Piezoelectric Materials

Vicente Lopes Jr. and Clayton Rodrigo Marqui

Abstract Piezoelectricity is a phenomenon in which certain crystalline substances
develop an electric field when subjected to pressure force, or conversely, exhibit a
mechanical deformation when subjected to an electric field. This reciprocal cou-
pling between mechanical and electrical energy provides useful features for these
materials. The dynamics of the piezoelectric sensor/actuator plays an increasing
importance when higher performance from closed loop systems or damage moni-
toring is required for strategic applications. This chapter focuses on the develop-
ment of the constitutive equations of smart structures. The incorporation of mass,
stiffness, and electromechanical coupling of the piezoceramic patches has a signif-
icant influence on the dynamics properties of the system.
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1 Introduction

The dynamics of the piezoelectric sensor/actuator plays an increasing importance
when higher performance from closed loop systems or damage monitoring is
required for strategic applications. For a piezoceramic, the three direction (z-axis)
is usually associated with the direction of poling and the material is approximately
isotropic in the other two directions.

Materials that become electrically polarized when they are deformed present the
direct piezoelectric effect, producing an electrical charge at the surface of the
material. The converse piezoelectric effect results in a strain in the material when
placed within an electric field. The direct and converse effects result an electrome-
chanical coupling. While piezoelectric elements exhibit nonlinear hysteresis at high
excitation levels, the response required in the current typical structural applications
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is approximately linear. The linear constitutive relations for piezoelectric materials
are given by Leo (2007):

T = [c"]{S} — [e[{E} (1)

D= [e] (S} + [*|{E} 2)

where the superscript ( )° means that the values are measured at constant strain, the
superscript ( )E means that the values are measured at constant electric field, T is the
stress tensor [N/m2], D is the electric displacement vector [C/mz], {S} is the strain
tensor [m/m], {E} is the electric field [V/m = N/C], [cF] is the elasticity tensor at
constant electric field [N/mz], [e] is the dielectric permittivity tensor [N m/V m?=
C/m?], and is the dielectric tensor at constant mechanical strain (permittivity
matrix) [N m/V? m]. The letters in brackets indicate the units of the variables
(in the SI system of units) with N, m, V, and C denoting Newton, meter, Volts, and
Coulomb, respectively.
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If each element of the matrix of piezoelectric material constant, [e], is designed
by e;; where i corresponds to the row and j corresponds to the column of the matrix,
then e;; corresponds to the stress developed in the jth direction due to an electric
field applied in the ith direction. The piezoelectric strain constants d;;, relating the
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voltage applied in the ith direction to a strain developed in jth direction, are
provided more often than the stress constants. However, the piezoelectric stress
constants can be obtained from the strain constants since the constitutive equation
can also be written as:

S = [s°[{T} + [d/{E} 3)
D = [a]'{T} + [¢"[{E} (4)
where €7 is the dielectric tensor at constant stress. The relative dielectric constant,

KT, is the ratio of the permittivity of the material, eT, to the permittivity of the free
space, &g, (€9=8.9 X 1072 F/m or A s/V m). Then,

T
6] = [e"] — [aI" [c"][a); KT ==
0
with
0 ds;
0 d3
d =10 ds3
0 ds O
0 0 dis

2 Finite Element Formulation of Electromechanical
Systems

Finite Element Method (FEM) is widely used in engineering problems allowing to
obtain approximate solutions to differential equations that describe the dynamics of
a system. Other methods for obtaining electromechanical models may be used as
the assumed modes method. However, the biggest advantage of FEM is to model
structures with complex geometry. The basic idea is to divide the region into a finite
number of elements and assume that these elements are interconnected by nodes
(Bathe and Wilson 1976).

The pioneers in the development of dynamic models for smart structures are the
work Allik and Hughes (1970). They use the mechanical stress induced by the
piezoelectric to contribute with the total mechanical stress of the host structure.
However, the first research work that has developed a rigorous system for the
design of electromechanical coupled structure was presented by Hagood
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et al. (1990), who applied the generalized Hamilton’s principle, also known as
variational principle applied to piezoelectric systems (Allik and Hughes 1970). The
great contribution of Hagood et al. (1990) was formulated more clearly the elec-
tromechanical coupling.

The FEM is a method of transformation and approximation of an integral
formulation, by an approximation linear algebraic formulation, where the coeffi-
cients are integral evaluations on the subarea of the area of resolution. The
Rayleigh—Ritz formulation is used to derive the equations of motion of the
electroelastic beam. The assumed displacement field shapes within the elastic
body and electric potential field shapes will be combined through the piezoelectric
properties to form a set of coupled electromechanical equations of motion. The
generalized form of Hamilton’s principle for a coupled electromechanical system is
(Hagood et al. 1990)

5]
J[é(T— U+ We — W) + Wt = 0 (5)
n

where ¢, and 7, are two arbitrary instants, T is the Kinetic energy, U is the potential

energy, W, is the work done by electrical energy, and W, is the work done by
magnetic energy, which is negligible for piezoceramic material.

1 1
T:TS+TP:JEpSuTudVJrJEppuTudv (6)
Vs VP
1 T 1 T
U=Us+Up= | STTdV+ | STTaV (7)
Vs VP
1 T
We=| 5 E'Dav (8)
Vp

where p is the mass density and the subscript s and p refer to the structure and
piezoelectric material, respectively. The virtual work, 6W, done by external forces
and the prescribed surface charge, Q, is,

oW = J su'PydV + J(SuTPS dss +8u"P¢c — J&DstP (9)

Vs Ss Sp

where Py, is the body force, Ps is the surface force, Pc is the concentrated load, and
Q is the surface charge. To formulate the matrix of the electromechanical coupling
using FEM, the displacement vector, u, and the electric potential, ¢, must be
expressed in terms of nodal value, i, via the interpolation function
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u(x) = [NyJ{u;} (10)
®(x) = [Ny]{¢:} (11)
Substituting Eq. (10) into Eq. (6) yields
e o
Vs p

The potential energy is the sum of the potential energy of the structure and of the
piezoelectric material. The constitutive relation of the structure in matrix form is
given by:

T,=GS and G

rM—-—o v v 0 0 0 7
v 1—v o 0 0 0
v v 1—-v O 0 0
1-2
__E o 0 0 Y0 0 (13)
(1+0)(1 —2v) 2
1—-20
0 0 0 0 0
2
1-20
0 0 0 0 0
L 2

G, is the matrix containing the elastic coefficients of the material. E is the
Young’s modulus and v is the Poisson ratio. The strain can be represented in
matrix form by:

o _
a 0 0
0
’ — 0
N z
ST 0 0 % Uy
S=L,u 5 =13 E uy 03 S=L,Nu; (14)
S, dy Ox U
0 0
S,. el el
’ 7z Y &
0 0
e
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or
S =B,u (15)
and
B, = LN, (16)

Substituting (15) in (13), one obtains the stress tensor in the host structure

T, = GsS = GsBuui (17)

Solving (7) in the structural domain, V, yields

(1
U = M 5ufBJ GB,u,dV; (18)

VS

Similarly from the mechanical strain, the electric field is described by

E=L,® (19)
or
E = L,Ny¢; = By, (20)
where
By = LyNy (21)

and L is the matrix containing the differential operators. Substituting (1) into (7)
and using (20), the potential energy in the piezoelectric domain, V,, yields

1 1
U, = m 3 u/B) " B, u;dV, — m Euf B eB, ¢, dV, (22)

Vo Vo

The potential energy of the piezostructure is obtained by adding (18) and (22)

1 1 |
U= JJJ Euz‘TBJGSBuuidvs + JJJ ElliTB;rCE B,u;dV, — JJ] EuiTB;reBtﬁqside

s P P

(23)
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The work done by electrical energy is

W, = m %ET D dVp (24)

Vo

Using the constitutive relations yields

1 1
W, = ”J Eqf;,.T B, e" B,udVp + m 54)33; By, dVp (25)
Vp Vp
At this point, the coupled electromechanical system equation can be derived
from the generalized form of Hamilton’s principle. Allowing arbitrary variations of

{u;} and {®;}, two equilibrium matrix equations, in generalized coordinates, are
obtained.

([Mg] + [M3]){ui} + ([Ks] + [Kg]){ui} — [Kjtp}{qﬁ,-} = {F°} (26)
[K5.] ) — [k, ] {0 = 107} 1)

where Mg and M; are the local matrix of mass for the host structure and the PZT,

respectively:
M; = m NNV (28)
Vs
M; = m PpNINudV, (29)
VP

and Kg and K; are the local matrix of stiffness for the host structure and the PZT,

respectively:
K = m B/GB,dV, (30)
Vs
K = J J B!c"B,av, (31)

Vo

The electromechanical coupling matrix, K{,, and the piezoelectric capacitance
matrix, K; > are
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K, = m B, e Bydv, (32)
VP

KS, = J J B B,dVp (33)
Ve

T
with [K;u] = [Klf¢] . The force vectors are given by:

() = [ padavs + [T (ps)as.+ TR (4)
Vs Ss
{0°} = —J [Ny]" 0 dsSe (35)
Sp

For the entire structure, using the standard assembly technique for the FEM, we
obtain the complete equation for a coupled electromechanical system as

u u F
. oo+ = (36)
& o Q

where the global matrices are defined by

M = Z ), + Z} (M;)j (37)

Kuu Ku¢

Kpu  Kgp

M 0
0 0

np

Ku —Z (K¢), +Z<K€)j (38)

Ku =Kj, = > (Kf¢>j (39)

np

Kpyp= - (K;¢)j (40)

J=1

where ne is the number of structural elements and 7np is the number of piezoelectric
patches in the structure. The symbol summation, in the above equations, means
finite element assembling matrices. At this point, it is important to note that the
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mass and stiffness matrices for a finite element and therefore for the complete
structure are not positive definite.
The sensor equation is:

Kgpuu +Kyp @5 =Q (41)

Making the electric charge Q to zero since there is no electric potential applied to
the sensor, yields

b, = —Kq;;S Kyuu (42)

To find the force generated in the actuator, one must consider the charge
0 nonzero, then we can rewrite equation (41) as follows:

Kpuu+Kyp @, =Q (43)
or
@, =K, (Q — Kpuu) (44)

Replacing the electric potential (44) in the global equation (36) yields

Mii + Ku = F + Fy (45)

where
K = Ku — Ky K, Ky (46)
Fa=-KyK,,Q (47)

where F.; is the electric force generated in the actuator by applying an electrical
charge.

The term K,,;® can be divided in two parts dependent on the electric potential,
one referring to the piezoelectric material used as sensor and the other for the
piezoelectric material used as actuator.

Kuqb(b = Kud) ®s + Ku¢ ®a (48)
Substituting in the motion equation (36)
Mii + K, u + K,y (—K;; K u) —F - K,y @, (49)

or

Mii + Ku = F — K,,®, (50)
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where
K=K, Ky K(;; Kpu (51)

Every structure has some damping effect. Usually, this value is difficult to be
defined precisely, but can be predicted. A practical approach is considering pro-
portional damping, to the mass and stiffness.

D, =aM + K (52)
The global equation of motion, considering damping matrix, is given by

Mii + Dau + Ku = F - K,y de(;Q (53)

where M, D,, and K are the global matrices of mass, damping, and stiffness,
respectively.

3 Eigenvalue Problem for the Short Circuit Case

Natural frequencies and mode shapes can be obtained by reducing the assembled
global matrices to a standard eigenvalue form. It can be done by suitable grounding
the structure by specifying one or more nodal value of electrical potential. Then the
new piezoelectric capacitance matrix, K ; » is non-singular and the eigenvalue

problem, for the undamped homogeneous system, can be written as (Lopes Jr.
et al. 2000)

(K] - o*[M]){u} = {0} (54)

where
M] = [M,,] (55)
K] = (K]~ [Kug) [K5,] (K] (56)

and [ o ]_1 indicates the inverse of the matrix.
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Fig. 1 Displacement of a point P at a distance z from the median line of the beam
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4 Application: Clamped-Free Beam with Bonded PZT

The general equations from the previous section will be applied for the case of a
clamped-free beam with a pair of bonded PZT (bimorph case). Different numbers
and locations of PZTs can be considered.

The poling of the piezoelectric is in the z-direction. Figure 1 shows an Euler—
Bernoulli beam, where the displacement of a point on a normal plane of the beam at

73] [Tt}

a distance “z” from the median line in the direction “x” is

ou,
Uy = —21gp = —Z (57)
The state of plane strain is given by
Ouy 0%u,
Sy = = —z—=— 58
0x o (58)
Equation (14) can be rewritten as
S =Lyu. (59)
where
22

The stress is also rewritten as
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Fig. 2 Structural element with electromechanical coupling

T, = E,S, (61)

Considering that the piezoelectric material is being modeled as Euler—Bernoulli
beam element, their constitutive relations can be summarized as:

D3 = e3151 + 83S3E3 sensor equation (62)

T = CFIS“ — e31E3  actuator equation (63)

The goal is to obtain the interpolation function on the basis of generalized
coordinates for the degrees of freedom of displacement and electrical potential.
With these functions, one can determine the elementary matrices of electromechan-
ical coupled system. Initially, it is considered the electromechanical coupling
between the host structure and the piezo element, as shown in Fig. 2.

The element is composed by two nodes, with two structural degrees of freedom
per node, translation denoted by “u.;” in direction “z”” and rotation in the plane “yz”
denoted by “6,;,” and one electric potential degree of freedom per node “¢;.”
Considering x; the point localized in the node i and ¢ the generalized coordinate

in function of x, as

One can rewrite the displacement vector of the ith element as

=l Oy wun O] (65)
and the electric potential is
@ =g ¢ (66)
or
(&) = Nua (§)iezr + Nia(§)0y1 + Nua (&)t + Nua(€)6)2 (67)

and
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(&) = Ng1 ()¢ + Nya(§)ehs (68)

Initially, one can find the interpolation functions of the mechanical displace-
ments. For this, it is observed that the element is analyzed in only one dimension (£)
and has four degrees of freedom. Therefore, one obtains the following interpolating
function for displacement in the z-direction.

u:(8) = a1 + mé + a8 + aud (69)
or
u=Pa (70)
where
P=[1 ¢ & ¢&] (71)
a=[a, @ a3 ay] (72)

Considering small angles

0,(8) = ——=7 = —m — 2a3¢ — 3 (73)

The values of the generalized coordinates for each element node can be obtained
in matrix form as Eq. (74). The columns of the inverse matrix Pn contain the
interpolation functions. The values of the generalized coordinates for node 1 (£ =0)
and node 2 (£=1) yield

Uzl 1 O 0 0 aq
0 0 -1 0 0 a
i 2 (74)
uz; 1 1 as
O 0o -1 -2 -3 ay
or
§=Pna (75)
and,
a=[Pn"' s (76)

One can also write
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_ au;_ auzag _1 —
=" _‘(ag a) =g o=

ou, __ 06 _ 1
where = —6, and n=% then

Uz 1 0 0O U1
O 0 0 0 01
unr [ 10 1 0f) ux
qu 0 0 a 6’y2
or
6:Zu,-

Substituting equation (79) into (76) and after that into (70) yields
u = P[Pn| ' Zu;

One knows that u = Nu;, then
N, = P[Pn]"'Z

and

1-32+28 "

—aé + 2a8* — a8
38 — 28

a§2 — a§3

N, =

In order to find the matrix B, one considers
z 0?
Lu = —;a—éz

T z O°NT

_ u

u __; 862

then

and

(77)

(82)

(84)
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—6+12671"
da — 6
B,— — ¢ (85)
a? | 6—12¢
2a — 6aé

Similarly, one can find the interpolation functions of the electric potential. The
element has one dimension (£) and two electric degrees of freedom, thus one
obtains the following polynomial basis to obtain the interpolation functions.

P=[1 ¢&] (86)

The values of the generalized coordinates for each element node, Pn, are given
in equation (87). The columns of the inverse matrix Pn contain the indices of the
interpolation functions. The values of the generalized coordinate for the node
1 (¢6=0) and node 2 (£=1) yield

Pn— “ ﬂ (87)
and
=Y (58)

The interpolation functions are given by multiplying equations (86) and (88)

Ny =P[Pn] ' = [1 gfr (89)

Whereas the electric field can be written directly proportional to the difference of
the electric potential and inversely proportional to the distance of these potentials,
then

do
®=E5 - E=— 90

where & is the distance between the potentials, so ¢ = ¢(x) — & = 5(x), then

o

Rewritten in the matrix form
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0
E(x) = [a] D(x) (92)
Comparing (92) with (19)
0
Lo= |5 93)

S . . X
Considering the generalized coordinate ¢ == — Ox =a0¢, one can
a

rewrite (93) as

10
then,
r_ |1ONg
By =1 %¢ (95)
17-11"
Bo=3 |7 (96)

The interpolation functions of the mechanical displacement and electric poten-
tial can now be used in equations from (28) to (33) in order to find the electrome-
chanical coupled elementary matrices. The differential volume of the host structure
element is

dVs =dzdxdy (97)

Considering the generalized coordinates » = 7, one can write the differential

volume as
dVs =dzab dédn (98)

Substituting (98), equations (28) and (29) are rewritten as:

el g
M :J J J dzp, ab NN, dédn (99)
0Jo J-r,

where a is the length, b the width, and ¢, the thickness of the element. Integrating in
z- and n-directions yields
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1
M = p,tiab J NIN,d¢ (100)
0
similarly,
! T
M = ptpab L NN, a¢ (101)

The local matrix of stiffness for the host structure and the PZT, Egs. (30) and
(31), are obtained by substituting the differential volume

Estb (!
KE=—"25 BB 102
- | mima (102)
.E 3 1
cntpr -
K¢ = B'B 1
P 12a3 0 u Mdé: ( 03)

The electromechanical coupling matrix and the piezoelectric capacitance matrix,
Egs. (32) and (33), are

R €31 2ab (!
K;, = 2" L BB, d¢ (104)
and
1
K§, = &3 tpab L BB, d¢ (105)

where [K;A ' =Ky,

The general equations from the previous sections are applied for the case of an
aluminum clamped-free beam, as shown in Fig. 3. The beam is modeled with
20 elements with 2 mechanical and 1 electrical DOF per node. Different numbers
and locations of PZTs can be considered. The poling of the piezoelectric patches is
in the z-direction. The geometrics and physics features of the beam are Young

,,a:_llllllllllllll —_—
5 - = -

cross section

Fig. 3 Schematic drawing of the beam with PZT patches
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Table 1 Six first natural frequencies for the aluminum clamped-free beam

Modes Analytics f,, (Hz) SMARTSYS f,, (Hz) Difference (%)
1 15.47 15.39 0.52
2 96.98 96.47 0.52
3 271.56 270.13 0.53
4 532.14 529.36 0.52
5 879.67 875.17 0.51
6 1314.07 1307.62 0.49

1 mode 2™ mode

3" mode Esiide

Fig. 4 Four first vibration modes for the electromechanical-coupled beam

modulus 70 GPa; Poisson coefficient 0.31; mass density 2710 kg/m3; length
400 mm; width 20 mm; and thickness 3 mm.

A finite element code was developed using the previous equations, called
SmartSys. Table 1 shows the six first natural frequencies obtained with the
SmartSys code and analytically (INMAN 2013) for the case without PZT patches.

The incorporation of mass, stiffness, capacitance, and coupling matrix of the
piezoelectric patch has a significant influence on the dynamic properties of the
system. The disregarding of these terms may cause errors in many applications. In
order to verify the influence of the electromechanical coupling, four pairs of PZT
patches were bonded on both sides of the beam, as shown in Fig. 3. The beam is
discretized with 20 beam elements, 21 nodes with two mechanical and 1 electrical
DOF per node. The geometrics and physics features of the PZT patches are Young
modulus 62 GPa; mass density 7500 kg/m?; length of each PZT patch 20 mm; width
20 mm; thickness 3 mm,; strain constant dz; 320e — 12; dielectric tensor at constant
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Fig. 5 FRF of the beam; (a) without PZTs and, (b) four pairs of PZT patches as shown in Fig. 3

Table 2 .Five first natural Case () Case (b)
gfgﬁ‘f;zs;‘;ﬁ‘ﬁ gﬁgm Modes | f, (Hz) f,(Hz) | Difference (%)
for the beam with four pairs 1 15.39 18.45 19.88
of PZT patches 2 96.47 101.02 4.72

3 270.13 274.18 1.50

4 529.36 550.53 4.00

5 875.17 927.39 5.97

mechanical strain e§3 3.363e — 8 F/m; elasticity constant ¢y 92.3e9 N/mz; and
dielectric permittivity es; 16.27 C/m?

Figure 4 shows the four first vibration modes for the electromechanical-coupled
beam.

Figure 5 shows the Frequency Response Functions, FRF, for an impulsive
excitation (F =1 N) in node 2 and response in the free end of the beam, node 21.
There were considered two cases: (a) beam without PZT patch, and (b) beam with
four pairs of PZT patches as shown in Fig. 3.

The five first natural frequencies are shown in Table 2 for both cases, beam
without PZT patch and beam with four pairs of PZT patches

The analytical model of a beam with piezoelectric material coupling the elec-
trical and mechanical coordinates was derived using a generalized Hamilton’s
principle. It was found that the incorporation of mass, stiffness, capacitance, and
coupling matrix of the piezoelectric patch has a significant influence on the
dynamic properties of the system. This model of smart structure contains additional
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degrees of freedom at each node, the electrical potential, and it makes the global
mass and stiffness matrices non-positive definite, which require special numerical
preparation to solve the eigenvalue problem.
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