

%

% ALLOCATE MEMORY

%

K = zeros(dof*numNodes);

%

% MATERIAL AND BEHAVIOUR

%

G = E/2/(1+ nu);

if behaviour ==2 % Plane Strain

E1 = E*(1-nu)/(1+nu)/(1 -2*nu);

E2 = E*nu/(1+nu)/(1 -2*nu);

elseif behaviour ==1 % Plane Stress

E1 = E/(1-nu^2);

E2 = E*nu/(1-nu^2);

end

D = [E1 E2 0;E2 E1 0;0 0 G]; % Behaviour matrix

% Integration points: 3 Hammer Points

sg(1) = 1.0/6.0; sg(2) = 1.0/6.0; sg(3) = 2.0/3.0;

sg(4) = 1.0/6.0; sg(5) = 1.0/6.0; sg(6) = 2.0/3.0;

wg(1) = 1.0/6.0; wg(2) = 1.0/6.0; wg(3) = 1.0/6.0;

nph = numel(wg);

%

% ELEMENT LOOP

34 3 Parametric Problems

%

for j=1: numTriang

tri = triangles.ConnectivityList(j,:); % Connectivity of each Element

vertices = coords(tri ,:); % Coordinates of the nodes

Ind = [2*(tri -1)+1; 2*tri]; Ind = Ind (:);

%

% JACOBIAN

%

a = vertices(2,1)- vertices (1 ,1); b = vertices(3,1)- vertices (1 ,1);

c = vertices(2,2)- vertices (1 ,2); d = vertices(3,2)- vertices (1 ,2);

jcob = a*d - b*c;

a1 = vertices (2,1)* vertices (3,2) - vertices (2,2)* vertices (3,1);

a2 = vertices (3,1)* vertices (1,2) - vertices (3,2)* vertices (1,1);

a3 = vertices (1,1)* vertices (2,2) - vertices (1,2)* vertices (2,1);

b1 = vertices (2,2) - vertices (3,2); b2 = vertices (3,2) - vertices (1,2);

b3 = vertices (1,2) - vertices (2,2);

c1 = vertices (3,1) - vertices (2,1); c2 = vertices (1,1) - vertices (3,1);

c3 = vertices (2,1) - vertices (1,1);

%

% INTEGRATION POINTS LOOP

%

chiG = 0.0; etaG = 0.0;

for j1=1:nph

chi = sg(2*(j1 -1)+1); eta = sg(2*j1);

%

% GLOBAL GEOMETRICAL APPROXIMATION

%

SHPa (3) = eta; SHPa (2) = chi; SHPa (1) = 1.-chi -eta;

for k1=1:3

chiG = chiG + SHPa(k1)* vertices(k1 ,1);

etaG = etaG + SHPa(k1)* vertices(k1 ,2);

end

%

% COMPUTE SHAPE FUNCTIONS AND THEIR DERIVATIVES

%

SHP(1) = (a1+b1*chiG+c1*etaG)/jcob; dSHPx (1) = b1; dSHPy (1) = c1;

SHP(2) = (a2+b2*chiG+c2*etaG)/jcob; dSHPx (2) = b2; dSHPy (2) = c2;

SHP(3) = (a3+b3*chiG+c3*etaG)/jcob; dSHPx (3) = b3; dSHPy (3) = c3;

%

% N AND B MATRIX

%

B = [dSHPx (1) 0 dSHPx (2) 0 dSHPx (3) 0; ...

0 dSHPy (1) 0 dSHPy (2) 0 dSHPy (3); ...

dSHPy (1) dSHPx (1) dSHPy (2) dSHPx (2) dSHPy (3) dSHPx (3)];

%

% STIFNESS MATRIX

%

K(Ind ,Ind) = K(Ind ,Ind) + B’*D*B/jcob*wg(j1);

end

end

return

Once executed, the code allows the user to choose interactively with themouse the
point in which the load is applied. It is implemented in an off-line/on-line approach,
such that the modes (functional pairs) approximating the solution are first com-
puted and (eventually) stored in memory. Then, in the on-line phase, the user can
interactively play with the position of the load and see in real time the deformed
configuration of the solid.

3.4 Matlab Code for the Influence Line Problem 35

Fig. 3.4 Mesh for the
moving load problem

0 0.5 1 1.5 2 2.5 3

-0.5

0

0.5

1

1.5

Fig. 3.5 Once a point along
the upper side of the beam
has been chosen, the problem
depicts the deformed
configuration of the beam

0 1 2 3

-0.5

0

0.5

1

1.5

Vertical Displacement

-0.07

-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

0

At a first instance, the mesh of the problem is shown, see Fig. 3.4. By clicking
on it, the user can choose the particular placement of the load. The program gives
immediately the deformed configuration of the beam, see Fig. 3.5.

Note that by simply typing on the Matlab command line the instruction tri
surf(triangles.ConnectivityList,coords(:,1),coords(:,2),
F(1:2:end,1)), the first spatial mode of the solution, namely F1(x) is repre-
sented, see Fig. 3.6. Equivalently, by typing plot(G(:,1)) the load modes Gi (s)
can be plotted, see Fig. 3.7. Notice the increasing frequency content of the modes in
the load variable.

36 3 Parametric Problems

3

2.5

2

1.5

1

0.5

00

0.5

-0.050
0.05

1

3

2.5

2

1.5

1

0.5

00

0.5

1

3

2.5

2

1.5

1

0.5

00

0.5

1

3

2.5

2

1.5

1

0.5

00

0.5

1

Fig. 3.6 Spatial modes Fi (x), i = 1, 2, 3 and 11. The magnitude of each mode is represented in
the vertical axis

3.4 Matlab Code for the Influence Line Problem 37

Fig. 3.7 Load modes Gi (s),
i = 1, 2, 3 and 11. Node
labels refer to the relative
position along the upper
boundary of the beam

Node number
0 5 10 15 20 25 30 35

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Node number
0 5 10 15 20 25 30 35

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

Node number
0 5 10 15 20 25 30 35

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

Node number
0 5 10 15 20 25 30 35

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

38 3 Parametric Problems

Fig. 3.8 A virtual surgery simulator based on the same algorithm explained in this chapter

This algorithm has revealed to be very powerful. In fact, it is essentially the same
employed to construct our virtual surgery simulator, see Fig. 3.8, able to provide
response feedback in the order of kHz, thus amenable to be employed in haptic
environments [56, 57].

Chapter 4
PGD for Non-linear Problems

Classical mathematics concentrated on linear equations for a
sound pragmatic reason: it could not solve anything else.

—Ian Stewart

Abstract This chapter develops the application of PGDmethods for linear elasticity
problems. The only difficulty relies in the vectorial character of the unknown, the
displacement field.

Non-linear problems continue to be the bottleneck of model order reduction
techniques. This is so since most of the reduction in computational complexity is
lost if it continues to be necessary to reconstruct the tangent stiffness matrix of the
full order problem. Some years ago, reduced order models were in fact linear [54]
precisely to avoid this pitfall. Since then, several techniques have been developed
in the field, while it continues to be one of the most active areas of research within
the model order reduction community. Without being exhaustive, one can cite very
different approaches to model order reduction of non-linear problems. One of the
earliest is perhaps the Large Time Increment (LaTIn) method [32, 44, 45]. In the
context of PGD techniques, one of the earliest attempts to solve this kind of prob-
lems was to couple with Asymptotic Numerical (ANM) Methods [1, 20, 31, 62],
giving rise to a sort of coupled PGD-ANMmethod [55, 56]. This method works well
for smooth non-linearities such as those appearing in hyperelasticity problems.

For more general types of non-linearities, the empirical interpolation method
(EIM) by Maday and coworkers remains to be amongst the most popular techniques
[14]. It consists, roughly, in determining the best possible interpolation points so
as to interpolate the non-linear terms of the equation. Very closely related, the
discrete empirical interpolation method (DEIM) [21] has gained a lot of popular-
ity in recent times, like the so-called “best points” interpolation method [53] and
related approaches [12]. Other techniques that have been employed to some extent in

© The Author(s) 2016
E. Cueto et al., Proper Generalized Decompositions, SpringerBriefs
in Applied Sciences and Technology, DOI 10.1007/978-3-319-29994-5_4

39

40 4 PGD for Non-linear Problems

trying to overcome the difficulties posed by non-linearities include proper orthogonal
decompositionwith interpolation, PODI [50] or the reduced-order interpoaltion tech-
nique developed by Farhat and coworkers based upon the concept of Grasmann
manifolds, [12].

Despite all these attempts, one can say that no definitive answer has been provided
for the problemof reducing a non-linear problem.The difficulties come fromavariety
of sources and no single technique gives a solution free of drawbacks. In this chapter
we are going to explain a very simple one, based on an explicit linearization of the
problem. To that end, we will take non-linear hyperelasticity as a model problem.
In essence, this approach is the same introduced in some of our previous works,
see [56].

4.1 Hyperelasticity

The simplest non-linear hyperelastic model is the so-called Kirchhoff-Saint Venant
model. It consists roughly in applying the traditional linear elasticity constitutive
equations upon non linear strain measures. It is well-known, however, that it leads
to instabilities in compression, which makes it to be very rarely used in practice.
However, it includes most of the difficulties of more complex models, such as neo-
Hookean models [56].

In essence, the Kirchhoff-Saint Venant model (linear elastic material under non-
linear strain measures) can be derived from a potential of the type

Ψ = λ

2
(tr(E))2 + μE : E,

where E stands for the Green-Lagrange strain tensor, and λ and μ are the Lame’s
coefficients. The Green-Lagrange strain tensor is indeed formed by a linear and a
non-linear part,

E = 1

2
(FT F − I) = ∇s u + 1

2
(∇T u · ∇u), (4.1)

where F represents the deformation gradient. In turn, the second Piola-Kirchhoff
stress tensor can be obtained after the Green-Lagrange strain tensor by applying the
appropriate fourth-order constitutive tensor:

S = ∂Ψ (E)

∂ E
= C : E.

The weak form of the problem can be obtained after noticing that E and S are
conjugate magnitudes, i.e., their product gives the virtual work done by the material
undergoing deformation:

4.1 Hyperelasticity 41

find the displacement u ∈ H1 such that for all u∗ ∈ H1
0:

∫

Γ̄

∫

Ω

E∗ : C : EdΩdΓ̄ =
∫

Γ̄

∫

Γt2

�u∗ · tdΓ dΓ̄ , (4.2)

where Γ = Γu ∪ Γt represents the boundary of the solid, divided into essential and
natural regions, and where Γt = Γt1 ∪ Γt2, i.e., regions of homogeneous and non-
homogeneous, respectively, natural boundary conditions. Γ̄ represents the portion
of Γt2 where the (parametric) load can be applied. Note that we consider not only
a non-linear problem (arising from the non-linear strain measures), but consider the
parametric character of the formulation presented in Chap. 3. In other words, we are
considering the position of the applied load as a parameter in the formulation and
hence the doubly-weak form of the problem in Eq. (4.2).

As usual in the finite element community, we consider a force-driven problem,
and therefore we apply the load in small increments. The unknown will be therefore
�u, thus ut+�t = ut + �u and

Et+�t = ∇s
(
ut + �u

) + 1

2

(∇T (ut + �u) · ∇(ut + �u)
)
. (4.3)

Similarly, the admissible variation of strain reads

E∗ = ∇s(�u∗) + 1

2
(∇T (�u∗)) · ∇(ut + �u) + 1

2
∇T (ut + �u) · ∇(�u∗)

= ∇s(�u∗) + ∇T (�u∗) · ∇(ut + �u) (4.4)

By introducing Eqs. (4.3) and (4.4) into the weak form of the problem, Eq. (4.2), we
arrive at

∫

Γ̄

∫

Ω(t)
E∗ : C : EdΩdΓ̄ =

∫

Γ̄

∫

Ω(t)

(
∇s(�u∗) + ∇(�u∗) · ∇T (ut + �u)

)
: C

:
(

∇s
(
ut + �u

) + 1

2

(
∇(ut + �u) · ∇T (ut + �u)

))
dΩdΓ̄ .

(4.5)

The simplest linearization of Eq. (4.5) consists of keeping in the formulation only
constant terms and those linear in �u. For the left-hand side term of Eq. (4.2), this
gives rise to ten terms, whose precise form is detailed here:

∫

Γ̄

∫

Ω

E∗ : C : EdΩdΓ̄ ≈ T 1+T 2+T 3+T 4+T 5+T 6+T 7+T 8+T 9+T 10,

(4.6)

http://dx.doi.org/10.1007/978-3-319-29994-5_3

42 4 PGD for Non-linear Problems

where,

T 1 =
∫

Γ̄

∫

Ω

∇s(�u∗) : C : ∇s ut dΩdΓ̄ ,

T 2 =
∫

Γ̄

∫

Ω

∇s(�u∗) : C : ∇s(�u)dΩdΓ̄ ,

T 3 =
∫

Γ̄

∫

Ω

∇s(�u∗) : C : 1
2
∇T ut · ∇ut dΩdΓ̄ ,

T 4 =
∫

Γ̄

∫

Ω

∇s(�u∗) : C : ∇T ut · ∇(�u)dΩdΓ̄ ,

T 5 =
∫

Γ̄

∫

Ω

∇T (�u∗) · ∇ut : C : ∇s ut dΩdΓ̄ ,

T 6 =
∫

Γ̄

∫

Ω

∇T (�u∗) · ∇ut : C : ∇s(�u)dΩdΓ̄ ,

T 7 =
∫

Γ̄

∫

Ω

∇T (�u∗) · ∇ut : C : 1
2
∇T ut · ∇ut dΩdΓ̄ ,

T 8 =
∫

Γ̄

∫

Ω

∇T (�u∗) · ∇ut : C : ∇T ut · ∇(�u)dΩdΓ̄ ,

T 9 =
∫

Γ̄

∫

Ω

∇T (�u∗) · ∇(�u) : C : ∇s ut dΩdΓ̄ ,

T 10 =
∫

Γ̄

∫

Ω

∇T (�u∗) · ∇(�u) : C : 1
2
∇T ut · ∇ut dΩdΓ̄ .

The standard forward-Euler scheme can also be applied to this problem. How-
ever, for the tests we have performed, instabilities in compression appeared,
a typical characteristic of Kirchhoff-Saint Venant models [17], as mentioned
before. We have not found any instability by applying the before introduced
algorithm, even if they can appear as a consequence of the characteristics of
Kirchhoff-Saint Venant materials.

It is important ot note that terms T 1+ T 3+ T 5+ T 7 give precisely
∫
Γ̄

∫
Γt2

�u∗ ·
t t dΓ dΓ̄ , i.e., equilibrium at time ut , which is assumed to have converged, and
therefore to be fulfilled. What remains to be computed, in fact, is the equilibrium
equation for the subsequent time step,

T 2 + T 4 + T 6 + T 8 + T 9 + T 10 =
∫

Γ̄

∫

Γt2

�u∗ · �tdΓ dΓ̄ .

It is time now to invoke the separation of variables typical of PGD strategies, so as
to give, at iteration n,

4.1 Hyperelasticity 43

�un
i (x, s) =

n∑

j=1

F j
i (x) · G j

i (s).

Conversely, at iteration n+1 of the greedy algorithmwe seek for two new enrichment
functions, R(x) and S(s),

�un+1
i (x, s) = �un

i (x, s) + Ri (x) · Si (s).

By computing the admissible variation of the displacement, we obtain

u∗
i (x, s) = R∗

i (x) · S(s) + Ri (x) · S∗(s).

By summing up all the displacement increments along the time history, we obtain
the last converged displacement.1 We assume that this has been done with the help
of some nprev functional couples,

ut
i (x, s) ≈

nprev∑

j=1

F j
i (x) · G j (s).

It is important to note that, for the sake of simplicity in the exposition, we have
chosen, as in Chap.3 a load of unity modulus, acting always in the vertical direction.
No follower loads are considered. Therefore, the reader must note that F j and R are
indeed vectors, defined in the whole geometry of the solid, Ω while G j and S are
scalars defined on Γ̄ .

In the following Section details of the Matlab implementation are given.

4.2 Matrix Structure of the Problem

In what follows a three-dimensional problem is studied under the just presented
rationale. Its two-dimensional counterpart would be essentially identical, with the
sole exception of changing the finite element shape functions.

As in the previous applications of PGD methods, the seek for an enrichment
functional couple is often accomplished in the form of an alternating directions

1Note that we employ the word converged since the PGD algorithm implies the solution of a non-
linear problem by an alternating directions strategy. Keep in mind that the proposed linearization
for the global problem is indeed explicit, so there is no need to converge in a Newton-Raphson
sense.

http://dx.doi.org/10.1007/978-3-319-29994-5_3

44 4 PGD for Non-linear Problems

algorithm in which we look alternatively for functions R(x) and S(s). In the just
presented explicit linearization the essential variable of the problem is the current
increment of displacement, �ui , which is in turn separated as

�ui (x, s) =
n∑

j=1

F j
i (x) · G j (s) + Ri (x) · S(s). (4.7)

By just applying classical variational methods, we obtain the form of an admissible
variation of the displacement,

u∗
i (x, s) = R∗

i (x) · S(s) + Ri (x) · S∗(s),

where the subscript i refers to the i-th component of the displacement (a three-
dimensional vector, as it is well known).

If we assume iteratively that first S(s) is known, then

u∗
i (x, s) = R∗

i (x) · S(s),

while, if R(x) is assumed to be known, then,

u∗
i (x, s) = Ri (x) · S∗(s).

We detail here the case in which S(s) is assumed to be known and therefore we look
for R(x), the case in which R(x) is known being straightforward. In what follows,
every term in Eq. (4.6) is detailed in matrix form.

4.2.1 Matrix Form of the Term T2

The term T 2 in Eq. (4.6) can in turn be decomposed into

T 2 =
∫

Γ̄

∫

Ω

∇s(R∗(x) · S(s)) : C : ∇s

⎛

⎝
n∑

j=1

F j (x) · G j (s) + R(x) · S(s)

⎞

⎠ dΩdΓ̄

= T 2K + T 2F ,

a term in the unknown vector plus a term composed by known vectors (i.e., related
to functions F j and S), that therefore will go to the “force” vector (right-hand side
of the algebraic equation). The form of these terms is the following:

4.2 Matrix Structure of the Problem 45

T 2K =
∫

Γ̄

∫

Ω

∇s(R∗(x)) · S(s) : C : ∇s(R(x)) · S(s)dΩdΓ̄

=
∫

Γ̄

S(s) · S(s)dΓ̄

∫

Ω

∇s(R∗(x)) : C : ∇s(R(x))dΩ,

and, in turn,

T 2F =
n∑

j=1

∫

Γ̄

∫

Ω

∇s(R∗(x)) · S(s) : C : ∇s(F j (x)) · G j (s)dΩdΓ̄

=
n∑

j=1

∫

Γ̄

S(s) · G j (s)dΓ̄

∫

Ω

∇s(R∗(x)) : C : ∇s(F j (x))dΩ.

To approximate the vectorial unknown R(x) we employ linear finite element shape
functions, stored in a matrix N(x), whose derivatives are stored, as in most classical
finite element books, in a matrix B. Conversely, for the scalar unknown S(s) and
related functions, we have

S(s) = Ms, G j (s) = MG j , ∇s(R(x)) = B R,

∇s(F j (x)) = B F j , ∇s(R∗(x)) = B R∗,

with M the shape function vector employed to approximate functions S and G j .
Note that the vector R refers here to the vector of nodal values for the function

R(x), i.e., it has three components per node:

RT = [R1
x , R1

y, R1
z , R2

x , R2
y, R2

z , . . . , RN
z],

with N the number of nodes in the mesh.
Both terms for T 2 will finally look like

T 2K =
(

sT

[∫

Γ̄

MT MdΓ̄

]
s
) (

R∗T

[∫

Ω

BT CBdΩ

]
R

)
= (

sT s1s
) (

R∗T r1 R
)
,

with R the vector of nodal unknowns, and

T 2F =
n∑

j=1

(
sT s1G j

) (
R∗T r1 F j

)
,

where everything is known in advance and therefore it can be computed and translated
to the right-hand side of the resulting algebraic equation.

46 4 PGD for Non-linear Problems

4.2.2 Matrix Form of the Term T4

Proceeding in the same way,

T 4 =
∫

Γ̄

∫

Ω

∇s(R∗(x) · S(s)) : C : ∇T

(
nprev∑

I=1

F I (x) · G I (s)

)

· ∇
⎛

⎝
n∑

j=1

F j (x) · G j (s) + R(x) · S(s)

⎞

⎠ dΩdΓ̄ .

Note that the nodal values for functions F I (x) and G I (s) are named in the code
reproduced below as Fprev and Gprev, respectively.

Again, part of the terms of T 4 involve unknown functions, while the others involve
already known terms, and will therefore translated to the force vector in the resulting
algebraic equation:

T 4K =
∫

Γ̄

∫

Ω

∇s(R∗(x) · S(s)) : C : ∇T

(
nprev∑

I=1

F I (x) · G I (s)

)
· ∇(R(x) · S(s))dΩdΓ̄

=
nprev∑

I=1

∫

Γ̄

S(s) · G I (s) · S(s)dΓ̄

∫

Ω

∇s(R∗(x)) : C : ∇T (F I (x)) · ∇(R(x))dΩ,

and

T 4F =
∫

Γ̄

∫

Ω
∇s (R∗(x) · S(s)) : C : ∇T

(nprev∑

I=1

F I (x) · G I (s)

)
· ∇

⎛

⎝
n∑

j=1

F j (x

⎞

⎠ · G j (s))dΩdΓ̄

=
nprev∑

I=1

n∑

j=1

∫

Γ̄
S(s) · G I (s) · G j (s)dΓ̄

∫

Ω
∇s (R∗(x)) : C : ∇T (F I (x)) · ∇(F j (x))dΩ.

By using gain linear finite element shape functions and the same notation as in the
previous paragraph, we arrive at

T 4K =
nprev∑

I=1

(
sT

[∫

Γ̄

MT MG I MdΓ̄

]
s
)(

R∗T

[∫

Ω

BT C ˜AF I (x)
˜GdΩ

]
R

)

=
nprev∑

I=1

(
sT s2I s

) (
R∗T R2I R

)
,

4.2 Matrix Structure of the Problem 47

while

T 4F =
nprev∑

I=1

n∑

j=1

(
sT s2I G j

) (
R∗T R2I F j

)
,

where

˜AF = ˜A(F) =

⎡

⎢⎢⎢⎢⎢⎢⎣

fx,x fy,x fz,x 0 0 0 0 0 0
0 0 0 fx,y fy,y fz,y 0 0 0
0 0 0 0 0 0 fx,z fy,z fz,z

fx,y fy,y fz,y fx,x fy,x fz,x 0 0 0
0 0 0 fx,z fy,z fz,z fx,y fy,y fz,y

fx,z fy,z fz,z 0 0 0 fx,x fy,x fz,x

⎤

⎥⎥⎥⎥⎥⎥⎦
,

and

˜G =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ϕ1,x (x) 0 0 ϕ2,x (x) 0 0 · · · 0
0 ϕ1,x (x) 0 0 ϕ2,x (x) 0 · · · 0
0 0 ϕ1,x (x) 0 0 ϕ2,x (x) · · · ϕN ,x (x)

ϕ1,y(x) 0 0 ϕ2,y(x) 0 0 · · · 0
0 ϕ1,y(x) 0 0 ϕ2,y(x) 0 · · · 0
0 0 ϕ1,y(x) 0 0 ϕ2,y(x) · · · ϕN ,y(x)

ϕ1,z(x) 0 0 ϕ2,z(x) 0 0 · · · 0
0 ϕ1,z(x) 0 0 ϕ2,z(x) 0 · · · 0
0 0 ϕ1,z(x) 0 0 ϕ2,z(x) · · · ϕN ,z(x)

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

4.2.3 Matrix Form of the Term T6

The term T 6 is indedd very similar to the T 4 one, but changing the position of the
gradient operators.

T 6 =
∫

Γ̄

∫

Ω

∇T (R∗(x) · S(s)) · ∇
(
nprev∑

I=1

F I (x

)
· G I (s)) : C : ∇s

×
⎛

⎝
n∑

j=1

F j (x) · G j (s) + R(x) · S(s)

⎞

⎠ dΩdΓ̄ .

By decomposing it, as in T 4, in known and unknown parts, we obtain

T 6 = T 6K + T 6F =
nprev∑

I=1

(
sT s2I s

) (
R∗T RT

2I R
)

+
nprev∑

I=1

n∑

j=1

(
sT s2I G j

) (
R∗T RT

2I F j
)

.

48 4 PGD for Non-linear Problems

Again, the term T 6K will contribute to the stiffnessmatrix, while T 6F will contribute
to the right-hand side of the equation, usually referred to as “force vector”.

4.2.4 Matrix Form for the Term T8

In this case, the term T 8 will look like

T 8 =
∫

Γ̄

∫

Ω
∇T (R∗(x) · S(s)) · ∇

(nprev∑

I=1

F I (x) · G I (s)

)
: C : ∇T

×
⎛

⎝
nprev∑

J=1

F J (x) · G J (s)

⎞

⎠ · ∇
⎛

⎝
n∑

j=1

F j (x) · G j (s) + R(x) · S(s)

⎞

⎠ dΩdΓ̄ .

Again, the term is decomposed into parts containing the unknown and known parts,
which will contribute, respectively, to the stiffness matrix and the force vector:

T 8K =
∫

Γ̄

∫

Ω

∇T (R∗(x) · S(s)) · ∇
(
nprev∑

I=1

F I (x) · G I (s)

)
:

× C : ∇T

(
nprev∑

J=1

F J (x) · G J (s)

)
· ∇(R(x) · S(s))dΩdΓ̄

=
nprev∑

I=1

nprev∑

J=1

∫

Γ̄

S(s)G I (s)G J (s)S(s)dΓ̄

∫

Ω

∇T R∗(x) · ∇F I (x) :

× C : ∇T F J (x) · ∇R(x)dΩ.

Conversely, the term T 8F reads

T 8F =
∫

Γ̄

∫

Ω

∇T (R∗(x) · S(s)) · ∇
(
nprev∑

I=1

F I (x) · G I (s)

)
:

× C : ∇T

(
nprev∑

J=1

F J (x) · G J (s)

)
· ∇

⎛

⎝
n∑

j=1

F j (x

⎞

⎠ · G j (s))dΩdΓ̄

=
nprev∑

I=1

nprev∑

J=1

n∑

j=1

∫

Γ̄

S(s)G I (s)G J (s)G j (s)dΓ̄

∫

Ω

∇T R∗(x) · ∇F I (x) :

× C : ∇T F J (x) · ∇F j (x)dΩ.

4.2 Matrix Structure of the Problem 49

Finally, both terms are approximated with the help of linear finite element shape
functions, giving rise to

T 8K =
nprev∑

I=1

nprev∑

J=1

(
sT

[∫

Γ̄

MT MG I MG J MdΓ̄

]
s
)

×
(

R∗T

[∫

Ω

˜G
T

˜A
T

F I (x)C ˜AF J (x)
˜GdΩ

]
R

)
,

or, equivalently,

T 8K =
nprev∑

I=1

nprev∑

J=1

(
sT s3I J s

) (
R∗T R4I J R

)
,

while the contribution to the force vector will now be

T 8F =
nprev∑

I=1

nprev∑

J=1

n∑

j=1

(
sT s3I J G j

) (
R∗T R4I J F j

)
.

4.2.5 Matrix Form of the Term T9

For the term T 9 we follow similar guidelines as in previous cases,

T 9 =
∫

Γ̄

∫

Ω

∇T (R∗(x) · S(s)) · ∇
⎛

⎝
n∑

j=1

F j (x) · G j (s) + R(x) · S(s)

⎞

⎠ :

× C : ∇s

(
nprev∑

I=1

F I (x) · G I (s)

)
dΩdΓ̄ .

Again, the term is decomposed into contributions to the stiffness matrix and the force
vector:

T 9K =
∫

Γ̄

∫

Ω

∇T (R∗(x) · S(s)) · ∇(R(x) · S(s)) : C : ∇s

(
nprev∑

I=1

F I (x) · G I (s)

)
dΩdΓ̄

=
nprev∑

I=1

∫

Γ̄

S(s)S(s)G I (s)dΓ̄

∫

Ω

∇T R∗(x) · ∇R(x) : C : ∇s F I (x)dΩ,

50 4 PGD for Non-linear Problems

and

T 9F =
∫

Γ̄

∫

Ω

∇T (R∗(x) · S(s)) · ∇
⎛

⎝
n∑

j=1

F j (x) · G j (s)

⎞

⎠ :

× C : ∇s(

nprev∑

I=1

F I (x) · G I (s))dΩdΓ̄

=
nprev∑

I=1

n∑

j=1

∫

Γ̄

S(s)G j (s)G I (s)dΓ̄

∫

Ω

∇T R∗(x) · ∇F j (x) :

× C : ∇s F I (x)dΩ.

Finally, we need to approximate all the involved functions by means of (in this case,
linear) finite element shape functions, leading to

T 9K =
nprev∑

I=1

(
sT

[∫

Γ̄

MT MG I MdΓ̄

]
s
)(

R∗T

[∫

Ω

˜G
T

f1(C,∇s F I)
˜GdΩ

]
R

)

=
nprev∑

I=1

(
sT s2I s

) (
R∗T R3I R

)
, (4.8)

and

T 9F =
nprev∑

I=1

n∑

j=1

(
sT s2I G j

) (
R∗T R3I F j

)
.

The term f1(C,∇s F I) in Eq. (4.8) is in fact a matrix containing the components of the
vector obtained after multiplication of C times ∇s F I . Indedd, if

x = [X1, X2, . . . X6] = C · ∇s F I (x) = CB F I ,

then

f1(C,∇s F I) =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

X1 0 0 X4 0 0 X5 0 0
0 X1 0 0 X4 0 0 X5 0
0 0 X1 0 0 X4 0 0 X5

X4 0 0 X2 0 0 X6 0 0
0 X4 0 0 X2 0 0 X6 0
0 0 X4 0 0 X2 0 0 X6

X5 0 0 X6 0 0 X3 0 0
0 X5 0 0 X6 0 0 X3 0
0 0 X5 0 0 X6 0 0 X3

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

4.2 Matrix Structure of the Problem 51

4.2.6 Matrix Form of the Term T10

As can be noticed from Eq. (4.6), the term T 10 has an expression

T 10 =
∫

Γ̄

∫

Ω

∇T (R∗(x) · S(s)) · ∇
⎛

⎝
n∑

j=1

F j (x) · G j (s) + R(x) · S(s)

⎞

⎠ : C

× : 1
2
∇T

(
nprev∑

I=1

F I (x) · G I (s)

)
∇

(
nprev∑

I=1

F I (x) · G I (s)

)
dΩdΓ̄ .

By decomposing it into stiffness and force vector contributions,

T 10K =
∫

Γ̄

∫

Ω

∇T (R∗(x) · S(s)) · ∇(R(x) · S(s)) :

× C : 1
2
∇T

(
nprev∑

I=1

F I (x) · G I (s)

)
∇

(
nprev∑

J=1

F J (x) · G J (s)

)
dΩdΓ̄

= 1

2

nprev∑

I=1

nprev∑

J=1

∫

Γ̄

S(s)S(s)G I (s)G J (s)dΓ̄

∫

Ω

∇T R∗(x) · ∇R(x) :

× C : ∇T F I (x) · ∇ F J (x)dΩ,

with

T 10F =
∫

Γ̄

∫

Ω

∇T (R∗(x) · S(s)) · ∇
⎛

⎝
n∑

j=1

F j (x) · G j (s)

⎞

⎠ :

× C : 1
2
∇T

(
nprev∑

I=1

F I (x) · G I (s)

)
∇

(
nprev∑

J=1

F J (x) · G J (s)

)
dΩdΓ̄

= 1

2

nprev∑

I=1

nprev∑

J=1

n∑

j=1

∫

Γ̄

S(s)G j (s)G I (s)G J (s)dΓ̄

∫

Ω

∇T R∗(x) · ∇F j (x) :

× C : ∇T F I (x) · ∇ F J (x)dΩ.

Finally, after finite element approximation, we obtain, in pseudo-vectorial notation,

T 10K = 1

2

nprev∑

I=1

nprev∑

J=1

(
sT

[∫

Γ̄

MT MG I MG J MdΓ̄

]
s
)

×
(

R∗T

[∫

Ω

˜G
T

f1(C,∇T F I ∇ F J)
˜GdΩ

]
R

)
,

or, equivalently,

52 4 PGD for Non-linear Problems

T 10K = 1

2

nprev∑

I=1

nprev∑

J=1

(
ST s3I J S

) (
R∗T r5I J R

)
.

The term contributing to the force vector will finally read

T 10F = 1

2

nprev∑

I=1

nprev∑

J=1

n∑

j=1

(
ST s3I J G j

) (
R∗T r5I J F j

)
.

4.2.7 Final Comments

We have detailed one of the two iterations of the fixed point algorithm. The case
in which we look for the function S is essentially identical to what has been here
described.

As can be noticed, the method here developed is purely explicit, in the sense that
matrices r and s contain only terms for which a closed-form expression is known.
There is no need to iterate to determine their precise expression. There are, indeed,
iterations in the fixed point, alternating directions algorithm. These are due to the
seek for a product of functions, which renders actually a non-linear problem.

4.3 Matlab Code

As in previous chapters, the code begins by themain.m routine. The routine reads the
model data (nodal coordinates and connectivity) from the file gcoordBeam.dat
and conecBeam.dat files, respectively. Open these files with a standard plain text
editor to see their structure.

The problem to solve represents a cantilever beam subjected to bending loads. By
typing

» trisurf(tri,coors(:,1),coors(:,2),coors(:,3));
» axis equal

a plot of the beammodel, see Fig. 4.1, is depicted. It is essentially the same employed
in Chap.5.

The problem has been solved by means of a very crude tetrahedral mesh of 3 ×
3× 16 nodes. Following the structure of the algorithm just introduced, see Eq. (4.5),
the load is applied in a sequence of 5 increments. These increments produce a series
of 5 terms for the first increment and 10 for the subsequent ones.

The instruction save(’WorkSpacePGD_Hyperelastic.mat’); saves
all the results (in essence, the F j and G j functions in Eq. (4.7)) and ends what
we call the off-line phase of the simulation. These results need not to be calculated

http://dx.doi.org/10.1007/978-3-319-29994-5_5

4.3 Matlab Code 53

1.5

1

0.5

00
0.1

0.2

0.1

0
0.2

Fig. 4.1 Finite element mesh for the beam bending problem. The beam is assumed to be encastred
at y = 0

again and therefore must be stored in memory. All subsequent simulations need only
to read them in what we call the on-line phase of the simulation.

By theCoordSelect = [1.5 0 0]; instructionwe begin the on-line phase
by indicating the program the particular position in which the load is applied. Feel
free to change it to any point in the upper surface of the beam. In Chap.3 we saw
how to do this interactively, by selecting the loading point directly on the screen with
the help of the mouse.

%

% PGD Code for hyperelasticity

% I. Alfaro , D. Gonzalez , E. Cueto

% Universidad de Zaragoza

% AMB -I3A Dec 2015

%

clear all; clc; format long g; close all;

%

% VARIABLES

%

% Global variables.

global coords tet tri tf

global Fprev Gprev num_iter_prev

global E nu

global s1 vx vp

E = 2.1e11; nu = 0.25; % Material (Young Modulus and Poisson Coef).

Modulus_init = 30e6;% Total force Modulus.

nincr = 5; % Number of load increments.

Modulus = Modulus_init/nincr; % Force on each load increment.

TOL = 0.05; % Tolerance.

iter = zeros (1); % # of iterations needed on enrichment.m function

num_max_iter = 10; % Max. # of summands for the approach on each load incr.

%

% GEOMETRY AND BOUNDARY CONDITIONS

%

% Nodes and elements readed from external files.

coords = load(’gcoordBeam.dat’); % Nodal coordinates.

tet = load(’conecBeam.dat’); % Connectivity list.

Ind = 1:size(coords ,1); % List of nodes.

bcnode = Ind(coords (: ,1)==min(coords (: ,1))); % Boundary: Fix left side.

IndBcnode = sort ([3*(bcnode -1)+1 3*(bcnode -1)+2 3* bcnode]); % D.o.f. BCs.

% Load can be applied in every node of the surface

% Make use of triangulation MatLab function to obtain boundary surface.

http://dx.doi.org/10.1007/978-3-319-29994-5_3

54 4 PGD for Non-linear Problems

TR = triangulation(tet , coords);

% Connectivity of tf corresponds to the node number of the whole domain

% Connectivity of tri corresponds to the node number of the free boundary

[tf] = freeBoundary(TR); % Dependent of 3D geometry of the boundary.

[tri ,coors] = freeBoundary(TR); % Independent triangulation of boundary.

IndS = 1:size(coors ,1); ncoors = numel(IndS);

%

% ALLOCATION OF MATRICES AND VECTORS

%

% Vector solutions of all previous increments (cumulative).

Fprev = zeros(numel(coords),1); % Vector solution for space.

Gprev = zeros(size(coors ,1) ,1); % Vector solution for load.

num_iter_prev = 0; % total # of summands.

% Loop on every load increment

for incr =1: nincr

fprintf(1,’load� step�%d\n’,incr);
%

% INITIALIZATION OF MATRICES AND VECTORS

%

F = zeros(numel(coords),1);% For space in current increment.

R = zeros(numel(coords),1);% For load in current increment.

G = zeros(size(coors ,1) ,1);

S = zeros(size(coors ,1) ,1);

num_iter = 0;

Error_iter = 1.0;

Aprt = 0;

%

% STIFNESS AND MASS MATRICES COMPUTATION

%

fem3DHyperelastic;

coorp = 1:size(coors ,1); % We consider each position like cases of load

elemstiffHyperelastic(coorp);

%

% SOURCE

%

% Identifying local nodes of the loaded surface on the global connectivity.

% To obtain that: coords(IndL ,:)-coors = zeros(nn2 ,1).

[trash ,trash2 ,xj] = intersect(IndS ,tri (:)); % TRI Local connectivity.

IndL = tf(xj); % TF Global connectivity of the loaded surface.

DOFLoaded = 3*IndL; % Consider vertical load on the top of the beam.

vx = zeros(numel(coords),ncoors);

vx(DOFLoaded ,:) = -Modulus.*eye(ncoors); % Space terms for the source.

vp = eye(ncoors); vp = s1*vp; % Load terms for the source.

%

% ENRICHMENT OF THE APPROXIMATION , LOOKING FOR R AND S

%

while Error_iter > TOL && num_iter < num_max_iter

num_iter = num_iter + 1;

S0 = rand(size(coors ,1) ,1); % Initial guess for S.

%

% ENRICHMENT STEP

%

[R,S,iter(num_iter)] = enrichment(S0,F,G,TOL ,IndBcnode ,num_iter);

F(:,num_iter) = R;

G(:,num_iter) = S;

%

% STOPPING CRITERION

%

Error_iter = norm(F(:,num_iter)*G(:,num_iter)’);

Aprt = max(Aprt ,sqrt(Error_iter));

Error_iter = sqrt(Error_iter)/Aprt;

fprintf(1,’%dst� summand�in�%d� iterations� with�a� weight�of�%f\n’ ,...
num_iter ,iter(num_iter),Error_iter);

end

if num_iter >1, num_iter = num_iter - 1; end % last sum is negligible.

% Before going to the next increment , add current vector solutions to

% previous vector solutions.

Fprev(:, num_iter_prev +1: num_iter_prev+num_iter) = F(:,1: num_iter);

Gprev(:, num_iter_prev +1: num_iter_prev+num_iter) = G(:,1: num_iter);

num_iter_prev = num_iter_prev + num_iter;

end

4.3 Matlab Code 55

F = Fprev; G = Gprev; num_iter = num_iter_prev;

fprintf(1,’PGD�off -line� Process� exited� normally\n\n’);
save(’WorkSpacePGD_Hyperelastic.mat’);

%

% POST -PROCESSING

%

CoordSelect = [1.5 0 0]; % coordenates where load is applied.

Cx = CoordSelect (1); Cy = CoordSelect (2); Cz = CoordSelect (3);

[trash ,LoadPos] = min(dist(coors ,[Cx;Cy;Cz])); % closest node to load.

disp = zeros(numel(coords),1);

for i1=1: num_iter

disp = disp + F(:,i1).*G(LoadPos ,i1);

end

cdx = coords (:,1) + disp (1:3: end);

cdy = coords (:,2) + disp (2:3: end);

cdz = coords (:,3) + disp (3:3: end);

figure (1);

trepmod = TriRep(tet , [cdx cdy cdz]); % deformed domain.

[trimod , Xbmod] = freeBoundary(trepmod);

nc = 1:size(coors ,1);

[trash ,trash2 ,xj] = intersect(nc,tri (:));

Ind = tf(xj);

trisurf(trimod , Xbmod(:,1),Xbmod(:,2),Xbmod(:,3),disp (3*Ind),...

’FaceAlpha’ ,0.8); % plot the deformed surface.

axis equal

fprintf(1,’max� displ�%f\n’,min(disp)); % print maximum displacement.

fprintf(1,’\n\n##########� End�of� simulation ##########\n\n’);

Themain.m routine first calls to thefem3DHyperelastic subroutine, which
corresponds roughly to a standard three-dimensional finite element program. In this
case, we employ simple linear tetrahedrons and Hammer quadrature rules. Different
matrices of the terms T 2, T 4, …, are also calculated here.

function fem3DHyperelastic()

% function femSpace3DHyperelastic

% Computes r1, r2I , r3I , r4IJ and r5IJ matrices

% Universidad de Zaragoza - 2015

global E nu

global coords tet num_iter_prev Fprev

global r1 r2 r3 r5 r4

dof = 3; % Degrees of freedom per node

numNodes = size(coords ,1);

numTet = size(tet ,1);

% r1 is a sparse matrix which is calculated only at the first time

% increment.

% r2 is a cell containing all matrices r2I. r2{I}=r2I (same for r3)

% r4 is a cell containing all matrices r4IJ (same for r5)

% Nic is the number of increments in wich matrices are already calculated.

% Only new matrices are calculated.

NIc = 0;

if num_iter_prev > 0

NIc = size(r2 ,1); % Number of matrices r2 already calculated.

if isempty(r2)==1, NIc = 0; end

end

if NIc > 0

% Save previously calculated matrices on auxiliary variables.

r2_aux = r2; r3_aux = r3; r4_aux = r4; r5_aux = r5;

end

%

% ALLOCATE MEMORY AND INICIALIZE

%

if num_iter_prev == 0

r1 = sparse(dof*numNodes ,dof*numNodes);

end

r2 = cell(num_iter_prev ,1);

r4 = cell(num_iter_prev*num_iter_prev ,1);

for i1=1: num_iter_prev , r2{i1} = sparse(dof*numNodes ,dof*numNodes); end

for i1=1: num_iter_prev*num_iter_prev

56 4 PGD for Non-linear Problems

r4{i1} = sparse(dof*numNodes ,dof*numNodes);

end

r3 = r2; r5 = r4;

%

% ADD ALREADY CALCULATED MATRICES

%

if NIc > 0

r2(1:NIc) = r2_aux; r3(1:NIc) = r3_aux;

NewIncre = num_iter_prev -NIc;

if NewIncre > 0

IndMat = zeros(NIc*NIc ,NIc); IndMat (:,1) = [1:NIc*NIc]’;

for i1=2:NIc

IndMat(:,i1) = IndMat(:,i1 -1) + NewIncre.*ones(size(IndMat ,1) ,1);

end

IndMat = reshape(IndMat (:),[NIc ,NIc*NIc]);

IM = IndMat (:,1:NIc+1:end);

r4(IM(:)) = r4_aux; r5(IM(:)) = r5_aux;

else

r4 = r4_aux; r5 = r5_aux;

end

end

%

% CALCULATE NEW MATRICES

%

%

% MATERIAL MATRIX

%

D = zeros (6); cte = E*(1-nu)/(1+nu)/(1 -2*nu);

D(1) = cte; D(8) = D(1); D(15) = D(1);

D(2) = cte*nu/(1-nu); D(3) = D(2); D(7) = D(2); D(9) = D(2); D(13) = D(2);

D(14) = D(2); D(22) = cte*(1-2*nu)/2/(1 -nu); D(29) = D(22); D(36) = D(22);

%

% INTEGRATION POINTS: 4 HAMMER POINTS

%

sg = zeros (3,4); wg = 1./24.* ones (4,1); nph = numel(wg);

a = (5.0 - sqrt (5))/20.0; b= (5.0 + 3.0* sqrt (5))/20.0;

sg(:,1) = [a; a; a]; sg(:,2) = [a; a; b];

sg(:,3) = [a; b; a]; sg(:,4) = [b; a; a];

%

% ELEMENT LOOP

%

for i1=1: numTet

elnodes = tet(i1 ,:);

xcoord = coords(elnodes ,:);

% System degrees of freedom associated with each element.

index = [3* elnodes -2;3* elnodes -1;3* elnodes];

index = reshape(index ,1,4*dof);

%

% JACOBIAN

%

v1 = xcoord (1,:)-xcoord (2,:); v2 = xcoord (2,:)-xcoord (3,:);

v3 = xcoord (3,:)-xcoord (4,:);

jcob = abs(det([v1;v2;v3]));

%

% SHAPE FUNCTION CONSTANTS

%

a1 = det([xcoord (2,:); xcoord (3,:); xcoord (4 ,:)]);

a2 = -det([xcoord (1,:); xcoord (3,:); xcoord (4 ,:)]);

a3 = det([xcoord (1,:); xcoord (2,:); xcoord (4 ,:)]);

a4 = -det([xcoord (1,:); xcoord (2,:); xcoord (3 ,:)]);

b1 = -det([1 xcoord (2,2:end); 1 xcoord (3,2:end); 1 xcoord (4,2:end)]);

b2 = det([1 xcoord (1,2:end); 1 xcoord (3,2:end); 1 xcoord (4,2:end)]);

b3 = -det([1 xcoord (1,2:end); 1 xcoord (2,2:end); 1 xcoord (4,2:end)]);

b4 = det([1 xcoord (1,2:end); 1 xcoord (2,2:end); 1 xcoord (3,2:end)]);

c1 = det([1 xcoord (2,1) xcoord(2,end); 1 xcoord (3,1) xcoord(3,end);...

1 xcoord (4,1) xcoord(4,end)]);

c2 = -det([1 xcoord (1,1) xcoord(1,end); 1 xcoord (3,1) xcoord(3,end);...

1 xcoord (4,1) xcoord(4,end)]);

c3 = det([1 xcoord (1,1) xcoord(1,end); 1 xcoord (2,1) xcoord(2,end);...

1 xcoord (4,1) xcoord(4,end)]);

c4 = -det([1 xcoord (1,1) xcoord(1,end); 1 xcoord (2,1) xcoord(2,end);...

1 xcoord (3,1) xcoord(3,end)]);

4.3 Matlab Code 57

d1 = -det([1 xcoord (2,1:end -1); 1 xcoord (3,1:end -1);...

1 xcoord (4,1:end -1)]);

d2 = det([1 xcoord (1,1:end -1); 1 xcoord (3,1:end -1);...

1 xcoord (4,1:end -1)]);

d3 = -det([1 xcoord (1,1:end -1); 1 xcoord (2,1:end -1);...

1 xcoord (4,1:end -1)]);

d4 = det([1 xcoord (1,1:end -1); 1 xcoord (2,1:end -1);...

1 xcoord (3,1:end -1)]);

%

% INTEGRATION POINTS LOOP

%

for j1=1:nph

chi = sg(3*(j1 -1)+1);

eta = sg(3*(j1 -1)+2);

tau = sg(3*j1);

%

% GEOMETRY APPROACH

%

SHPa (4) = tau;

SHPa (3) = eta; SHPa (2) = chi; SHPa (1) = 1.-chi -eta -tau;

chiG = 0.0; etaG = 0.0; tauG = 0.0;

for k1=1:4

chiG = chiG + SHPa(k1)* xcoord(k1 ,1);

etaG = etaG + SHPa(k1)* xcoord(k1 ,2);

tauG = tauG + SHPa(k1)* xcoord(k1 ,3);

end

%

% SHAPE FUNCTION COMPUTATION

%

SHP(1) = (a1 + b1*chiG + c1*etaG + d1*tauG)/jcob;

dSHPx (1) = b1/jcob; dSHPy (1) = c1/jcob; dSHPz (1) = d1/jcob;

SHP(2) = (a2 + b2*chiG + c2*etaG + d2*tauG)/jcob;

dSHPx (2) = b2/jcob; dSHPy (2) = c2/jcob; dSHPz (2) = d2/jcob;

SHP(3) = (a3 + b3*chiG + c3*etaG + d3*tauG)/jcob;

dSHPx (3) = b3/jcob; dSHPy (3) = c3/jcob; dSHPz (3) = d3/jcob;

SHP(4) = (a4 + b4*chiG + c4*etaG + d4*tauG)/jcob;

dSHPx (4) = b4/jcob; dSHPy (4) = c4/jcob; dSHPz (4) = d4/jcob;

%

% COMPUTE MATRICES OF SHAPE FUNCTION DERIVATIVES

%

B = [dSHPx (1) 0 0 dSHPx (2) 0 0 dSHPx (3) 0 0 dSHPx (4) 0 0; ...

0 dSHPy (1) 0 0 dSHPy (2) 0 0 dSHPy (3) 0 0 dSHPy (4) 0;...

0 0 dSHPz (1) 0 0 dSHPz (2) 0 0 dSHPz (3) 0 0 dSHPz (4);...

dSHPy (1) dSHPx (1) 0 dSHPy (2) dSHPx (2) 0 dSHPy (3) dSHPx (3)...

0 dSHPy (4) dSHPx (4) 0;...

dSHPz (1) 0 dSHPx (1) dSHPz (2) 0 dSHPx (2) dSHPz (3) 0 dSHPx (3)...

dSHPz (4) 0 dSHPx (4);...

0 dSHPz (1) dSHPy (1) 0 dSHPz (2) dSHPy (2) 0 dSHPz (3) dSHPy (3)...

0 dSHPz (4) dSHPy (4)];

Ghat = [dSHPx (1) 0 0 dSHPx (2) 0 0 dSHPx (3) 0 0 dSHPx (4) 0 0; ...

0 dSHPx (1) 0 0 dSHPx (2) 0 0 dSHPx (3) 0 0 dSHPx (4) 0;...

0 0 dSHPx (1) 0 0 dSHPx (2) 0 0 dSHPx (3) 0 0 dSHPx (4);...

dSHPy (1) 0 0 dSHPy (2) 0 0 dSHPy (3) 0 0 dSHPy (4) 0 0; ...

0 dSHPy (1) 0 0 dSHPy (2) 0 0 dSHPy (3) 0 0 dSHPy (4) 0;...

0 0 dSHPy (1) 0 0 dSHPy (2) 0 0 dSHPy (3) 0 0 dSHPy (4);...

dSHPz (1) 0 0 dSHPz (2) 0 0 dSHPz (3) 0 0 dSHPz (4) 0 0; ...

0 dSHPz (1) 0 0 dSHPz (2) 0 0 dSHPz (3) 0 0 dSHPz (4) 0;...

0 0 dSHPz (1) 0 0 dSHPz (2) 0 0 dSHPz (3) 0 0 dSHPz (4)];

if num_iter_prev == 0

% Only stiffness matrix r1 is nonzero at the begining.

r1(index ,index) = r1(index ,index) + (B’*D*B)*jcob*wg(j1);

else

for indI=NIc+1: num_iter_prev % summation over I.

%

% CALCULATE Ahat

%

AhatI=zeros (6,9);

thetaI = Ghat*Fprev(index ,indI);

thetaxt=thetaI (1:3) ’;

thetayt=thetaI (4:6) ’;

thetazt=thetaI (7:9) ’;

58 4 PGD for Non-linear Problems

AhatI (1 ,1:3)= thetaxt;

AhatI (2 ,4:6)= thetayt;

AhatI (3 ,7:9)= thetazt;

AhatI (4 ,1:6)=[thetayt thetaxt];

AhatI (5 ,4:9)=[thetazt thetayt];

AhatI (6 ,1:3)= thetazt;

AhatI (6 ,7:9)= thetaxt;

%

% CALCULATE f1

%

XvecI = D*B*Fprev(index ,indI);

XI = zeros (3); %matrix expresion of XvecI.

XI([1 5 9]) = XvecI ([1 2 3]);

XI(2) = XvecI (4); XI(4) = XI(2);

XI(3) = XvecI (6); XI(7) = XI(3);

XI(6) = XvecI (5); XI(8) = XI(6);

f1I = [XI(1).* eye(3) XI(4).* eye(3) XI(7).* eye (3); ...

XI(2).* eye(3) XI(5).* eye(3) XI(8).* eye (3);...

XI(3).* eye(3) XI(6).* eye(3) XI(9).* eye (3)];

%

% CALCULATE r2I AND r3I

%

r2{indI}(index ,index) = r2{indI}(index ,index) + ...

B’*D*AhatI*Ghat*jcob*wg(j1);

r3{indI}(index ,index) = r3{indI}(index ,index) + ...

Ghat ’*f1I*Ghat*jcob*wg(j1);

%

% SECOND LOOP TO CALCULATE r4IJ AND r5IJ

%

for indJ =1: num_iter_prev % summation over J.

%

% CALCULATE Ahat

%

AhatJ=zeros (6,9);

thetaJ = Ghat*Fprev(index ,indJ);

thetaxt=thetaJ (1:3) ’;

thetayt=thetaJ (4:6) ’;

thetazt=thetaJ (7:9) ’;

AhatJ (1 ,1:3)= thetaxt;

AhatJ (2 ,4:6)= thetayt;

AhatJ (3 ,7:9)= thetazt;

AhatJ (4 ,1:6)=[thetayt thetaxt];

AhatJ (5 ,4:9)=[thetazt thetayt];

AhatJ (6 ,1:3)= thetazt;

AhatJ (6 ,7:9)= thetaxt;

%

% CALCULATE f1

%

XvecIJ = D*AhatI*thetaJ;

XIJ = zeros (3);

XIJ([1 5 9]) = XvecIJ ([1 2 3]);

XIJ(2) = XvecIJ (4); XIJ(4) = XIJ (2);

XIJ(3) = XvecIJ (6); XIJ(7) = XIJ (3);

XIJ(6) = XvecIJ (5); XIJ(8) = XIJ (6);

f1IJ =[XIJ (1).* eye(3) XIJ (4).* eye(3) XIJ (7).* eye (3);...

XIJ (2).* eye(3) XIJ (5).* eye(3) XIJ (8).* eye (3);...

XIJ (3).* eye(3) XIJ (6).* eye(3) XIJ (9).* eye (3)];

%

% CALCULATE r4IJ and r5IJ

%

r4{(indI -1)* num_iter_prev+indJ}(index ,index) = ...

r4{(indI -1)* num_iter_prev+indJ}(index ,index) + ...

Ghat ’*AhatI ’*D*AhatJ*Ghat*jcob*wg(j1);

r5{(indI -1)* num_iter_prev+indJ}(index ,index) = ...

r5{(indI -1)* num_iter_prev+indJ}(index ,index) + ...

Ghat ’*f1IJ*Ghat*jcob*wg(j1);

end

end

for indI =1:NIc

%

% CALCULATE Ahat

%

4.3 Matlab Code 59

AhatI=zeros (6,9);

thetaI = Ghat*Fprev(index ,indI);

thetaxt=thetaI (1:3) ’;

thetayt=thetaI (4:6) ’;

thetazt=thetaI (7:9) ’;

AhatI (1 ,1:3)= thetaxt;

AhatI (2 ,4:6)= thetayt;

AhatI (3 ,7:9)= thetazt;

AhatI (4 ,1:6)=[thetayt thetaxt];

AhatI (5 ,4:9)=[thetazt thetayt];

AhatI (6 ,1:3)= thetazt;

AhatI (6 ,7:9)= thetaxt;

for indJ=NIc+1: num_iter_prev

%

% CALCULATE Ahat

%

AhatJ=zeros (6,9);

thetaJ = Ghat*Fprev(index ,indJ);

thetaxt=thetaJ (1:3) ’;

thetayt=thetaJ (4:6) ’;

thetazt=thetaJ (7:9) ’;

AhatJ (1 ,1:3)= thetaxt;

AhatJ (2 ,4:6)= thetayt;

AhatJ (3 ,7:9)= thetazt;

AhatJ (4 ,1:6)=[thetayt thetaxt];

AhatJ (5 ,4:9)=[thetazt thetayt];

AhatJ (6 ,1:3)= thetazt;

AhatJ (6 ,7:9)= thetaxt;

%

% CALCULATE f1

%

XvecIJ = D*AhatI*thetaJ;

XIJ = zeros (3);

XIJ([1 5 9]) = XvecIJ ([1 2 3]);

XIJ(2) = XvecIJ (4); XIJ(4) = XIJ (2);

XIJ(3) = XvecIJ (6); XIJ(7) = XIJ (3);

XIJ(6) = XvecIJ (5); XIJ(8) = XIJ (6);

f1IJ =[XIJ (1).* eye(3) XIJ (4).* eye(3) XIJ (7).* eye (3);...

XIJ (2).* eye(3) XIJ (5).* eye(3) XIJ (8).* eye (3);...

XIJ (3).* eye(3) XIJ (6).* eye(3) XIJ (9).* eye (3)];

%

% CALCULATE r4IJ and r5IJ

%

r4{(indI -1)* num_iter_prev+indJ}(index ,index) = ...

r4{(indI -1)* num_iter_prev+indJ}(index ,index) + ...

Ghat ’*AhatI ’*D*AhatJ*Ghat*jcob*wg(j1);

r5{(indI -1)* num_iter_prev+indJ}(index ,index) = ...

r5{(indI -1)* num_iter_prev+indJ}(index ,index) + ...

Ghat ’*f1IJ*Ghat*jcob*wg(j1);

end

end

end

end

end

return

Soon after the fem3DHyperelastic routine, the code calls the Elemstiff
Hyperelastic routine, which computes the s1, s2I and s3I J matrices, see Terms
T 2, T 4, …

60 4 PGD for Non-linear Problems

In principle, coordinate s is defined over the boundary of the solid, which may
be triangulated and discretized with the help of linear triangular elements, for
instance. In this case, however, our implementation looks for the nearest node
to a particular s coordinate to apply the load. This means that only nodal forces
are considered, for simplicity. In turn, the s coordinate can be parameterized
in the form of a one-dimensional array of nodes.

function elemstiffHyperelastic(coor)

% function elemstiff(coor)

% Computes s1, s2I and s3IJ matrices

% Universidad de Zaragoza - 2015

global s1 s2 s3

global num_iter_prev Gprev

nen = numel(coor);

% As in fem3DHyperelastic only new matrices s2I and s3IJ are calculated.

% s1 is calculated only the first time.

NIc = 0;

if num_iter_prev > 0

NIc = size(s2 ,1); % Number of matrices s2 already calculated.

if isempty(s2)==1, NIc = 0; end

end

if NIc > 0

% Save previously calculated matrices on auxiliary variables.

s2_aux = s2; s3_aux = s3;

end

%

% ALLOCATE MEMORY AND INITIALIZE

%

if num_iter_prev == 0

s1 = sparse(nen ,nen);

end

s2 = cell(num_iter_prev ,1);

s3 = cell(num_iter_prev*num_iter_prev ,1);

for i1=1: num_iter_prev , s2{i1} = sparse(nen ,nen); end

for i1=1: num_iter_prev*num_iter_prev

s3{i1} = sparse(nen ,nen);

end

%

% ADD ALREADY CALCULATED MATRICES

%

if NIc >0

s2(1:NIc) = s2_aux;

Incre = num_iter_prev -NIc;

if Incre >0

IndMat = zeros(NIc*NIc ,NIc); IndMat (:,1) = [1:NIc*NIc]’;

for i1=2:NIc

IndMat(:,i1) = IndMat(:,i1 -1) + Incre.*ones(size(IndMat ,1) ,1);

end

IndMat = reshape(IndMat (:),[NIc ,NIc*NIc]);

IM = IndMat (:,1:NIc+1:end);

s3(IM(:)) = s3_aux;

else

s3 = s3_aux;

end

end

%

% CALCULATE NEW MATRICES

%

X = coor (1:nen -1)’; Y = coor (2:nen)’; % Coordinates of elements.

L = Y - X; % Longitude of each element for parametriced variable.

sg = [-1.0/ sqrt (3.0) 1.0/ sqrt (3.0)]; wg = ones (2,1); % Gauss points.

npg = numel(sg);

4.3 Matlab Code 61

for i1=1:nen -1

c = zeros(1,npg);

N = zeros(nen ,npg);

c(1,:) = 0.5.*(1.0 -sg).*X(i1) + 0.5.*(1.0+ sg).*Y(i1);

N(i1+1,:) = (c(1,:)-X(i1))./L(i1);

N(i1 ,:) = (Y(i1)-c(1 ,:))./L(i1);

for j1=1:npg

if num_iter_prev == 0

s1 = s1 + N(:,j1)*N(:,j1) ’*0.5.*wg(j1).*L(i1);

else

for indI=NIc+1: num_iter_prev

s2{indI }(:,:) = s2{indI }(:,:) + ...

(N(:,j1)’*Gprev(:,indI))*N(:,j1)*N(:,j1) ’*0.5.*wg(j1).*L(i1);

for indJ =1: num_iter_prev

s3{(indI -1)* num_iter_prev+indJ }(:,:) = ...

s3{(indI -1)* num_iter_prev+indJ }(:,:) + ...

(N(:,j1)’*Gprev(:,indI))*(N(:,j1)’*Gprev(:,indJ))...

*N(:,j1)*N(:,j1) ’*0.5.*wg(j1).*L(i1);

end

end

for indI =1:NIc

for indJ=NIc+1: num_iter_prev

s3{(indI -1)* num_iter_prev+indJ }(:,:) = ...

s3{(indI -1)* num_iter_prev+indJ }(:,:) + ...

(N(:,j1)’*Gprev(:,indI))*(N(:,j1)’*Gprev(:,indJ))...

*N(:,j1)*N(:,j1) ’*0.5.*wg(j1).*L(i1);

end

end

end

end

end

return

Finally, the program calls for the enrichment routine, responsible for the com-
putation of the new terms R and S, see Eq. (4.7), in the approximation.

function [R,S,iter] = enrichment(S0,F,G,TOL ,IndBcnode ,num_iter)

% function [R,S,iter] = enrichment(S0,F,G,TOL ,IndBcnode ,num_iter)

% Computes a new sumand by fixed -point algorithm using PGD

% Universidad de Zaragoza - 2015

global vx vp

global num_iter_prev

global r1 r2 r3 r4 r5 s1 s2 s3

R = zeros(size(F,1) ,1); R0 = R; % Initial value R to compare in first loop.

h = size(vx ,2); % Number functions of the source.

ExitFlag = 1;

iter = 0;

mxit = 100; % #ăof possible iterations for the fixed point algorithm.

Free = setdiff (1: numel(F(:,1)), IndBcnode);

%

% FIXED POINT ALGORITHM

%

while ExitFlag > TOL

%

% LOOKING FOR R, KNOWNING S

%

matrixR = r1*(S0 ’*s1*S0); % T2K

sourceR = zeros(size(F,1) ,1);

for k1=1:h

sourceR = sourceR + vx(:,k1)*(S0 ’*vp(:,k1)); % source term.

end

for i1=1: num_iter -1

sourceR = sourceR - (r1*F(:,i1))*(S0 ’*s1*G(:,i1)); % T2F

end

for i1=1: num_iter_prev

matrixR = matrixR + ...

r2{i1}.*(S0 ’*s2{i1}*S0) + ...

r2{i1}’.*(S0 ’*s2{i1}*S0) + ...

r3{i1}.*(S0 ’*s2{i1}*S0); % T4K , T6K , T9K

for j1=1: num_iter -1

62 4 PGD for Non-linear Problems

sourceR = sourceR - ...

r2{i1}*F(:,j1)*(S0 ’*s2{i1}*G(:,j1)) - ...

r2{i1}’*F(:,j1)*(S0 ’*s2{i1}*G(:,j1)) - ...

r3{i1}*F(:,j1)*(S0 ’*s2{i1}*G(:,j1)); % T4F , T6F , T9F

end

end

for i1=1: num_iter_prev*num_iter_prev

matrixR = matrixR + ...

r4{i1}.*(S0 ’*s3{i1}*S0) + ...

0.5*r5{i1}.*(S0 ’*s3{i1}*S0); % T8K , T10K

for j1=1: num_iter -1

sourceR = sourceR - ...

r4{i1}*F(:,j1).*(S0 ’*s3{i1}*G(:,j1)) - ...

0.5*r5{i1}*F(:,j1).*(S0 ’*s3{i1}*G(:,j1)); % T8F , T10F

end

end

%

% SOLVE R

%

R(Free) = matrixR(Free ,Free)\ sourceR(Free);

%

% LOOKING FOR S, KNOWNING R

%

matrixS = (R’*r1*R).*s1; % T2K

sourceS = zeros(size(G,1) ,1);

for k1=1:h

sourceS = sourceS + (R’*vx(:,k1))*vp(:,k1); % source term.

end

for i1=1: num_iter -1

sourceS = sourceS - (R’*r1*F(:,i1))*(s1*G(:,i1)); % T2F

end

for i1=1: num_iter_prev

matrixS = matrixS + ...

(R’*r2{i1}*R).*s2{i1} + ...

(R’*r2{i1}’*R).*s2{i1} + ...

(R’*r3{i1}*R).*s2{i1}; % T4K , T6K , T9K

for j1=1: num_iter -1

sourceS = sourceS - ...

(R’*r2{i1}*F(:,j1))*s2{i1}*G(:,j1) - ...

(R’*r2{i1}’*F(:,j1))*s2{i1}*G(:,j1) - ...

(R’*r3{i1}*F(:,j1))*s2{i1}*G(:,j1); % T4F , T6F , T9F

end

end

for i1=1: num_iter_prev*num_iter_prev

matrixS = matrixS + ...

(R’*r4{i1}*R).*s3{i1} + ...

0.5*(R’*r5{i1}*R).*s3{i1}; % T8K , T10K

for j1=1: num_iter -1

sourceS = sourceS - ...

(R’*r4{i1}*F(:,j1)).*(s3{i1}*G(:,j1)) - ...

0.5*(R’*r5{i1}*F(:,j1)).*(s3{i1}*G(:,j1)); % T8F , T10F

end

end

%

% SOLVE S

%

S = matrixS\sourceS;

S = S./norm(S); % We normalize S. R takes care of alpha constant.

%

% COMPUTING STOP CRITERIA

%

error = max(abs(sum(R0-R)),abs(sum(S0-S)));

R0 = R; S0 = S;

iter = iter + 1;

if iter >mxit !! abs(error)<TOL ,

return

end

end

return

4.3 Matlab Code 63

0.20.101.5

1

0.5

0.2

0.1

0

-0.1

-0.2

0

Fig. 4.2 Deformed configuration of the cantilever beam at the end of the simulation

After execution, whose most important part is devoted to the computation of the
off-line terms in the approximation, the program depicts the deformed configuration
of the beam, see Fig. 4.2.

Chapter 5
PGD for Dynamical Problems

Simulations are like Michelin star restaurants but should be like
McDonalds: ubiquitous and standardised.

—Craig McIlhenny

Abstract This chapter develops the application of PGD methods initial and
boundary value problems, with an eye towards the (non-linear) solid dynamics equa-
tions.

Model order reduction of initial and boundary value problems (IBVP) is a particularly
challenging task. In this chapter we explain some interesting concepts related mostly
with solid dynamics, taken as model problem to this end.

In [41] a method was developed that takes the field of initial conditions as a
parameter to develop a very efficient dynamical integrator. However, the field of
initial conditions (displacement, velocity) is in fact a parameter of infinite dimension,
and hence hard to parameterize adequately. In this chapter we analyze how to do it in
a proper way so as to render a very fast method, amenable for real-time simulation,
even under very astringent conditions. Other approaches to the problem, such as a
space-time one, can be found at [18], for instance.

5.1 Taking Initial Conditions as Parameters

As mentioned before, in [41] a method is developed based on PGD that acts as a sort
of black box integrator in time. Given the converged displacement and velocity field
of the solid at time step t , ut and u̇t , respectively, as parameters, the method returns
the displacement and velocity fields at time t + �t , see Fig. 5.1.

Once semi-discretized in space, the displacement and velocity fields are no longer
of infinite dimension, but usual engineering finite element meshes involve tens of

© The Author(s) 2016
E. Cueto et al., Proper Generalized Decompositions, SpringerBriefs
in Applied Sciences and Technology, DOI 10.1007/978-3-319-29994-5_5

65

66 5 PGD for Dynamical Problems

Input Output
ut, u̇t ut+ t, u̇t+ t

Fig. 5.1 Sketch of the proposedmethod for the integration of solid dynamics in the PGDframework.
Converged displacement and velocity fields at time step t are taken as parameters, so as to provide,
without the need of any matrix inversion, the displacement and velocity fields at time step t + �t

thousands to millions of degrees of freedom. This would imply to have into account
millions of parameters, something out of reach even for PGD methods.

In order to avoid this enormous number of parameters, in [41] the use of Proper
Orthogonal Decomposition [43, 48, 49] methods so as to employ a minimal number
of parameters is proposed. In this way, initial displacement and velocity field can be
optimally parameterized with a minimal number of degrees of freedom. The price to
pay is to project the results of the integration at time t +�t onto the POD basis so as
to be taken as parameters (initial conditions) for a subsequent integration to obtain
ut+2�t and u̇t+2�t .

We provide details of the variational formulation in the subsequent sections.

5.2 Developing the Weak Form of the Problem

We consider the general problem of solid dynamics, in which we look for the dis-
placement field,

u : Ω̄×]0, T] × I × J → R
3,

where I = [u−
0 , u+

0] and J = [u̇−
0 , u̇+

0] represent the considered intervals of vari-
ation of initial boundary conditions, u0 and u̇0, taken as parameters. To obtain a
parametric solution for any initial condition (within these intervals), it is therefore
necessary to define a new (triply-) weak form:

given f , g, h, u0 and u̇0 find u(t) ∈ St = {u|u(x, t) = g(x, t), x ∈ Γu, u ∈
H1(Ω)}, t ∈ [0, T], such that for all u∗inV{u|u(x, t) = 0, x ∈ Γu, u ∈ H1(Ω)},

(u∗, ρ ü) + a(u∗, u) = (u∗, f) + (u∗, h)Γ (5.1a)

(u∗, ρu(0)) = (u∗, ρu0) (5.1b)

(u∗, ρ u̇(0)) = (u∗, ρ u̇0), (5.1c)

5.2 Developing the Weak Form of the Problem 67

where:

a(u∗, u) =
∫

I

∫

J

∫

Ω

∇s u∗ : C : ∇s u dΩd u̇0du0,

(u∗, f) =
∫

I

∫

J

∫

Ω

u∗ f dΩd u̇0du0,

(u∗, h)Γ =
∫

I

∫

J

∫

Γt

u∗h dΓ d u̇0du0.

The next step is, by means of appropriate finite-dimensional approximations to
St and V , Sh

t and Vh , respectively, to semi-discretize the weak form so as to obtain
the following problem:

given f , g, h, u0 and u̇0 find uh(t) = vh + gh ∈ Sh
t (note that g(x, t) = u(x, t)

on Γu) such that for every u∗h ∈ Vh ,

(u∗h
, ρv̈h) + a(u∗h

, v) = (u∗h
, f) + (u∗h

, h)Γ − (u∗h
, ρ g̈h) − a(u∗h

, gh),

(5.2a)

(u∗h
, ρvh(0)) = (u∗h

, ρu0) − (u∗h
, ρgh(0)), (5.2b)

(u∗h
, ρv̇h(0)) = (u∗h

, ρ u̇0) − (u∗h
, ρ ġh(0)). (5.2c)

This provides a sort of response surface or parametric solution (thus the name com-
putational vademecum coined in [26]) to the problem (5.1) for any initial conditions.

If we consider direct integration in time (remember that we look for an interac-
tive method, so that this prevents us from using a space-time approach) the sought
displacement field will be approximated in a PGD framework as a finite series of
separable functions,

vh(x, t, u0, u̇0) =
[

n∑

i=1

Fi (x) ◦ Gi (u0) ◦ H i (u̇0)

]
◦ d(t), (5.3)

where the nodal coefficients d(t) carry out all the time-dependency of the solution
and the symbol “◦” stands for the entry-wise Hadamard or Schur multiplication of
vectors.

Functions F, G and H will be expressed in terms of low (here, three-) dimensional
finite element basis functions. As usual, these are computed by means of a greedy
algorithm in which one sum is computed at a time, while one product is computed
in a fixed point, alternated directions algorithm. Thus, having an approximation to
vh converged at iteration n, the (n + 1)-th term is obtained as

vn+1(x, t, u0, u̇0) =
[

n∑

i=1

Fi (x) ◦ Gi (u0) ◦ H i (u̇0) + R(x) ◦ S(u0) ◦ T (u̇0)

]
◦d(t).

68 5 PGD for Dynamical Problems

By substituting the approximations to vh and wh into the weak form of the
problem, Eq. (5.2), we arrive at a semi-discrete problem. One of the most salient
features of this method relies in its ability of advancing in time using any time in-
tegrator existing in the literature (particularly, energy and momentum conserving
schemes.) Of course, any other parametric dependence, such as the one on the posi-
tion of the applied load, see Chap.3, can be considered at the same time.

Still one ingredient of the implementation is missing. Instead of considering the
whole time interval]0, T] we look for the solution within a generic time increment
]0,�t]:

v : Ω̄×]0,�t] × I × J × [h−, h+] → R
3,

where �t represents the necessary time to response prescribed by the particular
envisaged application. For instance, for haptic feedback applications, a physically
realistic sensation of touch needs for some 500Hz to 1kHz feedback rate. This
implies to take �t on the order of 0.001 seconds. This value �t could be smaller
or greater than the necessary time step amplitude needed for stability of the chosen
time integrator.

5.3 Matrix Form of the Problem

5.3.1 Time Integration of the Equations of Motion

As usual, we start from the weak form of the solid dynamic equations, Eq. (5.1), i.e.,
finding the displacement u ∈ H1 such that for all u∗ ∈ H1

0:

∫

Ω

u∗ρ üdΩ +
∫

Ω

∇s u∗ : C : ∇s udΩ =
∫

Γt2

u∗ · tdΓ. (5.4)

Once semi-discretized in space, we can identify a term where a mass matrix appears,

Mm =
∫

Ω

u∗h
ρ ühdΩ,

and a term usually identified as the stiffness matrix

Km =
∫

Ω

∇s u∗h : C : ∇s uhdΩ.

In the sequel we omit, if no risk of confusion exists, the superscript h, so that
all vectors represent the set of nodal unknowns for the problem. For the integration
in time of these equations we have several options. In general you can employ your

http://dx.doi.org/10.1007/978-3-319-29994-5_3

5.3 Matrix Form of the Problem 69

favorite integration scheme. Here we are considering, both for its simplicity and good
results, an energy-momentum conserving scheme developed in [15]. This scheme
has two sub-steps which compute a predictor of the displacement vector at time step
ut+(�t/2) in the first one and subsequently a correction ut+�t in the second sub-step.

The first sub-step has the following form:

Mmüt+(�t/2) + Kmut+(�t/2) = Ft+(�t/2).

Employing classical finite difference approaches for the time derivatives,

üt+(�t/2) = u̇t+(�t/2) − u̇t

Δt/4
− üt ,

u̇t+(�t/2) = ut+(�t/2) − ut

Δt/4
− u̇t .

Applying these expressions to the first sub-step, after some simple algebra, we
obtain the final expression for the sub-step 1:

[[
16

�t2

]
Mm + Km

]
·ut+(�t/2) = Ft+(�t/2)+

[
16

�t2

]
Mm ·ut +

[
8

�t

]
Mm · u̇t +Mm · üt .

(5.5)

The second sub-step has the following form:

Mmüt+�t + Kmut+�t = Ft+�t .

Again, by employing classical finite differences for the time derivatives,

üt+�t = u̇t

�t
−

[
4

�t

]
u̇t+(�t/2) +

[
3

�t

]
u̇t+�t ,

u̇t+�t = ut

�t
−

[
4

�t

]
ut+(�t/2) +

[
3

�t

]
ut+�t .

By substituting these expressions in the second sub-step, the final formula for the
sub-step 2 that the reader can find in the code included in Sect. 5.4 is:

[[
9

�t2

]
Mm + Km

]
·ut+�t = Ft+�t −

[
19

�t2

]
Mm ·ut −

[
5

�t

]
Mm · u̇t +

[
28

�t2

]
Mm ·ut+(�t/2).

(5.6)

70 5 PGD for Dynamical Problems

The strategy depicted in the previous section,when applied to the just explained
time integration scheme, implies the construction of a PGD time integrator
able to provide the value of ut+�t for any value of ut . In that framework, ut

acts in fact as a parameter. But recall that ut represents the vector of nodal
displacements at time step t . Therefore, it can consist of several millions of
degrees of freedom, something our of reach even for PGD strategies!

In order to develop a suitable strategy, it is therefore of utmost importance
to adequately parameterize the field of initial displacements at the beginning of
the time step. In [41] this is done by employing a reduced-order basis instead of
the traditional finite element one. And to do it by means of Proper Orthogonal
Decompositions. This is explained in detail in what follows.

5.3.2 Computing a Reduced-Order Basis for the Field of
Initial Conditions

For the sake of completeness, we briefly review here the basics of the POD technique
for the computation of a reduced-order basis for the initial displacement field of the
problem. Let us first assume that we have a collection of snapshots, i.e., finite element
results for problems similar to the one at hand. By similar we mean results probably
for the same solid, but possibly under different conditions, applied loads, boundary
conditions, … We then store these snapshots column-wise in a matrix Q (more
details can be found, for instance, in [54]). The next step is the computation of the
so-called auto-correlation matrix,

c = Q QT . (5.7)

It can then be demonstrated that the best possible basis (that capturing the most of
the energy of the system with the minimal number of degrees of freedom) is formed
by the eigenvectors φ of the problem

c φ = αφ.

By storing the nodal values (we assume to have N nodes in the mesh of the model)
of the eigenvectors with the m biggest eigenvalues in a matrix

B =

⎛

⎜⎜⎜⎝

φ1(x1) φ2(x1) · · · φm(x1)

φ1(x2) φ2(x2) · · · φm(x2)
...

...
. . .

...

φ1(xN) φ2(xN) · · · φm(xN)

⎞

⎟⎟⎟⎠

5.3 Matrix Form of the Problem 71

we can therefore project the initial system of equations onto a reduced-order one by
simply doing the change of variable

ut ≈
i=nrb∑

i=1

ζ i
t φi = B ζ t ,

so that we will finally face a system of 3m equations for ζ t instead of the original
3N for ut . The advantage of this strategy is that usually the number of reduced basis,
rnb � N and therefore the resulting system of equations is generally much smaller.

5.3.3 Projection of the Equations onto a Reduced,
Parametric Basis

For each sub-step within the time integration scheme we compute the PGD approx-
imation to the solution ut+(�t/2) and ut+�t such that,

ut+(�t/2)(x, ζ t , ζ̇ t , ζ̈ t , pa, s)

=
n∑

i=1

NT (x)Fi
x · NT (ζ t)Fi

ζ t
· NT (ζ̇ t)Fi

ζ̇ t
· NT (ζ̈ t)Fi

ζ̈ t
· NT (pa)Fi

pa
· NT (s)Fi

s

(5.8)

ut+�t (x, ζ t , ζ̇ t , ζ t+(�t/2), pa , s)

=
n∑

i=1

NT (x)Fi
x · NT (ζ t)Fi

ζ t
· NT (ζ̇ t)Fi

ζ̇ t
· NT (ζ t+(�t/2))Fi

ζ t+(�t/2)
· NT (pa)Fi

pa · NT (s)Fi
s

(5.9)

where x represents the physical space, ut is the vector of displacement degrees of
freedom at time step t , u̇n is the vector of velocity degrees of freedom at time step t ,
ün is the vector of nodal accelerations at time step t , ut+(�t/2) is the vector of nodal
displacements at time step t + (�t/2), pa is the classical loading parameter, its value
varying continuously in the interval [0, 1]. It allows us to apply or not a load at a
particular time step or to apply a ramp load, for instance. Finally, s represents the
position of the load, as in Chap.3.

We denote, as in the rest of the book, by N(·) the vector of finite element shape
functions employed to discretize the different dimensions of the problem. Note that
we are considering a solution depending on the physical space x plus a number of
parameters ζ = [ζ1, ζ2, . . . , ζm], which in this case coincide with the chosen POD
degrees of freedom parameterizing the fields of initial displacements and velocities.
Taking also into account that the density parameter ρ and the symmetric gradients
∇s in Eq. (5.1) depend solely on space coordinates, we can write the mass matrix,
and the stiffness matrix of the problem in separated form as

http://dx.doi.org/10.1007/978-3-319-29994-5_3

72 5 PGD for Dynamical Problems

Mm =
[∫

Ωx
NT (x)ρN(x)dΩx

]
·
[∫

Ωζ1

NT (ζ1)N(ζ1)dΩζ1

]
· . . .

·
[∫

Ωζm

NT (ζm)N(ζm)dΩζm

]
·
[∫

Ωpa

NT (pa)N(pa)dΩpa

]
·
[∫

Ωs
NT (s)N(s)dΩs

]
,

Km =
[∫

Ωx
∇s NT (x)C∇s N(x)dΩx

]
·
[∫

Ωζ1

NT (ζ1)N(ζ1)dΩζ1

]
· . . .

·
[∫

Ωζm

NT (ζm)N(ζm)dΩζm

] [∫

Ωpa

NT (pa)N(pa)dΩpa

]
·
[∫

Ωs
NT (s)N(s)dΩs

]
.

The influence on the solution of the number of parameters m (terms in the POD
basis of the initial conditions) chosen to parameterize the fields of initial conditions
was deeply analyzed in [41].

The PGD final solution uses the PGD solutions for each sub-step, Eqs. (5.5) and
(5.6). Starting from u0, u̇0 and ü0 (in fact, their projection onto the POD basis!),
by using the first sub-step vademecum we obtain u0+1/2. These values are then
introduced in second sub-step vademecum which in turn uses as input parameters
u0, u̇0 and u0+1/2 (computed in the first sub-step). The value returned by the second
vademecum is u1. We then change the time step, and apply the new input parameters
u1, u̇1 and ü1 in the first vademecum to obtain u1+1/2. Again, by using u1, u̇1 and
u1+1/2 we obtain u2 by using the second vademecum. This procedure is repeated for
each time step of the simulation. This loop indeed runs under very astringent real
time constraints, such as those of a realistic rendering.

As in previous examples, we assume for simplicity of the exposition, that the
load is of unity module and acts along the vertical axis: t = ek · δ(x − s), where δ

represents the Dirac-delta function and ek the unit vector along the z-coordinate axis
on the top of the domain. A more general setting would need for new parameters,
i.e., the components of the load vector, for instance, but it is perfectly possible in the
same framework here explained.

Regarding the matrix structure of the problems given by Eqs. (5.5) and (5.6), in
both of them the force vector applied at each time step, Fn+1/2 and Fn+1 appears.
Like in the parametric problem in Chap.3, we must consider the load in a separated
form, i.e. a separated sum of products of separated functions,

fn+1/2(x, ζ n, ζ̇ n, ζ̈ n, pa, s) =
m∑

j=1

f j
x · f j

ζ n
· f j

ζ̇ n
· f j

ζ̈ n
· f j

pc
· f j

s . (5.10)

A simple way to obtain such a decomposition is to consider as many terms j as
possible nodal load locations, and to set f j

x , as the force modulus (here, unity). In
turn, f j

pc
= [0 1]T for each j , f j

s = I (the identity matrix) and the rest of vectors

f j
ζ n

, f j
ζ̇ n

, f j
ζ̈ n

= 1, that is, the ones instruction in Matlab, a vector composed by

http://dx.doi.org/10.1007/978-3-319-29994-5_3

5.3 Matrix Form of the Problem 73

ones in every entry. We proceed analogously for the force vector f n+1 in the second
substep of the time integrator scheme.

In order to completely define the right-hand side vector, let us see how to compute
the others terms in Eqs. (5.5) and (5.6). In these formulae, we find terms defined as
a constant value multiplying the mass matrix Mm and multiplying ζ n, ζ̇ n, ζ̈ n and
un+1. These vectorial parameters should be considered in separated form, so as to
have the following form,

ζ n = 1̄x · [
ζ min

n . . . ζ max
n

]T · 1ζ̇ n
· 1ζ̈ n

· 1pc · 1s,

ζ̇ n = 1̄x · 1ζ n
· [

ζ̇ min
n . . . ζ̇ max

n

]T · 1ζ̈ n
· 1pc · 1s,

ζ̈ n = 1̄x · 1ζ n
· 1ζ̇ n

· [
ζ̈ min

n . . . ζ̈ max
n

]T · 1pc · 1s,

ζ n+1/2 = 1̄x · 1ζ n
· 1ζ̇ n

· [
ζ min

n+1/2 . . . ζ max
n+1/2

]T · 1pc · 1s,

where vector 1̄x refers to the ones vector in space direction that satisfies essential
boundary conditions or, equivalently, the ones vector inwhich entries related to nodes
pertaining to the essential boundary have been replaced by zeros.

In the code reproduced below, these values of the RHS vector are computed for
each reduced basis nrb and at each substep, and are saved in the F R1 and F R2
vectors. So for substep 1,

F R1 j
1 = 1̄x · [

ζ min
n . . . ζ max

n

]T · 1ζ̇ n
· 1ζ̈ n

· 1pc · 1s,

F R1 j
2 = 1̄x · 1ζ n

· [
ζ̇ min

n . . . ζ̇ max
n

]T · 1ζ̈ n
· 1pc · 1s,

F R1 j
3 = 1̄x · 1ζ n

· 1ζ̇ n
· [

ζ̈ min
n . . . ζ̈ max

n

]T · 1pc · 1s,

where j = 1, . . . ,nrb refers to the number in the set of reduced basis.
Equivalently, in substep 2,

F R2 j
1 = 1̄x · [

ζ min
n . . . ζ max

n

]T · 1ζ̇ n
· 1ζ̈ n

· 1pc · 1s,

F R2 j
2 = 1̄x · 1ζ n

· [
ζ̇ min

n . . . ζ̇ max
n

]T · 1ζ̈ n
· 1pc · 1s,

F R2 j
3 = 1̄x · 1ζ n

· 1ζ̇ n
· [

ζ min
n . . . ζ max

n

]T · 1pc · 1s,

where j refers to the number of reduced basis. We use the same discretization ratio-
nale for un and un+1/2.

To solve both substeps so as to generate the multi-parametric solution, we employ
a greedy algorithm, using a fixed-point strategy, so as to compute the new terms in the
sum, represented by Eqs. (5.8) and (5.9). If, within the enrichment loop, the solution
is not accurate enough, the already computed approximation is improved by adding
a new separated term

74 5 PGD for Dynamical Problems

un+1/2 =
N∑

i=1

3+3∗nrb∏

j=1

NT (var j)F1i
var j +

3+3∗nrb∏

j=1

NT (var j)Ri
var j, (5.11)

where N is the number of terms already for the PGD solution. This Eq. (5.11) is
analogous for substep 2, with just changing un+1/2 by un+1, and F1i

var j by F2i
var j.

Finally, Eq. (5.5) is solved in the code written below using the following notation:

3+3∗nrb∏

j=1

R∗
j

[[
16

Δt2

]
Mm + Km

] 3+3∗nrb∏

j=1

R j

=
3+3∗nrb∏

j=1

R∗
j ·

[
Fn+1/2 +

[
16

Δt2

]
Mm · F R11 +

[
8

Δt

]
Mm · F R12 + Mm · F R13

−
N∑

i=1

[[
16

Δt2

]
Mm + Km

] 3+3∗nrb∏

j=1

F1i
j

⎤

⎦

(5.12)

where
∏3+3∗nrb

j=1 R∗
j represents the weight function, that within the fixed-point strat-

egy takes a different form depending on the particular iteration. Thus if, for instance,
we are computing along the k-th coordinate, assuming the others directions to be
known, we have

3+3∗nrb∏

j=1

R∗
j =

3+3∗nrb∏

j=1, j 	=k

R j · R∗
k . (5.13)

Thesevariables canbe readily identified in the routineenrichment_substep1
by taking into account the following notation,

matrix1 =
[
16

Δt2

]
Mm,

matrix2 = Km,

V = Fn+1/2,

value1 =
[
16

Δt2

]
Mm · F R11,

value2 =
[
8

Δt

]
Mm · F R12,

value3 = Mm · F R13,

FV = F1.

5.3 Matrix Form of the Problem 75

For Eq. (5.6), the implemented routine enrichment_substep2 computes

3+3∗nrb∏

j=1

R∗
j

[[
9

Δt2

]
Mm + Km

] 3+3∗nrb∏

j=1

R j

=
3+3∗nrb∏

j=1

R∗
j ·

[
Fn+1 −

[
19

Δt2

]
Mm · F R21 −

[
5

Δt

]
Mm · F R22 +

[
28

Δt2

]
Mm · F R23

−
N∑

i=1

[[
16

Δt2

]
Mm + Km

] 3+3∗nrb∏

j=1

F1i
j

⎤

⎦ .

In turn,
∏3+3∗nrb

j=1 R∗
j is defined in Eq. (5.13). The variables can be identified as,

matrix1 =
[

9

Δt2

]
Mm,

matrix2 = Km,

V = Fn+1,

value1 =
[
19

Δt2

]
Mm · F R21,

value2 =
[
5

Δt

]
Mm · F R22,

value3 =
[
28

Δt2

]
Mm · F R23,

FV = F2.

In next section the detailed code implmenting this strategy is provided.

5.4 Matlab Code

As always, the code begins by the main.m file, which is reproduced below. In
this case, a series of previous simulations are needed so as to construct the POD
basis referred to in Eq. (5.7). These simulations were carried out by us with
the help of the commercial software Abaqus, although the reader can use his
or her preferred code to do it. Once these simulations are done, and the POD
modes computed, they are stored in memory by means of the instruction WS =
load(’WorkSpaceBeam_REF.mat’,’Vreal’);, see below.

The quality of the final results will obviously depend on the similarity of this POD
basis to the problem being simulated. In general, our experience indicates that with
good basis, the number of POD modes necessary for a good energy conservation
(i.e., avoidance of numerical dissipation) tends to be on the order of 6–8 modes.

76 5 PGD for Dynamical Problems

%

% PGD Code for Dynamic Problem

% D. González , I. Alfaro , E. Cueto

% Universidad de Zaragoza

% AMB -I3A Dec 2015

%

clear all; close all; clc;

%

% VARIABLES

%

global E nu coords tet

Modulus = 10000.0; % Force modulus.

cooru = linspace(-5E1 ,5E1 ,300); % Discretization for displacement field.

coorv = linspace(-5E+2,5E+2 ,300);% Discretization for velocity field.

coora = linspace(-1E+3,1E+3 ,300); % Discretization for acceleration field.

deltat = 0.00125; coort = 0: deltat :2; % Time discretization.

TOL = 1.0E-04; % Tolerance.

num_max_iter = 15; % # of summands of the approach.

E = 2E11; nu = 0.3; Rho = 2.5E+04; % Material.

deltatA = 0.00125; % Time step for Reference problem - Abaqus ’ result.

NodeR = 6; NodeC = 104; % Reference nodes to compare PGD solution.

nrb = 1; % Number of directions on reduced basis.

% The PGD solution depends on: Space , Load , load parameter and

% displacement -velocity -acceleration for each reduced POD basis

nv = 3 + 3*nrb; % # of parameters (or variables) for the PGD solution.

%

% GEOMETRY

%

coords = load(’gcoordBeam.dat’); % Nodal coordinates.

tet = load(’conecBeam.dat’); % Connectivity list.

Ind = 1:size(coords ,1); % List of nodes.

bcnode = Ind(coords (: ,1)== min(coords (: ,1))); % Boundary: Fix left side.

IndBcnode = sort ([3*(bcnode -1)+1 3*(bcnode -1)+2 3* bcnode]); % D.o.f. BCs.

dof = setxor(IndBcnode ,1: numel(coords))’; % D.o.f. Free nodes.

% Make use of triangulation MatLab function to obtain boundary surface.

TR = triangulation(tet ,coords);

[tf] = freeBoundary(TR); % Dependent of 3D geometry of the boundary.

[tri ,coors] = freeBoundary(TR); % Independent triangulation of boundary.

IndS = 1:size(coors ,1); ncoors = numel(IndS);

%

% STIFNESS AND MASS MATRICES COMPUTATION

%

[r1,r2] = fem3D; r2 = Rho.*r2; % Space: Stiffness: r1, Mass: r2.

[z1,vu] = elemstiff(cooru); % Displacements.

[w1,vv] = elemstiff(coorv); % Velocities.

[s1,va] = elemstiff(coora); % Accelerations.

vu = repmat(vu ,1,ncoors); % Reshape to construct source in separated form.

vv = repmat(vv ,1,ncoors);

va = repmat(va ,1,ncoors);

%

% SOURCE

%

coorp = 1:size(coors ,1); % We consider each possible load position

% as a different load case.

p1 = elemstiff(coorp); % Mass matrix for load parameter: 1st vargout.

% Identifying local nodes of the loaded surface on the global connectivity.

% To obtain that: coords(IndL ,:)-coors = zeros(nn2 ,1).

[trash ,trash2 ,xj] = intersect(IndS ,tri (:)); % TRI Local connectivity.

IndL = tf(xj); % TF Global connectivity of the loaded surface (Top).

DOFLoaded = 3*IndL; % Consider vertical load on the top of the beam.

vx = zeros(numel(coords),ncoors);

vx(DOFLoaded ,:) = eye(ncoors); % Space terms for the source.

vp = eye(ncoors); vp = p1*vp; % Load terms for the source.

%

% ACTIVATION OF LOAD PARAMETER

%

5.4 Matlab Code 77

coorac = [1 2]; % Value to activate the load. Two possibilities 1-No 2-Yes.

pa1 = elemstiff(coorac); % Mass matrix for load activation: 1st vargout.

vpa = pa1*repmat ([0; -Modulus],1,ncoors); % Activation terms for the source

%

% LOADING P.O.D. DATA TO CONSTRUCT REDUCED BASIS

%

WS = load(’WorkSpaceBeam_REF.mat’,’Vreal’);

Vreal = WS.Vreal; % Loading Displacement field of the reference solution.

%

% APPLY P.O.D. TECHNIQUE TO OBTAIN REDUCED BASIS

%

Q = Vreal(dof ,:)* Vreal(dof ,:)’; [A,lam] = eigs(Q,[],nrb);

%

% ALLOCATION OF MATRICES AND VECTORS FOR EACH TIME INTEGRATION STEP (1,2)

%

K1 = cell(nv ,1); M1 = K1; V1 = K1; Fv1 = K1; FR1 = K1; coor1 = cell(nv ,1);

K2 = cell(nv ,1); M2 = K2; V2 = K2; Fv2 = K2; FR2 = K2; coor2 = cell(nv ,1);

%

% SPACE MATRICES

%

K1{1} = r1; % Stiffness matrix for SubStep 1.

M1{1} = r2; % Mass matrix for SubStep 1.

V1{1} = vx; % Space term for the source at the SubStep 1.

K2{1} = r1; M2{1} = r2; V2{1} = vx; % SubStep 2.

%

% LOAD MATRICES

%

K1{nv} = p1; % Stiffness matrix contribution of load for SubStep 1.

M1{nv} = p1; % Mass matrix for SubStep 1.

V1{nv} = vp; % Load term for the source at the SubStep 1.

coor1{nv} = coorp; % Load Discretization for SubStep 1.

K2{nv} = p1; M2{nv} = p1; V2{nv} = vp; coor2{nv} = coorp; % SubStep 2.

%

% MATRICES RELATED TO ACTIVATION PARAMETER

%

K1{nv -1} = pa1; % Stiffness contribution of act.param. for SubStep 1.

M1{nv -1} = pa1; % Mass matrix for SubStep 1.

V1{nv -1} = vpa; % Activation parameter term for the source , SubStep 1.

coor1{nv -1} = coorac; % Activation parameter discretization for SubStep 1.

K2{nv -1} = pa1; M2{nv -1} = pa1; V2{nv -1} = vpa; coor2{nv -1} = coorac; % S2.

%

% REDUCED BASIS MATRICES

%

for i1=2:3:nv -2

%

% SUBSTEP 1

%

K1{i1} = z1; M1{i1} = z1; V1{i1} = vu; coor1{i1} = cooru; % U

K1{i1+1} = w1; M1{i1+1} = w1; V1{i1+1} = vv; coor1{i1+1} = coorv; % V

K1{i1+2} = s1; M1{i1+2} = s1; V1{i1+2} = va; coor1{i1+2} = coora; % A

%

% SUBSTEP 2

%

K2{i1} = z1; M2{i1} = z1; V2{i1} = vu; coor2{i1} = cooru; % U

K2{i1+1} = w1; M2{i1+1} = w1; V2{i1+1} = vv; coor2{i1+1} = coorv; % V

K2{i1+2} = z1; M2{i1+2} = z1; V2{i1+2} = vu; coor2{i1+2} = cooru; % U/2

end

%

% INICIALIZATING PGD SOLUTION

%

for i1=1:nv

Fv1{i1} = 0.0.*V1{i1}(: ,1); % PGD vectors for SubStep 1.

Fv2{i1} = 0.0.*V2{i1}(: ,1); % PGD vectors for SubStep 2.

end

%

% BOUNDARY CONDITIONS

%

78 5 PGD for Dynamical Problems

Free1 = cell(nv ,1); Free2 = cell(nv ,1);

Free1 {1} = dof; Free2 {1} = dof; % Free DOF for Space.

for i1=2:nv % No BCs for rest of parameters (variables).

Free1{i1} = 1:numel(coor1{i1});

Free2{i1} = 1:numel(coor2{i1});

end

%

% Un, Vn, An ... IN SEPARATED FORM FOR INTEGRATION SCHEME

%

% We have 3*nen terms in the source related to Un, Vn and An in SubStep 1

% and Vn, Un+1/2 and Un for SubStep 2. Following the sort of the variables

% in the PGD solution for SubStep 1, U1_{n+1/2}(Var_1 , Var_2 ,...,

% Var_{nv -1}, Var_{nv}), where Var_1=Spatial Coordinates , Var_{nv -1} =

% Activation Parameter , Var_{nv} = Loads , and Var_ (2:3: nv_1) = U_n

% (Displacement in time n), Var_ (3:3: nv_1) = V_n (Velocity in time n) and

% Var_ (4:3: nv_1) = A_n (Acceleration in time n)

% For the PGD solution for SubStep 2, U2_{n+1/2}(Var_1 , Var_2 ,...,

% Var_{nv -1}, Var_{nv}), where Var_1=Spatial Coordinates , Var_{nv -1} =

% Activation Parameter , Var_{nv} = Loads , and Var_ (2:3: nv_1) = U_n

% (Displacement in time n), Var_ (3:3: nv_1) = V_n (Velocity in time n) and

% Var_ (4:3: nv_1) = U_{n+1/2} (Displacement in time n + 1/2).

%

% IMPORTANT: To obtain U_n and V_n variables in SubStep 1 (for instance) in

% separated form we consider that:

% U_n = 1_{space} U_n 1_{velocity} 1_{acceleration} 1_{activation} 1_{load}

% V_n = 1_{space} 1_{displac.} V_n 1_{acceleration} 1_{activation} 1_{load}

FR1{1} = zeros(size(Fv1{1},1),nv -3); FR2{1} = zeros(size(Fv2{1},1),nv -3);

for i1=2:nv

FR1{i1} = ones(size(Fv1{i1},1),nv -3);

FR2{i1} = ones(size(Fv2{i1},1),nv -3);

end

for i1=1:3 % 3 terms per # reduced basis.

FR1 {1}(dof ,i1:3:end) = A; % Projection space onto Reduced basis.

FR2 {1}(dof ,i1:3:end) = A;

end

for i1=2:nv -2

FR1{i1}(:,i1 -1) = coor1{i1}’; % U_n , V_n , A_n.

FR2{i1}(:,i1 -1) = coor2{i1}’; % U_n , V_n , U_{n+1/2}.

end

%

% ENRICHMENT OF THE APPROXIMATION: SUBSTEP 1

%

num_iter1 = 0; Error_iter = 1.0; iter = zeros (1); Aprt = 0;

while Error_iter >TOL && num_iter1 <num_max_iter

num_iter1 = num_iter1 + 1; R0 = cell(nv ,1);

for i1=1:nv

R0{i1} = ones(size(Fv1{i1},1),1); % Initial guess for R, S, ...

end;

R0{1}(IndBcnode) = 0; % We impose initial guess for spacial coordinates

%

% ENRICHMENT STEP

%

[R,iter(num_iter1)] = enrichment_substep1(K1,M1,V1,num_iter1 ,Fv1 ,R0 ,...

FR1 ,Free1 ,deltat);

for i1=1:nv, Fv1{i1}(:, num_iter1) = R{i1}; end % R is valid , add it.

%

% STOPPING CRITERION

%

Error_iter = 1.0;

for i1=1:nv

Error_iter = Error_iter .*norm(Fv1{i1}(:, num_iter1));

end

Aprt = max(Aprt ,sqrt(Error_iter));

if num_iter1 >nrb , Error_iter = sqrt(Error_iter)/Aprt; end

fprintf(1,’SubStep 1: %dst summand in %d ’,num_iter1 ,iter(num_iter1));

fprintf(1,’iterations with a weight of %f\n’,sqrt(Error_iter));

end

5.4 Matlab Code 79

fprintf(1,’\n’);

%

% ENRICHMENT OF THE APPROXIMATION: SUBSTEP 2

%

num_iter2 = 0; Error_iter = 1.0; iter = zeros (1); Aprt = 0;

while Error_iter >TOL && num_iter2 <num_max_iter

num_iter2 = num_iter2 + 1; R0 = cell(nv ,1);

for i1=1:nv

R0{i1} = rand(size(Fv2{i1},1),1); % Initial guess for R, S, ...

end

R0{1}(IndBcnode) = 0; % We impose initial guess for spacial coordinates

%

% ENRICHMENT STEP

%

[R,iter(num_iter2)] = enrichment_substep2(K2,M2,V2,num_iter2 ,Fv2 ,R0 ,...

FR2 ,Free2 ,deltat);

for i1=1:nv, Fv2{i1}(:, num_iter2) = R{i1}; end % R is valid , add it.

%

% STOPPING CRITERION

%

Error_iter = 1.0;

for i1=1:nv

Error_iter = Error_iter .*norm(Fv2{i1}(:, num_iter2));

end

Aprt = max(Aprt ,sqrt(Error_iter));

if num_iter2 >nrb , Error_iter = sqrt(Error_iter)/Aprt; end

fprintf(1,’SubStep 2: %dst summand in %d ’,num_iter2 ,iter(num_iter2));

fprintf(1,’iterations with a weight of %f\n’,sqrt(Error_iter));

end

fprintf(1,’PGD Process exited normally\n\n’);

save(’WorkSpacePGD_Dynamic.mat’);

%

% POST -PROCESSING

%

figure; % Plotting reference solution for the node NodeR

plot (0: deltatA:deltatA*(size(Vreal ,2)-1), Vreal (3*(NodeR -1)+3 ,:) ,...

’b-’,’LineWidth’ ,2.5); % Reference solution for vertical displacement

%

% ALLOCATE MEMORY FOR SUBSTEP SOLUTION VECTORS

%

Mv = cell(nv ,1); % Nodal values for each parameter

% We need to compute SUBSTEP 1: MůA_{n+1/2} + KůU_{n+1/2} = F_{n+1/2}

% and A_{n+1/2} = 4*(V_{n+1/2}- V_n)/ Deltat - A_n

% and V_{n+1/2} = 4*(U_{n+1/2}- U_n)/ Deltat - V_n

Disp2 = zeros(nrb ,numel(coort)); % Allocate memory for U_{n+1/2}

Vel2 = zeros(nrb ,numel(coort)); % Allocate memory for V_{n+1/2}

Acel2 = zeros(nrb ,numel(coort)); % Allocate memory for A_{n+1/2}

% We need to compute SUBSTEP 2: MůA_{n+1} + KůU_{n+1} = F_{n+1}

% and A_{n+1} = V_n/Deltat - 4*V_{n+1/2}/ Deltat + 3*V_{n+1}/ Deltat

% and V_{n+1} = U_n/Deltat - 4*U_{n+1/2}/ Deltat + 3*U_{n+1}/ Deltat

Disp = zeros(nrb ,numel(coort)); % Allocate memory for U_{n+1}

Vel = zeros(nrb ,numel(coort)); % Allocate memory for V_{n+1}

Acel = zeros(nrb ,numel(coort));% Allocate memory for A_{n+1}

% We compute U_n ,V_n ,... onto reduced basis. We back to real Space

RealDisp2 = zeros(numel(coords),numel(coort));

RealDisp = zeros(numel(coords),numel(coort));

%

% INITIAL VALUES FOR DISPLACEMENT FIELD

%

Ai = pinv(A); % Pseudo -inverse P.O.D. matrix.

% 1st and 2nd displacement field for t = 0 and t = deltat from reference

% solution to start the simulation.

RealDisp(dof ,1:2) = Vreal(dof ,1:2).* deltat ./ deltatA;

% We project these first two displacements onto reduced basis.

Disp (: ,1:2) = Ai*RealDisp(dof ,1:2).* deltat ./ deltatA;

% We interpolate the reference solution for [1:2]+1/2 steps.

Disp2 (:,1) = Ai*((Vreal(dof ,1) + Vreal(dof ,2))/2).* deltat ./ deltatA;

80 5 PGD for Dynamical Problems

Disp2 (:,2) = Ai*((Vreal(dof ,2) + Vreal(dof ,3))/2).* deltat ./ deltatA;

%

% REAL -TIME LOOP FOR TIME INTEGRATION

%

for k2=3: numel(coort)

%

% APPLY SUBSTEP 1

%

for i1=2:3:nv -2

Mv{i1} = evaluate_shpfunc(coor1{i1},Disp((i1+1)/3,k2 -1));

Mv{i1+1} = evaluate_shpfunc(coor1{i1+1},Vel((i1+1)/3,k2 -1));

Mv{i1+2} = evaluate_shpfunc(coor1{i1+2},Acel((i1+1)/3,k2 -1));

end

Mv{nv} = evaluate_shpfunc(coor1{nv},NodeC); % Load case NodeC.

if coort(k2)-deltat /2 <0.25

Mv{nv -1} = [0; 1]; % Value of the shape function for act. parameter

elseif coort(k2)-deltat /2 >=0.5 % Time when the load vanishes

Mv{nv -1} = [1; 0]; % Value of the shape function for act. parameter

else % Ramp case

Mv{nv -1}(2) = (0.5-(coort(k2)-deltat /2))/0.25;

Mv{nv -1}(1) = 1-Mv{nv -1}(2); % Value of the shape function.

end

%

% COMPUTE PGD SUBSTEP 1 SOLUTION

%

for k1=1: num_iter1

value1 = Fv1 {1}(dof ,k1);

for j1=2:nv, value1 = value1 .*(Mv{j1}’*Fv1{j1}(:,k1)); end

RealDisp2(dof ,k2) = RealDisp2(dof ,k2) + value1;

end

%

% TIME SCHEME SUBSTEP 1

%

% MůA_{n+1/2} + KůU_{n+1/2} = F_{n+1/2}

% and A_{n+1/2} = 4*(V_{n+1/2}- V_n)/ Deltat - A_n

% and V_{n+1/2} = 4*(U_{n+1/2}- U_n)/ Deltat - V_n

Disp2(:,k2) = Ai*RealDisp2(dof ,k2); % Project onto reduced basis

Vel2(:,k2) = 4*(Disp2(:,k2)-Disp(:,k2 -1))/ deltat - Vel(:,k2 -1);

Acel2(:,k2) = 4*(Vel2(:,k2)-Vel(:,k2 -1))/ deltat - Acel(:,k2 -1);

%

% APPLY SUBSTEP 2

%

for i1=2:3:nv -2

Mv{i1+2} = evaluate_shpfunc(coor2{i1+2},Disp2 ((i1+1)/3,k2));

end

Mv{nv} = evaluate_shpfunc(coor1{nv},NodeC); % Load case NodeC.

if coort(k2)<0.25

Mv{nv -1} = [0; 1]; % Value of the shape function for act. parameter

elseif coort(k2)>=0.5 % Time when the load vanishes

Mv{nv -1} = [1; 0]; % Value of the shape function for act. parameter

else % Ramp case

Mv{nv -1}(2) = (0.5- coort(k2))/0.25;

Mv{nv -1}(1) = 1-Mv{nv -1}(2); % Value of the shape function.

end

%

% COMPUTE PGD SUBSTEP 2 SOLUTION

%

for k1=1: num_iter2

value2 = Fv2 {1}(dof ,k1);

for j1=2:nv, value2 = value2 .*(Mv{j1}’*Fv2{j1}(:,k1)); end

RealDisp(dof ,k2) = RealDisp(dof ,k2) + value2;

end

%

% TIME SCHEME SUBSTEP 2

%

% MůA_{n+1} + KůU_{n+1} = F_{n+1}

% and A_{n+1} = V_n/Deltat - 4*V_{n+1/2}/ Deltat + 3*V_{n+1}/ Deltat

5.4 Matlab Code 81

% and V_{n+1} = U_n/Deltat - 4*U_{n+1/2}/ Deltat + 3*U_{n+1}/ Deltat

Disp(:,k2) = Ai*RealDisp(dof ,k2); % Project onto reduced basis

Vel(:,k2) = Disp(:,k2 -1)/ deltat - 4*Disp2(:,k2)/ deltat + ...

3*Disp(:,k2)/ deltat;

Acel(:,k2) = Vel(:,k2 -1)/ deltat - 4*Vel2(:,k2)/ deltat + ...

3*Vel(:,k2)/ deltat;

end

%

% PLOT PGD FINAL SOLUTION AND COMPARE WITH THE REFERENCE SOLUTION

%

hold on; plot(coort ,RealDisp (3*(NodeR -1)+3,:),’m--’,’LineWidth’ ,2.5);

save(’WorkSpacePGD_Dynamic.mat’);

fprintf(1,’\n#####ăEnd of simulation #####\n\n’);

This just presented code reads nodal coordinates and connectivity list from files
gcoordBeam.dat and conecBeam.dat, respectively. If, after the execution of
the program, one types
» trisurf(tri,coors(:,1),coors(:,2),coors(:,3));
» axis equal
in Matlab’s command line, a plot of the finite element model of the beam is

obtained, see Fig. 5.2.
As in previous examples, the code calls to the subroutine elemstiff.m, which

is reproduced below.

1.5

1

0.5

00
0.1

0.2

0.1

0
0.2

Fig. 5.2 Finite element mesh for the beam dynamics problem. The beam is assumed to be encastred
at y = 0

82 5 PGD for Dynamical Problems

function [p1,p2] = elemstiff(coor)

% function [p1,p2] = elemstiff(coor)

% For variable X compute p1=\int N N, p2=\int N

% Universidad de Zaragoza - 2015

nen = numel(coor);

%

% ALLOCATE MEMORY

%

p1 = zeros(nen); p2 = zeros(nen ,1);

X = coor (1:nen -1)’; Y = coor (2:nen)’; % Coordinates of elements.

L = Y - X; % Longitude of each element for parametrized variable.

sg = [-1.0/ sqrt (3.0) 1.0/ sqrt (3.0)]; wg = ones (2,1); % Gauss points.

npg = numel(sg);

for i1=1:nen -1

c = zeros(1,npg); c(1,:) = 0.5.*(1.0 -sg).*X(i1) + 0.5.*(1.0+ sg).*Y(i1);

N = zeros(nen ,npg);

N(i1+1,:) = (c(1,:)-X(i1))./L(i1); N(i1 ,:) = (Y(i1)-c(1 ,:))./L(i1);

for j1=1:npg

p1 = p1 + N(:,j1)*N(:,j1) ’*0.5.*wg(j1).*L(i1); % \int N N.

p2 = p2 + N(:,j1).*0.5.*wg(j1).*L(i1); % \int N.

end

end

return

Our particular implementation of the method makes use of the energy and
momentum conserving algorithm by Bathe [15]. This algorithm makes
use of a predictor-corrector algorithm, whose first sub-step is included in routine
enrichment_substep1, reproduced here:

function [R,iter] = enrichment_substep1(K,M,V,num_iter ,FV,R,FR,CC,deltat)

% [R,iter] = enrichment_substep1(K,M,V,num_iter ,FV,R,FR,CC,deltat)

% Compute the new R, S, functions to enrich the PGD solution for SubStep 1

% in Dynamic problems.

% Universidad de Zaragoza - 2015

iter = 1; TOL = 1.0E-4; error = 1.0; % Initializating values.

nv = size(FV ,1); % # Number of variables for the PGD.

mxit = 11; % # of possible iterations for the fixed point algorithm.

%

% FIXED POINT ALGORITHM

%

while abs(error)>TOL

Raux = R; % Updating R(S) last values.

for i1=1:nv

%

% MATRIX COMPUTATION

%

matrix1 = 16.0/ deltat/deltat; % Constant of mass contribution.

matrix2 = 1.0; % Constant of stiffness contribution.

for j1=1:nv

if j1~=i1

matrix1 = matrix1 .*(R{j1}’*M{j1}*R{j1});

matrix2 = matrix2 .*(R{j1}’*K{j1}*R{j1});

end

end

matrix = M{i1}.* matrix1 + K{i1}.* matrix2;

%

% SOURCE COMPUTATION

%

source = 0.0;

for k1=1: size(V{1},2) % Loop over number of functions of the source

sourceval = 1.0;

for j1=1:nv

if j1~=i1

sourceval = sourceval .*(R{j1}’*V{j1}(:,k1));

5.4 Matlab Code 83

end

end

source = source + sourceval.*V{i1}(:,k1);

end

for k1 =1:3:(nv -3)

value1 = 16/ deltat/deltat;% Constant value for U_n contribution

value2 = 8/ deltat; % Constant value for V_n contribution.

value3 = 1.0; % Constant value for A_n contribution.

for j1=1:nv

if j1~=i1

value1 = value1 .*(R{j1}’*M{j1}*FR{j1}(:,k1));

value2 = value2 .*(R{j1}’*M{j1}*FR{j1}(:,k1+1));

value3 = value3 .*(R{j1}’*M{j1}*FR{j1}(:,k1+2));

end

end

source = source + value1 .*(M{i1}*FR{i1}(:,k1)) + ...

value2 .*(M{i1}*FR{i1}(:,k1+1)) + ...

value3 .*(M{i1}*FR{i1}(:,k1+2));

end

%

% CONTRIBUTION TO SOURCE OF KNOWNING SOLUTION

%

for i2=1: num_iter -1

value1 = 16/ deltat/deltat; % Constant of mass contribution.

value2 = 1.0; % Constant of stiffness contribution.

for j1=1:nv

if j1~=i1

value1 = value1 .*(R{j1}’*M{j1}*FV{j1}(:,i2));

value2 = value2 .*(R{j1}’*K{j1}*FV{j1}(:,i2));

end

end

source = source - (M{i1}*FV{i1}(:,i2)).* value1 - ...

(K{i1}*FV{i1}(:,i2)).* value2;

end

%

% SOLVE THE R{i1} VARIABLE

%

R{i1}(CC{i1}) = matrix(CC{i1},CC{i1})\ source(CC{i1});

end

%

% COMPUTING STOP CRITERIA

%

error = 0;

for j1=1:nv

error = error + norm(Raux{j1}-R{j1});

end

error = sqrt(error);

iter = iter + 1;

if iter==mxit , error = 0.0; end

end

return

In turn, we reproduce here the second sub-step of the time integration algorithm
proposed by Bathe [15]. Remember that you can use in this framework your favorite
time integration scheme (Newmark, HHT, …)

function [R,iter] = enrichment_substep2(K,M,V,num_iter ,FV,R,FR,CC,deltat)

% [R,iter] = enrichment_substep2(K,M,V,num_iter ,FV,R,FR,CC,deltat)

% Compute the new R, S, functions to enrich the PGD solution for SubStep 2

% in Dynamic problems.

% Universidad de Zaragoza - 2015

iter = 1; TOL = 1.0E-4; error = 1.0; % Inicializating values.

nv = size(FV ,1); % # Number of variables for the PGD.

mxit = 11; % # of possible iterations for the fixed point algorithm.

%

84 5 PGD for Dynamical Problems

% FIXED POINT ALGORITHM

%

while abs(error)>TOL

Raux = R; % Updating R(S) last values.

for i1=1:nv

%

% MATRIX COMPUTATION

%

matrix1 = 9.0/ deltat/deltat; % Constant of mass contribution.

matrix2 = 1.0; % Constant of stiffness contribution.

for j1=1:nv

if j1~=i1

matrix1 = matrix1 .*(R{j1}’*M{j1}*R{j1});

matrix2 = matrix2 .*(R{j1}’*K{j1}*R{j1});

end

end

matrix = M{i1}.* matrix1 + K{i1}.* matrix2;

%

% SOURCE COMPUTATION

%

source = 0.0;

for k1=1: size(V{1},2) % Loop over number of functions of the source

sourceval = 1.0;

for j1=1:nv

if j1~=i1

sourceval = sourceval .*(R{j1}’*V{j1}(:,k1));

end

end

source = source + sourceval.*V{i1}(:,k1);

end

for k1 =1:3:(nv -3)

value1 = 19/ deltat/deltat;% Constant value for U_n contribution

value2 = 5/ deltat; % Constant value for V_n contribution.

value3 = 28/ deltat/deltat; % Constant value for U_{n+1/2}.

for j1=1:nv

if j1~=i1

value1 = value1 .*(R{j1}’*M{j1}*FR{j1}(:,k1));

value2 = value2 .*(R{j1}’*M{j1}*FR{j1}(:,k1+1));

value3 = value3 .*(R{j1}’*M{j1}*FR{j1}(:,k1+2));

end

end

source = source - value1 .*(M{i1}*FR{i1}(:,k1)) - ...

value2 .*(M{i1}*FR{i1}(:,k1+1)) +...

value3 .*(M{i1}*FR{i1}(:,k1+2));

end

%

% CONTRIBUTION TO SOURCE OF KNOWNING SOLUTION

%

for i2=1: num_iter -1

value1 = 9/ deltat/deltat; % Constant of mass contribution.

value2 = 1.0; % Constant of stiffness contribution.

for j1=1:nv

if j1~=i1

value1 = value1 .*(R{j1}’*M{j1}*FV{j1}(:,i2));

value2 = value2 .*(R{j1}’*K{j1}*FV{j1}(:,i2));

end

end

source = source - (M{i1}*FV{i1}(:,i2)).* value1 - ...

(K{i1}*FV{i1}(:,i2)).* value2;

end

%

% SOLVE THE R{i1} VARIABLE

%

R{i1}(CC{i1}) = matrix(CC{i1},CC{i1})\ source(CC{i1});

end

%

% COMPUTING STOP CRITERIA

5.4 Matlab Code 85

%

error = 0;

for j1=1:nv

error = error + norm(Raux{j1}-R{j1});

end

error = sqrt(error);

iter = iter + 1;

if iter==mxit , error = 0.0; end

end

return

In subroutine fem3D.m we accomplish traditional FE computations regarding
stiffness matrix, etc., for linear tetrahedrons.

function [A,N] = fem3D

% function [A,N] = fem3D

% Finite Element Method for Tetrahedron. The vargout are the Stifness and

% Mass matrices for spacial variables.

% Universidad de Zaragoza - 2015

global E nu coords tet

dof = 3; % Degrees of Freedom per node.

numNodos = size(coords ,1); % # of nodes.

numTet = size(tet ,1); % # of 3D elements.

A = zeros(dof*numNodos); N = zeros(dof*numNodos); % Allocate memory.

%

% MATERIAL MATRIX

%

D = zeros (6); cte = E*(1-nu)/(1+nu)/(1 -2*nu);

D(1) = cte; D(8) = D(1); D(15) = D(1);

D(2) = cte*nu/(1-nu); D(3) = D(2); D(7) = D(2); D(9) = D(2); D(13) = D(2);

D(14) = D(2); D(22) = cte*(1-2*nu)/2/(1 -nu); D(29) = D(22); D(36) = D(22);

%

% INTEGRATION POINTS

%

sg = zeros (3,4); wg = 1./24.* ones (4,1); nph = numel(wg);

a = (5.0 - sqrt (5))/20.0; b= (5.0 + 3.0* sqrt (5))/20.0;

sg(:,1) = [a; a; a]; sg(:,2) = [a; a; b];

sg(:,3) = [a; b; a]; sg(:,4) = [b; a; a];

%

% FINITE ELEMENT LOOP

%

for i1=1: numTet

elnodes = tet(i1 ,:);

xcoord = coords(elnodes ,:);

K = zeros(dof *4); KK = zeros(dof *4);

%

% JACOBIAN

%

v1 = xcoord (1,:)-xcoord (2,:); v2 = xcoord (2,:)-xcoord (3,:);

v3 = xcoord (3,:)-xcoord (4,:);

jcob = abs(det([v1;v2;v3]));

%

% SHAPE FUNCTION CONSTANTS

%

a1 = det([xcoord (2,:); xcoord (3,:); xcoord (4 ,:)]);

a2 = -det([xcoord (1,:); xcoord (3,:); xcoord (4 ,:)]);

a3 = det([xcoord (1,:); xcoord (2,:); xcoord (4 ,:)]);

a4 = -det([xcoord (1,:); xcoord (2,:); xcoord (3 ,:)]);

b1 = -det([1 xcoord (2,2:end); 1 xcoord (3,2:end); 1 xcoord (4,2:end)]);

b2 = det([1 xcoord (1,2:end); 1 xcoord (3,2:end); 1 xcoord (4,2:end)]);

b3 = -det([1 xcoord (1,2:end); 1 xcoord (2,2:end); 1 xcoord (4,2:end)]);

b4 = det([1 xcoord (1,2:end); 1 xcoord (2,2:end); 1 xcoord (3,2:end)]);

c1 = det([1 xcoord (2,1) xcoord(2,end); 1 xcoord (3,1) xcoord(3,end);...

1 xcoord (4,1) xcoord(4,end)]);

c2 = -det([1 xcoord (1,1) xcoord(1,end); 1 xcoord (3,1) xcoord(3,end);...

86 5 PGD for Dynamical Problems

1 xcoord (4,1) xcoord(4,end)]);

c3 = det([1 xcoord (1,1) xcoord(1,end); 1 xcoord (2,1) xcoord(2,end);...

1 xcoord (4,1) xcoord(4,end)]);

c4 = -det([1 xcoord (1,1) xcoord(1,end); 1 xcoord (2,1) xcoord(2,end);...

1 xcoord (3,1) xcoord(3,end)]);

d1 = -det([1 xcoord (2,1:end -1); 1 xcoord (3,1:end -1);...

1 xcoord (4,1:end -1)]);

d2 = det([1 xcoord (1,1:end -1); 1 xcoord (3,1:end -1);...

1 xcoord (4,1:end -1)]);

d3 = -det([1 xcoord (1,1:end -1); 1 xcoord (2,1:end -1);...

1 xcoord (4,1:end -1)]);

d4 = det([1 xcoord (1,1:end -1); 1 xcoord (2,1:end -1);...

1 xcoord (3,1:end -1)]);

%

% INTEGRATION POINTS LOOP

%

for j1=1:nph

chi = sg(3*(j1 -1)+1);

eta = sg(3*(j1 -1)+2);

tau = sg(3*j1);

%

% GEOMETRY APPROACH

%

SHPa (4) = tau;

SHPa (3) = eta; SHPa (2) = chi; SHPa (1) = 1.-chi -eta -tau;

chiG = 0.0; etaG = 0.0; tauG = 0.0;

for k1=1:4

chiG = chiG + SHPa(k1)* xcoord(k1 ,1);

etaG = etaG + SHPa(k1)* xcoord(k1 ,2);

tauG = tauG + SHPa(k1)* xcoord(k1 ,3);

end

%

% SHAPE FUNCTION COMPUTATION

%

SHP(1) = (a1 + b1*chiG + c1*etaG + d1*tauG)/jcob;

dSHPx (1) = b1/jcob; dSHPy (1) = c1/jcob; dSHPz (1) = d1/jcob;

SHP(2) = (a2 + b2*chiG + c2*etaG + d2*tauG)/jcob;

dSHPx (2) = b2/jcob; dSHPy (2) = c2/jcob; dSHPz (2) = d2/jcob;

SHP(3) = (a3 + b3*chiG + c3*etaG + d3*tauG)/jcob;

dSHPx (3) = b3/jcob; dSHPy (3) = c3/jcob; dSHPz (3) = d3/jcob;

SHP(4) = (a4 + b4*chiG + c4*etaG + d4*tauG)/jcob;

dSHPx (4) = b4/jcob; dSHPy (4) = c4/jcob; dSHPz (4) = d4/jcob;

%

% B MATRIX COMPUTATION

%

B = [dSHPx (1) 0 0 dSHPx (2) 0 0 dSHPx (3) 0 0 dSHPx (4) 0 0; ...

0 dSHPy (1) 0 0 dSHPy (2) 0 0 dSHPy (3) 0 0 dSHPy (4) 0;...

0 0 dSHPz (1) 0 0 dSHPz (2) 0 0 dSHPz (3) 0 0 dSHPz (4);...

dSHPy (1) dSHPx (1) 0 dSHPy (2) dSHPx (2) 0 dSHPy (3) dSHPx (3)...

0 dSHPy (4) dSHPx (4) 0;...

dSHPz (1) 0 dSHPx (1) dSHPz (2) 0 dSHPx (2) dSHPz (3) 0 dSHPx (3)...

dSHPz (4) 0 dSHPx (4);...

0 dSHPz (1) dSHPy (1) 0 dSHPz (2) dSHPy (2) 0 dSHPz (3) dSHPy (3)...

0 dSHPz (4) dSHPy (4)];

%

% MASS MATRIX

%

M = [SHP(1) 0 0; 0 SHP(1) 0; 0 0 SHP (1); SHP(2) 0 0; 0 SHP(2) 0;...

0 0 SHP (2); SHP(3) 0 0; 0 SHP(3) 0; 0 0 SHP (3); SHP(4) 0 0;...

0 SHP(4) 0; 0 0 SHP(4)]’;

K = K + B’*D*B*jcob*wg(j1); % Element Stiffness matrix.

KK = KK + M’*M*jcob*wg(j1); % Element Mass matrix.

end

% System degrees of freedom associated with each element.

index = [3*elnodes -2;3* elnodes -1;3* elnodes];

index = reshape(index ,1,4*dof);

% Assembling of the system stiffness matrix.

5.4 Matlab Code 87

A(index ,index) = A(index ,index) + K;

N(index ,index) = N(index ,index) + KK;

end

return

Function evaluate_shpfunc.m computes finite element one-dimensional
shape functions.

function S = evaluate_shpfunc(coor ,cx)

% function S = evaluate_shpfunc(coor ,cx)

% Compute approach value for cx coordinate respect coor points using 1D

% Shape functions

% Universidad de Zaragoza - 2015

tam = numel(coor); % # number of nodes.

TOL = 1.0E-8; % Tolerance.

S = zeros(tam ,1); % Allocating memory.

idx = 0; % Index of elemnt where cx is.

for i1=1: numel(coor)-1 % # Elements Loop to find with in

if coor(i1)-TOL <=cx && coor(i1+1)>=cx

idx = i1;

break;

end

end

% A = find(coor(coor >=cx+TOL));

% idx = A(end); % Idx is element containing cx.

if idx~=tam && idx~=0

L = coor(idx+1)-coor(idx); % Linear approximation.

S(idx+1) = (cx-coor(idx))/L;

S(idx) = (coor(idx+1)-cx)/L;

elseif idx==0 % Not found any element

S(1) = 1.0;

disp(’It is possible that discretization is not enough ’);

else % Last element

S(tam) = 1.0;

end

return

This same code has been employed, for instance, to generate an interactive web
page that makes use very efficiently of the PGD concepts. It can be found at http://
amb.unizar.es/beamdyn.htm. It represents, see Fig. 5.4, a linear elastic beam that can
be interactively manipulated with the aid of the mouse. It places a vertical, unitary
load on the upper surface of the beam. It can be noticed how the very efficient
time integration algorithms employed for its construction make it possible to remain
vibrating for very long times with minimal numerical dissipation.

Execution of the program produces a window with the tip displacement, see
Fig. 5.3. Minimal deviation with respecto to the full-order problem solution is ob-
tained. In any case, higher accuracy can be obtained by employingmore PODmodes,
for instance.

http://amb.unizar.es/beamdyn.htm
http://amb.unizar.es/beamdyn.htm

88 5 PGD for Dynamical Problems

Time
0 0.5 1 1.5 2

A
m

pl
itu

de

× 10-4

-5

-4

-3

-2

-1

0

1

2

3

0.75 0.8 0.85 0.9 0.95 1 1.05 1.1 1.15 1.2

× 10-4

-2

-1

0

1

2

Fig. 5.3 Results of the vibration of a beam (top) and detail of the reference solution versus the
approximated one (bottom)

5.4 Matlab Code 89

Fig. 5.4 Web implementation of the algorithm here described so as construct an interactive simu-
lator. It represents a linear elastic beam. With the help of the mouse a vertical load is placed on the
upper surface of the beam. It can be downloaded from http://amb.unizar.es/beamdyn.htm

http://amb.unizar.es/beamdyn.htm

References

1. Abichou H, Zahrouni H, Potier-Ferry M (2002) Asymptotic numerical method for problems
coupling several nonlinearities. Comput Methods Appl Mech Eng 191(51–52):5795–5810

2. Aguado JV, Huerta A, Chinesta F, Cueto E (2015) Real-time monitoring of thermal processes
by reduced-order modeling. Int J Numer Methods Eng 102(5, SI):991–1017

3. Alfaro I, Gonzalez D, Zlotnik S, Diez P, Cueto E, Chinesta F (2015) An error estimator for
real-time simulators based on model order reduction. Adv Model Simul Eng Sci 2:30

4. Ammar A, Chinesta F, Diez P, Huerta A (2010) An error estimator for separated representations
of highly multidimensional models. ComputMethods Appl Mech Eng 199(25–28):1872–1880

5. Ammar A, Cueto E, Chinesta F (2012) Reduction of the chemical master equation for gene
regulatory networks using proper generalized decompositions. Int J Numer Methods Biomed
Eng 28(9):960–973

6. Ammar A,Mokdad B, Chinesta F, Keunings R (2006) A new family of solvers for some classes
of multidimensional partial differential equations encountered in kinetic theory modeling of
complex fluids. J Non-Newton Fluid Mech 139:153–176

7. Ammar A,Mokdad B, Chinesta F, Keunings R (2007) A new family of solvers for some classes
of multidimensional partial differential equations encountered in kinetic theory modeling of
complex fluids. Part II. Transient simulation using space-time separated representations. J.
Non-Newton Fluid Mech 144:98–121

8. Ammar A, Chinesta F, Cueto E (2011) Coupling finite elements and proper generalized de-
compositions. Int J Multiscale Comput Eng 9(1):17–33

9. Ammar A, Chinesta F, Cueto E, Doblare M (2012) Proper generalized decomposition of time-
multiscale models. Int J Numer Methods Eng 90(5):569–596

10. Ammar A, Huerta A, Chinesta F, Cueto E, Leygue A (2014) Parametric solutions involv-
ing geometry: a step towards efficient shape optimization. Comput Methods Appl Mech Eng
268:178–193

11. AmmarA, Pruliere E, Ferec J, Chinesta F, Cueto E (2009) Coupling finite elements and reduced
approximation bases. Eur J Comput Mech 18(5–6):445–463

12. Amsallem D, Farhat Ch (2008) An interpolation method for adapting reduced-order models
and application to aeroelasticity. AIAA J 46:1803–1813

13. Barbarulo A, Ladeveze P, Riou H, Kovalevsky L (2014) Proper generalized decomposition
applied to linear acoustic: a new tool for broad band calculation. J Sound Vib 333(11):2422–
2431

14. Barrault M, Maday Y, Nguyen NC, Patera AT (2004) An ‘empirical interpolation’ method:
application to efficient reduced-basis discretization of partial differential equations. C R Math
339(9):667–672

15. Bathe KJ (2007) Conserving energy and momentum in nonlinear dynamics: a simple implicit
time integration scheme. Comput Struct 85:437–445

© The Author(s) 2016
E. Cueto et al., Proper Generalized Decompositions, SpringerBriefs
in Applied Sciences and Technology, DOI 10.1007/978-3-319-29994-5

91

92 References

16. Bognet B, Bordeu F, Chinesta F, Leygue A, Poitou A (2012) Advanced simulation of models
defined in plate geometries: 3d solutions with 2d computational complexity. Comput Methods
Appl Mech Eng 201–204:1–12

17. Bonet J, Wood RD (2008) Nonlinear continuum mechanics for finite element analysis. Cam-
bridge University Press

18. Boucinha L, Gravouil A, Ammar A (2013) Space-time proper generalized decompositions for
the resolution of transient elastodynamic models. ComputMethods ApplMech Eng 255:67–88

19. Bouclier R, Louf F, Chamoin L (2013) Real-time validation of mechanical models coupling
PGD and constitutive relation error. Comput Mech 52(4):861–883

20. Cao H-L, Potier-Ferry M (1999) An improved iterative method for large strain viscoplastic
problems. Int J Numer Methods Eng 44:155–176

21. Chaturantabut S, Sorensen DC (2010) Nonlinear model reduction via discrete empirical inter-
polation. SIAM J Sci Comput 32:2737–2764

22. Chinesta F, Abisset-Chavanne E, Ammar A, Cueto E (2015) Efficient stabilization of advec-
tion terms involved in separated representations of boltzmann and fokker-planck equations.
Commun Comput Phys 17(4):975–1006

23. Chinesta F, Ammar A, Cueto E (2010) Proper generalized decomposition of multiscale models.
Int J Numer Methods Eng 83(8–9, SI):1114–1132

24. Chinesta F, Ammar A, Cueto E (2010) Recent advances in the use of the proper generalized
decomposition for solving multidimensional models. Arch Comput Methods Eng 17(4):327–
350

25. Chinesta F, Ammar A, Joyot P (2008) The nanometric and micrometric scales of the structure
and mechanics of materials revisited: an introduction to the challenges of fully deterministic
numerical descriptions. Int J Multiscale Comput Eng 6:191–213

26. Chinesta F, Leygue A, Bordeu F, Aguado JV, Cueto E, Gonzalez D, Alfaro I, Ammar A, Huerta
A (2013) PGD-based computational vademecum for efficient design, optimization and control.
Arch Comput Methods Eng 20(1):31–59

27. Chinesta Francisco, Cueto Elias (2014) PGD-based modeling of materials, structures and
processes. Springer, Switzerland

28. Chinesta F, Keunings R, Leygue A (2014) The proper generalized decomposition for advanced
numerical simulations. Springer, Switzerland

29. Chinesta F, Ladeveze P, Cueto E (2011) A short review on model order reduction based on
proper generalized decomposition. Arch Comput Methods Eng 18:395–404

30. Chinesta F, Magnin M, Roux O, Ammar A, Cueto E (2015) Kinetic theory modeling and
efficient numerical simulation of gene regulatory networks based on qualitative descriptions.
Entropy 17(4):1896–1915

31. Cochelin B, Damil N, Potier-Ferry M (1994) The asymptotic numerical method: an efficient
perturbation technique for nonlinear structural mechanics. Rev Eur Elem Finis 3:281–297

32. Cremonesi M, Neron D, Guidault PA, Ladeveze P (2013) A PGD-based homogenization tech-
nique for the resolution of nonlinear multiscale problems. Comput Methods Appl Mech Eng
267:275–292

33. Cueto E, Chinesta F (2014) Real time simulation for computational surgery: a review. Adv
Model Simul Eng Sci 1(1):11

34. Pearson K (1901) F.R.S. Liii. on lines and planes of closest fit to systems of points in space.
Philos Mag Ser 6, 2(11):559–572

35. Ghnatios Ch, Masson F, Huerta A, Leygue A, Cueto E, Chinesta F (2012) Proper generalized
decomposition based dynamic data-driven control of thermal processes. ComputMethodsAppl
Mech Eng 213–216:29–41

36. Ghnatios Ch, Masson F, Huerta A, Leygue A, Cueto E, Chinesta F (2012) Proper generalized
decomposition based dynamic data-driven control of thermal processes. ComputMethodsAppl
Mech Eng 213–216:29–41

37. Giacoma A, Dureisseix D, Gravouil A, Rochette M (2015) Toward an optimal a priori reduced
basis strategy for frictional contact problems with LATIN solver. Comput Methods Appl Mech
Eng 283:1357–1381

References 93

38. Gonzalez D, Ammar A, Chinesta F, Cueto E (2010) Recent advances on the use of separated
representations. Int J Numer Methods Eng 81(5):

39. Gonzalez D, Masson F, Poulhaon F, Cueto E, Chinesta F (2012) Proper generalized decompo-
sition based dynamic data driven inverse identification. Math Comput Simul 82:1677–1695

40. Gonzalez D, Alfaro I, Quesada C, Cueto E, Chinesta F (2015) Computational vademecums for
the real-time simulation of haptic collision between nonlinear solids. Comput Methods Appl
Mech Eng 283:210–223

41. Gonzalez D, Cueto E, Chinesta F (2014) Real-time direct integration of reduced solid dynamics
equations. Int J Numer Methods Eng 99(9):633–653

42. Henneron T, Clenet S (2015) Proper generalized decomposition method applied to solve 3-d
magnetoquasi-static field problems coupling with external electric circuits. IEEE Trans Magn
51(6):

43. Karhunen K (1946) Uber lineare methoden in der wahrscheinlichkeitsrechnung. Ann Acad Sci
Fennicae Al Math Phys 37

44. Ladeveze P (1999) Nonlinear computational structural mechanics. Springer, New York
45. Ladeveze P, Passieux J-C, Neron D (2010) The latin multiscale computational method and the

proper generalized decomposition. Comput Methods Appl Mech Eng 199(21–22):1287–1296
46. Ladeveze P, Chamoin L (2011) On the verification of model reduction methods based on the

proper generalized decomposition. Comput Methods Appl Mech Eng 200(23–24):2032–2047
47. Le Bris C, Lelièvre T, Maday Y (2009) Results and questions on a nonlinear approximation

approach for solving high-dimensional partial differential equations. Constr Approximation
30:621–651. doi:10.1007/s00365-009-9071-1

48. Loève MM (1963) Probability theory. The university series in higher mathematics, 3rd edn.
Van Nostrand, Princeton

49. Lorenz EN (1956) Empirical orthogonal functions and statistical weather prediction. MIT,
Departement of Meteorology, Scientific Report Number 1, Statistical Forecasting Project

50. Ly HV, Tran HT (2005) Modeling and control of physical processes using proper orthogonal
decomposition. Math Comput Model 33:223–236

51. Modesto D, Zlotnik S, Huerta A (2015) Proper generalized decomposition for parameterized
helmholtz problems in heterogeneous and unbounded domains: application to harbor agitation.
Comput Methods Appl Mech Eng 295:127–149

52. Moitinho de Almeida JP (2013) A basis for bounding the errors of proper generalised decom-
position solutions in solid mechanics. Int J Numer Methods Eng 94(10):961–984

53. Nguyen NC, Patera AT, Peraire J (2008) A ‘best points’ interpolation method for efficient
approximation of parametrized functions. Int J Numer Methods Eng 73(4):521–543

54. Niroomandi S, Alfaro I, Cueto E, Chinesta F (2008) Real-time deformablemodels of non-linear
tissues by model reduction techniques. Comput Methods Programs Biomed 91(3):223–231

55. Niroomandi S, Alfaro I, Gonzalez D, Cueto E, Chinesta F (2012) Real-time simulation of
surgery by reduced-order modeling and x-fem techniques. Int J Numer Methods Biomed Eng
28(5):574–588

56. Niroomandi S, González D, Alfaro I, Bordeu F, Leygue A, Cueto E, Chinesta F (2013) Real-
time simulation of biological soft tissues: a PGD approach. Int J Numer Methods Biomed Eng
29(5):586–600

57. Niroomandi S, Gonzalez D, Alfaro I, Cueto E, Chinesta F (2013) Model order reduction
in hyperelasticity: a proper generalized decomposition approach. Int J Numer Methods Eng
96(3):129–149

58. Niroomandi Siamak, Alfaro Iciar, Cueto Elias, Chinesta Francisco (2010) Model order reduc-
tion for hyperelastic materials. Int J Numer Methods Eng 81(9):1180–1206

59. Quesada C, Gonzalez D, Alfaro I, Cueto E, Chinesta F (2015) Computational vademecums
for real-time simulation of surgical cutting in haptic environments. Int J Numer Methods Eng
(Submitted)

60. Quesada C, González D, Alfaro I, Cueto E, Huerta A, Chinesta F (2015) Real-time simulation
techniques for augmented learning in science and engineering. Vis Comput 1–15

http://dx.doi.org/10.1007/s00365-009-9071-1

94 References

61. Vitse M, Neron D, Boucard P-A (2014) Virtual charts of solutions for parametrized nonlinear
equations. Comput Mech 54(6):1529–1539

62. Yvonnet J, Zahrouni H, Potier-FerryM (2007) Amodel reductionmethod for the post-buckling
analysis of cellular microstructures. Comput Methods Appl Mech Eng 197:265–280

63. Zlotnik S, Diez P, Modesto D, Huerta A (2015) Proper generalized decomposition of a geomet-
rically parametrized heat problem with geophysical applications. Int J Numer Methods Eng
103(10):737–758

Index

A
Admissible variation, 10
Alternating directions algorithm, 43, 44
Asymptotic numerical methods (ANM), 39
Augmented learning, 3
Auto-correlation matrix, 70

B
Boltzmann equation, 5

C
Cantilever beam, 26
Computational surgery, 22, 38
Computational vademecum, 5, 67
Contact, 5
Coupling (with finite elements), 5

D
Dirac delta function, 23, 24, 72
Discrete empirical interpolation method

(DEIM), 39
Dynamic data driven application systems

(DDDAS), 3, 5

E
Eckart-Young theorem, 1
Eigenmode, 22
Eigenvalue, 22
Empirical interpolation method (EIM), 2, 39
Energy and momentum conserving integra-

tion, 68

F
Finite differences, 69
Finite element method, 65
Finite sum, 26
Fixed-point algorithm, 2, 24
Fokker-Planck equation, 5
Full-order problem, 1

G
Gauss points, 13
Gene regulatory networks, 5
Geophysics, 5
Grassmann manifold, 40
Greedy algorithm, 2, 24, 43
Green-Lagrange strain tensor, 40

H
Hadamard product of vectors, 67
Haptic devices, 38, 68
Helmholtz equation, 5
Higher-order singular value decomposition

(HOSVD), 9
Hotelling transform, 1
Hyperelasticity, 39

I
Influence line, 21, 22
Initial and boundary value problem, 65
Initial conditions, 65
Interactive simulation, 3, 34

J
Java applet, 3, 4

© The Author(s) 2016
E. Cueto et al., Proper Generalized Decompositions, SpringerBriefs
in Applied Sciences and Technology, DOI 10.1007/978-3-319-29994-5

95

96 Index

K
Karhunen-Loève transform, 1, 66
Kirchhoff-Saint Venant model, 40

L
Large time increment method (LaTIn), 2, 39

M
Magnetostatics, 5
Mass matrix, 28, 32, 68, 71
Matlab, 29

command line, 35, 81
Moving loads, 21
Multiscale, 5

N
Neo-Hookean model, 40
Newton method, 11
Non-homogeneous boundary conditions, 8
Non-linear problems, 39

O
Off-line/on-line, 3, 34

P
Parameter

boundary conditions, 2
initial conditions, 2, 65
loads, 2, 43

Parametric solution, 22
Poisson problem, 7
Principal Component Analysis (PCA), 1, 66
Projection-based methods, 1, 66

Proper Orthogonal Decomposition, POD, 1,
22, 66, 70

R
Rank-n approximation, 24
Real time, 3, 34
Reduced order models

a posteriori, 1
a priori, 1

Response surface, 22

S
Schur product of vectors, 67
Second Piola-Kirchhoff stress tensor, 40
Separable functions, 8, 22, 26, 67
Separated form, 72
Shape function, 22
Singular value decomposition, 1
Snapshots, 1, 70
Solid dynamics, 65, 66
Space-time decomposition, 65
Stiffness matrix, 16, 28, 32, 68, 71

T
Tangent stiffness matrix, 1, 39

V
Virtual charts, 5
Virtual surgery, 38

W
Weak form, 23, 66

	Preface
	Acknowledgments
	Contents
	1 Introduction
	2 To Begin With: PGD for Poisson Problems
	2.1 Introduction
	2.2 The Poisson Problem
	2.3 Matrix Structure of the Problem
	2.4 Matlab Code for the Poisson Problem

	3 Parametric Problems
	3.1 A Particularly Challenging Problem: A Moving Load as a Parameter
	3.2 The Problem Under the PGD Formalism
	3.2.1 Computation of S(s) Assuming R(x) Is Known
	3.2.2 Computation of R(x) Assuming S(s) Is Known

	3.3 Matrix Structure of the Problem
	3.4 Matlab Code for the Influence Line Problem

	4 PGD for Non-linear Problems
	4.1 Hyperelasticity
	4.2 Matrix Structure of the Problem
	4.2.1 Matrix Form of the Term T2
	4.2.2 Matrix Form of the Term T4
	4.2.3 Matrix Form of the Term T6
	4.2.4 Matrix Form for the Term T8
	4.2.5 Matrix Form of the Term T9
	4.2.6 Matrix Form of the Term T10
	4.2.7 Final Comments

	4.3 Matlab Code

	5 PGD for Dynamical Problems
	5.1 Taking Initial Conditions as Parameters
	5.2 Developing the Weak Form of the Problem
	5.3 Matrix Form of the Problem
	5.3.1 Time Integration of the Equations of Motion
	5.3.2 Computing a Reduced-Order Basis for the Field of Initial Conditions
	5.3.3 Projection of the Equations onto a Reduced, Parametric Basis

	5.4 Matlab Code

	 References
	Index

