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Preface

Dynamics of Smart Systems and Structures presents a general overview of smart

material systems and structures. This book represents an effort related to the First
School of Smart Structures in Engineering that was held at UNESP/Ilha Solteira—

SP, Brazil, November 9–13, 2014. The event was an initiative of the Committee of
Smart Materials and Structures of the Brazilian Society of Mechanical Sciences
and Engineering (ABCM).

The subject of Smart Materials and Structures in Brazil was related to several

disconnected groups. However, in 2008, Brazilian government decided to sponsor

thematic projects that would be organized to form National Institutes of Science
and Technology. One of these projects is the National Institute for Smart Structures
in Engineering (INCT-EIE) that represents a network that puts together a number of

scientists, engineers, and students working collaboratively on a number of topics

related to smart structures in cooperation with international groups. This initiative

changed the scenario of Smart Structures in Brazil.

Several projects were developed since the beginning of the INCT-EIE activities.

This book is one of them, being prepared thinking on the beginner students and

engineers interested on Smart Material Systems and Structures. The authors hope

that this introductory text may encourage, motivate, and help readers to explore this

challenging interdisciplinary area.

Ilha Solteira, SP, Brazil Vicente Lopes Jr.

Uberlândia, MG, Brazil Valder Steffen Jr.

Rio de Janeiro, RJ, Brazil Marcelo Amorim Savi
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Introduction

Vicente Lopes Jr., Valder Steffen Jr., and Marcelo A. Savi

Nature should be the essential inspiration for researchers and engineers that try to

develop systems and structures. The main inspirational point is certainly the

adaptive behavior that provides the self-regulation ability. Through the history,

human technology is always related to different materials and it is possible to

recognize ages defined by some material invention: stone and metal, for instance.

Recently, smart materials should be identified as the stimulus of a new age.

Basically, smart materials have a coupling between mechanical and nonmechanical

fields that confers the material a special kind of behavior. In this regard, it is

possible to imagine numerous applications due to the coupling of fields that usually

are not connected. The smart material age tries to exploit the idea to construct

systems and structures with adaptive behavior that have the ability to change

properties due to environmental changes and repairing themselves when necessary

(Oliveira and Savi 2013).

Besides the term smart materials, it is also usually employed intelligent, adap-

tive, multifunctional, or active materials. Lagoudas (2008) defined active materials

as a subgroup of multifunctional materials exhibiting sensing and actuation
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capabilities. However, in general, it is possible to use the term smart or intelligent

materials in order to express the materials that present couplings among different

physical fields, and therefore, have adaptive characteristics that can be employed to

adequate themselves to environmental changes.

Nowadays, the most used smart materials are the shape memory alloys, the

piezoelectric materials, the magnetostrictive materials, and the electro- and

magneto-rheological fluids (Oliveira and Savi 2013). These materials have the

ability of changing their shape, stiffness, among other properties, through the

imposition of electrical, electromagnetic, temperature, or stress fields. Variations

of this kind of materials have been created, increasing even more the applicability

of smart materials. In this regard, one could mention the ferromagnetic shape

memory alloys, shape memory polymers, optical activated polymers, and optical

fibers. Besides, it should be highlighted the combination of different kinds of

materials in hybrid composites, promoting a synergistic use of smart materials.

Recently, there is a tendency for the reduction of smart devices to micro- and

nanoscales with the so-called MEMS and NEMS (micro-nano-electronic mechan-

ical systems).

Smart materials are usually employed as sensors and actuators in smart struc-

tures. The choice of proper material for each application depends on many factors

and two design drivers need to be highlighted (Lagoudas 2008): the actuation

energy density and the actuation frequency of the material. In addition, smart

materials can allow systems and structures to monitor their own integrity while

in operation and throughout their lives, in the context of structural health

monitoring—SHM—techniques (Park and Inman 2005).

Shape memory alloys (SMAs) present a mechanical-temperature coupling in

such a way that they have the ability of recover a shape previously defined, when

subjected to an appropriated thermomechanical loading process. When there is a

restriction to the shape recovery, these alloys promote high restitution forces. The

remarkable properties of SMAs are associated with phase transformations respon-

sible for different thermomechanical behaviors of these alloys. Two different

phases are possible in SMAs, namely austenite and martensite. Austenitic phase

is stable at high temperatures and stress-free state presenting a single variant. On the

other hand, martensitic phase is stable at low temperature in a stress-free state,

being related to numerous variants. Phase transformation may be induced either by

stress or by temperature.

Piezoelectric materials present a reciprocal electromechanical coupling and,

once an electrical field is applied, the material exhibits a mechanical deformation;

on the other hand, when the material undergoes a mechanical load, an electrical

potential is generated. This reciprocity enables this kind of material to be used

either as sensors or actuators in smart structures.

Magnetostrictive materials present a coupling between mechanical and magnetic

fields. They can be defined as materials that present a shape change due to an

application of a magnetic field. Magnetostriction was originally identified as a

length change in an iron sample subjected to a magnetic field. This effect became

known as Joule effect, being the most common mechanism employed in

2 V. Lopes Jr. et al.



magnetostrictive actuators. The reverse effect, when a mechanical field causes the

sample magnetization, is known as Villari effect, being usually employed for

sensors.

Electro-rheological (ER) and magneto-rheological (MR) fluids are known as

controllable fluids. They present a coupling between mechanical and electro or

magneto fields. Therefore, a change in an electro-magneto field causes a change in

mechanical rheological behavior. An ER–MR fluid is a solid suspension that pre-

sents drastic changes in rheological properties due to structural arrangements in the

suspension. Before the application of the electromagnetic field, particles are dis-

tributed in a random way, presenting a Newtonian behavior. The application of the

electromagnetic field causes an orientation of the particles that changes the fluid

viscosity, presenting a nonlinear response.

Dynamics of Smart Systems and Structures presents a general overview of smart

material systems and structures. It is split in three parts: I—Fundamentals; II—

Smart Materials; III—Applications. In Part I—Fundamentals, several concepts of

smart materials are presented. Continuum Mechanics, Wave Motion in Elastic

Structures, Passive and Active Structural Vibration Control, and Nonlinear Dynam-

ics and Chaos are the main subjects presented in the first part of the book. Part II

presents the Smart Materials: Piezoelectric Materials; Shape Memory Alloys;

Electro-Magneto Rheological Materials; and Composite Materials. Part III dis-

cusses some applications. It is discussed Piezoelectric Energy Harvesting;

Impedance-Based Structural Health Monitoring; and Damage Monitoring in

Aircrafts.

This book represents an effort related to the First School of Smart Structures

Engineering that was held in UNESP/Ilha Solteira – SP, Brazil, November 9–13,

2014. All the contributions were prepared thinking on the beginner students and

engineers interested on Smart Material Systems and Structures. The authors hope

that this introductory text may encourage, motivate and help readers to explore the

interdisciplinary area of Smart Material Systems and Structures.
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Continuum Mechanics

Marcelo A. Savi

Abstract This chapter presents an introduction of the fundamentals of continuum

mechanics. It starts with a revision of tensor analysis that discusses the definition of

tensor and coordinate transformations. In the sequence, continuummotion is treated

discussing the kinematics or the geometry of motion. Definitions of strain tensors

are of concern. Material derivative and Reynolds transport theorem is also treated.

Afterward, a discussion about stress is presented presenting the Cauchy principle.

The definition of stress tensors is established presenting Cauchy and Piola-

Kirchhoff tensors. Conservation principles are then analyzed: linear and angular

momentum; mass; and energy. The principle of entropy is also treated. After these

definitions, it is presented a summary of fundamental equations of mechanics,

discussing the importance of constitutive equations. The generalized standard

material approach is discussed as a framework to elaborate constitutive equations

that respect the thermodynamical principles. As examples, it is discussed the

elasticity, elastoplasticity, and also smart materials phenomena as piezoelectricity,

pseudoelasticity, and shape memory effect.

Keywords Continuum mechanics • Tensor analysis • Indicial notation •

Thermodynamics • Conservation principle • Constitutive models • Elasticity

1 Introduction

Mechanics is the science that treats motions and forces, establishing the relations

between them. In brief, it is possible to imagine that a body is subjected to external

effects that can arise from different sources as forces, movements, interactions with

other bodies, gravitational forces, chemical interactions, electromagnetic effects,

thermal changes, among other possibilities.
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Molecules and atoms compose the matter structure and the description of the

interactions among them can define the mechanical description of motions and

forces. Although appropriate, this point of view has the inconvenience of the huge

number of equations to be treated. An alternative approach is to discard the

atomistic structure of the matter, representing the physical phenomena by using a

macroscopic point of view. This is the main idea of continuum mechanics that is

limited to situations where the smallest characteristic length is much larger than the

size of an atom.

The study of continuum mechanics implies the use of tensor quantities and,

because of that, it is important to have a background in tensor analysis. Continuum

mechanics can be presented by introducing motion, treating the geometry of the

movement, and forces that causes this motion. The conservation principles are the

essential part of the mechanics defining the laws of nature. The mechanical problem

is a well-posed system if constitutive equations are stated. They are built upon the

main features of material behavior, establishing a connection among mechanical

quantities based on experimental macroscopic observations.

This chapter presents a general overview of the fundamentals of continuum

mechanics. The following references are employed: Borisneko and Tarapov (1968),

Crandall et al. (1978), Currie (1974), Ertuk and Inman (2011), Eringen (1967),

Fung (1965, 1969), Germain (1962), Gurtin (1981), Malvern (1969), Mase (1970),

Reddy (2013), Shames (1992), Sokolnikoff (1956, 1964), Timoshenko and Goodier

(1970), Valanis (1972), Ziegler (1977). Initially, it presents a brief overview of

tensor analysis, presenting the index notation. The basic notion of motion is then

presented, introducing the idea of deformation and strain tensors, material deriva-

tive and Reynolds transport theorem. Afterward, the influence of external forces is

discussed introducing the concept of stress, presenting different representations.

The conservation principles of mechanics are then discussed: linear and angular

momenta, mass and energy conservations. The entropy principle is also discussed

presenting the second law of thermodynamics. The necessity of the use of consti-

tutive equations is presented and an approach to obtain these equations is shown.

Some examples of constitutive models are treated: elasticity, elastoplasticity, pie-

zoelectricity, pseudoelasticity and shape memory effect.

2 Tensor Analysis

Physical entities have different aspects and their mathematical representation needs

to reflect their main characteristics. In this regard, an observation of some common

mechanical systems allows one to identify scalar and vector quantities. Mass and

temperature are typical scalar quantities while force and velocity are typical vector

quantities. Observing carefully, it is possible to find other quantities that need a

more complex representation. A generalization of physical quantities representa-

tion involves the definition of tensors. This generalization defines scalars as zero-

order tensors, an entity that needs 1¼ 30 components to be represented; vectors are

8 M.A. Savi



first-order tensors, an entity that needs 3¼ 31 components to be represented; and so

on. Hence, an N-order tensor is an entity that needs 3N components to be

represented. Tensor may be understood as a mathematical entity that represents

all kinds of physical quantities. In mathematical point of view, its definition is

related to the algebra that represents a generalization of scalar and vector algebra.

The nature description usually needs the definition of a coordinate system in a

chosen frame. Besides, nature laws should be independent of the choice of a

coordinate system. Cartesian coordinate frame is probably the most common

reference frame, being close related to our physical intuition. The main idea is to

represent a point in an N-dimensional space by a set of N numbers. In the usual 3D

(3-dimensional) space, the representation corresponds to (x1, x2, x3). This represen-
tation is similar to consider a position vector, x, that can be described by using a

Cartesian basis (Fig. 1):

x ¼ x1; x2; x3ð Þ ¼ x1e1 þ x2e2 þ x3e3 ð1Þ

where e1, e2, and e3 are the basis vectors.
This equation suggests different ways to represent a tensor quantity. Symbolic

representation is related to symbols that describe the tensor and all its operations. In

this example, x is a symbolic representation of the vector. On the other hand, it is

possible to represent the vector by its components, xi. In this case, it is implicit that

index i varies from 2.1 to 2.3.

Index notation establishes a compact way to deal with tensor calculus. Summa-

tion convention is a usual way to facilitate the representation of all tensor opera-

tions. Essentially, this convention establishes that the repetition of an index denotes

a summation with respect to that index over its range (1, 2, 3 in 3D space). An index

that is summed is called dummy index. The one that is not summed is called free
index. Under this assumption, the vector representation is the following:

x � xiei ð2Þ

Note that this is equivalent to: xiei ¼
X3

i¼1
xiei.

x1

P

xx2

x3

e1

e2

e3

Fig. 1 Cartesian frame

Continuum Mechanics 9



Since a dummy index just indicates summation, it does not matter what symbol

is used. Therefore,

x � xiei ¼ xkek ¼ xjej ð3Þ

An important point should be highlighted in terms of summation convention. It

is not possible to use more than two dummy indexes since it implies an inconsistent

representation.

An N-order tensor can be represented as A in symbolic notation or as follows,

using N indexes:

A � Aijkl... ð4Þ

It should be pointed out that a tensor is an abstract object whose properties are

independent of reference frame used to describe the object. A tensor is represented

by its components and therefore, there is a transformation law that connects

different frames.

All tensors operations can be represented by the use of index notation. Never-

theless, it is important to define some tensors that help this representation.

2.1 Kronecker Delta Tensor

Kronecker delta is a second-order tensor equivalent to the identity matrix, being

defined as follows:

δij ¼ 1, if i ¼ j
0, if i 6¼ j

�
ð5Þ

An important characteristic of the Kronecker delta is to represent the scalar

product of a Cartesian basis vectors:

ei � ej ¼ δij ð6Þ

In this regard, observe that the scalar product between two vectors is given by:

u � v ¼ uiei � vjej ¼ uivj ei � ej
� � ¼ uivjδij ¼ uivi ð7Þ

Here it is important to highlight a special characteristic of the Kronecker delta

tensor—the index change. Since when i 6¼ j its value vanishes, it is possible to

neglect all possibilities different from i¼ j in the summation. This is equivalent to

change the index.

10 M.A. Savi



2.2 Permutation Tensor

Permutation tensor is a third-order tensor defined as follows:

ξijk ¼
0, if there are any equal indexes 112, 121, 233, . . .ð Þ
þ1, for even permutation 123, 312, 231, . . .ð Þ
�1, for odd permutation 132, 321, 213, . . .ð Þ

8><
>: ð8Þ

An important characteristic of the permutation tensor is to represent the vector

product of Cartesian basis vectors:

ei � ej ¼ ξijkek ð9Þ

In this regard, observe that the vector product between two vectors is given by:

u� v ¼ uiei � vjej ¼ uivj ei � ej
� � ¼ ξijkuivjek ð10Þ

The ξ–δ identity establishes a relationship between the permutation symbol and

the Kronecker delta:

ξmiqξjkq ¼ δmjδik � δmkδij ð11Þ

2.3 Coordinate Transformations

Since a physical quantity, as a velocity, is an intrinsic property of the body, it needs

to present an invariance related to reference frame. Nevertheless, its representation

is dependent of this frame. Therefore, it is important to map the variation between

them, defining a proper relationship. In this regard, consider a vector quantity

represented by v¼ vi. Two different frames are employed to describe this vector:

original, Xi, and new, xi. Figure 2 shows this situation presenting a vector v and two
reference frames.

The representation of the vector can be done as follows:

v � ViEi original frameð Þ ð12Þ

v � viei new frameð Þ ð13Þ

Since the vector is the same, it is possible to write

v � ViEi ¼ viei ð14Þ

Continuum Mechanics 11



Performing a scalar product with Ej:

ViEi � Ej ¼ viei � Ej ð15Þ

Since the following expressions are valid,

Ei � Ej ¼ δij ð16Þ

ei � Ej ¼ Qij ¼ cos ei;Ej

� � ð17Þ

the transformation from the new to the original frame is given by

Vj ¼ Qijvi ð18Þ

The inverse transformation, from the original to the new frame, can be obtained

in an analogous way by performing the scalar product of ej:

ViEi � ej ¼ viei � ej ð19Þ

since,

ei � ej ¼ δij ð20Þ

Ei � ej ¼ cos Ei; ej
� � ¼ Qji ð21Þ

the transformation is given by

vj ¼ QjiVi ð22Þ

Note that, transformation matrices define both operations, being formed by the

angles between both frames. Since orthogonal systems are adopted, the inverse is

related to the transpose of the transformation matrices. Figure 3 illustrates the

transformation between two reference frames.

X1

v

X2

X3

E1

E2

E3

e1
e2

e3

x3

x1

x2

Fig. 2 Vector

representation in different

frames
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Similar transformations can be defined for higher order tensors. By considering

that a second-order tensor is built from vectors, it is possible to write:

Cij ¼ AiBj ¼ aibj ð23Þ

Since,

Ai ¼ Qkiai
Bj ¼ Qmjbm

ð24Þ

the transformation of the second-order tensor is then given by:

Cij ¼ Qkiakð Þ Qmjbm
� � ¼ QkiQmj akbmð Þ ¼ QkiQmjckm ð25Þ

The generalization for a N-order tensor is automatic:

Cijk... ¼ QmjQnjQok . . . cmno... ð26Þ

3 Motion

The kinematics analysis is related to the geometry of the motion being an essential

part of the mechanical modeling. In this regard, consider a continuum body that

evolves from an original, initial, or reference configuration to new positions due to

the action of some external stimulus. This stimulus does not matter in the geomet-

rical analysis. In order to map the continuum evolution, it is necessary to establish

the relationship between its initial and subsequent states. Two frames are consid-

ered for this aim (Fig. 4): original or initial and deformed configurations.

In general, the motion can be split into rigid body (translation and rotation) and

local strain that represent the relative motion. In order to map the body evolution,

consider the position of two points in the original configuration at t0, A and B, that
evolves to the deformed configuration at instant t1, being represented by A0 and B0.
It should be pointed out that reference frame has an important aspect in the

Fig. 3 Transformation between two reference frames

Continuum Mechanics 13



description. It is possible to use either original (Xi) or deformed (xi) frames to

describe each quantity involved. Besides, two descriptions are possible: material or
Lagrangian description; and spatial or Eulerian description.

Material or Lagrangian description is essentially based on material points and

therefore assumes that initial state is known. The idea is to map a general position of

a specific material point from its initial position:

xi ¼ xi Xi; tð Þ ð27Þ

On the other hand, spatial or Eulerian description is essentially based on a

specific location. Hence, a position is known, and one needs to map the initial

configuration of this spatial point. Note that the spatial description is, in general,

related to different material points at different times.

Xi ¼ Xi xi; tð Þ ð28Þ

Motion analysis maps the deformed configuration from the original one (or vice-

versa) and the description of the segments dXi and dxi allows one to evaluate how

the motion evolves. The evaluation of this evolution implies the definition of the

material deformation gradient, Fij:

dxi ¼ ∂xi
∂Xj

dXj ¼ FijdXj ð29Þ

X1

X2

X3

x1

dX dx

A B

B’

A’
uB

uA

XA

xA

t = t0 t = t1

XB = XA + dX

xB = xA + dx

x2

x3

Fig. 4 Continuum motion
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Similar definition is established for the spatial deformation gradient, Hij:

dXi ¼ ∂Xi

∂xj
dxj ¼ Hijdxj ð30Þ

Note that these tensors define the mapping between the two configurations, and

therefore one is the inverse of the other:

FikHkj ¼ ∂xi
∂Xk

∂Xk

∂xj
¼ δij ð31Þ

The Jacobian of the transformation is defined as the determinant of the material
deformation gradient, Fij:

J � det Fij

� � ¼ ξijk
∂x1
∂Xi

∂x2
∂Xj

∂x3
∂Xk

ð32Þ

The Jacobian establishes a relationship between original and deformed volumes.

dυ ¼ J dV ð33Þ

Based on these definitions, it is possible to establish a proper motion description

and the definition of deformation and strain are essential. A metric should be used

for this aim. Here, two possible situations are treated and each one of them can be

described using either the original or the deformed frame. Another important aspect

related to the motion description is the definition of the displacement vector:

ui ¼ xi � Xi ð34Þ

The definitions of the displacement gradients are given by the following

expressions, being respectively presented with respect to original and deformed

configurations:

∇xu ¼ ∂ui
∂xj

¼ ∂xi
∂xj

� ∂Xi

∂xj
¼ Fij � δij ð35Þ

∇xu � ∂ui
∂Xj

¼ ∂xi
∂Xj

� ∂Xi

∂Xj
¼ δij � Hij ð36Þ

3.1 Deformation Tensors

Deformation tensors can be defined from a specific metric. In essence, consider the

vector dXi and dxi that has, respectively, the magnitudes dS and ds. It is convenient
to establish the following definitions:

Continuum Mechanics 15



dS2 ¼ dXkdXk ¼ HkiHkjdxidxj ¼ cijdxidxj ð37Þ

ds2 ¼ dxkdxk ¼ FkiFkjdXidXj ¼ CijdXidXj ð38Þ

Based on these metrics, two deformation tensors are defined:

Cij ¼ FkiFkj Green’s deformation tensor ð39Þ

cij ¼ HkiHkj Cauchy’s deformation tensor ð40Þ

The displacement vector can be employed to rewrite these tensors as follows:

Cij ¼ FkiFkj ¼ ∂uk
∂Xi

þ δki

� �
∂uk
∂Xj

þ δkj

� �
¼ ∂ui

∂Xj
þ ∂uj
∂Xi

þ ∂uk
∂Xi

∂uk
∂Xj

þ δij ð41Þ

cij ¼ HkiHkj ¼ δki � ∂uk
∂xi

� �
δkj � ∂uk

∂xj

� �
¼ δij � ∂ui

∂xj
� ∂uj

∂xi
þ ∂uk

∂xi

∂uk
∂xj

ð42Þ

3.2 Strain Tensors

In an analogous way, strain tensors can be defined by using a different metric.

ds2 � dS2 ¼ dxidxi � dXidXi ¼ Cij � δij
� �

dXidXj ¼ 2EijdXidXj ð43Þ

ds2 � dS2 ¼ dxidxi � dXidXi ¼ δij � cij
� �

dxidxj ¼ 2eijdxidxj ð44Þ

Based on these metrics, two strain tensors are defined:

2Eij ¼ Cij � δij Lagrange’s strain tensor ð45Þ

2eij ¼ δij � cij Euler’s deformation tensor ð46Þ

Once again, the displacement vector can be employed to rewrite the strain

tensors as follows:

Eij ¼ 1

2

∂ui
∂Xj

þ ∂uj
∂Xi

þ ∂uk
∂Xi

∂uk
∂Xj

� �
ð47Þ

cij ¼ 1

2

∂ui
∂xj

þ ∂uj
∂xi

� ∂uk
∂xi

∂uk
∂xj

� �
ð48Þ
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3.3 Infinitesimal Strain Tensors

A usual approximation in terms of strain description is the infinitesimal strains.

Basically, two essential simplifications are adopted for this aim. The first one is

related to the fact that both configurations (original and deformed) are the same.

Hence, Xi and xi are the same, being represented by xi. Besides, the nonlinear terms

of the strain definitions are neglected. Hence, the following definitions can be

presented for the infinitesimal Lagrange-Euler tensor:

Êij ¼ êij ¼ 1

2

∂ui
∂xj

þ ∂uj
∂xi

� �
ð49Þ

While the infinitesimal Green and Cauchy’s tensors are given by:

Ĉij ¼ ∂ui
∂xj

þ ∂uj
∂xi

þ δij ð50Þ

ĉij ¼ δij � ∂ui
∂xj

� ∂uj
∂xi

ð51Þ

An intuitive form of understanding the consequences of the infinitesimal strain

simplification is observing that the displacement gradient, a second-order tensor,

can be written as a combination of a symmetric and an anti-symmetric tensor:

∂ui
∂xj

¼ 1

2

∂ui
∂xj

þ ∂uj
∂xi

� �
þ 1

2

∂ui
∂xj

� ∂uj
∂xi

� �
¼ Êij þ ω̂ij ð52Þ

where ω̂ij is an anti-symmetric tensor related to rotation. Since,

∂uj
∂xi

¼ Êij � ω̂ij ð53Þ

the Lagrange’s strain tensor can be written in terms of the infinitesimal strains as

follows:

Eij ¼ 1

2
Êij þ ω̂ij

� �þ Êij � ω̂ij

� �þ Êki þ ω̂ki

� �
Êkj þ ω̂kj

� �� � ð54Þ

which results to,

Eij ¼ Êij þ 1

2
ÊkiÊkj þ Êkiω̂ki þ Êkjω̂ki þ ω̂kiω̂kj

� � ð55Þ

Based on that, Eij ¼ Êij if there are infinitesimal strains and rotations.
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3.4 Principal Strains

All tensors obey the coordinate transformation defined in the previous section. Since

strain tensors are second-order tensors, their transformation are represented by:

ε
0
ij ¼ QikQjmεkm ð56Þ

where the symbol ε
0
ij represents any strain or deformation tensor at a general

configuration while εkm is the same tensor in the initial configuration. There is a

special transformation that has as characteristic that the strain vector is aligned with

the normal vector. This situation is investigated from the eigenvalue problem.

Figure 5 shows a geometrical interpretation of an eigenvalue problem that governs

this situation. Note that in 2D space, there are two possible situations for the

alignment state.

εij � λδij
� �

nj ¼ 0 ð57Þ

The eigenvalue problem is a search for non-trivial situations, established by:

det εij � λδij
� � ¼ 0

This situation establishes the characteristic polynomial:

λ3 � Iελ
2 þ IIελ� IIIε ¼ 0 ð58Þ

where Iε, IIε, IIIε are the tensor invariants that are unchanged under coordinate

transformation, defined as follows:

n
p

Fig. 5 Geometrical

interpretation of the

eigenvalue problem
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Iε ¼ εii

IIε ¼ 1

2
εiiεjj � εijεji
� �

IIIσ ¼ ξijkε1iε2jε3k � det εð Þ
ð59Þ

3.5 Material Derivative and Reynolds Transport Theorem

The physical definition of time derivative is essentially related to the material or

Lagrangian description since the time limit of a certain quantity is evaluated at a

specific X, being related to the same material point. This is different to evaluate the

limit at a spatial point x, since distinct material points are at this point at different

times. In this regard, it is essential to establish a proper definition of time derivative

that is called material derivative. Let φ¼φ(t) be a function of time. Its time

derivative is, by definition:

Dφ

Dt
¼ ∂φ

∂t

				
x

ð60Þ

which is essentially related to a material description. Nevertheless, by considering

spatial description, the time derivative consists of two parts: the local change and

the change due to the particle motion. This can be evaluated by considering the

chain rule as follows:

Dφ

Dt
¼ ∂φ

∂t

				
x

þ ∂φ
∂xi

∂xi
∂t

¼ ∂φ
∂t

þ vi
∂φ
∂xi

ð61Þ

Note that the first term is a local or spatial derivativewhile the second term is the

convective derivative, since vi ¼ ∂xi=∂t is the velocity. This term allows one to

follow the particle, establishing a proper definition of the time derivative.

Consider a quantity Φ that is represented by its specific value φ in such a way

that:

Φ ¼
ð
V

φdυ ð62Þ

The material derivative of this quantity is given by:

DΦ

Dt
¼ D

Dt

ð
V

φdυ

� �
¼ D

Dt

ð
V

φJ dV

� �
¼

ð
V

Dφ

Dt
J þ DJ

Dt
φ

� �
dV ð63Þ

since DJ
Dt ¼ J ∂vk

∂xk
the following expression is obtained, being known as the Reynolds

transport theorem:
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D

Dt

ð
V

φdυ

� �
¼

ð
V

Dφ

Dt
þ φ

∂vi
∂xi

� �
dυ ð64Þ

By using the definition of material derivative, it is possible to rewrite this

equation as follows:

D

Dt

ð
V

φdυ

� �
¼

ð
V

∂φ
∂t

þ ∂
∂xi

φvið Þ
� �

dυ ð65Þ

4 Stress

The geometry of the continuum motion was mainly discussed until this moment.

Now, a different perspective is investigated incorporating the forces that are

causing this motion. Basically, contact and body forces can be imagined. Consider

a continuum subjected to external forces, f(k) (Fig. 6). It is important to consider a

portion of the continuum body, defined by an arbitrary volume V, surrounded by an
area A. As a consequence, forces are transmitted from one portion to another

establishing an interaction between internal and external portions.

Hence, consider an arbitrary area that defines two portions. The interaction

between them occurs at area A, defined by the unit normal vector, ni. Then, a
generic point P of an area element ΔA of A is subjected to a resultant force Δfi. The
average of the force per unit of area is given by Δfi/ΔA. The Cauchy’s stress
principle establishes that this average tends to a value at P when the area ΔA tends

to zero. Based on that, the stress vector ti at P is defined as follows:

ti ¼ lim
ΔA!0

Δf i
ΔA

ð66Þ

At point P, there is a vector ti associated with a normal vector ni, ti¼ ti(ni). Since
there are an infinite number of possibilities of the normal vector, there are an infinite

t

n

f (1)

f (2)

f (1)

f (3)

f (4)
f (2)

Fig. 6 Continuum media subjected to external forces
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number of stress vector at this point. The totality of possibilities defines a stress
state that can be completely defined by three normal vectors, evaluated in linear

independent directions (Fig. 7). This is equivalent to enclose the point P inside a

cubic element (Fig. 8). The projections of each stress vector define the Cauchy’s
stress tensor.

σij ¼ tj eið Þej ð67Þ

4.1 Coordinate Transformations

Once the stress state is defined from three different stress vectors, any vector is

known by considering coordinate transformations. Hence, consider an arbitrary

area, expressed by a normal vector, which defines a tetrahedron that encloses the

specific point where the stress state is considered (Fig. 9). By performing the

summation of each direction yields to:

x1

x2

x3

e1

x1

x2

x3

e2

x1

x2

x3

e3

Fig. 7 Three linear independent cuts

x1

x2

x3

e1

e2

t(e1)

t(e2)

t(e3)
e3

x1

x2

x3

11

22

12

13

21

23

31

33s

s s

s

s

s

s

s32

Fig. 8 State of stress
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tidA ¼ σjidAj ð68Þ

sincedAj ¼ njdA it is possible to establish a relationship between the stress vector at
an arbitrary area and the stress tensor, known as Cauchy’s stress formula:

ti ¼ σjinj ð69Þ

4.2 Principal Stress

Since the stress tensor is a second-order tensor, its coordinate change is similar to

the one presented for strain tensor. Therefore, similar analysis can be done in terms

of principal stress that are defined by the eigenvalue problem,

σij � λδij
� �

nj ¼ 0 ð70Þ

which establishes the characteristic polynomial,

λ3 � Iσλ
2 þ IIσλ� IIIσ ¼ 0 ð71Þ

where Iσ, IIσ, IIIσ are the stress invariants.

4.3 Piola-Kirchhoff Tensors

The Cauchy’s stress tensor treated until now considers that both the normal vector

and the area are evaluated in the deformed configuration. This is a particular

situation that can be conveniently changed when necessary. Hence, consider a

x1

11

s33

22

s
s

s

s
12

s13

21

23

32

s31

t

n

x2

x3

s

s

Fig. 9 Arbitrary stress

vector
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force fi that can be expressed in terms of the stress vector either of the deformed

configuration or of the undeformed configuration. Figure 10 shows this idea con-

sidering two different configurations and the definition of stress vectors at both

configurations.

Based on that, it is possible to write:

f i ¼ tida ¼ TidA ð72Þ

Each of the stress vectors can be related to stress tensors as follows:

ti ¼ σjinj ð73Þ

Ti ¼ ŜjiNj ð74Þ

where a new stress tensor Ŝji, known as the first Piola-Kirchhoff tensor, is defined
from the normal vector at the undeformed configuration. On this basis, it is possible

to write:

σjinjda ¼ ŜijNjdA ð75Þ

Since the relation between areas is given by: njda ¼ JHkjNkdA
It follows that:

σjiJHkj � Ŝijδkj
� �

NkdA ¼ 0 ð76Þ

and the first Piola-Kirchhoff stress tensor is given by

Ŝij ¼ JσikHjk ð77Þ

X1

X2

X3

x1

T(N)

x2

x3

N

t(n)

n

Fig. 10 Different representations of the stress vector
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Hence, this tensor is defined at the undeformed configuration from a force at the

deformed configuration, having mixture characteristics. In order to use a force at the

undeformed configuration, an extra coordinate transformation can be done, defining

the second Piola-Kirchhoff stress tensor,

Smk ¼ HmiŜki ¼ JHmiσikHjk ð78Þ

5 Conservation Principles

The conservation principles of mechanics involve laws that govern the general

interaction between forces and motions, representing the nature laws. In essence,

these principles are:

1. Conservation of linear momentum

2. Conservation of angular momentum

3. Conservation of mass

4. Conservation of energy

The conservation of linear momentum is the Newton’s second law while the

conservation of energy is the first law of thermodynamics. To these principles, it is

important to add the principle of entropy, associated with the second law of

thermodynamics, in order to obtain a proper description of mechanical processes.

The following sections present these conservation laws.

5.1 Conservation of Linear Momentum

The conservation of linear momentum establishes the balance between linear

momentum and external forces acting in a body represented by surface, ti, and
body, bi, forces. The Newton’s second law can be written as follows:

D

Dt
Gið Þ ¼ Ti þ Bi ð79Þ

where

Gi ¼
ð
V

ρvidυ Linear momentum

Ti ¼
ð
A

tida Surface force
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Bi ¼
ð
V

bidυ Body forces

Using the integral form, the Newton’s second law is written as follows:

D

Dt

ð
V

ρvidυ ¼
ð
A

tidaþ
ð
V

bidυ ð80Þ

The divergence theorem can be evoked in order to transform the area integral

into volume integral,

ð
A

tida ¼
ð
A

σjinjda ¼
ð
V

∂σji
∂xj

dυ ð81Þ

Based on that, the conservation principle is given by:

ð
V

∂σji
∂xj

þ bi � ρ€ui


 �
dυ ¼ 0 ð82Þ

The local form of the linear momentum conservation establishes that the prin-

ciple is valid for arbitrarily small neighborhood, being written as follows:

∂σji
∂xj

þ bi � ρ€ui ¼ 0 ð83Þ

5.2 Conservation of Angular Momentum

The conservation of angular momentum establishes the balance between angular

momentum and external moments acting in a body. From the second Newton’s law,

it is possible to write the following equation where p is the position vector with

respect to a specific point O.

p� D

Dt
Gð Þ ¼ p� Tþ p� B ð84Þ

In this regard, it is important to define the angular momentum as follows:

G
0

i ¼
ð
V

ρξiklxkvl dυ �
ð
V

p� ρvdυ Angular momentum

Continuum Mechanics 25



The balance of angular momentum and external forces are given by:ð
V

ξijkxjρ€ukdυ ¼
ð
A

ξijkxjtkdaþ
ð
V

ξijkxjbkdυ ð85Þ

The divergence theorem is evoked in order to transform the area integral into

volume integral:

ð
A

ξijkxjtkda ¼
ð
A

ξijkxjσmknmda ¼
ð
V

∂
∂xm

ξijkxjσmk
� �

dυ

¼
ð
V

ξijk
∂xj
∂xm

σmk þ ∂σmk
∂xm

xj

� �
dυ ¼

ð
V

ξijk σjk þ ∂σmk
∂xm

xj

� �
dυ

ð86Þ

Based on that, the conservation principle is given by:

ð
V

ξijkσjk þ ξijkxj
∂σmk
∂xm

þ bk � ρ€uk

� �
 �
dυ ¼ 0 ð87Þ

This equation contains the conservation of linear momentum. Therefore, the

conservation of angular momentum establishes the balance of moments:ð
V

ξijkσjk dυ ¼ 0 ð88Þ

The local form of the conservation of angular momentum establishes that:

ξijkσjk ¼ 0 ð89Þ

which means that the Cauchy’s tensor is symmetric:

σjk ¼ σkj ð90Þ

Note that other stress tensors cannot be considered symmetric by definition. By

observing the Piola-Kirchhoff tensors, for instance, it is possible to observe that the

second tensor is symmetric but the first is not.

5.3 Conservation of Mass

The conservation of mass establishes that the mass of a body, m, is unchanged

during the motion. This principle may be expressed by the material derivative as

follows:

D

Dt
mð Þ ¼ 0 ð91Þ
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where the mass is defined from the material density:

m ¼
ð
V

ρdυ

Using an integral equation,

D

Dt

ð
V

ρdυ ¼ 0 ð92Þ

This implies a direct application of the Reynolds transport theorem,

D

Dt

ð
V

ρdυ

� �
¼

ð
V

∂ρ
∂t

þ ∂
∂xi

ρvið Þ
� �

dυ ¼ 0 ð93Þ

The local form of the mass conservation establishes that:

∂ρ
∂t

þ ∂
∂xi

ρvið Þ ¼ 0 ð94Þ

5.4 Conservation of Energy

The energy conservation is related to the first law of thermodynamics that estab-

lishes that the rate of change of body energy needs to balance with the rate of

external work and all other energies that enter or leave the body. In general,

assuming that K is the kinetic energy, U is the internal energy, W is the rate of

work (power) of external forces, Q is the heat flux, and R is the rate of heat

generation, the following balance should be established:

D

Dt
K þ Uð Þ ¼ W þ Qþ R ð95Þ

By defining the energy quantities as integral expressions,

K ¼
ð
V

ρ

2
vividυ Kinetic energy ð96Þ

U ¼
ð
V

ρϑdυ Internal energy ð97Þ

W ¼
ð
A

tividaþ
ð
V

bividυ Power of external forces ð98Þ

Continuum Mechanics 27



Q ¼ �
ð
A

qinida Heat flux ð99Þ

R ¼
ð
V

ρr dυ Heat generation ð100Þ

Using these expressions on the first law of thermodynamics,

D

Dt

ð
V

ρ
vivi
2

þ ϑ
� 

dυ ¼ �
ð
A

qinidaþ
ð
A

tivida

ð
V

bividυþ
ð
V

ρr dυ ð101Þ

The left hand of the equation implies the use of the Reynolds transport theorem:

D

Dt

ð
V

ρ
vivi
2

þ ϑ
� 

dυ ¼
ð
V

ρ
D

Dt

vivi
2

þ ϑ
� 

þ vivi
2

þ ϑ
�  Dρ

Dt
þ ρ

∂vi
∂xi

� �
 �
dυ ð102Þ

Since the last term is related to the conservation of mass (needs to vanish), this

equation is reduced to:

D

Dt

ð
V

ρ
vivi
2

þ ϑ
� 

dυ ¼
ð
V

ρ
D

Dt

vivi
2

þ ϑ
� 

dυ ð103Þ

The area integrals need to be transformed into volume integrals with the aid of

the divergence theorem. Hence,

�
ð
A

qini da ¼ �
ð
V

∂qi
∂xi

dυ ð104Þ

ð
A

tivida ¼
ð
A

σjinjvida ¼
ð
V

∂ σjivi
� �
∂xj

dυ ð105Þ

The energy conservation is then rewritten as:

ð
V

ρ
D

Dt

vivi
2

þ ϑ
� 

þ ∂qi
∂xi

� bivi �
∂ σjivj
� �
∂xi

� ρr


 �
dυ ¼ 0 ð106Þ

The local form of the conservation of energy is then given by:

ρ
D

Dt

vivi
2

þ ϑ
� 

þ ∂qi
∂xi

� bivi �
∂ σjivj
� �
∂xi

� ρr ¼ 0 ð107Þ
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Since,

ρ
D

Dt

vivi
2

þ ϑ
� 

¼ ρ
Dϑ

Dt
þ ρ vi

Dvi
Dt

� �
ð108Þ

∂ σjivj
� �
∂xi

¼ ∂σji
∂xi

vj þ σji
∂vj
∂xi

ð109Þ

the equation can be rewritten and, using the conservation of linear momentum, the

new version of the local form of the energy equation is obtained:

ρ
Dϑ

Dt
¼ �∂qi

∂xi
þ σij

∂vi
∂xi

þ ρr ð110Þ

The second-order tensor related to the velocity gradient may be written as a

combination of a symmetric and an anti-symmetric tensors:

∂vi
∂xj

¼ Dij þΩij ¼ 0 ð111Þ

where

Dij ¼ 1

2

∂vi
∂xj

þ ∂vj
∂xi

� �
ð112Þ

Ωij ¼ 1

2

∂vi
∂xj

� ∂vj
∂xi

� �
ð113Þ

Under this assumption,

σji ¼ ∂vj
∂xi

¼ σjiDji þ σjiΩji ¼ σjiDji ð114Þ

since σjiΩji ¼ 0 due to the fact that it represents a product between a symmetric and

an anti-symmetric tensors.

Hence, the conservation of energy or the first law of thermodynamics has the

following form:

ρ
Dϑ

Dt
¼ �∂qi

∂xi
þ σijDij þ ρr ð115Þ
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5.5 Principle of Entropy

The principle of entropy introduces the idea of the irreversibility of thermodynam-

ical processes. This is established by the second law of thermodynamics with the

objective to properly describe the natural processes that obey the first law, but do

not occur in nature. In essence, the second law of thermodynamics states that

entropy is always greater than or equal to zero. This is expressed by an expression

that computes the variation of entropy and the interactions with the neighborhood.

The sum of all terms should be always greater than or equal to zero:

D

Dt
Sð Þ þ Ξ � 0 ð116Þ

where S is the entropy and Ξ is the entropy input rate that defines the interactions
with the neighborhood. The description of this law implies the following

definitions:

S ¼
ð
V

ρsdυ Entropy

Ξ ¼
ð
V

ρr

T
dυ�

ð
A

qi
T
nida Entropy input rate

Using these expressions, an integral expression is obtained:

D

Dt

ð
V

ρsdυ�
ð
A

qi
T
nidaþ

ð
V

ρr

T
dυ � 0 ð117Þ

Using the Reynolds transport theorem in the first integral together with the mass

conservation:

D

Dt

ð
V

ρsdυ ¼
ð
V

D ρsð Þ
Dt

þ ρs
∂vi
∂xi


 �
dυ ¼

ð
V

ρ
Ds

Dt
dυ ð118Þ

The divergence theorem is applied in the second integral, transforming area into

volume integral:

ð
A

qi
T
nida ¼

ð
V

∂
∂Xi

qi
T

� 
dυ ð119Þ

Under these considerations, an expression for the second law of thermodynamics

is obtained:
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ð
V

ρ
Ds

Dt
þ ∂
∂xi

qi
T

� 
� ρr

T


 �
dυ � 0 ð120Þ

The local form of the second law of thermodynamics is known as the Clausius-
Duhem inequality:

ρ
Ds

Dt
þ ∂
∂xi

qi
T

� 
� ρr

T
� 0 ð121Þ

By considering that:

∂
∂xi

qi
T

� 
¼ 1

T

∂qi
∂xi

� 1

T2
qi
∂T
∂xi

¼ 1

T

∂qi
∂xi

� qigi

� �
ð122Þ

where gi ¼ �1
T

∂T
∂xi
.

It follows that:

ρT
Ds

Dt
þ ∂qi

∂xi
� qigi � ρr � 0 ð123Þ

Since the first law of thermodynamics is given by:

∂qi
∂xi

� ρr ¼ �ρ
D∂
Dt

þ σijDij ð124Þ

The second law is rewritten as follows:

σijDij þ ρ T _s � _ϑ
� �� qigi � 0 ð125Þ

By defining the Helmholtz free energy density, Ψ ¼ ϑ� Ts, the second law is

rewritten as

σjiDji þ ρ _Ψ þ _T s
� �� qigi � 0 ð126Þ

Similar consideration can be done by the definition of the Gibbs free energy

density, Γ ¼ ϑ� 1
ρ σijεij � ρT, resulting in the following form of the inequality:

_σ ijεij � ρ _Γ þ s _T
� �� qigi � 0 ð127Þ
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5.6 Summary of the Fundamental Equations

Based on the presentation of the conservation principles, it is possible to present the

following summary of the essential laws of mechanics.

Conservation of linear momentum:
∂σji
∂xj

þ bi � ρ€ui ¼ 0

Conservation of angular momentum: σjk ¼ σkj

Conservation of mass: ∂ρ
∂t þ ∂

∂Xi
ρvið Þ ¼ 0

Conservation of energy: ρ Dϑ
Dt ¼ � ∂qi

∂xi
þ σijDij þ ρr

Second law of thermodynamics: σijDij þ ρ T _s � _ϑ
� �� qigi � 0

The external forces that cause the motion of a continuum body are related to

several sources. They can be mechanical, electrical, magnetic, among other possi-

bilities. Therefore, it is important to understand that the conservation principles

have multiphysic characteristics. In this regard, some couplings between usually

independent fields are necessary for a general description. Additional conservation

laws should also be necessary in these cases. The conservation of electrical charge

is an illustrative example. This is of special interest in terms of smart materials that

have as an essential property the coupling between different fields.

Note that the fundamental principles furnish a set of 11 equations and 1 inequal-

ity that are related to 21 unknown variables. Therefore, there is a need of six extra

equations in order to have a well-posed system. This is furnished by constitutive

equations that establish a connection between unknown variables of the mechanical

problem.

6 Constitutive Equations

Constitutive equations are mathematical models that describe the main features of

the material behavior, establishing a connection among mechanical quantities. In

general, they are idealized models based on experimental macroscopic observa-

tions. The formulation of constitutive equations should follow some cares in order

to avoid inconsistent description. Admissibility and objectivity are some special

aspects that need to be observed. Admissibility establishes that constitutive equa-

tions must be consistent with fundamental principles. Objectivity defines conditions

where the equations must be invariant through rigid motion of the reference frame.

The elaboration of constitutive equations should follow a proper formalism

avoiding inconsistent equations that, for instances, disrespect the fundamental

principles of mechanics. An interesting procedure is the framework of continuum

mechanics employing the generalized standard material approach (Lemaitre and
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Chaboche 1990). On this basis, the thermomechanical behavior of a continuummay

be modeled from a free energy density (Helmholtz free energy, Ψ , or Gibbs free

energy, Γ) and the pseudo-potential of dissipation, Φ, in order to satisfy the second
law of thermodynamics. A brief discussion about this procedure is now presented.

Consider the Clausius-Duhem inequality, assuming that Dij ¼ _εij:

σij _εij � ρ _Ψ þ s _T
� �� qigi � 0 ð128Þ

Stress and strain tensors should be energetically conjugated, meaning that their

product defines energy. Hence, it is convenient to use description in the same frame.

As a first hypothesis concerning the constitutive modeling, it is assumed that the

Helmholtz free energy density is a function of a finite set of variables:

Ψ ¼ Ψ εij; T; β
� � ð129Þ

where β represents a set of internal variables. Since _Ψ ¼ ∂Ψ
∂εij

_εij þ ∂Ψ
∂T

_T þ ∂Ψ
∂β

_β , the

Clausius-Duhem inequality is rewritten as follows:

σij � ρ
∂Ψ
∂εij

� �
_εij � ρ sþ ∂Ψ

∂T

� �
_T � ρ

∂Ψ
∂β

_β � qigi � 0 ð130Þ

This form motivates the following definitions of the thermodynamical forces:

σ R
ij ¼ ρ

∂Ψ
∂εij

; B ¼ � ρ
∂Ψ
∂β

; sR ¼ �∂Ψ
∂T

ð131Þ

In order to describe irreversible processes, complementary laws are defined from

a pseudo-potential of dissipation that is a function of internal variables:

Φ ¼ Φ _εij; _β; _T ; qi
� � ð132Þ

The thermodynamical formalism establishes thermodynamics fluxes as follows

(Lemaitre and Chaboche 1990):

σ I
ij ¼

∂Φ
∂ _εij

; B ¼ ∂Φ

∂ _β
; sI ¼ �∂Φ

∂ _T
; gi ¼ �∂Φ

∂qi
ð133Þ

Alternatively, these thermodynamic fluxes may be obtained from the dual of the

potential of dissipation Φ*(σ I
ij,B, gi) allowing the definitions:
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_ε I
ij ¼

∂Φ*

∂σ I
ij

; _β ¼ ∂Φ*

∂B
; qi ¼ �∂Φ*

∂gi
ð134Þ

where εIij is the inelastic strain.

On this basis, a complete set of constitutive equations is defined:

σij ¼ ρ
∂Ψ
∂εij

þ ∂Φ
∂ _ε ij

ð135Þ

B ¼ � ρ
∂Ψ
∂β

¼ ∂Φ

∂ _β
ð136Þ

s ¼ �∂Ψ
∂T

� ∂Φ

∂ _T
ð137Þ

gi ¼ �∂Φ
∂qi

ð138Þ

In general, if the pseudo-potential Φ is a positive convex function that vanishes

at the origin, the Clausius-Duhem inequality is automatically satisfied.

The description of thermomechanical couplings must consider the energy con-

servation equation given by the first law of thermodynamics:

ρ _Ψ ¼ σij _εij � ∂qi
∂xi

� ρT _s � ρ _Ts ð139Þ

By considering a single point description, spatial variations are neglected.

Besides, a convection boundary condition is assumed. Therefore, the first law of

thermodynamics has the following form:

ρcp _T ¼ �h T � T1ð Þ þ σij _εij þ B _β þ T
∂σij
∂T

_εij � _ε I
ij

� 
� ∂B

∂T
_β


 �
ð140Þ

where cp is the specific heat at constant pressure, h is the convection coefficient, and
T1 is the environmental temperature. The first term on the equation right side is the

convection term whereas the others are associated with the thermomechanical

couplings.

The following sections present basic examples of constitutive equations:

elasticity and elastoplasticity. Afterward, piezoelectricity and pseudoelasticity are

treated showing examples of smart materials constitutive relations.
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6.1 Elasticity

Elastic materials are characterized by reversibility where all effects finish when the

stimulus is over. In general, elasticity may have linear or nonlinear behaviors. The

general linear constitutive equation for the three-dimensional media establishes that

stress components are built from a linear combination of strain components. This is

equivalent to consider a quadratic energy function,Ψ ¼ 1
2
Eijklεijεkl, and the pseudo-

potential of dissipation Φ vanishes. Therefore,

σij ¼ Eijklεkl ð141Þ

or in the inverse form,

εij ¼ Sijklσkl ð142Þ

where Eijkl is the elastic tensor while Sijkl is the compliance tensor. They are fourth-

order tensors that have 81 components. Due to symmetry reasons, it is possible to

conclude that only 36 components are independent. Therefore, it is possible to

rewrite the equation as follows:

σI ¼ EIJεJ ð143Þ

or

σx
σy
σz
τyx
τxx
τxy

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

¼

E11 E12 E13 E14 E15 E16

E21 E22 E23 E24 E25 E26

E31 E32 E33 E34 E35 E36

E41 E42 E43 E44 E45 E46

E51 E52 E53 E54 E55 E56

E61 E62 E63 E64 E65 E66

2
6666664

3
7777775

εx
εy
εz
εyx
εxx
εxy

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

ð144Þ

where the indexes are replaced as presented in Table 1.

Since this elastic matrix is symmetric, there are actually 21 independent com-

ponents. This general behavior establishes that normal stress causes normal and

Table 1 Index conversion ij I

11 1

22 2

33 3

23 4

13 5

12 6

Continuum Mechanics 35



shear strains. This is a typical anisotropic behavior where the material presents

different properties for different directions.

By assuming that all material behaviors are the same for all directions, this

general anisotropic behavior is reduced to simpler situations. The simplest case is

the isotropic media where the stress–strain relation is given by:

σij ¼ 2μεij þ λδijεkk ð145Þ

where μ and λ are the Lamé coefficients. Note that there are only two independent

coefficients. The inverse equation is given by

εij ¼ 1þ νð Þ
E

σij � ν

E
δijσkk ð146Þ

where E and ν are the engineering constants, together with G, defined as follows:

G ¼ E

2 1þ νð Þ ð147Þ

The relation between the Lamé and engineering coefficients are given by:

λ ¼ νE

1þ νð Þ 1� 2νð Þ

μ ¼ G ¼ E

2 1þ νð Þ ð148Þ

Note that, the use of elastic constitutive equations together with the fundamental

principles allows one to completely describe an elastic material system.

6.2 Elastoplasticity

Elastoplastic behavior is an inelastic irreversible process promoted by the discor-

dances movements. This kind of behavior occurs for stress levels over critical

values that define the yield surface. There are several idealizations to establish

elastoplastic models. Ideal plasticity is the simplest model where yield stress is the

maximum limit. A more sophisticate model considers hardening effect, meaning

that plastic strains influence the yield surface. The three-dimensional description

usually considers an equivalent stress employed to compare the three-dimensional

state with an equivalent one-dimensional case, obtained from experimental tests. A

one-dimensional version is discussed here.

The elastoplastic model with kinematic and isotropic hardening can be

represented by the model presented in Fig. 11. Kinematic hardening is related to
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the translation of yield surface while isotropic hardening defines the expansion of

this surface due to plastic strains.

A simple one-dimensional constitutive model to describe this behavior is written

considering the following variables: total strain, ε, and plastic strain, εp, isotropic
hardening, α, and kinematic hardening, β. Hence, the stress–strain relationship is

given by:

σ ¼ E ε� εpð Þ ð149Þ

The evolution equations are described by the following equations:

_ε p ¼ _γ sign σ � βð Þ ð150Þ

_α ¼ _ε pj j ð151Þ
_β ¼ H _ε p ð152Þ

where H is a parameter and _γ represents plastic strain rate.

The yield surface is defined by the function,

h σ; α; βð Þ ¼ σ � βj j � σE þ Kαð Þ ð153Þ

where K is the plastic parameter. The irreversibility of the plastic flux is represented

by the constraints,

γ � 0

γh σ; α; βð Þ ¼ 0

γ _h σ; α; βð Þ ¼ 0 if h σ; α; βð Þ ¼ 0

ð154Þ

6.3 Piezoelectricity

Piezoelectric materials have a reciprocal electro-mechanical coupling. Hence, once

an electrical field is applied, the material exhibits a mechanical deformation; on the

other hand, when the material undergoes a mechanical load, an electrical potential

is generated.

E1

s

s

E
E2

Fig. 11 Elastoplastic

model with hardening
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The description of the three-dimensional behavior of piezoelectric materials

involves the connection of both electrical and mechanical quantities. Hence,

besides the strain, εI, and the stress σI, it is necessary to consider the electric

displacement, DI, and the applied field, VI. Therefore, the 3D linear constitutive

equation to describe the direct effect, where mechanical loads generates electrical

field, is given by:

DM ¼ dMIσI þ EMKVK ð155Þ

The inverse effect converts electrical field into mechanical energy being

described as follows:

εI ¼ SIJσJ þ dMIVM ð156Þ

where dIJ is the piezoelectric coupling tensor and EIJ is the permittivity tensor. It is

essential for a proper description to identify the poling direction, perpendicular to

directions 1 and 2. On the other hand, the shear planes are indicated by the

subscripts 4, 5, and 6.

6.4 Pseudoelasticity and Shape Memory Effect

Shape memory alloys (SMAs) present a mechanical–temperature coupling moti-

vated by solid phase transformations. These materials have the ability to recover a

shape previously defined, when subjected to an appropriate thermomechanical

loading process. Besides, they present other phenomena as pseudoelasticity.

The constitutive modeling of SMAs is very complex due to several thermome-

chanical phenomena involved. Among many alternatives, there is a class known as

models with assumed phase transformation kinetics that are popular in the literature

(Lagoudas 2008; Paiva and Savi 2006). The main idea related to these models is to

consider pre-established mathematical functions to describe the phase transforma-

tion kinetics. Here, a one-dimensional version is presented. In this regard, besides

strain, ε, and temperature, T, an internal variable, β, is used to represent the

martensitic volume fraction. The constitutive relation between stress and state

variables is considered in the rate form as follows:

_σ ¼ E _ε � α _β �Ω _T ð157Þ

where E represents the elastic modulus, α corresponds to the phase transformation

parameter, andΩ is associated with the thermoelastic expansion. Due to martensitic

transformation non-diffusive nature, the martensitic volume fraction can be

expressed as function of current values of stress and temperature β¼ β(σ,T ).
Brinson (1993) proposed a split of this volume fraction into two distinct martensitic

fractions: temperature induced, βT, and stress induced, βS, in such a way that
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β¼ βT + βS. Moreover, different elastic moduli for austenite, EA, and martensite,

EM, are considered being given by a linear combination such that: E(β)¼
EA + β(EM�EA).

The kinetics of the Brinson’s model considers that the martensitic transformation

evolution is expressed by:

βS ¼
1� βS0

2
cos

π

σ CRIT
s � σ CRIT

f

σ � σCRIT
f � CM T �Msð Þ� �� �

þ 1þ βS0
2

βT ¼ βT0
� βT0

1� βS0
βS � βS0
� �

ð158Þ

Both equations hold for: σ CRIT
s þ CM T �Msð Þ < σ < σ CRIT

f þ CM T �Msð Þ and

T>Ms.

For T<Ms and σ CRIT
s < σ < σ CRIT

f , the martensitic transformation is given by

βS ¼ 1� βS0
2

cos
π

σ CRIT
s � σ CRIT

f

σ � σ CRIT
f

� �
 �
þ 1þ βS0

2

βT ¼ βT0
� βT0

1� βS0
βS � βS0
� �þ ΔT

ð159Þ

where ΔT ¼
1� βT0

2
cos aM T �Mfð Þ½ � þ 1f g if Mf < T < Ms and T < T0

else : 0

(
.

The reverse transformation holds for CA T � Afð Þ < σ < CA T � Asð Þ and T>As

being defined as:

βS ¼ βS0
2

cos aA T � As � σ

CA

� �
 �
þ 1

� �

βT ¼ βT0

2
cos aA T � As � σ

CA

� �
 �
þ 1

� � ð160Þ

where aM and aA are material coefficients. βS0 and βT0
represent, respectively, the

stress induced and the temperature induced martensitic volume fractions immedi-

ately before transformations begin.
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Wave Motion in Elastic Structures

M.J. Brennan, B. Tang, and F.C.L. Almeida

Abstract Describing the dynamic behaviour of structures in terms of waves is

particularly useful when high frequency vibration is of interest. This is the case in

active and passive vibration control, and in structural health monitoring. In this

chapter, the concept of wave motion is introduced and different types of waves are

discussed, namely waves in a string, a rod and a beam. Using the wavenumber, the

phenomenon of dispersion is introduced as is phase and group velocity, and cut-off.

The emphasis is on the physical concepts rather than mathematics, and to this end,

the majority of the chapter concentrates on one-dimensional uniform structures.

Keywords Wave motion • Strings • Rods • Beams • Wavenumber • Phase

velocity • Group velocity • Cut-off frequency • Dispersion

1 Introduction

Although many mechanical engineers are familiar with the concept of natural

frequencies and mode-shapes of structures, very few are familiar with the basic

concepts of wave motion. This is probably because most mechanical engineering

courses start with static analysis and then move on to dynamic analysis, which leads

on naturally to the concept of a finite number of natural frequencies and accompa-

nying mode-shapes. At a high frequency, which is when the dimension of a

structure, or part of a structure, is smaller than a structural wavelength, then it

can be helpful to think about the structure in terms of waves rather than modes.

Indeed, in a structure it is a wave that propagates vibrational energy from one part

of a structure to another.
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This chapter aims to give an overview of some of the important aspects of

structural wave motion. It is not possible in one chapter to give a comprehensive

treatment of all types of wave motion, which may be found in complete books on

the subject, for example Cremer et al. (2005), Graff (1975), and Hagedorn and

DasGupta (2007), so the authors restrict their attention to some basic physics. The

notion of a wave is first discussed before specific structural wave-types are exam-

ined. To facilitate physical insight without unnecessary mathematical complexity,

the focus is on one-dimensional structures, in which three different physical

quantities have a dominant influence, namely, tension (as in a string), in-plane

compression (as in a rod) and bending (as in a beam). Time harmonic behaviour at

low and high frequencies is considered.

2 Some Features of Harmonic Wave Motion

The waves considered in this chapter exist in homogeneous uniform structures

(rods, beams, plates, for example), and have displacement v either in-plane or out-
of-plane (or both), and the wave (or vibrational energy) propagates in the in-plane

direction, x. Examples of waves in a one-dimensional structure are illustrated in

Fig. 1. The longitudinal wave is an in-plane wave, but, as shown in the figure, there

is some out-of-plane displacement due to the Poisson ratio effect. Shear and

bending waves are examples of out-of-plane waves. These waves are discussed

later in this chapter.

Bending

Shear

Longitudinal

Direction of wave propagation

Fig. 1 Illustrations of different types of wave motion in one-dimensional structures. Note that for

longitudinal motion, the displacement orthogonal to the direction of wave propagation is exag-

gerated for clarity
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A propagating wave that is harmonic in time and space, can be represented by

v x; tð Þ ¼ V sin ωt� kxð Þ ð1aÞ

or

v x; tð Þ ¼ V cos ωt� kxð Þ ð1bÞ

where V is the amplitude of the wave, ω is the angular (or temporal) frequency and

k is the wavenumber (or spatial frequency). Note that �kx denotes a wave

propagating in the positive x direction and þkx denotes a wave propagating in

the negative x direction. Knowing what the wavenumber represents is vital to the

understanding of harmonic wave motion. Physically, it is the spatial phase change

per unit distance, and is analogous to angular frequency which is the temporal

change of phase per unit time. It is related to the wavelength λ, and the spatial phase
velocity c, by k ¼ 2π=λ ¼ ω=c.

To emphasise the physical meaning of the wavenumber, illustrations of a

waveform as a function of time and space are given in Fig. 2.

Rather than using trigonometric functions, it is often preferable to use exponen-

tial functions by noting that v x; tð Þ ¼ VIm e j ωt�kxð Þ� �
or v x; tð Þ ¼ VRe e j ωt�kxð Þ� �

corresponding to Eqs. (1a) and (1b) respectively. Neglecting Re and Im for sim-

plicity (which can be done because the systems considered in this chapter are linear

and so the superposition principle applies), the wave motion given in Eqs. (1a) and

(1b) can be written as

v x; tð Þ ¼ Ve� jkxe jωt ð2Þ

time

l

l

T

2
T
π

Temporal frequency

distance

2πk
c

Spatial frequency
(wavenumber)

ωω == =

Fig. 2 The analogy between temporal frequency and the wavenumber (spatial frequency)
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where it can be seen that the spatial and temporal variables are separated as v xð Þ ¼
Ve�jkx and v tð Þ ¼ e jωt, so that v x; tð Þ ¼ v xð Þv tð Þ. The concept of spatial phase is

shown in Fig. 3, where only the spatial variable is considered, and a snapshot of a

right-going propagating wave is shown at two distinct times. It can be seen that the

distance the wave has travelled between the two snapshots is ϕ/k.

2.1 Interference of Waves

Waves can combine by propagating in the same direction or in opposite directions,

both of which are considered in this section. For ease of interpretation, it is

convenient here to use trigonometric rather than exponential notation.

2.1.1 Waves Propagating in the Same Direction

Consider two right-going waves propagating at different speeds (consequently with

two different wavenumbers). They can be described by

v1 x; tð Þ ¼ V sin ω1t� k1xð Þ ð3aÞ

and

v2 x; tð Þ ¼ V sin ω2t� k2xð Þ ð3bÞ

These can be summed because of the principle of superposition to give

v x; tð Þ ¼ V sin
ω1 þ ω2

2

� �
t� k1 þ k2

2

� �
x

� �
ð4Þ

where V ¼ 2V cos ω1�ω2

2

� 	
t� k1�k2

2

� 	
x

� 	
.

( ) jkxv x Ve-=
x

v x( )

V
( ) ( )j kx+v x Ve- f=

k
f

Direction of wave propagationFig. 3 An illustration of

physical meaning of spatial

phase ϕ

44 M.J. Brennan et al.



The waves described in Eqs. (3a), (3b) and (4) are shown in Fig. 4a, where the

frequency ω2 ¼ 1:1ω1 and k2 ¼ 1:1k1. Now, the phase velocity of the two

individual waves is c1 ¼ ω1=k1 and c2 ¼ ω2=k2, respectively, and the phase

velocity cP of the combined wave, which has a mean frequency of ω1 þ ω2ð Þ=2
and a mean wavenumber of k1 þ k2ð Þ=2, is

cP ¼ ω1 þ ω2

k1 þ k2
ð5aÞ

Direction of wave propagation

1 1,kω

ω

2 2,kω

ω

1 2 1 2,
2 2

k kω

ω

ω+ +
V

Direction of wave propagation

,k

,k

,k

Standing wave

a

b

Fig. 4 Illustration of wave interference. (a) The summation of waves propagating in the same

direction. (b) The summation of waves propagating in opposite directions to give a standing wave
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The envelope of the combined waves V does not propagate at the phase velocity.

It propagates at the group velocity, which is the velocity at which the energy in the

combined wave is transported (Cremer et al. 2005). It is given by

cG ¼ ω1 � ω2

k1 � k2
¼ Δω

Δk
ð5bÞ

In the limiting case, where the frequencies are arbitrarily close to each other,

Eq. (5b) becomes cG ¼ dω=dk, i.e. the group velocity is the rate of change of

frequency with respect to the wavenumber. If the waves have the same phase

velocity that is independent of frequency, i.e. they are non-dispersive (such as

tension waves in strings and compressional waves in rods (Cremer et al. 2005;

Graff 1975; Hagedorn and DasGupta 2007; Kinsler et al. 1982)), then the

wavenumbers are proportional to frequency, so that cG ¼ cP ¼ c1 ¼ c2. If

the waves have a phase velocity that is dependent on frequency, i.e. they are

dispersive (such as bending waves in beams and plates), then this is not the case.

In the particular case of bending waves, the wavenumbers are proportional to the

square root of frequency. The group velocity is then related to the phase velocity by

cG ¼ 2cP. The terms dispersive/non-dispersive have physical significance. If a

structural wave is non-dispersive, then a pulse of vibration generated at a point in

the structure will propagate through the structure without distortion. On the con-

trary, if a wave is dispersive then the pulse changes shape as it propagates through

the structure.

2.1.2 Waves Propagating in Opposite Directions

If two waves, with the same amplitude, frequency and wavenumber, are propagat-

ing in opposite directions, they can be described by

v1 x; tð Þ ¼ V sin ωt� kxð Þ ð6aÞ

and

v2 x; tð Þ ¼ V sin ωtþ kxð Þ ð6bÞ

They sum to give a standing wave, given by

V x; tð Þ ¼ 2A sin ωtð Þ cos kxð Þ ð7Þ

in which it can be seen that there is no propagation of energy in either direction. The

formation of a standing wave is illustrated in Fig. 4b. An example of a standing

wave occurs when a structure vibrates freely at its natural frequency. All points on

the structure vibrate either in-phase or in anti-phase with each other. With this kind

of wave-field, there are points on the structure that do not vibrate which are called
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nodes, and there are points on the structure that vibrate the most, which are called

antinodes. If two waves, which are propagating in opposite directions in a structure,

have different amplitudes, then the wave-field will consist of both a propagating

wave and a standing wave.

3 Basic Wave-Types in One-Dimensional Structures

In this section, three types of waves are considered. These commonly occur in

structures and are of fundamental importance in the study of wave propagation in

any structure. The equations of motion are derived, as is the impedance of the

structures when excited by a force. Note that the equations of motion, which are

called wave equations, involve partial differentials in both space and time. This is

because the structures are described in terms of distributed mass and stiffness.

3.1 Transverse Waves in a String

Perhaps the simplest structure in which to commence the study of wave propagation

is a string. This is an idealised structure in which the bending stiffness is considered

to be negligible, so that the elastic force is due only to the tension in the string.

To determine the wave equation for this structure, a section of the string of length

dxwith an in-plane tension T, such as that shown in Fig. 5a, is considered. Summing

forces in the y direction gives

df y ¼ T sin θð Þxþdx � T sin θð Þx ð8Þ

Applying the Taylor series expansion f xþ dxð Þ ¼ f xð Þ þ ∂f
∂x

� �
x
dxþ � � � results in

df y ¼ T sin θð Þx þ
∂ T sin θð Þ

∂x
dx


 �
� T sin θð Þx ð9Þ

If θ � 1, then sin θ � θ ¼ ∂w=∂x and Eq. (9) reduces to

df y ¼ T
∂2

w

∂x2
dx ð10Þ

which is the stiffness force (or the restoring force). This is equal to the inertia

force, which is the product of the mass and the acceleration in the y direction, and is
given by
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df y ¼ ρLdx
∂2

w

∂t2
ð11Þ

where ρL is the mass per unit length. Setting Eq. (10) to be equal to Eq. (11)

results in

∂2
w

∂x2
� 1

c2S

∂2
w

∂t2
¼ 0 ð12Þ

where cS ¼
ffiffiffiffiffiffiffiffiffiffi
T=ρL

p
is the phase velocity. Equation (12) is the wave equation for a

string. Note that the phase velocity is independent of frequency, so that a wave in a

string is non-dispersive which means that the group velocity is equal to the phase

velocity.

To determine the free-wave behaviour, time harmonic motion of the form w ¼
w xð Þe jωt is assumed, and the partial differential equation given in Eq. (12) becomes

an ordinary differential equation, given by

T

T

x

y

x dx+

yy dx
x

+

dy
dx

String 
segment

T-
( )yf t x

y

w
a

b

Fig. 5 Vibration of a string in tension. (a) Free vibration of a string. (b) Semi-infinite string

excited by a harmonic force
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d2w xð Þ
dx2

þ k2Sw xð Þ ¼ 0 ð13Þ

where kS ¼ ω=cS is the wavenumber. Equation (13) is a second-order ordinary

differential equation, the solution of which is w xð Þ ¼ Ae�jkSx þ Be jkSx. Thus, the

solution to Eq. (12) is

w x; tð Þ ¼ Ae�jkSx þ Be jkSx
� 	

e jωt ð14Þ

Note the similarity between the form of this equation and Eq. (2). There are two

propagating waves which are harmonic in space and time, where Ae�jkSxe jωt is a

right-going propagating wave with amplitude A, and Be jkSxe jωt is a left-going

propagating wave with amplitude B.
One important quantity of interest in the study of wave motion is the mechanical

impedance of the structure. One reason for this is that when a wave is incident on a

discontinuity, it is the impedance of the discontinuity compared to the impedance of

the structure that governs the way in which the wave is reflected and/or transmitted

(Fahy and Gardonio 2007).

To determine the impedance of a string, consider the semi-infinite string shown

in Fig. 5b. It is excited by the force f y tð Þ ¼ Fye
jωt at the end of the string, which

generates a right-going wave, so that

w x; tð Þ ¼ Ae j ωt�kSxð Þ ð15Þ

Differentiating with respect to space and time, respectively, results in

∂w x; tð Þ
∂x

¼ �jkSAe
j ωt�kSxð Þ; ð16aÞ

∂w x; tð Þ
∂t

¼ jωAe j ωt�kSxð Þ ð16bÞ

Now, the excitation force is f y tð Þ ¼ �T sin θ tð Þ � �T∂y 0; tð Þ=∂x. So, from

Eq. (16a), f y tð Þ ¼ jTkSAe
jωt and thus Fy ¼ jTkSA. From Eq. (16b), the velocity

in the y direction at x ¼ 0 can be written as v 0; tð Þ ¼ V 0ð Þe jωt, where V 0ð Þ ¼ jωA.
The driving point impedance is the ratio of the applied force to the resulting velocity

at the point of excitation, and is a frequency domain quantity. It is thus given by

ZS ¼ Fy

V 0ð Þ ¼
jTkSA

jωA
ð17Þ

Noting that kS ¼ ω=cS and cS ¼
ffiffiffiffiffiffiffiffiffiffi
T=ρL

p
, Eq. (17) becomes
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ZS ¼ ρLcS ¼
ffiffiffiffiffiffiffiffi
TρL

p ð18Þ

It can be seen that the impedance is a real quantity that does not vary with

frequency, which is the characteristic of a viscous damper (Gardonio and Brennan

2004). This means that, as seen by the excitation force, a semi-infinite string

behaves as a viscous damper.

3.2 Longitudinal Waves in a Rod

The procedure to derive the wave equation and the wavenumber for a rod is similar

to that for a string, in that the inertia force and the stiffness force for a small section

are determined and then set to be equal to each other. Consider a section of rod, as

shown in Fig. 6. Applying Hooke’s law results in

fx
S
¼ E

∂u
∂x

ð19Þ

where E and S are the Young’s modulus and cross-sectional area of the rod,

respectively. Now, the net force on the element (stiffness force) is given by

dfx ¼ fx þ
∂fx
∂x

dx

� �
� fx ¼

∂fx
∂x

dx ð20Þ

Substituting for fx from Eq. (19) into Eq. (20) gives the stiffness force

dfx ¼ ES
∂2

u

∂x2
dx ð21Þ

Setting this equal to the inertia force given by ρSdx∂2
u=∂t2, in which ρ is the

density of the rod, results in

∂2
u

∂x2
� 1

c2R

∂2
u

∂t2
¼ 0 ð22Þ

Rod element of 
area S and density rxf

x x dx

x
x x

ff df
x

¶
¶

u

+
+

Fig. 6 Free vibration of a rod
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where cR ¼ ffiffiffiffiffiffiffiffi
E=ρ

p
is the phase velocity. Equation (22) is the wave equation for a

rod. Note the similarity between this and the wave equation for a string. The phase

velocity is also independent of frequency, so that a wave in a rod is also

non-dispersive. Two waves that are harmonic in space and time can exist in the

rod, so that the solution to Eq. (22) is

u x; tð Þ ¼ Ae�jkRx þ Be jkRx
� 	

e jωt ð23Þ

in which kR ¼ ω=cR. For a plate, the phase velocity for an in-plane wave is given by

cP ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E= ρ 1� ν2ð Þð Þp

, and for a three-dimensional solid the phase velocity of a

compressional wave is given by c3D ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E 1� ν2ð Þ= ρ 1þ νð Þ 1� 2νð Þð Þp

in which ν
is Poisson’s ratio (Fahy and Gardonio 2007). Note that the phase velocity is greatest
in the three-dimensional solid and slowest in the rod, with the phase velocity in the

plate being in between the two. The reason for this phenomenon is that the motion

orthogonal to the direction of the wave propagation (which is evident in the

longitudinal wave shown in Fig. 1) tends to slow down the wave in the in-plane

direction. In a three-dimensional solid, there is no motion orthogonal to the

direction of wave propagation, so the wave is not slowed by this effect (note that

this wave is generally called a compressive wave and has pure longitudinal motion).

In the plate, there is out-of-plane motion in one direction only, and in the rod there

is out-of-plane motion in two directions, which explains why the wave becomes

progressively slower in these two cases.

The impedance for a force-excited rod can be calculated in the same way as that

for the string (and so is left as an exercise for the reader). It is given by

ZR ¼ ρcR ¼ S
ffiffiffiffiffiffi
Eρ

p
ð24Þ

Note that, as with the string, the impedance is a real quantity which does not vary

with frequency, Hence, as seen by the excitation force, a semi-infinite rod also acts

as a viscous damper.

3.3 Flexural (Bending) Waves

3.3.1 Beam

In this section, flexural waves in a beam are considered. The behaviour of a beam is

much more complicated than the previous cases discussed so far in this chapter. As

shown in Fig. 1 there are two types of out-of-plane motion in a beam, one is shear

wave motion and the other is bending wave motion. With shear motion, sections of

the beam vibrate in the direction of the out-of-plane motion without rotation, as can

be seen in the figure. This type of vibration is not discussed in this section, but is

discussed in Sect. 5. Of interest here is bending vibration, where sections of beam
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are orthogonal to the neutral axis as can be seen in Fig. 1. They experience both

translational displacement and rotation. The reason why this type of vibration is

more complicated than longitudinal vibration in a rod, for example, is that both the

bending moment and the shear force govern the deformation of the beam and hence

the vibration.

Consider a small beam element of length dx as shown in Fig. 7a. The net shear

force acting on the element (stiffness force) is given by

df y ¼ f y � f y þ
∂f y
∂x

dx

� �
¼ �∂f y

∂x
dx ð25Þ

Note the similarity between this and Eq. (20). Setting this equal to the inertia

force given by ρSdx∂2
w=∂t2, in which ρ is the density of the beam, results in

∂f y
∂x

¼ �ρS
∂2

w

∂t2
ð26Þ

Summing the moments about the right-hand edge of the element gives

dm ¼ mþ ∂m
∂x

dx

� �
� m� f ydx ð27Þ

The Euler–Bernoulli assumption is that the rotary inertia is relatively small and

can be neglected, which means that dm ¼ 0. From Eq. (27) this results in

f y ¼ ∂m=∂x. Combining this with Eq. (26) gives

fy(t)

x

Beam of area S 
and density r

y

y

Beam segment of length dx
cross-sectional area S

w

m m dm+

y yf df+

x

yf

a

b

Fig. 7 Vibration of an Euler–Bernoulli beam. (a) Free vibration of an Euler–Bernoulli beam. (b)
Forced vibration of a semi-infinite beam
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∂2
m

∂x2
þ ρS

∂2
w

∂t2
¼ 0 ð28Þ

Now, from basic static beam theory, for example (Hearn 1985), m ¼ EI ∂
2
w

∂x2 , in

which I is the second moment of area about the neutral axis. This can be combined

with Eq. (28) to give

EI
∂4

w

∂x4
þ ρS

∂2
w

∂t2
¼ 0 ð29Þ

which is the Euler–Bernoulli equation for a beam. Note that this involves a fourth-

order spatial derivative rather than a second-order spatial derivative, which is the

case for the spring and the rod. If time harmonic motion of the form w tð Þ ¼ w xð Þ
e jωt is assumed, then Eq. (29) becomes

d4w xð Þ
dx4

þ k4Bw xð Þ ¼ 0 ð30Þ

where kB ¼ ρS= EIð Þð Þ14ω1
2 is the wavenumber for the beam. Now, the wavenumber

is related to the phase velocity cB by kB ¼ ω=cB, so that cB ¼ EI= ρSð Þð Þ14ω1
2. Thus, it

can be seen that a flexural wave is dispersive. A flexural vibration pulse in a

structure will consist of several frequency components, and the higher frequency

components will propagate at a higher speed than the lower frequency components,

with the results that the pulse spreads (or disperses) as it propagates.

Now, Eq. (30) is a fourth-order equation, which means that there are two other

solutions in addition to the propagating waves in the left- and right-hand directions.

These are nearfield or evanescent waves and are found close to discontinuities.

Thus the solution to Eq. (30) is given by

w x; tð Þ ¼ A1e
kBx þ A2e

�kBx þ A3e
jkBx þ A4e

�jkBx
� 	

e jωt ð31Þ

where the Ai’s are the wave amplitudes and A1e
kBx and A2e

�kBx are the evanescent

waves decaying in the left- and right-going directions, respectively. Note that the

evanescent waves do not propagate energy unless they interact with each other

(Bobrovnitskii 1992). In the majority of textbooks, Eq. (31) is often written in terms

of hyperbolic and trigonometric functions. Although this is convenient from the

mathematical point of view, it is not so helpful in terms of understanding the

physical behaviour, whereas the physical significance of the terms in Eq. (31) is

clear.

To determine the impedance of the beam, consider the semi-infinite beam in

Fig. 7b, excited by a harmonic force f y tð Þ ¼ Fye
jωt at the end, which generates

right-going evanescent and propagating waves, so that
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w x; tð Þ ¼ A2e
�kBx þ A4e

�jkBx
� 	

e jωt ð32Þ

Now, the two boundary conditions at the end of the beam are (a) that the bending

moment is zero, so that EI∂2
w 0; tð Þ=∂x2 ¼ 0 and (b) the shear force is equal to the

applied force, so that EI∂3
w 0; tð Þ=∂x3 ¼ Fe jωt. Applying boundary condition

(a) results in A2 ¼ A4, so that Eq. (32) becomes

w x; tð Þ ¼ e�kBx þ e�jkBx
� 	

A4e
jωt ð33Þ

from which the velocity at x ¼ 0 can be calculated. It is given by v x; tð Þ ¼ V 0ð Þe jωt,

where V 0ð Þ ¼ jω2A4. Applying boundary condition (b) results in Fy ¼
�1þ jð ÞEIk3BA4. The driving point impedance is the ratio of the applied force to

the resulting velocity at the point of excitation, and is thus given by

ZB ¼ Fy

V 0ð Þ ¼
�1þ jð ÞEIk3BA4

jω2A4

¼ EIk3B 1þ jð Þ
2ω

ð34aÞ

Noting that kB ¼ ρS= EIð Þð Þ14ω1
2, Eq. (34a) can be written as

ZB ¼ EIð Þ1=4 ρSð Þ3=4
2

ω1=2 1þ jð Þ ð34bÞ

This can be interpreted as a frequency dependent damper (related to the real part of

the impedance) where the damping coefficient is given by (EI)1/4(ρS)3/4ω1/2/2, in

parallel with a frequency dependent mass (related to the imaginary part of the

impedance which is positive), where the mass is given by (EI)1/4(ρS)3/4/(2ω1/2)

(Gardonio and Brennan 2004). Note that this is different from the string and the rod,

where the impedance is damping-like only. The additional mass-like impedance is

because the beam has an evanescent wave as well as a propagating wave at the end

of the beam.

3.3.2 Plate

The physics governing flexural waves in a uniform flat plate are similar to that

in a beam (Cremer et al. 2005). Therefore they are not covered in detail here.

The partial differential equation describing the flexural vibration is given by

Cremer et al. (2005),

D∇4wþ ρh
∂2

w

∂t2
¼ 0 ð35Þ
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where D ¼ Eh3

12 1�ν2ð Þ,∇ ¼ ∂4

∂x4 þ ∂4

∂x2∂y2 þ ∂4

∂y4, and h is the thickness of the plate. Note

the similarity between Eqs. (29) and (35). Assuming time harmonic motion of the

form w tð Þ ¼ w xð Þe jωt, Eq. (35) becomes

∇4w xð Þ þ kPlw xð Þ ¼ 0 ð36Þ

where kPl is the wavenumber given by kPl ¼ ρ 1� ν2ð Þ= Eh2
� 	� 	1

4ω
1
2. Note that for a

rectangular beam the wavenumber is given by kB ¼ ρ= Eh2
� 	� 	1

4ω
1
2. It can thus be

seen that the plate has a slightly higher bending stiffness compared to a beam due to

the Poisson ratio effect, and hence the phase velocity is slightly higher for a given

frequency.

4 Dispersion

The aim of this section is to give a physical explanation as to why some waves

are non-dispersive and others are dispersive. Two examples are given. First,

consider the phase velocity for a rod, which is given by cR ¼ ffiffiffiffiffiffiffiffi
E=ρ

p
. This can

also be written as

cR ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ES=λRð Þ
ρSλR

s
λR ¼ ωλ

2π
λR ð37Þ

where ωλ ¼ 2π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
stiffness of one wavelength of the structure
mass of one wavelength of the structure

q
, and λR is the wavelength of a

longitudinal wave. In this case, the way in which the stiffness in one wavelength

changes with frequency, is inversely proportional to the way in which the mass in

one wavelength changes with frequency. Note that Eq. (37) can also be interpreted

as cR ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
stiffness per unit length
mass per unit length

q
, which in this case is constant. In general, if the ratio

of the stiffness per unit length
mass per unit length

does not change with frequency, then the phase velocity is

a constant and is hence non-dispersive.

Consider now a flexural or bending wave in which the phase velocity is given by

cB ¼ EI= ρSð Þð Þ14ω1
2. Noting thatω ¼ kBcB and thatkB ¼ 2π=λB, this can be written as

cB ¼
ffiffiffiffiffi
EI

ρS

s
2π

λB
ð38Þ
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where λB is the wavelength of a flexural wave. Equation (38) can be further written as

cB ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4π2EI=λ3B
� 	

ρSλB

s
λB ¼ ωB

2π
λB ð39Þ

where 4π2EI/λ3B is the bending stiffness of a flexural wavelength of the structure and

ρSλB is the mass of one wavelength of the structure. It can be seen in this case that

the stiffness per unit wavelength and mass per unit wavelength are not inversely

related as frequency changes. For example, if the wavelength reduces by a factor of

2 (as frequency increases), the stiffness increases by a factor of 8, but the mass only

reduces by a factor of 2. Hence ωB increases by a factor of 4 and the phase velocity

increases by a factor of 2. Thus, the wave is dispersive.

In general, if the product of the stiffness per unit wavelength and the mass per

unit wavelength is independent of frequency, then the phase velocity is constant,

and the wave is non-dispersive. If this is not the case, then the wave is dispersive.

5 Flexural Beam Vibration at High Frequencies

5.1 Wavenumbers

Two fundamental assumptions in Euler–Bernoulli beam theory are (a) that the

rotary inertia of the beam can be neglected, and (b) that the shear stiffness is infinite.

These assumptions are generally valid for a rectangular beam when λB >
10� depth of the beam. When this is not the case, Timoshenko beam theory has to

be used to describe the vibration (Graff 1975; Hagedorn and DasGupta 2007).

Consider a small beam element of length dx as shown in Fig. 8. Note that the

element is distorted because of the finite shear stiffness, and that it has a mass

moment of inertia J ¼ ρIdx. The net shear force acting on the element is equal to the

inertia force so that Eq. (26) still holds, which is repeated here for convenience

y
Beam segment of length dx 
cross-sectional area Sw

m m dm+

yf
y yf df+

x

Ir

Fig. 8 Free vibration of a Timoshenko beam
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∂f y
∂x

¼ �ρS
∂2

w

∂t2
ð40Þ

Summing the moments about the right-hand edge also results in the same equation

as for the Euler–Bernoulli beam, which is given in Eq. (27). However, it is not now

set to zero, but is equal to the inertia moment, so that

∂m
∂x

� f y ¼ ρI
∂2ψ

∂t2
ð41Þ

where ψ is the angular rotation of the element due to the finite shear stiffness.

The Hooke’s law relationships for the shear force and moment are given by

(Graff 1975)

f y ¼ �GSκ
∂w
∂x

� ψ

� �
ð42aÞ

and

m ¼ EI
∂ψ
∂x

ð42bÞ

where G is the shear modulus and κ is the Timoshenko shear shape factor.

Substituting for fy and m from Eqs. (42a) and (42b) into Eqs. (40) and (41) gives

GSκ
∂ψ
∂x

� ∂2
w

∂x2

 !
þ ρS

∂2
w

∂t2
¼ 0 ð43aÞ

GSκ
∂w
∂x

� ψ

� �
þ EI

∂2ψ

∂x2
� ρI

∂2ψ

∂t2
¼ 0 ð43bÞ

Now, Eq. (43a) can be written as

∂ψ
∂x

¼ ∂2
w

∂x2
� ρ

Gκ

∂2
w

∂t2
ð44Þ

which can be differentiated twice with respect to x to give

∂3ψ

∂x3
¼ ∂4

w

∂x4
� ρ

Gκ

∂4
w

∂x2∂t2
ð45Þ

or differentiated twice with respect to t to give
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∂3ψ

∂x∂t2
¼ ∂4

w

∂x2∂t2
� ρ

Gκ

∂4
w

∂t4
ð46Þ

Differentiating Eq. (43b) with respect to x gives

GSκ
∂2

w

∂x2
� ∂ψ

∂x

 !
þ EI

∂3ψ

∂x3
� ρI

∂3ψ

∂x∂t2
¼ 0 ð47Þ

Substituting Eqs. (44), (45) and (46) into Eq. (47) gives the Timsohenko beam

equation, written as

ð48Þ

where the physical significance is given below each term in the equation. Note that

if the shear stiffness is set to be infinite and the rotary inertia is set to zero, then

Eq. (48) reduces to the Euler–Bernoulli equation given by Eq. (29). Dividing

Eq. (48) by EI and assuming a time harmonic response ofw tð Þ ¼ w xð Þe jωt as before

result in the ordinary differential equation

d4w xð Þ
dx4

þ k2R þ k2Sh
κ

� �
d2w xð Þ
dx2

� k4B � k2Rk
2
Sh

κ

� �
w xð Þ ¼ 0 ð49Þ

where kB ¼ ρS= EIð Þð Þ14ω1
2 is the wavenumber for the Euler–Bernoulli beam,

kR ¼ ffiffiffiffiffiffiffiffi
ρ=E

p
ω is the wavenumber for the longitudinal wave, and kSh ¼

ffiffiffiffiffiffiffiffiffi
ρ=G

p
ω

is the wavenumber for a shear wave (note that this is similar to the longitudinal

wavenumber, but is a function of the shear modulus rather than the Young’s
modulus).

Assuming spatial harmonic dependence of the form w xð Þ ¼ We jkx, Eq. (49)

reduces to the dispersion equation given by

k4 � k2R þ k2Sh
κ

� �
k2 � k4B � k2Rk

2
Sh

κ

� �
¼ 0 ð50Þ

This equation is quadratic in k2, so the solution for k is given by

k ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2

k2Sh
κ

þ k2R

� �
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k4B þ 1

4

k2Sh
κ

� k2R

� �2
svuut ð51Þ

At low frequencies, k1,2 � �jkB and k3,4 � �kB as a consequence of the rotary

inertia being small and the shear stiffness being very large. At high frequencies,
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k1,2 � �kR and k3,4 � �kSh=
ffiffiffi
κ

p
. Noting that k2Sh=k

2
R ¼ E=G ¼ 2 1þ νð Þ and

k4B=k
4
R ¼ 1=4π2 r=λRð Þ2, where r ¼ ffiffiffiffiffiffiffi

I=S
p

is the radius of gyration and

λR ¼ 2π=kR, Eq. (51) can be written in non-dimensional form by dividing by kR
to give

k̂ ¼ k

kR
¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2

2 1þ νð Þ
κ

þ 1

� �
� 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

π2 r=λRð Þ2 þ
2 1þ νð Þ

κ
� 1

� �2
svuut ð52Þ

Note that the wavenumbers are dependent on frequency because they are a

function of λR. It can also been seen that they are dependent on the Timoshenko

shear coefficient and Poisson’s ratio. To gain physical insight into the wave

behaviour at high and low frequencies, the asymptotes of Eq. (52) are examined.

At low frequencies when λR � 1, the wavenumbers approximate to

k̂ 1,2 � �j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2π r=λRð Þ

s
ð53aÞ

and

k̂ 3,4 � �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

2π r=λRð Þ

s
ð53bÞ

which correspond to normalised Euler–Bernoulli beam wavenumbers. Note that it

was assumed that w xð Þ ¼ We jkx so k̂ 1,2 corresponds to evanescent waves and k̂ 3,4

corresponds to propagating waves. At high frequencies, Eq. (52) approximates to

k̂ � �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2

2 1þ νð Þ
κ

þ 1

� �
� 1

2

2 1þ νð Þ
κ

� 1

� �
1þ 1

2π2 r
λR

� �2
2 1þνð Þ

κ � 1
� �2

0
B@

1
CA

vuuuut
ð54Þ

which simplifies to

k̂ 1,2 � � 1� 1

8π2 r
λR

� �2
2 1þνð Þ

κ � 1
� �

0
B@

1
CA ð55aÞ

and
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k̂ 3,4 � �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 1þ νð Þ

κ
þ 1

4π2 r
λR

� �2
2 1þνð Þ

κ � 1
� �

vuut ð55bÞ

At very high frequencies, these approximate to k̂ 1,2 ¼ �1 (a longitudinal wave)

and k̂ 3,4 ¼ � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 1þ νð Þ=κp

(a shear wave). Note that they are both real and hence

they correspond to propagating waves. The frequency at which the wavenumbers

that correspond to the nearfield waves become real (which is called the cut-off

frequency), and hence the waves start to propagate, can be determined from

Eq. (52) by setting 2 1þ νð Þ=κ þ 1ð Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=π2 r=λRð Þ2 þ 2 1þ νð Þ=κ � 1ð Þ2

q
¼ 0,

which results in

r

λR


cut-off

¼ 1

2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ

2 1þ νð Þ
r

ð56Þ

In dimensional form, this reduces to ωcut-off ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GSκ=ρI

p
, which is the square

root of the shear stiffness per unit length divided by the rotational inertia per unit

length. This can be seen as a type of resonance frequency, in which the rotational

stiffness and the rotary inertia interact. Below this frequency the shear stiffness

stops the wave from propagating, and above this frequency the rotational inertia

overcomes the shear stiffness, allowing the wave to propagate. To illustrate the

behaviour of the wavenumbers, the modulus of Eq. (52) is plotted in Fig. 9.

Also plotted are the low and high frequency asymptotes. It can be seen that at low

frequencies when r=λR � 1, then the beam behaves as an Euler–Bernoulli beam, in

which there are two evanescent waves and two propagating waves. As frequency

increases, the dispersive propagating bending wave changes to a non-dispersive

shear wave. The wavenumber corresponding to the evanescent wave becomes

smaller (which means that the phase velocity increases) until it reaches zero at the

cut-off frequency. At this frequency, the phase velocity is infinite, which means that

the group velocity is zero. Physically, this means that for this wave, every point on

the beam is in phase, so there is no phase shift between any points. Above the cut-off

frequency, the imaginary wavenumber that corresponds to the evanescent wave

below the cut-off frequency, becomes real and hence starts to propagate. Note that

above the cut-off frequency, as frequency increases this wavenumber also increases,

which means that the phase velocity decreases until it reaches a constant value

corresponding to the phase velocity of a longitudinal wave.

It should be noted that, just in the same way that the Euler–Bernoulli beam

theory has limitations as frequency increases, so Timoshenko beam theory

discussed in this section also has limitations as frequency increases. For very

high frequencies, where r=λR � 1, then Lamb wave theory has to be used to give

an adequate description of the wave behaviour (Doyle 1997). Of course, as the

theory takes into account more dynamic features then the mathematical model

becomes more complex with a consequent loss of physical insight.
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5.2 Wave Mode-Shapes

To gain more information about the waves that propagate at high frequencies, the

shape of the wave, which is also called the wave mode-shape, can be determined.

To do this, consider Eqs. (43a) and (43b), the solutions of which are given by

w x; tð Þ ¼ B1e
j ωt�kxð Þ and ψ x; tð Þ ¼ B2e

j ωt�kxð Þ ð57Þ

Substituting these equations into Eqs. (43a) and (43b) gives

GSκk2 � ρSω2 �jGSκk
�jGSκk ρIω2 � GSκ � EIk2


 �
B1

B2

� �
¼ 0

0

� �
ð58Þ

From Eq. (58), the ratio of the two amplitudes can be written as

10-4 10-3 10-2 10-1 100 101
10-1

100

101

102

Bending

Shear

Longitudinal

Cut-off
frequency

r/lR

Fig. 9 Normalised wavenumbers for a Timoshenko beam. The shear coefficient is set to 0.833 and

Poisson’s ratio is set to 0.33. The solid red line is for k̂ 1,2 and the dashed blue line is for k̂ 3,4.

Below the cut-off frequency k̂ 1,2 is imaginary and above the cut-off frequency k̂ 1,2 is real. The

dotted line is for the normalised Euler–Bernoulli wavenumber, the thin dashed green line is for the

longitudinal wavenumber ( k̂ 1,2 ¼ �1 ), and the thin black line is for the modified shear

wavenumber (k̂ 3,4 ¼ � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 1þ νð Þ=κp

)
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B2

B1

¼ j
ρSω2 � GSκk2

GSκk
¼ j

GSκk

ρIω2 � GSκ � EIk2
ð59Þ

which can be written in non-dimensional form as

B2r

B1

¼ j2π
2 1þ νð Þ

k̂ κ
� k̂

� �
r

λR

� �
ð60Þ

Substituting for k̂ ¼ �1 from Eq. (55a) results in the mode-shape for the wave that

propagates at the phase velocity of a longitudinal wave, which is given by

B2r

B1


Long

� 1 ð61Þ

Substituting for k̂ ¼ � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 1þ νð Þ=κp

results in the mode-shape for the wave

governed by the shear phase velocity, which is given by

B2r

B1


Shear

¼ 0 ð62Þ

Note, that in Eq. (61), the lateral displacement tends to zero, and this corresponds to

a rotational wave, which is shown in Fig. 10. In Eq. (62) the rotation tends to zero,

and this corresponds to a shear wave.
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Passive and Active Structural Vibration
Control

Marcelo A. Trindade

Abstract The objective of this chapter is to provide some basic concepts of

structural vibration, such as natural frequencies, vibration modes, damping factor,

frequency response, among others, and, then, extend these concepts to the design of

passive and active vibration control solutions. Well-known passive vibration con-

trol solutions such as vibration dampers and absorbers are discussed. Some funda-

mental aspects related to control theory such as feedforward and feedback strategies

and simple control laws well adapted for structural control are also presented and

the important effect of sensors and actuators positioning is discussed.

Keywords Structural vibration • Active control • Passive control • Positioning of

sensors and actuators

1 Fundamentals of Structural Vibrations

Most mechanical structures are subjected to vibrations coming from different

sources. Excessive levels of vibration amplitude may lead to a number of problems

such as structural fatigue damage and noise radiation. Therefore, there is great

interest in potential solutions that could allow to reduce vibration amplitudes in

existing structures.

This chapter aims to present some of these potential solutions involving passive

and active strategies. Other textbooks discussing some of the topics presented in

this chapter can be recommended (Nashif et al. 1985; Mead 1999; Meirovitch 1990;

Miu 1992; Inman 1996; Preumont 1997). The objective of this chapter is to provide

some basic concepts of structural vibration, such as natural frequencies, vibration

modes, damping factor, frequency response, among others, and, then, extend these

concepts to the design of passive and active vibration control solutions. Well-

known passive vibration control solutions such as vibration dampers and absorbers

are discussed. Some fundamental aspects related to control theory such as
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feedforward and feedback strategies and simple control laws well adapted for

structural control are also presented and the important effect of sensors and

actuators positioning is discussed.

1.1 Basic Concepts on Structural Vibration and Potential
Mitigation Solutions

Let us start with a general linear model for a vibrating structure that can be

represented by the following system of linear ordinary differential equations

M€uþ D _u þKu ¼ F; ð1Þ

where M, D and K are matrices representing inertia (mass), damping and stiffness

of the structure. u is a vector of generalized displacements (or the degrees of

freedom of the system) and F is a vector representing all external forces applied

to the structure (that is, the applied forces that perturb the structure and thus induce

its vibration). Within this general framework, the objective of a structural vibration

control solution would be to reduce the vibration amplitude of the structure given its

properties (that is, M, D and K) and the external perturbation (that is, F).

There is a number of possible solutions for such a problem but it will be chosen

to classify them in two categories: passive and active solutions. Passive vibration

control solutions are those in which a modification of the structure’s dynamics is

possible without an external power source. Active vibration control solutions, on

the other hand, require an external power source to modify the structure’s dynam-

ics. As it will be emphasized along this chapter, there is no unique solution for a

given problem and it is generally necessary to make an analysis in terms of trade-

offs to decide on an optimal solution.

For instance, in many practical cases of structural dynamics, an effective vibra-

tion control solution is required only within a given frequency range. Therefore, an

analysis in the frequency domain usually applies and, hence, the basic concepts of

natural frequencies, vibration modes, modal damping factors and frequency

response functions are prerequisites for the design of a control solution.

1.2 Natural Frequencies, Vibration Modes
and Damping Factors

Let us consider the free response of an equivalent undamped structure represented

by Eq. (1) with D ¼ 0 and F ¼ 0. A harmonic solution of the form u tð Þ ¼ ϕje
iωjt is

obtained provided that the following generalized eigenvalue problem is satisfied
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�ω2
jMþK

� �
ϕj ¼ 0: ð2Þ

The solution of this eigenvalue problem yields the undamped natural frequencies

ωj and vibration modes ϕj of the structure. In practice, however, various dissipation

mechanisms lead to damped structural responses. The modal damping factor ξj
associated with each vibration mode can be represented considering a proportional

Rayleigh damping, D ¼ β1Mþ β2K, such that

ξj ¼
1

2

β1
ωj

þ β2ωj

� �
: ð3Þ

1.3 Principle of Modal Superposition

The generalized displacements vector can then be rewritten as the sum of the

harmonic responses such that

u tð Þ ¼
X
j

ϕjαj tð Þ ¼ Φα tð Þ; ð4Þ

and the system matrices can be projected into the modal basis leading to

ΦtMΦ ¼ diag 1ð Þ,ΦtDΦ ¼ diag 2ξjωj

� �
andΦtKΦ ¼ diag ω2

j

� �
. The equations

of motion are then rewritten as

€αj þ 2ξjωj _α j þ ω2
j αj ¼ f j,

y ¼
X
j

cyjαj;

8<
: ð5Þ

where fj and cyj provide, respectively, measures of how well the jth vibration mode

is excited by the input perturbation force and observed by the output sensor,

such that

f j ¼ ϕ t
jF, cyj ¼ cyϕj: ð6Þ

1.4 Frequency Response Functions and Transfer Functions

A systemic way of analyzing the structure’s dynamical response is to evaluate its

transfer function H(s) or frequency response function H(iω) which are defined as

the ratio between an output signal y of the structure and an input signal p either in

the Laplace domain or frequency domain, respectively. Then, the input–output
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relationship of the structure can be schematically represented as in Fig. 1. For that,

the applied force vector F is written in terms of the input signal p and the output

signal is constructed in terms of the structure’s generalized displacements,

F ¼ bpp , y ¼ cyu: ð7Þ

The response of the structure in frequency domain can be obtained considering a

harmonic excitation p ¼ ~p eiωt, such that u ¼ ~u eiωt and y ¼ ~y eiωt. Then, the
frequency response function H(iω) is defined as

H iωð Þ ¼ ~y

~p
¼ cy �ω2Mþ iωDþK

� ��1
bp: ð8Þ

In the modal basis, the frequency response function reads

H iωð Þ ¼
X
j

cyjbpj
�ω2 þ ω2

j þ i2ξjωjω
: ð9Þ

A reduced model could be constructed by retaining the contribution of only a

few Nr vibration modes (modal truncation). The contribution of the remaining

N � Nr vibration modes to the FRF is then neglected entirely. Alternatively, only

the static contribution of these remaining modes could be accounted for, leading to

H iωð Þ �
XNr

j¼1

cyjbpj
�ω2 þ ω2

j þ i2ξjωjω
þ

XN
j¼Nrþ1

cyjbpj
ω2
j

: ð10Þ

In the Laplace domain, a transfer function H(s) is defined as

H sð Þ ¼ ~y

~p
¼ cy s2Mþ sDþK

� ��1
bp; ð11Þ

or, in modal form,

H sð Þ ¼
X
j

cyjbpj
s2 þ 2ξjωjsþ ω2

j

: ð12Þ

Structure

H(s)
Perturbation, p Sensor output, y

Fig. 1 Structure

represented by a single

input single output (SISO)

linear system

68 M.A. Trindade



It is worthwhile to rewrite the transfer function as the ratio of two functions

such that

H sð Þ ¼ N sð Þ
D sð Þ ð13Þ

with

N sð Þ ¼ cyadj s2Mþ sDþK
� �

bp, D sð Þ ¼ det s2Mþ sDþK
� �

: ð14Þ

In system and control theories, a transfer function can be also represented by

its poles and zeros. The poles are the roots of D sð Þ ¼ Πj s� pj
� � ¼ 0, that is

pj ¼ �ξjωj � ωj ξ2j � 1
� �1=2

, which for low values of ξj ξj < 0:5
� �

corresponds to

resonance peaks in the FRF (at resonance frequencies). The zeros are the roots of

N sð Þ ¼ Πk s� zkð Þ ¼ 0, which could also be written in the form zj ¼ �ξjωj � ωj

ξ2j � 1
� �1=2

such that for low values of ξj ξj < 0:5
� �

corresponds to the anti-

resonances in the FRF (at anti-resonance frequencies).

1.5 Analysis of Poles and Zeros for a Simple Spring–Mass
Example

Let us consider a simple three degree-of-freedom system composed of lumped

masses interconnected by linear springs (Fig. 2). All dissipation mechanisms are

represented by a modal damping factor of 0.5 %. Since this is a discrete system,

both excitation (input) and measurement (output) can only be done in one of the

three lumped masses. However, for each combination of input/output, this system

will be represented by different transfer functions H(s) and, thus, will present

different responses. In Fig. 3, the pole–zero map (which shows the poles and

zeros of the system plotted in the real and imaginary plan, Fig. 3a) and frequency

response function amplitude (Fig. 3b) are shown by first considering input and

output in the first mass (that is, the excitation is done through a force applied to the

k k k
m m

u1 u2

m

u3

k

Fig. 2 Schematic representation of a three degree-of-freedom spring–mass system (m ¼ 2 kg,

k ¼ 1 kN=m, ξ ¼ 0:5 %)

Passive and Active Structural Vibration Control 69



first, left, mass and the resulting displacement of the same mass is observed, or

measured). They show that, indeed, the poles are associated to resonances while the

zeros correspond to anti-resonances of the system.

As predicted in Eq. (14), the poles (and thus resonances) only depend on the

system properties (that is, M, D and K) while the zeros (and thus anti-resonances)

depend also on the input and output position/configuration (that is, cy and bp). This

can be observed in Fig. 4 that shows the frequency response functions (together

with the corresponding poles and zeros in the x-axis) for the same spring–mass

system but now with the measurement (output) in the second, center (Fig. 4a)

and third, right (Fig. 4b) masses, while the excitation (input) is kept at the first,

left, mass.

While the zeros or anti-resonances seem to be less important to the response of

the system, they will be very important in the case of feedback control. Thus, it is

worthwhile to analyze further the origin and meaning of the system zeros. Indeed, it

can be shown that the zeros of the system correspond to the poles of remaining

subsystems obtained by excluding the subsystems between the actuator (input) and

sensor (output) (Miu 1992). This is represented schematically in Fig. 5.

If the actuator and sensor are collocated, they will be in phase for all vibration

modes. In this case, the system is defined as minimum phase system. It can be also

observed that, in this case, there is an anti-resonance (or a zero) between each two

Fig. 3 Equivalence between (a) pole–zero map and (b) frequency response function
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resonances (or poles). The phase is recovered in the anti-resonances and that is why,

in this case, all vibration modes are in phase. This is shown in Fig. 6.

On the other hand, if there are flexible elements between actuator and sensor, it is

possible that they will not be in phase for a group of resonant vibration modes. The

system is then defined as non-minimum phase system. In this case, there is no

guarantee that there will be an anti-resonance (or zero) between any two resonances

(or poles) and, thus, the phase may not be recovered. This is shown in Figs. 7 and 8.

For the observation in the second mass, there is only one zero which corresponds to

a one degree-of-freedom system composed of the third mass and the two connecting

springs (leading to a resonance atω ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2k=mð Þp

) (Fig. 7). This zero coincides with

the second resonance (pole) of the original (full) system and, thus, there is a

Fig. 4 Zeros depend on actuator and sensor positioning while poles do not

y

Sub-system 1

...
f

Sub-system 2G(s)

Fig. 5 Transfer function zeros correspond to poles of subsystems excluding the one between

actuator and sensor
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Fig. 6 Collocated actuator and sensor leading to a minimum phase system
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Fig. 7 Flexible elements between actuator and sensor lead to non-minimum phase systems



pole–zero cancellation. This can be also interpreted as being due to the positioning

of the sensor in a node of the second vibration mode (for which the second mass

does not move). Therefore, there is no phase recovery between first and third

resonances and, thus, these modes are out-of-phase (Fig. 7). When the sensor is

displaced to the third mass (Fig. 8), there are no longer zeros of the system (there is

no remaining resonant subsystem) and, thus, there is no phase recovery between

any of the resonances. It is worthwhile to notice, however, that the first and third

modes will be in phase (or 360� out-of-phase).

2 Passive Vibration Control

In general terms, passive vibration control can be defined as the modification of the

structure’s dynamical behavior such that the vibration amplitude is minimized

within a given frequency range and that no substantial external power is required

for this modification to occur. The most popular passive vibration control solutions

involve the inclusion of dampers and/or absorbers. They both are intended to

extract the vibration energy of the host structure leading to smaller vibration

amplitudes in the host structure. A generic vibration damper possesses some

dissipation mechanism such that when connected to the host structure and, thus,

vibrating with it, part of structure’s energy is dissipated in the damper. On the other

hand, a generic vibration absorber consists of a resonant vibrating system that is

capable of stealing the vibration energy of the primary system (that is, the host

k k k
m m

u1
u2

m

u3

k

G(s)

k
f

Fig. 8 Flexible elements between actuator and sensor lead to non-minimum phase systems
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structure). The vibration absorber itself may present high levels of vibration

amplitude but from the host structure’s viewpoint the vibration amplitude is

reduced. The basic component for a successful solution of vibration dampers and

absorbers is the mechanical coupling with the host structure such that a significant

part of the structure’s energy can be transferred to the damper or absorber.

2.1 Passive Vibration Dampers

Vibration dampers differ basically in terms of their dissipation mechanism and their

mechanical coupling with the host structure. This section introduces the general

concept of two commonly used types of passive vibration dampers: (1) the generic

dashpot, for which the resisting force depends on the relative velocity between its

two extremities and is based on viscous friction, and (2) viscoelastic dampers,

which develop a resisting force that depends on both their mechanical strain and

strain rate. Apart from some practical aspects, such as the design of the damper

device itself, the main difference between them is that an ideal dashpot is generally

represented by its linear viscous damping coefficient whereas viscoelastic dampers

are represented by the combination of a spring and a hysteretic damper. Therefore,

the second damper type leads also to an overall increase of the stiffness of the

original system (besides the increase of damping).

Let us consider a viscous damper added to a generic 3-dof primary system,

represented by a spring–mass–damper system as shown in Fig. 9. The original

damping of the primary system is considered so that an equal modal damping of

0.5 % for all three vibration modes is obtained and, thus, it is not represented

through dashpots in Fig. 9. The other system parameters are: m ¼ 2kg and

k ¼ 1000N=m.

The viscous damper, although representing a localized damping, is intended to

increase the modal damping of all vibration modes. Therefore, the location should

be chosen such that the damper relative motion is non-null for all modes and

maximized for the modes of special interest. In this case, all three vibration

modes are affected by the viscous damper. Figure 10 shows the frequency response

function between displacement of the first (left) mass and force applied at the same

mass for various viscous damping coefficients considered for the added viscous

damper. One may observe that indeed all vibration modes are substantially damped.

The modal damping factors are shown in Table 1. Notice that the added viscous

k k k
m m m

k
ca

u1
f

Fig. 9 Viscous damper added to the original structure
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damping coefficient is much higher than the equivalent original one (of about

0.6 Ns/m).

Using the same original spring–mass–damper system, a second analysis is

performed considering a viscoelastic damper instead of a viscous damper. The

viscoelastic damper is represented by a spring in Fig. 11. However, as it will be

shown next, the force developed by the damper is also dependent on the relative

velocity between its extremities. Actually, when subjected to a harmonic vibration,

a viscoelastic damper presents a hysteretic behavior such that the energy dissipated

over one cycle depends on material properties and strain amplitude. One simple

way of representing this effect is to consider a complex elastic modulus for the

viscoelastic material, which in turn leads to a complex spring coefficient for the

viscoelastic damper such that

k*a ¼ ka 1þ iηð Þ; ð15Þ

where ka represents the elastic (or storage) part of the stiffness and η is defined as

loss factor. For a 1-dof system with an added viscoelastic damper, the following

equation of motion can be written in the frequency domain

�ω2mþ iωcþ k þ k*a
� �	 


~u ¼ ~f ; ð16Þ

and, thus,

�ω2mþ i ωcþ kaηð Þ þ k þ kað Þ	 

~u ¼ ~f : ð17Þ

Fig. 10 Example of

localized viscous damper

effect on the vibration

amplitude reduction,

ca(Ns/m): 0 (solid),
5 (long dash),
10 (dash-dot),
20 (short dash)

Table 1 Modal damping

factors for various localized

viscous damping coefficients

ca (Ns/m) ξ1 (%) ξ2 (%) ξ3 (%)

0 0.5 0.5 0.5

5 2.3 2.5 1.3

10 4.1 4.5 2.0

20 7.8 8.8 3.2
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Hence, for harmonic excitation, an equivalent viscous damping coefficient

ca ¼ kaη=ω is added to the system besides the increase in the equivalent spring

coefficient from k to k þ ka.
In the case of the 3-dof system presented in Fig. 11, the effect of the viscoelastic

damper in the frequency response function between displacement of the first (left)

mass and force applied at the same mass for various storage coefficients considered

for the viscoelastic damper is shown in Fig. 12. The loss factor is considered to be

equal to 1 in all cases. The results indicate that the modal damping factors of all

three vibration modes are increased substantially, but also that this is accompanied

by an increase in all resonance frequencies. The resulting modal damping factors

are shown in Table 2.

The reader should be aware that the material properties (storage modulus and

loss factor) of viscoelastic materials, and thus viscoelastic dampers, normally vary

k k k
m m m

k
ka*

u1
f

Fig. 11 Viscoelastic damper added to the original structure

Fig. 12 Example of localized viscoelastic damper effect on the vibration amplitude reduction,

ka/k (%): 0 (solid), 10 (long dash), 25 (dash-dot), 50 (short dash)

Table 2 Modal damping

factors for various localized

viscoelastic storage

stiffnesses

ka/k (%) ξ1 (%) ξ2 (%) ξ3 (%)

0 0.5 0.5 0.5

10 2.4 1.7 0.9

25 4.3 3.4 1.6

50 6.0 5.6 3.2
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with frequency and temperature. Therefore, a more thorough analysis should be

carried out to quantify the performance of a viscoelastic damper. For that, the reader

may consult several textbooks in the field (Nashif et al. 1985; Mead 1999).

2.2 Passive Dynamic Vibration Absorbers

Dynamic vibration absorbers are subsystems that when connected to the original

(or primary) system may “absorb” its vibration energy. This leads to a reduction of

the vibration amplitude of the primary system accompanied by potentially high

vibration levels in the vibration absorber. This section introduces the fundamental

concept of dynamic vibration absorbers and some design criteria based on the effect

of their parameters on the vibration amplitude of the primary system.

Let us start with a general primary system represented by a spring–mass–damper

system with parameters kp, mp and cp. The dynamic vibration absorber is consi-

dered to be another spring–mass–damper system, with parameters ka, ma and ca,
connected to the primary system through its spring and damper as shown in Fig. 13.

The equations of motion of the coupled system can be written as

mp 0

0 ma

� �
€up
€ua

� �
þ cp þ ca �ca

�ca ca

� �
_u p

_u a

� �
þ kp þ ka �ka

�ka ka

� �
up
ua

� �
¼ f

0

� �
:

ð18Þ

The frequency response function between primary system output up and excita-

tion input f can be written in terms of the primary system and absorber parameters

such that

H ωð Þ ¼ ~u p ωð Þ
~f ωð Þ ¼ �ω2ma þ iωca þ ka

� �
ω4mamp � iω3 ca ma þ mp

� �þ cpma

	 


� ω2 cacp þ ka ma þ mp

� �þ kpma

	 
þ iω cakp þ cpka
� �þ kakp

��1
;

ð19Þ

or, for an undamped case,

mp

Vibration absorber

ma

ka
uaup

ca

kp

cp
f

Fig. 13 Dynamic vibration

absorber added to the

original structure
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H ωð Þ ¼ ~u p ωð Þ
~f ωð Þ ¼ �ω2ma þ ka

ω4mamp � ω2 ka ma þ mp

� �þ kpma

	 
þ kakp
: ð20Þ

It is possible to observe from Eqs. (19) and (20) that the response amplitude of

the primary system at resonance (that is up) may be minimized by setting the

resonance frequency of the vibration absorber so that it coincides with the primary

system (or original) resonance frequency (ω2
n ¼ kp=mp ¼ ka=ma ). This leads to a

simple design criteria in which the designer has to define the amount of mass that

may be considered for the absorber. Therefore, it is worthwhile to analyze the effect

of added mass on the vibration absorber performance. This may be observed in

Fig. 14, where it is possible to notice that an increase of the added mass yields

higher reduction of vibration amplitude at resonance and also wider frequency

range for which the vibration amplitude is reduced compared to the original

response (that is without the vibration absorber).

It is also clear from Eq. (19), however, that the amount of damping present in the

primary system and added through the vibration absorber does affect the reduction

in vibration amplitude. Indeed, the effect of an added localized damping (ca) is to
flatten the two resonance peaks but at cost of increasing the amplitude at anti-

resonance, leading to a loss of absorption performance in terms of reduction of

vibration amplitude at the original resonance. This effect is shown in Fig. 15. Notice

however that, in general, the designer should choose a compromise solution

between performance at resonance and robustness at frequencies apart from the

resonance.

The reader should be aware that there are a number of different techniques to

optimize the absorber parameters (ma, ka and ca) depending on the criteria chosen

by the designer (Den Hartog 1985).

Fig. 14 Effect of absorber mass on the vibration amplitude of the primary system compared to the

original response (solid), ma/mp (%): 5 (long dash), 15 (dash-dot), 25 (short dash)
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3 Active Vibration Control

Active vibration control can be generally defined as the modification of the

dynamic response of the system through the inclusion of an additional external

force/input (so-called control force or control input). The response of the structure

will then be due to the combined excitations (Fig. 16). The structure’s equations of
motion are then rewritten as

Fig. 15 Effect of absorber damping on the vibration amplitude of the primary system compared

to the original response (solid), for ma=mp ¼ 15 % and ξa (%): 0.5 (long dash), 4 (dash-dot),
10 (short dash)

Structure

H(s)
Perturbation, p Sensor output, y

H(s)
Perturbation, 

a

b

p

Hc(s)
Control, f

Sensor output, y

+

+

Fig. 16 (a) Open-loop
(or original) system and

(b) closed-loop system

modified by an additional

external (control) force
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M€uþ D _u þKu ¼ bppþ bf f
y ¼ cyu

�
: ð21Þ

The objective of the control design would then be to find the control force f capable of
reducing the vibration amplitude (as measured by output y) according to a given set of
criteria. Control design strategies may be normally divided into two categories:

• Feedback control (Fig. 17): f ¼ f yð Þ—The control force f is evaluated based on

(or as function of) the measured output y. This generally means that the closed-

loop (or controlled) performance is not dependent on the perturbation (or primary

excitation). However, in practice, the control force f will depend indirectly on the
level of excitation and, thus, the perturbation p must be accounted for.

• Feedforward control (Fig. 18): f ¼ f pð Þ—The control force f is evaluated based

on (or as function of) the perturbation input p. This requires that the perturbation

G(s)

Control Filter

Sensor outputControl input

Structure

Hc(s)

Perturbation Monitoring sensor

Sc(s)Ac(s)

Control actuator Control sensor

H(s)

Fig. 17 General active feedback control scheme: control input is dependent on control sensor

output

G(s)

Control Filter

Control input

Structure

Hc(s)

.

Monitoring sensor

Sc(s)Ac(s)

Control actuator Control sensor

H(s)
Perturbation

Perturbation

Fig. 18 General active feedforward control scheme: control input is dependent on the perturba-

tion input
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input should be known (or measured). In this case, the control force and thus

closed-loop performance must be reevaluated (or redesigned) in case of chang-

ing perturbation input. Moreover, feedforward control schemes must also

account for the measured output in order to quantify/control the performance

and, thus, depend indirectly of the output y.

3.1 Feedback Control Strategies

In order to evaluate the closed-loop performance due to a feedback control strategy,

let us consider the basic control scheme depicted in Fig. 19. The closed-loop

transfer function, denoted as H*, is then function of the designed control filter

G(s), such that

~y ¼ H~p þ Hc
~f , ~f ¼ �G sð Þ~y : ð22Þ

Replacing ~f , solving for ~y and defining Hc ¼ Nc=D, the closed-loop transfer

function reads

H* ¼ H

1þ GHc
¼ Np

Dþ GNc
: ð23Þ

This means that, as the control gain is increased, the closed-loop poles of the

system move towards the zeros of the transfer function Hc (between output y and

control input f ). The path followed by the closed-loop poles, for a given open-loop

system, depends mainly on two factors: (1) the control law G(s) and (2) the control
input positioning which will affect directly the function Nc(s).

In order to analyze the effect of output feedback on a vibrating structure, let us

first consider a very simple control lawG sð Þ ¼ g, where g is a constant control gain.
Then, it is also considered that the displacement or velocity of the structure at some

point can be measured. In the case of a direct displacement feedback,

Structure
Perturbation, p

G(s)

Control, f

Sensor output, y

Fig. 19 Basic feedback

control scheme
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y ¼ cyu, f ¼ �gy ¼ �gcyu; ð24Þ

and, thus,

M€uþ D _u þ Kþ gbf cy
� �

u ¼ bpp: ð25Þ

This means that the effect of this control strategy is to modify the stiffness of the

structure. On the other hand, if it is considered that velocity is measured and then

fed back, defining a direct velocity feedback,

y ¼ cy _u, f ¼ �gy ¼ �gcy _u; ð26Þ

and, thus,

M€uþ Dþ gbf cy
� �

_u þKu ¼ bpp: ð27Þ

Thus, the damping of the structure is modified. The way the stiffness and

damping of the structure are modified, therefore, depends not only on the control

gain g but also on the input and output distribution vectors, cy and bf, and, hence, in
the positioning of sensor and control actuator.

As an example, let us consider the previous 3-dof spring–mass system for which

both the sensor and control actuator are positioned at the first mass. Figure 20 shows

Fig. 20 Effect of

displacement (a, control
gains: [0 500 1000] N/m)

and velocity (b, control
gains: [0 5 10] N/(m/s))

feedback on the frequency

response function
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the frequency response function of the closed-loop system considering direct

displacement feedback (DDF, Fig. 20a) and direct velocity feedback (DVF,

Fig. 20b). It confirms that DDF only modifies structural stiffness (observed through

an increase in natural frequencies) while DVF modifies structural damping

(observed through a reduction in vibration amplitude). Alternatively, the analysis

can be performed observing the root locus (position and path of the closed-loop

poles for increasing control gain) of the system which is shown in Fig. 21a, for

DDF, and 21b, for DVF. While for DDF the closed-loop poles more or less follow a

line of constant damping factor, for DVF the damping of the closed-loop poles is

clearly augmented. It is worthwhile to zoom the root locus for DVF (Fig. 22) and

notice that, for a given control gain (g ¼ 10:2Ns=m highlighted in the graph), the

amount of added damping (relative to the original damping factor of 0.5 %) is

different for each vibration mode. Indeed, in this case, the second vibration mode is

the one that is more actively damped (with a closed-loop damping factor of 4.57 %).

Since there is great interest in analyzing the effect of the DVF active control on

specific vibration modes, it is worthwhile to rewrite the closed-loop equations of

motion projected into the modal basis by considering u tð Þ ¼ Φα tð Þ such that

€αþ Λþ gbϕcϕ
� �

_α þΩ2α ¼ Φtbpp; ð28Þ

where the contribution of the velocity feedback to the modal damping factor is

mainly due to the vectors of output and input distribution projected into the modal

basis,

bϕ ¼ Φtbf , cϕ ¼ cyΦ: ð29Þ

Notice that the feedback control also couples the original vibration modes since

the closed-loop modal damping matrix is no longer diagonal. For the sake of

Fig. 21 Effect of displacement (a, control gains: [0 500 1000] N/m) and velocity (b, control gains:
[0 5 10] N/(m/s)) feedback on the pole–zero map
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simplicity, if only the diagonal terms of the added damping matrix are considered,

the resulting closed-loop damping factor could be approximated by

λ*j ¼ 2ξ*j ωj ¼ 2ξjωj þ gbjcj ! ξ*j � ξj þ gbjcj
� �

= 2ωj

� �
: ð30Þ

In the case of the 3-dof spring–mass system, the modal matrix and input and

output distribution vectors are

Φ ¼
�0:3536 �0:5000 0:3536
�0:5000 0:0000 �0:5000
�0:3536 0:5000 0:3536

2
4

3
5, bf ¼

1

0

0

2
4

3
5, cy ¼ 1 0 0½ �; ð31Þ

which leads to the following approximations for the closed-loop damping factors

(with control gain g ¼ 10:2 Ns=m),

b1c1 ¼ 0:1250 ! ξ*1 � 4:22 %,

b2c2 ¼ 0:2500 ! ξ*2 � 4:53 %,

b3c3 ¼ 0:1250 ! ξ*3 � 2:04 %:

ð32Þ

Fig. 22 Effect of velocity (control gains: [0 5 10] N/(m/s)) feedback on the pole–zero map

(zoomed)
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This analysis confirms that the second vibration mode is the one that is most

affected by the feedback control and this is mainly due to the positioning of the

actuator. The analysis also provides a confirmation that for a collocated pair of sensor

and actuator, a DVF control may increase all modal damping factors simultaneously.

Notice that this is not the case for non-collocated pairs. This is illustrated here by

changing the position of the sensor and leaving the actuator at the first mass. For the

sensor at the second mass and same control gain, the closed-loop damping factors are

approximated as ξ*1 ¼ 5:77%, ξ*2 ¼ 0:50% and ξ*3 ¼ �1:68%, meaning that as

expected the first mode is controlled, the second mode is not modified (since sensor is

in a second mode node) and the third mode is destabilized. Indeed, since first and

third modes are out-of-phase it is not possible to control both at the same time. For the

sensor at the third mass and same control gain, the closed-loop damping factors are

approximated as ξ*1 ¼ 4:22%, ξ*2 ¼ �3:53% and ξ*3 ¼ 2:04%. In this case, the first

and third modes are in-phase but the second mode is out-of-phase. Thus, first and

third modes are controlled but the second mode is destabilized.

A root locus analysis provides a more precise information about the feedback

control effect on each closed-loop pole. This is shown in Fig. 23 for the three

possible sensor positions while the actuator is kept at the first mass.

It is also possible to evaluate the natural frequency and modal damping factor of

each vibration mode for increasing DVF control gain values (Fig. 24).

3.2 Positioning of Sensors and Actuators

From the previous section, it is noticeable that the positioning of sensors and

actuators has a great importance in the performance of feedback control schemes.

It was also observed that for a simple control law, such as DVF, the projections of

Fig. 23 Effect of non-minimum phase on the control of first three vibration modes
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the input and output distribution vectors onto the modal basis are the main perfor-

mance factors. Therefore, this information could be used to optimize the position-

ing of sensors and actuators for better control performance. One possible objective

could be to maximize bj and cj for a given jth vibration mode.

To this end, the Popov–Belevitch–Hautus (PBH) test could be used to choose

from a set of possible locations for sensors and actuators. For each kth mode of

interest, a matrix may be constructed considering a sensor i and an actuator j,
leading to

Rk i; jð Þ ¼ ciϕkϕ
t
kbj: ð33Þ

For the 3-dof spring–mass example, this leads to

R1 ¼
0:125 0:177 0:125

0:177 0:250 0:177

0:125 0:177 0:125

2
64

3
75, R2 ¼

0:250 0 �0:250

0 0 0

�0:250 0 0:250

2
64

3
75,

R3 ¼
0:125 �0:177 0:125

�0:177 0:250 �0:177

0:125 �0:177 0:125

2
64

3
75:

ð34Þ

This analysis shows that the best solution to control the first and third modes is to

place actuator and sensor (collocated) in the second mass, although this leads to no

control of the second mode. On the other hand, the best solution to control the

second mode is to place actuator and sensor (collocated) in the first or third masses.

Indeed, the root locus plots of the three possible collocated solutions, using DDF or

DVF, presented in Fig. 25 show that the amount of added damping to the first and

third modes can be substantially higher placing the sensor/actuator pair in the

second mass, if compared with the added damping that can be obtained for the

sensor/actuator pair placed in the first and third masses.

Fig. 24 Closed-loop frequency and damping due to output feedback control (collocated sensor/

actuator pair in the first mass)
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Notice that the PBH test also shows the combinations of non-collocated sensor

and actuator positions that may lead to destabilization. This can be observed by the

difference in sign between different modes for a given sensor/actuator pair.

It is also worthwhile to point out that the vibration modes of the structure provide

substantial information about the optimal placement for sensors and actuators.

In the case of the spring–mass system with point sensors and actuators, the

projection of the input and output distribution vectors is proportional to

the modal displacement. Therefore, actuator and sensor should be placed where

the modal displacement is higher for the mode of interest (Fig. 26).

3.3 Simple Control Laws Using Output Feedback

Once the optimal location for sensor and actuator is found, it is possible to focus on

the design of a proper output feedback control law G(s) (see Fig. 19). First, it should
be stated that the control law design depends heavily on the practical application,

Fig. 25 Root Locus for the three possible positions of a collocated sensor/actuator pair

Fig. 26 Schematic representation of the vibration modes of the 3-dof spring–mass system
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since a number of different criteria could be used leading to different optimal

solutions. In the present analysis, it is chosen to focus on control laws that allow

to increase the structural damping of selected vibration modes.

Let us start by writing G(s) as the following transfer function

G sð Þ ¼ g
Nc sð Þ
Dc sð Þ ð35Þ

Since ~f ¼ �G sð Þ~y , the control force f(t) is to be found in real time by solution

of a differential equation that is also function of the measurement y(t),

Dc sð Þ~f ¼ �gNc sð Þ~y ; ð36Þ

therefore, the order of G(s) should be small enough so that the control processing

unit is able to evaluate f(t) in real time.

Previously, it was stated that a velocity feedback (DVF) can be useful for

increasing structural damping. However, in some practical applications, the point

velocity may not be measured directly. In this case, even for such a simple control

law, some additional signal processing may be necessary. For instance, if only the

point displacement is available for measurement, the control unit should first

differentiate the displacement signal and then feed it back after multiplying it by

a control gain. However, if the displacement signal provided by the sensor contains

noise, it will also be differentiated. Thus, in this case, a low pass filter should be

included. In terms of the control transfer function, this could be achieved by

G sð Þ ¼ g
s

1
! G sð Þ ¼ g

s

sþ a
; ð37Þ

where a is a parameter to be set depending on the frequency range to be filtered. It is

easy to see that for higher frequencies s � að Þ, the control signal tends to be propor-

tional to the displacement measured signal so that the high frequency noise is not

differentiated. For low frequencies s � að Þ, the control signal tends to be proportional
to the time derivative of the displacement measured signal. The parameter a should

be large enough in order not to interfere in the frequency range of interest. Figure 27

shows the importance of the low pass filtering for different noise-to-signal ratios.

In the casewhere only a point acceleration can bemeasured, the control unit should

integrate the acceleration signal to obtain the corresponding velocity signal to be fed

back. However, a low frequency noise or DC value should be filtered before integrat-

ing the signal. This could be achieved using the following control transfer function

G sð Þ ¼ g
1

s
! G sð Þ ¼ g

1

sþ a
ð38Þ

which, for low frequencies s � að Þ, leads to the feedback of the acceleration signal
while, for higher frequencies s � að Þ, is equivalent to time integration. The

parameter a should be small enough in order not to interfere in the frequency
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range of interest. Figure 28 shows the importance of the high pass filtering for

different noise-to-signal ratios.

Sometimes it is interesting to increase both damping factors and natural fre-

quencies of the system. In this case, a combination of velocity and displacement

feedback could be used. When displacement is measured, this is equivalent to a PD

Fig. 27 Effect of noise-to-signal ratio (a: N/S¼ 1/1000, b: N/S¼ 1/100) in a derivative feedback

control

Fig. 28 Effect of noise-to-signal ratio (a: N/S¼ 1/1000, b: N/S¼ 1/100) in an integral feedback

control
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(proportional-derivative) control law. This can be achieved by the following control

transfer function

G sð Þ ¼ g
1þ Ts

1
; ð39Þ

in which the control parameter T establishes the relative importance of displace-

ment and velocity feedback. Since there is a differentiation of a displacement

signal, this control law could also be combined to a low pass filter to minimize

noise problems, leading to

G sð Þ ¼ g
1þ Ts

sþ a
; ð40Þ

where a should be large enough not to interfere in the control performance.

Figure 29 shows the root locus for a PD control law using a measured

displacement.

Fig. 29 Root locus for combined velocity and displacement feedback control G sð Þ ¼ g 1þ Tsð Þ
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Another interesting control law that allows to focus on one specific vibration

mode is the Positive Position Feedback (PPF). The control transfer function simu-

lates a resonant system, such that

G sð Þ ¼ �g
ω2
f

s2 þ 2ξfωf sþ ω2
f

ð41Þ

where the parameters ωf and ξf, correspond to natural frequency and damping factor

of an attached subsystem which poles should be close to the original system poles

that one wants to modify. Figure 30 shows the root locus of PPF control strategies

focusing on each one of the vibration modes of the spring–mass system.
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Nonlinear Dynamics and Chaos

Marcelo A. Savi

Abstract This chapter presents an overview of nonlinear dynamics and chaos. It

starts with a background revision of dynamical systems. Concepts of equilibrium

points, linearization, stability, and Poincaré maps are treated. Afterward, chaotic

dynamics is explored. Horseshoe transformation is discussed in order to define the

main aspects of chaos. Fractal characteristics are presented and discussed. Routes to

chaos are investigated showing some definitions of bifurcation. Lyapunov expo-

nents are defined presenting a diagnostic tool for chaos. The main concepts and

tools are then presented by considering a case study related to a shape memory alloy

system. Single and two degrees of freedom systems are treated using a polynomial

constitutive model to describe the restitution forces.

Keywords Nonlinear dynamics • Chaos • Dynamical systems • Stability

• Bifurcation • Horseshoe transformation • Shape memory alloy

1 Introduction

Nature is essentially nonlinear and this characteristic is responsible for a great

variety of possibilities of natural systems. Natural rhythms can be understood as a

manifestation of dynamical behavior englobing all distinct aspects of system

dynamics. In brief, these rhythms could be either regular or irregular over time

and space. Each kind of dynamical behavior may be related to both normal and

pathological functioning.

Nature-inspired behavior motivates several engineering systems and instigates

researches to develop proper tools to treat nonlinear systems. Historically,

nonlinear systems were usually avoided creating a linear paradigm that limited

the comprehension of natural processes. One of these paradigms is the strict

determinism, clearly illustrated by the Laplace thinking: “If we conceive of an
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intelligence which at a given instant comprehends of all the relations of the entities
of this universe, it could state the respect positions, motions, and general effects of
all these entities at any time in the past or future.”

Only in the end of the nineteenth century the linear paradigm started to be

broken. Motivated by the stability analysis of the universe, Poincaré studied the

dynamical response of the three-body problem. Poincaré presented a counterpoint

for the strict determinism of Laplace and its idea is clearly represented by its

famous phrase: “Even if the case that the natural laws had no longer secret for
us, . . . it may happen that small differences in initial conditions produce very great
ones in the final phenomena.” This is the essential characteristic of nonlinearity

meaning that small causes may generate great effects.

Nonlinear systems have a great variety of responses, and chaos is one of these

possibilities being characterized by sensitive dependence on initial conditions.

Although Poincaré has an absolutely clear vision with respect to chaos (as it is

understood nowadays), only in 1963, when Lorenz developed meteorology studies,

this idea came back to the scientific scenario again (Lorenz 1963). The Lorenz’s
analysis established the colloquial understanding that became famous as the but-
terfly effect, which means that if a butterfly flaps its wings in China it may cause a

hurricane in Brazil.

This chapter presents a general overview of the fundamentals of nonlinear

dynamics and chaos. The following references can be indicated: Hilborn (1994),

Kapitaniak (1991), Moon (1992), Monteiro (2002), Mullin (1993), Ott (1993),

Thompsom and Stewart (1986), Savi (2006) and Strogatz (1994). Initially, funda-

mental background is provided. The mathematical representation of dynamical

systems is discussed presenting concepts as state variables and phase space. Sta-

bility analysis and linearization approaches are then discussed together with some

important tools for the nonlinear analysis. The formal definition of chaos is treated

in the sequence introducing Lyapunov exponents as an important diagnostic tool of

chaos. A case study of shape memory alloy systems is presented as a general

application of the discussed background material.

2 Dynamical Systems: Background

A dynamical system may be understood as a transformation f that is imposed to a

vector field x, that represents state variables used to describe the system dynamics.

This idea represents a frame-by-frame description of reality that can be mathemat-

ically represented by a set of differential equations as follows:

_x ¼ f xð Þ, x2Rn ð1Þ

This kind of system is called autonomous since it does not have an explicit

dependence on time. On the other hand, it is possible to consider a non-autonomous

system that has an explicit time dependence as follows:
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_x ¼ f x; tð Þ, x2Rn ð2Þ
The space of dependent variables, x, is called state space or phase space. It has

different topologies that characterize several aspects of system dynamics. A geomet-

rical approach to understand system dynamics is related to the investigation of how

objects in the phase space respond under transformations imposed by f. In this regard,
it is interesting to imagine an object in phase space representing a set of initial

conditions. Each one of these points is the starting point of a trajectory. After a time

interval, they form a new object and the transformation between these two objects

is imposed by f that defines the kind of behavior of the system. This geometrical

approach allows one to establish an interesting comprehension of the dynamical

behavior, being usually called topology that studies continuous transformations.

Usually, nonlinear systems do not have analytical solution and, therefore,

different tools need to be employed. Numerical simulation is one of the most

important tools for this aim but there are also hybrid tools as perturbation methods

(Nayfeh and Mook 1979). In general, it is important to understand that dynamical

systems have trajectories that represent the system response. These trajectories are

obtained by some technique as numerical methods. In this regard, it is also

important to highlight the existence and uniqueness of the solution of the nonlinear

dynamical system.

2.1 Equilibrium Points and Linearization

An equilibrium point (or fixed point) is a special point of the state space where the
system may stay stationary, which means that the solution does not vary with time.

Therefore, if x2Rn is an equilibrium point of the system, hence f xð Þ ¼ 0. Usually,

nonlinear systems have several equilibrium points and system response can visit all

of them, which confer flexibility and complexity to the system behavior.

A useful form to investigate dynamics of nonlinear system is to linearize its

response around a solution. In particular, one can consider an equilibrium point. In

this regard, consider a coordinate change of the form:

x ¼ xþ η ð3Þ

where η is perturbation of the solution. Using Taylor series,

f xð Þ ¼ f xþ ηð Þ ¼ f xð Þ þ Df xð Þηþ � � � ð4Þ

Df xð Þ ¼ A is the Jacobian matrix evaluated at the equilibrium point. Hence,

assuming just the linear part of the series, the dynamics around the equilibrium

point is given by:

_η ¼ Aη ð5Þ
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This linear system has analytical solution and for its analysis it is convenient to

perform a coordinate change as follows:

η ¼ Γξ ð6Þ

where Γ is the modal matrix, built with the eigenvectors of the Jacobian matrix.

Under this assumption, the equivalent system is defined:

_ξ ¼ Bξ ð7Þ

where B ¼ Γ�1AΓ ¼ diag λið Þ, and λi are the eigenvalues of the Jacobian matrix.

Hence, the system response is given by:

ξ ¼ etBξ0 ¼ diag
X1
k¼0

tk

k!
λ ki

 !
ξ0 ¼ diag etλi

� �
ξ0 ð8Þ

Therefore, the dynamical characteristics of the system in the neighborhood of

the equilibrium points are defined from the eigenvalues of the Jacobian matrix A. In
this regard, stability issues can be evaluated splitting the eigenvalues in three

different groups: ϑs, ϑu, and ϑc, respectively, representing stable, unstable, and

central sets. Each one of these groups is defined from the real part of the eigenvalues

as follows:

ϑs ¼ λ such that Re λð Þ < 0f g
ϑu ¼ λ such that Re λð Þ > 0f g
ϑc ¼ λ such that Re λð Þ ¼ 0f g

ð9Þ

The linearized system has similar response of the nonlinear system in

the neighborhood of hyperbolic equilibrium points. A hyperbolic point is

defined such that the real part of the eigenvalues of the Jacobian matrix does

not vanish (Re λkð Þ 6¼ 0 8k ). This conclusion is the essence of the Hartman-

Grobman theorem (Savi 2006) that establishes the relation between the

nonlinear and linearized solution of a dynamical system in the neighborhood

of an equilibrium point.

Therefore, the dynamics of the nonlinear system can be locally evaluated from

the eigenvalues of the Jacobian matrix. In order to visualize different types of

equilibrium points, it is useful to observe a two-dimensional system (2-Dim).

Figure 1 shows different types of equilibrium points for 2-Dim systems, defined

from the eigenvalues of A.

96 M.A. Savi



2.2 Stability

Stability is an essential issue of nonlinear dynamical systems being associated with

characteristics of a solution subjected to perturbations. If a perturbation does not

affect a system response in a significant way, the system is stable. Otherwise, the

system is unstable. Figure 2 illustrates stability concept considering the movement

of a body in three distinct situations.

1. Meta-stable equilibrium—After the perturbation, the body returns to its initial

configuration. Nevertheless, there is another possible situation, more stable than

the original one. Hence, the influence depends on the perturbation level.

Sink
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Fig. 1 Equilibrium points for 2-Dim systems

Fig. 2 Stability
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2. Unstable equilibrium—After the perturbation, the body does not return to its

original configuration, assuming a new position far from the original one.

3. Stable equilibrium—After the perturbation, the body returns to its initial

configuration.

4. Neutral equilibrium—After the perturbation, the body stays at the new

configuration.

The idea of stability can be extended to dynamical behavior. The local analysis

of linearized system around equilibrium points is an example. Another possibility

is the Lyapunov criterion that analyzes the effect of a perturbation in a specific

system solution. Hence, it establishes a relationship between a specific orbit or

solution of the dynamical system and its perturbation, represented by a nearby

orbit associated with a different initial condition in the neighborhood of the

original one.

The stability concept of Lyapunov defines a stable system in such a way that

two nearby orbits remain close to each other with the evolution of time. Figure 3a

shows this behavior. On the other hand, the system is asymptotically stable if these

orbits tend to converge to each other when time tends to infinity (Fig. 3b).

`d

y (t)

y (t)

f (t)

f (t)
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Fig. 3 Stability concept of Lyapunov. (a) Stable; (b) asyntoptically stable

98 M.A. Savi



2.3 Poincaré Maps

Poincaré map constitutes a procedure employed to eliminate a dimension of the

system and, therefore, a continuous system is transformed into a discrete one. There

are many forms to define a Poincaré map, but in general, it is considered as a surface

that transversely intersects a given orbit. For systems subjected to periodic forcing,

Poincaré section may be represented by a surface that corresponds to a specific

phase of the driving force. On this basis, one has a stroboscopically sample of the

system response. Figure 4 illustrates the idea of Poincaré map showing two

different surfaces transversely crossed by a specific orbit.

3 Chaos

Nonlinear dynamical systems present a great variety of responses. This can be

understood as a system freedom, associated with alternative behaviors. Chaos is one

of these possibilities related to richness and unpredictability. In brief, chaos may be

defined as the apparent stochastic behavior of deterministic systems.

Since a dynamical system may be understood as a transformation f that is

imposed to a vector field x, it is interesting to imagine a special type of transfor-

mation characterized by a sequence of contraction–expansion-folder process. This

process represents an archetypal behavior of the system being called horseshoe

transformation. By considering a unitary square in phase space, two different

transformations can be imagined: a positive part of transformation, f, and a negative
part, f�1, both represented in Fig. 5. The limit as the number of interactions of these

transformations tend to infinity, the positive part of transformation tends to form a

set of vertical lines. On the other hand, the inverse function tends to form a set of

Fig. 4 Poincaré map
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horizontal lines. Hence, the intersections of positive and negative parts form an

invariant set of disconnected points that have the structure of a Cantor set. This set
is closed, disconnected, and has an uncountable infinity of points. Examples of this

set are shown in Fig. 6. Basically, a line is split in three equal parts and the center

part is discarded. This process is repeated tending to infinity. An analogous situa-

tion is related to an area or to a volume. Line is a typical 1-Dim structure and the set

related to this has a fractional dimension, between 1 and 0. The area results in a

structure with dimension between 2 and 1. The cube produces a structure with

dimension between 3 and 2. Line and volume structures are shown in Fig. 6,

constructed from a repetition of a simple rule. This kind of structure has a fractal
characteristic as a reference of the non-integer, fractional nature of its dimension.

The contraction–expansion-folder process has become famous as horseshoe

transformation because of the form of the transformed square. It was originally

proposed by the mathematician Steve Smale, and because of that became known as

the Smale horseshoe. A dynamical system subjected to this kind of transformation

has some special characteristics.

A generic point of the invariant set of points constructed by the horseshoe

transformation may be identified by a sequence of 0’s and 1’s and, because of

that, it is possible to construct a structure that represents orbits of dynamical

systems from these sequences. This approach is called symbolic dynamics and

since it is based on sequences of integer numbers, it is not associated with floating

point errors, being useful in several situations. On this basis, consider two generic

points, p and ep, that belong to a small neighborhood, ε. It does not matter the

size of the neighborhood ε, there is a number of iterations imposed by f such these

points are separated by a finite distance. Therefore, the system presents a sensitive
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Fig. 5 Contraction–expansion-folder transformation known as horseshoe
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dependence on initial condition, as shown in Fig. 7 (Wiggins 1990; Strogatz 1994).

This property characterizes the chaotic behavior of a dynamical system. This

sensitive dependence represents the butterfly effect described in Lorenz’s work.
Chaotic behavior is intrinsically related to the existence of the horseshoe trans-

formation. As a consequence, chaos is associated with nonlinear systems with, at

least, three distinct directions: one related to expansion, one related to contraction,

and a neutral one, where folder occurs. This means that a dynamical system may

a

b

cFig. 7 Schematic

representation of the

sensitive dependence of

initial conditions associated

with horseshoe

transformation

Fig. 6 Cantor set (modified

from Gleick 1987)
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have at least three dimensions in order to exhibit chaotic behavior (Savi 2006;

Wiggins 1990; Guckenheimer and Holmes 1983). Many authors refer to the

horseshoe transformation as the baker transformation, as a reference of the process

of bread paste. An original paste (related to the square of initial conditions) is

prepared by a sequence of contraction–expansion-folder (Savi 2014; Gleick 1987;

Stewart 1991).

In order to illustrate the physical behavior of the horseshoe transformation,

consider an object represented by a circle of initial conditions. After some interac-

tions, it is evaluated the intersection of the orbits on a Poincaré section. If the

system presents a chaotic behavior, there is a horseshoe transformation character-

ized by expansion–contraction-folder process. Figure 8 shows the original circle

and two other instants (Savi and Braga 1993).

Another characteristic of chaos is the richness that can be associated with the

existence of an infinite number of unstable periodic orbits embedded in the chaotic

behavior. These orbits represent the essential structure of chaos conferring richness

and flexibility to this kind of behavior.

Dissipative dynamical systems are characterized by the asymptotic behavior

associated with attractors. Several types of attractors can be observed in dynamical

system. A stable equilibrium point can be understood as a 0-Dim attractor. A limit-

cycle is another possibility. Chaotic behavior is also related to an attractor that

represents a preferenced region of the phase space where orbits converge. Special

characteristics of this kind of attractor are related to the horseshoe transformation.

Usually, it has a Cantor set aspect with a fractal structure associated with a

non-integer dimension. Due to that, the name strange attractor is usually employed.

Fig. 8 Evolution of a circle

of initial conditions in a

chaotic behavior
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It represents a collection of points, organized in lamelas, with voids. Note that

this is the same structure of the invariant set described for horseshoe

transformation (Fig. 5).

The strangeness of an attractor is related to a geometrical aspect, essentially

fractal, with non-integer dimension. Chaoticity, on the other hand, is a dynamical

aspect. Therefore, although not usual, it is possible to have different situations in

dynamical systems: chaotic strange attractor; chaotic non-strange attractor; strange

non-chaotic attractor (Grebogi et al. 1984). A typical chaotic, strange attractor is

shown in Fig. 9 (Savi 2006).

3.1 Routes to Chaos

The different responses of a dynamical system are defined by parameters and initial

conditions. Each set of parameter produces a specific response. Multistability is a

nonlinear characteristic where a specific set can be associated with more than one

stable solution. In these cases, initial conditions define the system behavior.

A proper comprehension of system dynamics includes the form of how system

behavior is altered by parameter changes. In this regard, it is important to identify

qualitative changes on system behavior. Poincaré introduced the idea of qualitative

changes in solution structure using the term bifurcation.
Bifurcation analysis is useful to identify these qualitative changes, defining the

routes to chaos. In general, two types of bifurcation can be imagined: local and

global. Local bifurcations are restricted to regions of phase space. On the other

hand, global bifurcations are non-local. Local bifurcation analysis is usually

employed considering normal forms that represent prototypes of bifurcations.

Figure 10 shows some classical forms of bifurcations being related to the creation

and destruction of solutions or equilibrium points.

Global bifurcations are related to qualitative changes in global system aspects and

cannot be observed from local analysis. In essence, a parameter change can cause a

Fig. 9 Chaotic strange

attractor
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global change in the orbit structure. This type of bifurcation can explain the birth of

chaos due to some orbit collision, for instance. For more details, see Hirsch

et al. (2004), Strogatz (1994),Wiggins (1990), andGuckenheimer andHolmes (1983).

Bifurcation diagrams constitute an important tool to identify the influence of

parameter changes in system response. It represents a stroboscopically sampled of a

system variable under the slow quasi-static change of a system parameter. A typical

bifurcation diagram is presented in Fig. 11 (Savi 2006).

3.2 Lyapunov Exponents

Chaotic behavior needs to be properly identified in dynamical systems. In this

regard, diagnostic tools are essential and system invariants are good alternative

for this aim. Attractor dimension and Lyapunov exponent are usually employed to

identify chaos.
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Fig. 10 Some bifurcations observed in dynamical systems
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Fig. 11 Bifurcation diagram
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Lyapunov exponent evaluates the sensitive dependence on initial conditions

estimating the exponential divergence of nearby orbits. These exponents have

been used as the most useful diagnostic tool for chaotic system analysis and can

also be used for the calculation of other invariant quantities as the attractor

dimension. The signs of these exponents provide a qualitative picture of the

system’s dynamics. The existence of positive Lyapunov exponents defines direc-

tions of local instabilities in the system dynamics and any system containing at least

one positive exponent presents chaotic behavior. A response with more than one

positive exponent is called hyperchaos (Savi and Pacheco 2002; Franca and Savi

2003; Machado et al. 2003).

In order to understand the idea related to the determination of Lyapunov

exponents consider a D-sphere of states that is transformed by the system dynamics

in a D-ellipsoid. Lyapunov exponents are related to the expanding and contracting

nature of different directions in phase space. The evaluation of the divergence of

two nearby orbits is done considering the relation between the initial D-sphere and
the D-ellipsoid (Fig. 12). This variation may be expressed by:

d tð Þ ¼ d0b
λt ð10Þ

where d is the diameter, b is a reference basis, and λ is called Lyapunov exponent.

Hence, there is a Lyapunov spectrum given by,

λ ¼ 1

t
logb

d tð Þ
d0

� �
ð11Þ

When Lyapunov exponent is negative or vanishes, trajectories do not diverge. On

the other hand, when the exponent is positive, indicates that trajectories diverge,

characterizing chaos. In addition to the signs of the Lyapunov exponents, their

values also bring important information related to system dynamics. Since the
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Fig. 12 Lyapunov exponents
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exponents evaluate the average divergence of nearby orbits, dissipative systems

have a negative sum of the whole Lyapunov spectrum.

The determination of Lyapunov exponents of dynamical system with an explic-

itly mathematical model, which can be linearized, is well established from the

algorithm proposed by Wolf et al. (1985). On the other hand, the determination of

these exponents from time series is quite more complex. In essence, there are two

different classes of algorithms: Trajectories, real space or direct method; and

perturbation, tangent space or Jacobian matrix method (Wolf et al. 1985; Kantz

and Schreiber 1997; Franca and Savi 2003; Savi 2006).

In chaotic situations, there is a local exponential divergence of nearby orbits and

hence, it is necessary proper algorithms in order to evaluate Lyapunov exponents

(Wolf et al. 1985; Parker and Chua 1989). These algorithms evaluate the average of

this divergence considered in different points of the trajectory. Hence, when the

distance d(t) becomes large, it is defined a new d0(t) in order to evaluate the

divergence, as follows:

λ ¼ 1

tn � t0

Xn
k¼1

logb
d tkð Þ

d0 tk�1ð Þ
� �

ð12Þ

Lyapunov exponents can be employed to calculate other system invariants as

attractor dimension. The Kaplan–Yorke conjecture establishes a way to calculate

attractor dimension from the spectrum of Lyapunov exponents (Savi 2006).

4 Shape Memory Alloy System

The analysis of smart systems and structures involves nonlinear dynamics of multi-

degrees of freedom systems. As an illustrative example of some of the concepts

presented in this chapter, one presents the nonlinear dynamics analysis of shape

memory systems considering single and two degree of freedom oscillators. Equa-

tions of motion are formulated using polynomial constitutive model to describe the

restitution force of the oscillator. Despite the deceiving simplicity of the model, its

analysis contributes to the understanding of the nonlinear dynamics of shape

memory alloy systems. Paiva and Savi (2006) presented a general overview about

constitutive models to describe the thermomechanical behavior of SMAs. The

prospect of chaotic behavior is of concerned and the existence of hyperchaos is

an interesting characteristic of these systems.

Numerical simulations are performed employing a fourth order Runge-Kutta

method for numerical integration and time steps less than Δτ¼ 2π/200ϖ present

good results. The characterization of chaotic motion is done employing Lyapunov

exponents, and its estimation employs the algorithm proposed byWolf et al. (1985).

A collection of results from Savi and Pacheco (2002) is presented. Savi (2015)

presented a general overview of nonlinear dynamics and chaos in system with SMA
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elements. Savi and Braga (1993) and Machado et al. (2003, 2004) discussed some

other aspects related to oscillators where the restitution force is described by the

polynomial model.

4.1 Polynomial Constitutive Model

Polynomial constitutive model is a one-dimensional model that describes the

SMA behavior considering a polynomial free energy that depends on the temper-

ature, T, and on the one-dimensional strain, E. The form of the free energy is chosen

in such a way that the minima and maxima points represent stability and instability

of each phase of the SMA. As it is usual on one-dimensional models proposed for

SMAs (Savi and Braga 1993; Paiva and Savi 2006), three phases are considered:

Austenite (A) and two variants of martensite (Mþ, M�). Hence, the free energy is

chosen such that for high temperatures it has only one minimum at vanishing strain,

representing the equilibrium of the austenitic phase. At low temperatures, martens-

ite is stable, and the free energy must have two minima at non-vanishing strains.

At intermediate temperatures, the free energy must have equilibrium points

corresponding to both phases. Under these assumptions, the stress–strain–temper-

ature relation is given by:

σ ¼ a T � TMð ÞE� bE3 þ eE5 ð13Þ

where a, b, and e are positive constants, while TM is the temperature below which

the martensitic phase is stable. If TA is defined as the temperature above which the

austenite is stable, and the free energy has only one minimum at zero strains, it is

possible to write the following condition,

TA ¼ TM þ 1

4

b2

ae
ð14Þ

4.2 Single Degree of Freedom System

Initially, a single degree of freedom oscillator, which consists of a mass m attached

to a shape memory element of length l and cross-sectional area A, and restitution

force FR, is treated. A linear viscous damper, characterized by a viscous coefficient

c, is also considered in order to represent dissipations. Moreover, the system is

harmonically excited by a force F(t)¼F0 sin(ωt). Figure 13 presents an oscillator

where the restitution force, FR, is provided by a general SMA element.

The equation of motion of this oscillator may be formulated by considering the

balance of forces acting on the mass as follows.
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m€uþ c _u þ FR ¼ F0 sin Ωtð Þ ð15Þ

where FR ¼ σA. Using the polynomial model to represent the restitution force, the

non-dimensional equations of motion are given by (Savi and Pacheco 2002):

y
0
0 ¼ y1

y
0
1 ¼ δ sin ϖτð Þ � ξy1 � θ � 1ð Þy0 þ βy30 � εy50

ð16Þ

where ξ, β, and ε are material parameters; δ and ϖ are external force parameters;

and θ represents non-dimensional temperature.

In all simulations one considers a unitary mass andϖ¼ 1, ξ¼ 0.1, β¼ 1.3� 103,

and ε¼ 4.7� 105. Note that θA ¼ 1þ β2

4ε, and therefore, θA¼ 1.9.

In order to illustrate the free response of the oscillator, a non-dissipative system

(ξ¼ 0) is considered. Results from simulations are presented in the form of phase

portraits. Figure 14 presents the free response of the system at different tempera-

tures. Figure 14a shows the case where the martensitic phase is stable (θ¼ 0.7). In

this case, there are three equilibrium points where two are stable while the other one

is unstable. Figure 14b considers a higher temperature, where austenitic phase is

stable (θ¼ 3.5). Under this condition, the system presents only one stable equilib-

rium point.

Forced vibrations are now in focus. In order to start the analysis, bifurcation

diagrams are presented (Fig. 15), showing the stroboscopically sampled displace-

ment values, y0, under the slow quasi-static increase of the driving force amplitude,

δ, and different temperatures. Note that there are parameter values associated with a

cloud of points, which is related to chaotic motion.

Different responses are now contemplated. Assuming θ¼ 3.5 and δ¼ 0.06, the

system presents a period-1 motion. Figure 16 shows the phase space and the

Poincaré section associated with this motion. Regarding the same forcing parameter

and a lower temperature, θ¼ 0.7, where the martensitic phase is stable, the motion

becomes chaotic. The phase space and the Poincaré section associated with this

motion are presented in Fig. 17. Under this condition, a strange attractor is identi-

fied and Lyapunov spectrum estimated by the algorithm due to Wolf et al. (1985) is

λi � þ0:28, � 0:42ð Þ, presenting one positive exponent.

m

SMA Element
FR

c

F(t)

uFig. 13 Single degree of

freedom oscillator
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4.3 Two Degree of Freedom System

A two degree of freedom SMA oscillator, depicted in Fig. 18, is now considered. It

consists of two masses, mi (i¼ 1, 2), supported by SMA elements and linear

dampers with coefficient ci (i¼ 1, 2, 3). The system is harmonically excited by

two forces Fi ¼ Fi sin Ωitð Þ (i¼ 1, 2).

Using the polynomial constitutive model, the non-dimensional equations of

motion is written as follows (Savi and Pacheco 2002):
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y
0
0 ¼ y1

y
0
1 ¼ δ1 sin ϖ1τð Þ � ξ1 þ ξ2α21μð Þy1 þ ξ2α21μy3 � θ1 � 1ð Þ þ α221μ θ2 � 1ð Þ� �

y0

þ α221μ θ2 � 1ð Þy2 þ β1y
3
0 � ε1y50 � β2α

2
21μ y2 � y0ð Þ3 þ ε2α221μ y2 � y0ð Þ5

y
0
2 ¼ y3

y
0
3 ¼ α221δ2 sin ϖ2τð Þ þ ξ2α21y1 � ξ2α21 þ ξ3α21α32ð Þy3 þ α221 θ2 � 1ð Þy0

� α221 θ2 � 1ð Þ þ α221α
2
32 θ3 � 1ð Þ� �

y2 þ β2α
2
21 y2 � y0ð Þ3 � ε2α221 y2 � y0ð Þ5

þ β3α
2
21α

2
32y

3
2 � ε3α221α

2
32y

5
2

ð17Þ

Again, numerical simulations are performed employing a fourth order Runge-

Kutta method for numerical integration and time steps less than Δτ¼ 2π/200ϖ1
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present good results. In all simulations, similar mechanical properties are regarded

for the three spring-dashpot systems. It is assumed a unitary mass andϖ1¼ϖ2¼ 1,

ξ1¼ ξ2¼ ξ3¼ 0.1, β1¼ β2¼ β3¼ 1.3� 103, and ε1¼ ε2¼ ε3¼ 4.7� 105. These

information allow one to conclude that α21¼ α32¼ μ¼ 1 and θA1¼ θA2¼ θA3¼ 1.9.

Since equations of motion are associated with a five-dimensional system, the

phase space is split into projections. The analysis is performed by considering two

oscillators, both with single degree of freedom, connected by a spring-dashpot

system. Under this assumption, it is possible to analyze the transmissibility of

motion between the two oscillators, constructing a phase subspace for each mass.

This transmissibility is evaluated studying different temperatures on the connection

system, which causes different patterns on each phase subspace.

Consider an excitation that causes chaotic motion on both oscillators

(δ1¼ δ2¼ 0.06 and θ1¼ θ3¼ 0.7) of two uncoupled systems. Therefore, Poincaré
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sections related to mass m1 (subspace y0–y1) and m2 (subspace y2–y3) present

strange attractors similar to the one presented in Fig. 17. By introducing a

connection with θ2¼ 0.7, martensitic phase is stable and strange attractors

associated with both masses change their patterns (Fig. 19). Lyapunov spectrum
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is λi � þ0:54, þ 0:17, � 0:37, � 0:92ð Þ presenting two positive exponents, char-

acterizing the hyperchaos. This means that two directions in the phase space suffer

expansion under the dynamical process. This scenario is changed if connection

temperature is in austenitic phase, θ2¼ 3.5. Under this new condition, the

transmissibility is quite different from the previous one (Fig. 20). Now, there

are strange attractors related to both masses and Lyapunov spectrum is

λi � þ0:30, � 0:14, � 0:29, � 0:45ð Þ, which presents only one positive exponent,
characterizing chaos.

Different subspaces can be employed for a better comprehension of these

behaviors. Hence, consider a 3D projection (y0–y1–y2) of the five-dimensional

phase space. Figure 21 shows the hyperchaotic behavior associated with the
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martensitic connection. This 3D projection shows a cloud of points and allows

one to observe the phase subspace of mass m1 (Fig. 19) projected on the y0–y1
plane. Note that it is not possible to see a cantor-like structure of the chaotic

attractor. The same 3D projection of the case with austenitic connection shows a

strange attractor with a typical structure (Fig. 22).
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These results show that austenitic connection, which occurs at higher

temperatures (θ2¼ 3.5, for example), tends to preserve order in contrast of the

situation where a martensitic connection is considered (θ2¼ 0.7, for example).

This conclusion passes from the understanding that there is an inherent order

associated with the pattern of the strange attractor.
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Introduction to Smart Materials
and Structures

Domingos A. Rade and Valder Steffen Jr.

Abstract This chapter first introduces the basic definitions and concepts related to

smart materials and structures. Then, the underlying physical principles and main

operational features of some of the smart materials most widely used in engineering

applications are described. The potential of the technology of smart materials and

structures for innovative solutions of practical problems is put in evidence by the

description of some relevant research studies and engineering applications, with the

support of relevant bibliographic references. The concepts introduced in this chap-

ter are further developed in the other chapters of the book.

Keywords Smart materials • Smart structures • Smart material systems

• Intelligent materials • Intelligent structures

1 Introduction

Recent advances in material sciences enabled the exploration of novel types of

materials, favoring innovative solutions to a number of engineering problems.

Among these materials, the so-called smart materials have deserved a great deal

of attention. According to Leo (2006), these materials are characterized by the

existence of coupling between two or more physical domains (mechanical, electri-

cal, thermal, chemical, optical), in such a way that modifications of the state

variables related to a given domain lead to changes of the state variables related

to another domain. This coupling is illustrated in Fig. 1 considering mechanical,

electrical, and thermal domains. Also indicated are the most important effects

associated to the coupling between each pair.
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In the field of mechanical systems, the existence of the aforementioned coupling

has enabled the use of smart materials under the form of sensors and actuators

which, once integrated to a system, can provide unusual capabilities to it. In this

sense, smart structures or, more generally, smart material systems are understood

as engineering systems (civil engineering structures, vehicles, household appli-

ances, industrial equipment, for example), to which smart materials are integrated

aiming at improving their functionalities with respect to traditional versions.

In their more advanced conceptions, smart materials systems are designed to

mimic certain functionalities of living beings, by using sensors to detect modifica-

tions of the operational and/or environmental features, and promote, by means of

actuators, the necessary corrective actions in order to keep a satisfactory perfor-

mance of the system. This process is controlled by software running in micropro-

cessors, which are responsible for signal processing and command of the actuators.

This description makes clear that one of the main characteristics of smart material

systems is the high level of integration of sensors, actuators, and electronic pro-

cessors into them.

The relevance and maturity of the technology of smart material systems is

confirmed by the large number of existing patents and innovative products. How-

ever, the subject remains an important scientific topic as searching for improved

performance and bridging technological gaps are still necessary. Due to its nature,

the field of smart structures is inherently interdisciplinary. As a result, expertise in

numerous disciplines (e.g., material science, applied mechanics, electronics, con-

trol theory, and computer science) is necessary for the conception and design of

new solutions.

In this sense, the future evolution of this field highly depends on the education of

engineers and scientists with the necessary knowledge and skills. For this purpose,

much effort has been made to popularize this technology and provide didactic

MECHANICAL

STRESS
STRAIN

THERMAL

TEMPERATURE
ENTROPY

ELECTRIC

ELECTRIC DISPLACEMENT
ELECTRICAL FIELD

pyroelectric effect

Fig. 1 Illustration of coupling of physical domains, typical of smart materials (adapted from

Leo 2006)
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material for students (Banks et al. 1996; Clark et al. 1998; Srinivasan and

McFarland 2000; Leo 2006). Moreover, many review papers have been published,

which provide the reader with a sense of underlying principles, potential for

applications and research needs and perspectives (Chee et al. 1998; Frecker 2003;

Hurlebaus and Gaul 2006).

From the industrial/commercial standpoint, many companies now produce and

commercialize smart materials and appliances containing them.

In this introductory chapter the main characteristics of some of the most widely

used intelligent materials are presented. Also, their potential for the solution of

practical engineering problems is put in evidence by the description of some

relevant research studies and practical applications, with the support of some

relevant bibliographic references. In the chapters that follow, more detailed

descriptions and analyses are provided by experts, for each of those materials.

2 Piezoelectric Materials

Piezoelectricity, discovered in 1880 by French physicists Jacques and Pierre Curie,

is the property exhibited by certain natural or synthetic solids (quartz, tourmaline,

ceramics, polymers), and biological tissues (bone, skin, dentin) that cumulate

electric charge in response to the application of mechanical loads (direct piezo-

electric effect). Conversely, they undergo geometric deformations (elongations,

contractions, or distortions) when submitted to external electric fields (inverse

piezoelectric effect). The fundamentals of piezoelectricity have been presented in

a number of books (Cady 1964; Jaffe et al. 1971).

Most piezoelectric materials have crystalline structures, which means that their

atoms are arranged with a certain degree of regularity in such a way that one can

identify fundamental arrangements of atoms, called unit cells, that make up the

whole volume of the material. According to the geometric arrangement of the

atoms, the unit cells can be assimilated to electric dipoles, meaning that they

present net separations of positive and negative electric charges. This is a necessary

condition for the existence of the piezoelectric effect. A similar principle applies to

piezoelectric polymers in which the dipoles are associated to molecular chains.

Confining the focus on crystalline piezoelectric ceramics, which are widely used

in smart structure applications, Fig. 2 illustrates one of the phases of their

manufacturing process, called poling. As can be seen in Fig. 2a, within the raw

material the electric dipoles are oriented randomly. As a result, the material does

not exhibit significant piezoelectric features at the macroscopic level. After being

heated, the material is subjected to an intense electric field, in such a way that the

combination of heating and electric field enables the individual dipoles to be

reoriented in the direction of the electrical field, due to the action of electrostatic

forces (Fig. 2b). After removing the electrical field and lowering the temperature,

the electric dipoles come to a preferred orientation in the direction of the poling

field and the material exhibits macroscopic piezoelectric properties.
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When using piezoelectric materials, care should be exercised to avoid that

temperature exceeds the so-called Curie temperature, above which the material

loses its piezoelectric properties. The same happens when the material is subjected

to strong electric fields with signal opposite to that of the original poling field.

Figure 3 illustrates the direct and inverse piezoelectric effects. According to the

first, when subjected to a mechanical stress T, the material develops electric charges

that are accumulated in the metallic electrodes deposited on the surface of the

material. The surface charge density, named electric displacement, is denoted byD.
The signal of the charge depends on the signal of the applied stress (tension or

compression). As illustrated in Fig. 3a, for relatively low applied stress, the relation

between D and T is linear.

Regarding the inverse piezoelectric effect, the material presents deformations

when an electric field E is applied across the electrodes. In Fig. 3b, the deformation

is represented in terms of the strain S. For relatively low intensities of the electrical

field, a linear relation between S and E is observed.

Exploring the direct and inverse piezoelectric effects, piezoelectric materials can

be used either as sensors or actuators, respectively. In the first case, as illustrated in

Fig. 4a, a piezoelectric element is bonded to the surface of a host structure, in such a

way that, when the structure deforms, either statically or dynamically, part of the

surface strain is transmitted to the piezoelectric element. As a result, this latter

generates electric charges that, by using appropriate electronics, can be converted

into a voltage signal proportional to the strain.

In the second case (Fig. 4b), when a voltage signal is applied to the piezoelectric

element, it tends to deform; as this deformation is counteracted by the mechanical

impedance of the structure, forces are developed on the interface, which make the

structure to deform, statically or dynamically, according to the nature of the input

voltage signal.

Fig. 2 Illustration of the poling process of piezoelectric ceramics. (a) Randomly oriented electric

dipoles; (b) reoriented dipoles under poling electric field
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Piezoelectric materials have been extensively used in various engineering appli-

cations, either as sensors or actuators, based on the principles previously described.

Some of the most relevant applications, from the perspective of smart structures

technology, are exemplified next.

2.1 Active Vibration, Aeroelastic and Noise Control

In the context of active noise and vibration control of mechanical systems, the use

of piezoelectric materials provides many advantages, as compared to traditional

sensors (e.g., inertial accelerometers, inductive proximity sensors) and actuators

(e.g., electromagnetic, hydraulic, pneumatic). As a matter of fact, piezoelectric

materials can be used as distributed sensors or actuators, at moderate added weight

and can exhibit sufficient sensing capacity and control effectiveness, this latter in

terms of both force magnitude and frequency bandwidth. Moreover, piezoelectric

sensors and actuators can be arbitrarily shaped in such a way to enable full

integration to the mechanical systems.

Many applications related to the use of piezoelectric materials for active noise

and vibration control, and also for the control of aeroelastic phenomena, such as

buffeting and flutter, have been reported in the literature. For example, Giurgiutiu

(2000) provides a comprehensive review of achievements in the application of

smart materials actuation to counteract aeroelastic and vibration effects in rotary

and fixed wing aircraft. Nitzsche (2012) reports the challenging use of piezoelectric

Fig. 3 Illustration of the piezoelectric effect. (a) Direct effect; (b) inverse effect

base structure

piezelectric element

+ + + + + + + +
- - - -- ---

base structure

piezelectric element

V
a b

Fig. 4 Illustration of the use of piezoelectric materials as: (a) sensor; (b) actuator
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actuators as part of a Buffeting Loading Alleviation (BLA) system applied to the

vertical fin of a F-18 fighter. A comprehensive review of active vibration and noise

suppression of plate-like structures with piezoelectric sensors and actuators, con-

sidering various boundary conditions and controller architecture has been recently

presented by Aridogan and Basdogan (2015).

2.2 Passive Noise and Vibration Control Based on Shunted
Piezoelectric Transducers

In a pioneering research work, Forward (1979) suggested the use of piezoelectric

elements associated to electric circuits (named shunt circuits) for the purpose of

passive vibration control. The basic idea, illustrated in Fig. 5, consists in converting

the dynamic strain energy of the host structure into electric energy by exploring the

direct piezoelectric effect, and transferring this energy to the circuit of impedance

Z(ω), in which it can be partially dissipated.

It is important to point out that, from the perspective of the dynamic behavior,

some types of shunt circuits exhibit close similarity to other types of vibration

control devices. Indeed, as demonstrated by Hagood and Flotow (1991), Wu

(1996), and Lesieutre (1998), if the shunt circuit is a pure resistance, R, the dynamic

behavior is similar to that exhibited by viscoelastic materials, characterized by a

frequency-dependent complex material modulus. On the other hand, if the shunt

circuit is a resistive–inductive (RL) circuit, its influence is analogous to that of a

viscously damped dynamic vibration absorber (Viana and Steffen 2006).

More recently, more sophisticated electronic circuits have been suggested for

improved performance, such as switched shunts (Richard et al. 2000; Ducarne

et al. 2010) and negative capacitance (Marneffe and Preumont 2008). A recent

study devoted to vibroacoustic control is presented by Rocha and Dias (2014).

2.3 Piezoelectric Energy Harvesting

The possibility of generating electric energy from vibratory motion by exploring

the direct piezoelectric effect has been intensively investigated lately (Erturk and

Inman 2011). This concept is known as piezoelectric energy harvesting or

base structure

piezelectric elementZ(w)
i(w)

Fig. 5 Scheme of a

piezoelectric element

connected to a shunt circuit
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piezoelectric energy scavenging. It should be clear, however, that, as compared to

other traditional sources of energy, this technology is capable of producing rela-

tively small amounts of energy, which can, nonetheless, be used to feed low power

devices. As an example, some applications involve the use of piezoelectric energy

harvesting to feed remote sensing devices and wireless transmission systems (Zhou

and Zuo 2015).

Studies reported in the literature associate the concept of piezoelectric energy

harvesting with a variety of vibration sources, such as machinery and structure

vibrations (Kim 2015), ocean wave motions (Wu et al. 2015), aeroelastic oscilla-

tions (Rocha Vieira and De Marqui 2013), air flow (Zou et al. 2015), and human

motion (Shukla and Bell 2015).

2.4 Structural Health Monitoring

The technology of structural health monitoring (SHM) addresses the problem of

identifying damage by processing structural response signals, and includes the tasks

of damage detection, location, evaluation of extent, and prognosis (Inman

et al. 2005; Adams 2007; Farrar and Worden 2012). Among the different strategies

conceived for SHM, the use of piezoelectric materials has received a great deal of

attention, particularly due to the possibility of deep integration of these materials

into the monitored structures. In this context, piezoelectric transducers are used

either as sensors or actuators in the process of capturing the influence of damage on

the structural response, with the advantage that those transducers can operate in

very broad frequency bands. The operation in the high-frequency domain makes it

possible to identify the presence of incipient damage.

Examples of SHM techniques based on piezoelectric materials are those based

on electromechanical impedance (Annamdas and Soh 2010) and Lamb waves

(Raghavan and Cesnik 2005; Su et al. 2006). In the first, a single piezoelectric

transducer is bonded to the surface of the structure. Special electronics and software

are used to drive the transducer with a voltage signal which excites the structure

dynamically in a high-frequency range (of the order of tens or hundreds of kHz).

The response of the structure is measured by using the same transducer as a sensor,

in terms of the output electrical current. The ratio of the input voltage and output

current defines the electromechanical impedance function, which is a complex

function of frequency and depends on the physical features of both the monitored

structure and piezoelectric transducer. Hence, the occurrence of damage provokes

changes in the electromechanical impedance function and the observed variations

are used to infer the presence, location, and extent of damage. Since the same

transducer is used for excitation and response measurement, this technique is

classified as a pitch-echo method.

Piezoelectric transducers can also be used to generate Lamb waves, which exist

in thin plate-like components, and are guided by the parallel free boundaries. The

interesting feature of Lamb waves is that they interfere with damages, generating
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reflections that can be detected. SHM methods based on Lamb waves can be

implemented either as pulse-echo, when a single transducer is used to generate

and measure the reflected waves, or pitch-catch, when these functions is performed

by different transducers.

3 Shape Memory Alloys

Shape memory alloys (SMAs) is a class of metallic materials which exhibit the

capacity of developing and recovering large strains (of the order of 8 %), in

response to combination of thermal and mechanical activation. This behavior is

due to transformations between two solid phases: martensite, which is stable at

lower temperatures, and austenite, stable at higher temperatures. For a given alloy

composition, the temperatures of transition from one phase to the other depend on

the stress state.

Among the SMAs, Ni–Ti alloys, known commercially under the name “Nitinol,”

are the most popular.

The phenomenology of SMAs is relatively well known. Starting from the

material in the austenitic phase, free of mechanical load at high temperature,

upon cooling, a gradual transformation from austenite to martensite takes place.

In this process, different variants of martensite are obtained, which are distin-

guished from each other by the orientation of their crystallographic structures. In

this state, the martensite is called the twinned martensite. Upon heating the mar-

tensite, the reverse transformation to austenite occurs.

In these transformations, an important variable is the martensite fraction

ξ 0 � ξ � 1ð Þ, defined in such a way that ξ ¼ 1 and ξ ¼ 0 correspond to the states

of full martensite and full austenite, respectively.

For a given alloy, the thermally induced transformations are characterized by

four values of temperature, namely:

• Ms: temperature at which the transformation from austenite to martensite starts

• Mf: temperature at which the transformation from austenite to martensite finishes

• As: temperature at which the transformation from martensite to austenite starts

• Af: temperature at which the transformation from martensite to austenite finishes

A schematic representation of the temperature-induced transformations between

the two phases is depicted in Fig. 6.

Regarding the thermomechanical behavior, SMAs exhibit two distinct phenom-

ena, namely, shape memory effect and superelastic effect. The shape memory effect

is the property by which large strains undergone by the material in response

mechanical loading can be recovered by heating above a certain temperature, as

indicated in Fig. 7a. On the other hand, the superelastic effect is the property by

which the material exhibits a very large strain upon loading, which is fully recov-

ered when the material is unloaded, without any temperature variation. In this

process, a very large hysteresis loop in the stress–strain curve takes place, as

show in Fig. 7b.
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In Fig. 7a, at point A, at a sufficient low temperature, with nomechanical load, the

only phase present in the material is twinned martensite. Upon loading, detwinning

of the martensite occurs, so that, for sufficiently high load, at point C only detwinned

martensite exists in the material. Detwinning is the process of reorientation of the

martensite variants induced by the load, which is accompanied by large deformation.

Upon unloading, at point D the specimen exhibits a remaining strain. If the specimen

is heated in the load-free state, the remaining strain is fully recovered, and the

original state of detwinned martensite is obtained at point A.

Regarding Fig. 7b, for the superelastic effect to take place, at point A the

material must be fully austenitic, which means that the temperature must be

sufficiently high for this phase to be stable. As the result of mechanical loading,

the austenite ceases to be stable and is transformed to martensite, which is simul-

taneously detwinned by the load action. This process is accompanied by large

deformation (branch B–C). When the specimen is unloaded, the martensite is

transformed back to austenite, and the strain is fully recovered (path C–D–A).

It should be noticed that, as opposed to the shape memory effect, which involves

temperature increase, the superelastic effect occurs under isothermal condition.
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fM sM sA fA

0

1

Fig. 6 Temperature-

induced phase

transformations in SMAs
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B
C

D

e e

s s

A
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C

D

heating

a b

Fig. 7 (a) Representation of the shape memory effect; (b) representation of the superelastic effect
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By exploring the shape memory effect, SMAs have been used for the conception

of thermally activated actuators (motion or force generators) in a number of

applications, among which one can mention aircraft engines (Lagoudas and Hartl

2007), medical devices (Machado and Savi 2003; Silva et al. 2013), robotics (Yan

et al. 2012), aeroelastic control (Giurgiutiu 2000, Abreu et al. 2014), and morphing

aircraft structures (Barbarino et al. 2011).

On the other hand, the superelastic effect has been explored in various applica-

tions in which large recoverable strains are required. Moreover, as the loop in the

strain–strain is associated to energy dissipation, this effect has also been explored

for increasing damping in vibratory systems, in the scope of passive vibration

control (Han et al. 2003; Song et al. 2006). Also, superelastic SMAs have found a

number of applications in medical and dental devices (Machado and Savi 2003;

Jania et al. 2014).

Very useful review papers and books devoted to the fundamentals and applica-

tions of SMA can be found in the literature (Lagoudas 2008; Jania et al. 2014).

4 Magneto-Rheological and Electro-Rheological Fluids

Magneto-rheological fluids (designated herein as MR) are those which exhibit

significant reversible modifications of their rheological properties (those related

to the flow behavior), when they are submitted to external magnetic fields. Like-

wise, electro-rheological fluids (ER) exhibit similar dependence with respect to

electric field.

Physically, MR fluids are stable suspensions of magnetically polarizable micron-

sized particles suspended in a low-volatility carrier fluid, usually a synthetic

hydrocarbon. The order of the dimension of the particles can vary from 1 to

hundreds of μm. Surfactants are added to favor the dispersion of the particles in

the fluid. As to ER fluids, the particles must be made of dielectric (insulating)

materials.

To illustrate the underlying phenomenology, Fig. 8 shows a MR fluid between

two plates which can be slipped with respect to the other, so that the fluid is

Fig. 8 Illustration of the formation of magnetized particle clusters in a MR fluid
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deformed in shear. In the absence of magnetic field, the particles are evenly

dispersed in the volume of the fluid, which behaves essentially as a Newtonian

fluid (the shear stress is proportional to the shear strain rate). However, upon the

application of a magnetic field H, the particles become magnetically polarized and

are gathered in clusters. Under this condition, the MR fluid exhibits a yield shear

stress, which depends on the intensity of the magnetic field. As a result, there is a

minimum value of shear stress necessary for the onset of the flow.

Similar principle applies to electro-rheological fluids, for which the formation of

clusters can be interpreted as the result of electrostatic polarization.

A model often used to describe the behavior of MR fluids is the Bingham plastic

model, for which the constitutive relation is written as:

τ ¼ τy þ μ
dγ

dt
;

where τ is the shear stress, τy is the yield shear stress, μ is the viscosity, and dγ/dt is
the shear strain rate. As discussed above, the flow does not occur as long as the

applied shear stress is smaller than the yield stress. Figure 9 illustrates the Bingham

constitutive model, compared to the Newtonian fluid model.

In most applications, the main rheological property of interest is the viscosity,

which determines the damping capacity of the fluid. Hence, in the scope of smart

structures, electro-rheological and magneto-rheological fluids have been explored

for the purpose of achieving controllable damping.

Confronting MR and ER fluids, it has been recognized that ER fluids have some

inherent drawbacks, which make MR fluids preferable in a number of applications.

Such shortcomings include the tendency of permanent polarization of the ER fluid

particles and the necessity of application of relatively high voltages.

MR fluids can currently be found in a number of commercial products, including

clutches, brakes, dampers, mounts, bushings, and haptic devices (Jolly et al. 1999).

One of the most mature fields of applications is the automotive industry, which has

explored MR fluids for the conception of semi-active dampers, integrated in car

suspensions and truck driver seats (McManus et al. 2002). Also, some promising

studies have been conducted for civil engineering structures (Dyke et al. 1998).

d

dt

g

t

Newtonian fluid

Bingham fluid
Fig. 9 Illustration of

the constitutive laws

for Bingham and

Newtonian fluids
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5 Electroactive Polymers

The category of electroactive polymers comprises a wide range of materials that

exhibit a variety of coupling mechanisms. Those which exhibit electromechanical

coupling are functionally similar to piezoelectric materials in that they produce

mechanical strain under the application of electric fields and produce electrical

signals when subjected to mechanical stresses. However, as opposed to piezoelec-

tric ceramics, which are characterized by small free strains and high blocked

stresses, electroactive polymers, which are very soft, can develop high strains

(on the order of 50–100 %), but have little load capacity.

Electromechanical electroactive polymers can be classified in two main types:

electronic and ionic materials. The mechanism behind the behavior of electronic

electroactive polymers is associated to polarization or electrostatic effects. The

electrical properties of these materials are very similar to those of piezoelectric

materials since they are dielectric materials that contain electric charges forming

electric dipoles. On the other hand, ionic electroactive polymers exhibit electrome-

chanical coupling due to the diffusion, or conduction, of charged species within the

polymer network, which produce the accumulation of charge within the material.

Electroactive polymers have been considered in a variety of applications, such as

artificial muscles (Shahinpoo 2003), robotics (Mutlu et al. 2014), and micropumps

(Xia et al. 2006).

In spite of being an emerging technology, electroactive polymers have been the

subject of rich literature, including books (Bar-Cohen 2004) and review papers

(Shahinpoo 2003).

6 Final Remarks

Smart Materials and Structures is one of the most active and promising research

fields in Engineering, having much potential for novel solutions and incremental

improvement of existing solutions to a range of problems.

In the forthcoming years, many new achievements are expected to occur as the

result of the consolidation of research groups worldwide, the emergence of improved

materials, and the incorporation of the advances into industrial products. To sustain

this trend, it is of utmost importance to educate researchers and engineering students,

and make practitioners convinced of the potential of smart materials.
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Piezoelectric Materials

Vicente Lopes Jr. and Clayton Rodrigo Marqui

Abstract Piezoelectricity is a phenomenon in which certain crystalline substances

develop an electric field when subjected to pressure force, or conversely, exhibit a

mechanical deformation when subjected to an electric field. This reciprocal cou-

pling between mechanical and electrical energy provides useful features for these

materials. The dynamics of the piezoelectric sensor/actuator plays an increasing

importance when higher performance from closed loop systems or damage moni-

toring is required for strategic applications. This chapter focuses on the develop-

ment of the constitutive equations of smart structures. The incorporation of mass,

stiffness, and electromechanical coupling of the piezoceramic patches has a signif-

icant influence on the dynamics properties of the system.

Keywords Electromechanical coupling • Piezoelectric material • Smart structure

1 Introduction

The dynamics of the piezoelectric sensor/actuator plays an increasing importance

when higher performance from closed loop systems or damage monitoring is

required for strategic applications. For a piezoceramic, the three direction (z-axis)
is usually associated with the direction of poling and the material is approximately

isotropic in the other two directions.

Materials that become electrically polarized when they are deformed present the

direct piezoelectric effect, producing an electrical charge at the surface of the

material. The converse piezoelectric effect results in a strain in the material when

placed within an electric field. The direct and converse effects result an electrome-

chanical coupling. While piezoelectric elements exhibit nonlinear hysteresis at high

excitation levels, the response required in the current typical structural applications
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is approximately linear. The linear constitutive relations for piezoelectric materials

are given by Leo (2007):

T ¼ cE
� �

Sf g � e½ � Ef g ð1Þ

D ¼ e½ �T Sf g þ εS
� �

Ef g ð2Þ

where the superscript ( )S means that the values are measured at constant strain, the

superscript ( )E means that the values are measured at constant electric field, T is the

stress tensor [N/m2], D is the electric displacement vector [C/m2], {S} is the strain

tensor [m/m], {E} is the electric field [V/m¼N/C], [cE] is the elasticity tensor at

constant electric field [N/m2], [e] is the dielectric permittivity tensor [N m/V m2¼
C/m2], and is the dielectric tensor at constant mechanical strain (permittivity

matrix) [N m/V2 m]. The letters in brackets indicate the units of the variables

(in the SI system of units) with N, m, V, and C denoting Newton, meter, Volts, and

Coulomb, respectively.

T ¼ T11 T22 T33 T23 T13 T12½ �T

S ¼ S11 S22 S33 S23 S13 S12½ �T

D ¼ D1 D2 D3½ �T; E ¼ E1 E2 E3½ �T

εS
� � ¼

εS1 0 0

0 εS2 0

0 0 εS3

2
664

3
775; e½ � ¼

0 0 e13

0 0 e31

0 0 e33

0 e15 0

0 e15 0

2
666666664

3
777777775
;

cE
� � ¼

cE11 cE12 cE13 0 0 0

cE12 cE22 cE23 0 0 0

cE13 cE23 cE33 0 0 0

0 0 0 cE44 0 0

0 0 0 0 cE55 0

0 0 0 0 0 cE66

2
6666666666664

3
7777777777775

If each element of the matrix of piezoelectric material constant, [e], is designed

by eij where i corresponds to the row and j corresponds to the column of the matrix,

then eij corresponds to the stress developed in the jth direction due to an electric

field applied in the ith direction. The piezoelectric strain constants dij, relating the
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voltage applied in the ith direction to a strain developed in jth direction, are

provided more often than the stress constants. However, the piezoelectric stress

constants can be obtained from the strain constants since the constitutive equation

can also be written as:

S ¼ sE
� �

Tf g þ d½ � Ef g ð3Þ

D ¼ d½ �T Tf g þ εT
� �

Ef g ð4Þ

where εT is the dielectric tensor at constant stress. The relative dielectric constant,

KT, is the ratio of the permittivity of the material, εT, to the permittivity of the free

space, ε0, (ε0¼ 8.9� 10�12 F/m or A s/V m). Then,

cE
� � ¼ sE

� ��1
; e½ � ¼ cE

� �
d½ �

εS
� � ¼ εT

� �� d½ �T cE
� �

d½ �; KT ¼ εT

ε0

with

d½ � ¼

0 0 d31

0 0 d31

0 0 d33

0 d15 0

0 0 d15

2
6666664

3
7777775

2 Finite Element Formulation of Electromechanical
Systems

Finite Element Method (FEM) is widely used in engineering problems allowing to

obtain approximate solutions to differential equations that describe the dynamics of

a system. Other methods for obtaining electromechanical models may be used as

the assumed modes method. However, the biggest advantage of FEM is to model

structures with complex geometry. The basic idea is to divide the region into a finite

number of elements and assume that these elements are interconnected by nodes

(Bathe and Wilson 1976).

The pioneers in the development of dynamic models for smart structures are the

work Allik and Hughes (1970). They use the mechanical stress induced by the

piezoelectric to contribute with the total mechanical stress of the host structure.

However, the first research work that has developed a rigorous system for the

design of electromechanical coupled structure was presented by Hagood
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et al. (1990), who applied the generalized Hamilton’s principle, also known as

variational principle applied to piezoelectric systems (Allik and Hughes 1970). The

great contribution of Hagood et al. (1990) was formulated more clearly the elec-

tromechanical coupling.

The FEM is a method of transformation and approximation of an integral

formulation, by an approximation linear algebraic formulation, where the coeffi-

cients are integral evaluations on the subarea of the area of resolution. The

Rayleigh–Ritz formulation is used to derive the equations of motion of the

electroelastic beam. The assumed displacement field shapes within the elastic

body and electric potential field shapes will be combined through the piezoelectric

properties to form a set of coupled electromechanical equations of motion. The

generalized form of Hamilton’s principle for a coupled electromechanical system is

(Hagood et al. 1990)

ðt2
t1

δ T � U þWe �Wmð Þ þ δW½ �dt ¼ 0 ð5Þ

where t1 and t2 are two arbitrary instants, T is the Kinetic energy, U is the potential

energy, We is the work done by electrical energy, and Wm is the work done by

magnetic energy, which is negligible for piezoceramic material.

T ¼ TS þ TP ¼
ð
VS

1

2
ρS _u T _u dV þ

ð
VP

1

2
ρP _u T _u dV ð6Þ

U ¼ US þ UP ¼
ð
VS

1

2
ST TdV þ

ð
VP

1

2
ST TdV ð7Þ

We ¼
ð
Vp

1

2
ET DdV ð8Þ

where ρ is the mass density and the subscript s and p refer to the structure and

piezoelectric material, respectively. The virtual work, δW, done by external forces

and the prescribed surface charge, Q, is,

δW ¼
ð
VS

δ uTPb dV þ
ð
SS

δ uTPS dsS þ δ uTPC �
ð
SP

δΦQdsP ð9Þ

where Pb is the body force, PS is the surface force, PC is the concentrated load, and

Q is the surface charge. To formulate the matrix of the electromechanical coupling

using FEM, the displacement vector, u, and the electric potential, ϕ, must be

expressed in terms of nodal value, i, via the interpolation function

138 V. Lopes Jr. and C.R. Marqui



u xð Þ ¼ Nu½ � uif g ð10Þ

Φ xð Þ ¼ Nϕ

� �
ϕif g ð11Þ

Substituting Eq. (10) into Eq. (6) yields

T ¼
ððð
Vs

1

2
ρs _u

T _u dVs þ
ððð
Vp

1

2
ρp _u

TudVp

1

2
ð12Þ

The potential energy is the sum of the potential energy of the structure and of the

piezoelectric material. The constitutive relation of the structure in matrix form is

given by:

Ts ¼ GsS and Gs

¼ Es

1þ υð Þ 1� 2υð Þ

1� υ υ υ 0 0 0

υ 1� υ υ 0 0 0

υ υ 1� υ 0 0 0

0 0 0
1� 2υ

2
0 0

0 0 0 0
1� 2υ

2
0

0 0 0 0 0
1� 2υ

2

2
66666666666664

3
77777777777775

ð13Þ

Gs is the matrix containing the elastic coefficients of the material. Es is the

Young’s modulus and υ is the Poisson ratio. The strain can be represented in

matrix form by:

S ¼ Lu u;

Sx

Sy

Sz

Sxy

Sxz

Syz

8>>>>>>>>><
>>>>>>>>>:

9>>>>>>>>>=
>>>>>>>>>;

¼

∂
∂x

0 0

0
∂
∂y

0

0 0
∂
∂z

∂
∂y

∂
∂x

0

∂
∂z

0
∂
∂x

0
∂
∂z

∂
∂y

2
6666666666666666666664

3
7777777777777777777775

ux

uy

uz

8><
>:

9>=
>;; S ¼ LuNuui ð14Þ
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or

S ¼ Buui ð15Þ

and

Bu ¼ LuNu ð16Þ

Substituting (15) in (13), one obtains the stress tensor in the host structure

Ts ¼ GsS ¼ GsBuui ð17Þ

Solving (7) in the structural domain, Vs, yields

Us ¼
ððð
Vs

1

2
uT
i B

T
u GsBuuidVs ð18Þ

Similarly from the mechanical strain, the electric field is described by

E ¼ LϕΦ ð19Þ

or

E ¼ LϕNϕϕi ¼ Bϕϕi ð20Þ

where

Bϕ ¼ LϕNϕ ð21Þ

and Lϕ is the matrix containing the differential operators. Substituting (1) into (7)

and using (20), the potential energy in the piezoelectric domain, Vp, yields

Up ¼
ððð
Vp

1

2
uT
i B

T
u cE Bu ui dVp �

ððð
Vp

1

2
uT
i BT

u e Bϕ ϕi dVp ð22Þ

The potential energy of the piezostructure is obtained by adding (18) and (22)

U ¼
ððð
Vs

1

2
uT
i B

T
u GsBuuidVs þ

ððð
Vp

1

2
uT
i B

T
u c

E BuuidVp �
ððð
Vp

1

2
uT
i B

T
u eBϕϕidVp

ð23Þ
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The work done by electrical energy is

We ¼
ððð
Vp

1

2
ET D dVP ð24Þ

Using the constitutive relations yields

We ¼
ððð
VP

1

2
ϕT
i B

T
ϕ eT BuuidVP þ

ððð
VP

1

2
ϕT
i B

T
ϕ ε

SBϕϕidVP ð25Þ

At this point, the coupled electromechanical system equation can be derived

from the generalized form of Hamilton’s principle. Allowing arbitrary variations of
{ui} and {Φi}, two equilibrium matrix equations, in generalized coordinates, are

obtained.

M e
S

� �þ M e
P

� �� �
uif g þ K e

S

� �þ K e
P

� �� �
uif g � K e

uϕ

h i
Φif g ¼ Fef g ð26Þ

K e
ϕu

h i
uif g � K e

ϕϕ

h i
Φif g ¼ Qef g ð27Þ

where
e
SM and

e
PM are the local matrix of mass for the host structure and the PZT,

respectively:

M e
s ¼

ððð
Vs

ρsN
T
u NudVs ð28Þ

M e
p ¼

ððð
Vp

ρpN
T
u NudVp ð29Þ

and
e
SK and

e
PK are the local matrix of stiffness for the host structure and the PZT,

respectively:

K e
s ¼

ððð
Vs

BT
u GsBudVs ð30Þ

K e
p ¼

ððð
Vp

BT
u c

EBudVp ð31Þ

The electromechanical coupling matrix, Ke
uϕ, and the piezoelectric capacitance

matrix, Ke
ϕϕ, are
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K e
uϕ ¼

ððð
Vp

BT
u e BϕdVp ð32Þ

K e
ϕϕ ¼

ððð
VP

BT
ϕ2SBϕdVP ð33Þ

with K e
ϕu

h i
¼ K e

uϕ

h iT
. The force vectors are given by:

Fef g ¼
ð
VS

Nu½ �T PBf gdVS þ
ð
SS

Nu½ �T PSf gdSs þ Nu½ �T Pcf g ð34Þ

Qef g ¼ �
ð
SP

Nϕ

� �T
Q dSP ð35Þ

For the entire structure, using the standard assembly technique for the FEM, we

obtain the complete equation for a coupled electromechanical system as

M 0

0 0

" #
€u

€Φ

( )
þ Kuu Kuϕ

Kϕu Kϕϕ

" #
u

Φ

( )
¼ F

Q

( )
ð36Þ

where the global matrices are defined by

M ¼
Xne
i¼1

M e
s

� �
i
þ
Xnp
j¼1

M e
p

� �
j

ð37Þ

Kuu ¼
Xne
i¼1

K e
s

� �
i
þ
Xnp
j¼1

K e
p

� �
j

ð38Þ

Kuϕ ¼ KT
ϕu ¼ �

Xnp
j¼1

K e
uϕ

� �
j

ð39Þ

Kϕϕ ¼ �
Xnp
j¼1

K e
ϕϕ

� �
j

ð40Þ

where ne is the number of structural elements and np is the number of piezoelectric

patches in the structure. The symbol summation, in the above equations, means

finite element assembling matrices. At this point, it is important to note that the
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mass and stiffness matrices for a finite element and therefore for the complete

structure are not positive definite.

The sensor equation is:

Kϕu uþKϕϕ Φs ¼ Q ð41Þ

Making the electric chargeQ to zero since there is no electric potential applied to

the sensor, yields

Φs ¼ �K�1
ϕϕ Kϕuu ð42Þ

To find the force generated in the actuator, one must consider the charge

Q nonzero, then we can rewrite equation (41) as follows:

Kϕu uþKϕϕ Φa ¼ Q ð43Þ

or

Φa ¼ K�1
ϕϕ Q�Kϕuu
� � ð44Þ

Replacing the electric potential (44) in the global equation (36) yields

M€uþKu ¼ Fþ Fel ð45Þ

where

K ¼ Kuu �Kuϕ K
�1
ϕϕ Kϕu ð46Þ

Fel ¼ �Kuϕ K
�1
ϕϕ Q ð47Þ

where Fel is the electric force generated in the actuator by applying an electrical

charge.

The term KuϕΦ can be divided in two parts dependent on the electric potential,

one referring to the piezoelectric material used as sensor and the other for the

piezoelectric material used as actuator.

KuϕΦ ¼ Kuϕ Φs þKuϕ Φa ð48Þ

Substituting in the motion equation (36)

M€uþKuu uþKuϕ �K�1
ϕϕ Kϕu u

� �
¼ F�KuϕΦa ð49Þ

or

M€uþKu ¼ F�KuϕΦa ð50Þ
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where

K ¼ Kuu �Kuϕ K
�1
ϕϕ Kϕu ð51Þ

Every structure has some damping effect. Usually, this value is difficult to be

defined precisely, but can be predicted. A practical approach is considering pro-

portional damping, to the mass and stiffness.

Da ¼ αMþ βK ð52Þ

The global equation of motion, considering damping matrix, is given by

M€uþ Da _u þKu ¼ F�Kuϕ K
�1
ϕϕQ ð53Þ

where M, Da, and K are the global matrices of mass, damping, and stiffness,

respectively.

3 Eigenvalue Problem for the Short Circuit Case

Natural frequencies and mode shapes can be obtained by reducing the assembled

global matrices to a standard eigenvalue form. It can be done by suitable grounding

the structure by specifying one or more nodal value of electrical potential. Then the

new piezoelectric capacitance matrix, , is non-singular and the eigenvalue

problem, for the undamped homogeneous system, can be written as (Lopes Jr.

et al. 2000)

K½ � � ω2 M½ �� �
uf g ¼ 0f g ð54Þ

where

M½ � ¼ Muu½ � ð55Þ

K½ � ¼ Kuu½ � � Kuϕ

� �
K∗

ϕϕ

h i�1

Kϕu

� � ð56Þ

and indicates the inverse of the matrix.
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4 Application: Clamped-Free Beam with Bonded PZT

The general equations from the previous section will be applied for the case of a

clamped-free beam with a pair of bonded PZT (bimorph case). Different numbers

and locations of PZTs can be considered.

The poling of the piezoelectric is in the z-direction. Figure 1 shows an Euler–

Bernoulli beam, where the displacement of a point on a normal plane of the beam at

a distance “z” from the median line in the direction “x” is

ux ¼ �ztgφ ¼ �z
∂uz
∂x

ð57Þ

The state of plane strain is given by

Sx ¼ ∂ux
∂x

¼ � z
∂2

uz
∂x2

ð58Þ

Equation (14) can be rewritten as

S ¼ Luuz ð59Þ
where

Lu ¼ �z
∂2

∂x2

" #
ð60Þ

The stress is also rewritten as

Fig. 1 Displacement of a point P at a distance z from the median line of the beam
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Tx ¼ EsSx ð61Þ
Considering that the piezoelectric material is being modeled as Euler–Bernoulli

beam element, their constitutive relations can be summarized as:

D3 ¼ e31S11 þ εS33E3 sensor equation ð62Þ

T11 ¼ cE11S11 � e31E3 actuator equation ð63Þ

The goal is to obtain the interpolation function on the basis of generalized

coordinates for the degrees of freedom of displacement and electrical potential.

With these functions, one can determine the elementary matrices of electromechan-

ical coupled system. Initially, it is considered the electromechanical coupling

between the host structure and the piezo element, as shown in Fig. 2.

The element is composed by two nodes, with two structural degrees of freedom

per node, translation denoted by “uzi” in direction “z” and rotation in the plane “yz”
denoted by “θyi,” and one electric potential degree of freedom per node “ϕi.”

Considering xi the point localized in the node i and ξ the generalized coordinate

in function of x, as

ξ ¼ x

a
ð64Þ

One can rewrite the displacement vector of the ith element as

ui ¼ uz1 θy1 uz2 θy2½ �T ð65Þ

and the electric potential is

Φi ¼ ϕ1 ϕ2½ �T ð66Þ

or

u ξð Þ ¼ Nu1 ξð Þuz1 þ Nu2 ξð Þθy1 þ Nu3 ξð Þuz2 þ Nu4 ξð Þθy2 ð67Þ

and

a

x

z

uz1

xi, z = 0 j1 j2 xj, z = 1

zqy1 qy2

uz2

Fig. 2 Structural element with electromechanical coupling
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Φ ξð Þ ¼ Nϕ1 ξð Þϕ1 þ Nϕ2 ξð Þϕ2 ð68Þ

Initially, one can find the interpolation functions of the mechanical displace-

ments. For this, it is observed that the element is analyzed in only one dimension (ξ)
and has four degrees of freedom. Therefore, one obtains the following interpolating

function for displacement in the z-direction.

uz ξð Þ ¼ α1 þ α2ξþ α3ξ
2 þ α4ξ

3 ð69Þ

or

u ¼ Pα ð70Þ

where

P ¼ 1 ξ ξ2 ξ3
� � ð71Þ

α ¼ α1 α2 α3 α4½ �T ð72Þ

Considering small angles

θη ξð Þ ¼ �∂uz ξð Þ
∂ξ

¼ �α2 � 2α3ξ� 3α4ξ
2 ð73Þ

The values of the generalized coordinates for each element node can be obtained

in matrix form as Eq. (74). The columns of the inverse matrix Pn contain the

interpolation functions. The values of the generalized coordinates for node 1 (ξ¼ 0)

and node 2 (ξ¼ 1) yield

uz1

θη1

uz2

θη2

8>>>><
>>>>:

9>>>>=
>>>>;

¼

1 0 0 0

0 �1 0 0

1 1 1 1

0 �1 �2 �3

2
66664

3
77775

α1

α2

α3

α4

8>>>><
>>>>:

9>>>>=
>>>>;

ð74Þ

or

δ ¼ Pn α ð75Þ

and,

α ¼ Pn½ �-1 δ ð76Þ

One can also write
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θy ¼ �∂uz
∂x

¼ � ∂uz
∂ξ

∂ξ
∂x

� 	
¼ 1

a
θη ! θη ¼ aθy ð77Þ

where ∂uz
∂ξ ¼ �θη and

∂ξ
∂x ¼ 1

a, then

uz1

θη1

uz2

θη2

8>>>><
>>>>:

9>>>>=
>>>>;

¼

1 0 0 0

0 a 0 0

0 0 1 0

0 0 0 a

2
66664

3
77775

uz1

θy1

uz2

θy2

8>>>><
>>>>:

9>>>>=
>>>>;

ð78Þ

or

δ ¼ Zui ð79Þ

Substituting equation (79) into (76) and after that into (70) yields

u ¼ P Pn½ ��1Zui ð80Þ

One knows that u¼Nuui, then

Nu ¼ P Pn½ ��1Z ð81Þ

and

Nu ¼

1� 3ξ2 þ 2ξ3

�aξþ 2aξ2 � aξ3

3ξ2 � 2ξ3

aξ2 � aξ3

2
66664

3
77775

T

ð82Þ

In order to find the matrix Bu, one considers

Lu ¼ � z

a2
∂2

∂ξ2

" #
ð83Þ

then

BT
u ¼ � z

a2
∂2

NT
u

∂ξ2
ð84Þ

and
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Bu ¼ � z

a2

�6þ 12ξ

4a� 6ξ

6� 12ξ

2a� 6aξ

2
66664

3
77775

T

ð85Þ

Similarly, one can find the interpolation functions of the electric potential. The

element has one dimension (ξ) and two electric degrees of freedom, thus one

obtains the following polynomial basis to obtain the interpolation functions.

P ¼ 1 ξ½ � ð86Þ

The values of the generalized coordinates for each element node, Pn, are given
in equation (87). The columns of the inverse matrix Pn contain the indices of the

interpolation functions. The values of the generalized coordinate for the node

1 (ξ¼ 0) and node 2 (ξ¼ 1) yield

Pn ¼ 1 0

1 1


 �
ð87Þ

and

Pn½ ��1 ¼ 1 0

�1 1


 �
ð88Þ

The interpolation functions are given by multiplying equations (86) and (88)

Nϕ ¼ P Pn½ ��1 ¼ 1� ξ
ξ


 �T
ð89Þ

Whereas the electric field can be written directly proportional to the difference of

the electric potential and inversely proportional to the distance of these potentials,

then

Φ ¼ Eδ ! E ¼ dΦ

dδ
ð90Þ

where δ is the distance between the potentials, so ϕ ¼ ϕ xð Þ ! δ ¼ δ xð Þ, then

E ¼ ∂Φ
∂x

ð91Þ

Rewritten in the matrix form
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E xð Þ ¼ ∂
∂x


 �
Φ xð Þ ð92Þ

Comparing (92) with (19)

Lϕ ¼ ∂
∂x


 �
ð93Þ

Considering the generalized coordinate ξ ¼ x

a
! ∂x ¼ a∂ξ, one can

rewrite (93) as

Lϕ ¼ 1

a

∂
∂ξ


 �
ð94Þ

then,

BT
ϕ ¼ 1

a

∂NT
ϕ

∂ξ

" #
ð95Þ

Bϕ ¼ 1

a

�1

1


 �T
ð96Þ

The interpolation functions of the mechanical displacement and electric poten-

tial can now be used in equations from (28) to (33) in order to find the electrome-

chanical coupled elementary matrices. The differential volume of the host structure

element is

dVS ¼ dz dx dy ð97Þ

Considering the generalized coordinates η ¼ y
b, one can write the differential

volume as

dVs ¼ dz ab dξdη ð98Þ

Substituting (98), equations (28) and (29) are rewritten as:

M e
s ¼

ð1
0

ð1
0

ð ts=2

�ts=2

dzρs ab NT
u Nudξdη ð99Þ

where a is the length, b the width, and ts the thickness of the element. Integrating in

z- and η-directions yields
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M e
s ¼ ρstsab

ð1
0

NT
u Nudξ ð100Þ

similarly,

M e
p ¼ ρptpab

ð1
0

NT
u Nudξ ð101Þ

The local matrix of stiffness for the host structure and the PZT, Eqs. (30) and

(31), are obtained by substituting the differential volume

K e
s ¼ ES t

3
s b

12a3

ð1
0

BT
u Budξ ð102Þ

K e
p ¼ cE11 t

3
p b

12a3

ð1
0

BT
u Budξ ð103Þ

The electromechanical coupling matrix and the piezoelectric capacitance matrix,

Eqs. (32) and (33), are

K e
uϕ ¼ e31 t

2
p ab

2

ð1
0

BT
u Bϕ dξ ð104Þ

and

K e
ϕϕ ¼ εS33 tp ab

ð1
0

BT
ϕBϕ dξ ð105Þ

where K e
uϕ

h iT
¼ K e

ϕu

The general equations from the previous sections are applied for the case of an

aluminum clamped-free beam, as shown in Fig. 3. The beam is modeled with

20 elements with 2 mechanical and 1 electrical DOF per node. Different numbers

and locations of PZTs can be considered. The poling of the piezoelectric patches is

in the z-direction. The geometrics and physics features of the beam are Young

Fig. 3 Schematic drawing of the beam with PZT patches
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modulus 70 GPa; Poisson coefficient 0.31; mass density 2710 kg/m3; length

400 mm; width 20 mm; and thickness 3 mm.

A finite element code was developed using the previous equations, called

SmartSys. Table 1 shows the six first natural frequencies obtained with the

SmartSys code and analytically (INMAN 2013) for the case without PZT patches.

The incorporation of mass, stiffness, capacitance, and coupling matrix of the

piezoelectric patch has a significant influence on the dynamic properties of the

system. The disregarding of these terms may cause errors in many applications. In

order to verify the influence of the electromechanical coupling, four pairs of PZT

patches were bonded on both sides of the beam, as shown in Fig. 3. The beam is

discretized with 20 beam elements, 21 nodes with two mechanical and 1 electrical

DOF per node. The geometrics and physics features of the PZT patches are Young

modulus 62 GPa; mass density 7500 kg/m3; length of each PZT patch 20 mm; width

20 mm; thickness 3 mm; strain constant d31 320e� 12; dielectric tensor at constant

Table 1 Six first natural frequencies for the aluminum clamped-free beam

Modes Analytics fn (Hz) SMARTSYS fn (Hz) Difference (%)

1 15.47 15.39 0.52

2 96.98 96.47 0.52

3 271.56 270.13 0.53

4 532.14 529.36 0.52

5 879.67 875.17 0.51

6 1314.07 1307.62 0.49

Fig. 4 Four first vibration modes for the electromechanical-coupled beam
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mechanical strain εS33 3.363e� 8 F/m; elasticity constant c11 92.3e9 N/m2; and

dielectric permittivity e31 16.27 C/m2

Figure 4 shows the four first vibration modes for the electromechanical-coupled

beam.

Figure 5 shows the Frequency Response Functions, FRF, for an impulsive

excitation (F¼ 1 N) in node 2 and response in the free end of the beam, node 21.

There were considered two cases: (a) beam without PZT patch, and (b) beam with

four pairs of PZT patches as shown in Fig. 3.

The five first natural frequencies are shown in Table 2 for both cases, beam

without PZT patch and beam with four pairs of PZT patches

The analytical model of a beam with piezoelectric material coupling the elec-

trical and mechanical coordinates was derived using a generalized Hamilton’s
principle. It was found that the incorporation of mass, stiffness, capacitance, and

coupling matrix of the piezoelectric patch has a significant influence on the

dynamic properties of the system. This model of smart structure contains additional

Fig. 5 FRF of the beam; (a) without PZTs and, (b) four pairs of PZT patches as shown in Fig. 3

Table 2 Five first natural

frequencies for the beam

without PZT patch and

for the beam with four pairs

of PZT patches

Modes

Case (a) Case (b)

fn (Hz) fn (Hz) Difference (%)

1 15.39 18.45 19.88

2 96.47 101.02 4.72

3 270.13 274.18 1.50

4 529.36 550.53 4.00

5 875.17 927.39 5.97
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degrees of freedom at each node, the electrical potential, and it makes the global

mass and stiffness matrices non-positive definite, which require special numerical

preparation to solve the eigenvalue problem.
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Shape Memory Alloys

Marcelo A. Savi, Alberto Paiva, Carlos J. de Araujo, and Aline S. de Paula

Abstract This chapter presents a general overview of shape memory alloys

(SMAs). A discussion about thermomechanical behaviors is carried out establishing

the most important characteristics of these alloys. Applications of SMAs in differ-

ent areas of human knowledge are explained. Thermomechanical characterization

is discussed considering different experimental procedures. Afterward, a brief

review of constitutive models is presented. A model with assumed transformation

kinetics is explored showing some numerical simulations.

Keywords Shape memory alloys • Pseudoelasticity • Shape memory effect

• Characterization • Constitutive models • Numerical simulations

1 Introduction

Shape Memory Alloys (SMAs) belong to smart materials class, presenting

thermomechanical coupling associated with solid phase transformations. SMA

undergoes a reversible phase transformation in the solid state, assuming different

crystalline structures at different temperatures. This phase transformation is similar

M.A. Savi, Ph.D. (*)

COPPE—Department of Mechanical Engineering, Center for Nonlinear Mechanics,

Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21.941.972, Brazil

e-mail: savi@mecanica.ufrj.br

A. Paiva

Department of Mechanical Engineering, Universidade Federal Fluminense, Escola de

Engenharia de Volta Redonda, Volta Redonda, RJ 27.255.250, Brazil

e-mail: paiva@puvr.uff.br

C.J. de Araujo

Department of Mechanical Engineering, Universidade Federal de Campina Grande,

Campina Grande, PB 58.109.970, Brazil

e-mail: carlos.araujo@ufcg.edu.br

A.S. de Paula

Department of Mechanical Engineering, Universidade de Brası́lia, Brası́lia,

DF 70.910.900, Brazil

e-mail: alinedepaula@unb.br

© Springer International Publishing Switzerland 2016

V. Lopes Junior et al. (eds.), Dynamics of Smart Systems and Structures,
DOI 10.1007/978-3-319-29982-2_8

155

mailto:savi@mecanica.ufrj.br
mailto:paiva@puvr.uff.br
mailto:carlos.araujo@ufcg.edu.br
mailto:alinedepaula@unb.br


to that observed in the carbon steels, also being called the martensitic transforma-

tion. The main difference is that SMA transformation is reversible, with

thermoelastic characteristics. Besides, phase transformation can be induced either

by temperature or by stress. The unique characteristics of SMAs motivate several

applications in different areas of the human knowledge, such as robotics, aerospace,

biomedical, shape, and vibration control (Lagoudas 2008; Machado and Savi 2002,

2003; Paiva and Savi 2006).

The main phenomena responsible for the cited characteristics are the typical

SMAs thermomechanical behaviors: pseudoelasticity or superelasticity, shape

memory effect (SME) (one-way and two-way), and phase transformation due to

temperature variation. In order to introduce these behaviors, it is worthwhile to

define some characteristic temperatures of SMAs. Essentially, two different phases

are possible: austenite and martensite. Martensitic phase has several variants while

austenite has only one. Considering a stress-free state, As and Af are the starting and

finishing temperatures for austenite formation, respectively, while Ms and Mf are

the starting and finishing temperatures for martensite formation, respectively.

Therefore, if a stress-free sample is subjected to temperature variations, phase

transformations occur defined by these temperatures. Figure 1 presents a typical

curve in a strain–temperature space (ε� T). For low temperatures, below Mf, the

sample is at martensitic state, actually, twinned martensite, composed by several

variants. By increasing the temperature, martensite) austenite phase transforma-

tion begins to take place at As, point A, finishing at Af, point B. By decreasing the

temperature, the reverse transformation takes place, starting at Ms, point C, and
finishing at Mf, point D. Since phase transformation temperatures for each phase

have different values, the sample presents a dissipative hysteretic behavior.

Pseudoelasticity or superelasticity happens whenever an SMA sample is in a

temperature above Af, which is considered a high temperature. In this situation,

under a constant temperature, Fig. 2a shows the typical stress–strain curve (σ–ε),
expressing the macroscopic behavior of SMAs. A mechanical loading causes an

elastic response until a critical value is reached, point A, when the martensitic

transformation (austenite)martensite) arises, finishing at point B. At this point,
the crystal structure of the sample is totally composed of detwinned (single variant)

martensite. For higher stress values, SMA presents a linear elastic response.

During unloading process, the sample presents an elastic recovery (B)C). From

T

B

C

A

D

e

O As AfMf Ms

Fig. 1 Phase

transformation due to

temperature variation
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point C to D, one can note the reverse martensitic transformation (martensi-

te) austenite). After that, the sample presents an elastic behavior during discharge.

When the loading–unloading process is finished, SMA has no residual strain.

However, since the path of the forward martensitic transformation does not coin-

cide with the reverse transformation path, there is a hysteresis loop associated with

energy dissipation. Another way to observe pseudoelastic effect is pointed out in

Fig. 2b. At first, considering a temperature above Af, there is only one phase:

austenite ①. Under a constant temperature, a mechanical loading is applied pro-

moting the appearance of the detwinned martensite, ②. During unloading process,

reverse transformation takes place (detwinned martensite) austenite) and when

load vanishes, ③, the sample presents no residual strain.

The SME happens at temperatures below As. The typical macroscopic behavior

of SMAs during SME can be observed in the stress–strain curve (σ–ε) presented in

Fig. 3a, for T<Mf. When the sample is subjected to a mechanical loading, the stress

reaches a critical value, point A, starting the reorientation process from twinned

martensite to the detwinned martensite, ending at point B. When the mechanical

loading–unloading process is finished, SMA sample presents a residual strain (point

C). This residual strain can be recovered through a sample’s heating, which induces

e
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3
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m
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s
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Fig. 2 Pseudoelasticity
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Fig. 3 Shape memory effect
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the reverse phase transformation (detwinned martensite) austenite). This is the

SME, also known as one-way SME. This phenomenon can be understood from a

motion of the hysteresis loop shown on the stress–strain curve of Fig. 2a. Since the

temperature goes down, the hysteresis loop moves down as well. Figure 3b presents

an alternative way to observe SME. At first, the SMA sample is at a temperature

above Af, ①. At this temperature, the sample has only the austenitic phase. When

the temperature of SMA sample goes down and crosses the line related to Ms, the

phase transformation begins to take place and the twinned martensite replaces the

austenite. This transformation is concluded when the sample temperature is below

Mf, ②. Under a constant temperature, a mechanical loading is applied (②!③),

promoting the appearance of detwinned martensite. When this load vanishes, the

sample presents a residual strain, ③. The former shape of the sample can be

recovered through a heating process (③!④), which causes the reverse martens-

itic transformation (detwinned martensite) austenite).

The two-way SME is obtained after a training process that makes the sample has

a shape in the austenitic state and another in the martensitic state. The change of

temperature produces a change in the sample shape without any mechanical

loading. Typically, there are two training procedures (Zhang et al. 1991): SME

cycling (cycles of SME) and the training through the appearance of the detwinned

martensite, the stress-induced martensite training, or SIM training. Both of them

induce considerable plastic strains.

This chapter presents a general overview of SMAs. Initially, applications are

discussed, showing the great potential of these alloys in distinct areas. The charac-

terization of SMAs is then discussed, presenting some basic procedures to exper-

imentally characterize the thermomechanical behavior of these alloys. Finally, the

constitutive modeling is discussed. Specifically, the model proposed by Brinson

(1993) is presented together with some numerical results. It is important to mention

that constitutive modeling and thermomechanical characterization are essential

tools for the design of SMA devices.

2 Applications

The remarkable properties of SMAs are attracting significant technological interest

in several fields of sciences and engineering, from biomedical to aerospace

applications.

Biomedical applications with SMAs have become successful due to the charac-

teristic of noninvasive devices and also due to its excellent biocompatibility. SMAs

are usually used in surgical instruments, cardiovascular mechanisms, orthopedic

and orthodontic appliances, among other applications. Self-erectable structures are

typical applications of SMA devices and biomedical devices also exploit this aspect

in different ways. Simon filter has as main function to filter blood clots that exist in

the bloodstream (Duerig et al. 1990). Self-expandable stents (Ahlhelm et al. 2009) have

the main function of supporting any tubular passage as, for example, blood vessels.
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Both applications can be observed in Fig. 4. Duerig et al. (1999), Reynaerls

et al. (1997) and Machado and Savi (2002, 2003) discussed different biomedical

applications that include orthopedic and orthodontics ones.

Besides medical applications, SMAs are widely exploited in engineering fields.

In this regard, references related to applications of SMAs in naval industry,

vibration control, robotics, and aerospace engineering are discussed in this text.

Coupling and joints of pipes and the use of SMAs as sensor and/or actuators are also

treated. It is important to mention that a limiting factor to the design of new

applications is SMA’s slow rate of response—their main drawback.

The use of SMAs to promote movement to intelligent structures has a great

potential. Naval industry is one of the areas that is investing in the development of

this kind of system. As an illustrative example, one can cite an SMA multi-actuated

flexible hydrofoil prototype, which simulates fishtail swimming dynamics, through

hydrodynamic propulsion study (Rediniotis et al. 2002). The SMA wires are

externally actuated by electrical heating source. Figure 5 presents a picture of the

Fig. 4 Medical components manufactured with SMA. (a) Nitinol Simon filter (taken from http://

www.whichmedicaldevice.com); (b, c) shape memory self-expanding stents (Ahlhelm et al. 2009)

Fig. 5 SMA multi-actuated hydrofoil prototype (Rediniotis et al. 2002)
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hydrofoil prototype in a water tunnel. A hydrostatic robot is another application of

SMAs in the naval industry, reported by Vaidyanathan et al. (2000). The use of

SMA springs in the robot provides a waving motion that makes it able to overlap

obstacles under high depth pressures.

Vibration control is an important field within mechanical engineering. SMAs are

employed for the passive control of structures due to their high dissipation capacity,

which is related to their hysteretic behavior. The great advantage concerning this

type of behavior is that the higher the vibration amplitude, the higher the dissipation

is (Savi et al. 2011; van Humbeeck 1999). An alternative for vibration control is the

use of SMA wires embedded in composite matrices that modify the mechanical

properties of slender structures (Birman 1997; Rogers 1995). Sitnikova

et al. (2009), Savi et al. (2011), McCormick et al. (2006), Tuissi et al. (2009) and

Oberaigner et al. (2002) also deal with vibration reduction using SMA elements.

A classical passive control device is known as Tuned Vibration Absorber—
TVA, which consists of a secondary oscillator connected to a primary system. By

adjusting the TVA’s natural frequency to the primary system excitation frequency,

it is possible to attenuate primary system vibrations. Williams et al. (2002, 2005)

and Tiseo et al. (2010) present an adaptive TVA (ATVA) device using SMA

elements. This type of control is suitable for systems where frequencies vary or

are unknown. SMA ATVAs are able to adjust their stiffness according to SMA

temperature (Savi et al. 2011; Aguiar et al. 2013). This feature allows SMAATVAs

to attenuate primary system vibrations within a given frequency range. The ATVA

design proposed by Tiseo et al. (2010) is presented in Fig. 6. The adaptive absorber

consists of a pre-stressed Ni–Ti wire, clamped at the edges, with a concentrated

mass placed in its geometric center. It is heated by an electrical current (Joule

effect), so that the internal stress field is forced to change (strain is inhibited),

attaining a large controlled eigenfrequency shift. A sustaining frame that hosts the

wire completes the assembling design.

Fig. 6 SMA adaptive tuned

vibration absorber (Tiseo

et al. 2010)

160 M.A. Savi et al.



Robotics is another area where SMA applications find a great potential. Basi-

cally, it can be used as an actuator, trying to mimic the muscles actuation. Many

efforts have been made to reproduce the natural movement of the muscles of

animals in robots using characteristics of locomotion in rugged environments or

difficult to access, such as at the bottom of rivers and oceans (Safak et al. 2002).

Choi et al. (2001) presented a flexible claw that consists of two flexible beams

connected to a gripper base. Each beam is connected to two springs. An SMA

spring is used as an actuator, while a conventional spring is responsible for the

beam position restoring. There is also a coil spring linking the two beams’ free
edges. Strain gages are responsible for monitoring the beams’ deflection. The SMA

springs should be externally actuated.

In many situations, humans need to rely on the aid of autonomous systems to

perform risky activities and thus many researches have been conducted to develop

robots that combine mobility and accuracy in operations such as, for example,

disabling bombs and landmines. Dilibal and Dilibal (2002) present a prototype of a

robot hand, ITU Hand, composed of shape memory material in the region of the

fingers coupled to a flexible tube through which passes a fluid. The actuator uses

the reversible SME and the finger movement is controlled by the temperature of the

fluid that heats or cools the SMA. The major advantages of this system compared to

pneumatic and hydraulic systems are greater control of the force applied to the hand

reducing the risks in their use and a decrease in the total weight of the equipment

making it more versatile.

Figure 7 shows a robot composed of eight legs, with three degrees of freedom

per leg and a set of SMA actuators that are activated by the passage of electric

current and make use of the SME to promote the rotational motion of the joints of

the robot (Safak et al. 2002).

The use of SMAs in aerospace applications covers fixed-wing aircraft, space-

craft, and solar panels, among others. Researches are conducted to implement

active materials in the optimization of lifting performance of rigid bodies. This

represents an important step in the development and application of smart materials

and active control technologies.

Fig. 7 Lobster Robot (Safak et al. 2002)
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One of the most popular programs was the “Smart Wing Program” conducted by

a research group, with support from NASA, AFOSR, and AFRC. The goal was the

development of smart technologies to improve the aerodynamic performance of

military aircraft. The work team developed an adaptive wing with integrated

actuation mechanisms to adjust the standard surface of the wing and provide an

aerodynamic shape for a great variety of flight regimes (Kudva et al. 1999). The

model of smart wing incorporated hinged flap and aileron format using SMA

cables. With these improvements, a control surface deflection by 10� was obtained.
With the use of torque tubes, the wing structure enabled a twist of 5� improving the

performance of 8–12 % compared to conventional wing surface (Hartl and

Lagoudas 2007).

The worldwide increase in the flow of aircraft and the proximity of airports with

major urban centers has created a new challenge to be solved by engineering: the

reduction of airport noise. The permissible level of noise during takeoff and landing

has been increasingly controlled in all countries. SMAs provide an alternative

solution to reduce this noise. Chevrons are installed with SMA elements in the

outputs of the turbines to mix the flow of exhaust gases and reduce noise generated

(Fig. 8). SMA bars bend chevrons on the flow of combustion gases during flight at

low altitude or at low speeds, increasing the mixture of gases and thus reducing the

noise generated. In the case of aircraft being under high speed or high altitude, SMA

bars are cooled and returned to the martensitic phase. This phase transformation

changes the shape of chevrons, increasing the performance of the turbine. The

phase transformation is given by the electrical system that, passing an electric

current in SMAs, promotes the phase transformation induced by temperature.

Another SMA use is the spatial actuating in solar panels. These devices are used

as thin strips of SMA elements such as hinges to open the panels when heated by

electrical stimulus. The use of SMAs is interesting due to less weight than the set

that are used in conventional hinges, favoring the power to weight ratio (Carpenter

and Lyons 2001).

A device successfully employed by the U.S. Air Force in an F-14 chaser (used

for the first time in the 1970s) motivates other interesting application of SMAs

Fig. 8 Installation of chevrons in the output of the turbines (Hartl and Lagoudas 2007)
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related to pipes assemblage. This device is known as CryOfit, being developed by

Raychem (2001) (Fig. 9). In order to assemble the two parts, the SMA coupling

should be immersed in a liquid Nitrogen bath (ffi�196 �C). Afterward, its diameter

is mechanically enlarged and remains immersed in the Nitrogen bath. After being

removed from bath, it is quickly assembled to the two pipes to be connected. As the

SMA coupling returns to room temperature, it assumes its former contracted shape,

connecting the pipes. In some cases, the adhesion is better than the one obtained by

welded joints, without the inconvenience of the inherent residual stress (Hodgson

and Brown 2000).

Similar situation can be found in the coupling and joints often employed in oil

industry, where an SMA device is employed in pipe flanges (SINTEF 2002). A

pre-compressed cylindrical SMA washer is placed between the flange and the nut.

When it is heated, it returns to its former shape and promotes an axial restitution

force on the bolt, connecting the two parts. This procedure avoids the application of

torques, which induces shear stress on the bolt. La Cava et al. (2000) present

modeling and simulations related to this device and conclude that this form of

assembling offers about 20 % of equivalent stress reduction on the bolt as compared

to the traditional procedure.

The last category of SMAs applications cited in this chapter is its use as sensors

and/or actuators. In this regard, the device developed by Nagnuma et al. (1998),

presented in Fig. 10, uses SMA as both sensor and actuator in a hydrothermal fluid

sampler. The sampler senses hot fluid and generates pumping power from the heat

energy of the fluid. The functioning is explained as follows. Initially, the SMA

suction spring is first compressed at low temperature (point A). At this point, the
suction force is smaller than the friction force due to push the piston. Exposed to hot

fluid the suction spring immediately extends and generates larger force, enough to

intake the fluid (point B). The suction force decreases with the increase of the spring
length, and the suction stops at the end of the stroke (point C). The SMA spring is

cooled, and suction does not occur (point D). The idea of this device can be

employed in different situations related to deployment. Solar panels and fire

systems are some examples.

Jun et al. (2007) presented an analysis of a fuel-powered shape memory alloy

actuator system (FPSMAAS) that uses fuels with high energy densities, such as

propane, as its energy source. The benefits of this high energy density are evident in

the efficiency activation cycles (heating and cooling). The heat generated by the

combustion can be controlled by forced convection transferred to a fluid and,

Fig. 9 CryOfit SMA coupling (Hodgson and Brown 2000)
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thereafter, to the element of shape memory actuator, until it reaches the temperature

phase transformation. With the high speed which the fluid temperature can reach

and a relatively large surface area of the actuator element, the process activation can

be obtained rapidly. The cycle ends with the process of cooling also using forced

convection, which prevents overheating the element, a common occurrence in

actuators that use electricity as an activation mechanism, which may result in the

loss of ability to performance. In the analyzed FPSMAAS, the main component of

the actuator, an SMA element, operates as a heat engine and converts the thermal

energy of fuel combustion into mechanical energy. Due to the relatively high

recovery stress and strain of SMAs, the compact actuator can provide significant

force and stroke. Convection heating and cooling of the SMA also results in

relatively high actuation frequencies.

SMA actuators for automotive applications are also considering the use of SMAs

for different purposes. Czechowicz (2013) pointed out the main reason for appli-

cation of SMA actuators in automotive systems: its high working capacity with a

force range up to 80 N and a stroke range up to 30 mm; the possibility of weight,

cost and complexity reduction once the number of actuator parts decreases and

external sensors can be eliminated as they can be replaced by a single SMA wire;

SMA actuators are corrosion resistant; additionally, SMA actuator presents noise-

less actuation. Based on these points, three conceptual adaptive SMA actuators are

proposed by Czechowicz (2013) and the most promising concept is experimentally

validated. The actuator works against a conventional spring, which is attached

in parallel to a pseudoelastic device. This additional pseudoelastic element is

responsible for an additional mechanical stress at varying ambient temperatures.

Two SMA elements are used, one as actuator and the other one as the pseudoelastic

device.

Fig. 10 Tube sampler hydrothermal
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An alternative for shape memory actuators where there is a need for a large

actuation force is to use a set of wires attached to a device type tendon. The use of

this device was developed by Mosley et al. (1999) that present the design, the

constructed prototype, and the experimental evaluation of the dynamic character-

istics of an SMA actuator, which is composed of 48 SMA wires mechanically

bundled in parallel forming one powerful muscle. The actuator is able to lift 100 lb,

which is approximately 300 times its weight. The aim of the authors is to develop a

new generation of large-scale robotic manipulators that are lightweight, compact,

dexterous and able to produce high actuation forces.

Recently, shape memory thin films have been recognized as a great promise for

high-performance materials in the application of micro-electro-mechanical MEMS

(Micro-Electro-Mechanic Systems) by standardizing fabrication processes by

lithography. They possess small quantities of mass for heating or cooling, resulting

in rapid responses in the cycles of activation. The work (energy) per unit volume of

these devices overcomes any other device performance. The application of these

films allows further simplification of the mechanisms with a great flexibility of

design and production of friction-free movement and vibration. The phase trans-

formation that occurs in the SMA thin film substantially modifies the mechanical,

physical, chemical, electrical, and optical properties such as yield stress, elastic

modulus, hardness, electrical resistivity and conductivity, thermal expansion coef-

ficient, among other properties. Such changes can be used to create a sensor or

actuator different characteristics. These devices can be applied in severe environ-

ments such as radioactive, corrosive, or aerospatial, which require large actuation

force, low operating voltage, and resistance. An example of this kind of application

can be found in Nakatani et al. (2003), which present the development of a 3D

display created from small shape memory actuators.

3 Thermomechanical Characterization

This section presents an explanation about how to characterize some quasi-static

thermomechanical behaviors of SMAs through experimental procedures. The

presented procedures are stress-free thermal analysis; isothermal stress–strain

test; and isobaric strain–temperature test.

3.1 Stress-Free Thermal Analysis

Temperature plays an essential role in the thermoelastic martensitic phase trans-

formation experienced by SMA. Therefore, most of the physical properties, such as

the electrical resistivity and elastic modulus, change with temperature. This change

is commonly used to determine the temperatures of phase transformation and

thermal hysteresis of SMAs. The determination of these specific thermal properties
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is fundamental to the design of actuators based on SMAs, targeting advanced

applications.

The two main techniques for determining transformation temperatures and

thermal hysteresis in SMA are differential scanning calorimetry (DSC) and the

electrical resistance measured as a function of temperature (ERT). In both tech-

niques, there is no need for the application of mechanical loading. While DSC is

popular with several commercial calorimeters available for this aim, ERT is simple

to be implemented without the need of sophisticated equipment.

3.1.1 DSC Analysis

Figure 11 shows a typical DSC calorimeter for stress-free thermal analysis of SMA,

as well as the arrangement of samples in the equipment. In the DSC test, the

temperature of SMA sample is continuously varied with a constant heating and

cooling rate. In general, for SMA, rates of 5 or 10 �C/min are used for thermal

characterization. The SMA sample is placed in a small pot, while another sample is

used as a reference in the second pot. The second reference sample can be a stable

metal without phase transformation in the temperature range examined. The calo-

rimeter is microcontrolled and makes automated measurements of temperature and

energy occurring in the furnace containing the two samples. If the equipment allows

the use of liquid nitrogen for helping cooling and the sample pans are in aluminum,

tests between �150 and 500 �C can be achieved.

Figure 12 shows a typical result of an SMA DSC analysis. In general, there are

peaks related to phase transformations. During cooling, there is a sample energy

release that corresponds to thermoelastic transformation from austenite, at high

temperature, to twinned martensite, at low temperature. Applying tangent lines to

the peak region, it is possible to determine the start and finish temperatures of

martensite phase formation, Ms and Mf, respectively. Typically, the DSC has a

software that automatically determines these temperatures. This peak is the energy

Fig. 11 Stress-free thermal analysis by DSC. (a) DSC apparatus from TA Instruments (model

Q20). (b) NiTi SMA sample into DSC furnace
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released for this phase change, which corresponds to an exothermic reaction. Once

achieved the lowest temperature programmed for cooling, the reverse phase trans-

formation, from twinned martensite to austenite, is performed during heating. At

this stage, a peak corresponding to the reverse transformation appears in the DSC

curve. Now, the peak is the energy absorption by the material for this phase change,

which corresponds to an endothermic reaction. Once again, the tangent procedure

allows one to determine the start and finish temperatures of reverse transformation

from austenite to twinned martensite, As and Af, respectively.

From a typical SMA DSC curve, as the one presented in Fig. 12, it is also

possible to determine the thermal hysteresis (HT) of the phase transformation,

defined as the difference between the temperature peaks of phase transformations:

forward, during cooling (Mp); and reverse, during heating (Ap). In addition to these

thermal properties related to the phase transformation temperatures, DSC apparatus

are also used to determine the enthalpies of transformation (ΔH ) through the peak

area of forward transformation (austenite–martensite, ΔHA–M) during cooling, and

reverse (martensite–austenite, ΔHM–A) during heating.

It is noteworthy to observe the possibility to appear extra peaks in an SMA DSC

test, during either cooling or heating. In case of Nickel–Titanium (NiTi) alloys, it is

very common to detect a phase transformation occurring in two stages during

cooling. First, the austenite transforms to a twinned martensite with a rhombohedral

structure, known as R-phase and, afterward, this first martensite transforms into a

second martensite, which has a monoclinic structure. Figure 13 shows a DSC result

considering this behavior in a NiTi SMA. In this case, two new temperatures are

defined, indicating the start and finish of R-phase formation from austenite during

cooling, called Rs and Rf, respectively. Similarly, it may be also established a new

hysteresis in temperature corresponding to the temperature difference between the

peaks of the austenite phase (Ap) and R-phase (Rp).
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As previously mentioned, the phase transformation temperatures of SMA can

also be determined by techniques that are not commercially available. In this case,

the most frequently used method consists of monitoring the change in electrical

resistance (ER) of SMA as a function of temperature.

3.1.2 ERT Analysis

Basically, the technique of measuring the electrical resistance as a function of

temperature (ERT) to monitor the reversible phase transformation in SMA consists

of attaching four electrical terminals in a sample (two external and two inner

positions). This technique is known as the 4-wire method, as shown in Fig. 14.

The SMA sample is immersed in an environment where it can be continuously

cooled and heated. The thermo-controlled environment can be provided by a

thermal bath, Peltier cell, or liquid nitrogen with heating system. This type of

environment defines the temperature range of heating and cooling, which is usually

between �100 and 200 �C. A power supply allows one to select and maintain a

constant electrical current passing through the SMA sample. Then, a constant

electrical current is passed through the two external terminals, while the voltage

drop is monitored in the inner terminals. The corresponding voltage drop and the

temperature values, which are measured using a micro thermocouple attached to the

SMA sample, are obtained and stored by a data acquisition system connected to a

computer.

Figure 15 shows some typical results of an ERT analysis in a NiTi SMA with the

system of Fig. 14. In general, for conventional stable metals, there is a linear

relationship between electrical resistance and temperature, and hysteresis is not

observed. In the case of SMAs, this linear relationship exists only in the tempera-

ture ranges at which the phases, martensite and austenite, are stable. In the temper-

ature range of phase transformation region, during cooling and heating, there is an

increase and decrease of electrical resistance, which causes a hysteretic behavior of
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ERT, as shown in Fig. 15a. Similarly to the case of DSC, the temperatures of phase

transformation from ERT curves are measured by the method of tangent lines, as

shown in Fig. 15. The tangents are applied to straight sections of ERT curves, so

that each transformation temperature is defined by the intersection of these lines at

inflection points for cooling and heating, respectively.

Fig. 14 Schematic picture of an ERT measurement system using the 4-wire method. The depicted

photo shows a typical NiTi SMA sample with welded thermocouple
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Specifically for the binary NiTi SMA, the presence of a two-stage phase trans-

formation alters the behavior of ERT curve with respect to that shown in Fig. 15a.

Figure 15b shows that the cooling from austenite transforms, firstly, into a rhom-

bohedral twinned martensite (R-phase, in the range of temperatures Rs and Rf) and,

then, transforms to monoclinic martensite (between Ms and Mf). The result of this

phenomenon is the formation of a peak of ERT in the range of temperature

corresponding to this double phase transformation. In many cases, this peak is

sharp because the temperatures Ms and Rf are coincident, as shown in Fig. 15b.

During heating, all the formed martensite reverts to austenite causing a deviation

from linearity that determines the As and Af temperatures, previously defined.

The major advantage of this ERT technique, compared to other methods of

commercial thermal analysis, is that it can be directly applied to measure phase

transformation temperatures of mechanical elements made from SMA, such as coil

springs, pins, screws, and several others.

3.2 Isothermal Stress–Strain Tests

The thermomechanical characterization of SMAs passes through a proper compre-

hension of pseudoelasticity, defined in section 1 (Fig. 2). Therefore, an experimen-

tal infrastructure for applying controlled mechanical loading and unloading at

different levels of constant temperature (isothermal) is required. Figure 16 shows

a universal testing machine with a heating chamber used in LaMMEA/UFCG

(Brazil) for thermomechanical characterization of SMA in pseudoelastic regime.

An important issue related to the SMA characterization is the Clausius–

Clapeyron law, established by the following equation:

Fig. 16 Experimental test bench to evaluate the pseudoelastic behavior of a NiTi SMA wire. (a)
Instron 5582 universal testing machine. (b) NiTi SMA wire installed in the grips
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dσ

dT
¼ ΔHA�M

T0:εtr
ð1Þ

where dσ/dT may be used as the coefficient CAM
s , T0 can be calculated as

(Ms +As)/2, εtr is the SIM strain, and ΔHA–M is the enthalpy change of the phase

transformation. Thus, the enthalpy of phase transformation (ΔHA–M), typically

determined by DSC analysis, can also be estimated by thermomechanical charac-

terization in pseudoelastic regime.

Figure 17 shows a series of stress–strain curves for different temperatures during

loading and unloading until a maximum strain of 5 % in a pseudoelastic NiTi SMA

wire. The yellow line in Fig. 17b shows that the maximum stresses (at 5 % of strain)

have a linear increase with temperature, following the Clausius–Clapeyron law for

SMAs.

The critical stresses for formation and reversion of the stress-induced martensite

(SIM, detwinned martensite) can be determined, again, by applying tangent lines in

the stress–strain curves of Fig. 17. Figure 18a illustrates the determination of these

critical stresses for start and finish of SIM during mechanical loading, σMs and σMf,

respectively. During mechanical unloading, it is possible to determine the critical

stresses for start and finish for reversal SIM, which are σAs and σAf, respectively. If
these critical stresses are plotted as a function of temperature, a linear behavior

arises as shown in Fig. 18b, confirming the Clausius–Clapeyron behavior.

The mechanical characterization can be defined from the treatment of the data

shown in Fig. 18b. Based on that, the following slopes for the CAM and CMA

coefficients are determined: CAM
s ¼ dσ=Ms ¼ 4:6MPa=�C, CAM

f ¼ dσ=Mf ¼
3:8MPa=�C, CMA

s ¼ dσ=As ¼ 5:0MPa=�C, and CMA
f ¼ dσ=Af ¼ 3:0MPa=�C.

Some theoretical models consider the parallelism between these coefficients

(CAM
s , CAM

f and CMA
s , CMA

f ). However, experimental results rarely confirm this

hypothesis, as revealed in Fig. 18b.
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The hysteretic behavior of pseudoelastic stress–strain curves indicates that the

SMA can dissipate energy during the stress-induced phase transformation. This

behavior can be interesting for the development of applications for mitigation and

control of mechanical vibrations. The dissipated energy per unity volume (ED), in

J/m3, corresponds to the area inside the stress–strain loop, calculated by Eq. (2).

ED ¼
þ
σ dε ð2Þ

For a first cycle reaching maximum strains of the order of 10 %, without

considering the effects of fatigue, this dissipated energy can reach values as high

as 24 MJ/m3.

3.3 Isobaric Strain–Temperature Tests

Another way to carry out the thermomechanical characterization of SMA is to

perform cycles of SME under constant load. Figure 19 shows a schematic picture of

an experimental apparatus designed in LaMMEA laboratory from UFCG (Brazil)

especially to apply a constant load (using a dead weight) in SMA wires and strips

and carry out controlled heating and cooling of the material, monitoring the

temperature and strain during thermal cycling under constant stress (isobaric).

This apparatus is basically composed of a mechanical structure composed by a

drawbar with mobile and fixed clamps to hold the SMA sample and apply the

desired constant load. This structure is immersed in a thermal bath that can

continuously vary temperature between �80 and 200 �C by using special silicone

oil. A micro thermocouple (100 μm in diameter) of K-type is attached to the SMA

sample, while an LVDT displacement sensor is installed on the draw bar to measure

the displacement during heating and cooling. A data acquisition system connected
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to a computer stores the values of temperature and displacement for further

analysis.

Figure 20 shows a series of strain–temperature curves for various levels of

applied stress in a NiTi SMA wire with 1.5 mm in diameter. Qualitatively, results

show that the transformation temperatures and strain increase with the applied

stress. It is also observed that for limited stresses, up to 100 MPa, strain–temper-

ature loops are closed, without any residual strain under load at the end of heating

(120 �C). Note that it is possible to obtain the four characteristic phase transforma-

tion temperatures as a function of applied load. Figure 21 illustrates this determi-

nation for each value of stress by applying the method of tangent lines.

Fig. 19 Schematic picture of an experimental apparatus for testing shape memory effect under

constant load (tensile mode)
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Figures 20 and 21 show that the strains related to the SME after heating vary

from 3 to 7.5 % for applied stress levels between 50 and 250 MPa, with residual

strains limited to less than 1.5 %.

If the temperatures obtained from Fig. 21 are plotted as functions of applied

stress, we can also get the linear coefficients (C¼ dσ/dT) corresponding to the

Clausius–Clapeyron law for SMA discussed in the previous section. Figure 22

shows this result for Ms and As temperatures. The values of Ms and As extrapolated

to zero-stress case are similar to those obtained by DSC for Ni–Ti, with differences

generally limited to �10 �C.
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3.4 Final Remarks

In this section, the most important procedures for thermomechanical characteriza-

tion of SMAs are presented considering an experimental approach. Characteriza-

tion techniques consider methods that do not use commercial devices.

Two alternatives are presented for determining transformation temperatures in

stress-free situations: electrical resistance versus temperature (ERT) and DSC

analysis. Contrary to DSC, the ERT technique is cheaper and can be applied to

various mechanical components made of SMA, such as coil springs; pins; screws;

and others.

Tests with application of mechanical loading, isothermal (pseudoelasticity), or

isobaric (SME under constant load) lead to the coefficients of stress increase with

temperature (C¼ dσ/dT) that allows one to obtain transformation temperatures by

extrapolation to zero stress, as well as the enthalpy of transformation via the

Clausius–Clapeyron law.

All these experimental thermomechanical characteristics are very important for

the development of applications for SMA, as well as for modeling and simulation of

the behavior of these smart materials.

4 Constitutive Modeling

The mathematical modeling of SMAs is essential for the proper development of

SMA applications. Constitutive models are, usually, based on macroscopic features

and the standard generalized material approach is a suitable choice for their

formulation. Accordingly, the thermodynamic state of a given continuum in a

specific position at a certain time may be completely defined if a finite number of

variables are known. These variables are called state variables and may be classified

into observable and internal variables. For typical material’s behavior, the observ-
able variables are the absolute scalar temperature (T) and the strain tensor (εij)
(Eringen 1967; Mase and Mase 1999; Gurtin et al. 2010). For reversible phenom-

ena, the material thermodynamic state depends sole upon observable variables; on

the other hand, if any dissipation mechanism is present, internal variables are

required to help describing these irreversible processes evolution, which may

depend on variables time rate.

SMAs behavior is intrinsically non-diffusive, nonlinear, and dissipative. There

are several attempts towards SMA thermomechanical constitutive modeling (Paiva

and Savi 2006; Lagoudas 2008). The macroscopic theories may be classified based

on the original concept they are built upon. Some examples are plasticity-based

models, internal restrictions models, assumed transformation kinetics, among

others.

The assumed Phase Transformation Kinetics (PTK) approach considers

preestablished mathematical functions to describe the phase transformation.
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This theory is widely explored in the literature due to its simplicity and, therefore,

presents plenty of experimental verification. The first attempt to use this concept to

model the SMA behavior was proposed by Tanaka and Nagaki (1982), by intro-

ducing algebraic exponential equations to describe martensitic and reverse trans-

formations. The original model considered two volume fractions as internal

variables, associated with the austenite (A) and detwinned martensite (M+) and,

thus, was neither able to capture the reorientation process, nor to represent the

compressive behavior. This work motivated other researchers (Liang and Rogers

1990; Brinson 1993; Boyd and Lagoudas 1996, among others) that used the same

constitutive formulation except for the evolution equations adopted for the internal

variables. Liang and Rogers (1990) proposed a cossenoidal evolution law, which

was able to better-fit experimental results. These cossenoidal equations were refined

by Brinson (1993) to take into account a new volume fraction associated with the

twinned martensite (M ) but still did not capture the compressive behavior. For

further details about PTK formulation, please see the aforementioned references.

In general, the PTK models consider the following constitutive equation,

expressed in terms of time rate of the involved variables:

_σ ij ¼ Eijkl _ε kl � αij _β � Θij
_T : ð3Þ

where σij is the stress tensor; εkl is the strain tensor; and T is the scalar absolute

temperature. Concerning the material properties, Eijkl is the elastic tensor; αij is the
phase transformation tensor; and Θij is associated with thermal dilatation/contrac-

tion. Along this work, all parameters are considered constants.

The model proposed by Brinson (1993) is reduced to one-dimensional context,

where the stress tensor becomes the axial stress σ; the strain tensor becomes the

axial strain ε; β and T remains scalars, the elastic tensor becomes the Young
modulus (E), the phase transformation tensor becomes the scalar parameter α that

controls the vertical size of the hysteresis loop, while the thermal tensor becomes

the scalar thermal expansion coefficient (Θ). Integrating Eq. (3), admitting constant

material properties, the one-dimensional constitutive relation remains:

σ � σ0 ¼ E ε� ε0ð Þ þ α β � β0ð Þ � Θ T � T0ð Þ ð4Þ

where the quantities ( )0 may be understood either as the initial conditions or the

past instant values of the respective quantities.

Brinson’s model splits the volume fraction β into two new internal variables,

being one of them related to twinned martensite (M ) named βT and the other one

associated with detwinned martensite (M+), βS, such that β ¼ βS þ βT. Considering
the non-diffusive characteristic of the martensitic transformation, the volume

fractions βS and βT are considered to depend on the instantaneous values of stress

and temperature: β S,T ¼ βS,T σ; Tð Þ. In addition to that, the elastic modulus, during

phase transformations, may be assumed as a linear combination of the austenitic

elastic modulus (EA) and the martensitic elastic modulus (EM), varying linearly

with the total volume fraction β, such that E βð Þ ¼ EA þ β EM � EAð Þ.
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As an extra consideration, regarding the maximum residual strain, namely εR,
is defined as the accumulated deformation after being mechanically loaded until

complete phase transformation is reached and, subsequently, unloaded for a

constant temperature. Admitting as initial conditions: σ0 ¼ ε0 ¼ β0 ¼ 0 ; as

final conditions: σ ¼ 0; ε ¼ εR; β ¼ 1 ; constant temperature T�AS and

substituting these information into Eq. (4), result in α ¼ �εRE. As a conse-

quence, the parameter α, from now on, is a linear implicit function of β. After
these considerations, it is possible to rewrite the constitutive relation in its final

form as:

σ � σ0 ¼ E βð Þε� E β0ð Þε0 þ α βð ÞβS � α β0ð ÞβS0 � Θ T � T0ð Þ ð5Þ

The model evolution laws are set to be cossenoidal equations for both internal

variables βS and βT. For T>MS, the direct martensitic transformation (A¼>Mþ)

is given by:

βS ¼
1� βS0

2
cos

π

σ CRIT
S � σ CRIT

f

σ � σ CRIT
f � CM T �MSð Þ� �� �

þ 1þ βS0
2

βT ¼ βT0
� βT0

1� βS0
βS � βS0
� � ð6Þ

Equation (6) must be applied when: σ CRIT
S þ CM T �MSð Þ < σ < σ CRIT

f þ
CM T �MSð Þ, where, for cyclic tests, βS0 , βT0

, and β0 correspond to stress-induced,

temperature-induced and total martensitic volume fractions’ amount prior to the

present transformation (remaining from previous transformations), respectively, in

order to adequately describe the subloops due to incomplete phase transformations.

σCRITS and σCRITf represent the critical stresses for beginning and finishing direct

martensitic phase transformations, respectively. In this model, according to Fig. 23,

for T<MS, these stress levels remain constant, while the material parameter CM

corresponds to the slope of the straight line, representing the linear critical stress

increasing for martensitic transformation for T>MS.

T

s CRIT

MSMf AfAS

CA
CMsf

CRIT

sS
CRIT

Fig. 23 Temperature

dependence of phase

transformation critical

stress (Brinson 1993)
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For T�MS, the following equations hold:

βS ¼
1� βS0

2
cos

π

σ CRIT
S � σ CRIT

f

σ � σ CRIT
f

� �� 	
þ 1þ βS0

2

βT ¼ βT0
� βT0

1� βS0
βS � βS0
� �þ ΔT

ð7Þ

Equation (7) must be applied when: σ CRIT
S < σ < σ CRIT

f , where:

ΔT ¼ 1� β0
2

cos AM T �Mfð Þ½ � þ 1f g if Mf < T < MS and T < T0

ΔT ¼ 0 else

ð8Þ

where AM is a material parameter obtained by: AM ¼ π=Ms �Mf .

The reverse transformation M+)A is given by:

βS ¼
βS0
2

cos AA T � AS � σ

CA


 �� 	
þ 1

� �

βT ¼
βT0

2
cos AA T � AS � σ

CA


 �� 	
þ 1

� � ð9Þ

Equations (9) hold for: T>AS and CA T � Afð Þ < σ < CA T � ASð Þ, where,

according to Fig. 23, CA corresponds to the slope of the straight line, representing

the linear critical stress increasing for reverse transformation for T>AS and AA is a

material parameter obtained by: AA ¼ π=Af � As.

From the numerical point of view, the implementation is quite simple, since all

equations (not only the constitutive one but also the evolution laws) are algebraic.

The evolution laws are stress-dependent; therefore, for the sake of simplicity, the

algorithm considers prescribed stress. Concerning the compressive behavior inclu-

sion in the original Brinson’s model, the stress-induced volume fraction originally

varies in the interval [0,1]. Instead of that, it may now vary from [�1,1]; thus, all the

limit conditions to apply the evolution laws should be redefined as their modulus.

Besides that, in every step, it is necessary to evaluate the sign of stress rate ( _σ ) to
verify whether the prescription is a tensile loading or a compressive loading. While

conceiving the algorithm, special attention should be devoted for stress-free ther-

mal tests.

4.1 Numerical Simulations

This section presents numerical simulations obtained by the modified algorithm

based on Brinson’s (1993) model. Initially, the comparison between numerical and
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experimental results found in the literature enables the model parameters’ identifi-
cation. Then, qualitative results are presented for different typical SMA tests,

including internal subloops due to incomplete phase transformation.

4.1.1 Model Calibration

This subsection presents the comparison between the numerical results obtained

by the implemented constitutive model and experimental results obtained by

Tobushi et al. (1991) for one-dimensional, isothermal, pseudoelastic tests for

three different temperatures, aiming the identification of the model parameters

presented in Table 1.

In Fig. 24, the experimental results are monotonic and, thus, exhibit a residual

strain after unloading due to the Transformation Induced Plasticity (TRIP) effect

that is out of this model’s scope. It is worthwhile to distinguish that, after a

“training” cyclic process, this effect becomes saturated (resulting in a complete

residual strain recovery) and, therefore, the present model is able to capture the

correct pseudoelastic behavior. The numerical results are in good agreement with

the experimental results, except for T¼ 333 K (Fig. 24a); nevertheless, the exper-

imental result does not present a complete phase transformation, which may justify

the softening effect at the end of the direct transformation A)M+, where the

numerical result deviates from the experimental result.

4.1.2 Qualitative Results

This subsection presents some qualitative results that attest the model capability to

describe the temperature-induced phase transformation, the pseudoelastic behavior,

and the SME.

Figure 25 illustrates the phase transformation phenomenon due to temperature

variation for a free-stress state. Figure 25a presents the thermomechanical time

prescriptions; Fig. 25b shows the volume fractions’ time evolution; and Fig. 25c

exhibits the temperature–strain diagram.

In Fig. 25a, for a free-stress (σ¼ 0), the thermal loading involves two-and-a-half

heating/cooling cycles, being the first cycle (0 s< t< 4 s) such that the maximum/

minimum temperature levels overlap the limiting transformation temperatures Af

and Mf, inducing complete phase transformations. The other one cycle and a half

Table 1 SMA properties and parameters identified for Brinson (1993) constitutive model through

comparison with the experimental results obtained by Tobushi et al. (1991)

Material properties Transformation temperatures Model parameters

EA¼ 57 GPa Mf¼ 285 K CM¼ 9 MPa/K

EM¼ 42 GPa Ms¼ 295 K CA¼ 8.5 MPa/K

Θ¼ 0.55 MPa/K As¼ 320 K σ CRIT
s ¼ 90MPa

εR¼ 0.0555 Af¼ 333 K σ CRIT
f ¼ 170MPa
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(4 s< t< 10 s) have maximum/minimum temperature levels within the transfor-

mation temperatures’ range, inducing subloops.

Considering Fig. 25b, initially, at a low temperature (T<Mf), twinned martens-

ite is the stable phase, thus βT¼ 1. While heating the material (0 s< t< 2 s) above

Af, a complete M)A austenitic transformation takes place and βT becomes null.

When the material is cooled back to a low temperature (2 s< t< 4 s), an A)M
martensitic transformation occurs and, as a consequence, βT¼ 1 again. This first

cycle is responsible for the external (envelope) thermal loop in Fig. 25c. Then, the

subsequent partial heating below Af (4 s< t< 6 s) reduces βT, inducing a partial

austenitic transformation (between points A and B). The next partial cooling above

Mf (6 s< t< 8 s) increases βT, inducing a partial martensitic transformation

(between points C and D). At last, another heating process (6 s< t< 8 s), but this

time above Af, reduces βT, inducing a complete austenitic transformation (between

points E and F). The resulting structure, after the test, is fully austenitic with βT¼ 0.

The intermediate plateaus for 0< βT< 1 (between points B and C and points

Fig. 24 Comparison between numerical results obtained by the Brinson (1993) constitutive model

and experimental results obtained by Tobushi et al. (1991) for different temperature pseudoelastic

tensile tests. (a) T¼ 333 K; (b) T¼ 353 K; (c) T¼ 373 K
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D and E in Fig. 25b, are associated to linear thermal contraction/expansion paths in

Fig. 25c, respectively.

In Fig. 25c, it is possible to observe the thermal subloops due to incomplete

phase transformations, together with the characteristic transformation tempera-

tures: Mf¼ 285 K; Ms¼ 295 K; As¼ 320 K; and Af¼ 333 K.

Figure 26 presents the isothermal tensile response for five different tempera-

tures. Each temperature considered is within one specific temperature range,

according to Fig. 25c; i.e., T¼ 335 K>Af; Af> T¼ 327 K>As; As> T¼
310 K>Ms; Ms> T¼ 290 K>Mf; T¼ 280 K<Mf.

In Fig. 26, for T¼ 335 K>Af, it is possible to identify the pseudoelastic

behavior. The original free-stress stable phase is austenite. During mechanical

loading, there is an A)M+ transformation, while, during unloading, a reverse

transformation M+)A takes place, since M+ becomes an unstable phase for low

stress levels, such that: σ < CA T � ASð Þ. In this case, after the test, the sample

completely recovers its original austenitic shape.

In Fig. 26, for Af> T¼ 327 K>As, the original free-stress stable phase is, again,

austenite. During mechanical loading, there is an A)M+ transformation, as well as

for T¼ 335 K>Af. Nevertheless, during unloading, the reverse transformation

M+)A is partial, since Af> T>As. As a consequence, a partial residual strain

Fig. 25 Free-stress phase transformation due to temperature variation. (a) Thermomechanical

loading; (b) volume fractions’ evolution; (c) temperature–strain diagram
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εR ffi 0:025ð Þ remains and the sample does not completely recover its former shape.

After the test is complete, a mixed resulting structure takes place, where phases

A and M+ coexist.

In Fig. 26, for As> T¼ 310 K>Ms, the original free-stress stable phase is, still,

austenite. During mechanical loading, there is an A)M+ transformation, as well as

for the two previous cases. This time, during unloading, only an elastic recovery

with no reverse transformation takes place and the maximum residual strain

(εR¼ 0.0555) arises. The resulting structure, for this test, is fully M+.

In Fig. 26, for Ms> T¼ 290 K>Mf, the original free-stress stable phase is a

mixture of austenite (A) and twinned martensite (M ). During mechanical loading,

there are two simultaneous processes as follows: the austenitic fraction experiments

a phase transformation into detwinned martensiteM+, while the twinned martensite

(M ) fraction undergoes a reorientation (detwinning) process, converting M into

M+. Therefore, after complete loading, the uniform resulting structure is fully M+.

During unloading, again, as in the previous case for As> T¼ 310 K>Ms, there is

only an elastic recovery with no reverse transformation. After that, detwinned

martensite M+ remains stable, accompanied with the maximum residual strain

(εR¼ 0.0555).

In Fig. 26, for T¼ 280 K<Mf, the original free-stress stable phase is fully

twinned martensite (M ). During mechanical loading, a reorientation process

M)M+ occurs. During unloading, again, as in the two previous situations, there

is only an elastic recovery with no reverse transformation. Thus, after the test,

detwinned martensiteM+ remains stable, accompanied with the maximum residual

strain (εR¼ 0.0555).

Fig. 26 Isothermal Tensile tests for different temperatures
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Observing Fig. 26, it is possible to take some conclusions as follows:

• For isothermal tensile tests, as the temperature is lowered, the hysteresis loop is

shifted downward; i.e., all critical stresses for beginning and finishing trans-

formations are reduced

• A necessary condition for the complete reverse transformation requires that the

test should be performed at a temperature T	Af. For Af> T>As, the reverse

transformation is partial, while, for T�As, there is no reverse transformation

• For T�Ms, the critical stresses for beginning and finishing transformations are

always the same

Figure 27 considers the pseudoelastic behavior. Figure 27a presents the

thermomechanical time prescription for this test; Fig. 27b shows the volume

fractions’ time evolution; and Fig. 27c exhibits the stress–strain diagram.

Observing Fig. 27a, there is no temperature variation, while the mechanical

loading is composed of a loading/unloading tensile cycle (0 s< t< 4 s), where the

maximum stress level during loading overlaps the critical stress for finishing

martensitic transformation, inducing complete transformation. After that, a similar

compressive cycle is imposed (4 s< t< 8 s). Then, two subsequent partial loading/

unloading tensile mechanical cycles are imposed (8 s< t< 16 s), inducing

Fig. 27 Tension-compression isothermal pseudoelastic test with subloops for T¼ 373 K>Af.

(a) Thermomechanical loading; (b) volume fractions’ evolution; (c) stress–strain diagram
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subloops. Finally, two analogous compressive partial cycles are performed

(16 s< t< 24 s).

Concerning Fig. 27b, this test is performed at a constant high temperature

(T¼ 373 K>Af), therefore, βT¼ 0 during all the test (since, at no time, there will

be temperature-induced martensite M ). At first, the fully austenitic phase is stable

(βS¼ 0). Along with the applied tensile loading (0 s< t< 2 s), an A)M+ trans-

formation takes place (0< βS< +1). After unloading (t¼ 4 s), the structure returns

back to the austenitic phase (βS¼ 0). When a compressive loading is applied, an

A)M� transformation occurs (0< βS< –1). These loading/unloading processes

for tensile (0 s< t< 4 s) and compressive stress (4 s< t< 8 s) induce complete

phase transformations that are responsible for the external (envelope) loops in

Fig. 27c. Then, the subsequent partial loading (8 s< t< 10 s) induces βS. Before
the martensitic transformation finishes, the sample is unloaded, reducing βS, induc-
ing a partial reverse transformation (between points B and C). The next partial

loading (12 s< t< 14 s) increases βS, inducing a partial martensitic transformation

(between pointsD and E). At last, a complete mechanical unloading (14 s< t< 16 s)

turns βS null, inducing a complete reverse transformation (between points F andG).

The resulting structure, after the test, is fully austenitic with βS¼ 0. The interme-

diate plateaus for 0< βS< +1 (between points A and B, points C and D, and points

E and F in Fig. 27b) are associated to linear elastic behavior in Fig. 27c. An

analogous process occurs for the compressive behavior.

Figure 27c exhibits the stress–strain diagram for a high temperature T>Af,

where the austenite is the stable phase for a stress-free state. This result also

demonstrates the model capability to describe both tensile and compressive

subloops due to incomplete phase transformations.

Figure 28 presents the SME effect for a low-temperature situation

(T¼ 280 K<Mf). Figure 28a shows the thermomechanical time prescription for

this test; Fig. 28b exhibits the volume fractions’ time evolution; and Fig. 28c shows

the stress–strain–temperature diagram.

According to Fig. 28a, initially, a loading/unloading isothermal mechanical

tensile cycle is imposed (0 s< t< 4 s). Then, for a free-stress condition (σ¼ 0), a

subsequent heating/cooling thermal cycle, from T<Mf to T>Af and vice versa,

is imposed (4 s< t< 8 s), bringing the structure back to its initial twinned

martensitic stable state. Then, the same procedure is conducted for compressive

behavior.

In Fig. 28b, firstly, twinned martensite is the only stable phase (βT¼ 1 at point

A). During the first isothermal mechanical tensile loading (0 s< t< 2 s), the sample

exhibits an elastic behavior (between points A and B), until a martensitic

reorientation process M)M+ occurs (between points B and C), converting βT
into βS. After the martensitic transformation finishes (point C), the sample behaves

elastically again until the maximum prescribed stress (point D). Then, the sample is

unloaded (2 s< t< 4 s), presenting an elastic recovery with no reverse transforma-

tion (between points D and E); thus, βS¼ +1 (at point E) and the maximum residual

strain (εR¼ 0.0555) remains. From this point on, the sample is heated (4 s< t< 6 s)

such that T>Af. There is a linear thermal expansion (between points E and F), until

184 M.A. Savi et al.



the material reaches T¼As (point F). After that, an austenitic transformation

M+)A is responsible for the complete residual strain (εR) recovery (between

points F and G). After the transformation is complete, the continuous heating

induces a new linear thermal expansion (between points G and H ), but this time,

as an austenitic phase. The subsequent cooling process (6 s< t< 8 s) brings the

sample back to the former temperature (T¼ 280 K<Mf). During cooling, the

material, initially, exhibits a linear austenitic thermal contraction, until it reaches

T¼Ms (point I). Then, it undergoes a martensitic transformation A)M (that lasts

from point I to point J depicted in the detail of Fig. 28c, finally inducing the original
phase of the test: twinned martensite (βT¼ 1 for T¼ 285 K¼Mf at point J). The
material exhibits a linear martensitic thermal contraction, until it recovers its

original shape at T¼ 280 K (point A0). An analogous process occurs for the

compressive behavior.

Figure 28c presents the stress–strain–temperature diagram, demonstrating the

model capability for describing the SME.

Fig. 28 Shape memory effect for T¼ 280 K<Mf. (a) Thermomechanical loading; (b) volume

fractions’ evolution; (c) stress–strain–temperature diagram
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4.2 Final Remarks

This section discussed the constitutive modeling of SMAs based on macroscopic

thermomechanical behavior. After a brief revision about the main constitutive

models of the literature, the model due to Brinson (1993) is discussed. Some

numerical simulations are carried out showing its general capability to describe

the general thermomechanical behavior of SMAs.
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Abstract Novel materials suitable for engineering applications are under

development in a number of research centers. Among them, fluids and gels that

can change their rheological properties start to grow in importance for smart

structures applications. Such materials usually present changes in their properties

due to action of an external field, such as electric or magnetic. It has been observed

that changes may occur very fast, allowing applications in active control, for

instance. There are two main classes of the so-called smart fluids, one exploiting

the electro-rheological (ER) effect, and the other exploiting the magneto-

rheological (MR) effect. These variable rheology fluids can have their mechanical

properties modeled in terms of different behaviors of the field-dependent stress–

strain curve. For the pre-yield region of the stress–strain curve the fluid behaves like

a viscoelastic material, then as plastic in the post-yield region, and as viscoelastic-

plastic in the transition through yield region. Considering that smart fluids exhibit

linear shear behavior at small strain levels, similar to many viscoelastic materials, it

is convenient to model variable rheology fluids with the same approaches devel-

oped for viscoelastically damped structures. As a study case, a sandwich beam with

ER fluid core is modeled with finite element method. The dynamical behavior is

assessed with the Golla-Hughes-McTavish (GHM) method to incorporate the

frequency dependence properties of the ER fluid in a structural time domain

model, admitting its behavior as viscoelastic and dependent on an electric field.

The results are compared with analytical models and experimental data available in

literature, aiming to illustrate the potential of variable rheology fluids in further

smart structures concepts.
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1 Introduction

To keep the dynamical responses of structures in acceptable levels some possible

strategies can be used, such as adopting new materials, passive and active control

techniques, and advanced design methods. Vibration suppression has been recently

assessed by using the so-called concept of smart structures. This approach com-

bines active materials and controllers to the structure, and it has been mainly related

to advanced materials with increasing developments since the 1980s. Shape mem-

ory alloys, piezoelectric, electro- and magnetostrictive materials, optic fiber, and

variable rheology fluids/gels are successful examples that have furnished reason-

able results in a broad range of engineering applications.

The aforementioned variable rheology fluids are those that can change their

rheological properties with growing importance for active control applications.

Such materials present changes in their properties due to the action of an external

field, for instance, electric or magnetic. It has been observed that these changes may

occur very fast, thereby allowing applications to control systems. There are two

main classes of variable rheology fluids, that is, those exploiting the electro-

rheological (ER) effect, and the others exploiting the magneto-rheological

(MR) effect. ER or MR fluids provide three possible arrangements: (1) flow

mode, (2) shear mode, and (3) squeeze flow mode (Sims et al. 2000), although

most of the demands for variable rheology fluids adopt the flow mode. This

approach is particularly used for semi-active suspensions. The shear mode is

more indicated to use in smart structures because it is easily integrated into the

structural elements and being lesser intrusive. A natural design to get the benefits of

ER/MR fluids in shear mode is employing the concept of sandwich structural

elements (e.g., beam, shell, and plates). Therefore, this technique can admit

ER/MR fluids restrained by layers of another elastic material (e.g., metals), which

results in a more compact structural element.

The aim of this chapter is to present the basics of variable rheology materials, in

particular, to the electro-rheological and magneto-rheological fluids. To extend the

possibilities of such fluids in smart structures applications, a model of sandwich

beam composed of two layers of isotropic material confining an ER/MR fluid is

presented. The finite element method is used to develop the beam element, while

the behavior of the ER/MR fluid is supposed to have equivalent properties of a

viscoelastic material and modeled by Golla-Hughes-McTavish (GHM) approach.

A study of MR elastomer characterization is also presented.
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1.1 Variable Rheology Fluids

The electro- and magneto-rheological fluids are those that change their primary

rheological properties and their characteristics, such as viscosity, elasticity, and

plasticity, due to an electric and magnetic field applied, respectively. These mate-

rials consist of a compound of sensitive particles dispersed in a fluid (or gel) inert to

the applied field. Under the application of a field (electric or magnetic), the

dispersed particles align in the direction of the field, creating chains with the

strength proportional to the intensity of the applied field. Those chain arrangements

handle changing the material rheological properties. Figure 1 illustrates the changes

in the material components due to changes in electric field.

The MR fluid was discovered in 1951 by Rabinow and consists of magnetic

particles dispersed in a non-magnetic liquid. There are a wide variety of materials

that may be used as the base for MR fluids, the most popular being water, silicone

oil, and hydrocarbon oils. The magnetic particles are usually derived from metals

like iron (Yalcintas and Dai 1999; Lord Corporation 2001).

Fig. 1 Chain arrangements due to changes in electric field (Conrad et al. 1987)
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ER fluids are analogous to the MR ones being first observed in 1949 byWinslow.

The ER fluid comprises dielectric particles suspended in a liquid with low dielectric

constant and non-conductive. These particles may be graphite, limestone, iron

fillings, silica gel, and alumina, among others. The liquid base may also be a

mineral oil, e.g., silicone, kerosene, and castor oil, among others (Yalcintas and

Dai 1999; Li et al. 1999; Chen and Liu 1999; Vieira 1996).

Both ER/MR fluids are very similar. However, the MR fluid generates a max-

imum shear 20–50 times greater than ER fluids. MR fluids are also able to operate

directly with small power sources, and are less sensitive to contaminants and

temperature extremes. In contrast, the ER fluids have high response speed and

fast relaxation (since there is residual magnetization in MR fluids). In addition to all

the equipment needed for the generation of the electric field for ER applications are

smaller and lighter than those used to generate the magnetic field (Lord Corporation

2001; Vieira 1996).

In the absence of a field, ER and MR fluids behave initially as liquids. When

subjected to a field, both resemble as a gel. During this transformation, rheological

properties also vary. ER and MR materials have different levels of stresses and

deformations in particular response to various levels of electric or magnetic fields

applied. These fluids follow the same type of pattern in their rheological behavior

(Yalcintas and Dai 1999). Figure 2 depicts in the stress–strain plot, how typical

ER/MR fluids behave with respect to the applied field. Three different types of

behavior with increasing deformation of the material are: (1) the pre-yield region,

(2) the yield region, and (3) the post-yield region. From the first region, it is that

small deformations lead to some elasticity.

To achieve an ER/MR fluid, the first item to be considered is the type of base to

be used (water, hydrocarbon oils, silicone oil, for example). If the fluid operates in a

sealed environment, water is recommended, beyond what it can be doped with a

variety of semiconductor particles. If the system is not sealed, and the evaporation

of the liquid may be a problem, hydrocarbon oil is an adequate solution. Moreover,

such oils are not hazardous materials, but they are not easy to handle. If the
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operating temperature is below 40 �C and above 100 �C, the use of silicone-based
fluid is indicated. However, this type of liquid is difficult to seal. The silicone-based

oil operates in a temperature range between �40 and 150 �C, whereas water has an
operating range between 0 and 70 �C. Also common is the use of substances

surfactants to allow greater variations in the rheological properties, as well as to

stabilize the material minimizing sedimentation. Typically, slightly soluble non-

ionic surfactants are used (Lord Corporation 2001).

According to Leng and Asundi (1999), ER/MR can be manufactured in a variety

of mixtures (fluids and solids). The following characteristics are ideally expected:

(a) high boiling point, low freezing point; (b) low viscosity to maintain the fluidity

when solid particles are added; (c) high dielectric constant to reduce the loss of

power; (d) the overall density should be similar to the density of the particles;

(e) suitable chemical stability, and cannot decompose under the conditions of

operation; (f) nontoxic; (g) high point of combustion; (h) low power required;

(i) non-corrosive; (j) nonabrasive; and (k) low cost.

There are three ways of applying the ER/MR fluids, as illustrated in Fig. 3. The

first and most common is the flow mode, in which the working fluid flows through

two stationary electrodes. Among possible applications using flow mode are shock

absorbers, brakes, and hydraulic systems. Another way to use is known as squeeze
flow, where the electrodes are free to move in the direction of the applied field. In

this case, the fluid is subjected to tension and compression, with small displace-

ments and large forces in a tiny space. The squeeze flow arrangement has a potential

application in vibration isolation. The latter method is called as shear mode

operation where a relative motion between the electrodes (translation or rotation)

is allowed, which generates shear in the ER/MR fluid. An adequate application of

this type of operation arrangement is a sandwich structure, where ER/MR fluid

could be restricted by two elastic layers (Sims et al. 2000).

Research involving variable rheology fluids began to attract attention from the

second half of the 1980s and early 1990s. Initially, these studies were based on

modeling of rheological properties, characterization of new compounds, and seek-

ing for materials with stable and sufficiently powerful rheological fluid properties.

There have also been studies to identify applications, such as brakes, clutches,

shock absorbers, and dampers. Much of the research involving ER/MR fluids has

focused on active dampers (Wu and Griffin 1997; Sims et al. 2000; Choi and Kim

Squeeze-Flow

Applied force

Flow 

Shear 

Static 
electrodes 

Static 
electrodes 

ER/MR fluid

ER/MR
fluid 

ER/MR fluid
Sta

electrode
tic 

Moving
electrode

Applied force

Fig. 3 Operating arrangements for ER/MR fluids

Electro- and Magneto-Rheological Materials 193



2000; Yao et al. 1999; Chen and Liu 1999; Wang et al. 1994), with some studies on

beams for active control (Yalcintas and Dai 1999; Aboudi 1999; Leng and Asundi

1999; Yalcintas et al. 1995; Yalcintas and Coulter 1998; Leng et al. 1997; Choi

et al. 1995; Rahn and Joshi 1998). Although admitting similar principles, these two

study trends require different mathematical models, which implies the proper

characterization of the materials used in each case.

ER/MR fluids are a good alternative when the question concerns actuators. Their

employment as sensors proves to be impracticable, only possible by applying the

joint use of other active elements such as PVDF films or optical fibers. From the

evidence shown in the applications in dampers and active beams, the ER/MR fluids

can be used to control the structural response by varying the respective field

(electric or magnetic).

1.2 Sandwich Beams of ER/MR Fluids

Sandwich beams comprise layers of different materials. The most typical sandwich

arrangement is done by two external layers of elastic materials with a core of

viscoelastic material in between. The use of these devices in structural systems to

reduce the effects of vibration and noise is well known and its mechanism of

attenuation is based on energy dissipation by cyclic shear in the core layer. The

great benefit of these beams is to reduce the resonance peaks (damping effect)

without significantly altering the mass or structural rigidity (Balamurugan and

Narayanan 2002).

In the late 1980s and early 1990s research began to emerge suggesting the use of

sandwich beams with ER fluids in the core (Gandhi et al. 1989; Coulter and Duclos

1989; Choi et al. 1990, 1992). These early studies attempted to demonstrate with

experiments that by changing the applied electric field, a change in the structural

damping and natural frequencies is observed. In these experiments, a number of ER

fluids, beam geometries, and excitation conditions were tried, and the effect of

varying field on the beams dynamics were confirmed.

Earlier investigated as a passive solution in reducing the vibrational response of

structures, the sandwich beams were first studied in the 1950s. These studies

resulted in an analytical model that became known as RKU model (as a reference

for the developers Ross-Kerwin-Ungar) (Kerwin 1959; Ross et al. 1959; Ungar and
Kerwin 1962). This model considers a simply supported beam with its intermediate

layer having a negligible stiffness compared to the outer layers and damping due to

shear in this core layer. This modeling involves fourth-order differential equations

for a simple Euler-Bernoulli beam and introduces the concept of complex damped

flexural modulus for composite structures. Later, Ditaranto (1965) has extended the

RKU model for various boundary conditions for free vibrations. Mead and Markus

(1969) have presented a new development for the RKU model, where a sixth-order

differential equation was admitted to encompass the vibration analysis for various

boundary conditions. The work by Mead and Markus (1969) has served as the
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starting point for the mathematical modeling of fluid sandwich beams with ER/MR

fluid core conducted by Yalcintas et al. (1995) and Yalcintas and Coulter (1998).

Another way of expressing the dynamic behavior of sandwich beams is using the

energy method based on the principle of Hamilton. This type of modeling can be

found in works by Rahn and Joshi (1998) and Yalcintas and Dai (1999). Nonethe-

less, these sandwich beam models are not able to incorporate the dependency of the

ER/MR materials to the frequency, temperature, amplitude, and excitation type. In

the works by Lee (1995) and Lee and Cheng (1998), the dependence of the

amplitude has been incorporated to the sandwich beams with ER/MR fluid core.

Some other works present frequency dependence. However, these do not allow

the modeling of more complex dynamic behaviors. The need for models that

incorporate viscoelastic hysteresis or frequency dependence have motivated a

considerable number of research work. The first works presented in the 1980s

bring the idea of a complex modulus. Previous approaches consider only the real

part as variable, and then the investigations extended to both varying real and

imaginary parts (storage modulus and dissipation module, respectively). The com-

plex modulus is associated with the concept of Modal Strain Energy (MSE)

establishing the mode to mode dissipation factors approach. This method is well

known for acceptable approximation of small viscoelastic damping (Trindade and

Benjeddou 2002).

Several ways in the time domain have been explored to represent the frequency

dependence of the linear viscoelastic theory. Lesieutre and colleagues (Lesieutre

1992; Lesieutre and Mingori 1990) have proposed a method denoted as

Augmenting Thermodynamic Fields (ATF) that have introduced dissipation coor-

dinates. Initially limited to one-dimensional case, the approach has been extended

to the three-dimensional case (Lesieutre and Bianchini 1995; Lesieutre and Lee

1996) which has been named Anelastic Displacement Field (ADF) method.

Another method developed with very similar characteristics to the ADF model is

the so-called Golla-Hughes-McTavish (GHM) model (Golla and Hughes 1985;

McTavish and Hughes 1993) which also uses dissipative coordinates.

Both the GHM and the ATF/ADF models have advantages over the MSE model

since they are in the time domain formulation. For them, the elastic and dissipative

structural behaviors are represented in a system of fixed matrices. Damping factors

are calculated with modal frequencies without iteration, and the resulting modes

reflect the relative phase at various points. The modal orthogonality is preserved

(Lesieutre and Bianchini 1995). Therefore, these models may allow accurate

modeling of a structure with viscoelastic behavior, such as the ER/MR materials.

Other studies on the identification of viscoelastic characteristics that can be used to

ER/MR fluids modeling are referred to Mahjoob et al. (1995). They have used an

analysis of the inverse problem. Choi and Park (1994) and Phani and Venkatraman

(2003) have designed controllers based on experimental data within the same

context.
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2 Mathematical Model

The mathematical modeling of a sandwich beam with an ER fluid core via the finite

element method is considered. As a starting point the following assumptions are

considered: (1) the beam geometry is constant along the length of the beam, (2) the

core material is isotropic and of much greater thickness than the face sheets, (3) the

shear strain is constant through the core and negligible in the face sheets, (4) the

longitudinal displacements of the face sheets are uniform through the thickness of

the face sheets, and (5) the transverse displacement does not vary through the

thickness of core material and is small relative to the beam length.

Admitting the application of the principle of Hamilton, that is,

δ

ðt2
t1

T � Vð Þdtþ
ðt2
t1

δWdt ¼ 0; ð1Þ

where T, V, and δW are, respectively, the kinetic, potential (electro-mechanical

coupling) energies and the virtual work of non-conservative loads.

The kinetic energy T for a beam can be expressed as:

T ¼ 1

2

ð
V

ρ1A1 þ ρ2A2 þ ρ3A3ð Þ _w 2 þ ρ1A1 _u
2
1 þ ρ3A3 _u

2
3

� �
dx; ð2Þ

where the subscript indicates the layer, ρ is mass density, w is the transverse

displacement along the y-axis, and u is the translation of the neutral axis along

the x-axis direction.
The potential energy formulation includes the bending in the faces, the shear in

the ER material, and the extensional energy.

Vb ¼ 1

2
E1I1 þ E3I3ð Þ

ðL
0

∂2
w

∂x2

 !2

dx; ð3Þ

Va ¼ 1

2
E1A1

ðL
0

∂u1
∂x

� �2

dxþ 1

2
E3A3

ðL
0

∂u3
∂x

� �2

dx; ð4Þ

Vs ¼ 1

2
G*A2

ðL
0

γ2dx; ð5Þ
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where E, G*, γ, I, and A are, respectively, the Young’s modulus of the face sheets,

the shear modulus of the ERmaterial, the shear strain of the viscoelastic shear layer,

the moment of inertia, and the area of the cross section.

Axial displacements are assumed to be linear through the thickness, whereas

transverse ones are supposed constant. The geometry and deformation of the

sandwich beam are shown in Figs. 4 and 5.

The relation for the shear strain is based on the axial and transverse displace-

ments, that is,

γ ¼ 1

h2
u1 � u3 þ h1 þ 2h2 þ h3

2

� �
∂w
∂x

� �
; ð6Þ

where hi is the thickness of the ith layer.

2.1 Finite Element Discretization

The finite element (FE) method is essentially a process through which a continuum

with infinite degrees of freedom can be approximated by an assemblage of sub-

regions (or elements) each with a specified but now finite number of unknowns.
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Fig. 4 Schematics of a sandwich beam

g
u1

u3

w’

x

zFig. 5 Geometry and

deformation of the

sandwich beam
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Further, each such element interconnects with others in a way familiar to engineers

dealing with discrete structural or electrical assemblies. The assumed mechanical

degrees of freedom [u1u3w θ]T are, respectively, the axial and vertical displace-

ments, and the rotation around the y-axis. The model developed here is based on

Nagamine et al. (2005) and Nagamine (2006).

For the kth element the corresponding generalized displacement vector {qk} can

be assembled, which allows the determination of the discrete form of the displace-

ments and rotation at the node i and j, that is:

qk ¼ u1i u3i wi θi u1j u3j wj θj½ �T: ð7Þ

This discretization procedure is achieved by using the shape functions Nu1 , Nu3 ,

Nw, and Bw, which relates the continuum displacements to discrete ones

u1i ¼ Nu1qi

u3i ¼ Nu3qi

wi ¼ Nwqi

θi ¼ dwi

dx
¼ dNw

dx
¼ Bwqi:

ð8Þ

Taking into account the Lagrange linear shape functions for the axial displace-

ment and a cubic Hermitian functions for the transverse displacement, then,

Nu1 ¼ 1� x=L 0 0 0 x=L 0 0 0½ �; ð9Þ
Nu3 ¼ 0 1� x=L 0 0 0 x=L 0 0½ �; ð10Þ

Nw ¼ 0 0 1� 3x2

L2
þ 2x3

L3
x 1� x

L

� 	2
0 0

x2

L2
3� 2x

L

� �
x2

L

x

L
� 1


 �� �
:

ð11Þ

Rewriting Eqs. (2), (3), (4), and (5) into variational formulation and taking into

account the generalized coordinate shown in Eq. (8) and a relation for γ in Eq. (6):

δT ¼ ρ1A1

ðL
0

δ€qTNu1
TNu1€qdxþ ρ3A3

ðL
0

δ€qTNu3
TNu3€qdxρ3A3 þ . . .

þ ρ1A1 þ ρ2A2 þ ρ3A3ð Þ
ðL
0

δ€qTNw
TNw€qdx;

ð12Þ

δVb ¼ E1I1 þ E3I3ð Þ
ðL
0

δqTB
0
w
TB

0
wqdx; ð13Þ
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δVa ¼ E1A1

ðL
0

δqTB
0
u1

TB
0
u1qdxþ E3A3

ðL
0

δqTB
0
u3

TB
0
u3qdx; ð14Þ

δVs ¼ G*A2

ðL
0

δqTB
0
γ
TB

0
γqdx: ð15Þ

The kinetic energy in a variational form can be written as:

δT ¼ δ€qT Mb þMað Þ€q; ð16Þ

where M is the mass matrix and the subscripts a and b are related to a axial and

transverse movement, respectively,

Ma ¼ ρ1A1

ðL
0

Nu1
TNu1dxþ ρ3A3

ðL
0

Nu3
TNu3dx; ð17Þ

Mb ¼ ρ1A1 þ ρ2A2 þ ρ3A3ð Þ
ðL
0

Nw
TNwdx: ð18Þ

Similarly the potential energy can be expressed in a variational form like,

δV ¼ δqT Kb þKa þKsð Þq; ð19Þ

whereK is the stiffness matrix, and the subscript s is related to shear energy, that is,

Kb ¼ E1I1 þ E3I3ð Þ
ðL
0

B
0
w
TB

0
wdx; ð20Þ

Ka ¼ E1A1

ðL
0

B
0
u1

TB
0
u1dxþ E3A3

ðL
0

B
0
u3

TB
0
u3dx; ð21Þ

Ks ¼ G*A2

ðL
0

B
0
γ
TB

0
γdx: ð22Þ
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2.2 The GHM Model of Material Properties

In the theory of linear viscoelasticity for one-dimensional structures the constitutive

relation stress–strain can be represented by:

σ tð Þ ¼ G tð Þε 0ð Þ þ
ðt
0

G t� τð Þ dε τð Þ
dτ

dτ; ð23Þ

where G(t) is the relaxation function of the viscoelastic material (the stress response

to a unit step input).

This stress relaxation related toG(t) represents the energy loss from the material.

Hence it is associated with damping (Balamurugan and Narayanan 2002).

The Golla-Hughes-McTavish (GHM) method (McTavish and Hughes 1993;

Golla and Hughes 1985) represents the material modulus as a series of mini-

oscillator terms or internal variables as illustrated in Fig. 6.

The GHM method was developed to allow its incorporation into the finite

element representation. The material complex modulus can be written in the

Laplace domain in the form,

s~G sð Þ ¼ G1 1þ
X
k

αk
s2 þ 2ζ̂ kω̂ ks

s2 þ 2ζ̂ kω̂ ksþ ω̂ 2
k

" #
; ð24Þ

where the factor G1 corresponds to the equilibrium value of the modulus (the final

value of the relaxation function G(t)), each mini-oscillator term is a second-order

rational function involving three positive constants (αk, ζ̂ k, ω̂ k).

These constants govern the shape of the modulus function over the complex

s-plane. Depending on the nature of the material modulus function and the range of

s over which it is to be modeled, any number of mini-oscillator terms may be used

in the GHM expression. Considering the elementary mass-spring system with an

applied force, with an elastic spring the motion of the system is described by the

second-order equation of motion,

m€q tð Þ þ kq tð Þ ¼ f tð Þ: ð25Þ

m
f q

z
k

kz
a

ˆ2

k2ˆ
1
w

ŵ
a

ka

Fig. 6 Mini-oscillator
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Now, if the spring behaves as viscoelastic, described by relaxation function k(t), then,

m€q tð Þ þ
ðt
0

k t� τð Þ _q τð Þdτ ¼ f tð Þ: ð26Þ

Initial conditions have been assumed to be zero for convenience. The material

modulus function of k(t) is now modeled by a single-term GHM expression,

leading to,

s2m~q sð Þ þ k 1þ α
s2 þ 2ζ̂ ω̂ s

s2 þ 2ζ̂ ω̂ sþ ω̂ 2

" #
~q sð Þ ¼ ~f sð Þ: ð27Þ

Now, an auxiliary coordinate z is introduced, so that,

~z sð Þ ω̂ 2

s2 þ 2ζ̂ ω̂ sþ ω̂ 2
~q sð Þ: ð28Þ

Using this new dissipation coordinate, the Laplace transformed equation of

motion may be written as two coupled second-order equations:

s2m~q þ k þ αkð Þ~q � αk~z ¼ ~f

s2~z þ 2ζ̂ ω̂ s~z � αk~z � ω̂ ~q þ ω̂ 2~z ¼ 0:
ð29Þ

2.3 GHM Viscoelastic Finite Element Matrices

Multiplying the second equation from Eq. (29) by αk=ω̂ 2, the resulting system of

equations has a symmetric matrix second-order time-domain realization, that is,

M 0

0 α
1

ω̂ 2
K

" #
€q

€̂z

" #
þ

0 0

0 α
2ζ̂

ω̂
K

" #
_q

_̂z

" #
þ K 1þ αð Þ �αK

�αK αK

� �
q

ẑ

� �
¼ f

0

� �
:

ð30Þ

Since the elastic element stiffness matrixK is usually positive semi-definite (one

or more eigenvalues representing rigid body motion), the mass matrix in this

formulation will not usually be positive definite. To overcome this situation,

spectral decomposition of the elastic stiffness matrix K is used, therefore,

K ¼ G1K ¼ G1R Λ R
T
; ð31Þ
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where Λ is a diagonal matrix of the nonzero (necessarily positive) eigenvalues kp,
and the corresponding orthonormalized eigenvectors rp form the columns of the

matrix R, therefore,

Λ ¼ diag kp
� �

, R ¼ row rp
� 	

, R
T
R ¼ 1; ð32Þ

such that,

Krp ¼ rpkp, kp > 0: ð33Þ

To achieve the objective of fewest dissipation coordinates as possible and a

positive definite viscoelastic mass matrix, the equilibrium modulus G can be

associated into the diagonal eigenvalue matrix Λ, i.e., Λ ¼ G1Λ, which results in,

z ¼ RTẑ and R ¼ RΛ: ð34Þ

The final set of equations of motion results in,

Mv

€q

€̂z

" #
þ Dv þ

_q

_̂z

" #
þKv

q

ẑ

" #
¼ f

0

" #
; ð35Þ

where the viscoelastic matrices are

Mv ¼
M 0

0 α
1

ω̂ 2
Λ

2
4

3
5 Dv ¼

0 0

0 α
2ζ̂

ω̂
Λ

2
4

3
5 Kv ¼

K 1þ αð Þ �αR

�αR αΛ

� �
: ð36Þ

These finite element matrices have the symmetry and definiteness properties

desired for a standard second-order structural dynamics model,

MT
v ¼ Mv > 0, DT

v ¼ Dv, KT
v ¼ Kv: ð37Þ

3 GHM Fe Model of a Sandwich Beam

To verify the performance of the GHM FE model for a sandwich beam with ER

fluid, comparisons with experimental and numerical results fond in the literature are

presented. The first verification has been carried out in terms of verifying the

current/GHM FE model for the case of a free rod in a longitudinal vibration and a

cantilever rod according to Golla and Hughes (1985). The viscoelastic properties of

the rod have been modeled with four mini-oscillator, and the non-dimensionalized

parameters are presented in Table 1 and the results obtained for a longitudinal

vibration in Table 2 and for transverse vibration in Table 3.
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A second verification has been performed based on experimental results

published by Lam (1997). In this experiment a free-free sandwich beam with

aluminum face sheets constraining the core of ISD 112 viscoelastic material. Sheets

have dimensions of 0.381 m in length, 0.0381 m in wide, and 0.0032 m in thick. The

physical properties are assumed as 70 GPa for stiffness and 2700 kg/m3 for mass

density. The core is made from the viscoelastic ISD 112 10 mil

(0.381� 0.0381� 0.000254 m and G1¼ 5� 104), which leads to GHM model

parameters as those in Table 4.

The sandwich beam dynamics is assessed through an impact hammer and

accelerometer. The measurement and impact points are located at the beam.

Figure 7 presents an illustration of the test performed by Lam (1997).

Table 1 Mini-oscillator

non-dimensionalized

properties

Mini oscillator α 2ζ̂ ω̂ ω̂ 2

1 3.0� 10�2 4.16� 10�1 3.16� 10�2

2 3.0� 10�2 4.16 3.16

3 3.0� 10�2 4.16� 101 3.16� 102

4 3.0� 10�2 4.16� 102 3.16� 104

Table 2 Non-dimensionalized frequency and damping for elastic and viscoelastic FEM in a

longitudinal vibration

Viscoelastic FEM

Mode

Elastic PDE Elastic FEM Frequency Damping Frequency Damping

(Golla and

Hughes

1985)

(Golla and

Hughes

1985)

(Golla and

Hughes

1985)

(Golla and

Hughes

1985) Present Present

1 0 0 0 0 0 0

2 3.14 3.22 3.33 8.55� 10�3 3.33 8.55� 10�3

3 6.28 6.93 7.19 1.01� 10�2 7.19 1.01� 10�2

4 9.42 11.26 11.73 1.02� 10�2 11.73 1.02� 10�2

5 12.57 13.85 14.46 9.71� 10�3 14.46 9.71� 10�3

Table 3 Non-dimensionalized frequency and damping for elastic and viscoelastic FEM in a

transverse vibration

Viscoelastic FEM

Mode

Elastic PDE Elastic FEM Frequency Damping Frequency Damping

(Golla and

Hughes

1985)

(Golla and

Hughes

1985)

(Golla and

Hughes

1985)

(Golla and

Hughes

1985) Present Present

1 3.52 3.52 3.63 8.60� 10�3 3.63 8.60� 10�3

2 2.20� 101 2.21� 101 2.31� 101 8.27� 10�3 2.31� 101 8.27� 10�3

3 6.17� 101 6.22� 101 6.53� 101 8.42� 10�3 6.53� 101 8.42� 10�3

4 1.21� 102 1.23� 102 1.30� 102 7.46� 10�3 1.30� 102 7.46� 10�3

5 2.00� 102 2.28� 102 2.42� 102 3.94� 10�3 2.42� 102 3.94� 10�3
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Lam (1997) experimental results comprise frequency response functions. The

present GHM FE model has been used to predict the frequency response function

(FRF) in the same conditions as in the work by Lam (1997). Figure 8 shows a

comparison between Lam (1997) and the present GHM FE model FRFs. The result

^
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Spectral Analyzer

Accelerometer

Impact Hammer

Sandwich 
Beam

Fig. 7 Setup for the experiment (Lam 1997)

Table 4 Parameters for ISD

112 GHM FE model
Mini oscillator α̂ ζ̂ ω̂

1 9.6 73.4 1� 104

2 99.1 1.1 5� 104

3 26.2 3.28 0.5� 104
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Fig. 8 Lam (1997) experiment (solid line) and the present GHM FE model (dashed line)
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indicates how adequate is the current GHM FE model in assessing the dynamic

characteristics of the sandwich beam. The measurement and excitation points are in

a modal node of the beam. Therefore the even modes have been lost from both

experimental and numerical prediction.

After verifying the effectiveness of the GHM FE model for typical sandwich

beam with conventional viscoelastic cores, now a sandwich beam with an ER fluid

is considered. The experimental data from Yalcintas and Dai (1999) has been used

to verify the GHM FE model. Figure 9 depicts the experimental setup under

consideration. The test sandwich beam has 381 mm in length and 25.4 mm in

width and mass density of 2700 kg m�3 and stiffness of 70 GPa. The elastic

upper and lower plate material is aluminum at a thickness of 0.79 mm and the ER

fluid layer has been confined to a 0.50 mm thickness, with mass density of

1700 kg m�3. The test has been done using a simple support configuration and

applied voltage of 3.5 kV mm�1. The excitation force is applied at 115 mm from a

reference support, and the transverse vibration response is measured at 231 mm
from the same reference. The GHM FE model has the following parameters: α¼ 1,

ζ̂ ¼ 5000, ω̂ ¼ 4, and G1¼ 0.4� 106.
The results have been obtained using ten elements, four physical variables, and

three dissipation coordinates per node. Figure 10 presents the comparison between

FRFs from experimental and GHM FE model. They present adequate agreement,

which allows inferring that the numerical model represents a real potential to model

sandwich beams with variable rheology fluids core. This result has been carried out

considering only one mini-oscillator for the GHM FE model, which is a good

feature towards a reduced number of extra dissipation coordinates. Modeling with

GHM FE still needs better representation of the ER/MR fluids behavior. This issue

is one of the major challenges in the development of this kind of active material.

4 Variable Magnetorheological Elastomers: Application
and Characterization

Magnetorheological materials (MR) are smart materials that consist of micron-

sized or nano-sized magnetizable particles embedded in a non-magnetic medium.

Furthermore, different types of MRs are available, such as fluids, elastomers, foam,

Applied force

Measured

displacement

115 mm

231 mm

Fig. 9 Experimental setup

for sandwiched beam with

ER fluid core (Yalcintas and

Dai 1999)
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and gel. An introduction to magnetorheological fluids (MRF) was covered in the

previous sections. However, in this section a brief introduction to magnetor-

heological elastomers (MRE) and its application will be made. Although the

modeling approach is not concerned in this section, information about this topic

can be found in Jolly et al. (1996), Davis (1999), and Li and Sun (2014).

Magnetorheological elastomers (MRE) are a type of smart materials that consist

of a non-magnetic elastomer matrix, such as rubber, mixed with micron-sized or

nano-sized magnetizable particles. The elastomer is cured in a magnetic field

causing the magnetic particles to align in chains and remain aligned after the

magnetic field is removed. A continuous and reversible change of the mechanical

properties of the elastomer can be achieved by applying an external magnetic field

(Carlson and Jolly 2000; Shiga et al. 1995; Fuchs et al. 2004). These materials have

been developed from magneto-rheological fluids (MRF) that were initially devel-

oped by Jacob Rabinow (Carlson and Jolly 2000) in the 1940s. Although MRFs

have been used in several application including clutches, dampers, and vibration

absorbers (Li and Du 2003; Jung et al. 2003; Brigley et al. 2007; Hirunyapruk

et al. 2010), they have some disadvantages in that the particles in the fluid tend to

collect as sediment, which means that the fluids require agitation to prevent this

phenomenon. Moreover, the MRFs need to be storage and well sealed to avoid

leakage, so that the effectiveness of the device is not affected by its application

(Behrooz et al. 2014). MREs do not suffer from these problems as the magnetizable
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Fig. 10 Yalcintas and Dai (1999) experiment (solid line) and the GHM FE model (dashed line)
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particles are fixed within a solid non-magnetic matrix (elastomer). These materials

can be anisotropic or isotropic, depending on whether the iron particles within the

rubber have been aligned by a magnetic field during vulcanization. Although

anisotropic MREs usually display higher MR effects, they are more difficult and

expensive to manufacture (Fuchs et al. 2004).

MREs are useful as vibration control elements as they have a variable stiffness

that can be changed in real time. There are two main applications in this field that is

the adaptive tuned vibration absorbers (TVAs), and the stiffness tuneable mounts or

suspensions (Ginder et al. 2001; Albanese and Cunefare 2003; Deng et al. 2006;

Sun et al. 2007; Hoang et al. 2009). Silicon and rubber are used as a matrix for

MREs. However, the mechanical properties of silicon are affected by heat and are

approximately one-tenth of those of natural rubber (Jeong et al. 2013). Hence,

rubber-based RMEs are extensively used in mechanical applications, such as

automotive industry, where the temperature is an issue of concern. In this field,

Jeong et al. (2013) developed a magnetorheological elastomer-based stiffness-

variable differential mount to reduce the vibration propagated from the engine to

the body of the car via the propeller shaft. Hoang et al. (2009) developed a torsional

adaptive tunable vibration absorber (ATVA) using MRE for vibration attenuation

of a power train test rig. Lee (2014) designed and developed an active damping

system based on MRE for reducing vibration and noise in washing machines.

As observed MREs have been applied to some practical problems in the engi-

neering field. However, before using such materials in practice, they have to be

developed and characterized first. This procedure ensures that MREs can achieve

required characteristics, for instance, the amount of change in the mechanical

properties when an external magnetic field is applied to it. The manufacturing

process together with how the mechanical and dynamic properties can be measured

will be covered in the next two sections.

4.1 Morphological Magnetic and Mechanical
Characterizations of Magnetic Particles and MRE

Magnetic materials are widely used in the industrial sector. The aims are innovative

applications (e.g., magnetic composites based on natural rubber), and also the

enhancement of already consolidated applications (e.g., the use of magnetic parti-

cles in cores of transformers and electronic devices). The preparation of structured

materials, powders, and ceramic particles in micrometric and nanometric scales

needs refined forms of processing to obtain materials on an adequate dimensional

scale and desired magnetic properties. Currently, it is known that it is possible to

architect, design, estimate, and add specific characteristics or properties to materials

through the use of specific preparation routes. The preparation methods of magnetic

ceramic materials are classified in physical and chemical routes.
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In the context of magnetic ceramics, Ni-Zn ferrite (NZF) awakens much interest

of the scientific community for its high permeability and high resistivity. Figure 11

shows the morphological characterization of the Ni-Zn ferrite nanopowders, cal-

cined at 450 �C, by Atomic Force Microscopy (AFM). From AFM photograph, the

geometry of primary particles is approximately spherical due to the growth mech-

anism, in this case, nucleation and coalescence to reach a minimum in the surface

energy. The average particle size for the KSN is close to 30 nm while the size of

aggregates is at around 100 nm. The formation of small aggregates of nanoparticles

is typical for material processing by chemical routes.

About the magnetic characterization of the nanoparticles and nanocomposites,

the Vibrating Sample Magnetometry (VSM) is a very versatile and widely used

technique. This approach provides the main magnetic properties and relevant

magnetic parameters of the sample with acceptable accuracy in a relatively fast

way. The hysteresis loop between �15 kOe at room temperature, details of the low

magnetic field region between �1 kOe and the main magnetic parameters like MS,

MR, HC, and μi for Ni-Zn ferrite nanopowders and magnetic nanocomposite with

50 phr of nanoparticles are shown in Fig. 12.

As it can be seen in Fig. 12, both hysteresis loops exhibit a characteristic profile

of soft magnetic material at temperatures above the blocking temperature. Soft

magnetic materials or materials with low coercivity are systems used in technolog-

ical applications whose magnetization/demagnetizing process should be easy. For

example, in transformer and motor cores to minimize the energy dissipation with

the alternating fields and vibration absorption systems that use alternating magnetic

field.

As a form to aggregate economic value to the polymeric and ceramic materials,

composites and nanocomposites formed by inserting particles or magnetic

Fig. 11 Ni-Zn ferrite nanoparticles calcined at 450 �C viewing from AFM photomicrograph. On

the right-hand side, details about the geometry and profile of the nanoparticles
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nanoparticles in a matrix of vulcanized natural rubber can be used in intelligent,

high-performance systems for the absorption or damping of impacts, by having the

ability to amplify or reduce the mechanical response of the system when subjected

to a magnetic field. Such variations are proportional to the amount of magnetic

material inserted in natural rubber and the intensity of externally applied magnetic

field. Technological applications as more efficient damping systems for footwear

and high-performance damping systems for intensive vehicles already have the

potential for industrial use.

To illustrate this type of utilization, compression tests between 0 and 75%

assisted by magnetic field in accordance with international standard ISO

7743:1989were performed in vulcanized natural rubber nanocomposites with ferrite

magnetic nanoparticles (NR/NZF). The qualitative results are shown in Fig. 13.

In according to Fig. 13, the adding of magnetic nanoparticles in the polymeric

matrix in the presence of the magnetic field alters the values of the compression

module in up to 40%. For all investigated samples, depending on the concentration

of NZF nanoparticles, compression amount, and presence of a constant magnetic

field, it is possible to module the values of resistance to compression. Hence, with

proper manipulation of the composition of the magnetic composites and the mag-

netic field applied, it is possible to modulate the mechanical response of the system

conveniently.

4.2 Measuring the Dynamic Properties of MREs

Young’s and Shear Modulus are the mechanical properties of MREs measured as a

function of the magnetic field. This feature allows determining how much these

properties can change when the material is subject to a magnetic field. Some

rubber-based MREs can change their Young’s modulus by up to 60% (Gong

et al. 2005). In vibrating systems, it is more convenient to measure the dynamic

stiffness instead. The dynamic stiffness is the frequency-dependent ratio between

an input force and the output displacement under dynamic conditions. There are

many methods to measure dynamic stiffness, and more information can be found in

BS ISO 10446. The dynamic driving point stiffness kd and the dynamic transfer

stiffness kt are the methods presented here to measure the dynamic stiffness. This

fact justifies why these methods are widely used in mounts characterization.

Figure 14a, b shows a schematic of the setup used to measure dynamic stiffness

by using driving point and transfer stiffness methods, respectively. Figure 14c

shows the equivalent system for these methods, where m is the mass, c is the

damping, k is the stiffness, x is the displacement, f is force applied to the system,

and ft is the so-called blocked force.

Observing Fig. 14c the dynamic driving point stiffness can be used to represent

the vibratory response of a single degree of freedom (SDOF) system. Considering a

hysteretic damping, the vibratory response of the MRE shown in Fig. 14a can be

given as
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F

X
¼ kd ¼ �mω2 þ k0

� 	
; ð38Þ

where k0 ¼ k 1þ jηð Þ is the complex stiffness, η ¼ c=k is the loss factor of the

system, F is the frequency-dependent force applied to the system, X is the
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Fig. 13 Stress/compression curves for magnetic nanocomposites (NR/NZF) with 5, 20, and

50 phr of nanoparticles. (a) Tests carried out without magnetic field. (b) Test carried out with a

constant magnetic field
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frequency-dependent output displacement, and j ¼ ffiffiffiffiffiffiffi�1
p

. For the transfer stiffness

method shown in Fig. 14b, the dynamic stiffness is given by

Ft

X
¼ kt ¼ k0 ¼ k 1þ jηð Þ; ð39Þ

where Ft is the frequency-dependent blocked force. The advantage of using the

transfer stiffness method is that the mass of the MRE sample is not taking into

account, so that the complex stiffness can be calculated directly. However, in some

practical situations it is not easy to obtain a rigid base (blocked force) or to attach

the force gauge underneath the MRE, such as mounts supporting a car engine.

Despite that, in controlled situations the transfer stiffness method (cf. Eq. (39)) is

applied. In this case, the stiffness and the loss factor are given by the real part Re

{kt} and the phase Im{kt}/Re{kt} of the dynamic stiffness, respectively. Figure 15
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Fig. 14 Schematic of how to measure the dynamic stiffness using: (a) dynamic driving point

stiffness method; (b) dynamic transfer stiffness method. (c) Schematic of the equivalent system for

the dynamic driving point stiffness and dynamic transfer stiffness methods
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Fig. 15 Schematic of a rig used to measure the dynamic stiffness by using the dynamic transfer

stiffness method
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shows a schematic rig used to measure the dynamic stiffness by applying the

transfer stiffness method.

The signal generator is the device that provides a certain type of signal to the

shaker, which is an electro-mechanical actuator responsible for delivering the

excitation to the MRE. The two coils located on the side of the MRE samples are

responsible for supplying a tunable magnetic field. Hence, the input displacement

and the output force (blocked force) can be measured, so that the dynamic stiffness

can be estimated as a function of the supplied magnetic field.
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Composite Structures Design and Analysis

Volnei Tita

Abstract Recent improvements in manufacturing processes and materials

properties associated with excellent mechanical characteristics and low weight

have become composite materials very attractive for application on different

types of structures. However, even new designs are still very conservative, because

the composite structure failure phenomena are very complex. This chapter shows

the principal fundamentals to design and analyze composite structures. In the

introduction, there is a definition and a classification of composite materials, as

well as motivation, considering advantages and challenges to design by using this

type of material. Thus, it is presented a methodology to design composite structures

in order to overcome the main challenges related to this task. In this methodology, it

is found three important analyses: micromechanical, macromechanical, and failure

analyses. In order to perform micromechanical analysis, it is necessary to know

more about matrix, reinforcements, and interfaces. For example, in this chapter, it is

addressed only polymeric matrix and long fibers as reinforcements, which are

combined to create an orthotropic ply. Then, different plies can stack with fibers

oriented in different directions, creating an anisotropic or orthotropic laminate. The

material properties of the ply can be obtained by Rule of Mixture or via mechanical

testing. Hence, it is commented some difficulties to carry out experiments on

composite materials and how is complicated to obtain allowable values for lami-

nates. Based on the material properties, it is possible to calculate strain in the

laminate, as well as strain and stress distribution in each ply. To perform the

macromechanical analysis, it is possible to use Classical Laminate Theory (CLT).

Thus, it is shown all hypothesis adopted for that theory and the implications

generated by these ones. Finally, based on the actuating stress or strain values in

each ply and allowable values of the used composite material, it is calculated the

margin of safety for the plies by applying a failure criterion. In fact, for laminate

structures, failure phenomena include intralaminar damages and interlaminar fail-

ures (delaminations), which are very complicated to be predicted via any failure
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theory. Therefore, even nowadays, many researchers have developed different

failure theories to improve the design and analysis of composite structures.

Keywords Composite materials • Composite structures • Composite design •

Composite analysis • Design methodology

1 Introduction

The usage of composite materials is a reality nowadays, mainly in the aeronautical

and aerospace engineering. During several years, it has been observed different

designs, which were developed considering high performance provided by this type

of material, such as F-111, Vought A-7, F-18, F-22, Lockheed L-1011, Rutan

Voyager, Boeing 777, Airbus 380, Boeing 787, and others. A composite can be

defined as a multiphase material, which has properties better than if each phase

were used alone (Callister 1985).

According to this synergistic effect in composite materials, the engineers have

tried to design very carefully the combination of the phases in order to obtain

materials with very high performance. The phases, which form the composite

material, can be classified as matrix, reinforcements, and interface. The matrix

has the function to maintain the reinforcements together, transmitting the loadings

applied on the structure by the interface. Then the reinforcements have the function

to support these loadings (Matthews and Rawlings 1994). Due to the different types

of composite materials, Callister (1985) classified them as composite reinforced by

particles; composite reinforced by fibers; and structural composites. In this chapter,

it will be addressed the laminate composite materials, which has polymer matrix

and long fibers as reinforcements stacked in plies. Each ply has fibers in one specific

direction and the stacked plies generate a composite structure as shown by Fig. 1a.

The natural anisotropy related to the laminate composite materials provides a

unique way to design the material properties with the geometric characteristics in

order to reach the performance required by the project. The combination of high

Fig. 1 Composite material: (a) fuselage made of laminate composite; (b) damage and failure in

laminate composite materials
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strength and stiffness, as well as the low volumetric mass density, become the

composite materials very strategic for structural applications, mainly in aeronauti-

cal and aerospace designs. Regarding the strength and the stiffness of the structure,

it is possible to design both characteristics, considering the project requirements. In

other words, the material can be developed in function of the loadings, which

actuate in the structure. In fact, the stiffness and strength can be improved without

increasing weight of the structure. Thus, for automobiles and airplanes, the perfor-

mance of the product can be improved, reducing the fuel usage. In addition, the

ratio between weight of green material and weight of the final product is very low

for composites (1.2–1.3) compared to metals (15–25) (Jones 1999). This shows that

manufacturing processes for composite structures are more efficient than

manufacturing processes for metals.

However, the anisotropy and heterogeneity in the composite structures could be

seen as a positive or a negative aspect. By one side, it is feasible not only to select

the materials of the phases, but also to select the orientation of the fibers in each ply.

By the other side, it is very complicated to predict the failure modes in the structure

(Fig. 1b). This challenge is related directly to the reliability of the structure and this

is more critical for products, which suffer fatigue or damage by impact loadings.

Thus, it is necessary to apply high safety factors during the design process, which

reduce the potentialities of composite materials and increase the cost of the final

product (Tita 2003). Therefore, this scenario motivates to understand better how to

design and to analyze with more accuracy composite structures.

1.1 Composite Materials: Definition and Classification

As commented earlier, a composite can be defined as a multiphase material, which

has properties better than if each phase were used alone (Callister 1985). And, the

phases, which form the composite material, can be classified as matrix, reinforce-

ments, and interface. According to Vinson and Sierakowski (1986), the laminate

composite can be addressed by two different analyses: micromechanics and

macromechanics approaches (Fig. 2).

In the micromechanics approach, it is considered each phase in the analysis.

Although the phases are frequently heterogeneous and non-isotropic, it is normally

assumed the hypotheses of isotropy and homogeneity. This approach can be used to

determine the elastic properties of the ply or to estimate the local damage in each

phase when the ply is loaded.

In the macromechanics approach, it is considered that each ply is homogenous,

and the orientation of the fibers in the plies is very important in the analysis, as well.

In addition, the plies are frequently non-isotropic, so they are assumed to be

orthotropic. This approach can be used to predict the stiffness of the laminate, as

well as its mechanical behavior when the laminate structure is loaded.

Nowadays, many researchers have combined both approaches in order to ana-

lyze the composite structures, and this new approach is called multi-scale analysis.
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1.2 Motivation: Advantages and Challenges

For a long time, the man has combined different materials in order to obtain other

materials. For example, in 4000 BC, Sumerians added straw in the mud in order to

built better bricks. Although the benefits of composite materials are known for a

long time, only recently, there was the development of manufacturing processes,

which produce structures with high quality and high structural efficiency.

The structural efficiency is associated directly to the material used in the

manufacturing process. This parameter is high when strength/density or stiffness/

density is high and vice-versa. According to the literature, composite materials with

70 % of epoxy volume fraction and 30 % of carbon fiber volume fraction, or 40 % of

epoxy volume fraction and 60 % of glass fiber volume fraction show stiffness close

to aluminum, which is more density than both composite materials. In the same

way, a composite with 40 % of epoxy volume fraction and 60 % of carbon fiber

volume fraction shows stiffness close to steel (Magagnin Filho 1996) (Fig. 3).

Beyond high specific strength (strength/density), composite materials show good

performance under dynamic loadings (Tita 1999). For example, in some products, it

is necessary to avoid damage caused by vibrations. Thus, the plies can be stacked in

order to obtain a laminate with natural frequencies different to the excitation

frequencies (Tita et al. 2001). In the last years, the composite materials are not

only used to guarantee high structural efficiency, but also the safety of passenger

under impact loadings. Thus, the laminate is designed in order to absorb the

maximum impact energy, controlling the collapse of the structure and reducing

the accelerations after impact.

Laminate

Macromechanics
Approach

Composite Structure

Reinforcement

Matrix

Micromechanics 
Approach

Ply

3 2

1

Fig. 2 Micro and macromechanics approaches (Vinson and Sierakowski 1986)
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As commented earlier, the anisotropy related to the laminate composite mate-

rials provides a unique way to design the material properties with the geometric

characteristics in order to reach the performance required. However, this inherent

anisotropy and heterogeneity of the composite materials promote complex failure

modes in the structures, which are very complicated to predict. Then, in the next

section, it is shown a methodology to design composite structures in order to help

engineers to overcome this challenge.

1.3 Methodology to Design Composite Structures

Figure 4 shows a procedure proposal to design laminate composite structures. It is

verified that the procedure starts with the selection of the type of fibers and polymer

matrix. Normally, the manufacturers of the fibers and the polymer provide the data

sheet for each material. Then, by using the Rule of Mixture, which is based on

Micromechanics Analysis, mechanical properties of each ply can be evaluated.

However, it is recommended to perform experimental tests for determining not

only the elastic properties of the plies, but also the allowable values (strength and

strain limits) and the damage/failure modes of the composite material. In fact, the

mechanical tests are very important, because the mechanical behavior of the real

ply, which was manufactured by using specific values for process parameters

(pressure, temperature, and time), can be investigated in details.

Fig. 3 Stress–strain curves: metals vs. composite materials (Adapted from Magagnin Filho 1996)
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Based on the elastic properties of each ply, it can be calculated the stiffness of

the laminate via Classical Laminate Theory (CLT), for example. By using the

stiffness and the external loadings applied in the laminate, it is calculated the strain

components and curvatures for the Global Coordinate System for the laminate. This

calculus can be named as Macromechanics Analysis, and based on the constitutive

relations, the stress components for each ply for the Global Coordinate System can

be determined. By using the transformation of coordinate systems, it is calculated

not only the strain components, but also the stress components for the Local

Coordinate System.

The next step in the procedure consists on carrying out Failure Analysis. Hence,
the values of the strain or stress components for the Local Coordinate System and

the allowable values determined via mechanical testing are used in the failure

criterion, which is selected considering the mechanical behavior of the composite

material shown during the tests. In case of failure, it is necessary to redesign the

composite structure. Thus, there are many options to do this, such as changing

the stacking sequence of the plies; changing the fibers and/or the polymer matrix;

and increasing the fiber volume fraction. Finally, if the composite structure does not

fail, then it can be manufactured.

External
Loadings

Stiffness of the
Laminate

Macromechanics Analysis

Elastic Properties of the
Ply

Reinforcements & Matrix

Rule of 
Mixture

Micromechanics Analysis

No

Failure Criteria

Fail?

Failure
Analysis

Strain @ 
Laminate

Stress @ 
Laminate

Stress and 
Strains @ Plies

Stress and Strain
Analysis

Mechancial
Testing

Allowable Values
(Strength and Strain Limits)

Experimental 
Analysis

Yes
Re-design

Manufacturing
Process

Fig. 4 Procedure proposal to design and analyze composite structures
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2 Micromechanical Analysis and Testing

Micromechanical analysis can be used for evaluating the mechanical properties for

“one single ply” (stacked plies with the same fiber orientations), which is formed by

the reinforcements (fibers), matrix (polymeric resin), and interface fiber-matrix.

2.1 Matrix, Reinforcements, and Interfaces

The matrix is the first phase in the composition of the composite materials. One of

the most important functions of the matrix is to join the reinforcements. This

guarantees the adequate position and orientation of the fibers such as the loads in

the structure can be transferred to the reinforcements. Moreover, the matrix protects

the fibers against environment effects and damages caused by hand contacts. In

some cases, greater values of flexibility and damping can be obtained due to the

polymeric resin. Then, this is good for attenuation of mechanical vibrations

amplitudes.

The reinforcements are the second phase in the composition of the composite

materials. They have an important mission, which consists on supporting the loads

transferred by the matrix. In the case of long fibers, it is very important the

orientation of the fibers in relation to applied design loadings. The final mechanical

properties of the ply strongly depend on the fiber volume fraction and the polymer

matrix processing, i.e., temperature, time, and pressures used during the

manufacturing process of the composite material. Besides, it must consider the

type of the fibers such as continuous (long) or discontinuous (short) and oriented or

random.

The interface fiber-matrix is the third phase in the composition of the composite

material. This phase is produced during the composite material processing and it is

very important, because it quantifies the degree of interaction between reinforce-

ments and matrix. Thus, in order to have a satisfactory performance by the

composite material, it is necessary that there is a strong adhesion between fibers

and matrix. According to Callister (1985), it is essential to have adhesive forces in

the interface fiber-matrix, because the strength of the composite depends on these

forces, as well.

2.1.1 Polymeric Matrix

Physics and chemical properties of the polymers influence a lot on the properties of

the composite materials. For example, the maximum temperature in service of the

composite material depends on the polymer used as matrix. Therefore, variations in

the chemical formulations can affect the performance of the final composite
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material. It is important to be careful to keep polymers, avoiding, for example,

exposition to UV light.

In general, polymers can be classified as thermosetting or thermoplastic. In fact,

one of the most important differences between both polymers consists on showing

different behavior under heating. Thermoplastic polymers, such as PE, PP, and

nylon, can suffer fusion (physic process) under heating, and the composite structure

can be molded and solidified in a required geometry. Thermosetting polymers, such

as epoxy and phenol resins, suffer cure (chemical process), creating cross-link

between the polymer chains. Table 1 shows a comparison between properties of

thermosetting and thermoplastic polymers.

Nowadays, thermosetting polymers are often applied on composite structures.

However, due to reduced time to manufacture, the usage of thermoplastic polymers

has been increased.

2.1.2 Reinforcements

Figure 5 shows different forms that can be used for reinforcements in the composite

materials. In general, it is verified two relevant categories: fibers and particles.

However, as commented earlier, this chapter is focused on the unidirectional (ply)

and multidirectional (laminate) composite material.

Table 1 Comparison between properties of thermoset and thermoplastic polymers

Property Thermosetting polymer Thermoplastic polymer

Young’s modulus (GPa) 1.3–6.0 1.0–4.8

Tensile strength value (GPa) 0.02–0.18 0.04–0.19

Maximum temperature in service (�C) 50–450 25–230

Aleatory
Orientation

Preferential
Orientation

Unidirectional Bidirectional Aleatory
Orientation

Preferential
Orientation

Laminate Hybrid

Particle ReinforcementsFiber Reinforcements

Composite Materials

Continuous
Fiber

Non-continous
Fiber

Multi LayerSingle Layer

Fig. 5 Types of reinforcements
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In Fig. 6a, the unidirectional arrangement creates 3 (three) planes of symmetry,

which are orthogonal each other (planes 1-2, 1-3, and 2-3). Hence, in this case (for

the ply), it is assumed to have an orthotropic material. By other side, in Fig. 6b, it is

observed multidirectional arrangement, which does not create any plane of sym-

metry. Thus, in this case (for the laminate), it is assumed to have an anisotropic

material in the most of cases.

Table 2 shows some typical data about fibers, which can be found in the

literature and data sheet of fiber manufacturers.

2.2 Rule of Mixture

The mechanical properties of the composite materials strongly depend on the

properties and proportions of the 3 (three) phases (fiber, matrix, and interface) as

well as the conditions of the manufacturing process (temperature, pressure, and

time). The principal objective of the Rule of Mixture is the determination of the

mechanical or thermal properties of the composite material by using

micromechanical analysis. Indeed, this is the simplest analytical approach to

homogenize a ply, which is formed by the 3 (three) phases as shown by Fig. 7a.

x y

0˚
-θ˚

+θ˚
90˚

z
a b

1

2

3

1

2

Fig. 6 (a) Unidirectional fibers: orthotropic material (ply); (b) multidirectional fibers: anisotropic

material (laminate)

Table 2 Mechanical properties of fibers

Fiber Density [106 g/m3] Young’s modulus [GPa] Tensile strength [MPa]

E-glass 2.54 70 2200

Kevlar 49 1.45 130 2900

SiC 2.60 250 2200

Alumina 3.90 380 1400

Boron 2.65 420 3500

Carbon 1.86 380 2700
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And, this homogenized ply is assumed to be an orthotropic material with 3 (three)

planes of symmetry as shown by Fig. 7b.

As the ply is assumed to be an orthotropic material, then it is necessary to

determine 9 (nine) elastic constants:

• E11¼Young’s modulus in the longitudinal direction

• E22¼Young’s modulus in the transversal direction (in-plane of the ply)

• E33¼Young’s modulus in the transversal direction (out-of-plane of the ply)

• G12¼ shear modulus in plane 1-2

• G13¼ shear modulus in plane 1-3

• G23¼ shear modulus in plane 2-3

• ν12¼ Poisson’s ratio in plane 1-2

• ν13¼ Poisson’s ratio in plane 1-3

• ν23¼ Poisson’s ratio in plane 2-3

1

2

3

transversal direction

longitudinal direction

3b

a

2

1

INTERFACE

MATRIX: Polymer

REINFORCEMENT

Fig. 7 (a) Ply: longitudinal and transversal directions; (b) orthotropy planes
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However, the orthotropic unidirectional ply is also transversely isotropic in the

plane 2-3, so: E22¼E33; G12¼G13; and ν12¼ ν13. Thus, now, it is necessary to

determine 6 (six) elastic constants.

The elastic properties obtained via Rule of Mixture are calculated in function of

the fiber and matrix properties as well as their respective volume fractions and

considering following hypotheses:

• The response of ply is linear elastic and there are not residual and thermal

internal stresses.

• Fibers are uniform, homogenous, same diameter, continuous, parallels, and

regularly spaced.

• The matrix is homogenous, isotropic, showing linear elastic response.

• There is a perfect interface fiber-matrix and there are not voids in the material.

• The interface is infinitely fine, being disregard in the calculus.

Considering the volume of the composite Vc and mass of the composite Mc with

fiber volume Vf and fiber mass Mf, matrix volume Vm and matrix mass Mm, and

voids volume Vv, it is written:

Me ¼ Mf þMm ð1Þ

Vc ¼ Vf þ Vm þ Vv ð2Þ

Dividing Eqs. (1) and (2) by Mc and Vc, respectively:

1 ¼ Mf

Mc

þMm

Mc

ð3Þ

1 ¼ Vf

Vc

þ Vm

Vc

þ Vv

Vc

ð4Þ

The mass and volume fraction can be defined as:

mf ¼ Mf

Mc

; mm ¼ Mm

Mc

ð5Þ

vf ¼ Vf

Vc

; vm ¼ Vm

Vc

; vv ¼ Vv

Vc

ð6Þ

Thus, rewriting (3) and (4):

mf þ mm ¼ 1 or

X
Mi

Mc

¼
X

mi ¼ 1

vf þ vm þ vv ¼ 1 or

X
Vi

Vc

¼
X

vi ¼ 1

ð7Þ
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In order to calculate the mass and volume fractions, it is necessary to determine

the composite density ρc. Based in the Eq. (1) or in the Eq. (2), it is written:

ρc ¼
Mc

Vc

¼ 1

Vc

Mc

¼ 1

Vf

Mc

þ Vm

Mc

þ Vv

Mc

ρc ¼
1

Mf

ρfMc

þ Mm

ρmMc

þ vv
ρcVc

¼ 1
mf

ρf
þ mm

ρm
þ vv
ρc

ð8Þ

or:

ρc ¼
Mc

Vc

¼ Mf þMm

Vc

¼ ρfVf þ ρmVm

Vc

ρc ¼ ρfvf þ ρmvm

ð9Þ

The voids volume fraction vv is given by:

vv ¼ 1� vf þ vmð Þ ð10Þ

or, by using Eq. (8), it is obtained:

vv ¼ 1� mf

ρf
þ mm

ρm

� �
ρc experimentalð Þ ð11Þ

Besides, the theoretical density is calculated via:

ρc theoreticalð Þ ¼
1

mf

ρf
þ mm

ρm

ð12Þ

Therefore, Eq. (12) can be written as:

vv ¼ 1� ρc experimentalð Þ
ρc theoreticalð Þ

ð13Þ

After determining the matrix and fiber volume fractions, it is necessary to have

the matrix and fiber properties, such as Young’s moduli of the matrix (Em) and fiber

(Ef), Poisson’s ratios of the matrix (νm) and the fiber (νf). Frequently, these

properties are provided by the manufacturers of the polymers and fibers. Otherwise,

it should be carried out experimental tests in order to obtain these data.
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2.2.1 Longitudinal Young’s Modulus

Considering a loading Pc applied in the direction of the fiber, the strains in the

fibers, matrix, and composite are assumed to be equals (Fig. 8):

εc ¼ εf ¼ εm ð14Þ

Considering elastic response, stresses can be calculated by Hooke’s Law:

σf ¼ Efεf and σm ¼ Emεm ð15Þ

Stresses σf and σm actuate on the Af and Am, respectively. Based on Fig. 8, the

loading Pc can be calculated as follows:

Pc ¼ Pf þ Pm ð16Þ

Moreover:

Pf ¼ σfAf ¼ EfεfAf and Pm ¼ σmAm ¼ EmεmAm ð17Þ

Applying (17) into (16):

Pc ¼ σcAc ¼ σfAf þ σmAm or σc ¼ σf
Af

Ac

þ σm
Am

Ac

ð18Þ

The volume of the fiber can be calculated as follows:

Vf ¼ Af Lf ð19Þ

Pf

Matrix

Fiber

Pc

1

2

σσ cFiber

Matrix

Matrix

c

L+dL

L
Pm

Fig. 8 Ply loaded in the longitudinal direction
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By using the same way, it is calculated matrix and composite volume. Thus,

based on Fig. 8:

Lf ¼ Lm ¼ Lc ð20Þ

Replacing (19) into (18) and considering (20):

σc ¼ σfvf þ σmvm ð21Þ

Since the ply has an elastic behavior, then σc ¼ Ecεc and εc ¼ εf ¼ εm, so:

σc ¼ Ecεc ¼ Efεfvf þ Emεmvm

Ec ¼ Efvf þ Emvm or E11 ¼ Efvf þ Emvm
ð22Þ

Finally, Eqs. (21) and (22) can be rewritten:

σ11 ¼
Xn
i¼1

σivi and E11 ¼
Xn
i¼1

Eivi ð23Þ

It is important to notice that the Rule of Mixture calculates de elastic properties

of the ply by using the weighted average of the volume fractions for n constituents

of the composite material.

2.2.2 Transversal Young’s Modulus

Considering the hypotheses used by Rule of Mixture, if a transversal loading Pc is

applied in the transversal direction, then the actuating stresses in the fibers, matrix,

and composite are assumed to be the same in this direction (Fig. 9):

σc ¼ σf ¼ σm ð24Þ

Thus, the transversal elongation in the ply δc is given by the sum of elongations

of the fibers δf and the matrix δm:

σ

σ

c

Fiber

Matrix

Matrix

c

Fig. 9 Ply loaded in the

transversal direction
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δc ¼ δf þ δm ð25Þ

As ε ¼ δ=t, where t is thickness of the phase or the composite, then:

εctc ¼ εf tf þ εmtm ð26Þ

Since the matrix and fibers volume fraction can be written as:

vf ¼ tf
tc

and vm ¼ tm
tc

ð27Þ

Replacing (27) into (26):

εc ¼ εfvf þ εmvm ð28Þ

As the actuating transversal stresses in the fibers are equal in the matrix, then:

εf ¼ σc
Ef

and εm ¼ σc
Em

ð29Þ

Replacing (29) into (28):

1

Ec

¼ 1

Ef

vf þ 1

Em

vm ð30Þ

Finally, Eqs. (28) and (30) can be rewritten:

ε22 ¼
Xn
i¼1

εivi and E22 ¼ 1Xn

i¼1

1

Ei
vi

ð31Þ

Due to the transversal isotropy of the ply, the Transversal Young Modulus in

the ply plane (E22) is equal to the Transversal Young Modulus out of the ply

plane (E33).

2.2.3 Shear Modulus

For the determination of the shear modulus of the ply, it is assumed that the shear

strains are linear and the actuating stresses are the same in the fibers and matrix

(Fig. 10).

The total displacement of the ply uc is calculated by the sum of the displacements

of the fibers uf and the matrix um, thus:

uc ¼ uf þ um or uc ¼ tfγf þ tmγm ð32Þ
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where γf is the angle for fibers and γm is the angle for the matrix. Applying (27)

into (32):

uc ¼ vf tcγf þ vmtcγm ð33Þ

γ12 for the ply can be calculated as follows:

γ12 ¼
uc
tc

ð34Þ

Applying (34) into (33):

γ12 ¼ vfγf þ vmγm ð35Þ

Based on the linear hypotheses, then:

γf ¼
τf
Gf

, γm ¼ τm
Gm

and γ12 ¼
τ12
G12

ð36Þ

Considering that the actuating shear stresses in the fibers, matrix, and composite

are equal and replacing Eq. (36) into Eq. (35), it is calculated the shear modulus of

the ply in the plane 1-2:

1

G12

¼ vf
1

Gf

þ vm
1

Gm

¼
Xn
i¼1

vi
Gi

ð37Þ

Due to the transversal isotropy of the ply, it is assumed that G12 is equal to G13

(shear modulus of the ply in the plane 1-3). However, G23 (shear modulus of the ply

in the plane 2-3) is much more complicated to calculate, and, normally, it is

required experimental tests.

Fiber

Matrix

fu

Matrixtm

tf

m

uc

f

γ

γ

γ

m

2
mu

2
mu

Fig. 10 Ply deformed due

to shear loading
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2.2.4 Poisson’s Coefficient

If a normal stress σc is applied in the longitudinal direction of the fibers, there

will be a contraction of the ply in the transversal direction (Fig. 11), which is

calculated by:

u c
2 ¼ u f

2 þ um
2 ð38Þ

Contractions of the fibers and matrix can be calculated via Poisson’s ratios:

νm ¼ � εm2
εm1

¼ � um
2 =tm
εm1

or um
2 ¼ �νmε

m
1 tm

νf ¼ � ε f2
ε f1

¼ � u f
2=tf
ε f1

or u f
2 ¼ �νfε

f
1tf

ð39Þ

where νm and νf are Poisson’s ratio for fibers and matrix, respectively. And, tf and tm
are thickness of the fibers and matrix, respectively.

Replacing (39) into (38):

u c
2 ¼ �νmu

m
1 � νfu

f
1 ¼ � νmε

m
1 tm þ νfε

f
1tf

� � ð40Þ

Considering that the strains in the fibers, matrix, and composite are equal, then:

εm1 ¼ ε f1 ¼ ε c1 ¼ ε11 ð41Þ

Applying (41) into (40) and operating tc (thickness of the ply) in the both sides of
the equation:

tcu
c
2 ¼ � νmtm þ νf tfð Þtcε11 ð42Þ

or:

u c
2 ¼ � νm

tm
tc
þ νf

tf
tc

� �
tcε11 ð43Þ

1

2

cFiber

Matrix

Matrix

σ σc

2
1u

2
2u

Fig. 11 Poisson’s effect
in the ply
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Since the fiber and matrix volume fraction can be written as:

vf ¼ tf
tc

and vm ¼ tm
tc

ð44Þ

Thus, Eq. (43) can be rewritten:

u c
2

tc
¼ � νmvm þ νfvfð Þε11 ¼ ε22 ð45Þ

The Poisson’s ratio ν12 calculated in the ply plane (plane 1-2) is given by:

ν12 ¼ �ε22
ε11

¼ νmvm þ νf vf ¼
Xn
i¼1

νivi ð46Þ

Due to the transversal isotropy of the ply, it is assumed that ν12 is equal to ν13
(Poisson’s ratio of the ply in the plane 1-3). However, ν23 (Poisson’s ratio of the ply
in the plane 2-3) is much more complicated to calculate, and, normally, it is

required experimental tests.

2.3 Mechanical Testing

Regarding the hypothesis used in the Rule of Mixture, sometimes, the values of

mechanical properties obtained by this approach are very different when compared

to the experimental values. This occurs because different effects influence on the

final properties of composite materials. For example, parameters of material

processing (time, pressure and temperature) are very important, because, a com-

posite plate made of a kind of fiber, matrix, and volume fractions can show totally

different properties than other composite plate with the same fiber, matrix, and

volume fractions of phases manufactured on different conditions. Therefore, it is

almost impossible to avoid experimental tests for determination of elastic proper-

ties, strength and strain limit values of composite materials.

For an isotropic material, a tensile test in one direction can provide: Young

Modulus, Poisson’s ratio, strength values, and strain limits. However, for

orthotropic materials, it is necessary 6 (six) experimental tests as shown by Table 3.

Moreover, the experimental tests provide the stress–strain curves, which helps to

identify different mechanisms in the ply, such as micro-damages or macro-failures

(delamination). This will be very important to select a failure criterion for designing

a composite structure. However, to carry out experimental tests on composite

materials is a hard task, because there are many particularities:

1. The experimental tests are based on the concepts of the basic mechanic theory,

which are applied for isotropic, elastic, homogeneous materials. However,

composite materials are anisotropic, heterogeneous, and inelastic. Thus, the

application of these concepts is not direct.
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2. During the tests, many difficulties can take place, such as:

– Influence of end-effects, which produces regions with stress concentration

close to the edges of the specimen

– How to apply acceptable load levels without creating premature fails in the

material

– How to determine the correct dimensions of the specimen (mainly thickness),

regarding the heterogeneity

3. Problems caused by the anisotropy:

– Increase the problem related to the end-effects

– Promote premature fails in regions close to the clamps

– Promote premature delaminations close to the edge of the specimen

4. Experimental tests of composite materials are expensive and take long time,

mainly the manufacturing of the specimens.

5. For some cases, traditional standards (ASTM, ISO, DIN, etc.) work, but for

others, these standards are completely inappropriate.

In fact, in the literature, different standards to perform experimental tests in

composite materials can be found (Whitney et al. 1984). However, it is better to use

these standards as a guide to carry out the tests, because, for some composite

materials, it is necessary to change some parameters specified in the standard,

such as the dimensions and/or test speed.

3 Macromechanical Analysis

In the macromechanical analysis, it is considered not only the ply properties, but

also the stacking sequence of the laminate.

Table 3 Experimental testing for orthotropic materials

Mechanical testing

Elastic

properties

Strength

value

Strain

limit

(1) Tension 0�: tension in the longitudinal direction E11; ν12 (¼ν13) XT X
0
T

(2) Tension 90�: tension in the normal direction. E22 (¼E33) YT Y
0
T

(3) Compression 0�: compression in the longitudinal

direction

– XC X
0
C

(4) Compression 90�: compression in the normal

direction

– YC Y
0
C

(5) Shear in plane 1-2: shear loading in the plane 1-2 G12 (¼G13) S12 S
0
12

(6) Shear in plane 2-3: shear loading in the plane 2-3 G23 – –
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3.1 Classical Laminate Theory

First, it is important to assume a code to identify the stacking sequence used in the

laminate. In this chapter, it is used the SLC (Standard Laminate Code), which
requires:

• Orientation of each ply, considering the global coordinate system (x�y�z).
• Number of the plies for a given orientation.

• Stacking sequence of the plies to obtain the laminate.

For example, a laminate with orientation angles for fibers equal 0�, 90�, 90�,
and 0� can be represented by different ways: [0/90/90/0]; [0/902/0]; [0/90]s;

[0/90/90/0]T. The subscripts of the angles specify the number of the plies with

fibers oriented in that direction. The subscript S indicates symmetry of the laminate,

and T shows that the laminate has the total number of the plies used to manufacture

the structure.

The composite structure [0/90/90/0] is a symmetric laminate, because the plane,

which split the thickness in two parts is like a mirror, i.e., the laminate is symmetric

in relation to its medium plane. Other example is the laminate in Fig. 12, which is

represented by [03/902/45/�453/�453/45/902/03]T or [03/902/45/�453]s.

Beyond symmetric laminates, there are the antisymmetric laminates and the

asymmetric laminates. However, in the literature, it can be found a large number of

classifications for laminates. Regarding antisymmetric laminates, the plies are

stacked in order to create antisymmetry in relation of medium plane. By one side,

a laminate with orientation angles of fibers in 0�, 90�, 0�, and 90� can be considered
antisymmetric. By the other side, an asymmetric laminate has a random stacking

sequence, and there is none rule of stacking related to the medium plane.

At this moment, there is a question: How to determine the laminate stiffness

considering the plies stacked in different directions?

One approach to do this consists on using the CLT, which is based on Theory of

Elasticity. Therefore, considering a solid (continuous media) loaded, this body

produces internal stresses in order to equilibrate the applied loadings (Fig. 13).

A point in the body has the 3D stress state represented by the following stress

tensor:

Top

Medium Plane

0°

0°
0°
90°
90°
45°

-45°
-45°
-45°

Fig. 12 Symmetric

laminate
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σ ¼
σxx τxy τxz
τyx σyy τyz
τzx τzy σzz

2
4

3
5 ð47Þ

By using the equilibrium equations of momentum, it is obtained:

τxy ¼ τyx and τxz ¼ τzx and τyz ¼ τzy ð48Þ

Thus, the stress tensor is symmetric and it can be represented mathematically by

a vector with 6 (six) positions:

σ ¼

σx
σy
σz
τyz
τzx
τxy

2
6666664

3
7777775

or σ ¼

σ1
σ2
σ3
σ23
σ31
σ12

2
6666664

3
7777775

or σ ¼

σ1
σ2
σ3
σ4
σ5
σ6

2
6666664

3
7777775

ð49Þ

An analog approach can be used for the strain tensor:

ε ¼

εxx
γxy
2

γxz
2

γyx
2

εyy
γyz
2

γzx
2

γzy
2

εzz

2
6666664

3
7777775

ð50Þ

Thus, the strain tensor is also symmetric and it can be represented mathemati-

cally by a vector with 6 (six) positions:

Fig. 13 (a) Solid loaded; (b) 3D stress state
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ε ¼

εxx

εyy

εzz

γyz=2

γzx=2

γxy=2

2
666666666664

3
777777777775

or ε ¼

εx

εy

εz

εyz

εzx

εxy

2
666666666664

3
777777777775

or ε ¼

ε1

ε2

ε3

ε23

ε31

ε12

2
666666666664

3
777777777775

or ε ¼

ε1

ε2

ε3

ε4

ε5

ε6

2
666666666664

3
777777777775

ð51Þ

The constitutive equation relates the stress and strain vectors. For anisotropic

materials, this relation is given by the Hooke’s Law Generalized as follows (for

index notation):

σi ¼ Dijεj i, j ¼ 1, 2, . . . , 6

For matrix notation, it is observed the constitutive tensor D with 36 (thirty six)

components:

σ1
σ2
σ3
σ4
σ5
σ6

2
6666664

3
7777775
¼

D11 D12 D13 D14 D15 D16

D21 D22 D23 D24 D25 D26

D31 D32 D33 D34 D35 D36

D41 D42 D43 D44 D45 D46

D51 D52 D53 D54 D55 D56

D61 D62 D63 D64 D65 D66

2
6666664

3
7777775

ε1
ε2
ε3
γ4
γ5
γ6

2
6666664

3
7777775

ð52Þ

However, it is shown that the constitutive tensor D is symmetric (Dij ¼ Dji) and,

in fact, the number of components is equal to 21 (twenty-one). Moreover,

D represents the stiffness of the material and D�1 represents the compliance.

Thus, D can be written in function of the material properties of composite phases

(matrix, reinforcements, and interface).

As commented earlier, a ply of the laminate is assumed to be orthotropic

material. Then, this ply has 3 (three) planes of symmetry. Also, an orthotropic

material does not show coupling between normal stresses and shear strains (γ), as
well as between shear stresses and normal strains (ε). Thus, the tensor D for this

type of material has only 9 (nine) components:

D ¼

D11 D12 D13 0 0 0

D12 D22 D23 0 0 0

D13 D23 D33 0 0 0

0 0 0 D44 0 0

0 0 0 0 D55 0

0 0 0 0 0 D66

2
6666666664

3
7777777775

ð53Þ
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By analogy, the tensor C has 9 (nine) components:

ε1
ε2
ε3
γ4
γ5
γ6

2
6666664

3
7777775
¼

C11 C12 C13 0 0 0

C21 C22 C23 0 0 0

C31 C32 C33 0 0 0

0 0 0 C44 0 0

0 0 0 0 C55 0

0 0 0 0 0 C66

2
6666664

3
7777775

σ1
σ2
σ3
σ4
σ5
σ6

2
6666664

3
7777775

ð54Þ

C11 ¼ 1

E11

; C21 ¼ �ν12
E11

; C31 ¼ �ν13
E11

C12 ¼ �ν21
E22

; C22 ¼ 1

E22

; C32 ¼ �ν23
E22

C13 ¼ �ν31
E33

; C23 ¼ �ν32
E33

; C33 ¼ 1

E33

C44 ¼ 1

G23

; C55 ¼ 1

G31

; C66 ¼ 1

G12

Considering the symmetry of the tensor C, then:

νij
Ei

¼ νji
Ej

ð55Þ

The matrix inverse of compliance is the stiffness, and for composites, this matrix

will be named by Q:

σ1
σ2
σ3
σ4
σ5
σ6

2
6666664

3
7777775
¼

Q11 Q12 Q13 0 0 0

Q21 Q22 Q23 0 0 0

Q31 Q32 Q33 0 0 0

0 0 0 Q44 0 0

0 0 0 0 Q55 0

0 0 0 0 0 Q66

2
6666664

3
7777775

ε1
ε2
ε3
γ4
γ5
γ6

2
6666664

3
7777775

ð56Þ

where:
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Q11 ¼
E11 1� ν23ν32ð Þ

Δ

Q22 ¼
E22 1� ν31ν13ð Þ

Δ

Q33 ¼
E33 1� ν12ν21ð Þ

Δ
Q44 ¼ G23

Q55 ¼ G13

Q66 ¼ G12

Q12 ¼
E11 ν21 þ ν31ν23ð Þ

Δ
¼ E22 ν12 þ ν32ν13ð Þ

Δ

Q13 ¼
E11 ν31 þ ν21ν32ð Þ

Δ
¼ E22 ν13 þ ν12ν23ð Þ

Δ

Q23 ¼
E22 ν32 þ ν12ν31ð Þ

Δ
¼ E33 ν23 þ ν21ν13ð Þ

Δ

Δ ¼ 1� ν12ν21 � ν23ν32 � ν31ν13 � 2ν21ν32ν13

However, for a ply reinforced by fibers in one direction, it is considered a

transversally isotropic material, so: E22¼E33; G13¼G23 and ν12¼ ν13. Besides,
the thickness of the ply is very thin compared to the length and the width, then it is

assumed plane stress state (Fig. 14).

Thus, the Hooke’s Law can be written by using the Reduced Stiffness Stress:

σ1
σ2
σ6

2
4

3
5 ¼

Q11 Q12 0

Q21 Q22 0

0 0 Q66

2
4

3
5 ε1

ε2
γ6

2
4

3
5 ð57Þ

where:

Q11 ¼
E11

1� ν12ν21
¼ E2

11

E11 � ν212E22

Q22 ¼
E22

1� ν12ν21
¼ E11E22

E11 � ν212E22

Q66 ¼ G12

Q12 ¼ Q21 ¼
ν12E22

1� ν12ν21
¼ ν12E11E22

E11 � ν212E22

ν12
E11

¼ ν21
E22

yx

y

σ

σ
σ

σ

σ

σ

σ

σ

x

xy

y

yx

xy

x

2

)θ

1

dy

dx

y

x

Fig. 14 Thin ply of

composite material: plane

stress state. Local

coordinate system (1-2) and

Global coordinate system

(x�y)
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Considering the axes 1 and 2 and that 1 is aligned to the fibers and 2 is normal to

the fibers, it can be used the transformation matrix of coordinates in order to write

the stress components in Local or Global coordinate systems:

σ1
σ2
σ12

2
4

3
5
Local

¼ T½ �
σx
σy
σxy

2
4

3
5
Global

or

σx
σy
σxy

2
4

3
5
Global

¼ T½ ��1
σ1
σ2
σ12

2
4

3
5
Local

ð58Þ

where:

T½ � ¼
m2 n2 2mn
n2 m2 �2mn

�mn mn m2 � n2ð Þ

2
4

3
5; m ¼ cos θð Þ and n ¼ sin θð Þ

By analogy, the strain relations can be given by:

ε1
ε2
γ6=2

2
4

3
5
Local

¼ T½ �
εx
εy
γxy=2

2
4

3
5
Global

or

εx
εy
γxy=2

2
4

3
5
Global

¼ T½ ��1
ε1
ε2
γ6=2

2
4

3
5
Local

ð59aÞ

Replacing (58) and (59a) into (57), it is obtained the constitutive equation for the

Global coordinate system by using the Transformed Reduced Stiffness Matrix:

σx

σy

σxy

2
64

3
75
Global

¼
Q11 Q12 Q16

Q12 Q22 Q26

Q16 Q26 Q66

2
64

3
75

εx

εy

γxy

2
64

3
75
Global

ð59bÞ

or:

Q11 Q12 Q16

Q12 Q22 Q26

Q16 Q26 Q66

2
64

3
75 ¼ T½ ��1

Q11 Q12 Q16

Q12 Q22 Q26

Q16 Q26 Q66

2
64

3
75 T½ � ð59cÞ

Thus, the matrix components Q
� �

are given by:

Q11 ¼ Q11m
4 þ 2m2n2 Q12 þ 2Q66ð Þ þ Q22n

4

Q12 ¼ Q11 þ Q22 � 4Q66ð Þn2m2 þ Q12 n4 þ m4ð Þ
Q22 ¼ Q11n

4 þ 2 Q12 þ 2Q66ð Þn2m2 þ Q22m
4

Q16 ¼ Q11 � Q12ð Þnm3 þ Q12 � Q22ð Þn3m� 2mn m2 � n2ð ÞQ66

Q26 ¼ Q11 � Q12ð Þn3mþ Q12 � Q22ð Þnm3 þ 2mn m2 � n2ð ÞQ66

Q66 ¼ Q11 þ Q22 � 2Q12 � 2Q66ð Þn2m2 þ Q66 n4 þ m4ð Þ

ð60Þ
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Therefore, Q has the influence of the orientation of the fiber in the ply (Fig. 15).

It is verified that the orientation of the fiber influences in the mechanical properties

and, consequently, in the ply stiffness, which will influence in the laminate stiffness.

Considering a laminate with h thickness and N plies, where the top of each k ply
is distant hk from the medium plane of the laminate as show by Fig. 16a, it will be

calculated its stiffness by using CLT.

In this laminate, Membrane Loadings (Nx; Ny; and Nxy), Shear Forces (Qx and

Qy), Bending Moments (Mx and My), and Torsion Moments (Mxy) can actuate as

shown by Fig. 16b. These loadings can be calculated in function of the intern

stresses of the laminate as follows:

Nx

Ny

Nxy

Qx

Qy

2
66664

3
77775 ¼

ðh=2
�h=2

σx
σy
σxy
σxz
σxy

2
66664

3
77775dz N=m½ � ð61Þ
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Fig. 15 Influence of the fiber orientation: (a) in the elastic properties (Jang 1994); (b) in the ply

stiffness (Hull 1981)
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Fig. 16 (a) Laminate structure; (b) membrane loadings, shear forces, and bending moments
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Mx

My

Mxy

2
4

3
5 ¼

ðh=2
�h=2

σx
σy
σxy

2
4

3
5zdz Nm=m½ � ð62Þ

Therefore, it is necessary to obtain the intern stresses of the laminate, which can

be calculated by using CLT. And, this theory is based on the Kirchhoff’s and other

hypotheses, as well.

• The laminate is considered plane (as a plate) and the medium plane (medium

surface), which split the laminate, is in the middle of the laminate and contains

the plane x�y.
• The plies are perfectly linked and there is not relative displacement between

plies, so the displacements are continuous.

• The matrix, which is between two plies, is very thin and it is not deformed by

shear stress.

• The laminate is thin and Kirchhoff’s kinematic hypotheses are applied. There-

fore, these promotes εxz¼ εyz¼ εz¼ 0 and σxz, σyz, σz<< σxy, σy, σx.

It is important to highlight that the Kirchhoff’s kinematic hypotheses do not

make account the transversal shear stress (Fig. 17). Hence, the transversal sections

of the medium plane, which were plane and normal to the medium plane, remain

plane and normal to the medium plane after the applied loading. Therefore:

Fig. 17 Kirchhoff’s kinematic hypotheses (Keunings 1992)
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εxz¼ εyz¼ εz¼ 0. However, the stresses σxz, σyz, and σz are very important for

delamination analyses. Moreover, if the structure is thick, the structural analyses

should be affected in case of the transversal shears are not considered. Thus, for

thick laminates or delamination analyses, it is necessary to use other kinematic

hypotheses such as Mindlin-Reissner or Higher-order Shear deformation Theory—

HST. However, in this chapter, it is considered mainly thin laminates, i.e., the

relation length (or width) per thickness is minimum higher than 10.

Considering Fig. 17, for the point C with distance equal to zc from the medium

plane, the displacement uc in the x direction is given by:

uc ¼ u0 � zcβ ð63Þ

Thus:

β ¼ ∂w0

∂x
ð64Þ

Therefore, the displacements u and v in the directions x and y, respectively, are
given by:

u x; y; zð Þ ¼ u0 x; yð Þ � z
∂w0 x; yð Þ

∂x
ð65Þ

v x; y; zð Þ ¼ v0 x; yð Þ � z
∂w0 x; yð Þ

∂y
ð66Þ

where:

uo and vo are displacements measured in the medium plane.

w is the displacement in z direction:

w x; y; zð Þ ¼ w0 x; yð Þ ð67Þ

Thus, the strain for k ply can be calculated as follows:

εx x; y; zð Þ ¼ ∂u0
∂x

� z
∂2

w0

∂x2
¼ εx0 þ zKx ð68Þ

εy x; y; zð Þ ¼ ∂v0
∂y

� z
∂2

w0

∂y2
¼ εy0 þ zKy ð69Þ

2εxy x; y; zð Þ ¼ ∂u0
∂y

þ ∂v0
∂x

� 2z
∂2

w0

∂x∂y
¼ 2εxy0 þ zKxy

or γxy ¼ γxy0 þ zKxy

ð70Þ

where:
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εxo, εyo, and εxyo are strains related to extensional and distortional deformation in

plane x�y.
It is observed that Kirchhoff’s kinematic hypotheses results on a linear variation

of the displacements and strains along the thickness. Hence, for a laminate, the

strain vector can be written for the Global Coordinate System (x�y) as follows:

ε½ �Global ¼ ε0½ �Global þ z K½ �Global ð71Þ

Therefore, the stress distribution varies from one ply to another along the

thickness. Replacing (71) into (59b), it is calculated the stress vector for each

k ply for the Global Coordinate System:

σx

σy

σxy

2
664

3
775

k

Global

¼
Q11 Q12 Q16

Q12 Q22 Q26

Q16 Q26 Q66

2
664

3
775
k εx0

εy0

γxy0

2
664

3
775
Global

þ z

Q11 Q12 Q16

Q12 Q22 Q26

Q16 Q26 Q66

2
664

3
775
k

Kx

Ky

Kxy

2
664

3
775
Global

ð72Þ

Considering the compact form:

σ½ � kGlobal ¼ Q
� � k

Global
ε0½ �Global þ z K½ �Global

� � ð73Þ

where:

[εo]¼ strains

[K]¼ curvatures

k¼ ply in the k position.

Replacing (73) into (61) and into (62):

NX

NY

NXY

2
4

3
5 ¼

Xn
K¼1

ðhK
hK�1

Q
� �

K

εx0
εy0
γxy0

2
4

3
5dzþ ðhK

hK�1

Q
� �

K

Kx

Ky

Kxy

2
4

3
5zdz

8<
:

9=
; ð74Þ

MX

MY

MXY

2
4

3
5 ¼

Xn
K¼1

ðhK
hK�1

Q
� �

K

εx0
εy0
γxy0

2
4

3
5zdzþ ðhK

hK�1

Q
� �

K

Kx

Ky

Kxy

2
4

3
5z2dz

8<
:

9=
; ð75Þ

The matrix Q
� �

remains constant for each ply, because it is only function of the

elastic properties of plies and fiber orientation in each ply. The strain components

[εo] and the curvature [K] of the laminate remains constant for each ply, also.

Therefore, Eqs. (74) and (75) can be written as follows:
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N½ � ¼ A½ � ε0½ � þ B½ � K½ � ð76aÞ
M½ � ¼ B½ � ε0½ � þ D½ � K½ � ð76bÞ

where:

A½ � ¼
Xn
k¼1

ðhK
hK�1

Q
� �

K

dz¼membrane stiffness matrix.

B½ � ¼
Xn
k¼1

ðhK
hK�1

Q
� �

K

zdz¼ coupling stiffness matrix.

D½ � ¼
Xn
k¼1

ðhK
hK�1

Q
� �

K

z2dz¼ bending/torsion stiffness matrix.

or:

N½ �
M½ �

" #
¼ A½ � B½ �

B½ � D½ �

" #
εo½ �
K½ �

" #
ð77Þ

If the coupling matrix [B] is not null, then membrane loadings can cause not only

normal and shear strains, but also curvatures Kx, Ky, and Kxy. By analogy, moments

loadings can cause not only curvatures Kx, Ky, and Kxy, but also normal and shear

strains. By the other side, if the coupling matrix [B] is null, these effects cannot

occur. In fact, matrix [B] is null for symmetric laminates, and this is easily proved

by verifying that stiffness part related to z positive values are canceled by stiffness

part related to z negative values.
In case of thick laminate analysis, it is necessary to consider the shear forces (Qx

and Qy). Thus, one simple approach consists on assuming parabolic distribution

along of the laminate thickness:

f zð Þ ¼ 5

4
1� z

h=2

� �2
" #

ð78Þ

Integrating this equation, it is obtained:

Qx ¼ A55γxz þ A45γyz
� � ð79Þ

Qy ¼ A45γxz þ A44γyz
� � ð80Þ

where:

Aij ¼ 5

4

Xn
k¼1

Qij

� �
k
hk � hk�1 � 4

3
h3k � h3k�1

� � 1
h2

� 	
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Therefore:

Nx

Ny

Nxy

Mx

My

Mxy

2
6666666664

3
7777777775
¼

A11 A12 A16 B11 B12 B16

A12 A22 A26 B12 B22 B26

A16 A26 A66 B16 B26 B66

B11 B12 B16 D11 D12 D16

B12 B22 B26 D12 D22 D26

B16 B26 B66 D16 D26 D66

2
6666666664

3
7777777775

εx0

εy0
γxy0
Kx

Ky

Kxy

2
6666666664

3
7777777775

ð81Þ

Qy

Qx

� 	
¼ A44 A45

A45 A55

� 	
γyz
γxz

� 	
ð82Þ

It is concluded that for thin laminates, it should be used only Eq. (81), and, for

thick laminates, it is necessary to use at least Eq. (82), as well.

In terms of design, the equations above should be written in inverse format,

because, normally, the loadings are provided and it is required to calculate the

strains and curvatures. However, these values are obtained for each ply, considering

the Global Coordinate System, and, now, it is necessary to calculate these values for

Local Coordinate System.

3.2 Strain and Stress Analyses in the Ply

The determination of stress and strain components for each ply for the Local

Coordinate System is very important to evaluate the failure or not of a laminate,

considering a load case.

The failure mechanisms and failure criteria will be addressed in the next section,

but the criteria are normally verified in each ply of the laminate considering the

stress and strain components for the Local Coordinate System (1-2). Thus, in order

to obtain these values, it is initially written Eq. (76a) in the following format:

ε0½ � ¼ A½ ��1 N½ � � A½ ��1 B½ � K½ � ð83Þ

Replacing (83) into (76b), there is:

M½ � ¼ B½ � A½ ��1 N½ � � B½ � A½ ��1 B½ � � D½ �
n o

K½ � ð84Þ

Equations (83) and (84) can be combined:

εo½ �
M½ �

� 	
¼ A*

� �
B*
� �

C*
� �

D*
� �� 	

N½ �
K½ �

� 	
ð85Þ

where:
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A*
� �¼ A�1

� �
B*
� �¼ � A�1

� �
B½ �

C*
� �¼ B½ � A�1

� � ¼ � B*
� �T

D*
� �¼ D½ � � B½ � A�1

� �
B½ �

Thus, Eqs. (83) and (84) can be written as follows:

ε0½ � ¼ A*
� �

N½ � þ B*
� �

K½ � ð86Þ

M½ � ¼ C*
� �

N½ � þ D*
� �

K½ � ð87Þ

Solving the system above for the curvatures K:

K½ � ¼ D*
� ��1

M½ � � D*
� ��1

C*
� �

N½ � ð88Þ

Replacing Eq. (88) into (86):

ε0½ � ¼ A*
� �� B*

� �
D*
� ��1

C*
� �n o

N½ � þ B*
� �

D*
� ��1

M½ � ð89Þ

Combining Eqs. (88) and (89), it is obtained the system of equation completely

inverted:

εo½ �
K½ �

" #
¼ A0½ � B0½ �

C0½ � D0½ �

" #
N½ �
M½ �

" #
ð90Þ

where:

A0½ � ¼ A*
� �� B*

� �
D*
� ��1

C*
� � ¼ A*

� �þ B*
� �

D*
� ��1

B*
� �T

B0½ � ¼ B*
� �

D*
� ��1

C0½ � ¼ � D*
� ��1

C*
� � ¼ B0½ �T ¼ B0½ �

D0½ � ¼ D*
� ��1

Hence, it is calculated the strain components [εo] and the curvatures [K] of the
laminate for the Global Coordinate System, considering a loading state. Based on

these values, it is calculated the stress components for each k ply for the Global

Coordinate System (Fig. 18):
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σ½ � kGlobal ¼ Q
� � k

Global
ε0½ �Global þ z K½ �Global

� � ð91Þ

By using the equations for coordinate transformation, it is determined the stress

and strain components for the Local Coordinate System:

σ1
σ2
σ12

2
4

3
5

K

Local

¼ T½ �
σx
σy
σxy

2
4

3
5

k

Global

and

ε1
ε2

γ6=2

2
4

3
5

k

Local

¼ T½ �
εx
εy

γxy=2

2
4

3
5

k

Global

ð92Þ

where:

T½ � ¼
m2 n2 2mn
n2 m2 �2mn

�mn mn m2 � n2ð Þ

2
4

3
5; m ¼ cos θð Þ and n ¼ sen θð Þ

Hence, the calculation of the stress and strain components for the Local Coor-

dinate System can be summarized in 7 (seven) steps:

Step 1: Determine the elastic properties of each ply (E11; E22; G12; and ν12).

Step 2: Calculate the Reduced Stiffness Matrix for each ply in relation of Local

Coordinate System.

Q½ �Local ¼
Q11 Q12 0

Q21 Q22 0

0 0 Q66

2
4

3
5

where:

Fig. 18 Distribution of stress along of thickness
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Q11 ¼
E11

1� ν12ν21
¼ E2

11

E11 � ν212E22

Q22 ¼
E22

1� ν12ν21
¼ E11E22

E11 � ν212E22

Q66 ¼ G12

Q12 ¼ Q21 ¼
ν12E22

1� ν12ν21
¼ ν12E11E22

E11 � ν212E22

ν12
E11

¼ ν21
E22

Step 3: Calculate the Transformed Reduced Stiffness Matrix for each ply in relation

of Local Coordinate System.

Q
� �

k
¼

Q11 Q12 Q16

Q12 Q22 Q26

Q16 Q26 Q66

2
64

3
75

where:

Q11 ¼ Q11m
4 þ 2m2n2 Q12 þ 2Q66ð Þ þ Q22n

4

Q12 ¼ Q11 þ Q22 � 4Q66ð Þn2m2 þ Q12 n4 þ m4ð Þ
Q22 ¼ Q11n

4 þ 2 Q12 þ 2Q66ð Þn2m2 þ Q22m
4

Q16 ¼ Q11 � Q12ð Þnm3 þ Q12 � Q22ð Þn3m� 2mn m2 � n2ð ÞQ66

Q26 ¼ Q11 � Q12ð Þn3mþ Q12 � Q22ð Þnm3 þ 2mn m2 � n2ð ÞQ66

Q66 ¼ Q11 þ Q22 � 2Q12 � 2Q66ð Þn2m2 þ Q66 n4 þ m4ð Þ
m¼ cos θð Þ and n ¼ sen θð Þ

Step 4: Calculate matrixes A, B, and D in relation of Global Coordinate System.

A½ � ¼
Xn
k¼1

Q
� �

k
hk � hk�1ð Þ

B½ � ¼ 1

2

Xn
k¼1

Q
� �

k
h2k � h2k�1

� �

D½ � ¼ 1

3

Xn
k¼1

Q
� �

k
h3k � h3k�1

� �
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Step 5: Calculate the strain components [εo] and the curvatures [K] of the laminate

for the Global Coordinate System.

εo½ �
K½ �

" #
Global

¼ A0½ � B0½ �
C0½ � D0½ �

" #
N½ �
M½ �

" #

where:

A0½ � ¼ A*
� �� B*

� �
D*
� ��1

C*
� � ¼ A*

� �þ B*
� �

D*
� ��1

B*
� �T

B0½ � ¼ B*
� �

D*
� ��1

C0½ � ¼ � D*
� ��1

C*
� � ¼ B0½ �T ¼ B0½ �

D*
� �¼ D*

� ��1

Step 6: Calculate the stress components for each k ply for the Global Coordinate

System.

σ½ � kGlobal ¼ Q
� � k

Global
ε0½ �Global þ z K½ �Global

� �
Step 7: Calculate the stress components for each k ply for the Local Coordinate

System.

σ1
σ2
σ12

2
4

3
5
Local

¼ T½ �
σx
σy
σxy

2
4

3
5
Global

where:

T½ � ¼
m2 n2 2mn
n2 m2 �2mn

�mn mn m2 � n2ð Þ

2
4

3
5

These stress or strain components will be used in the Failure Criteria, and the

engineer will be able to evaluate if the composite structure will fail or not under a

specific load case.

4 Failure Analysis

Based on the stress or strain components values for each ply for the Local Coordi-

nate System, it is carried out the failure analysis of the laminate. However, it is

necessary to know previously the different failure modes, which can be found in the

composite structures. Thus, based on the failure modes, which can occur, the failure

criterion should be selected.
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4.1 Laminate Failure Modes

In this chapter, the failure/damage mechanisms are classified in two types:

• Intralaminar damage: occur inside the ply;
• Interlaminar failure: occur between plies.

The intralaminar damages correspond to the damage in the matrix, fibers, or

interface fiber-matrix. The interlaminar failures correspond to the delaminations

between plies, which consists on the separation of plies (Fig. 19).

4.1.1 Intralaminar Damage

The intralaminar damages can be divided in three different mechanisms:

• Mechanism of fiber damage.

• Mechanism of damage damage.

• Mechanism of interface matrix-fiber damage.

The mechanism of fiber damage depends on different aspects, such as diameter

and length of fibers, volume fraction of fibers, and orientation of fibers. However,

the damage modes are also related to the applied loadings. For examples, compres-

sion loading can produce fails in the fibers through micro-buckling or shearing

(Fig. 20).

Tension loading can promote the rupture of the fibers and depends on the level of

the adhesion between fibers and polymer matrix. In other words, if the loading,

which acts in the matrix, is transferred to the fibers in an efficient way, then the

fibers can fracture, depending on the level of load.

The matrix damage modes depend on the physic-chemical properties of the

polymer, which can be fragile or ductile and have linear elastic or viscoelastic

response. Moreover, this behavior depends on the environment temperature. How-

ever, in general way, the rupture of the matrix occurs close to a fractured fiber or

close to a void created during the material processing. These regions show stress

Fig. 19 Damage and failure mechanisms
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concentration, which causes failure of the matrix. Therefore, under tension loading,

the damage process in the matrix, as shown by Fig. 21a, starts close to micro-

failures (1), then propagates (2) and, finally, coalesces (3) until creating a cata-

strophic macro-failure (4). By the other side, under compression loading, the matrix

can fail by shearing (Fig. 21b).

For the ply under shear loading, the damage mode will occur as shown by

Fig. 22a. As it is observed, this damage mode depends mainly on the polymer

matrix behavior, which can be non-linear due to inelastic strains.

The damage process of the ply is strongly influenced by the orientation of the

fibers. For example, the ply can show a linear response when the loading is applied

in the direction 1 (0�) or in the direction 2 (90�) due to the relevance of normal

stresses. However, for the loadings applied close to the angle 15�, it is observed a

non-linear response, because there is an important contribution of the shear stresses

as shown by Fig. 22b.

Regarding the damage modes of the interface, it is confirmed that these modes

depend on physic-chemical interaction between fiber and matrix. In fact, the quality

of the interface is a parameter that it is used to evaluate the toughness of the

(1)

(4)

(2)

(3)

ba

Fig. 21 Damage process in the matrix: (a) under tension; (b) under compression (adapted from

Agarwal and Broutman 1990)

a b

Fig. 20 Fiber damage mode under compression: (a) micro-buckling (Agarwal and Broutman

1990); (b) shearing (Adapted from Agarwal and Broutman 1990)
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composite material. Thus, if there is a weak interaction between fiber and matrix,

then it occurs “debonding” as shown by Fig. 23a.

Figure 23b shows different damage mechanisms in the ply. If there is a weak

interface, after the fiber failure, “Pull-Out” (mechanism 1) can take place. Before

this mechanism, it is possible to occur “Fiber Bridging” (mechanism 2), since the

composite has fragile fibers, ductile matrix, and strong interface. Thus, the crack

propagation creates like bridges by using the fibers. As commented earlier, if the

interface is weak, then “debonding” (mechanism 3) can occur. By the other side, if
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Fig. 22 (a) Damage of matrix under shear loadings (adapted from Agarwal and Broutman 1990);

(b) influence of the fiber orientation in the damage process (Hahn and Tsai 1973)

a b

Fig. 23 (a) Debonding due to weak interface; (b) damage mechanisms in the ply (Anderson 1995)
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the interface is strong, then facture of the fiber (mechanism 4) and the damage

process of the matrix (mechanism 5) are verified. However, these all damage

mechanisms are random and depend on several aspects:

• Physic-chemical properties of the fibers and polymer matrix.

• Alignment and strength of the fibers.

• Orientation and volume fraction of the fibers.

• Type of loading: tension, compression, shear, or combined.

• Environment effects: temperature, humidity, corrosion, etc.

4.1.2 Interlaminar Failure (Delaminations)

In composite materials, the failure starts with micromechanisms (intralaminar

damages) and, after that, it is observed the macromechanisms like delaminations.

In general, the damage evolution starts in the plies with fiber orientation close to 90�

in relation to the loading. After the first damage, stresses are redistributed in the

laminated and new failure mechanisms can occur in the same ply or in other plies.

This failure process evolutes until the damage to reach the interface between two

plies, creating a discrete crack. In fact, the frontiers of the cracks, which were

created in one ply, propagate until to find adjacent ply with fiber oriented in other

direction (Fig. 24a). At this moment, the interlaminar shear stresses increase

abruptly and the laminate suffers the delamination as shown by Fig. 24b. Consid-

ering the increment of the loadings, the delaminations increase (initiation) and

evolve (propagation).

Researchers proved that the interlaminar failure is promoted by the interlaminar

shear stress and normal stress in direction z as shown by Fig. 25a.

Fig. 24 Mechanisms of damage and failure in the plies: (a) evolution of the failure process (Hull

1981); (b) laminate with delaminations
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According to the Fracture Mechanics, laminate material composites, normally,

show two classic modes of delamination: Mode I and Mode II (Fig. 25b). The Mode

I is created by tension loadings and Mode II is created by shear loadings. Thus,

during the delamination process is common to observe the Mixed Mode, i.e., Mode

I and Mode II are coupled.

In practical terms, the engineer should be pay attention, mainly in the geomet-

rical discontinuities in the composite structures, such as holes and ply drop. In these

regions, there is a 3D stress state, which promotes delamination (Fig. 26a). Another

important region consists of the edge of the laminate. In fact, in this portion of the

laminate, edge-effects can increase the transversal shear stress close to the edges

(Fig. 26b).

Fig. 25 (a) Delamination: interlaminar shear stress and normal stress; (b) modes of delamination

(adapted from Magagnin Filho 1996)
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4.2 Procedure to Analyze Failure in Laminates

It is considered that a structure fails when this one cannot satisfy the design criteria.

Thus, failure criterion goals to provide an interpretation of the damages promoted

by the loadings, showing if there is a local or a global failure in the structure.

However, for laminate composite structures, there is a large number of damage and

failure mechanisms, which occur in a random way. Thus, different approaches can

be applied to design composite structures. One approach consists on carrying out

micromechanics analyses in order to identify the local failure of fibers, matrix, or

interface. By the other side, there is the macromechanics analysis, which consists

on using a failure criterion in order to identify the failure of the ply.

The failure criterion can be written by using mathematical expressions (the

criterion function), considering the stress or strain components for the Local

Coordinate System (1-2) and allowable values for the ply:

If f σ1; σ2; σ3ð Þ � 0 then the ply fails:

If f σ1; σ2; σ3ð Þ < 0 then the ply does not fail
ð93Þ

Associated to the failure criterion, there are two methods of approaching the

problem:

• FPF Method (First Ply Failure): the laminate fails when the first ply fails.

• LPF Method (Last Ply Failure): the laminate fails when the last ply fails.

LPF Method can be summarized in 9 (nine) steps (Fig. 27):

1. Stress analyses: calculate the stress components in each ply.

2. Failure criterion selection: select the most adequate criterion, considering the

failure modes observed during the experimental tests for determination of

allowable values and elastic properties.

3. Calculate the criterion function: use the stress components and allowable values

to calculate the value for the criterion function.

4. Verify the failure plies: identify the plies, which fail.

5. If there is not failure—increase the loading: increase the loading in order to

re-calculate the stress components in each ply.

6. If there is failure—reduce the mechanical properties: before increasing the

loading, the mechanical properties of the plies, which failed, should be reduced.

7. Total failure?: check if all plies fail.

8. If there is not total failure—re-calculate the stress distribution: re-calculate the
stress components in each ply, considering the reduction of laminate stiffness.

9. If there is total failure—THE END: finalize the analyses.

The FPF Method is strongly safety, because the failure of only single ply implies

in the failure of the entire laminate. By the other side, the LPF Method over-

estimates the strength of the laminate. Therefore, the engineer must be careful

when choosing the method, mainly the failure criterion. However, due to the
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complexity to predict the failure mechanisms on composite structures, there is a

large number of failure criteria to address this problem. In the next sub-items, it will

be shown 3 (three) different failure criteria.

4.2.1 Maximum Stress Criterion

This failure criterion consists of 5 (five) sub-criteria and each one corresponds to

the 5 (five) fundamental damage mode of the ply. If, at least, one allowable stress

limit is exceeded, then the ply fails:

σ1 � XT or σ1 � �XC or σ2 � YT or σ2 � �YC or σ12j j � S12

ð94Þ

where:

σ1: normal stress component in direction 1.

σ2: normal stress component in direction 2.

σ12: shear stress component in the plane 1-2.

XT,C: strength value for tension or compression in direction 1.

YT,C: strength value for tension or compression in direction 2.

S12: strength value for shear in plane 1-2.

1. Stress Analyses

3. Calculate de Criterion Function

2. Failure Criteria Selection

4. Does any
ply fail?

6. Reduce Elastic Properties

7. Total Failure?

9. End

5. Loading
Increment

8. Stress 
Redistribution

no

yes

yes

no

Fig. 27 Procedure to perform failure analyses by using Last Ply Failure Method
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The failure surface for this criterion is a parallelepiped in the space of stresses

(Fig. 28). Due to the difference between strength values for tension and compres-

sion, the geometric center of the parallelepiped does not coincide to the origin of

space of stresses.

4.2.2 Maximum Strain Criterion

This failure criterion also consists of 5 (five) sub-criteria and each one corresponds

to the 5 (five) fundamental damage mode of the ply. However, in this case, the

criterion is written in terms of strains. Thus, if, at least, one allowable strain limit is

exceeded, then the ply fails:

ε1 � X
0
T or ε1 � �X

0
C or ε2 � Y

0
T or ε2 � �Y

0
C or γ12j j � S

0
12 ð95Þ

where:

ε1¼ normal strain component in direction 1.

ε2¼ normal strain component in direction 2.

ε12¼ shear strain component in plane 1-2.

X
0
T;C ¼ strain limit value for tension or compression in direction 1.

Y
0
T;C ¼ strain limit value for tension or compression in direction 2.

S
0
12 ¼ strain limit value for shear in plane 1-2.

In general, the Maximum Stress Criterion and Maximum Strain Criterion pro-

vide similar predictions, but when the composite material shows non-linear behav-

ior, it is better to use the second one. Also, these criteria are not interactive, i.e., the

stress component in one direction does not influence the failure mode caused by a

stress component in other direction and vice-versa, but the mode failure of the ply

can be identified.

XT

YT

S12

σ2 = −

σ2 = 

σ12 = 

σ12 = 

σ1 = 

σ1 = −

YC

XC

-S12

s1

s2

s12

Fig. 28 Failure surface of

maximum stress criterion
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4.2.3 TSAI-HILL Criterion

Based on HILL criterion, Tsai proposed a failure criterion for composite materials,

especially for laminates with orthotropic plies. Thus, TSAI-HILL criterion for

plane stress state can be written as follows:

f σð Þ ¼ σ1
X


 �2

þ σ2
Y


 �2

� σ1σ2
X2

� �
þ σ12

S12

� �2

¼ 1 ð96Þ

where σ1 and σ2 are the normal stress components in the ply. Besides, in this

criterion, it is necessary to use different values for compression and tension, not

only for actuating stresses, but also for allowable values. Thus, re-organizing

the equation above, it is obtained 4 (four) different equations in the space of stresses

(σ1 � σ2):

1. For the First Quadrant σ1, σ2 > 0ð Þ:

σ21
X2
T

þ σ22
Y2
T

� σ1σ2
X2
T

¼ 1� σ212
S212

ð96aÞ

2. For the Second Quadrant σ1 < 0, σ2 > 0ð Þ:

σ21
X2
C

þ σ22
Y2
T

þ σ1σ2
X2
C

¼ 1� σ212
S212

ð96bÞ

3. For the Third Quadrant σ1, σ2 < 0ð Þ:

σ21
X2
C

þ σ22
Y2
C

� σ1σ2
X2
C

¼ 1� σ212
S212

ð96cÞ

4. For the Fourth Quadrant σ1 > 0, σ2 < 0ð Þ:

σ21
X2
T

þ σ22
Y2
C

þ σ1σ2
X2
T

¼ 1� σ212
S212

ð96dÞ

Based on the equations above, it is obtained the failure surface for TSAI-HILL

criterion as shown by Fig. 29. It is verified that the increase of shear stress causes

the contraction of the failure surface, becoming the failure process easier to occur

for lower values of normal stresses.

In practical, it is used the definitions of Factor of Safety (FS) and Margin of

Safety (MS) to determine if a ply fails or not by using TSAI-HILL criterion:
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FS ¼
ffiffiffiffiffiffiffiffiffi
f σð Þ

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ1
X


 �2

þ σ2
Y


 �2

� σ1σ2
X2

� �
þ σ12

S12

� �2
s

ð97Þ

MS ¼ 1

FS
� 1 ð98Þ

If MS is lower than zero then the ply fails. By the other side, if the MS is much

greater than zero, then it is concluded that the laminate should be optimized. This

criterion is used a lot by the engineers, but it is important to highlight that it is not

recommended for laminates with non-linear behavior. However, it is an interactive

criterion; so a stress component in one direction can influence the failure mode

caused by a stress component in other direction and vice-versa, but it is not possible

to identify the failure mode for the ply.

In fact, advances in procedure to analyze failure in laminates have been

performed by different research groups in the World for a long time. The research

group coordinate by Professor Volnei Tita at University of S~ao Paulo has worked in
this way, as well. Therefore, some scientific contributions can be found in the

literature, such as Tita and Carvalho (2001), Tita et al. (2002, 2008, 2012), Angelo

et al. (2012, 2015), Sartorato et al. (2012), and Ribeiro et al. (2012a, b, 2013a, b,

2015).

Finally, if a failure occurs, then the engineer can redesign the laminate compos-

ite structure as shown by Fig. 4. Thus, the stacking sequence of the laminate should

be modified in order to change the stiffness, or it is necessary to change the type of

polymer matrix or the fibers, or to increase the volume fraction of the fibers.

2σ

σ 1

12σIncrease of

Fig. 29 Failure surface of TSAI-HILL criterion
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Part III

Applications



Piezoelectric Energy Harvesting

Carlos De Marqui Jr.

Abstract This chapter reports on the modeling of electromechanically coupled

beams with uniform and varying cross-sectional areas for energy harvesting. The

governing equations are formulated by using the Rayleigh-Ritz method and Euler-

Bernoulli assumptions. A resistive electrical load is considered in the electrical

domain. Electromechanic frequency response functions (FRFs) are presented and

the electroelastic behavior is discussed for a wide range of load resistances. The

model is verified against the experimental results of a tapered bimorph with tip

mass and issues related to the determination of the optimum load resistance for

maximum power output is also addressed.

Keywords Piezoelectricity • Energy harvesting • Electroelastic behavior

1 Introduction

The research interest in converting ambient vibration energy to usable electrical

energy has increased in the last years (Sodano et al. 2004a, b; Beeby et al. 2006;

Priya 2007; Anton and Sodano 2007; Cook-Chennault et al. 2008). The concept of

energy harvesting is particularly useful for wireless sensors powered by batteries

and remotely operated systems with limited energy source. Different transduction

mechanisms such as the piezoelectric one (Roundy et al. 2003; Sodano et al. 2004a,

b; Du Toit and Wardle 2007; Erturk et al. 2008), the electromagnetic (Williams and

Yates 1996; Arnold 2007; Glynne-Jones et al. 2004; Beeby et al. 2007; Manna and

Sims 2009), and the electrostatic (Roundy et al. 2002; Mitcheson et al. 2004) can be

used for converting vibrations to electricity. However, the recent literature shows

that piezoelectric transduction has received the most attention for vibration-based

energy harvesting and several review articles directly focusing on piezoelectric

energy harvesting can be found in the literature (Sodano et al. 2004a, b; Priya 2007;

Anton and Sodano 2007; Cook-Chennault et al. 2008).

C. De Marqui Jr., Dr. Ing. Habil. (*)

Escola de Engenharia de S~ao Carlos, University of S~ao Paulo, Av Trabalhador

Sancarlense 400, S~ao Carlos 13566-590, S~ao Paulo, Brazil

e-mail: demarqui@sc.usp.br

© Springer International Publishing Switzerland 2016

V. Lopes Junior et al. (eds.), Dynamics of Smart Systems and Structures,
DOI 10.1007/978-3-319-29982-2_11

267

mailto:demarqui@sc.usp.br


Piezoelectric power generators can harvest electrical energy from mechanical

vibrations based on the direct piezoelectric effect. These generators have been

extensively studied as a low-cost and efficient alternative for low-level energy

harvesting. Researchers have proposed various models to represent the electrome-

chanical behavior of piezoelectric energy harvesters, which range from lumped

parameter models (Roundy et al. 2003; Du Toit et al. 2005) to Rayleigh-Ritz type

approximate distributed parameter models (Sodano et al. 2004a, b; Du Toit and

Wardle 2007; Du Toit et al. 2005) as well as analytical distributed parameter

solution attempts (Chen et al. 2006; Lin et al. 2007). Recently, certain issues

observed in some lumped parameter and distributed parameter piezoelectric energy

harvester models have been clarified in the literature (Erturk and Inman 2008a, b).

More recently, the analytical distributed parameter solutions for unimorph (Erturk

and Inman 2008a, b; Erturk et al. 2008) and bimorph (Erturk and Inman 2009)

piezoelectric energy harvester configurations with closed-form expressions have

been presented. Convergence of the Rayleigh-Ritz type electromechanical solution

(Sodano et al. 2004a, b; Du Toit and Wardle 2007; Du Toit et al. 2005) to the

analytical solution given by Erturk and Inman (2008a, b) was observed by Elvin and

Elvin (2009) when sufficient number of admissible functions were used. The

lumped parameter solution (Du Toit et al. 2005) has been found useful for a

fundamental understanding of the problem and to investigate the optimization of

system parameters for better electrical outputs (Stephen 2006; Renno et al. 2009).

However, accurate prediction of the electromechanical behavior of piezoelectric

energy harvesters requires using distributed parameter solutions. Experimental

verifications and validations were also reported for the approximate (Erturk

et al. 2008) and analytical (Erturk et al. 2008; Erturk and Inman 2009) (beam-

type) distributed parameter electromechanical solutions.

The investigation into alternative configurations of electromechanically beans

has also been reported in the literature. (Erturk et al. 2009) presented a linear

distributed parameter model for predicting the electromechanical behavior of an

L-shaped piezoelectric energy harvester configuration. A broadband harvester can

be obtained when the first two natural frequencies of the L-shaped are properly

tuned. The use of tapered cantilevers in order to improve the electromechanical

behavior of piezoelectric energy harvesters has also been investigated (Matova

et al. 2013; Roundy et al. 2005; Goldschmidtboeing and Woias 2008; Mateu and

Moll 2005; Benasciutti et al. 2010; Dietl and Garcia 2010; Lu et al. 2004). The

shape is changed from the basic rectangular configuration towards a tapered or

reversed tapered geometry and the main motivation is to increase the electrical

power output. The modeling of electromechanically coupled beams with

non-uniform width is presented in Dietl and Garcia (2010). An optimal beam

shape is determined by an optimization code. In the cited paper (Dietl and Garcia

2010), the expression 1/ωCp (where ω is the excitation frequency and Cp is the

equivalent capacitance of piezoceramic layers) is employed for the optimum load

resistance (which gives maximum power output) of a piezoelectric energy har-

vester. In general, the authors approximate the eigenvalues and eigenvector of

electromechanically coupled beams with non-uniform width to the ones
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corresponding to rectangular shape beams (Goldschmidtboeing and Woias 2008;

Mateu and Moll 2005; Benasciutti et al. 2010). Recently, the solution of eigenvalue

problem of non-uniform width beams by using the differential quadrature method

has been presented and the effects of beam shape on the structural natural frequen-

cies and mode shapes are discussed (Ayed et al. 2014). An important aspect, the

effect of load resistance on the electroelastic behavior of variable-shaped har-

vesters, is only considered in Ayed et al. (2014).

This chapter reports on the modeling of electromechanically coupled beams for

energy harvesting. The governing equations are formulated by the Rayleigh-Ritz

method and Euler-Bernoulli assumptions. A resistive electrical load is considered

in the electrical domain, in agreement with the simplified analyses followed by

others (Roundy et al. 2003; Sodano et al. 2004a, b; Du Toit and Wardle 2007;

Erturk et al. 2008; Du Toit et al. 2005; Chen et al. 2006; Lin et al. 2007; Elvin and

Elvin 2009). Electrical circuitry-based work dealing with AC-to-DC (alternating

current-to-direct current) converters can be found in the literature (Ottman

et al. 2002; Guyomar et al. 2005; Shu and Lien 2006; Guan and Liao 2007).

Voltage, current, power, and relative tip motion frequency response functions

(FRFs) are presented for a wide range of load resistance, and the electroelastic

behavior discussed.

2 Approximate Distributed Parameter Model
of a Piezoelectric Energy Harvester

2.1 Generalized Hamilton’s Principle for a Piezoelectric
Energy Harvester

In the absence of magnetic effects, the generalized Hamilton’s principle for an

electroelastic body is (Crandall et al. 1968)

ðt2
t1

δ T � U þWeð Þ þ δW½ �dt ¼ 0 ð1Þ

where the total kinetic energy (T), the total potential energy (U ), and the electrical

energy (We) terms are defined as

T ¼
ð
Vs

1

2
ρs _u

t _u dVs þ
ð
Vp

1

2
ρp _u

t _u dVp ð2aÞ

U ¼
ð
Vs

1

2
StTdVs þ

ð
Vp

1

2
StTdVp ð2bÞ
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We ¼
ð
Vp

1

2
Et DdVp ð2cÞ

where u is the vector of mechanical displacements, S is the vector of mechanical

strain components, T is the vector of mechanical stress components, D is the vector

of electric displacement components, E is the vector of electric field components, ρ
is the mass density, V is the volume, t denotes transpose when it is used as a

superscript (otherwise it stands for the time), and an over-dot represents differen-

tiation with respect to time. Here and hereafter, subscripts s and p stand for the

substructure and piezoceramic layers, respectively.

For a set of discrete mechanical forces f applied at locations (xi, yi) and for a set

of discrete electric charge outputs q extracted at locations (xj, yj), one can express

the variation of the mechanically applied and electrically extracted work as

follows:

δW ¼
Xnf
i¼1

δu xi; yi; tð Þ � f xi; yi; tð Þ þ
Xnq
j¼1

δφ xj; yj; t
� �

q xj; yj; t
� �

ð3Þ

where nf is the number of discrete mechanical forces, φj is the scalar electrical

potential, and nq is the number of discrete electrode pairs.

The generalized Hamilton’s principle for electroelastic bodies (Crandall

et al. 1968) described by the foregoing equations was previously employed by

Hagood et al. (1990) where they combined the Rayleigh-Ritz method and Euler-

Bernoulli beam theory for active structural control. The Rayleigh-Ritz formulation

given by Hagood et al. (1990) was also implemented by Sodano et al. (2004a, b), Du

Toit andWardle (2007), and Du Toit et al. (2005) for predicting the electrical power

output of cantilevered Euler-Bernoulli beams in energy harvesting. It should be

mentioned that, as oppose to the energy harvesting problem, the electric charge is

the input in the structural actuation problem, and therefore the second term in

Eq. (3) has a minus sign in Hagood et al. (1990). Note that the energy dissipation

due to mechanical damping is excluded at this point and it will be introduced later

in the form of proportional damping.

The linear-elastic constitutive relation for the substructure material can be

written as

T ¼ csS ð4aÞ

and the linear electroelastic constitutive relation for the piezoceramic material is

(IEEE Standard on Piezoelectricity 1978)

T
D

� �
¼ cEp �et

e εS

� �
S
E

� �
ð4bÞ
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where c is the elastic stiffness matrix, e is the matrix of piezoelectric constants, ε is
the matrix of permittivity components, superscript E and S denote that the param-

eters are measured at constant electric field and constant strain, respectively. The

expanded form of Eq. (4b) is

S1

S2

S3

S4

S5

S6

D1

D2

D3

8>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>;

¼

sE11 sE12 sE13 0 0 0 0 0 d31

sE12 sE11 sE13 0 0 0 0 0 d31

sE13 sE13 sE33 0 0 0 0 0 d33

0 0 0 sE55 0 0 0 d15 0

0 0 0 0 sE55 0 d15 0 0

0 0 0 0 0 sE66 0 0 0

0 0 0 0 0 0 εT11 0 0

0 0 0 0 0 0 0 εT11 0

d31 d31 d33 0 0 0 0 0 εT33

2
666666666666666664

3
777777777777777775

T1

T2

T3

T4

T5

T6

D1

D2

D3

8>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>;

ð5Þ

which is the reduced (2D) form of Eq. (4b). Note that the elastic, piezoelectric, and

dielectric components in Eq. (25) are given in the contracted notation (i.e., Voigt’s
notation: 11 ! 1, 22 ! 2, 33 ! 3, 23 ! 4, 31 ! 5, and 12 ! 6) where 1, 2,

and 3 directions are coincident with x, y, and z directions.
If the behavior of the piezoceramic is to be as a thin beam (the case of this

chapter) based on Euler-Bernoulli beam theory, the non-zero stress component is

T1. Assuming that an electrode pair is covering the faces perpendicular to three

direction, Eq. (5) is simplified to

S1

D3

( )
¼ sE11 d31

d31 εT33

" #
T1

E3

( )
ð6Þ

which can be written in the stress-electric displacement form for a thin beam

T1

D3

( )
¼ cE11 �e31

�e31 εS33

" #
S1

E3

( )
ð7Þ

and the overbar denotes a constant in the reduced form for a plane-stress condition,

cE11 ¼
1

sE11
, e31 ¼ d31

sE11
, εS33 ¼ εT33 �

d231
sE11

ð8Þ

where superscript S denotes a constant evaluated at constant strain. One should note
that different non-zero stress components will be obtained when the piezoceramic is

modeled based on Timoshenko beam theory or plate theory and, therefore, different

expressions for the reduced elastic, piezoelectric, and permittivity constants.
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Using the constitutive relations given by Eqs. (4a) and (4b) (or a simplified

version) in Eq. (1), the generalized Hamilton’s principle for a piezoelectric energy
harvester becomes

ðt2
t1

ð
Vs

ρs δ _u t _u dVs þ
ð
Vp

ρp δ _u
t _u dVp �

ð
Vs

δStcsSdVs �
ð
Vp

δSt cEp S dVp

"

þ
ð
Vp

δSt et E dVp þ
ð
Vp

δEt e SdVp þ
ð
Vp

δEt θSE dVp

þ
Xnf
i¼1

δu xi; yi; tð Þ � f xi; yi; tð Þ þ
Xnq
j¼1

δφ xj; yj; t
� �

q xj; yj; t
� �#

dt ¼ 0

ð9Þ

2.2 Mathematical Model of a Piezoelectric Energy Harvester

The derivation provided in this section is for a bimorph piezoelectric beam of

uniform width along its length (rectangular) or non-uniform width along its length

(tapered or reversed tapered). The bimorph harvester has a brass substructure

bracketed by two piezoceramic layers as shown in Fig. 1 (for the rectangular

beam). Each piezoelectric layer is covered by continuous conductive electrodes

that can be connected either in series (when piezoceramic layers are poled in the

opposite direction) or in parallel (poled in the same direction) to an external load

resistance. In this work, the pairs of electrodes covering each piezoceramic layer

are connected in series. In Fig. 1, R is the resistive load, w(x) is the width of the

beam along the length (x), and Mt is the tip mass attached to the free end of the

harvester.

The combination of Hamilton’s principle (Crandall et al. 1968) and the

Rayleigh-Ritz method based on the Euler-Bernoulli beam assumptions are used in

Fig. 1 A bimorph

piezoelectric energy

harvester with tip mass

under clamped-free

boundary conditions
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the modeling approach of this paper. The generalized Hamilton’s principle was

applied by Hagood et al. (1990), who combined the Rayleigh-Ritz method to the

Euler-Bernoulli beam theory for active structural control. The Rayleigh-Ritz for-

mulation used by Hagood et al. (1990) was also implemented by Du Toit and

Wardle (2007) and Sodano et al. (2004a, b) for predicting the electric power output

of electromechanically coupled Euler-Bernoulli beams in energy harvesting prob-

lems. Dietl and Garcia (2010) combined the Rayleigh-Ritz method with the Euler-

Bernoulli beam theory to model electromechanically coupled beams with a varying

cross-sectional area in energy harvesting problems.

In the Euler-Bernoulli beam theory the motion is restricted to the transverse

direction and the only non-zero component of the displacement field u is y(x, t).
Furthermore, the beam strain is given by y(x, t) and its partial derivatives. In the

Rayleigh-Ritz procedure the displacement y(x, t) of the beam can be written as the

summation of the modes and the temporal coordinate of the displacement as

y x; tð Þ ¼ Φ xð ÞTr tð Þ ð10Þ

whereΦ(x) is a matrix of assumed mode shapes and r(t) is the temporal coordinate

of displacement. Here, the mode shapes are assumed to be an acceptable solution to

an Euler-Bernoulli beam under a clamped-free condition,

~Φ k xð Þ ¼ cos λk
x

L
� coshλk

x

L
� σk sin λk

x

L
� sinhλk

x

L

� �
ð11Þ

where L is the length of the beam and λk is the natural frequency of the kth mode

obtained from the equation given by

1

a
cos λcoshλþ 1ð Þ þ λ cos λ sinhλ� sin λcoshλð Þ ¼ 0 ð12Þ

where a is the ratio of the tip mass to the mass of the beam (substructure and

piezoceramic layers) and σk is expressed as

σk ¼ sin λk � sinhλk þ λkr cos λk � coshλkð Þ
cos λk þ coshλk � λkr sin λk � sinhλkð Þ ð13Þ

the general form for the kth mode shape must satisfy the following equation

ð L

0

ϕ2
k xð Þρlw xð ÞdxþMTϕ

2
k Lð Þ ¼ 1 ð14Þ

where ρl is the equivalent mass density given by

ρl ¼ ρshs þ 2ρphp ð15Þ
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where ρ is the mass density, h is the thickness of the layer, and the subscripts s and p
represent, respectively, the substructure and the piezoceramic layers. The mode

shape is obtained as

ϕk xð Þ ¼
~ϕ k xð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið L

0

~ϕ k

2
xð Þdxþ a~ϕ k

2

s
Lð Þ

ð16Þ

and since piezoceramic layers are poled in the thickness direction, the non-zero

electric field component (E), which is assumed to be uniform along the thickness

direction, is expressed as

E ¼ �∂ψ
∂z

¼ � V

2hp
ð17Þ

where the electric potential (ψ) is assumed to vary linearly across the electrodes and

V is the voltage across the electrodes.

The previous definitions for mechanical and electrical variables should be used

to define the terms in Hamilton’s principle (please check Dietl and Garcia 2010 and
De Marqui et al. 2009) for details) to provide the electromechanically coupled

equations governing the beam,

M€r tð Þ þ C _r tð Þ þKr tð Þ �ΘV tð Þ ¼ F ð18Þ

Cp
_V tð Þ þ V tð Þ

R
þΘT _r tð Þ ¼ 0 ð19Þ

whereM is the mass matrix, C is the damping matrix,K is the stiffness matrix,Θ is

the electromechanical coupling matrix, F is the vector of mechanical forces (where

F ¼ m*ab tð Þ, where ab(t) is the base acceleration in function of time andm * is the

input matrix to be defined later), T represents the matrix transpose when

superscripted, an over-dot represents the time derivative, R is the load resistance,

q is the vector of modal mechanical displacements, V(t) is the voltage in function of
the time, and Cp is the effective capacitance.

The mass matrix is defined as

M ¼
ð L

0

ρlw xð Þϕ xð ÞϕT xð ÞdxþMTϕ Lð ÞϕT Lð Þ ð20Þ

and the stiffness matrix is defined as

K ¼ I

sEp

ð L

0

w xð Þφ00 xð Þφ00T xð Þdx
� �

ð21Þ
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where sEp is the compliance measured in a constant electric field, (00) represents the
space derivative, and I is given by

I ¼ Iz xð Þ
w xð Þ ð22Þ

where Iz(x) is the moment of inertia.

The damping matrix is assumed to be proportional to the mass and stiffness

matrices

C ¼ αMþ βK ð23Þ

where α and β are the constants of proportionality.

The capacitance for a bimorph harvester in series connection case is given by

Cp ¼ εS33
2hp

ð L

0

w xð Þdx ð24Þ

where εS33 is the dielectric constant evaluated at constant strain for an Euler-

Bernoulli beam as

εS33 ¼ 1730 ε0 � d31
Ep

ð25Þ

and ε0 is the permittivity in free space, d31 is the piezoelectric coupling coefficient,
and Ep is the Young’s modulus of the piezoceramic.

The electromechanical coupling matrix is given as

Θ ¼ � hshp þ h2p

� � d31
2sEp hp

ð L

0

w xð Þϕ00 xð Þdx ð26Þ

and the input matrix is

m* ¼
ð L

0

ρlw xð Þφ xð ÞdxþMTφ Lð Þ ð27Þ

Expressions for the electromechanical FRFs, voltage across the resistive load,

current passing through the resistive load, electrical power output, and relative tip

motion can be obtained from the equations of motion (Eqs. (9) and (10)).

The excitation is due to the harmonic motion of the base in the transverse direction,

wB ¼ Y0e
jωt (where wB(t) is the base displacement, Y0 is its amplitude, ω is the

excitation frequency, and j is the unit imaginary number), and the voltage output-to-

base acceleration FRF can be obtained from Eqs. (9) and (10) as
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V tð Þ
a tð Þ ¼

V tð Þ
�ω2Y0ejωt

¼ jω
1

R
þ jωCp

	 
�1

ΘT

� �ω2Mþ jωCþKþ jω
1

R
þ jωCp

	 
�1

ΘΘT

" #�1

p*

ð28Þ

the electric current FRF is obtained by dividing the voltage FRF by the load

resistance of the electrical circuit and the electrical peak power FRF (since the

voltage FRF is the peak voltage FRF) is the product of the voltage and

current FRFs.

The relative tip motion FRF is defined as the ratio of the amplitude of the

displacement at the tip of the beam (relative to the base) to the amplitude of

the base displacement input and it is obtained from Eqs. (9) and (10) as

wrel

Y0e jωt
¼ ω2 �ω2Mþ jωCþKþ jω

1

R
þ jωCp

	 
�1

ΘΘT

" #�1

p* ð29Þ

The tip velocity FRF is defined as the ratio of the amplitude of velocity at the tip

of the beam (relative to the fixed frame) to the gravitational acceleration. This FRF

is easily obtained from the expression of the relative tip motion FRF by using

vrel ¼ � jg

ω
1þ wrel L; tð Þ

Y0

	 

ð30Þ

where g is the gravitational acceleration.

3 Theoretical Case Study

This section presents theoretical case studies using the linear model described in

this chapter. The electroelastic behavior of a bimorph harvester with tip mass under

harmonic base excitation is discussed for a set of load resistances ranging from

open circuit condition to short circuit condition (1, 6.7, 11.8, 22, 33, 47, 100,

470 kΩ). The previously presented expressions for the electromechanical FRFs

(voltage, current, and power output FRFs as well as tip velocity FRF) are employed.

The bimorph harvester configuration has a brass substructure bracketed by two

PZT-5A layers. The piezoceramic layers are poled in the opposite directions and

therefore the combination of the layers to the electrical load results in the series

connection case. The numerical input data of the bimorph is shown in Table 1.

The voltage FRF is defined here as the voltage output per gravitational acceler-

ation (g ¼ 9:81m=s2). Equation (19) is easily modified to provide voltage output

per g. The modulus of the voltage FRF for a range of excitation frequencies around
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the first mode of the bimorph harvester is displayed in Fig. 2 for eight different

values of load resistance (1, 6.7, 11.8, 22, 33, 47, 100, 470 kΩ). The voltage output
increases monotonically with increasing load resistance for all excitation frequen-

cies. One should note that the compliance of the piezoelectric material decreases

from short circuit condition to open circuit condition. Therefore, a short circuit

resonance frequency and an open circuit resonance frequency can be defined for the

electromechanically coupled system. This way, the resonance frequency of the first

mode of the bimorph harvester (Fig. 2) increases from the short circuit resonance

frequency (ωsc ¼ 45:6Hz) to the open circuit resonance frequency (ωoc ¼ 48:1Hz)
with increasing load resistance.

The variation of voltage output with increasing load resistance when the

bimorph harvester is excited at the short circuit resonance frequency and at the

open circuit resonance frequency is shown in Fig. 3. In both cases, voltage increases

Table 1 Geometric and

material properties of the

bimorph harvester

Length of the beam (mm) 50.8

Width of the beam on the clamped end (mm) 31.8

Thickness of the substructure (mm) 0.14 (each)

Thickness of the PZT (mm) 0.26 (each)

Young’s modulus of the substructure (GPa) 105

Young’s modulus of the PZT-5A (GPa) 66

Mass density of the substructure (kg/m3) 9000

Mass density of the PZT (kg/m3) 7800

Tip mass (kg) 0.012

Proportional constant α (rad/s) 14.65

Proportional constant β (s/rad) 10�5

Piezoelectric coupling coefficient d31 (pm/V) �190

Permittivity of free space (pF/m) 8.854

Fig. 2 Voltage FRFs for eight different values of load resistance
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with increasing load resistance and is less sensitive to the variation of load resis-

tance around the open circuit condition. For load resistances smaller than 79 kΩ
(intersection of short circuit and open circuit curves) the voltage output at the short

circuit resonance frequency is higher than at the open circuit resonance frequency.

For load resistances larger than the intersection point, the voltage output at the

open circuit resonance frequency is higher than the voltage output obtained from

the system excited at the short circuit resonance frequency. Larger voltages are

obtained when the system is excited at the short circuit resonance frequency and the

load resistances are smaller than one of the intersection points.

The modulus of the electric current FRF is displayed in Fig. 2 for the same set of

load resistances. The electric current FRF is obtained by dividing the voltage FRF

to the load resistance of the energy harvesting circuit. Electric current decreases

monotonically with increasing load resistance for all excitation frequencies. The

resonance frequency of the first mode of the bimorph harvester (Fig. 4) increases

from the short circuit resonance frequency of 45.6 Hz to the open circuit resonance

frequency of 48.1 Hz with increasing load resistance.

The variation of electric current with load resistance when the bimorph harvester

is excited at the short circuit resonance frequency and at the open circuit resonance

frequency is shown in Fig. 5. Electric current is insensitive to the variation of load

resistance around the short circuit condition. For load resistances smaller than 79 k

Ω (intersection point) the current at the short circuit resonance frequency is higher

than at the open circuit resonance frequency. For load resistances larger than the

intersection point the current at the open circuit resonance frequency is higher than

at short circuit resonance frequency since the electromechanical systems is close to

open circuit condition.

Fig. 3 Voltage output with increasing load resistance for excitations at the short circuit resonance

frequency and open circuit resonance frequency
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The electrical power FRF is the product of voltage and current FRFs and it is

defined as the ratio of electrical power output to square of the base acceleration.

Note that the modulus form of Eq. (19) is the peak voltage FRF. As previously

discussed, the voltage FRF has a monotonic behavior with increasing load resis-

tance for every excitation frequency since the voltage across the resistive load

increases with increasing load resistance and the frequency of maximum voltage

output moves from short circuit to open circuit resonance frequency. The electrical

current FRF exhibits an opposite behavior since current passing through the elec-

trical load decreases with increasing load resistance for every excitation frequency

(Erturk and Inman 2008a, b). Since the product of these two FRFs gives the

Fig. 5 Electric current with increasing load resistance for excitations at the short circuit resonance

frequency and open circuit resonance frequency

Fig. 4 Current FRFs for eight different values of load resistance
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electrical power FRF, Fig. 6 shows intersections between the power curves of

different electrical load resistances. Therefore, at a fixed frequency, the variation

of peak power output with load resistance is not monotonic as can be seen for

the first mode of the electromechanically coupled beam plotted in Fig. 6. Conse-

quently the short circuit resonance frequency (45.6 Hz) and the open circuit

resonance frequency (48.1 Hz) have considerably different optimum load values

(Erturk and Inman 2008a, b) although the difference between these two frequencies

is small (2.5 Hz).

The variation of power output with load resistance when the bimorph harvester

is excited at the short circuit resonance frequency of the first mode and at the open

circuit resonance frequency of the first mode is shown in Fig. 5. The intersection

point is again verified around the load resistance of 79 kΩ. The power output at the

short circuit resonance frequency is higher than the power output at the open circuit

resonance frequency for load resistances smaller than the value of load resistance at

the intersection point after which the opposite is valid. Each power curve of Fig. 7

has peak values corresponding to the optimum load resistance at each resonance

frequency (short and open circuit). Although different optimum load resistances are

observed for each electrical boundary condition, both of them deliver the same

power output. One should note that voltage and current are not identical at the

optimum load resistance of for the short circuit and open circuit resonance frequen-

cies. However, the products of voltage and current are the same for both cases.

The mechanical vibration FRFs of the bimorph piezoelectric energy harvester

are presented in Fig. 8. The tip velocity FRF is defined as the ratio of the amplitude

of velocity at the tip of the beam (relative to the fixed frame) to the gravitational

acceleration. The vibration amplitude at the short circuit resonance frequency is

attenuated as the load resistance is increased up to 100 kΩ. Approximately after this

value of load resistance, increasing load resistance amplifies the vibration

Fig. 6 Power FRFs for eight different values of load resistance

280 C. De Marqui Jr.



amplitude at the open circuit resonance frequency and the vibration amplitude at the

short circuit resonance frequency is no longer attenuated.

Figure 9 shows the variation of relative tip displacement amplitude with load

resistance. The relative tip vibration is insensitive to variations of load resistance

for low values of load resistance. The vibration amplitude at the short circuit

resonance frequency is higher than at open circuit resonance frequency for this

same region. As the load resistance is further increased the vibration amplitude at

the short circuit resonance frequency is attenuated. This is the expected behavior

Fig. 7 Variation of power output with increasing load resistance for excitations at the short circuit

resonance frequency and open circuit resonance frequency

Fig. 8 Power FRFs for eight different values of load resistance
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since in Fig. 8 the peak moves from the short circuit resonance frequency to the

open circuit resonance frequency. Therefore, in this case, the attenuation is more

related to stiffness variation than to damping. As the load resistance is increased,

the tip velocity at the open circuit resonance frequency also increases (since the

electromechanical system is excited at its resonance frequency).

4 Numerical and Experimental Results for a Tapered
Bimorph with Tip Mass

In this second case study, the results from our approximate model for a tapered

piezoelectric energy harvester are verified against experimental results. The

bimorph harvester configuration has a brass substructure bracketed by two

PZT-5A layers. The piezoceramic layers are poled in the opposite directions and

therefore the series connection case is studied. The geometric and material proper-

ties for the tapered beam are given in Table 2. The width of the beam at the clamped

end is larger than the width at the free end as well as it is assumed to vary linearly

along the length of the harvester.

Small magnets were attached at the free end of the tapered harvester as a tip mass

in the experiments. The base acceleration was measured at the clamped end

(Accelerometer Model 352C22—PCB Piezotronics), which is connected to a

shaker (Model 4810—Brüel & Kjær). A digital laser vibrometer (Model

PDV-100—Polytec) measures the tip velocity at the free end. The electromechan-

ical behavior is investigated by using three different resistive loads (1 kΩ, 50 kΩ,
and 1 MΩ) and the electromechanical FRF were acquired through a Data

Fig. 9 Variation of tip velocity with increasing load resistance for excitations at the short circuit

resonance frequency and open circuit resonance frequency
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Acquisition System (Photon II All in One System—LDS Dactron). Figure 10 shows

the experimental setup.

The voltage FRFs for the first mode of the tapered harvester obtained from our

model and the experimental results are plotted in Fig. 11a. The experimental short

circuit and open circuit resonance frequencies for the tapered harvester are 179.1

and 189.1 Hz, respectively. The present model has predicted such frequencies as

178.8 and 188.9 Hz, respectively. The tip velocity FRFs are in agreement with those

of the experimental results, as shown in Fig. 11b. The electromechanical vibration

and voltage FRFs obtained from the presented model for a tapered electromechan-

ically coupled beam are in very good agreement with those obtained from the

experiments.

Table 2 Geometric and

material properties of the

bimorph harvester

Length of the beam (mm) 50.8

Width of the beam on the clamped end (mm) 31.8

Width of the beam at the free end (mm) 7.25

Thickness of the substructure (mm) 0.14 (each)

Thickness of the PZT (mm) 0.26 (each)

Young’s modulus of the substructure (GPa) 105

Young’s modulus of the PZT-5A (GPa) 66

Mass density of the substructure (kg/m3) 9000

Mass density of the PZT (kg/m3) 7800

Tip mass (kg) 0.012

Proportional constant α (rad/s) 8.79

Proportional constant β (s/rad) 6� 10�6

Piezoelectric coupling coefficient d31 (pm/V) �190

Permittivity of free space (pF/m) 8.854

Fig. 10 Experimental setup used for the verification of relations for a tapered beam
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The expression 1/ωCp (where ω is the excitation frequency and Cp is the

equivalent capacitance of piezoceramic layers) is usually employed by some

authors in order to calculate the optimum load resistance (which gives maximum

power output, as discussed in the previous section) of a piezoelectric energy

harvester. An issue related to the estimate of the optimum load from the equation

1/ωCp was previously discussed (Erturk 2009) for a rectangular (or squared) energy

harvester configuration. The piezoceramic layer of a piezoelectric energy harvester

can be represented as a current source in parallel with its internal capacitance

(Norton representation) or as a voltage source in series with its internal capacitance

(Thévenin representation). In Norton representation Ropt ¼ 1=ωCp is obtained only

a

b

Fig. 11 Model and experimental voltage FRFs (a) and tip velocity FRFs (b) for three values of

load resistance
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if a constant current amplitude oscillating at a frequency ω is assumed. However,

regarding the electromechanical behavior of a piezoelectric energy harvesting

discussed in the previous section of this chapter, the current source in Norton

representation is not constant, but it depends on the load resistance since the

vibration response also depends on the load resistance. The expression Ropt ¼ 1=ω
Cp could be obtained from the coupled equations that govern a piezoelectric energy

harvester only if the electromechanical coupling term were artificially removed

from the mechanical equation (Erturk 2009).

By considering the electromechanically coupled equations (Eqs. (18) and (19))

one should obtain the expression for the optimum load as (Erturk 2009),

Ropt ¼ 1

ωkCp 1þ γk
2ζk

� �2
� � ð31Þ

where γk ¼ Θk

Cpωk
and ωk are the short-circuit resonance frequency of the desired

mode, ζk is the damping ratio of the same mode, and Θk is the modal electrome-

chanical coupling of the mode. The optimum load resistance can also be searched

by the calculation of the power output for a wide range of load resistance until the

optimal one is reached when the system is excited at a target frequency.

Figure 12 shows the variation of the optimum load resistance for several

different tip widths (the width at the tip is w Lð Þ ¼ Pw 0ð Þ and the width along the

body is assumed linearly modified along the spam) for a piezoelectric energy

harvester with tip mass (basic data given in Table 2) excited at the short circuit

resonance frequency. The same load resistance is obtained by searching for the

optimum one and by using Eq. (23). However, inaccurate predictions are obtained

from Eq. (31).
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Fig. 12 Variation of optimum load resistance with parameter P
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5 Summary

The modeling of electromechanically coupled beams with uniform and varying

cross-sectional areas was reported for energy harvesting. The combination of

Hamilton’s principle and the Rayleigh-Ritz method based on the Euler-Bernoulli

beam assumptions was used in the modeling approach. The model accounts for the

presence of a pair of conductive electrodes covering the entire piezoceramic layer

and a resistive electrical load was considered in the electrical domain of the

problem. Derivations are given for predicting the coupled mechanical vibration

and electrical response of the birmorph harvester beam with tip mass due to base

excitation.

Frequency domain electroelastic analysis of the rectangular bimorph harvester

was presented. Electromechanically coupled FRFs were defined and the magnitude

of the electrical outputs (voltage, current, and power) and the magnitude of

mechanical variables could be investigated at different electrical conditions (a set

of load resistances ranging from short circuit to open circuit condition). Moreover,

the behavior of the electroelastic beam with varying load resistance at two excita-

tion frequencies (short circuit resonance frequency and open circuit resonance

circuit) was discussed. In the second study case, the model was successfully verified

against the experimental results of a tapered bimorph with tip mass. Issues related to

the determination of the optimum load resistance have also been addressed.
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Piezoelectric Structural Vibration Control

Marcelo A. Trindade

Abstract Over the last two decades, piezoelectric materials have been extensively

used as components in active and passive structural vibration control solutions. The

most frequent applications consider piezoceramic thin patches bonded to thin

structures subjected to bending. For active vibration control solutions, the

piezoceramic patches can be used as strain sensors and/or bending actuators when

connected to properly designed signal conditioning, processing, and amplification.

For passive vibration control solutions, they can be used as vibration dampers

and/or absorbers when connected to properly designed electronic shunt circuits.

The objective of this chapter is to present some examples of the use of piezoelectric

materials, as distributed sensors and actuators, for the development and implemen-

tation of passive and active vibration control solutions.

Keywords Piezoelectric structures • Electromechanical coupling • Piezoelectric

sensors and actuators • Piezoelectric shunted damping • Piezoelectric active control

1 Introduction

Over the last two decades, piezoelectric materials have been extensively used as

components in active and passive structural vibration control solutions. The most

frequent applications consider piezoceramic thin patches bonded to thin structures

subjected to bending. For active vibration control solutions, the piezoceramic

patches can be used as strain sensors and/or bending actuators when connected to

properly designed signal conditioning, processing, and amplification. For passive

vibration control solutions, they can be used as vibration dampers and/or absorbers

when connected to properly designed electronic shunt circuits. The objective of this

chapter is to present some examples of the use of piezoelectric materials,
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as distributed sensors and actuators, for the development and implementation of

passive and active vibration control solutions. Other textbooks discussing some of

the topics presented in this chapter can be recommended (Meirovitch 1990;

Preumont 1997, 2006; Reza Moheimani and Fleming 2006; Leo 2007).

2 Passive Vibration Control Using Piezoelectric Materials

For thin flexible structures, such as beams, plates, shells, and panels, most part of

the vibrating energy is in bending motion and, thus, it seems worthwhile to make

use of patches and/or layers of functional materials that can bend (deform) together

with the structure and are capable of extracting (converting) this deformation

energy from the host structure. To this end, piezoelectric materials are an interest-

ing choice since they are quite effective in converting deformation energy into

electrical energy. If connected to properly designed electric circuits, this electrical

energy could then be extracted from the piezoelectric material. The seminal work of

Hagood and von Flotow (1991) proposed the use of piezoelectric patches connected

to resistive shunt circuits, leading to an equivalent vibration damper (in which the

electrical energy is dissipated in the circuit resistance), or to resonant (resistive-

inductive) shunt circuits, leading to an equivalent vibration absorber (in which the

electrical energy is absorbed by the circuit within a narrow frequency range).

Later, studies focused mainly on the optimization of the shunt circuits by

including resistances, inductances, capacitances, and switches in series and/or

parallel (Lesieutre 1998; Clark 2000; Reza Moheimani 2003; Viana and

Steffen 2006; Lallart et al. 2008). Other studies focused on the optimization of

the electromechanical coupling between the piezoelectric materials and host

structure (Trindade and Maio 2008; Trindade and Benjeddou 2009; Godoy and

Trindade 2011).

2.1 Coupled Formulation for Structure, Piezoelectric
Patches, and Shunt Circuits

In this section, a general methodology for the variational formulation of coupled

equations of motion for structures with piezoelectric materials is presented. Equa-

tions are written in terms of both electric potential and electric charge in the

piezoelectric elements. Equipotentiality over each piezoelectric element electrodes

is accounted for in both formulations. Finally, a methodology for coupling the

piezoelectric elements with electric circuits is presented.
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2.1.1 Electric Potential Formulation

First, a formulation considering structure’s generalized displacements and electric

potential in the piezoelectric elements as variables is proposed. The virtual work

done by internal forces can be found from the virtual variation of the electrome-

chanical potential energy. In this first formulation, it is chosen to write the potential

energy as the electric Gibbs energy, written in terms of mechanical strains ε and

electric fields E, such that its variation reads

δU ε;Eð Þ ¼
ð
Ω

δεtcEε� δεteE� δEtetε� δEtεεE
� �

dΩ; ð1Þ

where cE, e, and εε are the matrices of elastic (for constant electric field), piezo-

electric, and dielectric (for constant mechanical strain) constants of the material.

Using appropriate kinematic assumptions for the piezoelectric structure to be

studied and performing any form of spatial discretization, the coupled equations of

motion can be derived in the form

Ms þMp 0

0 0

" #
€u

€V

( )
þ Kus þKE

up �Kuv

�K t
uv �Kv

" #
u

V

( )
¼ Fm

0

( )
; ð2Þ

where Ms and Kus are the mass and elastic stiffness matrices of the structure

(without piezoelectric elements) and Mp and KE
up are the mass and elastic (for

constant electric fields) stiffness matrices of the piezoelectric elements.Kuv and Kv

are the piezoelectric and dielectric stiffnesses of the piezoelectric elements. Fm is a

vector of the mechanical loads applied to the structure. The degrees of freedom

(dofs) u are the generalized displacements and V are the generalized differences of

electric potentials (voltages) on the piezoelectric material.

To account for the equipotential condition on the electrodes of each piezoelectric

element, let us define the vectors of differences of electric potentials Vp induced or

applied to the electrodes of the piezoelectric elements, such that

V ¼ LpVp: ð3Þ

The boolean matrix Lp has dimension N � Np, where N is the number of spatial

(nodal) points and Np is the number of independent piezoelectric elements. Lp

allows to set an equal value to selected nodal differences of electric potentials.

Substituting Eq. (3) into Eq. (2) and pre-multiplying the second line of the

resulting equation by Lt
p leads to

Ms þMp 0

0 0

" #
€u

€Vp

( )
þ

Kus þKE
up �Kuv

�K
t
uv �Kv

" #
u

Vp

( )
¼ Fm

0

( )
; ð4Þ
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where

Kuv ¼ KuvLp, Kv ¼ L t
pKvLp: ð5Þ

2.1.2 Electric Charge Formulation

An electric charge formulation can be obtained by using the Helmholz free energy,

written in terms of mechanical strains ε and electric displacements D, as potential

energy instead of the electric Gibbs energy, such that the virtual variation of the

potential energy is

δU ε;Dð Þ ¼
ð
Ω

δεtcDε� δεthD� δDthtεþ δDtβεD
� �

dΩ; ð6Þ

where cD, h, and βε are the matrices of elastic (for constant electric displacement),

piezoelectric, and dielectric (for constant mechanical strain) constants of the

material.

In this case, the equations of motion are now written in terms of the generalized

displacements u and electric displacements Dn, such that

Ms þMp 0

0 0

� �
€u
€Dn

� �
þ Kus þKD

up �Kud

�K t
ud Kd

� �
u
Dn

� �
¼ Fm

0

� �
; ð7Þ

where, as in the previous case, Ms and Kus are the mass and elastic stiffness

matrices of the structure (without piezoelectric elements) and Mp and KD
up are the

mass and elastic (for constant electric displacements) stiffness matrices of the

piezoelectric elements. Kud and Kd are the piezoelectric and dielectric stiffnesses

of the piezoelectric elements.

To account for the equipotential condition on the electrodes of each piezoelectric

element, let us define the vectors of electric charges qp on the electrodes of

piezoelectric elements (with uniform and equal material properties and thickness),

such that

Dn ¼ Bpqp, Bp ¼ LpA
�1
p : ð8Þ

The boolean matrix Lp has dimension N � Np, where N is the number of spatial

(nodal) points and Np is the number of independent piezoelectric elements. Lp

allows to set an equal value to selected nodal electric displacements. Ap is a

diagonal matrix with the surface area of the electrodes of the piezoelectric

elements.

Substituting Eq. (8) in Eq. (7) and pre-multiplying the second line of the

resulting equation by Bt
p leads to
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Ms þMp 0

0 0

" #
€u

€qp

( )
þ

Kus þKD
up �Kuq

�K t
uq Kq

" #
u

qp

( )
¼ Fm

0

( )
; ð9Þ

where

Kuq ¼ KudBp, Kq ¼ B t
pKdBp: ð10Þ

2.2 Connection to Electric Circuits

It is worthwhile to analyze the connection of piezoelectric elements to electric

circuits, specially when shunt circuits are considered for passive vibration control.

To this end, it seems that an electric charge formulation is more appropriate since it

is possible to relate the electric charges flowing between the piezoelectric elements

electrodes with the electric charges flowing through the electric circuit. First, let us

consider a set of simple but quite general electric circuits composed of an inductor,

a resistor, and a voltage source. The equations of motion for such circuits can be

found using d’Alembert’s principle, such that the virtual work done by the inductors
δTLj, resistors, δWRj, and voltage sources, δWVj, of the j-th electric circuit are

δTLj ¼ �δqcj Lcj €qcj, δWRj ¼ �δqcj Rcj _qcj, δWVj ¼ δqcj Vcj; ð11Þ

where Lcj, Rcj, and Vcj are the inductance, resistance, and applied voltage of the j-th
electric circuit. qcj is the electric charge flowing through the j-th electric circuit.

Combining the virtual work done by all circuits leads to

δTL ¼
X
j

δTLj ¼ �δq t
cLc€qc, δWR ¼

X
j

δWRj ¼ �δq t
cRc _q c,

δWV ¼
X
j

δWVj ¼ δq t
cVc;

ð12Þ

where qc is the vector of electric charges, Lc and Rc are diagonal matrices with the

inductances and resistances of each circuit, and Vc is the vector of applied voltages.

Adding these virtual works to the electromechanical virtual works of previous

section, such that

δT � δU þ δW þ δTL þ δWR þ δWV ¼ 0; ð13Þ

or, in terms of the generalized displacements,

Piezoelectric Structural Vibration Control 293



δut Ms þMp

� �
€uþ Kus þKD

up

� 	
u�Kuqqp � Fm

h i
þ δq t

p �K t
uquþKqqp

� 	
þ δq t

c Lc€qc þ Rc _q c � Vcð Þ ¼ 0:
ð14Þ

Then, the connection between each piezoelectric element and a corresponding

electric circuit is done by stating that the electric charges flowing from the piezo-

electric element enter the circuit and vice-versa, such that

qc ¼ qp: ð15Þ

Thus, replacing qc by qp in Eq. (14) leads to the following coupled equations of

motion

Ms þMp 0

0 Lc

" #
€u

€qp

( )
þ

0 0

0 Rc

" #
_u

_q p

( )

þ
Kus þKD

up �Kuq

�K t
uq Kq

2
4

3
5 u

qp

( )
¼

Fm

Vc

( )
:

ð16Þ

In this case, the solution for u and qp must be simultaneous, that is accounting for

the electromechanical and circuit equations of motion. Notice that the passive

components of the electric circuit Lc and Rc affect the equivalent piezoelectric

force applied to the structure when an actuator with applied voltage is considered.

For a simple actuator with applied voltage, that is with only a voltage source in

the circuit (Lc ¼ Rc ¼ 0), the second equation in Eq. (16) can be solved for qp
leading to

qp ¼ K�1
q Vc þK�1

q K t
uqu; ð17Þ

which can be substituted in Eq. (16) such that it reduces to

Ms þMp

� �
€uþ Kus þ KD

up �KuqK
�1
q K t

uq

� 	h i
u ¼ Fm þ Fp; ð18Þ

where the equivalent piezoelectric force Fp applied to the structure by the piezo-

electric actuators is

Fp ¼ KuqK
�1
q Vc: ð19Þ

From Eq. (18), the generalized displacements u induced by mechanical and

piezoelectric equivalent forces can be evaluated. Then, the electric charges qp
flowing between electrodes of the piezoelectric elements can be found using

Eq. (17).
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2.3 Design of Passive Resistive Shunt Circuits

In this section, the equations of motion (16) are reduced to the case of purely resistive

shunt circuit by considering Lc ¼ 0 and Vc ¼ 0. It is then desired to use these

equations to properly tune the values of electric resistance of the shunt circuits in

order to maximize the added damping provided to a given vibration mode of interest.

For the sake of simplicity, only one piezoelectric patch connected to one

resistive shunt circuit is considered. The structural response is represented only

by the contribution of the vibration mode of interest, such that

u tð Þ ¼ ϕnαn tð Þ; ð20Þ

where ϕn is the n-th structural vibration mode, mass normalized, and αn is the

corresponding modal displacement. Then, the equations of motion (16) can be

rewritten as

€αn þ ω2
nαn � kpq ¼ Fn; ð21Þ

Rc _q þ keq� kpαn ¼ 0; ð22Þ

where kp ¼ ϕ t
nKuq, ke ¼ Kq, and Fn ¼ ϕ t

nFm. It is interesting to notice that ωn is

the n-th natural frequency for the structure considering an open circuit electric

boundary condition for the piezoelectric patch (Rc ! 1).

The computation of Rc is performed considering that the resistive shunt circuit

behaves as a simple energy dissipation element and, thus, may modify (increase)

the structural damping factor. Therefore, let us consider the free vibration case

(Fm ¼ 0) and quantify the effect of the shunt circuit on the dynamic behavior of the

structure. Supposing a harmonic response αn ¼ ~αne
jωt and q ¼ ~q e jωt,

�ω2 þ ω2
n

� �
~αn � kp~q ¼ 0; ð23Þ

jωRc þ keð Þ~q � kp~αn ¼ 0: ð24Þ

Solving Eq. (24) for q
�
and substituting in Eq. (23) yields

�ω2 þ ω2
n �

k2p
jRcωþ ke

 !" #
~αn ¼ 0: ð25Þ

Hence, the resistive shunt circuit leads to a complex natural frequency ω�
n

defined by

ω*2
n ¼ ω2

n �
k2p

jRcωþ ke
: ð26Þ
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From this equation, it is possible to obtain relevant information about the

electromechanical coupling and its effects. For instance, it is clear that the larger

the electromechanical coupling coefficient (EMCC) between patch and structure

for the vibration mode of interest, represented by kp, the larger is the effect of the
circuit on the structure. Besides, the cases of open circuit (oc) and short-circuit

(sc) may be derived such that

ωoc 2
n ¼ lim

Rc!1
ω*2
n ¼ ω2

n,

ωsc 2
n ¼ lim

Rc!0
ω*2
n ¼ ω2

n �
k2p
ke

;
ð27Þ

where the effect of stiffness increase due to the induced potential is clear. One may

also derive the following expression for the effective EMCC using

K2
n ¼

ωoc 2
n � ωsc 2

n

ωoc 2
n

¼ k2p
ω2
nke

: ð28Þ

Introducing the nondimensional frequency ρ, it is possible to obtain

ρ ¼ Rcω

ke
¼ RcωC

ε
p : ð29Þ

where Cε
p is the piezoelectric patch electric capacitance for constant strain. Then,

the complex natural frequency ω�
n may be rewritten as function of the EMCC K2

n

and nondimensional natural frequency ρ as

ω*2
n ¼ ω2

n 1� K2
n

1þ jρ


 �
; ð30Þ

which, after some algebraic manipulations, may be written as

ω*2
n ¼ ω2

nr 1þ jηnð Þ; ð31Þ

where ωnr and ηn are defined as the real part of the natural frequency and the loss

factor, respectively, which are

ω2
nr ¼ ω2

n 1� K2
n

1þ ρ2


 �
; ð32Þ

ηn ¼
ρK2

n

1� K2
n

� �þ ρ2
: ð33Þ
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Notice that the loss factor and the real part of the complex natural frequency are

functions of the nondimensional frequency ρ. Therefore, it is desired to search for

the value ρop that maximizes ηn. Making dηn=dρ ¼ 0, the following solution is

obtained

ρop ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� K2

n

q
; ð34Þ

such that the maximum loss factor is given by

ηmax
n ¼ K2

n

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� K2

n

q : ð35Þ

Combining Eqs. (29) and (34), an expression for the value of the electric

resistance Rop that maximizes the loss factor at the natural frequency ωn reads

Rop ¼
ke

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� K2

n

q
ωn

: ð36Þ

Figure 1 shows theoretically attainable levels of material loss factor for standard

piezoceramic materials in operation modes k33, k15, and k31.

Fig. 1 Loss factor for standard piezoceramic materials using operation modes k33, k15, and k31
combined to resistive shunt circuits
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2.4 Design of Passive Resonant Shunt Circuits

In the case of piezoelectric patches connected to resonant, or resistive-inductive

(RL), shunt circuits, the circuit is no longer a simple energy dissipation element

since the combination of circuit inductance and piezoelectric patch capacitance

leads to an electrical resonance. On the other hand, this fact may be used in such a

way that the circuit may absorb part of the energy generated by the piezoelectric

material and, thus, behave as a dynamic vibration absorber. Therefore, the theory of

dynamic vibration absorbers (Den Hartog 1985) is used.

To this end, the equations of motion (16) could be reduced to two degrees-of-

freedom, one mechanical and one electrical. Thus, as in the previous section, the

structural response is approximated by only the contribution of the vibration mode

of interest. In the present case, the decomposition Eq. (20) is applied to Eq. (16) but

maintaining both passive circuit elements (Rc 6¼ 0 and Lc 6¼ 0) while the voltage

source is removed (V ¼ 0). The equations of motion (16) are then reduced to

€αn þ ω2
nαn � kpq ¼ bnp; ð37Þ

Lc€qþ Rc _q þ keq� kpαn ¼ 0: ð38Þ

The design of Lc and Rc aims to minimize the structure’s frequency response

amplitude. For that, let us suppose a mechanical excitation p ¼ ~p e jωt, such that αn
¼ ~α ne

jωt and q ¼ ~q e jωt. It is also considered that the structural response will be

measured by a displacement sensor that provides the output y ¼ cyu, where cy is a

vector that describes the output in terms of the contributions of the mechanical dof

u. Due to the harmonic excitation, the output is also in the form y ¼ ~y e jωt, with

~y ¼ cn~α n and cn ¼ cyϕn. The equations of motion (37) and (38) may be written as

ω2
n � ω2

� �
~α n � kp~qc ¼ bn ~f ; ð39Þ

�ω2Lc þ jωRc þ ke
� �

~q� kp~αn ¼ 0: ð40Þ

Solving Eq. (40) for ~q , it is possible to write ~αn and, thus ~y, as functions of the

excitation amplitude ~f , where ~y ¼ H ωð Þ~f ,

H ωð Þ ¼ cnbn
�ω2Lc þ ke þ jωRc

ω4Lc � ω2 ke þ ω2
nLc

� �þ ω2
nke � k2p þ jωRc ω2

n � ω2
� � : ð41Þ

The frequency response amplitude is defined as

H ωð Þj j ¼ cnbn
�ω2Lc þ keð Þ2 þ ωRcð Þ2

ω4Lc � ω2 ke þ ω2
nL

� �þ ω2
nke � k2p


2 þ ωRc ω2

n � ω2
� �

2
h o1=2

;

8><
>:

ð42Þ

298 M.A. Trindade



and, for limited values of Rc, there is an anti-resonance at a frequency that is equal

to the one of the electric circuit resonances, defined as ωc ¼ ke=Lcð Þ1=2. One of the
possible strategies to minimize the structural response amplitude at one of its

resonance frequencies consists of designing the resonance frequency of the

sub-system so that it coincides with the structure’s resonance frequency of interest.
In this case, although both ke and Lc may be designed, ke is considered as a fixed

parameter since it depends on physical and geometric properties of the piezoelectric

patch. Therefore, it is desired to design a circuit that minimizes the structural

response. This can be achieved by considering ωc ¼ ωn, that allows us to compute

the circuit inductance directly by

Lc ¼ ke
ω2
n

: ð43Þ

The anti-resonance placed at ωn is accompanied by two resonances, before and

after ωn, that must have their amplitudes controlled in order to minimize the

amplification of the structural response in the case of frequency detuning. This

can be achieved using the shunt circuit resistance to provide an equivalent damping

to the two resonances. One possible methodology is to search for the resistance

value that makes the amplitude at anti-resonance to be approximately equal to the

one at two invariant frequencies, for which the amplitude is limited and indepen-

dent on the resistance (Den Hartog 1985). These invariant frequencies can be

evaluated through the following expression

lim
Rc!0

H ωð Þj j2 ¼ lim
Rc!1

H ωð Þj j2; ð44Þ

which, by substituting Eq. (42), leads to

ω2
1,2 ¼

1

2
ω2
c þ ω2

n �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
c � ω2

n

� �2 þ 2ω2
c k2p=ke

� 	r� �
: ð45Þ

The response amplitude at these invariant frequencies ω1 and ω2 and at the anti-

resonance frequency ωn are

H ω1ð Þj j2 ¼ R2
cω

2
n

k4p
and H ωnð Þj j2 ¼ 2ke

k2pω
2
n

: ð46Þ

By equalizing the two amplitudes, it is possible to find an expression for the

shunt circuit resistance, such that

Rc ¼ kp
ffiffiffiffiffiffiffi
2ke

p
ω2
n

: ð47Þ

Notice that it is written in terms of the equivalent coupling stiffness kp, equiv-
alent dielectric stiffness ke, and structure’s resonance frequency of interest ωn.
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2.5 Piezoelectric Shunted Damping Example

In this section, a case study of passive vibration control using piezoelectric patches

connected to resistive and resonant shunt circuits is presented. The host structure is

an Aluminum cantilever beam as shown in Fig. 2. The beam is lightly damped and

this is accounted for using a constant modal damping factor of 0.5 %. The material

properties of the Aluminum are: Young’s modulus 70 GPa, Poisson ratio 0.35, and

mass density 2700 kg m�3. It is then desired to increase the structural damping of

the host structure by using a passive control solution. Two piezoceramic patches

(PZT5A) perfectly bonded to the host structure are connected to a shunt circuit,

consisting of a resistance and an inductance. The width of both host structure and

piezoceramic patches, not shown in the figure, is 25 mm. The material properties

of the PZT5A piezoceramic are: cD11 ¼ cD22 ¼ 96:39GPa, cD12 ¼ 51:22GPa,

cD44 ¼ cD55 ¼ 39:63GPa, cD66 ¼ 22:57GPa, h31 ¼ h32 ¼ �1:677� 109 NC�1,

β
ε
33 ¼ 104:5� 106mF�1, and ρpzt ¼ 7750kgm�3. The piezoceramic patches are

fully covered by electrodes on the upper and lower surfaces. Electrodes at the

interface with the host structure are considered to be grounded.

Figures 3 and 4 show the frequency response of the structure (between tip

velocity and tip force) for three cases depending on the connection of the piezo-

electric patches: (i) open-circuit, (ii) resistive shunt, (iii) resonant (resistive-

inductive) shunt. The optimal value for the resistance in the resistive circuit was

obtained using Eq. (36) leading to Rc ¼ 103kΩ. In the case of the resonant circuit,

the optimal values for resistance and inductance were obtained using Eqs. (47) and

(43), respectively, leading to Rc ¼ 18kΩ and Lc ¼ 514H. Notice that the resistance

values were rounded in kΩ and the inductance value was manually fine tuned from

514 to 503 H.

It is possible to observe in Fig. 3 that both resistive and resonant shunt circuits

allow to reduce the vibration amplitude only around a single resonance frequency

with no modification of other resonances. In terms of vibration amplitude reduction

performance, it is clear from Fig. 4 that the resonant shunt circuit, which may

reduce the vibration amplitude in about 20 dB, is much more effective than the

resistive one, which reduces amplitude in about 5 dB.

Fig. 2 Schematic representation of a cantilever beam with two piezoelectric patches connected to

a resonant shunt circuit (dimensions in mm)
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Fig. 3 Frequency response (dashed: open-circuit, dash-dotted: R shunt, solid: RL shunt) of the

cantilever beam with piezoceramic patches connected to shunt circuit

Fig. 4 Frequency response (dashed: open-circuit, dash-dotted: R shunt, solid: RL shunt) of

the cantilever beam with piezoceramic patches connected to shunt circuit zoomed at the first

resonance
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3 Active Vibration Control Using Piezoelectric Materials

Since the mid-1980s, several studies focused on the use of distributed piezoelectric

patches for the active vibration and noise control of thin plate-like structures

(Bailey and Hubbard 1985). The main goal was to obtain a so-called adaptive

structure with very integrated sensors and actuators so that adaptive/reconfigurable

vibration mitigation solutions could be part of the structural design phase. Since

then, several advances were observed in terms of predictive models, control design

and optimization, experimental implementation and required power reduction with

main focus on aeronautic and aerospace applications (Ahmadian and DeGuilio

2001; Reza Moheimani and Fleming 2006; Leo 2007). Some researchers also

proposed combined active-passive vibration control strategies using piezoelectric

patches (Tang et al. 2000; Santos and Trindade 2011).

In this section, a case study of active vibration control using piezoelectric

patches as sensors and actuators is presented. The host structure is an Aluminum

cantilever beam as shown in Fig. 5. The beam is lightly damped and this is

accounted for using a constant modal damping factor of 0.5 %. The material

properties of the Aluminum are: Young’s modulus 70 GPa, Poisson ratio 0.35,

and mass density 2700 kg m�3. It is then desired to increase the structural damping

of the host structure by using an active control solution. Two piezoceramic patches

(PZT5A) perfectly bonded to the host structure are considered as sensor and

actuator and these are connected by an active controller, consisting of a control

unit and a power amplifier. The width of both host structure and piezoceramic

patches, not shown in the figure, is 25 mm. The material properties of the PZT5A

piezoceramic are: cD11 ¼ cD22 ¼ 96:39GPa, cD12 ¼ 51:22GPa, cD44 ¼ cD55 ¼ 39:63GPa,

cD66 ¼ 22:57GPa, h31 ¼ h32 ¼ �1:677 � 109 NC�1, β
ε
33 ¼ 104:5� 106mF�1, and

ρpzt ¼ 7750kgm�3. The piezoceramic patches are fully covered by electrodes on

the upper and lower surfaces. Electrodes at the interface with the host structure are

considered to be grounded. The piezoceramic sensor is considered to be connected

to the control unit through a high impedance input such that it provides a voltage

(electric potential) signal. The control voltage is imposed to the upper electrode of

the piezoceramic actuator.

Fig. 5 Schematic representation of a cantilever beam with two piezoelectric patches serving as

sensor and actuator connected to an active controller (dimensions in mm)
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A coupled second-order model is constructed for the host structure with piezo-

electric patches using the finite element method leading to

Mt 0 0

0 0 0

0 0 0

2
664

3
775

€u

€Vs

€Va

8>><
>>:

9>>=
>>;þ

Kus þKE
ups þKE

upa �Kuvs �Kuva

�K
t

uvs �Kvs 0

�K
t

uva 0 �Kva

2
6664

3
7775

u

Vs

Va

8>><
>>:

9>>=
>>; ¼

Fm

0

0

8>><
>>:

9>>=
>>;:

ð48Þ

The control voltage applied to the actuator Va is prescribed and thus the third line

of Eq. (48) is automatically satisfied and the terms containing Va in the first line can

be moved to the right side. As for the sensor voltage Vs, it may be written in terms of

the structure’s displacements vector as

Vs ¼ �K
�1

vs K
t
uvsu; ð49Þ

and then substituted in the first equation such that

Mt€uþ D _u þKutu ¼ Fm þKuvaVa; ð50Þ

where Kut ¼ Kus þKE
ups þKE

upa þKuvsK
�1

vs K
t

uvs and a damping matrix D is

included a posteriori.

Applying the methodology presented previously, the mechanical force is con-

sidered as a perturbation input such that Fm ¼ bpp, the voltage induced in the

piezoceramic sensor is considered as the measurement output such that

y ¼ Vs ¼ cyu, with cy ¼ �K
�1

vs K
t

uvs, and the voltage applied to the piezoceramic

actuator Va is considered as the control input, such that bf ¼ Kuva.

In order to simplify the control design, a model reduction is performed using

projection onto a reduced undamped modal basis, truncated to the vibration modes

of interest ϕj, solution of �ω2
jMt þKut

� 	
ϕj ¼ 0. As discussed previously, it is

very important to well represent the anti-resonance frequencies (or system zeros) in

the control design. The low-frequency response of the neglected higher-frequencies

vibration modes may have an important contribution to the location of the system

zeros. Therefore, it is advisable to keep some vibration modes outside the frequency

range of interest. The modal basis can also be enriched using the static contribution

of the neglected vibration modes ϕs ¼ K�1
ut Kuva. The structure’s displacements are

then approximated as u �
X
j

ϕjαj and, thus, the reduced equations of motion are

written as

€αþ Λ _α þΩ2α ¼ ΦtFm þΦtKuvaVa,

Vs ¼ �K
�1

vs K
t

uvsΦα:

(
ð51Þ
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For the sake of simplicity, in the present case, only the first six vibration modes

(bending modes for all but the third and fifth ones that correspond to torsion modes)

are kept in the reduced-order model.

Then, in order to make use of standard control system tools, the second-order

reduced system Eq. (51) is rewritten in the following state-space form

_z ¼ Azþ Bppþ BcVa,

Vs ¼ Cyz;

(
ð52Þ

where

z ¼
α

_α

" #
, A ¼

0 I

�Ω2 �Λ

" #
, Bp ¼

0

Φt bp

" #
, Bc ¼

0

ΦtKuva

" #
,

Cy ¼ �K
�1

vs K
t

uvsΦ 0
h i

:

ð53Þ

Then, the transfer function between sensor and actuator used in the control

system reads Hc sð Þ ¼ Cy sI� Að Þ�1Bc. In what follows, two simple control laws

are designed based on this information: (i) Direct Velocity Feedback (DVF) and

(ii) Positive Position Feedback (PPF). The control design is performed here with the

aid of rltool Graphical User Interface of Control System Toolbox of MATLAB(R).

For the DVF control, a real zero at s ¼ 0 is added leading to a simple differentiator.

For the PPF control, two complex conjugate poles near the open-loop poles

corresponding to the vibration mode to be controlled are added.

Figure 6a shows the root locus of the closed-loop system. From the root locus,

one may conclude that very large damping values could be obtained, in particular

for the second and fourth modes (which are the second and third bending modes).

However, it is important to notice that large values of control gains may not be

realistic since they would require large control voltages that may not be feasible due

to the maximum electric field supported by the piezoelectric patches and also the

voltage and power demanded to the power amplifier (Trindade, Benjeddou, and

Ohayon 2001). In the present case, it is assumed that the control voltage should not

exceed 250 V (which leads to an applied electric field of 500 V/mm in the 0.5 mm

thick piezoelectric patches). Commercial power amplifiers allow the application of

such voltages for a limited frequency range and patches capacitance. For some

applications, the energy consumption could also be used to design and analysis of

control strategies (Wang and Inman 2011). There are also alternatives to reduce the

maximum voltage required for a given performance (Tang et al. 2000; Sirohi and

Chopra 2001; Santos and Trindade 2011).

Considering the maximum voltage limitation, the maximum feasible control

gain is approximately g ¼ 5000 Vs=V. Then, the control performance is much

weaker than the ones allowed by the control law alone. Nevertheless, a feasible

DVF control still yields reasonable performance in terms of added structural
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damping. Indeed, the modal damping factors of first three bending modes are

increased from 0.5 to 1.2 %, 3.3 %, and 3.4 %, respectively. This also leads to a

reduction in the vibration amplitude as shown in Fig. 6b.

Figure 7a, b shows, respectively, the impulsive time responses of the open-loop

and closed-loop sensor voltages and the control voltage applied to the actuator.

As discussed previously a simple output feedback law, as DVF, is not able to

focus on given vibration modes. The selection/prioritization of the modes that are

better controlled depends mainly on the positioning of sensor and actuator and its

relation with the mode shapes. This is one of the reasons why the Positive Position

Feedback (PPF) may be very useful for structural vibration control. Provided that

Fig. 6 (a) Root locus and (b) frequency response (solid: open loop, dashed: closed-loop) of the
cantilever beam with piezoceramic patches and DVF control law
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the natural frequencies (in fact, the open-loop poles) are known and available for

proper tuning of the control parameters ωf and ξf, the PPF control should allow to

focus on a given vibration mode and, thus, to minimize the modification of other

modes and optimize the use of the control energy.

As an example, a PPF control law focusing on the first vibration mode is

considered for the cantilever beam with piezoelectric patches. The first vibration

mode natural frequency is approximately 32 Hz (201 rad/s). Based on this infor-

mation and with the aid of simulations in rltool, the PPF parameters are set to ωf

¼ 205rad=s and ξf ¼ 0:2. Figure 8a shows the root locus of the closed-loop system

in which it is possible to notice that the PPF does allow to completely modify the

path of the closed-loop poles such that the first vibration mode can now be

substantially damped while the second and third bending modes are much less

modified. For a PPF control gain of g ¼ 38 V=V, the vibration amplitude at the first

natural frequency is greatly reduced as shown in Fig. 8b.

Fig. 7 Impulse responses

of (a) sensor voltage (solid:
open loop, dashed: closed-
loop) and (b) control
voltage of the cantilever

beam with piezoceramic

patches and DVF control

law
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It is possible to observe in Fig. 9a, however, that the overshoot of the impulsive

time response is increased in closed-loop although the settling time is reduced.

Figure 9b also shows the control voltage required for such performance.

It is worthwhile to notice that, as discussed briefly in previous section, the

obtained closed-loop control performance for both DVF and PPF control laws

depend on the perturbation level of the system. Although theoretically these control

performances are attainable, for higher excitation levels, the sensor output is also

increased and so is the control voltage required to achieve such performances. In the

present case, a perturbation force leading to a displacement amplitude of the order

of the host structure thickness was used. To avoid saturation of the control voltage

and its unpredictable effects, the control gain should be diminished as the pertur-

bation level increases, leading to less performing vibration control.

Fig. 8 (a) Root locus and (b) frequency response (solid: open loop, dashed: closed-loop) of the
cantilever beam with piezoceramic patches and PPF control law
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Impedance-Based Structural Health
Monitoring

Valder Steffen Jr. and Domingos Alves Rade

Abstract Structural Health Monitoring—SHM—is known as the nondestructive

process of online, in service, allowing the systems and structures to monitor their

own integrity all along their useful lives. The most important goals in this context

are to prevent failures, to increase security, and to reduce maintenance costs. One

of the most important available techniques is the so-called impedance-based

structural health monitoring, which is the focus of the present chapter. Practical

implementations of the technique are described for illustration purposes.

Keywords Structural health monitoring • Impedance-based technique

• Electromechanical coupling • Smart material • Piezoceramic material

1 Introduction

Failures occurring in industrial equipment and structures in general are mostly associ-

ated to friction, fatigue, impact, corrosion, and crack growth. For an appropriate

functioning of the system, failure should be localized and repaired timely. In general

terms, the problem of damagemonitoring consists in localizing andmeasuring the fault

and estimating the remaining life of the system (damage prognosis). One of the most

important ambitions of modern engineering is to perform structural health monitoring

in real time of structural components of high cost and considerable responsibility.

Thus, the creation or improvement of techniques that enhance the accuracy and

reliability of the damage tracking process is highly desirable and is the subject of

several studies both in industry and academic environments (Farrar et al. 2005).

There are several techniques for monitoring the occurrence and propagation of

structural damage. One of these techniques is the so-called impedance-based
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structural health monitoring (Park and Inman 2005). This technique is based on the

electromechanical coupling that results from a piezoelectric transducer installed on

the monitored structure (bonded on or incorporated into). Then, by measuring the

electrical impedance, which depends on both the electrical characteristics of the

transducer and the physical or mechanical characteristics of the structure (Liang

et al. 1994), incipient damage can be detected from the variations found in the

impedance curves (impedance signatures). Specific damage metrics can be used to

quantify the damage. These damage metrics are calculated from the measurement

comparisons between the cases without damage (healthy) and with damage, by

using numerical and statistical tools as described in the literature (Palomino and

Steffen 2009). In many applications, particularly those related to aeronautical

structures, detecting incipient damage is an important issue, both from maintenance

and security viewpoints. Another important point is that the use of statistical pattern

recognition techniques to different problems of structural health monitoring (SHM)

represents the best alternative available (Farrar and Worden 2013).

The determination of mechanical properties of materials is made by performing

various tests, which are usually destructive. The most widely performed tests are

the following: tensile tests, bending tests, torsion tests, fatigue tests, impact tests,

and compression tests. The tensile test consists of subjecting the specimen to a

stretching effort, while the fatigue test is an experimental procedure that produces a

permanent, progressive, and localized structural change. Fatigue test process occurs

while the material is subjected to conditions that produce dynamic tensions in one

or more points that can form cracks or, in some cases, cause complete failure after a

sufficient number of load cycles (Branco 1994). In order to evaluate the sensitivity

of the impedance-based structural health monitoring method, impedance signals

were measured along tensile and fatigue testing. The impedance signatures were

used to create meta-models designed to predict the state of the structure (Palomino

et al. 2011). It is worth mentioning that fatigue tests have a major importance in the

aerospace industry. The life of components together with the life of the entire

aircraft structure is of great importance for design and operation processes.

2 Impedance-Based Structural Health Monitoring:
A Review

The technique known as impedance-based structural health monitoring utilizes the

piezoelectric properties of the PZT patch (PZT stands for lead–zirconate–titanate,

an intermetallic inorganic compound) that is installed in the structure being tested

and is considered as a nondestructive damage evaluation method (Park et al. 2003).

The basic idea behind this technique is monitoring the changes in the structure’s
mechanical impedance as caused by the presence of damage. Since the direct

measurement of the mechanical impedance of the structure is a difficult task, the

method uses piezoelectric materials (PZT) bonded to or incorporated into the
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structure, allowing the measurement of the electrical impedance. This measure is

related to the structure mechanical impedance, which is affected by the presence of

damage. Evidently, it is considered that the piezoelectric sensor–actuator used in

the monitoring procedure remains intact along the test. The PZT patches use a low

voltage (< 1 V) and generate high frequency excitation at given points along the

structure (Park et al. 2003).

The impedance-based SHM technique was first proposed by Liang et al. (1994)

and, subsequently, the method was extended by Chaudhry et al. (1995, 1996), Sun

et al. (1995), Park et al. (1999, 2000, 2001, 2003), Giurgiutiu and Zagrai (2000),

Giurgiutiu et al. (2000, 2002), Soh et al. (2000), Bhalla et al. (2002), Moura and

Steffen (2004, 2006), Peairs et al. (2004), and Palomino and Steffen (2009). As

mentioned above, this health monitoring technique utilizes impedance sensors to

monitor changes in the structural stiffness, damping, and mass. The impedance

sensors consist of small piezoelectric patches, usually smaller than

25� 25� 0.1 mm, which are used to measure directly the local dynamic response.

The piezoelectric material acts directly producing an electric voltage when a

mechanical stress is applied on the material. Conversely, mechanical strains are

produced when an electric field is applied. The impedance-based monitoring

method uses simultaneously both versions, direct and inverse, of the piezoelectric

effect (Park et al. 2003).

When the PZT patch is bonded to the structure and a very low electric voltage is

applied, generally 1 V (Raju 1997), a strain is produced in the PZT patch. Using a

high frequency of excitation (in terms of typical modal analysis testing), the

dynamic response of the structure represents only the local area of the sensor and

is not affected by the boundary conditions. Then, the response of the mechanical

vibrations is transmitted to the sensor in the form of an electrical response. When an

incipient damage leads to changes in the dynamic response (given by the imped-

ance signal), this is observed in the electric response of the PZT patch.

The electromechanical model that quantifies and describes the measurement

process is illustrated in Fig. 1 for a single-degree-of-freedom system.

For this 1 d.o.f. system, Liang et al. (1994) demonstrated that the admittance,

Y(ω), of the PZT patch can be written as a function of the combined actuator PZT’s
and structure’s mechanical impedance, as given by Eq. (1):

Fig. 1 Model used to represent a 1 d.o.f. PZT-driven dynamic structural system (Liang

et al. 1994)
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Y ωð Þ ¼ iωa ε33
T 1� iδð Þ � Zs ωð Þ

Zs ωð Þ þ Za ωð Þ d3x
2Ŷ

E

xx

� �
ð1Þ

where Y(ω) is the electrical admittance (inverse of the impedance), Za(ω) and Zs(ω)

are the PZT’s and structure’s mechanical impedances, respectively. Ŷ
E

xx is the

complex Young’s modulus of the PZT at zero electric field, d3x is the piezoelectric

coupling constant in the arbitrary x direction at zero electric field, ε33T is the

dielectric constant at zero stress, δ is the dielectric loss tangent of the PZT, and a is a
geometric constant of the PZT. Assuming that the mechanical properties of the PZT

do not vary over time used for monitoring, Eq. (2) shows that the electrical

impedance of the PZT patch is directly related to the structure’s impedance.

Damage causes changes in the structure’s mechanical impedance, thus changing

local dynamic features. Hence, the electrical impedance is used to monitor the

structure health as represented by the structure’s mechanical impedance.

Impedance is a complex quantity represented by Eq. (2), given in ohm. In

general, the real part of the impedance is used for structural health monitoring

purposes since it is less sensitive to temperature variation. However, the imaginary

part and the magnitude values of the impedance are used in various applications.

Z ¼ Rþ jX ð2Þ

where R is the resistance and X is the reactance.

The sensitivity of the technique to detect structural damage is related to the

frequency range selected. A very small damage in the structure does not cause

significant change in the structure’s stiffness, mass, and damping properties. Hence,

it is necessary for the excitation wavelength to be smaller than the characteristic

length of the damage to be detected. According to the literature, the frequency range

typically used in the impedance-based method is 30–250 kHz. The range for a given

structure is usually determined by trial and error methods. However, Moura and

Steffen (2004) presented a statistical procedure that can be used to obtain the best

settings for tests of electromechanical impedance; however, the proposed procedure

is rather time-consuming. In the impedance-based method, frequency ranges that

contain 20–30 peaks are usually chosen, because the higher number of peaks

provides a better dynamic response over the frequency range. A band around a

high frequency (150 kHz) is favorable to detect the location, while a lower range,

around 70 kHz, covers more sensing areas (Sun et al. 1995). In relation to the

sensitive region to identify changes, Park et al. (2003) claim that for a single PZT

patch damage located at a radial distance of up to 0.4 m can be identified in

composite materials, and up to 2 m in bars consisting of a single metal.

Figure 2 presents an example of a simple riveted beam-like structure (Fig. 2a) for

which the impedance responses are shown for two different conditions, namely the

pristine condition (blue), and the case in which the rivet was lost, i.e., the damaged

condition (red). The tests were performed by using the Agilent 4294A impedance

analyzer shown in Fig. 3. It can be easily observed that the impedance curves are

314 V. Steffen Jr. and D.A. Rade



qualitatively different. However, for making the analysis easier, it is more appro-

priate to quantify the influence of damage, which can be performed by the so-called

damage metrics.

As mentioned above, the frequency ranges containing about 20–30 peaks are

chosen, since that high number of peaks is related to rich dynamic responses. As an

example, Fig. 4 shows the dynamic response between 10 and 250 kHz of an Al
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Fig. 2 Impedance-based structural health monitoring. (a) Riveted beam-like structure, (b) imped-

ance responses

Fig. 3 Agilent 4294A Impedance Analyzer
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beam, in which two frequency ranges are highlighted, namely 10–45 kHz and

100–175 kHz.

In addition, it has been observed that the influence of the initial conditions is

minimal since the PZT patch will excite the structure locally along the frequency

test band.

2.1 Damage Metrics

To establish a methodology able to quantify structural changes, a reference to the

damage metric (baseline) should be defined, corresponding to the structure without

damage. Thus, comparisons can be made involving the metric values of the pristine

condition and the damaged structure. These comparisons should be able to indicate

the presence of damage in the structure. Palomino and Steffen (2009) studied the

most significant damage metrics found in the literature. These damage metrics are

briefly reviewed in the following.

The most used statistical model in the literature is the root mean square deviation

(RMSD) as given by Eq. (3)

Fig. 4 Frequency ranges of interest
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RMSD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1

Re Z1, ið Þ � Re Z2, ið Þð Þ2
n

 !vuut ð3Þ

where Re(Z1,i) is the impedance of the PZT measured under healthy condition, Re

(Z2,i) is the impedance for the comparison with the baseline measurement at

frequency interval i, and n is the total number of frequency points adopted. This

calculation is done within a predefined frequency range.

As a first alternative to this metrics, it is proposed to replace the denominator by

the impedance measured under healthy condition (baseline) (Grisso 2005; Peairs

2006).

RMSD1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1

Re Z1, ið Þ � Re Z2, ið Þð Þ2
Re Z1, ið Þ2

 !vuut ð4Þ

The root mean square deviation defined by Eq. (4) is called RMSD1. In this case,

the level of impedance measurement does not affect qualitatively the damage

metrics, although the points taken in the comparison change the result obtained.

Giurgiutiu and Rogers (1998) describe another definition of the root mean square

deviation, RMSD2, as represented by Eq. (5). It is possible to observe in this

equation that the sum is made independently in the numerator and the denominator.

RMSD2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1

Re Z1, ið Þ � Re Z2, ið Þð Þ2

Xn
i¼1

Re Z1, ið Þ2

vuuuuuuut ð5Þ

The damage metric described by Eq. (5) was used in other studies where

comparisons were made between different metrics (Tseng and Naidu 2002;

Giurgiutiu and Zagrai 2005).

Another possibility to use the root mean square deviation, RMSD3, is provided

by Park et al. (2003).

RMSD3 ¼
Xn
i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Re Z1, ið Þ � Re Z2, ið Þð Þ2

Re Z1, ið Þ2

s
ð6Þ

In Eq. (6) the sum is outside the root mean square sign, unlike the definitions

previously given.

Peairs (2006) presents yet another change in the root mean square deviation,

RMSD4, as shown by the following equation:
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RMSD4 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1

Re Z1, ið Þ � Re Z1

� �� �� Re Z2, ið Þ � Re Z2

� �� �� �2
n

 !vuut ð7Þ

where Re Z1

� �
and Re Z2

� �
are the averages of measurements for the two conditions

analyzed. These averages are included in Eq. (7) to minimize the effect of small

variations on the metric value, resulting from possible changes in temperature or

electrical resistance of the cables connecting the sensor to the impedance analyzer.

The variations mentioned above appear quite frequently. Then, to determine the

baseline, the average of several measurements for the structure in healthy state

should be used.

Using the mean value and the standard deviation calculated for each point,

Peairs (2006) presents Eq. (8) as a new definition of the root mean square deviation:

RMSD5 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xn
i¼1

Re Z1, ið Þ�Re Z2, ið Þ
SZ1, i

� �2

n

0
BBB@

1
CCCA

vuuuuuut ð8Þ

where the standard deviation of each point of the baseline, SZ1, i, is included in order

to make the metric less sensitive to changes in the impedance signal due to changes

in the environment (not linked to any damage in the structure).

Another alternative is the correlation coefficient deviation damage metric, which

is used to quantify and interpret information from two data sets. The mathematical

formulation, Eq. (9), involves the difference between one and the correlation

coefficient between the measurement and the reference (Giurgiutiu and Zagrai

2005).

CCD ¼ 1� CC ð9Þ

where CCD is the correlation coefficient deviation and CC is the correlation

coefficient that it is given by Eq. (10).

CC ¼ 1

n

Xn
i¼1

Re Z1, ið Þ � Re Z1

� �� �
Re Z2, ið Þ � Re Z2

� �� �
SZ1

SZ2

ð10Þ

where SZ1
is the standard deviation of the baseline and SZ2

is the standard deviation

of the impedance signal to be compared. When the correlation coefficient is equal to

one, it means that the signals are fully correlated. When the difference between the

signals is large the CC value is small. The CC value is also used to compare and

quantify the admittance signals (Naidu and Soh 2004).

318 V. Steffen Jr. and D.A. Rade



The average square difference is another metric used by the electromechanical

impedance method to quantify the damage (Raju 1997), and its mathematical

formulation is given by Eq. (11):

ASD ¼
Xn
i¼1

Re Z1, ið Þ � Re Z2, ið Þ � δð Þ½ �2 ð11Þ

where δ is the difference of the averages of each signal, as represented by Eq. (12)

δ ¼ Re Z1

� �� Re Z2

� � ð12Þ

This damage metric is also used to remove the effect of variations in the

amplitude due to changes in the environment.

Another metric used by the electromechanical impedance method is the

so-called mean absolute percentage deviation (Tseng and Naidu 2002):

MAPD ¼
Xn
i¼1

Re Z1, ið Þ � Re Z2, ið Þð Þ
Re Z1, ið Þ

����
���� ð13Þ

It is observed that the MAPD, Eq. (13), is similar to the root mean square

deviation defined by RMSD3, (Eq. (5)).

Finally, one has the metric given by the simple sum of the average difference

between the signals (Peairs 2002). This damage metric does not use any relation

between the values considered and is calculated as shown by Eq. (14):

M ¼
Xn
i¼1

Re Z1, ið Þ � Re Z2, ið Þð Þ2 ð14Þ

2.2 Environmental Influence on Impedance-Based SHM

For the success of the monitoring procedure, the measurement system should be

robust enough with respect to environmental influences from different sources, in

such a way that correct and reliable decisions can be made from the measurements.

The environmental influences become more critical under certain circumstances,

especially in aerospace applications, in which extreme conditions are frequently

encountered. Palomino et al. (2012) examined the influence of electromagnetic

radiation, temperature and pressure variations, and ionic environment under labo-

ratory conditions. In this context, the major concern was to determine if the

impedance responses are affected by these influences. In addition, the sensitivity

of the method with respect to the shape of the PZT patches was also evaluated. For

this aim, two shapes of piezoelectric patches of the same size, namely circular and

Impedance-Based Structural Health Monitoring 319



squared, have been tested in the laboratory. They were bonded to two different

types of structures, namely a plate and a beam, so that the impedance response was

measured both for pristine and damaged conditions. Similar results were obtained

for the two shapes of PZT patches tested. The results are summarized in Table 1, in

which it can be observed that temperature is a major environment issue in the

context of impedance-based SHM.

3 Case Studies

To illustrate the application of the impedance-based structural health monitoring

technique, two case studies are presented. The first is dedicated to a beam-like

structure in which both the influence of the position of a small mass (representing a

structural modification) and the influence of the size of holes in the structure are

evaluated. The second case study is related to the influence of cumulative damage

on the impedance responses in a typical fatigue test.

3.1 Impedance-Based SHM Applied to a Beam-Like
Structure

Figure 5 shows a schematic representation of a cantilever Al beam to which a PZT

patch was bonded to, aiming at monitoring structural changes that have been

introduced to the system through the addition of a small mass, so that a structural

modification results. The structural modifications obtained intend to represent

damage.

Table 1 Sensor shape and environmental influences
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The thickness of the beam is 1.5 mm and the thickness of the PZT patch is

0.01 mm. For the pristine condition, the baseline is shown in Fig. 6. Two frequency

bands have been selected for the analysis, namely 15.5–23.5 kHZ and

108–116 kHZ. At this point a mass of 8.5 g was added to the system at different

locations as explained in the following:

• Case A: the mass is placed 245 mm from the PZT patch (at the right end of

the beam).

Figure 6 shows the position of the mass (a) and the impedance response in the

frequency band of 15.5–23.5 kHz.

• Case B: the same mass is placed at a position 195 mm from the PZT patch.

Figure 7 shows the position of the mass (a) and the impedance responses

(b) obtained.

• Similar tests were made by changing the distance of the mass (8.5 g), as follows:

Case C (distance¼ 195 mm); Case D (distance¼ 145 mm); Case E

(distance¼ 95 mm). Following, a second frequency band was investigated

(108–116 kHZ).
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Fig. 6 Case A: (a) “damage” position; (b) impedance responses
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Then, the damage matrix was calculated as based on Eq. (3), namely the

RMSD1. As impedance is a complex quantity, three different metrics were deter-

mined, as follows: by taking into account the real part of the impedance (resis-

tance); by taking into account the imaginary part of the impedance (reactance); and

by taking into account the magnitude of the impedance. The corresponding expres-

sions are given by Eq. (15).

MR ¼
Xn
i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Re Zi, 1ð Þ � Re Zi, 2ð Þ½ �2

Re Zi, 1ð Þ½ �2

s
MI ¼

Xn
i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Im Zi, 1ð Þ � Im Zi, 2ð Þ½ �2

Im Zi, 1ð Þ½ �2

s

MZ ¼
Xn
i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Zi, 1ð Þ � Zi, 2ð Þ½ �2

Zi, 1ð Þ½ �2

s ð15Þ

Table 2 presents the results for the test cases above.

For illustration purposes, the damage metrics given by MR are shown in Fig. 8

for the frequency band of 108–116 kHz. It can be observed that the closer the added

mass, the larger the damage metrics. The same trend is kept for the other damage

metrics.

Next, different masses were added to the beam at the same position. The goal is

to observe the variation of the damage metrics when increasing the mass, keeping
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Fig. 7 Case B: (a) “damage” position; (b) impedance responses

Table 2 Damage metrics

Test cases

15.5–23.5 kHz 108–116 kHz

MR MI MZ MR MI MZ

A 495.23 137.35 95.83 81.03 72.76 30.60

B 503.32 146.98 102.72 102.09 89.94 56.11

C 515.77 146.98 103.01 157.7 133.34 81.30

D 535.48 161.37 106.23 220.17 163.77 39.54

E 466.28 161.59 100.14 268.09 237.72 98.95
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however the same position along the beam (195 mm from the PZT patch), for the

two frequency bands considered. The following masses were considered sequen-

tially: A—1.76 g; B—3.45 g; C—5.16 g. Figure 9 shows the damage metricMR for

the frequency band given by 108–116 kHZ. It can be observed that the larger the

added mass, the larger the damage metrics. The same trend is kept for the other

damage metrics. Similar results are obtained for the lower frequency band.

Finally, holes with different diameters were made sequentially in the beam, all at

the same position. The goal is to observe the variation of the damage metrics when

increasing the diameter, keeping however the same position of the center of the

holes along the beam (195 mm from the PZT patch), for the two frequency bands

considered. The following diameters were considered sequentially: A—1.0 mm;

B—2.0 mm; C—4.0 mm; D—8.0 mm. Figure 10 shows the damage metric MR for

the frequency band represented by 108–116 kHZ. It can be observed that the larger
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the diameter, the larger the damage metrics. The same trend is kept for the other

damage metrics. Similar results are obtained for the lower frequency band

considered.

3.2 Fatigue Test

To determine the value of the stress amplitude that should be applied in the fatigue

test so that no plastic deformation results, preliminary tensile tests were performed

to obtain the stress–strain curve for the material used (Al). After determining the

stress amplitude (corresponding to a force peak value of 9324 N), defining the

frequency to be used in the fatigue tests (10 Hz) and selecting the number of cycles,

two 10� 10� 0.1 mm PZT patches were bonded to the test sample. The PZT

patches were bonded outside the area of critical stress concentration, as shown in

Fig. 11.

The test sample presented a visible crack after 50,636 cycles. Six impedance

measurements were taken at each 8000 cycles until reaching 48,000 cycles.

One additional measurement was taken after the crack became visible—50,636

cycles—shown in Fig. 12.
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Fig. 11 PZT patches bonded on the surface of the test sample
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In summary, the procedure was the following (as illustrated in Fig. 13):

(a) First, measurements were taken to determine the soundness state of the

structure (before starting the fatigue test);

(b) Then, the test sample was placed in the fatigue testing machine and 8000 force

cycles were performed;

(c) Impedance measurements were made;

(d) Another 8000 cycles were applied to the specimen;

(e) The sequence above was repeated until the specimen exhibited a visible crack.

As the frequency range of 30–50 kHz is commonly used for the electrome-

chanical impedance method (Moura, 2008), the range used in the present case was

39–46 kHz. The real part of the impedance was measured for the PZT1 and PZT2

patches as shown in Fig. 14. In this figure it is possible to observe how the

impedance responses change after a given number of cycles, demonstrating that

the technique is sensitive to the damage accumulation associated with the cyclic

load. This means that a clear correlation exists between the number of cycles

applied to the test samples and the impedance signals. It is worth mentioning

that the experimental procedure can be simplified by using a portable impedance

meter.

Fig. 12 Crack in the test sample (fatigue testing for the impedance-based technique)
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4 Conclusion

The basic aspects of impedance-based structural health monitoring have been

presented in this chapter. We have also included two case studies to illustrate the

application of the technique conveyed.

It is worth mentioning that for many applications the use of a commercial

impedance analyzer is not appropriate due to its weight and cost. It is well known

that on board real time monitoring requires low weight, high performance equip-

ment, particularly for aerospace applications. Consequently, different groups on

SHM research around the world have designed low weight/low cost impedance

analyzers even for the case in which several monitoring channels are necessary.

Another important point is temperature compensation. Impedance-based struc-

tural health monitoring is sensitive to temperature. In general, the compensation is

done in the software used to manage the impedance responses.

0

8

16

24

32

40

48

50.636

38

40

42

44

46

a b

0

100

200

Number of the cycles [103]Frequency [kHz]

P
Z

T
1 

Im
pe

da
nc

e 
R

e(
Z

) 
[o

hm
]

0

8

16

24

32

40

48

50.636

38

40

42

44

46

0

100

200

Number of the cycles [103]

Frequency [kHz]

P
Z

T
2 

Im
pe

da
nc

e 
R

e(
Z

) 
[o

hm
]

Fig. 14 Impedance signatures for the fatigue tests. (a) Signatures of the PZT patch #1; (b)
signatures of the PZT patch #2

Fig. 13 The fatigue test procedure
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Finally, damage classification is an issue to be taken into account. In the same

structure various types of damage may occur simultaneously: corrosion, rivet loss,

cracks. Additionally, in the case of composite structures, delamination should be

carefully monitored. For damage classification purposes a number of artificial

intelligence methods are available.

All the points above will be addressed in further developments.
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Damage Detection Systems for Commercial
Aviation

Ricardo Pinheiro Rulli, Camila Gianini Gonsalez Bueno, Fernando Dotta,

and Paulo Anchieta da Silva

Abstract Damage detection systems based on various technologies—such as

Comparative VacuumMonitoring, Electro-Mechanical Impedance, Acoustic Emis-

sion, and Lamb Waves—have been investigated by the major aircraft manufac-

turers over the last decade. The main focus of the investigations is to determine the

possible application scenarios for these technologies, anticipating potential benefits

for the commercial aircraft scheduled maintenance programs. Structural Health

Monitoring (SHM) damage detection solutions have the potential to reduce aircraft

operators direct maintenance costs and fleet downtime. In order to provide a

common understanding, scope, and key elements for SHM it was produced by an

SAE technical committee the ARP6461 document, encompassing guidelines for the

implementation of Structural Health Monitoring for civil aviation. The document

includes guidelines for development, validation, verification, and certification of

damage detection systems. Although not being implemented as current inspection

tools, the SHM damage detection systems have demonstrated progress for finding

damages in different types of structures. Embraer is one of these major commercial

aircraft manufacturers which have extensively tested different technologies, from

coupons to aircraft test beds.

Keywords Structural health monitoring • SHM • Damage detection systems

• Commercial aviation • Aircraft manufacturers • MSG-3 • ARP6461

1 Introduction

Over the years, aircraft manufacturers have investigated damage detection systems

applied to aeronautical structures for commercial, executive, and defense aviation

fleets. This concern is directly related to opportunities to reduce maintenance

costs for customers, to increase competitiveness, and to improve the safety of

airplanes—because automated inspections can minimize the risks associated to
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“human-factors”—and also to reduce redundancy in metallic structures designs

(Schmidt et al. 2004).

Regarding the benefits of introducing Structural Health Monitoring (SHM) into

commercial aviation, Kent and Murphy (2000) provided cost benefit analysis for

three different structures (trailing edge, vertical stabilizer, and engine mount)

showing that a significant reduction in the life-cycle costs could result in a realistic

return on investments. According to this study, considering a replacement of

30–40 % of traditional maintenance requirements by SHM solutions, the time to

recover the cost of the initial investment for both the engine mount and the trailing

edge structure would be 2 to 3 years (Santos 2013).

Various initiatives of system’s development and for the construction of a robust

implementation process are in progress, but with no application into an aircraft

maintenance program so far—something that can be changed in the near future.

This scenario shows that some additional understanding about this type of solutions

is still required, such as determining implications derived from changes related to

damage detection systems in Airlines for America (A4A) Maintenance Steering

Group 3 (MSG-3) methodology that is used for the development of aircraft sched-

uled maintenance programs; and, exploring the potential effects on the maintenance

review board process, on the aircraft maintenance manuals and on the operators

maintenance programs (Santos 2011).

2 Maintenance of Commercial Aircraft

A4A Maintenance Steering Group 3 (MSG-3) is the pillar methodology for all

structural scheduled inspections that assure the continued airworthiness of an

aircraft. The process starts much before an aircraft goes into service. The aircraft

manufacturers (such as Embraer, Boeing, and Airbus), operators (Airlines), and

Regulatory Agencies (ANAC—Brazilian National Civil Aviation Agency, FAA—

United States Federal Aviation Administration, EASA—European Aviation Safety

Agency, and others) allocate a lot of efforts on A4A MSG-3 in almost the entire

development of a new aircraft and further after the aircraft starts to operate.

This is the method used by aircraft manufacturers, operators, and regulatory

agencies to develop the initial maintenance schedule, as part of the work towards

aircraft certification. It is often a multi-year process, involving the application of

rigorous logic (process), the analysis of lots of data, and the interaction of multiple

administrative bodies (Adams 2009).

According to the MSG-3 methodology (A4A/ATA MSG-3 2009), which con-

tinues to stand the test of time for almost 40 years past, the aircraft maintenance

programs are defined by air carriers in accordance with the Aviation Regulations

from a number of source documents. These documents include the manufacturer’s
Maintenance Review Board Report (MRBR), the Certification Maintenance

Requirements (CMR), the Airworthiness Limitations Items (ALI), the
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manufacturer’s Maintenance Planning Document (MPD), unique national regula-

tory requirements, and others (Wenk 2010).

The final output of the Industry Steering Committee for a new aircraft is the

Maintenance Review Board Report (MRBR), which outlines the recommended

minimum initial maintenance requirements. This document is then, for instance,

approved by the FAA, as the MRB chairman (considering an US aircraft). The

MSG-3 process provides tasks, such as lubrication, visual inspections, operational

or functional checks, restoration, and discard (Adams 2009).

2.1 Economics in Aircraft Maintenance

Nowadays, a large portion of an aircraft operation cost is in the maintenance

program and economics is an important consideration in the aircraft design.

In the A4A MSG-3 approach the sequence of intervention follows an order from

the least to the most expensive in order to minimize the costs without affecting

safety. An example of this methodology is a structural inspection task analysis that

starts with a visual inspection as the first choice to be considered, followed by a

detailed inspection and then by Special Detailed Inspection/Non-destructive

Inspection.

2.2 Changes in MSG-3 and SHM

The MSG-3 methodology (A4A/ATA MSG-3 2009) has been adapted to new

technologies such as Structural Health Monitoring (SHM) and continues to produce

safe, reliable, predictable, and cost-effective aircraft maintenance task/interval

packages (Wenk 2010).

Maintenance guidelines for creation of aircraft scheduled maintenance programs

contained in the A4A MSG-3 document (A4A/ATA MSG-3 2009) have been

updated to allow for the use of SHM. The 2009 revision of MSG-3 document

introduced the definition of Scheduled Structural Health Monitoring (S-SHM) that

means the act to use/run/read out a SHM device at an interval set at a fixed schedule

(Wenk 2010).

SHM application will play a significant role in the future of aircraft maintenance.

SHM may allow damage detection in areas with restricted access, where current

visual and non-destructive testing (NDT) technique inspections are difficult or can

not be performed, avoiding the disassembly processes (which may undesirably

cause damages to the structure). Less time-consuming and less complex procedures

enabled by SHM (compared to current NDT techniques) will lead to reduction of

inspection time and burden, and as a consequence SHM can minimize “human-

factor” effects (for instance, automated data analysis has the potential to reduce

human errors induced by fatigue and repetitive tasks). Another potential benefit is
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the early detection of structural damages, which can aid the implementation of less

costly repairs.

In addition, avoiding disassembly processes and promoting less time-consuming

inspections, allied to the labor costs reduction (less complex procedures), indicate

that SHM damage detection systems have a strong potential to reduce aircraft

structures operating and maintenance costs.

In the future, SHM damage detection systems will be capable of providing

means for the replacement of the current time-based maintenance practices by the

so-called Condition-Based Maintenance (CBM) philosophy. A first step towards

CBM has already been performed in the scope of the A4A MSG-3 methodology

(A4A/ATA MSG-3 2009). During the International Maintenance Review Board

Policy Board (IMRBPB) meeting held in Singapore in April 2010, the Automated

Structural Health Monitoring (A-SHM) concept was accepted by the members

(including the Aviation Regulation Authorities) to become a new Issue Paper for

future revision of the MSG-3 document. The A-SHM concept focuses on SHM

technology that relies on a system to inform maintenance personnel that an action

must take place—there is no pre-determined interval at which the action must be

performed (Wenk 2010).

3 Commercial Aviation Efforts

Over the last years, the major aircraft manufacturers and some commercial aircraft

operators have investigated various technologies for structural damage detection.

Progress has been made in the development of such technologies. Questions related

to reliability, the accurate operation of those systems, and about the ability of

components to survive during regular aircraft operation—and operational environ-

ment—have begun to get answers after the installation of sensors on-board aircraft

for testing.

Seeking for potential benefits, such as the implementation of less time-

consuming and less complex aircraft maintenance procedures, and for the reduction

of aircraft structural maintenance costs, the commercial aviation industry demon-

strated interest in SHM damage detection systems proposing developments with

different technologies. The most common technologies that can be identified in

those developments are Comparative Vacuum Monitoring, Electro-Mechanical

Impedance, Acoustic Emission, and Lamb Waves. However, many others can be

found: Fiber Bragg Gratings, Meandering Winding Magnetometer, Advanced

Phased Array, and others.

Each of the technologies has its own particular characteristics and may have a

preferred application. The commercial aviation industry is seeking for solutions to

detect damages in metallic and composite structures, with an application cost that

could justify the investments.
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3.1 Comparative Vacuum Monitoring

One of the promising technologies for inspecting metallic material parts is the

so-called Comparative Vacuum Monitoring (CVM™), from Structural Monitoring

Systems plc. It is based on the principle that vacuum maintained inside a small

constant volume is extremely sensitive to any leakage (Doherty et al. 2003). The

system designed for metallic structures uses elastomeric polymer sensors that are

self-adhesive, passive, inert, and lightweight, and can conform to the material

surface contours. When those sensors are adhered to the monitored structure, fine

channels on the adhesive face of the sensor form a manifold of galleries with the

structure itself. The galleries alternate, one containing the steady state vacuum and

the other having air at atmospheric pressure (Fig. 1).

If a surface crack develops, it will form a leakage path, air will flow through the

passage created from the atmospheric to the vacuum galleries, the vacuum level in

the sensors will decrease, indicating the presence of damage. CVM™ offers an easy

way to monitor “hot spot” areas.

Among the many efforts for developing damage detection technologies, it is

worth mentioning Boeing’s agreement to include Comparative VacuumMonitoring

crack-detection technology in its Common Methods Non-destructive Inspection

manual after completing laboratory tests with CVM™ sensors and flight tests in

commercial aircraft, in 2005 (Flightglobal News Website 2005). This test valida-

tion program was conducted by Sandia National Laboratories in cooperation with

the Federal Aviation Administration (FAA) (Roach et al. 2006).

Airbus, another major aircraft manufacturer, has also investigated CVM. Vari-

ous tests were performed, including those with sensors installed in coupons and in a

barrel test (full-scale) (Stehmeier and Speckmann 2004). Among the variety of

tests, it is important to highlight that Airbus has tested Comparative Vacuum

Monitoring in its A380 Full-Scale Fatigue Test (Berger 2012; Paget et al. 2009).

Crack

Air GalleriesVacuum Galleries

Test
Structure

Fig. 1 Schematic of an installed CVM™ sensor
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Embraer has performed laboratory tests with CVM™, applying the technology in

a metallic barrel test and in its E-Jets Full-Scale Fatigue Test (Rulli and Silva 2011).

An example of a crack detected in a metallic barrel test is shown in Fig. 2.

In parallel, Embraer installed more than 250 CVM™ sensors in the Full-Scale

Fatigue Test of the company’s E-Jets aircraft in 2008. Figure 3 shows examples of

CVM™ sensors installed in the Full-Scale Fatigue Test where different regions and

components—such as shear clips, splice joints, windows frames, and joint holes—

have been periodically monitored.

Another test performed by Embraer is related to the installation of CVM™

sensors in a flight test aircraft in order to verify if the technology was capable of

withstanding the real aircraft in-flight conditions, shown by Fig. 4. Since 2010,

the company has performed periodic monitoring of these on-board sensors using

CVM™ ground equipment.

Bombardier has studied Comparative Vacuum Monitoring in conjunction with

the Airworthiness Assurance Nondestructive Inspection Center at Sandia National

Labs for crack detection on its aircraft (Roach and Pinsonnault 2009).

Fig. 2 Crack detected by a CVM™ sensor in a metallic barrel test. (a) CVM™ sensors installed

around rivets; (b) one of the sensors was removed and dye penetrant testing confirmed the presence

of a crack

Fig. 3 CVM™ sensors in different regions of the E-Jets Full-Scale Fatigue Test

334 R.P. Rulli et al.



Delta Air Lines has partnered with Sandia National Labs, FAA, Boeing,

Anodyne Electronics Manufacturing Corp., and Structural Monitoring Systems,

on a program applying CVM™ sensors to seven B737-700s. The objective is to

produce the data package within 12–18 months of monitoring, consisting of peri-

odic data acquisition. Some of the program’s main goals are to determine obstacles,

solutions, and new processes for wide-spread industry adoption of SHM

(Piotrowski et al. 2015).

3.2 Electro-Mechanical Impedance

Electro-Mechanical Impedance (EMI) is another technology considered by the

commercial aviation players. It has been shown that the electrical impedance

from patches of Piezoelectric materials (PZT) can be directly associated with the

mechanical impedance of the structure to which the PZT is attached (Park

et al. 2003). By using the same piezoelectric element for both actuation and sensing,

results in a simpler testing device containing a smaller number of components and

cables, when compared with techniques using transducers functions separated. The

impedance-based method uses high-frequencies excitations that are applied to the

PZT transducer attached to the surface of the structure and consider an auxiliary

circuit to obtain the EMI curves. In other words, the PZT patches generate high

frequency excitation at given points of the structure (Moura and Steffen 2005).

Basically the EMI curves are frequency response functions of the structure. A

modification in the EMI curves would indicate the presence of damage.

The EMI method begins with the work of Liang (Liang and Rogers 1994) not

applied to SHM but after this study several authors reported the use of EMI method

for SHM. In Brazil, the technique has been studied and developed by Federal

Fig. 4 CVM™ sensors installed on-board a flight test aircraft
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University of Uberlândia and S~ao Paulo State University (UNESP—Ilha Solteira)

in a partnership with Embraer (Rulli and Silva 2010). Figure 5 presents some

example of aircraft structures using EMI to detect damage. The panel showed in

Fig. 5b had a rivet removed in order to simulate damage. The results demonstrated

that the system is sensitive enough to detect the absence of the rivet (Aeronautical

Structures Tests Report 2009).

In fact, the EMI technique is useful to detect incipient damages present in

monitored structures (Jalloh 2004) and is a promising technique to be applied for

improving commercial aviation maintenance. In the other hand, as showed by

Jalloh (2004) there are several factors that could affect the performance of the

PZT transducers, among them the quality of the bond between the sensor and the

host structure, sensor geometry and the characteristics of the structure monitored

(such as its geometry and material properties).

Currently, the EMI technique has been studied for self-diagnosis of piezoelectric

transducers. Airbus investigated Electro-Mechanical Impedance for self-diagnosis

of piezoelectric transducers (Bach et al. 2007), focusing on the ability to detect

degraded bond-lines as well as degraded sensors. According to the results, the

company considered EMI a practicable technology for self-testing PZT sensors.

3.3 Lamb Waves

Airbus, Boeing, and Embraer have extensively investigated another promising

technology for damage detection called Lamb Waves (LW). Lamb Waves repre-

sents two-dimensional wave propagation in thin plates, shells, or membranes,

which are described by known mathematical equations originally formulated by

Horace Lamb in 1917 (Viktrov 1967).

Fig. 5 Aluminum panels tested; (a) aircraft window panel; (b) details of a removed rivet

simulating the damage

336 R.P. Rulli et al.



The LW approach for damage detection uses the changes in the structural

dynamic responses (acoustics) between the undamaged and damaged condition

for the same structure. The fundamental of this technique is based on the assump-

tion that structural damage changes the physical dynamic response of the structure,

such as natural frequencies, mode shapes and damping, and frequency response

(Doebling et al. 1996). However, a structure with a damage like fatigue crack or

thickness reduction (corrosion) exhibits non-linear vibrations due to the stiffness

change under load variation (Matveev and Bovsunovsky 2002). The accuracy of

relating changes in modal parameters to flaws such as cracks becomes quite poor

when the aspect ratio between the size of the structure and the size of the flaw is

larger than ten (Matveev and Bovsunovsky 2002; Ihn and Chang 2004).

There are two groups of LW propagation, the symmetric waves and the anti-

symmetric waves that satisfy the wave equation and the boundary conditions. The

general solutions can then be split into two modes: symmetric (Si) and anti-

symmetric (Ai) (Giurgiutiu 2005). For symmetric wave modes, each plate surface

has a peak or trough at the same in-plane location. For anti-symmetric wave modes,

a peak at one surface corresponds to a trough at the other surface, as shown in Fig. 6.

The Lamb wave modes are considered to be sensitive to cracks. The presence of

damages can be verified by comparing the changes in the signal to a baseline.

Embraer evaluated Lamb Waves technology for detecting damages—such as

cracks and corrosion in metallic materials, and delamination in composite materials

(2008)—obtaining valuable results (Dotta et al. 2011; Rulli et al. 2013). The

company has performed laboratory tests with LW applying it in a wide range of

specimens, such as coupons, Full-Scale Fatigue Test, barrel tests, and others.

Figure 7 shows two examples of the tests performed.

Besides the laboratory tests, LambWaves sensors were installed in the Embraer-

190 flight test aircraft (Fig. 8) in 2010. In this study, only the sensors (Fig. 9) and the

cables were installed in the aircraft and the inspections were performed periodically

using a ground support equipment (Rulli et al. 2013).

Airbus has been involved with Acellent Technologies Inc. in a joint develop-

ment about Lamb Waves for several years (Zhang et al. 2011; Eckstein et al. 2013).

One of the tests performed was related to the installation of sensors on a Carbon

Fig. 6 Wave modes: (a) anti-symmetric, where a peak at one surface corresponds to a trough at

the other surface; (b) symmetric, where the wave peaks or troughs occur simultaneously at the

same in-plane location
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Fig. 7 Tests performed in different coupons: (a) thickness reduction in aeronautical aluminum;

(b) delamination detection in carbon fiber reinforced polymer

Fig. 8 Flight Test Aircraft where CVM™ and LW sensors were installed

Fig. 9 LW sensors applied to the Embraer-190 flight test aircraft



Fiber Reinforced Plastics (CFRP) fuselage panel (about 15 m2 size) in 2010. This

panel was inserted in the fuselage of an A340 flight test aircraft. Data has been

obtained periodically when the aircraft is on ground.

Boeing Research and Technology investigated techniques that use elastic waves

in various structural configurations, including a composite wing structure (Brown

et al. 2009) and a metallic lug component (utilizing a SHM system design frame-

work developed by Boeing and Air Force Research Laboratory) (Ihn et al. 2011).

3.4 Acoustic Emission

Commercial Aviation has also demonstrated interest on another SHM damage

detection technology known as Acoustic Emission (AE). Acoustic Emission

based structural health monitoring is one of the methods which originally began

as a non-destructive testing technique. In the AE method a solid structure begins to

deform elastically when a load is applied to it (for instance, by internal pressure or

by external mechanical means) (Boller et al. 2009). Changes in the structure’s stress
distribution and storage of elastic strain energy are associated with this elastic

deformation. Some permanent deformation and cracking may occur during the

load increment, which is accompanied by a release of stored energy. Part of the

stored energy that was released is in the form of propagating elastic waves termed

Acoustic Emissions. Emissions are detected by sensitive piezoelectric transducers

attached to the surface of the monitored structure and, above a certain threshold

level, are converted and saved as an event.

Airbus developed tests with Acoustic Emission for both metallic and composite

structures. Composite plates were used for the development of an analytical

triangulation algorithm to determine damage location (Paget et al. 2003).

Investigations were performed with AE in a full-scale metal wing loaded in

fatigue. Airbus reported that the system located all simulated and artificial damages

placed in the wing and, in addition, it was capable to locate real damage

(Paget et al. 2004).

Acoustic Emission systems have been tested by Embraer in test specimens and

in the Full-Scale Fatigue Test of the E-Jets aircraft. These tests have the objective to

provide enough information about Acoustic Emission technology regarding capa-

bilities, installation, operation and maintenance of sensors and systems (Rulli and

Silva 2010). Damages, including simulated and real, were satisfactorily detected by

the AE systems in different test articles (Figs. 10 and 11).

3.5 Guidelines for SHM

In addition to the SHM damage detection systems initiatives around the world,

Society of Automotive Engineers (SAE International) has created the document
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Aerospace Recommended Practice “ARP6461: Guidelines for Implementation

of Structural Health Monitoring on Fixed Wing Aircraft” focusing on the commer-

cial aviation (SAE International 2013). The document was published in

September 2013.

Launched by the Aerospace Industry Steering Committee for SHM, the docu-

ment was generated by an SAE technical committee (encompassing the world’s
leading aircraft manufacturers, systems and equipment integrators, Regulatory

Agencies, and technical experts) (SAE International 2013).

Fig. 10 Fuselage panel in the E-Jets FSFT monitored by acoustic emission

Fig. 11 Examples of acoustic emission monitoring: (a) Barrel test; (b) Coupon test
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These guidelines present details related to the application of sensors for moni-

toring aircraft operational conditions, and also for determining the occurrence and

the extent of a structural damage. The purpose of ARP6461 is to establish the basics

of SHM for commercial aviation maintenance applications, including its scope and

its essential elements, discussing about requirements and describing approaches for

SHM systems verification, validation, and qualification.

References

A4A/ATA MSG-3 (2009), Operator/Manufacturer Scheduled Maintenance Development; Revi-

sion 2009.1, Air Transport Association (ATA) of America, Inc., available from ATA http://

www.airlines.org. MSG-3 reference and extracted details are provided courtesy of Air Trans-

port Association of America, Inc. Copyright (c) 2009 by ATA of America, Inc

C. Adams, Understanding MSG-3. Aviation today (2009), http://www.aviationtoday.com/am/

repairstations/Understanding-MSG-3_33062.html

Aeronautical Structures Tests Report. Federal University of Uberlândia, Uberlândia, Minas Gerais

M. Bach et al., Self-diagnostic capabilities of piezoelectric transducers using the electromechan-

ical impedance, in 6th International Workshop on SHM, 2007
U. Berger, Onboard—SHM for life time prediction and damage detection on aircraft structure

using fibre optical sensor and Lamb Wave technology, in 6th European Workshop on SHM,

2012.
C. Boller et al., History of SHM for commercial transport aircraft, in Encyclopedia of Structural

Health Monitoring (Wiley, New York, 2009), Chapter 96, pp. 1–2

K.S. Brown et al., Hot spot monitoring of a composite wing, in 7th International Workshop on
SHM, 2009

S.W. Doebling, C.R. Farrar, M.B. Prime, D.W. Shevitz, Damage identification and health mon-

itoring of structural and mechanical systems from changes in their vibration characteristics: a

literature review. Technical Report, No. LA-13070-MS, Los Alamos National Laboratory,

1996

C.M. Doherty, M. Lindroos, D.P. Barton, Structural health monitoring of aircraft using CVM, in

4th Australian Pacific Vertiflite Conference on Helicopter Technology, 2003
F. Dotta et al., Early results of Lamb waves approach to assess corrosion damage using direct

image path in an aeronautical aluminum alloy, in 8th International Workshop on SHM, 2011

B. Eckstein et al., Large scale monitoring of CFRP structures by acousto-ultrasonics—a flight test

experience, in 9th International Workshop on SHM, 2013

Flightglobal News Website, Boeing opts for vacuum crack sensor (2005), http://www.flightglobal.

com/news/articles/boeing-opts-for-vacuum-crack-sensor-212710/

V. Giurgiutiu, Tuned lamb wave excitation and detection with piezoelectric wafer active sensors

for structural health monitoring. J. Intel. Mater. Syst. Struct. 16(2), 291–305 (2005)

J.-B. Ihn, F.-K. Chang, Detection and monitoring of hidden fatigue crack growth using a built-in

piezoelectric sensor/actuator network: I. Diagnostics. Smart Mater. Struct. 13, 609–620 (2004)
J.-B. Ihn et al., Development and performance quantification of an ultrasonic structural health

monitoring system for monitoring fatigue cracks on a complex aircraft structure, in 8th
International Workshop on SHM, 2011

A. Jalloh, Effects of piezoelectric (PZT) sensor bonding and the characteristics of the host

structure on impedance based structural health monitoring. Nasa Faculty Fellowship Program,
Mechanical Engineering Department Alabama A&M University, Normal, 2004

R.M. Kent, D.A. Murphy, Health monitoring system technology assessments—cost benefits

analysis, NASA/CR-2000209848, 2000

Damage Detection Systems for Commercial Aviation 341

http://www.airlines.org/
http://www.airlines.org/
http://www.aviationtoday.com/am/repairstations/Understanding-MSG-3_33062.html
http://www.aviationtoday.com/am/repairstations/Understanding-MSG-3_33062.html
http://www.flightglobal.com/news/articles/boeing-opts-for-vacuum-crack-sensor-212710/
http://www.flightglobal.com/news/articles/boeing-opts-for-vacuum-crack-sensor-212710/


C. Liang, F.P. Sun, C.A. Rogers, Coupled electromechanical analysis of adaptive material

system—determination of actuator power consumption and system energy transfer. J. Intel.

Mater. Syst. Struct. 5, 12–20 (1994)

V.V. Matveev, A.P. Bovsunovsky, Vibration-based diagnostics of fatigue damage of beam-like

structures. J. Sound Vib. 249, 23–40 (2002)

J.R.V. Moura Jr., V. Steffen Jr., Damage detection techniques for aeronautic structures. XXIII
IMAC, 2005

C. Paget et al., Triangulation algorithm for damage location in aeronautical composite structures.

in 4th International Workshop on SHM, 2003

C. Paget et al., Damage assessment in a full-scale aircraft wing by modified acoustic emission, in

2nd European Workshop on SHM, 2004

C. Paget et al., Validation of SHM sensors in Airbus A380 full-scale fatigue test, in Encyclopedia
of Structural Health Monitoring (Wiley, New York, 2009), Chapter 92, pp. 1839–1848

G. Park et al., Overview of piezoelectric impedance-based health monitoring and path forward.

Shock Vib. Dig. 35(6), 451–463 (2003)

D. Piotrowski et al., Implementation of structural health monitoring (SHM) into an Airline

Maintenance Program, in 10th International Workshop on SHM, 2015

D. Roach, J. Pinsonnault, Use of mountable sensors to address periodic inspections for cracks on

regional aircraft, in 7th International Workshop on SHM, 2009

D. Roach et al., Application and certification of comparative vacuum monitoring sensors for

in-situ crack detection. Air Transport Association Nondestructive Testing Forum, 2006
R.P. Rulli, P.A. Silva, Embraer perspective for maintenance plan improvements by using SHM, in

3rd Asia-Pacific Workshop on SHM, 2010

R.P. Rulli, P.A. Silva, Overview of CVM technology tests performed by Embraer, in 8th Inter-
national Workshop on SHM, 2011

R.P. Rulli et al., Flight tests performed by EMBRAER with SHM Systems, in Key Engineering
Materials, vol. 558 (Trans Tech Publications, Switzerland, 2013), pp. 305–313. doi:10.4028/

www.scientific.net/KEM.558.305

SAE International, Press Release: SAE International Creates First-Ever Guidelines for Structural

Health Monitoring of Commercial Aircraft, 2013

L.G. dos Santos, Embraer perspective on the introduction of SHM into current and future

commercial aviation programs, in 8th International Workshop on SHM, 2011

L.G. dos Santos, Embraer perspective on the challenges for the introduction of scheduled SHM

(S-SHM) applications into commercial aviation maintenance programs, in Key Engineering
Materials, vol. 558 (Trans Tech Publications, Switzerland, 2013), pp. 323–330. doi:10.4028/

www.scientific.net/KEM.558.323

H.-J. Schmidt et al., Application of structural health monitoring to improve efficiency of aircraft

structure, in 2nd European Workshop on SHM, 2004

H. Stehmeier, H. Speckmann, Comparative vacuum monitoring (CVM): monitoring of fatigue

cracking in aircraft structures, in 2nd European Workshop on SHM, 2004
I.A. Viktrov, Rayleigh and Lamb Waves: Physical Theory and Applications (Plenum, New York,

1967)

L. Wenk, MSG-3 (Maintenance Steering Group 3) guidance update on using SHM for continued

airworthiness of aero structures, in 5th European Workshop on SHM, 2010
D.C. Zhang et al., Large sensor network architectures for monitoring large-scale structures, in 8th

International Workshop on SHM, 2011

342 R.P. Rulli et al.

http://dx.doi.org/10.4028/www.scientific.net/KEM.558.305
http://dx.doi.org/10.4028/www.scientific.net/KEM.558.305
http://dx.doi.org/10.4028/www.scientific.net/KEM.558.323
http://dx.doi.org/10.4028/www.scientific.net/KEM.558.323

	Preface
	Contents
	Introduction
	References

	Part I: Fundamentals
	Continuum Mechanics
	1 Introduction
	2 Tensor Analysis
	2.1 Kronecker Delta Tensor
	2.2 Permutation Tensor
	2.3 Coordinate Transformations

	3 Motion
	3.1 Deformation Tensors
	3.2 Strain Tensors
	3.3 Infinitesimal Strain Tensors
	3.4 Principal Strains
	3.5 Material Derivative and Reynolds Transport Theorem

	4 Stress
	4.1 Coordinate Transformations
	4.2 Principal Stress
	4.3 Piola-Kirchhoff Tensors

	5 Conservation Principles
	5.1 Conservation of Linear Momentum
	5.2 Conservation of Angular Momentum
	5.3 Conservation of Mass
	5.4 Conservation of Energy
	5.5 Principle of Entropy
	5.6 Summary of the Fundamental Equations

	6 Constitutive Equations
	6.1 Elasticity
	6.2 Elastoplasticity
	6.3 Piezoelectricity
	6.4 Pseudoelasticity and Shape Memory Effect

	References

	Wave Motion in Elastic Structures
	1 Introduction
	2 Some Features of Harmonic Wave Motion
	2.1 Interference of Waves
	2.1.1 Waves Propagating in the Same Direction
	2.1.2 Waves Propagating in Opposite Directions


	3 Basic Wave-Types in One-Dimensional Structures
	3.1 Transverse Waves in a String
	3.2 Longitudinal Waves in a Rod
	3.3 Flexural (Bending) Waves
	3.3.1 Beam
	3.3.2 Plate


	4 Dispersion
	5 Flexural Beam Vibration at High Frequencies
	5.1 Wavenumbers
	5.2 Wave Mode-Shapes

	References

	Passive and Active Structural Vibration Control
	1 Fundamentals of Structural Vibrations
	1.1 Basic Concepts on Structural Vibration and Potential Mitigation Solutions
	1.2 Natural Frequencies, Vibration Modes and Damping Factors
	1.3 Principle of Modal Superposition
	1.4 Frequency Response Functions and Transfer Functions
	1.5 Analysis of Poles and Zeros for a Simple Spring-Mass Example

	2 Passive Vibration Control
	2.1 Passive Vibration Dampers
	2.2 Passive Dynamic Vibration Absorbers

	3 Active Vibration Control
	3.1 Feedback Control Strategies
	3.2 Positioning of Sensors and Actuators
	3.3 Simple Control Laws Using Output Feedback

	References

	Nonlinear Dynamics and Chaos
	1 Introduction
	2 Dynamical Systems: Background
	2.1 Equilibrium Points and Linearization
	2.2 Stability
	2.3 Poincaré Maps

	3 Chaos
	3.1 Routes to Chaos
	3.2 Lyapunov Exponents

	4 Shape Memory Alloy System
	4.1 Polynomial Constitutive Model
	4.2 Single Degree of Freedom System
	4.3 Two Degree of Freedom System

	References


	Part II: Smart Materials
	Introduction to Smart Materials and Structures
	1 Introduction
	2 Piezoelectric Materials
	2.1 Active Vibration, Aeroelastic and Noise Control
	2.2 Passive Noise and Vibration Control Based on Shunted Piezoelectric Transducers
	2.3 Piezoelectric Energy Harvesting
	2.4 Structural Health Monitoring

	3 Shape Memory Alloys
	4 Magneto-Rheological and Electro-Rheological Fluids
	5 Electroactive Polymers
	6 Final Remarks
	References

	Piezoelectric Materials
	1 Introduction
	2 Finite Element Formulation of Electromechanical Systems
	3 Eigenvalue Problem for the Short Circuit Case
	4 Application: Clamped-Free Beam with Bonded PZT
	References

	Shape Memory Alloys
	1 Introduction
	2 Applications
	3 Thermomechanical Characterization
	3.1 Stress-Free Thermal Analysis
	3.1.1 DSC Analysis
	3.1.2 ERT Analysis

	3.2 Isothermal Stress-Strain Tests
	3.3 Isobaric Strain-Temperature Tests
	3.4 Final Remarks

	4 Constitutive Modeling
	4.1 Numerical Simulations
	4.1.1 Model Calibration
	4.1.2 Qualitative Results

	4.2 Final Remarks

	References

	Electro- and Magneto-Rheological Materials
	1 Introduction
	1.1 Variable Rheology Fluids
	1.2 Sandwich Beams of ER/MR Fluids

	2 Mathematical Model
	2.1 Finite Element Discretization
	2.2 The GHM Model of Material Properties
	2.3 GHM Viscoelastic Finite Element Matrices

	3 GHM Fe Model of a Sandwich Beam
	4 Variable Magnetorheological Elastomers: Application and Characterization
	4.1 Morphological Magnetic and Mechanical Characterizations of Magnetic Particles and MRE
	4.2 Measuring the Dynamic Properties of MREs

	References

	Composite Structures Design and Analysis
	1 Introduction
	1.1 Composite Materials: Definition and Classification
	1.2 Motivation: Advantages and Challenges
	1.3 Methodology to Design Composite Structures

	2 Micromechanical Analysis and Testing
	2.1 Matrix, Reinforcements, and Interfaces
	2.1.1 Polymeric Matrix
	2.1.2 Reinforcements

	2.2 Rule of Mixture
	2.2.1 Longitudinal Young´s Modulus
	2.2.2 Transversal Young's Modulus
	2.2.3 Shear Modulus
	2.2.4 Poisson´s Coefficient

	2.3 Mechanical Testing

	3 Macromechanical Analysis
	3.1 Classical Laminate Theory
	3.2 Strain and Stress Analyses in the Ply

	4 Failure Analysis
	4.1 Laminate Failure Modes
	4.1.1 Intralaminar Damage
	4.1.2 Interlaminar Failure (Delaminations)

	4.2 Procedure to Analyze Failure in Laminates
	4.2.1 Maximum Stress Criterion
	4.2.2 Maximum Strain Criterion
	4.2.3 TSAI-HILL Criterion


	References


	Part III: Applications
	Piezoelectric Energy Harvesting
	1 Introduction
	2 Approximate Distributed Parameter Model of a Piezoelectric Energy Harvester
	2.1 Generalized Hamilton´s Principle for a Piezoelectric Energy Harvester
	2.2 Mathematical Model of a Piezoelectric Energy Harvester

	3 Theoretical Case Study
	4 Numerical and Experimental Results for a Tapered Bimorph with Tip Mass
	5 Summary
	References

	Piezoelectric Structural Vibration Control
	1 Introduction
	2 Passive Vibration Control Using Piezoelectric Materials
	2.1 Coupled Formulation for Structure, Piezoelectric Patches, and Shunt Circuits
	2.1.1 Electric Potential Formulation
	2.1.2 Electric Charge Formulation

	2.2 Connection to Electric Circuits
	2.3 Design of Passive Resistive Shunt Circuits
	2.4 Design of Passive Resonant Shunt Circuits
	2.5 Piezoelectric Shunted Damping Example

	3 Active Vibration Control Using Piezoelectric Materials
	References

	Impedance-Based Structural Health Monitoring
	1 Introduction
	2 Impedance-Based Structural Health Monitoring: A Review
	2.1 Damage Metrics
	2.2 Environmental Influence on Impedance-Based SHM

	3 Case Studies
	3.1 Impedance-Based SHM Applied to a Beam-Like Structure
	3.2 Fatigue Test

	4 Conclusion
	References

	Damage Detection Systems for Commercial Aviation
	1 Introduction
	2 Maintenance of Commercial Aircraft
	2.1 Economics in Aircraft Maintenance
	2.2 Changes in MSG-3 and SHM

	3 Commercial Aviation Efforts
	3.1 Comparative Vacuum Monitoring
	3.2 Electro-Mechanical Impedance
	3.3 Lamb Waves
	3.4 Acoustic Emission
	3.5 Guidelines for SHM

	References



