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Abstract Piezoelectricity is a phenomenon in which certain crystalline substances

develop an electric field when subjected to pressure force, or conversely, exhibit a

mechanical deformation when subjected to an electric field. This reciprocal cou-

pling between mechanical and electrical energy provides useful features for these

materials. The dynamics of the piezoelectric sensor/actuator plays an increasing

importance when higher performance from closed loop systems or damage moni-

toring is required for strategic applications. This chapter focuses on the develop-

ment of the constitutive equations of smart structures. The incorporation of mass,

stiffness, and electromechanical coupling of the piezoceramic patches has a signif-

icant influence on the dynamics properties of the system.
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1 Introduction

The dynamics of the piezoelectric sensor/actuator plays an increasing importance

when higher performance from closed loop systems or damage monitoring is

required for strategic applications. For a piezoceramic, the three direction (z-axis)
is usually associated with the direction of poling and the material is approximately

isotropic in the other two directions.

Materials that become electrically polarized when they are deformed present the

direct piezoelectric effect, producing an electrical charge at the surface of the

material. The converse piezoelectric effect results in a strain in the material when

placed within an electric field. The direct and converse effects result an electrome-

chanical coupling. While piezoelectric elements exhibit nonlinear hysteresis at high

excitation levels, the response required in the current typical structural applications
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is approximately linear. The linear constitutive relations for piezoelectric materials

are given by Leo (2007):

T ¼ cE
� �

Sf g � e½ � Ef g ð1Þ

D ¼ e½ �T Sf g þ εS
� �

Ef g ð2Þ

where the superscript ( )S means that the values are measured at constant strain, the

superscript ( )E means that the values are measured at constant electric field, T is the

stress tensor [N/m2], D is the electric displacement vector [C/m2], {S} is the strain

tensor [m/m], {E} is the electric field [V/m¼N/C], [cE] is the elasticity tensor at

constant electric field [N/m2], [e] is the dielectric permittivity tensor [N m/V m2¼
C/m2], and is the dielectric tensor at constant mechanical strain (permittivity

matrix) [N m/V2 m]. The letters in brackets indicate the units of the variables

(in the SI system of units) with N, m, V, and C denoting Newton, meter, Volts, and

Coulomb, respectively.

T ¼ T11 T22 T33 T23 T13 T12½ �T

S ¼ S11 S22 S33 S23 S13 S12½ �T

D ¼ D1 D2 D3½ �T; E ¼ E1 E2 E3½ �T

εS
� � ¼

εS1 0 0

0 εS2 0

0 0 εS3

2
664

3
775; e½ � ¼

0 0 e13

0 0 e31

0 0 e33

0 e15 0

0 e15 0

2
666666664

3
777777775
;

cE
� � ¼

cE11 cE12 cE13 0 0 0

cE12 cE22 cE23 0 0 0

cE13 cE23 cE33 0 0 0

0 0 0 cE44 0 0

0 0 0 0 cE55 0

0 0 0 0 0 cE66

2
6666666666664

3
7777777777775

If each element of the matrix of piezoelectric material constant, [e], is designed

by eij where i corresponds to the row and j corresponds to the column of the matrix,

then eij corresponds to the stress developed in the jth direction due to an electric

field applied in the ith direction. The piezoelectric strain constants dij, relating the
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voltage applied in the ith direction to a strain developed in jth direction, are

provided more often than the stress constants. However, the piezoelectric stress

constants can be obtained from the strain constants since the constitutive equation

can also be written as:

S ¼ sE
� �

Tf g þ d½ � Ef g ð3Þ

D ¼ d½ �T Tf g þ εT
� �

Ef g ð4Þ

where εT is the dielectric tensor at constant stress. The relative dielectric constant,

KT, is the ratio of the permittivity of the material, εT, to the permittivity of the free

space, ε0, (ε0¼ 8.9� 10�12 F/m or A s/V m). Then,

cE
� � ¼ sE

� ��1
; e½ � ¼ cE

� �
d½ �

εS
� � ¼ εT

� �� d½ �T cE
� �

d½ �; KT ¼ εT

ε0

with

d½ � ¼

0 0 d31

0 0 d31

0 0 d33

0 d15 0

0 0 d15

2
6666664

3
7777775

2 Finite Element Formulation of Electromechanical
Systems

Finite Element Method (FEM) is widely used in engineering problems allowing to

obtain approximate solutions to differential equations that describe the dynamics of

a system. Other methods for obtaining electromechanical models may be used as

the assumed modes method. However, the biggest advantage of FEM is to model

structures with complex geometry. The basic idea is to divide the region into a finite

number of elements and assume that these elements are interconnected by nodes

(Bathe and Wilson 1976).

The pioneers in the development of dynamic models for smart structures are the

work Allik and Hughes (1970). They use the mechanical stress induced by the

piezoelectric to contribute with the total mechanical stress of the host structure.

However, the first research work that has developed a rigorous system for the

design of electromechanical coupled structure was presented by Hagood
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et al. (1990), who applied the generalized Hamilton’s principle, also known as

variational principle applied to piezoelectric systems (Allik and Hughes 1970). The

great contribution of Hagood et al. (1990) was formulated more clearly the elec-

tromechanical coupling.

The FEM is a method of transformation and approximation of an integral

formulation, by an approximation linear algebraic formulation, where the coeffi-

cients are integral evaluations on the subarea of the area of resolution. The

Rayleigh–Ritz formulation is used to derive the equations of motion of the

electroelastic beam. The assumed displacement field shapes within the elastic

body and electric potential field shapes will be combined through the piezoelectric

properties to form a set of coupled electromechanical equations of motion. The

generalized form of Hamilton’s principle for a coupled electromechanical system is

(Hagood et al. 1990)

ðt2
t1

δ T � U þWe �Wmð Þ þ δW½ �dt ¼ 0 ð5Þ

where t1 and t2 are two arbitrary instants, T is the Kinetic energy, U is the potential

energy, We is the work done by electrical energy, and Wm is the work done by

magnetic energy, which is negligible for piezoceramic material.

T ¼ TS þ TP ¼
ð
VS

1

2
ρS _u T _u dV þ

ð
VP

1

2
ρP _u T _u dV ð6Þ

U ¼ US þ UP ¼
ð
VS

1

2
ST TdV þ

ð
VP

1

2
ST TdV ð7Þ

We ¼
ð
Vp

1

2
ET DdV ð8Þ

where ρ is the mass density and the subscript s and p refer to the structure and

piezoelectric material, respectively. The virtual work, δW, done by external forces

and the prescribed surface charge, Q, is,

δW ¼
ð
VS

δ uTPb dV þ
ð
SS

δ uTPS dsS þ δ uTPC �
ð
SP

δΦQdsP ð9Þ

where Pb is the body force, PS is the surface force, PC is the concentrated load, and

Q is the surface charge. To formulate the matrix of the electromechanical coupling

using FEM, the displacement vector, u, and the electric potential, ϕ, must be

expressed in terms of nodal value, i, via the interpolation function
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u xð Þ ¼ Nu½ � uif g ð10Þ

Φ xð Þ ¼ Nϕ

� �
ϕif g ð11Þ

Substituting Eq. (10) into Eq. (6) yields

T ¼
ððð
Vs

1

2
ρs _u

T _u dVs þ
ððð
Vp

1

2
ρp _u

TudVp

1

2
ð12Þ

The potential energy is the sum of the potential energy of the structure and of the

piezoelectric material. The constitutive relation of the structure in matrix form is

given by:

Ts ¼ GsS and Gs

¼ Es

1þ υð Þ 1� 2υð Þ

1� υ υ υ 0 0 0

υ 1� υ υ 0 0 0

υ υ 1� υ 0 0 0

0 0 0
1� 2υ

2
0 0

0 0 0 0
1� 2υ

2
0

0 0 0 0 0
1� 2υ

2

2
66666666666664

3
77777777777775

ð13Þ

Gs is the matrix containing the elastic coefficients of the material. Es is the

Young’s modulus and υ is the Poisson ratio. The strain can be represented in

matrix form by:

S ¼ Lu u;

Sx

Sy

Sz

Sxy

Sxz

Syz

8>>>>>>>>><
>>>>>>>>>:

9>>>>>>>>>=
>>>>>>>>>;

¼

∂
∂x

0 0

0
∂
∂y

0

0 0
∂
∂z

∂
∂y

∂
∂x

0

∂
∂z

0
∂
∂x

0
∂
∂z

∂
∂y

2
6666666666666666666664

3
7777777777777777777775

ux

uy

uz

8><
>:

9>=
>;; S ¼ LuNuui ð14Þ
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or

S ¼ Buui ð15Þ

and

Bu ¼ LuNu ð16Þ

Substituting (15) in (13), one obtains the stress tensor in the host structure

Ts ¼ GsS ¼ GsBuui ð17Þ

Solving (7) in the structural domain, Vs, yields

Us ¼
ððð
Vs

1

2
uT
i B

T
u GsBuuidVs ð18Þ

Similarly from the mechanical strain, the electric field is described by

E ¼ LϕΦ ð19Þ

or

E ¼ LϕNϕϕi ¼ Bϕϕi ð20Þ

where

Bϕ ¼ LϕNϕ ð21Þ

and Lϕ is the matrix containing the differential operators. Substituting (1) into (7)

and using (20), the potential energy in the piezoelectric domain, Vp, yields

Up ¼
ððð
Vp

1

2
uT
i B

T
u cE Bu ui dVp �

ððð
Vp

1

2
uT
i BT

u e Bϕ ϕi dVp ð22Þ

The potential energy of the piezostructure is obtained by adding (18) and (22)

U ¼
ððð
Vs

1

2
uT
i B

T
u GsBuuidVs þ

ððð
Vp

1

2
uT
i B

T
u c

E BuuidVp �
ððð
Vp

1

2
uT
i B

T
u eBϕϕidVp

ð23Þ
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The work done by electrical energy is

We ¼
ððð
Vp

1

2
ET D dVP ð24Þ

Using the constitutive relations yields

We ¼
ððð
VP

1

2
ϕT
i B

T
ϕ eT BuuidVP þ

ððð
VP

1

2
ϕT
i B

T
ϕ ε

SBϕϕidVP ð25Þ

At this point, the coupled electromechanical system equation can be derived

from the generalized form of Hamilton’s principle. Allowing arbitrary variations of
{ui} and {Φi}, two equilibrium matrix equations, in generalized coordinates, are

obtained.

M e
S

� �þ M e
P

� �� �
uif g þ K e

S

� �þ K e
P

� �� �
uif g � K e

uϕ

h i
Φif g ¼ Fef g ð26Þ

K e
ϕu

h i
uif g � K e

ϕϕ

h i
Φif g ¼ Qef g ð27Þ

where
e
SM and

e
PM are the local matrix of mass for the host structure and the PZT,

respectively:

M e
s ¼

ððð
Vs

ρsN
T
u NudVs ð28Þ

M e
p ¼

ððð
Vp

ρpN
T
u NudVp ð29Þ

and
e
SK and

e
PK are the local matrix of stiffness for the host structure and the PZT,

respectively:

K e
s ¼

ððð
Vs

BT
u GsBudVs ð30Þ

K e
p ¼

ððð
Vp

BT
u c

EBudVp ð31Þ

The electromechanical coupling matrix, Ke
uϕ, and the piezoelectric capacitance

matrix, Ke
ϕϕ, are
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K e
uϕ ¼

ððð
Vp

BT
u e BϕdVp ð32Þ

K e
ϕϕ ¼

ððð
VP

BT
ϕ2SBϕdVP ð33Þ

with K e
ϕu

h i
¼ K e

uϕ

h iT
. The force vectors are given by:

Fef g ¼
ð
VS

Nu½ �T PBf gdVS þ
ð
SS

Nu½ �T PSf gdSs þ Nu½ �T Pcf g ð34Þ

Qef g ¼ �
ð
SP

Nϕ

� �T
Q dSP ð35Þ

For the entire structure, using the standard assembly technique for the FEM, we

obtain the complete equation for a coupled electromechanical system as

M 0

0 0

" #
€u

€Φ

( )
þ Kuu Kuϕ

Kϕu Kϕϕ

" #
u

Φ

( )
¼ F

Q

( )
ð36Þ

where the global matrices are defined by

M ¼
Xne
i¼1

M e
s

� �
i
þ
Xnp
j¼1

M e
p

� �
j

ð37Þ

Kuu ¼
Xne
i¼1

K e
s

� �
i
þ
Xnp
j¼1

K e
p

� �
j

ð38Þ

Kuϕ ¼ KT
ϕu ¼ �

Xnp
j¼1

K e
uϕ

� �
j

ð39Þ

Kϕϕ ¼ �
Xnp
j¼1

K e
ϕϕ

� �
j

ð40Þ

where ne is the number of structural elements and np is the number of piezoelectric

patches in the structure. The symbol summation, in the above equations, means

finite element assembling matrices. At this point, it is important to note that the
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mass and stiffness matrices for a finite element and therefore for the complete

structure are not positive definite.

The sensor equation is:

Kϕu uþKϕϕ Φs ¼ Q ð41Þ

Making the electric chargeQ to zero since there is no electric potential applied to

the sensor, yields

Φs ¼ �K�1
ϕϕ Kϕuu ð42Þ

To find the force generated in the actuator, one must consider the charge

Q nonzero, then we can rewrite equation (41) as follows:

Kϕu uþKϕϕ Φa ¼ Q ð43Þ

or

Φa ¼ K�1
ϕϕ Q�Kϕuu
� � ð44Þ

Replacing the electric potential (44) in the global equation (36) yields

M€uþKu ¼ Fþ Fel ð45Þ

where

K ¼ Kuu �Kuϕ K
�1
ϕϕ Kϕu ð46Þ

Fel ¼ �Kuϕ K
�1
ϕϕ Q ð47Þ

where Fel is the electric force generated in the actuator by applying an electrical

charge.

The term KuϕΦ can be divided in two parts dependent on the electric potential,

one referring to the piezoelectric material used as sensor and the other for the

piezoelectric material used as actuator.

KuϕΦ ¼ Kuϕ Φs þKuϕ Φa ð48Þ

Substituting in the motion equation (36)

M€uþKuu uþKuϕ �K�1
ϕϕ Kϕu u

� �
¼ F�KuϕΦa ð49Þ

or

M€uþKu ¼ F�KuϕΦa ð50Þ
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where

K ¼ Kuu �Kuϕ K
�1
ϕϕ Kϕu ð51Þ

Every structure has some damping effect. Usually, this value is difficult to be

defined precisely, but can be predicted. A practical approach is considering pro-

portional damping, to the mass and stiffness.

Da ¼ αMþ βK ð52Þ

The global equation of motion, considering damping matrix, is given by

M€uþ Da _u þKu ¼ F�Kuϕ K
�1
ϕϕQ ð53Þ

where M, Da, and K are the global matrices of mass, damping, and stiffness,

respectively.

3 Eigenvalue Problem for the Short Circuit Case

Natural frequencies and mode shapes can be obtained by reducing the assembled

global matrices to a standard eigenvalue form. It can be done by suitable grounding

the structure by specifying one or more nodal value of electrical potential. Then the

new piezoelectric capacitance matrix, , is non-singular and the eigenvalue

problem, for the undamped homogeneous system, can be written as (Lopes Jr.

et al. 2000)

K½ � � ω2 M½ �� �
uf g ¼ 0f g ð54Þ

where

M½ � ¼ Muu½ � ð55Þ

K½ � ¼ Kuu½ � � Kuϕ

� �
K∗

ϕϕ

h i�1

Kϕu

� � ð56Þ

and indicates the inverse of the matrix.
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4 Application: Clamped-Free Beam with Bonded PZT

The general equations from the previous section will be applied for the case of a

clamped-free beam with a pair of bonded PZT (bimorph case). Different numbers

and locations of PZTs can be considered.

The poling of the piezoelectric is in the z-direction. Figure 1 shows an Euler–

Bernoulli beam, where the displacement of a point on a normal plane of the beam at

a distance “z” from the median line in the direction “x” is

ux ¼ �ztgφ ¼ �z
∂uz
∂x

ð57Þ

The state of plane strain is given by

Sx ¼ ∂ux
∂x

¼ � z
∂2

uz
∂x2

ð58Þ

Equation (14) can be rewritten as

S ¼ Luuz ð59Þ
where

Lu ¼ �z
∂2

∂x2

" #
ð60Þ

The stress is also rewritten as

Fig. 1 Displacement of a point P at a distance z from the median line of the beam
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Tx ¼ EsSx ð61Þ
Considering that the piezoelectric material is being modeled as Euler–Bernoulli

beam element, their constitutive relations can be summarized as:

D3 ¼ e31S11 þ εS33E3 sensor equation ð62Þ

T11 ¼ cE11S11 � e31E3 actuator equation ð63Þ

The goal is to obtain the interpolation function on the basis of generalized

coordinates for the degrees of freedom of displacement and electrical potential.

With these functions, one can determine the elementary matrices of electromechan-

ical coupled system. Initially, it is considered the electromechanical coupling

between the host structure and the piezo element, as shown in Fig. 2.

The element is composed by two nodes, with two structural degrees of freedom

per node, translation denoted by “uzi” in direction “z” and rotation in the plane “yz”
denoted by “θyi,” and one electric potential degree of freedom per node “ϕi.”

Considering xi the point localized in the node i and ξ the generalized coordinate

in function of x, as

ξ ¼ x

a
ð64Þ

One can rewrite the displacement vector of the ith element as

ui ¼ uz1 θy1 uz2 θy2½ �T ð65Þ

and the electric potential is

Φi ¼ ϕ1 ϕ2½ �T ð66Þ

or

u ξð Þ ¼ Nu1 ξð Þuz1 þ Nu2 ξð Þθy1 þ Nu3 ξð Þuz2 þ Nu4 ξð Þθy2 ð67Þ

and

a

x

z

uz1

xi, z = 0 j1 j2 xj, z = 1

zqy1 qy2

uz2

Fig. 2 Structural element with electromechanical coupling
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Φ ξð Þ ¼ Nϕ1 ξð Þϕ1 þ Nϕ2 ξð Þϕ2 ð68Þ

Initially, one can find the interpolation functions of the mechanical displace-

ments. For this, it is observed that the element is analyzed in only one dimension (ξ)
and has four degrees of freedom. Therefore, one obtains the following interpolating

function for displacement in the z-direction.

uz ξð Þ ¼ α1 þ α2ξþ α3ξ
2 þ α4ξ

3 ð69Þ

or

u ¼ Pα ð70Þ

where

P ¼ 1 ξ ξ2 ξ3
� � ð71Þ

α ¼ α1 α2 α3 α4½ �T ð72Þ

Considering small angles

θη ξð Þ ¼ �∂uz ξð Þ
∂ξ

¼ �α2 � 2α3ξ� 3α4ξ
2 ð73Þ

The values of the generalized coordinates for each element node can be obtained

in matrix form as Eq. (74). The columns of the inverse matrix Pn contain the

interpolation functions. The values of the generalized coordinates for node 1 (ξ¼ 0)

and node 2 (ξ¼ 1) yield

uz1

θη1

uz2

θη2

8>>>><
>>>>:

9>>>>=
>>>>;

¼

1 0 0 0

0 �1 0 0

1 1 1 1

0 �1 �2 �3

2
66664

3
77775

α1

α2

α3

α4

8>>>><
>>>>:

9>>>>=
>>>>;

ð74Þ

or

δ ¼ Pn α ð75Þ

and,

α ¼ Pn½ �-1 δ ð76Þ

One can also write
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θy ¼ �∂uz
∂x

¼ � ∂uz
∂ξ

∂ξ
∂x

� 	
¼ 1

a
θη ! θη ¼ aθy ð77Þ

where ∂uz
∂ξ ¼ �θη and

∂ξ
∂x ¼ 1

a, then

uz1

θη1

uz2

θη2

8>>>><
>>>>:

9>>>>=
>>>>;

¼

1 0 0 0

0 a 0 0

0 0 1 0

0 0 0 a

2
66664

3
77775

uz1

θy1

uz2

θy2

8>>>><
>>>>:

9>>>>=
>>>>;

ð78Þ

or

δ ¼ Zui ð79Þ

Substituting equation (79) into (76) and after that into (70) yields

u ¼ P Pn½ ��1Zui ð80Þ

One knows that u¼Nuui, then

Nu ¼ P Pn½ ��1Z ð81Þ

and

Nu ¼

1� 3ξ2 þ 2ξ3

�aξþ 2aξ2 � aξ3

3ξ2 � 2ξ3

aξ2 � aξ3

2
66664

3
77775

T

ð82Þ

In order to find the matrix Bu, one considers

Lu ¼ � z

a2
∂2

∂ξ2

" #
ð83Þ

then

BT
u ¼ � z

a2
∂2

NT
u

∂ξ2
ð84Þ

and
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Bu ¼ � z

a2

�6þ 12ξ

4a� 6ξ

6� 12ξ

2a� 6aξ

2
66664

3
77775

T

ð85Þ

Similarly, one can find the interpolation functions of the electric potential. The

element has one dimension (ξ) and two electric degrees of freedom, thus one

obtains the following polynomial basis to obtain the interpolation functions.

P ¼ 1 ξ½ � ð86Þ

The values of the generalized coordinates for each element node, Pn, are given
in equation (87). The columns of the inverse matrix Pn contain the indices of the

interpolation functions. The values of the generalized coordinate for the node

1 (ξ¼ 0) and node 2 (ξ¼ 1) yield

Pn ¼ 1 0

1 1


 �
ð87Þ

and

Pn½ ��1 ¼ 1 0

�1 1


 �
ð88Þ

The interpolation functions are given by multiplying equations (86) and (88)

Nϕ ¼ P Pn½ ��1 ¼ 1� ξ
ξ


 �T
ð89Þ

Whereas the electric field can be written directly proportional to the difference of

the electric potential and inversely proportional to the distance of these potentials,

then

Φ ¼ Eδ ! E ¼ dΦ

dδ
ð90Þ

where δ is the distance between the potentials, so ϕ ¼ ϕ xð Þ ! δ ¼ δ xð Þ, then

E ¼ ∂Φ
∂x

ð91Þ

Rewritten in the matrix form
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E xð Þ ¼ ∂
∂x


 �
Φ xð Þ ð92Þ

Comparing (92) with (19)

Lϕ ¼ ∂
∂x


 �
ð93Þ

Considering the generalized coordinate ξ ¼ x

a
! ∂x ¼ a∂ξ, one can

rewrite (93) as

Lϕ ¼ 1

a

∂
∂ξ


 �
ð94Þ

then,

BT
ϕ ¼ 1

a

∂NT
ϕ

∂ξ

" #
ð95Þ

Bϕ ¼ 1

a

�1

1


 �T
ð96Þ

The interpolation functions of the mechanical displacement and electric poten-

tial can now be used in equations from (28) to (33) in order to find the electrome-

chanical coupled elementary matrices. The differential volume of the host structure

element is

dVS ¼ dz dx dy ð97Þ

Considering the generalized coordinates η ¼ y
b, one can write the differential

volume as

dVs ¼ dz ab dξdη ð98Þ

Substituting (98), equations (28) and (29) are rewritten as:

M e
s ¼

ð1
0

ð1
0

ð ts=2

�ts=2

dzρs ab NT
u Nudξdη ð99Þ

where a is the length, b the width, and ts the thickness of the element. Integrating in

z- and η-directions yields
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M e
s ¼ ρstsab

ð1
0

NT
u Nudξ ð100Þ

similarly,

M e
p ¼ ρptpab

ð1
0

NT
u Nudξ ð101Þ

The local matrix of stiffness for the host structure and the PZT, Eqs. (30) and

(31), are obtained by substituting the differential volume

K e
s ¼ ES t

3
s b

12a3

ð1
0

BT
u Budξ ð102Þ

K e
p ¼ cE11 t

3
p b

12a3

ð1
0

BT
u Budξ ð103Þ

The electromechanical coupling matrix and the piezoelectric capacitance matrix,

Eqs. (32) and (33), are

K e
uϕ ¼ e31 t

2
p ab

2

ð1
0

BT
u Bϕ dξ ð104Þ

and

K e
ϕϕ ¼ εS33 tp ab

ð1
0

BT
ϕBϕ dξ ð105Þ

where K e
uϕ

h iT
¼ K e

ϕu

The general equations from the previous sections are applied for the case of an

aluminum clamped-free beam, as shown in Fig. 3. The beam is modeled with

20 elements with 2 mechanical and 1 electrical DOF per node. Different numbers

and locations of PZTs can be considered. The poling of the piezoelectric patches is

in the z-direction. The geometrics and physics features of the beam are Young

Fig. 3 Schematic drawing of the beam with PZT patches
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modulus 70 GPa; Poisson coefficient 0.31; mass density 2710 kg/m3; length

400 mm; width 20 mm; and thickness 3 mm.

A finite element code was developed using the previous equations, called

SmartSys. Table 1 shows the six first natural frequencies obtained with the

SmartSys code and analytically (INMAN 2013) for the case without PZT patches.

The incorporation of mass, stiffness, capacitance, and coupling matrix of the

piezoelectric patch has a significant influence on the dynamic properties of the

system. The disregarding of these terms may cause errors in many applications. In

order to verify the influence of the electromechanical coupling, four pairs of PZT

patches were bonded on both sides of the beam, as shown in Fig. 3. The beam is

discretized with 20 beam elements, 21 nodes with two mechanical and 1 electrical

DOF per node. The geometrics and physics features of the PZT patches are Young

modulus 62 GPa; mass density 7500 kg/m3; length of each PZT patch 20 mm; width

20 mm; thickness 3 mm; strain constant d31 320e� 12; dielectric tensor at constant

Table 1 Six first natural frequencies for the aluminum clamped-free beam

Modes Analytics fn (Hz) SMARTSYS fn (Hz) Difference (%)

1 15.47 15.39 0.52

2 96.98 96.47 0.52

3 271.56 270.13 0.53

4 532.14 529.36 0.52

5 879.67 875.17 0.51

6 1314.07 1307.62 0.49

Fig. 4 Four first vibration modes for the electromechanical-coupled beam
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mechanical strain εS33 3.363e� 8 F/m; elasticity constant c11 92.3e9 N/m2; and

dielectric permittivity e31 16.27 C/m2

Figure 4 shows the four first vibration modes for the electromechanical-coupled

beam.

Figure 5 shows the Frequency Response Functions, FRF, for an impulsive

excitation (F¼ 1 N) in node 2 and response in the free end of the beam, node 21.

There were considered two cases: (a) beam without PZT patch, and (b) beam with

four pairs of PZT patches as shown in Fig. 3.

The five first natural frequencies are shown in Table 2 for both cases, beam

without PZT patch and beam with four pairs of PZT patches

The analytical model of a beam with piezoelectric material coupling the elec-

trical and mechanical coordinates was derived using a generalized Hamilton’s
principle. It was found that the incorporation of mass, stiffness, capacitance, and

coupling matrix of the piezoelectric patch has a significant influence on the

dynamic properties of the system. This model of smart structure contains additional

Fig. 5 FRF of the beam; (a) without PZTs and, (b) four pairs of PZT patches as shown in Fig. 3

Table 2 Five first natural

frequencies for the beam

without PZT patch and

for the beam with four pairs

of PZT patches

Modes

Case (a) Case (b)

fn (Hz) fn (Hz) Difference (%)

1 15.39 18.45 19.88

2 96.47 101.02 4.72

3 270.13 274.18 1.50

4 529.36 550.53 4.00

5 875.17 927.39 5.97
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degrees of freedom at each node, the electrical potential, and it makes the global

mass and stiffness matrices non-positive definite, which require special numerical

preparation to solve the eigenvalue problem.
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