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Abstract The main investigation in this chapter is concerned with a piecewise
convex function which can be defined by the pointwise minimum of convex
functions, F(x) = min{f1(x), . . . , fm(x)}. Such piecewise convex functions closely
approximate nonconvex functions, that seems to us as a natural extension of the
piecewise affine approximation from convex analysis. Maximizing F(·) over a
convex domain have been investigated during the last decade by carrying tools based
mostly on linearization and affine separation. In this chapter, we present a brief
overview of optimality conditions, methods, and some attempts to solve this difficult
nonconvex optimization problem. We also review how the line search paradigm
leads to a radius search paradigm, in the sense that sphere separation which seems
to us more appropriate than the affine separation. Some simple, but illustrative,
examples showing the issues in searching for a global solution are given.

Keywords Piecewise convex • Nonconvex optimization • Nonsmooth optimiza-
tion

Introduction

Convexity is a central concept in optimization. Solving optimization problems
somehow leads to separate the constraint set and the set of points no worse than a
given candidate. In the convex optimization case, both sets are convex which makes
the separation affordable by a hyperplane. However, when one deals with nonconvex
optimization problems, one needs more appropriate tools because both sets or at
least one of them can be nonconvex. A decade-long effort for finding such tools is
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presented briefly in the beginning of the chapter. The second part of the chapter
is mainly devoted towards the ways of use spherical sets for the separation in
nonconvex optimization instead of hyperplanes used in convex optimization.

We consider a nonconvex nonsmooth optimization problem:

{
maximize F(x)
subject to x ∈ D,

(PCMP)

where D is a nonempty compact in Rn and F : Rn → R is a piecewise convex
function.

Definition 1. A function F is called a piecewise convex function iff it can be
decomposed into the pointwise minimum of convex functions, namely:

F(x) = min{fj(x) | j ∈ M},

where all functions fj : Rn →R are convex j ∈ M := {1,2...,m}.

Convex functions, concave functions are particular cases of piecewise convex
functions, since clearly F is a convex when m = 1 and a concave whenever all
functions fj are affine.

For any real number α ∈ R the Lebesgue set of a function f is defined like

Lf (α) = {x | f (x)≤ α}.

A quasiconvex (in particular convex fj) function has the property that its Lebesgue
set (in particular Lfj(α) ) is a convex set. Piecewise convex functions have a nice
geometrical interpretation that the Lebesgue set of such function is the union of a
finite number of convex sets

LF(α) =
m⋃

j=1

Lfj(α).

For a given y ∈ Rn the Lebesgue set LF(F(y)) defines also, in the sense of
maximization, the set of points no better than y. The Lebesgue sets of piecewise
convex function LF(F(y)) are generally nonconvex and can be disconnected or
even discrete sets. As a result, the nonconvexity of the objective function F(·) poses
the major difficulty for solving piecewise convex maximization problems since they
generally have a large number of local optima which are not global optima.

Before solving an optimization problem it is useful to investigate the information
about where global optima are attained? At some extreme points, on the boundary,
or in the interior of the feasible set, etc. With this respect, it is well known
[10, 11, 17, 22] that the global maximum occurs at an extreme point for convex
maximization over a convex set while a solution to DC (difference of convex)
optimization lies on the boundary of the feasible set. As regards (PCMP), in general,
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its large number of local optima including the global maximum can lie anywhere in
D. As such, it is computationally very difficult to solve, especially if one wishes to
find the global optimum.

The space of piecewise convex functions has been studied in [8]; any continuous
nonconvex function can be approximated by piecewise convex one. In addition vir-
tually many optimization problems can, theoretically, be approximated by (PCMP).
Indeed, the latter justifies the importance of this class of optimization problems as a
powerful tool in nonconvex optimization.

The reader is referred to [2, 11, 13, 15, 17, 18, 22, 26] for finding out the
close relationship between (PCMP) and the other nonconvex optimization problems
like convex maximization, reverse convex minimization, DC, Lipschitz optimiza-
tion, etc.

Despite the concerns mentioned above, (PCMP) does not seem to have been
extensively studied.

The purpose of this chapter is twofold:

• to present a brief survey of some useful results, optimality conditions, methods,
ideas for (PCMP);

• to propose a novel approach of solving (PCMP) based on nonlinear separation
and consider piecewise convex maximization problems over spherical sets (balls,
spheres) which play the key role for this new research direction.

A Survey of Studies on PCMP

During the last decade we have been focusing on tools for solving (PCMP). This
section provides a brief survey of optimality conditions, methods, and some useful
ideas for (PCMP).

Global Optimality Conditions

Let us quote the article [20] for the global optimality conditions. First, we define an
active index set at any z by

I(z) = {i ∈ M | fi(z) = F(z)}

and at given k ∈ M,z ∈ D a special subset of D by

Dk(z) = {x ∈ D | fj(x)> F(z) for all j ∈ M \{k}}.

The following results summarize our findings on optimality conditions so far:

Proposition 1 ([20]). If z ∈ D is a global maximum of (PCMP) then for all k ∈ I(z)



36 I. Tseveendorj and D. Fortin

∂ fk(y)
⋂

N(Dk(z),y) �= /0 for all y such that fk(y) = F(z)

Theorem 1 ([20]). Let z ∈ D and assume there exist k ∈ I(z) and v ∈Rn such that
fk(v)< fk(z). Then a sufficient condition for z to be the global maximum for (PCMP)
is

∂ fk(y)
⋂

N(clco(Dk(z)),y) �= /0∀y such that fk(y) = F(z).

Here cl, co stand for a closure and a convex hull of a set, respectively.
These necessary and sufficient conditions show that solving (PCMP) leads to

choose one function fk and to maximize it over Dk(·) or over clco(Dk(·)). This is the
well known convex maximization problem

{
maximize f (x)
subject to x ∈ D,

(CM)

its optimality conditions have been obtained in [19]

∂ f (y)
⋂

N(D,y) �= /0 such that y such that f (y) = f (z).

In [20], one can find geometric interpretation of the optimality conditions along with
their illustrations in some examples.

Methods

Linearization Oriented Algorithm

To our knowledge, the first algorithm for solving (PCMP) has been presented in
[4]. The article provides an algorithm based on optimality conditions (Proposition 1
and Theorem 1.) presented in the previous subsection. For the sake of simplicity of
presentation it is assumed that functions fj(·), j ∈ M are strongly convex quadratic,
the domain D a full dimensional polytope.

Quadratic convex maximization problems (the particular case of (PCMP) when
m = 1) are normally classified as NP-hard. Furthermore, just finding a local
maximum of a nonconvex quadratic programming problems is NP-hard too. Thus,
even the local solution search for (PCMP) is not trivial. At the same time an efficient
algorithm for finding local maxima may be the crucial factor in design of the global
maximum search stage. Therefore, in [4] a local search algorithm for (PCMP)
has attracted considerable attention. For this important issue of the local search,
an algorithm derived from linearization of convex functions is proposed, and its
convergence is examined carefully.

Assume that we are given a local solution y ∈ D. In order to improve the best
known local solution, according to the optimality conditions, one should look for a
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point in Dk(y). Then a practical global search algorithm is provided which combines
the local search algorithm with successive inner and outer approximations to Dk(·).

Computational experiments on small examples in R2,R3 are reported, which
show the efficiency of the approach. One can find also therein some details of
implementation as well as new notions like an intersection graph on the Lebesgue
sets Lfj(F(·)), the relationship of the optima of (PCMP) with Helly’s theorem from
discrete geometry.

Piece Adding TeCHnique (PATCH for Short)

For nonconvex optimization problems, many standard techniques rely on local
search and the challenge still remains to escape from a local maximum area.

Among other things the question about how to escape from a local maximum
area was investigated in article [8]. The authors first studied the space of piecewise
convex functions and showed that this class is closed under operations like addition,
positive scalar multiplication, operations “min”, F+,F−. One can add missing
operation “max” into the above list of operations, which has been observed recently.

The following one dimensional example given in [7] well illustrates the idea
behind, so-called, the piece adding technique.

{
maximize x2 −2x,
subject to 0 ≤ x ≤ 3.

Obviously, x = 0 is a local maximum, (but not the global !), an accumulation point
of local search algorithms with a starting point x0 ∈ [0,1] and there is no clear way to
escape from its region, once one is therein. The main idea for escaping is, it makes
sense first to add into the objective function a convex piece x2 − 4 issued from the
local solution x = 0, then solve the following problem

{
maximize min{x2 −2x,x2 −4},
subject to 0 ≤ x ≤ 3.

Notice that the previous local solution x = 0 is a minimum of the new convex piece
x2 − 4. Now it is clear (Fig. 1) that any local search will not get back to x = 0 and
easily finds the global solution x = 3 from any starting point.

Similarly for escaping from a local solution y of (PCMP), it is proposed to solve
the following problem

maximize min{F(x)−F(y),p(x)}, subject to x ∈ D (PP)

where p(x) is a convex function, that will be specified hereafter.

Remark 1. Here we underline that by adding a convex piece into objective func-
tion
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Fig. 1 Piecewise Adding Technique (PATCH) idea

• one cuts off virtually from D a subset of points no better than y; (“virtual cut” in
the sense that we add a convex piece in objectives rather than a reverse convex
constraint p(x)≥ 0)

• the objective function remains piecewise convex;
• the space of the problem is unchanged.

The function p(·) may be defined in different ways among which we select two.

Definition 2. Let z be the global solution to (PCMP). A strictly convex function
py :Rn →R is called a patch around a local solution y of the problem (PCMP) iff

• py(y)< 0;
• py(x)≥ 0 for all x ∈ D such that F(x)> F(y);
• moreover py(z)> 0

We notice that the conditions for patches are not easy to verify with respect to
unknown global solution z, therefore we weaken those conditions and introduce
a relaxed function with almost the same features.

Definition 3. A strictly convex function pv : Rn → R is called a pseudopatch at
v ∈ D iff

• pv(v)< 0 and
• there is u ∈ D such that F(u)> F(v) and pv(u)≥ 0.

Unlike the patch, the virtual cutting pv(x) ≥ 0 defined by the pseudopatch could
cut a feasible point v together with some better points (even the global solution!)
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but it should leave at least one better point. For practical purposes, pseudopatches
are added in the objective function temporarily then, after they are dropped at each
improvement since the global solution z can be incidentally cut off by a pseudopatch.

Outline of algorithm

1. Compute a local solution yk (k = 1,2, . . . ) obtained from a feasible point u ∈ D;
2. Construct a strictly convex function pk(·) as a pseudopatch or a patch around yk;
3. Solve

maximize Φk(x), subject to x ∈ D, (Pk)

where

Φk(x) := min{F(x)−F(yk),p1(x),p2(x), . . . ,pk(x)}.
Let u be an optimal solution to (Pk);

4. If pk(·) is a pseudopatch then drop it from Φk(x);
5. Repeat the sequence with k = k+1

In a like manner, after one iteration we either obtain a better point due to
pseudopatch or reduce virtually the domain by new patch pk(·) around yk.

For ease of presenting the main result, let consider two problems for a given local
solution y:

maximize F(x)−F(y), subject to x ∈ D, (PCMP)

and

maximize Φ(x) subject to x ∈ D, (PP)

where Φ(x) := min{F(x)−F(y),py(x)}, py(·) is a patch around y.

Assumption 1. Let us assume that py(z)≥ F(z)−F(y) at the global solution z.

Proposition 2. If z is a global solution to (PP) and py(·) is a patch satisfying
Assumption 1 then z solves globally (PCMP) too.

This technique aims also at carrying piecewise affine approximation from convex
optimization to piecewise convex approximation for the nonconvex case; since
among others DC and Lipschitz functions have locally tight piecewise convex
majorants, it shows the potential strength of this approach.

The key tool lies behind the virtual cutting function; we call it either a patch to
avoid cycling through the same local solutions or a pseudo patch to early detect a
better point.
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Attractive Force Search Algorithm

Newton’s law of universal gravitation states that any two bodies in the universe
attract each other with a force that is directly proportional to the product of their
masses and inversely proportional to the square of the distance between them.

F = G
m1 ×m2

r2

defines the attractive force between two bodies that possess masses m1,m2, respec-
tively.

Inspired by the well known law, the authors provided an algorithm in article [9]
that calculates an improvement from a current local solution y of (PCMP) by using
some analogy of Newton’s attractive force.

How does one search for an improvement from a feasible solution x? Up until
now, there have been used a local solution search algorithm to find a local solution
y with subsequent checking the inclusion D ⊂ LF(F(y)) for a possible further
improvement. Of course, one can check also the inclusion D ⊂ LF(F(x)) directly
at x ∈ D. On the other hand, since

LF(F(·)) =
m⋃

i=1

Lfi(F(·))

an improvement can occur when

D �⊂
m⋃

i=1

Lfi(F(·)).

Anyway, for an improvement we seek a point in D, but outside of all the Lebesgue
sets Lfi(F(·)).

If we imagine each of these nonempty Lebesgue sets Lfi(F(y)) as a convex body
that possesses mass, then a direction of improvement at a current point y could be
calculated by analogy to Newton’s attractive force.

In [9] a feasible set is assumed to be a full dimensional polytope defined by linear
constraints

D =
{

x ∈Rn | Ax ≤ b}= {x ∈Rn | 〈aj,x〉 ≤ bj, j = 1,2, . . . ,k
}
.

To deal with the polyhedral domain we consider implicitly convex functions that
approximate linear functions: fj(x)≈ bj−〈aj,x〉. The linear constraints bj−〈aj,x〉 ≥
0 in the domain, may be seen as the linearization of reverse convex constraints
fj(x) ≥ 0 for some strictly convex quadratic functions fj(·); (a huge flat ellipsoid).
This viewpoint looks strange at first sight, however, it turns all the Lebesgue sets of
constraints, objective functions into convex bodies. The interaction between these
convex bodies seems to be related to Newton’s law, which gives the main idea of our
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Fig. 2 Newton’s
gravitational force

y

f j (x) ≥ 0

〈a j ,x〉 ≤ b j

fk(x) = �

fi(x) = �

algorithm. At a given point y, two kind of forces can be involved from each body
(the Lebesgue set): attracting and repelling forces.

An example, given in Fig. 2, shows for y

• a repelling force from Lfi(�) body,
• an attracting force from Lfk(�) body

since fi(y) < � and fk(y) > �, and in addition, a repelling force from the constraint.
More precisely, we select respectively

• the gradient of the function at y multiplied by a positive (resp. negative) scalar in
repelling (resp. attracting) case as an analogy for the direction of Newton’s force;

• the distance from y to Lfi(�) as an analogy for the distance between the masses.

Now at y, we are able to compute a gravitational force as the weighted sum of all
attracting/repelling forces from each body similarly with Newton’s attractive force
model:

G(y) = ∑
i∈M

F(Prfi(y))−F(y)

‖ Prfi(y)− y ‖2

∇fi(y)
‖ ∇fi(y) ‖ ,

where Prfi(y) stands for projection of y on the Lebesgue set PrLfi
(�)(y) with �, the

best known level set value.

Remark 2. When i is active i ∈ I(y), in other words fi(y) = � the projection is
replaced by ci the center of Lfi(�) which is a minimum of fi(·) and the gradient by
the direction x− ci (the mass of the convex body is supposed at center). For active
linear constraints, the center is assumed at infinity so that no attracting/repelling
force contributes to G(x).

Before describing the algorithm, let us introduce a set which appears very conve-
nient in data structure.
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Definition 4. The resolving border of F(·) at level set value � is defined like the set
of points:

rb(F, �) =
{

x ∈Rn | ∃i, fi(x) = �,F(x)≤ �
}
.

For each i, we may distinguish three parts:

1. fi(x) = �, fj(x)> � for all j �= i
2. fi(x) = �, fj(x)≥ � for all j �= i
3. fi(x) = �, fj(x)> � for some j �= i.

We notice that cases (1.) and (2.) easily lead to a better point.
A resolving border data structure stores points according to active functions

ordered by decreasing values of F(·).
For sake of consistency with previous versions of global search algorithm [4, 8]

we still refer to Newton’s Attractive force Search Algorithm as a local search, but
it clearly outperforms a strict local searching since it cruises in the surroundings of
the resolving border.

PCMP local Search (Newton’s Attractive force Search Algorithm)

- (D,M,wj ∈ D)
- Initialize RB=(key,sortedset) associating map
- y1=setAndBetter(wj,RB)
- if y1 not null then return y1

- dir = G(wj); Newton attraction at wj

- u = wj +α dir ; α > 0 gives the nearest intersection with the resolving border
- y2=setAndBetter(u,RB)
- if y2 not null then return y2

- else return findBetter(RB)

Relationship with Other Optimization Problems

• Combinatorial Optimization Many practical problems give rise to combinato-
rial optimization problems can be formulated by the binary constraint x∈ {0,1}n,
by the permutation constraint like the assignment problems. The following
two articles [5, 6] are devoted to continuous approaches for combinatorial
optimization problems. The hardness of these problems consists in nonconvex
domains. The current subsection highlights a couple of ideas about how to solve
some combinatorial optimization problems using (PCMP).

We consider the multiknapsack problem [5]

⎧⎨
⎩

max 〈c,x〉
s.t. Ax ≤ b

x ∈ {0,1}n
(MKP)
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Since the binary constraint xi ∈ {0,1} can be written like

xi(xi −1)≥ 0,0 ≤ xi ≤ 1,

(MKP) has an equivalent continuous formulation

⎧⎪⎪⎨
⎪⎪⎩

max 〈c,x〉
s.t. Ax ≤ b

x ∈ [0,e]
xi(xi −1)≥ 0,∀i = 1, . . . ,n,

where e = (1, . . . ,1)� ∈Rn. Introducing a function

ϕ(x) = min{xi(xi −1) | i = 1,2, . . . ,n},

we replace n constraints xi(xi − 1) ≥ 0, i = 1, . . . ,n with a constraint ϕ(x) ≥ 0
and obtain an equivalent to (MKP) problem

⎧⎪⎪⎨
⎪⎪⎩

max ϕ(x)
s.t. Ax ≤ b

x ∈ [0,e]
〈c,x− y〉 ≥ 0.

for an admissible point y of (MKP). The latter is the piecewise convex maximiza-
tion problem with n pieces.

Let assume that there is suitable index set’s division J1, . . . ,Jm such that⋃m
i=1 Ji = {1 . . .n} and Ji ∩ Jj = /0, ∀i �= j. Then it holds also

x ∈ {0,1}n ⇔ f1(x)≥ 0, . . . , fm(x)≥ 0,0 ≤ x ≤ e,

where fi(x) denotes fJi(x) defined like

fJ(x) = Σi∈J

(
xi − 1

2

)2

− |J|
4

for any J ⊆ {1 . . .n} of |J| elements. In this way we obtain (PCMP) where
number of pieces m much less than the dimension of the problem (m < n)

⎧⎪⎪⎨
⎪⎪⎩

max min{fi(x) | i = 1 . . .m}
s.t. Ax ≤ b

x ∈ [0,e]
〈c,x− y〉 ≥ 0.
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But, in practice, the nature of pieces as well as a number of pieces are crucial
for solving (PCMP). One can find in [5] a practical algorithm with m = 2 of
this approach along with computational results in contrast with the best known
solutions found by heuristics from combinatorial optimization.

What concerns the permutation constrained problems investigated in [6], in
order to retain our focus on common features of continuous optimization, first,
we study shortly relationship between (PCMP) and DC optimization, then as a
result (PCMP) formulation for the well known quadratic assignment problems
(QAP) is given. We consider a problem of maximization of a difference of two
convex functions f ,g over a convex compact D ⊂Rn

max f (x)−g(x)
s.t. x ∈ D.

It is straightforward to turn it into (PCMP) of dimension n+ 1 by introducing
another variable t = g(x) and splitting the equality constraint into a convex
constraint g(x)− t ≤ 0 while the converse inequality is dualized to add a new
piece as F(x, t) = min

{
f (x)− t,g(x)− t

}
. Then, it is equivalent to solving the

following problem

max F(x, t)
s.t. x ∈ D, t ∈R

g(x)− t ≤ 0.

• Multicriteria Optimization
We consider multicriteria optimization problem

{
minimize Ω(x),
subject to x ∈ D

(MOP)

where Ω(·) is a vector valued function from Rn to Rm whose components are
the convex functions fi(·), i ∈ M = {1,2, . . . ,m} namely :

Ω(x) = (f1(x), . . . , fm(x))
� ∈Rm.

Let us formally recall the definition of Pareto optimal solutions.

Definition 5. A solution y ∈ D is called Pareto optimal, if there is no x ∈ D such
that fi(x)≤ fi(y), i = 1, . . . ,m and fj(x)< fj(y) for some j ∈ M.

An interesting relationship between (PCMP) and multicriteria optimization is
presented [21] and afterwards in [9].

We recall also some basic definitions and results from multicriteria
optimization.
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Definition 6.

– y ∈ D is called weakly Pareto optimal if there is no x ∈ D such that

fi(x)< fi(y), ∀i = 1, . . . ,m

– y ∈ D is called strictly Pareto optimal if there is no x ∈ D,x �= y such that

fi(x)≤ fi(y), ∀i = 1, . . . ,m and fj(x)< fj(y) for some j ∈ M.

We define also so called the level curve, the strict level set of f (·) at α
respectively

L =
f (α) = {x | f (x) = α}, L <

f (α) = {x | f (x)< α}

Theorem 2 ([1], Chap. 2). Let y ∈ D then

1. y is strictly Pareto optimal if and only if

m⋂
i=1

Lfi(fi(y)) = {y}.

2. y is Pareto optimal if and only if

m⋂
i=1

Lfi(fi(y)) =
m⋂

i=1

L =
fi (fi(y)).

3. y is weakly Pareto optimal if and only if

m⋂
i=1

L <
fi
(fi(y)) = /0.

The following results summarize our findings so far:

Proposition 3. If y is local maximum to (PCMP) such that y ∈ int(D) then for
some ε > 0

F(y) = min
x∈B(y,ε)

max{fi(x) | i ∈ I(y)},

where B(y,ε) stands for the ball of radius ε , centered at y.

Let us denote ΩN(·) ∈R |N| with corresponding components fi(·) for i ∈ N ⊂
M. Proposition 3 together with Theorem 2 provide the following relationship.

Theorem 3. If y is local maximum to (PCMP) such that y ∈ int(D) then y is
strictly Pareto optimal to the following multicriteria optimization problem:
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{
minimize ΩI(y)(x),
subject to x ∈ D

Remark 3. Weakly Pareto optimality of y is implied by Proposition 6.5 from [1].

Abstract Nonlinear Covering Method

The remainder of the chapter is devoted to new approach of solving (PCMP).
For all maximization problems, in particular for (PCMP), clearly, z is the global

maximum iff all points of the domain are no better than z, in other words:

D ⊂LF(F(z)).

Since as we observed early LF(F(y)) =
⋃m

i=1Lfi(F(y)). the above inclusion means
that

• for all x no better than z (i.e. F(x)≤ F(z)) there exists j ∈ M such that

x ∈Lfj(F(z)),

• if there is u ∈ D better than z (i.e. F(z) < F(u)) then u does not belong to any
Lebesgue set:

u /∈Lfi(F(z)) for all i ∈ M.

In order to present the main idea of a new approach for solving (PCMP), we give
a definition along with an abstract result on an equivalence of problems.

Definition 7. An open subset C satisfying conditions

C ⊂LF(F(y)) and C �= int(LF(F(y)))

is called a covering set at level F(y).

Proposition 4. Let y be a feasible point for (PCMP) such that

F(y) = max{F(x) | x ∈ D}−δ

for some δ > 0. Let also C be a covering set at level F(y). Then the following
problem is equivalent to (PCMP):

{
maximize F(x)
subject to x ∈ D\C.

(CC)

The main algorithmic feature now looks like
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• to cover the feasible set (the domain) by a union of covering sets.
• if the domain is covered by C totally, then stop and the global optimum is found.
• otherwise, solve problem (CC) for an improvement.

In other words, one have to construct an “(union of covering sets)” such that

D ⊂ (union of covering sets) ⊂LF(F(z)).

Starting with an initial guess of covering sets, a method bootstraps its way up to
ever more accurate “sandwich” approximations to answer “the global optimum” or
“improvement”. What concerns the covering set, the first that comes to mind, is use
balls (spherical set) as a simpler nonlinear shape.

(PCMP) over Spherical Sets

Let S(c;ρ) and B(c;ρ) be respectively a sphere and a ball of center c and radius ρ .
This section is devoted to the following two (PCMP), solutions of them are going
to be key tools in nonlinear separation as stated in previous section.

{
maximize F(x),
subject to x ∈ S(c;ρ),

{
maximize F(x),
subject to x ∈ B(c;ρ).

We turn our attention to the problem over a sphere, that is a problem of piecewise
maximization over a nonconvex feasible set with an empty interior. Since all feasible
points are degenerated even the local search for this problem is worth-while to study.
We consider a convex function f and notice that the KKT optimality condition for an
optimizer of f (either min or max) over S(c,ρ) implies collinearity of gradient ∇f (u)
and u− c. It is well known that the projected gradient method, from a reasonably
good starting point, quickly converges to the optimal solution. If no meaningful
guess is known, the gradient ∇f (c) is a good ray direction to find a starting point
for maximizing f over the sphere; for minimizing we start from the antigradient
−∇f (c).

Since F(x) = min{f1(x), . . . , fm(x)} a piecewise convex function; using 2 × m
times the above optimization paradigm (for both lj = argminS fj(x) and uj =
argmaxS fj(x)) yields a sparse set of points which the actual values F(lj) and F(uj)
may be computed for all j= 1, . . . ,m. We call for the best value of max{F(li),F(uj) |
i, j = 1, . . . ,m} as sparse piecewise convex maximization value over a sphere and
denote by z the point of this value.

Now we borrow from [9] the resolving border heuristic that focuses on points on
the level set in the vicinity of Dk(·) for some k that are likely to improve the easy
sparse optimizers.

We use the following two examples as the main lead to illustrate the different
steps in Piecewise Convex Maximizing:
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Algorithm 1 PCMP-over-sphere: Resolving border for arglocmaxx∈S F(x)
Input: c,ρ ,F = {fj | j = 1,m}
Output: z = arglocmaxx∈S F(x)

pq=PriorityQueue(sparseoptimize(S,F)) // decreasing values of sparse arglocmax
while pq �= /0 do

u =pop(pq)
if F(u) better then

z = u
end if
for m = 1,M do

v = Prfj(x)=F(z)(u)

uj = c+ρ v−c
‖v−c‖ push(pq,F(uj),uj) //enqueue value for unprocessed points only

end for
end while
return z

F2D
1 = min

{
x2

1 +(x2 +4)2 −36,
(x1 +8)2 +(x2 −3)2 −36,
x2

1 +(x2 −8)2 −16,
(x1 −8)2 +(x2 −3)2 −53,
(x1 −10)2 +(x2 +10)2 −4

}
,

F2D
2 = min

{
x2

1 +(x2 +2)2 −9,
9(x1 +3)2 +4x2

2 −36,
(x1 +1)2 +(x2 −4)2 −4,
1
9 (x1 −3)2 + 1

36 (x2 −4)2 −1,
(x1 −5)2 +(x2 +5)2 −1

}

respectively in spherical domain (spheres/balls) with (c,ρ) = ([0,0],4).
Despite there is no proof of global optimality, we experimented an effective

behavior to find points on the sphere well ordered by the priority queue and likely
to lay close to ∩Dj(z) (the best z found is drawn as a blue dot on Fig. 3).

In the remainder we concentrate on elementary coding steps, starting on opti-
mization over a sphere towards more involved recursive calls of (PCMP) over a ball.

There is a subtlety when v = c for defining w; we choose w = z+c
2 betting on a

point in ∩Dk(z) (early detection of a better point). In both cases Figs. 3 and 4 blue
points were found quickly which localize the global solution areas.

Concluding Remarks

In this chapter we have presented an overview of studies on piecewise convex
maximization problems: necessary and sufficient global optimality conditions,
methods including linearization oriented algorithm, piece adding technique (patch
for short), and Newton’s attractive force search algorithm (nasa for short). A novel
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Fig. 3 Maximize F2D
i over a sphere, i = 1,2 (left, right)
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Fig. 4 Maximize F2D
i over a ball, i = 1,2 (left, right)

approach of solving (PCMP) based on a nonlinear separation (instead of the
traditional affine separation) has been proposed. We call it a nonlinear covering
method. As a rule the approach opens up a field which should be investigated more
thoroughly: a choice of the covering sets, algorithms of solving subproblems over
them, etc.

Our aim is now to construct an “(union of covering sets)” such that

D ⊂ (union of covering sets) ⊂LF(F(z))

to check the global optimality of z for (PCMP).
As a preliminary we have considered piecewise convex maximization problems

over spherical sets (balls, spheres) which play the key role for this new research
direction. Algorithms along with some computational results with simple, but
illustrative, examples have been reported.
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Algorithm 2 PCMP-over-ball: Recursive radius search for arglocmaxx∈B F(x)
Input: c,ρ ,F = {fj | j = 1, . . . ,m}
Output: z = arglocmaxx∈B F(x)

r = ρ
z = c
for l = 1,maxiterations do

if r ≤ ε then
return z

end if
z = PCMP-over-sphere(S(c;r),F) // z = arglocmaxS F State locz = z
for j = 1,m do

v = Prfj(x)=F(z)(u) // projection on non active function
if d(v,z)≤ ε or d(v,z)> 2r then

continue // skip projection too close or too far
end if
if d(v,c)> r then

w = c+ r
d(v,c) (v− c) // outside B(c;r)⇒ w ∈ S(c;r)

else
w = z+ d(v,z)

r (c− z) // inside B(c;r)⇒ w ∈ B(c;r)
end if
if w better locz then

locz = w
end if

end for
if locz better z then

ρ = min{‖ z− locz ‖,‖ c− locz ‖}
z=PCMP-over-ball(B(locz,ρ),F)
r = ‖ c− z ‖

else
r = r

2 // halve radius
end if

end for
return z
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