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Abstract Over the last two decades, piezoelectric materials have been extensively

used as components in active and passive structural vibration control solutions. The

most frequent applications consider piezoceramic thin patches bonded to thin

structures subjected to bending. For active vibration control solutions, the

piezoceramic patches can be used as strain sensors and/or bending actuators when

connected to properly designed signal conditioning, processing, and amplification.

For passive vibration control solutions, they can be used as vibration dampers

and/or absorbers when connected to properly designed electronic shunt circuits.

The objective of this chapter is to present some examples of the use of piezoelectric

materials, as distributed sensors and actuators, for the development and implemen-

tation of passive and active vibration control solutions.

Keywords Piezoelectric structures • Electromechanical coupling • Piezoelectric

sensors and actuators • Piezoelectric shunted damping • Piezoelectric active control

1 Introduction

Over the last two decades, piezoelectric materials have been extensively used as

components in active and passive structural vibration control solutions. The most

frequent applications consider piezoceramic thin patches bonded to thin structures

subjected to bending. For active vibration control solutions, the piezoceramic

patches can be used as strain sensors and/or bending actuators when connected to

properly designed signal conditioning, processing, and amplification. For passive

vibration control solutions, they can be used as vibration dampers and/or absorbers

when connected to properly designed electronic shunt circuits. The objective of this

chapter is to present some examples of the use of piezoelectric materials,
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as distributed sensors and actuators, for the development and implementation of

passive and active vibration control solutions. Other textbooks discussing some of

the topics presented in this chapter can be recommended (Meirovitch 1990;

Preumont 1997, 2006; Reza Moheimani and Fleming 2006; Leo 2007).

2 Passive Vibration Control Using Piezoelectric Materials

For thin flexible structures, such as beams, plates, shells, and panels, most part of

the vibrating energy is in bending motion and, thus, it seems worthwhile to make

use of patches and/or layers of functional materials that can bend (deform) together

with the structure and are capable of extracting (converting) this deformation

energy from the host structure. To this end, piezoelectric materials are an interest-

ing choice since they are quite effective in converting deformation energy into

electrical energy. If connected to properly designed electric circuits, this electrical

energy could then be extracted from the piezoelectric material. The seminal work of

Hagood and von Flotow (1991) proposed the use of piezoelectric patches connected

to resistive shunt circuits, leading to an equivalent vibration damper (in which the

electrical energy is dissipated in the circuit resistance), or to resonant (resistive-

inductive) shunt circuits, leading to an equivalent vibration absorber (in which the

electrical energy is absorbed by the circuit within a narrow frequency range).

Later, studies focused mainly on the optimization of the shunt circuits by

including resistances, inductances, capacitances, and switches in series and/or

parallel (Lesieutre 1998; Clark 2000; Reza Moheimani 2003; Viana and

Steffen 2006; Lallart et al. 2008). Other studies focused on the optimization of

the electromechanical coupling between the piezoelectric materials and host

structure (Trindade and Maio 2008; Trindade and Benjeddou 2009; Godoy and

Trindade 2011).

2.1 Coupled Formulation for Structure, Piezoelectric
Patches, and Shunt Circuits

In this section, a general methodology for the variational formulation of coupled

equations of motion for structures with piezoelectric materials is presented. Equa-

tions are written in terms of both electric potential and electric charge in the

piezoelectric elements. Equipotentiality over each piezoelectric element electrodes

is accounted for in both formulations. Finally, a methodology for coupling the

piezoelectric elements with electric circuits is presented.

290 M.A. Trindade



2.1.1 Electric Potential Formulation

First, a formulation considering structure’s generalized displacements and electric

potential in the piezoelectric elements as variables is proposed. The virtual work

done by internal forces can be found from the virtual variation of the electrome-

chanical potential energy. In this first formulation, it is chosen to write the potential

energy as the electric Gibbs energy, written in terms of mechanical strains ε and

electric fields E, such that its variation reads

δU ε;Eð Þ ¼
ð
Ω

δεtcEε� δεteE� δEtetε� δEtεεE
� �

dΩ; ð1Þ

where cE, e, and εε are the matrices of elastic (for constant electric field), piezo-

electric, and dielectric (for constant mechanical strain) constants of the material.

Using appropriate kinematic assumptions for the piezoelectric structure to be

studied and performing any form of spatial discretization, the coupled equations of

motion can be derived in the form

Ms þMp 0

0 0

" #
€u

€V

( )
þ Kus þKE

up �Kuv

�K t
uv �Kv

" #
u

V

( )
¼ Fm

0

( )
; ð2Þ

where Ms and Kus are the mass and elastic stiffness matrices of the structure

(without piezoelectric elements) and Mp and KE
up are the mass and elastic (for

constant electric fields) stiffness matrices of the piezoelectric elements.Kuv and Kv

are the piezoelectric and dielectric stiffnesses of the piezoelectric elements. Fm is a

vector of the mechanical loads applied to the structure. The degrees of freedom

(dofs) u are the generalized displacements and V are the generalized differences of

electric potentials (voltages) on the piezoelectric material.

To account for the equipotential condition on the electrodes of each piezoelectric

element, let us define the vectors of differences of electric potentials Vp induced or

applied to the electrodes of the piezoelectric elements, such that

V ¼ LpVp: ð3Þ

The boolean matrix Lp has dimension N � Np, where N is the number of spatial

(nodal) points and Np is the number of independent piezoelectric elements. Lp

allows to set an equal value to selected nodal differences of electric potentials.

Substituting Eq. (3) into Eq. (2) and pre-multiplying the second line of the

resulting equation by Lt
p leads to

Ms þMp 0

0 0

" #
€u

€Vp

( )
þ

Kus þKE
up �Kuv

�K
t
uv �Kv

" #
u

Vp

( )
¼ Fm

0

( )
; ð4Þ
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where

Kuv ¼ KuvLp, Kv ¼ L t
pKvLp: ð5Þ

2.1.2 Electric Charge Formulation

An electric charge formulation can be obtained by using the Helmholz free energy,

written in terms of mechanical strains ε and electric displacements D, as potential

energy instead of the electric Gibbs energy, such that the virtual variation of the

potential energy is

δU ε;Dð Þ ¼
ð
Ω

δεtcDε� δεthD� δDthtεþ δDtβεD
� �

dΩ; ð6Þ

where cD, h, and βε are the matrices of elastic (for constant electric displacement),

piezoelectric, and dielectric (for constant mechanical strain) constants of the

material.

In this case, the equations of motion are now written in terms of the generalized

displacements u and electric displacements Dn, such that

Ms þMp 0

0 0

� �
€u
€Dn

� �
þ Kus þKD

up �Kud

�K t
ud Kd

� �
u
Dn

� �
¼ Fm

0

� �
; ð7Þ

where, as in the previous case, Ms and Kus are the mass and elastic stiffness

matrices of the structure (without piezoelectric elements) and Mp and KD
up are the

mass and elastic (for constant electric displacements) stiffness matrices of the

piezoelectric elements. Kud and Kd are the piezoelectric and dielectric stiffnesses

of the piezoelectric elements.

To account for the equipotential condition on the electrodes of each piezoelectric

element, let us define the vectors of electric charges qp on the electrodes of

piezoelectric elements (with uniform and equal material properties and thickness),

such that

Dn ¼ Bpqp, Bp ¼ LpA
�1
p : ð8Þ

The boolean matrix Lp has dimension N � Np, where N is the number of spatial

(nodal) points and Np is the number of independent piezoelectric elements. Lp

allows to set an equal value to selected nodal electric displacements. Ap is a

diagonal matrix with the surface area of the electrodes of the piezoelectric

elements.

Substituting Eq. (8) in Eq. (7) and pre-multiplying the second line of the

resulting equation by Bt
p leads to
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Ms þMp 0

0 0

" #
€u

€qp

( )
þ

Kus þKD
up �Kuq

�K t
uq Kq

" #
u

qp

( )
¼ Fm

0

( )
; ð9Þ

where

Kuq ¼ KudBp, Kq ¼ B t
pKdBp: ð10Þ

2.2 Connection to Electric Circuits

It is worthwhile to analyze the connection of piezoelectric elements to electric

circuits, specially when shunt circuits are considered for passive vibration control.

To this end, it seems that an electric charge formulation is more appropriate since it

is possible to relate the electric charges flowing between the piezoelectric elements

electrodes with the electric charges flowing through the electric circuit. First, let us

consider a set of simple but quite general electric circuits composed of an inductor,

a resistor, and a voltage source. The equations of motion for such circuits can be

found using d’Alembert’s principle, such that the virtual work done by the inductors
δTLj, resistors, δWRj, and voltage sources, δWVj, of the j-th electric circuit are

δTLj ¼ �δqcj Lcj €qcj, δWRj ¼ �δqcj Rcj _qcj, δWVj ¼ δqcj Vcj; ð11Þ

where Lcj, Rcj, and Vcj are the inductance, resistance, and applied voltage of the j-th
electric circuit. qcj is the electric charge flowing through the j-th electric circuit.

Combining the virtual work done by all circuits leads to

δTL ¼
X
j

δTLj ¼ �δq t
cLc€qc, δWR ¼

X
j

δWRj ¼ �δq t
cRc _q c,

δWV ¼
X
j

δWVj ¼ δq t
cVc;

ð12Þ

where qc is the vector of electric charges, Lc and Rc are diagonal matrices with the

inductances and resistances of each circuit, and Vc is the vector of applied voltages.

Adding these virtual works to the electromechanical virtual works of previous

section, such that

δT � δU þ δW þ δTL þ δWR þ δWV ¼ 0; ð13Þ

or, in terms of the generalized displacements,
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δut Ms þMp

� �
€uþ Kus þKD

up

� 	
u�Kuqqp � Fm

h i
þ δq t

p �K t
uquþKqqp

� 	
þ δq t

c Lc€qc þ Rc _q c � Vcð Þ ¼ 0:
ð14Þ

Then, the connection between each piezoelectric element and a corresponding

electric circuit is done by stating that the electric charges flowing from the piezo-

electric element enter the circuit and vice-versa, such that

qc ¼ qp: ð15Þ

Thus, replacing qc by qp in Eq. (14) leads to the following coupled equations of

motion

Ms þMp 0

0 Lc

" #
€u

€qp

( )
þ

0 0

0 Rc

" #
_u

_q p

( )

þ
Kus þKD

up �Kuq

�K t
uq Kq

2
4

3
5 u

qp

( )
¼

Fm

Vc

( )
:

ð16Þ

In this case, the solution for u and qp must be simultaneous, that is accounting for

the electromechanical and circuit equations of motion. Notice that the passive

components of the electric circuit Lc and Rc affect the equivalent piezoelectric

force applied to the structure when an actuator with applied voltage is considered.

For a simple actuator with applied voltage, that is with only a voltage source in

the circuit (Lc ¼ Rc ¼ 0), the second equation in Eq. (16) can be solved for qp
leading to

qp ¼ K�1
q Vc þK�1

q K t
uqu; ð17Þ

which can be substituted in Eq. (16) such that it reduces to

Ms þMp

� �
€uþ Kus þ KD

up �KuqK
�1
q K t

uq

� 	h i
u ¼ Fm þ Fp; ð18Þ

where the equivalent piezoelectric force Fp applied to the structure by the piezo-

electric actuators is

Fp ¼ KuqK
�1
q Vc: ð19Þ

From Eq. (18), the generalized displacements u induced by mechanical and

piezoelectric equivalent forces can be evaluated. Then, the electric charges qp
flowing between electrodes of the piezoelectric elements can be found using

Eq. (17).
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2.3 Design of Passive Resistive Shunt Circuits

In this section, the equations of motion (16) are reduced to the case of purely resistive

shunt circuit by considering Lc ¼ 0 and Vc ¼ 0. It is then desired to use these

equations to properly tune the values of electric resistance of the shunt circuits in

order to maximize the added damping provided to a given vibration mode of interest.

For the sake of simplicity, only one piezoelectric patch connected to one

resistive shunt circuit is considered. The structural response is represented only

by the contribution of the vibration mode of interest, such that

u tð Þ ¼ ϕnαn tð Þ; ð20Þ

where ϕn is the n-th structural vibration mode, mass normalized, and αn is the

corresponding modal displacement. Then, the equations of motion (16) can be

rewritten as

€αn þ ω2
nαn � kpq ¼ Fn; ð21Þ

Rc _q þ keq� kpαn ¼ 0; ð22Þ

where kp ¼ ϕ t
nKuq, ke ¼ Kq, and Fn ¼ ϕ t

nFm. It is interesting to notice that ωn is

the n-th natural frequency for the structure considering an open circuit electric

boundary condition for the piezoelectric patch (Rc ! 1).

The computation of Rc is performed considering that the resistive shunt circuit

behaves as a simple energy dissipation element and, thus, may modify (increase)

the structural damping factor. Therefore, let us consider the free vibration case

(Fm ¼ 0) and quantify the effect of the shunt circuit on the dynamic behavior of the

structure. Supposing a harmonic response αn ¼ ~αne
jωt and q ¼ ~q e jωt,

�ω2 þ ω2
n

� �
~αn � kp~q ¼ 0; ð23Þ

jωRc þ keð Þ~q � kp~αn ¼ 0: ð24Þ

Solving Eq. (24) for q
�
and substituting in Eq. (23) yields

�ω2 þ ω2
n �

k2p
jRcωþ ke

 !" #
~αn ¼ 0: ð25Þ

Hence, the resistive shunt circuit leads to a complex natural frequency ω�
n

defined by

ω*2
n ¼ ω2

n �
k2p

jRcωþ ke
: ð26Þ
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From this equation, it is possible to obtain relevant information about the

electromechanical coupling and its effects. For instance, it is clear that the larger

the electromechanical coupling coefficient (EMCC) between patch and structure

for the vibration mode of interest, represented by kp, the larger is the effect of the
circuit on the structure. Besides, the cases of open circuit (oc) and short-circuit

(sc) may be derived such that

ωoc 2
n ¼ lim

Rc!1
ω*2
n ¼ ω2

n,

ωsc 2
n ¼ lim

Rc!0
ω*2
n ¼ ω2

n �
k2p
ke

;
ð27Þ

where the effect of stiffness increase due to the induced potential is clear. One may

also derive the following expression for the effective EMCC using

K2
n ¼

ωoc 2
n � ωsc 2

n

ωoc 2
n

¼ k2p
ω2
nke

: ð28Þ

Introducing the nondimensional frequency ρ, it is possible to obtain

ρ ¼ Rcω

ke
¼ RcωC

ε
p : ð29Þ

where Cε
p is the piezoelectric patch electric capacitance for constant strain. Then,

the complex natural frequency ω�
n may be rewritten as function of the EMCC K2

n

and nondimensional natural frequency ρ as

ω*2
n ¼ ω2

n 1� K2
n

1þ jρ


 �
; ð30Þ

which, after some algebraic manipulations, may be written as

ω*2
n ¼ ω2

nr 1þ jηnð Þ; ð31Þ

where ωnr and ηn are defined as the real part of the natural frequency and the loss

factor, respectively, which are

ω2
nr ¼ ω2

n 1� K2
n

1þ ρ2


 �
; ð32Þ

ηn ¼
ρK2

n

1� K2
n

� �þ ρ2
: ð33Þ
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Notice that the loss factor and the real part of the complex natural frequency are

functions of the nondimensional frequency ρ. Therefore, it is desired to search for

the value ρop that maximizes ηn. Making dηn=dρ ¼ 0, the following solution is

obtained

ρop ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� K2

n

q
; ð34Þ

such that the maximum loss factor is given by

ηmax
n ¼ K2

n

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� K2

n

q : ð35Þ

Combining Eqs. (29) and (34), an expression for the value of the electric

resistance Rop that maximizes the loss factor at the natural frequency ωn reads

Rop ¼
ke

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� K2

n

q
ωn

: ð36Þ

Figure 1 shows theoretically attainable levels of material loss factor for standard

piezoceramic materials in operation modes k33, k15, and k31.

Fig. 1 Loss factor for standard piezoceramic materials using operation modes k33, k15, and k31
combined to resistive shunt circuits
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2.4 Design of Passive Resonant Shunt Circuits

In the case of piezoelectric patches connected to resonant, or resistive-inductive

(RL), shunt circuits, the circuit is no longer a simple energy dissipation element

since the combination of circuit inductance and piezoelectric patch capacitance

leads to an electrical resonance. On the other hand, this fact may be used in such a

way that the circuit may absorb part of the energy generated by the piezoelectric

material and, thus, behave as a dynamic vibration absorber. Therefore, the theory of

dynamic vibration absorbers (Den Hartog 1985) is used.

To this end, the equations of motion (16) could be reduced to two degrees-of-

freedom, one mechanical and one electrical. Thus, as in the previous section, the

structural response is approximated by only the contribution of the vibration mode

of interest. In the present case, the decomposition Eq. (20) is applied to Eq. (16) but

maintaining both passive circuit elements (Rc 6¼ 0 and Lc 6¼ 0) while the voltage

source is removed (V ¼ 0). The equations of motion (16) are then reduced to

€αn þ ω2
nαn � kpq ¼ bnp; ð37Þ

Lc€qþ Rc _q þ keq� kpαn ¼ 0: ð38Þ

The design of Lc and Rc aims to minimize the structure’s frequency response

amplitude. For that, let us suppose a mechanical excitation p ¼ ~p e jωt, such that αn
¼ ~α ne

jωt and q ¼ ~q e jωt. It is also considered that the structural response will be

measured by a displacement sensor that provides the output y ¼ cyu, where cy is a

vector that describes the output in terms of the contributions of the mechanical dof

u. Due to the harmonic excitation, the output is also in the form y ¼ ~y e jωt, with

~y ¼ cn~α n and cn ¼ cyϕn. The equations of motion (37) and (38) may be written as

ω2
n � ω2

� �
~α n � kp~qc ¼ bn ~f ; ð39Þ

�ω2Lc þ jωRc þ ke
� �

~q� kp~αn ¼ 0: ð40Þ

Solving Eq. (40) for ~q , it is possible to write ~αn and, thus ~y, as functions of the

excitation amplitude ~f , where ~y ¼ H ωð Þ~f ,

H ωð Þ ¼ cnbn
�ω2Lc þ ke þ jωRc

ω4Lc � ω2 ke þ ω2
nLc

� �þ ω2
nke � k2p þ jωRc ω2

n � ω2
� � : ð41Þ

The frequency response amplitude is defined as

H ωð Þj j ¼ cnbn
�ω2Lc þ keð Þ2 þ ωRcð Þ2

ω4Lc � ω2 ke þ ω2
nL

� �þ ω2
nke � k2p


2 þ ωRc ω2

n � ω2
� �

2
h o1=2

;

8><
>:

ð42Þ

298 M.A. Trindade



and, for limited values of Rc, there is an anti-resonance at a frequency that is equal

to the one of the electric circuit resonances, defined as ωc ¼ ke=Lcð Þ1=2. One of the
possible strategies to minimize the structural response amplitude at one of its

resonance frequencies consists of designing the resonance frequency of the

sub-system so that it coincides with the structure’s resonance frequency of interest.
In this case, although both ke and Lc may be designed, ke is considered as a fixed

parameter since it depends on physical and geometric properties of the piezoelectric

patch. Therefore, it is desired to design a circuit that minimizes the structural

response. This can be achieved by considering ωc ¼ ωn, that allows us to compute

the circuit inductance directly by

Lc ¼ ke
ω2
n

: ð43Þ

The anti-resonance placed at ωn is accompanied by two resonances, before and

after ωn, that must have their amplitudes controlled in order to minimize the

amplification of the structural response in the case of frequency detuning. This

can be achieved using the shunt circuit resistance to provide an equivalent damping

to the two resonances. One possible methodology is to search for the resistance

value that makes the amplitude at anti-resonance to be approximately equal to the

one at two invariant frequencies, for which the amplitude is limited and indepen-

dent on the resistance (Den Hartog 1985). These invariant frequencies can be

evaluated through the following expression

lim
Rc!0

H ωð Þj j2 ¼ lim
Rc!1

H ωð Þj j2; ð44Þ

which, by substituting Eq. (42), leads to

ω2
1,2 ¼

1

2
ω2
c þ ω2

n �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
c � ω2

n

� �2 þ 2ω2
c k2p=ke

� 	r� �
: ð45Þ

The response amplitude at these invariant frequencies ω1 and ω2 and at the anti-

resonance frequency ωn are

H ω1ð Þj j2 ¼ R2
cω

2
n

k4p
and H ωnð Þj j2 ¼ 2ke

k2pω
2
n

: ð46Þ

By equalizing the two amplitudes, it is possible to find an expression for the

shunt circuit resistance, such that

Rc ¼ kp
ffiffiffiffiffiffiffi
2ke

p
ω2
n

: ð47Þ

Notice that it is written in terms of the equivalent coupling stiffness kp, equiv-
alent dielectric stiffness ke, and structure’s resonance frequency of interest ωn.
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2.5 Piezoelectric Shunted Damping Example

In this section, a case study of passive vibration control using piezoelectric patches

connected to resistive and resonant shunt circuits is presented. The host structure is

an Aluminum cantilever beam as shown in Fig. 2. The beam is lightly damped and

this is accounted for using a constant modal damping factor of 0.5 %. The material

properties of the Aluminum are: Young’s modulus 70 GPa, Poisson ratio 0.35, and

mass density 2700 kg m�3. It is then desired to increase the structural damping of

the host structure by using a passive control solution. Two piezoceramic patches

(PZT5A) perfectly bonded to the host structure are connected to a shunt circuit,

consisting of a resistance and an inductance. The width of both host structure and

piezoceramic patches, not shown in the figure, is 25 mm. The material properties

of the PZT5A piezoceramic are: cD11 ¼ cD22 ¼ 96:39GPa, cD12 ¼ 51:22GPa,

cD44 ¼ cD55 ¼ 39:63GPa, cD66 ¼ 22:57GPa, h31 ¼ h32 ¼ �1:677� 109 NC�1,

β
ε
33 ¼ 104:5� 106mF�1, and ρpzt ¼ 7750kgm�3. The piezoceramic patches are

fully covered by electrodes on the upper and lower surfaces. Electrodes at the

interface with the host structure are considered to be grounded.

Figures 3 and 4 show the frequency response of the structure (between tip

velocity and tip force) for three cases depending on the connection of the piezo-

electric patches: (i) open-circuit, (ii) resistive shunt, (iii) resonant (resistive-

inductive) shunt. The optimal value for the resistance in the resistive circuit was

obtained using Eq. (36) leading to Rc ¼ 103kΩ. In the case of the resonant circuit,

the optimal values for resistance and inductance were obtained using Eqs. (47) and

(43), respectively, leading to Rc ¼ 18kΩ and Lc ¼ 514H. Notice that the resistance

values were rounded in kΩ and the inductance value was manually fine tuned from

514 to 503 H.

It is possible to observe in Fig. 3 that both resistive and resonant shunt circuits

allow to reduce the vibration amplitude only around a single resonance frequency

with no modification of other resonances. In terms of vibration amplitude reduction

performance, it is clear from Fig. 4 that the resonant shunt circuit, which may

reduce the vibration amplitude in about 20 dB, is much more effective than the

resistive one, which reduces amplitude in about 5 dB.

Fig. 2 Schematic representation of a cantilever beam with two piezoelectric patches connected to

a resonant shunt circuit (dimensions in mm)
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Fig. 3 Frequency response (dashed: open-circuit, dash-dotted: R shunt, solid: RL shunt) of the

cantilever beam with piezoceramic patches connected to shunt circuit

Fig. 4 Frequency response (dashed: open-circuit, dash-dotted: R shunt, solid: RL shunt) of

the cantilever beam with piezoceramic patches connected to shunt circuit zoomed at the first

resonance

Piezoelectric Structural Vibration Control 301



3 Active Vibration Control Using Piezoelectric Materials

Since the mid-1980s, several studies focused on the use of distributed piezoelectric

patches for the active vibration and noise control of thin plate-like structures

(Bailey and Hubbard 1985). The main goal was to obtain a so-called adaptive

structure with very integrated sensors and actuators so that adaptive/reconfigurable

vibration mitigation solutions could be part of the structural design phase. Since

then, several advances were observed in terms of predictive models, control design

and optimization, experimental implementation and required power reduction with

main focus on aeronautic and aerospace applications (Ahmadian and DeGuilio

2001; Reza Moheimani and Fleming 2006; Leo 2007). Some researchers also

proposed combined active-passive vibration control strategies using piezoelectric

patches (Tang et al. 2000; Santos and Trindade 2011).

In this section, a case study of active vibration control using piezoelectric

patches as sensors and actuators is presented. The host structure is an Aluminum

cantilever beam as shown in Fig. 5. The beam is lightly damped and this is

accounted for using a constant modal damping factor of 0.5 %. The material

properties of the Aluminum are: Young’s modulus 70 GPa, Poisson ratio 0.35,

and mass density 2700 kg m�3. It is then desired to increase the structural damping

of the host structure by using an active control solution. Two piezoceramic patches

(PZT5A) perfectly bonded to the host structure are considered as sensor and

actuator and these are connected by an active controller, consisting of a control

unit and a power amplifier. The width of both host structure and piezoceramic

patches, not shown in the figure, is 25 mm. The material properties of the PZT5A

piezoceramic are: cD11 ¼ cD22 ¼ 96:39GPa, cD12 ¼ 51:22GPa, cD44 ¼ cD55 ¼ 39:63GPa,

cD66 ¼ 22:57GPa, h31 ¼ h32 ¼ �1:677 � 109 NC�1, β
ε
33 ¼ 104:5� 106mF�1, and

ρpzt ¼ 7750kgm�3. The piezoceramic patches are fully covered by electrodes on

the upper and lower surfaces. Electrodes at the interface with the host structure are

considered to be grounded. The piezoceramic sensor is considered to be connected

to the control unit through a high impedance input such that it provides a voltage

(electric potential) signal. The control voltage is imposed to the upper electrode of

the piezoceramic actuator.

Fig. 5 Schematic representation of a cantilever beam with two piezoelectric patches serving as

sensor and actuator connected to an active controller (dimensions in mm)
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A coupled second-order model is constructed for the host structure with piezo-

electric patches using the finite element method leading to

Mt 0 0

0 0 0

0 0 0

2
664

3
775

€u

€Vs

€Va

8>><
>>:

9>>=
>>;þ

Kus þKE
ups þKE

upa �Kuvs �Kuva

�K
t

uvs �Kvs 0

�K
t

uva 0 �Kva

2
6664

3
7775

u

Vs

Va

8>><
>>:

9>>=
>>; ¼

Fm

0

0

8>><
>>:

9>>=
>>;:

ð48Þ

The control voltage applied to the actuator Va is prescribed and thus the third line

of Eq. (48) is automatically satisfied and the terms containing Va in the first line can

be moved to the right side. As for the sensor voltage Vs, it may be written in terms of

the structure’s displacements vector as

Vs ¼ �K
�1

vs K
t
uvsu; ð49Þ

and then substituted in the first equation such that

Mt€uþ D _u þKutu ¼ Fm þKuvaVa; ð50Þ

where Kut ¼ Kus þKE
ups þKE

upa þKuvsK
�1

vs K
t

uvs and a damping matrix D is

included a posteriori.

Applying the methodology presented previously, the mechanical force is con-

sidered as a perturbation input such that Fm ¼ bpp, the voltage induced in the

piezoceramic sensor is considered as the measurement output such that

y ¼ Vs ¼ cyu, with cy ¼ �K
�1

vs K
t

uvs, and the voltage applied to the piezoceramic

actuator Va is considered as the control input, such that bf ¼ Kuva.

In order to simplify the control design, a model reduction is performed using

projection onto a reduced undamped modal basis, truncated to the vibration modes

of interest ϕj, solution of �ω2
jMt þKut

� 	
ϕj ¼ 0. As discussed previously, it is

very important to well represent the anti-resonance frequencies (or system zeros) in

the control design. The low-frequency response of the neglected higher-frequencies

vibration modes may have an important contribution to the location of the system

zeros. Therefore, it is advisable to keep some vibration modes outside the frequency

range of interest. The modal basis can also be enriched using the static contribution

of the neglected vibration modes ϕs ¼ K�1
ut Kuva. The structure’s displacements are

then approximated as u �
X
j

ϕjαj and, thus, the reduced equations of motion are

written as

€αþ Λ _α þΩ2α ¼ ΦtFm þΦtKuvaVa,

Vs ¼ �K
�1

vs K
t

uvsΦα:

(
ð51Þ
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For the sake of simplicity, in the present case, only the first six vibration modes

(bending modes for all but the third and fifth ones that correspond to torsion modes)

are kept in the reduced-order model.

Then, in order to make use of standard control system tools, the second-order

reduced system Eq. (51) is rewritten in the following state-space form

_z ¼ Azþ Bppþ BcVa,

Vs ¼ Cyz;

(
ð52Þ

where

z ¼
α

_α

" #
, A ¼

0 I

�Ω2 �Λ

" #
, Bp ¼

0

Φt bp

" #
, Bc ¼

0

ΦtKuva

" #
,

Cy ¼ �K
�1

vs K
t

uvsΦ 0
h i

:

ð53Þ

Then, the transfer function between sensor and actuator used in the control

system reads Hc sð Þ ¼ Cy sI� Að Þ�1Bc. In what follows, two simple control laws

are designed based on this information: (i) Direct Velocity Feedback (DVF) and

(ii) Positive Position Feedback (PPF). The control design is performed here with the

aid of rltool Graphical User Interface of Control System Toolbox of MATLAB(R).

For the DVF control, a real zero at s ¼ 0 is added leading to a simple differentiator.

For the PPF control, two complex conjugate poles near the open-loop poles

corresponding to the vibration mode to be controlled are added.

Figure 6a shows the root locus of the closed-loop system. From the root locus,

one may conclude that very large damping values could be obtained, in particular

for the second and fourth modes (which are the second and third bending modes).

However, it is important to notice that large values of control gains may not be

realistic since they would require large control voltages that may not be feasible due

to the maximum electric field supported by the piezoelectric patches and also the

voltage and power demanded to the power amplifier (Trindade, Benjeddou, and

Ohayon 2001). In the present case, it is assumed that the control voltage should not

exceed 250 V (which leads to an applied electric field of 500 V/mm in the 0.5 mm

thick piezoelectric patches). Commercial power amplifiers allow the application of

such voltages for a limited frequency range and patches capacitance. For some

applications, the energy consumption could also be used to design and analysis of

control strategies (Wang and Inman 2011). There are also alternatives to reduce the

maximum voltage required for a given performance (Tang et al. 2000; Sirohi and

Chopra 2001; Santos and Trindade 2011).

Considering the maximum voltage limitation, the maximum feasible control

gain is approximately g ¼ 5000 Vs=V. Then, the control performance is much

weaker than the ones allowed by the control law alone. Nevertheless, a feasible

DVF control still yields reasonable performance in terms of added structural
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damping. Indeed, the modal damping factors of first three bending modes are

increased from 0.5 to 1.2 %, 3.3 %, and 3.4 %, respectively. This also leads to a

reduction in the vibration amplitude as shown in Fig. 6b.

Figure 7a, b shows, respectively, the impulsive time responses of the open-loop

and closed-loop sensor voltages and the control voltage applied to the actuator.

As discussed previously a simple output feedback law, as DVF, is not able to

focus on given vibration modes. The selection/prioritization of the modes that are

better controlled depends mainly on the positioning of sensor and actuator and its

relation with the mode shapes. This is one of the reasons why the Positive Position

Feedback (PPF) may be very useful for structural vibration control. Provided that

Fig. 6 (a) Root locus and (b) frequency response (solid: open loop, dashed: closed-loop) of the
cantilever beam with piezoceramic patches and DVF control law
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the natural frequencies (in fact, the open-loop poles) are known and available for

proper tuning of the control parameters ωf and ξf, the PPF control should allow to

focus on a given vibration mode and, thus, to minimize the modification of other

modes and optimize the use of the control energy.

As an example, a PPF control law focusing on the first vibration mode is

considered for the cantilever beam with piezoelectric patches. The first vibration

mode natural frequency is approximately 32 Hz (201 rad/s). Based on this infor-

mation and with the aid of simulations in rltool, the PPF parameters are set to ωf

¼ 205rad=s and ξf ¼ 0:2. Figure 8a shows the root locus of the closed-loop system

in which it is possible to notice that the PPF does allow to completely modify the

path of the closed-loop poles such that the first vibration mode can now be

substantially damped while the second and third bending modes are much less

modified. For a PPF control gain of g ¼ 38 V=V, the vibration amplitude at the first

natural frequency is greatly reduced as shown in Fig. 8b.

Fig. 7 Impulse responses

of (a) sensor voltage (solid:
open loop, dashed: closed-
loop) and (b) control
voltage of the cantilever

beam with piezoceramic

patches and DVF control

law
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It is possible to observe in Fig. 9a, however, that the overshoot of the impulsive

time response is increased in closed-loop although the settling time is reduced.

Figure 9b also shows the control voltage required for such performance.

It is worthwhile to notice that, as discussed briefly in previous section, the

obtained closed-loop control performance for both DVF and PPF control laws

depend on the perturbation level of the system. Although theoretically these control

performances are attainable, for higher excitation levels, the sensor output is also

increased and so is the control voltage required to achieve such performances. In the

present case, a perturbation force leading to a displacement amplitude of the order

of the host structure thickness was used. To avoid saturation of the control voltage

and its unpredictable effects, the control gain should be diminished as the pertur-

bation level increases, leading to less performing vibration control.

Fig. 8 (a) Root locus and (b) frequency response (solid: open loop, dashed: closed-loop) of the
cantilever beam with piezoceramic patches and PPF control law
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