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    Chapter 12   
 Cognitive Load Theory, Evolutionary 
Educational Psychology, and Instructional 
Design                     

       John     Sweller    

       Cognitive load theory (Sweller, Ayres, & Kalyuga,  2011 ) is an instructional approach 
based on  our   knowledge of human cognitive architecture, including the limits of 
working memory, the organization of information in long-term memory, and the 
interactions between these memory systems. That architecture is used to generate 
novel instructional procedures intended to facilitate learning in educational settings. 
Once an instructional procedure is developed based on this theory, its effectiveness is 
tested by comparing learning outcomes to more traditional procedures using ran-
domized controlled trials. When those learning outcomes favor the new instructional 
procedure, a new cognitive load effect has been identifi ed for further study and a 
potential new instructional procedure is available for use in the classroom. 

 Those aspects of human cognitive architecture relevant to instruction and used by 
cognitive load theory depend on evolutionary educational psychology in two respects. 
First, biological evolution can be used to determine categories of knowledge that are 
important to instructional considerations. Second, the selection pressures that drive 
evolution by natural selection are analogous to those that operate during human learn-
ing. I will begin by considering human cognitive architecture from an evolutionary 
educational psychology perspective, and then link these to instructional design. 

    Evolutionary Educational Psychology and Human Cognition 

    Early  versions   of cognitive load theory did not use evolutionary educational 
psychology when discussing human cognitive architecture, but instead placed 
the primary emphasis on relations between working and long-term memory. 
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While those relations still are critical to the theory, the subsequent emergence of a 
viable evolutionary educational psychology placed the relations between working 
and long- term memory into a context that provided substantially more explanatory 
power and generated a wider range of hypotheses. By using evolutionary educational 
psychology, the categories of knowledge to which cognitive load theory did and did 
not apply became clearer, as did the way in which information was processed, 
stored, and used during and subsequent to instruction. 

    Categories of Knowledge 

 Knowledge probably can be categorized in an infi nite number of ways, but for present 
purposes, the only categories that matter are ones that have instructional implica-
tions. Categorization schemes in which the same instructional procedures are 
equally effective across the identifi ed categories have minimal or no instructional 
implications. For example, if the same instructional techniques are important  in 
  teaching concepts and teaching procedures, the distinction between concepts and 
procedures becomes irrelevant from an instructional perspective, even if it is impor-
tant from other perspectives. One scheme based on evolutionary educational psy-
chology was devised by David Geary and has profound signifi cance for instructional 
procedures (Geary,  2012 , this volume). He divided knowledge into biologically 
primary and secondary knowledge, two categories that require vastly different 
experiences for their development and so different instructional procedures. 

  Biologically primary    knowledge .   We have evolved to acquire biologically primary 
knowledge over countless generations. It tends to be knowledge that is critical to our 
survival and is organized around the domains of folk psychology such as social 
abilities, folk biology such as knowledge of other species, and folk physics such as 
the ability to navigate from place to place (Geary,  2005 ). Recognizing faces, learning 
to listen to and speak a fi rst language, basic social skills associated with relation-
ships are all features of folk psychology, for instance. We also have evolved general 
problem-solving skills and the ability to plan ahead and strategize. 

 Biologically, primary knowledge has several important characteristics. First, it 
tends to be modular with, for example, the ability to recognize faces likely to have 
evolved independently and in a different epoch than language skills. Thus, the manner 
in which we acquire one skill may differ markedly from the manner in which we 
acquire a different, unrelated skill. Second, because we have evolved to acquire bio-
logically primary knowledge, it tends to be acquired easily, automatically, and uncon-
sciously through natural activities, such as play and social discourse. To acquire 
biologically primary skills, we merely need membership of a functioning (or in some 
cases, even a dysfunctional) society. As a consequence, biologically primary skills do 
not need to be explicitly taught, or indeed, taught at all. All normally functioning 
individuals will acquire those skills. 

 Third, it is likely that most of the generic skills considered important in education 
are biologically primary (Tricot & Sweller,  2014 ). For example, because of their 

J. Sweller



293

importance in many real-world contexts, we may have evolved general problem 
solving and planning skills. Means-ends analysis provides an example of a general 
problem-solving skill (Newell & Simon,  1972 ). We solve many novel problems by 
noting our current and goal problem states, fi nding problem-solving operators to 
reduce differences between the two states, and then repeating the process until the 
goal has been attained. This means-ends strategy is a generic skill that is commonly 
used, but without any evidence that it is teachable. It constitutes a complex, primary 
skill that all normal humans acquire without instruction. It follows that such generic 
skills do not need, indeed cannot, be taught because they are automatically acquired. 
Including instruction of such skills in curricula is likely to be futile. 

  Biologically secondary    knowledge .   In contrast to biologically primary knowledge 
that we all must acquire in order to function appropriately in any society, biologi-
cally secondary knowledge is culturally specifi c. While the knowledge itself is 
entirely domain-specifi c, we have evolved to acquire any secondary knowledge 
generically. In other words, the ability to acquire secondary knowledge is biologi-
cally primary (Geary,  2005 ). We do not need to be taught how to obtain biologically 
secondary knowledge because we have evolved to do so. As a result, teaching learn-
ers how to develop knowledge as opposed to teaching them the actual knowledge 
may be a pointless exercise. The manner in which we acquire biologically secondary 
knowledge is largely identical irrespective of the nature of that knowledge: We have 
evolved to acquire a wide variety of types of biologically secondary knowledge in a 
similar manner. 

 Examples of biologically secondary knowledge can be found in every curricu-
lum area found in any educational establishment. We invented schools in order to 
teach biologically secondary knowledge because, unlike primary knowledge, it is 
unlikely to be acquired without the functions and procedures found in educational 
establishments. 

 There are two characteristics of biologically secondary knowledge that are critical 
to instructional issues. First, it is domain-specifi c (Tricot & Sweller,  2014 ). To learn 
to solve mathematics problems, we do not need to be taught generic, cognitive prob-
lem-solving skills, such as means–ends analysis. These skills are already part of our 
evolved repertoire, although some domain-specifi c problem-solving procedures such 
as the use of formal logic and experimental design must be explicitly taught in the 
areas to which they are applied (but see Gray, this volume; Toub et al., this volume). 
For example, the experimental designs suitable for biology or psychology bear little 
resemblance to those used in physics. Learning those procedures is a biologically 
secondary task that must be taught explicitly. Similarly, we do need to be taught the 
procedures required to solve particular, narrow classes of problems. For example, we 
need to learn how to solve problems of the type,  a / b  =  c , solve for  a . The knowledge 
gained is domain-specifi c in that knowing how to solve this category of problem 
will not be of assistance in solving unrelated mathematics problems or unrelated, 
non-mathematical problems. 

 The second important characteristic of biologically secondary knowledge is that, 
unlike biologically primary knowledge, it can be diffi cult to learn, requires con-
scious effort, and is learned much more easily with explicit instruction rather than 
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minimal guidance (Kirschner, Sweller, & Clark,  2006 ). When acquiring biologically 
primary knowledge, learners can be left to their own devices because they have 
evolved to acquire such  knowledge.   It is inadvisable to provide minimal guidance 
when dealing with biologically secondary knowledge. Without guidance, the infor-
mation may be misunderstood or not acquired at all, a risk that is minimal when 
dealing with biologically primary knowledge.  

    Natural Information Processing systems 

    From the above analysis, the major function of instruction is to assist learners to 
acquire biologically secondary knowledge. The cognitive architecture associated 
with the acquisition and use of biologically secondary knowledge is closely analo-
gous to the process of biological evolution itself. The suggestion that evolution by 
natural selection and human cognition is analogous has a very long and illustrious 
history (Campbell,  1960 ; Darwin, 1871/ 2003 ; Popper,  1979 ; Siegler,  1996 ). Both 
human cognitive architecture and evolution by natural selection are examples of 
natural information processing systems (Sweller & Sweller,  2006 ). They can be 
described using fi ve basic principles. 

   Information store principle .   Natural information processing systems require a very 
large store of information in order to function in a natural environment. In the case 
of biological evolution, that store is represented by a genome. While there is no 
agreed upon measure of the size of a genome, any measure considered results in 
thousands of units of information for the smallest genomes and much more for 
larger genomes (Portin,  2002 ; Stotz & Griffi ths,  2004 ). 

 For human cognitive architecture, long-term memory provides the functional 
equivalent of a genome. Competent performance in any substantive, biologically sec-
ondary area requires many years of deliberate practice to improve performance 
(Ericsson, Krampe, & Tesch-Romer,  1993 ). That practice results in the storage of 
large amounts of domain-specifi c information. The initial evidence for the huge 
amounts of information stored in long-term memory came from De Groot’s ( 1965 ) 
classic work on chess. He found that chess masters did not engage in more problem- 
solving search than weekend players. The only difference between the two groups 
was in memory of chessboard confi gurations. Chess masters, who have shown a 
confi guration taken from a real game for 5 s, were able to accurately replace over 
80 % of the pieces. Weekend players only were able to replace less than 30 % of the 
pieces. Chase and Simon ( 1973 ) replicated these results and in addition found no 
difference between masters and weekend players’ presented random board confi gu-
rations as opposed to real game confi gurations. For random confi gurations, accuracy 
was similar to that of weekend players’ presented confi gurations taken from real 
games. Thus, only chess masters presented real game confi gurations performed at a 
high level. Similar results have been obtained in a variety of areas relevant to educa-
tion, including learning algebra and computer programming (e.g., Egan & Schwartz, 
 1979 ; Jeffries, Turner, Polson, & Atwood,  1981 ; Sweller & Cooper,  1985 ). 
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 The work on expertise and particularly De Groot’s ( 1965 ) work changed our view 
of human cognition and, indeed, our view of ourselves. Arguably, it is the most 
important fi nding of cognitive psychology. Until this work, we saw the defi ning char-
acteristic  of   human cognition to be our ability to “think,” but a defi nitive defi nition 
has remained elusive. The new role of long-term memory in human cognition, while 
not providing a defi nition, set us on the road. Playing chess at master or grand master 
level surely required thought and it turned out that long-term memory was critical to 
that thought to an extent that previously had not been imagined. 

 With respect to learnable factors as opposed to inherited factors, a key difference 
between someone who is good at an intellectual activity in a specifi c secondary 
domain and someone who is not seems to be largely dependent on the information 
held in long-term memory. In this context, we know, for example, that working 
memory capacity is dramatically affected by the contents of long-term memory 
(see the organizing and linking principle below) and that IQ tests need to be 
 re- standardized every few years and show a continuously rising trend (Flynn,  1987 ). 
We also know that one additional year of schooling increases IQ by more than one 
additional year of age (Cahan & Cohen,  1989 ). A parsimonious explanation of 
changes in working memory capacity and IQ can be provided by assuming that both 
are strongly affected by the contents of long-term memory. Indeed, at present, there 
is no clear evidence of any other factor being relevant. 

 Whether dealing with a genome or long-term memory,    the information held in 
the information store is central to natural information processing systems. Natural 
environments tend to be complex. To deal with that complexity, a large store of 
information is essential. 

  Borrowing and reorganizing principle . How is the large amount of information 
held in a natural information store acquired? The manner in which an individual 
genome obtains its information is well-known. During either sexual or asexual 
reproduction, information is borrowed from ancestors. In  the   case of sexual 
reproduction, that information is necessarily reorganized as an essential part of 
the process. 

 An analogous process is used by human cognition. We imitate what others do 
(Bandura,  1986 ), we listen to what they say, and we read what they write. We are one 
of a very small number of species that have evolved to provide and receive informa-
tion via deliberate teaching from other members of the species (Thornton & Raihani, 
 2008 ). Our ability to obtain information from other people is biologically primary, 
even when used to acquire a biologically secondary skill such as reading. The skill is 
secondary, but the general ability to obtain the information required for that second-
ary skill is primary. We have to teach people to read, but we do not have to teach them 
to obtain information by reading because once one is taught how to read, the skill can 
tap into our biologically primary natural language and social- information systems. 
People know that they can obtain information from other people by reading because 
that knowledge is biologically primary and does not need to be taught. 

 The information we obtain from others is reorganized in the same manner as 
information is reorganized during sexual reproduction. Knowledge obtained from 
other people is automatically combined with knowledge already held in long-term 
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memory to provide new knowledge that may be unique and useful. For this reason, 
the information obtained from other people is rarely recorded precisely. It is 
constructed when combined with previously held knowledge. 

 From an instructional perspective, it follows that instruction should provide 
learners with information. Cognitive load theory places its major emphasis on 
techniques designed to facilitate the acquisition of domain-specifi c, biologically 
secondary knowledge using explicit instruction. 

  Randomness as genesis principle .    While we have evolved to obtain most of our 
knowledge from other people, that knowledge needs to have been created in the fi rst 
place. Evolution by natural selection also needs to create novel information. It does 
so by random mutation that is the initial source of all biological variation. 

 In the case of human cognition, random generate and test during problem solving 
creates novel concepts and procedures (Sweller,  2009 ). When presented with a prob-
lem, we will attempt to solve it automatically using information held in long- term 
memory. The bias to use known solution procedures is biologically primary and so 
unteachable. A known solution always will be used if it is available. If a problem is 
novel with no known solution stored in long-term memory, it may be possible to 
generalize from a known solution to a similar problem. Again, if we have access to a 
problem from which we can generalize, we will do so automatically. Generalizing 
also is unteachable because it is a biologically primary skill. Of course, if the prob-
lem is novel, by defi nition we cannot know whether a solution to a known problem 
really does generalize to the new one. We only can fi nd out whether an old solution 
works on a new problem by trying it out. In a form of generate and test, we generate 
the solution and see if it works. If it works, we may store the new problem and its 
solution in long-term memory for use on subsequent occasions. 

 Frequently, when faced with a novel problem, no solution or even partial solution 
can be obtained from long-term memory. Either from the start or during problem 
solving, we may fi nd that there are several possible moves that can be made, but we 
have no knowledge-based information that will indicate which move we should try. 
At that point, we will have no choice but to randomly choose a move and test it for 
effectiveness using a random generate and test procedure. Again, if the move or 
sequence of moves is effective, we may store it in long-term memory for later use, 
but jettison it if it proves to be ineffective. In this way, new knowledge is created. 

 It may be argued that no problem-solving move is ever entirely random and that 
all such moves have some knowledge attached to them. In a sense, that argument 
must be correct. If we have no knowledge, we probably not only would be unable 
to solve the problem, we probably could not even assimilate the meaning of the 
problem to begin solving it. Nevertheless, the fact that some knowledge always is 
required does not contradict the randomness as genesis principle. In the same way 
as random mutation does not occur in a vacuum but only is applied to a current 
genome, so random generate and test during problem solving always will be applied 
to a current knowledge base. The fact that there must be organized information 
already stored prior to the randomness as genesis principle being applied does not 
eliminate the random component. In the case of problem solving, there inevitably 
will be some circumstances in which no knowledge is available to discriminate 

J. Sweller



297

between alternative problem-solving moves.    Under those circumstances, random 
generate and test is unavoidable. When it occurs, new knowledge is created just as 
new genetic variations are created by random mutation. 

  Narrow limits of change principle . The randomness as genesis principle has struc-
tural consequences. If new information is to be generated randomly, it needs to be 
restricted in some way. The need for such a restriction can be seen most clearly in 
the case of human cognition. Assume that during problem solving, three elements 
of information need to be combined. If no information is available indicating how 
they should be combined, then there are 3! = 6 possible permutations of the three 
elements. Assume instead that there are ten elements that need to be combined. 
There are 10! = 3,628,800 possible permutations. Using a random generate and test 
procedure, it will take much longer to determine which permutations are benefi cial 
for ten than three elements. Based on ten elements, a useful permutation that needs 
to be stored may never be found. For this reason, to ensure that useful, previously 
stored information is not damaged by a sudden large change, both evolution by 
natural selection and human cognition require mechanisms that prevent large, rapid 
changes to the store. 

 Evolution by natural selection solves this problem by limiting the number of muta-
tions that are likely to occur. The epigenetic system is used to vary the number of 
mutations that might occur at any given genome location. For example, the level of 
 stress   in an environment may alter the number of mutations. Similarly, some sections 
of a genome may have mutations rates thousands of time higher or lower than other 
sections. Mutation rates can be very high if diversity is required such as venom used 
to disable prey (Jablonka & Lamb,  2005 ). In other words, environmental requirements 
can result in changes in generation rates of mutations. Nevertheless, large numbers of 
mutations can jeopardize the integrity of a genome and so mechanisms such as DNA 
repair are required to constrain mutation rates. 

 The number of mutations that are retained tends to be low in order to ensure that 
the organized information stored in a genome is not lost by large, random changes 
that are likely to be fatal. Genetic change due to random mutation is slow. In effect, 
very small changes are made and tested for effectiveness. Most of those changes are 
not adaptive and jettisoned over evolutionary time through differential survival and 
reproduction. Occasionally, a change is adaptive and retained. The result is a series 
of very small changes over long periods of time that can slowly improve the adapta-
tion of a genome to an environment without destroying the genome. 

 In the case of human cognition, working memory plays an analogous role to 
these genetic changes. New information can be obtained during problem solving, 
but it is obtained very slowly with the characteristics of  working memory   constitut-
ing the limiting factor. When dealing with novel information, working memory 
capacity is limited to holding about seven items (Miller,  1956 ) and processing no 
more than about four or less items (Cowan,  2001 ) where processing involves com-
bining, comparing, or relating items in some manner. Not only is the capacity of 
working memory severely limited when dealing with novel information, the dura-
tion that novel information will be retained in working memory is constrained to no 
more than about 20 s without rehearsal (Peterson & Peterson,  1959 ). As a consequence 
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of these limitations of working memory when dealing with new information, 
changes to the long-term memory store are slow in the same way that changes to a 
genome are slow. 

   Environmental organizing and linking principle .   While the environment infl uences 
changes to the information store, the ultimate purpose of this store is to enable 
adaptive functioning in a given environment. That purpose is realized through the 
environmental organizing and linking principle. In the case of biological evolution, 
the epigenetic system can transform genetic functions. For example, while a per-
son’s skin cells and liver cells have identical genotypes, they have vastly different 
phenotypes. Those differences cannot be caused by genetic factors because, for a 
given individual, the genetic information in the nucleus of a skin cell is identical to 
the genetic information in the nucleus of a liver cell. The epigenetic system deter-
mines the phenotypic differences by turning genes on or off. Rather than determin-
ing where mutations occur and the speed of mutations under the narrow limits of 
change principle, the epigenetic system can determine the different structures and 
functions of two types of cells by activating or de-activating particular genes using 
the environmental organizing and linking principle. It can take large amounts of 
information from the genome to determine specifi c structures and functions. Under 
a different environment, it can use different parts of the available genomic informa-
tion (different sets of base pairs) to determine different structures and functions. 

 Similarly, while working memory determines which changes are made to long- 
term memory, it also determines which information held in long-term memory is 
used to determine action in a given environment. As is the case for the epigenetic 
system, working memory can take unlimited amounts of information from the 
information store, in this case long-term memory, to determine actions appropriate 
to a given environment. The capacity and duration limits that are necessary when 
working memory deals with novel information are no longer necessary when it 
deals  with   organized information stored in long-term memory (Ericsson & Kintsch, 
 1995 ). Working memory has no known capacity or duration limits when dealing 
with stored information from long-term memory. 

  Two separate functions of working memory and the epigenetic system . The narrow 
limits of change and the environmental organizing and linking principles indicate 
two largely unrelated functions of each of working memory and the epigenetic 
system.    Historically, working memory has been treated as a single system (Atkinson 
& Shiffrin,  1968 ), with working memory having the same properties when dealing 
with novel information from the external environment or familiar information 
stored in long-term memory. In fact, that unifi ed view of working memory, while 
attractive in some respects, could not be maintained and for that reason, in the cur-
rent treatment, working memory has very different properties depending on 
whether it obtains its information from the environment (the narrow limits of 
change principle) or from long-term memory (the environmental organizing and 
linking principle). The distinction is so important that Ericsson and Kintsch ( 1995 ) 
suggested an entirely new structure, long-term working memory to deal with infor-
mation that is stored in long-term memory and then processed in working memory. 
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(From a functional perspective, it makes no difference whether we describe two 
separate structures or a single structure with two separate functions.) 

 The same issue is relevant to  the   epigenetic system. It usually is treated as a 
single system that sometimes affects the number and location of mutations and at 
other times affects expression or inhibition of information stored in the genome. 
These two functions are regarded as separate and unrelated in the current treatment, 
closely analogous to the two functions of working memory. Epigenetically generated 
changes in the location and rate of mutations are considered under the narrow limits 
of change principle, while epigenetic factors switching genes on or off are consid-
ered under the environmental organizing and linking principle.   

    Cognitive Load Theory and Instructional Design 

 This cognitive architecture can be used to devise instructional procedures. In the case 
of human cognition, the environmental organizing and linking principle allows us to 
engage in activities that otherwise would be impossible. Those activities depend on 
us having accumulated large amounts of information in long-term memory via a very 
limited working memory. Cognitive load theory uses this cognitive architecture to 
devise instructional procedures. Those procedures generated from the above cogni-
tive architecture have several common characteristics. The two most important are an 
emphasis on explicit instruction rather than minimal guidance and on the primacy of 
teaching domain-specifi c knowledge rather than generic skills. These two recom-
mendations derived from our knowledge of human cognitive architecture will be 
discussed next. 

    The Importance of  Explicit Instruction   

 Many instructional theories recommend that students should not be presented direct, 
explicit information, but rather should be encouraged to fi nd information them-
selves (Gray, this volume). Inquiry learning, constructivist learning, and problem- 
based learning provide examples. Ultimately, all derive from discovery learning 
(Bruner,  1961 ) and cannot be distinguished from discovery learning or from each 
other. There is little evidence for the effectiveness of minimal guidance and consid-
erable evidence for the importance of explicit instruction (Kirschner et al.,  2006 ; 
Klahr & Nigam,  2004 ; Mayer,  2004 ; but see Toub et al., this volume). 

 The cognitive architecture described above explains why explicit instruction is 
important. Humans obtain the vast bulk of the biologically secondary information 
held in long-term memory via the borrowing and organizing principle. We have 
evolved to present and obtain such information from others as a biologically pri-
mary skill, as noted. Obtaining information from a teacher or instructor is entirely 
natural for humans but largely, though not entirely, absent in other animals 
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(see Berch, this volume). Humans have evolved to learn from others and in ways 
advocated by proponents of discovery learning. This works well for fl eshing out 
primary knowledge, but not for secondary learning (Geary,  1995 , this volume). 
Given that we have evolved to acquire information from others, recommendations 
that we should not present explicit information to learners can be seen as little short 
of bizarre from a cognitive science perspective. These theories arise from people’s 
primary folk psychology, without an understanding that secondary learning is very 
different from primary learning and what works for the latter does not work well for 
the former. We have evolved both to teach and to obtain information from teachers. 

 We also are able to obtain information by discovery learning procedures using 
the randomness as genesis principle. That machinery is essential when information 
is required, but there are no other people available to provide that information. 
   While we can and must be able to obtain information in this manner and, indeed, the 
randomness as genesis principle provides the origin of all biologically secondary 
information, it is a very slow, diffi cult, and ineffi cient process for obtaining infor-
mation. We are far better at obtaining information using the borrowing and organiz-
ing principle. Given a choice between having learners discover information and 
presenting them with the same information, we should present the information.  

    The Primacy of  Domain-Specifi c Knowledge   

 Geary’s ( 1995 ) distinction between biologically primary and secondary information 
has implications for the type of information we should be presenting to learners and 
the skills we should be teaching. Over many years, there has been an increasing 
emphasis in educational research on teaching generic, cognitive skills (Tricot & 
Sweller,  2014 ). These are skills that transcend a particular domain, for example, a 
general problem-solving skill that improves problem-solving performance irrespec-
tive of the domain or metacognitive skills that can improve learning in any area. In 
one sense, that emphasis is understandable. Generic, cognitive skills are likely to be 
critical to any cognitive functioning, and indeed, are likely to be far more important 
than domain-specifi c skills. Facilitating problem-solving skills that transcend a spe-
cifi c area is likely to be much more important than facilitating problem-solving skill 
in a narrow, specifi c domain. 

 While the importance of generic, cognitive skills explains the emphasis placed on 
them, there has been a marked lack of success in identifying teachable, learnable, 
generic cognitive skills. A teachable generic cognitive skill is one that results in 
improved performance on far transfer tasks that differ from the trained tasks but 
should, in theory, be improved by the training. An emphasis on far transfer is critical 
in order to ensure that any performance improvement can be attributed to the acquisi-
tion of a generic skill rather than domain-specifi c knowledge. For example, teaching 
a generic, cognitive skill and using algebra to provide examples and then testing the 
extent to which acquisition of the skill improved performance on algebra leaves open 
the possibility that any improvement may be due entirely to increased knowledge of 
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algebra rather than increased knowledge of the generic, cognitive skill. If algebra is 
used to teach the generic skill, any test of the effi cacy of learning the skill should use 
an area unrelated to algebraic skill. Despite many studies over many years, there is 
minimal evidence available that teaching a generic, cognitive skill improves transfer 
performance (Ritchie, Bates, & Deary,  2015 ; Tricot & Sweller,  2014 ). 

 We are left with the question as to why there continues to be such a strong 
emphasis in the fi eld on teaching generic, cognitive skills given that research into 
teaching those skills failed? In some sense, the answer to this question is straight-
forward. People could see how easy it was for learners to learn to talk, walk, recog-
nize faces etc., but so diffi cult to learn subject matter in schools. It followed, they 
suggested, that the difference in diffi culty was due to faulty instructional proce-
dures. If only we used the learning procedures common outside of schools, school 
learning would be just as easy, natural, and enjoyable as learning outside of school. 
Explicit teaching is not used to teach people how to listen and talk.    If we eliminate 
explicit teaching of, for example, reading and writing, it will be learned as easily 
and naturally as listening and talking. 

 Of course, Geary’s ( 1995 ) distinction between biologically primary and second-
ary knowledge explains why some information is acquired easily while other infor-
mation is diffi cult to acquire. Because of the importance of generic, cognitive skills, 
most humans must possess them in order to survive. A skill that is essential to sur-
vival is a skill that we are very likely to have evolved to obtain easily and automati-
cally without being taught. Such a skill is a biologically primary skill. If so, the 
failure to fi nd teachable, learnable, generic, cognitive skills is not because such 
skills are unimportant, but rather because such skills are so important that most 
learners will have acquired them without instruction. In contrast, domain-specifi c 
skills are largely biologically secondary. They have been created over the past few 
millennia and do not have the built-in skeletal knowledge that makes primary learn-
ing easy and automatic. They are not acquired automatically and should be taught 
explicitly. We invented schools and other educational institutions precisely because 
the domain-specifi c, biologically secondary skills taught were not easily learned 
without deliberate, explicit instruction.  

    Some Instructional Effects Generated by Cognitive Load Theory 

 Cognitive load theory has generated a large number of cognitive load effects. Each 
effect is based on randomized, controlled experiments comparing a new instruc-
tional procedure with more conventional procedures. A cognitive load effect is dem-
onstrated when the new procedure results in superior test performance to the older 
procedure. All of the hypotheses tested were generated using the above cognitive 
architecture and assume that effective instruction is explicit and concerned with the 
acquisition of domain-specifi c knowledge. 

 Each cognitive load effect is assumed to be caused by differential levels  of   element 
interactivity (Sweller,  2010 ), a concept that is concerned with the number of 
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interacting elements that must be processed in working memory. As an example, 
assume learners are faced with a diffi cult task such as learning the symbols of the 
periodic table or some of the nouns of a foreign language. While these tasks are dif-
fi cult, they do not impose a heavy cognitive load. Each element can be learned 
independently of every other element and so element interactivity is low resulting in 
a low working memory load. The task may be diffi cult, but the intrinsic cognitive 
load of the task is low. In contrast, other tasks may involve far fewer elements that 
need to be processed simultaneously in working memory, resulting in high element 
interactivity and a high intrinsic cognitive load. Balancing a chemical equation pro-
vides an example as does solving a problem such as ( a  +  b )/ c  =  d , solve for  a . To 
solve this problem, all of the elements must be considered simultaneously because 
a change in one element is likely to have consequences for every other element. 
Element interactivity and the intrinsic cognitive load imposed by this task will be 
high. That intrinsic cognitive load only can be altered by altering the task or by 
acquiring knowledge stored in long-term memory. With knowledge, the equation, 
( a  +  b )/ c  =  d , will be treated as a single element rather than multiple elements and so 
reduce intrinsic cognitive load. 

 Element interactivity also can be varied by instructional procedures (Sweller,  2010 ). 
Some instructional procedures require learners to process many elements simulta-
neously, while other procedures can substantially reduce the number of elements 
that need to be processed. Variations in element interactivity due to instructional 
procedures are referred to as variations in extraneous cognitive load. Most of the 
effects generated by cognitive load theory depend on a reduction in extraneous load 
on working memory resources. 

 The effects only will be very briefl y summarized here. More detailed summaries 
may be found in Sweller et al. ( 2011 ). It must be emphasized that each of the effects 
described below assumes that knowledge acquired in educational institutions is 
domain-specifi c, biologically secondary information best acquired by explicit 
instruction. In that sense, cognitive load theory differs from most of the extant 
theories in the fi eld of cognitive processes and instructional design. 

  The worked example effect .    Learners presented with worked examples to study will 
perform better on subsequent problems than learners who have to solve the same 
problems, due to a reduction in extraneous cognitive load. Worked examples reduce 
working memory load compared to discovery-based problem solving and make use of 
the borrowing and organizing principle rather than the randomness as genesis princi-
ple. Worked examples provide explicit instruction and domain- specifi c knowledge. 

  The    problem completion effect .   Rather than providing a complete solution, completion 
problems provide a partial solution that learners must complete. Completion problems 
can be just as effective as worked examples and are effective for the same reasons. 

  The    split-attention effect .   Assume instructional material such as a worked example 
consisting of two or more sources of information that split attention and so must be 
mentally integrated before they can be understood. A diagram and text that are 
unintelligible in isolation and so must be mentally integrated provide an example. 
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The act of mental integration requires working memory resources that consequently 
are unavailable for learning, resulting in the imposition of an extraneous cognitive 
load. By physically integrating those sources of information, more working mem-
ory resources are available for learning, reducing extraneous cognitive load. 

  The    modality effect .   Rather than physically integrating the two sources of information 
as in the split-attention effect, if one source of information can be provided in spoken 
rather than written form, learning is facilitated. Using both visual and auditory proces-
sors rather than just the visual processor can functionally expand working memory. 

  The    redundancy effect .   Frequently, two or more sources of information can be under-
stood in isolation. For example, text may simply repeat the information in a diagram or 
one source of information may in reality be uninformative and so unnecessary. Such 
redundant sources of information should be eliminated to reduce extraneous cognitive 
load, rather than integrated or converted into spoken form. The logic of the relations 
between the multiple sources of information is critical to determining whether informa-
tion should be integrated (or presented in auditory form) or eliminated. 

  The    expertise reversal effect .   As indicated above, the storage of information in long-
term memory has dramatic effects on working memory by bringing the environmental 
organizing and linking principle into play rather than the borrowing and reorganizing, 
the randomness as genesis or narrow limits of change principles. In turn, those changes 
necessitate changes in instructional procedures. The worked example effect provides 
one of many examples. As indicated above, it occurs when providing novices with 
worked examples facilitates learning compared to having learners solve the equivalent 
problems on their own. With increasing expertise in a given area of problem solving, 
that difference reduces and eventually reverses resulting in the expertise reversal 
effect. While studying a worked example may be important for a novice, it may be a 
redundant activity for more knowledgeable learners. 

  The    guidance fading effect .   Based on the expertise reversal effect, the explicit guid-
ance provided by worked examples should be gradually removed as expertise increases 
and the environmental organizing and linking principle takes over from the other prin-
ciples associated with acquiring novel information. The guidance  fading effect pro-
vides evidence for this hypothesis. Only novices require explicit guidance. 

  The    transient information effect .   The introduction of modern educational technology 
allows a more ready use of procedures such as animations and spoken information. 
Sometimes, those procedures transform easily accessible, permanent information 
into less easily accessible, transient information. For example, transforming complex 
written information into spoken information can vastly increase cognitive load. 
Diffi cult to understand written information can be processed and easily re-processed 
on multiple occasions in a manner that is diffi cult or impossible with spoken infor-
mation that disappears to be replaced by new information. The duration limits of 
working memory may render complex spoken information unintelligible. Such 
information is better presented in written form. Rather than facilitating learning, 
such technological “advances” can interfere with secondary learning. 
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  The    imagination effect .   Asking learners to imagine or mentally rehearse previously 
learned information might assist in transferring that information to long-term memory. 

  The    element interactivity effect .   Reducing element interactivity due to extraneous 
cognitive load may be unnecessary if element interactivity due to intrinsic cognitive 
load is low. Cognitive load effects due to extraneous load should not be expected if 
intrinsic load is low because the number of elements that must be considered simul-
taneously may be within working memory limits. 

  The    isolated elements effect .   If the number of elements that must be processed is 
very high, it may be impossible to process them simultaneously. In that case, the 
information needs to be broken up into isolated elements even if that means it can-
not be fully understood immediately. Understanding can come later when interact-
ing information is reconstituted from its memorized, isolated elements. 

  The    goal-free effect .   This effect was the fi rst cognitive load theory effect studied. 
Asking learners solving a mathematics problem to calculate values for as many 
variables as possible rather than asking them to fi nd a value for a specifi c goal 
reduces working memory load. For example, instead of asking geometry students 
to “Find a value for Angle X,” we can ask them to “Find the value of as many 
angles as you can.” Attending to a specifi c goal may require learners to consider 
simultaneously the several moves needed to reach the goal. A goal-free approach 
limits consideration to each individual move rather than combinations of moves 
required to reach a goal. 

   Collective working memory effect .   For diffi cult problems where knowledge is 
spread among two or more people, having them learn collaboratively rather than 
individually can facilitate learning. In effect, the group has a collective rather than 
an individual working memory. It should be noted that the effect disappears where 
all members of the group share similar knowledge.   

    Discussion 

 The architecture used by cognitive load theory with its evolutionary roots can result in 
instructional design recommendations that depart from many common assumptions. 
Nevertheless, evolutionary educational psychology provides a well- structured, highly 
organized base from which to consider instructional issues. All of the instructional 
recommendations of cognitive load theory derive from our knowledge of human cog-
nitive architecture that was used to generate the cognitive load effects. In turn, all of 
those effects have been tested using multiple, replicated, randomized, controlled 
experiments. Those experiments provide the data that generate instructional recom-
mendations and to the extent that those recommendations are successful provide evi-
dence for the theory. The instructional effects discussed above can be readily 
understood and followed from Geary’s ( 1995 ) distinction between biologically 
primary and secondary skills.     
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